PHD

Development of Axially Chiral Biazulenes for Catalysis

Gee, Anthony

Award date:
2016

Awarding institution:
University of Bath

Link to publication

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Development of Axially Chiral Biazulenes for Catalysis

Anthony Philip Gee

A thesis submitted for the degree of Doctor of Philosophy
University of Bath
Department of Chemistry
September 2016

i. ABSTRACT

Axially chiral biaryl ligands are ubiquitious in asymmetric transition metal-catalysed homogeneous catalysis. However, biazulene motifs have not previously been incorporated in the design of chiral ligands in asymmetric catalysis, despite the unique geometric and electronic properties of azulene derivatives. The aims of this project were to develop novel axially chiral biazulene-diphosphine, -diol and related species, encompassing the synthesis and resolution of their enantiomers, and to screen these compounds in the application towards common asymmetric reactions.

1,1'-biazulene

2,2'-biazulene

4,4'-biazulene
$X=$ ligating group

The most significant achievement reached in this project was the synthesis and resolution of practicable quantities of an atropisomeric 1,1'-biazulene-2,2'-diol species (" 1,1 '-BazOL"), which has been employed in an asymmetric Ti-catalysed Diels-Alder reaction. Much progress has also been made towards the synthesis of other targets, like 1,1'-biazulene-2,2'-diphosphine ("1,1'-BazPhos"), 2,2'-biazulene-1,1'-diphosphine ("2,2'-BazPhos") and 1,1'-biazulene-2,2'-phosphoric acid ("1,1'BazPA").

ii. ACKNOWLEDGMENTS

Undertaking this project would not have been possible without key contributions and assistance from colleagues and friends around the department. Firstly, I would like to offer many heartfelt thanks to my primary supervisor, Dr. Simon E. Lewis, for all his help, ideas, support and great enthusiasm towards this research. Similarly, I would also thank all postgraduate students and post-doctoral researchers who have worked in the Lewis group throughout my PhD studentship - Paul Cowper, Dr. Catherine Lyall, Dr. Julia Griffen, Dr. Kathryn Wills, Dr. Matthew Palframan, Georgina Gregory, Toby Nash, Ben Alexander, Dr. Monica Ali Khan, Carlos López Alled, Dominic Ferdani, Yu Jin - as well as all of the undergraduate students, for their help, support and companionship.

Also, there have been several other people from around the department whose contributions to the project have been greatly appreciated. I would like to thank Dr. Gabriele Kociok-Köhn and Dr. Mary Mahon for their X-ray crystallography expertise; my secondary supervisor, Dr. Andrew L. Johnson, as well as Dr. Sam Cosham, for their help with air-sensitive phosphine synthesis; for their help with CD spectrometry, Dr. G. Dan Pantoş and Tibi Gianga; for their tuition of chiral HPLC, Robert Chapman and Dr. G. Dan Pantoş, once again and for his help with chiral GC, Dr. Matthew Jones. Special thanks also go to the EPSRC for funding this research.

Finally, I would like to thank my girlfriend, Hope, as well as my mother, Kaisu and father, Phil, for all of their love and support, and for looking after me while I have been writing this thesis.

iii. ABBREVIATIONS

R	residual group
${ }^{\circ} \mathrm{C}$	degrees Celsius
2D	2-dimensional
Å	Ångstroms
Ac	acetyl
AMC	active methylene compound
app	apparent
aq	aqueous
Ar	aryl
$\begin{gathered} \text { ASAP } \\ \text { atm } \end{gathered}$	atmospheric solids analysis probe atmosphere(s)
$\mathrm{B}_{2} \mathrm{pin}_{2}$	bis(pinacolato)diboron
BAr_{F}	[$\left.\mathrm{B}\left[3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{4}\right]$ anion
BHT	butylated hydroxytoluene
Bn	benzyl
Boc	tert-butyloxycarbonyl
bpy	bipyridine
Bu	butyl
calc	calculated
cat.	catalyst or catalysed
Cbz	carboxybenzyl
CCD	charge-coupled device
CD	circular dichroism
cm	centimetres
COD	cyclooctadiene
Cp	cyclopentadienyl
Cy	cyclohexyl
d	days
d	doublet
d.e.	diastereomeric excess
DABCO	1,4-diazabicyclo[2.2.2]octane
dba	dibenzylideneacetone
DCE	dichloroethane
DCM	dichloromethane
$\begin{aligned} & \text { DDQ } \\ & \text { dec. } \end{aligned}$	2,3-dichloro-5,6-dicyano-1,4-benzoquinone decomposed
DIBAL-H	diisobutylaluminium hydride
DIPEA dm	N, N-Diisopropylethylamine (Hünig's base) decimetre
DMAP	4-dimethylaminopyridine
DME	1,2-dimethoxyethane

DMF	dimethylformamide
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
dppb	bis-(diphenylphosphino)butane
dppe	bis-(diphenylphosphino)ethane
dppf	1,1'-bis-(diphenylphosphino)ferrocene
e.e.	enantiomeric excess
EDG	electron donating group
El	electron impact
eq.	equivalents
ESI	electrospray ionisation
Et	ethyl
et al.	and others
EWG	electron withdrawing group
FT	Fourier transformed
G	Gibbs free energy
g	grams
GC	gas chromatography
gem	geminal
h	hour(s)
H	enthalpy
het	hetero
HMBC	heteronuclear multiple bond correlation
HOMO	highest occupied molecular orbital
HPLC	high performance liquid chromatography
HRMS	high-resolution mass spectrometry
HSQC	heteronuclear single quantum correlation
Hz	Hertz
i	iso
ID	internal diameter
IPA	isopropyl alcohol
IR	infra red
J	NMR coupling constant
k	rate constant
K	degrees Kelvin
kcal	kilocalories
L	ligand
L	litre
LDA	lithium diisopropylamide
L-DOPA	L-3,4-dihydroxyphenylalanine
LG	leaving group
LTMP	lithium 2,2,6,6-tetramethylpiperidide
LUMO	lowest unoccupied molecular orbital
M	metal

```
        m
        m
        M
        m
        m.p.
        m/z
        maj
        Me
        mg
        MHz
        min
        min
        mL
        mM
        MM2
        mmol
        mol
        n
        nbd
        NBS
        NCS
        NIS
        nm
        vmax
        NMP
        NMR
        O
        Oct
ORTEP
        p
        Ph
        pH
        pKa
        PMP
        Pr
        py
        q
        quint
            r.t.
            rac
            R
            s
            S
                    metres
            moles per dm }\mp@subsup{}{}{3
                multiplet
            melting point
        mass per unit charge
            major
                methyl
            milligrams
            mega Hertz
            minute(s)
                minor
                    millilitre
            millimoles per dm}\mp@subsup{}{}{3
            Molecular Mechanics 2
            millimolar
            moles or molecular
            linear (alkyl chain)
                norbornadiene
            N-bromosuccinimide
            N-chlorosuccinimide
            N-iodosuccinimide
                nanometre
                    wavenumber of maximum absorption
                    N-methyl-2-pyrrolidone
            nuclear magnetic resonance
                ortho
            octyl
    Oak Ridge Thermal Ellipsoid Plot
                para
                phenyl
            potential of hydrogen
                                    logarithmic acid dissociation constant
                                    1,2,2,6,6-pentamethylpiperidine
                                    propyl
                            pyridine
                            quartet
            quintet
            room temperature
            racemic
                    retention factor
                    seconds
            entropy
```

t	triplet
TBAB	tetra- n-butylammonium bromide
TBAI	tetra- n-butylammonium iodide
TEMPO	$2,2,6,6$-tetramethyl-1-piperidinyloxy
tert	tertiary
tert	tertiary
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
tfc	3-(trifluoromethylhydroxymethylene)-(+)-camphorate
TFE	$2,2,2$-trifluoroethanol
THF	tetrahydrofuran
TLC	thin layer chromatography
TMEDA	$N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine
TMS	trimethylsilyl
TOF	time of flight
tol	tolyl
TRIP	hydrogenphosphate
Ts	p-toluenesulfonyl
UV	ultraviolet
v	volume
V	volts
wt.	weight
X	halide or pseudohalide
xyl	xylyl
Δ	heat at reflux
μL	microlitre
μw	microwave radiation
v	wavenumber

iv. CONTENTS

1. INTRODUCTION 1
1.1. Chirality and chiral induction 1
1.2. Chiral phosphine ligands in homogeneous catalysis 8
1.2.1. Wilkinson's catalyst 8
1.2.2. First chiral phosphine ligands for asymmetric hydrogenation 10
1.2.3. DIOP, CAMP and DIPAMP 12
1.2.4. BINAP by Noyori 16
1.3. Dihedral angles of axially chiral diphosphine ligands 21
1.3.1. BIPHEMP and MeO-BIPHEP 23
1.3.2. H_{8}-BINAP 26
1.3.3. SEGPHOS 31
1.3.4. TunePhos 34
1.3.5. Supramolecular tuning of the ligand bite angle 38
1.4. Electron-rich and electron-poor diphosphine ligands 40
1.4.1. Increased Lewis basicity in diphosphine ligands 40
1.4.2. Assessment of biaryl diphosphine Lewis basicity by IR 41
1.4.3. Electron-rich axially chiral diphosphine ligands 42
1.4.4. Decreased Lewis basicity in diphosphine ligands 48
1.4.5. Electron-poor axially chiral diphosphine ligands 49
1.4.6. DIFLUORPHOS 52
1.5. Biheteroaryl diphosphine ligands with 5-membered rings 56
1.5.1. Sulfur as the heteroatom 56
1.5.2. Nitrogen as the heteroatom 58
1.5.3. Oxygen as the heteroatom 59
1.6. Dihedral angles of axially chiral biaryl diol ligands 60
1.6.1. BINOL by Noyori 60
1.6.2. Modification of biaryl diol dihedral angle 63
1.6.3. H_{8}-BINOL 66
1.7. Conclusion 69
2. RESULTS AND DISCUSSION 71
2.1. Project aims and rationale 71
2.1.1. Properties of azulenes 73
2.1.2. Azulene as a motif in chiral ligand design 77
2.1.3. Nozoe's method for the synthesis of azulenes 84
2.2. Development of 1,1'-biazulene-2,2'-diphosphine ("1,1'-BazPhos") 90
2.2.1. Foundations of synthesis based around Nozoe's method 90
2.2.2. Improvements to synthetic steps 96
2.2.3. Chemical transformations of monoazulenes 103
2.2.4. Synthesis of 3-aryl-2H-cyclohepta[b]furan-2-one precursors 109
2.2.5. 1,1'-biazulene formation through Cu-catalysed oxidative homocoupling 113
2.2.6. Chemical transformations of ester-containing 1,1'-biazulene-2,2'-diol 116
2.2.7. Removal of ester groups 121
2.2.8. Installation of phosphorus-containing functional groups 126
2.3. Development of 1,1'-biazulene-2,2'-diol ("1,1'-BazOL") 136
2.3.1. Asymmetric synthesis of $1,1^{\prime}$-BazOL 139
2.3.2. Resolution of $1,1^{\prime}$-BazOL 145
2.3.4. CD spectrometry and configurational stability 155
2.4. Development of 2,2'-biazulene-1,1'-diphosphine ("2,2'-BazPhos") 163
2.4.1. Formation of $2,2^{\prime}$-biazulene through Pd-catalysed homocoupling 163
2.4.2. Installation of phosphine groups at 1-position 165
2.4.3. Reduction of ester groups 171
2.4.4. Synthesis towards $2,2^{\prime}$-BazPhos 174
2.5. Development of "1,1'-BazPhos" through the Hafner method 183
2.5.1. C-H activation of azulene 2-position 183
2.5.2. Hafner's method for the synthesis of azulenes 187
2.5.3. Synthesis of azulen-2-yl phosphines 189
2.5.4. Limitations and future synthetic developments 199
2.6. Development of 1,1-biazulene-2,2'-phosphoric acid ("1,1'-BazPA") 201
2.6.1. Ideal chiral biazulene-acid targets 201
2.6.2. Synthesis of $1,1^{\prime}-\mathrm{BazPa}$ 203
2.6.3. Limitations 205
2.7. Asymmetric Diels-Alder reaction 206
2.7.1. Ti-catalysed Diels-Alder reaction with 1,1'-BazOL 207
2.8. Conclusions and future work 210
3. EXPERIMENTAL 216
4. REFERENCES 332
5. APPENDICES 352
5.1. NMR appendix 352
5.2. X-ray crystallography appendix 463

1. INTRODUCTION

1.1. Chirality and chiral induction

If an object possesses a mirror image, onto which it cannot be superimposed, it is described as having chirality. This concept is ubiquitous in organic chemistry, as a tetrahedral carbon atom that has four different substituents is known as a stereocentre and, in most cases, leads to chirality in a molecule. The mirrored depictions of the chiral molecule are the enantiomers of each other (Figure 1). Other tetrahedral atoms, such as phosphorus and sulfur, can exhibit chirality in the same way, often with a lone pair acting as a fourth 'substituent'.

Figure 1: Tetrahedral atoms, carbon and sulfur, with four different substituents, reflected with a plane of symmetry to depict their enantiomers.

While it is the most common form of chirality in organic chemistry, having a stereocentre is not compulsory for a molecule to be chiral (Figure 2). If a biaryl molecule has restricted rotation around the biaryl bond, often caused by steric hindrance of substituents positioned ortho- to that bond, it can have two enantiomeric forms (1). If that molecule is comprised of identical arene species, it possesses a C_{2} axis of rotational symmetry, despite the planar asymmetry, called axial chirality, associated with its structure. Axial chirality also occurs in other molecules that do not have stereocentres, but have restricted rotation around an axis; allene derivatives $\mathbf{2}$ with inequivalent substituents R_{1} and R_{2} at each terminus
do not have a mirror plane of symmetry, and are therefore chiral. Spiro compounds 3 can also exhibit axial chirality, when the quaternary centre has fewer than four different substituents, due to the fixed configuration at that carbon atom. Helicenes 4 are aromatic hydrocarbons, made up of benzene rings that are fused in a spiral formation, and thus exhibit helical chirality, similar to the symmetrical properties of a screw.

(+)-1

(-)-1

$\left(S_{\mathrm{a}}\right)-\mathbf{3}$

(+)-2

M-4

(-)-2

P-4

Figure 2: Chiral molecules without a stereogenic centre: axially chiral biaryl derivatives 1, allenes 2, spiro compounds 3 and helicenes 4.

Enantiomers of a chiral molecule have identical physical and chemical properties, apart from the opposite rotation of plane-polarised light that passes through an enantioenriched medium. Despite this similarity, enantiomers of a chiral molecule behave differently when in proximity to a chiral environment, analogous to a hand fitting a glove, such as the active site of an enzyme, a chiral stationary phase for chromatography, and human DNA. Crucially for the pharmaceutical industry, enantiomers have different biological activity, so any chiral drug must be synthesised to be enantiomerically pure if there are undesirable side effects from the mirror
image of that drug. The most famous case of a racemic drug misguidedly released on the market was Thalidomide 5 (Figure 3) in the late 1950s, which is a good illustration to a non-chemist of the importance of chirality in medicine. Ostensibly prescribed as a treatment for morning sickness in pregnant women, the (S)-isomer of the drug led to teratogenic deformities in around 10,000 children worldwide, which led to greater awareness in the pharmaceutical industry of the importance of treating enantiomers as separate entities with regards to their bioactivity. However, even if the compound was administered in the body enantioenriched with the (R)-isomer, the acidity of the proton at the stereocentre would mean the molecule racemises when the pH of the body is acidic or alkaline. Despite the difference in the physiological effects of enantiomers, many drugs are sold as a racemate for convenience, if the side effects associated with the enantiomer of the active drug are non-harmful, or deemed not to outweigh the benefits of that desired enantiomer. ${ }^{1}$ While the (S)-enantiomer of anti-depressant drug citalopram 6 (Figure 3) (known as escitalopram) has been shown to be more potent at treating major depression, with fewer side effects, ${ }^{2}$ the drug is still available as a racemate because of the additional costs associated with a stereoselective synthesis.

(R)-5

(S)-5

(S)-6

Figure 3: Examples of drugs where only one enantiomer has the desired treatment effect, thalidomide 5 and citalopram 6.

The configuration of the stereocentres of a molecule can also affect its smell and taste, making chirality a key consideration in the flavouring and fragrance industries. ${ }^{3,4}$ With chiral odour molecules, it is often the case that one enantiomer simply has a stronger smell than the other, but there are many exceptions where they are completely different from one another. The (R)-enantiomer of limonene 7, a cyclic terpene, smells of citrus fruits, while the (S)-enantiomer has a lemon/turpentine-like odour. With carvone 8, a terpenoid molecule, the (R) enantiomer smells of spearmint and the (S)-enantiomer smells of caraway seeds. Detailed analysis has been carried out on widely produced fragrance Tropional ${ }^{\circledR} 9$, which in its racemic form, has fresh, sea-like notes. Its (R)-enantiomer was described as "green floral", having a "fruity, cumin-like" scent with "marine, ozonelike" notes while its (S)-enantiomer, which was around 5 times less potent, was more like "citrus" and "lily of the valley". ${ }^{5}$

(R)-7

(S)-7

(R)-8

(S)-8

(R)-9

(S)-9

Figure 4: Enantiomers with different scents: limonene 7, carvone 8 and $\operatorname{Tropional}^{\circledR} 9$.

To synthesise chiral compounds as single enantiomers in a laboratory, one needs a means of biasing the reaction to favour the formation of one configuration of that molecule over the other. Without a form of stereocontrol, for example, for the reaction of prochiral ketone 10 with an alkyl halide, an equimolar mixture of alkylated stereoisomers is produced, i.e. a racemic mixture of 11 (Scheme 1). One would have
to likely purify the two enantiomers by using preparative chiral HPLC, which is very expensive and not practical on a large scale; or by forming and crystallising a diastereomeric derivative of the product with a chiral auxiliary, which adds steps to the synthesis to install and remove. After purification, it is possible that only one pure enantiomer is useful to the purpose at hand, resulting in a maximum of 50% yield in that step to produce the desirable compound.

Scheme 1: The alkylation of a prochiral ketone 10 without controlling the stereochemistry, giving racemic product (\pm)-11.

To minimise waste produced by such a synthetic method, there are several approaches to control the stereochemistry and increase the efficiency (Figure 5). One way is to use a 'chiral pool' approach, making use of cheap, enantiopure compounds that widely occur in nature as building blocks, such as amino acids, tartrates, terpenes and sugars. Because this approach generally involves introducing the stereochemistry at the start of a synthetic route, care must be taken not induce racemisation/epimerisation in subsequent chemical steps. A more flexible approach is to use a chiral additive to induce the stereoselectivity for the transformation of a prochiral substrate. These modifications can involve covalently attaching an enantiopure chiral auxiliary to that prochiral substrate. The auxiliary can sterically or electronically restrict the approach of a reactant or reagent to one side of the substrate. This approach generally leads to very high enantioselectivity, but involves adding steps to the synthesis to install and remove a stoichiometric quantity of a
homochiral fragment to and from the molecule. The auxiliary may be used multiple times if said steps can be efficiently performed. Another method of inducing the stereoselectivity is to incorporate the chiral environment in a catalyst, known as asymmetric catalysis. This technique is advantageous as only a relatively small amount of the compound that brings about the stereoselectivity is needed, with no extra chemical steps, and as it is not consumed by the reaction taking place, can potentially be recovered. The most common way of doing this is through homogeneous catalysis, where either a transition metal complex or an organic species brings about stereoselectivity within the same phase as the substrates. Its ubiquity as an approach in asymmetric synthesis is due to the flexibility allowed by modifications of the catalyst, the relative ease with which the mechanisms can be studied and elucidated, the tolerance of a range of conditions and the ability to increase the scale of the reaction. These advantages have meant that the range of asymmetric transformations that can be performed through homogeneous catalysis has developed much further than those achieved with heterogeneous catalysis and biocatalysis.

HETEROGENEOUS

HOMOGENEOUS

BIOCATALYSIS

Figure 5: Various methods to introduce homochirality in molecules.

The first instance of an enantioselective form of homogeneous catalysis was reported by a pioneer of asymmetric catalysis, Ryoji Noyori et al., in 1966. ${ }^{6}$ With the use of a chiral iminomethylphenol-Cu(II) complex 12, the authors were able to perform the reaction of ethyl diazoacetate 13 with styrene 14 to form the
diastereomeric cyclopropane products 15 in 72\% yield. With a syn/anti ratio of 1:2.3, the anti product was determined to have been formed in 6% e.e. (the same result for both (R) - and (S)-ligand isomers), representing a groundbreaking result that was to lead to a paradigm shift in asymmetric synthesis (Scheme 2). The chiral iminomethylphenol ligand induced the stereoselectivity by rendering one side of the substrate more sterically hindered than the other for the incoming nucleophile, which was a simple rationalisation, but one that was an underlying principle for the design of chiral transition metal complexes thereon.

13

Cu catalyst (0.09 mol\%) $60^{\circ} \mathrm{C}, 72 \%$

syn-15
$+$

anti-15, 6\% e.e.
syn: anti $=1: 2.3$

Scheme 2: The Cu-catalysed enantioselective formation of cyclopropane 15, the first example asymmetric homogeneous catalysis.

1.2. Chiral phosphine ligands in homogeneous catalysis

1.2.1. Wilkinson's catalyst

In the 1960s, Sir Geoffrey Wilkinson made the observation that under mild conditions, the nucleophilic displacement of a chloride ligand on trichlorotris(pyridine)rhodium 16 with a molecule of pyridine was catalysed by molecular hydrogen (Scheme 3). ${ }^{7}$ Because the molecule of hydrogen underwent heterolytic cleavage easily, forming a hydride as a catalytic intermediate, the group
saw potential in the use of rhodium complexes as hydrogenation catalysts. They designed a different rhodium complex with triphenylphosphine ligands, chosen due to their superior π-acceptor ability compared to pyridine, forming the air-stable metal complex tris(triphenylphosphine)rhodium(I) chloride 19. This complex, later known as Wilkinson's catalyst, could be used for the catalytic hydrogenation of a variety of double and triple bonds at ambient pressure and temperature, with high turnover, and represented a very important breakthrough in the field of homogeneous catalysis (Scheme 4). ${ }^{8,9}$ This method of hydrogenation was shown also to be tolerant of other double bonds, such as ketones, esters, acids, nitriles and nitro groups; only ever reducing the alkene. The versatility of rhodium catalysts was shown by the ability of a similar complex 20 to catalyse the hydroformylation of alkenes with hydrogen and carbon monoxide. ${ }^{10,11}$ Since its advent, Wilkinson's catalyst has had a number of important applications, such as the selective hydrogenation of the natural antiparasitic drug Avermectin to its more effective analogue Ivermectin, used for the treatment of scabies, river blindness and other parasitic infections. ${ }^{12}$ It is also used for the widespread industrial production of nitrile rubber. ${ }^{13}$ The catalyst has endured very well in synthetic chemistry research, as it is still used frequently today, most recently for processes such as a disilane formation via oxidative homocoupling of tertiary silanes, ${ }^{14}$ and a regioselective reduction of an enone alkene in the synthesis of 1-tuberculosinyl adenosine, a virulence factor of Mycobacterium tuberculosis. ${ }^{15}$

Scheme 3: The nucleophilic displacement of trichlorotris(pyridine)rhodium(III) 16, catalysed by hydrogen.

Scheme 4: The efficient Rh-catalysed hydrogenation and hydroformylation processes by Wilkinson.

1.2.2. First chiral phosphine ligands for asymmetric hydrogenation

By combining the efficiency and practicality of Wilkinson's rhodium complexes, and the use of the chiral Cu-catalyst 12 by Noyori, the first examples of asymmetric hydrogenation by homogeneous catalysis were reported independently by Knowles et al. and Büthe et al. in 1968 (Scheme 5). ${ }^{16,17}$ Both groups replaced the achiral triphenylphosphine ligands on the rhodium complexes with n propylmethylphenylphosphine ligands $\mathbf{2 4}$, which are P-chiral because of a lone pair as a fourth 'substituent’ and an energetic barrier to inversion. The former group used the complex tris(n-propylmethylphenylphosphine)rhodium(III) chloride (in which the ligands were prepared in 69% e.e.) to catalyse the hydrogenation of α-phenylacrylic acid 25 and itaconic acid 26, resulting in 15% e.e. and 3% e.e. respectively for the formation of the saturated acids 27 and 28. The latter group used a similar Rh
complex, analogous to Wilkinson's catalyst, formed in situ from the same chiral phosphine ligand 24 and $\left[\mathrm{Rh}(1,5\right.$-hexadiene $) \mathrm{Cl}_{2}$, achieving hydrogenation of α ethylstyrene 29 and α-methoxystyrene 30 to form saturated species 31 and 32 in 7$8 \%$ e.e. and $3-4 \%$ e.e. respectively.
a)

$R=\operatorname{Ph}(\mathbf{2 7}, 15 \%$ e.e. $)$
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}(\mathbf{2 8}, 3 \%$ e.e. $)$ sample $)$
$\mathrm{R}=\mathrm{Ph}(\mathbf{2 5}), \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

$$
\begin{aligned}
& R=\operatorname{Et}(\mathbf{3 1}, 7-8 \% \text { e.e. }) \\
& R=\operatorname{OMe}(32,3-4 \% \text { e.e. })
\end{aligned}
$$

(R)-24 (69\% e.e. for
b)

$R=E t(29), O M e(30)$

(S)-24

Scheme 5: The first asymmetric hydrogenation processes through homogeneous catalysis, by Knowles (a) and Büthe (b).

Following these successful developments, other groups began to use similar Rh complexes with modifications of the phosphine ligand. Instead of using P-chiral ligands, in 1971 Morrison et al. reported the use of tris(neomenthyldiphenylphosphine)rhodium (I) chloride for the hydrogenation of $E-\beta-$ methylcinnamic acid 33 to produce 3-phenylbutanoic acid 34 in a much improved 61\% e.e., which started to hint towards practical application of asymmetric homogeneous catalysis (Scheme 6). ${ }^{18}$ The choice of neomenthylphosphine 35 avoided the requirement of a resolution, as it was synthesised from naturally occurring (-)-menthol. This process also demonstrated that the chirality could instead be located on the P-substituents rather than on the phosphorus atom itself.

Scheme 6: The asymmetric hydrogenation of $E-\beta$-methylcinnamic acid 33 with a rhodium(I)neomenthylphosphine catalyst.

1.2.3. DIOP, CAMP and DIPAMP

In the same year, Kagan et al. reported the use of a Rh(I)((-)-DIOP) complex for the hydrogenation of α-phenylacrylic acid 25 in 63% e.e., and a range of other α acetamidoacrylate derivatives in 60-80\% e.e., including α-phenylacetamidoacrylic acid 36 to form (R)-alanine 37 in 68% e.e. following a hydrolysis (Scheme 7). ${ }^{19,20}$ Again, the DIOP ligand 38 (an abbreviation of 2,3-O-isopropylidene-2,3-dihydroxyl-1,4-bis(diphenylphosphino)butane) has its stereocentre away from the phosphorus atom, and was synthesised from (+)-diethyl tartrate, an ester form of the naturally occurring (+)-tartaric acid. The innovation in this design was the C_{2}-symmetric, chelating properties of this ligand, which increased the rigidity of the chiral catalyst, so the bulky diphenylphosphine groups could have a greater influence on the orientation of the olefin substrate, thus stabilising more greatly a single diastereomeric transition state of substrate and catalyst. These properties allowed the hydrogenation of enamide 39 in 78% e.e., despite lacking the fixed orientation that would be provided from a coordinating carboxylate group.

1) H_{2}, [Rh(cyclooctene) Cl_{2}

39

95\%, 78\% e.e.

(-)-DIOP
38

Scheme 7: Asymmetric hydrogenation of olefins with an $\mathrm{Rh}(\mathrm{I})((-)$-DIOP) complex.

Meanwhile, Knowles et al. showed that high enantioselectivities for asymmetric hydrogenation could be achieved also with P-chiral monodentate ligands, as demonstrated with cyclohexyl-o-anisylmethylphosphine 41 (CAMP). Because of the bulkiness of CAMP 41, as well as the methoxy group on the o-anisyl moiety acting as an H -bond acceptor, the in situ formed $\mathrm{Rh}(\mathrm{I})$-(CAMP) complex could be used for the hydrogenation of several α-acetamidoacrylic acid derivatives 42 in 60-90\% e.e. (Scheme 8). ${ }^{21}$ To combine the high selectivity obtained with these ligands with the rigidity of a bidentate diphosphine ligand, Knowles et al. designed the DIPAMP ligand 44, replacing the methyl groups of CAMP 41 with an ethylene linker between two cyclohexyl-o-anisylphosphine groups. By using the cationic $[\mathrm{Rh}(\mathrm{COD})(\mathrm{DIPAMP})]^{+}\left[\mathrm{BF}_{4}\right]^{-}$complex as a catalyst, several α-acetamidoacrylic acid derivatives 45, now the standard test for this process, could be hydrogenated in 90$96 \%$ e.e. (Scheme 9). ${ }^{22,23}$ Since this selectivity now rivalled that associated with enzyme catalysts, this complex could be applied towards the industrial manufacture of L-DOPA 49, a treatment for Parkinson's disease. ${ }^{24}$

Scheme 8: The asymmetric hydrogenation of α-acetamidoacrylic acid derivatives 42 with a rhodiumCAMP catalyst
a)

45
$\mathrm{H}_{2},[\mathrm{Rh}(\mathrm{COD})(\mathrm{DIPAMP})]\left[\mathrm{BF}_{4}\right]$

$$
25-50^{\circ} \mathrm{C}, 3.5-4.0 \mathrm{~atm}
$$

b)

47

90-96\% e.e., 3 examples

(R, R)-DIPAMP

Scheme 9: The asymmetric hydrogenation of α-acetamidoacrylic acid derivatives 45 (a) and the industrial synthesis of L-DOPA 49 (b) with a cationic Rh(I)-DIPAMP complex \mathbf{X} as catalyst.

