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Summary 

The automotive industry has long relied on testing powertrain components in real 

vehicles, which causes the development process to be slow and expensive. Therefore, 

hardware in the loop (HIL) testing techniques are increasingly being adopted to 

develop electronic control units (ECU) for engine and other components of a vehicle. 

In this thesis, HIL testing system is developed to provide a laboratory testing 

environment for continuously variable transmissions (CVTs). Two induction motors 

were utilized to emulate a real engine and vehicle. The engine and vehicle models, 

running in real-time, provide reference torque and speed signals for input and output 

dynamometers, respectively. To design torque and speed tracking controllers, linear 

models of the motor and drive systems were firstly identified from the test results. 

Feedforward controllers were then designed according to the inverse dynamics of the 

identified models. Because of the existence of unstable zeros in the model, design 

effort was focused on the stability and causality of the inverse process. Digital 

preview filters were formulated to approximate the stable inverse of unstable zeros as 

part of the feedforward controller. Normally, future information of input trajectory is 

required when implementing the digital preview filters, which makes the feedforward 

controller non-causal. Since the engine and vehicle model require current 

information to calculate the next output and no future value can be provided in 

advance, the application of non-causal digital controllers was limited. A novel 

method is proposed here to apply non-causal digital controllers causally. Robustness 

of the controllers is also considered when the two motors are coupled and the gear 

ratio between them was changed. 

The proposed coupled control method was tested and verified experimentally by 

using a manual gearbox before recommending its use for a CVT testing. A multi­

frequency test signal as well as simulation results of a whole vehicle model were 

used as torque and speed demand signals in the experiments. A HIL testing case was 

also presented. Frequency and time domain results showed the effectiveness of the 
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method under both testing procedures to fully compensate for the dynamics of both 

actuators. 

II 



Acknowledgements 

I would like to give my appreciation to everyone who has been supporting me in all 

these three tough years. 

Very special thanks to my supervisors Dr. Necip Sahinkaya and Dr. Sam Akehurst. I 

can never finish my PhD without your expertise, guidance and patience. 

Many thanks to the technicians for your assistance on the test rig. 

谨以此论文献给我最亲爱的父母，你们的支持和信任永远是我最大的动力。

III 



Contents 

NOTATIONS................................................................................................ VII


CHAPTER 1 INTRODUCTION .................................................................. 1


1.1 CVT.................................................................................................................. 1 


1.1.1 Introduction of CVT................................................................................. 1 


1.1.2 Testing of CVT ........................................................................................ 6 


1.2 Hardware in the Loop (HIL) Testing ............................................................... 7 


1.3 HIL Test Facility for CVTs............................................................................ 10 


1.3.1 Test Facility Architecture....................................................................... 10 


1.3.2 Test Facility Components ...................................................................... 11 


1.3.3 Control of Dynamometers...................................................................... 14 


1.4 Feedforward Control ...................................................................................... 15 


1.4.1 Control Scheme...................................................................................... 15 


1.4.2 Inverse Feedforward Control ................................................................. 17 


1.4.3 Stable Inversion of Non-minimum Phase Systems................................ 18 


1.4.4 Comments on Stable Inversion Techniques........................................... 23 


1.5 Thesis Scope .................................................................................................. 24 


CHAPTER 2 SYSTEM IDENTIFICATION................................................ 25


2.1 Identification Method..................................................................................... 26 


2.1.1 Least Squares Estimation ....................................................................... 26 


2.1.2 Multi-Frequency Signal ......................................................................... 28 


2.1.3 Statistical Analysis ................................................................................. 30 


2.2 Identification Results ..................................................................................... 33 


IV 



2.2.1 Estimation of Inertia and Damping ........................................................ 34 


2.2.2 Estimation of Motor and Drive System ................................................. 41 


2.3 Transmission Delay in CAN Bus................................................................... 48 


2.4 Model for Speed Control with CAN Bus Delay ............................................ 51 


2.4.1 Simulink Model...................................................................................... 51 


2.4.2 Estimated Transfer Function.................................................................. 56 


CHAPTER 3 FEEDFORWARD TRACKING CONTROLLER................... 59


3.1 Digital Preview Filter..................................................................................... 59 


3.1.1 Design of DPF........................................................................................ 60 


3.1.2 Norm Optimization for DPF .................................................................. 62 


3.2 Causal Design of DPF.................................................................................... 65 


3.3 Causal Application of DPF to a Single Motor ............................................... 67 


3.3.1 Output Dynamometer Speed Tracking Control ..................................... 67 


3.3.2 Input Dynamometer Generated Torque Tracking Control..................... 75 


3.4 Conclusions.................................................................................................... 80 


CHAPTER 4 FEEDFORWARD CONTROLLER ROBUSTNESS............. 82


4.1 Gear Ratio Compensation of O/P Dynamometer Speed Control................... 83 


4.1.1 Test with Neutral Gear ........................................................................... 84 


4.1.2 Test with 1:1 Gear Ratio ........................................................................ 87 


4.2 Compensation of Disturbance Torque for O/P Dynamometer....................... 90 


4.3 Compensation of Inertia Torque for I/P Dynamometer ................................. 96 


4.3.1 Test with Inertia Torque Compensator .................................................. 97 


4.3.2 Test with additional PID controllers .................................................... 101 


CHAPTER 5 TESTING WITH REAL TIME MODEL............................... 106


5.1 Engine and Vehicle model ........................................................................... 106 


V 



5.2 Testing with Simulation Results .................................................................. 107 


5.3 HIL Testing .................................................................................................. 116 


CHAPTER 6 CONCLUSIONS................................................................ 121


6.1 Conclusions.................................................................................................. 121 


6.2 Future Work ................................................................................................. 122 


REFERENCES .......................................................................................... 124


VI 



Notations 


A Vehicle frontal area 

A Matrix as a function of  

21, AA Matrices calculated from the weighting function w 

Ak Amplitude of harmonic component 

BI Combined damping ratio of input dynamometer and shaft 

BM Motor damping ratio 

BN Nominal damping ratio 

BO Combined damping ratio of output dynamometer and shaft 

C Vector of transfer function coefficients 

CD Drag coefficient 

D Number of preview steps required for feedforward controller 

)( 1DPF z Transfer function of digital preview filter 

)( 1zDPFA Transfer function of digital preview filter for gain compensation 

)( 1 
 zDPF Transfer function of digital preview filter for phase compensation 

F Complex measurement variable 

FL Measurement vector used in the Least Square Estimation 

tF Engine driving force 

G(s) Continuous-time transfer function of the plant 

(s)Gclose Continuous-time transfer function of closed loop speed control 

( )_ sG DynoI Motor and drive system transfer function of input dynamometer 

( )_ sG DynoO Motor and drive system transfer function of output dynamometer 

(s)GPID Transfer function of PID controller 

( )_ sG cmpRatio Transfer function of gear ratio compensator 

(s)GSpeed Transfer function of output dynamometer speed control 

VII 



(s)GTorque Transfer function of input dynamometer torque control 

)( 1zH Discrete-time transfer function of the plant 

)( 1zH a Stable (acceptable) part of )( 1zH 

)( 1zH Close  Discrete-time equivalent of (s)Gclose  with ZOH 

)( 1 
& 

zH LM  Discrete-time equivalent of ( )( ) __ sLsG DynoODynoO   with ZOH 

)( 1zH PID  Discrete-time equivalent of (s)GPID  with ZOH 

)( 1zH Speed  Discrete-time equivalent of (s)GSpeed  with ZOH 

)( 1zHTorque  Discrete-time equivalent of (s)GTorque  with ZOH 

)( 1zH u Unstable (unacceptable) part of )( 1zH 

J I Combined inertia of input dynamometer and shaft 

J M Motor inertia 

J N Nominal inertia 

J O Combined inertia of output dynamometer and shaft 

J Sh Shaft inertia 

K Number of frequency components 

( )&_ sL ShsDI Load transfer function of input dynamometer and shafts 

( )_ sL DynoI Load transfer function of input dynamometer 

( )_ sL ShaftI Load transfer function of input shaft 

( )_ sL DynoO Load transfer function of output dynamometer 

( )_ sL ShaftO Load transfer function of output shaft 

N Number of preview steps for )( 1DPF z 

P Number of unstable zeros in )( 1zH 

2P1 , P Number of real and complex zeros in )( 1zH 

Pk Ratio of power to the total power 

)( 1Q z Transfer function of feedforward controller 

R Relative order of the estimated transfer function )( nm  

R 2 Goodness of fit measurement 

R(s) Generic output signal 

VIII 



)( 1R z Ratio transfer function 

gT Generated torque 

mT Measured torque 

sT Sampling time 

Y (s) Generic output signal 

Z Complex measurement vector for a single frequency 

ZL Measurement matrix used in the Least Square Estimation 

a Vehicle acceleration 

ai Parameters for denominators of the estimated transfer function 

bi Parameters for numerators of the estimated transfer function 

e Residual 

g Gravity acceleration 

i, k Integers 

m Order of the denominator of the estimated transfer function 

vm Vehicle mass 

n Order of the numerator of the estimated transfer function 

p Number of data points 

pk Power spectrum 

q Number of estimated coefficients 

r Plant input signal 

cr Rolling resistance coefficient 

s Laplace transform operator 

v Residual degrees of freedom 

vv Vehicle speed 

w Weighting function 

y Plant output signal 

yd Desired signal 

y f Delayed output signal 

z Discrete z-transform operator 

IX 



zi Unstable zeros 

( ,) Lagrange transfer function 

α Vector of coefficients of DPFA 

 i Coefficients of DPFA 

β Vector of constants 

 Covariance matrix 

γ Vector of coefficients of zero phase filter 

 i Coefficients of zero phase filter 

, Coefficients of R(z 1 ) 

 Normalized frequency 

1,2 Lower and upper limits of normalized frequency 

 Road gradient r 

 Lagrange multiplier 

 Air density 

 2 Mean Square Residual 

 Gear ratio between output and input dynamometers 

k Phase of kth frequency component in SPHS signal 

 Frequency 

0 Fundamental frequency 

M Motor speed 

(··) Derivatives 

(¯) Complex conjugate 

(^) Estimation 

( )-1 Inverse 

X 



Chapter 1 Introduction 

In this chapter, a general introduction to continuously variable transmissions (CVTs) 

and hardware in the loop (HIL) testing techniques is presented as the background of 

this research. To assist the CVT calibration and development processes, a HIL test 

facility is developed in a laboratory environment using two electric motors as prime 

movers and absorbers. The vital part in the HIL testing is to control the torque and 

speed of these motors to track the engine torque and vehicle speed calculated from 

the real-time simulation models. To achieve a perfect tracking, a feedforward control 

is normally used, in addition to a feedback control. Inverse techniques for the design 

of feedforward controllers are presented. Background on the concepts of minimum 

and non-minimum phase systems is introduced, and stable inverse techniques for 

non-minimum phase systems are reviewed. A scope of the thesis is also given at the 

end of the chapter. 

1.1 CVT 

Currently, most vehicles use either conventional manual transmissions or automatic 

transmissions configured with multiple planetary gear sets that use integral clutches 

and bands to achieve discrete gear ratios. The way continuously variable 

transmission (CVT) differs from manual and automatic transmissions is that the gear 

ratio is not discretized and can thus be changed continuously between the minimum 

and maximum values.  

1.1.1 Introduction of CVT 

Configuration of CVT 

The most common configuration of CVTs applied in automotive industry is the 

pushing metal belt CVT. The feature that characterizes this type of CVT is the 
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variable-diameter pulleys. Each pulley is made of two cones facing each other. A belt 

rides in the groove between the two cones. The variable-diameter pulleys must 

always come in pairs. One of the pulleys, known as the drive or primary pulley, is 

connected to the crankshaft of the engine. The second pulley is called the driven or 

secondary pulley which transfers energy to the vehicle driveshafts. The components 

are shown in Figure 1-1. 

Primary 

Secondary 

Primary

Secondary

Figure 1-1 Configuration of push belt CVT 

The distance between the centres of the pulleys to where the belt makes contact in 

the groove is known as the pitch radius, shown in Figure 1-1 as p and s. Since the 

pulley centre distance is fixed and the belt length is constant, when the radius of one 

pulley is increased, the radius of the other pulley must be decreased to keep the belt 

tight. The force can be created from hydraulic pressure, centrifugal force or spring 

tension to adjust the pulley haves. As the two pulleys change their radii relative to 

one another, an infinite number of gear ratios is created from low to high and 

everything in between. 

There are also other configurations for CVT, such as toroidal CVTs [1,2] and 

hydrostatic CVT [3,4]. Although different in components and configuration, all the 

CVTs have the capability of changing the gear ratio continuously. 

Function of CVT 

The major advantage of CVT technology is that it allows the engine to operate in a 

more fuel efficient manner. Unlike other transmissions which only allow a few 

discrete gear ratios, CVT essentially enable an infinite number of ratios available 

2 



within a finite range, so the relationship between the speed of a vehicle, the 

equivalent road load torque, and the engine speed and torque can be selected within a 

continuous range. This gives the freedom to operate an engine at speeds that are not 

fixed in relation to the vehicle speed. In addition, the use of electronic engine control 

allows the engine torque output to be set by the control strategy rather than the driver. 

When used together, these two features allow the driver’s power demand to be 

implemented in the most advantageous manner. This has been traditionally 

demonstrated as a means to optimise fuel economy by running the engine along a 

line of minimum brake specific fuel consumption (BSFC), usually called an 

economy line (E-line) [5], shown in Figure 1-2. There is another line (D-line) shown 

in the figure, which will be further explained later. 

Figure 1-2 Economic and dynamic operating line in engine map 

The function of CVT is to make engine operate along the determined E-line to save 

fuel, in dependent of vehicle speed. Figure 1-3 shows one way to generate the target 

engine torque and target CVT ratio under the steady state operation. The engine 

power demand was firstly calculated as the product of the target driving force and 

vehicle speed, the intersection of iso-horsepower and the target engine operating line 

(E-line) was selected as the ideal operating point defining the target engine torque 

and engine speed for this desired driving force. The target CVT ratio was calculated 

by dividing the target engine speed and vehicle speed. In this way, the engine torque 

and CVT ratio that achieve the target driving force and trace the target engine 

operating line can be calculated. 
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Figure 1-3 Method for generating operation point under steady state 

Similar studies on engine and CVT integrated control can be found in [6-12]. In the 

way shown in Figure 1-3, a control map of engine torque and CVT ratio is developed 

so that the required power output can be obtained at the optimum fuel economy level. 

The desired engine operating line may sometimes refer to an optimal emission line. 

For example, in [6], this line was generated by considering minimum emission of 

NOx. NOx emissions and BSFC reduction are not mutually compatible events and 

thus a trade-off between them must be considered to meet with legislative targets 

while achieving low fuel consumption. 

Efficiency of CVT 

The algorithm shown in Figure 1-3 can only be applied for a steady state driving 

condition without considering powertrain losses. However, in reality, substantial 

energy loss occurs in the powertrain, e.g. the transmission accessories. In fact, it was 

revealed in [7], that higher powertrain efficiency would probably ensure an improved 

overall fuel economy, even with a relatively high BSFC value and vice versa. 

Unfortunately, CVTs do not hold a better mechanical efficiency compared with a 

manual transmission. When operated through a representative combined 

city/highway cycle, average efficiencies for typical manual, automatic and belt CVT 

transmissions would typically be 96.2 percent, 85.3 percent, and 84.6 percent 

respectively [13]. 

In [14], different sources of mechanical power loss inside a typical push belt CVT 

and their potential for reduction were described. It was pointed out that the main loss 
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occurs in the variator, pump and hydraulic actuation circuit. In the variator, power 

was lost in the form of friction, e.g. friction in the bearings of the shaft, friction 

between the belt and pulleys, and internal belt friction. The clamping force is the 

main initiator for the level of losses of these three phenomena. Normally, an 

excessive belt clamping force is applied based on a high safety factor because some 

parameters related to clamping force are not exactly known, and also the torque 

disturbances from engine or road are unknown. So accurately characterizing the 

friction and reducing the clamping force can lead to a reduction of power loss, which 

was investigated in a number of papers [15-19]. New control strategies were also 

designed to reduce the clamping force as in [14,20,21]. 

The actuation power for the variator is derived from a hydraulic pump and associated 

control circuit. The line pressure of the variator sub-circuit has an important 

influence on pumping losses. In [14], a smart independent pressure circuit was 

designed to optimise the line pressure. A high efficiency oil pump with a delivery 

switching mechanism was described in [22]. The concept of using electrically 

powered oil pump in addition to the main pump was also proposed in [14,23]. 

Furthermore, the conventional engine driven pump and control valves were replaced 

by a servo hydraulic control system, consisting of two servo pumps that control 

hydraulic circuit pressures. Since the hydraulic pressure was developed on demand, 

the losses were greatly reduced [24,25]. 

Moreover, to improve efficiency, a lock up clutch can be utilized to lock the torque 

converter above certain vehicle speeds. Optimization efforts were aimed at reducing 

losses by engaging the lock up clutch as soon as possible [14,22]. 

Driveability of CVT 

Apart from the need to improve efficiency, another factor influencing the uptake of 

CVT technology is driveability. It is always difficult to obtain low fuel consumption 

and good vehicle driveability at the same time. Such a situation is a result of different 

courses of the dynamics (D-line) and economic (E-line) operating lines in the area of 

the engine torque speed map as shown in Figure 1-2. More specifically, the (quasi­

stationary) operating points for minimal fuel consumption are located at high torque 

and low engine speed, whereas those for good driveability are located at low torque 

and high engine speed [26]. 
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Generally, the efficiency is high if the power is delivered at low speed (large 

transmission ratio) and high torque (nearly wide open throttle). In this so called E-

line strategy, only a small increase of the engine power will be obtained by 

completely opening the throttle. A further increase of this power is possible only if 

the engine is speeded up by down shifting the CVT. A fast downshift will result in a 

large engine acceleration. The engine then may not have enough power to accelerate 

its own inertia and thus power will be drawn from the vehicle, resulting in a vehicle 

deceleration. This is seen as a serious drawback of the E-line strategy, and as such it 

is hardly applied in practice [27]. The shifting characteristics of CVTs were 

presented in [28]. The same conclusion was drawn when down shifting the CVT. If 

the rate of ratio decrease is too great, a large negative inertia torque will be seen at 

the output shaft. If the rate of ratio decrease is too low, it will take more time to reach 

the desired engine power level. Therefore, an optimal choice of ratio changing rate is 

important. 

A solution was suggested in [27,29] to overcome the discrepancy between 

driveability and fuel consumption by a power assist unit, embodied as a flywheel and 

a planetary gear set in parallel to a standard CVT driveline. If the CVT ratio was 

shifted down, the flywheel speed decrease at an increasing engine speed. The 

resulting decrease of the kinetic energy of the flywheel can be used to accelerate the 

engine. From a model point of view, it seems that the engine inertia was cancelled by 

the flywheel inertia. Therefore, the new driveline was called the Zero Inertia (ZI) 

driveline. 

Further study on driveability issues like ratio schedule, pedal delay, shift speed, and 

torque converter lock up, etc. can be found in [30-34]. It was identified that these 

factors are likely to influence customer perception. 

