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Summary 

This thesis presents alternative methods for designing a speed controller for a 

hydrostatic power transmission system. Recognising that such a system, comprising a 

valve controlled motor supplied by the laboratory ring main and driving a hydraulic 

pump as a load, contains significant non-linearities, the thesis shows that robust 

„modern control‟ approaches may be applied to produce viable controllers without 

recourse to the use of a detailed model of the system. In its introduction, it considers 

why similar approaches to the design of fluid power systems have not been applied 

hitherto. It then sets out the design and test, in simulation and on a physical rig, of two 

alternative linear controllers using H∞ based methods and a „self organising fuzzy logic‟ 

controller (SOFLC). In the linear approaches, differences between the characteristics of 

the system and the simple models of it are accommodated in the controller design route 

as „perturbations‟ or „uncertainties‟. The H∞ based optimisation methods allow these to 

be recognised in the design. “Mixed sensitivity” and “Loop shaping” methods are each 

applied to design controllers which are tested successfully on the laboratory rig. The 

SOFLC in operation does not rely on a model, but instead allows fuzzy control rules to 

evolve. In the practical tests, the system is subjected to a range of disturbances in the 

form of supply pressure fluctuations and load torque changes. Also presented are test 

results for proportional and proportional plus integral (PI) controllers, to provide a 

reference. It is demonstrated qualitatively that performance using the linear controllers 

is superior to that using proportional and PI controllers. An increased range of stable 

operation is achieved by the controller designed using “loop shaping” – performance is 

enhanced by the use of two controllers selected automatically according to the operating 

speed, using a “bumpless” transfer routine. The SOFLC proved difficult to tune. 

However, stable operation was achieved.  
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Nomenclature 

In general, bold face type is used to denote vector or matrix variables, and plain type 

scalars.  

ai     coefficients of a polynomial (i=1,…n).  

A, B, C, D     state matrices. 

A1,A2    fuzzy controller input fuzzy sets. 

bP,C    stability margin of closed loop P,C. 

B(j) or B(j)    frequency domain performance bound. 

c(nT)    quantised and scaled discrete time error rate. 

C     a compensator. 

d(s) or d(s)      disturbance.  

e(nT)    quantised and scaled discrete time error. 

e(s) or e(s)      error input to compensator.  

f, fi gains in anti-windup/bumpless transfer 

schemes (i=1,2). 

F(s)    a stabilising controller. 

F(.)    linear fractional transformation. 

Fl(.)    lower linear fractional transformation. 

G(s) or G(s)    plant transfer function.  

Gc(s)    PID control law. 

GC     fuzzy controller control error gain. 

GE     fuzzy controller control error rate gain. 

GI     fuzzy controller input scaling factors. 

GO     fuzzy controller output scaling factors. 

GU     fuzzy controller control action gain. 

Go(s)    plant transfer function – nominal plant. 

i,j,k,m,n    integer indices. 

I     identity matrix. 

j     1  (or, in context, an integer index). 

kc     proportional gain in PID control law. 

kcrit     proportional gain at which stablitiy is lost. 

Ki      a gain (i=1, 2,…). 
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K(s) or K(s)    compensator or controller transfer function. 

Kinf     a robust stabilising controller (loop shaping). 

L(s) or L(s)    open-loop transfer function. 

m(s) or m(s)    measurement noise. 

M     derivation of deterministic control action. 

M,N     left coprime factors of G. 

p(nT)    performance measure. 

P(s) or P(s)    a prefilter or other transfer function. 

P     controllability Gramian. 

Pij     partitions of P (i=1,2;j=1,2). 

P,P1,P2    three alternative plants. 

Q     quantisation process. 

Q     observability Gramian.  

Qij     partitions of Q (i=1,2; j=1,2). 

Q(s)    a matrix transfer function; Youla parameter. 

r     ratio /n. 

r(nT)    performance reward. 

r(s) or r(s)     reference signal.  

s      complex variable. 

S(s) or S(s)    sensitivity. 

t      time. 

T      sample interval. 

Td     time constant of differential gain in PID law. 

Ti     time constant of integral gain in PID law. 

Tr1     rise time. 

Ts     settling time. 

T(s) or T(s)    complementary sensitivity. 

     transfer function from u1 to y1. 

uc     controller output. 

umax, umin    saturation limits on control effort. 

u(nT)    deterministic control action. 

u(s) or u(s)   control effort or plant input.  

u, v, w, x, y, z    signal vectors as defined in context. 

11uyT
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(xiii) 

U     fuzzy controller output fuzzy set. 

U(nT)    fuzzy control action. 

Wi(s) or Wi(s)   a weighting function (i=1,2,3). 

y(s) or y(s)    output.  

z     complex operator in z-domain. 

γ a weighting factor; an H∞ norm. 

δ     complex operator in δ-domain. 

δν(.)    gap metric. 

a(s)    additive perturbation transfer function  matrix. 

i(s)  input multiplicative perturbation transfer function  

matrix. 

m(s), o(s)  output multiplicative perturbation transfer function  

matrices. 

M, N uncertainties in coprime factors M,N. 

ε stability margin. 

λi(.) ith eigenvalue. 

ξ     damping ratio. 

     state transition matrix.  

φ     coprime factor equation error. 

ρ(.)     spectral radius. 

ζ     a complex variable. 

ζ(.)     principal gain or singular value. 

ζi(.)    ith Hankel singular value. 

     circular frequency. 

b     bandwidth. 

c     gain crossover frequency. 

n     natural frequency. 

s     sampling frequency. 

x      a norm of vector x, as defined in context. 

G     a norm of matrix G, as defined in context. 

 

See APPENDIX 2 and APPENDIX 4 for more details of mathematical notations used. 

)(tφ
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A Fluid Power Application of Alternative Robust 
Control Strategies  

1 Introduction 

1.1 Preamble  

This thesis describes research on the design and implementation of robust controllers 

for non-linear systems, with particular reference to fluid power. An underlying 

hypothesis of the project is that fluid power systems, which exhibit a high degree of 

non-linearity, are suitable candidates for the application of (so-called) modern 

control methods, but that such methods have not been widely applied because the 

complexity of their theory makes them inaccessible to fluid power system designers. 

This thesis demonstrates by simulation and practical testing that these methods can 

be applied successfully to fluid power systems. In doing so, it demonstrates how 

„linear‟ controller design methods can accommodate non-linearities. After a brief 

introduction, it sets out the motivation for the research. The research area is defined 

and objectives are set. 

The thesis contains in its second chapter a literature review of relevant research, in 

which an attempt is made to focus on practical applications in the field of fluid 

power as well as on the theoretical background on which the current work is based. 

A brief examination of the meaning of the term „robust‟ is included. The review 

found few references to practical applications of „modern‟ control to fluid power, 

developed through to practical application and testing. 

The candidate system for study and test is a hydrostatic power transmission system 

comprising a loaded valve-controlled motor and its speed control loop. This is 

described in Chapter 3, with further details in Appendix 1. Disturbances and 

uncertainties are briefly described with reference to this test system. The simulation 

tools to be used are also introduced. These are Bathfp, chosen for its ability to 
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facilitate fluid power circuit design, and MATLAB, which provides a range of 

control system design tools. 

The applicability of some linear robust and fuzzy logic control techniques to the non-

linear system is investigated in simulation and test. For reference, proportional and 

PID (proportional plus integral plus derivative) control schemes are also applied to 

the candidate system, as summarised in Chapter 4.  

The linear robust control methods examined in depth are H mixed sensitivity and 

H loop shaping, in Chapters 5 and 6 respectively. The backgrounds to these 

methods and some issues of significance to the fluid power application are discussed. 

The methods are developed in a fashion consistent with the application in an 

endeavour to improve their accessibility to fluid power engineers. A design rationale 

is presented and applied. Controllers are designed using plant models. Where 

simulation of the closed loop system indicates that the controller is viable, it is rig 

tested. Appendix 2 contains some of the background mathematics. 

Some issues affecting the transport of the controllers to the test rig and the test 

arrangements are described. The implication of word length in a real-time processor 

is briefly considered. Issues affecting the choice of sampling frequency are discussed 

in Chapter 5. Alternative designs in which the same control algorithm is 

implemented using both z- and δ-transforms are also compared in Chapter 5. Test 

results are presented and compared with each other and with simulation results 

where appropriate.  

Chapter 6 relates to the design, simulation and testing of a controller using H loop 

shaping. In an attempt to provide good performance over a wide range of operating 

conditions, the controller includes a „bumpless‟ transfer switch between two control 

algorithms, one of which is selected at „low‟ speed and the other at „high‟ speed.  

Test results confirm the practicability of the controller designs presented, and show 

some advantages over PID control.  

Fuzzy control strategies are investigated in Chapter 7. The theory of fuzzy control is 

summarised, and a clear link between basic fuzzy logic theory, including the theory 

of relations and inference, and its use to implement a controller incorporating expert 
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rules is developed. More detail is contained in Appendix 4. The theory of the „self 

organising fuzzy logic controller‟ (SOFLC) is summarised in Appendix 5 and an 

application suitable for the fluid power test system is developed, tested in simulation 

and applied to the test rig. Particular attention is given to the evolution of the control 

rules. 

Finally, in Chapter 8, the practical issues of implementation for the various 

controllers are compared and contrasted. Areas for further work are identified. The 

main conclusion is that the „modern‟ control methods described can be successfully 

applied in a fluid power environment.  

1.2 Publications, etc. 

The work described in the sequel has resulted in the following publications and 

conference papers: Njabeleke et al. (1997), (1998(1)), (1998(2)), (2000); Pannett et 

al. (1999).  

1.3 Motivation 

The motivation for pursuing this research area was the author‟s impression that 

despite the fact that a range of so-called „modern control‟ techniques has been 

developed, and that some have their origins in analysis undertaken in the 1960s and 

70s, the range of industrial applications still remains narrow. There are few reported 

applications in a fluid power environment. Applications outside aerospace and 

defence are apparently rare. Is it possible to demonstrate the applicability of these 

„modern control‟ techniques to fluid power systems, and do they offer any benefits 

with respect to those more commonly used?  

Some of the impediments to the wider adoption of „modern control‟, along with 

some remedial actions which might be appropriate, as perceived by the author, are 

summarised in Figure 1.1. 

Williams (1995, (1)) wrote of a gap between theory and application and of a 

„knowledge threshold‟ facing industry which must be overcome before it can achieve 

the benefits available from the application of advanced control: 

“Successful control applications have to be founded on a number of factors: 
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 appropriate theory 

 usable design tools 

 computer hardware and software technology 

 appropriate practical experience”. (Williams, 1995, (2).) 
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Thus the thrust of the work becomes the investigation and analysis of the theory of a 

range of modern control techniques and their applicability in a fluid power 

environment, which is characterised by severe non-linearities. The applications of 

alternative H  based methods and of a self organising fuzzy logic scheme in 

simulation and physical implementation are examined.  

1.4 Definition of Research Area 

Using Williams‟ terminology, this thesis reports on an investigation into Robust 

Control as an „appropriate theory‟ for application to the domain of fluid power 

systems based on „practical experience‟. It embraces the development of „usable 

control design tools‟ based on suitable computing platforms, and the acquisition of 

„appropriate experience‟ in their application to industrial problems. There is a 

considerable literature on „robust control‟; a wide variety of theories has been 

developed. Much of the theory has been tested in simulation; rather less of it seems 

to have been applied. Aerospace may be an exception. The sequel has found few 

applications in the field of fluid power.  

1.5 Research Objectives 

The objectives of this research, as initially defined, were as follows: 

 To compare the merits of alternative robust controllers for non-linear 

systems, taking account of performance, reliability, cost and complexity of 

implementation; 

 To produce design guidelines, using the results of the above comparison, for 

controller selection criteria; 

 To validate these guidelines by application to physical machinery systems 

design involving electrical, mechanical and fluid power components. 

In the time available to undertake the research which supports this thesis, these 

objectives have been interpreted by focussing on the application of a range of robust 

control strategies to a hydrostatic power transmission system: the speed of a valve-

controlled fluid power motor supplied from a laboratory ring main and subjected to 

disturbances both to supply pressure and load torque is controlled.  
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Emphasis has been placed on practical implementation on a physical test rig. 

Although the test system clearly contains non-linearities, a fundamental hypothesis 

of the work is that robust linear control techniques can be applied: the system can 

usefully be considered to be linear, the non-linearities being treatable as 

„perturbations‟, which a robust controller must accommodate. Thus it is postulated 

that controllers for this non-linear system can be designed by various „modern‟ 

methods without recourse to a detailed non-linear model of the system: non-

linearities can be treated as perturbations to a linear model, so that an H∞ linear 

robust controller design method can be used. Alternatively, a fuzzy logic based 

approach, which requires no plant model, can be used. Consequently, the absence of 

complex models opens up the possibility of a straightforward route for the generation 

of controllers for fluid power systems with their inherent non-linearities. 

1.6 A Note on ‘Modern Control’ 

Green and Limebeer (1995) consider that the terminology „Modern Control‟ has 

fallen into disuse. It is retained here to identify certain design strategies for 

controllers which were developed by and subsequent to the work of developers such 

as Wiener, Hopf and Kalman in the 1950s. 

1.7 Controller Design Issues 

The controller designer needs to have a specification of the desired performance of 

the combined system (controller and plant or process). For a mechanical system, this 

is likely to be defined in terms of its required transient response, ability to reject 

disturbances, and steady state error (difference between required and actual plant 

output). For a chemical or manufacturing process, the required response might be 

expressed in terms of raw material waste avoidance, as well as desired output 

characteristics such as chemical concentrations or other product parameters. 
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The control design process requires as inputs: 

 information on the dynamic performance of the plant (relationship between its 

inputs and its outputs); 

 information on the variability of this performance with, for example, amplitude 

or frequency of inputs (due to non-linearities), environmental effects (such as 

temperature effects on dimensions or material properties e.g. viscosity), wear, 

and manufacturing tolerance. 

In addition, estimates of the shapes of disturbances and extraneous input (noise) 

signals must be available. Crucially, the controller outputs must lie within a range to 

which the plant can safely respond.  

Additionally, the physical implementation of the controller may be subject to a 

monetary cost constraint. For both bespoke and mass produced systems, there may 

be, within an overall system performance specification and monetary cost target 

(budget), scope for a trade off between controller complexity and plant specification 

(expressed in terms of manufacturing tolerance, linearity, maximum actuator power, 

transducer performance, etc). The implication of the application of monetary cost 

constraints on the selection of components and controller design has not been 

explored in the current work. 

1.8 Units 

In general, SI units are used throughout, in accordance with Bureau International des 

Poids et Mesures “The International System of Units (SI)” 8th edition 2006 

(Organisation Intergouvernementale de la Convention du Mètre). 

 http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf  

(downloaded 26/06/2009 16:05.) 

However, in accordance with standard practice in the fluid power industry, and as 

permitted by Bureau International des Poids et Mesures, the unit of pressure used is 

the bar (1 bar = 0.1 MPa). Also, as used in the industry, shaft rotational speeds are 

generally reported in revolutions per minute using the abbreviation rpm. 

 

http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
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2 Literature Review 

2.1 Background 

To set the work in a historical context, it is informative to look back some 30 years at 

views held then on the direction that the development of the theory and application 

of control might take. In his paper, ‘The Future of Control’, Rosenbrock (1977) 

identifies the emergence of ‘modern control’ as occurring in the 1960s. Tools were 

needed to solve control problems arising in the aerospace industry: in particular, 

rocket guidance. He associates the term ‘modern control’ with the formulation of 

control problems in a style which enables them to be solved algorithmically to 

synthesise controllers. Rocket guidance problems could be expressed in a closed 

mathematical form well suited to algorithmic solution routes. However, he suggests 

that reasons why practising control engineers outside the aerospace industry were 

slow to adopt ‘modern’ methods included the difficulty in defining what constituted 

a desirable response, incomplete knowledge of system constraints, the presence of 

non-linearities, and the impracticability of producing adequate system models with 

finite dimensions. Thus, he considered that the importance of the development of 

‘modern control’ lay not with methods, which focussed on the synthesis of 

controllers, but rather with techniques which enhanced the understanding of the 

foundations of control and which clarified the definition of the control problem, 

leading, for example, to an improved understanding of the effects of uncertainty and 

non-linearity on stability margin. Further, he identified the (then) increasingly ready 

availability of interactive computing techniques as the means by which designers 

could apply the sophisticated system analysis techniques which came with ‘modern 

control’ developments. Developing graphical user interfaces made the results 

accessible to the designer and facilitated a high degree of iteration in the design 

route. 
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The current work aligns with Rosenbrock’s ‘prophetic’ analysis in that it has made 

use of advanced interactive software, principally MATLAB and Bathfp (see 

Burrows, et al., 1991, Tomlinson and Tilley, 1993) incorporating powerful and 

flexible graphical user interfaces. It has endeavoured to apply ‘modern control’ 

concepts to a fluid power application. 

 

2.2 Fluid Power Systems  

Fluid power systems are commonly used in applications in which their high power to 

weight ratios and ability to deliver very high forces or torques offer performance, 

cost or environmental advantages over alternatives (such as systems containing 

electromagnetic actuators or motors). Backé included a thorough review of the 

merits of fluid power in his Institution of Mechanical Engineers Thomas Hawksley 

Memorial Lecture (Backé, 1993). He summarised the key features of fluid power as: 

1. Low weight-power ratio 

2. Small dimensions 

3. Good controllability of pressure and flow 

4. Good time response 

5. Possibility to transmit power over medium distances 

6. Easy transformation of hydraulic to mechanical power of a longitudinal motion 

(cylinder and piston) 

7. Conduction of heat out of components by the pressure fluid. 

An unashamed proponent of and enthusiast for fluid power, he nevertheless 

recognised that developments in competing technologies required that fluid power 

needs to be constantly improved. This thesis contributes to this improvement by 

demonstrating how alternative control technologies might be used to improve fluid 

power system performance or reduce costs by making reduced demands on 

component manufacturing precision and tolerance. Backé points out that low natural 

damping and non-linearities constitute disadvantages for fluid power systems which 

can be mitigated by controller design. He considered that the possible future 
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developments of fluid power would include an ‘intensified application of modern 

control concepts with adaptation to changes in open-loop properties’ (ibid. Table 3). 

Hydraulic motors and rotary actuators are widely used in industry. Applications 

include the driving of continuous webs of textiles and paper during manufacture and 

processing, and in winches and cranes. The latter are found on sea-going ships as 

well as on land. They are used to drive lead screws in machine tools and in screw 

forging presses. Pinch rolls in continuous billet casting machines may be driven by 

hydraulic motors. Other applications include ladle change car drives in converter 

steel works, manipulators (via rack and pinion drives) for hot steel forming, and 

theatre stage rotation. Examples of this wide range of applications may be found in, 

for example, Hunt and Vaughan (1996), Valenti (1997) and Evans-Pughe (2007). 

The references do not in general give details of the type of control applied to the 

motors and actuators – there are, of course, many possibilities. Although valve 

control, as employed in the current work, is not energy efficient (e.g. Backé, 1993), it 

is straightforward to implement and offers rapid response. 

An examination of conference proceedings and journal papers of the late 1960s, 

1970s and early 1980s by Edge (1997) revealed a relatively low level of activity with 

regard to electrohydraulic system control. He found that a wide variety of control 

schemes had been researched subsequently, most requiring micro-processor 

implementation. He discusses the strengths and weaknesses of a range of different 

control strategies, as applied to fluid power and pneumatics, ranging from PID to 

fuzzy, referring to published research. He concludes that for industry to capitalise on 

the research, it is important to establish effectively the relative merits of different 

control schemes for given applications. 

Burrows (2000) includes an updated review of the design of controllers for fluid 

power systems. He acknowledges that if performance specifications are not too 

arduous, classical PID controllers can be effective despite the non-linear 

characteristics of valves, pumps and motors. He concludes that ‘the evolution of 

fluid power systems is inextricably linked to advances in control theory. The 

development of robust control techniques capable of dealing with model uncertainty 

and parameter variations is of major significance in the design of fluid power 

systems.’ 
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Fluid power, in particular hydrostatic power transmission systems, continues to be an 

important and widely used technology. Hydrostatic drives are made attractive by 

their flexibility and high power density (e.g. Murrenhoff et al., 2008). 

2.3 ‘Robustness’ 

An important concept in controller design is ‘robustness’. This is perhaps best 

considered by examining how it is defined in the literature. Thus, in a selection of 

control engineering texts, robustness is explained or defined as follows: 

 A robust control system exhibits the desired performance despite the 

presence of significant plant (process) uncertainty (Dorf and Bishop, 

1995); 

 If the (control system) design performs well for substantial variations in 

the dynamics of the plant from the design values, we say the design is 

robust (Franklin, et al., 1991); 

 The particular property that a control system must possess in order for it 

to operate properly in realistic situations is called robustness. 

Mathematically, this means that the controller must perform satisfactorily 

not just for one plant but for a family (or set) of plants (Stefani et al., 

1994); 

 Robustness can be defined in various ways, but generally the word 

implies the maintenance of adequate stability margins or other 

performance levels in spite of model errors or deliberate 

oversimplifications (Brogan, 1991); 

 A control system is robust if it is insensitive to differences between the 

actual system and the model of the system which was used to design the 

controller (Skogestad and Postlethwaite, 1997). 

An industrialist might define a robust controller as one that is able to withstand 

physical misuse by installers and operators without suffering irreversible damage. 
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2.4 Applications of ‘Modern’ Linear Methods to Fluid Power 

The current work has found few applications of ‘modern’ linear methods to fluid 

power, carried through from simulation to practical implementation. Piché et al. 

(1991) have reported the application of H ‘mixed sensitivity’ to the design of a 

controller for a hydraulic position servo, with practical test results. They also 

reported the design of a controller for a similar system using ‘structured singular 

value optimisation’ (1992). Simulation, but not practical test, results are reported for 

the latter. Hampson et al. (1996) reported the design of a robust controller for a 

hydrostatic transmission using H ‘mixed sensitivity’; they included the results of 

simulations but did not proceed to implement the controllers practically. Sanada and 

Kitagawa (1996) have provided a limited demonstration of the application of 

µ-synthesis to the control of the band brake in an automotive automatic transmission. 

They found that, despite using a detailed model of the system to design their robust 

controller, the required performance (as measured by shift time) proved to be 

elusive.  

The underlying mathematical theory of modern methods incorporating H 

approaches has been developed in depth over the past 30 years or so. Much of the 

literature is impenetrable to anyone without a strong mathematical background; 

notations and terminologies in the associated matrix algebra are not always 

consistent. Francis (1987) provides a detailed mathematical background to H 

theory; Macieowski (1989) attempts to provide his readers with enough 

mathematical background to make the modern multi-variable control theory 

accessible. Other works such as Skogestad and Postlethwaite (1997) include useful 

appendices to familiarise the reader with the matrix and other mathematics needed to 

underpin the control theory presented in the main text. References to particular 

works appear in the sequel. Some undergraduate textbooks on control engineering 

(e.g. Stefani et al., 1994) now include an introduction to H theory. The literature 

demonstrates the effectiveness of H approaches for the design of multivariable 

feedback controllers. In the current work, its ability to provide ‘guaranteed’ 

robustness and defined performance has been exploited.  
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The availability of software implementations of complex techniques through 

MATLAB toolboxes (Chiang and Safanov, 1988 and Balas et al., 1994) have 

facilitated the design of controllers using these techniques. A number of applications 

in the aerospace industry have been reported. References to these may be found in, 

for example, Skogestad and Postlethwaite (1997). Morari and Zafirou (1989) show 

how the techniques may be applied in the process industry, where time delays are 

significant and the minimisation of wastage, especially during start-up, are important 

considerations for the control designer.  

Zhang et al. (2002) sought to apply, inter alia, an H  based loop shaping method to 

the synthesis of a controller for the power train of an earth moving vehicle. They do 

this using a sophisticated model with 9 measured outputs and 14 states, in contrast 

with the sequel which seeks to demonstrate that an adequate performance can be 

achieved without recourse to a complex plant model. 

Kim et al. (2003) describe the synthesis using an H optimisation of a controller for 

a cold rolling strip mill. To use state space methods, they linearise the non-linear 

system equations at a nominal operating point. They demonstrate in simulation that 

this controller is superior to controllers designed by other methods. However, there 

is no report of practical application.  

Jayender et al. (2005) describe how an H  loop shaping controller design route is 

applied to a shape memory alloy (SMA) actuator, by selecting an operating point and 

deriving a linear model for the actuator at that operating point. Although not on a 

fluid power application, this work is of interest because the SMA actuator, like a 

fluid power actuator, exhibits severe non-linearities.  

Rabbo and Tutunji (2008) have shown how an auto-regressive moving average 

recursive identification method may be applied to a hydrostatic transmission system 

to produce third and fifth order transfer functions at selected operating points. The 

focus of their work is the validation of the models produced, which includes the use 

of a test rig. They do not report the use of the models to design controllers. Their 

approach contrasts with that in the sequel: they endeavour to produce accurate 

models using sophisticated identification methods, rather than rely on simple models 

for use with robust controllers. 
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2.5 Fuzzy Logic and Fluid Power 

This thesis also examines the application of a ‘self organising fuzzy logic controller’ 

to the candidate fluid power system. The application of fuzzy logic has been 

somewhat contentious in the control community. Thus: 

‘Fuzzy logic is not as good as its strong proponents argue, and not as 

bad as its detractors say!’ 

(Prof Karl Aström at the Institution of Electrical Engineers, London, following his 

presentation of the Inaugural Tustin Lecture (12 May 1999) entitled ‘Digital Control 

- A Perspective’.) 

However,  

‘Fuzzy systems let us guess at the non-linear world and yet do not make 

us write down a math model of the world’ 

(Kosko, 1994) 

The seminal work on the application of the principles of fuzzy logic to decision 

making and control was undertaken by Zadeh at the University of California, 

Berkeley. His work was largely funded by grants from the US Army and Navy and 

from NASA. It was Zadeh’s contention that techniques employed for the analysis of 

mechanistic systems were not appropriate for humanistic (or human centred) 

systems, or, indeed, for systems whose complexity is comparable with that of 

humanistic systems. ‘As the complexity of a system increases, our ability to make 

precise and yet significant statements about its behaviour diminishes until a 

threshold is reached beyond which precision and significance (or relevance) become 

more mutually exclusive characteristics’ (Zadeh, 1973). 

Building on his earlier work to develop the concept of the fuzzy set, his ‘new’ 

approach introduced three main distinguishing features (ibid.): 

1) The use of so-called linguistic variables in place of or in addition to numerical 

variables; 

2) Characterisation of simple relations between variables by conditional fuzzy 

statements; 
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3) Characterisation of complex relations by fuzzy algorithms. 

(These features are considered further in the Appendix 4.) 

These concepts were introduced in support of decision making and the analysis of 

complex systems. Typical of early applications employing decision making is the 

fuzzy logic control of a traffic junction reported by Pappis and Mamdani (1977). In a 

review of the development of the applications of fuzzy logic, Zadeh (1988) 

acknowledges that the application of fuzzy logic to process control had not been 

anticipated when its ground rules had been laid. He credits Mamdani and Assilian 

(1975) with the first implementation of fuzzy logic based control, for the regulation 

of a steam engine. He lists a range of control process applications, most in Japan. No 

fluid power applications are explicitly identified.  

King and Mamdani (1977) sought to demonstrate the merits of controlling ‘complex’ 

processes by using a heuristic approach incorporating fuzzy control concepts. The 

‘complex’ processes to be controlled are those which are non-linear and time 

varying, and for which available measurements are poor. The difficulty of modelling 

such processes made controller design impracticable and resulted in the use of a 

human operator as controller. A human operator’s control strategy is based on 

intuition and experience, and is considered as a set of ‘rules of thumb’ (‘heuristic 

rules’). King and Mamdani describe how the theory of fuzzy sets and algorithms 

developed by Zadeh can be used to model the human operator, thus generating a 

process controller. The limitation set by available digital computing power resulted 

in the use of a coarse level of measurement quantisation for error and rate of change 

of error. Use of quantisation levels of 14 and 13, respectively, together with a set of 

rules, permits the use of a 182 (= 14  13) element pre-computed look-up table to 

generate the required control action. Implementing the control policy directly at each 

sampling interval was not considered to be adequately computationally efficient. The 

use of look-up tables with short word length digital systems and programs to 

generate suitable tables had been investigated by Rutherford and Bloore (1976). 

King and Mamdani advise, without explanation, that ‘the choice of sampling interval 

depends on the process to be controlled and should be selected so that at least five 

significant control actions are made during the process settling time.’ 
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A range of alternative approaches to the implementation of fuzzy control rapidly 

developed, as reported by Tong (1977) in a review of applications. He found that 

some used set point error and change in set point error as inputs, while others used 

set point error and sum of set point error as inputs. Output was either control or 

change in control. Tong described an application of his own in which the inputs are 

set point error and change in set point error and the output is control when the error 

is large and change in control when it is small. He found that a fuzzy controller 

offered robust closed loop performance, tolerating process parameter changes well, 

with reasonable noise rejection capability, and even partially insensitive to variation 

in its own implementation. Tong proposed that further consideration be given to a 

controller which ‘learns’ about the process to be controlled. He referred to work by 

Mamdani and Baaklini (1975) and Procyk (1977) who had already commenced work 

on ‘self organising’ fuzzy controllers. 