There are, however, limitations with the DIPAMP ligand 44. While 'tridentate' substrates, involving coordination of olefin, carboxylate and amide, could be hydrogenated smoothly and in high selectivity, selectivity decreased dramatically for 'bidentate’ substrates like Z-enamide 50, which only possessed an olefin and amide. Virtually no selectivity was observed for E- and Z-2-methyl-3-phenylacrylic acid, indicating the influence of H -bonds interactions between the amide and methoxy group. Rates and selectivity for Z-alkenes were much greater than their respective E isomers, which were later rationalised with quadrant diagrams. ${ }^{25}$ As shown by crystal
structures such as that of a rhodium(I)-DIPAMP complex, the phenyl groups on the phosphines adopt edge-face interactions between each other. Thus, a projection from the perspective of the oncoming substrate show two hindered 'quadrants' where the edge of the pseudo-equatorial phenyl groups point out of the page, and the perpendicular pseudo-axial phenyl groups occupy the two unhindered 'quadrants' (Scheme 10, a). The approaching alkene would be biased to align with the unhindered quadrants, leading to induction of stereoselectivity. For the α acetamidoacrylic acid substrates tested in the report on DIPAMP 44, Z-alkenes have the bulkiest groups (carboxylate and phenyl) trans to each other, so therefore those groups can both align with the unhindered quadrants (Scheme 10, b). This contrasts with the E-alkenes, which have bulky groups cis to each other, so at least one of these groups clashes with a hindered quadrant (Scheme 10, c). The quadrant diagram is a simple rationalisation of selectivity, but one that is still oft-cited in the theory of asymmetric catalysis. ${ }^{26}$
a)

b)

c)

E-50

Scheme 10: Quadrant diagram of a metal-bis(diarylphosphine) complex to rationalise stereoselectivity (a), and the alignment Z-and E-isomers of α-acetamidoacrylate 50 (b and c respectively) towards hindered (shaded) and unhindered (white) quadrants.

1.2.4. BINAP by Noyori

Another chiral ligand that fits into the quadrant diagram model, which is possibly the most successful, versatile and influential chiral phosphine of all time, is 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, or BINAP 51, first introduced by Ryōji Noyori in $1980 .{ }^{27}$ There are no stereocentres in the structure of BINAP 51, so the source of its chirality is through atropisomerism; that is, the large kinetic barrier preventing the two naphthyl moieties from freely rotating around the biaryl bond. While axial chirality had previously been explored in diphosphine ligands, for instance, with NAPHOS 52 (2,2'-bis(diphenylphosphinomethyl)-1,1'-binaphthyl) by Kumada et al. ${ }^{28}$ and BINAPO 53 (2,2'-bis(diphenylphosphinooxy)-1,1'-binaphthyl) by Grubbs et al., ${ }^{29}$ BINAP 51 has no additional atom between the phosphine groups and biaryl backbone (Figure 6). This meant that only sp^{2}-hybridised carbon atoms made up the ligand-metal cycle in a transition metal complex, leading to a highly rigid chiral environment. Thus, a range of α-acetamidoacrylic acids and esters 54 (consisting of both E - and Z-isomers) could be hydrogenated with $[\mathrm{Rh}(\mathrm{BINAP})(\mathrm{nbd})]\left[\mathrm{ClO}_{4}\right]$ as a pre-catalyst in ethanol, giving optical purities of 67-100\% e.e., several of which were over 90\% e.e. (Scheme 11), which were equal to or greater than selecitivities induced with DIPAMP $44 .{ }^{30}$ These results were remarkable as the selectivity was driven purely by sterics, as BINAP 51 has no capability to make hydrogen bonds between the ligand and substrate. This property meant that use of BINAP 51 potentially had a previously unprecedented generality for the asymmetric hydrogenation of olefins.

$\left(R_{\mathrm{a}}\right)$-BINAP 51

$\left(R_{\mathrm{a}}\right)$-NAPHOS $\left(\mathrm{X}=\mathrm{CH}_{2}\right) 52$
$\left(R_{\mathrm{a}}\right)$-BINAPO $(\mathrm{X}=\mathrm{O}) 53$

Figure 6: Axially chiral ligands NAPHOS 52 and BINAPO 53, which have an atom between the naphthyl and phosphine group, and BINAP 51, which has phosphine groups bonded to the binapthyl.

Scheme 11: The Rh(BINAP)-catalysed asymmetric hydrogenation of α-acetamidoacrylate derivatives
54.

While the enantioselectivities induced by Rh-BINAP complexes for asymmetric hydrogenation were high, results like this were restricted to α-acetamidoacrylate derivatives, due to the multiple coordinating groups on these substrates. However, the substrate scope was widened with the use of BINAP-Ru(II) diacetate complexes, which permitted the highly enantioselective catalytic hydrogenation of precursors 56 to biologically relevant isoquinoline-derived alkaloids 57 in 96-99.5\% e.e. (Scheme 12). ${ }^{31}$ The saturated products included (R)-laudanosine, a metabolite of the muscle relaxant drug atracurium; ${ }^{32}$ and (R)-norreticuline, a precursor in the biosynthesis of morphine. ${ }^{33}$ When Rh(I)-BINAP complexes were used for the same purpose, for the Z-alkene where $R=M e$, only $\sim 70 \%$ e.e. was achieved.

Scheme 12: The Ru-BINAP catalysed asymmetric synthesis of isoquinoline-derived alkaloids 57.

Other alkene substrates, such as allylic and homoallylic alcohols, could be hydrogenated in high enantioselectivity. ${ }^{34}$ The naturally occurring geraniol E-58, and its geometrical isomer nerol Z-58, notable for not possessing a carbonyl group to coordinate to the metal, could be hydrogenated to give citronellol 59 in 96-99\% e.e., with only a minimal trace of overreaction to form dihydrocitronellol, the hydrogenation product of the terminal alkene. Interestingly, the configuration of the product 59 could be controlled with the choice of alkene stereoisomer and BINAP 51 enantiomer (Scheme 13). Starting with geraniol $E-58$, use of $\operatorname{Ru}((S)-B I N A P)(O A c)_{2}$ gave (R) citronellol 59, and $\operatorname{Ru}((R)-B I N A P)(O A c)_{2}$ gave the (S)-enantiomer of 59 , but the opposite occurred with nerol Z-58-Ru((R)-BINAP)(OAc) $)_{2}$ gave (R)-citronellol 59 and vice versa. The same $\operatorname{Ru}(\mathrm{BINAP})(\mathrm{OAc})_{2}$ complex could also catalyse, with high enantioselectivity, the hydrogenation of a range of acrylic acid derivatives, a class of compounds for which successful results were difficult to achieve with previous catalysts. ${ }^{35}$ Among the substrates was included a precursor 60 to (S)-Naproxen 61, an anti-inflammatory agent (Scheme 14). This process has since been adapted to synthesise this drug on an industrial scale, as, the (S)-enantiomer is 28 times more biologically potent than the (R)-enantiomer. ${ }^{36}$

Scheme 13: The Ru-BINAP catalysed asymmetric hydrogenation of geraniol E-58 or nerol Z-58 to yield either enantiomer of citronellol 59.

Scheme 14: The Ru-BINAP catalysed asymmetric synthesis of (S)-naproxen 61.

Since the 1980s, BINAP 51 has become a prime example of what is termed a 'privileged ligand', as it has been applied to induce stereoselectivity in many, mechanistically different catalytic processes. As well as being highly effective for the asymmetric hydrogenation of alkenes possessing a variety of proximal functional groups, it has also been applied towards the stereoselective reduction of prochiral ketones, such as β-keto ester precursors (62) of analogues (63) of statine, a diastereomeric β-hydroxy- γ-amino acid (Scheme 15, a). ${ }^{37}$ With the addition of enantiopure chiral diamines, such as (S, S)-1,2-diphenylethylenediamine 64, even ketones lacking an additional Lewis basic functional group, such as 1acetonaphthone 65, could be hydrogenated with consistently high enantioselectivity (Scheme 15, b). ${ }^{38,39}$ With this amine additive, even α, β-unsaturated ketones (67)
could be selectively reduced at the carbonyl group, rather than at the alkene, to synthesise chiral allylic alcohols (68) (Scheme 15, c). ${ }^{40,41}$

Scheme 15: Ru-BINAP catalysed asymmetric hydrogenation of ketones.

Additionally, the enantioselective 1,3-hydride shift of prochiral allylamines (69) to enamines (70) may be achieved with a cationic Rh-BINAP catalyst (Scheme 16), which is exploited for the industrial synthesis of (-)-menthol. ${ }^{42,43} \mathrm{As}$ it is able to rotate around the biaryl bond to a degree without too much strain, the BINAP ligand is able to coordinate to a variety of metals such as palladium, to induce enantioselectivity for cross coupling reactions. The asymmetric synthesis of (+)-vernolepin 73, a sesquiterpene with anti-tumour activity, was achieved this way, through a Pd-BINAP catalysed intramolecular Heck reaction (Scheme 17, a). ${ }^{44}$ More recently, a Pd-BINAP
system was used for an asymmetric Heck cascade reaction to synthesise the tetracyclic core 75 of lycorane alkaloids (Scheme 17, b). ${ }^{45}$

Scheme 16: The Rh-BINAP catalysed asymmetric isomerisation of allylamine 69 to enamine 70.

Scheme 17: Asymmetric Heck reactions with enantioselectivity induced by BINAP 51.

1.3. Dihedral angles of axially chiral diphosphine ligands

The list of applications for BINAP 51 goes on, ${ }^{46,47,48}$ but it is clear that the versatility of this ligand has led to it, or more generally the axially chiral biaryl unit, becoming a template in chiral ligand design. The inventor of the first chiral ligand (DIPAMP 44) to induce enantioselectivity to rival that of biocatalysts, W. S. Knowles, who shared the 2001 Nobel Prize in Chemistry along with Ryōji Noyori and K. Barry Sharpless for pioneering work in asymmetric homogeneous catalysis, stated that: ${ }^{49}$
"Since achieving 95\% e.e. only involves energy differences of about 2 kcal, which is no more than the barrier encountered in a simple rotation of ethane, it is unlikely that before the fact one can predict what kind of ligand structures would be effective."

This key statement emphasises how sensitive the enantiomeric excess is to a change in electronic and steric properties, whether in the substrate or catalyst, and that the optimisation of the stereoselectivity of a reaction will often involve trial and improvement with regards to choosing and designing ligands. It follows that one single ligand like BINAP 51 will never produce universally optimal results for the stereoselectivity of an asymmetric chemical transformation of every prochiral substrate. Modifications, no matter how small or large, have to be made to change the steric, geometric and electronic properties of the ligand, and by extension, the catalyst, in order to improve stereoselectivity in reactions in which $>95 \%$ e.e. is not induced by BINAP 51.

One key geometric property of a diphosphine ligand, concerning the stereoselectivity of a reaction, is the dihedral angle (θ), which generally relates directly to its bite angle (β) on coordination to a metal centre (Figure 7). Because the stereoselectivity induced by a diphosphine ligand-metal complex is largely a result of the bulky ancillary aryl groups bonded to the phosphorus atoms, the orientation of the substrate is very sensitive to the positions these groups occupy in space, which is a direct result of the bite angle. The biphenyl unit is a very useful backbone for a chiral ligand, as the variation of substituents located at the back of the ligand, often at the 6,6'-positions, is a source of tuning of the dihedral angle.

Figure 7: The dihedral angle (θ) of a biaryl diphosphine ligand, and bite angle (β) in a metal complex.

1.3.1. BIPHEMP and MeO-BIPHEP

One of the earliest examples of examining the variation of 6,6 '-substituents of the 1,1'-biphenyl structure was BIPHEMP 76, which consisted of methyl groups at these positions. The crystal structure of the cationic $\left[\mathrm{Rh}\left(\left(R_{\mathrm{a}}\right)\right.\right.$ - BIPHEMP$\left.)(\mathrm{nbd})\right]\left[\mathrm{BF}_{4}\right]$ complex was first reported by Frejd et al., which revealed key differences compared the analogous Rh-BINAP complex. ${ }^{50}$ The dihedral angle of the Rh-BIPHEMP structure was $71.8(3)^{\circ}$, which was smaller than that of Rh-BINAP at $74.4(2)^{\circ}$, because the methyl groups of BIPHEMP 76 are less bulky compared to the fused benzene rings of BINAP 51. Furthermore, the 7-membered ring chelate of the RhBIPHEMP complex was revealed be distorted from the twist-boat conformation of Rh-BINAP, and in constrast to ligands like BINAP 51 and DIPAMP 44, the phenyl groups on the phosphorus atoms of Rh-BIPHEMP were aligned in an edge-face face-face manner (as opposed to edge-face edge-face). The ligand was also independently reported by Schmid et al., who made similar observations regarding the X-ray crystal analysis of the same Rh-BIPHEMP complex. ${ }^{51}$ While the use of BIPHEMP 76 was shown to improve the enantioselectivity for the asymmetric Pd catalysed Kumada coupling of 1-bromo-2-methyInaphthalene, ${ }^{52}$ the
enantioselectivities achieved for the isomerisation of N, N-diethylnerylamine 69^{51} (a step in the synthesis of (-)-menthol) and the Rh- and Ru-catalysed ${ }^{53,54}$ hydrogenation of various prochiral substrates were comparable to those obtained by using BINAP 51. However, a cationic Rh-BIPHEMP complex was shown by Widenhoefer et al. to be an effective catalyst for the asymmetric tandem hydrosilylation and cyclisation of 1,6-enynes 77 to produce a wide variety of chiral 1silylmethylenecyclopentanes 78 (Scheme 18); a reaction that could not be effectively carried out with analogous BINAP 51 complexes. ${ }^{55}$

Scheme 18: The Rh-BIPHEMP-catalysed tandem hydrosilylation/cyclisation of 1,6-enynes 77.

A similar ligand, MeO-BIPHEP 79, was also first reported by Schmid et al., in which the 6,6'-substituents are methoxy groups. ${ }^{56}$ The X-ray crystal structure of a cationic (MeO-BIPHEP)-Pd complex revealed that the 7-membered chelating ring adopted a distorted twist-boat conformation, and that the dihedral angle of the ligand in the complex was 70.8°, both of which characteristics showed a similarity to the cationic BIPHEMP-Rh complex. Since the advent of this ligand, despite these geometric similarities to BIPHEMP 76, it has been subjected to more widespread usage in asymmetric catalysis, possibly as a consequence of the different electronic properties, and that the methoxy group has more flexibility as a handle for further derivatisation of the structure. For the Ru-catalysed asymmetric hydrogenation of β keto esters at atmospheric pressure, conducted by Genêt et al., the
enantioselectivities obtained using MeO-BIPHEP 79 were comparable to those of BINAP 51. ${ }^{57}$ However, Zhou et al. found the optimised conditions for the iodinepromoted Ir-catalysed asymmetric hydrogenation of 2-methylquinoline achieved 94\% e.e. with the use of MeO-BIPHEP 79, while enantioselectivity decreased by using BINAP 51 (87% e.e.), DIOP 38 (53\% e.e.) or Me-DuPhos 80 (51% e.e.). ${ }^{58}$ The Ir-MeO-BIPHEP catalytic system could be applied for the hydrogenation of a range of 2- and 6-substituted quinolines 81 , including the precursors (82) to some tetrahydroquinoline alkaloid natural products, such as (-)-galipinine 83 (Scheme 19). In a later report, for the optimisation of the Ir-catalysed hydrogenation of 2benzylquinoline, the enantioselectivity achieved with MeO-BIPHEP 79 (94\% e.e.) was considerably greater than that of BINAP 51 and Me-DuPhos 80 (72\% e.e. and 3% e.e. respectively) and slightly greater than that of other narrow-dihedral angled ligands SEGPHOS 84 and SYNPHOS 85 (93\% e.e. and 91\% e.e. respectively). ${ }^{59}$ By lowering the hydrogen pressure, from 47-54 atm to 3 atm, and raising the temperature from room temperature to $70{ }^{\circ} \mathrm{C}$, this changed the rates of the enantiodetermining steps to favour high e.e. values for the formation of the already favoured syn-isomers of 2,3-disubstituted tetrahydroquinolines.

(-)-galipinine 83

(R_{a})-MeO-BIPHEP 79

(R, R)-Me-DuPHOS 80

Scheme 19: The Ir-MeO-BIPHEP-catalysed asymmetric hydrogenation of quinolines 81, and other ligands used for comparison.

1.3.2. H_{8}-BINAP

Another common alternative ligand to BINAP 51 is the partially hydrogenated variant H_{8}-BINAP 86, which is saturated at the $5,5^{\prime}, 6,6^{\prime}, 7,7^{\prime}, 8,8^{\prime}$-carbon atoms. First synthesised in 1991 by Takaya et al. through the regioselective Ru/C-catalysed hydrogenation of 2,2 '-dibromo-1,1'-binaphthalene to the bitetralin product, ${ }^{60}$ X-ray studies revealed the dihedral angle of $\left[\mathrm{Rh}\left(\mathrm{H}_{8}-\mathrm{BINAP}\right)(\mathrm{COD})\right]\left[\mathrm{ClO}_{4}\right]$ complex to be $80.3(4)^{\circ}$, ${ }^{61}$ which is larger than that of an analogous BINAP 51 complex $[\operatorname{Rh}(\mathrm{BINAP})(\mathrm{nbd})]\left[\mathrm{ClO}_{4}\right]$, at $74.4(2)^{\circ} .{ }^{62}$ This increase in the angle size is due to the non-planarity of the saturated domain of the ligand 86, which increases steric repulsion between the two tetralin rings. In the same report, ${ }^{61}$ for the asymmetric
hydrogenation of racemic methyl 2-(benzamidomethyl)-3-oxobutanoate 87 at 54 atm and $65^{\circ} \mathrm{C}$ in the optimal solvent system of DCM $/ \mathrm{MeOH}(7: 1 \mathrm{v} / \mathrm{v}$), after 20 hours the results achieved with the $\mathrm{Ru}^{2}-\mathrm{H}_{8}$-BINAP complex 90 (80% conversion, 92% d.e., 99% e.e. for the $(2 R-3 S)$-product 88$)$ were comparable to that obtained with a similar Ru-BINAP-cymene complex 89 (91\% conversion, 84\% d.e., 99\% e.e.) (Scheme 20).

$$
\begin{aligned}
\text { when cat }= & {\left[R u l\left(\left(R_{a}\right)-\operatorname{BINAP}\right)(p-c y m e n e)\right] l } \\
& 99(0.1 \mathrm{~mol} \% \mathrm{Ru}, 21 \mathrm{~h}) \\
\text { cat. }= & {[R 4 \% \text { d.e., } 99 \% \text { e.e. }(2 S, 3 R)} \\
& \left.80 \%, 92 \% \text { d.e., } 99 \% \text { e.e. }\left(\left(S_{a}\right)-\mathrm{H}_{8}-\mathrm{BINAP}, 3 S\right)(\text {-cymene })\right] \mid 90(0.06 \mathrm{~mol} \% \mathrm{Ru}, 20 \mathrm{~h})
\end{aligned}
$$

Scheme 20: The asymmetric hydrogenation of methyl 2-(benzamidomethyl)-3-oxobutanoate 87, catalysed by Ru-BINAP and Ru- H_{8}-BINAP complexes 89 and 90 .

Due to the different geometric properties of $\mathrm{H}_{8}-$ BINAP 86, the use of this ligand has improved results with certain reactions compared to analogous BINAP 51 complexes. For the asymmetric hydrogenation of cycloalkanones, in which a catalytic system of $[\operatorname{lr}($ ligand $)(C O D)]\left[\mathrm{BF}_{4}\right]$ and 2 -(diphenylphosphino) $-\mathrm{N}, \mathrm{N}$ dimethylaniline (or similar) 91 was used, the use of BINAP 51 led to high enantioselectivity (80-95\% e.e.) for various benzocyclohexanones 92 with electronwithdrawing and donating substituents on the benzene ring. ${ }^{63}$ Also, when the C4atom of the benzocyclohexanones 92 was replaced with oxygen or sulfur, or when benzocyclopentanones were used as substrates, similar results were achieved. However, β-thiacycloalkanones 94 and 95, without a fused benzene ring, could only be hydrogenated in 60% e.e. 40% e.e. respectively. By using H_{8}-BINAP 86, because
of its altered steric environment around the metal centre, these enantioselectivities were raised to 75% e.e. and 70% e.e. respectively (Scheme 21). However, it appeared that the sulfur atom was imperative for good enantioselectivity, as the analogous tetrahydrofuran-3-one could only be hydrogenated in 12% e.e. using the Ir-(H8-BINAP) complex.

92

P,N-ligand 91 =

n = 2 (97)
when $L=\left(S_{a}\right)$-BINAP, for 96 (60\% e.e.) and 97 (40\% e.e.)
$\mathrm{L}=\left(R_{\mathrm{a}}\right)-\mathrm{H}_{8}-\mathrm{BINAP}$, for 96 (75\% e.e.)
$L=\left(S_{a}\right)-\mathrm{H}_{8}-$ BINAP, for 97 (70\% e.e.)

Scheme 21: The Ir-catalysed asymmetric hydrogenation of benzocyclohexanones 92 and β thiacycloalkanones 94 and 95, using BINAP 51 and H_{8}-BINAP 86 as ligands.

A key study by Takaya et al. demonstrated a speciality of the H_{8}-BINAP 86, which was on the Ru-catalysed asymmetric hydrogenation of acrylic acid derivatives 98, substituted with alkyl and aryl groups at the α - and/or β-positions. ${ }^{64}$ For the 11 reported examples comparing H_{8}-BINAP 86 with BINAP 51 within the $\mathrm{Ru}($ ligand $)(\mathrm{OAc})_{2}$ catalyst system, the stereoselectivity for H_{8}-BINAP 86 was greater than that of BINAP 51 for 10 examples, and equal for the other, with an increase in 15% e.e. on average (Scheme 22). By taking into account the difference of the dihedral angles of the two ligands 51 and 86 in previously reported rhodium complexes, and constructing a simple model of the ruthenium diphosphine diacetate
complexes, the authors found that differences in conformation of the phenyl groups on the phosphorus atoms led to a more sterically crowded equatorial site of coordination for the olefin. The substrate is thus coordinated more rigidly to the metal centre, leading to greater enantioselectivity (Scheme 23). Additionally, with H_{8} BINAP 86 as the ligand, the axial sites around the metal complex are rendered wider than with BINAP 51. This change in geometry increases the rate of hydrogenolysis of the Ru-C bond of the intermediate 102 that follows 1,2-migratory insertion of the hydride to the olefin. Finally, the authors pointed out that it was the steric, rather than electronic, effects of H_{8}-BINAP 86 that contributed to the enhanced the enantioselectivity, as Ru-complexes with other ligands with electron donating groups such as MeO-BINAP and p-tol-BINAP gave similar e.e. values to BINAP 51.

Scheme 22: The Ru-catalysed asymmetric hydrogenation of acrylic acid derivatives 98, comparing enantioselectivities achieved between BINAP 51 and H_{8}-BINAP 86.

Scheme 23: Coordination of the prochiral olefin to the Ru-centre (the enantiodefining step), followed by hydrogenolysis of the Ru-carbon bond (part of mechanism by Takaya et al.).

Another example in which the use of H_{8}-BINAP 86 has resulted in optimal stereoselectivity, by Zhou et al., is the Pd-catalysed asymmetric hydrogenation of N unprotected indoles. ${ }^{65}$ The group had previously found that after Brønsted acid activation of quinolines, they could undergo asymmetric hydrogenation in high enantioselectivity. ${ }^{66}$ Logically, they then found that iminium intermediate of indoles without an N-carbamate group could also be formed by using L-camphorsulfonic acid, and for the optimisation of the asymmetric hydrogenation on 2-methylindole, it was found that H_{8}-BINAP 86 gave the better enantioselectivity than a variety of chiral diphosphine ligands at 91% e.e., compared to 85% e.e. obtained with BINAP. With H_{8}-BINAP 86, 16 more examples of 2-, 3-, 5- and 7-substituted N -unprotected indoles 104 could be hydrogenated in 84-96\% e.e., with consistently high isolated yield (Scheme 24).

A final example that displays the versatility of H_{8}-BINAP 86, by Tanaka et al., is the Rh-catalysed cyclotrimerisation of alkynes to form phenyl rings. ${ }^{67}$ In a previous report, the authors had described the use of a cationic $\mathrm{Rh}(\mathrm{I}) /$ chiral diphosphine ligand system for the synthesis of achiral arenes, with good regioselectivity, from one molecule of a functionalised terminal alkyne and two molecules of a dialkyl acetylenedicarboxylate 106. ${ }^{68}$ By changing the substituent on the former alkyne to an ortho-functionalised phenyl ring (107), axial chirality could be incorporated into the product. For the optimisation, the use of H_{8}-BINAP 86 the reaction of diethyl acetylenedicarboxylate and 3-(o-tolyl)propargyl acetate gave the product in 81% yield and 89% e.e., compared to 16% yield and 77% e.e. with BINAP 51, and minimal product formation with SEGPHOS 84. A further 7 similar examples of atropisomeric biaryls 108 could be made in $84-96 \%$ e.e. with the $\mathrm{Rh}(\mathrm{I}) / \mathrm{H}_{8}$-BINAP catalytic system (Scheme 25).

Scheme 24: The $\mathrm{Pd} / \mathrm{H}_{8}$-BINAP 86 catalysed asymmetric hydrogenation of unprotected indoles 104.

Scheme 25: The $\mathrm{Rh}(\mathrm{I}) / \mathrm{H}_{8}$-BINAP 86 catalysed cyclotrimerisation of alkynes to produce chiral biaryls 108.

1.3.3. SEGPHOS

The development of SEGPHOS 84 (Scheme 29) by Saito et al. showed that metalligand complexes with small bite angles prevail in asymmetric catalysis as much as those with large ones. ${ }^{69}$ The group noticed that for the Ru-catalysed asymmetric hydrogenation of 2-oxo-1-propanol, the enantioselectivity increased along with the decrease in the MM2-calculated dihedral angles for the Ru-complexes for BINAP 51 (89.0\% e.e., 73.49°), BIPHEMP 76 (92.5\% e.e., 72.07°) and MeO-BIPHEP 79 (96.0\% e.e., 68.56°). Building upon the design of MeO-BIPHEP 79, the SEGPHOS 84 ligand is made up of two benzodioxole rings, so without a freely rotating alkoxy group, the steric repulsion between the rings in the biaryl system is reduced. This reduces the dihedral angle of the ligand to the calculated value of 64.0° for a Ru-

SEGPHOS-complex. Consequently, the Ru-catalysed asymmetric hydrogenation of 2-oxo-1-propanol proceeded in 98.5% e.e. with just $0.01 \mathrm{~mol} \%$ of catalyst. The catalyst system also provided superior enantioselectivity to BINAP- and MeO-BIPHEP-complexes for various β-ketoester and α-ketoester substrates 109 (Scheme 26). The small dihedral angle was especially beneficial for the hydrogenation ethyl 4-chloro-3-oxobutanoate, as it prevented the chlorine atom from competing with the ester for coordination to the metal.

Scheme 26: The Ru-SEGPHOS-catalysed asymmetric hydrogenation of ketones 109.

The versatility of SEGPHOS 84 has been demonstrated by Hayashi et al., with their work on the Rh-catalysed asymmetric 1,4-addition of arylboronic acids to coumarin derivatives. ${ }^{70}$ For the reaction of 6-methylcoumarin with phenylboronic acid, which was chosen for optimisation purposes, while BINAP 51 and P-Phos 111 induced excellent enantioselectivities of $94-96 \%$ e.e., the results were improved to $>99 \%$ e.e. by using a Rh-SEGPHOS catalyst. The conjugate addition product could also be converted to (R)-tolterodine 112, a widely used urological drug. Impressively, the high enantioselectivity of $>99 \%$ e.e. with the Rh-SEGPHOS catalyst could be reproduced for a range of electron-rich and -poor 6-substituted coumarins 113 and arylboronic acids 114 (Scheme 27).

Furthermore, for Tanaka et al., the use of SEGPHOS 84 has been instrumental for high enantioselectivity towards the asymmetric Rh-catalysed double [2+2+2]
cycloaddition of alkynes and nitriles to produce chiral spiro-bipyridines (117) ${ }^{71}$ and axially chiral biaryl diphosphonates (120) and dicarboxylates (Scheme 28). ${ }^{72}$ The design of SEGPHOS 84 has also led to other successful variants such as SYNPHOS $85^{73,74}$ and SUNPHOS $121^{75,76}$ (Scheme 29), made up of benzodioxane and gemdimethylbenzodioxole units respectively, to vary the dihedral angle in their metalligand complexes.

$\mathrm{Rh}(\mathrm{acac})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ (3 mol\%)
(R_{a})-SEGPHOS 84 ($3.3 \mathrm{~mol} \%$)
dioxane $/ \mathrm{H}_{2} \mathrm{O}(10: 1), 60^{\circ} \mathrm{C}, 8-12 \mathrm{~h}$
113

(R_{a})-P-Phos 111

Scheme 27: The Rh-SEGPHOS-catalysed asymmetric 1,4-addition of arylboronic acids 114 to coumarins 113, and P-Phos 111, which was used for comparison.

Scheme 28: Asymmetric Rh-SEGPHOS-catalysed [2+2+2]-cycloadditions of alkynes and nitriles.

(R_{a})-SEGPHOS 84

(R_{a})-SYNPHOS 85

(R_{a})-SUNPHOS 86

Scheme 29: Chiral biphenyl ligands functionalised with cyclic ethers.

1.3.4. TunePhos

The TunePhos series of ligands $\mathbf{1 2 2 - 1 2 7}$ by Zhang et al. represented a highly important study into the relationship between the dihedral angle of the biaryl diphosphine and stereoselectivity. Starting from MeO-BIPHEP 79, the ether groups were dealkylated, and treatment of the resultant biphenol with a dihaloalkane of the formula $\mathrm{X}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}$ gave a series of biaryl diphosphine ligands with systematically varying length of the ether linkage. ${ }^{77}$ As the n value increases for the ether linkage,
the dihedral angle of the TunePhos ligand increases, as shown by the MM2calculated values. These ligands were first tested in the application to a Rucatalysed asymmetric hydrogenation of β-ketoesters (128). For all 7 substrates that were tested, the highest enantioselectivity was obtained by using C_{4}-TunePhos 125, with a general decrease in e.e. as the n value for the ligand increased or decreased (Table 1, a). This observation was rationalised by C_{4}-TunePhos 125 having the most similar dihedral angle $\left(88^{\circ}\right)$ to BINAP $51\left(87^{\circ}\right)$ and MeO-BIPHEP $79\left(87^{\circ}\right)$, though an inferior enantioselectivity was achieved for each β-ketoester substrate with the latter two ligands, due to the added rigidity resulting from the atropisomerism-inducing groups in TunePhos being covalently linked to each other.

