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Summary


Regression models describing the dependence between a univariate response 

and a set of covariates play a fundamental role in statistics. In the last two 

decades, a tremendous effort has been made in developing flexible regression 

techniques such as generalized additive models (GAMs) with the aim of mod­

elling the expected value of a response variable as a sum of smooth unspecified 

functions of predictors. Many nonparametric regression methodologies exist 

including local-weighted regression and smoothing splines. Here the focus is 

on penalized regression spline methods which can be viewed as a generaliza­

tion of smoothing splines with a more flexible choice of bases and penalties. 

This thesis addresses three issues. First, the problem of model misspecifi­

cation is treated by extending the instrumental variable approach to the GAM 

context. Second, we study the theoretical and empirical properties of the con­

fidence intervals for the smooth component functions of a GAM. Third, we 

consider the problem of variable selection within this flexible class of models. 

All results are supported by theoretical arguments and extensive simulation 

experiments which shed light on the practical performance of the methods 

discussed in this thesis. 
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Chapter 1 

Introduction 

One of the main objectives of regression modelling is to model the expected 

value of a response variable Y as a flexible function of regressors x1, . . . , xp. In 

other words, the aim is to specify a function f such that 

E(Y |x1, . . . , xp) = h{f(x1, . . . , xp)}, 

where h( ) is the inverse of a link function, and Y follows an exponential family ·
distribution. Replacing f( ) with a linear combination of some known func­·
tions of covariates, e.g. f(x1, . . . , xp) = θ0 + 

�p
j=1 θjxj , leads to a general­

ized linear model (GLM; McCullagh and Nelder, 1989) which is easy to es­

timate and to interpret, and for which well-developed statistical frameworks 

are available. However, since the functional shape of any relationship is rarely 

known a priori and the response of interest may depend on the predictors in a 

complicated manner, it is more convenient to model f( ) as the sum of some ·
unspecified smooth function of covariates, e.g. f(x1, . . . , xp) = 

�
j
p 
=1 fj(xj), 

hence giving rise to a generalized additive model (GAM; Hastie and Tibshi­

rani, 1990). Such a model allows for rather flexible specification of the depen­

dence of the response on the covariates, but this flexibility and convenience 

comes at the cost of new methodological problems, some of which will be the 

objective of this thesis. 

1.1 Objectives of Thesis and Outline 

This thesis deals with some aspects of penalized regression spline smoothing. 

We shall begin by discussing some background material and then concentrate 

on three issues. 
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First, we consider the problem of model misspecification in the GAM con­

text. Specifically, when unobservables are associated with included regres­

sors and have an impact on the response, standard estimation methods will 

not be valid. This means, for example, that estimation results from observa­

tional studies, whose aim is to evaluate the impact of a treatment of interest 

a response variable, will be biased and inconsistent in the presence of unmea­

sured confounders if these are not accounted for. One method for obtaining 

consistent estimates of treatment effects when dealing with linear models and 

GLMs is the instrumental variable (IV) approach. Fitting procedures to carry 

out IV analysis within the GAM context have not been developed. Following 

the idea first introduced by Hausman (1978, 1983), we propose a two-stage 

approach for IV estimation when dealing with GAMs, and a correction pro­

cedure for confidence intervals. We explain under which conditions the pro­

posed method works and illustrate its empirical validity through an extensive 

simulation experiment and a health study where unmeasured confounding is 

suspected to be present. 

Second, we study the coverage properties of the Bayesian ‘confidence’ in­

tervals for the smooth component functions of GAMs. The intervals are the 

usual generalization of Wahba (1983) or Silverman (1985) intervals to the GAM 

component context. We present simulation evidence showing these intervals 

have close to nominal across-the-function frequentist coverage probabilities, 

except when the truth is close to a straight line/plane function. We extend 

Nychka’s (1988) argument for univariate smoothing splines to explain these 

results. The theoretical results allow us to derive alternative intervals from 

a purely frequentist point of view, and to explain the impact that the neglect 

of smoothing parameter variability has on confidence interval performance. 

They also suggest switching the target of inference for component-wise inter­

vals away from smooth components in the space of the GAM identifiability 

constraints. 

Third, we face the problem of GAM component selection. We propose two 

effective methods and extend the nonnegative garrote estimator, originally in­

troduced by Breiman (1995), to achieve smooth term selection. The proposals 

avoid having to use nonparametric testing methods for which there is not a 

general reliable distributional theory. Moreover, variable selection is carried 

out in one single step as opposed to many selection procedures which involve 

an exhaustive search of all possible models. The empirical performance of 

the proposed methods is compared to that of some available techniques via 

an extensive simulation study. Our results show under which conditions one 
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method can be preferred over another, hence providing applied researchers 

with some practical guidelines. The procedures are also illustrated analysing 

data on plasma beta-carotene levels from a cross-sectional study conducted in 

the United States. 

This thesis is based on the following papers: 

•	 MARRA, G., RADICE, R., 2010. Penalised regression splines: theory and 

application to medical research. Statistical Methods in Medical Research, 

19, pp. 107–125. 

•	 MARRA, G., RADICE, R., 2012. A Flexible Instrumental Variable Ap­

proach. Statistical Modelling, in press. 

•	 MARRA, G., WOOD, S. N. Coverage Properties of Confidence Intervals 

for Generalized Additive Model Components. Submitted. 

•	 MARRA, G., WOOD, S. N. Practical Variable Selection for Generalized 

Additive Models. Submitted. 
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Chapter 2 

Generalized Additive Models: An 

Overview 

GAMs allow for flexible functional dependence of a response variable on co­

variates. The aim of this chapter is to provide a brief overview of this flexible 

class of models, based on the penalized likelihood framework with regression 

splines, by discussing some aspects that are relevant to this thesis. 

2.1 Introduction 

GAMs are becoming among the most useful and used of statistical methods. 

An ISI Web of Knowledge search on the keyword “generalized additive mod­

els” reveals over 800 articles published during the last decade in the fields 

of biology, ecology, economics, environmental science, epidemiology, genetics 

and medicine (e.g. Marra and Radice, 2011; Marra and Radice, 2010; Zanin and 

Marra, 2011). This approach extends traditional GLMs by allowing the deter­

mination of possible nonlinear effects of covariates on a response variable of 

interest. In other words, GLMs model the effects of predictor variables xj in 

terms of a linear predictor of the form θ0 +
�

j θjxj , where the θj are regression 

parameters, whereas GAMs replace θ0 + 
�

j θjxj with, for instance, 
�

j fj(xj), 

where the fj are unknown smooth functions of regressors. The use of smooth 

terms is crucial since the functional shape of any relationship is rarely known 

a priori and the response of interest may depend on the predictors in a compli­

cated manner. 

A number of procedures can be employed for fitting GAMs, some of them 

documented in two recent monographs (Ruppert et al., 2003; Wood, 2006), and 

there is ongoing research on new ones such as the likelihood-based boosting 
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approach (Tutz and Binder, 2006). Our investigation is not meant to be exten­

sive. Rather, our goal is to present some background material on the penalized 

likelihood based approach with regression splines since this is the framework 

that will be adopted throughout this thesis. 

2.2 Model Structure 

A GAM can be seen as a GLM with a linear predictor involving smooth func­

tions of covariates 

g{E(Yi)} = ηi = X ∗ i θ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . . , (2.1) 

where g( ) is a smooth monotonic twice differentiable link function, Yi is a ·
univariate response variable, X∗ 

i is the ith row of X∗ , which is the model matrix 

for any strictly parametric model components, with corresponding parameter 

vector θ, and the fj are smooth functions of the covariates xj . The fj are subject 

to identifiability constraints such as 
�

i fj(xji) = 0 ∀j. The right hand side 

of (2.1) is called the linear predictor and is denoted as ηi, and the response Yi 

follows an exponential family distribution whose probability density functions 

are of the form �
yϑ − h(ϑ) 

� 
mϑ(y) = exp + c(y, φ) , (2.2) 

φ 

where h( ) and c( ) are arbitrary functions, ϑ is the natural and φ the disper­· ·
sion parameter. The mean and variance of such a distribution are E(Y ) = 

∂h(ϑ)/∂ϑ = µ and var(Y ) = φ∂µ/∂ϑ = φV (µ), respectively, where V (µ) 

denotes the variance function. Several distributions are possible within this 

family, such as the binomial, gamma, Gaussian and Poisson. In fact, a whole 

variety of outcome measures (e.g. counts, binary and skewed data) can be 

modelled within this model structure. In some cases, the nature of the re­

sponse distribution is not known, and it is only possible to specify what the 

relationship between the variance of the response and its mean should be. It 

turns out that it is possible to develop theory for fitting and inference based 

on the notion of quasi-likelihood. Here, maximum quasi-likelihood parameter 

estimates can be found by the usual method used to fit a GLM, described in 

the next section, and the classic large sample distribution of GLM parameter 

estimators also hold for maximum quasi-likelihood. 

Model (2.1) can flexibly determine the functional shape of the relationship 

between a response and some explanatory variables, hence avoiding the draw­
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backs of modelling data using parametric relationships. As an example, let 

us consider a group of patients from a single hospital who underwent Coro­

nary Artery Bypass Graft surgery. One may wish to identify the risk factors of 

in-hospital mortality following surgery, where the outcome of interest is Sta­

tus (0=alive, 1=died) and the explanatory variables associated with surgical 

mortality could be Age, BSA (Body Surface Area), and Ejection Fraction (a mea­

sure of heart function summarized in the categories ‘Good’, ‘Fair’ and ‘Poor’). 

In order to explain the in-hospital mortality following surgery from these ex­

planatory variables, several model specifications can be adopted. A possibility 

would be to fit a GLM with linear predictor given by 

ηi = θ0 + θ1EFfair,i + θ2EFpoor,i + θ3Agei + θ4BSAi, (2.3) 

where θ0 represents the baseline group Ejection Fraction = ‘Good’. But we 

do not know whether the variables Age and BSA enter the model linearly, and 

(2.3) makes the assumption of linear relationships between the two continuous 

variables and response. Instead, one could employ the following GAM 

ηi = θ0 + θ1EFfair,i + θ2EFpoor,i + f1(Agei) + f2(BSAi). 

In this way the relationship between the in-hospital mortality and the contin­

uous variables in the model can be determined flexibly. One of main advan­

tages of GAMs is that residual confounding may be avoided. This is supported 

by the simulation study of Benedetti and Abrahamowicz (2004) which shows 

that the use of spline models reduces residual confounding as compared to 

fully parametric modelling which typically leads to biased and spurious es­

timated impacts of the exposure of interest, in the presence of unmodelled 

nonlinearities. However, when unmeasured covariates are correlated with in­

cluded regressors and have an impact on the response, any GAM estimation 

method will not be valid, no matter how reliable and computationally robust 

the method is. Chapter 3 addresses this issue by showing how model misspec­

ification can be dealt with in the GAM context. 

The smooth terms can be represented using regression splines. In particu­

lar, the regression spline of a predictor is made up of a linear combination of 

known basis functions, bjk(xj), and unknown regression parameters, βjk, 

qj

fj(xj) = 
�

βjkbjk(xj), (2.4) 
k=1 
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where j indicates the smooth term for the jth explanatory variable, qj is the 

number of basis functions, hence regression parameters, used to represent the 

jth smooth term, and the subscript i is dropped for simplicity. Similarly, the re­

gression spline of two covariates can be written as fjp(xj, xp) = 
�

k
qj 

=1 βjp,kbjp,k(xj, xp). 

As mentioned earlier on, in order to identify (2.1), each smooth component is 

subject to some identifiability constraint. Basis functions have to be chosen in 

order to come up with smooth component estimates. For instance, suppose 

that f1(Age) is believed to be a 3th order polynomial. A basis for this space is 

b11(Age) = 1, b12(Age) = Age, b13(Age) = Age2 and b14(Age) = Age3 . Here, 

expression (2.4) becomes 

4

f1(Age) = 
�

β1kb1k(Age) = β11 + β12Age + β13Age2 + β14Age3 , 
k=1 

which can be easily estimated using standard regression techniques. The num­

ber of basis functions, qj , determines the maximum possible flexibility allowed 

for a smooth term. For example, a qj equal to 20 will yield a “wigglier” non­

linear estimate as compared to the estimate that can be obtained when this 

parameter is set to 10. It is worth observing that, although quite illustrative, 

polynomial bases are not very useful in practice. As the number of basis func­

tions increases, polynomial bases become increasingly collinear. This yields 

highly correlated parameter estimators, hence leading to high estimator vari­

ance and numerical problems (e.g. Royston, 2005). For these reasons, such 

basis functions should not generally be employed to model nonlinear relation­

ships. As a practical solution, in some applied work, continuous variables are 

categorized into groups based on intervals or frequencies. However, catego­

rization has several disadvantages since it introduces the problem of defining 

cut-points and implies that the relationship between a response variable and a 

set of covariates is flat within intervals (Royston and Altman, 1994; Johansen 

et al., 2005). To overcome all these issues, spline bases are typically used to 

determine flexibly the relationship between the continuous predictors and the 

outcome of interest. In fact, they avoid the disadvantages of categorization, are 

not as correlated as polynomial basis functions, have convenient mathemati­

cal properties and good numerical stability. Common choices for representing 

smooth functions include smoothing splines (e.g. Hastie and Tibshirani, 1990; 

Wahba, 1990). These place knots at every data point, and are indeed some­

times referred to as full rank smoothers because the size of the spline basis is 

equal to the number of observations. However, such smoothers have as many 
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unknown parameters as there are data which results in expensive computa­

tions. The thin plate regression spline basis proposed by Wood (2003) is a 

valid alternative. This basis is a low rank eigen-approximation version of the 

full rank thin plate spline introduced by Duchon (1977). It represents a general 

solution to the problem of estimating efficiently, and without having to choose 

knot locations, a smooth function of multiple predictor variables from noisy 

observations of the function, at particular values of those predictors. Figures 

2-1 and 2-2 illustrate thin plate regression spline bases in one dimension and 

two dimensions, respectively. Full mathematical details can be found in Wood 

(2003, 2006). This spline basis will be used throughout this thesis. 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

x x x x 

0.0	 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

x x x x 

Figure 2-1: This plot (source: Wood (2006)) illustrates a rank 7 thin plate regression spline 
basis for representing a smooth function of one variable. The first 7 panels (starting at top left) 
show the basis functions multiplied by some coefficients. These are then summed to give the 
smooth curve in the lower right panel. The first two bases span the space of functions that are 
completely smooth, according to the roughness measure defined in Section 2.3. The remaining 
basis functions represent the wiggly component of the smooth curve. 

2.3	 Some Model Fitting Details 

Given a vector of n independent observations, where Yi ∼ mϑi (yi), the substi­

tution of the terms fj(xj) with their regression spline expression into a model 

equation like (2.1) yields a GLM, which can be estimated by maximum likeli­

hood. Specifically, ηi can be rewritten as Xiβ, where Xi includes X∗ 
i and the 

terms representing the spline bases for the fj , while β contains θ and all the 

smooth coefficient vectors, βj . mϑi (yi) denotes an exponential family distri­

bution with probability density function (2.2) for which h and c are fixed and 

depend on the chosen distribution. The natural parameter ϑi is determined by 
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Figure 2-2: This plot (source: Wood (2006)) illustrates a rank 15 thin plate regression spline 
basis for representing a smooth function of two variables. The first 15 panels (starting at top 
left) show the basis functions multiplied by some coefficients. These are then summed to give 
the smooth surface in the lower right panel. The first three bases span the space of functions 
that are completely smooth, according to the roughness measure defined in Section 2.3. The 
remaining basis functions represent the wiggly component of the smooth curve. 

10




µi via E(Yi) and hence ultimately by β. The dispersion parameter φ can either 

be fixed or estimated, depending on the chosen distribution. For example, for 

the binomial and Poisson cases, φ is known and equal to 1. 

Since the Yi are assumed to be independent, the likelihood of β is 

n


L(β) = 
�

mϑi (yi)

i=1


and its log-likelihood is 

n� �
yiϑi − h(ϑi) 

� 
l(β) = + c(yi, φ) ,

φ 
i=1 

where β enters the right-hand side through the ϑi. Log-likelihood maximiza­

tion is achieved by partially differentiating l with respect to each element of 

β setting the resulting equations to zero, and solving for β. In formulae, the 

maximum likelihood estimate of β satisfies the score equations 

n n
∂l 1 � ∂ 1 

�
(yi − µi)

�
∂µi

� 
xji 

� 
= 0 ∀j, = = 

∂βj φ ∂βj 

{yiϑi − h(ϑi)}
φ 

� 
V (µi) ∂ηii=1 i=1 

whose solution does not depend on φ. These equations can not be solved alge­

braically, hence a numerical iterative procedure has to be employed. In prac­

tice, the likelihood can be maximized by Iteratively Re-Weighted Least Squares 

(IRLS), where the GLM is fitted by iterative minimization of the problem 

[k] 2 �
√

W[k](z − Xβ)� w.r.t. β. 

k is the iteration index, z[k] = Xβ[k] + G[k](y − µ[k]), µ
[k] 

is the current model i 

estimate of E(Yi), G
[k] is a diagonal matrix such that G

[
ii 
k] 

= g ′ (µ
[
i
k]
), and W[k] 

is a diagonal matrix given by Wii 
[k] 

= [Gii 
[k]2 

V (µi 
[k]

)]−1 . To avoid overfitting it 

is necessary to fit the model by penalized maximum likelihood estimation in 

which roughness measures are used to control overfit. For the case of smooth 

functions of one variable, the penalized likelihood is maximized by penalized 

IRLS (P-IRLS), so that the GAM is fitted by iteratively minimizing the problem 

�
√

W[k](z[k] − Xβ)� 2 + 
�

λj 

� �
fj

dj (xj)
�2 

dxj w.r.t. β. 
j 

The terms in the summation measure the roughness of the smooth functions, 

dj (usually set to 2) indicates the order of the derivatives for the jth smooth 
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term to be used in the fitting process, and the λj are smoothing parameters 

that control the trade-off between fit and smoothness. Since regression splines 
djare linear in their model parameters, the penalty 

�
j λj 

� �
fj (xj)

�2 
dxj can be 

written as a quadratic form in β with known coefficient matrices Sj . As an 

example, by setting dj = 2 and for a regression spline basis in one dimension, 

we have that 

� �
fj

2(xj)
�2 

dxj = 

� �
∂2fj(xj)

�2 

dxj = 

� �
∂2 

�
k
qj 

=1 βjkbjk(xj)
�2 

dxj
∂x2 ∂x2 

j j 

= 

� �
βTbj

′′ (xj)
�2 

dxj = 

� 
βTbj

′′ (xj)bj
′′ (xj)

Tβdxj 

= βT 

�� 
bj
′′ (xj)bj

′′ (xj)
Tdxj 

� 
β = βTSjβ, 

where b ′′ j (xj) is a vector containing the second derivatives of the basis func­

tions for the jth smooth term with respect to xj . It follows that 

�
λj 

� �
fj

dj (xj)
�2 

dxj = 
�

λjβ
TSjβ. 

j j 

The precise mathematical expression of a thin regression spline basis and its 

penalty depends on the value of dj and the dimension of xj ; see Wood (2003, 

2006) for full mathematical details. The smoothing parameters play a crucial 

role in penalized regression spline estimation: very large values for λj lead 

to very smooth estimates and vice versa. Given smoothing parameters, the 

penalized nonlinear least squares problem can be solved by using the IRLS 

algorithm. It turns out that the form of the parameter estimators of β is 

β̂ = (XTWX + S)−1XTWz, 

where S = 
�

j λjSj . It follows that the estimator for β is biased because of 

penalty-induced bias. 

Smoothing parameter estimation has to be addressed as well. This can be 

achieved by minimization of a prediction error estimate, such as the gener­

alized cross validation (GCV) score, if a dispersion parameter has to be es­

timated, or the generalized Akaike’s information criterion (AIC). Following 

Wood (2008), smoothing parameter selection via the GCV score consists of 

minimizing 

nD(β̂)
Vg(λ) = , {n − tr(A)}2 
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where D(β̂), the model deviance, is defined as 2φ(l̂sat − l̂(β̂)), l̂(β̂) is the log­

likelihood of the fitted model and l̂sat the maximum value for the log-likelihood 

of the model with one parameter per datum. The matrix A is given by WX(XTWX+ 

S)−1XTW, and the λj enter the GCV score through A. In case φ is known, the 

following generalized AIC is minimized instead 

Va(λ) = D(β̂) + 2tr(A)φ. 