Lee (1990 (1), 1990 (2)) undertook a further review of the theory of fuzzy logic and 

how it might be applied to controller design. He presents a thorough review of the 

theory of fuzzy logic, before discussing a range of practical issues related to the 

implementation of a fuzzy logic controller. In his discussion of the discretisation of 

the universe of discourse, he refers to the benefit of shortening the controller running 

time by using a look-up table based on discrete universes. The look-up table defines 

the controller output for all possible combinations of inputs. On this, Lee refers to 

the work of Rutherford and Bloore (1976). Lee identifies a wide range of 

applications of fuzzy logic control, but finds none in the fluid power field. He cites 

the conception and design of fuzzy systems that have the capability to learn from 

experience as a direction of then recent exploration. 

Recognising that no systematic method for the design and analysis of a fuzzy logic 

controller had been produced, Zhang and Edmunds (1991) produced one, for stated 

fuzzy implication, fuzzy inference and defuzzification methods. They showed that 

the defuzzified output of a ‘standard’ (proportional plus derivative or proportional 

plus integral) fuzzy logic controller is arrived at by ‘a kind of non-linear 

interpolation’. 

Klein and Backé (1993) provide an ab initio introduction to fuzzy logic control, 

aimed at practitioners of fluid power and pneumatics, and demonstrate the 
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application of fuzzy logic to the control of a pneumatic system in which the feedback 

gains in a state space controller were adapted according to fuzzy rules. 

In the present work, the focus has been the application of ‘self organising fuzzy logic 

control’ (SOFLC) in a fluid power environment; changes in the characteristics of the 

candidate system (a valve controlled motor) with speed set point and supply pressure 

suggest that a set of rules in a fuzzy logic controller which is appropriate in one set 

of conditions might not be appropriate in another, making some form of adaptation 

necessary. 

Procyk and Mamdani (1979) published the first description of a rationale for a 

‘linguistic self-organising process controller’. They describe a fuzzy logic controller, 

which is enhanced to include continuous adaptation of the control rules. The 

adaptation is made in response to the results of performance measurement. A 

performance measure is set, and adjustments to the control rules are made in an 

attempt to optimise its value. The designer sets qualitative standards for the 

performance required; a fuzzy logic approach is used to apply these to the system 

and modify the current set of rules in the controller. The authors emphasise that the 

performance measure is not process specific; they retained the same measure in 

simulation experiments for a range of processes.  

In a design study, Daley and Gill (1986) investigated how the attitude of a flexible 

satellite might be controlled using a self organising fuzzy logic controller. A 

declared design aim was the production of a controller which would be capable of 

starting with no initial rules. Discrete universes of discourse and a look-up rules table 

are used. The rules amendment algorithm described for this complex multi-variable 

process requires all the current rules in the controller’s look-up rules table to be 

examined in each rule modification cycle. The need for significant computational 

effort is recognised. 

In the current work, described in the sequel, the contents of the rules table, rather 

than of a look-up table, is updated; only one rule is considered for update in each 

cycle. 

In subsequent work, Daley and Gill (1987) improved the performance of their 

controller by arranging for the vector of gains on the inputs and outputs of the 
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controller to be switched between two values according to the satellite’s states. They 

did this in preference to increasing the number of elements in the (quantised) support 

sets and the number of rules, in order to avoid computation burden, and thus to 

reduce the achievable computational cycle time.  

Linkens and Abbod (1991) investigated the application of SOFLC to two test rigs, 

one incorporating tank level control and the other belt tension control. Although 

apparently using a quantised approach and a rules amendment algorithm which 

involved the update of a look-up table similar to that of Daley and Gill (1986), they 

found that the processing speed of available personal computers was insufficient to 

enable the control algorithm for the belt tension control rig to be executed at the 

required rate (50 Hz). They therefore used parallel processing and ‘transputers’. On 

both test rigs they used a gain switching logic to increase the gains when the 

systems’ outputs were near the set point in order to reduce steady state error whilst 

maintaining satisfactory transient response. They found that controllers with initially 

empty look-up rules’ tables worked satisfactorily.  

Zhang and Edmunds (1991) focus on rule modification algorithms, attempting to 

devise supervisory rules to determine when rules should be modified and when they 

are ‘good enough’. They do this by reference to phase plane analysis and switching 

curves (see, for example, Schwarzenbach and Gill (1992)). The credit value for rule 

modification is determined by the direction of the movement of the process state 

rather than by the position of the process state. The rule modification algorithm 

operates on the contents of the look-up table which is applied to the quantised 

controller inputs. Zhang and Edmunds present a series of simulation results for a 

series of simple linear process models (first order, second order, and first order with 

pure time delay). For each simulation, the controller starts with an empty rules’ look-

up table.  

Daley and Newton (1994) explored in simulation the application of both a neural 

network and self organising fuzzy logic to the control of an electro-hydraulic rotary 

drive system. They followed the approach of Daley and Gill (1987). Thus the rule 

modification algorithm operates on the contents of the look-up table; controller 

inputs are quantised and fuzzy sets are defined on universes of discourse containing 

14 elements. They report that they examined continuous set descriptions also, but 
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record only that similar performance was obtained. Details are not given. They 

conclude that SOFLC was not as successful as and generated a higher computation 

burden than a feed forward neural network based controller described in the same 

reference. 

Huang and Huang (2004) describe the design and practical testing of a self 

organizing fuzzy controller for active vibration suppression of a spring-mass-damper 

system. The system incorporates two direct current servomotors. They make use of a 

rules amendment procedure, starting with no initial rules. 

Feng (2006) carried out a comprehensive review of the application of fuzzy logic 

control. He found applications in fields such as electrical power distribution system 

transient stability control, active queue and asynchronous transfer mode management 

in telecommunications networks, mechanical/robotic systems, including magnetic 

bearings, robotic wrists, four bar linkages and autonomous robots, automobiles, 

including suspension control and anti-lock braking systems, and industrial/chemical 

processes, with applications including temperature control, heat exchanger control 

and stirred tank reactor vessel control and tank level control, waste treatment and 

cement kiln control. However, none of his 349 references appears explicitly to relate 

to the field of fluid power, in particular to a hydrostatic power transmission system.  

2.6 Artificial Neural Networks and Fluid Power 

Although not pursued in depth in this thesis, the possible use of artificial neural 

networks for the control of fluid power systems is recognised here for completeness: 

such networks are candidates as building blocks for controllers for systems which are 

not easily and precisely defined by virtue of their non-linearities and uncertainties in 

the values of key parameters.  

The work of Daley and Newton (1994) in which they explored in simulation the 

application of a neural network to the control of an electro-hydraulic rotary drive 

system has been referred to in Section 2.5 above. Newton (1993, 1994) details the 

design and implementation, including training, of various neural network based 

controllers. He considers that these may have some advantages over ‘robust’ linear 

design methods, because the latter leads to complexities in the design and analysis of 

the controller, and may result in a compromise between performance and sensitivity.  
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Nisiumi and Watton (1996) describe the use of real-time artificial neural network 

control for a servo valve/motor drive. They disclose favourably a comparison 

between the performance of the system when controlled using a neural network 

trained on a simulation of the system with the performance when controlled by a 

controller designed using a linear model. Wong et al. (1998) describe the design of 

inverse neural network controllers for use with low specification direct current servo 

drives. They demonstrated by experiment that the performance exceeded that of a 

PID controller tuned using the Ziegler-Nichols method (e.g. Schwarzenbach and 

Gill, 1992, p. 218 et seq.). However, stable operation demanded the inclusion of a 

series gain of less than unity.  

Neural networks have been judged unsafe for use in process control industries, such 

as polymer manufacture. According to Turner et al. (2003), neural network process 

gain predictions can spuriously invert in real time causing valves to open when they 

should be closed. This unsuitability of neural networks was endorsed by Dr Steve 

Williams in his IEE Tustin Lecture on Thursday, 5 May 2005.  
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3 System Description, Simulation Environment and 

Controller Design Route 

The focus of this thesis is the design and testing by simulation and practical 

investigations of robust controllers in a non-linear system, in particular for the speed 

control of a hydraulic motor in a hydrostatic transmission system. Particular 

attention is given to disturbance rejection. Disturbances arise from changes in torque 

load and supply pressure fluctuations. The former may be cyclical, as, for example, 

when the motor is driving a reciprocating load. Supply pressure fluctuations can be a 

consequence of several users sharing a common pressure source. A fluid power 

transmission system was chosen as candidate because non-linearities and parameter 

uncertainties can make the design of control arrangements for fluid power 

challenging (Edge, 1997). However, the characteristics of fluid power systems 

continue to make them attractive in a wide range of applications (Backé, 1993). 

Linear approaches, incorporating H ‘mixed sensitivity’ and ‘loop shaping’, and 

‘fuzzy logic’ are applied to controller design. For the linear approaches, non-

linearities are treated as contributions to the uncertainties in linear models of the 

system. These models are derived from information and specifications contained in 

the data sheets supplied by the component manufacturers, and from the geometry of 

the system as measured. 

3.1 The Test Rig 

The candidate system for study and test is a hydrostatic power transmission system 

comprising a loaded valve-controlled motor and its speed control loop. The motor is 

supplied from the laboratory ring main. This and the motor comprise a fluid power 

transmission system. A second hydraulic system controls the load applied to the 
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motor. The main components of this second system are a pump discharging into a 

solenoid actuated proportional pressure relief valve. The pump operates in a closed 

circuit. In order to prevent overheating of the fluid in this circuit, provision is made 

to bleed off a proportion of the fluid through an orifice and return it to the reservoir. 

Fresh fluid from the laboratory ring main is added to the low pressure side of the 

circuit. To permit bi-directional operation, a series of check valves, mounted in a 

manifold, is provided. Figure 3.1 shows a simplified schematic of the motor/pump 

combination. 

 

Figure 3.1 Simplified schematic of the test rig 

The test rig is a subset of a motor comparator test rig. This was originally created to 

provide a test bed on which the performances of electric and hydraulic motors could 

be assessed and compared, and computer simulations of them evaluated and verified. 

Details of the motor comparator test rig may be found in Monaghan (1998).   

Front views of the test rig are shown in Figure 3.2 and Figure 3.3. These show the 

motor/servovalve combination and the interface unit.  

The motor (Figure 3.4) is a Moog-Donzelli Size 2 axial piston motor (39.5 cc/rev 

displacement) supplied via a Moog model 76M104 servovalve. Its series connected 

coils are rated at 20 mA. 
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Figure 3.2 Front view of test rig showing hydraulic motor and electronic 

interface racks 

 

Figure 3.3 Front view of test rig showing hydraulic motor and drive shaft to 

pump 
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Figure 3.4 Close up of hydraulic motor with servovalve and pressure 

transducer 

 

Figure 3.5 View from motor end showing drive shaft, large pulley, and belt 

drive to optical encoder 

The motor is connected via flexible couplings and rigid shaft (Figure 3.5) to a 

coaxially mounted Sauer Sundstrand gear pump SNM2/19 CO 02 (19.2 cc/rev 
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displacement) at the rear (Figure 3.6). The shaft drives a BEC734 optical encoder 

(1250 pulse/rev) through pulleys and a belt. From the output of this encoder is 

derived electronically a shaft speed signal by an electronic unit which incorporates a 

Burr-Brown VFC32 voltage-to-frequency and frequency-to-voltage converter chip.  

The shaft, couplings and belt driven optical encoder are enclosed within a cage for 

safety reasons. 

 

Figure 3.6 View from rear showing gear pump  

The pump operates in a closed loop hydraulic circuit built on a purpose designed 

manifold (Figure 3.7) (see Monaghan, op. cit.). This contains a Vickers solenoid 

actuated proportional pressure relief valve with integral amplifier (KACG-6). The 

valve may be seen on the manifold at the rear of the photograph (Figure 3.7). The 

setting of this valve controls pump discharge pressure and thus the motor load 

torque. Load disturbances are applied by varying the pressure relief valve set point. 

The load torque is related to the pump discharge pressure by the relationship: 

             
                                              

  
 

using compatible units (e.g. Cundiff, 2002), ignoring leakage and losses. 
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Thus, for the Sauer Sundstrand gear pump 

                                           

 

 

Figure 3.7 Hydraulic loading circuit manifold 

 

Figure 3.8 Front view of test rig showing electronic interface racks and PC for 

control and data logging 
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The manifold also contains a series of cartridge type check valves to allow 

bidirectional operation of the pump whilst ensuring unidirectional flow in the 

pressure relief valve.  

Other transducers connected to the rig permit the measurement of motor and pump 

flows, and pump circuit pressure relief valve differential pressure.  

An interface unit permits control and data logging to be undertaken using a PC 

(Figure 3.8). The interface unit includes a current amplifier which delivers 20 mA 

(maximum) to the servovalve when the control signal derived from the digital to 

analogue converter driven by the PC is 10 V.  

Controllers were implemented digitally using software written in C++. (The interface 

unit also incorporates an analogue PID controller, used for motor performance 

testing by Monaghan (1998).)  

More information on the test rig, including extracts from component data sheets and 

key parameters, is contained in Appendix 1.  

3.2 Simulation Environment 

The simulation tools used for this research are: 

 Bathfp (Burrows et al., 1991) for circuit simulation; 

 MATLAB, in particular the Robust Control Toolbox (Chiang and 

Safanov, 1992) and the -Analysis and Synthesis Toolbox (Balas et 

al., 1993)) for the design of linear controllers, and the Fuzzy Systems 

Toolbox (Wolkenhauer and Edmunds, 1994) for the development of 

fuzzy logic controllers. 

A particularly valuable feature of Bathfp is its ability to generate linear models of a 

system in state space form at user selected operating points. These may be imported 

into MATLAB to facilitate analysis (e.g. of frequency response) or controller design.  
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3.3 Controller Design Route 

A design methodology for the design of the linear controllers was drawn up as 

follows, and is illustrated as a flow chart in Figure 3.8. 

 

 

Figure 3.8 Design methodology used in case study 
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The methodology may be summarised as follows: 

1. Simulate the rig in Bathfp, creating or modifying component models as necessary 

and establishing parameters by reference to manufacturers’ data sheets and rig 

dimensions; 

2. Use the Bathfp Linear Analysis Tool to produce linearised representations of the 

rig in state space form; 

3. Import the linearised representations of the rig into MATLAB and use them to 

design continuous controllers; 

4. Test the continuous controllers using the Bathfp rig simulation; 

5. Use MATLAB algorithms to discretise the controllers; 

6. Test the discretised controllers using (linearised) state space representations of the 

rig in MATLAB/SIMULINK; 

7. Test the discretised controllers using the Bathfp rig simulation; 

8. Test the discretised controllers using the rig. 

Not all of the steps were included in the design of every controller. The exact 

approach is documented in the appropriate section. 
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4 Conventional Control 

In this chapter is described a short series of experimental tests using P (proportional), 

PI (proportional plus integral) and PID (proportional plus integral plus derivative) 

control. 

4.1 Performance Using Proportional Control 

A series of tests was undertaken using a proportional controller, with unity gain 

(1 mA/rpm). This was implemented digitally. Similar performance was obtained 

using sampling rates of 100 Hz and 1000 Hz. The results shown in Figures 4.1 and 

4.2 were collected using a sampling rate of 1000 Hz and at a supply pressure of 

50 bar. 

Tracking test - the proportional controller’s tracking capability was examined further 

by applying a square wave speed reference (demand) signal, as shown by the broken 

line in Figure 4.1. The control effort is shown in Figure 4.2. Control effort is the 

voltage signal generated by the PC which runs the control software (see Section 3.1). 

Its maximum value is 10 volts. This is converted by the interface electronics to 

provide a current of 20 mA to the servovalve. 

In the high speed phase of the demand cycle there is a significant steady state error, 

as might be expected when proportional control is used. (Note that the controller is 

not saturated). In the low speed phase of the demand cycle, instability is evident, as 

shown both in the tracking and control effort plots. This instability results in 

considerable audible noise, mainly chatter from the couplings between components 

on the main shaft of the test rig. 
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Figure 4.1 Tracking test - proportional control 

 

Figure 4.2 Control effort - proportional control 
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Disturbance rejection test - a cyclical load disturbance was applied by varying the 

cracking pressure of the Vickers proportional relief valve and hence load torque. The 

speed regulation, load disturbance (as measured by proportional relief valve cracking 

pressure) and control effort are plotted respectively in Figures 4.3, 4.4 and 4.5. 

 

Figure 4.3 Disturbance rejection (proportional control) 

 

Figure 4.4 Load disturbance (proportional control) 
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Figure 4.5 Control effort during disturbance rejection (proportional control) 

Once again, instability is evident, together with significant mean speed errors.  

4.2 PID Control Example 

To provide a further reference for the controllers to be designed in the sequel, a PID 

controller designed according to Ziegler-Nichols (e.g. Schwarzenbach and Gill, 

1992, p. 218 et seq.) was briefly investigated. 

According to this design method, the loop is first closed through a proportional gain 

controller. The gain is increased progressively until stability is lost, when the gain is 

kcrit. The time period of the resultant oscillation is measured as Pcrit. 

The PID control law is 

          (4.1) 

Where kc is the proportional gain and Ti and Td are the time constants of the integral 

and differential elements respectively. 

The design method provides recommended settings for alternative controllers as 

shown in Table 4.1. 
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Table 4.1 Controller designed according to Ziegler-Nichols 

 kc Ti Td 

Proportional control 0.5kcrit   

PI control 0.45kcrit 0.83Pcrit  

PID control 0.6kcrit 0.5Pcrit 0.125Pcrit 

 

Operating at 50 bar supply pressure, with a demanded speed of c. 700 rpm, the 

proportional gain at the margin of stability, kcrit, was c. 1.2 mA/rpm, and the 

frequency of oscillation was found to be c. 35 Hz, giving a value of c. 3 10
-2

 s for 

Pcrit. However, stable operation of a PID controller having a control law according to 

the design method above did not prove possible. It is assumed that this was, at least 

in part, due to the effect of system noise on the ‘differential’ element of the 

controller.  

Using the method to design a PI controller results in suggested values of 

0.54 mA/rpm for kc and 27.7 s for Ti, corresponding to an integral gain of 

12.4 mA/rpm/s. 

On the test rig, operation with a proportional gain of 0.5 mA/rpm did not prove 

practicable with an integral gain greater than c. 5 mA/rpm/s. With the two gains set 

at these values, stable operation was only achievable at higher demanded speeds, as 

shown in Figure 4.6. The supply pressure for this test was again 50 bar.  

The Ziegler-Nichols method requires the system to be operated at or near its stability 

limit in order to measure kcrit and Pcrit. The non-linearities, which result in gain 

varying with speed, make this difficult. There is a danger that the rig might be 

damaged by ensuing oscillations. The gains derived using the method may or may 
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Figure 4.6 Set point tracking performance of a PI controller 

not be appropriate for operation under the conditions for which they are calculated. 

However, moving the set point from zero at start up to the value required for 

operation requires the system to pass through regions of higher gain (corresponding 

to lower speeds), making smooth operation impossible.  

4.3 Conventional Control – Conclusions 

This short series of tests has demonstrated how the non-linearities of the test system 

lead to control difficulties.  

Thus, in the proportional control speed tracking test, a gain which results in stable 

operation, with steady state error, at ‘high’ speed leads to instability when the speed 

is reduced. Reducing the gain to maintain stability at lower speeds would increase 

the steady state error at higher speeds.  

Although in the PID test it was possible to choose control parameters which 

provided good speed tracking at higher speeds, once again instability occurred when 

the speed was reduced.  

The performance of the unity gain proportional controller and the PID controller will 

be shown to be inferior to that of the H designs in the sequel. 

 

Time (s) 

S
p

ee
d

 (
rp

m
) 

 



Department of Mechanical Engineering   The University of Bath 

 

36 

5 Linear Robust Control 1 

At the commencement of this study, it is taken that the test circuit is non-linear. The 

presence of the non-linearities and their effects on the performance of the test system 

are subsequently confirmed and demonstrated. It has been further assumed that the 

effects of the non-linearities can be treated as if the non-linearities where 

„perturbations‟ to a linear model of the test system. This terminology is developed in 

the following sections.  

5.1 Background to Linear Control Theory 

The background analysis in the introductory paragraphs is generally presented with 

reference to a single input, single output system. 

5.1.1 Closed Loop Control - Some Terminology 

Variables used in Section 5.1.1: 

  s    complex variable 

  d(s)   disturbance, in this case at the plant output 

  e(s)   input to compensator  

  m(s)   measurement noise 

  r(s)   reference signal  

  u(s)   control effort 

  y(s)   output 

  G(s)   plant transfer function 

  K(s)   compensator or controller transfer function 

  L(s)   open-loop transfer function 

  P(s)   prefilter transfer function 

  S(s)   sensitivity  

  T(s)   complementary sensitivity  
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Consider the linear time invariant (LTI) system (following Maciejowski, 1989): 

 

 

Figure 5.1 General closed loop LTI system 

In the following analysis, r(s), d(s), m(s), y(s) are scalars and P(s), K(s), G(s) are 

rational transfer functions (for the single input, single output (SISO) case). They may 

be replaced by vectors r(s), d(s), m(s), y(s), and transfer function matrices P(s), K(s), 

G(s) (multi input, multi output (MIMO) case). The identity matrix I then replaces 

unity 1 throughout. 

For the system shown in Figure 5.1, 

 e(s) = P(s)r(s) - (y(s) + m(s))      (5.1) 

 y(s) = (1 + G(s)K(s))
-1

d(s) +(1 + G(s)K(s))
-1

G(s)K(s)P(s)r(s)  

     - (1 + G(s)K(s))
-1

 G(s)K(s)m(s) (5.2) 

Define sensitivity 

   S(s) = (1 + G(s)K(s))
-1    

(5.3)  

and complementary sensitivity 

   T(s) = S(s)G(s)K(s)     (5.4) 

then from eq. (5.2) 

   y(s) = S(s)d(s) + T(s)P(s)r(s) - T(s)m(s)  (5.5) 

If d(s) = m(s) = 0 and P(s) = 1 

   y(s) = T(s)r(s)      (5.6) 

   e(s) = r(s) - y(s)     (5.7) 

- 
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G(s) K(s) P(s) 

+ 

+ 

+ 
+ + 

d(s) 

y(s) e(s) u(s) 

m(s) 



Department of Mechanical Engineering   The University of Bath 

 

38 

From eq. (5.2) 

   e(s) = r(s) - (1 + G(s)K(s))
-1

G(s)K(s)r(s)  (5.8) 

          = S(s)r(s)      (5.9)  

From eq. (5.5), if r(s) = 0 

   y(s) = S(s)d(s) - T(s)m(s)    (5.10) 

Also define   

   L(s) = G(s)K(s)     (5.11) 

(open-loop transfer function)  

then 

   S(s) = (1 + L(s))
-1

     (5.12)
 

   
T(s) = (1 + L(s))

-1
L(s)     (5.13) 

Now consider system performance.  

For good tracking, T(s) = 1 (eq. (5.6)), but for good measurement noise reduction, 

T(s) should be small (eq. (5.10)), pointing to a conflicting requirement. (P(s) can be 

used to boost the system response at frequencies where measurement noise dictates 

that T(s) should be low (see eq. (5.5)). 

For low error, S(s) should be low (eq. (5.9)). For good disturbance rejection, S(s) 

should be low (eq. (5.10)).  

However, it is necessary to consider the relationship between S(s) and T(s). 

From eq. (5.4), 

    S(s) + T(s) = S(s) + S(s)G(s)K(s)    (5.14) 

          = S(s) (1 + G(s)K(s))    (5.15) 

          = 1      (5.16) 

For the MIMO case: 

          (5.17) 

The above results may be used to specify the performance of the closed loop system. 

5.1.2 Specifying the Performance of the Closed Loop 

A design approach in which an attempt is made to determine a unique solution in 

accord with a rigidly defined specification in some optimal way is one of „synthesis‟ 

Ι )()( ss TS
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(e.g. Schwarzenbach and Gill, 1992). However, it may be hard to justify the cost of a 

high order controller, which might result from the design approach, on the grounds 

of dynamic performance alone. Thus the sensitivity and complementary sensitivity 

may be specified for the system. The relationship between sensitivity S(s) and 

complementary sensitivity T(s) (eq. (5.16)) makes it clear that there must be a trade 

off between them. 

The system must also be stable. For stability, S, SG, KS and KSG (see Section 5.1.1) 

must all be stable (e.g. Piché et al., 1991, Maciejowski, 1989). 

If sensitivity were the only design criterion, then one could derive the required 

control algorithm from a plant model and a frequency domain specification of the 

sensitivity. It would be necessary to test the result for stability, as above. If no 

robustness criterion has been set, even if the stability requirements are met, the 

system may not be stable if the real plant differs in any way from the plant as 

modelled. 

Closed loop performance specifications may be set as follows by reference to the 

relationships developed in Section 5.1.1: 

(1) Sensitivity: - keep S as small as possible (S transfers output disturbance to output 

and reference input to error); 

(2) Noise propagation: - keep T as small as possible (conflicts with (1)) (T transfers 

measurement noise to output); 

(3) Tracking reference signal: - keep T  1 (assuming no prefilter P, so that design 

has only one degree of freedom, i.e. K) (conflicts with (2) but not (1)); 

(4) Minimise control effort: - keep K as small as possible (may conflict with (1) and 

(3)). 

5.1.3 Using ‘Norms’ to Specify Performance 

To apply the specifications in Section 5.1.2 to SISO systems, the sizes of the transfer 

functions S, T, etc., may be defined as their moduli. To apply these specifications to 

MIMO systems, it is necessary to define a measure of size which recognises that S, 

T, etc. are transfer function matrices, i.e. matrices in which each element is the ratio 
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of a pair of polynomials which represents a transfer function. Size is now measured 

by the „norm‟. 

Matrix norms can be defined in terms of vector norms. 

Let x  represent a vector norm. 

Let G  represent a matrix norm. 

If x is a vector of inputs to matrix G, and y is the corresponding vector of outputs, 

then 

                                            y = Gx      (5.18) 

For a given G, the norm (size) of vector y, that is y , will clearly vary with the size 

and direction of vector x. 

The induced or subordinate norm of G may be defined as the least upper bound 

(supremum) of the ratio of the norm of the output vector to the input vector, as the 

size and direction of the latter varies.  

 

          (5.19) 

 

          (5.20) 

 

( 0x  means that every element of x is identically equal to zero.) 

The Euclidean vector norm is defined as follows: 

          (5.21) 

where  x
H
 is the transpose of the complex conjugate of x. 

If the induced or subordinate matrix norm is derived using Euclidean vector norms, 

then the matrix norm is known as the spectral or Hilbert norm:  

          (5.22) 

where 
2  is the maximum eigenvalue of G

H
G (or of GG

H
). 

Positive square roots of the eigenvalues of G
H
G are called singular values of G. 
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If G is transfer function matrix G(s), then the singular values of G(j) are called 

principal gains, and are functions of the frequency . The maximum singular value 

is the spectral norm at that frequency. 

In the SISO case, G(s) is a scalar; it is the transfer function. Following the above 

analysis results in a single principal gain  )()( *  jGjG , where 
*
 indicates a 

complex conjugate. This is the modulus of )( jG , i.e. the Bode gain of )( jG . 

Specifications for S and T can be stated in terms of  )(  jS  and  )(  jT . 

The infinity norm of G is defined as 

          (5.23) 

Thus upper bounds on the maximum singular values (or principal gains) of S and T 

(which are transfer function matrices) may be defined in terms of “infinity norms”. 

The infinity norm may be used to specify a frequency dependent bound. Consider 

first a SISO system. If a scalar transfer function )( jG  is required to have a 

modulus which is less than or equal to a given frequency performance bound )( jB , 

then  

          (5.24) 

implies that 

 
         (5.25) 

The literature generally defines bounds in terms of the inverse of a frequency 

dependent weighting function )( jW , i.e. 

          (5.26) 

Thus 

       (5.27) 

This implies that  

          (5.28) 


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If G is a transfer function matrix, dimension m  n, representing a multi-input, multi-

output system with n inputs and m outputs, then it is necessary to consider how 

output bounds might be applied to each of its m output channels, by examining all 

principal gains  of )()( jωjω GW . )( jW  is now a square diagonal matrix 

dimensioned to match the number of output channels, that is m  m. Then 

       (5.29) 

Therefore 

       (5.30) 

       (5.31) 

That is 

          (5.32) 

Thus it is, in principle, possible to define frequency dependent bounds on S and T, 

and to define the specification as: 

       (5.33)  

        (5.34) 

For given specifications, the choice of 1W  and 3W  is usually not unique, i.e. more 

than one weighting function can be chosen to embrace a given specification. The 

order of the controller will, however, depend in part on the order of the weighting 

function chosen. (For an understanding of choice of subscripts, see Section 5.1.7.) 

In addition, as a result of the relationship 

                (5.35) 

it may be shown (e.g. Doyle et al., 1990) that, for the scalar case, that the weights 

chosen must satisfy the relationship 

      1,min 31 WW     (5.36) 

For a MIMO system, the constraint on the weights can be shown to be  

         (5.37) 
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5.1.4 Robustness and Plant Uncertainty 

The meaning of the term „robustness‟ was considered in Chapter 2. A robust control 

system is one which exhibits the desired performance in the presence of significant 

plant uncertainties (e.g. Dorf and Bishop, 1995). Differences between the actual 

plant parameters and those included in the model of it used to design a controller 

may result in instability. Classical design responds to this by introducing concepts 

such as gain and phase margin. These margins are either chosen arbitrarily, or on the 

basis of empirical knowledge of the system being designed. The design approach 

implicitly assumes that the phase lag at the gain cross over frequency might be 

under-estimated by not more than the phase margin. 

The application of the margins in SISO system design is straightforward. The 

approach does not require the source of the discrepancies between the actual system 

and its model to be identified. They are known as “unstructured uncertainties”. For a 

MIMO system, interaction between the “loops” leads to additional complexity. 