The series of ligands $\mathbf{1 2 2 - 1 2 7}$ were then tested for the Ru-catalysed asymmetric hydrogenation of enol acetate derivatives. ${ }^{78}$ These substrates are a good alternative to their unfunctionalised keto-forms, due to the ability of the substrate to chelate to the metal centre, aiding enantioselectivity in the hydrogenation process. Furthermore, low hydrogen pressures are typically required for the hydrogenation of alkenes compared to ketones. In this report, an unusual trend was observed for the hydrogenation of 1-(naphth-2-yl)-1-acetoxyethene 130, catalysed by the anionic dimeric $\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]\left[\left\{\mathrm{RuCl}\left(\left(\mathrm{S}_{\mathrm{a}}\right)-\mathrm{C}_{n} \text {-TunePhos }\right)\right\}_{2}-(\mu-\mathrm{Cl})_{3}\right]$ complexes. While optimal results were achieved using C_{1}-TunePhos 122 and C_{2}-TunePhos 123, each with 95.9% e.e., the selectivity decreased for C_{3}-TunePhos 124 and C_{4}-TunePhos 125, with 92.1% e.e. and 88.9% e.e. respectively, but a further increase in dihedral angle led to an increase in selectivity, with 91.9% e.e. for C_{5}-TunePhos 126 and 92.3% e.e. for C_{6}-TunePhos 127 (Table 1, b). This non-linear relationship demonstrates the complicated consequences of small changes in geometric properties of the catalyst, due to the low energy differences between achieving high and low e.e. values.

Further optimisation was applied to the reaction, and 97.7% e.e. was achieved by using EtOH/DCM (4:1 v/v) as the solvent and C_{2}-TunePhos 123 as the ligand, and 5 other aryl enol acetate derivatives could be hydrogenated in 94-99\% e.e. under these conditions.

Table 1: The Ru-catalysed asymmetric hydrogenation of methyl acetoacetate 128 (a) and 1-(naphth-2-yl)-1-acetoxyethene 130 (b), showing the variation of the ligand dihedral angle with enantioselectivity.
(a)

128

(b)

$\mathrm{H}_{2},\left[\mathrm{NH}_{2} \mathrm{Me}_{2}\right]\left[\left\{\mathrm{RuCl}\left(\left(\mathrm{S}_{\mathrm{a}}\right)-\mathrm{C}_{n^{-}}\right.\right.\right.$
TunePhos) $\}_{2}-\left(\mu-\mathrm{Cl}_{3}\right](1 \mathrm{~mol} \%)$
EtOH, rt., 3 atm, 12 h
130

131

Ligand	Calculated dihedral angle (
BINAP 51	88	\% e.e. for (a)	\% e.e. for (b)
MeO-BIPHEP 79	88	98.4	$\mathrm{~N} / \mathrm{A}$
C_{1}-TunePhos 122	60	97.9	$\mathrm{~N} / \mathrm{A}$
C_{2}-TunePhos 123	74	90.9	95.9
C_{3}-TunePhos 124	77	90.8	95.9
C_{4}-TunePhos 125	88	97.7	92.1
C_{5}-TunePhos 126	94	99.1	88.9
C_{6}-TunePhos 127	106	97.1	91.9

The TunePhos ligand series 122-127 was also tested on asymmetric Pd-catalysed $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond formations (Table 2). ${ }^{79}$ For the asymmetric allylic addition of dimethyl malonate 132 to 1,3-diphenylallyl acetate 133, it was found that the enantioselectivity increased along with an increase in the ligand dihedral angle, with 95% e.e. obtained with a $\mathrm{Pd}^{-} \mathrm{C}_{6}$-TunePhos 127 catalyst (Table 2, a). This observation is consistent with the high selectivity achieved for this type of reaction
when Trost ligands are used; the metal complexes of which are characterised by a large bite angle. ${ }^{80,81,82}$ The metal centre is thus more greatly enveloped within the chiral environment, and so the bulky diphenylphosphine groups are able to exert a greater influence on the orientation of the incoming nucleophilic reaction partner towards the Pd-allyl cation. This trend in enantioselectivity, however, was not reflected in other examples in the report. For the Pd-catalysed cycloaddition of butadiene monoxide 135 with diphenyl carbodiimide 136, which mechanistically resembles an intramolecular variant of asymmetric allylic alkylation, ${ }^{83}$ the trend opposite to that in the aforementioned Tsuji-Trost reaction was observed (Table 2, b). The best e.e. value of 83% was achieved with C_{1}-TunePhos 122 , and an increase in dihedral angle led to a loss of enantioselectivity. For the reaction of butadiene monoxide 135 with phthalimide 138, optimal results were obtained with C_{4}-TunePhos 125 , with a decrease in enantioselectivity as the dihedral angle was increased or decreased (Table 2, c). While C_{6}-TunePhos 127 has the largest dihedral angle, which would be ideal for influencing the alignment of the phthalimide 138 molecule, the enantioselectivity was diminished by a loss of rigidity in the structure that came from the long, flexible ether group, according to the authors.

Table 2: The $\mathrm{Pd}_{-} \mathrm{C}_{n}$-TunePhos-catalysed asymmetric $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond formations, showing variation of enantioselectivity with the ligand dihedral angle.

(b)

Ligand	Calculated dihedral angle (${ }^{\circ}$)	\% e.e. for (a)	\% e.e. for (b)	\% e.e. for (c)
C_{1}-TunePhos 122	60	77	83	65
C_{2}-TunePhos 123	74	82	79	75
C_{3}-TunePhos 124	77	84	70	76
C_{4}-TunePhos 125	88	87	60	82
C_{5}-TunePhos 126	94	92	58	70
C_{6}-TunePhos 127	106	95	57	68

The TunePhos series of ligands enjoy continued usage in synthetic research today, showing that they induce excellent enantioselectivity in their own right, rather than simply being a useful tool to systematically examine the influence of a catalyst bite angle towards selectivity. For example, C_{4}-TunePhos 125 was found to induce greater enantioselectivity than a variety of chiral mono- and diphosphine ligands for the Pd-catalysed salicylic acid-promoted hydrogenation of acetophenone, and showed good generality for the asymmetric hydrogenation of other aryl and alkylsubstituted unfunctionalised ketones. ${ }^{84}$ For the Ru-catalysed hydrogenation of cyclic β-amido enones, the enantioselectivity obtained by using C_{3}-TunePhos 124 was superior to that of BINAP 51 and a few chiral bis(phospholane) ligands. ${ }^{85}$

1.3.5. Supramolecular tuning of the ligand bite angle

Furthermore, these ligands have been greatly influential in the design of new chiral ligands. An exceptional example of building upon the tunability of a biaryl diphosphine was reported by Li, Wu and co-workers with the design of Xyl-P16C6Phos 140, a bipyridyl diphosphine ligand functionalised with crown ethers (Scheme 30). ${ }^{86}$ While the idea of controlling the geometry of a chiral ligand in a supramolecular fashion was not novel, ${ }^{87}$ this was the first instance of the incorporation of crown ethers to alter the dihedral angle of a biaryl unit. With this design, one can theoretically change the geometric properties of the final product,
that is, by the addition of different size metal cations to the system, without a change in the preceding chemical steps to synthesise the ligand. For the asymmetric hydrogenation of methyl (Z)-2-acetamidocinnamate 141 catalysed by the Rh-Xyl-P16C6-Phos complex, the enantioselectivity was improved by a gradually increased quantity of $\mathrm{NaBAr}_{\mathrm{F}}$ (from 0 to $10 \mathrm{~mol} \%$). Furthermore, when the same loading of LiBAr_{F} and $\mathrm{KBAr}_{\mathrm{F}}$, the enantioselectivity was diminished, showing that the ligand had been 'tuned' most suitably for this reaction. The effect of the cation was confirmed when only a small increase in e.e. was observed when using tetra-n-butylammonium $B A r f_{F}$ as a control. On optimising the solvent, the effect was particularly enhanced by using the non-polar cyclohexane as a solvent (from 77\% e.e. to 97% e.e.) (Scheme 30, a), encouraging the complexation of sodium ions into the crown ether of 140. A similar enhancement of enantioselectivity was also observed for the Ir-catalysed asymmetric hydrogenation of 2-methylquinoline 143 - a significant rise from 87% e.e. to 97% e.e. was engendered with the addition of $10 \mathrm{~mol} \%$ of NaBAr_{F} to the system (Scheme 30, b). Currently, the group are working on analysing the properties of the catalysts and thus elucidating the mechanistic basis of these fascinating phenomena.
(a)

141
$\mathrm{H}_{2},\left[\mathrm{Rh}(\mathrm{COD})_{2}\right]\left[\mathrm{BF}_{4}\right]$ (1 mol\%)
(b)

143
$\mathrm{H}_{2},\left[\operatorname{lr}(\mathrm{COD})_{2}\right]\left[\mathrm{BF}_{4}\right]$ (1 mol\%)
(+)-Xyl-P16C6-Phos 140 (1.05 mol\%)
I_{2} (10 mol\%) $\mathrm{NaBAr}_{\mathrm{F}}$ (10 mol\%)
EtOAc, rt., 50 atm, 24 h

Scheme 30: The asymmetric hydrogenation of methyl (Z)-2-acetamidocinnamate 141 (a) and 2methylquinoline 143 (b) with a Xyl-P16C6-Phos 140 ligand.

Electron-rich and electron-poor diphosphine ligands

1.4.1. Increased Lewis basicity in diphosphine ligands

In the early 1990s, Burk et al. introduced DuPhos, a ligand made up of two P-chiral phospholane groups linked with a 1,2-phenylene bridge, which was a landmark in asymmetric catalysis. ${ }^{88}$ With a rhodium catalyst consisting of either Et-DuPhos 145 or ${ }^{n}$ Pr-DuPhos 146, the asymmetric hydrogenation of 25 different examples of methyl α-amidoacrylates 147 could be achieved in $>99 \%$ e.e. under mild conditions (Scheme 31). ${ }^{89}$ These results were previously unprecedented and the success of the ligands, along with their highly rigid structure, was rationalised by the electron-rich nature of the alkyl-phosphine groups. As the ligands have high Lewis basicity, this forces backbonding from the metal d-orbitals to the π^{*}-orbital of the olefin, strengthening the bond between substrate and catalyst and allowing greater transfer
of stereochemical information from the chiral ligand to the olefin, leading to near 100% enantioselectivity.

Scheme 31: The Rh-DuPhos-catalysed asymmetric hydrogenation of methyl α-amidoacrylates 147.

1.4.2. Assessment of biaryl diphosphine Lewis basicity by IR

Because of the flexibility allowed in the design of axially chiral biaryl diphosphine ligands, there has been a tendency to modify ligands of this type to increase the Lewis basicity of the phosphorus atoms. On this subject, an important study of this property was conducted by Takaya et al., in which the Lewis basicities of BINAP derivatives with various electron-rich and -poor P-aryl groups (as well as cyclohexyl groups) were assessed by forming the corresponding Rh (phosphine)(CO)Cl complexes $149 .{ }^{90}$ As the degree of donation from the phosphine to the Rh centre is increased, the wavenumber of the v_{co} stretch by IR spectrometry decreases due to the increased backbonding to the π^{*}-orbital of the carbonyl. As the data in Table 3 shows, the v_{co} value with cyclohexyl groups $\left(1990 \mathrm{~cm}^{-1}\right)$ on the phosphorus atom indicates that they are significantly more electron-donating than the electron-rich aryl groups, as the v_{co} values for p-anisyl, 3,5-di(tert-butyl)phenyl, p-tolyl, and 3,5-xylyl are much closer to that of phenyl (BINAP 51). It follows that the cyclohexyl group would have a much greater electronic effect on the selectivity, than electron-rich
arenes, for asymmetric hydrogenation. For the reported substrates tested in the paper for Ru-catalysed asymmetric hydrogenation, BINAP 51 generally resulted in the best enantioselectivities, except for methyl 2-(benzamidomethyl)-3-oxobutanoate when 3,5-di(tert-butyl)-BINAP gave the optimal result. However, Cy-BINAP 150 was not tested in any experiments in this account.

Table 3: The effect of the ligand phosphorus atom substituents on the v_{CO} wavenumber for the Rh(phosphine)(CO)Cl complexes 149.

\mathbf{R}	Vco wavenumber / $\mathbf{c m}^{\mathbf{- 1}}$
Cy	1990
p-anisyl	2004
3,5-di(tert-butyl)phenyl	2006
p-tolyl	2010
$3,5-$-xylyl	2011
Ph	2013
4-fluorophenyl	2018
4-chlorophenyl	2020

1.4.3. Electron-rich axially chiral diphosphine ligands

Prior to their work in the application of ruthenium complexes towards asymmetric hydrogenation, Noyori et al. found that for the asymmetric hydrogenation of the naturally occurring allylic alcohol nerol Z-58, the use of a Rh-Cy-BINAP 150 catalyst led to formation of the product in 66% e.e., compared to the 52% e.e. achieved with the analogous BINAP 51 complex. ${ }^{91}$ The application by Takaya et al. of BICHEP 151 (Figure 8), the cyclohexyl-substituted variant of BIPHEMP 76, towards the rhodiumcatalysed asymmetric hydrogenation of ethyl (Z)-a-benzamidocinnamate 152 resulted in 98% e.e., whereas only 14% e.e. was obtained using the analogous

BIPHEMP 76 catalyst. ${ }^{92}$ A similar improvement to the enantioselectivity was observed by Miyashita et al. for the Ru-catalysed hydrogenation of methyl phenylglyoxylate 153 - using BINAP 51 as a ligand resulted in 45\% e.e., whereas an impressive $>99 \%$ e.e. was achieved using BICHEP 151. ${ }^{93}$

The structure of BIPHEMP 76 was modified by Achiwa et al. to include electron donating methyl and methoxy groups on the biphenyl backbone to make BIMOP 154 (Figure 8). ${ }^{94}$ This ligand was applied to the Ru-catalysed hydrogenation of methyl acetoacetate 128 to give the alcohol product in 99% e.e., which was slightly better than the 98% produced by BINAP 51. For the Ru-catalysed hydrogenation of 2,3dimethylacrylic acid 155, the olefin was reduced in 91% e.e., compared to 87% e.e. with BINAP 51. Curiously, the enantioselectivity for these two reactions diminished (95% e.e. and 86% e.e. respectively) with the ligand $p-\mathrm{MeO}$-BIMOP \mathbf{X} (Figure 8), which consists of p-anisyl groups on the phosphine and would therefore be expected to have a higher Lewis basicity.

In a later report, the same authors reported that for the Rh-catalysed hydrogenation of itaconic acid 26, they observed that the best enantioselectivity of 80% e.e. was obtained by using Cy-BIMOP 157 (Figure 8), the cyclohexyl substituted analogue of BIMOP $154 .{ }^{95}$ This value exceeded that of MOC-BIMOP 158 (Figure 8) (71% e.e.), which consists of a PPh_{2} group and a PCy_{3} group, and that of BIMOP 154 (51\% e.e.), while BINAP 51 resulted in a racemate. However, for the Rh-catalysed hydrogenation of 2-aminoacetophenone 159, the best selectivity was obtained with MOC-BIMOP 158 (93\% e.e., with a cationic precatalyst), exceeding those of CyBIMOP 157 (55\% e.e., with a neutral precatalyst) and BIMOP 154 (8\% e.e., neutral precatalyst). These results indicate that with some substrates, an optimal amount of
steric bulk around the metal centre outweighs the influence of electronic properties of the ligand.

Another intriguing quality of the geometric properties for a cyclohexyl group, compared to a phenyl group, is that its presence within the ligand led to a reversal of the configuration of the major product for the hydrogenation of 2aminoacetophenone 159. Normally with a Rh-diphosphine-catalysed asymmetric hydrogenation, somewhat counterintuitively, the minor, higher in energy diastereomeric intermediate 160 leads to the major enantiomer for the product, because this intermediate is more reactive towards the oxidative addition of H_{2} to the metal than the major diastereomer 161 (Figure 10). ${ }^{96,89,97}$ However, by changing the phenyl group to cyclohexyl, Achiwa et al. suggested the upper axial site of the Rh centre for the minor diastereomeric intermediate 164, where the oxidative addition takes place, is more sterically hindered (Figure 11). Thus, the higher energy caused by a 'mis-matched' substrate orientation no longer induces reactivity of the metal with hydrogen. Furthermore, the electron donation from the cyclohexyl group perhaps facilitates the oxidative addition by stabilising the higher oxidation state of the metal. Therefore, the intermediate diastereomer 165 with the longer lifetime, i.e. the major one, now leads to the major product enantiomer.

$\left(R_{\mathrm{a}}\right)$-Cy-BINAP 150

(R_{a})-BICHEP 151

$\left(R_{\mathrm{a}}\right)$-BIMOP $\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph}\right) 154$
$\left(R_{\mathrm{a}}\right)$ - p-MeO-BIMOP ($\mathrm{R}=\mathrm{R}^{\prime}=p$-anisyl) 156
$\left(R_{\mathrm{a}}\right)$-Cy-BIMOP ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Cy}$) 157
$\left(R_{\mathrm{a}}\right)$-MOC-BIMOP ($\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Cy}$) 158

Figure 8: Electron-rich variants of biaryl diphosphine ligands.

Z-78

152

153

128

155

26

159

Figure 9: Substrates for which the enantioselectivity was improved in asymmetric hydrogenation, with the use of a more electron-rich biaryl diphosphine ligand. Reactive double bonds are highlighted in blue.
$\Delta G_{\text {maj }}>\Delta G_{\text {min }}$
therefore minor diastereomer
leads to major product enantiomer

Figure 10: Reaction profile diagram for the oxidative addition of H_{2} to Rh -centre with RPPh_{2} groups, for the asymmetric hydrogenation of 2-aminoacetophenone 159.

Figure 11: Reaction profile diagram for the oxidative addition of H_{2} to Rh -centre with RPCy_{2} groups, for the asymmetric hydrogenation of 2-aminoacetophenone 159.

A lot of developments towards asymmetric hydrogenation, conducted by Imamoto et al., involve the use of P-chiral diphosphine ligands such as MiniPhos $168,{ }^{98}$ BisP* $169^{99,100}$ and BenzP* 170^{101} (Figure 12). These ligands deliver high enantioselectivity for the hydrogenation of olefins due to having electron-rich alkyl groups, and the difference in bulk between the two non-bridging P-alkyl groups (usually tert-butyl and methyl) creates a well-defined chiral pocket for the substrate. However, Imamoto et al. also demonstrated the beneficial effect of electron-donating substrates in axially chiral biaryl ligands for Rh-catalysed asymmetric hydrogenation, using various octamethyl-1,1'-biphenyl diphosphine (Me ${ }_{8}$-BIPHEP) species (Table 4). ${ }^{102}$ For the hydrogenation of methyl (Z)- α-acetamidocinnamate 141, the use of Me_{8}-BIPHEP 171 with Ph groups achieved 88% e.e. requiring 15 hours at $50^{\circ} \mathrm{C}$ and 50 atm to go to completion (Table 4, entry 1). For rac-Me ${ }_{8}$-BIPHEP 172 with Cy groups, which could not be resolved, the reaction was complete in 15 hours, requiring only room temperature and 3 atm (Table 4, entry 2). With Et groups on the phosphorus atom (173), the reaction was complete in 10 minutes under the same mild conditions because of the lack of steric hindrance in the catalyst (Table 4, entry 3). Despite the lack of steric bulk in the ligand 173, 74% e.e. was still achieved because of the high Lewis basicity of the phosphine groups. By reducing the temperature and increasing the reaction time to 60 hours, the product 142 was obtained in 84% e.e. at $-20^{\circ} \mathrm{C}$ (Table 4, entry 4), and in 89% e.e. at $-40{ }^{\circ} \mathrm{C}$ (Table 4, entry 5). The completion of the reaction at this low temperature demonstrates the high catalytic activity due to the electron-rich ligands, the explanation being that a higher oxidation state is stabilised, facilitating the oxidative addition of H_{2} to the metal.

$(R, R)^{t}{ }^{t}$ Bu-MiniPhos 168

(R,R)-BisP* 169

(R, R)-BenzP* 170

Figure 12: Electron-rich P-chiral diphosphine ligands for asymmetric hydrogenation, by Imamoto.

Table 4: The Rh-catalysed asymmetric hydrogenation of methyl (Z)- α-acetamidocinnamate 141, with Me_{8}-BIPHEP derivatives as ligands.

$\left(S_{a}\right)-\mathrm{Me}_{8}$-BIPHEP

Entry	\mathbf{R}	Temperature $/{ }^{\circ} \mathrm{C}$	Pressure /atm	Running time	\% e.e.
1	Ph (171)	50	50	15 h	88
2	Cy (racemic) ((土)-172)	r.t.	3	15 h	N/A
3	Et (173)	r.t	3	$<10 \mathrm{~min}$	74
4	Et (173)	-20	3	36 h	84
5	Et (173)	-40	3	60 h	89

1.4.4. Decreased Lewis basicity in diphosphine ligands

Increasing the diphosphine ligand donation ability is not a universal way of enhancing the enantioselectivity in asymmetric catalysis; examples in which the results are improved by using an electron-poor diphosphine ligand are just as frequent. For instance, by reducing the Lewis basicity of the ligand, the Lewis acidity of the metal centre is increased; a characteristic which has been exploited by Kundig et al. for asymmetric Diels-Alder reactions. One of the most common methods to create electron-poor character in a ligand is to incorporate fluorinated substituents in the structure. This way, one can modify the electronic properties of the structure
without greatly changing the steric properties, which makes it easier to infer cause and effect for the outcome of the experiment. With a cationic Fe-complex consisting of a CYCLOP-F ligand 174, made up of two di(pentafluorophenyl)phosphine groups linked together with a trans-1,2-cyclopentanediol unit (Figure 13), the authors could induce high enantioselectivities for the Diels-Alder reaction between several α, β unsaturated aldehydes and dienes. ${ }^{103}$ To put this catalyst design into perspective, it was found by Hossain et al. that an analogous Fe-complex with triphenylphosphine ligands was completely inactive for similar reactions. ${ }^{104}$ The authors have since expanded the substrate scope and improved catalytic activity by changing the diol linker to a trans-1,2-diarylethane-1,2-diol unit (BIPHOP-F 175 or Me Me_{4}-BIPHOP-F 176) and with the use of cationic Ru-complexes. ${ }^{105,106,107}$

CYCLOP-F 174 Fe complex

Figure 13: Chiral Lewis acids with electron-poor diphosphinite ligands for asymmetric Diels-Alder reactions.

1.4.5. Electron-poor axially chiral diphosphine ligands

The modification of ligands to reduce electron donor ability has also been carried out many times within the context of axially chiral biaryl diphosphines. Along with the electron-rich ligand BIMOP 154, Achiwa et al. also reported the analogous electronpoor tetra-(trifluoromethyl)biphenyldiphosphine ligand BIFUP 177, along with the
mixed non- C_{2}-symmetric ligand FUPMOP 178. ${ }^{108}$ However, for the Ru-catalysed asymmetric hydrogenation of methyl acetoacetate 128 , while $>99 \%$ e.e. and quantitative conversion was achieved after 20 hours by using either BIMOP 154, FUPMOP 178 or BINAP 51 as ligands, the activity was diminished greatly with the use of BIFUP 177, giving only 95% e.e. and 13% conversion at a higher pressure (Table 5). These findings are consistent with the improvements brought about with a more electron-rich ligand for asymmetric hydrogenation, as previously discussed in this report.

Table 5: The Ru-catalysed asymmetric hydrogenation with ligands of varying Lewis basicity.

128

(R_{a})-BIMOP 154

($S_{\text {a }}$)-BIFUP 177

$\left(S_{a}\right)$-FUPMOP 178

Ligand	$\mathbf{H}_{\mathbf{2}}$ pressure /atm	Conversion $/ \%$	\% e.e.
$\left(R_{a}\right)$-BINAP 51	10	>99	>99
$\left(R_{a}\right)$-BIMOP 154	10	>99	>99
$\left(S_{a}\right)$-FUPMOP 178	10	>99	>99
$\left(S_{a}\right)$-BIFUP 177	90	13	95

Building upon their work on the development of BINAPFu $179{ }^{109}$ (Scheme 37, vide infra), Keay et al. designed TetFuBINAP 180, ${ }^{110}$ a modified form of BINAP 51 with electron-withdrawing 2-furyl units in place of the phenyl groups on the phosphorus atoms. A standard method to measure the Lewis basicity of a phosphine ligand is to use the ${ }^{1} J_{\text {PSe }}$ value of ${ }^{31} \mathrm{P}$-NMR spectrum for the corresponding phosphine
selenide. ${ }^{111} \mathrm{An}$ increase in the ${ }^{1} J_{\text {PSe }}$ value indicates an increase in the s-character on the phosphorus lone pair orbital, meaning it is less basic. From the phosphine selenide derivative of TetFuBINAP 180, it was observed from measuring the ${ }^{1} J_{\text {PSe }}$ value $(767 \mathrm{~Hz})$ that the phosphorus atom was less basic than that of BINAP 51 (738 Hz) and BINAPFu 179 (762 Hz). Furthermore, the X-ray crystal structure for the (TetFuBINAP) PdCl_{2} complex displayed a similar bite angle $\left(91.7^{\circ}\right)$ to that of BINAP $51\left(92.7^{\circ}\right)$, so any differences in performance with asymmetric catalysis would be down to either the difference in electronic properties, or ring size, between the furyl and phenyl rings. For the asymmetric Heck reaction between 2,3-dihydrofuran 181 and phenyl triflate 182 at $50^{\circ} \mathrm{C}$, the desired coupled product 183 was synthesised with better enantioselectivity with TetFuBINAP 180 (89\% e.e.) than BINAP 51 (66\% e.e.), but conversion and regioisomeric selectivity were considerably worse (Scheme 32). By raising the temperature to $100^{\circ} \mathrm{C}$, the conversion was increased to 100% for both ligands, but the enantioselectivity of the desired product 183 suffered a lot more for TetFuBINAP 180 (19\% e.e.) than for BINAP 51 (41\% e.e.). For the intramolecular asymmetric Heck reaction of (E)- α, β-unsaturated 2-haloanilides 186 and 187, mechanistic studies by Overman et al. had determined that the diphosphine ligand remains chelated to the Pd centre while the reactive olefin occupies a $5^{\text {th }}$ coordination site. ${ }^{112}$ It was postulated by Keay et al. that an electron-poor diphosphine would facilitate this mechanistic step by increasing the electrophilicity of the metal centre. Indeed, for the reaction of both the iodo- 186 and bromo-derivative 187, the use of TetFuBINAP 180 generally achieved superior enantioselectivity compared to BINAP 51, particularly when DMF was used as solvent (90% e.e. vs. 82% e.e. for iodoanilide 186, 61% e.e. vs. 36% e.e. for bromoanilide 187) (Scheme 33).

Scheme 32: The asymmetric Heck reaction between 2,3-dihydrofuran 181 and phenyl triflate 182, with TetFuBINAP 180 and BINAP 51 as ligands.

Scheme 33: The asymmetric intramolecular Heck reaction of (E)-a, β-unsaturated 2-haloanilides 186 and 187, with TetFuBINAP 180 and BINAP 51 as ligands.

1.4.6. DIFLUORPHOS

One of the most widely employed electron-poor diphosphine ligands, DIFLUORPHOS 189, developed by Genêt et al., is a modified form of SEGPHOS 84, wherein the methylene is replaced with a difluoromethylene group. ${ }^{113,114}$ Indeed, DIFLUOROPHOS 189 was demonstrated to be a more electron-poor ligand than the analogous SEGPHOS 84 , as the ${ }^{1} J_{\text {PSe }}$ value for the phosphine selenide derivative was greater (749 Hz and 738 Hz respectively) and the v_{co} value in the IR spectrum for the corresponding [RhCl(diphosphine)(CO)] complex was, as expected, also
greater (2023 cm ${ }^{-1}$ and $2016 \mathrm{~cm}^{-1}$). The Lewis basicity of DIFLUORPHOS 189 was also demonstrated, in a similar way, to be lower than BINAP 51, MeO-BIPHEP 79 and SYNPHOS 85. Furthermore, the calculated dihedral angle of DIFLUORPHOS $189\left(67.6^{\circ}\right)$ was very close to that of SEGPHOS $84\left(67.2^{\circ}\right)$, so it follows that any difference in performance between these ligands is a consequence of electronic properties. For the Ru-catalysed asymmetric hydrogenation of β-keto-carbonyls 190, the use of DIFLUORPHOS 189 achieved a consistently higher enantioselectivity than SEGPHOS 84 with fluorinated substrates, despite the similarity in geometric properties with these ligands (Table 6). The e.e. values obtained with DIFLUORPHOS 189 also consistently exceeded those obtained with BINAP 51, MeO-BIPHEP 79 and SYNPHOS 85.

Table 6: The Ru-catalysed asymmetric hydrogenation of fluorinated β-keto-carbonyls 190, with SEGPHOS 84 and DIFLUORPHOS 189 as ligands.