1.1.2 Testing of CVT 

To further improve the efficiency and driveability of a CVT, experimental testing is 

an essential part of the powertrain development process. The automotive industry has 

long relied on vehicle testing to evaluate drivetrain components for new vehicle 

applications. Vehicle and engine based tests have many downfalls that could be 

avoided through the use of a laboratory based test system with electric prime movers 

and absorbers. Vehicle testing with human drivers is often subjectively controlled 
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and the exact test conditions are often unrepeatable. Vehicle tests are subject to 

weather changes and other environmental factors that can fluctuate tremendously 

during a test programme. Engine driven testing requires special facilities with 

exhaust removal systems and fuel storage capabilities. 

The biggest downfall to vehicle and engine driven testing of drivetrain components 

for new vehicles is that powertrain engineers often wait months for prototype 

vehicles and engines to become available for their test programmes. This is 

especially frustrating to drivetrain engineers because in most cases they want to 

utilize existing transmission designs for new vehicle applications. They simply 

modify or recalibrate a transmission from their product line to work on a new vehicle 

with a new engine. The drivetrain development team has to wait months before they 

know if an existing component will work or if a new design is needed [35]. 

A solution to this problem is to develop a transmission test system that can simulate 

the characteristics of an engine and vehicle through the use of properly controlled 

electric motors. The reasoning behind this solution is that even if the new engine or 

vehicle does not yet exist, there will be initial computer-based models of the 

proposed engine and vehicle that can be run in real-time, together with electric 

motors to emulate a concept engine or loads of a vehicle. 

1.2 Hardware in the Loop (HIL) Testing 

Today’s automotive development processes are characterised by increasing technical 

requirements within a competitive market and therefore by a growing complexity 

regarding mechanics and electronics. On the electronic side, comfort and safety 

requirements such as climate control or dynamic stability control systems will lead to 

an increasing number of on-vehicle embedded systems with more and more software 

solutions using several distributed Electronic Control Units (ECUs) [36]. On the 

mechanics side, more sophisticated devices such as double clutch or continuously 

variable transmissions (CVTs) are developed to improve vehicle performance or fuel 

economics, which also leads to an increasing number and complexity of ECUs. Both 

issues make testing a central task within the development process of automotive 

mechanics and electronics. 
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The automotive industry has long relied on vehicle testing for calibration of newly 

developed mechanics and electronics. Testing in real vehicles is time consuming and 

costly, and occurs very late in the automotive development process which can lead to 

costly mistakes when hardware iterations are required. It is therefore initiating 

technologies to replace the real vehicle by a laboratory environment. While new 

functions are still being developed or optimised, other functions are already 

undergoing certain tests, mostly on module level but also on system and integration 

level. To achieve the highest quality, testing must be done as early as possible within 

the development process. 

Hardware in the loop (HIL) testing for ECUs is now a well established technology 

employed through the development process. Typical applications can be found in 

[37-40]. Instead of being connected to an actual vehicle, the prototype ECU is 

connected to a HIL simulation system. Software and hardware models simulate the 

behaviour of the vehicle and related sensors and actuators. The models are typically 

developed with a suitable modelling tool, such as Matlab/Simulink. C code is then 

generated automatically and downloaded to real-time processors for execution. I/O 

boards, together with signal conditioning for level adaptation to the automotive 

voltages required by the ECU, provide the interface to the ECU pins. Figure 1-4 

shows a typical hardware-in-the-loop system architecture for an ECU testing [41]. 

Figure 1-4 Typical hardware in the loop test system architecture 

The extensive use of HIL technique includes introduction of transfer system, which 

is typically a set of actuators. The transfer system is used to provide an interaction 

between the software and hardware components of the system. It was called actuator­
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based hardware in the loop (AbHWiL) testing in [42]. Such applications can be 

found in [43,44] and the references therein. An antilock braking system 

(ABS)/electronic stability program (ESP) HIL test bench was built in [43]. The 

whole brake system existed in hardware form, and integrated through specific 

interfaces, e.g. wheel pressures signals, with a vehicle model running in real-time on 

a dSPACE processor board. A hydraulic unit driven by an electric motor was 

included to actuate the booster input rod which was originally driven by the engine. 

In the vehicle model, a driver simulator performed the desired manoeuvres and 

computed the booster input rod reference signal. The four callipers pressure sensors 

sent their signals back to the vehicle model, permitting to estimate braking torque 

values. A HIL setup was developed in [44] for testing suspension units. An actuator 

was used to provide the compression and elongation for the suspension unit, while 

the resulted force was measured by a load cell. The mathematical simulation model 

of the vehicle dynamics was run on a computer with suitable inputs and outputs. One 

output of the model would be the displacement control signal for the actuator, while 

the measured force would be an input of the model. 

The dynamics of the transfer system need to be compensated for when the HIL test is 

to be carried out in real time. PID controllers may be used if the actuator phase lag is 

seen to be acceptable within the operational frequency range [43,44]. For a lightly 

damped system with a small phase margin, the effect of heir dynamics may be 

significant, and advanced delay compensation techniques need to be developed. This 

will also apply to applications where electro-mechanical devices or complex circuitry 

are used as transfer systems, with the result that the effect of their dynamics may be 

significant within the operational range [42]. An emulator-based control strategy was 

presented in [42] to emulate the inverse of a transfer system in order to solve the 

problems of stability and fidelity caused by the unwanted transfer system dynamics. 

Mitigating the effect of transfer system dynamics has been studied in detail in the 

context of the related testing technique of real time dynamic substructuring (RTDS). 

RTDS is an actuator-based HWiL technique (AbHWiL), which so far has primarily 

been considered for civil engineering systems [45,46]. 
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1.3 HIL Test Facility for CVTs 

In the research described in this thesis, a HIL test facility was developed for 

automotive powertrains, with a particular interest in continuously variable 

transmission (CVT) testing. In this case, the CVT, its ECU, and the engine ECU are 

proposed to exist in hardware form. Other parts of the vehicle powertrain will exist in 

software form, namely the engine and vehicle. Two electric machines are employed 

as actuators to be connected to the transmission to apply required duty cycles on the 

input and output shafts of the CVT. 

1.3.1 Test Facility Architecture 

Figure 1-5 shows a proposed schematic arrangement of the CVT HIL test facility. 

The real CVT to be tested is placed in between input and output dynamometers. The 

dynamometers are driven by a twin ABB regenerative drive system and controlled by 

a CP CADET V12 control and data acquisition system. The ECU of the CVT is 

connected to the real engine ECU and also to an ECU calibration and optimisation 

tool. Real-time engine and vehicle models are typically developed by 

Matlab/Simulink, and executed on a dSPACE DS1006 processor board. Execution 

results in the form of the engine brake torque are sent to CP CADET through a CAN 

bus as input dynamometer torque set points. The input dynamometer torque is 

usually controlled to exactly track these torque set points. Likewise, vehicle speed 

will be sent to CP CADET through a CAN bus as output dynamometer speed set 

points. The output dynamometer speed is usually controlled to exactly track these 

speed set points. Then perceived by CVT, the input dynamometer is a virtual engine 

while the output dynamometer is a virtual vehicle. Testing a CVT in this way would 

be similar to testing it with a real engine in a vehicle, and the real-time models of 

engine and vehicle can easily be updated for testing new engine and vehicle 

configurations in a short timeframe. 

HIL testing of powertrains in this manner allows rapid calibration of the engine and 

transmission ECUs and the development of collaborative control strategies. It is also 

less costly and more flexible than testing of a complete developed powertrain, which 

is normally done on the vehicle. The software models of engine and vehicle can be 
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Figure 1-5 Architecture of CVT HIL test facility 

1.3.2 Test Facility Components 

The architecture of a HIL test facility for automotive transmissions was described in 

the previous section. Some details of the software and hardware components used in 

the test facility will be described in this section. 

Electric Motor and Drive System 

The test facility utilises a twin ABB regenerative drive system with a common DC 

bus to drive two electric motors as actuators to be connected to a CVT. The input 

electric motor is rated to 109 kW, 500 Nm and 4000 rev/min, while the output 

electric motor is rated to 200 kW, 1000 Nm, and 4000 rev/min for continuous 

operations. Transient overload potential of 100% is also available. 

The torque from each motor is measured using HBM T10F torque flanges rated to 

+/-200% of the motor torque capacities, which allows safety margin for transient and 
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inertial loadings. The speed of each machine is measured using a 1024 pulse/rev 

encoder. 

The electric motor and drive system is controlled by a CP Engineering CADET V12 

control and data acquisition system, which is an advanced, integrated, Windows 

based engine and vehicle test system. It supports up to 256 physical input channels, 

such as speed encoders, and up to 64 digital input channels. It also supports 64 

analogue output channels for control purposes, and up to 64 digital output channels. 

It is able to perform real-time direct digital control on 16 PID control loops at up to 

320 Hz control frequency. Each of the PID loops supports linearization of input and 

output channels. Each motor is controlled by two PID control loops in either speed or 

torque mode. 

CADET V12 supports both time based, and stage based testing methods. In stage 

based testing, the motor set points and modes are defined at each stage and 64 digital 

outputs may also be set on a per stage basis. The system includes data capture cards 

capable of sampling at rates of up to the control frequency at 16 bit resolution. Data 

can be logged in an optimised binary form at previous defined points in the test or as 

a result of events of any level of complexity. The system also offers safety interfaces 

to the electric motors, such as speed and torque overload protection. The electric 

motors and ABB drive cabinet is shown in Figure 1-6. 

ABB Drive Input 
Cabinet Dynamometer 

Figure 1-6 Electric motors and drive cabinet 

CVT 

CVT 
ECU Output 

Dynamometer 
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Transmission 

The transmission to be tested is a Ford ZF CFT23 CVT as shown in Figure 1-6, 

which is typically installed in Focus CMax vehicles. This is a pushing metal V-belt 

type CVT based on the Van Doorne metal V-belt design. The Transmission is an 

integrated transaxle design i.e. designed for use in transverse front wheel drive 

vehicles. The transmission incorporates a torque converter with lock up capability 

and may be operated in either a fully automatic mode or under manual control (with 

safety overrides) where clutchless shifting between a number of preset discrete ratios 

is achieved by sequential movement of the gear shift lever. The transmission control 

unit (TCU) is located in the sump of the CVT as a mechatronics unit incorporating 

ECU and hydraulic valving. Communication with the TCU for calibration and 

diagnostic purposes is achieved using INCA as described as follows. 

INCA 

Abbreviated from integrated calibration and acquisition system, INCA is a measuring, 

calibration, and diagnostic system that provides comprehensive measuring support, 

aids all essential tasks during control unit calibration, evaluates the measured data, 

and documents the calibration results. It communicates with CVT ECU through a K­

line interface and allows calibrations to be carried out on-line. The calibration 

datasets can also be read from or written to the CVT control unit. 

dSPACE 

Both the engine and vehicle models are developed in Matlab/Simulink and executed 

utilising a dSPACE HIL platform. The main processing board is a DS1006, featuring 

an AMD Opteron processor of 2.6 GHz. There is also 256 Mb of local memory 

allocated to the processor board. The I/O capability is based on a DS2211 card 

designed specifically for automotive HIL applications. The primary task of the I/O is 

to undertake HIL interfacing with the production engine ECU, therefore the board 

features an angular processing unit to generate realistic cam shaft and crankshaft 

signals based on the predicted engine position of the real-time engine model. 

Additionally, the card enables capture of injection signals, and can simulate a wide 

range of transducers. 
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CAN Bus 

A controller area network (CAN) bus interface to communicate between different 

systems was chosen due to its general adoption in the automotive industry. Both the 

production engine and transmission ECUs feature CAN bus communications to pass 

critical information between each other. The dSPACE hardware also features a CAN 

bus, so a CAN card was also installed into the CP CADET V12 system, with an add-

on CAN interface component. A bespoke set of CAN messages were developed for 

passing measured values like speeds and torques, and set points between the 

dSPACE hardware and the CP CADET system. 

1.3.3 Control of Dynamometers 

A vital part of the proposed HIL testing scheme for automotive powertrains is that to 

emulate real engine and vehicle by using electric actuators, the torque and speed of 

the actuators need to be precisely controlled to track the simulation results of the 

real-time engine and vehicle model. The interaction between the two motors also 

needs to be considered when the two motors are coupled. Change in the measured 

input dynamometer torque will certainly result in the change in output dynamometer 

speed, and vice versa. Hence even if the two motors are controlled successfully on 

their own, the performance will be totally different when they are coupled. 

There already exist certain controllers in the dynamometer drive system, like torque 

and flux hysteresis controllers, DC voltage and reactive power controllers. There are 

also PID controllers available for closed loop torque and speed control in CP 

CADET system. However, the control results are not satisfactory for tracking 

application. Large phase shift and gain error are observed for certain frequency range. 

Obviously, the control error can not be eliminated by tuning the PID controllers in 

CP CADET system. Other controllers existing in the drive system are not available 

to be modified by users. 

In this project, feedforward controllers are developed for both dynamometers to 

further enhance the torque and speed control performance. Compensation is also 

made when the two motors are coupled and when there is a change in the gear ratio. 

The feedforward controllers are implemented on the dSPACE hardware along with 

the PID controllers. The CP CADET system is maintained in the test mainly for 
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processing signals, additional data acquisition capacity and the existence of robust 

safety protection of the dynamometers. Tracking controller design is the main effort 

of this project and will be presented in details in the following chapters. 

1.4 Feedforward Control 

Output tracking is a general control problem for dynamic systems. This problem can 

be dealt with a pure feedback strategy, but to achieve better performance, a 

combination of feedforward and feedback action can be utilized. An input-output 

inversion technique has been developed as an approach to design a feedforward 

action to perform exact output tracking. An inverse system is created by this 

technique according to the dynamics of the plant. The dynamics of the inverse 

system are designed to be opposite to the original system, thus the whole system will 

behave as a unit gain system without phase shift. 

The inverse technique is in fact more complicated because of the stability and 

reliability concerning the inverse system. When the original system has unstable 

zeros, the inverse system will be unstable after direct inverse and perfect tracking of 

arbitrary reference is not possible. This motivated research into stable approximate 

inverse filters as a feedforward controller. 

1.4.1 Control Scheme 

A feedforward controller can be arranged in a system as shown in Figure 1-7, where 

the plant includes the original control system, which can be either open or closed 

loop. 

r(k) y(k)yd (k) 
Q(z 1 ) H (z 1 ) 

Feedforward Plant 
controller 

Figure 1-7 General feedforward control scheme 

Two main types of feedforward control structures were found in the literature as 

shown in Figure 1-8. In both schemes, the main role of feedback controller is 

regulating the disturbance, while the main role of feedforward controller is 
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improving tracking performance. In structure (a) in Figure 1-8, the feedforward 

controller is designed in addition to a closed loop system, to compensate for the 

closed loop transfer function between r(k) and y(k). The feedback controller 

improves the system dynamics by rejecting disturbance and enhancing robustness. In 

structure (b), the feedforward controller is designed to compensate for the open-loop 

transfer function between r(k) and y(k). If the dynamics of the plant was changed 

because of external disturbance or additional load applied, the feedforward controller 

has to be modified accordingly. However, the feedback controller will assist to 

reduce the tracking errors. 

Alternatively, an outer feedback loop controller can be added to structure (a), as 

shown in Figure 1-9 (a), and an inner feedback loop controller can be added to 

structure (b), as shown in Figure 1-9 (b). This will result in two control structures 

having exactly the same transfer function between yd (k) and y(k). 

It can be seen that after these modifications, the control structure would have an 

additional feedback loop. The inner feedback loop controller is mainly used to 

stabilize the dynamics of the plant, and the outer feedback loop controller is used to 

further reduce the tracking error. 
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Figure 1-8 Feedforward control structures 
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Figure 1-9 Modified feedforward control structures 


1.4.2 Inverse Feedforward Control 

To introduce minimum phase and non-minimum phase systems, consider a generic 

transfer function as follows: 

( )G s 
( ) 

( ) 

A s 

B s 
(1-1) 

If all the zeros of the transfer function are on the left side of the s  plane, it is called a 

minimum phase system. It is characterised by the fact that for a given amplitude 

response, the phase response can be determined with the least phase shift. 

If the transfer function (1-1) has zeros in the right side of s plane, it is called non-

minimum phase system. The phase response is then always larger than that of a 

minimum phase system, with the same amplitude response. 

To design a digital controller, an equivalent discrete time transfer function for the 

transfer function (1-1) can be written in the following form: 
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H (z 1)  
N

D(

( 

z

z 


 

1

1

)

) 
(1-2) 

Then for a minimum phase system, all the zeros of the transfer function (1-2) lie 

within the unit circle in the z plane. If one or more zeros are outside of the unit 

circle, then the system is a non-minimum phase system. 

A feedforward controller shown in Figure 1-7 can be formulated by inverting 

Equation (1-2): 

1Q(z )  
H (

1 

z 1 ) 
 

N

D(

( 

z

z 



 

1

1

)

) 
(1-3) 

Then the zeros and poles of the plant will be cancelled by the poles and zeros of the 

feedforward controller. The whole system will behave as a unit gain system without 

phase shift. 

The inversion is more challenging for a non-minimum system. It will lead to an 

unbounded r(k) , and can not be implemented in practice. Therefore much research 

effort has been devoted to find a stable inversion method for non-minimum phase 

systems. 

1.4.3 Stable Inversion of Non-minimum Phase Systems 

The basic idea for inverse control is to carry out zero-pole cancellation. For a 

minimum phase system, this can be achieved by direct inversion. However, because 

of the existence of unstable zeros in a non-minimum phase system, the inverse 

system becomes unstable. Only the stable zeros can be inverted, so the dynamics of 

original system can not be totally cancelled. However, by applying certain stable 

inversion techniques to the unstable zeros, one of the following characteristics in 

frequency domain can be obtained: 

C1 The phase shift is equal to zero for all frequencies 

C2 The gain is equal to one for all frequencies 

C3 The phase shift is equal to zero for all frequencies and the gain is equal to 

unity at a given frequency 

C4 The phase shift is equal to zero for all frequencies and the gain is roughly 

equal to unity for a given frequency range 
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C5 The frequency response is close to one for all frequencies 

A popular substitution scheme for the inverse of unstable zeros to achieve C1 

characteristics is zero phase error tracking controller (ZPETC). It was first proposed 

by Tomizuka in 1987 [47]. ZPETC has drawn much research interest in its 

achievement of a zero phase shift for all frequencies and a small amplitude error at 

low frequencies. 

A cousin controller named zero magnitude error tracking controller (ZMETC), which 

was designed for C2 characteristics, can achieve the gain of one for all frequencies. 

However, it is difficult to compensate the phase without changing the gain 

characteristics. Therefore, most researchers have used ZPETC as the initial design of 

an inverse controller for non-minimum phase systems, and then improve the 

magnitude response if the performance was not satisfactory. ZMETC was described 

and compared with ZPETC in [48]. 

The majority of the inverse controller design techniques for non-minimum phase 

systems are based on the structure of ZPETC. Research has mainly focused on three 

aspects: (a) further improvement of the gain characteristics, (b) the optimal design, 

and (c) enhancement of the robustness to parameter variations. These aspects will be 

reviewed and commented on in this section. 

(A-1) Improvement of Gain Characteristics – Adding Zeros 

ZPETC provides a zero phase error at any frequency and the gain approaches unity at 

low frequencies. At high frequencies, the gain falls for unstable zeros in the left half 

plane and rises for zeroes in the right half plane. This effect can be utilized by adding 

a filter with a zero to the right of the imaginary axis to cancel the gain error due to a 

plant zero in the left half plane. A typical application of this method can be found in 

[49], which was referred to as an ‘E filter’. 