The uncertainty in models of a multivariable plant, which has “true” transfer 

function matrix G(s), can be represented in three ways. In each case, the nominal 

plant is represented by a transfer function matrix Go(s), the nominal transfer matrix, 

and the uncertainties are represented by a second transfer function matrix (s) 

(“perturbations”). The three representations show the uncertainty additively, 

multiplicatively at the input, and multiplicatively at the output as shown below 

(Chiang and Safanov, 1988; Maciejowski, 1989): 

Additive model: 

 

Figure 5.2 Additive perturbation model 

 G(s) = Go(s) + a(s)     (5.38)  

Go(s) 

Δa(s) 

+ 
+ 
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Input multiplicative model: 

 

 

 

 

 

Figure 5.3 Input multiplicative perturbation model 

G(s) = Go(s)(I + i(s))     (5.39) 

 

Output multiplicative model: 

 

Figure 5.4 Output multiplicative perturbation model 

G(s) = (I + o(s))Go(s)     (5.40) 

The sizes of the perturbation matrices can be defined by their norms . 

   I 

Δo(s) 

+ 
+ 

Go(s) 

   I 

Δi(s) 

+ 
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Go(s) 
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Figure 5.5 Generalised representation of plant and controller 

Figure 5.5 is a generalised representation of a compensator/controller K, a reference 

plant P and uncertainty . Plant inputs are grouped into those which can be 

manipulated and those which cannot. The latter include noise signals and 

disturbances. 

 

 

 

 

 

Figure 5.6 Model isolating perturbation 

In Figure 5.6, the system model has been redrawn to amalgamate the plant and 

compensator/controller into a single block Q. For this reduced system, one may write 

          (5.41) 
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Figure 5.7 Closed loop with output multiplicative uncertainty 

By reference to Figure 5.7, which shows an output multiplicative plant uncertainty 

for a MIMO system, one may write 

          (5.42) 

          (5.43) 

Substitute for u in eq. (5.42) 

          (5.44) 

          (5.45) 

Substituting for y in eq. (5.43)  

          (5.46) 

          (5.47) 

Thus, comparing coefficients,

 

from eq. (5.45) 

          (5.48  

          (5.49) 

and from eq. (5.47) 

          (5.50) 

          (5.51) 
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Consider the loop through m in Figure 5.7. According to the small gain theorem 

(e.g. Maciejowski, 1989), for stability, assuming the unperturbed system is stable, 

          (5.52) 

It may be noted that Q22 derived above is equal to the complementary sensitivity 

function T (Section 5.1.1). Thus, for stability,  

          (5.53) 

Consider a stable weighting function W3. Then, for stability, 

          (5.54) 

But, using the rules of norm algebra, 

          (5.55) 

If 

          (5.56) 

Then 

          (5.57) 

Thus the perturbation will not result in instability of the closed loop if W3 is an upper 

bound on Δm and  

          (5.58) 

5.1.5 Transfer Function Matrices and Partitions 

 

 

 

Figure 5.8 To illustrate partitioning 

Consider a transfer function matrix P as in Figure 5.8: 

          (5.59) 
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Partition P as: 

          (5.60) 

Expand 

          (5.61) 

          (5.62) 

Now consider a state space realisation of P 

          (5.63) 

 

Thus, where x is a state vector, taking Laplace transforms and expanding eq. (5.63),  

          (5.64) 

          (5.65) 

          (5.66) 

The state space realisation may be partitioned as 

 

          (5.67) 

   

Note: A is the system matrix, and is not partitioned. 

Expanding the above partitioned state space realisation eq. (5.67) yields: 

          (5.68) 

          (5.69) 

          (5.70) 

          (5.71) 
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Thus, using eq. (5.69) to eliminate the state vector x from eq. (5.70) and eq. (5.71), 

yields 

          (5.72) 

          (5.73) 

Then, comparing coefficients of eq. (5.61) with eq. (5.72) and eq. (5.62) with eq. 

(5.73) yields: 

          (5.74) 

          (5.75) 

          (5.76) 

          (5.77) 

5.1.6 The Linear Fractional Transformation 

The Linear Fractional Transformation provides a route to presenting a controller 

design problem in a standard form for solution using an H approach. 

If the plant is represented by a transfer function matrix P(s), which is partitioned as 

follows: 

          (5.78) 

 

Then, if an input vector [w
T
 u

T
]

T
 produces output [z

T
 y

T
]

 T
, one may write: 

 

          (5.79) 

 

Here, w is a vector of external inputs which cannot be manipulated by the controller, 

such as disturbances and noise, u is a vector of inputs derived by the controller, y is a 

vector of measured outputs which are processed by the controller, and z represents 

other outputs. 

The system of plant P and controller K may be represented as in Figure 5.9. 
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Figure 5.9 To illustrate linear fractional transformation 

Expanding eq. (5.79) gives 

          (5.80) 

          (5.81) 

Also, for controller,  

          (5.82) 

So, from eq. (5.81) 

          (5.83) 

          (5.84) 

Using eq. (5.82) 

          (5.85) 

Thus eliminating u and y from eq. (5.79) yields 

          (5.86) 

Or 

          (5.87) 

where         is known as the linear fractional transformation of P and K. More 

precisely, as the loop through K links the lower input and output ports of P, the 

function is the lower linear fractional transformation Fl. 

A control objective in the above formulation is to choose a structure for K so that the 

dependence of z on w is minimised. Thus ),( KPF  must be minimised. 
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Minimisation is achieved by searching for a suitable controller K. This must be 

physically realisable, and the resulting closed loop must be stable. 

5.1.7 Presenting Design Problems in Standard Form 

Section 5.1.3 has shown how a controller design specification can be formulated in 

terms of H norms involving frequency dependent weights. In order to solve the 

design problem using standard algorithms, it is necessary to formulate the problem in 

„standard form‟. 

Sensitivity: 

          (5.88) 

implies that S is „squeezed‟ under W1
-1

 for all frequencies. 

Complementary sensitivity: 

          (5.89) 

implies that T is „squeezed‟ under W3
-1

 for all frequencies. 

To achieve both objectives, it is necessary to find a controller which stabilises and 

ensures that the inequality 

          (5.90) 

is satisfied. 

The standard problem is thus defined as finding a stabilising K in F(P,K) such that  

          (5.91) 

with P defined to encapsulate the inequality of eq. (5.90). 

From the definition of S, the sensitivity, (Section 5.1.1): 

          (5.92) 

          (5.93) 
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Comparing coefficients of eq. (5.93) with those of the lower fractional 

transformation of eq. (5.86) and eq. (5.87)  

          (5.94) 

gives 

          (5.95) 

          (5.96) 

          (5.97) 

          (5.98) 

Similarly, consideration of the complementary sensitivity T gives 

          (5.99) 

          (5.100) 

          (5.101) 

Comparing coefficients of eq. (5.101) with those of the lower fractional 

transformation of eq. (5.86) and eq. (5.87) 

          (5.102) 

gives 

          (5.103) 

          (5.104) 

          (5.105) 

          (5.106) 

Thus to meet both criteria, the partitions of P must be defined as follows 
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          (5.108) 
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          (5.109) 

          (5.110) 

It may on occasions be necessary or desirable to constrain control effort, i.e. the 

signal from the controller into the plant. Additionally, constraints imposed by the 

solution algorithm on system matrix rank may require the introduction of a non-

active constraint on control effort (see for example Stefani et al., 1994, Chiang and 

Safanov, 1988). Referring to Section 5.1.1 and Figure 5.1, control effort u (signal 

from the controller to the plant actuators) is Ke. Control effort may be shaped using a 

weight W2 via the relationship ||W2KS|| < 1 

          (5.111) 

(5.112) 

Comparing coefficients of eq. (5.112) with those of eq. (5.102) gives 

          (5.113) 

          (5.114) 

          (5.115) 

          (5.116) 

Thus to meet all three criteria, the partitions of P must be defined as follows: 

 

          (5.117) 

 

The problem when posed in this form is known as the „mixed sensitivity problem‟ 

(see, for example, Stephani, et al. (1994)). 

5.1.8 Solution of the Standard H Problem 

The general problem of finding a stabilising K which minimises ||Fl(P,K)|| (the 

„optimal problem‟) is solved via the „standard problem‟ of finding a stabilising K 

which results in ||Fl(P,K)|| < . The optimal problem is solved by iteratively 

adjusting  in the standard problem to find its minimum achievable value. The 

general problem can be shown to be reducible to a „general distance problem‟ (e.g. 
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Chu et al., 1986). An alternative solution route involves the solution of two algebraic 

Riccati equations (Glover and Doyle, 1988; Doyle et al., 1989). (See Appendix 2). 

Both routes are summarised by Maciejowski (1989). Stefani et al. (1994) provide an 

overview of the latter method, and includes a summary of the constraints on the 

formulation of the problem which must be met for a solution to be achievable. 

The „general distance problem‟ is also known as a best (or Hankel) approximation 

problem or Nehari problem. Chu et al. (1986) summarise the process whereby the 

general problem is transformed into a distance problem in terms of a series of linear 

fractional transformations as follows. 

(1) Find a stabilising K to minimise ||Fl(P,K)||. 

(2) Parameterise - replace K by Fl(Ko,Q) where Ko is derived from P by a process 

known as „coprime factorisation‟ and Q is the Youla parameter (see e.g. 

Maciejowski (1989)).  

(3) Transform problem: find Q  H to minimise ||Fl(P,Fl(Ko,Q))||, i.e. find 

Q  H to minimise ||Fl(T,Q)||, 

(4) It can be shown that T22 = 0. Thus Fl(T,Q) = (T11 + T12QT21). Thus the problem 

becomes a „model matching‟ problem: find Q  H to minimise ||T11 + T12QT21||, 

i.e. find T11 which „matches‟ - T12QT21. 

(5) Having found the value of Q, Qopt, which minimises the norms, the controller Kopt 

is found from Kopt = Fl(Ko,Qopt). 

5.1.9 Solving the Standard H Problem 

In the sequel, the MATLAB functions from the Robust Control Toolbox (Chiang and 

Safonov, 1989) have been used. These solve the small gain infinity-norm robust 

control problem to find a stabilising controller F(s) for a system P(s), where P(s) is 

the plant as augmented by suitable weights Wi(s), i=1,2,3. (See Figure 5.10.) 

P(s) is partitioned as below. 
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Figure 5.10 Closed loop representation for MATLAB Robust Control Toolbox 

functions 

Controller F(s) is computed to provide a closed loop transfer function (or cost 

function) 
11uyT which satisfies the infinity norm inequality:  

          (5.119) 

It is clear that 
11uyT is the lower linear fractional transformation of P and F, shown in 

Figure 5.10, so that the MATLAB functions are solving the standard H∞ problem 

discussed in the preceding sections.  

The MATLAB functions use the loop shifting two Riccati formulae derived from the 

work of Glover and Doyle (1988) and Doyle et al. (1989), as developed by Safanov 

et al. (1989).  

The MATLAB functions also undertake a so-called “γ iteration” to compute the 

“optimal” H∞ controller. (See, for example, Safanov and Chiang (1988).) A 

weighting factor γ is applied to one or more output channels of 
11uyT . The limiting 

value of γ for which 

          (5.120) 

is satisfied is computed iteratively. 

5.2 Application of the H Mixed Sensitivity Method 

This section describes the application of the H Mixed Sensitivity Method (see 

paragraph 5.1.7) to the design of a robust speed controller. The underlying principles 

of the method have been described above; the design route set out in Section 3.3 was 

applied as follows.  
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5.2.1 Rig Simulation in Bathfp 

The Bathfp circuit, shown in Figure 5.11, was used to simulate the rig. Linearised 

models were produced using Bathfp‟s Linear Analysis Tool. This generates linear 

models in state space form at selected steady state operating points in the state space. 

 

Figure 5.11 Open-loop circuit as represented in Bathfp 

The circuit shown includes a „lag‟ block to permit representation of the (short) delay 

inherent in the processing of the shaft speed. The Bathfp standard component models 

used and the values of the principal parameters are listed in Appendix 1. 

SISO state space representations of the rig, in which the motor control valve solenoid 

current is the „input‟ and the shaft speed transducer signal is the „output‟, were 

produced. These were imported into MATLAB. A Bode plot of the rig transfer 

function linearised at a steady state shaft speed of 1000 rpm and with a supply 

pressure of 100 bar is shown in Figure 5.12. The relief valve cracking pressure in the 

load circuit is set at 40 bar. The rig transfer function is given in below. 

01562990151711013095100902820045928

0178.855 +  0141.36 +  0092.395 + 006-2.861 +  0113664
2345

234

e. s + e. +  se. +  se.+  se.+ s

esesesese-. (5.121) 
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Figure 5.12 Bode plot of rig transfer function 

5.2.2 Design of H Mixed Sensitivity Controllers 

Tools in the MATLAB Robust Control Toolbox (Chiang and Safanov, 1988) were 

used to design „H‟ controllers for the SISO using the mixed sensitivity linear 

fractional transformation method. More details on this method are contained in 

Section 5.1. The sensitivity transfer function S (which relates the output of the closed 

loop system to a disturbance at the output) and the complementary sensitivity 

function or closed loop transfer function T (which relates the output of the closed 

loop to the demand) are each shaped in the frequency domain by frequency 

dependent weighting functions. 

5.2.2.1 Choice of Weighting Functions 

The weighting function selected to shape the sensitivity transfer function is chosen to 

attenuate low frequency disturbances. Thus transfer function W1(s) is selected to 

have a „high‟ gain at low frequency. To avoid synthesis of a controller with an 

unduly high order, W1(s) is chosen to have a low order. The transfer function used is 

           W1(s) = (0.1s+35)/s     (5.122) 

This function has a gain crossover frequency of about 35 rad/s. Thus disturbances 

below this frequency will be substantially attenuated. Shaft speed variations induced 

by load torque fluctuations whose frequency is below this frequency will be 

attenuated. Fundamental cyclically varying load torques should be substantially 
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attenuated at speeds of up to about 330 rpm. However, the test rig is not designed to 

allow such loads to be imposed. The choice of 35 rad/s is compatible with a test 

regime in which cyclic load disturbances with a fundamental frequency of a few Hz 

are imposed. 

The Bode plot of the inverse of the weighting function, to which the sensitivity 

transfer function is shaped, is shown in Figure 5.13. 

 

Figure 5.13 Bode plot of inverse of W1(s) 

Similarly, a low order transfer function is required to shape the complementary 

sensitivity transfer function T. A design requirement is that the effect of model 

uncertainties, and model variations attributable to non-linearities, intuitively assumed 

to increase in magnitude at high frequencies, are rejected to provide robustness. 

Again, a simple, low order transfer function is appropriate to minimise controller 

order. 

           W3(s) = s
2
/250000     (5.123) 

This function has a gain crossover frequency of 500 rad/s. This selection prevents the 

dynamics of any model uncertainties, including unmodelled features, whose gain is 

significant above this frequency, leading to instability. The Bode plot of W3
-1

(s), to 

which the complementary sensitivity transfer function is shaped, is shown in Figure 

5.14. 
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Figure 5.14 Bode plot of inverse of W3(s) 

The functions chosen for W1 and W3 satisfy the algebraic constraint on robust 

performance (Doyle et al., 1990): 

                                 min{|W1(j)|,|W3(j)|} < 1    (5.124) 

The solution of the „H problem‟ requires that certain conditions are satisfied by the 

structure of the „augmented plant‟ (see Section 5.1.7). In order to formulate the 

current problem to satisfy these conditions, a proper transfer function which 

„penalises‟ control effort must be selected. Since the maximum control effort is 

20 mA, a constant weight W2 was chosen as 

W2 = 0.02      (5.125) 

Thus the constraint on control effort will not be active. 

5.2.2.2 Generation of Controller 

Using the gamma iteration method (Sections 5.1.8 and 5.1.9) to find an optimal 

controller, and applying the gamma weighting to output channel 1 (i.e. the weighted 

sensitivity) yields a controller whose transfer function is represented by the Bode 

plot shown in Figure 5.15. Its transfer function is given in eq. (5.126). 

  010233902107220188392014754501052530055085

021979402005760186635015048101044340051715
23456

2345

e. s  + e.+  se. +  se.+  se.+  se.+ s

e. s  + e.+  se.+  se.+  se. +  se.

 

 

          (5.126) 
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Figure 5.15 Bode plot of optimal controller 

It can be seen from the Figure 5.15 that the controller introduces phase advance at 

mid frequencies, to increase the phase margin and thus improve stability robustness. 

DC and very low frequency gains are increased to eliminate steady state error; low 

frequency gain is reduced to meet the disturbance rejection criterion.  

The corresponding open-loop transfer function of the compensated system has the 

Bode plot shown in Figure 5.16. 

 

Figure 5.16 Bode plot of open-loop including optimal controller 

The singular value frequency plot for the cost function 
11uyT which results without 

gamma iteration is shown in Figure 5.17. Clearly, the criterion                        is met. 
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Figure 5.17 Singular value plot for cost function 
11uyT  (without gamma iteration) 

The singular values of the sensitivity function and complementary sensitivity 

function are respectively compared with W1
-1

(s) and W3
-1

(s) in Figures 5.18 and 5.19.  

 

Figure 5.18 Sensitivity function and W1
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Figure 5.19 Complementary sensitivity function and W3
-1

(s) 

Clearly, given that the sum of the sensitivity and complementary sensitivity at each 

frequency must be unity (Section 5.1.1, eq.(5.16)), whereas the sum of the inverses 

of the weights is not unity at all frequencies, perfect fits are not possible. Indeed, the 

form of the weights W1
-1

(j) and W3
-1

(j) is such that they can never sum to unity at 

any real value of frequency . 

With gamma iteration, the singular value frequency plot for the cost function
11uyT  

which results is shown in Figure 5.20. This demonstrates the „all pass‟ characteristic 

of the optimal solution                       . 
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Figure 5.20 Singular value plot for cost function 
11uyT  (with gamma iteration) 

In Figure 5.21 the singular value of the sensitivity transfer function which results 

with gamma iteration is compared with W1
-1

(s). The corresponding complementary 

sensitivity transfer function is compared with W3
-1

(s) in Figure 5.22. The optimum 

controller has shaped the system to meet the design criteria more closely. The 

gamma weight has been applied to the sensitivity channel. The fit is therefore biased 

towards matching S to W1
-1

 at low frequencies. 

 

 

Figure 5.21 Sensitivity function and W1
-1
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Figure 5.22 Complementary sensitivity function and W3
-1

(s) 

The superiority of the controller produced by gamma iteration over that produced 

without gamma iteration is shown by their respective gain and phase margins: 

 Gain margin Phase margin 

Without gamma iteration 12.8 dB at 306 rad/s 62.97 degree at 98.65 rad/s 

With gamma iteration 35.9 dB at 3368 rad/s 75.28 degree at 214.6 rad/s 

The gains of the open-loop transfer functions which result using controllers 

synthesised with (Plot 2) and without (Plot 1) gamma iteration are compared with 

each other and with gains of W1(s) (Plot 4) and W3
-1

(s) (Plot 3) in Figure 5.23.  
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Figure 5.23 Comparison between open-loop transfer functions and weighting 

functions W1(s) and W3
-1

(s) 

Figure 5.23 may be interpreted as follows. 

Taking L as the open-loop transfer function, (that is GK in the terminology of 

Section 5.1.1), 

 then, since    |W1S| < 1,      (5.127) 

      |S
-1

| > |W1|      (5.128) 

But (see Section 5.1.1)     S
-1

 = 1 +L      (5.129) 

so              |1 + L| > |W1|     (5.130) 

At frequencies where |L|>> 1, 

        |L| > |W1|     (5.131) 

Similarly,              |W3T| < 1,      (5.132) 

                    |T| < |W3|
-1     

   (5.133) 
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But (see Section 5.1.1)       T = (1 +L)
-1

L     (5.134) 

At frequencies where |L| << 1, 

                T = L     (5.135) 

        |L| < |W3|
-1

     (5.136) 

Figure 5.23 shows how the open-loop transfer function L is shaped between 

weighting functions W1(s) and W3
-1

(s) in accordance with the relationships given by 

eq. (5.131) and eq. (5.136). 

The performances of the two controllers in the time domain are compared through 

the unit step responses of the closed loop systems shown in Figure 5.24. The step 

speed response of the „optimal‟ controller (1) is shown to be superior to that of the 

suboptimal controller (2) in terms of speed of response and reduced overshoot. 

 

Figure 5.24 Step speed responses of closed loop systems 

5.2.3 Emulation of the Controller in Digital Form 

5.2.3.1 Sampling Rate Selection  

It is necessary to emulate the controller in digital form in order to carry out rig 

testing.  

Forsythe and Goodall (1991) comment that the chosen route in which the controller 

is designed in the s-domain and transformed into the z-domain can be expected to 

give a satisfactory result when the sampling rate is „high‟, i.e. the algorithmic error 
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introduced by the emulation method reduces with increasing sampling rate (p.96); 

too low a sampling rate can result in stability problems. They also identify as a „rule 

of thumb‟ the choice of a sampling frequency of ten times the system bandwidth 

(p.95). 

A sampling frequency of 1000 Hz was chosen. This was the maximum sampling rate 

achievable on the test rig with the available software and just captures the system 

dynamics, as represented by the bandwidth of the complementary sensitivity 

function (closed loop transfer function) (Figure 5.22) when the above „rule of thumb‟ 

is applied. Tustin‟s method was used to produce a digital filter (z-domain) to 

represent the gamma optimised controller, as shown in eq. (5.137). Numerical 

problems were encountered when attempts were made to use the same method to 

derive an emulation at a lower sampling frequency. 

1525024550914400872237908411 

664908921206202384046235425951
23456

23456

. z + . +  z. -  z. -  z. -  z. +  z

. z + . +  z. -  z.-  z. -  z.+  z.
 (5.137) 

A fuller discussion of sampling rate selection is included in Appendix 3 for 

completeness. The chosen sampling rate is consistent with this discussion. 

5.2.3.2 The Discrete Time Filter 

The frequency response of the discrete filter (z-domain) is compared with that of the 

continuous time filter in Figure 5.25 for the gamma optimised controller. 

 

Figure 5.25 Amplitude frequency responses: discrete and continuous time filters 
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The gain of the digital emulation (2) in Figure 5.25 tracks the gain of the continuous 

filter (1) shown in the same Figure at low frequencies; the gain of the digital 

emulation falls in relation to that of the continuous filter as the Nyquist frequency of 

10
3
 rad/s is approached. 

5.2.4 Simulation Tests on Controller 

The performance of the digital controller was checked in the non-linear Bathfp 

environment using the circuit shown in Figure 5.26. More information on the  circuit 

is provided in paragraph 5.2.1 and Appendix 1. The simulation included a model of a 

digital controller capable of incorporating a z-domain digital filter with up to 9 

degrees of freedom. 

 

Figure 5.26 Closed loop representation in Bathfp 

5.2.4.1 Simulation Results – Discretisation Using z-Transforms 

The results of a simulation in which a shaft speed demand transient is applied are 

shown graphically in this paragraph. 
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Actual and demanded shaft speeds for a transient are compared in Figure 5.27. 

 

Figure 5.27 Comparison between actual and demanded shaft speeds (simulation 

using z-based emulation) 

The associated transient of the valve spool position is as shown in Figure 5.28. 

 

Figure 5.28 Valve spool position (simulation using z-based emulation) 

The tracking performance is good except when saturation occurs, as indicated by 

valve fractional displacement reaching +1.0 or -1.0. There is evidence of „wind-up‟ 

at time 3.5 s. This controller was subsequently transported to the rig for further 

testing. 
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5.2.5 Emulation of the Controller in -Form 

5.2.5.1 Coefficient Sensitivity 

When the controller described in the preceding sections was rig tested (see Section 

5.3 below), „coefficient sensitivity‟ was initially identified as a cause of impaired 

performance. For high order polynomials, small changes in their coefficients may 

result in large changes in their singular values. Thus, for a controller embodying a 

high order transfer function, poles and zeros may migrate, leading to performance 

degradation or even loss of stability, if coefficient precision is lost during the process 

of implementing the controller. The problem was successfully tackled by amending 

the control software to extend the widths of the fields into which the coefficients of 

the filter polynomials were entered. Subsequently, the general problem of coefficient 

sensitivity (see for example Goodall, 1990; Hu and Edge, 1993) was researched. The 

continuous time controller was emulated in  form. 

5.2.5.2 Simulation of -Emulation Controller in Bathfp 

The -emulation controller was tested in Bathfp, using a controller model in  

operator form, created from the continuous filter using MATLAB, and again using a 

sampling frequency of 1000 Hz. The resulting transfer function is: 

2.6e004 +   5.84e014 +  3.336e012 + 7.503e009 +  8.335e006 + 4584 + 

1.403e015 +   1.768e014 +  1.705e012 + 4.067e009 +  3.721e006 + 1183
23456

2345




 

(5.138) 

The response to a speed demand transient, in terms of actual and demanded speed is 

shown in Figure 5.29; control valve spool position is shown in Figure 5.30. They are 

similar to those obtained using the z-based emulation, confirming the efficacy of the 

emulations. 
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Figure 5.29 Comparison between actual and demanded shaft speeds (simulation 

using -based emulation) 

 

Figure 5.30 Valve spool position (simulation using -based emulation) 

 

5.3 Practical Investigation of Mixed Sensitivity Controller 

Performance 

5.3.1 Introduction 

A range of tests was devised and implemented to enable the performance of 

controllers designed using the H mixed sensitivity method to be investigated 
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practically. The tests were designed to enable tracking ability and disturbance 

rejection to be explored. Disturbance rejection was examined by varying the motor 

load torque. This variation was achieved by disturbing the setting of the solenoid 

operated throttle valve connected in the load pump circuit. Digital implementations 

using both z- and - transforms were tested. Tests were carried out at various supply 

pressures, in order to investigate robustness (system gain varies with supply 

pressure). A selection of test results is presented and discussed. Controller sampling 

frequency is 1000 Hz. A data sampling frequency of 100 Hz is used. Prior to 

plotting, data were smoothed by computing a moving average over 5 samples. 

5.3.2 Implementation Using z-Transforms 

In the first series of tests, the coefficients of the numerator and denominator 

polynomials in z calculated from the controller designed in the s-plane (see eq. 

(5.137) in Section 5.2.3.1) were rounded to 6 decimal places for input to the 

controller algorithm. The tracking capability of the controller was investigated by 

applying a triangular shape speed demand function. This is shown in Figure 5.31 

together with the measured speed. Figure 5.32 shows the control effort (controller 

output). The control effort here is measured in volts. A control effort of 10 V 

provides the maximum rated current of 20 mA to the servovalve (see Chapter 3). 

Tracking is good and saturation does not occur. The test was carried out at a supply 

pressure of 35 bar. 

 

Figure 5.31 Tracking test (z-emulation) – actual and demanded shaft speeds 
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Figure 5.32 Control effort in tracking test (z-emulation) 

The same controller‟s disturbance rejection capability was examined by applying a 

square wave signal to the solenoid controlled throttle valve in the load pump circuit 

(see Section 3.1). A constant speed demand (693 rpm) was imposed on the system. 

The disturbance rejection capability is demonstrated by the comparison between the 

actual and demanded (constant) speed shown in Figure 5.33 when the load 

disturbance shown in Figure 5.34 is applied. 

 

Figure 5.33 Disturbance rejection (z-emulation) - actual and demanded shaft 
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The „load pressure‟, i.e. the pressure drop across the throttle valve (which is 

effectively proportional to shaft torque – see Section 3.1) is plotted in Figure 5.34. 

 

Figure 5.34 Load disturbance (z-emulation) 

Saturation just occurs when the load torque is „high‟, as shown in Figure 5.35. The 

control effort then reaches its maximum value of 10 V, corresponding to the 

maximum rated current for the valve of 20 mA. However, the „steady state‟ speed 

error is very low. 

 

Figure 5.35 Control effort during disturbance rejection (z-emulation) 

The above rig tests were carried out at a supply pressure of 50 bar. 
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5.3.3 Implementation Using -Transforms 

In the next series of rig tests, the same controller designed in the s-plane was 

discretised in  form (see eq. (5.138) in section 5.2.5.2). The numerator and 

denominator polynomials were rounded to 4 significant figures for input to the 

controller algorithm. The tracking capability of the controller was investigated by 

applying an arbitrary speed demand profile. This is shown by the broken line in 

Figure 5.36 together with the measured speed. Figure 5.37 shows the control effort. 

 

Figure 5.36 Tracking test -emulation – actual and demanded shaft speeds 

 

Figure 5.37 Control effort in tracking test -emulation 
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Tracking is good when saturation does not occur. However, it can be seen that once 

saturation occurs, after about 0.8 s, the controller „winds up‟. Thus, when the 

demand falls back within the range to within which the system is capable of 

responding, after about 2.7 s, effective tracking is not immediately resumed. Wind 

up is an inherent problem of  controllers. This is because the operation implied by 

-1
 is one of accumulation (Forsythe and Goodall, 1991). Rectification of the „wind 

up‟ problem has not been pursued at this stage. It is considered further in Chapter 6. 

The test was carried out at a supply pressure of 35 bar. 

The same controller‟s tracking capability was examined further by applying a square 

wave speed reference (demand) signal. Figures 5.38 and 5.39 show tracking and 

control effort for this test, conducted at 50 bar. Once again, some „wind up‟ is 

evident. In the higher speed phases of the demand cycle, saturation and wind up 

result in an overshoot before demanded speed is attained.  