$\left(S_{a}\right)$-DIFLUORPHOS 190

\mathbf{R}	R'	Conditions	Product	(Sa)-SEGPHOS 84	(Sa)-DIFLUORPHOS 189 \% e.e.
CF_{3}	OEt	$10 \mathrm{~atm}, 110{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{EtOH}$	$\mathbf{1 9 1}$	59	70
			$\mathbf{1 9 1}$	76	81
$\mathrm{C}_{2} \mathrm{~F}_{5}$	OEt		$\mathbf{1 9 2}$	$88(71 \%$ d.e. $)$	$98(86 \%$ d.e. $)$
CF_{3}	CF_{3}	$50 \mathrm{~atm}, 50^{\circ} \mathrm{C}, 24 \mathrm{~h}, \mathrm{MeOH}$	$\mathbf{1 9 2}$		

The applications of DIFLUORPHOS 189 have been rich in diversity. One example was the Ag-catalysed asymmetric addition of allyl siloxanes to ketones (SakuraiHosomi allylation) by Yamamoto et al., ${ }^{115}$ in which DIFLUORPHOS 189 was demonstrated to induce the highest enantioselectivity for the reaction between acetophenone and allyltrimethoxysilane, which was chosen for the optimisation. The
high selectivity was rationalised by DIFLUORPHOS 189 forming the highest proportion, compared to BINAP 51, SEGPHOS 84 and MeO-BIPHEP 79, of the monochelated diphosphine-silver complex relative to the chelated bis(diphosphine)silver and bridging diphosphine-disilver complexes; presumably a result of the low Lewis basicity of the ligand. The DIFLUORPHOS-silver catalyst system was then shown to induce high enantioselectivity for the reaction of a variety of allylsiloxanes 193 with ketones 194 (and high diasteroselectivity with γ-substituted allylsiloxanes), with exclusive 1,2-addition when enone substrates were used (Scheme 34).

Scheme 34: The asymmetric Ag-catalysed Sakurai-Hosomi allylation of ketones 194, with DIFLUORPHOS 189 as a ligand.

Other notable examples include the work by Zhu et al. on the asymmetric tandem Heck-cyanation of a 2-iodoanilide precursor 196 in the formal synthesis of natural products (-)-esermethole 197 and (-)-physostigmine 198, ${ }^{116}$ which are inhibitors of acetyl- and butyrylcholineesterase. The cyano-oxindole product 199 was synthesised in a maximum of 72% e.e. by using DIFLUORPHOS 189 as a ligand (Scheme 35) its superior enantioselectivity perhaps rationalised by an increase in electrophilicity of the Pd-centre, similar to that described by Keay et al. earlier in this report. For the Nicatalysed asymmetric α-arylation of ketones, Hartwig et al. found that the substrate scope could be expanded from aryl chlorides to heteroaryl chlorides by using DIFLUORPHOS 189 as the ligand, rather than BINAP 51. ${ }^{117}$ With the DIFLUORPHOS-Ni catalytic system, indanone 200 and tetralone 201 could be
arylated consistently with >90\% e.e. with a range of pyridyl and thienyl halides 202 with electron-donating and electron-withdrawing substituents (Scheme 36).

Similar to DIFLUORPHOS 189, other fluorinated electron-poor biaryl diphosphine ligands include $\mathrm{MeO}-\mathrm{F}_{12}$-BIPHEP $204{ }^{118,119}$ reported by Sakai et al. and $\mathrm{F}_{12}-\mathrm{C}_{3}$ TunePhos $\mathbf{2 0 5}{ }^{120}$ by Zhou et al. (Figure 14); the latter being an fluorinated analogue of C_{3}-TunePhos 124 with a (R, R)-pentane-2,4-diol linker at the back of the structure. Both of these ligands were used to induce high enantioselectivity for the Rhcatalysed conjugate addition of arylboronic acids to α, β-unsaturated ketones, due to the enhanced Lewis acidity of the metal centre.

Scheme 35: The asymmetric synthesis of (-)-esermethole 197 and (-)-physostigmine 198, via a Pd-DIFLUORPHOS-catalysed Heck-cyanation process.

Scheme 36: The asymmetric a-heteroarylation of ketones 200 and 201, catalysed with a NiDIFLUORPHOS 189 system.

$\left(R_{\mathrm{a}}\right)$-MeO-F ${ }_{12}$-BIPHEP 204

$\left(R_{a}, S, S\right)-F_{12}-\mathrm{C}_{3}$-TunePhos 205

Figure 14: Other examples of fluorinated electron-poor biaryl diphosphine ligands.

1.5. Biheteroaryl diphosphine ligands with 5 -membered rings

A method to simultaneously adjust the geometric and electronic properties of a biaryl diphosphine ligand, relative to a typical biphenyl based design, is to employ 5membered heteroaromatic rings in the structure. The heteroatom in moieties such as furan and thiophene has mesomeric effects on the aromatic ring, so the electronic properties of the phosphine group can be tuned, depending on where it is bonded to the ring. Furthermore, if the biaryl bond links together two 5-membered rings, rather than 6 -membered rings, the groups located ortho- to that bond, often the ligating phosphines, are positioned further away from each other in space, which potentially changes the bite angle in a metal-ligand complex.

1.5.1. Sulfur as the heteroatom

The first ligands of this kind, reported by Sannicolò et al., were 2,2'-bis(diphenylphosphino)-4,4',6,6'-tetramethyl-3,3'-bibenzo[b]thiophene (TetraMeBITIANP 206) and the analogous compound without methyl groups, 2,2'-bis(diphenylphosphino)-3,3'-bibenzo[b]thiophene (BITIANP 207) (Figure 15). ${ }^{121,122}$ The configurational stability of these ligands was confirmed by the ${ }^{31} \mathrm{P}$-NMR spectra of corresponding diastereomeric Pd-complexes, showing that the configuration was
retained in refluxing xylenes during the reduction of the corresponding phosphine oxide. However, the analogous 2,2'-bis(diphenylphosphino)-3,3'-bibenzo[b]furan ligand did not retain its configuration under the same conditions, perhaps due to the shorter C-O bond lengths (1.39 A compared to $1.74 \AA$ for C-S bonds) preventing atropisomerism. For the X-ray crystal analysis of (tetraMe-BITIANP)- and (BITIANP)PdCl_{2} complexes, despite the differences in structure between these ligands and BINAP 51, similarities in geometry with the 7-membered metal-ligand chelating ring with analogous BINAP complexes were observed. The bibenzothiophene ligands 206 and 207 were also tested in the Ru-catalysed asymmetric hydrogenation of α and β-ketoesters, as well as prochiral olefinic substrates; while high e.e. values were achieved, there was no overall improvement on those obtained with similar BINAP 51 complexes.

A similar ligand, 4,4'-bis(diphenylphosphino)-2,2',5,5'-tetramethyl-3,3'-bithiophene (BITIOP 208) was later developed, in which the phosphine groups are positioned on the electron-rich 3-carbons. ${ }^{123}$ The enhanced availability of the electron density to the phosphorus atom was shown by its electrochemical oxidation potential (0.57 V), which was lower than that of (non-atropisomeric) 2,2'-bis(diphenylphosphino)-5,5'-tetramethyl-3,3'-bithiophene (0.70 V). While the enantioselectivity obtained in asymmetric hydrogenation reactions was similar to that of BINAP 51 (oxidation potential of 0.63 V), the rate was increased by the greater Lewis basicity of BITIOP 208.

$\left(R_{a}\right)$-TetraMe-BITIANP 206

(R_{a})-BITIANP 207

(R_{a})-BITIOP 208

Figure 15: Axially chiral bibenzo[b]thiophene and bithiophene diphosphine ligands.

1.5.2. Nitrogen as the heteroatom

While the first biindolyl diphosphine ligand was synthesised by Berens et al., no application towards an enantioselective reaction was reported. ${ }^{124}$ Shortly afterwards, configurationally stable 3,3-dimethyl-1,1'-bis(diphenylphosphino)-2,2'-biindole (BISCAP 209) and 2,2'-bis(diphenylphosphino)-1,1'-bibenzimidazole (BIMIP 210) were reported by Sannicolò et al., continuing their work on heterobiaryl diphosphine ligands (Figure 16). ${ }^{125}$ The X-ray crystal data for (BIMIP)- PdCl_{2} indicated a P-Pd-P bite angle of $95.02(5)^{\circ}, \sim 3-5^{\circ}$ wider than that of similar BINAP 51 complexes, ${ }^{62,126,127}$ which perhaps reflects the change in geometry due to the 5-membered rings in the ligand structure. In a later paper, the same authors, aiming to vary the electronic properties with the position of the phosphine groups, also reported the synthesis of 3,3'-bis(diphenylphosphino)-1,1'-dimethyl-2,2'-biindole (N-Me-2-BINP 211) as well as the 1,1'-bis(methoxymethyl) derivative (N-MOM-2-BINP 212). ${ }^{128}$ Interestingly, a very close negative correlation was found between the electrochemical oxidation potential and $\log \left(\mathrm{K}_{\text {obs }}\right)$ values for the Ru-catalysed hydrogenation of ethyl acetoacetate. This relationship demonstrates that an electron-rich ligand accelerates the rate of hydrogenation, but no correlation was found for the enantioselectivity.

(S_{a})-BISCAP 209

(R_{a})-BIMIP 210

$\left(S_{a}\right)$-N-Me-2-BINP ($\mathrm{R}=\mathrm{Me}$) 211
$\left(S_{a}\right)$-N-MOM-2-BINP $\left(R=\mathrm{CH}_{2} \mathrm{OMe}\right) 212$

Figure 16: Axially chiral biindole and biimidazole disphosphine ligands.

1.5.3. Oxygen as the heteroatom

The design of the non-atropisomeric bibenzo[b]furan diphosphine ligand was modified by Keay et al. with the development of the axially chiral 2,2'-bis(diphenylphosphino)-3,3'-binaphtho[2,1-b]furan (BINAPFu 179). ${ }^{109}$ The authors assessed the Lewis basicity of the phosphorus atoms in the ligand by measuring the ${ }^{1} J_{\text {PSe }}$ coupling constant of the corresponding phosphine selenide, and the value of 762 Hz indicated a more electron-poor ligand than BINAP 51 (738 Hz). For the asymmetric Heck reaction of 2,3-dihydrofuran 181 and phenyl triflate 182, a variety of temperatures, solvents, bases and pre-catalysts were tested, but the enantioselectivity of BINAPFu 179 exceeded that of BINAP 51 every time. The optimised conditions of using $\operatorname{Pd}_{2}(\mathrm{dba})_{3}$, Hünig's base and dioxane for 7 days at 100 ${ }^{\circ} \mathrm{C}$ formed the desired 2-phenyl-2,3-dihydrofuran product in 90% yield and 77% e.e., compared to the 73% and 41% e.e. obtained with BINAP 51 as the ligand (Scheme 37). Since the performance of BINAPFu 179, for this reaction, was superior to that of the more electron-poor TetFuBINAP 180 (Scheme 37; c.f. Scheme 33), this suggests either that the small size of the furyl rings of TetFuBINAP 180 diminished the enantioselectivity, the moderate electron-poor character of BINAPFu 179 was key for optimal results, or that the change in geometry from the biaryl bond linking two 5-
membered rings in BINAPFu 179 was favourable for this intermolecular Heck process.

Scheme 37: The asymmetric Heck reaction of 2,3-dihydrofuran 181 and phenyl triflate 182, with BINAPFu 179 and BINAP 51 as ligands.

1.6. Dihedral angles of axially chiral biaryl diol ligands

1.6.1. BINOL by Noyori

The axially chiral 1,1 '-biaryl unit is also effective for transmitting chiral information from catalyst to substrate when present in diol ligands. As well as developing BINAP 51, Noyori et al. first reported the use of the analogous diol ligand, BINOL 213, in asymmetric synthesis. ${ }^{129}$ The authors were able to use a BINOL-Al-hydride complex to reduce a series of alkyl phenyl ketones 214 in 71-100\% e.e., thereby demonstrating the ability of an axially chiral biaryl unit to bias the orientation of the substrate towards the aluminium centre (Scheme 38). However, a super-stoichiometric quantity of the AI-BINOL reagent was required for this transformation, though the ligand was recoverable from the reaction mixture.

Scheme 38: The first application of BINOL 213 in asymmetric synthesis: the aluminium hydride mediated reduction of prochiral carbonyls 214.

The Zn -BINOL-mediated asymmetric cyclisation of unsaturated aldehydes was reported by Yamamoto et al., in which, for example, 3-methylcitronellal 216 was converted in 91% yield and 90% e.e. to the chiral cyclic alcohol 217 (Scheme 39, a). ${ }^{130}$ While the in situ generated Zn -BINOL reagent acts as a Lewis acid in this transformation, and presumably is not consumed by the reaction, a superstoichiometric quantity of the reagent was required to induce the enantioselectivity. ${ }^{131}$

Nonetheless, the first instance of a BINOL derivative applied in catalytic amounts was also reported by the Yamamoto et al., towards an asymmetric ene reaction. ${ }^{132}$ After the addition of $4 \AA$ molecular sieves to the system, for the reaction between several electron-poor aldehydes 218 and electron-rich olefins 219, most of the enantioselectivity was retained when the molar quantity of a 3, '-bis(triphenylsilyl)BINOL-Al complex 221 was reduced from $110 \mathrm{~mol} \%$ to $10-20 \mathrm{~mol} \%$ (Scheme 39, a). The enantioselectivity of the catalysed reactions were in the range of $49-88 \%$ e.e., and in some cases, these values were even improved compared to stoichiometric loadings. This chiral catalyst was also applied to the asymmetric hetero-Diels-Alder reaction between siloxydienes 222 and aldehydes 223, followed by treatment of trifluoroacetic acid, to synthesise dihydro- γ-pyrone products 224 with excellent diastereo- and enantioselectivity (Scheme 39, b). ${ }^{133}$ For some substrates,
the selectivity could be improved by using the bulkier tri(3,5-xylyl)silyl derivative 225, rather than triphenyl 221, biasing further the orientation of the diene towards the aldehyde-Lewis acid complex.
a)

b)

AI-BINOL complex

222
c)

1) AI-BINOL complex

2) TFA
$\mathrm{Ar}=\mathrm{Ph}(221)$ or 3,5-xylyl (225)

62-95\% (cis), 81-97\% e.e. 8 examples

Scheme 39: The Zn-BINOL-mediated asymmetric cyclisation of 3-methylcitronellal 216 (a), and the first examples of a BINOL 213 and derivatives in a chiral catalyst: the ene reaction with aldehydes 218 and olefins 219 (b), and the hetero-Diels-Alder with siloxydienes 222 and aldehydes 223 (c).

The first example of BINOL 213 itself, rather than a derivative, as a ligand in a chiral catalyst was reported by Nakai et al., with an asymmetric ene reaction. ${ }^{134}$ An in situ prepared Ti-BINOL complex was used to catalyse the reactions between several olefins 226 and methyl glyoxylate 227. The chiral alcohols 228 were produced in 89$98 \%$ e.e. with as little as $1 \mathrm{~mol} \%$ catalyst loading, and again, the presence of $4 \AA$ molecular sieves was essential for the high selectivity (Scheme 40). Nonetheless,
with the absence of the bulky silyl groups, the great stereochemical influence of the axially chiral backbone of the catalyst was demonstrated with these reactions.

Scheme 40: The first example of BINOL 213 as a chiral ligand, for the ene reaction between methyl glyoxylate 227 and olefins 226.

1.6.2. Modification of biaryl diol dihedral angle

Since these first examples, BINOL 213 has been applied as a ligand in asymmetric Lewis acid catalysis towards a seemingly endless range of reactions and substrates, due to the flexibility of the binaphthyl backbone permitting coordination to many metals and metalloids, and the rigidity of those BINOL complexes. ${ }^{135}$ However, like with BINAP 51 optimal results are not universally obtained by using BINOL 213, so it is essential to tailor the structure of the chiral diol to maximise the stereoselectivity for certain reactions or substrates. Similar to chiral diphosphine ligands, the axially chiral biphenyl unit offers great flexibility to alter the bite angle (β) of a metal-diol complex, as sterically different substituents, particularly at the 6,6 '-positions, lead to a different dihedral angle (θ) of the ligand (Figure 17, c.f. Figure 7).

Figure 17: The dihedral angle (θ) of an axially chiral biphenyl-diol ligand, and its relationship with the bite angle (β) of the metal-diol complex.

With this rationale in mind, Mikami et al. applied a 6,6'-dibromo-BINOL derivative 229 as a ligand for the Ti-catalysed ene reaction between olefins and methyl glyoxylate. ${ }^{136}$ The authors hypothesised that the orientation of the halide ligands X in the (BINOL)TiX ${ }_{2}$ complexes in Scheme 40 helped to direct the trajectory of the olefin towards the coordinated glyoxylate. By increasing the metal-diol ligand bite angle (O-Ti-O), from the increased repulsion of the brominated naphthyl rings of \mathbf{X}, the metaldihalide internal angle (X-Ti-X) is compressed, increasing the degree of shielding of one of the glyoxylate enantiofaces. Consequently, the reaction between methyl glyoxylate 227 and methylenecyclohexane 230 was improved to >99\% e.e. (Scheme 41). Intriguingly, the reaction with α-methylstyrene achieved 85% e.e. even when the catalyst had an enantiopurity of only 70\%, which demonstrated an asymmetric amplification effect.

Scheme 41: The Ti-catalysed ene reaction with methyl glyoxylate 227 and methylenecyclohexane 230, with $6,6{ }^{\prime}-\mathrm{Br}_{2}-$ BINOL 229 as a ligand.

A variety of axially chiral 6,6-dialkoxy-1,1'-biphenyl-2,2'-diol derivatives 232-240 were synthesised in high enantiopurity, by Harada et al., from the achiral 1,1'-biphenyl-2,2',6,6'-tetrol by using (-)-menthone as a chiral template. ${ }^{137,138}$ This library of ligands included a series of biphenyl diols in which the two phenyl groups were linked by an ether bridge of a systematically varied length (232-235), similar to TunePhos (c.f. Table 1). Using this ligand library, the authors studied the relationship between the calculated dihedral angle and the enantioselectivity of a Ti-catalysed Diels-Alder reaction with and acrylate esters 241 and cyclopentadiene 242 (Scheme 42). ${ }^{139}$ Despite the small difference $\left(\sim 10^{\circ}\right)$ between the smallest and largest dihedral angle, an angle of $61-63^{\circ}$ was clearly shown to be optimal for the enantioselectivity for these reactions. Any deviation from the optimal angle resulted in a sharp decrease in e.e. values, thereby demonstrating the high sensitivity of the selectivity towards the ligand geometry.

endo-243

(S)-232, $\mathrm{n}=1$
(S)-233, $n=2$
(S)-234, $n=3$
(S)-235, $n=4$

(S)-236, $\mathrm{R}^{2}=\mathrm{OPh}$
(S)-237, $\mathrm{R}^{2}=\mathrm{Me}$
(S)-238, $R^{2}=E t$
(S)-239, R ${ }^{2}=$ Oct
(S)-240, R ${ }^{2}=\mathrm{Ph}$

Scheme 42: The Ti-catalysed asymmetric Diels-Alder reaction of acrylate esters 241 and cyclopentadiene 242, using biphenyldiol ligands 232-240 varying in dihedral angle.

1.6.3. $\mathrm{H}_{8}-\mathrm{BINOL}$

After their work on the Ti-BINOL-catalysed asymmetric addition of diethylzinc to benzaldehyde derivatives, ${ }^{140}$ Chan et al. investigated the use of the partially hydrogenated variant H_{8}-BINOL 244 in similar reactions. ${ }^{141}$ Similar to H_{8}-BINAP 86, the saturated domain of the H_{8}-BINOL 244 ligand (Figure 18) is non-planar, resulting in increased steric repulsion between the aryl groups and thus, an increased dihedral angle. The change in geometry meant that, for a collection of ortho-, meta- and parasubstituted benzaldehydes 245, using H_{8}-BINOL 244 as a ligand led to an improvement in enantioselectivity every time compared to using BINOL 213 (Scheme 43). Furthermore, by using triethylaluminium instead of diethylzinc, the formation of undesired aldehyde reduction products was reduced to a minimum. ${ }^{142}$ Also under these conditions, similar improvements to the enantioselectivity could be
made by using H_{8}-BINOL 244 rather than BINOL 213 as the ligand. However, the catalyst system was not general for the choice of alkyl group on the alkylating agent, as the use of trimethylaluminium reduced the selectivity dramatically from 90-99\% e.e. to $40-50 \%$ e.e., and using triisobutylaluminium led to exclusive reduction of the aldehydes. The influence of a dihedral angle towards the enantioselectivity of this reaction was corroborated by Ding et al., as they found the e.e. values obtained with the non- C_{2}-symmetric H_{4}-BINOL 247 ligand (Figure 18) fell in between those obtained with the less saturated BINOL 213 and the more saturated H_{8}-BINOL
$244 .{ }^{143}$

(S_{a})- H_{8}-BINOL 244

$\left(S_{a}\right)-\mathrm{H}_{4}$-BINOL 247

Figure 18: Partially hydrogenated derivatives of BINOL 213.

with ZnEt_{2}, DCM:
(R_{a})-BINOL 213 (59-94\% e.e.)
(S_{a})- $-\mathrm{H}_{8}$-BINOL 244 ($85-98 \%$ e.e.)
with AlEt_{3}, THF
(R_{a})-BINOL 213 ($52-86 \%$ e.e.)
$\left(S_{\mathrm{a}}\right)-\mathrm{H}_{8}$-BINOL 244 (90-96\% e.e.)

Scheme 43: The Ti-catalysed asymmetric addition of diethylzinc and triethylaluminium to benzaldehyde derivatives 245, with BINOL 213 and H_{8}-BINOL 244 as ligands.

The wide dihedral angle of H_{8}-BINOL 244 has led to a privileged status for this ligand. It has been shown to be specialised for the asymmetric Ti-catalysed nucleophilic addition of organometallic reagents to carbonyls, providing superior enantioselectivities compared to other chiral diol ligands for the addition of
methallylstannanes 249 to ketones (248) (Scheme 44), ${ }^{144}$ reactions of in situ generated alkynylzinc reagents with aldehydes (e.g. 251) (Scheme 45, a), ${ }^{145}$ and addition of pyridylaluminium reagents to benzaldehyde 251 and derivatives thereof (Scheme 45, b). ${ }^{146}$ Furthermore, the versatility of H_{8}-BINOL 244 has also been shown by Ding et al. to induce the highest enantioselectivities in a solvent free Ticatalysed hetero-Diels-Alder reaction to synthesise dihydro- γ-pyrones 256 (Scheme 46), in a unique, high-throughput combinatorial optimisation process involving 13 different chiral diol ligands. ${ }^{147}$ Finally, the enantioselectivities for asymmetric Smcatalysed epoxidation of α, β-unsaturated N-acylpyrroles by Shibasaki et al. were improved upon by switching the ligand from BINOL 213 to H_{8}-BINOL 244. ${ }^{148}$ This transformation was exploited for the synthesis of intermediates 257 and 258 towards natural antifungal products such as strictifolione 259, as well as the marine natural product (+)-phorboxazole A 260 (Figure 19). ${ }^{149}$

Scheme 44: An example of the asymmetric $\mathrm{Ti}_{-} \mathrm{H}_{8}$-BINOL-catalysed methallylation of ketones.
a)

(R)-252

98\%, 96\% e.e.

(S_{a})- H_{8}-BINOL 244 (40 mol\%)
THF/Et ${ }_{2} \mathrm{O}, \mathrm{rt}$

251
b)

(S)-253 85\%, 85\% e.e.

Scheme 45: Examples of the Ti-catalysed asymmetric addition of alkynes (a) and substituted pyridines (b) to aldehydes, with $\mathrm{H}_{8}-\mathrm{BINOL} 244$ as a ligand.

Scheme 46: The solvent-free asymmetric Ti-catalysed hetero-Diels-Alder reaction, with H_{8} - BINOL 244 as a ligand.

(+)-phorboxazole A 260

Figure 19: Chiral epoxide intermediates 257 and 258 towards natural products, synthesised through the $\mathrm{Sm}-\mathrm{H}_{8}$-BINOL-catalysed epoxidation of α, β-unsaturated N-acylpyrroles.

1.7. Conclusion

To conclude, the examples of chiral phosphine and diol ligands detailed in this introduction represent just a small fraction of those that have ever been employed towards asymmetric homogeneous catalysis, since research on the subject was first reported half a century ago. However, they demonstrate the endurance of the axially
chiral biaryl motif when it comes to chiral ligand design. The biaryl unit is structurally rigid when coordinated to a metal centre and it has plentiful flexibility towards the incorporation of functional groups to systematically alter the bite angle of its metalligand complex and/or vary the electronic properties of the ligating atom. It is for these reasons that axially chiral ligands have been, and will for a long time continue to be hugely prevalent for an extraordinary variety of enantioselective catalytic reactions, from the milligram scale of the research laboratory to the tonne scale of industrial processes.

2. RESULTS AND DISCUSSION

2.1. Project aims and rationale

Axially chiral molecules are used ubiquitously as chiral homogeneous catalysts for asymmetric synthesis. The first examples of axially chiral diol and diphosphine ligands, BINOL 213 and BINAP 51 respectively (Figure 20), are incredibly versatile in their application and influential in their design. Both of these groundbreaking chiral ligands were introduced by Nobel-prize winning chemist Ryoji Noyori. ${ }^{27,129}$ Due to the simple synthetic methods to produce and resolve their individual enantiomers, ${ }^{150,151,152}$ they both are widely available on a large scale and constitute a common starting point as ligands in the optimisation of stereoselective synthetic transformations. Because these ligands can be used for many, mechanistically quite different, asymmetric reactions, they are often described as 'privileged structures'. ${ }^{153}$

(R_{a})-BINOL 213

(Sa)-BINOL 213

(R_{a})-BINAP 51

(S_{a})-BINAP 51

Figure 20: The two enantiomers of BINOL 213 and BINAP 51. The numbering system for the aromatic structure is included for $\left(R_{\mathrm{a}}\right)$-BINOL 213.

As widely applicable as BINOL 213 and BINAP 51 are, it is near impossible for a chiral catalyst to be 'universally applicable', which is why derivatives of these compounds are continually synthesised and screened in new asymmetric reactions. These processes may be chemical reactions which have not yet had an element of chirality applied successfully towards them, so a chiral catalyst is applied for the first
time in order to induce stereoselectivity in that chemical context. Sometimes, good enantiomeric excesses have already been achieved for particular substrates, and the successful ligand is required to be derivatised to broaden the scope of prochiral substrates that can be transformed with high stereoselectivity. Other times, high enantiomeric excesses may have only been achieved for a reaction via an approach other than homogeneous catalysis, such as heterogeneous catalysis, biocatalysis or the use of a chiral auxiliary. One may then wish to exploit the advantages that homogeneous catalysis could have over these alternatives, such as a tolerance of more forcing conditions, flexibility in the scale at which the reaction is being operated, or an ability to perform mechanistic studies in more detail, on the reaction in question.

If the vast quantity of different axially chiral catalysts that have been applied in asymmetric catalysis in the literature is considered, it is apparent that, for a particular transformation on a particular prochiral substrate, a 'tailor-made' catalyst tends to be needed in order to bring about the maximum stereoselectivity. Since the advent of BINOL 213 and BINAP 51, the property of axial chirality has endured well in the design of chiral diol and phosphine ligands, because binaphthyl, and other atropisomeric biphenyl motifs, can reliably transfer their stereochemical information to the orientation the substrates adopt towards the catalyst. In order to design derivatives of this core of the ligand (261 and 262), substituents on the aromatic rings can be put in place of hydrogen atoms, by changing the starting materials used to make the ligand, or by installing the groups at some stage midway through the synthesis (Figure 21). For example, electronic properties of the coordinating groups can be manipulated by installing electron-donating or -withdrawing groups on the biphenyl backbone. With diphosphine ligands, the ancillary groups directly bonded to
the phosphorus atom are another source of diversity within this template. When the donating ability of the oxygen or phosphorus atom is changed, this can promote certain steps of the catalytic cycle by stabilising or destabilising certain oxidation states, for example. Steric properties of the ligand can also be affected by substituents in multiple ways. The use of bulky substituents at the 3,3'-positions of the backbone, adjacent to the donor atom, can restrict the freedom of the substituent in the chiral pocket, and therefore possibly enhance the selectivity of the reaction. Alternatively, changing the substuents at the 6,6 '-positions of the structure can change the dihedral angle of the molecule, and therefore the bite angle on coordination to a metal centre, which can either change the freedom of the substituent or favour certain geometries of the metal complex.

derivatives 261

(R_{a})-2,2'-bi(phenylphosphine) derivatives 262

Figure 21: Typical templates for axially chiral biaryl diol 261 and diphosphine ligands 262. The numbering system for the aromatic structure of $2,2^{\prime}$-biphenol derivatives 261 is included.

2.1.1. Properties of azulenes

These variations of the ligand templates above allow for great flexibility in catalytic design. However, the variation of the aromatic motif has received relatively little consideration; the persistence in the use of benzenoid molecules is evidence of a degree of conservatism when manipulating the factors that influence enantioselectivity. Azulene 263, a non-benzenoid aromatic isomer of naphthalene 264, has not yet been incorporated in the design of chiral molecules for asymmetric
catalysis, despite having significantly different geometric and electronic properties compared to naphthalene 264.

Derived from the Spanish word for its colour ('azul', meaning 'blue'), the azulene motif is made up of a 5-membered ring fused to a 7-membered ring, instead of two fused phenyl rings. This class of molecule is ordinarily not sourced from crude oil, but is found as the chromophores of certain pigments within organisms (Figure 22). Guaiazulene 265, the most widely occurring azulene derivative in nature, is a terpene-derived substance found in oil of guaiac, from the wood of the Pala Santo tree in South America. A similarly structured compound, chamazulene 266, is found in chamomile blue, a deep blue essential oil of the chamomile plant. The indigo milk cap mushroom, or Lactarius indigo, contains (4-methyl-7-(prop-1-en-2-yl)azulen-1yl)methyl stearate 267 as a pigment, which gives it a vivid blue colour. Another terpenoid, vetivazulene 268, is isomeric with guaiazulene $\mathbf{2 6 5}$ and is extracted from vetiver oil.

Figure 22: Naturally occurring azulenes: guaiazulene 265, chamazulene 266, (4-methyl-7-(prop-1-en-2-yl)azulen-1-yl)methyl stearate 267 and vetivazulene 268.