By adding one zero, the overall gain can be made equal to one at a specified 

frequency, providing C3 characteristics. However, in general, this would result in a 

gain greater than unity at lower frequencies and would be of limited use. An 

approximation of the error term with ZPETC controller is given in [49], under the 

assumption of small normalized frequencies. Then, the location of additional zero 
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can be optimised to reduce the error to zero, resulting the gain being closer to unity at 

all frequencies within the limitation of approximation. 

(A-2) Improvement of Gain Characteristics – Preview Filter 

The concept of preview filter was first introduced in [50]. It can also be interpreted 

as adding more than one zero. Adding one zero to the feedforward controller, called 

the first order preview filter, requires one step preview of the command signal. An 

Nth order preview filter was defined in [50]. The parameters of the preview filter 

were obtained by minimizing a penalty function. To add more zeros, increasing the 

bandwidth of the inversion increases the penalty function, which can be reduced 

significantly by increasing the order N of the preview filter. 

Another preview filter was formulated in a different way in [51]. A minimal zero 

phase filter was defined as the zero phase kernel. The preview filter was formulated 

as a summation of zero phase kernels with increasing orders starting from zero. A 

penalty function with a frequency domain weighting function was given, and the 

parameters of the preview filter were derived by minimizing the penalty function.  

It was also shown in [51], that the ‘E filter’ and the preview filter in [50] were 

special cases of the proposed preview filter when there were no complex unstable 

zeros. 

In [52], a zero phase kernel was defined in a different way than that of [51]. The 

preview filter was also formulated as a summation of zero phase kernels with 

increasing orders starting from zero. The parameters of preview filter were obtained 

in the same way by minimizing a weighted penalty function. It provided similar 

results, but due to the novel design of the zero phase kernel, it is computationally 

more efficient in real-time applications. Digital preview filters provide stable 

inversion for unstable zeros to achieve C4 characteristics, which will be realized for 

motor speed and torque control in this thesis. 

(A-3) Improvement of Gain Characteristics – Series Expansion 

The series expansion method can be used as an alternative to ZPETC when better 

gain characteristics are required for non-minimum phase systems. In [53,54], the 

inversion of unstable zeros was approximated by a truncated series expansion. It was 
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shown that for a known plant transfer function with no zeros on the unit circle, a 

frequency response close to one can be obtained.  

This approximation was modified in [55], to give a  better frequency response than 

that in [53,54] in the low frequency range, but with a worse response  in the high 

frequency range. Both techniques can be categorized to achieve C5 characteristics. 

The series expansion method can also be used with ZPETC. In [56,57] , Taylor series 

expansion was applied to the overall transfer function after using ZPETC, and the 

convergence region was given. However, if the power series diverges, the gain 

became worse than that of ZPETC. In [58], Laurent series expansion was applied to 

the stable term of negative powers of z of the overall transfer function after using 

ZPETC. 

In [59], a free parameter was introduced, and the overall transfer function with 

ZPETC was expanded in a power series in a different way than in [56,57], so that the 

power series can always converge. It was shown that the method in [56,57] is a 

special case when the free parameter was equal to one. Both applications can be 

categorized to achieve C4 characteristics. 

(A-4) Improvement of Gain Characteristics – Diophantine Equation 

A Diophantine Equation is an indeterminate polynomial equation that allows the 

variables to be integers only. In [60], a Diophantine Equation was used to 

parameterize the class of all controllers satisfying the condition C1 and C3. The 

general solution of ZPETC was given in an explicit form. 

Another application of Diophantine Equation in the feedforward controller design 

can be found in [61,62], which was referred to as steering along zeros control 

(SAZC). It steered the state of the system along the unstable zero dynamics towards a 

suitable initial state, such that the corresponding free evolution of the plant generates 

an output response equal to that obtained by applying an unbounded control input. 

(B-1) Optimisation - Least Square Method 

In [60], after parameterization of ZPECT using the solution of a Diophantine 

Equation, a cost function was introduced in L2  norm. The optimal solution 

minimizing the cost function was obtained by an ordinary least square method. 
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(B-2) Optimisation - Lagrange Method 

Typical application of this method can be found in [51] and [52]. A penalty function 

was also introduced in L2  norm. Additionally, a frequency domain weighting 

function was incorporated into the penalty function. The weighting function can be 

arbitrarily defined to emphasize good performance in an interested frequency range. 

The Lagrange function was formulated using the penalty function and Lagrange 

multipliers were introduced for steady state performance. Then the optimal solution 

was derived by Lagrange method. Details of this method are given in the following 

section. 

(C) Robustness to Parameter Variation 

Feedforward controllers are designed to invert the dynamics of the plant. So 

robustness of the controller performance needs to be considered when the dynamics 

of the plant changes or when there are variations of the plant parameters. 

In [53], the robustness of the controller was examined when there was uncertainty in 

the location of one or more zeros. It was shown that the system tracking performance 

is much less robust to parameter variations for zeros near the unit circle. In [61], to 

preserve the asymptotic robustness to a step or ramp input, the feedforward controller 

was fed with the first difference of the reference input. Feedforward controllers can 

be designed to be adaptive to enhance the robustness. In [63], an adaptive ZPETC 

was implemented for slowly varying plant dynamics. The parameters of the plant 

were identified on line by using a normalized least squares algorithm, and the 

parameters of ZPETC were adjusted according to the estimated plant parameters. A 

similar adaptive inversion technique can be found in [52], where a preview filter was 

regulated on line by including a real-time estimation technique to cope with the 

external load perturbation and parameter variation. It is shown in [52], that the 

adaptive filter works better only when there is a load disturbance. When there is no 

load disturbance, the adaptive implementation of the preview filter has worse 

performance than the static one. 

To handle the case where the gain can not be made unity for the desired frequency 

spectrum, a trajectory adaptive controller was proposed in [58]. This controller 

automatically retunes itself when the frequency components of the trajectory change. 
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1.4.4 Comments on Stable Inversion Techniques 

Several stable inversion techniques for non-minimum phase system were reviewed 

above. Many of these techniques have the form of a Finite Impulse Response (FIR) 

filter. So the design of the feedforward controller can also be put into the framework 

of signal processing. Therefore, a typical adaptive signal processing technique such 

as Recursive Least Square (RLS) or a multirate signal processing technique can be 

employed in the design of feedforward controllers. As introduced in [64], the 

adaptive filter could be updated on line to be a best least squares inverse of the plant 

for a given input spectrum and for a given set of weights. Thus the adaptive filter can 

be deemed as an inverse model of the plant and can be used as a feedforward 

controller. 

However, adaptive signal processing techniques have some weakness when used in 

control. They need time to converge, and require slow changes in the dynamics of 

the system. Due to these limitations, they are not used here. Applying multirate 

signal processing techniques to feedforward control can be found in [65]. However, 

the fastest sampling rates for the input control signal and the output measured signal, 

i.e. speed and torque, are the same in the CP CADET system, therefore this 

technique is not applicable in here. 

Research on stable inversion techniques concluded three areas of improvements: the 

improvement of gain characteristics, the optimal design, and the enhancement of 

robustness to parameter variation respectively. However, it should be noted that non-

minimum phase system inversions using the techniques above are all non-causal, so 

future information of input trajectory is required to implement the controller. This is 

not a problem if the input trajectory is known prior. In our case, speed and torque 

demands of the motors were calculated from the vehicle and engine models, and 

these models can not be executed ahead of time to provide future information 

because the models require current information, like current engine torque and speed, 

to carry out the calculations. Therefore, causality is taken as the forth aspect to be 

considered when implementing feedforward inverse control in the context of this 

work. A predictor to predict future information using past values could be developed, 

but the prediction can not be perfect, and the prediction error will significantly affect 

the control performance and stability. 
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1.5 Thesis Scope 

In the next chapter, a system identification method in frequency domain is introduced. 

The characteristics of the dynamometers and their drive systems are identified 

experimentally, and also the characteristics of the loads, i.e. inertias and damping 

ratios. Signal transmission delays on the CAN bus system are determined. An overall 

transfer function is estimated for the output dynamometer speed control including the 

CAN bus delays. In Chapter 3, based on estimations, feedforward controllers are 

designed for the output dynamometer speed control and the input dynamometer 

torque control. Test results with multi frequency signals as speed and torque 

demands are presented in both time and frequency domains to verify the designed 

feedforward controllers. The robustness of the designed tracking controllers is 

discussed in Chapter 4, when the two motors are coupled and there is a change in the 

gear ratio. The coupled control method is also verified by the tests with multi 

frequency speed and torque demands. In Chapter 5, tests are carried out by using 

simulation results of the real-time whole vehicle model as speed and torque demands. 

HIL testing results are also presented. Finally, conclusions and future work are 

presented in Chapter 6. 
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Chapter 2 System Identification 

To design a precise tracking controller, a model of the dynamometer is required. 

Quite often, a linear model is preferred in the preliminary control design, which can 

employ well established linear control techniques. 

Due to the nonlinear character of mutual inductance within dynamometers, the 

overall system is nonlinear. There are two ways to obtain a linear model: the first 

way is to develop a nonlinear model and then linearize it by performing a small 

perturbation on all the machine variables of the full nonlinear model. The second 

way is to assume a linear model for the system and identify the model parameters 

experimentally. In either technique, the linear region, where the linear model can 

represent the system properly, needs to be indicated. If necessary, different linear 

models can be used for each region, to cover the whole operating range of the 

dynamometers. 

For the first method, the operating principles of induction motors and the drive 

system needs to be thoroughly understood. Any assumptions and approximations 

used in the original modelling for the nonlinear system will introduce errors into the 

final linear model, but in this way, parameters of the system can be easily modified 

and examined. By contrast, the second method is based on the experimental results. 

Only the input and output signals are considered, but not what happens in between. It 

will lead to a more accurate model if there are uncertainties in the motor and drive 

system behaviour. Because the main purpose of the project is to design a feedforward 

compensator for the existing system, but not to examine the effect of parameters on 

the system behaviour, the second method is applied here. 

In this chapter, a frequency domain identification method for a linearized model is 

introduced first. The transfer function for motor and its drive system is estimated 

using this method, and also the load of the system, in terms of inertias and damping 

ratios. To operate the system with the CAN bus, transmission delays on the CAN bus 
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were identified. Then these delays are included in the Simulink model of the closed 

loop speed control for the output dynamometer which is constructed from the 

estimated transfer functions. After that, an overall transfer function for the closed 

loop speed control for the output dynamometer is obtained by calculation and by 

estimation. Transfer functions developed from these two methods are compared with 

test results 

2.1 Identification Method 

A linearized system model identification method based on the experimental data is 

given in this section. The experimental data are obtained by operating the motors 

with a multi-frequency demand signal. An approach to generate a multi-frequency 

signal with low peak factor is explained. Statistical analysis of the estimation results 

is also provided. 

2.1.1 Least Squares Estimation 

In parametric statistics, the least-square estimator is often used to estimate the 

coefficients of a linear regression, which aims to minimize the sum of the square of 

the residuals. To apply the method, a parametric linear model for the system must be 

established. 

A general linear transfer function was considered for the system to be estimated as 

follows: 

G(s)  
Y (s) 

 
bnsn  b2s2  b1s  b0 (n  m) (2-1)

R(s) sm  am1s
m1  a2s2  a1s  a0 

where a0 , a1 ,am1 ,b0 ,b1 ,bn are the parameters to be estimated. R(s)  and Y (s) 

denote the Laplace Transform of the reference and response signals respectively. 

This can be written as follows: 
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and K is the number of frequency components, and separating the real and imaginary 

components gives 2K real equations in terms of the discrete frequency responses of 

the input R( j) and output Y ( j)  of the system, as follows: 
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A least squares estimation of the coefficient vector can then be obtained as follows 

[66]: 

Ĉ
 
(
 Z L Z L )
1 Z L FL 

T T (2-6) 


The measurement matrices Z L  and FL are functions of the frequency domain 

representation of the input and output signals, and can be obtained by a Fourier 

Transform. 
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In order to guarantee an arbitrary steady state gain ks , the following model can be 

used: 

2b sn b2 s b1s k as 

1 

 




 
 
Y (s) n 
1 

0 (2-7)
G(s) 
 
 (
n 
 ) 

1 

m
2R(s) 
a 
 
 
 
m m 
s s a2s a1s a0m 

Then Equation (2-2) becomes: 


 
am 























a1 


 
1

(2-8) 

Equations (2-3), (2-4), and (2-5) will be the same, and the least square estimator will 

also be given by Equation (2-6). 

 

The orders of estimated transfer functions, i.e. m and n, should be selected to give the 

best fit into the experimental data and also satisfy the requirements of designing the 

feedforward controllers as will be discussed later. 

2.1.2 Multi-Frequency Signal 

The success of the estimator is heavily dependent on the selection of the test signal, 

which should cover all the frequencies of interest. Using a sinusoidal signal will 

require K groups of tests, one group for each frequency, and each group will require 

a number of single tests for the purpose of averaging the response to reduce the 

effects of noise. If a multi-frequency test signal is generated by adding all the 

frequencies with arbitrary phases, it may result in unacceptable peak in the torque or 

speed signal, which is not acceptable in real applications. Decreasing the excitation 

amplitudes of all the frequencies is not a good solution, because this will result in 

weak perturbations in the frequency domain and will consequently increase the 

estimation errors [67]. 

Y (s)s Y (s)s ks R(s) Y (s) R(s)s R(s)s Y (s)s

 
 mm n
 
 a0 

bn 

 

b1 
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The method of adjusting the phase angles of a periodic signal with a given power 

spectrum to minimize its peak-to-peak amplitude was first proposed by Schroeder 

[68], and was described in [67] as follows: 

A periodic signal s t is considered to have any user specified power spectrum pk , 

k 1, 2,, K . Defining Pk is the ratio of the power at   k0 to the total power. 

i.e. 

pk 
K 

Pk  K , Pk 1 (2-9) 

 p k1 
k 

k1 

Selecting the phase of each frequency component in accordance with the Schroeder 

Phased Harmonic Sequence (SPHS) will require: 

k1 

k k 1  2Pi , (k 1, 2, , K ) (2-10) 
i1 

Then the signal can be constructed as: 

K 

s t  Ak cosk0t k  (2-11) 
k1 

where Ak  is the amplitude of the k th  harmonic and is given by: 

Ak 
pk (2-12)
2 

Uniform amplitude ratio was defined in the test, that is: 

1
Ak 1, pk  2, Pk  (2-13)

K 

An example of a uniform amplitude SPHS test signal covering a frequency range 

from 0.1 Hz to 20Hz, with 0.1 Hz fundamental frequency is shown in Figure 2-1, in 

both time and frequency domains. 

It can be seen in frequency domain that the multi frequency has the sub-harmonics 

with uniform amplitude up to 20 Hz, and there is no unacceptable peak in amplitude 

in time domain. Noise exists above 20 Hz, in both amplitude and phase. 
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Figure 2-1 SPHS multi-frequency test signal 


2.1.3 Statistical Analysis 

Once the system model is estimated, basic statistical analysis can be employed to 

measure how well the estimated model represents the test results. Two statistics are 

used here, namely Goodness of Fit (GOF), and Standard Error (SE). 
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Goodness of Fit (GOF) 

A standardized measure of Goodness of Fit is provided to indicate how well the 

estimation fits the observation. To give the definition of GOF, first of all, the residual 

for a specific predictor value is defined as the difference between the response value 

y and the predicted response value ŷ : 

e  y  ŷ (2-14) 

Sum of Squares Error measures the total deviation of the response values from the fit 

to the response values. It is also called the summed square of residuals and is usually 

labelled as SSE: 

n 

SSE  e2  (2-15) 
i1 

A value closer to zero indicates a better fit. 

The goodness of fit measure, R2 , quantifies how successful the fit is in explaining 

the variation of the data. It is defined as the ratio of the sum of squares of the 

regression (SSR) and the total sum of squares (SST). SSR is defined as: 

n 

SSR   ŷi  y2 (2-16) 
i1 

SST is also called the sum of squares about the mean, and is defined as: 

n 

SST  yi  y2  (2-17) 
i1 

where SST  SSR  SSE . Given these definitions, R2  is expressed as: 

R2  
SSR 

1 
SSE 

(2-18)
SST SST 

R2  can take any value between 0 and 1, with a value closer to 1 indicating a better fit. 

If the number of fitted coefficients in the model is increased, R2  might increase 

although the fit may not improve. To avoid this situation, the degree of freedom 

adjusted R2  statistic is provided. 
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Degree of Freedom Adjusted R2  uses the R2 statistic defined in Equation (2-18), 

and adjusts it based on the residual degrees of freedom. The residual degrees of 

freedom is defined as the number of data points p minus the number of estimated 

coefficients q: 

v  p  q (2-19) 

The adjusted R2 statistic is generally the best indicator of the fit quality when 

additional coefficients are added to the model. 

adjusted R2  1
SSE 


p 1 

(2-20)
SST v 

The adjusted R2 statistic can take any value less than or equal to 1, with a value 

closer to 1 indicating a better fit. 

Standard Error (SE) 

In order to determine how reliable the individual parameter estimates are, an 

estimation of the variability of the estimators is needed. Standard Error (SE) can be 

obtained by determining the covariance matrix of ̂  as: 

1   ˆ 2 WT W (2-21)cov ˆ  

where ̂ 2 is the variance of the error term in the simple linear regression model. The 

only assumption needed for Equation (2-1) to hold is that the errors are uncorrelated 

and all have the same variance. 

The estimate of the error variance (or Mean Square Residual) is: 

n 

i i 

̂ 2 
 
i1 

y  ŷ 2 


SSE 

(2-22)
v 1 v 1 

The degree of freedom associated with the mean squared residual is p  q 1. As a 

result, the Standard Error is defined as: 

(2-23) 

From SE, the significance of estimated coefficients can be determined. The estimated 

coefficients can be divided by the corresponding standard error to get a T value. If 

  ̂covdiagSE 
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the absolute T value is greater than the value obtained from standard t distribution 

tables for a specified percent confidence interval, then the coefficient is designated as 

significant, i.e. nonzero. 

For example, the 95 percent confidence interval values can be calculated as: 

confidence interval  estimated coefficient  (t0.95 )SE (2-24) 

where t0.95 is the value obtained from the t distribution table for 95 percent 

confidence. A small confidence interval indicates a reliable estimate for the 

corresponding parameters. If the interval includes zero, then the parameter can be 

classified as in significant and be ignored in the model. 

2.2 Identification Results 

In this section, linear system models are identified using experimental data. The 

linear region, where the identified model can match the real system is also 

determined. To get experimental results, two motors were operated separately with 

closed loop speed control with the PID controller provided by the CP CADET 

system. The block diagram for a speed control system is shown in Figure 2-2. 

PID 
Controller 

PID
Controller

Motor & Drive 
System 

Load
+ 

-

Speed SP 
Speed 
Response Percentage Torque 

Figure 2-2 Closed loop speed control block diagram 

The speed setpoint signal was constructed by using a DC plus SPHS signal covering 

a frequency range from 0.1Hz to 20 Hz. The percentage, torque and speed signals 

were recorded and used in identification. If the two motors were coupled, these 

signals would have to be measured and recorded separately for input and output 

dynamometers. As shown in Figure 2-2, the model for motor and drive system can be 

identified from the recorded torque and percentage signals. The model for load, in 

terms of inertia and damping can be identified from the recorded speed and torque 
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signals. The model for PID controller can easily be obtained as the parameters are 

known. 