The negative demand transients are responded to rapidly by the controller, as shown 

by the control effort in Figure 5.39. The relatively sluggish response of the system, 

which takes about 0.7 s to reach the „steady state‟ at „low‟ speed, suggests that the 

system bandwidth is in fact rather narrower than that modelled in Section 5.2. This 

needs further consideration, but probably results from inadequately modelled valve 

dynamics. 
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Figure 5.38 Second tracking test -emulation– actual and demanded shaft speed 

 

Figure 5.39 Control effort in second tracking test -emulation 

The same controller‟s disturbance rejection capability was examined by applying a 

square wave signal to the solenoid controlled throttle valve in the load pump circuit. 

A constant speed demand (c. 451 rpm) was imposed on the system, and is shown by 

the broken line in Figure 5.40. Figures 5.41 and 5.42, respectively, show the pressure 

drop across the throttle valve, which, given the small shaft speed variation, is 

effectively proportional to shaft torque, and the control effort. 
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Figure 5.40 Disturbance rejection -emulation – actual and demanded shaft 

speed 

 

Figure 5.41 Load disturbance -emulation 
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Figure 5.42 Control effort during disturbance rejection -emulation 

The controller successfully regulates the motor speed. Figure 5.40 indicates a 

maximum speed excursion of about 4 rpm, with a mean duration for each excursion 

of about 0.2 s. This corresponds to an angular deviation of about 5
o
, a very high 

order of accuracy. 

5.3.4 Concluding Remarks 

The test results demonstrate that a high order controller, designed in the continuous 

s-domain using an H mixed sensitivity approach, can be successfully discretised 

and implemented on a real system. The controller gave good tracking and good 

disturbance rejection. 

Proportional control was unsuccessful on both counts (Chapter 4). The tests do not, 

however, enable the hypothesis that the observed instability using proportional 

control might be attributable to discretisation effects rather than closed loop 

instability to be tested. Simulation does not show instability. Thus another possible 

cause for it lies in the unmodelled features of the system. 

In the load disturbance tests using the high order controllers, the speed error 

transients are of such magnitude and duration that the angular deviations between the 

demanded and achieved shaft rotations amount to only a few degrees. This may be 

significant if the system forms part of a high speed machine in which time domain 

performance is important. 
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The non-linear system model used as a basis for controller design was a simplified 

representation of the real system; values of key parameters were taken from 

manufacturers‟ data sheets, and the dimensions and characteristics of pipes were 

estimated. This was in accord with the design philosophy that, as the controller to be 

designed would, by virtue of the algorithms used, be robust, effort to define and 

validate an accurate model was not justified. The test results are a vindication of this 

approach.  

The relatively sluggish response of the system, which takes about 0.7 s to reach the 

„steady state‟ at „low‟ speed, as illustrated in the  emulation tracking tests, suggests 

that the system bandwidth is in fact rather narrower than that modelled in 

Section 5.2. This needs further consideration, but probably results from inadequately 

modelled valve dynamics. Details of the model are included in Appendix 1. 

Additionally, conservatism in controller design, in terms of stability margin, results 

from the use of a model incorporating a higher supply pressure, and thus higher gain, 

than that used for the tests. Clearly, further work is necessary to refine the controller 

software to eliminate wind up if the operating regime is such that this may occur. 
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6 Linear Robust Control 2 

6.1 The H Loop Shaping Method 

The controller designed using the H mixed sensitivity approach showed good load 

disturbance and tracking characteristics over a limited range of speeds. An 

alternative approach to controller design was explored with a view to extending the 

speed range within which operation was possible. 

The background analysis contained in the introductory sections of this chapter is 

expressed in terms of a multi-input multi-output system, to preserve generality and 

retain consistency with the literature and source material. 

6.1.1 Non-linearities in the System 

Njabaleke et al. (1998) carried out a range of Bathfp simulations of the candidate 

hydrostatic transmission system (Chapter 3), to extract a series of linear models of 

the plant at a range of operating speeds and supply pressures. Bode gain (or singular 

value) plots for these are shown in Figure 6.1. They relate to supply pressures 

ranging from 30 to 100 bar and operating speeds corresponding to valve spool 

displacements in the range from 5 to 80%.  

It is evident from these that non-linearities result in significant changes to the plant’s 

dynamics as the operating point changes. A ‘robust’ controller is required which will 

deliver good tracking and disturbance (supply pressure and load) over a wide range 

of speeds, whilst of course retaining stability. 
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Figure 6.1 Open-loop gains for the candidate system 

6.1.2 Quantifying the Effects of Non-Linearities 

The deviation between plants has been characterised by the ‘gap metric’ – this is 

derived and its history is reviewed by Georgiou and Smith (1990); subsequently, 

Vinnicombe (1993) refined the gap metric, developing what he termed the ‘-gap’. 

 

 

 

 

 

 

Figure 6.2 Closed loop for a generalised stability margin definition 

For the feedback system of Figure 6.2, Vinnicombe defines a generalised stability 

margin  
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difference between two plants P1 and P2. He shows that if a compensator C and a 

plant P have stability margin bP,C, then, if the plant is replaced by P1 the revised 

stability margin satisfies the inequality 

          (6.2) 

Clearly, as the measured gap between the two plants widens, the stability margin for 

a given compensator is (potentially) reduced.  

For the range of linear plants characterised by the changes to supply pressure and 

speed, analysis shows values of ‘-gap’ between the extremes to be approaching 

unity. This suggests that the design of a robust controller capable of meeting a 

specified performance standard for a wide range of operating conditions would be 

challenging. 

Gap analysis of the full range of linear models covering operation with supply 

pressures from 30 to 100 bar and speeds corresponding to valve spool displacements 

from 5% to 80% indicates that the design of a single mode robust controller which 

will deliver performance over the entire operating range is unlikely. Examination of 

the gaps between characteristics shows that the gaps within a high speed group and 

within a low speed group may be manageable. Defining the transition from ‘low’ to 

‘high’ speed as occurring at a valve spool displacement of 20% (corresponding to a 

valve solenoid current of 4 mA) yielded two sets of characteristics. The gap between 

characteristics within each group was less than 0.5. A design approach incorporating 

two controllers (for high and for low speeds) was therefore pursued. This 

necessitated also the incorporation of a means of switching between controllers 

without disruption.  

6.1.3 Principles of the H Loop Shaping Method 

Each of the controllers was designed using the loop shaping procedure using H 

synthesis developed by McFarlane and Glover (1992). 

In a ‘classical’ loop shaping approach, a desired closed loop behaviour, chosen on 

the basis of judgement or knowledge of disturbances and uncertainties, is achieved 

by ‘manipulation’ of the open-loop gain; this is achieved by selecting an appropriate 

compensator transfer function. Deciding on the desirable shape of the loop gain is, at 

),(arcsinarcsinarcsin 1,,1
PPνCPCP δbb 



Department of Mechanical Engineering   The University of Bath 

 

84 

least superficially, a straightforward matter. However, there are in practice 

difficulties in achieving a ‘tight’ design which has adequate stability margins. These 

arise from conflicts between, for example, the desirability of achieving a rapid roll 

off rate (to provide, for example, robustness in the face of unmodelled high 

frequency plant dynamics) at frequencies where phase margin considerations 

demand that phase lag be limited. The situation can be exacerbated where time 

delays and ‘right hand plane zeros’ add to the phase lag. 

In the controller design approach used by McFarlane and Glover (1992), loop 

shaping compensators are used to achieve desired open-loop and thus closed loop 

gains in the frequency domain; the loop is then closed through a controller designed 

to provide robust stability and to have minimum impact on the closed loop gain. This 

latter controller in effect ‘looks after’ the phase lag and provides robustness. The 

controller is robust insofar as it provides stability in the face of plant perturbations. 

The design approach ensures that the stability margin is maximised. 

The closed loop system for the MIMO plant may be represented as in Figure 6.3. 

Here, the loop is shaped by the pre-compensator W1 and the post-compensator W2. 

The loop is then closed through the robust stabilising controller Kinf.  

 

 

 

 

 

 

 

Figure 6.3 Implementation of stabilising loop shaping controller 

McFarlane and Glover follow Georgiou and Smith (1990) in the use of a normalised 

cofactor model of plant perturbations. A plant may be represented by its normalised 

left coprime factorisation as follows: 
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          (6.3) 

(The ‘plant’ includes the pre and post compensator weights, that is  

          (6.4) 

where P is the system to be controlled.) 

A perturbed model of the plant is then written as 

          (6.5) 

where the uncertainty in the nominal plant model G is represented by stable 

unknown transfer functions MΔ  and NΔ  in its coprime factors. The closed loop may 

then be shown as in Figure 6.4. 

 

 

 

 

 

 

 

 

 

Figure 6.4 Robust stabilisation problem – coprime factorisation 

The control objective becomes the design of a robust controller K which stabilises 

not only the nominal plant but the whole family of perturbed plants PG  defined by 

          (6.6) 
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           (6.7) 
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then, considering the closed loop in Figure 6.4, in accordance with the small gain 

theorem, for stability: 

          (6.9) 

The lowest achievable value of  (min) and corresponding maximum value of  (max) 

(stability margin) are given by (Glover and McFarlane, 1989) 

          (6.10) 

          (6.11) 

          (6.12) 

In eq.(6.11) 
H

....... is the Hankel norm. In eq.(6.12)   is the spectral radius 

(maximum eigenvalue) and X and Z are respectively the solutions to the generalised 

control algebraic Riccati equation and the generalised filtering algebraic Riccati 

equations (ibid.) as follows: 

          (6.13) 

          (6.14) 

where (A,B,C,D) is a minimal state realisation of the ‘plant’ and R and S are defined 

as follows: 

          (6.15) 

          (6.16) 

A controller which satisfies 

          (6.17) 

is given by 
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where F and L in eq. (6.18) are defined as follows: 

          (6.19) 

          (6.20) 

1εγ

1 maxmin εγ

  
1/2

2

H
1



 MN

2/1)](1[ XZ

0)()(

0)()(

T11TT1T1T

1TT1T1TT1









BBSCZRZCCRBDAZZCRBDA

CRCXBXBSCDBSAXXCDBSA

)( T
DDR  I

)( T
DDIS 





















11

11

)(

)(

MGK

MGKK

I

I
γ

















TT

T1T2T1T2 )()()(

DXB

ZCLDFCZCLBFA
K



XZL

XBCDSF



 

I)1(

)(

2

TT1





Department of Mechanical Engineering   The University of Bath 

 

87 

The controller to be implemented on the real plant is then computed by combining 

W1, K and W2 in series. For simplicity, W2 was chosen to be unity gain in the present 

work. Thus the controller to be implemented is W1Kinf (see Figure 6.3). 

6.1.4 Controller Order Reduction 

The order of the controller produced by the method is high. The implementation of a 

high order controller may introduce complexity without benefit. Therefore the 

practicability of reducing the order of the controller is checked and order reduction 

carried out as appropriate. 

Two possible strategies for order reduction are truncation and residualisation. In 

truncation, the usual strategy is to reduce the model by removing the fastest modes. 

This may be achieved by describing the model in Jordan form, in which the system 

dynamic A matrix is diagonalised, with eigenvalues increasing down the leading 

diagonal. The fast modes are then eliminated by deletion. The poles of the truncated 

model are therefore a subset of the poles of the full model. The gain of the truncated 

model is equal to that of the full model only at infinite frequency, since only the D 

matrix is unmodified by the procedure. 

In residualisation, all the dynamics of the states to be discarded are discarded with 

them. Thus if A, B, C, D is a minimal realisation of G, x1 is a vector of states to be 

retained, x2 is a vector of states to be discarded, then 

          (6.21) 

          (6.22) 

          (6.23) 

Setting 2x  to zero, and eliminating x2 by substitution, gives 

          (6.24) 

          (6.25) 

          (6.26) 

Clearly, the steady state gains of the full and reduced models are the same (since all 

state derivatives are then zero). Thus, the residualised model is accurate at low 

frequencies. 
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A rational route to deciding on how many and which states to remove involves first 

creating a balanced realisation (‘an asymptotically stable minimal realisation in 

which controllability and observability Gramians are equal and diagonal’ (Skogestad 

and Postlethwaite, 1997,  p.451). 

The controllability and observability Gramians P and Q respectively are defined as  

          (6.27) 

          (6.28) 

For controllability, P must be positive definite (and therefore full rank); for 

observability, Q must be positive definite (and therefore full rank). 

Hankel singular values are defined as 

          (6.29) 

where )(PQi  are the eigenvalues of PQ. 

For a balanced truncation, the states removed are those with the smallest Hankel 

singular values. In a balanced residualisation, the derivatives of these states are set to 

zero. The error bounds for balanced truncations and balanced residualisations are the 

same (see e.g. Skogestad and Postlethwaite, 1997, p.453; Samar et al., 1994, 1995). 

If G(s) is a stable rational transfer function matrix with Hankel singular values 

nζζζ  ...21  where each i has multiplicity ri and Gr(s) is obtained by truncating 

or residualising the balanced realisation of G(s) to the first (r1+r2+…+rk) states, then 

          (6.30) 

(after Skogestad and Postlethwaite, 1997, p.453; Anderson and Liu, 1989, eq. 3.5). 

6.1.5 A Design Route for Controller Synthesis 

A suitable route for the synthesis of a controller using the H Loop Shaping Method 

is as follows: 

 Compute the loop shaping H controller Kinf; 

 Compute and check resulting stability margin; 
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 Compute the composite controller from the series combination of the weights 

and the loop shaping controller; 

 Compute Hankel singular values for the composite controller to determine the 

practicability of order reduction; 

 By reference to the Hankel singular values, reduce the order of the composite 

controller as appropriate; 

 Check gap between full order and reduced order controllers and compare 

frequency responses of full and reduced order controllers; 

 Discretise reduced order controller for digital implementation. 

Where the controller is to be implemented in a digital form, it may be necessary to 

include a representation of the lag introduced by the sampling process at this stage in 

the design route.  

In the sequel, a MATLAB function from the µ-Analysis and Synthesis Toolbox 

(Balas et al., 1993) is used to find εmax and a loop shaping stabilising controller. 

Further MATLAB functions are used to form balanced realisations of the composite 

controller and to calculate its Hankel singular values for inspection prior to reduction 

of its state dimensions (ibid.). The ‘gap’ between full order and reduced order 

controllers is then examined. Gap analysis is discussed in 6.1.2 above. 

6.1.6 Application of the Design Route to the Test System 

6.1.6.1 Shaping the Open-Loop Gains 

All of the gain characteristics in Figure 6.1 show ‘roll offs’ of around 15-30 dB per 

decade around crossover. Key design targets are the elimination of stead state speed 

error and the significant improvement of the disturbance rejection capability. 

Disturbance transfer function singular values are plotted in Figure 6.5 (supply 

pressure 30 bar) and Figure 6.6 (supply pressure 100 bar) produced by Bathfp 

simulation by Njabeleke (Njabeleke et al., 2000). These portray the disturbance 

dynamics – the gain linking the disturbance signal to the output (shaft speed).  



Department of Mechanical Engineering   The University of Bath 

 

90 

 

Figure 6.5 Disturbance rejection at 30 bar supply pressure – singular values 

 

Figure 6.6 Disturbance rejection at 100 bar supply pressure – singular values 

To design the two controllers, one for high and one for low speeds (see Section 

6.1.2), it was necessary to select two linear models of the plant. The family of gains 

for a supply pressure of 30 bar and a range of speeds (valve openings) has been 

extracted from the set in Figure 6.1 and is shown in Figure 6.7. 
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Figure 6.7 Open-loop gains with supply pressure 30 bar 

From this set, the ‘low’ and ‘high’ speed models were selected and controllers 

designed as follows. 

A PI pre-compensator W1 of the form K(s+1)/s provides a boost for the low 

frequency gain, removing any offset error. It also provides some lead around the gain 

crossover frequency, adding to robustness. For disturbance rejection, by reference to 

the shape of the disturbance transfer function, it is evident that the sensitivity (which 

is the gain between a disturbance at the output and the output) should be less than 1, 

at least at frequencies up to 0.2 rad/s (‘low speed’) and preferably up to higher 

frequencies at higher speeds. Again, considering the derivation of the sensitivity 

function, it is clear that to improve the disturbance rejection in relation to the 

unshaped plant, the compensator K(s+1)/s must have gain greater than 1 in the 

frequency range of interest, so that sensitivity is reduced. Choosing K=0.5 results in 

the compensator having gain greater than 1 if 
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For the low speed controller, the gain K was set at 0.08 due to the much lower roll 

off rate of the system around crossover. 

The open-loop gains of the compensated and uncompensated (shaped and unshaped) 

plants, high and low speed, are shown respectively in Figures 6.8 and 6.9. 

 

Figure 6.8 Compensated and uncompensated open-loop gains (high speed) 

 

Figure 6.9 Compensated and uncompensated open-loop gains (low speed) 
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implemented digitally, an additional first order lag transfer function was included in 

series with each precompensator W1. 

Loop shaping H controllers were computed for the high and low speed 

compensated plant models; stability margins represented by  (see Section 6.1.3) 

were computed as  

Low speed 0.601 

High speed 0.554 

As these comfortably exceed 0.25 (see Skogestad and Postlethwaite, 1997, p.384), 

the controllers were judged to be acceptable. 

The controller transfer functions are: 

Low speed: 

- 7.43s
7
 - 1.973e007s

6
 - 1.328e013s

5
 - 2.463e017s

4
 - 1.257e021s

3
 - 1.124e024s

2
 

- 1.006e026s - 4.76e025 

s
8
 + 2.655e006s

7 + 1.787e012s
6
 + 3.316e016s

5
 + 1.694e020s

4
 + 1.524e023s

3
 

+ 1.451e025s
2
 + 9.463e025s + 7.2e025 

(6.35) 

High speed: 

-588.1s
7
 - 8.745e007s

6
 - 3.898e012s

5
 - 5.292e016s

4
 - 2.407e020s

3
 - 2.129e023s

2
 

- 2.139e025s - 2.294e025 

s
8
 + 1.492e005s

7 
+ 6.7e009s

6
 + 9.317e013s

5
 + 4.528e017s

4
 + 5.64e020s

3
 

+ 2.345e023s
2
 + 3.901e025s + 3.879e025 

(6.36) 

6.1.6.2 Reducing the Order of the Composite Controller 

Composite controllers were computed for the series combination of the loop shaping 

H controllers of eq. (6.35) and eq. (6.36) with the corresponding precompensator 

W1. The composite controllers contained 9 states, as follows: 
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Low speed: 

-0.594s
8
 - 1.578e006s

7
 - 1.062e012s

6
 - 1.971e016s

5
 - 1.006e020s

4
 - 9.004e022s

3
 

- 8.136e024s
2
 - 1.185e025s - 3.808e024 

s
9
 + 2.655e006s

8
 + 1.787e012s

7
 + 3.316e016s

6
 + 1.694e020s

5
 + 1.524e023s

4
 

+ 1.451e025s
3
 + 9.463e025s

2
 + 7.2e025s 

(6.37) 

High speed: 

-294.1s
8
 - 4.373e007s

7
 - 1.949e012s

6
 - 2.646e016s

5
 - 1.204e020s

4
 - 1.066e023s

3
 

- 1.08e025s
2
 - 2.216e025s - 1.147e025 

s
9
 + 1.492e005s

8
 + 6.7e009s

7
 + 9.317e013s

6
 + 4.528e017s

5
 + 5.64e020s

4
 

+ 2.345e023s
3
 + 3.901e025s

2
 + 3.879e025s 

(6.38) 

Hankel singular values were computed for each as follows: 

Low speed High speed 

0.6737 0.6064 

0.0444 0.2440 

0.0017 0.1127 

(other singular values are of 

magnitude less than .0001). 

0.0004 

 
(other singular values are of 

magnitude less than .0001). 

 

Given these values, the two compensators were each reduced to third order by 

residualisation (after balancing), producing low speed controller: 

010-1.529e + 5.351 + 6.973 + 

0.283 - 0.8779 - 0.5949 - 006-3.809e
23

23

sss

sss
   (6.39) 

and high speed controller: 

006-1.365e - 1.214e005 + 581.2 +     

3.59e004 - 3.344e004 - 291.8 - 0.0007867-
23

23

sss

sss
  (6.40) 
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6.1.6.3 Comparison between Full and Reduced Order Controllers 

Figures 6.10 and 6.12 show a very close correspondence between the full order and 

reduced order controller gains. The gaps between them as calculated (see 6.1.2) are 

zero. The gains of the reduced order controllers exceed those of the full order 

controllers only at frequencies in excess of around 10
5
 rad/s. The contribution of the 

dynamics of uncertainties at these frequencies is likely to be extremely small for the 

test system; the effect on stability robustness of order reduction will therefore be 

very small. 

 

Figure 6.10 Gain of composite controller (low speed) 

  

Figure 6.11 Phase of composite controller (low speed) 
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Figure 6.12 Gain of composite controller (high speed) 

 

Figure 6.13 Phase of composite controller (high speed) 
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that to be described, integrator action could result in the computed value of the 

control signal, before it is limited, significantly exceeding the saturation limit of 

20 mA. If this happens, there will be a delay between the valve starting to close and 

a reversal in the sign of the speed error: the integrator must initially ‘unwind’. The 

following anti-windup scheme (Green and Limebeer, 1995, p.431) shown in Figure 

6.14 prevents windup. This appears to be based on the scheme of Doyle et al. (1987) 

as referenced by Edwards and Postlethwaite (1998). 

 

Figure 6.14 Anti-windup scheme 

The output of the control algorithm is compared with the limited value; if there is a 

difference, i.e. the saturating element is active, the error signal supplied to the 

controller is modified in a sense which limits the magnitude of its output. In the 

notation of Figure 6.14, the error signal is modified if u > umax or u < umin. Otherwise, 

u = uc and no modification occurs. 

In the former situation, for the case when u is limited to umax, 

          (6.41) 

          (6.42) 

Provided that f is chosen so that 1f  and 1Kf ,  
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Thus this arrangement ensures that uc is limited to lie within (or only just outside) the 

range from umin to umax. Since the additional feedback loop is inactive when control 

errors and control signal lie in a normal band away from saturation, it has no effect 

on stability. 

Green and Limebeer (1995) show (p.434) how the anti-windup scheme may be 

extended to provide a ‘bumpless’ transition between two (or more) controllers. 

Bumpless transition between two or more controllers has been extensively analysed 

by, in particular, Hanus et al. (1987). They have analysed the impact on stability. In 

the sequel, the decision on which of two controllers should be active depends on the 

operating point. When the switch from one to the other is made, it is important to 

ensure that both are producing control signals of similar magnitude in order to avoid 

a discontinuity in the signal applied to the plant. A discontinuity could result in 

electrical overload to an actuator and/or a mechanical shock leading to damage. The 

two controllers, each with an anti-windup loop, are connected in parallel as shown in 

Figure 6.15. With the switch in the position as drawn, controller 1 is in service, and 

anti-windup protection is provided by the feedback loop through f1. 

 

Figure 6.15 Bumpless transfer scheme with anti-windup 

Controller 1 

Controller 2 
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In general, for this scheme: 

          (6.45) 

          (6.46) 

          (6.47) 

          (6.48) 

When controller 1 is in service, and there is no saturation, from eq. (6.45), 

          (6.49) 

          (6.50) 

From eq. (6.48), 

          (6.51) 

If 122 fk  then 

          (6.52) 

so, if 12 f ,  

          (6.53) 

There will therefore be no ‘bump’ if the switch is operated to place controller 2 in 

control. A similar argument applies for switching from controller 2 to controller 1 if 

111 fk  and 11 f . The argument also applies in the presence of saturation. 

This bumpless transfer scheme was found to be straightforward to implement (see 

below). It is rather less complicated than some other schemes, such as Graebe and 

Ahlen (1996) which requires more than one switch and additional control blocks.  

6.2 Rig Testing 

6.2.1 Controller Implementation 
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with sampling rates of 35 Hz and 350 Hz respectively. (These sampling rates are 

consistent with the discussion in Section 5.2.3.1 and Appendix 3.) 

The transfer functions, derived respectively from the reduced order controller 

transfer functions of eq. (6.39) and eq. (6.40), are: 

Low speed: 

           (6.54) 

High speed:   

           (6.55) 

The control program for the rig PC (written in C++) was amended to incorporate 

‘bumpless’ transfer between controllers, integrator wind-up protection, and sampling 

rate change at 300 rpm (by Njabaleke); a series of tests was carried out, as illustrated 

in the following paragraphs.  

6.2.1.1 Tracking Tests 

The ability of each of the controllers (low and high speed) to follow step changes in 

speed demand with a wide range of supply pressures is shown in the following group 

of figures. The threshold between low and high speed is 300 rpm, the switching 

point between the two controllers. These show speed and demanded speed, and the 

control signal to the valve. It is not practicable to apply labels to the speed tracking 

test figures, because of the proximity of the data sets relating to different supply 

pressures. However, greatest overshoots are associated with the highest supply 

pressures.  
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Figure 6.16 Set point tracking at low speeds with supply pressure variation 

 

Figure 6.17 Control signals for set point tracking at low speeds  
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Figure 6.18 Set point tracking at high speeds with supply pressure variation 

 

Figure 6.19 Control signals for set point tracking at high speeds 
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shown the speed set point, actual speed, and load torque (derived from pump 

discharge pressure). Control signals (currents to valve solenoid) are plotted 

separately.  

 

Figure 6.20 Disturbance rejection at 35 bar – speed and load torque 

 

Figure 6.21 Disturbance rejection at 35 bar – control signal 
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Figure 6.22 Disturbance rejection at 45 bar – speed and load torque 

 

Figure 6.23 Disturbance rejection at 45 bar – control signal 
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Figure 6.24 Disturbance rejection at 60 bar – speed and load torque 

 

Figure 6.25 Disturbance rejection at 60 bar – control signal 
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Figure 6.26 Disturbance rejection at 100 bar – speed and load torque 

 

Figure 6.27 Disturbance rejection at 100 bar – control signal 
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the controller switching threshold (300 rpm) for the tests at 45 bar and above, 
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and above, the controller is taken into saturation (valve current 20 mA) towards the 

end of the test interval, when speed demands are highest. In these phases of the tests, 
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the system is unable to reject the disturbances imposed by the fluctuating load 

torque.  

6.2.1.3 Bumpless Transfer and Integrator Wind-Up Protection Scheme 

A series of tests to check the performance of the bumpless transfer and integrator 

wind-up scheme (Green and Limebeer – see Section 6.1.7) was carried out, with 

results exemplified in this section. 

Figure 6.28 and Figure 6.29 show the effect of applying a triangular speed demand to 

the system, taking the demanded speed through the switching point of 300 rpm in 

both directions. In these figures the results of tests carried out at 35, 45, 60, 80 and 

100 bar supply pressure are superimposed. The effect of the switch between high and 

low speed controllers is not readily discernible at any supply pressure. Figure 6.29 

shows the corresponding control signals. As well as demonstrating the efficacy of 

the bumpless transfer scheme, this latter figure also illustrates an effect of the non-

linearity of system, its gain reducing at higher speeds for all pressures. 

 

Figure 6.28 Bumpless transfer between high and low speed controllers at a 

range of supply pressures – set point tracking 
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Figure 6.29 Bumpless transfer between high and low speed controllers at a 

range of supply pressures – control signals 

To test the integrator wind-up protection scheme, a speed demand signal, which 

takes the controller into saturation, is applied.  

 

Figure 6.30 Anti-wind-up performance – set point tracking 
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Figure 6.31 Anti-wind-up performance – control signal  

The set point is taken from c. 650 rpm to c. 1290 rpm, and returned to c. 570 rpm. 

Set point tracking and control signals are illustrated in Figures 6.30 and 6.31 

respectively. The former shows that, at the supply pressure of 100 bar, with the 

applied load, the motor cannot reach the demanded speed. The latter shows that 

when the demanded speed reaches 1290 rpm, the control signal rises to its maximum 

value of 20 mA. However, when the demand speed is reduced, the control signal 

reduces immediately, resulting in the new set point being reached within seconds.  

6.3 Concluding Remarks 

This Chapter has elaborated on the linear method of Chapter 5 by using the results of 

an examination of how the open-loop gain of the candidate system, as illustrated by 

its bode gain (or singular value) plots, varies with operating parameters, in particular 

supply pressure and speed set point. Application of ‘gap analysis’ to these gain 

characteristics was found to indicate that the design of a single robust controller to 

provide specified performance across the full range would be challenging. Therefore, 

in an alternative approach, two controllers were designed, one for ‘high’ speed and 

the other for ‘low’ speed operation, each using a ‘loop shaping’ approach. For each 

of these, the loop was shaped using a PI compensator. The orders of the controllers 

in combination with the compensators were reduced to facilitate implementation. A 

suitable bumpless switching scheme was identified. This, with the two reduced order 
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controllers, was successfully implemented and tested on the rig. The resulting 

composite controller was found by experiment to have good speed set point tracking 

and load disturbances rejection properties; the selected bumpless transfer scheme 

was also found to give integrator wind-up protection. The bumpless transfer and 

integrator wind-up protection scheme could in principle be used with two PID 

controllers. However, such a scheme would not provide the robustness afforded by 

the use of the H loop shaping controllers: more than two PID controllers may be 

required to achieve operation over the entire range. The investigation of the 

applicability of multiple PID controllers with the bumpless transfer and integrator 

wind-up protection scheme might be the subject of future work. 

Future work might also include assessing the benefits or otherwise of implementing 

a control scheme in which the control algorithm was selected according to supply 

pressure as well as or in addition to operating speed. However, such a development 

would require the provision of a suitable supply pressure sensor.  
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7 Fuzzy Logic Controllers 

‘Fuzzy logic is not as good as its strong proponents argue, and not as bad as its 

detractors say!’ - Prof. Karl Aström at the Institution of Electrical Engineers, London, 

following his presentation of the Inaugural Tustin Lecture (12 May 1999) entitled 

‘Digital Control - A Perspective’. 