As an alternative, REML can be employed. Within this framework, the pe­

nalized likelihood estimates, β̂, can be seen as the posterior modes of the dis­

tribution of β|y if β ∼ N(0, S−φ), where S− is an appropriate generalized 

inverse. Viewing the spline parameters as random effects allows for the pos­

sibility to estimate the λi via REML (Wahba, 1985). Wahba (1985) showed 

that asymptotically prediction error criteria are better in a mean square er­

ror sense, even though Härdle et al. (1988) pointed out that these criteria give 

slow convergence to the optimal smoothing parameters. The recent work by 

Reiss and Ogden (2009) shows that at finite sample sizes GCV or AIC is prone 

to undersmoothing and is more likely to develop multiple minima than REML 

(e.g. Wood, 2010). So, it would appear that REML should be preferred over 

GCV/AIC especially when the primary purpose of the analysis is to carry 

out smooth component selection. The computational methods for automatic 

smoothing parameter estimation of Wood (2006, 2008, 2010) are based on the 

criteria mentioned above, and will be used throughout this thesis. 

2.4 Confidence Intervals 

The well known Bayesian ‘confidence’ intervals originally proposed by Wahba 

(1983) or Silverman (1985) in the univariate spline model context, and then 

generalized to the component-wise case when dealing with GAMs (e.g. Gu, 

1992; Gu, 2002; Gu and Wahba, 1993; Wood, 2006), are typically used to reli­

ably represent the uncertainty of smooth terms. This is because such intervals 

include both a bias and variance component (Nychka, 1988), a fact that makes 

these intervals have good observed frequentist coverage probabilities across the 

function. 

The large sample posterior used for interval calculations is given by 

β|y,λ, φ,∼ N(β̂,Vβ), (2.5) 

13 

http:tothecomponent-wisecasewhendealingwithGAMs(e.g.Gu


�

where β̂ is the maximum penalized likelihood estimate of β, Vβ = (XTWX + 

S)−1φ, and W and z are the diagonal weight matrix and the pseudodata vector 

at convergence of the P-IRLS algorithm. Notice that W and φ are equal to the 

identity matrix and σ2, respectively, when a normal response is assumed and 

an identity link function selected; furthermore, in the normal errors case, the 

result above holds independently of asymptotic arguments. 

In Chapter 4, we study the coverage properties of these intervals. Specif­

ically, we present simulation evidence showing these intervals have close to 

nominal across-the-function frequentist coverage probabilities, and extend Ny­

chka’s (1988) argument for univariate smoothing splines to the GAM compo­

nent case to explain these results. 

2.5 Testing for No Effect 

In order to achieve component selection, a number of hypothesis testing ap­

proaches have been proposed in the literature, each of them with advantages 

and disadvantages. Here, we follow the approach by Wood (2006). 

Asymptotic arguments for maximum likelihood estimators suggest that if 

a model is correctly specified, then in the large sample limit 

β̂ ∽ N 
�
E(β̂),Vβ̂

� 
, 

where E(β̂) = β because of penalty-induced bias, and the frequentist covari­

ance matrix is given by 

V(β̂) = V
�
(XTWX + S)−1XTWz

� 

= (XTWX + S)−1XTWV(z)WX(XTWX + S)−1 

= BV (η + G(y − µ))BT = BV(Gy)BT = BGV(y)GTBT , 

where B = (XTWX+S)−1XTW, and V(y) is a diagonal matrix with elements �
∂ηiVii = V (µi)φ. Recalling that G is a diagonal matrix such that Gii = 
∂µi 

�
, it 

follows that GV(y)GT = W−1φ and therefore that 

Vβ̂ = (XTWX + S)−1XTWX(XTWX + S)−1φ. 

The dispersion parameter φ can be estimated by the Pearson estimator φ̂ = 

�
√

W(y − µ̂)�2/ {n − tr(A)}, where µ̂ = Ay. The trace of A represents the 

estimated degrees of freedom (edf) of the fitted model. It is also known as 
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degree of complexity or number of effective parameters in the model. The edf 

of the model is given by the sum of the edf of the smooth functions. For the 

case of a smooth function of one covariate with dj = 2, if edfj = 1 then it means 

that the explanatory variable xj can enter the model linearly. 

The parameter estimators of θ are unpenalized. This means that classic dis­

tributional results for GLMs can be used for parametric terms. In particular, 

hypothesis testing and confidence intervals can be based on the Gaussian or 

an appropriate t distribution, depending on whether φ is known. As for the 

penalized regression spline parameter estimators, given that E(β̂j) =� βj , the 

usual distributional results for GLMs can not be employed for hypothesis test­

ing. However, when the goal of the analysis is testing that a smooth term of a 

GAM is equal to zero, we have that if βj = 0 then E(β̂j) ≈ 0 (Wood, 2006). It 

follows that, under the null hypothesis that the coefficients of a smooth com­

ponent are zero, 

ˆ
Tβ̂j V

r− 

βj 
βj∽̇χr

2ˆ
 ,


ˆwhere r denotes the rank of the covariance matrix of β̂j , and Vr− 

βj 
is the rank


r generalized pseudoinverse of Vβ̂j 
that has to be employed to overcome pos­

sible matrix rank deficiencies deriving from the fact that the smoothing penalty 

may suppress some dimensions of the parameter space. r is determined heuris­

tically as follows. It is the minimum value between the maximum edf value 

allowed for the jth smooth term (which is also the number of basis functions 

used for the term) and the smallest integer not less than the quantity calcu­

lated as 2 ∗ edfj (Wood, 2006). If φ is unknown, then the null hypothesis can be 

tested using the following result 

ˆ
Tβ̂j V

r−β̂j/r 
βj = β̂ ˆV̂r− ˆ

βj 

T βj/r∽̇Fr,n−edf,j
φ̂/φ 

since V̂β̂j 
is based on φ̂. As pointed out in Wood (2006), these two p-value 

definitions are only approximate and one has to be careful when using these 

results for variable selection purposes. 

Despite the fact that some testing methods have been introduced in the 

GAM context, such as the one discussed in this section, a general reliable dis­

tributional theory for the smooth terms of a GAM has not been developed to 

date. In Chapter 5, we tackle this problem and propose three practical methods 

to achieve GAM component selection. 
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2.6 Model Comparison 

In any model building process, the researcher might be interested in compar­

ing two nested models. Nesting implies that the simpler model (H0) is a special 

case of the more complex model (H1). For example, the explanatory variables 

present in H0 are a subset of those present in H1. In such cases, the generalized 

likelihood ratio test is often applied. Specifically, consider testing 

H0 : X0β0 against H1 : Xβ, 

where X0 ⊂ X. If H0 is true then in the large sample limit 

D0 − D1 ∽ χ2 ,edf1−edf0 

where D0 and D1 are the deviances under H0 and H1, respectively. When a 

dispersion parameter has to be estimated the F -ratio test may be used 

F =
(D0 − D1)/(edf1 − edf0) 

∽̇Fedf1−edf0,n−edf1 ,D1/(n − edf1) 

which does not require knowledge of φ (Wood, 2006). 

2.7 Model Checking 

Before interpreting model results and for model comparison purposes, the ad­

equacy of the fitted models has to be checked. This is perhaps the most im­

portant part of any statistical analysis since unexplained systematic structure 

in the residuals of a fitted model typically leads to misleading inferences. 

Model checking for GAMs, which is similar to what is done for linear mod­

els and GLMs, can be performed using Pearson or deviance residuals (McCul­

lagh and Nelder, 1989). The Pearson residual has the form 

(P ) Yi − µ̂i 
ri = , 

var(Yi) 

where µ̂i and var(Yi)ˆ are the fitted mean and variance for the ith observation 

in the dataset. Under the assumption that the fitted model is correct, the Pear­

son residuals have approximately zero mean and standard deviation close to 

1. However, as discussed in Cameron and Trivedi (1998), these residuals are 

generally asymmetrically distributed. As an alternative, one can use deviance 
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residuals since they can suggest which observations cause lack of fit, and are 

expected to behave something like standard normal random variables. The 

deviance residual is defined as 

(d)
r = sign(Yi − µ̂i)

√
ci,i 

where ci represents the contribution of the ith observation to the overall good­

ness of fit of the model as D can be seen as 
�n

i=1 ci. 
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Chapter 3 

A Flexible Instrumental Variable 

Approach 

Classical regression model literature has sometimes assumed that measured 

and unmeasured or unobservable covariates are statistically independent. For 

many applications this assumption is clearly tenuous. When unobservables 

are associated with included regressors and have an impact on the response, 

standard estimation methods will not be valid. This means, for example, that 

estimation results from observational studies, whose aim is to evaluate the im­

pact of a treatment of interest on a response variable, will be biased and incon­

sistent in the presence of unmeasured confounders. One method for obtaining 

consistent estimates of treatment effects when dealing with linear models is 

the instrumental variable (IV) approach. Linear models have been extended 

to GLMs and GAMs, and although IV methods have been proposed to deal 

with GLMs, fitting methods to carry out IV analysis within the GAM context 

have not been developed. We propose a two-stage procedure for IV estimation 

when dealing with GAMs represented using any penalized regression spline 

approach, and a correction procedure for confidence intervals. We explain un­

der which conditions the proposed method works and illustrate its empirical 

validity through an extensive simulation experiment and a health study where 

unmeasured confounding is suspected to be present. 

3.1 Introduction 

Observational data are often used in statistical analysis to infer the effects of 

one or more predictors of interest (which can be also referred to as treatments) 

on a response variable. The main characteristic of observational studies is a 
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lack of treatment randomization which usually leads to selection bias. In a re­

gression context, the most common solution to this problem is to account for 

confounding variables that are associated with both treatments and response 

(e.g. Becher, 1992). However, the researcher might fail to adjust for pertinent 

confounders as they might be either unknown or not readily quantifiable. This 

constitutes a serious limitation to covariate adjustment since the use of stan­

dard estimators typically yields biased and inconsistent estimates. Hence, a 

major concern when estimating treatment effects is how to account for unmea­

sured confounders. 

This problem is known in econometrics as endogeneity of the predictors of 

interest. The most commonly used econometric method to model data that 

are affected by the unobservable confounding issue is the instrumental vari­

able (IV) approach (Wooldridge, 2002). This technique only recently has re­

ceived some attention in the applied statistical literature. This method can 

yield consistent parameter estimates and can be used in any kind of analysis 

in which unmeasured confounding is suspected to be present (e.g. Beck et al., 

2003; Leigh and Schembri, 2004; Linden and Adams, 2006; Wooldridge, 2002). 

The IV approach can be thought of as a means to achieve pseudo randomiza­

tion in observational studies (Frosini, 2006). It relies on the existence of one 

or more IVs that induce substantial variation in the endogenous/treatment 

variables, are independent of unobservables, and are independent of the re­

sponse conditional on all measured and unmeasured confounders. Provided 

that such variables are available, IV regression analysis can split the variation 

in the endogenous predictors into two parts, one of which is associated with 

the unmeasured confounders (Wooldridge, 2002). This fact can then be used 

to obtain consistent estimates of the effects of the variables of interest. 

The applied and theoretical literature on the use of IVs in parametric and 

nonparametric regression models with Gaussian response is large and well 

understood (Ai and Chen, 2003; Das, 2005; Hall and Horowitz, 2005; Newey 

and Powell, 2003). In many applications, however, Gaussian regression mod­

els have been replaced by GLMs and GAMs (McCullagh and Nelder, 1989; 

Hastie and Tibshirani, 1990), as they allow researchers to model data using 

the response variable distribution which best fits the features of the outcome 

of interest, and to make use of nonparametric smoothers since the functional 

shape of any relationship is rarely known a priori. Simultaneous maximum­

likelihood estimation methods for GLMs in which selection bias is suspected to 

be present have been proposed. Here consistent and efficient estimates can be 

obtained by jointly modelling the distribution of the response and the endoge­
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nous variables (Heckman, 1978; Maddala, 1983; Wooldridge, 2002). However, 

the main drawbacks are typically computational cost and the derivation of the 

joint distribution, issues that may become more severe in the GAM context. 

Amemiya (1974) proposed an IV generalized method of moments (GMM) ap­

proach to consistently estimate the parameters of a GLM. An epidemiological 

example is provided by Johnston et al. (2008). Here it is not clear how such an 

approach can be implemented for GAMs so that reliable smooth component 

estimates can be obtained in practice. This is because when fitting a GAM the 

amount of smoothing for the smooth components in the model has to be se­

lected with a certain degree of precision. In this respect, it might be difficult 

to develop a reliable computational multiple smoothing parameter method by 

taking an IV GMM approach, and, to the best of our knowledge, such a proce­

dure has not been developed to date. 

The IV extension to the GAM context is a topic under construction. This 

generalization is important because even if we use an IV approach to account 

for unmeasured confounders, we can still obtain biased estimates if the func­

tional relationship between predictors and outcome is not modelled flexibly. 

The aim of this chapter is to extend the IV approach to GAMs by exploiting 

the two-stage procedure idea first proposed by Hausman (1978, 1983) and em­

ploying one of the reliable smoothing approaches available in the GAM lit­

erature. To simplify matters, we first discuss a two-step estimator for GLMs 

which can be then easily extended to GAMs. The proposed approach can be 

efficiently implemented using some standard existing software. Our proposal 

is illustrated through an extensive simulation study and in the context of a 

health study. 

The rest of the chapter is structured as follows. Section 3.2 discusses the IV 

properties, the classical two-stage least squares (2SLS) method, and the Haus­

man’s endogeneity testing approach. For simplicity of exposition, Section 3.3 

illustrates the main ideas using GLMs, which are then extended to the GAM 

context in Section 3.4. Section 3.5 proposes a confidence interval correction 

procedure for the two-stage approach of Section 3.4. Section 3.6 evaluates the 

empirical properties of the two-step GAM estimator through an extensive sim­

ulation experiment, whereas Section 3.7 illustrates the method via a health ob­

servational study of medical care utilization where unmeasured confounding 

is suspected to be present. 
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3.2 Preliminaries and motivation 

In empirical studies, endogeneity typically arises in three ways: omitted vari­

ables, measurement error, and simultaneity (see Wooldridge (2002, p. 50) for 

more details on these forms of endogeneity). Here, we approach the problem 

of endogenous explanatory variables from an omitted variables perspective. 

To fix ideas, let us consider the model 

Y = β0 + βeXe + βoXo + βuXu + ǫY , E(ǫY |Xe, Xo, Xu) = 0, (3.1) 

where ǫY is an error term normally distributed with mean 0 and constant vari­

ance, β0 represents the intercept of the model, and Xe, Xo and Xu are the en­

dogenous variable, observable confounder, and unmeasured confounder, with 

parameters βe, βo and βu, respectively. We assume that Xu influences the re­

sponse variable Y and is associated with Xe. 

Since Xu can not be observed, (3.1) can be written as 

Y = β0 + βeXe + βoXo + ζ, (3.2) 

where ζ = βuXu + ǫY . OLS estimation of equation (3.2) results in inconsistent 

estimators of all the parameters, with βe generally the most affected. In order 

to obtain consistent parameter estimates, an IV approach can be employed. 

Specifically, to clear up the endogeneity of Xe, we need an observable variable 

XIV , called instrument or IV, that satisfies three conditions (e.g. Greenland, 

2000): 

1. The first requirement can be better understood by making use of the fol­

lowing model 

Xe = α0 + αoXo + αIV XIV + αuXu + ǫXe , (3.3) 

where ǫXe has the same features as ǫY . (3.3) can also be written as 

Xe = α0 + αoXo + αIV XIV + ξu, E(ξu Xo, XIV ) = 0,|

where ξu, defined as αuXu + ǫXe , is assumed to be uncorrelated with Xo 

and XIV , and αIV must be significantly different from 0. In other words, 

XIV must be associated with Xe conditional on the remaining covariates 

in the model. 

2. The second requirement is that XIV is independent of Y conditional on 
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the other regressors in the model and Xu. 

3. The third condition requires XIV to be independent of Xu. 

As an example, let us consider the study by Leigh and Schembri (2004). 

The aim of their analysis was to estimate the effect of smoking on physical 

functional status. Smoking was considered as an endogenous variable since 

it was assumed to be associated with health risk factors which could not be 

observed. The IV was cigarette price as it was believed to be logically and 

statistically associated with smoking, and not to be directly related to any in­

dividual’s health. Also, it was logically assumed to be unrelated to those un­

measured health risk confounders which could affect physical functional sta­

tus. Cigarette price therefore appeared to satisfy the conditions for a valid and 

strong instrument. In many situations identification of a valid instrument is 

less clear than in the case above, and is usually heavily dependent on the spe­

cific problem at hand. This is because some of the necessary assumptions can 

not be verified empirically, hence the selection of an instrument has to be based 

on subject-matter knowledge, not statistical testing. Assuming that an appro­

priate instrument can be found, several methods can be employed to correctly 

quantify the impact that a predictor of interest has on the response variable, 

2SLS being the most common. 

In 2SLS estimation, least squares regression is applied twice. Specifically, 

the first stage involves fitting a linear regression of Xe on Xo and XIV to obtain 

Ê(Xe|Xo, XIV ) or X̂e. In the second stage, a regression of Y on X̂e and Xo 

is performed. We see why this procedure yields consistent estimates of the 

parameters by taking the conditional expectation of (3.2) given Xo and XIV . 

That is, 

E(Y |Xo, XIV ) = β0 + βeX̂e + βoXo. 

Thus, the 2SLS estimator can produce an estimate of the original parameter 

of interest. However, this approach does not yield consistent estimates of the 

coefficients when dealing with generalized models (Amemiya, 1974). This is 

because the unobservable is not additively separable from the systematic part 

of the model. The following argument better explains this point. 2SLS implies 

the replacement of βeXe with βe(X̂e + ξ̂u). Thus, the error of model (3.2) is 

allowed to become (βeξ̂u + βuXu + ǫY ), which can be readily shown to be un­

correlated with X̂e and Xo. This result does not hold for GLMs because βeξ̂u 

and βuXu can not become part of the error term given the presence of a link 

function that has to be employed when dealing with GLMs. 
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The developments of the next two sections are based on the two-stage ap­

proach introduced by Hausman (1978, 1983) as a means of directly testing the 

endogeneity hypothesis for the class of linear models. His procedure has the 

same first stage as 2SLS, but in the second stage Xe is not replaced by X̂e. 

Instead, the first-stage residual is included as an additional predictor in the 

second-stage regression, and its parameter significance tested. 2SLS and the 

Hausman’s procedure are equivalent for Gaussian models in terms of esti­

mated parameters. However, they do not yield the same results when deal­

ing with generalized models since 2SLS would produce biased and incon­

sistent estimates (for the reasons given in the previous paragraph) whereas 

a Hausman-like approach would consistently estimate the parameters of in­

terest, as it will be discussed in the next section. 

3.3 IV estimation for GLMs 

The purpose of this section is to discuss a two-step IV estimator for GLMs 

which can be then easily extended to GAMs. As explained in Section 3.1, sev­

eral valid methods have already been proposed to deal with GLMs in which 

selection bias is suspected to be present. In fact, our aim is not to discuss an 

alternative IV approach for GLMs, but to illustrate the main ideas using this 

simpler class of models. The generalization to the GAM context will then eas­

ily follow. 

A GLM has the model structure 

g(µ) = η = Xβ, (3.4) 

where g(·) is a smooth monotonic link function, µ ≡ E(y|X), y is a vector of 

independent response variables (Y1, ..., Yn)T , η is called the linear predictor, X 

is an n×k matrix of k covariates, and β represents the k×1 vector of unknown 

regression coefficients. The generic response variable Y follows an exponential 

family distribution. 

Model (3.4) can also be written as 

y = g −1(η) + ǫ, E(ǫ|X) = 0, (3.5) 

where g−1(η) = E(y|X), and ǫ is an additive, unobservable error trivially de­

fined as ǫ ≡ y−g−1(η). Recall that equation (3.5) only implies that E(ǫ|X) = 0. 

Certainly, depending on the nature of Y , the error term may have some un­
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desired properties. As explained in Section 3.2, we assume three types of co­

variates. That is, X = (Xe, Xo, Xu), where Xe is an n × h matrix of endogenous 

variables, Xo an n×j matrix of observable confounders, and Xu an n×h matrix 

of unmeasured confounders that influence the response variable and are asso­

ciated with the endogenous predictors. Correspondingly, βT can be written as 

(βe 
T ,βo 

T ,βu 
T). Notice that, as, e.g., in Terza et al. (2008), we assume we have as 

many endogenous variables as there are unobservables. To simplify notation 

we do not write the intercept vector in X even though we assume it is included. 