2.2.1 Estimation of Inertia and Damping 

When there is no external disturbance, the inertia and damping ratio can be 

calculated from the measured torque and speed signals, e.g. by ramping the motor to 

a particular speed to calculate the inertia and by running the motor at a constant 

speed to calculate the damping ratio. This could also be achieved by exciting the 

motor with SPHS signal and carrying out estimation between measured torque and 

speed signals. The estimated transfer function will be forced to be first order, with 

inertia and damping ratio as denominator parameters. There are advantages to use 

SPHS signal, as the inertia and damping ratio can be estimated at the same time with 

a single test and the estimation process is optimised in a least-squares sense. 

During the test, torque from each dynamometer was measured using HBM T10F 

torque flanges, while speed of each dynamometer was measured using 1024 

pulse/rev encoder. Both signals were recorded at 160 Hz sampling frequency. As 

shown in Figure 2-3, the torque flanges were located on the shaft close to the 

dynamometers, so the measured torque was the torque acting on the shaft, rather than 

the total torque generated by the dynamometers. The difference between the 

generated torque and measured torque is the torque used to drive the motor rotor 

inertia and the damping inside the motor. This is the case for both input and output 

dynamometers. The difference between the two measured torques is the torque used 

to drive the input and output shafts and gear box inertias, and also the damping 

between gears and the damping at bearings inside the gear box. 

Input Output 

Dynamometer Dynamometer


Gear BoxGear Box

Input Shaft Output Shaft 

Torque 
Transducer 

Torque 
Transducer 

Input Dyno Rotor Output Dyno Rotor 

Figure 2-3 Location of torque transducers 
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As shown in Figure 2-3, inertias and damping ratios can be separated into four parts: 

input dynamometer rotor, input shaft, output shaft and output dynamometer rotor, 

among which, the gear box inertia and damping ratio was lumped into the input and 

output shafts. A number of tests were conducted to estimate the inertias and damping 

ratios for each part. 

The output dynamometer was tested under closed loop speed control with input 

dynamometer switched off. The speed demand consisted of a DC and an SPHS 

signal with the frequency between 0.1 and 20 Hz. The constant speed component was 

set to 1000 rev/min, and the amplitude of SPHS signal was scaled to be 50 rev/min. 

Tests were carried out with a neutral gear and a 1:1 gear ratio. When testing with a 

neutral gear, the output dynamometer torque transducer measures the torque driving 

the output shaft. Therefore, the inertia and damping ratio of output shaft can be 

estimated using the recorded torque and speed signals of the output dynamometer. 

The estimation result is shown in Figure 2-4. 
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Figure 2-4 Experimental and estimated transfer functions between output 

dynamometer torque and speed with a neutral gear driven by output 

dynamometer 

The estimated transfer function was: 
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11.91
LO _ Shaft (s)  (2-25)

s  0.2143 

The inertia and damping ratio of the output shaft was calculated to be 0.084 kgm2 

and 0.018 Nm/rad/s. 

The test result became noisy beyond 15 Hz, indicating the operational bandwidth of 

the motor and drive system, which means that the motor can only follow the demand 

signal up to 15 Hz. Hence the estimation was carried out using the experimental data 

up to 15 Hz. Because the torque was measured by a HBM T10F torque flange, which 

has an accuracy of +/-0.1% of full scale, i.e. +/-1 Nm, the error may be significant 

when the measurement was taken around 0 Nm. Since the SPHS signal was 

generated with a flat spectrum for all its sub harmonics, the acceleration would be 

smaller for lower frequency signals. Therefore the measured torque would be 

relatively small for low frequency signal and have a relatively large error, which was 

the reason for the fluctuation observed at low frequency range. These frequency 

points were carefully used, and some of them were not taken into account when 

carrying out estimation. 

When testing with a 1:1 gear ratio, the input dynamometer torque transducer 

measures the torque driving the input dynamometer rotor. Therefore, the inertia and 

damping ratio of the input dynamometer can be estimated using the recorded torque 

and speed signal of the input dynamometer. The estimation result is shown in Figure 

2-5. 

The estimated transfer function was: 

2.275
LI _ Dyno (s)  (2-26)

s  0.0983 

The inertia and damping ratio of the input dynamometer was calculated to be 0.4396 

kgm2  and 0.0432 Nm/rad/s. 

More noise in the data was observed than the previous test when the two motors were 

coupled with a 1:1 gear ratio, especially in the high frequency range. Oscillation in 

the low frequency range is thought to be mainly due to the measurement error of the 

torque transducer. In the high frequency range, the reason may be explained by the 

existence of backlash between the gears, which would result in nonlinearities. 
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Moreover, there was a rubber toroidal element connecting input dynamometer and 

input shaft to allow more compliance on the drive shaft for safety reasons. This may 

also influence the measured torque. Again, not all the frequency points were used in 

the estimation, especially for extremely low and high frequency points. 
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-1 0 1
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Frequency (Hz) 

Figure 2-5 Experimental and estimated transfer functions between input 

dynamometer torque and speed with a 1:1 gear ratio driven by output 

dynamometer 

Similar tests were carried out on the input dynamometer using closed loop speed 

control with the same speed demand as before. The output dynamometer was 

switched off in this case. Tests were also carried out with a neutral gear and a 1:1 

gear ratio. When testing with a neutral gear, the input dynamometer torque 

transducer measures the torque driving the input shaft. Therefore, the inertia and 

damping ratio of input shaft can be estimated using the recorded torque and speed 

signal of the input dynamometer. The estimation result is shown in Figure 2-6. 

The estimated transfer function was: 

24.65
LI _ Shaft (s)  (2-27)

s  0.8892 
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The inertia and damping ratio of the input shaft was calculated to be 0.0406 kgm2 

and 0.0361 Nm/rad/s. 
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Figure 2-6 Experimental and estimated transfer functions between input 

dynamometer torque and speed with a neutral gear driven by input 

dynamometer 

When testing with a 1:1 gear ratio, the output dynamometer torque transducer 

measures the torque driving the output dynamometer. Therefore, the inertia and 

damping ratio of the output dynamometer can be estimated using the recorded torque 

and speed signal of the output dynamometer. The estimation result is shown in 

Figure 2-7. 

The estimated transfer function was: 

0.9581
LO _ Dyno (s)  (2-28)

s  0.0958 

The inertia and damping ratio of the output dynamometer was calculated to be 

1.0437 kgm2  and 0.1 Nm/rad/s. 

The inertias and damping ratios of input and output dynamometers, and input and 

output shafts were estimated by the previous 4 groups of test. The estimation results 

are concluded in Table 2-1. 
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Figure 2-7 Experimental and estimated transfer functions between output 

dynamometer torque and speed with a 1:1 gear ratio driven by input 

dynamometer 

Table 2-1 Estimation of system inertias and damping ratios 

I/I/PP DDyynono I/PI/P ShaShafftt O/P ShO/P Shafaftt O/P DO/P Dyynono

IInernertitiaa

EEsstitimmaatitionon 00..44396396 00..04040606 0.0.008844 11..04304377

MaMannufaufactctururee 0.40.433 N/N/AA N/AN/A 0.0.99

TotTotaall 00..56564242

EEsstitimmaatitionon 00..00432432 00..03036161 0.0.001188 0.0.11

DaDampmpinging
TotTotaall 00..09097373

Furthermore, when testing on the output dynamometer with a 1:1 gear ratio, the 

output dynamometer torque transducer was measuring the torque driving the input 

and output shafts and input dynamometer. The total inertia and damping ratio of 

these three parts can be estimated using the recorded torque and speed signals of 

output dynamometer to verify the previous results. The estimation results for total 

inertia and damping ratio are shown in Figure 2-8. 

39 



-60 

-40 

-20 

0 

20 

A
m

pl
itu

de
 (

dB
) 

Test 

Estimation 

-1 0 1
10 10 10

10
-1 

10
0 

10
1 

-120 

-60 

0 

60 

120 

180 

P
ha

se
 (

D
eg

) 

Frequency (Hz) 

Figure 2-8 Experimental and estimated transfer functions between output 

dynamometer torque and speed with a 1:1 gear ratio driven by output 

dynamometer 

Due to the backlash between the gears, the test result showed non-linear relationship 

between measured torque and speed at high frequencies. The estimation was carried 

out with a frequency range from 1 Hz to 3 Hz. It may represent the real system up to 

6 Hz without obvious deviation from the test result. The estimated transfer function 

was: 

1.711
LI _ D&Shs (s)  (2-29)

s  0.2076 

The inertia and damping ratio of the input dynamometer and the whole shaft were 

calculated to be 0.5845 kgm2 and 0.1213 Nm/rad/s. The values calculated from 

previous estimation were 0.5642 kgm2 and 0.0973 Nm/rad/s. The values estimated 

for inertias are closer than the values estimated for damping ratios. From the 

estimation results, the values of the damping ratios were very small compared to the 

inertias, which will cause the cutoff frequency to be very low, e.g. 0.033 Hz in 

Equation (2-29), and the lack of data to estimate the damping ratios. Moreover, 

because the estimation of damping ratios relies on low frequency points, which are 

affected by measurement errors, the damping estimation results were not as accurate 
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as the inertias. Hence, the dynamics of the system load are mainly determined by the 

inertias of the system, especially in middle and high frequency range. Since the 

damping ratios are very small, the damping effect can actually be neglected. 

Although the experimental results shown in Figures 2-5 and 2-8 were obtained from 

the same test on the output dynamometer speed control with a 1:1 gear ratio, the 

backlash effects are major in the latter case. The result shown in Figure 2-5 was 

obtained from the input dynamometer torque and speed signals, while the result 

shown in Figure 2-8 was obtained from the output dynamometer torque and speed 

signals. The load on the input dynamometer is the input dynamometer rotor, whereas 

the load on the output dynamometer is the combination of the input and output shafts, 

gear box, and the input dynamometer rotor. Therefore, the nonlinearity due to the 

backlash in the gear box has more effects on the results in Figure 2-8. The effect is 

significant above 10 Hz and would affect the performance of the feedforward 

controller as will be discussed later. 

2.2.2 Estimation of Motor and Drive System 

The next component to be estimated in the block diagram shown in Figure 2-2 is the 

motor and drive system. The motor and drive system takes a digital percentage 

control signal as input, converts it into analogue voltage signal in the drive system, 

and generates equivalent motor torque. There will be some dynamics between the 

percentage control signal and motor torque, which can be identified from the 

percentage and torque signals recorded in the test. 

As mentioned above, the measured torque is the combined torque on the shaft. It is 

different from the torque generated by the motor. For a single motor without any 

external torque, the measured torque is the torque which is used to drive the 

connected shaft. When the inertia or damping of the shaft changes, the measured 

torque will change, even with the same control signal. Figure 2-9 shows the 

frequency responses between measured torque and percentage control signal of 

output dynamometer when running the motor with and without the output shaft 

attached. 
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Figure 2-9 Frequency responses between measured torque and control signal of 

output dynamometer with and without output shaft attached 

The low frequency range was still affected by torque measurement errors. Since the 

cutoff frequency can be very low, the damping effect can actually be neglected for 

middle and high frequency ranges. If only inertia effects were considered, then the 

measured torque would be proportional to the inertia attached to output dynamometer, 

as the motor inertia was constant. The relationship can be expressed as: 

Tm 
JSh (2-30)

Tg JSh  JM 

where Tg is the generated motor torque, Tm is the measured motor torque, J M  and 

JSh are the inertias of motor and attached shaft. Equation (2-30) implies that 

measured torque and generated torque are in phase, with a constant amplitude ratio. 

If the dynamics between the generated torque and the percentage control signal will 

not vary with the inertia attached to the motor, the measured torques will be in phase 

with a constant amplitude ratio, as observed in Figure 2-9. Therefore, to identify a 

relationship between the torque and percentage control signal, using generated torque 

will be a better solution. Moreover, when the two motors are coupled, torque 

generated by one motor will act as a disturbance torque to the other motor, which 
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will also have effects on the measured motor torque, but not on the generated motor 

torque. 

Therefore, the model for motor and drive system was identified through a transfer 

function between generated motor toque and percentage control signal, rather than 

the measured torque. The generated motor torque can be calculated from the 

measured motor torque and motor speed as follows: 

Tg  Tm  J M M  BM M (2-31) 

where Tg is the generated motor torque, Tm is the measured motor torque, J M  and 

BM are the inertia and damping ratio of the motor, and M  and M are the speed 

and acceleration of the motor. J M  and BM were identified in previous section. Tm

and M  were recorded. M was calculated from M , by fitting a second order 

polynomial to three speed samples and calculating derivatives at each sample point. 

Since every speed sample was fitted a curve three times at the first, middle and last 

point, the acceleration was also calculated three times for each sampling instance. 

M used in Equation (2-31) was an average of these three values. The measured 

relationship between generated motor torque and percentage control signal for output 

dynamometer is shown in Figure 2-10, where there is no significant difference 

between the results with and without the output shaft attached. 

The test result shown in Figure 2-10 further established that the relationship between 

generated motor torque and percentage control signal will not vary with the load 

inertia. Therefore, the dynamics of the motor and drive system is better to be 

interpreted using the generated motor torque instead of the measured motor torque. 

Referring back to the control diagram in Figure 2-2, the torque would be the torque 

generated by the motor and the load would be the external load plus the motor rotor 

inertia. 
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Figure 2-10 Frequency responses between generated torque and control signal 

of output dynamometer with and without output shaft attached 

The test results become noisy beyond 15 Hz, as observed from the previous test 

results, which indicates the operation bandwidth of the motor. The smooth response 

indicates linear characteristics of the motor. Since the frequency range of up to 15 Hz 

was sufficient for testing CVTs, the estimation of motor and drive system model was 

carried out within the smooth range between 1 Hz and 15 Hz using averaged values 

from 5 tests. The estimated transfer function between generated torque and 

percentage control signals for output dynamometer is as follows: 

1.243s3 121.7s 2  2.468e4s  6.592e5
GO _ Dyno (s) 

3 2 
(2-32)

s  97.29s  5660s  7.184e4 

The frequency response of the estimated transfer function is shown in Figure 2-11, 

compared with the averaged test results. 
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Figure 2-11 Experimental and estimated transfer functions between generated 

torque and control signal of output dynamometer 

A similar identification procedure was carried out for the input dynamometer, also 

within the frequency range of 1 Hz to 15 Hz. The estimated transfer function 

between generated motor torque and percentage control signals was found to be: 

0.7651s3  66.06s2 1.478e4s  5.141e5
GI _ Dyno (s) 

3 2 
(2-33)

s  98.34s  6134s  9.429e4 

The frequency responses of the estimated transfer function and averaged test results 

are shown in Figure 2-12. 

The transfer functions have been estimated for the motor and drive system for both 

input and output dynamometers at a certain motor speed. The linear regions i.e. 

different motor torques and speeds where the estimated transfer functions can 

represent the motor behaviour need to be further established. 
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Figure 2-12 Experimental and estimated transfer functions between generated 

torque and control signal of input dynamometer 

Further tests were carried out with different levels of speed demands, each demand 

consisting of a DC speed signal and an SPHS speed signal with an amplitude scaled 

to 5% of the DC speed. For the output dynamometer, the steady state speed was 

increased from 250 rev/min to 1500 rev/min, by 250 rev/min intervals. The torque 

generated by the motor was increased relatively due to the larger acceleration of the 

motor. The frequency response between generated torque and percentage control was 

obtained by Fourier Transform as in previous tests, and are shown in Figure 2-13 

with three different speeds, where the frequency responses were very similar to each 

other. It can be concluded that the characteristics of output dynamometer and its 

drive system is linear. The generated motor torque depended only on the percentage 

control signal, but not on the motor torque or speed. The behaviour may be due to the 

control strategy that exists in the drive system. 

The dynamic response of the motor and drive system was also examined for the input 

dynamometer in a similar way. Considering its application of emulating an IC engine, 

the steady state speed demand for the input dynamometer was increased from 500 

rev/min to 4000 rev/min in 500 rev/min interval, plus an SPHS speed signal with 
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scaled amplitude of 5% of the steady state speed. The results are shown in Figure 

2-14 with three different steady state speeds. 
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Figure 2-13 Frequency responses between generated torque and control signal 

of output dynamometer with different speeds 
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Figure 2-14 Frequency responses between generated torque and control signal 

of input dynamometer with different speeds 
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Similar conclusions can be drawn that the generated motor torque of the input 

dynamometer depends only on the drive signal, but not on motor torque or motor 

speed. Hence, the motor and drive system was linear for both the input dynamometer 

and the output dynamometers within the frequency range of up to 15 Hz. Therefore, 

the transfer functions (2-32) and (2-33) for output and input dynamometers can also 

be used for other motor torques and speeds. 

It can also be seen from Figures 2-13 and 2-14 that there were fewer fluctuations in 

the low frequency range at higher speed as the increasing measured torque levels 

minimized the effects of measurement error. 

2.3 Transmission Delay in CAN Bus 

Previous identification tests were carried out with closed loop speed control, as 

shown in Figure 2-2, with a PID controller in the CP CADET system. When the PID 

controller was implemented in dSPACE, the two systems were communicating with 

each other through a CAN bus system. In other words, the CAN bus system was used 

to send the percentage control signal calculated from PID controller in dSPACE to 

CP CADET, and also the torque and speed measured by CP CADET back to the PID 

controller in dSPACE. There will be a time delay associated with transmitting and 

receiving signals between dSPACE and CP CADET systems. These delays need to 

be identified as they may affect the stability of the overall system. 

The signals in the system were recorded at multiple locations. For example, the 

percentage control signal was recorded at five points on the signal transmission path. 

Figure 2-15 shows the locations where the control signal was recorded. Firstly, it was 

calculated from Simulink model of the PID controller (1). This signal was recorded 

by dSPACE control desk under the model root. Then it was sent to CP CADET 

through CAN bus as a transmitted (TX) message of the setpoint (2), which was 

recorded by dSPACE control desk under CAN bus configuration. After receiving this 

message by CP CADET, it was recorded in CP as a loopback signal (3) to drive the 

dynamometer. Although it was not used by the Simulink real-time model anymore, 

this signal was still sent back to dSPACE as a received (RX) message of 

loopback_CAN (4), which was recorded by dSPACE control desk under CAN bus 
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configuration. After receiving this signal by the real-time model, this signal was 

recorded again as loopback_Sim (5) by dSPACE control desk under the model root. 

Control Signal Facilities Locations 
TX Message RX Message 

Sim 

CAN 

CP 

Percentage control 
signal 

Loopback_CP 

Setpoint Loopback_CAN 

Loopback_Sim 
dSPACE 

dSPACE 

CADET 

(1) 

(2) 

(3) 

(4) 

(5) 

Figure 2-15 Recording locations for the percentage control signal 

By comparing the same signal recorded from different locations in the system, the 

delay in transmitting and receiving messages can be identified. Figure 2-16 shows 

the control signal recorded by dSPACE control desk in Simulink model and CAN 

bus configuration, which were synchronized by dSPACE. The control signal 

recorded by CP CADET is not shown, because it was not synchronized with 

dSPACE. 
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Figure 2-16 Percentage control signal recorded in different locations 

Together with Figure 2-15, it can be observed that there are two samples delay from 

percentage signal (1) to setpoint signal (2), and no delay from loopback_CAN (4) to 

loopback_Sim (5). From setpoint (2) to loopback_CAN (4), there was one sample 
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delay. This one sample delay could exist either between setpoint (2) and 

loopback_CP (3), or between loopback_CP (3) and loopback_CAN (4). To examine 

this, different sampling frequencies were used for the CAN bus and CP control 

system. It was observed that the length of this delay varied with the CP control 

frequency, but not with the CAN bus sampling frequency. It was always one sample 

delay of CP control rate, which meant the delay existed between loopback_CP (3) 

and loopback_CAN (4). Different sampling frequencies were also applied to the 

Simulink model and the CAN bus. It was observed that the two samples delay 

between percentage (1) and setpoint (2) was depended on the Simulink model 

sampling rate. The delays on signal transmitting path in the system were concluded 

as in Figure 2-17. 