7.1 Introduction 

The hydrostatic power transmission system has been shown to be highly non-linear 

(Chapter 4); its gain changes significantly when the speed set point or supply pressure is 

varied. A precise model of the system would be difficult to derive. If such a model were 

to be used, a supply pressure transducer would be essential; this would add to the initial 

cost of the controller and, through additional maintenance requirements, to its operating 

costs. However, it is possible to make general verbal ‘intuitive’ statements about the 

relationship between its required input (the electrical signal to the valve) and the 

difference between the required and actual output (shaft speed).  

‘Fuzzy systems let us guess at the non-linear world and yet do not make us write down a 

math model of the world’ (Kosko, 1994, p.165) 

In this phase of the project, the objective was to develop in simulation ‘self organising’ 

fuzzy logic controllers to provide speed control for the test rig, to test the ability of these 

controllers to track and regulate in the face of load and supply pressure disturbances, 

and then to implement similar controllers on the test rig itself. 

This Chapter summarises work at Bath on the application ‘self organising fuzzy logic 

control’ (SOFLC) to the system. The development of controllers and their testing in 

simulation and on the rig is then described.  
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7.2 Review of the History of Fuzzy Logic and Its Application to 

Control and to Fluid Power 

This section contains a brief review of the development and application in the field of 

fluid power of controllers using what in the present work is termed ‘self organising 

fuzzy logic’, itself an extension of ‘fuzzy logic’. An introduction to those principles of 

fuzzy logic which are of particular relevance to the current work is contained in the 

Appendix 4. The principles of fuzzy logic control and SOFLC are set out in 

Appendix 5. 

Some initial investigations within the Department into the application of fuzzy logic to 

the speed control of a fluid power motor have been reported by Njabeleke (1998). In 

these the application of a PD fuzzy logic and PD self organising fuzzy logic controller 

(SOFLC) were explored jointly with the author in simulation. The initial results of this 

exploration have been summarised and published (Njabeleke et al., 1998). Studies of 

the disturbance rejection capability of the SOFLC have been undertaken by the author 

and published (Pannett et al., 1999). In this work, the inputs to the controller were 

presented on a discrete universe of discourse; operation was simulated in continuous 

rather than discrete time. The approach demonstrated the practicability of applying 

‘fuzzy’ control to the system. However, in order to implement controllers in test, it was 

necessary to review the control algorithms and to generate discrete time versions of 

them. These discrete time versions were tested in simulation; those which performed 

satisfactorily in simulation were tested practically. This Chapter describes its extension 

of the initial work to include the development of real time fuzzy and SOFLC controllers 

and presents their implementation and physical testing.  

7.3 Application of the Controller 

The SOFLC with structure as set out in Appendix 5 is applied to the speed control of the 

motor in the hydrostatic power transmission system described in Chapter 3 as follows. 

Initial work on the design of a SOFLC centred on simulation. The inputs are the motor 

speed error and rate of change of motor speed error while the output is the valve current 

in mA.  
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7.3.1 Key Parameters 

The valve rated current is 20mA. The universes of discourse used are: 

motor speed error [-1200 1200] rpm; 

rate of change of motor speed error [-1200 1200] rpm/s; 

controller output [-20 20] mA.  

Each of these universes of discourse is discretised into 200 elements. 

7.3.2 Membership Functions 

The membership functions used are triangular and have 25% overlap for the motor 

speed error and rate of change of motor speed error and 20% overlap for the valve 

current. Triangular membership functions were chosen because their encoding is 

straightforward. The use of triangular membership functions is well supported by the 

literature, for example Pedrycz (1994). Pedrycz and Vukovich (2002) include a 

discussion of the significance of overlap. (In the sequel (Section 7.5.5), it is shown that 

a control deadband can be influenced by the membership function.) 

The membership functions are shown graphically in Figure 7.1. They were prepared 

using MATLAB, in particular the Fuzzy Systems Toolbox from UMIST (Wolkenhauer 

and Edmunds, 1994). 

 

(a) Error (and error rate)    (b) Valve current 

Figure 7.1 Membership functions 
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7.4 Simulation of SOFLC Closed Loop Controller 

This SOFLC was tested in simulation using Bathfp.  

A schematic of the closed loop system is shown in Figure 7.2.  

 

Figure 7.2 Circuit as represented in Bathfp 

To tune the controller, three parameters must be set. These are the gains for the ‘error’ 

and ‘error rate’ signals and the ‘reward delay’ time. Gain values for ‘error’ used lay in 

the range 5-20 and for ‘rate’ 0.1-0.5. A selection of the results of simulations is 

presented in graphical form in Figures 7.3, 7.4 and 7.5. These demonstrate the tracking 

of a speed demand transient in the presence of supply pressure changes and load 

changes, imposed by adjusting the cracking pressure of the relief valve in the load 

circuit. In each, the speed demand transient is shown as a broken line. No initial rules 

were given for any of these simulations (i.e. FAM empty (all elements zero) at 

commencement). 

Error gain Rate gain Reward delay (s) Figure  

10 .1 .01 Figure 7.3 

10 .1 .02 Figure 7.4 

10 .1 .04 Figure 7.5 
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 (a) Tracking    (b) Torque 

 

(c) Control signal   (d) Spool displacement  

 

 (e) Supply pressure    (f) Load circuit pressure 

Figure 7.3 SOFLC simulation 1 – reward delay .01 s 

Time (s) 

C
u

rr
en

t 
(m

A
) 

P
re

ss
u

re
 (

b
ar

) 

Time (s) 

P
re

ss
u

re
 (

b
ar

) 

Time (s) 

Time (s) 

S
p

ee
d

 (
rp

m
) 

Time (s) 

T
o

rq
u

e 
(N

m
) 

 

Time (s) 

S
p

o
o

l 
d
is

p
la

ce
m

en
t 



Department of Mechanical Engineering   The University of Bath 

 

 
116 

(a) Tracking    (b) Torque  

 

 (c) Control signal   (d) Spool displacement 

 

 (e) Supply pressure   (f) Load circuit pressure 

Figure 7.4 SOFLC simulation 2 – reward delay .02 s 
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(a) Tracking    (b) Torque 

 

 

 

 

 

 

(c) Control signal   (d) Spool displacement 

 

 (e) Supply pressure   (f) Load circuit pressure 

Figure 7.5 SOFLC simulation 3 – reward delay .04 s 
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7.4.1 Discussion of Simulation Results 

The simulation results show a clear variation in performance as the parameters are 

varied. The values for which tracking of the given speed transient is achieved with least 

overshoot and shortest settling times appear to be: 

 error gain  10 

 rate gain  0.1 

 reward delay  0.02 s 

The speed tracking behaviour at 600 rpm is more oscillatory in response to supply and 

load circuit pressure disturbances when the reward delay is increased to .04 s. The speed 

tracking behaviour at 600 rpm shows increased error and more oscillation in response to 

a supply pressure transient when the reward delay is reduced to .01 s.  

All results contain a steady state error; this may appear to be unsurprising given the 

essentially PD nature of the controller. However, the granularity introduced by the 

quantisation process, the form of the membership functions and the rules amendment 

process combine to introduce a deadband; a steady state error is thus probable. 

Deadbands are considered further in Section 7.5.5. 

The results of simulation studies using this control structure with parameters similar to 

those given above were presented at Control98 (Njabeleke et al., 1998). The ability of 

the system with SOFLC to reject supply pressure disturbances, such as might occur in a 

multi-user system, as well as load disturbances, was studied further - simulation results 

were included in the presentation at ACC99 (Pannett et al., 1999). 

7.4.2 Rules Evolution 

The evolution of the rules in an FAM table may be presented in the form of a family of 

three dimensional control surfaces which relate controller output in mA to the controller 

inputs (error and error rate). A family of figures showing the evolution of the rules as 

control surfaces, sampled at intervals of 0.4 s, starting from an empty FAM table, is 

contained in Appendix 6. A selection of control surfaces is shown in Figure 7.6. Their 

evolution is discussed in Section 7.4.3. 
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Error (rpm) Rate (rpm/s) 
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Error (rpm) Rate (rpm/s) 

These surfaces relate to simulation 2 where 

 error gain  10 

 rate gain  0.1 

 reward delay  0.02 s 

The surfaces have been generated using MATLAB tools from the Fuzzy Systems 

Toolbox from UMIST (Wolkenhauer and Edmunds, 1994).  

  

(a) Time = 0.4 s (b) Time = 1.2 s 

(c) Time = 1.6 s 

 

 

 

 

 

(d) Time = 2.0 s 
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(e) Time = 2.4 s (f) Time = 2.8 s 

(g) Time = 4.0 s 
(h) Time = 4.8 s 

(i) Time = 6.8 s (j) Time = 7.2 s 

Figure 7.6 Control surfaces for simulation 2 
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7.4.3 Discussion of Rules Evolution      

The rules are represented graphically in the surfaces shown in Figure 7.6. Since the 

error gain is set to 10, the initial demand step from 0 to 100 rpm generates rules for 

errors of about 1000 rpm and PB and NB rates. The former is attributable to the demand 

transient; the rapid reduction of error which then follows generates the latter. Hence the 

surface at time = 0.4 s. 

The ‘experience’ gained during the step increase in speed demand at time = 1.0 s is 

reflected in the surface for time = 1.2 s. The surface for time = 1.6 s shows that rules for 

a negative error have been developed during the overshoot transient. Following this 

transient, the controller successfully reduces, but does not eliminate, steady state error 

(about 20 rpm). The combined effects of discretisation of the universes of discourse and 

the adaptation algorithm introduce a deadband. This is examined further in 

Section 7.5.5. 

The increased load torque at time = 2.0 s does not result in the generation of any new 

rules; the step reduction in supply pressure at time = 2.5 s results in an increase in 

controller gain around the zero error/zero rate point on the control surface (hard to 

identify in the figures). This gain increase mitigates somewhat the open loop gain 

reduction which results from the supply pressure reduction. No further rules evolution 

occurs, although ‘hunting’ around a steady state error of about 30 rpm takes place. 

The step change of reference at time = 4.0 s does not result in further rules changes. 

Operation is stable with steady state error of about 80 rpm until the supply pressure rises 

at time = 5.5 s. The increased loop gain once more results in hunting. There is some 

readjustment of the rules around the zero error/zero rate point before the negative step 

change in demand occurs at time = 7.0 s. This step change leads to the extension of the 

control surface to incorporate rules for negative error and negative rate, as shown by the 

surface for time = 7.2 s. By time = 7.6 s, the transient has died away. Thereafter, no 

further rules evolution occurs; the system maintains stable low speed operation. 
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7.5 Rig Testing the Self Organising Fuzzy Logic Controller 

7.5.1 Discrete Time SOFLC 

To take the work further, in order to investigate the applicability of SOFLC on a test rig 

rather than in simulation, it was necessary to design discrete time controllers which 

could be implemented in software on the rig PC. A discrete time SOFLC with a 

structure and rules amendment rationale similar to that described above was simulated 

in Bathfp. The reward delay was set to be an integer multiple of the sampling interval. 

7.5.1.1 Results of Discrete Time Simulation 

The results of a typical simulation using a discrete time controller are shown below in 

Figure 7.7. The same membership functions constructed on discrete universes of 

discourse are used as in Section 7.3. 

The controller parameters used are 

 sampling interval 0.01 s 

 error gain  10 

 rate gain  0.1 

 reward delay  0.02 s 

In the controller model the reward delay is constrained to be an integer multiple of the 

sampling interval. 
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Figure 7.7 SOFLC discrete time simulation 
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(e) Supply pressure    (f) Load circuit pressure 
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It can be seen that this controller does not perform well at low speed and/or high supply 

pressure. There is considerably more noise in the data of Figure 7.7 than in those of 

Figure 7.4.  

7.5.1.2 Rig Testing 

Nevertheless, rig testing was briefly attempted, but suspended because of the risk of 

equipment damage. Noise levels were high; there were unpredictable changes in the 

direction of shaft rotation. These effects are believed to arise from the combined effects 

of: 

the differentiation process used to derive error rate from error; 

and  

the inability of the rig speed transducer to recognise negative angular velocity. 

Thus it did not prove practicable to transport a controller with the current structure to 

the test rig; stable control could not be achieved. The simulation results were, of course, 

not encouraging.  

7.5.2 Discrete Time SOFLC - Revised Approach 

The control strategy was revised to use the output of the inferencing process as a change 

in the control output to the system, rather than as control effort. The fuzzy sets are 

formed upon a continuous universe of discourse, the inputs (in this case, as before, error 

and rate of change of error) are fuzzified, a fuzzy inference is made from the fuzzified 

inputs and the resulting output is defuzzified into a crisp value which becomes the 

change in controller output. Each change is accumulated. The action is thus integrating. 

The accumulated changes are scaled to give the controller output. This revised approach 

is shown in Figure 7.8, in which  represents the summation of the change in output 

generated with the current value of the output to produce a new output. 
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Figure 7.8 SOFLC structure – revised 

This revision necessitated a change in the rules amendment procedure, which is 

considered further below. 

To simplify the structure of the controller to be implemented on the rig, similar 

membership functions (incorporating 25% overlap) were used for both controller inputs 

and for its output. These are shown in Figure 7.9. These are constructed on continuous, 

rather than discrete, universes of discourse. 

d/dt 
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 (a) Error (and error rate rpm/s)     (b) Valve current. 

Figure 7.9 Membership functions 

A discrete time controller which used this revised rationale was tested in simulation, 

and, following satisfactory results, was transported to the test rig for further testing. 

Results of tests in simulation and on the rig, are presented below. The development of 

the control surface is also illustrated. 

7.5.2.1 Revised Rules Amendment Procedure 

The revised rationale of the rule modification algorithm is as follows: 

Use fuzzy values of current error and current error rate with the performance rules to 

calculate a ‘performance output adjustment’. This is the change in output which 

would have resulted in improved performance; 

Fuzzify the ‘performance output adjustment’; 

Fuzzify the ‘delayed error’ and ‘delayed rate of change of error’ (read from the 

buffer). For improved performance, these should have resulted in the ‘performance 

output adjustment’ rather than the change in output which actually obtained; 

Find the highest memberships for ‘delayed error’ and ‘delayed rate of change of 

error’; 

Use these as cell co-ordinates in the rule table to determine which rule in the FAM 

table to modify; 
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Find the fuzzy output set having the highest membership for ‘performance output 

adjustment’; 

Use this fuzzy output set in the new rule; 

Update the corresponding cell in the FAM table. 

7.5.2.2 Simulation Results 

The results of simulation using the following controller parameters are shown in Figure 

7.10. 

 sampling interval 0.01 s 

 error gain  10  

 rate gain  0.1 

 reward delay  0.02 s 

The figure demonstrates the ability of the controller to reject transients in both supply 

pressure and load torque. The high frequency component in the control signal is now 

absent, so that the valve spool is able to follow closely the input current. The integrating 

action of the controller results, for example, in an extended rise time for the shaft speed 

(Figure 7.10(a)) in response to a increase in demanded shaft speed (see time 1.0 s, 4.0 s) 

in comparison with the response shown in Figure 7.7(a).  
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Figure 7.10 SOFLC simulation – revised structure 
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(e) Supply pressure    (f) Load circuit pressure 

 

(c) Control signal    (d) Spool displacement 

(a) Tracking     (b) Torque 
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The development of the control surfaces, stored as before at 0.4 s intervals, is 

reproduced in Appendix 6; a selection is shown in Figure 7.11. 

 

(a) Time = 0.4 s  (b) Time = 1.2 s  

(c) Time = 1.6 s  (d) Time = 2.0 s  
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Figure 7.11 Control surface evolution – revised SOFLC (simulation) 

(e) Time = 3.2 s  (f) Time = 5.2 s  

(g) Time = 5.6 s  (h) Time = 6.4 s  

(i) Time = 6.8 s  (h) Time = 8.0 s  
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7.5.2.3 Rules Evolution 

The integrating action of the controller results in greatly reduced control activity in 

relation to that of the previous control structure.  

The development of the control surfaces is less vigorous than in the previous case; the 

surface for time = 1.2 s incorporates rule changes in response to the positive step change 

in demand; that for time = 1.6 s incorporates the effect of responding to the overshoot, 

when the error is negative. The integrating nature of the controller requires that the 

control surface should indicate a zero output whenever the system is operating in a 

steady state with zero error. The surfaces for time = 3.2 s (and time = 3.6 s and 4.0 s) 

show zero output around the zero error and zero rate point; those for time =6.4 s, 

time=6.8 s and time =8.0 s exhibit a similar feature. 

7.5.3 Rig Testing  

A controller with the structure described above was implemented on the test rig, using 

C++. As a further simplification, similar membership functions incorporating 25% 

overlap were used for both controller inputs and for its output. These are shown in 

Figure 7.12.  

 

 

Figure 7.12 Membership function used for revised SOFLC rig testing 

These are constructed on continuous universes of discourse. The two inputs to the 

controller are scaled to lie in the range -50:0:50, and then limited so as not to lie outside 

the range -45:0:45. Similarly, the output is scaled so that the computed value of output 
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voltage lies in the range -10:0:10. (An output of 10 V is converted to a 20 mA current to 

the valve solenoid.) 

As a demonstration of the functionality of the controller, the results of three tests are 

presented and reviewed below. The rules are written to file at a rate which is one 

hundredth of the data acquisition rate. From the stored rules are derived control surfaces 

as for the simulations. The control surfaces indicate graphically how the rules evolve. 

As noted above, in the rig software the same universes of discourse and membership 

functions have been used for error, rate and output. The axis labelling on the control 

surfaces therefore corresponds to this single universe of discourse. Thus, for example, 

an output of 45 units indicates that the inferencing algorithm has generated a fuzzy 

output which has 100% membership of the PB fuzzy set and zero membership of the 

other sets. In the controller software and hardware suitable scaling factors are applied to 

ensure that this output generates a current of 20 mA (i.e. maximum) to the valve. 
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7.5.4 Rig Test Results 

A selection of test results is presented in this section. This selection is intended to 

demonstrate the effects of changing key parameters on the tracking and disturbance 

rejection capability of the controller. Key parameters are shown in Table 1. 

Table 7.1 Rig tests - key parameters 

 Test 1 Test 2 Test 3 

Step input speed demand  0-700 rpm 0-440 rpm 0-400 rpm 

Supply pressure Nominally 

constant: 60 bar 

Step changes 

between 40 and 

60 bar 

Nominally 

constant: 60 bar 

Load torque Nominally 

constant 

Nominally 

constant 

Nominally 

constant 

Initial rules None None None 

Control frequency 400 Hz 400 Hz 100 Hz 

Data acquisition frequency 100 Hz 100 Hz 100 Hz 

Error gain 0.1 1.0 1.0 

Error rate gain 0.02 0.02 0.02 

Reward delay - samples 8 8 8 

Reward delay - time 0.02 0.02 0.08 

7.5.4.1 Rig Test 1 

Step input speed demand from 0 to 700 rpm; supply pressure nominally constant 

(60 bar); load torque nominally constant; no initial rules.  
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Control frequency 400 Hz; data acquisition frequency 100 Hz. Error gain 0.1; error rate 

gain 0.02; reward delay 8 samples (.02 s).  

The speed tracking, control signal and supply pressure are shown in Figure 7.13; the 

control surfaces are shown in Figure 7.14. 

Detailed examination of the logged values of actual speed show that it does not increase 

monotonically. As rate is computed by dividing the difference between successive error 

samples by the sampling interval, some negative rates of change of error are detected; 

these are responsible for the appearance of corresponding rules in the FAM table, 

illustrated in the control surfaces (Figure 7.14) More control surfaces are shown in 

Appendix 6. 

By time = 1 s, the controller has experienced a range of errors and error rates; Figure 

7.13(a) shows that the error has fallen to 200 rpm. Allowing for the error gain, it is clear 

from the membership functions shown in Figure 7.12 that the controller has experienced 

PB, PM and PS errors. The surface for time = 1 s reflects this. 

By time = 6 s, little rules evolution is taking place; the surface continues to exhibit some 

of the experience  gained during the initial training, and, arguably, remains susceptible 

to the effects of noise. 

By time = 10 s, the combined effects of the low gain and the deadband effect discussed 

in Section 7.5.5 below have resulted in drift, i.e. an error between set point and actual 

speed. 
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(b) Control signal 

 

 

 

 

 

 

 (c) Supply pressure 

Figure 7.13 Rig test results – test 1 
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(a) Time = 0

s  

(b) Time = 1.0 s 

(c) Time = 2.0
 
s (d) Time = 3.0 s 

(e) Time = 6.0
 
s (f) Time = 10.0

 
s 

 

Figure 7.14 Control surfaces for rig test 1 
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7.5.4.2 Rig Test 2 

Step input speed demand from 0 to 440 rpm; supply pressure subject to step changes in 

the range 40 bar to 60 bar; load torque nominally constant; no initial rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15 Rig test results – test 2 
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(a) Time = 0

s (b) Time = 1.0 s 

(c) Time = 6.0 s (d) Time = 8.0 s 

(e) Time = 10.0 s (f) Time = 14.0 s 

 

Figure 7.16 Control surfaces for rig test 2 
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Test 2 demonstrates the improved tracking and disturbance rejection performance 

attainable if a higher error gain is used (Figure 7.15; a selection of control surfaces is 

shown in Figure 7.16; more are shown in Appendix 6). 

Close examination of the logged data shows that there is a maximum overshoot of about 

30 rpm at time = 0.8 s (Figure 7.15(a)). The overshoot represents a negative error. The 

incorporation of a response to a negative error in the FAM table is evident from the 

control surface for time = 1.0 s (Figure 7.16(b)). The effect of the positive step change 

in supply pressure at about time = 7.2 s is a substantial modification of the rules 

associated with large negative errors, as shown in the surface for time = 8.0 s (Figure 

7.16(d)). The learning which has occurred during the initial step change in speed 

reference and during the negative and positive step changes in supply pressure at time 

= 5.2 s and time = 7.2 s generates rules which are appropriate and sufficient for the 

subsequent supply pressure changes at time = 9.5 s, time = 11.5 s and time = 13.5 s. 

These pressure changes do not apparently result in major changes to the control surface. 

Away from the transients, speed tracking is maintained to 3 rpm. 

7.5.4.3 Rig Test 3 

Step input speed demand from 0 to 400 rpm; supply pressure nominally constant 

(60 bar); load torque nominally constant; no initial rules. Control frequency 100 Hz; 

data acquisition frequency 100 Hz. Error gain 1; error rate gain 0.02; reward delay 8 

samples (.08 s).  

Test 3 was designed to demonstrate the effect of reducing sampling rate and extending 

reward delay time. Comparison of the tracking shown in Figure 7.17(a) with that for 

Test 2 (Figure 7.15 (a)) shows that the times to reach and pass the initial step speed 

demand are similar, but the overshoot is greater than in Test 2 (c. 40 rpm c.f. c. 15 rpm). 

The speed ‘hunts’ in a band of about  25 rpm about the set point for about 8 s. Only 

beyond this time does a zero control plateau in the control surface develop around the 

zero error axis, consistent with stable steady state operation with low error (Figure 

7.18(f)). The tracking error stabilises at about 3 rpm. The longer sampling interval 

results in a narrowing of the range of rates of change of error which is sensed; rules tend 

not to be generated for rates which are NB or PB, as reflected in the control surfaces 

(Figure 7.18). (More control surfaces are shown in Appendix 6.) 
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(a) Tracking 

 

(b) Control signal 

 

 (c) Supply pressure 

Figure 7.17 Rig test results – test 3 
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(a) Time = 1.0 s (b) Time = 2.0 s 

(c) Time = 3.0 s (d) Time = 6.0 s 

(e) Time = 7.0 s (f) Time = 8.0 s 

 

Figure 7.18 Control surfaces for rig test 3  
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reward delay and sampling interval. A ‘low’ value of gain for the error signal results in 

poor tracking, principally because of the existence of a deadband. 

7.5.5 Need for Initial Rules - Deadband Effect  

It is important to note that the SOFLC algorithm can introduce a deadband. This can be 

understood as follows: 

Consider a situation in which there is a (positive) steady state error. Thus error rate is 

zero. If the error gain is 10 and the error is less than 20 rpm, then, the error will have 

maximum membership in the ZE fuzzy set, as will, of course, the error rate. (See 

membership functions in Figure 7.9.) The output fuzzy set which has maximum 

membership for the fuzzified performance output adjustment is also ZE. The rules 

amendment procedure (Appendix 5) will thus ensure the rule in the FAM table which 

corresponds to ‘error is ZE’ and ‘error rate is ZE’ is adjusted to give output ZE.  

Example: 

          (7.1) 

          (7.2) 

          (7.3) 

          (7.4) 

          (7.5) 

Thus the fuzzy performance output adjustment, from the performance table, is given by  

fuzzy performance output adjustment      (7.6) 

Using the centre of gravity method for defuzzification (Appendix 4): 

defuzzified performance output adjustment      (7.7) 

The defuzzified performance output adjustment is thus 1.67 mA. This has membership 

0.75 in ZE and 0.25 in PS, or [0,0,0,0.75,0.25,0,0] in vector form. It has highest 

membership in ZE. 

In the FAM table, the ‘error is ZE’ and ‘rate is ZE’ rule will be updated, if necessary, to 

yield output ZE in accordance with the rules amendment procedure. If the FAM table 

currently contains the rule that ‘error is PS’ and ‘rate is ZE’ results in output ZE, a 
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deadband will result This is because application of the above membership vectors to the 

FAM table will result in a zero change in output even though the error is non-zero. 

7.6 Concluding Remarks 

This Chapter has introduced the application of fuzzy logic to the candidate system and 

set out the motivation for using self organising fuzzy logic control (SOFLC), namely 

the avoidance of an extension to the rules database. The Chapter has also described the 

successful rig testing of a SOFLC on the candidate system. However, the controller 

which had been tested successfully in simulation was not successful on the rig. 

It was recognised that extending the rules database to recognise that system 

performance changes with supply pressure and operating speed would have extended 

the dimensions of the database from two (embracing speed error and rate of change of 

error) to three or four. This would have added greatly to computational complexity and 

required the designer to formulate suitable rules. This in turn would have required either 

a complex non-linear model of the system or an extensive series of system tests. 

Instead, a two dimensional rules database was retained and strategies whereby the rules 

would be dynamically amended and implemented using a ‘self organising’ approach 

were pursued.  

The effect of variation in the three key parameters – speed error gain, speed error rate 

gain and reward delay (which is the key parameter in the rules amendment procedure) – 

was explored in simulation. Evolution of the form of the rules database was monitored 

in simulation during the application of transients in speed set point, supply pressure and 

load. The simulation results indicated that, with suitable choice of the three key 

parameters, successful implementation on the rig might be possible. Examination of the 

evolution of the rules database was undertaken by presenting sampled sets of rules as 

three dimensional surfaces. Although attempts have been made to interpret and 

document their evolution, it is the overall performance of the controller as indicated by 

set point tracking in the face of disturbances which is important. This encouraged the 

transfer of the controller from the simulation environment on to the test rig. However, 

the initial simulations were carried out without imposing a sampling routine.  

Implementation on the rig in real time requires that the controller should work with 

sampled data inputs rather than in ‘continuous time’ Simulation of the sampled data 
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system resulted in considerably more noise. Nevertheless, rig testing was briefly 

attempted, but suspended because of high noise levels and the risk of equipment 

damage. Some of the noise might have been associated with differentiation of error to 

provide error rate. The rig shaft speed sensor is not able to recognise the direction of 

shaft rotation. This resulted in unpredictable changes in the direction of rotation. Further 

work might therefore include the modification of the rig to include a shaft speed sensor 

which is able to sense the direction as well as the magnitude of the speed of rotation.  

As described, a revised strategy, in which the output of the SOFLC is ‘change in control 

effort’ (change in signal to servovalve) rather than control effort was devised and 

implemented. This is essentially an integrating action. This strategy was demonstrated 

to be successful, provided that appropriate values are chosen for the gains, reward delay 

and sampling interval. A ‘low’ value of gain for the error signal results in poor tracking, 

principally because of the existence of a deadband. The ‘deadband effect’ is briefly 

discussed. A deadband can, in some circumstances, result from the rules amendment 

procedure. The form of the membership functions and the gain values determine the size 

of this deadband. 

Further work is needed to establish a tighter rationale for the selection of the key 

parameters. The significance of a deadband also requires further examination. However, 

the application of a SOFLC strategy which benefits from not requiring a system model 

has been demonstrated. As the strategy is model free, issues associated with non-

linearities and/or variations with operating conditions of key system parameters need 

not be addressed.    

This phase of the project has demonstrated the viability of SOFLC schemes which: 

use continuous, rather than quantised,  universes of discourse; 

use a procedure which adjusts the FAM table directly, rather than look-up rules 

tables. 

This SOFLC scheme therefore differs significantly from those in the literature. Its 

viability has been demonstrated in simulation and by rig testing. 
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8 Conclusions and Further Work 

The objectives of this research, as initially defined, were as follows: 

1. To compare the merits of alternative robust controllers for non-linear 

systems, taking account of performance, reliability, cost and complexity of 

implementation; 

2. To produce design guidelines, using the results of the above comparison, 

for controller selection criteria; 

3. To validate these guidelines by application to physical machinery systems 

design involving electrical, mechanical and fluid power components. 