If Xu is available, then β̂ can yield consistent estimates of β. 

The problem with equation (3.5) is that we can not observe Xu, hence it can 

not be included in the model. This violates the assumption that E(XTǫ) = 0, 

therefore leading to biased and inconsistent estimates. To this end, it is useful 

to model the variables in Xe through the following set of auxiliary (or reduced 

form) equations (e.g. Terza et al., 2008) 

g −1(Zpαp) + ξup, p = 1, . . . , h, (3.6) xep = p 

where xep represents the pth column vector from Xe, g−
p 

1 is the inverse of the link 

function chosen for the pth endogenous/treatment variable, Zp = (Xo, XIV p), 

XIV p is the pth matrix of dimension n×n.ivp where n.ivp indicates the number of 

identifying instrumental variables available for xep, αp denotes the (j+n.ivp)×1 

vector of unknown parameters, and ξup is a term containing information about 

both structured and unstructured terms. It is well known in the IV literature 

that, in order to identify the set of reduced form equations, there must be at 

least as many instruments as there are endogenous regressors. This means 

that each n.ivp must be equal or greater than 1. This will be assumed to be the 

case throughout the chapter. 

The reason why the equations in (3.6) can be used to “correct” the param­

eter estimates of the equation of interest is as follows. Once the measured 

confounders have been accounted for and provided the instruments meet the 

conditions discussed in Section 3.2, the ξup contain information about the un­

measured confounders that can be used to obtain corrected parameter esti­

mates of the endogenous variables. To shed light on this last point, using an 

argument similar to that of Johnston et al. (2008), let us assume that the true 

model underlying the pth reduced form equation is 

xep = E(xep|Zp, xu) + υp, (3.7) 
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where E(xep|Zp, xu) = hp(Zpαp + xu), hp = g−1, and υp is an error term. Now, p 

hp( ) can be replaced by the Taylor approximation of order 1 ·

hp(Zpαp + xu) ≈ hp(Zpαp) + xuh ′ p(Zpαp), (3.8) 

hence (3.7) can be written as 

xep = hp(Zpαp) + xuhp
′ (Zpαp) + υp, 

which in turn leads to model (3.6) where 

ξup = xuh ′ p(Zpαp) + υp. 

The next section shows how the fact that the ξup contain information about 

the unobservables can be used to clear up the endogeneity of the treatment 

variables in the model. Notice that in the Gaussian case, approximation (3.8) 

is not needed since xu would enter the error term linearly. 

3.3.1 The two-step GLM estimator 

In order to obtain consistent estimates for model (3.5) in the context defined 

earlier, we employ a Hausman-like approach. Specifically, the following two­

step generalized linear model (2SGLM) procedure can estimate the parameters 

of interest consistently: 

1. For each endogenous predictor in the model, obtain consistent estimates 

of αp by fitting the corresponding auxiliary equation through a GLM 

method. Then, calculate the following set of quantities 

ξ̂up = xep − g −1(Zpα̂p), p = 1, . . . , h. (3.9) p 

2. Fit a GLM defined by 

y = g −1(Xeβe + Xoβo + Ξ̂uβΞu ) + ς, E(ς|X) = 0, (3.10) 

where Ξ̂u is an n × h matrix containing the ξ̂up obtained in the previous 

step, with parameter vector βΞu , and ς represents an error term. 

The parameter vector βΞu can not be used as a means to explain the impact 

that the unmeasured confounders have on the outcome (see Section 3.4.1 for 

an explanation). However, this is not problematic since we are not interested 
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in βΞu . All that is needed is to account for the presence of unobservables, and 

this can be achieved by including a set of quantities which contain information 

about them. As a result, we can replace equation (3.5) by (3.10) since in this 

context βe is the parameter vector of interest. It is important to stress that bet­

ter empirical results are expected when the endogenous variables in the first 

step can be modelled using Gaussian regression models. In this case approx­

imation (3.8) does not come into play which means that we can better control 

for unobservables. 

Following, e.g., Terza et al. (2008), 2SGLM works since if the αp were 

known then by using (3.6) the column vectors of Ξu would be known. Hence 

information about the unobservables could be incorporated into the model by 

using Ξu. In this respect, the endogeneity issue would disappear since the 

assumption that the error term is uncorrelated with the predictors would be 

satisfied. However, we do not know the αp. By using (3.9) we can get con­

sistent estimates for the αp thereby obtaining a good estimate for Ξu. It can 

be readily shown that β̂T, now defined as (β̂T , β̂T , β̂T ), is consistent for the e o Ξu 

vector value γT = (γe 
T ,γo 

T ,γu 
T) that solves the population problem 

minimize E[�y − g −1(Xeγe + Xoγo + Ξuγu)� 2] w.r.t. γ. (3.11) 

In (3.11) we ignore estimation for Ξu as the endogeneity issue only concerns 

the second-step equation, and because consistent estimates for it can be ob­

tained. Provided the IVs meet the assumptions discussed in Section 3.2, we 

have that 

E(y|Xe, Xo, XIV ) = g −1(Xeβe + Xoβo + ΞuβΞu ), 

from which follows that β = γ. The sample analogue follows similar prin­

ciples. These arguments are standard and can be found in Wooldridge (2002, 

pp. 341 − 345, 353 − 354). 

3.4 The GAM extension 

The IV extension to the GAM context is important because even if we use an 

IV approach to account for unmeasured confounders, as shown in the previ­

ous section, we can still obtain biased estimates if the functional relationship 

between predictors and outcome is not modelled flexibly. 

GAMs extend GLMs by allowing the determination of possible nonlinear 
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effects of predictors on the response variable. A GAM has the model structure 

y = g −1(η) + ǫ, E(ǫ|X) = 0. (3.12) 

Here, X = (X ∗ , X+), X ∗ = (Xe
∗ , Xo

∗ , Xu
∗ ), and X+ = (Xe 

+ , Xo 
+ , Xu 

+). The symbols 

∗ and + indicate whether the matrix considered refers to discrete predictors 

(such as dummy variables) or continuous regressors. Matrix dimensions can 

be defined following the same criterion adopted in the previous section. The 

linear predictor of a GAM is typically given by 

+X ∗ β ∗ η = + 
�

fj(xj ), (3.13) 
j 

where β∗ represents the vector of unknown regression coefficients for X ∗ , and 
+the fj are unknown smooth functions of the covariates, xj , represented using 

regression splines (see Chapter 2). 

Since we can not observe X ∗ u and X+ 
u , inconsistent estimates are expected. 

However, provided that IVs are available to correct for endogeneity, consis­

tent estimates can be obtained by modelling the endogenous variables in the 

model. In the GAM context, this can be achieved through the following set of 

flexible auxiliary regressions 

−1 α ∗ + 
� 

+ xep = gp {Z ∗ p p fj(z )} + ξup, p = 1, . . . , h, (3.14) jp

j 

where xep represents either the pth discrete or continuous endogenous predic­

tor, Z ∗ = (X ∗ , X ∗ ) with corresponding vector of unknown parameters α∗ ,p o IV p p

and Zp 
+ = o IV p).(X+ , X+ 

3.4.1 The two-step GAM estimator 

The 2SGLM estimator can now be extended to the GAM context. In particular, 

the following two-step generalized additive model (2SGAM) approach can be 

employed: 

1. For each endogenous variable in the model, obtain consistent estimates 

of α∗ 
p and the fj by fitting the corresponding reduced form equation 

through a GAM method. Then, calculate the following set of quantities 

ˆ −1 α ∗ + 
�

ˆ +ξup = xep − gp {Z ∗ p ˆp fj(zjp)}, p = 1, . . . , h. 
j 
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2. Fit a GAM defined by


−1 β ∗ + ( ˆy = g {X ∗ eo + 
�

fj(x ) +
�

fp ξup (3.15) eo jeo )} + ς, 
j p 

where X ∗ = (X ∗ , X ∗ ) with parameter vector β∗ , and X+ = (X+ , X+).eo e o eo eo e o 

In practice, the 2SGAM estimator can be implemented using GAMs repre­

sented via any penalized regression spline approach. For instance, the models 

in (3.14) and (3.15) can be fitted through penalized likelihood which can be 

maximized by P-IRLS (see Chapter 2). 

As explained throughout the chapter, the presence of a relationship be­

tween the outcome and unobservables that are associated with endogenous 

predictors can lead to bias in the estimated impacts of the latter variables. The 

use of the fp(ξ̂up) in (3.15) allows us to properly account for the impacts of un­

measured confounders on the response. This means that the linear/nonlinear 

effects of the endogenous regressors can be estimated consistently (see Section 

3.6). 

Let us now consider equation (3.14). The estimated residuals, ξ̂up, will con­

tain the linear/nonlinear impacts of the unobservables on the endogenous 

variables xep. These effects can be partly or completely different from those 

that the same unmeasured confounders have on the outcome. However, this 

is not problematic; the fp in (3.15) will automatically yield smooth functions 

estimates that (i) take into account the nonlinearity already present in the ξ̂up, 

and (ii) recover the residual amount of nonlinearity needed to clear up the en­

dogeneity of the endogenous variables in the model. This also explains why 

the f̂p(ξ̂up) can not be used to display the relationship between the unobserv­

ables and the response. As mentioned in Section 3.3.1, this is not problematic 

since all that is needed is to account for information about those unobservables 

that have a detrimental impact on the estimation of the effects of interest. 

Intuitively, the consistency arguments for the 2SGLM estimator could be 

extended to 2SGAM by recalling that a GAM can be seen as a GLM whose 

design matrix contains the basis functions of the smooth components in the 

model, and by adapting the asymptotic results of Kauermann et al. (2009) 

to this context. The discussion of these properties is beyond the scope of 

this work, hence we do not pursue it further. Implementation of 2SGAM is 

straightforward. It just involves applying a penalized regression spline ap­

proach twice by using one of the reliable packages available to fit GAMs. This 

is particularly appealing since the amount of smoothing for the smooth com­
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ponents in the models of the two-step approach can be selected reliably by 

taking advantage of the recent computational developments in the GAM liter­

ature. 

3.5 Confidence interval correction 

The large sample posterior for the generic parameter vector containing all re­

gression spline coefficients is given in Section 2.4. 

Since the second-stage of 2SGAM can not automatically account for an ad­

ditional source of variability introduced via the quantities calculated in the 

first step, the confidence intervals for the component functions of the second­

step model will be too narrow, hence leading to poor coverage probabilities. 

This can be rectified via posterior simulation. 

The algorithm we propose is as follows: 

1. Fit the first-step models, and let the first-stage parameter estimates be α̂[p] 

[p]
and the estimated parameter covariance Bayesian matrix be V̂α , where 

p = 1, . . . , h. 

2. Fit the second-stage model, and let β̂[1] and V̂β 
[1] 

be the corresponding 

parameter estimates and covariance Bayesian matrix. 

3. Repeat the following steps for k = 2, . . . , Nb. 

α[p] ˆ [p]
(a) For each first-stage model p, simulate a random N( ˆ ,Vα ), calcu­

∗late new predicted values x , and then obtain ξ̂∗ .ep up

ξ∗(b) Fit the second-stage model where the ξ̂up are replaced with the ˆup. 

Then store β̂[k] and V̂
[k] 

.β 

[k]
4. For k = 1, . . . , Nb, simulate Nd random draws from N(β̂[k], V̂β ), and then 

find approximate Bayesian intervals for the component functions of the 

second-stage model. 

In words, samples from the posterior distribution of each first-step model are 

used to obtain samples from the posterior of the quantities of interest ξup. 

Then, given Nb replicates for each ξup, Nd random draws from the Nb poste­

rior distributions of the second-stage model are used to obtain approximate 

Bayesian intervals for the smooth functions in the model. In this way, the ex­

tra source of variability introduced via the quantities calculated in the first step 

models can be accounted for. Simulation experience suggests that, depending 
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on the number of reduced form equations in the first step, small values for 

Nb and Nd will be tolerable. In practice, as a rule of thumb, Nb = 25 × p and 

Nd = 100 yield good coverage probabilities. 

As explained by Ruppert et al. (2003), result (2.5) and, as a consequence, our 

correction procedure can not be used for variable selection purposes. In the 

presence of several candidate predictors, it is possible to carry out variable se­

lection using information criteria, test statistics and shrinkage methods. Since 

in this context it is not straightforward to correct the second-step estimated 

standard errors analytically, we suggest to use a shrinkage method. This is 

because shrinkage approaches are based on the estimated components of a 

model. Hence, we can exploit the fact that 2SGAM yields consistent term esti­

mates which can in turn lead to consistent covariate selection. Some shrinkage 

smoothers for GAMs are provided in Chapter 5. 

3.6 Simulation study 

To explore the empirical properties of the 2SGAM estimator, a Monte Carlo 

simulation study was conducted. The proposed two-stage approach was tested 

using data generated according to four response variable distributions and 

two data generating processes (DGP1 and DGP2). For both DGPs the num­

ber of endogenous variables in the model was equal to one. All computations 

were performed using R with GAM setup based on the mgcv package. 

The performance of 2SGAM was compared with naive GAM estimation 

(i.e. the case in which the model is fitted without accounting for unmeasured 

confounding), and complete GAM estimation (i.e. the case in which the un­

observable is included in the model). No competing methods were employed 

since, to the best of our knowledge, there are not available IV alternatives that 

can deal with GAMs in which the amount of smoothing for the smooth com­

ponents can be selected via a reliable numerical method. 

3.6.1 DGP1 

The linear predictor was generated as follows 

η = f1(xo1) + f2(xe) + f3(xu) + xo2. (3.16) 

The test functions used for both DGPs are displayed and defined in Figure 

3-1 and Table 3.1, respectively. For each set of correlations, sample size and 
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f	
f 

f1(x)	 f2(x) f3(x) 
1.0 1.0 1.0 

0.8 0.8 0.8 

0.6 0.6 0.6 

0.4 0.4 0.4 

0.2 0.2 0.2 

0.0 0.0 0.0 

0.0	 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0


x x x


f4(x)	 f5(x) f6(x) 
1.0 1.0 1.0 

0.8 0.8 0.8 

0.6 0.6 0.6 

0.4 0.4 0.4 

0.2 0.2 0.2 

0.0 0.0 0.0 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

x x x 

Figure 3-1: The six test functions used in the linear predictors. 

response distribution, we carried out the following steps: 

1. Simulate xo1 and xo2 from a multivariate uniform distribution on the 

unit square. This was achieved using the algorithm from Gentle (2003). 

Specifically, using R, two uniform variables with correlation approxi­

mately equal to 0.5 were obtained as follows 

library(mvtnorm)


cor <- array(c(1,0.5,0.5,1),dim=c(2,2))


var <- pnorm(rmvnorm(n,sigma=cor))


xo1 <- var[,1]; xo2 <- var[,2]


2. Simulate xu, xIV 1 and xIV 2 from independent uniform distributions on 

(0,1). 

3. Simulate the endogenous/treatment variable of interest as follows 

xe = θ1f4(xu) + θ2f5(xIV 1) + θ3f6(xIV 2) + ζ, 

where ζ ∼ N(0, 1), and θ = (θ1, θ2, θ3) was chosen to obtain the set of cor­

relations ρ{f2(xe), f3(xu)} ∈ {−0.4,−0.6} and ρ{xe, f5(xIV )} ∈ {0.4, 0.7}. 

The three functions were scaled to have the same importance, and xe was 

scaled so that its values were between 0 and 1. 
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4. Scale the model terms in (3.16) to have the same magnitude, and then 

generate the linear predictor. 

5. Generate data according to the chosen outcome distribution. 

f1(x) = cos(2πx)

f2(x) = 0.5{x3 + sin(πx3)}

f3(x) = −0.5{x + sin(πx2.5)}

f4(x) = −e−3x


f5(x) = e3x


f6(x) = x11{10(1 − 6 + 10(10x)3(1 − x)10
x)}

Table 3.1: Test function definitions. f1 - f6 are plotted in Figure 3-1. 

3.6.2 DGP2 

Here, the linear predictor was defined as 

η = f1(xo1) + βexe + f3(xu) + xo2, (3.17) 

where xe was a binary variable with the corresponding parameter βe. For 

each set of correlations, sample size and response distribution, we followed 

the same steps as in DGP1 but steps 3 and 4 were replaced with: 

3. Simulate xe according to the following mechanism 

�
xe = 1 if xe 

∗ = φ1 + φ2f4(xu) + φ3f5(xIV 1) + φ4f6(xIV 2) + ζ > 0 

xe = 0 if xe 
∗ ≤ 0 

where φ = (φ1, φ2, φ3, φ4) was chosen to obtain the set of correlations 

ρ{xe
∗, f3(xu)} ∈ {−0.4,−0.6} and ρ{xe

∗, f5(xIV )} ∈ {0.4, 0.7}. The three 

functions were scaled to have the same magnitude. 

4. Generate (3.17) by setting βe = 2 and scaling all model terms (except for 

xe) to have the same magnitude. 

3.6.3 Common parameter settings 

One-thousand replicate data sets were generated for each DGP, combination 

of correlations, sample size and distribution (see Table 3.2). The 2SGAM ap­

proach, naive GAM estimation, and complete GAM estimation were employed 
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using penalized thin plate regression splines (Wood, 2006) based on second­

order derivatives and with basis dimensions equal to 10. Step 1 was achieved 

by fitting an additive model for DGP1 and a GAM with probit link for DGP2. 

The first step models did not include xIV 2. The smoothing parameters were 

selected by the computational methods for multiple smoothing parameter es­

timation of Wood (2006, 2008). For each data set and estimation procedure, 

we obtained the mean squared error (MSE) for the estimated smooth func­

tion/dummy parameter of the treatment variable of interest. Then from the 

resulting 1000 MSEs, an overall mean was taken and its standard deviation 

calculated. Complete GAM estimation results represented our benchmark. 

binomial gamma Gaussian Poisson 
n 250, 500, 1000, 2000, 4000, 8000 

g(µ) logit log identity log 
u [0.02, 0.98] [0.2, 3] [0, 1] [0.2, pmax]l ≤ η ≤

s/n nbin = 1 φ = 0.6 σ= 0.4 pmax = 3 

Table 3.2: Observations were generated from the appropriate distribution with true response 
means, laying in the specified range, obtained by transforming the linear predictors by the 
inverse of the chosen link function. l, u and s/n stand for lower bound, upper bound and 
signal to noise ratio parameter, respectively. The linear predictor for the binomial case was 
scaled to produce probabilities in the range [0.02, 0.98]; observations were then simulated from 
binomial distributions with denominator nbin. In the gamma case the linear predictor was 
scaled to have range [0.2, 3] and one value for φ used. For the Gaussian case normal random 
deviates with mean 0 and standard deviation σ were added to the true expected values, which 
were then scaled to lay in [0, 1]. The linear predictor of the Poisson case was scaled in order to 
yield true means in the interval [0.2, 3]. Notice that the chosen signal to noise ratio parameters 
yielded low informative responses. See Section 5.3 for further details. 

3.6.4 Results 

To save space, not all simulation results are shown. Missing plots convey the 

same information, hence it suffices to use those selected here to draw conclu­

sions. 

Figure 3-2 shows the MSE results for f̂  
2(xe) when data are simulated from 

a Bernoulli distribution using DGP1. Naive GAM yields MSEs that appear 

to be rather high for all cases, whereas the 2SGAM results indicate that the 

proposed method performs as well as complete GAM provided that the IV is 

strong. For the cases in which the IV is not strong, 2SGAM still performs better 

than the naive method, but worse than complete GAM. This is to be expected 

since the proposed approach, as well as any other IV method, works satisfac­

torily provided that the IV induces substantial variation in the endogenous 
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variable of interest (Wooldridge, 2002). The effect of the endogenous variable 

will be always better estimated when all confounders can be observed and in­

cluded in the model as in complete GAM. In fact, all we can hope for is to have 

a method which is as good as complete GAM when valid and strong instru­

ments are available. 2SGAM yields MSEs that converge to those of complete 

GAM, that in turn converge to zero as the sample size increases. Naive GAM 

can not produce better estimates as the sample size increases since unmea­

sured confounding is not accounted for. This can be clearly seen in Figure 3-3. 