Facilities Locations Data 

Sim 

CAN 

CP 

dSPACE 

dSPACE 

CADET 

2 model sampling delay 

1 CP sampling delay No delay 

No delay 

TX Message RX Message 

Figure 2-17 Delays on signal transmitting path 

Normally, the sampling rate on the CAN bus system is slower than the simulation 

sampling rate by an integer divider. Delay in the TX message was dependent on the 

simulation sampling rate, while delay in the RX message was dependent on the 

control frequency in the CP CADET system. In the tests with the CAN bus, the 

percentage control signal calculated from the real-time model was sent to CP 

CADET as a TX message to drive the dynamometer, the delay can be reduced by 

increasing sampling rate in Simulink model to be as small as required. Measured 

torque and speed signals were sent back to the real-time Simulink model as RX 

message to calculate next control signal sample. The delay was restricted to be at 

least 6.25 ms, as the fastest control rate available on the CP CADET system is 160 

Hz. 
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2.4 Model for Speed Control with CAN Bus Delay 

When the CAN bus is implemented in the system to forward messages, the effects of 

the delays identified in previous section have to be considered. This was first 

examined for the output dynamometer speed control system. A Simulink model was 

constructed based on the identified models for the system components, and the 

effects of CAN bus delay on the system was investigated in simulation in order to 

retune the PID controller parameters. Then a transfer function for the whole closed 

loop system was derived to design the feedforward controller in the next chapter. 

Alternatively, the transfer function can be estimated directly from the test results 

between the speed demand signal and the measured speed signal. Both methods are 

described here and compared with test results. 

2.4.1 Simulink Model 

Based on the speed control diagram shown in Figure 2-2, a CAN bus system can be 

incorporated into the model. The PID controller is placed in dSPACE instead of in 

the CP CADET system. The output of PID controller, the percentage control signal, 

is sent to CP console through the CAN bus. The measured speed is then sent back to 

dSPACE through CAN bus. The block diagram is shown in Figure 2-18. 

PID 
Controller 

PID
Controller

Motor & Drive 
System 

Load
+ 

-

Speed SP 
Speed 
Response 

dSPACE 

2z 

Percentage 
Torque 

1z 

Delayed 
Response 

CAN 

Figure 2-18 Speed control block diagram with CAN bus delay 

After including the delays in the model, if the same PID parameters as in the CP 

CADET system are used, the simulation results in Figure 2-19 show oscillations in 

the speed response. The speed demand consisted of a DC speed of 1000 rev/min plus 

an SPHS signal with frequency up to 15 Hz and an amplitude of 40 rev/min. 
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Figure 2-19 Simulated speed response with CAN bus and original PID 

parameters 

The performance can be improved by retuning the PID parameters. This was first 

performed in simulation. Improved PID parameters were found to be 0.13 for 

proportional gain, 0.25 for integral gain, and 0 for derivative gain, which yields a 

new transfer function for the PID controller as follows: 

0.13s  0.25
GPID (s)   (2-34)

s 

Simulations were run with these new PID parameters, with the same speed demand 

as before. The test results are shown in Figure 2-20. 
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Figure 2-20 Simulated speed response with CAN bus and new PID parameters 
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Actual tests were carried out with the same speed demand to validate the Simulink 

model. The simulation results and test results are compared in Figure 2-21. 

Magnified views are shown in Figure 2-22. 
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Figure 2-21 Comparison of simulation and test results of output dynamometer 

speed control with new PID parameters 

1050 1010 1002 

1001 
1025 1005 

S
pe

ed
 (

re
v/

m
in

) 

1000 

1000 1000 

999 

975 995 
998 

950 990 997 
1	 1.5 2 5 5.2 5.4 9 9.1 9.2 

Time (s) 

Figure 2-22 Magnified view of Figure 2-21 

It can be seen that the simulation results offered a good fit to the test results, but 

there are some fluctuations for high frequency components, due to the small 

amplitude, hence high noise to signal ratio, of the signal. Comparison was also 

performed in the frequency domain in Figure 2-23. The frequency response was 

calculated by taking the Fourier Transform of the speed demand and speed response 

in both simulation and test results. 
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Figure 2-23 Frequency response of Figure 2-21 

It can be seen that the simulated frequency response is close to the test results at most 

frequencies. Although they were slightly different in the range between 2 Hz and 4 

Hz, it is acceptable for the application of using the model to examine the stability of 

the system and also to tune the PID parameters. 

To design the feedforward controller, a transfer function for the whole speed control 

system between the speed demand and speed response is required. The transfer 

functions for load, motor and drive system were estimated in Section 2.2, and the 

PID parameters were also given in the previous section. Hence, the overall transfer 

function for speed control can be calculated. 

The discrete time counterpart for motor and load with zero order hold on the input 

can be calculated as: 

H (z 1 )  
0.04759z 1  0.1259z 2  0.167z 3  0.08104z 4 

(2-35)M &L 1 2 3 41 3.373z  4.302z  2.473z  0.5435z 

and the discrete time counterpart for PID controller with zero order hold on the input 

can be calculated as: 

1 0.13  0.1284z 1 

H PID (z )  
1 z 1 

(2-36) 
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According to the control diagram shown in Figure 2-18, including the delays in the 

system, the closed loop discrete time transfer function between the speed demand 

and speed response can be obtained as follows: 

0.006186z 4  0.02248z 5  0.03788z 6 

H Close (z 1 ) 
 0.03199z 7  0.01041z 8 

(2-37)
1 4.373z 1  7.675z 2  6.775z 3  3.023z 4 

 0.5659z 5  0.03788z 6  0.03199z 7  0.01041z 8 

The frequency response of the calculated closed loop transfer function is shown in 

Figure 2-24, compared with the experimental transfer function between derived and 

demanded speed signals. 
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Figure 2-24 Experimental and calculated transfer function of output 

dynamometer speed control 

The overall transfer function in Equation (2-37) was calculated from separate transfer 

functions, which were estimated within the frequency range of 1 Hz to 15 Hz, and 

therefore it represents the system within this frequency range. 
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2.4.2 Estimated Transfer Function 

The overall transfer function could also be estimated directly by taking speed 

demand as input signal and speed response as output signal. The estimation was 

carried out within the frequency range of 1 Hz and 15 Hz. Different orders were 

specified for numerator and denominator of the estimated transfer function. The 

statistical analysis results showed that a third order for numerator and fourth order 

for denominator provided the best fit. The estimation result is as follows: 

1.096s3  47.86s 2  2043s 1.336e6
GClose (s)   (2-38)

s 4  77.91s3  5598s 2  9.494e4s 1.336e6 

The equivalent discrete time transfer function with 160 Hz sampling frequency and 

zero order hold on the input is: 

(z 1 )  
0.004442z 1  0.0142z 2  0.01713z 3  0.005788z 4 

(2-39)H Close 1 3.434z 1  4.503z 2  2.682z 3  0.6145z 4 

The frequency response of estimated transfer function is shown in Figure 2-25, and 

compared with test results. 
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Figure 2-25 Experimental and estimated transfer functions of output 

dynamometer speed control 
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The estimated transfer function offered a better fit than the calculated transfer 

function in the middle frequency range, but a slightly worse fit in the low frequency 

range. Both calculated and estimated transfer functions can be considered as a good 

fit to the test results. 

Frequency responses of the calculated transfer function and estimated transfer 

function are compared in Figure 2-26. The frequency range to be shown was 

extended to 50 Hz. 
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Figure 2-26 Calculated and estimated transfer functions of output dynamometer 

speed control 

It can be seen that the calculated and estimated transfer functions possess different 

characteristics, but within the frequency range, where the estimation was carried out, 

they produced similar results. 

Comparing the calculated transfer function in Equation (2-37) and estimated transfer 

function in Equation (2-39), the orders of the numerator and denominator are 

different. In Equation (2-37) the relative order, i.e. order of the denominator minus 

numerator, is four, while in Equation (2-39) the relative order is only one. When the 

overall transfer function is estimated, the relative order is specified to achieve a good 

fit for only the interested frequency range, rather than the whole frequency range. 

Moreover, in Equation (2-38), all the poles and zeros have break efficiencies within 
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20 Hz. They are considered to be significant to the system within the interested 

frequency range so that the estimated transfer function can not be simplified anymore. 

This characteristic is very useful and will be utilized in the design of a feedforward 

controller. It is beneficial to have a smaller relative order when inverting the transfer 

function, because smaller relative order means that less future sampling values are 

needed to implement the controller. This will be discussed in detail in the next 

chapter. 
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Chapter  3  

Feedforward Tracking Controller 

In the previous chapter, a methodology was presented to identify the dynamics of a 

linearized system in the desired frequency range, leading to a continuous time 

transfer function, and its counterpart in discrete time was obtained by placing a zero 

order hold on the input signal. The discrete time transfer function is now used to 

create an inverse system to be used as a feedforward controller. 

The concepts of minimum and non-minimum phase system are introduced first. 

Direct inverse for minimum phase systems is stable and straightforward. For non-

minimum phase systems, the technique of developing a digital preview filter (DPF) 

is employed here to approximate the inverse of unstable zeros using Lagrange 

method as part of the feedforward controller. To apply DPFs, future information of 

the input trajectory was required. Normally, the future values can be predicted in 

some way, but the prediction can never be perfect, and will certainly affect the 

control performance. In this chapter, DPFs will be designed for the output 

dynamometer speed control and input dynamometer torque control in a novel way, so 

that no future information of input trajectories is required, which allows a non-causal 

controller to be causal. 

3.1 Digital Preview Filter 

On an approximate inversion of a non-minimum system, the zero phase error 

tracking control (ZPETC) has drawn interest among researchers, because zero phase 

shift is obtain at all frequencies, with a small gain error at low frequencies. Based on 

ZPETC, a precision tracking control scheme was proposed in [51] to further improve 

gain characteristics at higher frequencies. The optimal design was also obtained by 

Lagrange method. 
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One of the merits of this scheme was that a weighting function can be incorporated 

into the penalty function. This will ensure the gain error is better compensated in the 

desired frequency range. The parameterization of the digital preview filter was 

presented in an explicit form. Given a discrete time transfer function, the filter could 

easily be parameterized to minimize the penalty function with a fixed number of 

preview steps. The preview steps can be chosen arbitrarily. Generally, a greater 

number of available preview steps renders better tracking performance.  

3.1.1 Design of DPF 

The feedforward control scheme as shown in Figure 1-7, Q(z1) is the feedforward 

controller transfer function, and H (z1) is the original system transfer function, 

which can be either closed or open-loop. When the system is a non-minimum phase 

system, the transfer function can normally be separated into two parts: 

H (z1)  Ha (z1)Hu (z1) (3-1) 

in which H u (z 1 )  includes all the unstable zeros. 

P 

H u (z 1 )  (1 zi z 1 ) (3-2) 
i1 

H a (z 1 ) can be directly inverted to be H a 
1 (z 1 ) as part of feedforward controller. A 

digital preview filter DPF (z 1 )  can be designed to approximate H u
1 (z 1 )  as another 

part of feedforward controller. Hence, the feedforward controller can be expressed as: 

Q(z 1 )  H a
1 (z 1 )H u 

1 (z 1 )  H a 
1 (z 1 )DPF (z 1 ) (3-3) 

The ratio R(z 1 )  is defined as follows to measure the tracking performance: 

P 

R(z 1 )  DPF(z 1 ) (1 zi z 1 ) (3-4) 
i1 

To achieve perfect tracking, the ratio function R(z 1 ) should have a unity gain and 

zero phase shift within the desired frequency range. To achieve this objective, the 

digital preview filter DPF(z 1 )  is divided into two parts as follows: 
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DPF (z 1 )  DPFA (z 1 )DPF (z 1 )	 (3-5) 

where DPF (z 1 )  is to make the digital preview filter have the same phase as that of 

H u 
1 (z 1 ) , and DPFA (z 1 ) is to make the gain of the digital preview filter to be as 

close to that of H u
1 (z 1 )  as possible. 

The design of DPF (z 1 )  was initially presented in [47] as ZPETC controller. 

P (1 z z)
DPF (z 1 )  i	 (3-6)

(1 z )(1 z )i1 i i 

where zi is the complex conjugate of the unstable zero zi . The denominator in 

Equation (3-6) ensures a unity DC gain. Substituting Equations (3-5) and (3-6) into 

Equation (3-4), the ratio function R(z 1 )  becomes: 

P	 1 

R(z 1 )  DPFA (z 1 ) 
(1 zi z)(1 zi z ) 

(3-7) 
i1 (1 zi )(1 zi ) 

If, among P unstable zeros, there are P1 real unstable zeros, and P2 pairs of the 

complex unstable zeros, Equation (3-7) can be rewritten as: 

1 1 0 1 1 0 1 1 2 1 2R(z )  DPF (z ) 
P1   (z  z ) 

P2   (z  z )  (z  z ) A	  k k  j j j 
k 1 j1 

P 

 DPFA (z 1 ) i (z  z 1 ) i 

i0 

(3-8) 

where 

1 z 2  z
k 

0  k k 
1  k 

(1 zk )
2 (1  zk )

2 

 j 
0  

1 2(2cos2  j 1)rj 
2

2 

 
2 

rj 
4 

 1 
j 

 2rj cos j (1 r 
2 

j 
2 )

2 
 j 

2  
rj 

2 

2 2(1 2rj cos j  rj ) (1 2rj cos j  rj ) (1 2rj cos j  rj ) 

(3-9) 
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In which rj  and  j are the magnitude and argument of the complex unstable zeros. 

It can be seen from Equation (3-8) that DPF (z 1 )H u (z 1 ) can be expressed as a 

function of z  z 1 and has zero phase shift. In fact, z  z 1 is a minimal zero phase 

filter and it is defined as the zero phase kernel in [51]. To make R(z 1 ) to have a 

zero phase shift, DPFA (z 1 ) must also have zero phase shift. Therefore, it can be 

also formulated as a function of the zero phase kernel as: 

N P 

DPFA (z 1 )   k (z  z 1 ) k (3-10) 
k 0 

where N is the required preview steps of the digital preview filter. Now the ratio 

function can be expressed as: 

R(z 1 )  

 

P 

 i (z  z 1 ) i 




N 


P 

 k (z  z 1 ) k 
  (3-11)

 i0  k 0  

3.1.2 Norm Optimization for DPF 

The coefficients  k can be determined by minimizing the following penalty function 

J, formulated by L2  norm: 

J  
 

w( )R(e j ) 12 
d (3-12)

0 

with the constraint: 

R(e j )  1 (3-13)
 0 

where  is the normalized frequency,   Ts ,   is the frequency, Ts  is the 

sampling time, and w( ) is the weighting function, which can be chosen according 

to particular applications and the available information. The constraint in Equation 

(3-13) is to ensure that both the digital preview filter DPF (z 1 ) and the unstable 

inverse model H u 
1 (z 1 ) have the same DC gain. In order to obtain the L2  norm 

optimal solution for the polynomial parameters,  k , Lagrange method is employed 

here. The Lagrange function ( ,) is defined as: 
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( ,)  
 

w( )R(e j ) 12 
d  R(e j ) 1 (3-14)

 00 

where   is the Lagrange multiplier. From (3-11), R(e j ) can be expressed as: 

R(e j )  



p 

 i (2cos )i 




N 


 p 

 k (2cos )k 


 i0  k0  
 1  

T 
 2cos 

 
N  p γ	

  
1 2cos  (2cos ) α 

 p  
(2cos )  (3-15) 

 1 2cos  (2cos )N  p  
 

2cos (2cos )2  (2cos )N  p1  
 γT 	 α

      
 p p1 N  
(2cos ) (2cos )  (2cos )   

 γT Aα 

where 

Tγ   0  1   p 

T
α  0 1   N  p 	 (3-16) 

 1 2cos  (2cos )N  p  
 2 N  p1  
 2cos (2cos )  (2cos ) A  
      
	  
(2cos ) p (2cos ) p1  (2cos )N 	  

Therefore, 

R(e j ) 12 
 R(e j )2 

 2R(e j ) 1	
(3-17)

 αT AT γγT Aα  2γT Aα 1 

and 

  0  

R(e j )  1	 2  2N  p 


  

 
1 



 
 βT α (3-18)

 0 

  
 N  p   

where 
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N β  1 2  2 p T 
(3-19) 

By substituting Equations (3-17) and (3-18) into Equation (3-14), it is obtained that: 


  αT A1α  2γT A2α   w( )d  (βT α 1) (3-20)

0 

where 

 
A1   w( )AT γγT Ad A2   w( )Ad (3-21)

0 0 

Let 

 
 2A1α  2AT

2 γ  β  0 (3-22)
α 

 
 βT α 1  0 (3-23)



Multiplying both sides of Equation (3-22) by the matrix βT A1 
1 : 

2βT α  2βT A1 
1AT 

2 γ  βT A1 
1β  0 (3-24) 

From Equation (3-23): 

βT α  1  (3-25) 

By substituting Equation (3-25) into Equation (3-24), the Lagrange multiplier can be 

obtained as: 

βT A1AT γ 1  2 1 
T  

2
1 

(3-26)
β A1 β 

Again by substituting Equation (3-26) into Equation (3-22), optimal parameters   of 

DPFA (z 1 ) can be obtained as: 

α  A1 
1 


 

AT
2 γ  

1 βT

T 

A1 


 

1

1 

AT 
2 γ β

 
(3-27)

 β A1 β  

where the definition of the notations is given in Equations (3-16), (3-19) and (3-21). 

It can be seen from Equations (3-6) and (3-10), that the DPF is non-causal. To 

implement it, N future values are required, among which, P steps are required to 
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compensate the phases shift, and N-P steps are required to further compensate the 

amplitude at the frequency range of interest. Additional preview steps may also be 

required due to the relative order R of the transfer function when taking the inverse 

of the stable part. Therefore the total number of preview steps required for the 

feedforward controller is as follows: 

D  N  R (3-28) 

3.2 Causal Design of DPF 

The digital preview filter described in the previous section solved two problems in 

the design of feedforward controller: (a) improved the gain characteristics and (b) 

provided an optimal solution. The problem of causality will be dealt with in this 

section. Because the DPF is non-causal, N steps of future value of input trajectory are 

needed to implement it. Otherwise, the tracking will be delayed by N steps. 

Generally speaking, a larger N will render better tracking performance if the desired 

trajectory is known prior. In the case that the desired trajectory is not known in 

advance, a prediction method is needed for the feedforward controller. However, a 

larger N will make the future values harder to predict. Several examples of predictor 

can be found in literature, e.g. [58,69,70]. But there are no perfect prediction 

technique, errors in the prediction may jeopardise control performance. 