In the time available to undertake the research which supports this thesis, these 

objectives have been interpreted by focussing on the application of various robust 

control strategies to a hydrostatic power transmission system: the speed of a valve-

controlled fluid power motor supplied from a laboratory ring main and subjected to 

disturbances both to supply pressure and load torque is controlled.  

Thus the aim of this research has been to explore the applicability of ‘modern’ linear 

control and fuzzy logic to the above system. This fluid power system has significant 

non-linearities, a principal source of which is orifice effects, and is subject to 

disturbances in the form of supply pressure fluctuations and load torque changes.  

In accordance with objective 1 above, the performance of alternative control 

strategies has been investigated qualitatively. Reliability and cost have not been 

assessed, and might be the subject of further work. Complexity has not been 

quantified. However, the detailed descriptions of the derivations of each of the 

controllers provide a pointer to the degree of complexity of each. 

In accordance with objective 2, design guidelines are included with the controller 

descriptions, in particular on the choice of sampling rates and weights for the 

different linear robust controllers. For the SOFLC, the significance of the ‘reward 

delay’ is indicated, and attention is drawn to the possibility of deadbands.  
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In accordance with objective 3, the above guidelines have been validated by 

application, for resource reasons, to the candidate fluid power system only. 

A short series of conventional (proportional and PID) control tests (Chapter 4) has 

demonstrated how the non-linearities of the test system lead to control difficulties. 

Thus, in a proportional control speed tracking test, a gain which results in stable 

operation, with steady state error, at ‘high’ speed leads to instability when the speed 

is reduced. Reducing the gain to maintain stability at lower speeds would increase 

the steady state error at higher speeds. Although in a PID test it was possible to 

choose control parameters which provided good speed tracking at higher speeds, 

once again instability occurred when the speed was reduced.  

The research has demonstrated the practicability of designing viable controllers for a 

system having non-linearities without recourse to the construction of a detailed non-

linear model. It has used ‘modern’ H∞ linear control methods in accordance with a 

straightforward design route which it has introduced and applied. The H∞ linear 

control methods facilitate the design of controllers which treat uncertainties and 

omissions in the system model as perturbations. The design route has used readily 

available user-friendly software (Bathfp and MATLAB) for modelling, controller 

design and testing in simulation, prior to testing on a physical rig. The rig includes a 

PC based controller and data logger. Controllers for test have been coded in the C++ 

programming language, compiled and loaded on to the PC.  

The research has confirmed that non-linear systems can be represented as linear 

systems to permit the design of controllers using H∞ methods. The mixed sensitivity 

method has been used in Chapter 5 with a simple linear model of the system to 

provide a robust controller with specified performance, the robustness 

accommodating the perturbations to the linear model which are attributable to un-

modelled features and non-linearities in the system.  

The test results demonstrate that a high order controller, designed in the continuous 

s-domain using an H mixed sensitivity approach, can be successfully discretised 

and implemented on a real system. The controller gave good tracking and good 

disturbance rejection. 

Proportional control was unsuccessful on both counts (Chapter 4). The tests do not, 

however, enable the hypothesis that the observed instability using proportional 
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control might be attributable to discretisation effects rather than closed loop 

instability to be tested. Simulation does not show instability. Thus another possible 

cause for it lies in the unmodelled features of the system. 

In the load disturbance tests using the high order controllers, the speed error 

transients are of such magnitude and duration that the angular deviations between the 

demanded and achieved shaft rotations amount to only a few degrees. This close 

tolerance may be significant if the system forms part of a high speed machine in 

which time domain performance is important. 

The non-linear system model used as a basis for controller design was a simplified 

representation of the real system; values of key parameters were taken from 

manufacturers’ data sheets, and the dimensions and characteristics of pipes were 

estimated. This was in accord with the design philosophy that, as the controller to be 

designed would, by virtue of the algorithms used, be robust, effort to define and 

validate an accurate model was not justified. The test results are a vindication of this 

approach.  

The relatively sluggish response of the system, which takes about 0.7 s to reach the 

‘steady state’ at ‘low’ speed, as illustrated in the -emulation tracking tests, suggests 

that the system bandwidth is in fact rather narrower than that modelled in Chapter 5. 

This needs further consideration, but probably results from inadequately modelled 

valve dynamics. 

Additionally, conservatism in controller design, in terms of stability margin, results 

from the use of a model incorporating a higher supply pressure, and thus higher gain, 

than that used for the tests. Clearly, further work is necessary to refine the controller 

software to eliminate wind-up if the operating regime is such that this may occur. 

Wind-up was considered in the next phase. 

Chapter 6 has elaborated on the linear method of Chapter 5 by using the results of an 

examination of how the open-loop gain of the candidate system, as illustrated by its 

bode gain (or singular value) plots, varies with operating parameters, in particular 

supply pressure and speed set point. Application of ‘gap analysis’ to these gain 

characteristics was found to indicate that the design of a single robust controller to 

provide specified performance across the full range would be challenging. Therefore, 

in an alternative approach, two controllers were designed, one for ‘high’ speed and 
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the other for ‘low’ speed operation, each using a ‘loop shaping’ approach. For each 

of these, the loop was shaped using a PI compensator. These controllers were found 

by analysis to provide adequate in stability margins. The orders of the controllers in 

combination with the compensators were reduced to facilitate implementation. A 

suitable bumpless switching scheme was identified. This, with the two reduced order 

controllers, was successfully implemented and tested on the rig. The resulting 

composite controller was found by experiment to have good speed set point tracking 

and load disturbances rejection properties; the selected bumpless transfer scheme 

was also found to give integrator wind-up protection.  

Future work might include assessing the benefits or otherwise of implementing a 

control scheme in which the control algorithm was selected according to supply 

pressure as well as or in addition to operating speed. However, such a development 

would require the provision of a suitable supply pressure sensor.  

The mixed sensitivity and loop shaping controllers have been shown to be superior 

to proportional and proportional integral controllers by practical testing. Use of the 

latter controllers leads to a more conservative performance. This is because of the 

need to maintain stability in the face of both uncertainties in system parameter values 

and of system non-linearities. It is proposed now that, although the controllers which 

use H∞ methods are superficially more complex than a PI or PID controller, this 

added complexity is justified by the provision of robust performance over a wide 

range of speeds, and the demonstrated absence of the need for other than simple 

models of the system. It is conjectured that the low and still decreasing cost of 

electronic hardware means that any cost premium is likely to be small. The work 

presented here provides a general approach to the design of linear controllers for 

fluid power systems which are capable of satisfying performance specifications in 

the presence of model uncertainty, some of which is attributable to non-linearities, 

and system disturbances.  

The research has also demonstrated that a non-model based controller using self 

organising fuzzy logic (SOFLC) can be applied to the candidate fluid power system. 

Chapter 7 introduced the application of fuzzy logic to the candidate system and set 

out the motivation for using self organising fuzzy logic control (SOFLC), namely the 

avoidance of an extension to the rules database. It was recognised that extending the 

rules database to recognise that system performance changes with supply pressure 
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and operating speed would have extended the dimensions of the database from two 

(embracing speed error and rate of change of error) to three or four. This would have 

added greatly to computational complexity and required the designer to formulate 

suitable rules. This in turn would have required either a complex non-linear model of 

the system or an extensive series of system tests. Instead, a two dimensional rules 

database was retained and strategies whereby the rules would be dynamically 

amended and implemented using a ‘self organising’ approach was pursued.  

The effect of variation in the three key parameters - error gain, error rate gain and 

reward delay (which is the key parameter in the rules amendment procedure) – was 

explored in simulation. Evolution of the form of the rules database was monitored in 

simulation during the application of transients in speed set point, supply pressure and 

load. The simulation results indicated that, with suitable choice of the three key 

parameters, successful implementation on the rig might be possible. Examination of 

the evolution if the rules database was undertaken by presenting sampled sets of 

rules as three dimensional surfaces. Although attempts have been made to interpret 

and document their evolution, it is the overall performance of the controller as 

indicated by set point tracking in the face of disturbances which is important. This 

encouraged the transfer of the controller from the simulation environment on to the 

test rig. However, the initial simulations reported on in Chapter 7 were carried out 

without imposing a sampling routine necessary for implementation of the SOFLC in 

real time.  

Chapter 7 went on to describe the successful rig testing of a SOFLC on the candidate 

system. However, the controller which had been tested successfully in simulation 

was not successful on the rig. Implementation on the rig in real time requires that the 

controller should work with sampled data inputs rather than in ‘continuous time’ as 

represented in the earlier simulations. Simulation of the sampled data system resulted 

in considerably more noise. Nevertheless, rig testing was briefly attempted, but 

suspended because of high noise levels and the risk of equipment damage. Some of 

the noise might have been associated with differentiation of error to provide error 

rate. The rig shaft speed sensor is not able to recognise the direction of shaft rotation. 

This resulted in unpredictable changes in the direction of rotation. Further work 

might therefore include the modification of the rig to include a shaft speed sensor 

which is able to sense the direction as well as the magnitude of the speed of rotation.  
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A revised strategy, in which the output of the SOFLC is ‘change in control effort’ 

(change in signal to servovalve) rather than control effort was devised and 

implemented. This is essentially an integrating action. This strategy has been 

demonstrated to be successful, provided that appropriate values are chosen for the 

gains, reward delay and sampling interval. A ‘low’ value of gain for the error signal 

results in poor tracking, principally because of the existence of a deadband. The 

‘deadband effect’ has been discussed briefly.  

However, the application of a SOFLC strategy which benefits from not requiring a 

system model has been demonstrated. As the strategy is model free, issues associated 

with non-linearities and/or variations with operating conditions of key system 

parameters need not be addressed.    

This phase of the project has demonstrated the viability of SOFLC schemes which: 

 use continuous, rather than quantised,  universes of discourse; 

 use a procedure which adjusts the FAM table directly, rather than 

look-up rules tables. 

This SOFLC scheme has been demonstrated in simulation and by rig testing. 

However, the rules amendment procedure can, in some circumstances, result in a 

‘deadband’. The form of the membership functions and the gain values determine the 

size of this deadband. The significance of the deadband requires further examination. 

Further work is recommended to: 

 investigate the effect of alternative membership functions, including 

membership functions with alternative shapes; 

 investigate the use of filtering to condition the rate of change of error 

signal to reduce the susceptibility of the rules amendment algorithm 

to noise;  

The values of certain parameters essential to correct operation have been found to be 

less easily determined that some advocates of SOFLC might imply. Thus, further 

work is needed to establish a rational basis for determining how to select ‘reward 

delay’, and to investigate alternative choices of performance measure. Other future 

work might be undertaken to determine whether a more complex rules table might be 
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beneficial. However, including a more complex table would add to the complexity of 

the controller program. Similarly, the advantages, if any, of alternative shapes for 

membership functions need investigation. The introduction of deadbands and their 

consequences for controller performance has been identified: some initial analysis 

has been undertaken. However, this, again, needs further investigation. The software 

needed to implement the SOFLC controller in practice is rather more complex than 

that needed for the ‘linear’ methods, which is disadvantageous.  

The ‘self organising’ nature of the controller makes it difficult to diagnose any 

maloperation, and may militate against the application of SOFLC in safety critical 

operations, because any post-incident investigation of faults or mal-operation would 

be hindered by the lack of availability of details on the behaviour of the control 

algorithm, unless a module to log details of controller operations, including the 

evolution of the rules, is incorporated. This would, of course, add to the controller 

software complexity. Nevertheless, a programme of further work might usefully 

include an investigation into the means of providing such a module. Other non-

model based controllers, such as those based on neural networks, might also usefully 

be investigated.  
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APPENDIX 1 System Information  

A1.1 Extracts from Moog Data Sheet 841 – Series A084 

Servodrives  

 

Figure A1.1 Servomotor with servovalve (taken from Data Sheet 841)  

 

Figure A1.2 Schematic of Moog Donzelli servodrive (Figure 1 of Data 

Sheet 841) 
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Table A1.1 Moog Donzelli servomotor parameters (taken from Table 1 of Data 

Sheet 841) 

Motor 

Size 

Motor 

Displacement 

Approx. 

Stall 

Torque 

Factor 

(in lb/ 

100 psi) 

Max 

Speed 

(rpm ) 

Max 

Pressure  

(psi) 

Max 

Axial 

Shaft 

Load  

(lb) 

Max 

Radial 

Shaft 

Load  

(lb) 

Servovalve 

Type  

 

Motor 

Inertia 

(lb 

sec
2
) 

 

(in
3
/ 

rev) 

(in
3
/ 

rad) 

2 2.41 0.383 33.9 2000 2500 180 450 62,73,76 0.0170 

 

 

Figure A1.3 Servodrive resonant frequency (taken from Figure 4 of Data 

Sheet 841) 
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Table A1.2 Characteristics of servovalves (taken from Figure 4 of Data 

Sheet 841) 

 



Department of Mechanical Engineering   The University of Bath 

 

165 

 

A1.2 Principal Parameters used in the Bathfp Plant Model 

Details of the component models used may be found in Bathfp Manual Volume 2 – 

The Standard Bathfp Model Reference Guide. 

A1.2.1 Rotating Components 

Parameter Value Reference 

Load Pump Displacement 19.2 cc/rev Sauer Sundstrand data sheet - gear 

pump/motor SNM2/19 CO 02 

Motor Displacement 39.5 cc/rev 

(2.41in
3
/rev) 

MOOG Series A084 Servo drives 

Data Sheet 841 

Total Inertia of Rotating 

Parts 

0.075 kgm
2 data sheets + estimates 

A1.2.2 Pipes 

    Supply    Valve -Motor (2) 

Length    10 m    0.01 m 

Internal diameter  25.4 mm   25.4 mm 

Wall thickness   2.54 mm   2.54 mm 

Material   steel/cupro-nickel  steel/cupro-nickel 

Pipe model (Bathfp)  HP01    HP00 

A1.2.3 Valve 

Valve type: Moog Donzelli 76M104 

Valve flow characteristic:  p/q 68 l/min   (from data sheet) 

Valve model (Bathfp):VB04 

A1.2.4 Speed transducer 

Transducer time constant:  .01 sec (estimated) 
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APPENDIX 2 Mathematical Notations,  

Sets, Matrices, etc.  

A2.1  General 

For all:     

There exists at least one:     

A implies B:   BA  

B is implied by A:   AB  

D is true if and only if (iff) A is true:   AD  

Rational number:   expressible as quotient of two integers e.g. 0.5 = 1/2 

Irrational number:   not a rational number e.g. (2) 

Triangle inequality:   a+ba + b 

A2.2  Sets 

a is an element of set A:   a  A 

B is a subset of A:   B  A  

Elements of set A:   A = {list of elements in set} 

Set A consists of elements a which have a property Q:   A = {a | a is Q} 

Set A contains B and more (B is a proper subset of A):   B  A 

Set D is union of sets A and B:   D = A  B  

means D = {d | d  A or d  B} 

(i.e. the set D is sets A and B „added together‟) 

Set C is intersection of sets A and B:   C = A  B 

means D = {d | d  A and d  B} 

(i.e. the set C is the „overlap‟ of sets A and B) 

Empty set:   O 
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Universal set (of all elements relevant to the current problem):   U 

(so O  A  U) 

Complement of set A (all elements not in set A) is A 

(i.e. A  A = O; A  A = U) 

A2.3  Sets and the Complex Plane 

Im

Real

Circle C

a

z

z-a

 

Circle C is defined by |z - a| = r where r is the radius. 

The interior of C is defined by |z - a|  r. This is an open circular disc. It is a 

neighbourhood of a. There is an infinite number of such neighbourhoods given by all 

r > 0. 

The closed circular disc is defined by |z - a|  r. 

A set of points in the complex plane is any collection of points, finite or infinite in 

number. Examples:   solutions of a quadratic equation, points in the interior of a 

circle. 

A set S is open if every point in S has a neighbourhood every point of which belongs 

to S.  

The set of points in the interior of a circle form an open set; the set of points which 

lie in the interior of a circle or on it form a closed set, because no neighbourhood of a 

point lying on the circle can lie entirely within it. The complement of set S is the set 

of all points in the complex plane which do not belong to S. A set is open if its 
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complement is closed. A set is bounded if a circle can be drawn which encloses all 

its points. A connected set S is one in which any two of its points can be joined by a 

finite line of finitely many linear segments, all of whose points belong to S. An open 

connected set is a domain. A point is a boundary point of a set if every 

neighbourhood of that point contains both points inside and outside the set. If a set is 

open, then no boundary point belongs to the set. 

A2.4  Matrices and Determinants 

Transpose of A:   A
T
 (or A') - rows and columns interchanged 

(AB)
T
 = B

T
A

T
 

Complex conjugate of A:   A - elements are complex conjugates of elements in A 

Identity matrix I (all elements on leading diagonal equal to one; other elements zero) 

Transpose of complex conjugate of A:   A
H
 (A

H
 = A

T
) 

Determinant of A:   |A| 

Determinant of product |AB| = |A||B| 

Removal of row i and column j from matrix A:   De(i,j,A) 

Minor of matrix A:   |De(i,j,A)| 

Cofactor of matrix A (signed minor):   (-1)
(i +j)

 |De(i,j,A)| 

Adjoint (matrix of cofactors) of matrix A:   Adj(A) 

Inverse of A:   A
-1

 = 
A

Α)(Adj  

A
-1

A = I 

(AB)
-1

 = B
-1

A
-1

 

Unitary matrix U:   UU
H
 = I 

also 
1T 

UU (inverse of complex conjugate = transpose) 

Hermitian matrix A:   AA =T  (complex conjugate = transpose) 

also 
T

AA   

Real Hermitian matrix or symmetric matrix A
T
 = A ( AA   since A is real) 

Skew symmetric matrix A
T
 = -A (therefore diagonal elements are zero) 
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Orthogonal matrix A
-1

 = A
T
 

Involutary matrix A
-1

 = A 

Normal matrix (must be square):   Q
H
(s)Q(s) = Q(s)Q

H
(s) 

Polynomial matrix:   matrix of polynomials 

Unimodular polynomial matrix:   matrix of polynomials whose inverse is also a 

polynomial matrix 

(Note - a rational transfer function matrix is expressible as a polynomial matrix and 

a common denominator polynomial) 

A2.5  Rank 

Rank of mn matrix  

- maximum value is min(m,n) 

- number of linearly independent pieces of information contained in the matrix 

- rank r means that matrix contains at least one rr matrix with non-zero 

determinant, and |(r+1),(r+1)| = 0 

A2.6  Eigenvectors and Eigenvalues 

For matrix A, 

x = Ax where  is an eigenvalue and x is an eigenvector (column). 

|I - A| = 0 

For the ith eigenvector xi of n, 

[iI - A]xi = 0 

If matrix P = [x1    xi     xn] 

then P
-1

AP = 

















n

i







00

00

001

 

A2.7  Determinants and Eigenvalues 

The determinant of a matrix is the product of its eigenvalues. 

i.e. 

|A| = i 
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A singular matrix has at least one zero eigenvalue. 

Proof: 

Consider a 22 matrix A 











2221

1211

aa

aa
A  

|A| = (a11a22 - a21a12) 

Now find eigenvalues as roots of characteristic equation: 

 
     21122211

2221

1211 aaaa
aa

aa





 




IA  

   211222112211

2 aaaaaa  IA  

Product of roots, that is product of eigenvalues, is  21122211 aaaa   

This is also the determinant. 

 For higher order, consider |A - I| and expand to give the characteristic equation. 

The product of the roots is given by the term which does not include i
 . This term 

may be arrived at by deriving |A - I| and setting  = 0, i.e. |A|. Thus |A| is the 

product of the roots of the characteristic equation, i.e. the product of eigenvalues. 

A2.8   Definiteness 

For matrix A: 

 +ve definite (A  0) if x
T
Ax  0 for x  0 

+ve semi-definite (A  0) if x
T
Ax  0 for x  0 

ve definite (A  0) if x
T
Ax  0 for x  0 

ve semi-definite (A  0) if x
T
Ax  0 for x  0 

If eigenvectors are i the following apply: 

 +ve definite i  0 for all i 

+ve semi-definite i  0 at least one i is zero (singular matrix) 

ve definite i  0  for all i 

ve semi-definite i  0 at least one i is zero (singular matrix) 

Scalar Quadratic Form f(x) where x is a non-zero vector, i.e. at least one element of 

x is non-zero. For all non-zero x: 
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if f(x)  0 f(x) is +ve definite 

if f(x)  0 f(x) is +ve semi-definite 

if f(x)  0 f(x) is ve definite 

if f(x)  0 f(x) is ve semi-definite 

Other forms are indefinite. 

Symmetric matrix Q 

 (associated with x
T
Qx) 

Eigenvalues are i = i + ji 

If i  0 Q is +ve definite 

If i  0 Q is +ve semi-definite 

If i  0 Q is ve definite 

If i  0 Q is ve semi-definite 

If det(i,Q) is the determinant of the upper left-hand ii submatrix, then if for all i 

=1n 

where Q is nn: 

If det(i,Q)  0 Q is +ve definite 

If det(i,Q)  0 Q is +ve semi-definite 

If det(i, -Q)  0 Q is ve definite 

If det(i, -Q)  0 Q is ve semi-definite 

Example of positive definite: 

All determinants of matrix C are positive, as follows 

|c11|     
2221

1211

cc

cc
     

333231

232221

131211

ccc

ccc

ccc

 ..... 

A2.9 Quadratic Forms and Symmetry 

Consider 

f(x) = x
T
Qx where Q is square and symmetric and f(x) is scalar quadratic 

Thus Q
T
 = Q 

QS = (Q + Q
T
)/2 is also symmetrical and QS

T
 = QS 
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QSK = (Q - Q
T
)/2 is skew symmetric (QSK

T
 = (Q

T
 - Q)/2 = - QSK) 

Q = QS + QSK 

x
T
QSKx = 0 (leading diagonal elements are all zero; above and below diagonal 

elements have equal size and opposite sign) 

x
T
Qx = x

T
(QS + QSK)x = x

T
QSx 

Thus Q is always symmetric when f(x) is quadratic. 

A2.10 Schur’s Formula for Partial Determinants 

Square matrix G is partitioned as follows 









2221

1211

GG

GG
G  

Then 

|G| = |G11| * |(G22 - G21G11
-1

G12)| if |G11|  0 

or 

|G| = |G22| * |(G11 - G12G22
-1

G21)| if |G22|  0 

example: 

|(I - GK)| = | I | * |(I - (-GI
-1

-K))| 

comparing terms: 

 











I
I

I
G

K
GK  

A2.11 Transfer Functions 

)(

)(
)(

sden

snum
sG   where num(s) and den(s) are polynomials in complex variable s 

Rational   - ratio of polynomials 

Real    - coefficients are real not complex 

Proper   - degree of denominator  degree of numerator 

Strictly proper  - degree of denominator  degree of numerator 

Stable    - poles are in LHP 

Proper   - G(j) is finite 

Strictly proper  - G(j) = 0 

Biproper   - G and G
-1

 are both proper 
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Singular value - positive square root of eigenvalue of H
GG  

Principal gain - singular value as a function of frequency . 

A2.12 State Space Realisation 

A2.12.1 State Space and Transfer Functions 

Consider state space realisation (A,B,C,D): 

DuCxy

BuAxx





 

Taking Laplace transforms and re-arranging gives: 

DBAC
u

y
G

BuAx

BuxA











1

1

)(

)(

)(

)(ss

s

s

I

I

I

 

If degree of denominator  degree of numerator, D = 0 

Therefore D = 0 for strictly proper transfer function. 

If D  0 

)det(

)det()(
)(

A

DABAC
G






I

II

s

ssadj
s  

i.e. both numerator and denominator are polynomials whose order is that of the 

characteristic equation. 

As s  , G(s)   

A2.12.2 Minimum Phase Transfer Function 

All poles and zeros are in the LHP 

The phase lag associated with a pole in the LHP increases with frequency; the phase 

lag associated with a zero in the RHP increases with frequency. Presence of a zero in 

RHP thus increases the phase lag. 
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A2.12.3 State Space Realisations - Canonical Forms 

Strictly proper transfer function: 

n
nnn

nn
n

asasas

bsbsb
sG

...

...
)(

2
2

1
1

1
1

1











 

Phase Variable Form 























 11 ..

1000

0100

0010

aaa nn

A  





















1

..

0

0

B  

 11 .. bbb nn C  

 0D  

Dual Phase Variable Form 


























0..0

100
010..

001

1

1

n

n

a

a

a

A  






















n

n

b

b

b

b

1

2

1

B  

 0001C  

 0D  

„Dual’ - substitution enables move from one form to the other; 

The A matrices are in companion form; 

The characteristic equation may be derived by inspection from column 1 or row 1. 

If the A matrix is diagonal, the state variables are canonical. 

To diagonalise, choose canonical state vector z so that  
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APPA

xPz

1

1 ;








 

P is a matrix of eigenvectors of A; A  is a diagonal matrix of eigenvalues of A. 

DuCPzy

BuPAPzPz

BuPAxPxPz











11

111





 

A2.13 Bounds 

Supremum :    least upper bound 

For supremum ,  

(i) a ≤     a  A 

and 

(ii)   , a  A such that a   

Then  = sup A 

Infimum:   greatest lower bound 

For infimum  

(i)   a    a  A 

and 

(ii)   , a  A such that a   

Then  = inf A 

A2.14 Vector Spaces 

Dimension of a vector space is the number of vectors in its Basis Set. 

If {ui , i=1,m} is a set of vectors in a vector space, then the set {ui} spans the space if 

for every vector x in the space there is at least one set of scalars ai which permits x to 

be expressed as a linear combination of the vectors ui 

i

m

i

ia ux 



1
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A set of basis vectors (Basis Set) is a set consisting of the minimum number required 

to span the space. 

A linear vector space  is a set of elements (or vectors) defined over a scalar 

number field, which satisfies: 

1. for x   and y   then v = x+y also belongs to  

2. addition is commutative i.e. x + y = y+ x 

3. addition is associative i.e. (x + y) + z = x + (y + z) 

4. the space contains a zero vector which satisfies x + 0 = 0 + x = x 

5. for every x   there is a unique x   such that x + y = 0 

6. for every x  and for any scalar a   (field of numbers) the product ax gives 

another vector y 

7. for scalars a   and b  , and for any vector x in the vector space, a(bx) = 

(ab)x 

8. multiplication by scalars is distributive (a + b)x = ax + bx; a(x + y) = ax + ay 

Note that products are not defined. 

Examples of vector spaces include  

- ordered n-tupals of real numbers [a1 a2 ... ai ...an]
T -

 if ai is real, then space is n
; if 

ai is complex, then space is C
n
 

- set of all m × n matrices. Matrix elements may be real or complex numbers, or 

rational polynomial functions with real or complex coefficients. 

- set of all continuous or piecewise continuous time functions f(t) on interval a ≤ t ≤ 

b or an ordered set of such functions 

- set of polynomials with degree ≤ n 

All of these sets must include a suitable null vector, e.g. an m × n null matrix 

An Inner Product Space is one in which a unique scalar is assigned to every pair of 

vectors. The scalar valued function of x and y is called the inner product x,y 

provided that 

1. x,y = complex conjugate y,x (complex conjugate property) 
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2. x,ay1 +by2 = ax,y1 + bx,y2 (linear homogenous property) 

3. x,x ≥ 0  x and x,x = 0 iff x = 0 

A Norm of x can be defined as ||x|| = x,x
1/2

 and metric or distance between x and y 

as (x,y) = ||x - y|| 

L2[a,b] is the linear space of all square integrable functions of t, i.e. all functions f(t) 

such that  

  df
b

a

2)(  

If x,y  L2[a,b] then 


b

a
d )()(, yxyx  is a valid inner product. 

A transfer function G(s) is said to be in the space H∞ (where the H stands for Hardy 

space), if 


)(
0)Re(

sup
s

s
G  

Thus all poles of G(s) are in left hand plane and it is stable. 

A2.15 Norms 

Induced norm of matrix G 

x

Gx

x
G

0


sup
  

where Gx and x  are any vector norms 

Euclidean norm of vector 

xxx
H  

Hilbert or Spectral norm of G is induced by the Euclidean vector norm 


s

G  where  
2
 is the maximum eigenvalue of H

GG  or GG
H  

The H∞-norm is defined as 

)(
0)Re(

sup
)( s

s
s GG





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The Hankel norm  
H

 of a linear time invariant (LTI) system with transfer matrix Δ 

input w, and output v, is defined as the L2 gain of the associated Hankel operator HΔ, 

i.e. as the maximum of the “future output energy integral”  




0

2
)( dttv  

subject to the constraints 

w(t) = 0 for t ≥0 

and  1)(
20

 
dttw  

A2.16 Singular Value Decomposition of Matrix G 

If     ..... 221 diagdiag n Σ i.e. a diagonal matrix of singular 

values; 

H
UYΣG   

I

I





H

H

UU

YY
 i.e. unitary matrices. 

The unitary matrices rotate and the diagonal matrix scales. 

  HHHHHHH
UΣΣYUΣYΣUG   since  is real and diagonal, so that H

ΣΣ   

H2HHH
YYΣUΣΣYΣΣGG   

1H YY  for a unitary matrix. 

Thus Y is a matrix of eigenvectors of GG
H
 and  2

 is a diagonal matrix of the 

eigenvalues of GG
H
, i.e. i

2
, in accord with the definition of i. 

Similarly,  

H2H
UUΣGG   

where U is a matrix of eigenvectors of G
H
G. 

Y and U are not unique. 