Since azulene 263 can be depicted as 1,3-cyclopentadiene fused to 1,3,5cycloheptatriene, resonance arrows can be pushed from the latter segment to the former, giving 1,3-cyclopentadienide fused to a tropylium cation as a significant resonance structure (Scheme 47). This canonical form is favoured as the fused
structures both individually satisfy Hückel's rule of $4 n+2$ - π-electrons and thus, are aromatic. As a result, azulene has a dipole value of 1.09 D , and is therefore remarkably polarised for a hydrocarbon. ${ }^{154}$

Scheme 47: Resonance forms and polarity of azulene 263

The chromophoric properties of azulene $\mathbf{2 6 3}$ contrast with the isomeric naphthalene 264, since the latter is a colourless solid. This characteristic is explained by viewing the molecular orbital coefficients for the frontier molecular orbitals (Figure 23). ${ }^{155}$ Azulene $\mathbf{2 6 3}$ is a non-alternant molecule, so the HOMO and LUMO are spatially different from each other. Thus, in the S_{1} electronic state (one electron in each orbital), there is little overlap and therefore only a small amount of repulsive pairing energy. This $\mathrm{S}_{0}-\mathrm{S}_{1}$ gap corresponds to the absorption of visible light. With naphthalene, an alternant hydrocarbon, the HOMO and LUMO are spatially similar, so there is a greater repulsive energy between the two electrons when in an S_{1} state. Therefore, with the greater energy gap, naphthalene 264 does not absorb electronically in the visible region, but only in the UV region.

Azulene, a non-alternant hydrocarbon

Naphthalene, an alternant hydrocarbon

Figure 23: The frontier molecular orbitals for azulene 263 and naphthalene 264, showing differences in molecular orbital coefficients (asterisks denote carbons alternating between S_{0} and S_{1}), taken from Liu.

Because of their unique properties, azulene derivatives have featured in a wide range of applications: in medicine, they have shown activity as anti-inflammatory agents,,${ }^{156}$ as anti-arrhythmic agents, ${ }^{157}$ as anti-diabetic agents, ${ }^{158}$ as anti-cancer agents, ${ }^{159}$ in treatment for erectile dysfunction ${ }^{160}$ and in anti-retroviral drugs for HIV treatment. ${ }^{161}$ Their vivid, tuneable ${ }^{162}$ colours have been exploited in their application towards solar cells, ${ }^{163,164}$ electrochromic materials, ${ }^{165}$ halochromic materials, ${ }^{166,167}$ visible light triggered photoswitches, ${ }^{168}$ near-infrared absorbing pigments ${ }^{169}$ and as probes for soft metal cations ${ }^{170}$ and fluoride anions. ${ }^{171}$ Their dipole moment has meant they have shown promising results as semiconductors. ${ }^{172,173}$ The tunability of the absorption properties of the aromatic system has allowed application in fluorescent bioimaging. ${ }^{174}$ The chemistry of azulene-containing porphyrin analogues and their transition metal complexes have also been extensively studied by Lash et al. ${ }^{175}$

2.1.2. Azulene as a motif in chiral ligand design

Referring back to the template for axially chiral diol and diphosphine ligands (Figure 21), the incorporation of a biazulene group in place of the biphenyl (or binaphthyl) group would change the ligand properties in a different, more creative way compared to a simple change of substituents on the aromatic system, or on the phosphorus atom. Since azulene 263 has very different electronic and steric properties to naphthalene 264, it follows that any chiral ligands made from a binaphthalene moiety will behave differently if replaced with biazulene. The azulene monomers are unsymmetrical, so they may also be coupled together at different sites to make, for instance, either 1,1'-biazulene 269, 2,2'-biazulene 270 or 4,4'-biazulene 271 moieties (Figure 24), each possessing signficantly different properties.

1,1'-biazulene 269

2,2'-biazulene 270

4,4'-biazulene 271

Figure 24: Designs for different biazulene-based ligands, where donor group $X=O H, \mathrm{PR}_{2}$ and R groups to induce atropisomerism or point towards the reactive site in the catalyst. The numbering system for the aromatic structure of 1,1'-biazulene 269 is included.

If the 1,1 '-biazulene-based ligands 269 are compared side by side with 1,1'binaphthalene based ligands 272, it is clear to see that there would be a larger bite angle on coordination to a metal for the 1,1 '-biazulene (Figure 25). In the 1,1 'biazulene skeleton, the biaryl bond connects two aromatic 5-membered rings rather than 6 -membered rings. Thus, any ligating atoms in the 2,2'-positions are now
further away in space from each other because of the smaller internal angle of the aromatic ring. The geometry of the R -groups in the $3,3^{\prime}$-positions is also affected as they are also further away from each other in space, which can also have an effect on the orientation of the substrate.

Figure 25: The proposed increase in bite angle for a chelating ligand coordinating to a metal centre, if the biaryl bond connects two 5 -membered rings rather than 6 -membered rings.

As a consequence of the biaryl bond connecting 5-membered rather than 6membered rings, the hydrogen atoms on the 8,8 '-positions may have insufficient steric interaction to ensure atropisomerism in the 1,1'-biazulene-based ligands 269, unlike in analogous 1,1'-binaphthyl species 272. Biazulene species such as 2,2'-dimethyl-1,1'-biazulene 273, ${ }^{176}$ diethyl 2,2'-diamino-8,8'-diphenyl-[1,1'-biazulene]-3,3'-dicarboxylate $\mathbf{2 7 4}{ }^{177}$ and 10,10'-bibenzo[a]azulene 275^{178} have all been resolved into configurationally stable enantiomers, whereas the enantiomers of 2,2'-dimethoxy-1,1'-biazulene 276, ${ }^{176}$ once resolved, racemised rapidly at room temperature (Figure 26). The configurational instability of the latter biazulene 276 may be explained by additional degrees of freedom of the 2,2'-methoxy groups compared to 2,2'-methyl groups, allowing rotation around the axial bond. Several derivatives of dimethyl $4,4^{\prime}, 8,8^{\prime}$ '-dimethyl-[1,1'-biazulene]-2,2'-dicarboxylate 277 have
also been synthesised, which would probably be expected to be chiral, but no analysis into their axial chirality had been carried out by the authors. ${ }^{179}$

enantiomers stable in solution at room temperature

276
racemises at room temperature

analysis of atropisomerism not yet published

Figure 26: Derivatives of 1,1'-biazulene, of which the axial chirality and configurational stability has been studied, or would be expected to exhibit atropisomerism.

The usual ways to vary the bite angle of axially chiral metal-chelating ligands are either to change the substituents around the biphenyl unit, e.g. the methylene acetal group of SEGPHOS 84 in place of the fused phenyl ring on BINAP 51 gives the former ligand a smaller dihedral angle (67.2° and 86.2° respectively ${ }^{114}$ for free diphosphine); or to increase the number of atoms in the metal-ligand cycle, like with NAPHOS 52 or BINAPO 53, which possess methylene groups and oxygen atoms, respectively, between the binaphthyl unit and phosphine groups (Figure 27). Aside from the bithiophene, biindole and biimidazole diphosphine ligands reported by Sannicolò et al. (Figure 15, Figure 16) or BINAPFu 179 by Keay et al. (Figure 17),
changing the number of atoms in the rings either side of the biaryl bond is underexplored as a means of changing the bite angle for a chelating biaryl ligand. It is noteworthy that this change in bite angle is brought about without necessarily an alteration with the dihedral angle, which adds to the uniqueness of the design of the biazulene ligands. Furthermore, if the bite angle of a chelating ligand-metal complex can be increased without an accompanying increase in the number of atoms in the metal ligand cycle, in the style of NAPHOS 52, then the rigidity of the complex does not need to be compromised.

$\left(R_{\mathrm{a}}\right)$-SEGPHOS 84

$\left(R_{\mathrm{a}}\right)$-NAPHOS $\left(\mathrm{X}=\mathrm{CH}_{2}\right) 52$
$\left(R_{\mathrm{a}}\right)$-BINAPO $(\mathrm{X}=0) 53$

Figure 27: Examples of ligands with different bite angles to BINAP 51: SEGPHOS 84, which has a smaller dihedral angle, NAPHOS 52, which has methylene groups between the chiral backbone and phosphorus atoms, and BINAPO 53, which has oxygen atoms between the chiral backbone and phosphorus atoms.

If the use of a 1,1 '-biazulene unit (269) increases the bite angle of the ligand compared to $1,1^{\prime}$-binaphthyl units (272), it follows that using a 4,4'-biazulene unit (271) as a core of the ligand would result in a decrease in bite angle (Figure 28). This time, since the axial bond links together two 7-membered rings rather than 5membered or 6-membered rings, it follows that the ligating atoms 'ortho' to that bond will be oriented closer to each other in space. The unsymmetrical nature of azulenes therefore lends itself well to flexible ligand design, with regards to their geometric properties.

Figure 28: The proposed decrease in bite angle for a chelating ligand coordinating to a metal centre, if the biaryl bond connects two 7-membered rings rather than 6-membered rings.

The unusual electronic, as well as geometric, properties of azulene may also be exploited to change the characteristics of the ligand. With a $2,2^{\prime}$-biazulene moiety as a backbone (270), installing the ligating atoms at the adjacent electron-rich 1,1'positions of the azulene would lead to an increased donation ability for that ligand compared to any position on the less polarised benzene or naphthalene moiety (Figure 29).

most e^{-}rich at 1,3

270
most e^{-}rich biazulene ligand

Figure 29: Since the 1- (and 3-) positions on azulene are the most electron-rich, a 2,2'-biazulene with ligating atoms at $1,1^{\prime}$-positions will have maximised electron donation to the metal centre.

The potential drawback with this ligand design is that azulenes hydroxylated at the 1position have been shown to be unstable at room temperature. The simplest form, 1hydroxyazulene 279278 itself, was formed by Asao et al. through LiAlH_{4} reduction of its O -acetyl protected form 278, but on warming to room temperature from $-30^{\circ} \mathrm{C}$,
decomposed to a polymeric mixture. ${ }^{180}$ The derivative 3-hydroxyguaiazulene 281, formed through the same methodology, reacted with its tautomeric form $\mathbf{2 8 2}$ to make a dimeric diketone species 283 (Scheme 48). It may be possible prevent these mechanisms from taking place if electron-withdrawing substituents are present in the azulene structure at the $3,3^{\prime}$-positions. However, since the primary motivation to design these ligands is to maximise the donating ability, the electron-withdrawing group may negate the desired electronic properties.

Scheme 48: The formation and fate of 1-hydroxyazulene 278 and 3-hydroxyguiazulene 281.

Fortunately, an azulene with a phosphine group at the 1-position has previously been isolated under ambient conditions. The azulen-1-yl phosphine $\mathbf{2 8 5}$ was formed in a satisfactory yield by Ito et al. through a halogen-magnesium exchange of 1,6-di-tert-butyl-3-iodoazulene 284 with lithium tri-n-butylmagnesate, followed by quenching with chlorodiphenylphosphine (Scheme 49). ${ }^{181}$ Thus, a 2,2'-biazulene-1,1'-
diphosphine may be more feasible to synthesise and apply in asymmetric catalysis than the corresponding diol ligand.

Scheme 49: The formation of (3,6-di-tert-butylazulen-1-yl)diphenylphosphine 285, an electron-rich phosphine species.

By the same principle, if the ligating atom is bonded to the electron-poor positions of azulene, this will cause the lone pair of that atom to become more extensively conjugated with the aromatic system and reduce donation to the metal centre. As a result, there is a choice as to where the ligating atom should be for an electron-poor ligand, that is, either the 6-position or 4-position, which therefore allows some flexibility in this design (Figure 30). Assuming a 5,5'-biazulene as the core of the structure, having the ligating atoms at the 4,4'-positions (286) would perhaps result in a chiral 'pocket' formed by the surrounding fused 5-membered rings, resembling the 'vaulted' biaryl diol ligands VANOL 288 and VAPOL 289 (Figure 31). ${ }^{182}$ Conversely, installing the donor atoms at the 6,6'-positions (287) would produce a more sterically 'open' reactive site, perhaps more suitable for more sterically encumbered substrates.

5,5'-biazulene with 4,4'-ligating atoms

5,5'-biazulene with 6,6'-ligating atoms

Figure 30: Electron-poor ligands designed around 5,5'-biazulene backbone, with R groups to ensure atropisomerism $\mathrm{X}=\mathrm{OH}, \mathrm{PR}_{3}$.

$\left(S_{a}\right)$-VANOL 288

(Sa)-VAPOL 289

Figure 31: The 'vaulted' biaryl diol ligands, (S_{a})-VANOL 288 and $\left(S_{a}\right)$-VAPOL 289.

2.1.3. Nozoe's method for the synthesis of azulenes

With an extensive range of molecular designs, of varying steric and electronic character, there was an opportunity to build a library of interesting, uniquely constructed ligands for asymmetric catalysis. It was decided for the focus to be placed, at first, on the synthesis of the ligands based around the 1,1 '-biazulene unit, due to the relative abundance of dependable chemistry in the literature for the functionalisation of the 5-membered ring of the azulene. One of the most common ways to construct an azulene skeleton is through the method of renowned Japanese chemist Tetsuo Nozoe, who had an extensive career primarily studying azulenes and
other troponoids over a timescale of seven decades. The reaction is characterised by the condensation of an active methylene compound (AMC) (i.e. a species with a methylene group directly between two electron-withdrawing groups, which gives the protons a low $\mathrm{p} K_{a}$ value) and a tropone derivative with a leaving group adjacent to the carbonyl group. The process was first described in 1956, where 2-chlorotropone 290 was introduced to an ethanolic solution of ethyl cyanoacetate 291 and sodium ethoxide to give diethyl 2-aminoazulene-1,3-dicarboxylate 292 in 70\% yield (Scheme 50). ${ }^{183}$

Scheme 50: One of the earliest examples of an azulene produced by the reaction of a troponoid with an active methylene, with diethyl 2-aminoazulene-1,3-dicarboxylate 292 produced from 2chlorotropone 290 and ethyl cyanoacetate 291.

In some cases, the conditions can be changed to favour formation of different products. In the case of the reaction of either 2-chlorotropone 290 or 2methoxytropone 293 with diethyl malonate 294 and sodium ethoxide, using one or two equivalents each of the active methylene compound and base favoured ethyl 2-oxo-2H-cyclohepta[b]furan-3-carboxylate 295 as the product; whereas a larger excess of active methylene (3 equivalents) and base (5-6 equivalents) produced diethyl 2-hydroxyazulene-1,3-dicarboxylate 296 (Scheme 51). ${ }^{184}$ This observation is logical, since a molecule of troponoid, which possesses multiple electrophilic sites, is more likely to be attacked by two molecules of the sodium salt of diethyl malonate when the equivalents of diethyl malonate and sodium ethoxide are both increased.

Scheme 51: Changing the equivalents of active methylene and base relative to the troponoid can favour either the azulene (296) or 2 H -cyclohepta[b]furan-2-one (295) derivatives.

If a tosylate (297) (or benzenesulfonate) is the leaving group on the troponoid, the reaction of these species with various active methylenes in the presence of sodium ethoxide results in a 2 H -cyclohepta[b]furan-2-one product, but with a hydroxy group at the 8 -position (298). When there is a small excess of sodium ethoxide (1-2 equivalents), referring to previous mechanistic postulations and studies, ${ }^{185,186}$ the sodium salt of diethyl malonate 294 will begin by attacking the 7 -position of the tropone derivative (Scheme 52). For leaving groups like chloride or methoxide (Pathway A), the intermediate adduct 299 then tautomerises back to the keto form 300, followed by elimination of hydrogen chloride (or methanol), and the basic conditions drive the cyclisation of 301 to produce ethyl 2-oxo-2H-cyclohepta[b]furan-3-carboxylate 295. A more unusual process takes place when the leaving group is a tosylate (Pathway B). As with pathway A, the sodium salt of diethyl malonate attacks the 7-position, but this is followed by an ethoxide promoted elimination of a p toluenesulfinate anion from 302. The cyclisation of $\mathbf{3 0 3}$ occurs to form the lactone 304, and then the ketone at the 8-position tautomerises to form ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298. When tosyloxytropone 297 is used, the product $\mathbf{2 9 5}$ from pathway A is also formed in a low yield, but the two compounds can be separated during the work-up procedure. Due to the low $\mathrm{p} K_{\mathrm{a}}$ of the hydroxy group on product 298, the anionic form is aqueous-souble at a basic pH , so the
minor component 295 can be washed out with organic solvent. The presence of a base as strong as sodium ethoxide may be key towards pathway B taking place, as similar treatment of 2-tosyloxytropone 297 with dimethyl malonate and sodium methoxide in methanol favours formation of methyl 2-oxo-2H-cyclohepta[b]furan-3carboxylate i.e. the product obtained via pathway a, without a hydroxy group. ${ }^{187}$

Scheme 52: The mechanisms to show the formation of ethyl 2-oxo-2H-cyclohepta[b]furan-3carboxylate 295 and 2-chlorotropone 290, and the formation of ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 from 2-tosyloxytropone 297.

The $2 H$-cyclohepta[b]furan-2-one derivatives can be converted to an azulene through an [8+2]-addition-elimination process with an electron-rich olefin, expelling carbon dioxide as the leaving group. This transformation was achieved at first in 1971 by Takase et al., with enamines as the olefinic component, ${ }^{188}$ and an impressive later example came from the formation of the fused product 11 H -
indeno[2,1-a]azulene 307 from 2H-cyclohepta[b]furan-2-one 305 and 1-(1H-inden-3yl)pyrrolidine 306 in 93% yield (Scheme 53). ${ }^{189}$

Scheme 53: The formation of 11H-indeno[2,1-a]azulene 307 from 1-(1 H -inden-3-yl)pyrrolidine 306 and 2 H -cyclohepta[b]furan-2-one 305.

The scope was then expanded to include aldehyde-derived enamines, ${ }^{190}$ and a further development came in the synthesis of methyl 6-isopropylazulene-1carboxylate derivatives 310 substituted at the 3-position with various alkyl, alkenyl and aryl groups. ${ }^{191}$ These azulenes 310 were formed in over 90% yield each time from methyl 6-isopropyl-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 308 and in situ generated morpholino-enamines from the corresponding aldehydes 309 (Scheme 54). These azulenes were then converted to various azulen-1-ylsulfonates, which were shown to have anti-ulcer activity.

Scheme 54: The formation of 3-substituted azulenes 310 from methyl 6-isopropyl-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 308 and in situ generated enamines.

A similar transformation was then achieved by Nozoe et al., using vinyl ethers as the olefinic component, albeit at a higher temperature due to their reduced
nucleophilicity compared to enamines. ${ }^{192}$ The key advantage of this reaction is that a ketene acetal can be made thermally, in situ, through the elimination of an alcohol from an orthoester (311). ${ }^{192}$ The use of a ketene acetal provides a convenient method to synthesise an azulene with an ether functionality at the 2-position. As shown by the mechanism (Scheme 55), the in situ generated ketene acetal 312 undergoes a cycloaddition to the 2 H -cyclohepta[b]furan-2-one 313, leading to the elimination of carbon dioxide from the adduct 314. The alcohol is then eliminated from the final intermediate 315 to yield the azulene 316, gaining aromaticity. When the azulene has already been made with just a hydrogen atom or alkyl group at the 2-position, it is challenging to subsequently introduce different functionalities at this position, so an alkoxy group provides a useful handle for further functional group interconversion.

Scheme 55: The plausible mechanism for the synthesis of 2-alkoxyazulenes 316 from the 2 H -cyclohepta[b]furan-2-one 313 and orthoester 311.

In addition to this, the reaction of ethyl 2-oxo- 2 H -cyclohepta[b]furan-3-carboxylate 317 with triethyl orthoacetate 318 produced the corresponding azulene product 319, accompanied with the alkylation of the 8-hydroxy group (Scheme 56). It appears
energetically favourable for the ketene acetal 320 to act as the alkylating agent, as it would result in the production of a stable ester 322, though the mechanism was not discussed in the paper.

Scheme 56: The synthesis of ethyl 2,4-diethoxyazulene-1-carboxylate 319 from ethyl 2-oxo- 2 H -cyclohepta[b]furan-3-carboxylate 317 and triethylorthoacetate 318 , with mechanism suggested by us for the ethylation step.

2.2. Development of 1,1'-biazulene-2,2'-diphosphine ("1,1'-BazPhos")

2.2.1. Foundations of synthesis based around Nozoe's method

Originally, the focus of the project was the synthesis and application of 1,1 '-biazulene-2,2'-diphosphine ligands, rather than of 1,1'-biazulene-2,2'-diol ligands. An azulene species like 319, created by Nozoe's process outlined in Scheme 56, seemed like an ideal precursor towards the 1,1'-biazulene-2,2-diphosphine ligand for a number of reasons. Firstly, it was envisaged that the aforementioned alkoxy group at the 2-position could be converted to a triflate in two steps, which could be then converted to diphenylphosphine in a nickel-catalysed cross coupling reaction
analogous to that used in the synthesis of BINAP 51. ${ }^{152}$ Also, one of the electron-rich 1- and 3-positions is already occupied, or "protected", by an ester group, reducing the risk of oligomerisation with whichever process is chosen to couple the two azulene units together. If required, the ester group should also be removed by the treatment with hot orthophosphoric acid, ${ }^{194}$ or with the treatment with DIBAL-H, reduced to a methyl group. ${ }^{195}$ Finally, the 4-position of the azulene is also substituted with an alkoxy group, which has more steric hindrance than a hydrogen atom, and would therefore hopefully ensure atropisomerism in the $1,1^{\prime}$-biazulene species.

The first step of the synthesis was to produce 2-tosyloxytropone 297, which was achieved through the reaction of commercially available tropolone 323 with 4toluenesulfonyl chloride, with pyridine as the solvent (Scheme 57). ${ }^{196}$ This reaction could be operated at a scale of 100 mmol in a near-quantitative yield every time. The product, 2-tosyloxytropone 297 was then reacted with diethyl malonate 294 in the presence of freshly made sodium ethoxide to form ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 in a good yield. ${ }^{197}$ This procedure produced a small amount of a similar compound, ethyl 2-oxo-2H-cyclohepta[b]furan-3carboxylate 295 (the product of pathway A, Scheme 52), which lacked the hydroxy group at the 8 -position. This side product could be separated with an acid-base extraction technique, due to the low $\mathrm{p} K_{\mathrm{a}}$ of the desired product.

Scheme 57: The synthesis of 2-tosyloxytropone 297 from commercially available tropolone 323, followed by the condensation reaction to form ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3carboxylate 298, the precursor to the azulene structure.

To synthesise the azulene, ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3carboxylate 298 was heated at $200^{\circ} \mathrm{C}$ under microwave irradiation with trimethyl orthoacetate 324 and toluene (Scheme 58). ${ }^{198}$ While the reaction was successful in forming an azulene through the [8+2] addition-elimination mechanism, and methylating the hydroxy group, some transesterification took place, giving a mixture of methyl (325) and ethyl (326) esters. Thus, an additional step, which was to heat the mixture at reflux with excess sodium methoxide, was undertaken to give pure methyl ester 325. Initially, it was anticipated that a methoxy group at the 2-position would be easier to convert to a hydroxy group in subsequent steps than larger alkyl groups, which is why trimethyl orthoacetate 324 was chosen in preference to triethyl orthoacetate 318 in these initial studies.

Scheme 58: The [8+2] addition-elimination reaction of ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 with trimethyl orthoacetate 324, followed by a transesterification reaction, to form methyl 2,4-dimethoxyazulene-1-carboxylate 325.

Looking ahead to make the 1,1'-biazulene, a method by lyoda was found, in which azulene was treated with N -bromosuccinimide to produce an inseparable mixture of 1-bromoazulene and 1,3-dibromoazulene. ${ }^{199}$ This mixture was then heated in THF at $50{ }^{\circ} \mathrm{C}$ with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}$ as a catalyst, zinc powder as a reductant, and tetraethylammonium iodide as an organic-soluble source of iodide to give 1,1 'biazulene in 55% yield. Because of the presence of 1,3-dibromoazulene, higher oligoazulenes were also made and isolated in the process. Applying the method to this project, methyl 2,4-dimethoxyazulene-1-carboxylate 325 was treated with N bromosuccinimide in benzene to form methyl 3-bromo-2,4-dimethoxyazulene-1carboxylate 327 through electrophilic aromatic substitution exclusively at the 3position, in high yield (Scheme 59). The brominated azulene 327 underwent a reductive homocoupling reaction using $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}$, zinc powder and tetra- n butylammonium iodide to produce dimethyl 2,2',8,8'-tetramethoxy-[1,1'-biazulene]-3,3'-dicarboxylate (\pm)-328 in 49\% yield (Scheme 59 and Table 7, entry 1, page 102), which was similar to that of the reported method. However, the yield diminished to 29\% when the homocoupling reaction was approximately quadrupled in scale (Table 7, entry 2). Evidence to support the atropisomerism of the biazulene 328 was obtained through chiral HPLC, displaying resolution of two peaks which were of approximately equal size (Figure 32). A crystal structure of the (\pm)-1,1'-biazulene 328 also was obtained by Dr. Mary Mahon, which confirmed the structure and to an extent, gave a visual impression of the steric interaction of the $8,8^{\prime}$-methoxy groups (Figure 33). The non-planarity of the structure was evidenced by a dihedral angle of 102.0(2) ${ }^{\circ}\left(\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}\right)$.

(\pm)-328

Scheme 59: The bromination of methyl 2,4-dimethoxyazulene-1-carboxylate 325 to yield methyl 3-bromo-2,4-dimethoxyazulene-1-carboxylate 327, from which (\pm)-dimethyl 2,2',8,8'-tetramethoxy-[1, 1^{\prime} -biazulene]-3, 3^{\prime}-dicarboxylate 328 was synthesised through a Ni-catalysed reductive homocoupling reaction (Table 7, entry 1).

Figure 32: HPLC chromatogram for (\pm)-dimethyl 2,2',8,8'-tetramethoxy-[1,1'-biazulene]-3,3'dicarboxylate (\pm)-328 (Chiralcel OD $250 \times 4.6 \mathrm{~mm}$ ID, 9:1 hexane/2-propanol, UV detection 254 nm , flow rate $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$).

Figure 33: ORTEP diagram of (\pm)-dimethyl 2,2',8,8'-tetramethoxy-[1, 1'-biazulene]-3,3'-dicarboxylate $(\pm)-328$ showing ellipsoids of 30% probability. H atoms are shown as spheres of arbitrary radius.

With the 1,1 '-biazulene (\pm) - 328 in hand, the next step towards the diphosphine was the demethylation of the $2,2^{\prime}$-methoxy groups. This transformation was achieved very efficiently by using two equivalents of boron tribromide, ${ }^{200}$ as dimethyl $2,2^{\prime}$ -dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate (\pm)- 329 was produced in near quantitative yield (Scheme 60). There was no evidence of demethylation of the 8,8'-methoxy groups, as these azulene positions are electron-poor and the oxygen lone pairs are more extensively conjugated with the aromatic system, so the product could be used for the next step without further purification. Adapting the procedure for the preparation of BINAP as outlined in Organic Syntheses, ${ }^{152}$ the $1,1^{\prime}$-biazulene2,2 '-diol product $(\pm)-329$ was then converted to the ditriflate (\pm)-330 in 34% yield,
using trifluoromethanesulfonic anhydride and pyridine as a base. Unfortunately, the cross coupling reaction of the 1,1'-biazulene-2,2'-ditriflate (\pm)-330 with diphenylphosphine, mediated by [1,2-bis-(diphenylphosphino)ethane]nickel(II) chloride as the catalyst and DABCO as base, resulted only in degradation of the starting material. It was postulated that the reaction required more rigorous exclusion of oxygen to work, and for the reaction to be operated on a larger scale to allow, more conveniently, the portionwise addition of diphenylphosphine, as directed in the original procedure

Scheme 60: The demethylation of the 2, ''-methoxy groups with boron tribromide of $2,2^{\prime}, 8,8^{\prime}-$ dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate (\pm)-328, followed by triflation of the 1,1'-biazulene-2,2'diol (\pm)-329, and attempted formation of 1,1'-biazulene-2,2'-diphosphine (\pm)-331.

2.2.2. Improvements to synthetic steps

At this stage, the synthetic pathway was limited by the scale at which the [8+2]-addition-elimination reaction to initially form the azulene could be carried out, since
the reaction took place under microwave irradiation, and was therefore being carried out in a microwave tube with a capacity of about 10 mL , limiting each run to convert only 1.70 mmol of ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298. To put this quantity into perspective, both preceding steps (Scheme 57) could be operating at a scale of tens of millimoles at a time. By operating the azulene synthesis outside the microwave reactor, with the use of an Asynt aluminium heating block, up to seven of these sealed tubes containing this reaction could be used on a single hotplate stirrer. This change in protocol allowed an increase in scale of up to 12.0 mmol of ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 starting material. To add to this, when the reaction was carried out in a series of sealed microwave tubes (each containing 400 mg of $298,1.10 \mathrm{~mL}$ of trimethyl orthoacetate 324 and 1.0 mL of toluene) the absence of microwave irradiation minimised the undesirable process of transesterification. This process would produce ethyl 2,4-dimethoxyazulene-1-carboxylate 326 with just a trace of the methyl ester 325, in an improved yield compared to that of Scheme 58 when the reaction time is increased by a few hours. That time is saved by the azulene product 326 not needing further transesterification for the conversion to a single ester. Interestingly, these [8+2]-addition-elimination reactions yielded a trace of the side product ethyl 2,4-dimethoxy-3-methylazulene-1-carboxylate 332, having been alkylated at the 3position through electrophilic aromatic substitution, as well as at the hydroxy group.

Scheme 61: The [8+2]-addition-elimination reaction of trimethyl orthoacetate 324 with 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 in the absence of microwave irradiation to give ethyl 2,4-dimethoxyazulene-1-carboxylate 326.