Excluding xIV 2 from the first step auxiliary regressions did not significantly 

affect the 2SGAM performance. In fact, all that is usually required to obtain 

consistent parameter estimates is that at least one IV is available for each en­

dogenous regressor in the model (Wooldridge, 2002). 
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Figure 3-2: MSE results for f̂  
2(xe) when data are simulated from a Bernoulli distribution using 

DGP1. Details are given in Sections 3.6.1 and 3.6.3. indicates the 2SGAM estimator results, ◦
whereas and ∗ refer to the cases in which estimation is carried out without accounting for • 
unmeasured confounding, and that in which the unobservable is available and included in 
the model. ∗ represents our benchmark since the right model is fitted. The vertical lines show 
±2 standard error bands, which are only reported for the cases in which they are substantial. 
Notice the good overall performance of the proposed method for all sets of correlations and 
sample sizes. 

Figure 3-4 shows the MSE results for β̂e when data are simulated from a 

gamma distribution using DGP2. These findings complement the results dis­

cussed above. For sample sizes greater than 2000, all previous considerations 

apply. For the remaining sample sizes, when ρ{x ∗, f5(xIV )} = 0.4, naive GAM e
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Figure 3-3: Typical estimated smooth functions for f2(xe) (ticker solid black line) when em­
ploying the 2SGAM approach (black lines) and naive GAM estimation (grey lines). The dotted 
and solid lines indicate the results for the cases in which n = 1000 and n = 8000, respectively. 
Notice the convergence of the proposed method to the true function as opposed to the naive 
approach. 

seems to outperform 2SGAM. This is not surprising since, as discussed in Sec­

tion 3.3.1, the correction achieved by using the proposed approach when data 

are generated using DGP2 is approximate, case in which a strong instrument 

can help to obtain better adjusted estimates. 

As pointed out by Staiger and Stock (1997) and Bound et al. (1995), IV 

methods can be ill-behaved if the instruments are not highly correlated with 

the endogenous variables of interest. This is because seemingly small corre­

lations between instruments and unmeasured confounders can cause severe 

inconsistency, hence severe finite sample bias if the IVs are weak. Given that 

there will always be some empirical correlation at finite sample sizes, biased 

estimates can be avoided if the IVs are strong. In our simulation study, this re­

quirement becomes even more relevant when dealing with DGP2, where more 

information is usually needed to obtain consistent estimates of the parameter 

of interest. 

The results obtained by using 2SGLM, naive GLM estimation and complete 

GLM estimation (not reported here) were similar to those reported above, but 

obviously none of the methods could yield estimates converging to the true 

values. In fact, for the DGPs considered here, full parametric modelling could 
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not account for the nonlinear effects of the confounders as well as model the 

nonlinearities of the treatment variable of interest for DGP1. 
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Figure 3-4: MSE results for β̂e when data are simulated from a gamma distribution using 
DGP1. Details are given in Sections 3.6.2 and 3.6.3, and in the caption of Figure 4-3. For 
low sample sizes the naive method seems to outperform 2SGAM when the instrument is not 
strong. See Section 3.6.4 for an explanation of this result. 

Table 3.3 shows some of the across-the-function coverage probabilities for 

f̂  
2(xe) when using the proposed two-step approach without correction for the 

Bayesian intervals, and the two-stage approach employing the interval correc­

tion introduced in Section 3.5, with Nb = 25 and Nd = 100. The results show 

that the proposed correction produces Bayesian intervals with coverage prob­

abilities very close to the nominal level. 2SGAM without correction yields 

intervals which are too narrow. This results in undercoverage. However, as 

the sample size increases the coverage probabilities improve. This is because, 

as n increases the first step quantities are estimated more reliably, hence the 

neglect of the variability of these quantities might not have a substantial detri­

mental impact on the model term coverages of the second step model. In other 

words, if the data have high information content, first step quantities will be 

estimated more reliably and, as a result, uncorrected intervals are likely to 

yield better coverages. The coverage probability results for β̂e (not reported 

here) led to the same conclusions, but, as for the estimation results for β̂e, at 

larger sample sizes. 
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2SGAM AD.2SGAM 
250 500 1000 4000 250 500 1000 4000 

binomial 0.92 0.92 0.93 0.93 0.94 0.94 0.95 0.95 
gamma 0.90 0.91 0.91 0.92 0.94 0.94 0.94 0.95 
Gaussian 0.91 0.92 0.93 0.93 0.94 0.95 0.95 0.95 
Poisson 0.90 0.92 0.93 0.93 0.94 0.95 0.95 0.95 

Table 3.3: Across-the-function coverage probability results for f̂  
2(xe) at four sample sizes, for 

the nominal level 95%, when the correlation between instrument and endogenous variable is 
0.7 and that between endogeous and unobservable equal to −0.6. 2SGAM, and AD.2SGAM 
stand for the proposed two-step approach without correction for the Bayesian intervals, and 
the two-step approach with the correction described in Section 3.5, with Nb = 25 and Nd = 
100. Notice the good coverage probabilities obtained when employing the correction. 

It should be pointed out that IV methods are never unbiased when at least 

one explanatory variable is endogenous in the model. We know that model 

term estimates are biased when the error term is correlated with some of the 

regressors. IV approaches solve this problem but only asymptotically, since 

they are based on the assumption that the instruments are asymptotically un­

correlated with the unobservables (Wooldridge, 2002). Unfortunately, we can 

not observe the unmeasured confounders, hence we can not know to what 

extent the issues above affect our empirical analysis. As a rule of thumb, IV 

methods should be used if the instruments are believed to satisfy the IV as­

sumptions. 

3.7 Illustration of 2SGAM 

In order to illustrate the 2SGAM approach, we investigated the effect of private 

health insurance on private medical care utilization using data from an Italian 

population-based survey. Private health insurance coverage is not randomly 

assigned as in a controlled trial but rather is the result of supply and demand, 

including individual preferences and health status. As a consequence, differ­

ences in outcomes for insured and uninsured individuals might be due not 

only to the effect of health insurance, but also to the effect of unobservables 

which are associated with insurance coverage. If this fact is not accounted for, 

the estimated impact of private health insurance will not be realistic, leading 

to biased health policy conclusions. Buchmueller et al. (2005) provide an ex­

cellent review of these issues. 
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3.7.1 Data 

We used data from the Survey on Health, Aging and Wealth (SHAW, Bru­

giavini et al., 2002) which was conducted by the leading Italian polling agency 

DOXA in 2001. The SHAW sample consists of 1068 households whose head 

is over 50 years old, and mainly provides information about individual health 

status, utilization of health services, types of insurance coverage, as well as 

socio-economic features. The outcome was utilization of private health care: 

an indicator variable that takes value 1 if the subject had private examina­

tions and 0 otherwise. The endogenous/treatment variable was private health 

insurance: a dummy variable with value 1 if the respondent had private insur­

ance coverage and 0 otherwise. The measured confounders were given by five 

factors (consumption of strong alcohol, marital status, self-reported health sta­

tus, sex, smoking status) and three continuous variables (age, body mass index 

(bmi), income). 

As pointed out in Section 3.2, identification of a valid instrument may 

not be straightforward because this choice has to be based on subject-matter 

knowledge, not statistical testing. Despite the effort of many researchers in 

trying to correctly quantify the impact that private health insurance has on 

utilization of private health care, there is not a general agreement on which 

instrument should be selected for statistical analysis (see Buchmueller et al. 

(2005), and references therein for a review of the relevant literature). Taking 

these findings into account, on the basis of the variables already included in 

the model, and depending on the remaining predictors available in the data 

set at hand, indemnity insurance (which is a binary variable) was suggested 

as an instrument possibly meeting the three conditions discussed in Section 

3.2. Of course, since some of the necessary assumptions can not be verified in 

practice, we can not be certain about the empirical validity of this instrument. 

3.7.2 Health care modelling 

The aim is to quantify the effect that private health insurance has on utilization 

of private health care by accounting for unmeasured risk factors. Two logistic 

GAM models were employed to implement the 2SGAM approach. To keep the 

illustration simple, the response variables of the two models were modelled 

considering all main effects only. Thin plate regression splines of the contin­

uous regressors with basis dimension 10 and penalties based on second-order 

derivatives were used. Smoothing parameters were automatically selected as 
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explained in Section 3.6.3. The factor variables were kept as parametric model 

components. The estimated smooth functions of bmi and ξ̂u support the pres­

ence of nonlinearities (see Figure 3-5). Recall that f̂(ξ̂u) does not have any 

meaningful interpretation (see Section 3.4.1). 
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Figure 3-5: Smooth function estimates of body mass index (bmi) and ξ̂u on the scale of the lin­
ear predictor, for the second stage equation. Dashed lines represent 95% Bayesian confidence 
intervals corrected as discussed in Section 3.5. The numbers in brackets in the y-axis captions 
are the estimated degrees of freedom or effective number of parameters of the smooth curves. 
The rug plot, at the bottom of each graph, shows the covariate values 

Overall our results are consistent with those reported in the health care uti­

lization literature (Buchmueller et al., 2005; Harmon and Nolan, 2001; Hofter, 

2006; Reidpath et al., 2002). As discussed earlier on, the target is to obtain an 

adjusted estimate of the impact of private health insurance on utilization of 

private health care. Naive GAM estimation yielded β̂e = 0.39 (−0.16, 0.95), 

whereas 2SGAM with corrected intervals produced β̂e = 0.94 (0.03, 1.83). Al­

though there is not any statistical difference between the two estimates, the 

former shows no significant effect whereas the latter exhibits a statistically 

significant estimate. This suggests that the unobservable confounding issue 

affects the parameter of interest. The differences between the other paramet­

ric parameter estimates of naive GAM and 2SGAM were minimal, confirming 

that the presence of unmeasured confounding has to be accounted for in order 

to obtain a consistent estimate of βe. The plot depicting the smooth of bmi for 

naive GAM has not been reported as it was similar to that in Figure 3-5. These 

findings were not unexpected since it is well known that the endogenous pa­

rameter of interest is generally the most affected (e.g. Wooldridge 2002, ch. 
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5). 

The validity of the 2SGAM results certainly depends on the degree that the 

IV assumptions are met. However, as pointed out by Johnston et al. (2008), “in 

observational settings where unmeasured confounding is suspected ... analy­

sis using an imperfect instrument can still help in providing a more complete 

picture than regression alone.” 

3.8 Discussion 

The unobservable confounding issue is likely to affect the majority of observa­

tional studies in which the researcher is interested in evaluating the effect of 

one or more predictors of interest on a response variable. When unmeasured 

confounding is not controlled for any standard estimation method will yield 

biased and inconsistent parameter estimates. 

The IV approach represents a valid means to account for unmeasured con­

founding. This technique, first proposed in econometrics, only recently has 

received some attention in the applied statistical literature. We have proposed 

a flexible procedure to carry out IV analysis within the GAM context. Our 

proposal is backed up with an extensive simulation experiment whose results 

confirmed that 2SGAM represents a flexible theoretically sound means of ob­

taining consistent curve/parameter estimates in the presence of unmeasured 

confounding. We have also proposed a Bayesian interval correction procedure 

for 2SGAM. In simulation, the resulting intervals performed well in terms of 

coverage probabilities. 

The major drawback in all IV methods (including ours) is the difficulty in 

choosing an appropriate instrument. Given that not all IV assumptions can 

be tested empirically, logical arguments must be presented to justify the in­

strument choice. However, statistical analysis using an imperfect instrument 

can still help in providing insights into the possible effect that unmeasured 

confounding has on the estimated relationship of interest. 
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Chapter 4 

Coverage Properties of Confidence 

Intervals 

In this chapter, we study the coverage properties of Bayesian confidence in­

tervals for the smooth component functions of GAMs. The intervals are the 

usual generalization of Wahba (1983) or Silverman (1985) intervals to the GAM 

component context. We present simulation evidence showing these intervals 

have close to nominal ‘across-the-function’ frequentist coverage probabilities, 

except when the truth is close to a straight line/plane function. We extend Ny­

chka’s (1988) argument for univariate smoothing splines to explain these re­

sults. The theoretical argument suggests that good coverage probabilities can 

be achieved, provided that heavy oversmoothing is avoided, so that the bias 

is not too large a proportion of the sampling variability. Otherwise, because 

the Bayesian intervals account for bias and variance, the coverage probabil­

ities are surprisingly insensitive to the exact choice of smoothing parameter. 

The theoretical results allow us to derive alternative intervals from a purely 

frequentist point of view, and to explain the impact that the neglect of smooth­

ing parameter variability has on confidence interval performance. They also 

suggest switching the target of inference for component-wise intervals away 

from smooth components in the space of the GAM identifiability constraints. 

Instead intervals should be produced for each function as if only the other 

model terms were subject to identifiability constraints. If this is done then cov­

erage probabilities are improved. 
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4.1 Introduction 

Inference for univariate spline models can be effectively achieved using the 

Bayesian confidence intervals proposed by Wahba (1983) or Silverman (1985). 

As theoretically shown by Nychka (1988), for the case of univariate models 

whose Bayesian intervals have close to constant width, a very interesting fea­

ture of these intervals is that they work well when evaluated by a frequen­

tist criterion, provided coverage is measured ‘across-the-function’ rather than 

pointwise. Specifically, consider the model 

Yi = f(xi) + ǫi, ǫi ∼ N(0, σ2), 

where the ǫi are mutually independent. According to Nychka’s results, if the 

smoothing parameter is sufficiently reliably estimated (e.g. by GCV) that the 

bias in the estimates is a modest fraction of the mean squared error for f(x), 

then the average coverage probability (ACP) 

n
1 

ACP(α) = 
�

Pr[f(xi) ∈ BIα(xi)] 
n 

i=1 

is very close to the nominal level 1−α, where BIα(x) indicates the (1−α)100% 

Bayesian interval for f(x) and α the significance level. This agreement occurs 

because the Wahba/Silverman type intervals include both a bias and variance 

component. Note that for convenience we define ACP only over the design 

points, rather than the whole function (but this restriction makes no practi­

cal difference for a smooth well sampled function). These intervals as well as 

their component-wise extensions have been derived when dealing with Gaus­

sian and non-Gaussian data (e.g. Gu, 1992; Gu, 2002; Gu and Wahba, 1993; 

Ruppert et al., 2003; Wood, 2006). See Section 2.4 for the expression of the 

large sample posterior for the generic parameter vector containing all regres­

sion spline coefficients. 

Several other approaches have also been proposed to produce inferential 

tools for GAMs. Hastie and Tibshirani (1990) suggested using simple frequen­

tist approximations to produce approximate confidence intervals. Ruppert et 

al. (2003, Section 6.4) showed instead the link between the mixed model ap­

proach and the Wahba/Silverman type intervals, but their derivation gives 

no indication of whether these intervals should have close to nominal cover­

age probabilities under repeated sampling from a fixed true function. Other 

frameworks include the use of bootstrap methods as well as the fully Bayesian 
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Figure 4-1: Results from component-wise Bayesian intervals for Bernoulli simulated data at 
three sample sizes. Observations were generated as logit{E(Yi)} = α+ zi + f1(x1i)+ f2(x2i)+ 
f3(x3i) + f4(x4i), where Yi followed a bernoulli distribution and uniform covariates on the 
unit interval with correlations equal to 0.5 were employed (see section 4.3.1 for details). The 
function definitions are given in Table 4.1. The functions were scaled to have the same mag­
nitude in the linear predictor and then the sum rescaled to produce probabilities in the range 
[0.02,0.98]. 1000 replicate datasets were then generated and GAMs fitted using penalized thin 
plate regression splines (Wood, 2003) with basis dimensions equal to 10, 10, 10 and 20, re­
spectively, and penalties based on second-order derivatives. Multiple smoothing parameter 
selection was by generalized AIC (Wood, 2008). Displayed in the top row are the true func­
tions, indicated by the black lines, as well as example estimates and 95% Bayesian confidence 
intervals (gray lines) for the smooths involved. represents the mean coverage probability • 
from the 1000 across-the-function coverage proportions of the intervals, vertical lines show 
±2 standard error bands for the mean coverage probabilities, and dashed horizontal lines 
show the nominal coverage probabilities considered. 
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approach. For example, H¨ ardle and Marron ardle and Bowman (1988) and H¨

(1991) used bootstrap to construct pointwise and simultaneous confidence in­

tervals. An under-smoothing approach has also been taken within the boot­

strap framework, as a devise for avoiding smoothing bias (Hall, 1992; Kaur­

mann and Opsomer, 2003). Direct bootstrapping has been employed as well, 

as in H¨ who make use of ‘Wild’ bootstrap methods. As an ardle et al. (2004)

alternative, Fahrmeir et al. (2004) and Fahrmeir and Lang (2001) adopted the 

fully Bayesian approach, which employs MCMC for practical computations. 

Wang and Wahba (1995) compared the Wahba/Silverman type confidence in­

tervals with those derived using several variations of the bootstrap approach. 

They found that the bootstrap framework can yield intervals that are compa­

rable to the Bayesian ones in terms of across-the-function coverage properties. 

However, they are computationally intensive, a problem which may affect the 

fully Bayesian approach as well. 

Although Nychka’s theoretical analysis has not been extended to non-constant 

width intervals for a smooth function that is a component of a larger model, 

simulation evidence suggests that result (2.5) might yield intervals for GAM 

components that perform well. As an example, Figure 4-1 illustrates that cov­

erage probabilities for smooth functions with different degrees of complexity 

can be rather close to the nominal levels. However, it also suggests that, for 

smooth components close to a straight line/plane function (such as f2(x)), cov­

erage probabilities can be too low. These results suggest that the use of the β 

posterior distribution (2.5) does not always yield good coverage probabilities, 

and it is worth investigating when and why this happens. Intuitively it seems 

that when a ‘true’ function is ‘close’ to a straight line (or, more generally, any 

function in the penalty null space), there is a high chance that the estimate of 

that function will be a straight line. In this case, because of the identifiability 

constraints on component functions, the confidence interval width will shrink 

to zero where the straight line passes through zero, and, it seems likely, as 

Figure 4-1 suggests, that this leads to poor observed coverage probabilities. 

The aim of this chapter is to extend and modify Nychka’s analysis to de­

rive non-constant width intervals for GAM components in a way that reveals 

their coverage properties. Our theoretical arguments show why non-constant 

Wahba/Silverman type intervals for smooth components work well in a fre­

quentist setting, and explain when and why they fail. As a result, a fix for 

the case in which the intervals fail is suggested and alternative intervals are 

derived from a purely frequentist point of view. The impact that the neglect 

of smoothing parameter uncertainty has on confidence interval performance 
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is also explained by our results. All findings are supported by an extensive 

simulation study. 

4.2 Confidence Intervals 

The aim of this section is to develop a construction of variable width component­

wise intervals. The primary purpose of this construction is to reveal the cov­

erage properties of the usual component-wise extension of Wahba/Silverman 

type intervals as discussed, for instance, by Gu and Wahba (1993), Fahrmeir et 

al. (2004), Ruppert et al. (2003) and Wood (2006b), to name a few. The initial 

part of Section 4.2.1 is similar to the construction that can be found in Rup­

pert et al. (2003, Section 6.4), but thereafter we are forced to follow a line more 

similar to Nychka (1988) in order to establish coverage properties (which the 

Ruppert et al. (2003) derivation does not reveal). Our theoretical derivations 

explain why Wahba/Silverman type intervals work well in a frequentist set­

ting, and show why intervals for smooth components that are in the penalty 

null space are problematic. The good coverage probabilities obtained using 

result (2.5) are hence explained and a remedy to the near-straight-line/plane 

case is introduced. The theoretical arguments also allow us to derive alterna­

tive intervals when a purely frequentist approach is adopted. 

For clarity the normal error, identity link, case is covered first, with the gen­

eralization to GAMs discussed subsequently. We need to start by establishing 

some preliminary results. 

4.2.1 Estimation of E�B(β̂ − β)�2/n, and σ2 

The subsequent arguments will require that we can estimate the expected mean 

squared error of linear transformations of the coefficient estimates β̂, so this 

needs to be addressed first. 

Consider, then, an arbitrary linear transformation defined by a matrix of 

fixed coefficients B. We seek an estimate for the expected mean squared error, 

E(MB), of Bβ̂. From the Bayesian approach we have β|y,λ, σ2 ∼ N(β̂,Vβ). 