Consider 
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





j

j

j

e

e

e







HH

,

UU

UU

YY

 

Thus 

HHH
YΣΣΣUYUΣYG    jj ee  

If 

H1
YUΣH

  

then 

   

H

YUΣ

YΣΣUΣ

YUΣYΣΣYUΣHGH















H1

H11

H1HH1

 

and 

   

G

YΣΣ

ΣUYΣΣ

YΣΣYUΣYΣΣGHG













H

H1

HH1H

 

Thus H is a pseudoinverse of G. 

A2.17 Controllability 

Consider the discrete state space system: 

x(k+1) = Ax(k) + Bu(k) 

Then 

x(1) = Ax(0) + Bu(0) 

x(2) = Ax(1) + Bu(1) 

x(2) = A(Ax(0) + Bu(0)) + Bu(1) 

x(2) = A
2
x(0) + ABu(0) + Bu(1) 

x(3) = A(A
2
x(0) + ABu(0) + Bu(1)) + Bu(2) 

x(3) = A
3
x(0) + A

2
Bu(0) + ABu(1) + Bu(2) 
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Thus 

  x(n) = A
n
x(0) + A

n-1
Bu(0) ... + A

n-i
Bu(i-1) ...Bu(n-1) 

 



















 

)0(
....

)2(

)1(

...)0()( 1

u

u

u

AABBxAx
n

n

n nn  

Rewrite as 

x(n) - A
n
x(0) = PU 

Or 

PU = C 

For this equation to be soluble, P must be of full rank. The height of P is equal to the 

number of states. Thus rank of P must be equal to number of states. 

A2.18 The Riccati Equation 

Consider the dynamic system 

BuAxx           (1) 

and the control law 

Gxu           (2) 

The optimal control problem may be expressed as the desire to find the gain matrix 

G which minimises a cost function V which is defined as 

 
T

t
dV  )]()()()()([ Ruu'xQx'      (3) 

Q and R are symmetric matrices chosen by the designer to penalise states x or 

control effort u.  

T is the end time; t is present time; (T-t) is remaining time. If T is set to  then the 

integral runs from now into steady state. (See below.)  

x'Qx penalises departure of state vector from the origin;  

u'Ru penalises or limits the magnitude of control effort.  

Consider now the closed loop: 
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BGAA

xA

BGxAxx

c

c







        (4) 

Ac is the closed loop dynamic matrix. If Ac is time invariant, then 

cx
A tcet )(          (5) 

is a solution where c is a constant vector which may be evaluated by reference to 

initial conditions.  

If Ac is time invariant, then 

)(

)(

)(
te

e

t

c

x

cx

cA

A









        (6) 

More generally, in a linear system which is unforced (homogenous), the current state 

at time  depends only on the state at time t, according to a linear relationship 

)(),()( ttc xΦx           (7) 

where ),( tc Φ  is the state transition matrix corresponding to Ac.  

Thus, transposing, 

),()(')(' ' tt c  Φxx          (8) 

Also, transposing eq. (2), 

G'x'u'

Gxu

)()(

)()(

tt

tt




        (9) 

By using eq. (8) and eq. (9) the expression for the cost function eq. (3)may now be 

re-written as 

 

  



dtttt

dtttttttttV

T

t
cc

T

t
cccc









)(),(]')[,()(

)(),('),()()(),()(),()()(

'

''

xΦRGGQΦx'

xRGΦGΦx'xΦQΦx'
(10) 

Now define 

 
T

t
cc dttTt  ),(]')[,(),( '

ΦRGGQΦM      (11) 
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Q and R are symmetric (by definition); thus M is symmetric.  

)(),()( tTttV xMx'         (12) 

Thus to minimise V, it is necessary to find G which minimises M.  

By using eq. (7), eq. (8) and eq. (10) it is also convenient to write  

 dV
T

t
)()()( xLx'        (13) 

and, from eq. (11), 


T

t
cc dttTt  ),()(),(),( '

ΦLΦM       (14) 

where 

RGG'QL          (15) 

Noting that  

)()()(

)()()(

ttt

tdt

dV

xLx'

xLx'









       (16) 

because 

   

 
t

d
dt

d

dt

dV

t
d

T
dV























)()()(0

)()()()()()(

xLx'

xLx'xLx'

  

(17) 

Also, differentiating eq. (12), 

)(),()()(),()()(),()( tTtttTtttTtt
dt

dV
xMx'xMx'xM'x     (18) 

where  

t

Tt
Tt



 ),(
),(

M
M   

Using simplified notation from now on, and noting the relationships (from eq. (4)), 
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'Ax''x

xAx

c

c








         (19) 

the time derivatives of the state vector may be substituted in eq. (18) to give: 

xMAMM'Ax' cc ][  
dt

dV
      (20) 

Thus, by equating the relationships (16) and (18) for 
dt

dV
, re-arranging and 

substituting using eq. (4) and eq. (15),  

RGG'QMB'G'A'BGAMM

LM'AMAM

MAMM'AL

cc

cc







)()(





    (21) 

To solve the optimisation problem, V must be made as small as possible. Thus M 

must be as small as possible. Finding G which makes M as small as possible solves 

the optimal control problem. The sense in which M is to be made small is defined by 

its quadratic form x'Mx.  

Defining V̂ as the minimum value of V enables the minimum value of M, M̂ , to be 

defined through 

MMMxx'xMx'

xMx'

ˆˆ

ˆˆ



V
      (22) 

These relations must be true for any initial state x(t). Ĝ corresponds to M̂ . 

Redefine M and G as follows: 

ZGG

NMM





ˆ

ˆ
         (23) 

Substituting in eq. (21) for M and G gives 

)ˆ()ˆ(])ˆ([)]ˆ()[ˆ()ˆ( ZGRZ''GQMB'Z''GA'ZGBANMNM  

          (24) 

Also, from eq. (21),  
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GR'GQMB''GA'GBAMM ˆˆˆ)ˆ()ˆ(ˆˆ 


    (25) 

Eliminating M
̂

 by subtraction of eq. (25) from eq. (24) yields 

RZZ'MB'GRZ'ZBMR'GN'ANAN cc  )ˆˆ()ˆˆ(   (26) 

where 

)ˆ( ZGBAAc   

Thus, by analogy to the definition of M(t,T) in eq. (11), 

 dttTt c

T

t
c ),(])ˆˆ()ˆˆ()[,(),( '

ΦRZZ'MB'GRZ'ZBMR'GΦN   (27) 

Now from eq. (23)and eq. (24) 

Nxx'xMx'xMx'

xNMx'xMx'

xMx'







ˆˆ

)ˆ(ˆ

ˆV̂

       (28) 

This requires that x'Nx is positive or zero. Thus N(t,T) is positive definite or positive 

semi-definite.  

By reference to the integral expression for N(t,T) in eq. (27) above, it is clear that for 

„small‟ Z (when the quadratic term is dominated by the linear terms) the optimal 

value of G is given by 

MB'RG

MB'GR

ˆˆ

ˆˆ

1


        (29) 

or, equivalently, since R and M are symmetrical 

MB'R

'MB''R

'M'BR

'BRMG

BRM'G

BMR'G

ˆ

ˆ)(

ˆ)(

)ˆ(ˆ

ˆˆ

ˆˆ

1

1

1

1

1























        (30) 

To find M̂ , substitute for Ĝ  in eq. (25) to give 
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QMB'BRMMA'AMM   ˆˆˆˆˆ 1
     (31) 

This latter expression has become known as „the Riccati equation‟.  

Now consider the „steady state‟. It is necessary to find the control gain G  which 

minimises the cost function  




 
t

dV  )]()()()()([ Ruu'xQx'      (32)  

By examining the relationship between V and M in eq. (12), it is clear that if V is 

finite, then M(t,) is also finite, i.e. as t increases M converges to a constant value 

M . Thus 

0



M

xMx'



V
         (33) 

From eq. (31), M  is the solution of  

QMB'BRMMA'AM  1
0       (34) 

This is known as „the algebraic Riccati equation‟ (ARE).  

The optimal control gain is then, from eq. (30), 

MB'RG
1          (35) 

 “For most design applications the following facts about the solution of the ARE will 

suffice:    

If the system is asymptotically stable, or 

If the system defined by the matrices (A,B) is controllable, and the system defined by 

(A,C) where C'C = Q is observable 

Then the ARE has a unique, positive definite solution M  which minimises V when 

the control law 

MB'BRu
1  

is used.” (Friedland, 1987).  
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APPENDIX 3 Sampling Rate Selection – a Discussion of 

Available Advice  

“The selection of sampling interval is one of the most important problems that faces 

the control engineer, and probably the most difficult one. A unique solution cannot 

be offered even theoretically and in practice one has to use a trial-and-error 

procedure before a suitable rate is selected in any particular case.” (Zikic, 1989, 

p.289). 

Forsythe and Goodall (1991) comment that the chosen route in which the controller 

is designed in the s-domain and transformed into the z-domain can be expected to 

give a satisfactory result when the sampling rate is „high‟, i.e. the algorithmic error 

introduced by the emulation method reduces with increasing sampling rate (p.96); 

too low a sampling rate can result in stability problems. They also identify as a „rule 

of thumb‟ the choice of a sampling frequency of ten times the system bandwidth 

(p.95). 

A number of other „rules of thumb‟ are contained in the literature. Some of these are 

examined briefly here. 

The following „rules of thumb‟ for the determination of sampling frequency s or 

sampling interval T are listed by Edge (1997): 

 s > 10b where b is bandwidth of closed loop system (bandwidth – lowest 

frequency at which the gain falls to 3 dB below its DC value); 

 s > 10n where n is natural frequency of closed loop system; 

 T < 0.1Ts where Ts is the settling time of the closed loop system (only 

appropriate if the system is well damped); 
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 T < 0.1*(dominant time constant of the open-loop system). This may be 

inappropriate if the controller has been designed in order to produce a faster 

closed loop system.  

The combination of the processes of sampling and reconstruction of the output signal 

from the digital controller using a zero order hold introduces a lag. Astrom and 

Wittenmark (1990) show how the zero order hold circuit can be approximated to by 

a time delay of half a sampling interval (p.219). The Laplace transform of a zero 

order hold is given by 

 

          (1) 

This may be expanded to 

 

          (2) 

           

          (3) 

 

          (4) 

They point out that the first two terms of eq. (4) correspond to the series expansion 

of 2
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Te
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. Their „rule of thumb‟ is that an acceptable reduction in the phase 

margin is 5
o
 to 15

o
. Thus at the gain crossover frequency c for the open-loop: 

          (5) 

          (6) 
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zero order hold also approximates to the expansion of the transform for a first order 

lag with time constant equal to half the sampling period; the relationship between the 

phase lag (but not the gain) and frequency for a first order lag is similar to that for a 

pure time delay.  

Houpis and Lamont (1985) derive the Padé approximation for the zero order hold 

(p.249); they show that  

          (7) 

 

Thus, for the zero order hold 

          (8) 

 

          (9) 

Once again, the latter transfer function eq. (9) introduces a phase shift of 










2
tan 1 ωT

. 

In his „hints on sampling rate selection‟, Zikic (1989) includes references to the 

relevance of the Nyquist rate and noise rejection in the choice of sampling rate 

(p.288 et seq.). He suggests, without explanation, that it is normal to sample at „two 

to four times the system rise time value‟, meaning that the sampling interval should 

lie in the range 0.25 to 0.5 of the rise time. This can be explored further for a second 

order system as follows. 

Defining the rise time 1rT  as the time for the output to move from 10% to 90% of the 

steady state output when the input is a step, one may write (Dorf, 1995, p.225)), as 

an approximation, 

          (10) 

For an under-damped system (e.g. 50.ξ  ) and sampling interval 0.25 of rise time, 
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Forsythe and Goodall (1991) point out that there is a complex interaction between 

sampling interval, controller algorithm and structure, processor word-length, and 

number of bits in the analogue to digital converter (p.88 et seq.). Their analysis 

shows clear benefits for controllers in which the algorithm is realised in „canonical‟ 

rather than „direct‟ form, and for the use of the  rather than z form for emulation 

(p.102). 

Older texts, such as Franklin and Powell (1981), place emphasis on sampling as 

slowly as possible to minimise the demands made on the processor (p.275 et seq.). 

The availability of modestly priced high-speed processors has now largely 

eliminated this as a consideration. 

Vibet (1987) has shown, by reference to the work of Madwed (1953), how a suitable 

sampling interval may be derived from the characteristic equation of the closed loop 

transfer function. Madwed‟s method (the number series transformation method) for 

the solution of linear and nonlinear integro-differential equations shows that if the 

characteristic equation of a differential equation linearised around a working point is 

written as 

          (12) 

then the number series method becomes as accurate as the analytic method if the 

sampling period T is taken as 

          (13) 

It is informative to consider how this rule relates to the various „rules of thumb‟ 

when applied to a second order system. The transfer function of a second order 

system may be written as  

          (14) 

From this it is clear, by the rule of eq. (13), that  
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Thus  

          (17) 

Consider also the bandwidth of the transfer function in eq. (14) . Its frequency 

response is given by  

          (18) 

Re-writing using the ratio of the frequency to the natural frequency 
nω

ω
r   yields: 

          (19) 

Taking modulus: 

          (20) 

At the bandwidth frequency, bωω   and the gain is 0.5 since the D.C. gain is 1. For 

the under-damped case 0.5ξ , r may be evaluated as 1.53; for the critically damped 

case 7071.0ξ , r may be evaluated as 1.732. 

Thus 

   bsbs ωωωω 18or20      (21) 

respectively. 

Franklin and Powell (1981) discuss sampling rate in the context of tracking 

effectiveness, disturbance rejection and sensitivity to parameter variations (p.275 et 

seq.). For effective tracking, they point out that the sampling rate must be at least 

double the closed loop bandwidth of the system to satisfy the sampling theorem. 

However, they reason that for good tracking a sampling rate of four to 20 times the 

closed loop bandwidth is appropriate; a ratio of 10 to 40 is shown to be appropriate 

for disturbance rejection. This ratio depends on the noise spectrum of the 

disturbance. These ideas are developed further in Franklin et al. (1991) (p.618 et 

seq.). 

An examination of the state space representation of a discrete time system provides a 

pointer to the effect of too short a sampling interval. 
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A discrete time state space system may be represented by the equation 

          (22) 

By reference to the continuous state space system 

          (23) 

it may be shown that (e.g. Schwarzenbach and Gill, 1992, p.83) 

          (24) 

          (25) 

          (26) 

Clearly, if the sampling interval T  is „too small‟ then the product TA  becomes 

small, and the dynamic information that it contains on the system it represents may 

be lost in rounding and truncation in arithmetic processors. 

Zikic (1989) also draws attention to the possibility that the controllability and/or 

observability matrices may lose rank for certain values of the sampling interval, 

implying loss of controllability/observability (p.291).  

Kuo (1992) provides a thorough analysis and examples to show the effect of 

sampling interval on the matrix coefficients. Kuo (p.186) defines the state transition 

matrix )(tφ  as a matrix which satisfies the homogeneous state equation 

          (27) 

so 

          (28) 

Alternatively,  

          (29) 

(verifiable by substitution.) 

Using Laplace transforms, it is straightforward to show that 

          (30) 
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thus 

          (31) 

 

Kuo (1992) shows that if 

          (32) 

then the system is neither controllable nor observable. The principle may be 

investigated theoretically by considering the case where elements of the state 

transition matrix are trigonometric functions of the sampling interval T. They can 

thus take on the same values for an infinite number of values of the sampling 

interval. 
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APPENDIX 4 Introduction to Fuzzy Logic 

This section begins with an introduction to classical sets (or „crisp‟ sets) and to the 

symbolism used. Crisp sets are so named because whether or not an object or 

element belongs to a set is crisply defined - it either does or does not belong. (See, 

for example, Stoll (1961).) 

A4.1  Classical Sets 

Element 

Sets contain elements. 

x is an element of set A or belongs to set A 

 x  A 

Elements of set A 

 A = {list of elements in set} 

 A = {x1, x2, ...xi, ....xn} 

Set A consists of elements x which have a property Q 

 A = {x | x is Q} 

Set A consists of elements x which satisfy a formula P(x) 

 A = {x | P(x)} 

Equal sets 

Sets A and B are equal if and only if (i.e. iff) they contain the same elements 

 A = B 

Subsets 

B is a subset of A if all elements contained in B are also contained in A 

 B  A 

B is included in A 
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B is a proper subset of A if all elements contained in B are also contained in A and 

set A contains B and more 

 B  A 

B is properly included in A 

Union 

Set C is union of sets A and B 

 C = A  B  

 C = {c | c  A or c  B} 

(i.e. the set C is sets A and B „added together‟) 

Intersection 

Set D is intersection of sets A and B 

 D = A  B 

 D = {d | d  A and d  B} 

(i.e. the set D is the „overlap‟ of sets A and B) 

Empty set 

An empty set contains no elements 

 Empty set - O  

Universal set 

The universal set contains all elements relevant to the current problem. 

 Universal set U 

Thus 

  O  A  U 

Complement 

The complement of set A contains all elements not in set A 

 A  

Thus 

 A  A = O; 

 A  A = U 
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A4.2  Fuzzy Sets 

A4.2.1 Elements 

In fuzzy set theory, individual elements (singletons) x are considered to exist in a 

universe of discourse (also known as universe of information) X. 

Combinations of x make up sets A on the universe. 

A4.2.2 Membership 

For crisp sets A, an element x is either a member or not. Membership is indicated by 

the „indicator function‟ (Ross, 1995) or „characteristic function‟ (Tsoukalas and 

Uhrig, 1997): 

 












Ax

Ax
xA

,0

,1
)(  

or 

  1,0:)( XxA  

„There exists a characteristic function )(xA  mapping every element of the universe 

of discourse X to the set  1,0 .‟ 

Thus the characteristic function takes the value 0 or 1. 

For fuzzy sets, membership is indicated by the „membership function‟: 

  1,0:)( XxA  

„The membership function )(xA maps every element of the universe of discourse X 

to the interval  1,0 .‟ 

Fuzzy set A may be written as a collection of ordered pairs: 

   XxxxA A  ,))(,(   

Each pair ))(,( xx A is called a singleton. (For a crisp set, the singleton consists of x 

alone.) 

The singleton may also be written xxA /)( . Note that „/‟ here is a „marker‟ and does 

not indicate division. 
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A4.2.3 Support Set 

The support set of fuzzy set A is the set of its elements which have non-zero 

membership. 

A is the union of all the singletons: 

 



Xx

iiA

i

xxA /)(  

for a discrete universe of discourse. 

 
X

A xxA /)(  

for a continuous universe of discourse. 

A4.2.4 Fuzzification 


X

xKA xxxKAF /)().();( )(  

);( KAF is a fuzzy set which results from the fuzzification of crisp set A in 

accordance with the fuzzy kernel K(x), or from changing the fuzziness of a fuzzy set 

A in accordance with the fuzzy kernel K(x). K(x) is the fuzzy set which results from 

the application of fuzzyfier F to singleton x. 

A4.2.5 Ordered Pairs 

Given two objects x and y, there exists another object called the „ordered pair‟ of x 

and y, written <x,y>. An ordered sequence of r objects is called an „ordered r-tuple‟. 

A4.2.6 Cartesian Product 

The Cartesian product of sets X and Y is the set of all ordered pairs <x,y>. 

  YyandXxyxYX  ,,|,  

Its characteristic function may be written 













YXyx

YXyx
yxYX

,,0

,,1
,  

The Cartesian product YX  (or product space) is itself a „universe of discourse‟ for 

ordered pairs <x,y> where X and Y are themselves universes of discourse. 
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A4.3  Relations 

A4.3.1 Crisp Relations 

A binary relation is concerned with the existence or otherwise of some sort of „bond‟ 

between pairs of „objects‟ considered in a definite order. 

 Example: 

 “is greater than” 

Higher order relations also exist, e.g. ternary relations are concerned with triplets of 

objects. 

If an ordered pair <x,y> is in a relation R („satisfies‟ R) then 

 Ryx  ,  

This may also be written 

 xRy 

This is analogous to „x>y‟ if R is the relation “is greater than”. 

A relation R may be considered as a subset of YX  whose members are only those 

ordered pairs which satisfy the relationship. 

Thus 

 












Ryx

Ryx
yxR

,,0

,,1
,  

For example 

 X={1,3,5} 

 and 

 Y={2,4,6} 

 

  6,5,4,5,2,5,6,3,4,3,2,3,6,1,4,1,2,1YX  

For the relation „is greater than‟ 

   4,5,2,5,2,3R  
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It is possible to show this relation in the form of a „relation matrix‟ 
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This may be understood by reference to  
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A4.3.2 Fuzzy Relations 

The ideas of crisp relations can be extended to enable fuzzy relations to be defined. 

A binary fuzzy relation R on a discrete Cartesian product YX  may be expressed as 

a list of all the pairs (x,y) in its relation together with the grade of membership 

),( yxR  each has in the relation: 

    ),(,, yxyxR R  

or alternatively 

 ),/(),(
),(

ji

YXyx

jiR yxyxR
ji




   

For continuous universes of discourses, leading to continuous Cartesian products,

 ),/(),( yxyxR
YX

R


   

The relation may also be expressed as a relation matrix or membership matrix for a 

discrete Cartesian product YX   

 











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
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2212

2111

yx

yxyx

yxyx

R
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



 

A4.3.3 Composition 

If there is a fuzzy relation R1 in a discrete product space YX  and another R2 in the 

discrete product space ZY  then a new relation R3 in the product space ZX  is 

known as the composition of R1 and R2 

 213 RRR   
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For each (x,z) pair in the new relation R3 the grade of membership is 

  ),(),(),(
213

zyyxzx
RRYyR   

 

Here,  is the maximum operator and  is the minimum operator. 

This is the „max-min‟ composition rule. The grade of membership for each (x,z) in 

the relation R3 is found as the maximum over all y of the minima of the membership 

grades of R1 and R2. Clearly, and by analogy to matrix multiplication, the number of 

columns in fuzzy relation R1 must match the number of rows in fuzzy relation R2; the 

number of columns in fuzzy relation R3 is the same as the number of columns in 

fuzzy relation R2 and the number of rows in fuzzy relation R3 is the same as the 

number of rows in fuzzy relation R1. 

A4.3.4 Propositions 

A proposition is a linguistic statement which may be true or false, or, in fuzzy logic, 

to which a degree of truth may be assigned. 

Consider the following 

Proposition A : creature x is a bird; 

Proposition B : creature x can fly. 

Veracity (binary truth value) of a Proposition P is T(P). 

A4.3.5 Compound Propositions 

Simple propositions may be compounded using connectives to produce compound 

propositions. These have their own „veracity‟ which may be determined by truth 

tables as indicated below: 

1. Creature x is a bird and creature x can fly. 

 creature x T(A) T(B) T(A and B) 

 cat  0 0 0 

 bee  0 1 0 

 eagle  1 1 1 

 chicken 1 0 0 

2. Creature x is a bird or creature x can fly. 

 creature x T(A) T(B) T(A or B) 

 cat  0 0 0 
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 bee  0 1 1 

 eagle  1 1 1 

 chicken 1 0 1 

3. If creature x is a bird then creature x can fly. 

 creature x T(A) T(B) T(If A then B) 

 cat  0 0 1 

 bee  0 1 1 

 eagle  1 1 1 

 chicken 1 0 0 

The last example 3. is an example of a conditional compound proposition of the form 

if antecedent then consequent. 

“... in this case normal English usage is not helpful in constructing a truth 

table, and the table that we use is a common source of intuitive difficulty. The 

difficulty arises with the truth value T assigned to (If A then B) in the cases 

where A is false. Consideration of examples of conditional statements in which 

the antecedent is false might perhaps lead one to the conclusion that such 

statements do not have a truth value at all. One might also gain the impression 

that such statements are not useful or meaningful...The significance of a 

conditional statement (If A then B) is that its truth enables the truth of B to be 

inferred from the truth of A, and nothing in particular to be inferred from the 

falsity of A.” (Hamilton,1978.) 

If C is the set of all birds and D is the set of all flying creatures, 

 

DxB

DxB

CxA

CxA









:

:

:

:

 

So 

 T(A) = 1 means xC 

 T(A) = 0 means xC 

 T(B) = 1 means xD 

 T(B) = 0 means xD 
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From the table above, 

 T(If A then B) =1 if T(A) = 0 or if T(B) = 1 

and thus  

 T(If A then B) =1 if xC or xD 

that is if 

 )( DCx   

But 

 CxA :  

so 

 )( DCx   

means 

 A or B 

which may be written 

 BA   

A4.3.6 Implications 

The compound proposition  

 If A then B 

is known as an implication. 

The implication is commonly written 

 BA  

Finally 

)()( BATBAT   

A4.4  Linguistic Rules 

An example of a linguistic rule is 

 IF A THEN B 

What does this mean? 

Consider an event x, drawn from a Universe X. Assume that the rule is satisfied, that 

is, it is true. Consider also the consequence of x, which is y, contained in a Universe 

Y. 

(1) Then if x is contained in set A, which is defined in X, the resulting y is contained 



Department of Mechanical Engineering   The University of Bath 

 

202 

in B, defined in Y. 

(2) If x is not contained in set A, then any consequence y is consistent with the rule 

being satisfied, for the rule makes no statement about this eventuality. 

The rule does not indicate how a y which is not in B might result. If x is in A and the 

resulting y is outside B, the rule will have been broken. 

Now consider the Cartesian space YX  . The region in it defined in (1) above is 

BA .The region in it defined by (2) contains the entire Y and that part of X which is 

outside A, i.e. A .This region is thus YA . The rule may be expressed as a relation 

in the Cartesian space YX  which is the union of the two components BA and 

A Y . The rule IF A THEN B may thus be represented by the relation 

 )()( YABA    

Now consider  

 IF A THEN B ELSE C 

This rule may be rewritten linguistically as 

 IF A THEN B OR IF A  THEN C 

in which B and C are both sets defined in Y. Clearly, for the rule to hold, the y which 

results from any x must lie either in B or in C. 

As above, 

(1) If x is contained in set A, which is defined in X, the resulting y is contained in B, 

defined in Y. 

(2) Then if x is not contained in set A, i.e. x is in A , the resulting y is contained in C, 

also defined in Y. 

Now consider the Cartesian space YX  . The region in it defined in (1) above is 

BA . The region in it defined in (2) above is CA . The rule may be expressed as 

a relation in the Cartesian space YX  which is the union of the two components 

BA and CA . The rule IF A THEN B ELSE C may thus be represented by the 

relation 

 )()( CABA    

These relations may also be expressed in terms of characteristic functions: 

 IF A THEN B 

 )()( YABA    
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Consider first )( BA  

 












BAyx

BAyx
yxYX

,,0

,,1
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Clearly, the ordered pair <x,y> is a member of BA if both x is a member of  A and 

y is member of B, that is if 1)( xA and 1)( yB  

So  

 )()(, yxyx BABA    

Similarly, <x,y> is a member of )( YA  if both x is a member of A and y is member 

of Y.  

 )()(, yxyx YAYA
 


 

But 

  

and 

  

since Y is the universe which contains y. 

So 

 

))(1(

1))(1(,

x

xyx

A

AYA










 

The „union‟ in the relation is represented by a „maximum‟ operator to create the 

characteristic function for the entire relation: 

  

IF A THEN B ELSE C 

 )()( CABA    

Consider first )( BA  

Then, as above, 

 )()(, yxyx BABA    

Similarly, <x,y > is a member of )( CA  if both x is a member of A and y is member 

of C.  

)(1)( xx AA
 

1)( yY

))(1())()((, xyxyx ABAR  
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 )()(, yxyx CACA
 


 

But 

   

So 

 )())(1(, yxyx CACA
 


 

The „union‟ in the relation is represented by a „maximum‟ operator to create the 

characteristic function for the entire relation: 

  

A4.5  Implications with Multiple Antecedents 

In a control problem, the linguistic rules often have multiple antecedents. For 

example, if the „error‟ in a system is defined as the difference between the required 

and actual outputs, a linguistic rule might be: 

IF ERROR IS LARGE AND RATE OF INCREASE OF ERROR IS LARGE, THEN 

CONTROLLER OUTPUT IS MAXIMUM 

By analogy with the preceding section, such a rule may be written in the form 

 IF A1 AND A2 THEN B 

What does this mean? 

Consider an event x1, drawn from a Universe X1 and an event x2, drawn from a 

Universe X2. Assume that the rule is satisfied, that is, it is true. Consider also the 

consequence of x1 and x2, which is y, contained in a Universe Y. 

(1) Then if x1 is contained in set A1, which is defined in X1, and x2 is contained in set 

A2, which is defined in X2 the resulting y is contained in B, defined in Y. 

(2) If x1 is not contained in set A1, or x2 is not contained in set A2 then any 

consequence y is consistent with the rule being satisfied, for the rule makes no 

statement about this eventuality. 

The rule does not indicate how a y which is not in B might result. If x1 is contained in 

set A1 and x2 is contained in set A2 and the resulting y is outside B, the rule will have 

been broken. 

Now consider the Cartesian space YXX  21 . The region in it defined in (1) above 

is BAA  21 . (See Figure A4.1 below.) 

)(1)( xx AA
 

))())(1(())()((, yxyxyx CABAR  



Department of Mechanical Engineering   The University of Bath 

 

205 

The region in the space defined by (2) contains the entire Y and that part of 
21 XX   

which is outside 
21 AA  , i.e. 21 AA  .  

But 

 )()( 122121 XAXAAA    

The region defined by (2) is thus. 