Using the azulene product 326 with the ethyl ester instead, the Ni-catalysed homocoupling reaction proved difficult to replicate (Table 7, entry 3), although the bromination with N -bromosuccinimide appeared to proceed as well as that with the methyl ester 325. This problem seemed strange, as the change of alkyl group on the azulen-1-yl carboxylate would not be expected to cause a significant change in the steric or electronic properties, especially with regards to the reactivity at the 3position of this azulene. It was shown that at this stage that even using inseparable mixtures of the methyl and ethyl ester of the azulene was not yielding any 1,1 'biazulene product (Table 7, entry 4), so it was unlikely that the choice of alkyl group was influencing the outcome of the reaction. Several changes were made to the conditions in order to reproduce formation of the desired 1,1'-biazulene product 334, with the ethyl ester groups: the molar quantity of zinc metal was increased from 1.50 to 2.00 (Table 7, entry 5), and in addition to that, in a separate run, the $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}$ complex, the zinc and the tetra-n-butylammonium iodide were stirred for 30 min in THF at room temperature (Table 7, entry 6); neither of these modifications were successful in yielding the 1,1 '-biazulene 334 . The only products isolated were the 3 bromoazulene 333 and ethyl 2,4-dimethoxyazulene-1-carboxylate 326, the latter of which was perhaps produced by nickel(0) insertion between the azulene-bromine
bond, followed by a reaction of azulenylnickel species 335 with a proton source, which seems feasible, based on proposed mechanisms in previous literature ${ }^{201}$ (Scheme 62). Other methodologies were tested, such as the Fe-catalysed Kumadalike homocoupling ${ }^{202,203}$ of the in situ generated azulen-3-yl magnesium bromide (Table 7, entries 7 and 8), and a homocoupling reaction mediated by glucosegenerated $\operatorname{Pd}(0)$-nanoparticles ${ }^{204}$ (Table 7, entry 9); both of which yielded none of 1,1'-biazulene 334.

Scheme 62: Proposed mechanism of the oxidative addition of the azulen-3-yl bromide 333 to the $\mathrm{Ni}(0)$ centre, followed by protonolysis to make ethyl 2,4-dimethoxyazulene-1-carboxylate 326.

Given the struggle to reproduce the Ni-catalysed homocoupling method by lyoda, alternative literature methods, in which 1,1'-biazulenes had been synthesised, were explored. In 1982, Morita reported the synthesis of diethyl 1,1'-biazulene-3,3'dicarboxylate by heating ethyl 3-iodoazulene-1-carboxylate with a superstoichiometric quantity of copper metal, without any solvent, in 83% yield. ${ }^{205}$ Although both of these methods were precedented to form $1,1^{\prime}$-biazulenes, the Nicatalysed method had been seen as the more attractive because of the milder conditions. However, despite the energy intensive nature, the high yield of the Cumediated process appeared to demonstrate good functional group tolerance. To apply this methodology to this project, ethyl 2,4-dimethoxyazulene-1-carboxylate 326
was treated with N-iodosuccinimide to give the crude 3 -iodinated azulene 336, which was heated with 10 equivalents of copper powder at $200{ }^{\circ} \mathrm{C}$ for 6 hours. This process gave the desired product of (\pm)-diethyl 2,2',8,8'-tetramethoxy-[1,1'-biazulene]-3,3'-dicarboxylate (\pm)-334, but only in 3.4% yield (Scheme 63; Table 7, entry 10). To improve the mixing of the azulenyl iodide 336 and copper, DMF was used as a solvent, and by using 3 equivalents of copper powder at a reduced temperature and reaction time of $140^{\circ} \mathrm{C}$ and 3 hours respectively, the $1,1^{\prime}$-biazulene $(\pm)-334$ was produced in an improved 11% yield (Scheme 63, Table 7, entry 11).

$(\pm)-334$

Scheme 63: The iodination of ethyl 2,4-dimethoxyazulene-1-carboxylate 326 with N-iodosuccinimide, followed by copper-mediated homocoupling of the resultant 3-iodoazulene 336 to form (\pm)-diethyl 2,2',8,8'-tetramethoxy-[1,1'-biazulene]-3,3'-dicarboxylate (\pm)-334 (Table 7, entries 10 and 11).

The iodinated azulene 336 was also applied in the Ni-catalysed homocoupling methodology. Since the 3-iodoazulene 336 was visibly less stable than the 3bromoazulene 333 during the work-up procedure, two experiments were carried out in which the azulene 326 was treated with N-iodosuccinimide in THF, and on completion of the reaction, the mixture was immediately treated with the homocoupling conditions (Table 7, entries 12 and 13). Unfortunately, this did not produce any of the $1,1^{\prime}$-biazulene 334 either, but because of the presumed presence of the acidic byproduct succinimide, it was decided to apply a basic aqueous wash of the crude 3-haloazulene during the work-up process. Thus, after bromination of the
azulene 326 with N-bromosuccinimide in THF, the crude mixture was washed with aqueous sodium carbonate during the work-up process, and when the crude 3bromoazulene 333 was then treated with the homocoupling conditions as in Scheme 59, the desired product (\pm)-diethyl 2,2',8, 8^{\prime}-tetramethoxy-[1, 1^{\prime}-biazulene]-3,3'dicarboxylate (\pm)-334 was produced in 24% yield (Table 7, entry 14). The yield was increased to 29% if the reaction was allowed to run for 17 hours (Table 7, entry 15). Unfortunately, when the scale of this reaction was increased to 2.15 millimoles, the 1,1'-biazulene product (\pm)-334 was not detected (Table 7, entry 17).

By applying the basic aqueous wash to the Cu-mediated Ullmann homocoupling procedure, as in Scheme 63, the yield was slightly increased from 11% to 13% (Table 7, entry 16); though in this case, the procedure was carried out with 0.384 millimoles of azulene 326 (i.e. half of the 0.768 millimoles used before).

Table 7: Summary of the attempts towards a 1,1'-biazulene 334 through a homocoupling reaction of 3-haloazulenes.

Entry	$\mathbf{R}^{\text {a }}$	X	Basic aqueous wash ${ }^{\text {c }}$	Homocoupling method ${ }^{d}$	Running time $/ \mathrm{h}$	Scale of AzX /mmol	$\begin{aligned} & \text { Yield }{ }^{\text { }} \\ & \text { /\% } \end{aligned}$	Notes
1	Me	Br	No	1	3	0.489	49	
2	Me	Br	No	1	2	1.90	29	
3	Et	Br	No	1	2	1.37	0	
4	Me/Et	Br	No	1	24	2.5	0	Heated at reflux for final 3 h
5	Me/Et	Br	No	1	3	2.4	0	2.0 eq. of Zn used
6	$\begin{aligned} & \hline \mathrm{Me} / \mathrm{Et} \\ & (2: 1) \end{aligned}$	Br	No	1	18	0.73	0	2.0 eq. of Zn used; $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}, \quad \mathrm{Zn}$ and TBAI stirred in THF for 30 min at r.t. before addition of $\mathrm{Az}-\mathrm{X}$
7	$\begin{aligned} & \hline \mathrm{Me} / \mathrm{Et} \\ & (2: 1) \end{aligned}$	Br	No	2	19	0.47	0	
8	$\begin{aligned} & \mathrm{Me} / \mathrm{Et} \\ & (1: 1) \end{aligned}$	Br	No	2	1	0.68	0	Molecular iodine used to assist formation of $\mathrm{Az}-\mathrm{MgBr}$
9	$\begin{aligned} & \hline \mathrm{Me} / \mathrm{Et} \\ & (2: 1) \end{aligned}$	Br	No	3	21	0.15	0	
10	Et	1^{1}	No	4	6	$0.768^{\text {e }}$	3.4	$\begin{aligned} & 10.0 \text { eq. of } \mathrm{Cu}, \text { no solvent, } \mathrm{T}= \\ & 200^{\circ} \mathrm{C} \end{aligned}$
11	Et	I°	No	4	3	$0.768^{\text {e }}$	11	
12	Et	$1^{\text {b }}$	No	1	20	$0.384^{\text {e }}$	0	No aqueous work-up applied to halogenation step
13	Et	1^{5}	No	1	20	$0.384^{\text {e }}$	0	No aqueous work-up applied to halogenation step; $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}, \mathrm{Zn}$ and TBAI stirred in THF for 1 h at r.t. before addition of $\mathrm{Az}-\mathrm{X}$
14	Et	Br ${ }^{\text {b }}$	Yes	1	3	$0.384^{\text {e }}$	24	
15	Et	$\mathrm{Br}^{\text {b }}$	Yes	1	17	$0.423^{\text {e }}$	29	
16	Et	1^{5}	Yes	4	16	$0.384^{\text {e }}$	13	
17	Et	$\mathrm{Br}^{\text {b }}$	Yes	1	16	$2.15{ }^{\text {e }}$	0	

a) Mixtures of esters resulted from formation of azulene, from a procedure that deviated from 400 mg of $\mathbf{2 9 8}, 1.10 \mathrm{~mL}$ of trimethyl orthoacetate $\mathbf{3 2 4}$ and 1.0 mL of PhMe in 10 mL capacity microwave tubes b) Halogenation of azulene was carried out in THF, rather than benzene c) After the halogenation reaction, the crude mixture was washed with either $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ or $\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})}(1.0 \mathrm{M}$ or 2.0 M$)$ d) Procedure for homocoupling the 3-haloazulene, unless other stated in "Notes": $\mathbf{1}=\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}$
 dibromoethane (1.00 eq.), THF, r.t.; $\mathbf{3}=\mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{~mol} \%)$, glucose (0.50 eq.), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NOH}_{(a q)}\left(40 \mathrm{wt} \%,\right.$.3.00 eq.), $\mathrm{H}_{2} \mathrm{O} /$ dioxane (3:7), $90^{\circ} \mathrm{C} ; 4=\mathrm{Cu}\left(3.00 \mathrm{eq}\right.$.), DMF, $140^{\circ} \mathrm{C}$ e) Yield of halogenation of azulene was not recorded, and so assumed to be quantitative with respect to azulene f) Yield of 1,1 '-biazulene with respect to molar quantity in "Scale of AzX" column.

2.2.3. Chemical transformations of monoazulenes

The formation of a 1,1'-biazulene was shown to be a difficult synthetic step to develop, so during this stage of the project, focus was also brought to the improvement of other chemical steps useful towards the synthesis of the target 1,1 '-biazulene-2,2'-diphosphine ligand. Since it was difficult at this time to produce large, useful quantities of either (\pm)-diethyl 2,2',8,8'-tetramethoxy-[1, 1^{\prime}-biazulene]-3,3'dicarboxylate (\pm)-334 or the dimethyl ester (\pm)-328, experiments were instead carried out on monoazulene derivatives. Since the procedure had worked so well on the 1,1'-biazulene species (\pm) - 328 (Scheme 60), the demethylation of the monomeric azulene 326, mediated by boron tribromide, was attempted and proceeded smoothly to produce ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 in high yield (Scheme 110). Again, the reaction was entirely selective towards the 2-methoxy group, rather than that at the 4-position.

Scheme 64: The selective demethylation of ethyl 2,4-dimethoxyazulene-1-carboxylate 326, with boron tribromide, to give ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337.

The next step was to convert the 2-hydroxy group into a triflate, which would act as a leaving group for the installation of the phosphine group. However, when the triflation procedure applied to the 2,2'-dihydroxy-1,1'-biazulene 329 (Scheme 60) was adapted to the monomeric 2-hydroxyazulene 337, the desired product was inseparable from a side product on the silica column (Scheme 65). It emerged that because the pyridine in the system was acting as a nucleophilic catalyst to promote
the triflation, as well as a base, it meant the desired product 338 reacted further with the pyridinium triflate intermediate 340 at the nucleophilic 3-position of the azulene in a precedented manner, ${ }^{206}$ giving side product 339 , the identity of which was confirmed by NMR and mass spectrometry.

Scheme 65: The triflation of ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 with triflic anhydride and pyridine to form the desired product 338 and N-trifluoromethanesulfonate-1,4-dihydropyridin-4-yl adduct 339.

By switching pyridine with a less nucleophilic base, it was predicted that triflation would only occur at the hydroxyl group, and not at the 3-position. As expected, the treatment of ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 with triflic anhydride and triethylamine solely produced the desired azulen-2-yl trifluoromethanesulfonate 338 in 63\% yield in 6 hours (Scheme 66).

Scheme 66: The triflation of ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 with triflic anhydride and triethylamine to exclusively form azulen-2-yl triflate 338, the desired product.

Since the azulen-2-yl triflate 338 was now accessible on a scale of 2 millimoles, it was now more convenient to test methodologies for installing the phosphine group at the 2-position, that might be later applicable to an analogous biazulene (Scheme 67). An account by Laneman et al. described the cross coupling reaction of chlorodiphenylphosphine with several aryl, alkenyl and alkyl halides and triflates, in the presence of [1,2-bis-(diphenylphosphino)ethane]nickel(II) chloride and zinc in DMF in moderate to high yield. ${ }^{207}$ Unfortunately, when this methodology was applied to the azulen-2-yl trifluoromethanesulfonate 338, the only product isolated, other than starting material, was ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337. The presence of the latter product was unusual, as the cleavage of the azulenetriflate C-O bond would be expected, during the oxidative addition to either the zinc or nickel centres. The next experiment carried out was the application of the cross coupling method outlined in the Organic Syntheses paper for the synthesis of BINAP 51, similar to that in Scheme 60. On this occasion, the scale of the reaction was large enough to allow accurate portionwise addition of diphenylphosphine, but the desired product of azulen-2-yl diphenylphosphine 341 was not detected. However, instead of degradation of starting material, the products isolated, other than starting material, were ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 and an azulene derivative that could not be identified, but appeared to possess no methyl groups.

Scheme 67: The attempts to carry out a cross coupling reaction on azulen-2-yl trifluoromethanesulfonate 338 to synthesise azulen-2-yl diphenylphosphine 341.

A less typical method to install the phosphine group came through attempts to carry out the [8+2]-addition-elimination on ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3carboxylate 298 with a diphenylphosphine-containing olefinic species. This unprecedented transformation appeared attractive, as it would represent a very direct way of synthesizing an azulen-2-yl phosphine without resorting to functional group interconversions and transition metal catalysed cross coupling reactions. To test this reaction, the 2 H -cyclohepta[b]furan-2-one 298 was heated at $200{ }^{\circ} \mathrm{C}$ with 5.0 equivalents of diphenylvinylphosphine 342, which would produce 2,3dihydroazulene 343 if successful. Alkylation of the acidic 4-hydroxy group, followed by aromatisation with the oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) would yield the desired azulen-2-yl phosphine 341. Unfortunately, the reaction resulted only in degradation of the starting material (Scheme 68). After this experiment, the olefin partner was changed from diphenylvinylphosphine 342 to (1ethoxyvinyl)diphenylphosphine 346, which could be synthesised through the reaction of ethoxyacetylene 344 with diphenyl(trimethylsilyl)phosphine $345 .{ }^{208}$ This way, the 2,3-dihydroazulene product from an [8+2]-addition-elimination reaction could subsequently eliminate a molecule of ethanol in situ to form the azulene 341. However, after carrying out this process with similar conditions to the attempt to make 2,3-dihydroazulene 343, repeating with butylated hydroxytoluene (BHT) added to suppress radical pathways, and with microwave irradiation, none of the desired azulen-2-yl phosphine product 341 was detected.

Scheme 68: Attempts at synthesizing azulen-2-yl phosphine derivative 341 from ethyl 8-hydroxy-2-oxo- 2 H -cyclohepta[b]furan-3-carboxylate 298 and phosphine-containing olefins.

Because of the difficulty involved in forming an azulene species with a phosphine group at the 2-position, cross coupling reactions to form azulen-2-yl phosphine oxide derivatives were explored instead. The oxygen atom therefore would serve as a protecting group, and could be reduced at the end of the synthesis, which is why this approach is often employed to make phosphine ligands. A promising result was obtained from the palladium-catalysed cross coupling reaction of diphenylphosphine oxide and the monomeric azulen-2-yl triflate 338 in DMSO, with Hünig's base and 1,4-bis-(diphenylphosphino)butane (dppb) as a ligand. ${ }^{209}$ After purification by column chromatography and recrystallisation, the desired azulen-2-yl phosphine oxide 347 was obtained in 10\% yield (Scheme 69). This experiment represented the first azulene carbon-phosphorus bond formation of the project. The reaction was repeated, with the scale doubled from 0.132 mmol to 0.264 mmol , but the product could not be isolated with the same purity as before.

Scheme 69: The Pd-catalysed cross coupling reaction of azulen-2-yl triflate 338 with diphenylphosphine oxide to form ethyl 2-(diphenylphosphoryl)-4-methoxyazulene-1-carboxylate 341.

To extend the variety of the leaving group at the 2-position of the azulene, the reaction of ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 with phosphorus tribromide in toluene at $90^{\circ} \mathrm{C}$ gave a small amount of the desired product ethyl 2-bromo-4-methoxyazulene-1-carboxylate 348, in 5.5% yield (Scheme 70). ${ }^{210}$ If the reaction was optimised, the product would be suitable as an alternative to an azulen-2-yl triflate species in carbon-phosphorus cross coupling reactions. If the ester was converted to a different group, such as through decarboxylation to give the unsubstituted 1-position, or through reduction to form the 1-methyl group, it may be possible to carry out a halogen-lithium exchange process. The azulen-2-yllithium intermediate could then be quenched with an electrophilic source of phosphorus, such as chlorodiphenylphosphine, to form an azulen-2-yl phosphine species.

Scheme 70: The substitution of the hydroxy group of ethyl 2-hydroxy-4-methoxyazulene-1carboxylate 337 with phosphorus tribromide to give ethyl 2-bromo-4-methoxyazulene-1-carboxylate 348.

One method of removing the ester group by decarboxylation is to heat the alkyl azulene-1-carboxylate with lithium chloride, giving the unsubstituted 1-position, which proceeds by dealkylation of the ester by the chloride ion, followed by decarboxylation. ${ }^{211}$ When this reaction was tested on ethyl 2,4-dimethoxyazulene-1carboxylate 326 by heating it with 25 equivalents of lithium chloride in a $1: 1$ mixture by volume of DMF and water, this gave the desired decarboxylated product 349 in 8.8% yield (Scheme 71). About 8% of the starting material was recovered, which suggests conversion could be improved, particularly if degassed solvents were to be used.

Scheme 71: The lithium chloride-mediated decarboxylation of ethyl 2,4-dimethoxyazulene-1carboxylate 326 to give 2,4-dimethoxyazulene 349.

2.2.4. Synthesis of 3-aryl-2H-cyclohepta[b]furan-2-one precursors

At this stage, it appeared that the only purpose that the ester was serving, once the azulene had been formed, was to protect one of the electron-rich 1- and 3-positions of the azulene to prevent oligomerisation during a homocoupling reaction. It was also likely that these groups would have to be removed at some stage after a 1,1 'biazulene had been formed, and to have bulky aryl groups in place of those esters, which could be required for the chiral ligand to induce good stereoselectivity. In order to reduce the number of steps, it was postulated that instead of synthesising the 2 H -cyclohepta[b]furan-2-one precursor with diethyl malonate 294 as the active methylene compound, that an arene-containing active methylene group could be
used instead, which had never been carried out previously. This way, the aryl group in the 3-aryl- 2 H -cyclohepta[b]furan-2-one product could be retained throughout the synthesis of the ligand, as it would likely be less reactive than the ester group. Encouragingly, a few derivatives of 3-aryl-2H-cyclohepta[b]furan-2-one were synthesised in a facile manner, on a scale of 2.50 mmol (Table 8). The first reaction that was attempted was the synthesis of 8-hydroxy-3-(4-nitrophenyl)-2H-cyclohepta[b]furan-2-one 355 from 2-tosyloxytropone 297 and ethyl 4nitrophenylacetate 350 in 52% yield (Table 8, entry 1); the 4-nitrophenyl group was chosen because of its electron withdrawing ability, keeping the $\mathrm{p} K_{\mathrm{a}}$ of the methylene group low. When ethyl phenylacetate 351 was used as the active methylene compound, using otherwise the same method as with ethyl 4-nitrophenylacetate $\mathbf{3 5 0}$, the product of 8-hydroxy-3-phenyl-2H-cyclohepta[b]furan-2-one 356 was produced in only approximately 5% yield (Table 8 , entry 2). Carrying out this reaction at $60{ }^{\circ} \mathrm{C}$ rather than ambient temperature doubled the product yield to 10%, with a higher purity as the NMR spectrum showed no trace of ethyl phenylacetate (Table 8, entry 3). For the active methylene compound, the 4-nitrophenyl group has a greater ability to stabilise an adjacent negative charge than a phenyl group, so it was predicted that a stronger base would improve the yield of the 2 H -cyclohepta[b]furan-2-one derivative. As expected, the reaction of 2-tosyloxytropone 297 and ethyl phenylacetate 351 at ambient temperature, using potassium tert-butoxide as the base, gave 8-hydroxy-3-phenyl-2H-cyclohepta[b]furan-2-one 356 in 34% yield (Table 8, entry 4). When this process was undertaken at an elevated temperature of $60^{\circ} \mathrm{C}$, exactly the same yield was achieved (Table 8, entry 5). Other $2 H$-cyclohepta[b]furan-2-one derivatives synthesised in a similar way, using potassium tert-butoxide as the base, were 8-hydroxy-3-(naphthalen-1-yl)-2H-cyclohepta[b]furan-2-one 357, from
methyl-1-naphthaleneacetate 352 , in approximately 55% yield (Table 8 , entry 6), with a small amount of impurity in the product; and methyl 4-(8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-yl)benzoate 358, from methyl 4-(2-methoxy-2oxoethyl)benzoate 353, in a pleasing 71% yield (Table 8, entry 7). For each of these examples in Table 8, it is assumed that a small amount of side product 354 was produced, without the 8-hydroxy group (via the mechanism of Pathway A, Scheme 52). The yields of these side products 354 were not recorded, as they were removed during the work-up process each time by washing the aqueous layer, under basic conditions, with toluene. The organic solvent extracted the side product and excess activated methylene compound, while the desired product remained in the aqueous layer in its anionic form, due to the acidic 8-hydroxy group. Instead of isolating the side products from the excess active methylene compound, which would have required column chromatography or a distillation, they were simply discarded.

Table 8: The synthesis of various 3-aryl-2H-cyclohepta[b]furan-2-one derivatives, from 2tosyloxytropone 297 and the corresponding aryl active methylene compounds.

Entry	AMC ${ }^{\text {a }}$	Ar	R	Base	Solvent	Temperature $/{ }^{\circ} \mathrm{C}$	Running time /h	Product	Yield /\%
1	350	$-\mathrm{C}_{6} \mathrm{H}_{4}\left(p-\mathrm{NO}_{2}\right)$	Et	NaOEt ${ }^{\text {b }}$	EtOH	$0 \rightarrow \mathrm{r} . \mathrm{t}$.	20	355	52
2	351	Ph	Et	NaOEt ${ }^{\text {b }}$	EtOH	$0 \rightarrow \mathrm{r} . \mathrm{t}$.	26	356	$5^{\text {c }}$
3	351	Ph	Et	NaOEt ${ }^{\text {b }}$	EtOH	60	21	356	10
4	351	Ph	Et	t-BuOK ${ }^{\text {c }}$	t-BuOH	r.t.	20	356	34
5	351	Ph	Et	t-BuOK ${ }^{\text {c }}$	t-BuOH	60	17	356	34
6	352	1-naphthyl	Me	t-BuOK ${ }^{\text {c }}$	t-BuOH	r.t.	24	357	$55^{\text {d }}$
7	353	$-\mathrm{C}_{6} \mathrm{H}_{4}\left(p-\mathrm{CO}_{2} \mathrm{Me}\right)$	Me	t-BuOK ${ }^{\text {c }}$	t-BuOH	r.t.	17	358	71

a) AMC = active methylene compound b) Prepared freshly by dissolving sodium metal in ethanol c) Sourced from ready-made bottle from Sigma-Aldrich, at a concentration of 1.0 M in tert-butanol d) Contained a small amount of impurity.

After being able to synthesise a few derivatives of 3-aryl-2H-cyclohepta[b]furan-2one, the conversion of some of these compounds to azulenes was attempted (Table 9). At first, the p-nitrophenyl derivative 355 was heated with trimethyl orthoacetate 324 in toluene at $200{ }^{\circ} \mathrm{C}$ for 3 hours (Table 9, entry 1). This experiment produced a mostly clean sample of the desired azulene product 362 in approximately 5% yield, which co-eluted with traces of unidentifed side products. However, the majority product from this reaction was 8 -methoxy-3-(4-nitrophenyl)-2H-cyclohepta[b]furan-2one 359 , i.e. the methylated derivative of the starting material, in 66% yield. This solid had crystallised out of the reaction mixture after allowing it to cool to room temperature, so it was simply collected by filtration before the remaining filtrate was purified by column chromatography. Because of the polarity induced by the nitro group, this reduced the solubility of the starting material, presumably due to increased π-stacking interactions between molecules. To improve the solubility for the reaction mixture, N-methylpyrrolidone (NMP) ${ }^{212}$ was used as a solvent in place of toluene. With this change applied, the yield of azulene 362 improved to around 13\% (Table 9, entry 2), though this product was not isolated cleanly as the presence of NMP caused streaking of the crude mixture through the silica. This experiment was repeated with an aqueous work-up applied before column chromatography, which permitted some pure azulene 362 to be separated, but only in 6% yield (Table 9, entry 3). The methylated derivative 359 could not be isolated when NMP was used as the solvent. When the conversion of the phenyl derivative 356 of 3 -aryl-2H-cyclohepta[b]furan-2-one to the azulene was attempted, with toluene as the solvent, a lower yield of 2.8% was obtained for 1-phenylazulene 363 (Table 9, entry 4). This result was expected, due to the reduced electrophilicity of phenyl derivative 356 compared to p-nitrophenyl derivative 355 . Similar to the p-nitrophenyl derivative 359 ,
the methylated byproduct 360 was obtained in 41% yield, which was collected by filtration after the reaction had cooled to room temperature. Finally, the same [8+2]-addition-elimination reaction was attempted with the methyl p-benzoate derivative 358 , in which only the methylated byproduct 361 could be detected, and was isolated in 38% yield (Table 9, entry 5). Overall, while the synthesis of these novel azulene products had formed the basis of an interesting tangent from the main work, the yields were too low to be of immediate use to this project, so any further developments were postponed for the future.

Table 9: The attempts at transforming the 3-aryl-2H-cyclohepta[b]furan-2-one derivatives into corresponding azulenes, through the [8+2]-addition-elimination reaction with trimethyl orthoacetate
324.

Entry $^{\text {a }}$	Ar	Solvent	Running time /h	Yield of 359-361 /\%	Yield of 362-364 /\%
1	$-\mathrm{C}_{6} \mathrm{H}_{4}\left(p-\mathrm{NO}_{2}\right)$	Toluene	3	$66(\mathbf{3 5 9)}$	5.2 (impure) (362)
2	$-\mathrm{C}_{6} \mathrm{H}_{4}\left(p-\mathrm{NO}_{2}\right)$	NMP	6	not isolated (359)	13 (impure) (362)
3^{b}	$-\mathrm{C}_{6} \mathrm{H}_{4}\left(p-\mathrm{NO}_{2}\right)$	NMP	6	not isolated (359)	$5.8(\mathbf{3 6 2)}$
$4^{\text {c }}$	Ph	Toluene	6	$41(\mathbf{3 6 0})$	$2.8(\mathbf{3 6 3)}$
$5^{\text {d }}$	$-\mathrm{C}_{6} \mathrm{H}_{4}\left(p-\mathrm{CO}_{2} \mathrm{Me}\right)$	Toluene	5	$38(\mathbf{3 6 1)}$	$0(\mathbf{3 6 4})$

a) Unless otherwise stated, experiments were carried out with 0.706 mmol of $\mathbf{3 5 5}, 356$ or $358,1.5 \mathrm{~mL}$ of trimethyl orthoacetate and 1.5 mL of solvent, under an atmosphere of air at $200^{\circ} \mathrm{C}$ in a sealed microwave tube (capacity 10 mL), and reaction mixture was loaded directly onto silica column after completion of reaction b) After completion of reaction, diluted with ethyl acetate and washed with water, dried and concentrated under reduced pressure before column chromatography c) 0.210 mmol of $\mathbf{3 5 6}, 1.0$ mL of trimethyl orthoacetate and 1.0 mL of solvent used $\mathbf{d}) 0.337 \mathrm{mmol}$ of $\mathbf{3 5 8}, 1.0 \mathrm{~mL}$ of trimethyl orthoacetate and 1.0 mL of solvent used.

2.2.5. 1,1'-biazulene formation though Cu-catalysed oxidative homocoupling

While there had been some fruitful results for the experiments on monoazulenes, the synthetic route towards a ligand was still limited, as a satisfactory method to couple the azulene units together had not been achieved. Previous methods from the
literature to form the 1,1'-biazulene could only achieve low yields, on a small scale, from the azulene monomers involved in this project. It was therefore decided to search for homocoupling methods that had worked for benzenoid aromatic molecules, rather than azulene, that possessed similar substituents to the monomeric azulene compounds that had been already reliably synthesised in this project. It was at this time that a promising precedent was found from the extensive work of Kozlowski et al., towards the asymmetric oxidative homocoupling reactions of 2-hydroxynaphthalene derivatives ${ }^{213}$ for the synthesis of axially chiral natural products. For the total synthesis of $\left(S_{a}\right)$-bisoranjidiol 368 , the group were able to employ a 1,5-diaza-cis-decalin copper(II) catalyst 366 to induce stereoselectivity for the asymmetric oxidative homocoupling reaction of methyl 5-(benzyloxy)-3-hydroxy-2-naphthoate 365 , giving the axially chiral 1,1'-binaphthyl product 367 in 87% e.e. and 62% yield (Scheme 72). ${ }^{214}$ After purifying the product to a single enantiomer with a trituration, it was eventually transformed into the target natural product 368.

365

87\% e.e. (improved to $>99 \%$ e.e. after trituration)

Scheme 72: The asymmetric synthesis of 1,1'-binaphthyl product 367, the precursor for the axially chiral natural product (S_{a})-bisoranjidiol 368, by Kozlowski.