Taking expectations with respect to this distribution implies 

E(MB) = 
1 

E�B(β̂ − β)� 2 =
1 
tr(BTBVβ) 

n n 

but this appears to require that we accept the whole Bayesian analysis. Fur­


thermore, using this mean squared error for frequentist purposes involves a
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troubling exchange of the the roles of β̂ and β. In fact we can make do with far 

fewer of the assumptions present in the Bayesian analysis, and can be much 

more precise about exactly what assumption is needed where. 

First let β̃ denote the unpenalized, and hence unbiased, estimate of β. Let 

F = (XTX + S)−1XTX be the matrix such that β̂ = Fβ̃ (X is the full model 

matrix here). It follows immediately that E(β̂) = Fβ. It is then routine to show 

that the mean square error can be partitioned into a variance term and a mean 

squared bias term 

E(MB) = 
1 

E�B(β̂ − β)� 2 =
1 1 2tr(BTBVβ̂) + 

n
�B(F − I)β� (4.1) 

n n 

where Vβ̂ = (XTX+S)−1XTX(XTX+S)−1σ2. An obvious option for estimat­

ing the final term on the right hand side (the mean squared bias) is to plug in 

β̂ in place of β, but to make the link to Bayesian intervals we also consider an 

alternative estimate of the term. 

Progress is most easily made by re-parameterizing using a ‘natural’ Demmler-

Reinsch type parameterization. Forming the QR decomposition X = QR and 

the eigen decomposition R−TSR−1 = UDUT, then the reparameterization 

leads to the new smooth coefficient vector UTRβ and matrix of fixed coeffi­

cients BR−1U. In this parameterization the most important matrices are diag­

onal, for example Vβ/σ2 = F = (I + D)−1 and Vβ̂ = (I + D)−2σ2 . 

We do not know β, but if we knew the distribution of likely β values then 

we could estimate the bias term by its expectation according to that distribu­

tion. The natural assumption is to use the prior employed in the Bayesian 

analysis, namely that E(β) = 0, var(βk) = D−1σ2, unless Dkk = 0 (in which kk 

case the variance turns out to be immaterial), and the covariances are zero. It 

is then routine to show that 

1 2 1 
= tr(BTBH)σ2Eβ�B(F − I)β�

n n 

where H is a diagonal matrix with elements Hkk = Dkk/(1+Dkk)
2. Recognizing 

that Hσ2 = Vβ − V ˆ, we have the estimate β

̂ 1 ̂ 1 
E(MB) = E�B(β̂ − β)�2 = tr(BTBVβ) 

n n 

Reversing the re-parameterization confirms that this is simply


̂ 1 
E(MB) = tr(BTB(XTX + S)−1)σ2 (4.2) 

n 
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in the original parameterization. 

If B = X the result leads easily to the usual estimator 

σ2 �y − Xβ̂�2 

ˆ = . (4.3) 
n − tr(F) 

Alternatively, if we use the plug in estimate of the mean squared bias in (4.1), 

then we could use 

σ̂2 = 
�y − Xβ̂�2 − �X(Fβ̂ − β̂)�2 

. (4.4) 
n − 2tr(F) + tr(FFT) 

4.2.2 Intervals 

Having completed the necessary preliminaries, we now consider the construc­

tion of intervals for some component function of a model, such that 

[f(x1), f(x2), . . . , f(xn)]T f = Xβ. Here X may be the model matrix for ≡ 
just one model component: the matrix mapping the vector of all model coeffi­

cients to the evaluated values of just one smooth component (so, many of the 

columns of X may be zero). The approach modifies Nychka’s (1988) construc­

tion in order to obtain intervals of variable width, which are also applicable in 

the case where the function is only a component of a larger model. 

Given some convenient constants, Ci, we seek a constant, A, such that 

ACP = 
n 

1 
E 

��
I(|f̂(xi) − f(xi)| ≤ zα/2A/

�
Ci) 

� 
= 1 − α (4.5) 

i 

where ‘ACP’ denotes ‘Average Coverage Probability’, I is an indicator func­

tion, α is a constant between 0 and 1 and zα/2 is the α/2 critical point from a 

standard normal distribution. To this end, define b(x) = E{f̂(x)} − f(x) and 

v(x) = f̂(x)−E{f̂(x)}, so that f̂ −f = b+v. Defining I to be a random variable 

uniformly distributed on {1, 2, . . . , n} we have 

ACP = Pr
�
|b(xI) + v(xI)| ≤ zα/2A/

�
CI 

� 

= Pr
�
|
�

CIb(xI) +
�

CIv(xI)| ≤ zα/2A
� 

= Pr
�
|B + V | ≤ zα/2A

� 

where B = 
√

CIb(xI) and V = 
√

CIv(xI). We need to be able to approximate 

the distribution of B + V . 

Let [b(x1), b(x2), . . . , b(xn)]T ≡ b = E(f̂)−f . Hence, defining c = (
√

C1,
√

C2, . . . , 
√

Cn)T , 
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we have


E(B) = 
� 1 

b(xi)
�

Ci = c T(E(f̂) − f)/n. 
n 

i 

In practice this quantity is very small (unless heavy oversmoothing is em­

ployed), but in any case it can be estimated as 

̂ = c 
ˆ̂
f − ˆ = c T β − β̂)/n. (4.6)E(B) T( f)/n X(F ˆ

Now consider V . Defining [v(x1), v(x2), . . . , v(xn)]T ≡ v = f̂−E(f̂), we have 

E(v) = 0, and hence 

E(V ) = 
� 1 

v(xi)
�

Ci = 0. 
n 

i 

The covariance matrix of v is, V
f̂ 
= XVβ̂XT, the same as that of f̂ . Hence 

var(V ) = 
� 1 

E{v(xi)
2Ci} = tr(CV

f̂
)/n, 

n 
i 

where C is the diagonal matrix with leading diagonal elements Ci. Now 

since v ∼ N(0,V
f̂
), V is a mixture of normals, which is inconvenient unless 

[CV
f̂
]ii is independent of i. If this constant variance assumption holds then 

V ∼ N(0, tr(CV
f̂
)σ2/n) (and the lack of dependence on i implies a lack of 

dependence on b(xi), implying independence of B and V ). 

It is the distribution of B + V that is needed. E(B + V ) = E(B) and by 

construction var(B + V ) = E(M) − E(B)2 where 

1 2M = 
n 

�
Ci{f̂(xi) − f(xi)} = �

√
C(f̂ − f)� 2/n = �

√
CX(β̂ − β)� 2/n. 

i 

Now we can exactly re-use Nychka’s (1988) argument: provided B is small 

relative to V then B + V will be approximately normally distributed, i.e. ap­

proximately 

B + V ∼ N(E(B), E(M) − E(B)2). 

The B < V assumption is examined in more detail in the Appendix. We can 

estimate E(B) and E(M) (by the results of the previous section). So, defining 

σ2 ̂ ̂ˆ E(M) − E(B)2, we have the approximate resultbv = 

B + V ∼ N( ̂
bvE(B), σ̂2 ). 
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̂

̂

Routine manipulation then results in 

f̂(xi) − E(B)/
�

Ci ± zα/2σ̂bv/
�

Ci (4.7) 

as the definition of intervals achieving close to 1 − α ACP (i.e. A = σbv). So, it 

is the fact that the convolution of B and V is close to a normal that leads the 

intervals to have good across-the-function coverage. 

So far the choice of Ci has not been discussed, but the constant variance 

requirement, for [CV
f̂
]ii to be independent of i, places strong restrictions on 

what is possible here. Two choices are interesting: 

1. Ci 
−1 = [V

f̂
]ii ensures that the constant variance assumption is met exactly. 

Note that in this case, if we use (4.2) as the expected mean squared error 

estimate, 

̂ σ̂2 � [XVβXT]ii 
.E(M) = 

n [Vˆ]ii i f

In effect the resulting intervals are using the frequentist covariance ma­

trix V
f̂
, but ‘scaled up’ to the ‘size’ of the Bayesian covariance matrix 

Vf = XVβXT. Using the plug in estimator of (4.1) we have 

ˆE(M) = 1 + �
√

CX(Fβ̂ − β)� 2/n (4.8) 

2. Ci 
−1 = [Vf ]ii. If [Vˆ]ii ≈ γ[Vf ]ii for some constant γ, then this choice ap­

f

proximately meets the constant variance assumption. If we use the (typ­

ically accurate) approximation ̂ 0, along with the mean squared E(B) ≈
error estimate (4.2), then the resulting intervals are exactly Bayesian in­

tervals of the Wahba/Silverman kind. 

So, we arrive at the key result. Given the derivation of the intervals started 

from (4.5), we expect component-wise Wahba/Silverman type intervals to have 

close to nominal coverage properties across the function. 

Notice the limited role of smoothing parameter selection in the above: 

1. The requirement for B to be smaller than V , requires that we choose 

smoothing parameters so as not to oversmooth too heavily, but other­

wise the choice of smoothing parameter is rather unimportant. 

2. Accuracy of Ê(B) depends on f̂ being close to f , but this is exactly what 

smoothing parameter selection methods try to achieve. In any case this 

term is typically small enough to be practically negligible. 
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3. Ê(M) will be a more reliably estimated if f̂ is close to f , or the prior as­

sumption for β is plausible, in not being too wide nor too narrow. Again, 

this is what smoothness selection methods try to achieve. 

The forgoing immediately suggests the circumstances under which the in­

tervals will behave poorly. If smoothing parameters are substantially over­

estimated, so that we substantially oversmooth some component, then the re­

quirement for B to be smaller than V will be violated. Two situations are likely 

to promote oversmoothing. Firstly, highly correlated covariates are likely to 

mean that it is difficult to identify which corresponding smoothing parame­

ters should be high and which low. For example if one covariate has a very 

smooth effect, and another a very wiggly effect, but they are highly correlated, 

it is quite possible that their estimated effects will have the degrees of smooth­

ness reversed. This means that one of the covariate effects is substantially over­

smoothed. Secondly, if a true effect is almost in the penalty null space then the 

estimated smoothing parameter may tend to infinity, forcing the estimate into 

the penalty null space, and as we will see below, this can be problematic. 

In summary: we have shown that Bayesian component-wise variable width 

intervals, or our proposed alternative, for the smooth components of an ad­

ditive model should achieve close to nominal across the function coverage 

probability, provided only that we do not oversmooth so heavily that aver­

age bias dominates the sampling variability for a term estimate. Beyond this 

requirement not to oversmooth too heavily, the results appear to have rather 

weak dependence on smoothing parameter values, suggesting that the neglect 

of smoothing parameter variability should not significantly degrade interval 

performance. 

4.2.3 Generalized additive model case 

The results of sections 4.2.1 and 4.2.2 can be routinely extended to the general­

ized additive model case. In the case of section 4.2.1 the results follow as large 

sample approximations with the substitutions 

Vβ̂ = (XTWX + S)−1XTWX(XTWX + S)−1φ (4.9) 

Vβ = (XTWX + S)−1φ (4.10) 

F = (XTWX + S)−1XTWX (4.11) 
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and 
√

WX = QR. Then (4.2) becomes


̂ =
1 
tr(BTB(XTWX + S)−1)σ2 .E(MB)

n 

Similarly, (4.3) becomes 

2 
ˆ �

√
W(y − Xβ̂)�

φ = , 
n − tr(F) 

while the generalization of (4.4) is 

2 ˆ 2 
ˆ �

√
W(y − Xβ̂)� − �

√
WX(Fβ̂ − β)�

φ = . 
n − 2tr(F) + tr(FFT) 

Section 4.2.2 also follows as before, but again with the substitutions (4.9) – 

(4.11). The key requirement that v ∼ N(0,Vˆ) is now a large sample approxi­
f

mation, which follows from the large sample normality of β̂, which can readily 

be established (e.g. Wood, 2006b). 

4.2.4 What the results explain 

Our results explain the success of Bayesian, component-wise, variable width 

intervals, which is evidenced in the simulation study of the next section. More 

interestingly, they explain the cases where the Bayesian intervals fail. The ma­

jor failure, evident from simulations (see Figure 4-1), occurs when a smooth 

component is close to a function in the null space of the component’s penalty 

(i.e. to a straight line or plane, for the examples in this chapter) and may there­

fore be estimated as exactly such a function. The component will have been 

estimated subject to an identifiability constraint, but when intervals are con­

structed subject to such a constraint, the observed coverage probabilities are 

poor. The preceding theory explains why. For example, when a term is esti­

mated as a straight line but subject to an identifiability constraint then the associ­

ated confidence interval necessarily has width 0 where the line passes through 

the zero line. In this case the sampling variability must be smaller than the 

bias over some interval surrounding the point, and the assumption that B is 

less than V will fail, given also that the Ci associated with this interval will be 

very large. 

The theory also suggests a remedy to this problem: compute each term’s 

interval as if it alone were unconstrained, and identifiability was obtained by 

constraints on the other model terms (see section below). 
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Notice that the interval failure in the constrained straight line/plane case is 

not just the result of failing to meet the original Nychka (1988) constant width 

assumption: variable width intervals are quite acceptable under our extension 

of Nychka’s argument: the problem occurs when the interval width shrinks to 

zero somewhere. 

The poor component-wise coverages reported in Wood (2006b) are also ex­

plained by our results. The reported simulations were performed (in 2001/2) 

with the original smoothness selection method proposed in Wood (2000), and 

using uncorrelated covariates. This method alternated Newton updates of 

the smoothing parameters with a computationally cheap global search for an 

‘overall’ smoothing parameter. While superficially appealing, this global search 

can miss a shallow minimum altogether, and place one or more smoothing pa­

rameters in a part of the smoothing parameter space in which the smoothness 

selection criteria is completely flat. Once smoothing parameters are at such a 

point, then they can only return by accident, in another global search, and this 

rarely happens. The upshot is that too many straight line/plane are estimated, 

and as we have seen this degrades the performance of the associated intervals. 

The bootstrapping method proposed by Wood (2006b) to improve interval cov­

erage appears to have actually been fixing an artefact of the smoothing param­

eter selection method, rather than a real deficiency in the confidence interval 

methods. 

4.2.5 Component interval computation 

As already mentioned we can improve interval performance by changing the 

target of inference, a little. For each component smooth term, intervals can 

be constructed by applying identifiability constraints to all other model com­

ponents, but allowing the component of interest to ‘carry the intercept’. This 

yields improved coverage probabilities, especially for the near straight line/plane 

case (see section below), and in the authors’ experience also produces inter­

vals that correspond more closely to the way in which users tend to interpret 

component-wise intervals. Specifically, assume that the linear predictor is 

ηi = X ∗ i β ∗ + 
�

fj(xji) 
j 

where 
�

i fj(xji) = 0 ∀j. Suppose that βj is the coefficient vector for fj , so that 

the complete coefficient vector is β = (β∗T ,β1 
T ,β2 

T , . . .)T , with Bayesian covari­

ance matrix Vβ. Let α = 1TX∗β∗/n define the intercept. We are interested in 
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inference about f̃  
j(xj) = α + fj(xj). 

∗Now let X denote the full n × p model matrix, and assume that its first p 

columns are given by X∗. Further, let Xj denote the matrix X with all columns 

zeroed, except for those corresponding to the coefficients of fj , and the first 

p ∗: these are modified to Xj = for 1 ≤ p ∗ . Then Xj is the ik 

�
i Xik/n k ≤

model matrix for f̃  
j , i.e. [f̃  

j(xj1), f̃(xj2), . . . , f̃(xjn)]T ≡ f̃j = Xjβ. Then the 

Bayesian covariance matrix for f̃j is just XjVβXjT and interval computation is 

straightforward. 

This fix is quite important since the near straight-line/plane case is the one 

that is most important to get right for model selection purposes, both for de­

ciding on which terms should be removed from a model, and which should 

be treated purely parametrically. In other words, the problem fixed by the 

preceding theory is of some importance in practice. 

Notice that this proposal is not the same as basing intervals on the standard 

error of overall model predictions, with all but the covariate of interest held 

constant (e.g. Ruppert et al., 2003, ch. 8). Such intervals are typically much 

wider than our proposal. Also note that trying to reduce the near straight-line 

problem by using alternative constraints will unnecessarily widen confidence 

intervals, since only the given constraint results in f̂j ⊥ 1. 

4.3 Simulation study 

A Monte Carlo simulation study was conducted to compare the practical per­

formance of several component-wise variable width confidence intervals. Specif­

ically, based on equation (4.7), three kinds of intervals were considered: 

1. Standard Bayesian intervals: the Wahba/Silverman type Bayesian inter­

vals for smooth functions subject to identifiability constraints, derived 

employing Ci 
−1 = E(B) 0, and using the mean squared [Vf ]ii, setting ̂ = 

error estimate (4.2) as well as the scale parameter estimate (4.3). That is, 

f̂(xi) ± zα/2σ̂
�

[Vf ]ii. 

2. Bayesian intervals with intercept: the same intervals as the previous ones 

but re-defining the model matrix X as discussed in section 4.2.5. 

3. Alternative intervals with intercept: these intervals are derived using the 

model matrix of section 4.2.5, Ci 
−1 = [V

f̂
]ii, the mean bias estimate (4.6), 
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̂ (̂ ̂

and the mean squared error estimate (4.8). That is, 

f̂(xi) − E(B)
�

[Vˆ]ii ± zα/2 

�
E(M) − E(B)2)[Vˆ]ii f f

where the scale parameter contained in V
f̂ 

is estimated according to (4.4). 

For the cases in which non-Gaussian data were considered, the substitu­

tions of section 4.2.3 were carried out. Under a wide variety of settings, and 

employing the test functions displayed in Figures 4-1 and 4-2, the confidence 

intervals were compared in terms of coverage probabilities. 

4.3.1 Design and model fitting settings 

Two different linear predictors have been used for the simulation study. The 

first one was made up of a parametric component, z, plus four one-dimensional 

test functions (see Figure 4-1 and Table 4.1) 

η1i = α + zi + f1(x1i) + f2(x2i) + f3(x3i) + f4(x4i). 

The second one was made up of a parametric component plus three two-

dimensional test functions (see Figure 4-2 and Table 4.1) 

η2i = α + zi + f5(x5i, x6i) + f6(x7i, x8i) + f7(x9i, x10i). 

Uniform covariates on (0, 1) with equal correlations were obtained using the 

algorithm from Gentle (2003) (see Section 3.6.1). This procedure was employed 

to obtain correlation among all covariates involved in a linear predictor. The 

cases in which ρ was set to 0, 0.5 and 0.9 were considered. The functions were 

scaled to have the same range and then summed. Data were simulated under 

four error models at each of three signal to noise ratio levels, at each of three 

sample sizes, n = 200, 500, 2000. The three signal to noise ratio parameters 

were chosen so that the squared correlation coefficient between µi and yi was 

about 0.4, 0.55, and 0.7 respectively. See Table 4.2 for further details. One-

thousand replicate data sets were then generated at each sample size, distribu­

tion and error level combination, and generalized additive models fitted using 

penalized thin regression splines (Wood, 2003) based on second-order deriva­

tives and with basis dimensions equal to 10, 10, 10 and 20 respectively for the 

first linear predictor, and with basis dimensions equal to 20, 20 and 50 for the 

second linear predictor. The smoothing parameters were chosen by GCV in the 
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normal and gamma cases and by generalized AIC in the Poisson and binomial 

cases (Wood, 2004, 2008). For each replicate, 90%, 95% and 99% confidence in­

tervals for the linear predictor as well as for each smooth function, evaluated 

at the simulated covariate values, were obtained. Then for each value of ρ, 

test function, sample size, signal to noise ratio, error model and 1− α level, an 

overall mean coverage probability from the resulting 1000 across-the-function 

coverage proportions was taken, and its standard deviation calculated. 

f5(x, z) f6(x, z) f7(x, z) 

Figure 4-2: The three two-dimensional test functions used in the linear predictor η2,i. 

f1(x) = 2 sin(πx) 
f2(x) = e2x 

f3(x) = 0 
f4(x) = x11{10(1 − x)}6 + 10(10x)3(1 − x)10 

f5(x, z) = 0.7e−{(−3x+3)2+0.7(3z−3)2}/5 

f6(x, z) = 0 
(x−0.3)2 (x−0.8)2 (z−0.8)2 

f7(x, z) = 0.075e − 0.32 −(z−0.3)2 
+ 0.094e − 0.32 −

0.42 

Table 4.1: Test function definitions. f1 - f4 are plotted in Figure 4-1, and f5 - f7 in Figure 4-2. 

binomial gamma Gaussian Poisson 
g(µ) logit log identity log 

l ≤ η ≤ u [0.02, 0.98] [0.2, 3] [0, 1] [0.2, pmax] 
s/n nbin = 1, 3, 5 φ = 0.6, 0.4, 0.2 σ= 0.4, 0.2, 0.1 pmax = 3, 6, 9 

Table 4.2: Observations were generated as described in Table 3.2. The linear predictor for the 
binomial case was scaled to produce probabilities in the range [0.02, 0.98]; observations were 
then simulated from binomial distributions with denominator nbin. In the gamma case the 
linear predictor was scaled to have range [0.2, 3] and three levels of φ used. For the Gaussian 
case normal random deviates with mean 0 and standard deviation σ were added to the true 
expected values, which were then scaled to lay in [0, 1]. The linear predictor of the Poisson 
case was scaled in order to yield true means in the interval [0.2, pmax]. 
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4.3.2 Coverage probability results 

To save space, not all simulation results are shown. Instead the most significant 

examples chosen. We have been careful to choose plots that are representative 

of the results in general, so that intuition gained from the plots shown fairly 

reflects the intuition that would be gained from looking at all the plots from 

the study. 