It is proposed in this section to make the application of DPF causal within a desired 

frequency range by employing system identification techniques. Additional time 

delays will be manually added after the measured response. The stability of the 

closed loop system will be ensured by retuning the PID parameters after adding 

manual delays. Then the feedforward controller will be designed according to this 

delayed signal rather than the actual response signal. If the overall delay from the 

delayed response to the actual response is made equal to the prediction length, then 

the actual response will be tracking the demand without any preview action.  

The following process was developed to eliminate the need to provide future values 

of the reference signal in the design of feedforward controller: 
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(a) 	Guess the D value, i.e. the total number of preview steps required for the 

feedforward controller. 

(b) 	 Add manual delays after actual response, equal to D minus the delay that 

already exists in the CAN bus. Retune the feedback controller parameters for 

closed loop system if necessary. 

(c) 	 Identify the transfer function of the new system with the added delay between 

the demand signal and delayed response signal by seeking as low a relative 

order R. 

(d) 	 Check if the selected number of preview steps D is appropriate by taking into 

account of the relative order R and the number of unstable zeros P of the 

estimated transfer function. 

(d1) if (d) is satisfied, design the non-causal digital preview filter as 

described in Section 3.1. 

(d2) if (d) is not satisfied, select a different D, and repeat the process 

There is one premise that after adding the manual delay, the total delay D from the 

actual response to the delayed response must be much greater than the relative order 

of estimated transfer function R. 

Normally, after adding the manual delays, the relative order of the transfer function 

between the demanded and delayed responses should be increased by D. The relative 

order can be significantly reduced by seeking a lower R when identifying the delayed 

system transfer function within a desired frequency range. So using the estimated 

transfer function with a smaller relative order R for the feedforward controller design 

can allocate more preview steps N for the inverse of the unstable zeros, among which, 

P delays are used to compensate the phase, and N-P delays are used to further 

compensate the amplitude. Generally speaking, better performance in compensating 

amplitude error can be expected if more preview steps are available. 

The selection of the D value is very flexible. Larger D may allow larger N (assuming 

the same R) and larger N-P (assuming the same P) to compensate the amplitude error, 

which will render a better compensation performance. But adding more delays to the 

system will probably result in a higher relative order R in the estimated transfer 

function to provide a good fit into test results. Even though the relative order can be 

arbitrarily specified, adding more delays may cause the number of unstable zeros, P, 
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to increase. So, D-R-P may not increase as D increases, which will not help to 

improve the performance of DPF. On the contrary, smaller D may result in smaller R 

or P, which may provide better performance than larger D value. Therefore, it is hard 

to say that larger or smaller D value is better. It needs to be evaluated for the specific 

application. 

Examples of the application of the proposed process in the design of the feedforward 

controller for both closed loop and open-loop systems are given in the following 

sections. Feedforward controllers are designed and implemented for the closed loop 

speed control of the output dynamometer and the open-loop torque control of the 

input dynamometer. 

3.3 Causal Application of DPF to a Single Motor 

The proposed causal design of digital preview filters is applied to a single motor in 

this section. Feedforward controllers are designed for the output dynamometer speed 

and the input dynamometer torque control. 

3.3.1 Output Dynamometer Speed Tracking Control 

The speed control diagram including sampling delay on the CAN bus is shown in 

Figure 2-18, and the response to an SPHS demand signal with a frequency range up 

to 15 Hz is shown in Figure 2-20. To carry out the process proposed in the previous 

section, another 7 delays are added to the feedback loop in dSPACE as shown in 

Figure 3-1. 

PID 
Controller 

Motor & Drive 
System 

Load
+ 

-

dSPACE 

2z 

Percentage Torque 

1z7z 

Manual Delay 

CAN 

Feedforward 
Controller 

Feedforward 
Controller

dy r y 

fy 

Figure 3-1 Speed control block diagram with manual delay 
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The PID controller was retuned in simulation without the feedforward controller to 

ensure the stability of the closed loop system. New PID parameters were selected as 

0.15 for proportional control, 0.25 for integral control and 0.003 for derivative 

control. Tests were carried out with a speed demand signal, r, consisting of a SPHS 

signal superposed on a 1000 rev/min constant value. The delayed response of the 

system, y f , is shown in Figure 3-2. The test result shown here is the average over 

three tests. 

0 2 4 6 8 10 
Time (s) 

Figure 3-2 Delayed system response of output dynamometer speed control with 

7 manual delays 

By using the FFT of the recorded signals, and setting the relative order to one, the 

transfer function between the delayed speed response y f and speed demand r, was 

estimated as follows: 

4.979s5  761.8s 4  8.979e4s3  4.705e6s 2 

 9.175e7s  2.303e9
GSpeed (s) 

s 6 116s5 1.23e4s 4  6.978e5s3 1.628e7s 2 
(3-29) 

 2.321e8s  2.303e9 

This gives four unstable zeros. The frequency response of the estimated and 

experimental transfer functions are shown in Figure 3-3. Because of the added delays, 

the phase shift of the speed response was increased, especially at high frequencies. 

The phase shift is approximately 550 degrees at 15 Hz. 

In order to design the digital preview filter, a discrete time equivalent of the 

estimated transfer function between delayed speed response y f and speed demand r 
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can be derived with zero order hold on the input at a sampling rate of 160 Hz as 

follows: 

0.01163z 1  0.06594z 2  0.1556z 3  0.1909z 4 

1  0.1215z 5  0.03178z 6 

H Speed (z )  
1  5.087z 1 10.97z 2 12.85z 3  8.625z 4 

(3-30) 

 3.143z 5  0.4844z 6 

with four zeros outside the unit circle. 

-1 0 1
10 10 10

-1 0 1
10 10 10

Frequency (Hz) 

Figure 3-3 Delayed frequency response of output dynamometer speed control 

with 7 manual delays 

A feedforward controller can be formulated as: 

Q(z 1)  H a
1(z 1)DPF (z 1)DPFA (z 1) (3-31) 

where H a 
1(z1) is the inverse of the stable part of Equation (3-29), and can be 

calculated as: 

85.96  437.3z1  942.9z2 1104z3  741.4z4 

1 1  270.1z5  41.64z6 

Ha (z )  1 2 
(3-32)

z  0.92z 

DPF (z 1 )  can be calculated from Equation (3-6): 
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DPF (z 1)  
2.969 8.127z 1  9.007z 2  4.749z 3  z 4 

(3-33)
0.01015z 4 

Then   was obtained from Equations (3-8) and (3-9) to be: 

  103 [3.6252  7.7021 6.1548  2.1900 0.2926]T 

Because the total delay D is 8 and the relative order of estimated transfer function R 

is 1, the preview steps for digital preview filter N can be chosen to be D-R=7, and the 

number of unstable zeros P=4. The weighting function w( ) was specified to be 

uniform within the frequency range of up to 15 Hz, That is: 

1   
3  

w( )  

 

16 (3-34) 
0

3    16 

The penalty function J becomes: 

J   16

3  R ( e j )  1 2 
d  (3-35)

0 

The matrices A1  and A2  are defined as: 

3 3 

A  16 
 

AT γγT Ad A  16 
 

Ad (3-36)1 0 2 0 

Then the polynomial parameter vector   for DPFA (z 1 ) can be calculated from 

Equation (3-27) as: 

  19.2762  31.0421 15.9952  2.5216T 

This gives the following digital preview filter to compensate for the amplitude using 

Equation (3-10): 

 2.522 16z1  38.61z2  51.27z3  38.61z4 

1 16z5  2.522z6 

DPFA(z )  3 
(3-37)

z 

One preview step is needed in Equation (3-32) because the relative order is one 

(R=1). This leaves a total of 7 preview steps for the DPF design (N=7). Four preview 

steps are needed in Equation (3-33) for the design of ZPETC, because the number of 
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unstable zeros is four (P=4). Three preview steps are used in Equation (3-37) to 

further compensate for the gain characteristics within the interested frequency range 

(N-P=3). Generally speaking, increasing the preview steps allowed for DPF would 

improve the compensation results, but would also increase the total delay required, D. 

Estimated frequency responses between delayed speed response y f  and speed 

demand r, with and without the feedforward controller are shown in Figure 3-4. 

Simulation shows that system dynamics is compensated with a unit gain and zero 

phase shift up to 15 Hz. 
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Figure 3-4 Simulated system response of output dynamometer speed control 

with and without feedforward controller 

The designed feedforward controller was then implemented in the test. The 

experimental time responses for the actual response y and the demand signal yd  are 

shown in Figure 3-5. 

Magnified views of Figure 3-5 at three locations are shown in Figure 3-6. As it can 

be seen from these results, the tracking performance in time domain was significantly 

improved. Almost perfect tracking was achieved without using future values of the 

input signal, which proved the effectiveness of proposed control method. 
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Figure 3-5 Actual response of output dynamometer speed control with and 

without feedforward controller 
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Figure 3-6 Magnified views of Figure 3-5 

The frequency response of the system with feedforward controller is shown in Figure 

3-7, and compared with the frequency response of the system with only feedback 

controller. 

The frequency domain results clearly show that the amplitude and phase of the 

closed loop system are well compensated by the feedforward controller. A small 

phase error was observed in the high frequency range, where the actual speed 

response was leading the speed demand in phase. This error was examined and 

proved to correspond to half sampling interval delay. The reason could be due to the 

use of the zero order hold on the input when digitalising the estimated transfer 

function. 
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Figure 3-7 Frequency response of Figure 3-5 

As discussed in precious section, the selection of the D value is very flexible. Greater 

D will not guarantee a better compensation performance. In the test, different 

numbers of manual delays were added to the feedback loop, to offer different D 

values. Transfer functions were estimated and feedforward controllers were designed 

for each estimated transfer function. The information for the estimation and 

feedforward controller design is summarised in Table 3-1. The frequency responses 

of the estimated transfer functions are shown in Figure 3-8, and the simulated 

frequency responses of the compensated systems are shown in Figure 3-9. It can be 

seen that zero phase shift was achieved in all the three cases. The amplitude 

compensation results are definitely improved by increasing the total number of the 

delays from 6 to 8, but not so obviously from 8 to 10. Hence, D equal to 8 was 

chosen and the designed feedforward controller was implemented in the test. 

Table 3-1 Estimation and feedforward controller design with different D values 

ToTottaall DDeellaayyss
((DD))

ReRellaativtivee OrOrderder
((RR))

PrPreveviieeww SStteeppss forfor DPFDPF ((NN))

((PP)) ((N-PN-P))

66 0 (40 (4thth/4/4thth)) 44 22

88 1 (51 (5thth/6/6thth)) 44 33

1010 1 (51 (5thth/6/6thth)) 44 55
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Figure 3-8 Frequency responses of the estimated transfer functions with 

different D values 
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Figure 3-9 Simulated frequency responses of the compensated systems with 

different D values 
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3.3.2 Input Dynamometer Generated Torque Tracking Control 

Different from speed control, motor torque control can be operated in open-loop. 

Torque demand can be converted into a percentage demand and sent directly to ABB 

drive system. The converting gain was calculated to be 0.2, i.e. 1000 Nm torque 

demand is equal to 200 percentage control signal demand. An open-loop control 

strategy is considered to be more suitable, because the motor and drive system 

possess relatively steady dynamics and are not affected by the external load and 

torque disturbances. The same process can be applied here to design a feedforward 

controller for the input dynamometer open-loop torque control system. Again 7 

manual delays were added after the measured torque as shown in Figure 3-10. With 

one sample CAN bus delay, there were a total of 8 samples delay between the actual 

torque response output, y, and the delayed torque response, y f . 

Motor & Drive 
System 

Load 

Speed 
2z 2z

Percentage 

7z 7z

ScalarScalar

Manual delay 

Percentage 
SP 

dSPACE CAN 

1z 

Feedforward 
Controller 

Feedforward
Controller

dy r y 

fy 

Figure 3-10 Torque control block diagram with manual delay 

To design a feedforward controller for the system, a transfer function between the 

delayed torque response y f and torque demand r is required, as shown in Figure 

3-10. No new tests were necessary to identify this relationship. Instead, previous test 

results recorded in the closed loop speed control of the input dynamometer were used. 

The recorded percentage signal was divided by the gain factor of 0.2 and used as the 

torque setpoint signal, r. The recorded torque signal was shifted 7 samples 

backwards and used as the delayed torque response, y f . After taking the FFTs, the 

measured and estimated frequency responses between the delayed torque response 

y f and the torque demand r are shown in Figure 3-11. The relationship was 

estimated as a fourth order over fifth order transfer function, i.e. the relative order of 

1, up to 15 Hz as follows: 
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4.45s 4 1446s 3 1.988e5s 2 1.474e7s  4.678e8
GTorque (s)   (3-38) 

s 5 114.7s 4 1.398e4s 3  7.474e5s 2  2.926e7s  4.447e8 

This gives four unstable zeros. 
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Figure 3-11 Delayed system response of input dynamometer torque control with 

7 manual delay 

The equivalent discrete transfer function can be obtained by using a zero order hold 

assumption on the input: 

0.002293z 1  0.022z 2  0.06542z 3 

HTorque (z 1 ) 
 0.0831z 4  0.04043z 5 

(3-39)
1 4.04z 1  6.766z 2  5.867z 3  2.632z 4  0.4884z 5 

with four zeros outside the unit circle. 

The same procedure used in previous section can be applied to design a feedforward 

controller for the input dynamometer torque control. There are a total of 8 sampling 

delays between the actual torque response signal y and delayed torque signal y f , 

among which, one sampling delay is needed to invert the stable part of the estimated 

transfer function in Equation (3-39), and the remaining 7 samples delay can be used 

to design a digital preview filter to approximately invert the unstable part of the 

estimated transfer function. This gives: 
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H 1(z 1)  
436.11762z 1  2951z 2  2559z 3 1148z 4  213z 5 

(3-40)
a 1
z 

DPF (z 1 ) can be calculated from Equation (3-6), which requires 4 preview steps 

because there are 4 unstable zeros: 

DPF (z 1)  
17.63  36.24z 1  28.53z 2  9.594z 3  z 4 

(3-41)
 41.762z 

With a uniform weighting function as before, the digital preview filter to compensate 

the amplitude was calculated from Equation (3-10), which requires 3 preview steps: 

 0.1131 2.692z 1  6.914z 2  9.67z 3  6.914z 4


DPFA (z 1)  3 

 2.692z 5  0.1131z 6 

(3-42)

z


The above controller was first tested in simulation. The frequency response of the 

estimated transfer function with and without the designed feedforward controller is 

shown in Figure 3-12. 
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Figure 3-12 Simulated system response of input dynamometer torque control 

with feedforward controller 
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Again, simulation shows perfectly compensated system dynamics, with unity gain 

and zero phase shift for up to 15 Hz. There was a small steady state error of the 

original system, because 200% demand was not exactly equal to 1000 Nm as 

assumed from the motor rating. The steady state error was successfully corrected by 

the feedforward controller, and there was only slight fluctuation in the amplitude at 

high frequencies. 

To test the designed feedforward controller with open-loop torque control, a care is 

needed when selecting the reference torque demand signal. In the test, the two 

motors were not coupled. Therefore the motor speed would keep increasing if a large 

constant torque component was demanded from the motor. Since the dynamic model 

was already identified for the input dynamometer and its drive system, including the 

motor inertia and damping ratio, a safe toque demand level for the test can be 

determined and tested in the simulation. Since the estimated damping ratio was 

0.0432 for the input dynamometer, a constant torque of 5 Nm should make the motor 

speed settle at about 1000 rev/min. Therefore, the torque demand signal could 

comprise a constant torque of 5 Nm plus properly scaled SPHS signal, which was 

chosen to be 45 Nm. The experiments were carried out, and the demand signal yd 

and the measured compensated system response y are shown in Figure 3-13. 

Magnified views of Figure 3-13 are shown in Figure 3-14. It can be seen in time 

domain that precisely torque tracking performance was achieved, and it was also 

realized without using future values of the demand torque signal. 
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Figure 3-13 Actual response of input dynamometer torque control with 

feedforward controller 
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Figure 3-14 Magnified views of Figure 3-13 
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The frequency response of open-loop torque control of input dynamometer with and 

without the feedforward controller is shown in Figure 3-15. 
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Figure 3-15 Frequency response of Figure 3-13 

The frequency domain results illustrate the amplitude and phase are well 

compensated, although the results are not as good as in the simulation. These can be 

attributable to the nonlinearity and estimation errors. Fluctuations in the low 

frequency range for both original and compensated systems were due to 

measurement errors. Similar to the speed control results, the torque response leads 

79 



the torque demand signal by a half of sampling time, which may be due to the zero 

order hold approximation used in the digitalization of the estimated transfer function. 

3.4 Conclusions 

Excellent tracking was achieved by using the proposed causal digital preview filter 

as feedforward controller in both speed and torque control of the output and input 

dynamometers respectively. 

The causality was achieved by adding manual delays to the original system after the 

actual response signal. Then the non-causal feedforward controller was designed for 

the delayed output signal, rather than the actual signal. If the total sampling delays 

between the delayed signal and actual signal can be made equal to the preview steps 

required by the non-causal feedforward controller, the actual response will exactly 

follow the demand signal without any delay. In that case the feedforward controller 

can be deemed as a causal controller and can be implemented to both motor speed 

and torque control when testing CVTs. Both simulation and experimental results are 

presented to demonstrate the effectiveness of the proposed control method. 

The digital preview filter is one of the available techniques to design feedforward 

controllers. However, the proposed method can be applied to any other feedforward 

controller technique to make the controller causal. One of the reasons that DPF was 

implemented in this project was that a frequency domain weighting function can be 

incorporated into the optimization to emphasize a frequency range of interests. In this 

chapter, the weighting function was chosen to be uniform i.e. equal to one, over the 

frequency range up to 15 Hz. When the controller was designed to be used in CVT 

testing, the weighting function can be modified to emphasize good performance on a 

certain frequency range determined by the simulation results based on the real-time 

models. 

The digital preview filter is designed to work within a defined frequency range. 

Hence, to implement the feedforward controller in the test, it was necessary to test 

the system with a reference signal, which does not include any frequency 

components higher than the design bandwidth. Normally, a low pass filter should be 
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employed for the reference signal when testing the CVT with real-time engine and 

vehicle models. 

Another aspect of designing a feedforward controller was the selection of the 

sampling frequency. The fastest sampling frequency of 160 Hz was used in the tests. 

Using a lower sampling frequency in CP CADET, e.g. 80 Hz, would increase the 

time delay on the CAN bus, and it also made the stabilization of the system much 

harder by retuning the PID controller. Therefore the number of sampling delays that 

can be added to the feedback loop is reduced. This meant that fewer preview steps 

were available to design the digital preview filter, which could degenerate the 

compensation performance. For example, with 80 Hz control frequency, only 4 

manual delays could be added to the feedback loop giving the same absolute time 

delay as 8 manual delays with 160 Hz control frequency, but the number of preview 

steps available to design the feedforward controller was halved. This would certainly 

degenerate the compensation performance. 
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Chapter  4  

Feedforward Controller Robustness 

Using a digital preview filter as part of a feedforward controller was demonstrated to 

be effective in the previous chapter, but the feedforward controller was sensitive to 

changes in the plant dynamics. It is not a problem for the generated torque control of 

the input dynamometer, as it is open-loop control and the dynamics of the motor and 

drive system is not affected by the other motor. However, for the output 

dynamometer speed control, not only the gear ratio change will result in the change 

of system dynamics, but also the torque generated by the input dynamometer will be 

perceived as a disturbance by the output dynamometer. 