Due to the similarity between the hydroxynaphthalene 365 and ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337, which was readily available from synthetic
methods employed in this project, Kozlowski's method appeared to be suitable not only to produce a 1,1 '-biazulene, but also potentially to induce stereoselectivity and produce enantioenriched 1,1'-biazulene products. However, the enantioselectivity of the homocoupling reaction on an azulene monomer, at a point when it was unknown whether the process would even yield any 1,1'-biazulene product, was a consideration for a later time. Conveniently, the paper also described the synthesis of the racemic form of $1,1^{\prime}$-binaphthol 367 in 91% yield using a TMEDA-copper(II) catalyst 369, which is inexpensive compared to the chiral 1,5-diaza-cis-decalin copper(II) complex 366. Adapting Kozlowski's reported procedure, ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 was stirred with the TMEDA-copper(II) complex 369 in acetonitrile and 1,2-dichloroethane (2:1) under an oxygen atmosphere for 16 hours at room temperature, and then for 47 hours at $40{ }^{\circ} \mathrm{C}$. A similar additional experiment was also set up, carried out on this occasion under atmosphere of air at $40^{\circ} \mathrm{C}$, stirred for 21 hours, to see if the oxygen atmosphere was necessary for this substrate. Both experiments appeared to produce the desired 1,1'-biazulene-2,2'-diol product ($\mathbf{\pm}$)-370. However, after aqueous washes of both reaction mixtures, followed by column chromatography, the high polarity of the compound resulted in too great an affinity to the silica gel to purify it this way. Encouragingly, it had been noticed that on completion of the reaction, a red precipitate had been produced. Another experiment was then carried out, under an atmosphere of air at $40^{\circ} \mathrm{C}$ for 47 hours. The red precipitate was simply collected by filtration after cooling the mixture at -18 ${ }^{\circ} \mathrm{C}$ for an hour, which transpired to be the desired pure 1,1 '-biazulene-2,2'-diol $(\pm)-370$ in 28% yield. On increasing the scale of the procedure from 0.411 mmol , eventually to 8.94 mmol , the desired product could be produced in 55% yield (Scheme 73). Given that this result was reproducible, this procedure represented a
great improvement in yield, scalability and reliability compared to the Ullmann-like methods to produce a 1,1'-biazulene species.

Scheme 73: The copper-catalysed oxidative homocoupling reaction to produce (\pm)-diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate (\pm)-370.

2.2.6. Chemical transformations of ester-containing 1,1'-biazulene-2,2'-diol

Now that a 1,1'-biazulene species could be easily synthesised, the next step was to convert the two hydroxy groups to triflates. Disappointingly, when the procedure described in Scheme 66 was adapted for the biazulene diol 370, the result was a mere 9.1% yield of the desired biazulene ditriflate (\pm)-372 (Table 10, entry 1), compared to the 63% yield achieved for the triflation of the monomeric ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337. Although the 1,1'-biazulene-2,2'-diol $(\pm)-370$ was more sparingly soluble than its corresponding monomer, the expected implication of this would be a slower reaction. Instead, the monotriflated product $(\pm)-371$ was only produced in 7.1% yield, and there was no recovered starting material. As the reaction proceeded, the mixture changed colour from deep red to black, which is more indicative of a degradation process of the azulene structure. A similar reaction was carried out with the addition of triflic anhydride taking place at $78{ }^{\circ} \mathrm{C}$, resulting in a purple solution at this temperature. However, on allowing the
mixture to warm to room temperature, the colour changed to black, and the desired product (\pm)- $\mathbf{- 3 7 2}$ could not be isolated purely (Table 10, entry 2). The logical next step was to maintain the mixture at $-78^{\circ} \mathrm{C}$ for the duration of the reaction. When this was done, using 6.0 equivalents of triethylamine and 3.0 equivalents of triflic anhydride (plus another 2.0 equivalents added after 90 minutes to ensure complete conversion of starting material), running for 2 hours, the desired biazulene ditriflate (\pm)-372 was produced in an improved 30% yield (Table 10, entry 3). When the scale of the experiment was increased from 0.12 mmol to 1.0 mmol , but without the additional 2.0 equivalents of triflic anhydride, the yield of the ditriflate (\pm)- $\mathbf{3 7 2}$ was 22% (Table 10, entry 4). Because of the larger scale, the remaining starting material (\pm)-370 could be recovered in 10\% yield, collected by filtration immediately after the reaction had finished.

Table 10: The attempts to convert 1,1'-biazulene-2,2'-diol (\pm)-370 to $1,1^{\prime}$ 'biazulene-2,2'-ditriflate $(\pm)-372$ using triflic anhydride and triethylamine as base.

Entry	Scale /mmol	Equivalents of $\mathrm{Tf}_{2} \mathrm{O}$	Equivalents of NEt_{3}	Temperature $^{\mathrm{b}}$	Running time $/ \mathrm{h}$	Yield of (\pm)-371	Yield of (\pm)-372
1	0.612	4.35^{a}	6.22^{a}	$0 \rightarrow \mathrm{rt}$.	18	7.6	9.1
2	0.204	3.00	5.28	$-78 \rightarrow \mathrm{rt}$.	22	4.9	impure
3	0.120	5.00^{a}	12.0^{a}	-78	2	impure	30
4	1.02	3.00	5.00	-78	7	0^{c}	22

a) Reagent added in two portions b) Changes in temperature were effected immediately after the first addition of triflic anhydride, and for second addition of reagents, the reaction was cooled to starting temperature c) The starting material (\pm)- $\mathbf{3 7 0}$ was recovered in 10% yield.

Since none of the protocols, in which triethylamine was used as the base, were affording the desired ditriflate $(\pm)-372$ in a satisfactory yield, other methods in the literature were explored. It appeared that the triflation reaction had to be treated more carefully for the 1,1'-biazulene-2,2'-diol (\pm)-370 than for the 2-hydroxyazulene 337. After searching for a procedure that worked specifically for a biaryl diol, a report by Mikami et al. was found, describing the ditriflation of 4,4'-di-tert-butyl-[1,1'-biphenyl]-2,2'-diol with 2.5 equivalents each of triflic anhydride and 2,6-lutidine, and 0.1 equivalents of N, N-dimethylaminopyridine (DMAP), which gave the corresponding ditriflate product in 97% yield. ${ }^{215}$ This procedure was applied to the 1,1'-biazulene-2,2'-diol (\pm)-370, on a scale of 0.41 mmol , at $-78{ }^{\circ} \mathrm{C}$ for 4 hours, followed by stirring overnight at room temperature (Scheme 74). It proved to be a much cleaner reaction, producing the biazulene ditriflate (\pm)-372 in 39% yield, though also along with the monotriflated product (\pm)-371 in 42% yield. By increasing the quantities of triflic anhydride and 2,6-lutidine to 5.0 equivalents each, and adding the triflic anhydride to the mixture in two portions, the yield of biazulene ditriflate (\pm)-372 improved to 47%, without a trace of the monotriflated biazulene $(\pm)-371$. When the scale of the reaction was doubled to 0.82 mmol , the yield of biazulene ditriflate $(\pm)-372$ was mostly retained, at 44%.

Scheme 74: The ditriflation of diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate $(\pm)-370$ with triflic anhydride, with 2,6 -lutidine as the base, and in the presence of DMAP, to make biazulene monotriflate (\pm)-371 and biazulene ditriflate (\pm)-372.

Now that practicable quantities of 1,1'-biazulene-2,2'-ditriflate (\pm)- $\mathbf{3 7 2}$ could be isolated, the most challenging step of the synthesis followed, which was to carry out a double cross coupling reaction to install phosphine groups at the 2,2'-positions. Due to the previous success in forming the monomeric azulen-2-yl phosphine oxide 347, as in Scheme 69, this method was adapted for the biazulene ditriflate (\pm)-372 by increasing the molar quantities of all of the reagents by a factor of two. This reaction was run twice: once with degassed, anhydrous DMSO as the solvent, and the other in DMSO that was merely anhydrous. Neither of these experiments yielded neither the desired biazulene diphosphine oxide $(\pm)-373$, nor the semi-complete biazulene monophosphine oxide monotriflate; the only identified product was 1,4 -bis(diphenylphosphino)butane dioxide from the experiment with non-degassed solvent (Scheme 75). In a similar manner to improving the double triflation reaction, other literature methods were explored, specifically to convert a biaryl ditriflate rather than a monomer. The same paper, by Mikami et al., that described the double triflation using 2,6-lutidine and DMAP, reported a subsequent process to convert 4,4'-tert-butyl-[1,1'-biphenyl]-2,2'-diyl bis-(triflate) to the corresponding biaryl bis-
(diphenylphosphine oxide) in 72% yield. ${ }^{215}$ The conditions were similar to what had already been tried in this project, but specified a reaction time of 48 hours, rather than overnight. Following this protocol, the conditions used for the next attempt at converting the biazulene ditriflate (\pm)-372 to the biazulene diphosphine oxide (\pm)-373 were 3.0 equivalents of diphenylphosphine oxide, 0.1 equivalents of palladium diacetate, 4.0 equivalents of Hünig's base and 0.1 equivalents of dppb. Unfortunately, after heating this mixture in degassed DMSO at $100^{\circ} \mathrm{C}$ for 63 hours, the only identified product, again after column chromatography, was dppb dioxide. The possibility was then considered that the desired biazulene diphenylphosphine oxide product could be too polarised to elute through the silica column, and was hidden amongst a stationary fraction at the baseline. To test this hypothesis, the experiment was repeated, in which an attempted reduction of the two phosphine oxide groups with trichlorosilane was carried out on the crude mixture to try forming diphosphine (\pm)-374. Once this process had taken place, the proton NMR spectrum of the subsequent crude mixture revealed a trace of an azulene-like product, which could not be identified. It was after this experiment that it was accepted that perhaps the pseudohalides on the biazulene ditriflate $(\pm)-372$ were too sterically hindered to react, leading to competing processes that led to degradation of the starting material.

(\pm)-373
(\pm)-372
(\pm)-374

Scheme 75: The attempts at the Pd-catalysed cross coupling reaction of diphenylphosphine oxide and 1,1'-biazulene-2,2'-ditriflate (\pm)-372 (left), and the trichlorosilane-mediated reduction of the assumed crude bis-(diphenylphosphine) oxide product (\pm)-373 (right).

2.2.7. Removal of ester groups

In order to decrease steric bulk around the triflate groups, one option was to remove the ester groups in a decarboxylation reaction, as they had already served their purposes in the synthesis; that is, to activate the 2 H -cyclohepta[b]furan-2-one derivative 298 for the [8+2]-addition-elimination reaction to form the azulene 326, and to coordinate to the copper(II) catalyst to facilitate the oxidative homocoupling reaction, forming the 1,1 '-biazulene $(\pm)-370$. The lithium chloride-mediated method described in Scheme 71 was low yielding, so it was decided that an alternative method, which was to heat the azulenyl carboxylate in orthophosphoric acid, was to be tested instead, as it had been previously shown to work for alkyl 2-hydroxyazulene-1-carboxylate derivatives. ${ }^{194}$ At first, the process was tested by heating 1,1 '-biazulene- $2,2^{\prime}$-diol (\pm) - 370 with the standard commercially available form of orthophosphoric acid, which is $85 \mathrm{wt} . \%$ in water, at $95{ }^{\circ} \mathrm{C}$ for 30 minutes. The desired product of 2,2'-dihydroxy-8,8'-dimethoxy-1,1'-biazulene (\pm)-375 appeared to be the majority product of the crude mixture by mass spectrometry.

However, the proton NMR spectrum was not well-defined, and appeared to show alkene-like signals, which may indicate that the compound prefers to form the keto tautomer (\pm)-376 in $\mathrm{CDCl}_{3},{ }^{216}$ rather than the enol tautomer (\pm)-375 (Scheme 76). In addition, the product lacked stability on silica, possibly due to the acidic environment causing aldol-like degradation processes and oligomerisation, and could not be purified.

Scheme 76: The attempted removal of the ester groups from diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate (\pm)-370 with aqueous orthophosphoric acid, giving the unstable 2,2'-diol (\pm)-375.

To combat this lack of stability, it was hypothesised that the 1,1'-biazulene-2,2'-diol product (\pm)-375 could be trapped in the desired bis-(enol) tautomer through rapid O subtitution. With this idea in mind, the reaction was repeated with anhydrous orthophosphoric acid (dried by using phosphorus pentoxide) this time, and instead of purification with column chromatography, the crude 1,1'-biazulene-2,2'-diol (\pm)-375 was treated with a similar procedure to that previously used in this project for a double triflation, as described in Scheme 74. After stirring with triflic anhydride, 2,6lutidine and DMAP at $-78{ }^{\circ} \mathrm{C}$ for 8 hours, the desired 1,1'-biazulene-2,2-ditriflate $(\pm)-377$ was isolated in 45% yield with respect to the ester-containing biazulene diol $(\pm)-370$ (Table 11, entry 1). An unusual side product of 2'-ethoxy-[1,1'-biazulene]-2-yl
triflate (\pm) - $\mathbf{3 8 0}$ was also obtained in 8% yield, which was probably formed from the 2-hydroxy-2'-ethoxy-1,1'-biazulene intermediate (\pm)-379, which itself could have formed by an acid-mediated migration of the ethyl group from the ester to the hydroxyl group. When the scale of this reaction was doubled to 0.41 mmol, the yield of (\pm) - 377 was essentially retained, giving 44% of the desired 1,1 '-biazulene-2,2'ditriflate $(\pm)-377$ after a much shorter length of time to carry out the triflation process (Table 11, entry 2). Again, the side product (\pm)-380 was formed (in 4.8% yield), and it was from this experiment that the structure of $(\pm)-380$ could be elucidated, due to the higher purity of this sample than that of entry 1 . The scale of the experiment was increased again to 0.88 mmol , and the triflation was allowed to warm up to room temperature after the addition of triflic anhydride at $-78^{\circ} \mathrm{C}$, which resulted in a slight decrease of the yield of $(\pm)-377$ to 39% (Table 11, entry 3). No trace of side product $(\pm)-380$ was detected this time, although it is unclear why this was the case. The best yield, at 52%, of biazulene triflate (\pm)- 377 was achieved because of a running time for the decarboxylation being increased to nearly 2 hours, or due to using 2.5 equivalents of triflic anhydride in the second step, which was half of what was previously used, or due to both of these changes (Table 11, entry 4). This experiment produced some of side product $(\pm)-\mathbf{3 8 0}$, but the yield of this could not be determined as it could not be isolated in pure form. Overall, despite consisting of two chemical steps, it was felt that this procedure was more convenient than that of Scheme 74, as the triflation step could be run at room temperature without degradation of the starting material. This process also added flexibility in the construction of the ligand, as the removal of the ester groups would allow derivatisation of the 3,3 -positions at a later stage, if this was required in order to improve the stereoselectivity of a particular reaction.

Table 11: The phosphoric acid-mediated decarboxylation of diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate (\pm)-370, followed by the double triflation of the hydroxyl groups.

$\mathrm{Tf}_{2} \mathrm{O}$
2,6-lutidine
(\pm)-375 used crude
(a)
(\pm)-370

(\pm)-379 used crude

$(\pm)-377$
(\pm - 378

Entry	Scale /mmol	Running time (a) $/ \mathrm{min}$	Equivalents of $\mathrm{Tf}_{2} \mathrm{O}^{\mathrm{a}}$	Temperature $/{ }^{\circ} \mathrm{C}$	Running time (b) $/ \mathrm{h}$	$\begin{aligned} & \text { Yield of } \\ & (\pm)-377 / \% \end{aligned}$	$\begin{aligned} & \text { Yield of } \\ & (\pm)-380 / \% \end{aligned}$
1	0.204	30	5.00	-78	8	45	$\begin{aligned} & \hline \sim 8 \text { (slight } \\ & \text { impurity) } \end{aligned}$
2	0.408	40	5.00	-78	2	44	4.8
3	0.877	55	5.00	$-78 \rightarrow \mathrm{rt}$. ${ }^{\text {b }}$	15	39	0
4	0.532	110	2.50	$-78 \rightarrow \mathrm{rt}$.	18	52	(impure) ${ }^{\text {c }}$

a) When 5.00 equivalents were used, triflic anhydride was added in two portions b) Temperature was lowered to $-78^{\circ} \mathrm{C}$ again for second addition of triflic anhydride c) Identity of impurity unknown.

The reversal of the order of the above two steps was tested as well, i.e. double triflation of the ester-containing biazulene diol (\pm)-370, followed by orthophosphoric acid-mediated decarboxylation. The decarboxylation process required 3 hours of heating the ester-containing 1,1'-biazulene-2,2'-ditriflate (\pm)-372 with anhydrous orthophosphoric acid at $95{ }^{\circ} \mathrm{C}$ to completely consume the starting material, and this only resulted in 21\% yield of the decarboxylated biazulene ditriflate (\pm)- $\mathbf{3 7 7}$ (Scheme 77). The decarboxylation of the ester-containing biazulene diol (\pm)-375 probably works more efficiently than for the ditriflate $(\pm)-372$, as the hydroxy group can act as
a hydrogen bond donor towards the carbonyl, polarising the ester moiety and increasing the reaction rate.

Scheme 77: The decarboxylation reaction of the ester-containing 1,1'-biazulene-2,2'-ditriflate ($\mathbf{\pm}$)-372.

It was decided that the decarboxylation-triflation procedure should be undertaken in that order, as described in Table 11. This protocol was shown to have some versatility in the choice of the electrophile, as phosphorus tribromide could be used in place of triflic anhydride, to install bromines at the 2,2'-positions of the biazulene. The treatment of $1,1^{\prime}$-biazulene-2,2'-diol (\pm)-370 with anhydrous orthophosphoric acid at $95{ }^{\circ} \mathrm{C}$ for 30 minutes, followed by the reaction of the crude mixture with phosphorus tribromide in toluene at $90^{\circ} \mathrm{C}$ for 9 hours, produced $2,2^{\prime}$-dibromo-8, 8^{\prime} -dimethoxy-1,1'-biazulene (\pm)-381 in 18\% yield (Scheme 78).

Scheme 78: The decarboxylation of 1,1'-biazulene-2,2'-diol (\pm)-370, followed by treatment with phosphorus tribromide, to give the dibromo biazulene (\pm)-381.

2.2.8. Installation of phosphorus-containing functional groups

Now that a method had been developed to produce a 1,1'-biazulene-2,2'-ditriflate compound with the ester groups removed, this species would now be less sterically hindered, and would perhaps be better suited for the carbon-phosphorus bond formation to synthesise a 1,1-biazulene-2,2'-diphosphine ligand. As the only successful carbon-phosphorus cross coupling reaction had taken place with the palladium-catalysed formation of the azulen-2-yl phosphine oxide 347, as described in Scheme 69, this methodology was applied towards the decarboxylated biazulene ditriflate (\pm)-372. This species was heated at $100{ }^{\circ} \mathrm{C}$ with diphenylphosphine oxide, palladium diacetate, bis-1,4(diphenylphosphino)butane and Hünig's base in DMSO for 41 hours (Scheme 79). Inspection of the proton NMR spectrum of the crude mixture showed that virtually all of the starting material had been consumed, and had been replaced by several azulene-like species. The mass spectrum of the mixture showed matching m / z values for both the desired product $(\pm)-383$ and monophosphine oxide species (\pm)-382. The application of column chromatography gave a fraction of several inseparable azulene-like species. In order to aid separation, this fraction was treated with trichlorosilane and triethylamine in toluene at $100^{\circ} \mathrm{C}$ to reduce the phosphine oxide, and to this resultant mixture was added borane to form the phosphine borane adduct, to prevent spontaneous re-oxidation. Unfortunately, after column chromatography, the only product isolated was the mono-phosphine oxide species (\pm)-382 in 15% overall yield, implying that the cross coupling reaction had only worked on one triflate group, and that the reduction step had not worked. Despite not being able to isolate the desired biazulene diphenylphosphine oxide, this
experiment still represented progress towards the target ligand, as the presence of esters had previously prevented any reaction of the triflate groups from taking place.

1) $\mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2}(3.00$ eq.)
$\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.10 eq.$\left.\right)$,

(\pm)-377
dppb (0.10 eq.)
DIPEA (4.00 eq.)
DMSO, $100^{\circ} \mathrm{C}, 41 \mathrm{~h}$
2) HSiCl_{3} (8.90 eq .)
NEt_{3} (11.0 eq.)
PhMe, $100^{\circ} \mathrm{C}, 19 \mathrm{~h}$ then BH_{3}. THF (2.00 eq.),
rt., 1 h

(\pm)-382
15% overall

(\pm)-383
trace identified after step 1

Scheme 79: The Pd-catalysed cross coupling reaction of diphenylphosphine oxide with 1,1'-biazulene-2,2'-ditriflate (\pm)-377, followed by attempted trichlorosilane reduction and borane protection of the phosphine groups.

The nickel-catalysed cross coupling reaction of chlorodiphenylphosphine with 1,1 '-biazulene-2,2'-ditriflate $(\pm)-377$ was also attempted, to access directly the diphosphine without requiring a reduction step for any phosphine oxide groups. This procedure was similar to that described in Scheme 68, except the equivalents of reagent and conditions were adjusted according to the procedure by Wu et al. ${ }^{217}$ Rather than resulting in degradation of starting material, however, this experiment appeared to have no effect on the biazulene ditriflate (\pm)-377, as this was the only product shown in the crude analysis (Scheme 80). This result supports the idea that ester groups at the 1- or 3-positions of the azulene lead to instability of the structure under the conditions of this sort of nickel-catalysed carbon-phosphorus bond formation.

Scheme 80: The attempted Ni-catalysed cross coupling reaction between chlorodiphenylphosphine and 1,1'-biazulene-2,2'-ditriflate (\pm)-377.

The 2,2'-dibromobiazulene derivative (\pm)-381 was also readily accessible, so a strategy to access the 1,1'-biazulene-2,2'-diphosphine ligand through a halogenlithium exchange, followed by quenching the azulen-2-yllithium with an electrophile, was also explored. The drawback to this approach was that bromine-lithium exchange chemistry at the 2-position of an azulene structure had not previously been carried out in the literature, so it was likely that carrying out two lithiations on the biazulene would be challenging. The 2,2'-dibromo derivative (\pm)-381 was thus treated with n-butyllithium in THF at $-78^{\circ} \mathrm{C}$, and at the same temperature, the presumed biazulen-2,2'-diyl dilithium intermediate was treated with chlorodiphenylphosphine, and allowed to warm to room temperature (Scheme 81). The reaction did not yield the desired product but unexpectedly, the starting material was largely recovered from the experiment. To try facilitating the halogen-lithium exchange process, the $2,2^{\prime}$-dibromobiazulene $(\pm)-381$ was subjected to two literature methods for a Finkelstein-like reaction to access the $2,2^{\prime}$-diiodo-1,1'-biazulene (\pm)385. The first method was to heat at reflux the dibromo derivative (\pm)-381 with an excess of both copper (I) iodide and potassium iodide in DMF, ${ }^{194}$ which only resulted in the degradation of starting material. The second attempt was similar to the first, but with sodium iodide in place of potassium iodide, N, N '-dimethylethylenediamine
as a ligand, and with heating at reflux in toluene. ${ }^{218}$ No conversion of the starting material was observed after 22 hours of reaction time. As the 2,2 '-bromo-1,1'azulene (\pm)-381 could not be synthesised as efficiently as the analogous ditriflate species (\pm)-377, the focus was shifted away from the halogen-lithium exchange strategy and back to a transition metal cross-coupling method.

PhMe, $\Delta, 22$ h
Scheme 81: The attempted installation of diphenylphosphine groups by halogen-lithium exchange of $2,2^{\prime}$-dibromo-8,8'-dimethoxy-1,1'-biazulene (\pm)-381, and attempted substitution of bromide groups with iodides.

Although the removal of the $3,3^{\prime}$-ester groups had enabled some reactivity of the 1,1'-biazulene-2,2'-ditriflate (\pm)-377 to take place in the palladium-catalysed cross coupling reaction with diphenylphosphine oxide, the reaction had only taken place at one rather than two sites, and in low yield. Also, it was difficult to know which reagents or conditions to change in this process to improve the yield. An alternative method was to carry out the carbon-phosphorus bond formation by using a dialkylphosphite species, giving the aryl dialkylphosphonate product. This species could be converted to the phosphine ligand through nucleophilic substitution of the alkoxy groups with the desired Grignard reagent, followed by reduction of the resultant phosphine oxide to the phosphine. A detailed study by Stawinski et al. demonstrated the generality of this carbon-phosphorus bond formation, showing that
both electron-rich and electron-poor aryl halides and triflates could be converted to aryl phosphonate esters. ${ }^{219}$ The reaction also showed good functional group tolerance, as more elaborate biologically-relevant dinucleoside H-phosphonates could be coupled with bromobenzene in good yield. What made this reaction more appealing was that the aryl triflates showed a much greater degree of reactivity than the aryl halides, as the non-coordinating nature of the leaving group means it does not deactivate the catalyst. Additionally, the reaction had previously been shown take place twice in one pot to convert a 1,1'-biphenyl-2,2'-ditriflate derivative 386 to the corresponding biphenyl bis-(diethylphosphonate) 387 by Zhang et al., in the synthesis of the BridgePhos series of ligands (Scheme 82). ${ }^{220}$ The phosphonate esters were then converted to the phosphine oxides through the reaction with thionyl chloride to form the bis-(phosphonic dichloride), which then could be reacted with various Grignard reagents to get the desired product 388 .

1) SOCl_{2} (10.0 eq .)

DMF, $80^{\circ} \mathrm{C}, 5 \mathrm{~h}$
2) $\operatorname{PhBr}(6.0$ eq.), $\mathrm{Mg}(20.0$ eq.)

THF, $-50^{\circ} \mathrm{C}$ to rt. 87%

388
Scheme 82: The palladium-catalysed cross coupling reaction of biphenyl ditriflate 386 with diethyl phosphite to give the bis-(phosphonate ester) 387, which was then treated with thionyl chloride and phenyl magnesium bromide to yield the bis-(diphenylphosphine oxide) 388, by Zhang.

Adhering to a combination of the methods described by Stawinski and Zhang, 8,8'-dimethoxy-[1,1'-biazulene]-2,2'-diyl ditriflate (\pm)-377 was heated at reflux with diethyl phosphite, palladium diacetate as the pre-catalyst, dppb as a ligand, triethylamine as a base, and potassium acetate as an additive in THF for 45 hours (Scheme 83). The TLC analysis showed complete conversion from the starting material to two different blue spots, and mass spectrometry showed a peak that corresponded to the desired product (\pm) - 389 . After column chromatography, the proton NMR spectrum of one of the fractions showed what appeared to be the desired product, but with large ethyllike signals. It was deduced that the product had co-eluted with triethylammonium triflate, which required a simple aqueous wash to remove, giving the pure 1,1 '-biazulene-2,2'-bis-(diethylphosphonate) (\pm)-389 in 24% yield. The other product isolated was mono(diethylphosphonate) species (\pm)-390 in 3.0% yield, which was possibly a reduction product of the palladium(II)-azulene intermediate species formed after oxidative addition of the biazulene triflate (\pm)-377. On increasing the scale of the reaction from 0.082 mmol to 0.25 mmol , the yield of biazulene bis(diethylphosphonate) (\pm)-389 increased to 39%, which meant practicable quantities of a biazulene with two phosphorus-containing functional groups at the 2,2'-positions could now be synthesised. On this occasion, the biazulene mono(diethylphosphonate) side product (\pm)-390 was detected, but the yield could not be calculated as it had co-eluted with an additional, unidentified, unsymmetrically substituted biazulene species.

Scheme 83: The palladium-catalysed double cross coupling reaction of 8,8'-dimethoxy-[1,1'-biazulene]-2,2'-diyl ditriflate (\pm)-377 with diethylphosphite.

The proton NMR spectrum for the 1,1'-biazulene bis-(diethylphosphonate) (\pm)-389 showed important evidence of its axial chirality, particularly from the inequivalent nature of the ethyl groups in the phosphonate esters (Figure 34). The methylene signals $\left(11,11^{\prime}, 13,13^{\prime}-\mathrm{CH}_{2}\right)$ were comprised of four different complex multiplets, split in this manner because of their diastereotopicity, coupling with the geminal methylene proton, the methyl group and the phosphorus atom. While not a result of the axial chirality from the biazulene skeleton, an interesting observation comes from the methyl groups ($12,12^{\prime}, 14,14^{\prime}-\mathrm{CH}_{3}$) being divided into two triplets, showing significantly different chemical shifts to each other. The change is brought about probably because one methyl group, for each phosphonate ester group, is closely aligned with the centre of the aromatic system. The induced magnetic field of the azulene (anisotropic effect) has a shielding effect on the protons of that methyl group, lowering the chemical shift value.

Figure 34: Proton NMR spectrum of 1,1'-biazulene bis-(diethylphosphonate) (\pm)- $\mathbf{3 8 9}$ in CDCl_{3}, highlighting peaks for the ethyl groups on the phosphonate esters ($\left.11,11^{\prime}, 12,12^{\prime}, 13,13^{\prime}, 14,14^{\prime}-\mathrm{CH}_{n}\right)$. The region between $3.20-1.20 \mathrm{ppm}$ is omitted for clarity.

The next step towards the synthesis of the $1,1^{\prime}$ 'biazulene-2,2'-diphosphine ligand was the nucleophilic displacement of the ethoxy groups with a nucleophilic arene species, to make the 1,1 '-biazulene-2,2'-bis-(diarylphosphine oxide) (\pm)-391. Following the procedure of Zhang, the 1,1'-biazulene bis-(diethylphosphonate) $(\pm)-389$ was treated with 10.0 equivalents of thionyl chloride, with DMF acting as the solvent and catalyst, and heated at $80{ }^{\circ} \mathrm{C}$ for 2 hours in order to make the bis(phosphonic dichloride) intermediate (Scheme 84). The second step was the treatment with freshly prepared phenyl magnesium bromide at $-48^{\circ} \mathrm{C}$ at first, then allowing it to stir at room temperature overnight. Disappointingly, the proton NMR spectrum of the brown crude mixture indicated the degradation of the starting material. A similar result was achieved when instead, the thionyl chloride was
applied in a very large excess, effectively acting as the solvent, while 15.0 equivalents of DMF were used, and phenyl magnesium bromide was sourced from a commercially made solution. As it was possible that the attempts to form the bis(phosphonic dichloride) intermediate were resulting in the decomposition of the azulene, the method developed by Tyler et al., in which the aryl phosphonate ester could be converted directly to the aryl phosphine oxide, was appealing. ${ }^{221}$ The group could treat the aryl dialkylphosphonate with a Grignard reagent in the presence of sodium triflate to form the product. The additive was crucial, as it precipitated the sodium halide out of the reaction mixture, preventing halide-mediated formation of coordination oligomers from the Grignard addition intermediates. Following this method, 1,1'-biazulene bis-(diethylphosphonate) (\pm)-389 was treated with 5.0 equivalents of phenyl magnesium bromide and 6.0 equivalents of sodium triflate, and was heated at reflux in THF for 4 hours. The brown crude product was then treated with p-chloranil to rearomatise the azulene structure, if the Grignard addition had taken place at the electron-poor positions of the azulene. There was no change in colour, however, and NMR spectrum of this crude product showed only indeterminate aromatic peaks.