Figures 4-3, 4-4 and 4-6 show coverage probability results when covariates 

are moderately correlated (ρ = 0.5) and data are generated using linear predic­

tor η1,i. Figure 4-8 refers to the case when employing η2,i. Figures 4-5 and 4-7 

serve to show the impact that covariate correlation has on confidence interval 

performance. 

Results for standard Bayesian intervals 

The standard Bayesian intervals yield realized coverage probabilities that ap­

pear to be fairly close to their nominal values in most cases, even at small 

sample sizes when the signal-to-noise ratio is not too low. The exception is for 

function f2(x) where the smoothing parameter methods tend to select more 

straight lines than they should really be selecting. However, as explained in 

section 4.2.4, it is because of the identifiability constraint that the confidence 

intervals are too narrow, and the coverage probabilities are poor as a conse­

quence of the violation of the assumption that B is less than V . It is worth 

observing that when not much information is present in the data, it is likely 

to come up with straight line estimates for smooth functions like f2(x). Yet, 

it is the identifiability constraint that does have a detrimental effect on confi­

dence interval performance, and this is why confidence intervals should really 

be constructed including the intercept of the model. 

Results for Bayesian intervals ‘with intercept’ 

As suggested in section 4.2.4, interval performance can be improved by allow­

ing the component of interest to ‘carry the intercept’. When this is done, the 

component-wise Bayesian intervals produce overall better coverage probabil­

ities, especially for the near straight line/plane case; see functions f2(x) and 

f5(x, z). 
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Results for alternative intervals ‘with intercept’ 

The alternative intervals also exhibit good component-wise interval perfor­

mance but with slower convergence rate: this is probably because of the higher 

number of component quantities that have to be estimated for these intervals. 

Impact of covariate correlation 

Covariate correlation has an impact on confidence interval performance. Fig­

ures 4-5, 4-6 and 4-7 show the coverage probabilities obtained for Poisson data 

when correlated covariates were generated using ρ = 0, 0.5 and 0.9 respec­

tively. It can be seen that although mild correlation does not spoil the cov­

erage probabilities, a heavier one degrades some of them. As explained in 

section 4.2.2, the confidence intervals exhibit good practical performance if the 

smoothing parameters are chosen such that the estimated smooth components 

are not too heavily oversmoothed, but this is less likely to happen when co­

variates are heavily correlated. In this case, when ρ = 0.9 the covariates are 

quite confounded and this may lead to heavy oversmoothing for some com­

ponent function of a GAM (often with some other component correspondingly 

undersmoothed, but this is less detrimental). Looking at the coverage proba­

bility results from the standard Bayesian intervals and comparing the results 

across the different values of ρ reveal that the coverages for f1(x) and f2(x) 

worsen. This means that for these two functions a smoother estimate is often 

selected, and this is why interval performance degrades. Specifically, the ma­

jor failure evident from our results occurs for f2(x) where a substantial number 

of straight line estimates are selected. On the other hand, it would be rather 

remarkable if a smoothing method could select the right curve for a function 

which is so close to a straight line, when ρ = 0.9. The interval performance for 

f3(x) and f4(x) does not change significantly. Concerning f3(x), straight line 

estimates and wiggly ones are selected, but always centered on the right level. 

For this reason, interval performance does not degrade. Regarding f4(x), the 

smoothing parameter can still be reasonably estimated as a result of the fact 

that the degree of complexity of this function is not low and hence heavy over­

smoothing is not likely to occur, even when ρ = 0.9. Obviously, the Bayesian 

intervals ‘with intercept’ exhibit better coverage probabilities. Notice, once 

again, that as the information contained in the data increases interval perfor­

mance improves. 

The following argument explains the ‘strange’ downward coverage prob­

ability pattern that can be observed for a near-straight-line function like f2(x) 
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Figure 4-3: Coverage probability results for binomial data generated using η1,i as a linear pre­
dictor. Covariate correlation was equal to 0.5. Details are given in section 4.3. , ⊕ and stand ◦ • 
for high, medium and low noise level respectively. Standard error bands are not reported 
since they are smaller than the plotting symbols. Notice the improvement in the performance 
of the component-wise intervals for f2(x), when the intercept is included in the calculations. 
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Figure 4-4: Coverage probability results for gamma data. Details are given in the caption of 
Figure 4-3. 
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Poisson − ρ=0 
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Figure 4-5: Coverage probability results for Poisson data for the case in which correlated uni­
form covariates were obtained setting ρ = 0. Details are given in the caption of Figure 4-3. 
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Figure 4-6: Coverage probability results for Poisson data for the case in which ρ was set to 0.5. 
Details are given in the caption of Figure 4-3. 
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Poisson − ρ=0.9 
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Figure 4-7: Coverage probability results for Poisson data for the case in which ρ was set to 0.9. 
Details are given in the caption of Figure 4-3. Notice how the confidence interval performance 
for f1(x) and f2(x) degrades when oversmoothing, due to high covariate correlation, occurs. 
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Figure 4-8: Coverage probability results for Gaussian data generated using η2,i as a linear 
predictor. Covariate correlation was equal to 0.5. Details are given in the caption of Figure 4-3. 
Notice the improvement in the performance of the intervals for f5(x, z), when the intercept is 
included in the calculations. 
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(see Figure 4-7 for example). Let us consider a situation in which a straight line 

estimate is always selected for f2(x). The confidence intervals for the case in 

which n = 200 and the signal-to-noise ratio is low will be wider than the ones 

obtained for the case in which n = 200 but the signal-to-noise ratio is high. This 

means that, for some functions like the one being analyzed here, oversmooth­

ing can become unimportant since the intervals will be so wide that they will 

do a better job than the ones calculated when more information is contained 

in the data. In other words, when the complexity of a function is not high and 

provided data are noisy enough to get very wide confidence intervals, the vio­

lation of the assumption that B is less than V can become irrelevant. However, 

as the signal-to-noise ratio and the sample size increase the intervals become 

narrower and the conclusions drawn in this results section apply. 

4.4 Discussion 

We have shown by simulation and extension of Nychka’s (1988) analysis, that 

the Wahba/Silverman type Bayesian intervals for the components of a penal­

ized regression spline based GAM have generally good frequentist properties, 

across-the-function. As simulation evidence and our theoretical arguments 

suggest, the exception occurs when components estimated subject to identi­

fiability constraints have interval widths vanishing somewhere as a result of 

heavy smoothing. Coverage probabilities can be improved if intervals are only 

obtained for unconstrained quantities, such as a smooth component plus the 

model intercept. The theoretical results also allow us to define alternative in­

tervals when a frequentist approach is adopted. 

The results make a novel contribution in extending Nychka’s argument to 

the GAM component case thereby pinpointing the circumstances in which the 

intervals will and will not work, and explaining the role of smoothness selec­

tion as well as smoothing parameter uncertainty. The findings are backed up 

with quite extensive simulation testing of the finite sample performance of the 

three types of confidence intervals considered here. Specifically, our Monte 

Carlo investigation allowed us to compare the component-wise intervals un­

der a wide variety of setting. In this respect, our simulation results show under 

which circumstances these intervals can reliably represent smooth term uncer­

tainty, given the smoothing parameter selection methods employed here, and 

provide in fact applied researchers with some guidance about the practical 

performance of the intervals. 
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As evidenced by our theoretical and simulation results, these pointwise 

confidence intervals reliably represent the sample variability associated with 

GAM smooth components to the extent that their coverage probabilities, av­

eraged across the observation points, are close to the nominal level. The dis­

advantage of this approach is that, because the intervals are only valid in an 

average sense, one can not completely rely on them for inferential purposes. 

Moreover, as pointed out by Hastie and Tibshirani (1990, p. 62), a confidence 

band is limited in the amount of information it provides. This is because, a 

confidence band represents just a projection of the confidence sets for f in n-

dimensional space. In other words, as illustrated in Figure 4-9, the functions 

in the confidence set might exhibit features that are not necessarily enforced 

by a confidence band. 

f(
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Figure 4-9: Smooths corresponding to 50 draws from (2.5) obtained from fitting an additive 
model to 200 observations generated as Yi = f4(xi) + ǫi, where ǫi N(0, σ2) with σ = 0.3,∼
and x is a uniform covariate on the unit interval. The function f4 is displayed and defined in 
Figure 4-1 and Table 4.1, respectively. The shaded regions represent 95% Bayesian intervals 
from the fitted model. 

Figure 4-9 shows that the intervals provide information about the overall 

pattern of the curves, although they do not say much about other structure in 

them. Despite this, we can be confident, for example, that the whole curve has 

at least 1 peak and that the true relationship is nonlinear since the intervals def­

initely do not contain a straight line. However, for the case in which a straight 
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line can be drawn within the variability bands of the estimated smooth, it is 

not possible to conclude that the true relationship is linear given the argu­

ments in the previous paragraph. So, these intervals are a useful guide to help 

model selection, but one can not completely rely on them alone to infer certain 

features in the smooth estimate. 

Appendix: The relative magnitude of B and V 

Our analysis suggests that the intervals will only work well if B is of substan­

tially smaller magnitude than V . Nychka (1988) provided simulation evidence 

that this would usually be the case for univariate spline smoothing. This ap­

pendix provides some simulation evidence that this also holds in the compo­

nent wise case, as well as providing a limited theoretical exploration of the 

issue. 

Empirical insight into the relative magnitude of B and V can be gained 

by examining the percentage mean squared bias and mean variance of the 

smooth components of a GAM. Table 4.3 reports these two quantities, calcu­

lated according to the definitions in Section 4.2.2 with Ci 
−1 = [Vfj ]ii for each 

smooth component j, for some of the cases considered in our simulation study. 

Overall, the mean squared bias is of substantially smaller magnitude than the 

mean variance, except for f2 where the opposite happens. As explained in 

Section 4.2.4, when a true function is close to a term in the null space of the 

component’s penalty, and the corresponding smooth function is estimated as 

a straight line but subject to an identifiability constraint, the assumption that B 

is less than V will fail. These results are consistent with our simulations, where 

poor coverage probabilities were obtained for f2. Notice that this is not the re­

sult of failing to meet the assumption that the mean squared bias of the param­

eters of a smooth is less than its mean variance. The fact that B is greater than 

V is due to an ‘artifact’ induced by the identifiability constraint, an issue which 

can be explored only if using the extended Nychka argument of this chapter, 

where some constants Ci have to be used to derive non-constant width inter­

vals for GAM components. Recall that as a remedy, improved coverages are 

obtained if each term’s interval is computed as if it alone were unconstrained, 

and identifiability was obtained by constraints on the other model terms. 

Some limited theoretical insight into the relative magnitude of B and V 

can be gained by examining the mean squared bias and mean variance of the 

parameters of a smooth, in the Demmler-Reinsch (or ‘natural’) parameteriza­
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binomial gamma Gaussian Poisson 

function b̄2 ∗ v̄2 ∗ b̄2 ∗ v̄2 ∗ b̄2 ∗ v̄2 ∗ b̄2 ∗ v̄2 ∗ 

f1 8.6 91.4 12.8 87.2 9.0 91.0 17.0 83.0 
f2 76.5 23.5 90.4 9.6 62.5 37.5 94.9 5.1 
f3 0.9 99.1 0.1 99.9 0.1 99.9 0.3 99.7 
f4 15.4 84.6 26.5 73.5 13.4 86.6 17.5 82.5 

Table 4.3: Percentage mean squared bias ( b̄2 ∗ 
) and mean variance ( v̄2 ∗ 

) results for the smooth 
components of GAMs fitted to data simulated from four error models at medium noise level. 
Covariate correlation and sample size were 0.5 and 200 (see Section 4.3 for further details). 

b̄2 ∗ 
= b̄2/(b̄2 + v̄2)∗100 and v̄2 ∗ 

= b̄2/(b̄2 + v̄2)∗100, where b̄2 and v̄2 were calculated following 
the definitions in Section 4.2, with Ci 

−1 = [Vfj ]ii for each smooth component j. Notice that 
the B < V assumption is comfortably met for all terms except for f2, which is the problematic 
case in the first columns of Figures 4-3 - 4-7. 

tion as in Section 4.2.1. For simplicity, and without loss of generality, let us 

consider the case of a smooth estimated by a penalized least squares fit to data 

with variance σ2. In the new parameterization, provided the model is a reason­

able fit, it is easy to find expressions for the mean variance and mean squared 

bias of the coefficients, 
1 � σ2 

2̄v = 
p (1 + Dkk)2 

k 

and 

b̄2 
1 � σ2Dkk 

.= 
p (1 + Dkk)2 

k 

If M is the dimension of the null space of the smooth penalty then M of the 

Dkk will be zero. These unpenalized coefficients contribute Mσ2/p to the mean 

variance, and nothing at all to the mean squared bias. So for b̄2 to exceed v̄2 

we require the remaining terms in the b̄2 to tend to exceed the corresponding 

terms in v̄2 and to be substantial relative to Mσ2/p. This is difficult to achieve. 

The largest term in b̄2 is bounded above by σ2/(4p), and is of the same size 

as the corresponding term in v̄2 . Later terms in b̄2 do become larger than the 

corresponding terms in v̄2, but at the same time they rapidly become very 

small relative to Mσ2/p. Given that different smoothers will have different 

eigen spectra, it is difficult to make this argument more precise, but it does go 

some way to explaining the simulation results, and also makes the interesting 

prediction that the B less than V assumption will tend to hold more strongly 

as the dimension of the penalty null space increases. 
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Chapter 5 

Practical Variable Selection 

In this chapter, we work under the assumption of the absence of unmeasured 

confounders and consider the problem of variable selection within the class 

of GAMs, when there are many predictors to choose from, but the number 

of predictors is still somewhat smaller than the number of response observa­

tions. Two very simple but effective shrinkage methods and an extension of 

the nonnegative garrote estimator are introduced. The proposals avoid hav­

ing to use nonparametric testing methods for which there is not a general 

reliable distributional theory. Moreover, component selection is carried out 

in one single step as opposed to many selection procedures which involve 

an exhaustive search of all possible models. The empirical performance of 

the proposed methods is compared to that of some available techniques via 

an extensive simulation study. The results show under which conditions one 

method can be preferred over another, hence providing applied researchers 

with some practical guidelines. The procedures are also illustrated analysing 

data on plasma beta-carotene levels from a cross-sectional study conducted in 

the United States. 

5.1 Introduction 

Variable selection is an important area of research. From a pragmatic point 

of view, it aims at determining which covariates have the strongest effects on 

the response of interest, whereas from a statistical perspective it represents a 

means to achieve a balance between goodness of fit and parsimony. In other 

words, by effectively identifying a subset of important covariates, variable se­

lection can both enhance model interpretability and improve prediction accu­

racy. Methods such as subset selection, stepwise procedures and shrinkage 
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methods can be employed (see Guisan et al. (2002) for an overview). Sub­

set selection chooses a model containing a subset of predictors according to 

some criterion, but all possible subset models have to be explored and hence it 

can become computationally expensive as the number of predictors increases. 

Stepwise procedures do not make use of all possible models, therefore reduc­

ing computational cost, but they might be inconsistent given the dependence 

on the path chosen through the variable space. The additional drawback of 

these procedures is that if we perform variable selection and then hypothe­

sis testing using the selected model, the p-values associated with the model 

terms will not be strictly correct since they neglect variable selection uncer­

tainty. Shrinkage methods are becoming popular in the statistical literature. 

In fact, they have proved to be a valid alternative to the procedures above in 

terms of stability and prediction. Moreover, shrinkage procedures are con­

tinuous processes since variable selection is carried out in one single step as 

opposed to subset selection and stepwise algorithms (Hesterberg et al., 2008). 

For the additive model case, subset selection and stepwise procedures can 

be carried out using, for instance, the Akaike Information Criteria (e.g. Greven 

and Kneib, 2009; Wager et al., 2007). A number of hypothesis testing ap­

proaches have also been proposed, which do model selection in terms of ei­

ther choosing between linear and more general smooth term alternatives or 

dropping unimportant components from the model (Cantoni and Hastie, 2002; 

Hastie an Tibshirani, 1990; Kauermann et al., 2009; Kauermann and Tutz, 2001; 

Scheipl et al., 2008; Wood, 2006). Despite the fact that some testing methods 

have been introduced in the GAM context (Hastie an Tibshirani, 1990; Wood, 

2006), a general reliable distributional theory for the smooth terms of a GAM 

has not been developed to date. Shrinkage methods for linear models and 

GLMs, which simultaneously address estimation and variable selection, have 

been proposed (e.g. Breiman, 1995; Efron et al., 2004; Tibshirani, 1996; Tutz 

and Binder, 2007; Yuan and Lin, 2006; Zou, 2006). Some algorithms have also 

been introduced to achieve component selection within additive models (Ava­

los et al., 2007; Belitz and Lang, 2008; Buhlmann and Yu, 2003; Cantoni et al., 

2010; Lin and Zhang, 2006; Xue, 2009) and GAMs (see Zhang and Lin (2006) 

and references therein). However, for the GAM case, the boosting technique 

of Tutz and Binder (2006) and a generalization of the approach of Belitz and 

Lang (2008) seem to be the only fitting procedures available. 

In this chapter, we focus on smooth component selection when dealing 

with GAMs by pursuing a shrinkage approach. As mentioned earlier on, 

this approach is appealing since it has the properties of stability and predic­
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tion, and variable selection can be carried out in one single step. Further­

more, it avoids having to use testing methods for which there is not a general 

distributional theory. We propose two effective shrinkage methods and ex­

tend the nonnegative garrote estimator to achieve component selection within 

GAMs. Their empirical performance is compared to that of some available 

methods via an extensive simulation study. The procedures are also illustrated 

by analysing data on plasma beta-carotene levels from a cross-sectional study 

conducted in the United States. Note that we concentrate throughout on the 

case in which we need to select from a small to moderate sized set of potential 

predictors. In part this is due to method constraints. However, we also believe 

that in practice it is not very common that the modeller does not know which of 

a very large number of predictors is important, but does know that an additive 

structure gives an appropriate model. 

5.2 Methods 

Smoothing parameter estimation can select between models of different com­

plexity, but it does not usually remove a smooth term from the model alto­

gether. This is because the usual penalty of a spline basis does not allow for the 

shrinkage of the functions that are in the penalty null space (and for the most 

useful smoothers the null space has a dimension greater than zero). The pro­

posals in Sections 5.2.1 and 5.2.2 are based on the idea that the space of a spline 

basis can be decomposed in the sum of two component, one associated with 

the functions in the penalty null space and the other with the penalty range 

space. The smoothing penalty shrinks functions in the range space (to zero if 

the smoothing penalty is high enough), but leaves the function component in 

the null space untouched. So to have the possibility of shrinking the whole 

spline term to zero, it is necessary to penalize the null space. As an alternative 

approach, the method introduced in Section 5.2.4 does not require the use of 

such a decomposition, and is based on the idea of shrinking the smooth func­

tion estimates obtained from a standard fitted GAM. The proposed methods 

have the properties of subset selection, but with the advantage that variable 

selection can be achieved in one single step. Section 5.2.5 presents some of the 

available alternatives, whereas Section 5.2.6 briefly discusses multiple smooth­

ing parameter estimation which is crucial for the variable selection methods to 

work well. 
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5.2.1 Double penalty approach 

The generic smoothing penalty matrix Sj associated with a smooth term of a 

GAM can be decomposed as 

UjΛjU
T 
j , (5.1) 

where Uj is an eigenvector matrix associated with the jth smooth function, 

and Λj the corresponding diagonal eigenvalue matrix. The fact that a part of 

the spline basis space deals with the penalty null space implies that Λj con­

tains zero eigenvalues. This may be problematic if variable selection has to 

be carried out. For instance, let us assume that the jth smooth component is 

a nuisance function, and that we use a penalty matrix as defined above dur­

ing the model fitting process. Even if λj goes to infinity there will not be any 

guarantee that the smooth term will be suppressed completely (i.e. estimated 

as zero). 