One way to tackle the problem of changing system dynamics is to make the 

feedforward controller adaptive to the plant dynamics. The plant dynamics could be 

continuously estimated on-line, and the feedforward controller parameters could be 

adjusted according to the updated system transfer function. The drawback of this 

kind of control scheme is that the estimation process will take finite duration before 

it converges, so it requires that the plant dynamics can only be slowly changing. 

Because the continuous change in the CVT gear ratio will result in fast changing 

closed loop dynamics, the performance of adaptive feedforward control may not be 

satisfactory. 

Another way would be to ensure that the original system dynamics is the same as the 

one when the feedforward controller was designed. To achieve this, another 

compensator is added to the system to retain the original system dynamics when the 

gear ratio changes. The disturbance torque introduced by the input dynamometer is 

also compensated by demanding additional percentage control signal from the output 

dynamometer. In theory, the proposed gear ratio compensator can be updated at the 

feedforward controller sampling rate or even faster, which is an advantage over the 

existing adaptive method. 
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4.1 Gear Ratio Compensation of O/P Dynamometer 

Speed Control 

The feedforward controller was designed in the last chapter according to the 

dynamics of the existing system, to approximate the inverse of the original system. It 

is only effective when the dynamics of original system is kept unchanged. In the case 

of speed control for the output dynamometer as shown in Figure 3-1, although the 

PID controller, motor and drive system dynamics are invariant, the load dynamics in 

terms of inertia and damping will vary with the gear ratio, when they are lumped into 

the output dynamometer dynamics by the square of the ratio. Thus the feedforward 

controller will fail to compensate the system dynamics if the gear ratio changes. This 

can be solved in two ways, either updating the feedforward controller to match the 

new system dynamics as a result of the gear ratio change, or updating the closed loop 

to compensate the change in gear ratio. As discussed at the beginning of the chapter, 

the latter would be a better choice, which can be achieved by adding another 

controller to the feedback loop of the original system as shown in Figure 4-1. 
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Controller

Motor & Drive 
System 

Motor & Drive 
System
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Speed SP Speed 
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Gear Ratio 
Compensator 

Gear Ratio 
Compensator

Figure 4-1 Output dynamometer closed loop speed control with gear ratio 

compensator 

The purpose of the gear ratio compensator is to retain the dynamics of the original 

system when the gear ratio changes. The compensator can be formulated as follows: 

GRatio _ cmp (s)  
(JO 

2  J I )s  (BO  
2  BI ) (4-1)

J N s  BN 

where  is the gear ratio. J I  and BI are the combined inertia and damping ratio of 

the input dynamometer and input shaft, and JO  and BO are the combined inertia and 

damping ratio of the output dynamometer and output shaft. J N  and B N  are the 

nominal inertia and damping ratio of a virtual load, on which the feedforward 
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controller was originally designed. The nominal values were the inertia and damping 

ratio of the output dynamometer rotor. The main role of the numerator of the gear 

ratio compensator is to cancel the dynamics of the actual load, while the main role of 

the denominator is to retrieve the dynamics of the virtual load. The inertias and 

damping ratios were estimated in the previous chapter. The gear ratio   can be 

updated as fast as the sampling frequency by dividing the speeds of the output and 

input dynamometers. Since only the actual ratio between the dynamometers is 

considered, the compensator will not be affected by the dynamics of the CVT. 

The performance of the gear ratio compensator was examined by connecting the two 

dynamometers with a mechanical gear box. The gear box was set to neutral first and 

then to a 1:1 gear ratio. 

4.1.1 Test with Neutral Gear 

In a neutral gear, the output shaft was attached to the output dynamometer, where the 

inertia and damping ratios of the load were higher than the nominal values. With the 

same PID controller, the closed loop speed response is expected to be different. The 

test results are shown in Figure 4-2, with the gear in neutral position. 
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Figure 4-2 Closed loop speed responses of the output dynamometer on a neutral 

gear with and without the gear compensator 
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Figure 4-3 A magnified view of Figure 4-2 

The solid line shows the closed loop speed response of only output dynamometer 

with added manual delays as in previous chapter in Figure 3-3. With a neutral gear 

ratio and the output shaft attached, and the same PID controller parameters there was 

only slight change in the amplitude, and the phase was almost the same as before, 

because the inertia and damping of the output shaft is relatively small compared to 

the output dynamometer. However, deviation from original dynamics can still be 

observed in the amplitude, especially in the middle frequency range, between 2 Hz 

and 4 Hz as shown in Figure 4-3. This was successful corrected by the gear ratio 

compensator, as shown by the dotted line. 

If the feedforward controller designed in previous chapter was used here without any 

change in its parameters, the nominal load used in the gear ratio compensator would 

be the inertia and damping of the output dynamometer rotor. The speed demand 

consisted of a SPHS signal with a frequency range of up to 15 Hz and a scaled 

amplitude of 45 rev/min, superposed on a steady state speed of 1000 rev/min. The 

test results in the time domain are shown in Figure 4-4. Magnified views of Figure 

4-4 are shown in Figure 4-5. 
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Figure 4-4 Output dynamometer speed control with a neutral gear, original PID 

and feedforward controllers, and gear compensator 
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Figure 4-5 Magnified views of Figure 4-4 

The frequency response of Figure 4-4 is shown in Figure 4-6, and is compared with 

the PID only control. 

Good tracking performance is observed in both time and frequency domains, even 

slightly better performance in high frequency range than in the previous chapter (as 

shown in Figure 3-7). Since the dynamics of the original system was not significantly 

changed by the attached output shaft, this test does not provide clear evidence of the 

effectiveness of the gear compensator. Therefore, more tests were carried out with a 

1:1 gear ratio and with the same speed demand. 
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Figure 4-6 Frequency response of Figure 4-4 

4.1.2 Test with 1:1 Gear Ratio 

With the gear ratio set to 1:1, the responses of the closed loop PID speed control with 

and without the gear compensator are shown in Figure 4-7, and compared with the 

original system response of only the output dynamometer. 

The solid line still shows the closed loop speed response of only output dynamometer. 

With a 1:1 gear ratio and the whole shaft including input dynamometer rotor attached 

to the output dynamometer, the closed loop speed response was significantly 

changed, as shown by the dashed line. With the gear compensator, the frequency 

response was successfully compensated to give the same response as the original 

system, as shown by the dotted line. It can be seen that perfect match was achieved 

for both amplitude and phase for the frequencies up to 6 Hz. Within this frequency 

range, the dynamics of the system with a 1:1 gear ratio was successfully made to 

match the original system by the gear compensator. Large discrepancies at high 

frequencies are due to the backlash between the gears, which were heard when 

running the motor in high frequency range. 
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Figure 4-7 Closed loop speed control dynamics of output dynamometer with a 

1:1 gear ratio 

Since the compensated system with a 1:1 gear ratio matches the original system for 

frequencies only up to 6 Hz without noticeable effects of backlash, tests were carried 

out with a SPHS speed demand signal with frequency components up to 10 Hz. The 

test results are shown in Figure 4-8. Magnified views of Figure 4-8 are shown in 

Figure 4-9. 
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Figure 4-8 Output dynamometer speed control with a 1:1 gear ratio, original 


PID and feedforward controllers, and gear compensator 
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The frequency response of Figure 4-8 is shown in Figure 4-10, and compared with 

PID only control. 
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Figure 4-10 Frequency response of Figure 4-8 

The speed tracking performance shown in Figure 4-10 can be further improved, 

especially in the high frequency range. The feedforward controller for the output 

dynamometer speed control can actually be designed according to the couple system 

instead of single motor. Then the compensated frequency range can be extended to 

10 Hz when optimising the amplitude performance. In the way the backlash effects 

can also be included in the closed loop and regulated by the PID controller, which 
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will guarantee a better final control performance, whereas in here, the original 

feedforward controller was used to demonstrate the effectiveness of the gear 

compensator. 

4.2 Compensation of Disturbance Torque for O/P 

Dynamometer 

When the two motors are coupled, the interaction of the generated torques needs to 

be considered. For the input dynamometer, the generated torque is controlled to 

provide the torque demand in the previous chapter, and must not be affected by the 

torque generated by the output dynamometer. For the output dynamometer, the speed 

is controlled to follow the speed demand. In this case, the torque generated by the 

input dynamometer will act as a disturbance torque on the output dynamometer, and 

hence affect the output dynamometer speed controller. However, this disturbance 

torque is available from the input dynamometer demand at each sampling instant. In 

order to compensate for this torque, a compensating torque can be generated by the 

output dynamometer in the opposite direction. The compensation arrangement is 

shown in Figure 4-11. 
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Figure 4-11 Disturbance torque compensation scheme for the output 

dynamometer 

In order to generate an equivalent torque to cancel the disturbance torque, an 

additional percentage control signal is required for the output dynamometer. Due to 

the dynamics of the motor and drive system of the output dynamometer, the 

disturbance torque i.e. the torque demand of the input dynamometer is passed 

through another controller which possesses the inverse dynamics of the motor and 
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drive system of the output dynamometer. Thus if a disturbance torque is generated by 

the input dynamometer, an equal amount of torque will be generated by the output 

dynamometer to cancel each other. An inverse system had already been designed for 

the motor and drive system of the input dynamometer in the previous chapter when 

performing the generated torque tracking control. It is worthy to examine the 

dynamics of the motor and drive system for the input and output dynamometer. 

These are plotted in frequency domain in Figure 4-12. 
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Figure 4-12 Transfer functions between generated torque and percentage 

control signal for output and input dynamometers 

It can be seen from the figure that the dynamics of the motor and drive system for 

input and output dynamometers are in phase and the difference in amplitude is 

almost constant. To further prove this, the amplitude of output dynamometer was 

subtracted from input dynamometer and the result is shown in Figure 4-13, which 

shows an almost constant difference in amplitude, except in low frequency range and 

noise in high frequency range. The large errors in the low frequency range result 

from the measurement errors in the torque signals, which can also be seen in Figure 

4-12. Since the dynamics of these two dynamometers were in phase and the 

difference between amplitudes was almost constant for the frequencies between 1 Hz 

and 10 Hz, the distinction in the dynamics can be easily corrected by a constant 
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scaling factor, without the need to design an inverse dynamics compensator for the 

output dynamometer. This factor was measured to be 0.636 for the frequencies 

between 1 Hz and 10 Hz. 
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Figure 4-13 Difference in amplitude response of motor and drive system for 

input and output dynamometers 

Therefore the compensation torque of the disturbance from the input dynamometer 

on the output dynamometer speed control can be structured as shown in Figure 4-14. 
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Figure 4-14 Block diagram of torque compensation scheme for output 

dynamometer speed control 

To verify the proposed compensation scheme, both dynamometers were switched on. 

The output dynamometer was in speed control and input dynamometer was in torque 

control. Both feedforward controllers were kept the same as designed in the previous 

chapter. The output dynamometer speed demand consisted of a DC speed of 1000 

rev/min plus a SPHS signal with a frequency range of up to 10 Hz, and a scaled 

amplitude to 35 rev/min. The input dynamometer torque demand consisted of a 
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SPHS signal with the same frequency range and amplitude. The test results are 

shown in the following figures. 

The measured output dynamometer speed is shown in Figure 4-15. Magnified views 

of Figure 4-15 are shown in Figure 4-16. 
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Figure 4-15 Output dynamometer speed with a 1:1 gear ratio 
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Figure 4-16 Magnified views of Figure 4-15 

The frequency response of the system was shown in Figure 4-17, compared with the 

one without a torque disturbance, when the input dynamometer was switched off. 
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Figure 4-17 Frequency response of Figure 4-15 compared with the results shown 

in Figure 4-10 

It can be seen that the speed was well controlled. If comparing with the speed 

response without external torque in Figure 4-10, the results were quite similar to each 

other, which verified the effectiveness of the disturbance torque compensation 

scheme for the output dynamometer. The compensation scheme was based on the 

differences between the dynamics the input and output dynamometers, as seen in 

Figure 4-13. The difference in amplitude response was not perfectly flat. The 

compensation factor used here was an averaged value, so there was a small 

discrepancy for the two speed control responses in the amplitude at high frequencies 

as shown in Figure 4-17. In other words, the speed control was still affected by the 

torque generated by the input dynamometer, but in a negligible way. The phase 

response was also delayed, but seemed to offer a better result. Difference in the 

responses at high frequencies with and without torque disturbance could result from 

the backlash effect. With the backlash between the gears, the torque generated by the 

input dynamometer will not be immediately cancelled by the torque generated by the 

output dynamometer, even if the compensation factor was accurate. 

The proposed scheme is based on the dynamics difference of the dynamometers. It 

eliminates the need to design an additional feedforward controller, and also it is 
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based on the control signal rather than the measured torque value, which may be 

contaminated by significant noise. 

The input dynamometer torque controller performance was also assessed by using 

the data obtained from the same test. The generated input dynamometer torque is 

shown in Figure 4-18, and compared with the torque demand. The generated torque 

was calculated by using Equation (2-31). Magnified views of Figure 4-18 is shown in 

Figure 4-19. 
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Figure 4-18 Demanded and generated input dynamometer torque with a 1:1 

gear ratio 
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Figure 4-19 Magnified views of Figure 4-18 

The frequency response of the torque control system is shown in Figure 4-20. 
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Figure 4-20 Frequency response of Figure 4-18 

It can be seen from both time and frequency domain results that the generated input 

dynamometer torque was precisely controlled to track the torque demand, and was 

not affected by the coupling between the input and output dynamometers. A similar 

result to the one on single motor control as shown in previous chapter in Figure 3-15 

was obtained. The control result was almost perfect except for the small error in high 

frequency, which was also seen in Figure 3-15. 

4.3 Compensation 	of Inertia Torque for I/P 

Dynamometer 

So far, the generated torque of the input dynamometer was controlled to track the 

torque demand, without jeopardising the speed control of the output dynamometer. 

When testing a CVT in a real vehicle, the torque applied on the input shaft of the 

CVT is the engine brake torque. Since the input shaft of the CVT was connected to 

the input dynamometer where the torque measurement was taken, it would be more 

realistic that the measured input dynamometer torque was controlled to track the 

simulated engine brake torque rather than the generated torque. 
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The difference between the generated torque and measured torque was the torque 

used to accelerate the input dynamometer rotor inertia and to overcome the damping 

inside the motor. This difference needs to be compensated to make the measured 

torque track the torque demand. Since the inertia and damping ratio had already been 

estimated for the input dynamometer in Chapter 2, they can be compensated by 

calculating the acceleration from the output dynamometer speed demand, the inertia 

and damping compensation scheme is shown in Figure 4-21. 
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Figure 4-21 Inertia and damping torque compensation scheme for input 

dynamometer 

Theoretically, the inertia and damping torque should be calculated from the 

measured speed response of the input dynamometer rather than the speed demand, 

but the measured speed contains noise and results in large errors when calculating the 

derivative. More importantly, it will introduce high frequency input signal to the 

feedforward controller of the torque control, which was designed for a specific 

frequency range. With near perfect speed control, the compensation calculated from 

the speed demand should give the same results as the one calculated from the actual 

speed. 

4.3.1 Test with Inertia Torque Compensator 

Tests were carried out to examine the proposed inertia and damping compensation 

scheme. The speed demand for the output dynamometer was the same as before. The 

torque demand for the input dynamometer consisted of a SPHS signal with 

frequencies up to 10 Hz and an amplitude of 45 Nm, superposed on a steady state of 
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torque demand of 100 Nm. The measured input dynamometer torque is shown in 

Figure 4-22. Magnified views of Figure 4-22 are shown in Figure 4-23. 
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Figure 4-22 Measured torque of input dynamometer with inertia torque 

compensation 

160 160 160 

150 140 140


140

120 120 

T
or

qu
e 

(N
m

) 

130 
100 100 

120 

80 80
110 

60 60100 

90 40 40 
0	 0.2 0.4 5 5.2 5.4 9 9.2 9.4 

Time (s) 

Figure 4-23 Magnified view of Figure 4-22 

The frequency response is shown in Figure 4-24. It can be seen from the test results 

in both time and frequency domains that although the inertia and damping torque 

compensation for input dynamometer was simple, the compensation method is 

extremely effective. The amplitude of the measured torque in the middle frequency 

range was slightly higher than the demand. This could be due to the error in the 

output dynamometer speed control. As discussed, the error in speed control will lead 

to the errors in the calculation of inertia and damping torque. 
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Figure 4-24 Frequency response of Figure 4-22 
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To further examine this, the speed response of the output dynamometer was also 

recorded, and the response in time domain is shown in Figure 4-25. Magnified views 

of Figure 4-25 is shown in Figure 4-26. The frequency response is shown in Figure 

4-27. 
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Figure 4-25 Speed response of output dynamometer with inertia torque 

compensation for input dynamometer 
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Figure 4-26 Magnified views of Figure 4-25 
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Figure 4-27 Frequency response of Figure 4-25 

The output dynamometer speed performance shows errors in the middle frequency 

range. The backlash effect is always one of the factors that affect the control 

performance. Due to the backlash, even with a 1:1 gear ratio, the speed and torque 

will be different on the input and output shafts. Then the disturbance torque from the 

input dynamometer will not be exactly cancelled by the additional output 

dynamometer torque even though an exactly same among of torque is generated in 

the opposite direction. The speed of input dynamometer will also be different from 

the speed of output dynamometer. The calculation of inertia and damping torque 
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from speed demand will not be the same as calculated from the input dynamometer 

speed response even though the output dynamometer speed is equal to the speed 

demand. 

4.3.2 Test with additional PID controllers 

The control performance could be further improved if another PID controller is 

added for both output and input dynamometer controls on the outer loop to further 

correct the tracking error. Then the speed control will be in the form of structure (a) 

in Figure 1-9, and the torque control will be in the form of structure (b) in Figure 1-8. 

The overall block diagram with additional PID controllers is shown in Figure 4-28. 
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Figure 4-28 Overall control block diagram with additional PIDs 

Tuning of the PID controller would be dependent on a specific application. If the 

feedforward controls for the motor torque and speed were nearly perfect, the torque 

and speed errors would be very small, and the added PID controllers will have minor 

effects on the original control systems. If the control errors were relatively large, the 

PID controllers will provide further correction on the errors. But using additional 

PID controllers will certainly introduce phase shift into the system, so better 

performance can not be guaranteed. Sometimes a compromise may need to be 

considered for the amplitude and phase when tuning the parameters of the PID 

controller. 

Tests were carried out with the same speed and torque demand for the output and 

input dynamometers as the previous test. Two more PID controllers were added to 
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the outer loop of the speed and torque control. The PID parameters were tuned in 

dSPACE starting with 0.1 for both proportional and integral gains. The derivative 

gain was set to be 0 due to the noise. Then by running the test through SPHS cycles, 

the gains were adjusted to offer better time responses. Finally, the PID parameters for 

the speed control were tuned to be 0.08 for the proportional gain, 0.4 for the integral 

gain and 0 for the derivative gain, while for the torque control the parameters were 

0.03 for the proportional gain, 0.3 for the integral gain and 0 for the derivative gain. 