 )()( 1221 YXAYXA    

The rule may be expressed as a relation in the Cartesian space YXX  21
which is 

the union of the two components BAA  21  and )()( 1221 YXAYXA   . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.1 Cartesian Space 

 

The rule IF A1 AND A2 THEN B may thus be represented by the relation 

 )()()( 122121 YXAYXABAA    

This may be visualised as a solid in three dimensional space. The projection of this 

solid on to the X1 Y plane is a two dimensional space which represents 

X1 

B 

Y 

A1 

X

2 

A2 

A1  A2  B 
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)()( 11 YABA   . This has already been shown to be the relation which represents 

the linguistic rule IF A1 THEN B. The foregoing suggests how relations for multiple 

antecedents may be developed. 

An alternative approach to developing a relation for the rule IF A1 AND A2 THEN B 

is as follows: 

Consider again IF A THEN B 

Now define  

 
21 AAA   

(An interpretation of this is that „x is in A‟ means that „x1 is in A1 and x2 is in A2‟) 

Then 

 21 AAA   

But 

 )()( 122121 XAXAAA    

So now 

 )()()()( 2121 YAABAAYABA    

Thus the relation for the multiple antecedent rule may be written 

 )()()( 122121 YXAYXABAA    

as before. 

This relation may be expressed in terms of characteristic functions as follows: 

The Cartesian product is interpreted as the conjunction „and‟, or minimum  ; the 

union   is interpreted as the disjunction „or‟ or maximum  . 

The relation may thus be written 

)11))(1(()11))(1(())()()((,, 212121 2121
 xxyxxyxx AABAAR 

which simplifies to 

))(1()(1())()()((,, 212121 2121
xxyxxyxx AABAAR    

The foregoing has been presented for crisp sets using the characteristic function , 

which can take the value 0 or 1. For fuzzy rules, similar expressions may be derived 

in terms of the membership function . 

For the fuzzy rule 

 IF A THEN B 
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where A and B are now fuzzy, the implication relation in terms of membership 

functions is 

 ))(1())()((),( xyxyx ABAR    

This is attributed to Zadeh (Zadeh max min implication operator (Zadeh, 1988)). 

Other forms of the implication operator have been used (Lee (1990), Ross (1995), 

Tsoukalas and Uhrig (1997), etc.), such as 

Mamdani minimum 

 )()(),( yxyx BAR    

which generates membership functions identical to those produced by Zadeh max 

min implication operator when 5.0)( xA  and 5.0)( yB  

Larsen product 

 )().(),( yxyx BAR    

which eliminates the discontinuities produced by the Mamdani minimum operator. 

The application of the fuzzy rule  

 IF A THEN B 

to the situation where the input is a single crisp value x, producing a fuzzy output B  

is next examined. 

In general, for a fuzzy input A , the fuzzy output B  may be found using 

composition: 

           RAB   

where R is the implication relation. 

Using the max-min composition rule, then for each y in the discrete output universe 

of discourse Y, 

  

For the relation, using Mamdani minimum 

  

Thus 

  

However, as x is discrete, there is only one non zero value of )(xA and thus  

  

  

 ),()()( yxxy RAXxB   

)()(),( yxyx BAR  

 )()()()( yxxy BAAXxB   

 )()()()( yxxy BAAB   

1)(  xA
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thus the membership functions for B  are computed from 

  )()()( yxy BAB    

If the max-product composition rule is used, then for each y in the discrete output 

universe of discourse Y, 

  ),().()( yxxy
RAXxB 

   

and using the Larsen product for the implication 

  

Thus now 

  )().().()( yxxy BAAXxB     

Again, as x is discrete, there is only one non zero value of )(xA and thus  

  )().().()( yxxy BAAB     

  1)(  xA  

and so the membership functions for B  are computed from 

  )().()( yxy BAB    

Now consider a rule that has multiple antecedents and a single consequent. If the 

antecedents are expressed in terms of fuzzy sets A1 in universe of discourse X1, A2 in 

universe of discourse X2, Ai in universe of discourse Xi, etc. then the membership 

function of Bcan be computed by either of the two preceding formulae, replacing x 

by {x1, x2, .....xi,.....} and A by .........21  iAAA  

The computation of the membership functions for B  requires a decision on how the 

membership of the product space is to be treated.  

The use of the max-min composition rule and the Mamdani minimum for 

implication point to the following expression: 

  )(....)(...)()()( 21 21
yxxxy BiiAAAB    

whereas use of the max product composition rule and the Larsen product for 

implication point to the following expression 

  )()......()....().()( 21 21
yxxxy BiiAAAB  

 

)().(),( yxyx BAR  
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Alternatively, the preceding expressions may be derived by considering the 

derivation of the membership functions for the implication relation with multiple 

antecedents: 

Using Mamdani minimum 

 )()...()...()()...,,...,( 2121 21
yxxxyxxx BiAAAiR i

   

Using Larsen product 

 )()....()....().()...,,...,( 2121 21
yxxxyxxx BiAAAiR i

   

Whichever method is used to calculate the membership function for B , its support 

set is included within the support set of B because for any y outside the support set 

for B )(yB  is zero. The use of minimum or product operators will then result in 

)(yB  being zero. 

Where there is more than one rule, it is necessary to aggregate the effects of each. 

Linguistically, a series of rules may be linked with the connective ELSE as follows 

in the case where there are two antecedents in each implication: 

 IF A11 AND A21 THEN B1 ELSE 

 IF A12 AND A22 THEN B2 ELSE 

 IF A1i AND A2i THEN Bi ELSE 

 IF A1n AND A2n THEN Bn  

where there are n rules. Such a list of rules can be termed an algorithm. 

For crisp inputs x1 and x2 a fuzzy output set TOTB results. This is the aggregation of 

the 


iB  having membership function 
Bi

y ( )  which is computed for rule i. 

Intuitively, if the method of computation of the membership function for any rule i in 

the algorithm could result in a null set for 


iB , it would be inappropriate to represent 

the connective ELSE by the AND or minimum  operator, as a null output set TOTB  

would then result. Thus, where Mamdani minimum or Larsen product methods are 

used as above the connective ELSE should be represented by the OR or maximum 

operator  . The membership function )(y
TOTB  of the fuzzy output set TOTB  is thus 

computed using this operator: 
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 )(....)(....)()()(
21

yyyyy
niTOT BBBBB    

To establish a crisp output a single value y must be derived from the fuzzy output set 

TOTB  by a defuzzification process. 

A4.6  Quantisation 

In the literature, there are often references to a „quantisation‟ process in which a 

discrete input x (or xi where there are multiple inputs to the controller) is replaced by 

an appropriate rounded value taken from a vector of values. The quantised values 

may be used with a look up table to derive output membership functions. The 

requirement to calculate these is thus obviated. Emphasis is placed in older papers 

(e.g. Lee (1990) and  Rutherford and Bloore (1976)) on the use of look up tables as a 

means of reducing computational demands. 

A4.7  Defuzzification 

The membership function )(y
TOTB  for the fuzzy output has been derived in the 

previous section. Defuzzification is the process whereby a crisp output value is 

derived. Of the various alternative methods, the most commonly applied in the 

literature are the „maximum membership‟ and „centre of gravity‟ methods. (See, for 

example, Pedrycz (1998).) 

A4.7.1 Maximum Membership 

The crisp output y is that value at which )(y
TOTB  has its maximum value. If there 

are more than one equal maxima, then the mean of the values of y corresponding to 

the maxima is taken. If the maximum is a plateau, then y is taken as the mean of the 

values corresponding to the extremities of the plateau. If )(y
TOTB  has several 

maxima, the method may be inappropriate. 

A4.7.2 Centre of Gravity 

The crisp output y is the centroid of the fuzzy set. This may be expressed as 

 y = (first moment of area of fuzzy set)/(area of fuzzy set) 
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dyy

dyyy
y

TOT

TOT

B

B

.)(

..)(









 

To compute this requires that the „overlaps‟ of the contributions of each rule are 

identified. This complicates the process, so that in practice a weighted average 

method is used, although it is often imprecisely termed „centre of gravity‟ 

 
 

 


i B

i B

dyy

dyyy
y

i

i

.)(

..)(




 

The weighted average (or centre of gravity) method gives a smoother variation of 

output with input(s) than does the maximum membership method. The latter can 

generate discontinuities in the output which would be undesirable in a control 

application. 

A4.8  Non-linear Mapping 

Fuzzy algorithms are said to provide a non-linear mapping from an input space to an 

output space. This can be demonstrated as follows. 

Consider the following algorithm: 

 IF A1 THEN B1 ELSE 

 IF A2 THEN B2 

Let the discrete input be x. Compute the discrete (defuzzified) output y as follows. 

Let the maximum value of the membership function for B1 occur at y = Y1 and let the 

maximum value of the membership function for B2 occur at y = Y2. For convenience, 

let these membership functions be symmetrical about their maxima, and let these 

maxima be unity. The areas under these membership functions are respectively b1 

and b2. 

Using product rules for inference and composition results in a fuzzy output which is 

the union of the membership function for B1 scaled by )(
1

xA  and the membership 

function for B2 scaled by )(
2

xA . By using the weighted average (or centre of 

gravity) method for defuzzification, the discrete output y is computed as follows: 

 
)()(

)()(

21

21

21

2211

xbxb

xbYxbY
y

AA

AA








  
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Thus even if )(
1

xA  and )(
2

xA  are linear functions, y is not a linear function of x. 

The equation therefore represents a non-linear mapping from x to y. It is the control 

characteristic for the fuzzy algorithm. If at least one of the rules in the fuzzy 

algorithm has two antecedents, with inputs x1 and x2, a similar analysis will show 

that the fuzzy algorithm may be represented by a control characteristic which is a 

surface in three dimensions. 

 



Department of Mechanical Engineering   The University of Bath 

 

213 

 

 

APPENDIX 5. Principles of Fuzzy Logic Controllers 

A5.1 The Human Operator as a Fuzzy Logic Controller 

An operator, required to control a single input single output system, will take a 

control action based on intuition and experience in response to his/her perception of 

the difference between the actual output of the system and what he/she wants it to be. 

His/her actions will consciously or unconsciously be based on ‘rules’ such as ‘if 

difference is a large excess then input must be made small’. Depending on his/her 

‘feel’ for the dynamics, he/she may use a more complex set of rules which take 

account of the way in which the difference is changing. A rule might then be ‘if 

difference is a large excess but is reducing then input must be made small to 

medium’. Such a rule points towards the development of a two degree of freedom 

‘PD’ (proportional plus derivative) fuzzy controller. 

A5.2  A Two Degree of Freedom Fuzzy Logic Controller 

In this section, the structure of a simple fuzzy logic controller is briefly described. 

Fuzzy logic terms are explained in Appendix 4. 

A5.2.1 Structure 

The structure of a two degree of freedom PD error driven fuzzy controller for a 

single input single output system is shown in its most general form in Figure A5.1. 
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Figure A5.1 Block diagram of fuzzy controller 

A5.2.2 Operation 

In Figure A5.1 the input to the controller is e and the output is the control effort u. A 

rate of change of error is derived. The error and rate of change of error are scaled by 

gains K1 and K2 respectively. The scaled values are then fuzzified.  

At the heart of the controller is a ‘fuzzy rule based expert system’ model. In this, the 

required controller outputs are derived from conditional relationships between the 

inputs and the output (rules). Here, there are two inputs and a single output, so that 

the rules are of the form: 

‘If input(1) is value(1) and input(2) is value(2) then output is value(3)’. 

Value(1), value(2) and value(3) are verbal descriptions of the parameters. The rules 

are contained in a rules table. A series of linguistic rules in this form is described as 

being in ‘canonical form’ (Jamshidi et al.,1993, p.72). 

Application of the rules results in the generation of a fuzzy output, which must be 

‘defuzzified’ to generate a control signal. The rules table is constructed on the basis 

of expert human knowledge or intuition. The Self Organising Fuzzy Logic 

Controller differs from a ‘simple’ Fuzzy Logic Controller in that the contents of the 

table of rules are dynamically adjusted to meet a performance criterion; indeed, an 

initial table may not be required - the control algorithm develops and maintains its 

own. Self Organising Fuzzy Logic Controllers are discussed in Section A5.3. 
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A5.2.3 Representation of Rules 

The controller has been designed around a two dimensional table of rules (contained 

in the ‘RULES’ block in the figure). Thus two fuzzy input parameters are used to 

generate by inference a single fuzzy output parameter. The rules table summarises a 

series of rules of the form 

IF (INPUT1 IS A1) AND (INPUT2 IS A2) THEN (OUTPUT IS U) 

where A1, A2 and U are respectively the names of fuzzy sets (‘fuzzy labels’) in the 

universes of discourse for INPUT1, INPUT2 and OUTPUT. The fuzzy labels for 

INPUT1 may be the column names in the table of rules and those for INPUT2 the 

row names. For any combination of INPUT1 and INPUT2 the appropriate fuzzy 

label for OUTPUT may be read from the table; each cell of the table corresponds to a 

rule. 

The following fuzzy labels have been used here for the inputs: 

NB - Negative Big 

NM - Negative Medium 

NS - Negative Small 

ZE - Zero 

PS - Positive Small 

PM - Positive Medium 

PB - Positive Big 

Similar labels using lower case are used for the output. 

An example of a two dimensional table of rules relating a single output to two 

inputs, an ‘error’ and a ‘rate of change of error’ (‘rate’) is shown in Table A5.1 . 
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Table A5.1 Rules table 

 

This table contains 49 rules, for example: 

IF (RATE IS NM) AND (ERROR IS PB) THEN (OUTPUT IS ps) 

A5.2.4 Justification of the Rules Table 

Table A5.1 is an example which may be said to represent intuitively the control 

actions needed for any single input single output dynamic system. It is important to 

note that a sign convention is implied in it - a positive error is one in which the 

demand made on the system exceeds its output. 

Thus, if the reference (demand) is r, the output is y, and the error is e, 

          (1) 

   E R R O R  

  NB NM NS ZE PS PM PB 

 NB nb nb nb nb nm ns ze 

R NM nb nm nm nm ns ze ps 

A NS nb nm ns ns ze ps pm 

T ZE nb nm ns ze ps pm pb 

E PS nm ns ze ps ps pm pb 

 PM ns ze ps pm pm pm pb 

 PB ze ps pm pb pb pb pb 

yre 
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A positive error results when the output is less than it is required to be, and thus 

requires a positive control effort. 

Differentiating with respect to time, 

          (2) 

Considering regulator action, where r is constant and thus r is zero, it is easy to see 

that a positive rate of change of error results from a negative rate of change of 

output. Falling output in this situation requires positive control effort. 

The preceding short analysis demonstrates the consistency of the rules in Table A5.1 

with the sign convention. 

A5.2.5 Codifying the Rules Table 

For convenience in formulating computer code, the fuzzy labels have been codified 

as follows: 

NB - 1 

NM - 2 

NS - 3 

ZE - 4 

PS - 5 

PM - 6 

PB - 7 

Table A5.1 may then be presented in codified form as follows: 

 

 

 

 

yre  
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Table A5.2 Rules table – codified 

   E R R O R  

  1 2 3 4 5 6 7 

 1 1 1 1 1 2 3 4 

R 2 1 2 2 2 3 4 5 

A 3 1 2 3 3 4 5 6 

T 4 1 2 3 4 5 6 7 

E 5 2 3 4 5 5 6 7 

 6 3 4 5 6 6 6 7 

 7 4 5 6 7 7 7 7 

 

Table A5.2 is known as a fuzzy associative memory (FAM) table. 

A5.2.6 Fuzzification and Defuzzification 

To enable the FAM table to be used in a controller (Figure A5.1), the two inputs 

must be fuzzified; a fuzzy output is generated using an inferencing algorithm; and a 

crisp output derived from the fuzzy output using a defuzzification algorithm. 

Fuzzification and defuzzification require the definition of universes of discourse for, 

respectively, the input and the output. 

In the literature, a discrete universe of discourse is defined for each of the input 

parameters. This approach was adopted in the initial work (Njabeleke, 1998, 

Njabeleke et al., 1998, Pannett et al., 1999). The membership function for each of 

the fuzzy sets for each input parameter is defined in terms of the membership in the 

fuzzy set of the singletons contained in its support set. The support set is itself drawn 
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from the universe of discourse. The reason that this approach is adopted in the 

literature is apparently because it facilitates the use of look-up tables in the 

subsequent computation (see, for example, Lee (1990), Rutherford and Bloore 

(1976)). When processors operated at lower speeds than those of processors now 

readily available, this was an important consideration when designing real time 

controllers. 

In the present work, the use of continuous universes of discourse has also been 

explored. 

A5.2.7 Membership Functions 

Universes of discourses, discrete or continuous, are defined for each of the input 

parameters. The membership function for each of the fuzzy sets for each input 

parameter is defined in terms of its geometry. Triangular membership functions have 

been used in this work. They are defined by the minimum and maximum values of 

the support set, and by the value at which membership is unity. The membership in 

each of the input fuzzy sets of each crisp input is computed directly from this 

information. 

The number of input fuzzy sets for which a given crisp input has non-zero 

membership will depend on the degree to which the sets and thus their membership 

functions overlap. If no more than two membership functions overlap, then a crisp 

input can have non-zero membership of no more than two input fuzzy sets. 

The output fuzzy sets are defined in a similar manner to the input fuzzy sets. 

A5.2.8 Use of the FAM Table to Generate an Output  

The rules in the FAM table which ‘fire’ for any combination of crisp inputs are 

identified by the cells which correspond to the input fuzzy sets in which the crisp 

inputs have non-zero membership. For each of these firing rules, an inferencing rule 

is applied to combine the memberships of the two inputs. The results of these 

combining operations, together with the fuzzy outputs of the rules which ‘fire’, 
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define the form of an overall fuzzy output. From this is computed by a 

defuzzification method a crisp output; this is the source of the control signal to the 

plant. 

A5.3 Self Organising Fuzzy Logic Control (SOFLC) 

A5.3.1  Motivation for SOFLC 

A basic error driven fuzzy controller has performance shortfalls because it is unable 

to take account of the changes in characteristics of the system. The results of 

simulation studies of an error driven fuzzy logic controller as applied to the 

candidate system have been reported (Njabeleke, 1998). The merits of extending the 

dimensions of the rule base to recognise the effects of changes in system 

characteristics with speed and supply pressure were considered briefly. However, 

added complexity would then result: an additional transducer for supply pressure 

would be required and an extra dimension would be added to the rules table. Also, 

the design would become less intuitive. The development of a ‘self organising’ fuzzy 

logic controller (SOFLC) was pursued instead. In a SOFLC the rule base is adapted 

dynamically as the system characteristics alter with set point, etc. A relatively simple 

(and therefore undemanding in terms of computation speed) adaptation algorithm has 

been devised and applied. 

A5.3.2 Principles of SOFLC 

The SOFLC has been designed in accordance with principles initially published by 

Procyk and Mamdani (1979). They identified two tasks which the SOFLC must 

perform simultaneously - it must observe the environment while issuing the 

appropriate control actions and it must use the results of these control actions to 

improve them further. 

The SOFLC extends the standard fuzzy logic controller by incorporating 

performance feedback in the basic fuzzy logic controller. 

The basic functions of the SOFLC can be summarised as follows: 
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 to issue appropriate control action; 

 to evaluate the performance; 

 to modify the rule-base based on this evaluation. 

The control action is computed in accordance with the current rules as contained in 

the FAM. This was considered further above. 

To evaluate performance, following the method of Procyk and Mamdani (1979), a 

performance measure calculated from the error and rate of change of error is used. A 

two-dimensional performance table, which summarises a series of linguistic 

statements about performance, is used in accordance with the principles of fuzzy 

logic to infer the value of a performance measure.  

The performance table used is shown in Table A5.3. 

Table A5.3 Performance table 

   E R R O R  

  NB NM NS ZE PS PM PB 

 NB nb nb nb nb nm ns ze 

R NM nb nm nm nm ns ze ps 

A NS nb nm ns ns ze ps pm 

T ZE nb nm ns ze ps pm pb 

E PS nm ns ze ps ps pm pb 

 PM ns ze ps pm pm pm pb 

 PB ze ps pm pb pb pb pb 
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An example of the interpretation of the table is that if error and rate are both PB 

(‘positive big’) then the performance is also ‘positive big’. Since the system is 

monotonic (an increase in output always results from an increase in input), in this 

example the linguistic performance measure indicates that to improve performance 

the input to the system must be increased. Procyk and Mamdani (1979) describe how 

the performance measure may be interpreted as the change in system output which is 

required if performance is to be improved. They show how the inverse of an 

incremental model of the system may be used to derive the required change to the 

system input (reward); to achieve a change to the system input (which is of course 

the controller output) requires an adjustment to the rules table within the controller. 

They also show that for a single input single output system the incremental model of 

the system, and thus its inverse also, may be treated as a unit gain. Their analysis is 

summarised in Figure A5.2 which is taken from their paper.  

Figure A5.2 Self Organising Fuzzy Logic Controller (taken from Procyk and 

Mamdani (1979)) 
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It is necessary to recognise that lags and delays in the process result in its output 

being dependent on control actions taken in the past. ‘High order processes with 

large time lags and delays will require control actions further back from the present 

to be rewarded in order to overcome these delays. Low order processes with short 

lags will require more recent control actions to be rewarded. This distribution of 

reward depends on the type of process being controlled and the sampling rate. 

Consequently, it is set by the user according to his judgement about the process he 

wants controlled. It is worth noting here that this in itself also implies a model of the 

dynamics of the process, this time by virtue of the time lags’ (ibid.). 

A5.3.3 Development of SOFLC 

The approach of Linkens and Abbod (1991) to the development of a SOFLC is 

summarised in  Figure A5.3 which is taken from their paper.  

 Figure A5.3 Self Organising Fuzzy Logic Controller (from Linkens and Abbod 

(1991)) 
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The ‘state buffer’ is a first in, first out register which records the values of the error, 

error rate and controller output. The output of the register lags the input to it by a 

time equal to the reward delay. 

In work reported by Njabeleke (1998), and further studies reported in Njabeleke 

et al. (1998) and Pannett et al. (1999), all of which were based on simulation, 

controllers for the candidate fluid power system were designed according to the 

principles of Linkens and Abbod (1991). They describe a controller in which the 

input, which may be multi-dimensional, is scaled to bring it into an appropriate 

range, then quantised. It is then fuzzified: for each of its input channels, its 

membership in each of the input fuzzy sets is established. The fuzzified input is used 

with a fuzzy algorithm, the current control rules and a defuzzification process to 

derive a controller output. 

Superimposed on these processes is the rules modification process.  

A5.4 Design of SOFLC 

A5.4.1 Overview 

Initial work on the design of a SOFLC centred on simulation. For this, the starting 

point of the controller design was the control structure of Linkens and Abbod, 

discussed above. The controller is shown in block form in Figure A5.4.  

In this, the blocks labelled ‘fuzzify’ include a quantisation process. The controller 

used in the initial studies is essentially a PD (proportional plus derivative) controller 

working in continuous time. Gains K1 and K2 are included to scale respectively the 

error and error rate. A discrete universe of discourse is defined for each of the scaled 

error and error rate crisp inputs. These inputs are quantised, i.e. reset to the nearest 

member of the appropriate universe of discourse. Each of the two quantised inputs is 

fuzzified. Thus, the fit of each input to each of the fuzzy sets which correspond to the 

linguistic terms used is computed. The result for each input is a vector whose length 

is equal to the number of linguistic terms (or fuzzy sets) used to describe that input 

and whose members are the fits. These are the fuzzified inputs. 
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Figure A5.4 SOFLC structure – detail 

A5.4.2 Operation of SOFLC 

There are two levels of operation: 

The first is the ‘standard’ fuzzy logic controller. Using the current rules, a fuzzy 

inference is made from the fuzzified inputs and the resulting output is defuzzified 

into a crisp value which becomes, after scaling, the controller output. For each rule 

in the rule table (FAM), the fits of the two inputs are aggregated to establish the 

degree to which the rule ‘fires’ (‘degree of fulfilment’ (Tsoukalas and Uhrig, 1997)). 

The aggregation process used is ‘arithmetic product’ (op. cit.) (see Appendix 4). To 

obtain a ‘crisp’ output, it is necessary to amalgamate the effects of the rules which 

have fired and to defuzzify the result. Using the ‘centre of gravity method’ 

(Appendix 4), the fuzzy output is computed in terms of the area and first moment of 

area about the membership axis of its membership function. For each rule which has 
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fired the contribution to the total moment and total area is computed as the product 

of the degree of fulfilment with its moment and area respectively. The algebraic 

sums of the moments and areas are found, and the ratio of these sums gives the crisp 

output (within its universe of discourse). This process is repeated for each input 

sample. A look-up rules table is not used. 

On this ‘standard’ fuzzy logic controller is superimposed the self-organising 

mechanism. In essence, this consists of a performance index, a ‘model’ of the 

process, a rule modifier and a state buffer. The current states and output of the plant 

are determined in part by controller output in the past. Therefore the rule 

modification process uses delayed values of error, rate of change of error and output. 

These are read from the buffer. Only one rule in the FAM table, that which is 

considered to have most contributed to producing the controller output which 

resulted in the current performance, is modified. This is in contrast with algorithms 

which use a look-up rules table. 

A5.4.3 Rule Modification 

The rationale of the rule modification algorithm is as follows: 

Use fuzzy values of current error and current error rate with the performance 

rules to calculate a ‘performance output adjustment’. This is the change in 

output which would have resulted in improved performance; 

Find the ‘adjusted delayed controller output’ which would have resulted in 

the improved performance by adding the performance output adjustment to 

the ‘delayed controller output’ (read from the buffer); 

Fuzzify the ‘adjusted delayed controller output’; 

Fuzzify the ‘delayed error’ and ‘delayed rate of change of error’ (read from 

the buffer). For improved performance, these should have resulted in the 

‘adjusted delayed controller output’ rather than the controller output which 

actually obtained; 
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Find the highest memberships for ‘delayed error’ and ‘delayed rate of change 

of error’; 

Use these as cell co-ordinates in the rule table to determine which rule in the 

FAM table to modify; 

Find the fuzzy output set having the highest membership for ‘adjusted 

delayed controller output’; 

Use this fuzzy output set in the new rule; 

Update the corresponding cell in the FAM table. 
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APPENDIX 6 Control Surfaces  

This Appendix contains complete sets of control surfaces pertaining to the SOFLC 

simulations and rig tests which are summarised in Chapter 7. They are listed below: 

 

Control surfaces for simulation 2    Section 7.4.2:     Figure A6.1  

Control surfaces for revised SOFLC (simulation)  Section 7.5.2:     Figure A6.2 

Control surfaces for rig test 1    Section 7.5.4.1:  Figure A6.3 

Control surfaces for rig test 2     Section 7.5.4.2:  Figure A6.4 

Control surfaces for rig test 3    Section 7.5.4.3:  Figure A6.5 
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(a) Time = 0.4 s (b) Time = 0.8 s 

(c) Time = 1.2  (d) Time = 1.6  

(e) Time = 2.0  (f) Time = 2.4 
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(g) Time = 2.8 s (h) Time = 3.2 s 

(i) Time = 3.6 s (j) Time = 4.0 s 

(k) Time = 4.4 s (l) Time = 4.8 s 
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(m) Time = 5.2 s (n) Time = 5.6 s 

(o) Time = 6.0 s (p) Time = 6.4 s 

(q) Time = 6.8 s (r) Time = 7.2 s 
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(s) Time = 7.6 s (t) Time = 8.0 s 

(u) Time = 8.4 s (v) Time = 8.8 s 

 

Figure A6.1 Control surfaces for simulation 2 
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(a) Time = 0.4 s (b) Time = 0.8 s 

(c) Time = 1.2 s (d) Time = 1.6 s 

(e) Time = 2.0 s (f) Time = 2.4 s 
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(g) Time = 2.8 s (h) Time = 3.2 s 

(i) Time = 3.6 s (j) Time = 4.0 s 

(k) Time = 4.4 s (l) Time = 4.8 s 
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(m) Time = 5.2 s (n) Time = 5.6 s 

(o) Time = 6.0 s (p) Time = 6.4 s 

(q) Time = 6.8 s (r) Time = 7.2  s 
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(s) Time = 7.6 s  (t) Time = 8.0 s 

Figure A6.2 Control surface evolution – revised SOFLC (simulation) 
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(a) Time = 0

s (b) Time = 1.0 s 

(c) Time = 2.0 s (d) Time = 3.0 s 

(e) Time = 4.0 s (f) Time = 5.0 s 
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(g) Time = 6.0
 
s  (h) Time = 7.0 s 

(i) Time = 8.0
 
s (j) Time = 9.0
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(m) Time = 12.0
 
s (n) Time = 13.0
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(s) Time = 18.0
 
s (t) Time = 19.0 s 

Figure A6.3 Control surfaces for rig test 1 
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(a) Time = 0

s (b) Time = 1.0 s 

(c) Time = 2.0
 
s (d) Time = 3.0 s 

(e) Time = 4.0
 
s (f) Time = 5.0 s 
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(g) Time = 6.0
 
s (h) Time = 7.0 s 

(i) Time = 8.0
 
s. (j) Time = 9.0 s 

(k) Time = 10.0
 
s (l) Time = 11.0 s 
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(m) Time = 12.0
 
s (n) Time = 13.0 s 

(o) Time = 14.0
 
s (p) Time = 15.0 s 

(q) Time = 16.0
 
s (r) Time = 17.0 s 
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(s) Time = 18.0 s   

 

 

FigureA 6.4 Control surfaces for rig test 2 
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(a) Time = 1.0 s (b) Time = 2.0 s 

(c) Time = 3.0 s (d) Time = 4.0 s 

(e) Time = 5.0 s. (f) Time = 6.0 s 
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(g) Time = 7.0 s (h) Time = 8.0 s 

(i) Time = 9.0 s 

 

 

Figure A6.5 Control surfaces for rig test 3  
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