In order to circumvent this difficulty, we can produce an extra penalty 

which penalizes only functions in the null space of the penalty, so that a smooth 

component can be completely removed. Specifically, let us consider decompo­

sition (5.1). An extra penalty can be formed as follows 

S ∗ U ∗ jU
∗⊤ = j j , 

where U∗ 
j is the matrix of eigenvectors corresponding to the zero eigenvalues 

of Λj . So a GAM can be fitted subjecting each component function to a double 

penalty of the form 

λjβ
TSjβ + λ ∗ jβ

TS ∗ jβ. (5.2) 

where both λj and λ∗ 
j will now have to be estimated. By introducing a penalty 

for the null space, smoothing parameter estimation (that is part of GAM fit­

ting) can completely remove terms from the model. 

To re-iterate the basic idea, any spline type smoother can be decomposed 

into two component functions: a component in the null space of the penalty, 

and a component in the range space of the penalty. The first term in (5.2) 

penalizes only function components in the range space, but can shrink these 

to zero, while the second term in (5.2) penalizes only function components in 

the null space, but can shrink these too to zero. For example, in the case of 

the usual cubic spline penalty, the second term in (5.2) would penalize straight 

line components to zero, while the first term would penalize (towards zero) 

function components representing departure from straight line behaviour. 

This approach can be employed by setting the argument select=TRUE in 
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the gam function of the R package mgcv. 

5.2.2 Shrinkage approach 

As an alternative approach which avoids doubling the number of smoothing 

parameters to estimate, we can replace the smoothing penalty matrix Sj with 

S̃j = UjΛ̃jU
T 
j , 

where Λ̃j is the same as Λj except for the zero eigenvalues which are set to ǫ, 

a small proportion of the smallest strictly positive eigenvalues of Sj . This is 

exactly equivalent to fixing λ∗ 
j = ǫλj in (5.2) and forces the eigenvalues of S̃j 

associated with the penalty null space to be different from zero: hence smooth­

ing parameter selection can remove a smooth component from the model al­

together. We choose ǫ to be a small proportion of the smallest strictly positive 

eigenvalues of Sj to ensure that βTS̃jβ ≈ βTSjβ for all the regression spline 

coefficients except those in or “close to” the null space of βTSjβ. A value for ǫ 

equal to 1/10 yields good results in terms of goodness of fit and shrinkage (see 

Section 5.3). 

This approach can be employed specifying the GAM formula of mgcv as 

a function of shrinkage smoothers. Two classes are implemented: cs and ts, 

based on cubic and thin plate regression spline smoothers, respectively. 

5.2.3 Shrinkage penalty interpretation 

Estimation by penalized likelihood with GCV or REML type smoothing pa­

rameter estimation can be viewed as an empirical Bayes procedure, with the 

penalties corresponding to (usually improper) Gaussian priors on the spline 

coefficients (the basic idea goes back to Kimeldorf and Wahba (1970)). In this 

case the Sj are viewed as prior precision matrices. It is the lack of full rank in 

the Sj that makes the prior improper, and this impropriety is a consequence 

of having a null space of functions that are treated as ‘completely smooth’ ac­

cording to the penalty. 

The proposals in sections 5.2.1 and 5.2.2 both remove the impropriety from 

the prior, since both λjSj + λ∗ 
jSj 

∗ and S̃j are full rank. The double penalty 

approach of section 5.2.1 makes no prior assumption about the how much to 

penalize the null space relative to the range space for a term, but allows the 

smoothing parameter estimation to determine this from the data. On the other 

hand, the single penalty section 5.2.2 approach assumes that the null space 
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should be penalized less than the range space. This is a natural approach to 

take in some cases. In a cubic spline case for example, this would mean that as 

the smoothing parameter increases we would first penalize towards a straight 

line, and then shrink the line towards zero. However there is an inevitable 

arbitrariness about exactly how to weight the penalization of the two compo­

nents, and if the data suggest penalizing the null space more heavily than the 

range space there is often no compelling reason for not doing so (perhaps the 

data contain no overall trend, for example). 

In the work reported here we have employed the simplest null space penal­

ties that will remove all impropriety from the priors and hence allow terms 

to be completely removed from the model. We have not considered whether 

some null space components should be penalized more than others. If the null 

space itself allows moderately complicated functions (e.g. the null space of a 

multi-dimensional thin plate spline penalty based on moderately high deriva­

tives) then the modeller might want to impose some hierarchy within the null 

space basis coefficients penalizing some more than others. However it seems 

likely that the improvements achievable by doing this would be rather mod­

est, and we will not pursue this further here. In any case, for 1 dimensional 

smooths using a cubic spline penalty, the null space is only one dimensional 

after the imposition of identifiability constraints on the GAM components, so 

the issue does not arise. 

Finally, it is worth noting that after the imposition of standard identifia­

bility constraints some smoothers have a zero dimensional null space corre­

sponding to a proper prior for the coefficients, and can therefore be selected 

out of the model without the methods of sections 5.2.1 and 5.2.2. The obvious 

example is a spline, f(x), based on the penalty functional 
�

f ′ (x)2dx. The null 

space of this penalty is the space of constant functions, which is eliminated 

from the space of the estimates by the identifiability constraint on f . Hence 

within the space of the identifiability constraint the penalty has full rank, and 

the corresponding prior of f is proper. Such terms can be used in R package 

mgcv, and priors of this sort have been used in a fully Bayesian context also 

(e.g. Chib and Greenberg (2007) use a random walk prior which shrinks to­

wards the constant functions, and to zero after constraint). The difficulty with 

such terms is that the required low order penalization typically results in poor 

mean square error performance, in part because of undesirable properties such 

as tending to a constant function at the boundaries of the data. 
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5.2.4 Nonnegative garrote component selection 

In order to identify the important smooth components of an additive model, 

Cantoni et al. (2010) and Yuan (2007) suggest employing the nonnegative gar­

rote estimator, first proposed by Breiman (1995) in the linear model context, 

which has the properties of shrinkage and stability. The idea behind this is as 

follows. In a first step we obtain the original regression coefficient or smooth 

function estimates, depending on whether we are in a parametric or nonpara­

metric context. We then shrink the model components by solving a constrained 

optimization problem. 

The method presented here generalizes the nonnegative garrote estima­

tor for additive models proposed by the authors above to the GAM context. 

First, we obtain some initial estimates for the smooth components of a model, 

[̂f1, f̂2, . . .]. Second, we solve the problem 

minimize D(η) w.r.t d subject to d ≥ 0 and 1Td = γ, (5.3) 

where η = F̂d, and F̂ = [̂f1, f̂2, . . .]. The parameter vector d contains the shrink­

ing coefficients, and γ is a tuning parameter. D is the usual model deviance 

defined as 2φ {lsat − l(η)}, where l(η) is the log-likelihood of the model with 

linear predictor η and lsat the maximum value for the log-likelihood of the 

model with one parameter per datum. 

For a given F̂ and γ, the estimated shrinking coefficients allow us to do 

variable selection. That is, if d̂j = 0 then the jth component is viewed as unin­

formative and hence removed from the model. The shrinking coefficients also 

give information about the importance of each component in the model since 

some terms can be shrunk by some proportion d̂j , left unchanged (if d̂j = 1) 

or magnified (if d̂j > 1). The jth final smooth component estimate is given by 
∗ 

f̂j = f̂jd̂. 

A small value for γ shrinks the dj to zero and vice versa, hence affecting the 

final estimates. In fact this parameter has to be selected with a certain degree 

of accuracy. As suggested by Cantoni et al. (2010) and Yuan (2007), a 5-fold 

cross validation gives satisfactory results in terms of achieving a good balance 

between bias and variance, and it can be implemented using the following 

practical algorithm: 

1. Split the data into subsets denoted by I1, . . . , Ib, . . . , IB , where b repre­

sents the subset considered and B the maximum number of subsets used 

for cross validation. In this case, B = 5. 
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2. Choose an equally spaced grid of values for γ in the interval [0, nc], where 

nc indicates the total number of covariates used to fit the model. 

3. For each value γ in the interval [0, nc] 

(a) For each value of b 

i. Fit a standard GAM (employing mgcv or any other available 

smoothing package) using the sample containing all the obser­

vations except those in Ib. Then store the resulting smooth func­

tion estimates in F̂
[−Ib] 

. 

ii. Using the subset of observations as in i., solve (5.3) via iterative 

minimization of the problem 

[k] 2 �
√

W[k](z − η)� subject to d ≥ 0 and 1Td = γ, 

where k is the iteration index, z
[k] 

= η
[k] 

+ g ′ (µ
[k]

)(yi − µ
[k]

),i i i i 

η[k] = F̂
[−Ib]

d[k], µi 
[k] 

= g−1(η[k]) and Wii 
[k] 

= g ′ (µi 
[k]

)−2V (µi 
[k]

)−1 . 

In practice, this can be achieved by replacing, in the inner loop 

of glm.fit in R, the function fit with the function pcls for 

quadratic programming available in mgcv. 

iii. For each observation i in Ib, obtain Di(η̂i 
[−Ib]) where η̂[−Ib] = F̂d̂, 

with parameter vector d̂ obtained in the previous two steps, and 

Di is the contribution to the “full data” deviance that is associ­

ated with the ith datum. 

(b) Calculate the cross validation predictive deviance 

B
1 � 1 � 

[−Ib]VB(γ) = Di(η̂i ),
B nb

b=1 i∈Ib 

where nb represents the sample size for the subset Ib. 

4. Obtain final smooth component estimates by repeating steps i. and ii. 

but using the whole sample, with value for γ selected to minimize VB(γ). 

5.2.5 Some available alternatives 

For the sake of comparison in our simulation study, we briefly describe some 

of the alternative available methods for carrying out component selection in a 

regression spline context. 
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Backward selection 

A classic backward selection procedure for variable selection within GAMs 

can be employed. In order to implement the procedure we need to use some 

p-value definition. Here, we follow the approach of Wood (2006) described in 

Section 2.5. 

A backward selection procedure using the p-value definition discussed in 

this section can be implemented by extracting the p-values for the smooth 

components of a GAM from the function summary.gam in mgcv. 

GAM boosting 

Binder and Tutz (2008) found that when a subset of a large number of pre­

dictors has to be selected and the degree of smoothness for the smooth com­

ponents has to be chosen, generalized additive modeling by likelihood based 

boosting can achieve these two goals simultaneously (Tutz and Binder, 2006). 

They also provide simulation evidence that GAM boosting can be much better 

than alternative methods in very data poor settings, with many spurious co­

variates. This procedure iteratively fits a GAM by applying a ‘weak learner’ 

on the residuals of smooth components. The number of boosting steps is deter­

mined by a stopping rule such as cross-validation or an information criterion. 

The R package GAMBoost can be used for fitting GAMs by likelihood based 

boosting, using 2nd degree B-splines with 1st order difference penalty as the 

default settings suggest. The function optimGAMBoostPenalty can be em­

ployed to select the optimal number of boosting steps. 

Modified backfitting 

Belitz and Lang (2008) developed an elegantly simple method for simultane­

ously estimating a model and selecting which components to include, based on 

a modification of backfitting, with computationally efficient sparse smoothers. 

As with backfitting, smooths are estimated by iteratively smoothing partial 

residuals, but at each step, rather than using a single fixed degrees of freedom 

smoother (as in classical backfitting), Belitz and Lang compute a number of 

alternative smoothers, corresponding to different degrees of freedom plus the 

null function corresponding to dropping the term altogether. To choose be­

tween these alternatives they compare a whole model GCV or AIC score for 

each alternative (using the current best estimate for the rest of the linear pre­

dictor). The method gains efficiency by using sparse smoothers (B-splines + 
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discrete penalties), and by using an additive approximation for the effective 

degrees of freedom for the whole model, required by the GCV or AIC score. 

The latter approximation is perhaps the method’s main potential weakness: 

the approximation will deteriorate as covariate correlation increases, which 

has the potential to cause method performance to suffer. 

Belitz and Lang (2008) only present the method in the additive context, but 

as they point out the extension to generalized additive models is straightfor­

ward, and is available in BayesX (www.statistik.lmu.de/˜bayesx/), the 

command line version of which can be called from within R. 

Parsimonious additive models 

This approach, introduced by Avalos et al. (2007) for additive models, consists 

of separating the parametric and nonparametric parts of the smooth functions, 

and then fitting the parametric bit using a LASSO regression (Tibshirani, 1996) 

and the nonparametric part by solving a penalized least squares problem. A 

modified version of this approach can be implemented as follows: 

1. Using thin plate regression splines (Wood, 2003, 2006), set up a matrix X∗ 

containing the terms of the smooth functions which deal with the penalty 

null space. 

2. Store the coefficients (α̂ols) obtained by fitting a linear regression of y on 

X∗, where y represents the response vector. 

3. By using the library lars, compute the lasso coefficients by minimiza­

tion of the problem 

p

2 �y − X ∗ α� + θ
�

|αj| w.r.t. α. 
j 

The tuning parameter θ is selected by K-fold cross validation using the 

function cv.lars in lars. Default settings suggest to set K = 10. 

4. Compute the adjusted variable y ∗ = y − X ∗ α̂ols, in order to ensure or­

thogonality between linear and nonlinear fits. 

5. Set up a matrix X+ containing the terms of the smooth functions that deal 

with the penalty range space. Then, by using for instance mgcv, solve the 
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penalized least squares problem 

�y ∗ β+� 2 +− X+ + 
�

λjβ
TSj 

+β+ w.r.t. β+, 
j 

where the S+ 
j are the smoothing penalty matrices associated with the 

penalty range space. 

6. Combine the results obtained in steps 3 and 5 and work out the final 

smooth function estimates. 

This approach may look appealing since the LASSO regression can yield, via 

the use of a l1 penalty, α̂ = 0. This means that, provided the smoothing param­

eters associated with the nuisance functions go to infinity, such a procedure 

can produce parsimonious additive models. However, as discussed in Hester­

berg et al. (2008), the main drawback is that a linear term may be shrunk to 

zero while keeping the corresponding higher order components. 

5.2.6 Smoothness selection 

In order to implement the methods discussed in the previous sections, some 

multiple smoothing parameter selection procedure is needed. Importantly, for 

the methods to perform well it is crucial to use some stable and reliable com­

putational method. 

As explained in Section 2.3, multiple smoothing parameter estimation can 

be achieved via the computational methods of Wood (2006, 2008, 2010) imple­

mented in mgcv. The simulation study in the next section will shed light on 

which criteria yield the best results. 

5.3 Simulation study 

A simulation study was conducted to compare the practical performance of the 

methods discussed in the previous section. Under a wide variety of settings, 

and employing a number of test functions, the procedures were compared in 

terms of shrinkage properties and a measure of fit. 
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5.3.1 Design and model fitting settings 

The three linear predictors used for the simulation study are defined as 

6


η1i = 
�

fj(xji), η2i = f7(x7i, x8i) + f8(x9i, x10i) + f9(x11i, x12i)

j=1


and η3i = f1(x1i) + f3(x3i) + f4(x4i). 

The functions are displayed in Figure 5-1 and defined in Table 5.1. Uniform 

covariates on (0, 1) with equal correlations were obtained using the algorithm 

from Gentle (2003), as illustrated in the previous chapters. This procedure 

was employed to obtain correlation among all covariates involved in the linear 

predictor. The cases in which ρ was set to 0 and 0.9 were considered. The 

functions were scaled to have the same range and then summed. Data were 

simulated under the four error model - link function combinations detailed in 

Table 4.2, at each of three signal to noise ratio levels. 100 replicate data sets 

were then generated at each distribution and error level combination. 

f1(x)	 f2(x) f3(x) 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

f	
f 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

x x x 

f4(x) f5(x) f6(x) 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0	 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

x x x 

Figure 5-1: The test functions used to generate the datasets. 

To maintain computational feasibility and because of limitations applying 

to some methods, the simulation study did not employ a completely factorial 

design. Instead it was conducted in the following four phases. In each phase 

100 replicates of each combination of conditions were used, 3 noise levels were 
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f1(x) = 2 sin(πx) 
2 

f2(x) = ex

f3(x) = −x 
f4(x) = x11{10(1 − 6 + 10(10x)3(1 − x)10 x)}
f5(x) = 0.5{x3 + sin(πx3)}
f6(x) = cos(2πx) + sin(πx) 

f7(x, z) = 0.7e−{(−3x+3)2+0.7(3z−3)2}/5 

(x−0.3)2 (z−0.3)2 (x−0.8)2 (z−0.8)2 

0.25 0.25 f8(x, z) = 0.39e{− −
0.25 } + 0.20e{− −

0.25 } 

(x−0.3)2 (z−0.3)2 (x−0.8)2 (z−0.8)2 

0.25 0.25 f9(x, z) = 0.16e{− −
0.25 } + 0.20e{− −

0.25 } 

Table 5.1: Test function definitions. f1 - f9 are plotted in Figure 5-1. 

considered at each of ρ = 0 and 0.9: 

1. Gaussian identity link models were compared for all methods, for η1 with 

6 nuisance covariates. Both REML and GCV smoothness selection were 

compared, and the sample size was 200. This phase suggested eliminat­

ing the Lasso&Splines method and the Belitz&Lang approach from the 

subsequent phases (the published versions of these do not treat the gen­

eralized case, although for Belitz and Lang, this is not a serious problem). 

2. The other three distribution-link models were compared for η1 with 6 

nuisance covariates using all remaining methods. Again REML and GCV 

were compared where appropriate, and the sample size was 200. This 

phase suggested that GAM boosting is not competitive, at least for low 

numbers of nuisance variables. The combination of phases 1 and 2 sug­

gested dropping GCV selection. 

3. All distribution link models were compared for η2 plus 6 nuisance co­

variates, using all remaining methods except GAM boosting. Smooth­

ness selection was by REML for those methods were there is a choice. 

The sample size was 200. 

4. All distribution link models were compared for all remaining methods 

including GAM boosting using η3 and either 11 or 27 nuisance covariates. 

Sample sizes were 200 for 11 nuisance and 400 for 27. GAM boosting was 

re-considered here as this situation is the one were it is expected to be 

competitive. 

For phases 1,2 and 4, all procedures, except for GAM boosting and the 

Belitz&Lang approach, were implemented using TPRSs (Wood, 2003) based 
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on second-order derivatives and with basis dimensions equal to 10. For phase 

3 TPRSs with basis dimensions equal to 20, 20 and 50 were used. 

The methods were compared in terms of shrinkage, and mean squared er­

ror (MSE) in predicting the linear predictors. To assess the shrinkage proper­

ties we used the false negative rate (i.e. rates at which influential covariates are 

not selected) for the variables in the linear predictors, and false positive rate 

(i.e. rates at which spurious terms are selected) for non influential covariates. 

The rates were calculated according to the MSEs rounded up to 7 digits. Notice 

that using as a criterion edf ≈ 0 led to the same results. Backward selection 

was carried out at the 5% significance level. 

5.3.2 Results 

To save space, only some of the most important examples are shown. The 

displayed plots have been chosen to be representative and to convey enough 

information to draw some general conclusions. Additional plots are available 

upon request. 
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Figure 5-2: MSE comparisons between GCV/AIC and REML for four error distributions and 
methods discussed in Section 5.2, when using linear predictor η1. Covariate correlation is 0 
and the signal to ratio level is medium. Baseline indicates that no shrinkage smoother is used 
during the model fitting process. Further simulation details are given in Section 5.3.1. Boxplots 
show the distributions of differences in mean squared error between GCV/AIC and REML. 
In all cases a Wilcoxon signed rank test indicates the REML has lower MSE than GCV/AIC 
(p-value < 10−2). 