With additional PID controllers, the measured input dynamometer torque is shown in 

Figure 4-29. Magnified views of Figure 4-29 is shown in Figure 4-30. The frequency 

response is shown in Figure 4-31, compared with the response without additional 

PID controller. 
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Figure 4-29 Measured input dynamometer torque with additional PID 

controller 
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Figure 4-30 Magnified views of Figure 4-29 
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Figure 4-31 Frequency response of Figure 4-29 compared with the results shown 

in Figure 4-24 

It can be seen from the amplitude response that the tracking error was reduced, 

especially in the middle frequency range. Meanwhile, the phase became slightly 

worse at the same frequency range. As discussed before, the PID controller will 

introduce phase shift into the system, and sometimes it is a compromise between 

amplitude and phase responses. However, the control results were already 

satisfactory without the additional PID controller, i.e. the additional PID controller 

did not show much improvement. 

Relatively large control errors were observed on the output dynamometer speed 

control response in Figure 4-27. The response is significantly improved by the 

additional PID controller. The time domain response is shown in Figure 4-32. 

Magnified views of Figure 4-32 are shown in Figure 4-33. The frequency response is 

shown in Figure 4-34 compared with the response without additional PID controller. 

Comparing Figures 4-25 and 4-32, the improvement in time domain is very obvious 

between 1 s and 3 s. In frequency domain, a definitely better result was observed for 

both amplitude and phase up to 2 Hz, due to the use of the PI controller, which has 

more effects in the low frequency range. Fluctuation occurs around 3 Hz for both 

amplitude and phase response, which was also observed in the torque control in 

103 



Figure 4-31, which is because of the interaction between the two motors. However, 

the result for the speed control still seems better around 3 Hz than without the 

additional PID controller. Above 4 Hz, the control result is generally not as good as 

before, in either amplitude or phase response, but the difference seems negligible. 

The overall performance is thus definitely improved by the additional PID controller. 
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Figure 4-32 Measured output dynamometer speed with additional PID 

controller 
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Figure 4-33 Magnified view of Figure 4-32 
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Figure 4-34 Frequency response of Figure 4-32 

Hence, the performance of the additional PID controller is hard to predict, especially 

when the two motors are coupled. It could be a compromise on the performance 

between amplitude and phase responses, like the input dynamometer torque control, 

or between low and high frequency ranges, like the output dynamometer speed 

control. The utilization of additional PID controller and tuning its parameters will 

depend on the specific application. Normally the additional PID controller is not 

necessary or the parameters can be set to be relatively small, so that it will only act 

on relatively big errors. At the same time, it will not change the dynamics of the 

original system and affect the performance of the feedforward controller. 
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Chapter 5 Testing with Real Time Model 

All the previous tests were carried out with SPHS multi frequency signal as input. 

Since it contains all the specified sub harmonics in one signal, it provides a 

challenging way to test the effectiveness of the proposed torque and speed tracking 

controllers, but this kind of signal was not expected when testing CVTs. More 

realistic signals are used to test the designed controllers in this section, which are the 

engine brake torque and vehicle speed simulated from real-time engine and vehicle 

models. Although the real-time model is constructed with a manual transmission 

rather than a CVT, the simulation results are still representing typical engine brake 

torques and vehicle speeds encountered in real driving conditions. 

5.1 Engine and Vehicle model 

The engine and vehicle model used in this section of the work were supplied by the 

Ford Motor company and for brevity and confidentiality reasons only their main 

attributes are described here. 

The vehicle model is based on the standard vehicle road load equation, including 

speed dependent rolling resistance, aerodynamic drag, acceleration and gradient 

effects. It can be expressed by the equation as follows: 

Ft  rcmv g  mva  mv g sin r  
1 CD Avv 

2 (5-1)
2 

The dynamics of tyre traction and stiffness and damping in the vehicle drive shafts 

are also embedded within the model.  

The engine model is termed as a ‘mean value engine model’, the outputs from the 

model are the cycle averages for one complete engine cycle, as opposed to a crank 

angle based model where outputs are derived on a crank angle basis and thus include 
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phenomena such as torque pulsations on the crankshaft. The engine model is based 

on a neural-network representation of engine torque and exhaust gas temperature 

derived from data obtained from steady state testing undertaken with the engine on a 

dynamometer facility. Enhanced dynamics of the model are included by the addition 

of an ‘emptying and filling’ representation of the gas dynamics in the inlet and 

exhaust manifolds, the exhaust gas recirculation system and the turbocharger. 

A model based representation of the engine electronic control unit (ECU) is also used 

to derive set points for the various engine actuators (e.g. exhaust gas recirculation 

(EGR), variable geometry turbocharger (VGT), fuel rail pressure, injection rate and 

timing), based on driver inputs (e.g. pedal position), and other powertrain states (e.g. 

engine boost pressure, mass air flow, engine speed, and engine temperature). 

5.2 Testing with Simulation Results 

The simulated vehicle speed and engine brake torque through a standard EUDC 

driving cycle are taken as the speed and torque demands for the output and input 

dynamometers respectively. The testing structure is shown in Figure 5-1. In the real 

time model, the reference speed is a EUDC driving cycle, and the simulated vehicle 

speed is fed back to the driver model to calculate the accelerator and brake pedal 

positions. The clutch position and the number of the gears are preset profiles with 

regards to real time. 
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Figure 5-1 Testing structure with simulation results 
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The test results for the output dynamometer speed control are shown in Figure 5-2, 

while the test results for the input dynamometer torque control are shown in Figure 

5-3. 

Since the EUDC driving cycle consists of several small driving cycles, the simulated 

vehicle speed and engine brake torque also contains similar profiles for each 

individual cycle. Typical acceleration and braking processes are selected for a 

magnified view from Figure 5-2 for speed control, and shown in Figure 5-4. 

Meanwhile, the same regions are also selected from Figure 5-3 for torque control, 

magnified, and shown in Figure 5-5. 

It can be seen from these test results that excellent tracking control was achieved for 

both torque and speed. The tracking errors were generally due to noise. As motioned 

before, the torque transducer has an accuracy of +/- 0.1% of full scale, i.e. +/- 1 Nm, 

so the measurement error will have more effects at low torque values. There is also 

some error from calibration of the torque transducer, e.g. it measuring between -1.2 

and -0.8 Nm when the motors were switched off. 

In fact, the simulated engine brake torque was not flat, e.g. between 250 s and 260 s 

shown in Figure 5-5 (b), there were small variations in the amplitude of the signal, 

which was normally less than 1 Nm, as shown in Figure 5-6. The feedforward 

controller will attempt to follow these fast but low amplitude signals, but the 

resultant response can not be accurately measured. This caused an error for the PID 

controller to further correct, thus a noisy response in torque was observed. 

The most critical aspect in the overall control was not the behaviour of the 

feedforward controller, but the dynamic compensation for the output dynamometer 

when the two motors were coupled, such that torque generated by the input 

dynamometer will not have any effects on the output dynamometer. The speed 

control compensation was achieved by a dynamics factor as shown in Figure 4-13, 

which was almost constant, except for noise in the high frequency range. If the 

compensation failed due to the inaccuracy of the dynamics factor, the speed of output 

dynamometer will be pulled away from the speed demand by the input dynamometer 

torque, and the compensation of inertia and damping torque for the measured input 

dynamometer torque, which was calculated from the speed demand will also fail in 

this case. 
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Figure 5-2 Measured output dynamometer speed again simulated vehicle speed 
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Figure 5-3 Measured input dynamometer torque against simulated engine brake torque 
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Figure 5-4 Magnified views of Figure 5-2 
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Figure 5-5 Magnified views of Figure 5-3 
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Figure 5-6 Fluctuations in simulated engine brake torque as input dynamometer 

torque demand 

For example in Figures 5-4 (b) and 5-5 (b), there was a sudden drop in the brake 

engine torque around 261 s because of a gear change and the associated lift off of the 

accelerator pedal. As the dynamics compensation is not perfect, and the fast change 

of the generated input dynamometer torque was not exactly repeated by the output 

dynamometer in the opposite direction, the output dynamometer speed deviated from 

the speed demand. Since the inertia torque was still calculated from the speed 

demand, an error was caused on the measured input dynamometer torque. The error 

in speed shown here was already improved by the additional PID controller, the 

situation was worse before the PID controller was added. 

When testing the CVT in a real vehicle, even with a robot driver, the speed tracking 

accuracy needs to be within +/-1 km/h, i.e. +/-10 rev/min. The speed tracking error 

shown in the test results is normally only +/-2 rev/min, and +/-10 rev/min on very 

rare occasions, like shown in Figure 5-4 (b) around 261 s. When testing the CVT 

with a real engine, the measured engine brake torque will also oscillate significantly 

during an engine cycle for the firing and pumping processes, e.g. a peak value of 70 

Nm for a mean brake torque of 30 Nm. The torque tracking error shown in the results 

is normally +/-5 Nm, and +/-10 Nm for the worst situation. Hence, the control results 

can sufficiently meet with the requirements to test a CVT. 

In order to show the success of designed controllers for speed and torque control, a 

new test was carried out on the input and output dynamometer running through the 

simulation results, with the original PID controllers provided by the CP CADET 
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system. The test was only run up to 200 s, covering the first three small cycles. The 

test results are shown in Figure 5-7 for measured output dynamometer speed and in 

Figure 5-8 for measured input dynamometer torque. 
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Figure 5-7 Measured output dynamometer speed with PID controllers in the CP 


CADET system 


0 50 100 150 200 
-100 

-50 

0 

50 

100 

150 

S
pe

ed
 (

re
v/

m
in

) 

Demanded Torque 

Measured Torque 

Time (s) 

Figure 5-8 measured input dynamometer torque with PID controllers in the CP 

CADET system 

The same region as shown in Figures 5-4 (a) and 5-5 (a) was selected for a magnified 

view, which is shown in Figures 5-9 and 5-10 for speed and torque control 

respectively. 
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Figure 5-9 A magnified view of Figure 5-7 
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Figure 5-10 A magnified view of Figure 5-8 

Because there is no compensation for the interaction between the two motors when 

they are coupled, the PID controllers have to be tuned to emphasize good 

performance on one control, either speed or torque. Otherwise the two PID 

controllers will function against each other and damage the shaft. As seen from the 

test results, the speed control was tuned to be stiff, and torque control to be loose. In 

this case, the torque control performance is sacrificed, but even so the speed control 

is still much worse than before as shown in Figure 5-4 (a). Moreover, the PID 

controller is tuned for a specific gear ratio. Therefore, the performance will be worse 

if the gear ratio changes. 

As these results suggest, the proposed controllers improved the system response 

significantly compared with the PID controllers as implemented by the manufacture 

of the system. The interaction between these two motors was successfully 
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compensated by the proposed controllers, e.g. the gear ratio compensator and the 

disturbance torque compensator. Along with the designed speed and torque 

controllers, the measured speed and torque of the output and input dynamometer are 

precisely controlled to track the real-time simulation results. 

5.3 HIL Testing 

Final tests were carried out on HIL testing. The testing structure is shown in Figure 

5-11. Compared with Figure 5-1, the clutch and transmission components are 

removed from the real time model. The measured input dynamometer speed is fed 

back to the engine model as the engine speed and the measured output dynamometer 

torque is fed back to the vehicle model as the driving torque. Since the mechanical 

gear box was fixed with a 1:1 gear ratio, the measure signals were amplified by the 

current overall gear ratio instead of the final drive ratio when fed back to the real 

time model. In this way, the gear box can be deemed as a transmission with final 

drive mechanisms. 

Pedals Brake 


Overall 
Gear Ratio 

Low Pass 
Filter 

Driver 

Mechanical 
Gear Box 

Vehicle 

Input 
Dynamometer 

Output 
Dynamometer 

Engine 

Torque 
Demand 

Measured 

Overall 
Gear Ratio 

Speed 
Demand 

Engine 
Speed 

Measured 
Speed Torque 

Low Pass 
Filter 

Clutch &
 Engine Driving Vehicle 
Reference Speed Gears Torque Torque 

Speed 

Software 

Hardware 

Figure 5-11 HIL testing structure 

Since the clutch and transmission components were removed from the real time 

model, tests were carried out with a period of the speed profile when there is no 

operation on the gear lever and clutch, i.e. fixed overall ratio between the engine and 

wheels. Tests were carried out between 136 s and 176 s of the EUDC driving cycle, 

when the engine and vehicle models are running on third gear and the clutch is fully 

engaged. The speed profile contains typical acceleration, steady speed and 

deceleration processes. 
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The output dynamometer speed control test results are shown in Figure 5-12, and 

three magnified views are shown in Figure 5-13, while the input dynamometer torque 

control test results are shown Figure 5-14 and three magnified views are shown in 

Figure 5-15. Because of the use of low pass filters, there are phase shifts between the 

outputs of the real time models and the dynamometer demands for both speed and 

torque control. The outputs of the engine and vehicle models are shown by solid lines. 

After low pass filter, the dynamometer demands are shown by dotted lines and the 

dynamometer responses are shown by dashed lines. 

It can be seen that both speed and torque responses of the dynamometers are very 

noisy. The fluctuations are even more significant than the errors introduced by the 

low pass filters. However, phase shifts are still observed between the dynamometer 

responses and the real time model outputs. Since the simulated vehicle speed is quite 

smooth, the phase shift is more obvious on the output dynamometer speed control. 

Actually, because of the large mass of the vehicle and the damping in the tyres, the 

vehicle model will have low pass filter behaviours, which will not response to the 

noises in the torque signal. Meanwhile the simulated engine brake torque is much 

noisier than the vehicle speed, which makes the phase shift even less significant. For 

example, the input dynamometer torque response between 164 s and 166 s shown in 

Figure 5-15 can be considered to closely follow the simulated engine brake torque. 

Apart from the phase shifts introduced by the low pass filters, the dynamometer 

responses are successfully controlled to track the filtered real time model outputs 

without any phase shifts which can be seen in Figures 5-13 and 5-15. 
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Figure 5-12 HIL output dynamometer speed control results 
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Figure 5-13 magnified views of Figure 5-12 

136 141 146 151 156 161 166 171 176 
Time (s) 

Figure 5-14 HIL input dynamometer torque control results 
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As discussed in Section 4.3.2, additional PID controllers may further improve the 

compensation results. Therefore, further tests were carried out with additional PID 

controllers for both input and output dynamometers. The control errors are derived 

from the dynamometer responses and the real time model outputs as the inputs of the 

PID controllers. The same PID parameters are used here as in Section 4.3.2. The 

proportional, integral and derivative gains are 0.08, 0.4 and 0 for the output 

dynamometer speed control and 0.03, 0.3 and 0 for the input dynamometer torque 

control. 

The output dynamometer speed control results are shown in Figure 5-16, and three 

magnified views are shown in Figure 5-17, while the input dynamometer torque 

control results are shown in Figure 5-18 and three magnified views are shown in 

Figure 5-19. Compared with the magnified views shown in Figures 5-13 and 5-15, 

phase responses are further improved for both speed and torque control, e.g. between 

164 s and 166 s for the speed control and between 154 s and 156 s for the torque 

control. There is no obvious change in the speed amplitude with additional PID 

controller. The torque amplitude is sometimes slightly worse than before, e.g. 

between 164 s and 166 s shown in Figures 5-15 and 5-19. The control errors are 

made within +/- 3 rev/min for the output dynamometer speed control and +/- 5 Nm 

for the input dynamometer torque control. Therefore, the use of additional PID 

controllers is reasonable in this case. Except for the noises in the measured speed and 

torque signals, the input and output dynamometer responses are controlled to follow 

the simulation results of the real time engine and vehicle models. 

Time (s) 

Figure 5-16 HIL output dynamometer speed control with additional PID 
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Figure 5-17 Magnified views of Figure 5-16 
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Figure 5-18 HIL input dynamometer torque control with additional PID 
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120 



Chapter 6 Conclusions 

In this chapter conclusion is drawn for the programme of research, and potential 

future work is also described. 

6.1 Conclusions 

In this programme of research, a hardware in the loop test facility has been 

developed for automotive powertrains, with a particular interest in testing CVTs. 

Two electric motors were utilized to substitute the real engine and vehicle and test 

CVTs installed in between. In order to provide the same testing environment as in a 

real engine and vehicle, real-time engine and vehicle models can be employed to 

demand virtual driving torque and vehicle speed from the dynamometers. In this 

thesis, digital controllers were designed for the input and output dynamometers to 

accurately track these demands 

A feedforward control scheme based on the input-output inverse technique was 

employed to achieve a perfect tracking. First of all, linearized system models for the 

original plant were identified. Since there were unstable zeros in the identified 

models, direct inversion was not possible. Among the reviewed literature, ZPETC 

was used as the initial design of the feedforward controller to achieve zero phase 

shift for all frequencies. Then the design of the feedforward controller mainly 

focused on four aspects: (a) the further improvement of gain characteristics, (b) the 

optimal design, (c) the causality and (d) the enhancement of robustness to parameter 

variations. 

For the first two aspects, a digital preview filter (DPF) was designed to approximate 

the inverse of the unstable zeros. The gain characteristics were improved by adding 

more zeros into the controllers. A penalty function was formulated within the desired 

frequency range and minimized by Lagrange method. 
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Since the DPF was non-causal, to implement it, future information of the input 

trajectory was required, which can not be provided by the real-time model in advance 

during the test. Causal application of DPFs was realized by adding manual delays 

into the feedback loop. Using system identification techniques, transfer functions 

with small relative orders were identified for the delayed systems in order to reduce 

the number of the preview steps required to invert the stable part of the transfer 

functions. As long as the total number of the preview steps required in the 

feedforward controller was designed to be equal to the total number of delays 

between the measured and delayed system responses, the feedforward controller can 

be implemented causally. 

The designed feedforward controllers possess certain dynamics and will fail to 

compensate for the plant dynamics when there are external disturbances or changes 

in the plant parameters, especially for the output dynamometer speed control. The 

robustness of the feedforward controller was improved by maintaining the dynamics 

of the original plant in an adaptive manner. When the two dynamometers were 

coupled, torque generated by the input dynamometer was compensated for the output 

dynamometer by demanding additional torque from the output dynamometer. An 

additional controller was also designed for the output dynamometer speed control 

system to retain the original load characteristics, when the gear ratio is changed. 

The designed feedforward controllers were tested and verified experimentally by 

using a manual gearbox before recommending its use for a CVT testing. A multi­

frequency test signal as well as simulation results of a whole vehicle model were 

used as torque and speed demand signals in the experiments. A HIL case was also 

presented. Frequency and time domain results showed the effectiveness of the 

feedforward controllers under both testing procedures to fully compensate for the 

dynamics of both actuators. 

6.2 Future Work 

In this project, the proposed control scheme was tested and verified by using a 

manual gear box, because of the lack of technical information and support on the 

CVT. To test the available CVT with varying gear ratios, CAN bus communication 
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needs to be set up between the CVT ECU and the engine ECU, where the CVT can 

gather information about the driving condition and determine the optimal gear ratio. 

To set up the communication, real-time engine and ECU models with a proper level 

of simulation complexity are required. The models need to provide all the required 

interfaces to the CVT ECU. Alternatively, the engine ECU can exist in the hardware 

form and interface with real-time engine model and the CVT ECU. 

The design of the feedforward controller in this project was based on the trial of 

adding different delays to the feedback loop and estimating the transfer functions 

with low relative orders. Generally speaking, the feedforward controller would offer 

better performance with more future values, which means more delays needed to be 

added to the feedback loop to make the feedforward controller causal. But adding 

more delay may make the feedback control unstable, and also may not give good fit 

when estimating the transfer function. Hence, future work is required to find an 

optimal number of manual delays added to the feedback loop and optimal orders for 

the numerator and denominator of the estimated transfer functions, to offer the best 

fit and at the same time the best compensation. 
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