Figure 5-2 shows the difference in MSE between the same models estimated 

by GCV/AIC and by REML, for each error model and method combination, 

from phases 1 and 2 of the simulation study (employing linear predictor η1). 
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Covariate correlation is 0. Missing box plots within the figures are because the 

method described in Section 5.2.5 only deals with additive models (and was 

anyway not competitive in phase 1). REML outperforms GCV/AIC smooth­

ness selection; this suggests that REML allows for better smoothing parameter 

estimation, hence smooth term estimates are more accurate than when using 

GCV/AIC. The plots for cases in which ρ = 0.9 are omitted since they lead 

to the same conclusions. In the subsequent plots, we only report the results 

obtained when using REML. 
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Shrinkage Boosting Belitz&Lang Lasso&Splines Garrote Backward Baseline 

Figure 5-3: MSE results between the methods discussed in Section 5.2 and the double penalty 
approach for four error distributions and linear predictor η1. REML estimation is employed 
for all methods except for GAM boosting and the Belitz&Lang approach. Covariate correla­
tion is 0 and the signal to ratio level is medium. Baseline indicates that no shrinkage smoother 
is used during the model fitting process. Further simulation details are given in Section 5.3.1. 
Boxplots show the distributions of differences in mean squared error between each method 
and the double penalty approach. In all cases a Wilcoxon signed rank test indicates that dou­
ble penalty has lower MSE than the competing methods (p-value < 10−6), except for the 
Backward method in the Gaussian and Binomial cases where there is no significant difference 
(p-value > 0.10). 

Figure 5-3 compares the MSE performance of all the methods discussed 

in the chapter, relative to the double penalty approach of section 5.2.1, from 

phases 1 and 2 of the study (above the zero line indicates performance worse 

than the double penalty method). Notice that GAMBoost supports only canon­

ical link functions, hence MSE results for the gamma case are not available. 

Our results indicate that, overall, the double penalty approach performs sig­

nificantly better than the competing methods in terms of MSE. 

Figures 5-4 and 5-5 show the false positive rates for the methods considered 

here and the four error models, at each signal to noise ratio level. GAM boost­

ing is not competitive. This result is in agreement with the findings of Cantoni 
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Shrinkage results − 1D case − ρ=0 
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Figure 5-4: Shrinkage results for the methods discussed in Section 5.2, for four error distribu­
tions and linear predictor η1. REML estimation is employed for all methods except for GAM 
boosting and the Belitz&Lang approach. Covariate correlation is 0 and H, M and L stand for 
high, medium and low signal level. Baseline indicates that no shrinkage smoother is used 
during the model fitting process. Further simulation details are given in Section 5.3.1. False 
positive rates give the proportion of times spurious terms are selected. Vertical lines show ±2 
standard error bands. 
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Figure 5-5: Shrinkage results for the methods discussed in Section 5.2, for four error distribu­
tions and linear predictor η1. REML estimation is employed for all methods except for GAM 
boosting and the Belitz&Lang approach. Covariate correlation is 0.9. Further details are given 
in the caption of Figure 5-4. 
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et al. (2010). Shrinkage and double penalty are competitive as compared to the 

alternatives. The nonnegative garrote estimator is also competitive but not for 

the binomial case. As covariate correlation increases, the nonnegative garrote 

performance worsens. Backward selection yields the best results, but false 

negative rates are about 0.4, 0.3, and 0.1. These increase by about 0.1 point 

when covariate correlation is 0.9. So, if the data have high information con­

tent then Backward selection may be preferred over the competing methods, 

otherwise our proposals yield the most reliable results. 

The Belitz&Lang approach yields good false positive rates. However, false 

negative rates (plots not shown here) indicate that this method eliminates in­

fluential covariates with rates about 0.25, 0.18, and 0.09 for the high, medium 

and low noise cases, respectively. This also explains its MSE performance as 

compared to the other approaches (see Figure 5-3). False negative rates are 

about 0.60, 0.29 and 0.17 when covariate correlation is 0.9. The combination 

of high false negative rates and relatively high MSE led us to drop the Be­

litz&Lang method after phase 1 of the study. 

The poor false positive rate performance of GAMBoost is because the proce­

dure typically retains predictors whose estimated curves are close to the zero 

line and that have been selected in a small number of boosting steps. These 

two facts could be combined into a procedure to improve false positive rates. 

However this presents us with some difficulty in obtaining fair false positive 

rate criteria for comparison with other methods, so is not pursued here. Al­

ternative boosting procedures such as those documented in B ühlmann and 

Hothorn (2010) and Shafik and Tutz (2009) should also improve performance, 

but in the absence of public domain software we do not pursue these ap­

proaches here. 

Figure 5-6 compares the MSE of the methods considered in phase 3 (linear 

predictor η2) to the MSE of the double penalty approach. Results are again 

given by error model and method. The results confirm the finding that the 

double penalty approach yields overall the smallest MSEs. Similar conclusions 

were obtained when ρ = 0.9. Figure 5-7 indicates that shrinkage and double 

penalty yield, overall, reasonable false positive rate results. The nonnegative 

garrote estimator also produces reasonable results but not for the binomial 

case. As before, false negative rates (not reported here) indicate the Backward 

selection should be preferred over the other methods if the data have high 

information content. 

Finally, Figures 5-8 and 5-9 show MSE comparisons by error model and 

method for linear predictor η3 from phase 4 of the simulations, when mod­
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Figure 5-6: MSE comparisons between some of the methods discussed in Section 5.2 and the 
double penalty approach for four error distributions, when REML estimation and linear pre­
dictor η2 are employed. Covariate correlation is 0 and the signal to ratio level is medium. 
Baseline indicates that no shrinkage smoother is used during the model fitting process. Fur­
ther simulation details are given in Section 5.3.1 and in the caption of Figure 5-3. In all cases 
a Wilcoxon signed rank test indicates that double penalty has lower MSE than the competing 
methods (p-value < 10−6). 
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Figure 5-7: Shrinkage results for some of the methods discussed in Section 5.2 and four error 
distributions, when REML estimation and linear predictor η2 are employed. Covariate corre­
lation is 0. Further simulation details are given in Section 5.3.1 and in the caption of Figure 
5-4. 
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els are fitted using fourteen and thirty covariates, respectively, most of which 

are nuisance variables. The results confirm the findings of this section, with 

the only difference that double penalty does not outperform the shrinkage ap­

proach. The overall shrinkage performance of the methods for the two scenar­

ios was in line with that reported in the previous plots (overall false positive 

rates about 0.33, 0.37, 0.84, 0.51, 0.09, and 1 for Shrinkage, Double penalty, 

Boosting, Garrote, Backward and Baseline, respectively). 
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Figure 5-8: MSE comparisons between some of the methods discussed in Section 5.2 and the 
double penalty approach for four error distributions and linear predictor η3. REML estima­
tion is employed for all methods except for GAM boosting. Models are fitted using fourteen 
covariates, eleven of which are not influential. Covariate correlation is 0 and the signal to ratio 
level is medium. Further simulation details are given in Section 5.3.1 and in the caption of 
Figure 5-3. In all cases a Wilcoxon signed rank test indicates that double penalty has lower 
MSE than the competing methods (p-value < 10−5), except for the Shrinkage approach where 
there is no significant difference (p-value > 0.29). 

5.4 Real data example 

In this section, we show the results obtained by applying the methods dis­

cussed in the chapter to a real dataset on plasma beta-carotene levels. 

5.4.1 Beta-carotene data 

The data are from a cross-sectional study conducted in the United States. The 

aim of the analysis was to investigate the relationship between beta carotene 

plasma concentrations and personal characteristics as well as dietary vari­

ables of subjects who had a biopsy examination or removed lesions of the 
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Figure 5-9: MSE comparisons between some of the methods discussed in Section 5.2 and the 
double penalty approach for four error distributions and linear predictor η3. REML estimation 
is employed for all methods except for GAM boosting. Models are fitted using thirty covari­
ates, twenty-seven of which are spurious. Covariate correlation is 0 and the signal to ratio 
level is medium. Further simulation details are given in Section 5.3.1 and in the caption of 
Figure 5-3. In all cases a Wilcoxon signed rank test indicates that double penalty has lower 
MSE than the competing methods (p-value < 10−6), except for the Shrinkage approach where 
there is no significant difference (p-value > 0.33). 

lung, colon, breast, skin, ovary or uterus that were not found to be cancerous 

(Nierenberg et al., 1989; Marra and Radice, 2010). The dataset was obtained 

from the StatLib-Datasets Archive website (http://lib.stat.cmu.edu/ 

datasets/Plasma Retinol) and is made up of 315 individuals. The dataset 

contains a number of continuous variables. 

The covariates considered were age (in years), Quetelet index (which is a 

measure of obesity defined as weight divided by the square of height), num­

ber of calories consumed per day, plasma beta-carotene (ng/ml), grams of fat con­

sumed per day, grams of fiber consumed per day, cholesterol (mg per day), and 

dietary beta-carotene (mcg per day). 

5.4.2 Results 

The aim was to fit a nonparametric model and perform variable selection. As 

pointed out in Marra and Radice (2010), plasma BC levels strongly exhibit a 

positively skewed distribution. Therefore, a gamma distribution with a log 

link function between the linear predictor and the mean was employed. No­

tice that GAM boosting, the Lasso&Splines approach and Belitz&Lang method 

were not applied on this dataset given the results of the previous section. We 

applied the remaining methods using each of GCV and REML with model 
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fitting settings as discussed in Section 5.3.1. Pearson correlations among the 

covariates were in the range [0.05, 0.9], and the squared correlation coefficient 

between µi (calculated using a standard GAM) and yi was about 0.25, suggest­

ing that the noise in this dataset is high. 

5 10 15 20 25 30 35 20 30 40 50 60 70 80 15 20 25 30 35 40 45 50 200 400 600 800 

FIBER AGE QUETELET CHOLESTEROL 

0 2000 4000 6000 8000 1000 2000 3000 4000 50 100 150 200 
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Figure 5-10: Smooth function estimates obtained by applying the double penalty approach 
with REML estimation on the plasma beta-carotene dataset described in Section 5.4.1. The 
results are reported on the scale of the linear predictor. The numbers in brackets in the y-axis 
captions are the edf of the smooth curves. The ‘rug plot’, at the bottom of each graph, shows 
the covariate values. 

According to the shrinkage, double penalty and nonnegative garrote ap­

proaches the variables calories and fat were not influential, hence removed from 

the model. Backward selection removed calories, fat and fiber, suggesting the 

elimination of an important covariate. In fact, this was consistent with our 

simulation study which showed that if the data do not have high information 

content then Backward selection eliminates influential predictors. 

Figure 5-10 shows the smooth function estimates obtained by applying the 

double penalty approach on the plasma beta-carotene dataset. Similar results 

were obtained by using the shrinkage and nonnegative garrote methods (plots 

not reported here). The estimated functions reveal the presence of non-linear 

relationships between the outcome and the selected regressors. This allows the 

researcher to gain more insights into the phenomenon of plasma beta-carotene 

in comparison to using a fully parametric approach. The smooths of dietary 

beta-carotene and fiber exhibit a linear behaviour, hence these terms can enter 

the model in a parametric manner. Finally, we repeated 5-fold cross valida­

tion 100 times, and then calculated prediction risk estimates. The results, dis­
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played in Figure 5-11, are consistent with the findings of our simulation study; 

overall, REML outperforms GCV and the double penalty approach performs 

significantly better than the competing methods in terms of prediction. 
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Figure 5-11: The top boxplots report prediction risk comparisons (in units of 103) between 
GCV and REML for some of the methods discussed in Section 5.2 when using the beta-carotene 
dataset (see details in Section 5.4). The plots show the distributions of differences in prediction 
risk estimate between GCV and REML, which were obtained repeating 5-fold cross validation 
100 times. In all cases a Wilcoxon signed rank test indicates the REML yields lower risk esti­
mates as compared to GCV (p-value < 10−19), except for Backward where this evidence is less 
strong (p-value < 0.022). The bottom boxplots report prediction risk comparisons between 
the four shrinkage methods used for the beta-carotene dataset and the double penalty ap­
proach, when REML estimation is employed. The plots show the distributions of differences 
in prediction risk estimate between each method and double penalty. In all cases a Wilcoxon 
signed rank test indicates that double penalty produces lower risk estimates as compared to 
the competing methods (p-value < 10−18), except for Shrinkage where this evidence is less 
strong (p-value < 0.017). 

To complete the analysis, following e.g. Buhlmann and Hothorn (2010), ¨

we looked at a synthetically enlarged problem. Specifically, we generated ten 

uniform variables with correlations approximately equal to 0.5 (see Section 

5.3.1) and included them in the model containing the real predictors. This 

allowed us to check how many ineffective variables would be selected. The 

proposed approaches performed satisfactorily in that, overall, seven variables 

out of ten were eliminated. This was consistent with the simulation results. 

We now discuss the conclusions obtained using a classic GAM with the 

confidence intervals of Chapter 4, for model selection purposes. Figure 5-12 

reports the smooth function estimates obtained when we employ a standard 

GAM without any shrinkage smoother. As we can see, although the impact of 

some variables appears to be weak, all regressors are retained in the model. If 

we use confidence intervals to carry out variable selection, we may conclude 
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Figure 5-12: Smooth function estimates obtained by fitting a standard GAM with REML es­
timation on the plasma beta-carotene dataset described in Section 5.4.1. Further details are 
given in the caption of Figure 5-10. 

that calories, fat, fiber, and cholesterol are not influential since a straight flat line 

can be drawn within their variability bands (see Figure 5-13). However, as 

discussed in Section 4.4, although such intervals are a useful guide to help 

model selection, one can not completely rely on them alone to infer features in 

the smooth estimates. The results in Figure 5-10 suggest that only calories and 

fat should be removed from the model. 

Based on the example discussed in Section 4.4, we can be confident that 

the true effect of age is nonlinear. However, the fact that a straight line can 

be drawn within the variability bands for the smooth components of Quetelet 

index and cholesterol does not imply that their true relationship is linear. This 

question may be addressed using the approach described in Section 2.6. Here, 

we can test the null hypothesis that a simple model (the impact of Quetelet in­

dex and cholesterol is assumed to be linear) is true against the alternative relat­

ing to a more complex model (the effect Quetelet index and cholesterol is nonlin­

ear). In this case, the resulting p-value is 0.068 which indicates to reject the null 

at the 10% significance level. In other words, the increase in the log-likelihood 

due to replacing the smooths with straight lines is somewhat significant. This 

result is consistent with Figure 5-10 which suggests that Quetelet index and 

cholesterol have a nonlinear impact. 
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Figure 5-13: The same smooth function estimates as those reported in Figure 5-12. The shaded 
regions represent 95% Bayesian confidence intervals discussed in Chapter 4. 

5.5 Discussion 

In this chapter, we have proposed two effective shrinkage methods and ex­

tended the nonnegative garrote estimator to achieve component selection within 

GAMs, for situations in which there are moderate numbers of spurious covari­

ates which it would be beneficial to eliminate. We have compared the empir­

ical performance of the proposals to that of some available techniques via an 

extensive simulation study, and illustrated some of the procedures analysing 

data on plasma beta-carotene levels from a cross-sectional study conducted in 

the United States. 

Our results show that, overall, the proposed shrinkage approaches perform 

significantly better than the competing methods in terms of predictive ability. 

As for the variable selection performance, the shrinkage and double penalty 

approaches are competitive as compared to the alternatives. The nonnegative 

garrote estimator is also competitive but not for the binomial case. As covariate 

correlation increases, the nonnegative garrote performance worsens. Matters 

improve when REML is employed for smoothing parameter estimation. Back­

ward selection yields the best false positive rates. However, false negative 

rates indicate that this method eliminates influential covariates, especially for 

the low signal to noise ratio level-high covariate correlation scenario, worsen­

ing its predictive ability. GAM boosting performs comparatively poorly in the 

scenarios considered here, although its shrinkage performance could almost 
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certainly be improved by changing the way variables are selected. 

If the data have high information content then backward selection may be 

preferred over alternatives, otherwise our proposals yield the most reliable re­

sults. The main limitation of all the methods discussed here, except for GAM 

boosting and Belitz and Lang (2008), is that they can not deal with situations 

in which n < p (n is sample size and p is the number of predictors) and in­

deed require n ≥ kp where k is the average basis size used for the smoothers. 

For p > n, GAM boosting and the Belitz&Lang method appear to be the only 

methods available when an additive structure is considered appropriate. It 

is notable that both these methods rely on prediction error criteria such as 

AIC and GCV for smoothness selection, while for the other methods we found 

REML smoothness selection to generally yield superior results. It would be 

interesting to see whether REML based extensions to Belitz and Lang (2008) or 

GAM boosting could be produced which would improve the performance of 

these methods. 
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Summary 

In this thesis we have discussed some theoretical and practical aspects of pe­

nalized regression spline smoothing. This technique is becoming among the 

most useful and used of statistical methods in many fields. We provided a 

brief overview of GAMs, based on the penalized likelihood framework with 

regression splines, by discussing some aspects that are relevant to this thesis. 

We then concentrated on three main issues. 

In Chapter 3, we tackled the problem of unobservable confounding, issue 

which can not be neglected especially in observational studies when the re­

searcher is interested in evaluating the effects of one or more predictors of in­

terest on a response variable. The IV approach represents a valid means to ac­

count for unobservables. This technique, first proposed in econometrics, only 

recently has received some attention in the applied statistical literature. We 

have proposed a flexible procedure to carry out IV analysis within the GAM 

context. Our proposal is backed up with an extensive simulation experiment 

whose results confirmed that the proposed procedure represents a flexible the­

oretically sound means of obtaining consistent curve/parameter estimates in 

the presence of unmeasured confounding. We have also introduced a Bayesian 

interval correction procedure for the intervals of the proposed two-step ap­

proach, which performed well in simulation in terms of coverage probabilities. 

In Chapter 4, we have shown by simulation and extension of Nychka’s 

analysis, that the Wahba/Silverman type Bayesian intervals for the compo­

nents of a penalized regression spline based GAM have generally good fre­

quentist properties, across-the-function. The exception occurs when compo­

nents estimated subject to identifiability constraints have interval widths van­

ishing somewhere as a result of heavy smoothing. Coverage probabilities 

can be improved if intervals are only obtained for unconstrained quantities, 

such as a smooth component plus the model intercept. The theoretical results 

also allow us to define alternative intervals when a frequentist approach is 

adopted. The results make a novel contribution in extending Nychka’s argu­

ment to the GAM component case thereby pinpointing the circumstances in 
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which the intervals will and will not work, and explaining the role of smooth­

ness selection as well as smoothing parameter uncertainty. The findings are 

backed up with quite extensive simulation testing of the finite sample perfor­

mance of the three types of confidence intervals considered in this work. 

In Chapter 5, we have proposed two simple but effective shrinkage meth­

ods and extended the nonnegative garrote estimator to achieve component se­

lection within GAMs. We have compared the empirical performance of the 

proposals to that of some available techniques via an extensive simulation 

study, and illustrated some of the procedures analysing data on plasma beta­

carotene levels. Our results show that, overall, the proposed approaches per­

forms significantly better than the competing methods in terms of predictive 

ability and shrinkage. The performance of the methods improves when REML 

is employed for smoothing parameter estimation. If the data have high infor­

mation content then Backward selection may be preferred over the competing 

methods, otherwise our proposals yield the most reliable results. 

An interesting area for future work is to develop flexible simultaneous 

equation estimation methods dealing with the issues of (i) unmeasured/unobservable 

confounding (recall that a solution based on two-stage estimation has been 

presented in Chapter 3), (ii) heterogeneity, (iii) sample selection and (iv) covariate­

response nonlinear relationships. A non-exhaustive list of observational eco­

nomic and biostatistical studies affected by issues (i) and (ii) includes the study 

of the effect of private health insurance on medical care utilization, impact of 

diabetes on employment, effect of physical activity on obesity, and association 

between various reported risky sexual behaviors and sexually transmitted in­

fection. As for (iii), in many applications, the dependent variable can take any 

nonnegative real value but has positive probability of a zero outcome. For 

instance, when each observation is a record of the daily rainfall, many days 

may have no rainfall. In household expenditure and medical cost studies, 

some households spend nothing on certain goods, and a portion of the pop­

ulation have zero medical expense. As for point (iv), the functional shape of 

any covariate-response relationships is rarely known a priori and the outcome 

may depend on the predictors in a complicated manner. The estimators typ­

ically employed for applied work neglect at least one of the problems above, 

hence yielding biased and inconsistent estimates of the relationship of interest. 

This is clearly not desirable because it may cause, e.g., policy makers to focus 

on wrong policy decisions. Estimation methods based on simultaneous equa­

tions and smoothing splines seem to be a promising alternative to the single 

equation estimation techniques available in the literature. 
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