(\pm)-391

1) SOCl_{2} (10.0 eq.)
 20 h

$(\pm)-389$

(\pm)-391

Scheme 84: Attempts to convert the 1,1'-biazulene bis-(diethylphosphonate) (\pm)-389 to 1,1'-biazulene bis-(diphenylphosphine oxide) (\pm)-391 through Grignard addition.

An alternative, established way to convert phosphonate esters to tertiary phosphines is through a reduction to the primary phosphine, ${ }^{222}$ followed by a transition metal cross-coupling reaction to attach the desired aryl or alkyl groups to the phosphorus atom. ${ }^{223}$ This method was attractive as it avoided the use of highly reactive organometallic reagents, to which the azulene backbone was potentially sensitive. The process was applied to the 1,1 '-biazulene bis-(diethylphosphonate) (\pm)-389 by adding to it a mixture of lithium aluminium hydride and trimethylsilyl chloride at -25 ${ }^{\circ} \mathrm{C}$, and stirring at room temperature for 68 hours (Scheme 85). The work-up procedure was carried out with degassed solvents and aqueous solutions, and while the NMR spectra was difficult to characterise, the formation of the 1,1 '-biazulene bis(primary phosphine) was not ruled out, due to the persistence of aromatic proton peaks. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum showed signals at -15 and -153 ppm ; the latter of which was more likely to correspond to a primary phosphine.

The second half of the method was carried out according to the procedure by Michelet et al. in which the presumed 1,1'-biazulene bis-(primary phosphine) was treated with methyl 4-iodobenzoate as the cross-coupling partner (as it showed good reactivity in the literature report), palladium diacetate as the pre-catalyst, 1,1'-bis-(diphenylphosphino)ferrocene (dppf) as a ligand, and Hünig's base. This mixture was heated at $80^{\circ} \mathrm{C}$ in toluene/acetonitrile (3:1) for 24 hours, but after an aqueous work-up, only methyl 4-iodobenzoate could be seen on the NMR spectrum.

$(\pm)-389$

1) LiAlH_{4} (6.00 eq.)

TMS-CI (6.00 eq.)

2)

$\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.08 eq.)
dppf (0.16 eq.), DIPEA (5.00 eq.) PhMe/MeCN (3:1), $80^{\circ} \mathrm{C}, 24 \mathrm{~h}$

(\pm)-392

Scheme 85: The attempted reduction of 1,1'-biazulene-2,2'-diyl bis-(diethylphosphonate) (\pm)- $\mathbf{3 8 9}$ to the bis-(primary phosphine), followed by palladium-catalysed cross coupling of aryl groups to the phosphorus atom.

2.3. Development of 1,1'-biazulene-2,2'-diol ("1,1'-BazOL")

After this series of unsuccessful reactions, it was decided that the studies towards the synthesis of a 1,1'-biazulene-2,2'-diphosphine ligand had been taken as far as possible at this point, and any further developments towards this target would be postponed for another time. However, the incomplete route encompassed a method to make a racemic form of the $1,1^{\prime}$-biazulene- $2,2^{\prime}$-diol derivative $(\pm)-370$ as a synthetic intermediate, which could itself be employed instead as a ligand for asymmetric catalysis, analogous to BINOL 213 and derivatives. The biazulene diol $(\pm)-370$ in question possesses ester groups at the $3,3^{\prime}$-positions to retain the enol form of the structure, which lead to a minor issue if this structure was indeed to be considered the target molecule. At this time, the [8+2]-addition-elimination to synthesise the azulene from any 2 H -cyclohepta[b]furan-2-one derivative (Scheme 61) was carried out in a sealed microwave tube, heated by a stirrer hotplate, and the method to increase the scale of this process was simply to run several of these reactions at once. However, as quantity of reaction vessels increases, the more they
have to be positioned away from the centre of the stirrer hotplate, which compromises the efficiency of the stirring, reducing the yield of azulene product. Sometimes, once an experiment had been carried out and starting material was still visibly present in the reaction tube, a small amount of trimethyl orthoacetate 324 would be added to the vessel, and then the vessel heated again to $200^{\circ} \mathrm{C}$, to help with conversion. However, this increased ratio of trimethyl orthoacetate 324 to toluene appeared to be the reason why unwanted transesterification from the ethyl (326) to the methyl ester (325) would take place, giving an inseparable mixture of esters. Another way to perform this reaction on a multi-gram scale was by using a round bottom pressure flask (Ace Glass Inc.), which was, advantageously, a lot more physically robust than the microwave tube. On a scale of 9.20 mmol , the azulene derivative could be made in 60% yield; however, the product was a mixture of methyl and ethyl esters, in a ratio of $\sim 2: 1$.

In the synthetic route towards the diphosphine ligand, working with a mixture of esters did not matter, as the esters were removed at a later stage. However, as the esters were important for favouring the enol form in the 1,1'-biazulene-2,2'-diol target, using a methyl/ethyl mixture would not be acceptable. To get around this problem, triethyl orthoacetate 318 was used instead of trimethyl orthoacetate 324, as the transesterification process would result in no change to the structure. To our delight, it transpired that ethyl 2,4-diethoxyazulene-1-carboxylate 319 could be synthesised in 66% yield by heating ethyl 8 -hydroxy-2-oxo-2H-cyclohepta[b]furan-3carboxylate 298 in triethyl orthoacetate 324 and toluene at $200^{\circ} \mathrm{C}$ for 7 hours, on a scale of 12.8 mmol , in a single round bottom pressure flask (Scheme 86). In hindsight, the change in orthoester reagent used should have been made earlier in the project, but the reluctance to do so was due to the variety of chemical
transformations that had been accomplished by starting from ethyl 2,4-dimethoxyazulene-1-carboxylate 326, and due also to the general unwillingness to change the structure of a compound that was present at an early stage of the synthesis.

Scheme 86: The [8+2]-addition-elimination reaction of triethyl orthoacetate 318 with ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 to make ethyl 2,4-diethoxyazulene-1-carboxylate 319.

Following the procedure for the dealkylation of the 2-methoxy group of ethyl 2,4-dimethoxyazulene-1-carboxylate 326, as described in Scheme 64, the treatment of ethyl 2,4-diethoxyazulene-1-carboxylate 319 with one equivalent of boron tribromide gave the deethylated product ethyl 4-ethoxy-2-hydroxyazulene-1-carboxylate 393 in near-quantitative yield (Scheme 87). Again, there was no evidence of dealkylation of the 4-ethoxy group, which meant, like all the previous examples of this reaction, the product could be taken forward to the next step without column chromatography. Similar to the reaction in Scheme 73, in which ethyl 4-methoxy-2-hydroxyazulene-1carboxylate 337 was converted to the biazulene (\pm)-370, the copper-catalysed oxidative homocoupling was applied to ethyl 4-ethoxy-2-hydroxyazulene-1carboxylate 393. After stirring the 2-hydroxyazulene 393, on a scale of 8.0 mmol , with the TMEDA-copper(II) complex 369 in acetonitrile and 1,2-dichloroethane (2:1) under air at $40^{\circ} \mathrm{C}$ for 42 hours, the racemic biazulene product $(\pm)-394$, or " $(\pm)-1,1^{\prime}-$ BazOL", could be isolated in 61\% yield (Scheme 87), which was a slight improvement on the homocoupling of 4-methoxy-2-hydroxyazulene 337. Because
biazulene product $(\pm)-394$ had ethoxy, rather than methoxy, groups at the 8,8 'positions, it meant that it could not be isolated by precipitation and filtration from the reaction mixture as before. Instead, this structural change meant the product was mobile on silica, and was therefore purified by column chromatography.

Scheme 87: The selective boron tribromide-mediated dealkylation of ethyl 2,4-diethoxyazulene-1carboxylate 319, and the copper-catalysed oxidative homocoupling of the 2-hydroxyazulene 393 product to make racemic $1,1^{\prime}$-biazulene- $2,2^{\prime}$-diol (\pm)-394 (" (\pm)-1, 1^{\prime}-BazOL").

2.3.1. Asymmetric synthesis of $1,1^{\prime}-\mathrm{BazOL}$

A robust, scalable synthesis for (\pm)-BazOL 394, consisting solely of ethyl esters, had now been fully developed. In order to screen the ligand for enantioselectivity imparted in a catalytic reaction, access to its single enantiomers was required, and the first approach considered to achieve this was through an enantioselective form of the copper-catalysed oxidative homocoupling reaction. As shown in Scheme 72, much development of this type of asymmetric reaction had been accomplished by Kozlowski, particularly with the application of 1,5-diaza-cis-decalin copper(II) complex 366 for the 1,1'-homocoupling of alkyl 2-hydroxy-3-naphthoate derivatives. ${ }^{214}$ However, before this complex could be applied in an attempted homocoupling of ethyl 4-ethoxy-2-hydroxyazulene-1-carboxylate 393, an alternative, more widely commercially available ligand, 1,1'-binaphthyl-2,2'-diamine (BINAM)

395, was found in the literature to give similar results with similar substrates (Scheme 88). This ligand was first employed for this reaction by Ha et al., with the oxidative homocoupling of methyl 2-hydroxy-3-naphthoate 396, using copper(I) chloride under an oxygen atmosphere in DCM at room temperature, to produce $\left(S_{\mathrm{a}}\right)$ -1,1'-binaphthol 397 in 20% e.e. and 99% yield. ${ }^{224}$ While the enantioselectivity was modest, near complete conversion of starting material had occurred by 24 hours, representing a faster rate compared with aliphatic amine ligands. This observation was ascribed to the aromatic amine being less basic than aliphatic amines, making the copper(II) complex more electrophilic and therefore more easily reduced to the copper(I) species by the substrate. By adding catalytic 2,2,6,6-tetramethyl-1piperidinyloxy (TEMPO) to the reaction, with otherwise similar conditions, Sekar et al. could achieve 97% e.e. and 90% yield for the homocoupling of the same substrate 396, as well as good enantioselectivity and yields for several other 2-hydroxy-3-naphthoate derivatives. ${ }^{225}$

a) $99 \%, 20 \%$ e.e.
b) $90 \%, 97 \%$ e.e.

Scheme 88: Literature examples of the asymmetric oxidative homocoupling of methyl 2-hydroxy-3naphthoate 396, achieved with a copper(I) chloride/(R_{a})-BINAM 395 system ($a=$ Ha (2004); $b=$ Sekar (2013)).

The method of Sekar was applied to this project. Accordingly, ethyl 4-ethoxy-2-hydroxyazulene-1-carboxylate 393 was added to a mixture of $\left(R_{a}\right)$-BINAM 395, one
of three copper salts ($\mathrm{CuCl}, \mathrm{CuCl}_{2}$ or $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$) and TEMPO in DCM, and was stirred at room temperature in DCM for 18 days (Table 12). Since this 2hydroxyazulene derivative 393 could conveniently undergo a homocoupling reaction under an atmosphere of air, this condition was applied to these experiments rather than the oxygen atmosphere as described in the literature. Unfortunately, each copper salt used in this asymmetric protocol gave lower yields than for the method with the $\mathrm{Cu}(\mathrm{II})$-TMEDA complex 369, as in Scheme 87: using $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ led to the best yield, at 30% (Table 12, entry 3), followed by CuCl at 26% (Table 12, entry 1), while CuCl_{2} gave the worst yield, at 5.5% (Table 12, entry 2). The reaction with $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ also proceeded more cleanly than that with CuCl , as more starting material could be recovered.

Methods were then explored for the calculation of the enantiomeric excess for each reaction. A report by James et al. described a protocol to determine the enantiopurity of chiral diols with proton NMR analysis. ${ }^{226}$ By treating the diol with an equimolar amount of 2-formylbenzene boronic acid and a slight excess of (S)-amethylbenzylamine in chloroform- d, calculation of the enantiopurity of that diol may be carried out by integration of the resolved diastereotopic protons in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the diastereomeric iminoboronate ester products. Unlike previous chiral derivatisation agents for diols, this method was quite general, as it could be applied to 1,2- and 1,3-diols, as well as BINOL. Applying the method to this project, a sample of the (\pm)-1,1'-BazOL 394 was mixed with 2-formylbenzene boronic acid 398 and (R) - α-methylbenzylamine 399 in chloroform- d, and after stirring at room temperature for 40 minutes, by TLC the reaction appeared to go to completion (Scheme 89). On examining the proton NMR spectrum, the formation of the iminoboronate ester product $\left(S_{a}, R\right) /\left(R_{a}, R\right)-400$ was confirmed, showing the excess amine left in the
sample. However, the key signals to differentiate between the two enantiomers of BazOL ($\underline{H} \mathrm{C}=\mathrm{N}, \mathrm{Ph}-\mathrm{CH}-\mathrm{N}, \underline{\mathrm{H}}_{3} \mathrm{C}-\mathrm{CH}$) were not sufficiently resolved, despite the use of a 500 MHz NMR spectrometer, and therefore would not be useful to calculate the enantiopurity of the sample.

Scheme 89: The attempted calculation of the enantiopurity of $(\pm)-1,1$ '-BazOL 394 by formation of diasteromeric iminoboronate esters $\left(S_{a}, R\right) /\left(R_{a}, R\right)-400$.

As the iminoboronate diastereomer derivatives did not allow the calculation of the enantioselectivity, chiral HPLC was adopted for this purpose instead. Initial optimisation for the chromatographic separation of the diol ligands was difficult, so the weakly acidic hydroxy groups were converted to acetoxy groups. To achieve this, the 1,1 '-BazOL ligand 394 was treated with acetyl chloride and triethylamine, ${ }^{164}$ and after stirring in DCM for 17 hours, the bis-acetoxy-1,1'-biazulene 401 could be isolated in 77% yield (Scheme 90). The product could be resolved using a Chiralcel OD column ($25 \times 4.6 \mathrm{~mm}$) with hexane/isopropanol (9:1) with a flow rate 0.75 mL $\min ^{-1}$ at $20^{\circ} \mathrm{C}$, with UV detection (238 nm). The enantiomeric excess of the product
from the asymmetric homocoupling reaction could now be calculated. When using $\left(R_{a}\right)$-BINAM 395 as the chiral ligand, both $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ (Table 12, entry 3) and CuCl (Table 12, entry 1) favoured the $\left(S_{a}\right)$-enantiomer of 394 , with 16% e.e. and 13% e.e. respectively. This enantiomeric sense was consistent with the results obtained by Sekar. Interestingly, the best selectivity, at 21% e.e., was produced by using CuCl_{2}, this time in favour of the $\left(R_{a}\right)$-enantiomer of 394 (Table 12, entry 2). However, these results need to be interpreted with caution, as the chromatograms for each experiment showed 'trailing' for the peak corresponding to the $\left(R_{a}\right)$-enantiomer of 401 (Figure 35). Each proton NMR spectrum for each derivative 401 displayed some unidentified impurity between 2-3 ppm, which may account for this 'trail', rather than purely the $\left(R_{\mathrm{a}}\right)$-enantiomer.

Table 12: The Cu-catalysed asymmetric oxidative homocoupling of 2-hydroxyazulene 393.

Entry	Cu salt	Recovered 393 /\%	$\begin{aligned} & \text { Yield of } 1,1^{\prime} \text {-biazulene } \\ & 394^{\alpha} / \% \end{aligned}$	\% e.e. ${ }^{\text {b }}$
1	CuCl	33	26	13 (S)
2	CuCl_{2}	67	5.5	21 (R)
3	CuBr.SMe	49	30	16 (S)

a) During purification by column chromatography, partial co-elution of 1,1'-biazulene 394 and (R_{a})-BINAM 395 occurred, so part of the yield was calculated by integration of the ${ }^{1} \mathrm{H}-$ NMR b) Calculated by chiral HPLC of the bis-acetoxy derivative of the BazOL product.

Scheme 90: The diacetylation of $\left(R_{a}\right)$-BazOL 394 (for resolution procedure, vide infra) with acetyl chloride and triethylamine.

Figure 35: The chiral HPLC chromatograms for the bis-acetoxy derivatives 401 of the diol products obtained from the asymmetric homocoupling, using $\mathrm{CuCl}(\mathrm{a}), \mathrm{CuCl}_{2}$ (b) and $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ (c) (Chiralcel OD $250 \times 4.6 \mathrm{~mm}$ ID, 9:1 hexane/2-propanol, UV detection 238 nm , flow rate $0.75 \mathrm{~mL} \mathrm{~min}^{-1}, 20^{\circ} \mathrm{C}$).

2.3.2. Resolution of $1,1^{\prime}-\mathrm{BazOL}$

While the development of an asymmetric oxidative homocoupling reaction for ethyl 4-ethoxy-2-hydroxyazulene-1-carboxylate 393 was taking place, methods for the
enantiomeric resolution of (\pm)-BazOL 394 were also explored. It was demonstrated by De Lucchi et al. that various axially chiral binaphthol and mercapto-binaphthol species could be resolved by forming the bis-((-)-menthyl carbonate) derivatives of these compounds, followed by selective crystallisation by using hexane (Scheme 91). ${ }^{227}$ Once the diastereomers (eg. 403) had been separated and purified, conversion back to the diol, or thiol, could be achieved through a reduction with lithium aluminium hydride. The method was appealing because (-)-menthyl chloroformate 402, the reactive partner for the racemic ligand, is commercially available, and the reactions were complete within one hour at room temperature. Whilst optimising a method to resolve 4,4'-dibromo-SPINOL, Wan et al. discovered the reaction of (\pm)-BINOL 213 with (-)-menthyl chloroformate 402 could be carried out in 5 minutes by using a biphasic aqueous $\mathrm{NaOH} / \mathrm{DCM}$ system, with tetra- n butylammonium bromide (TBAB) as a phase transfer catalyst, rather than simply using triethylamine in benzene. ${ }^{228}$ Subsequently, rather than converting the (-)menthyl carbonate group back to the hydroxy group with LiAlH_{4}, Wan et al. employed basic hydrolysis with potassium hydroxide in ethanol and water.

(\pm)-213

rt.
a) $\mathrm{NEt}_{3}, \mathrm{PhH}, 1 \mathrm{~h}$
or
b) $\mathrm{NaOH}_{(a q)}, \mathrm{TBAB}, \mathrm{DCM}$ rt., 5 min

$\left(R_{a}, 1 R, 2 S, 5 R\right)-403$ 95\%
90\%

Menth $=$

$\left(S_{a}, 1 R, 2 S, 5 R\right)-403$ quant

86\%

$\left(R_{a}\right)-213$
$+$

$\left(S_{a}\right)-213$
a) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 98 \%$
or
b) $\mathrm{KOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(4: 1)$
$\Delta, 1 \mathrm{~h}, 92 \%$

Scheme 91: Literature examples of the resolution of (\pm)-BINOL 213 through selective crystallisation of its bis-((-)-menthyl carbonate) derivatives 403 ($a=$ de Lucchi (1995); b = Wan (2004)).

The method of Wan was applied to (\pm)-BazOL 394, on a scale of 0.19 mmol , and the diol was almost completely consumed after 21 hours. This slow reaction time could be rationalised by the delocalisation of the oxygen lone pairs towards the ester carbonyls. When column chromatography was applied to the crude product, minimal separation of the diastereomers of 404 was achieved. The fraction of inseparable diastereomers was recrystallised in ethanol, but rather than precipitating a pure diastereomer, each individual crystal in the sample was made up of conglomerates of either the $\left(R_{\mathrm{a}}\right)$-BazOL or $\left(S_{\mathrm{a}}\right)$-BazOL 394 derivative. The reaction was carried out again, on a larger scale of 0.78 mmol to facilitate the selective recrystallisation of 404. This time, through column chromatography, small amounts of almost
diastereomerically pure product could be isolated, for both $\left(R_{\mathrm{a}}\right)$-BazOL--bis-((-)menthyl carbonate) 404 (8.4% yield with respect to the maximum quantity of isolable diastereomer, $96: 4$ d.r.) and (S_{a})-BazOL-bis-((-)-menthyl carbonate) 404 (8.0\% yield with respect to the maximum quantity of isolable diastereomer, 94:6 d.r.) derivatives. The remaining fractions of mixed diastereomers, which were eluted from the column, were recrystallised in hexane, but the crystalline precipitate consisted of equal amounts of each diastereomer. This precipitate was recrystallised again, this time in hexane/THF (7:1 v/v), and after storage at $2^{\circ} \mathrm{C}$, yielded $\left(R_{\mathrm{a}}\right)$-BazOL-bis-((-)-menthyl carbonate) $\mathbf{4 0 4}$, corresponding to 15% yield. Further attempts at crystallising the solid from the filtrate did not yield any more pure diastereomer.

The scale of the experiment was increased further, to 2.07 mmol of (\pm)-BazOL 394 (Scheme 92). After filtering the crude mixture through a pad of silica, recrystallisation with hexane/THF (7:1 v/v) once again gave pure $\left(R_{\mathrm{a}}\right)$-BazOL-bis-((-)-menthyl carbonate) 404 in 32% yield. The mother liquor was evaporated to give a solid that was recrystallised with the same solvent composition, which gave a precipitate comprising an equimolar quantity of $\left(R_{a}\right)$-BazOL derivative of 404 and $\left(S_{a}\right)$-BazOL derivative of 404. However, the mother liquor of this second recrystallisation was evaporated to give a solid that was enriched with the $\left(S_{a}\right)$-BazOL derivative of 404. Thus, this solid was recrystallised in a different ratio of hexane/THF (9:1 v/v), from which precipitated on cooling pure $\left(S_{a}\right)$-BazOL-bis-((-)-menthyl carbonate) 404 in 13% yield. The mother liquor from this third recrystallisation was then combined with the precipitate from the second recrystallisation, and was purified by column chromatography to separate out unreacted starting material. The product fraction underwent a fourth recrystallisation using at first hexane/THF (19:1 v/v), with THF continually added until complete solvation occurred. This final recrystallisation
precipitated additional pure $\left(R_{\mathrm{a}}\right)$-BazOL-bis-((-)-menthyl carbonate) 404 in a further 7% yield. While this resolution was far from perfect in its efficiency, it still represented great progress in the project, as only one step remained in order to obtain synthetically useful quantities of each enantiomer of 1,1'-BazOL 394.

Scheme 92: The resolution of (\pm)-BazOL 394 (scale of 2.0 mmol) through the formation of its bis-((-)menthyl carbonate) derivatives 404 and fractional recrystallisation of the diastereomeric products.

One interesting feature of the two BazOL-bis-((-)-menthyl carbonate) derivatives $\left(R_{a}, 1 R, 2 S, 5 R\right)-404$ and $\left(S_{a}, 1 R, 2 S, 5 R\right)$-404 is the differences discernable in their proton NMR spectra in CDCl_{3}, particularly in the upfield alkyl region where peaks for the (-)-menthyl group are situated. For $\left(S_{a}\right)$-BazOL-bis-((-)-menthyl carbonate) 404,
the methyl groups of the isopropyl unit are inequivalent and have upfield chemical shifts, with chemical shifts of 0.57 ppm and 0.69 ppm (Figure 36). These values are lower than that of the equivalent signal for (-)-menthol, at $0.81 \mathrm{ppm} .{ }^{229}$ Whereas for $\left(R_{\mathrm{a}}\right)$-BazOL-bis-((-)-menthyl carbonate) 404, these signals are significantly more upfield, with shifts of 0.06 ppm and 0.46 ppm (Figure 37). These values suggest that the protons of the isopropyl methyl groups on $\left(R_{a}\right)$-BazOL-bis-((-)-menthyl carbonate 404 experience shielding by the ring current induced on the aromatic azulene ring system, to a much greater extent than for $\left(S_{a}\right)$-BazOL-bis-((-)-menthyl carbonate 404.

Figure 36: The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (region of $\left.\delta 0-1 \mathrm{ppm}\right)$ in CDCl_{3} of $\left(S_{a}\right)$-BazOL-bis-((-)-menthyl carbonate 404 (highlighted, maroon), superimposed over the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in $\mathrm{CDCl}_{3}\left(R_{\mathrm{a}}\right)$-BazOL-bis-((-)-menthyl carbonate 404 (pale blue).

Figure 37: The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (region of $\delta 0-1 \mathrm{ppm}$) in CDCl_{3} of $\left(R_{\mathrm{a}}\right)$-BazOL-bis-((-)-menthyl carbonate 404 (highlighted, maroon), superimposed over the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in $\mathrm{CDCl}_{3}\left(S_{a}\right)$-BazOL-bis-((-)-menthyl carbonate 404 (pale blue).

This hypothesis on the alignment of the methyl groups is corroborated by the X-ray crystal structures (obtained by Dr. Gabriele Kociok-Köhn) of both diastereomers, when observing the distances between the centroid of the 7-membered ring and the hydrogen atoms on the isopropyl group. For the structure of $\left(S_{a}\right)$-BazOL-bis-((-)menthyl carbonate 404, the non-perpendicular distance of $4.600 \AA$ shows that this methyl group is not aligned with the midpoint of the aromatic structure (Figure 38). This position in space means that the hydrogen atoms experience a limited shielding effect from the magnetic field induced by the NMR spectrometers. For the structure of $\left(R_{\mathrm{a}}\right)$-BazOL-bis-((-)-menthyl carbonate 404, the near-perpendicular distance of $2.866 \AA$ is much shorter, which indicates that the methyl hydrogen atoms are aligned with the centre of the 7-membered ring (Figure 39). As a consequence, the
hydrogens experience a great degree of shielding, resulting in a low chemical shift of 0.05 ppm.

Figure 38: ORTEP diagram of $\left(S_{a}\right)$-BazOL-bis-((-)-menthyl carbonate 404 showing ellipsoids at 30% probability. H atoms are shown as spheres of arbitrary radius.

Figure 39: ORTEP diagram of $\left(R_{a}\right)$-BazOL-bis-((-)-menthyl carbonate 404 showing ellipsoids at 30\% probability. H atoms are shown as spheres of arbitrary radius.

While the data from the NMR spectra and X-ray crystallography are consistent with each other, it is important to consider that the NMR is a study of the compound in solution, while the X-ray crystallography is a study of the solid state. Therefore, the lowest energy conformation of the diastereomers as shown by the X-ray crystal structure may not be entirely accurate geometric depictions of the structures from the NMR spectra. Another reason to treat this data tentatively is that the solid crystals of the $\left(S_{a}\right)$-BazOL derivative of 404 did not diffract to high angles, which compromised some of the quality of the structural data, particularly for the ester groups. The crystallographic data for this structure may need to be recorded again to ensure an accurate depiction of the conformation.

The final step of the synthesis involved the conversion of the separate bis-((-)menthyl carbonate diastereomers 404 back to diols. Neither of the methods
described in Scheme 92 to achieve this transformation, that is, through reduction with lithium aluminium hydride or hydrolysis with potassium hydroxide would be suited to the BazOL derivatives 404, as the ester groups may also react under these conditions. Instead, the treatment of both BazOL-bis-((-)-menthyl carbonate diastereomers $\left(R_{a}, 1 R, 2 S, 5 R\right)-404$ and $\left(S_{a}, 1 R, 2 S, 5 R\right)$-404 with sodium ethoxide in THF/ethanol at room temperature, similar to a method by Katsuki et al., ${ }^{230}$ gave pure $\left(R_{a}\right)$-BazOL (-)-394 or (S_{a})-BazOL (+)-394 in 86\% yield (Scheme 93). In the absence of water, hydrolysis of the ester groups could not occur, and any transesterification that may have taken place would not have changed the structure of the product. The X-ray crystal structure for $\left(R_{\mathrm{a}}\right)$-BazOL (-)-394 was obtained, showing a dihedral angle of $111.8(6)^{\circ}\left(\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}\right)$ (Figure 40). This angle is significantly larger than the corresponding angle for $1,1^{\prime}$-biazulene 328 in Figure 33, which was $102.0(2)^{\circ}$, and may be a result of the increased steric repulsion of ethoxy groups, compared to methoxy groups, at the 8,8 '-positions of the biazulene.

Scheme 93: The sodium ethoxide-mediated conversion of $\left(R_{a}\right)$-BazOL-bis-((-)-menthyl carbonate 404 to $\left(R_{\mathrm{a}}\right)$-BazOL $(-)$-394.

Figure 40: ORTEP diagram of $\left(R_{a}\right)$-BazOL (-)-394 showing elliptoids at 30% probability. H atoms are shown as spheres of arbitrary radius.

2.3.4. $C D$ spectrometry and configurational stability

Further analysis relating to the axial chirality of $\left(R_{a}\right)$-BazOL $(-)-394$ and $\left(S_{a}\right)$-BazOL (+)-394 was subsequently carried out by Dr. G. Dan Pantoş and Mr. Tiberiu Gianga; their results and analysis are reproduced and discussed below. The circular dichroism (CD) plots of each enantiomer were shown to be mirror images of one another, which confirms their configurational stability in solution at room temperature, as well as their enantiopurity (Figure 41). Variable temperature CD experiments were also carried out on both $\left(R_{\mathrm{a}}\right)$-BazOL (Figure 42) (-)-394 and $\left(\mathrm{S}_{\mathrm{a}}\right)$-BazOL $(+)$-394 (Figure 43). At $5{ }^{\circ} \mathrm{C}$, each enantiomer showed the greatest selective absorption of circular polarised light. As this temperature was increased, incrementally in intervals
of $10^{\circ} \mathrm{C}$, from $5^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$, the selective absorption decreased, indicating a gradual loss of configurational stability. A repeat experiment at $25^{\circ} \mathrm{C}$ showed that permanent partial racemisation of each sample had taken place. However, these data only showed a qualitative relationship between the temperature of the solution and the configurational stability, so further experiments on the kinetics of the molecules were required to calculate the energy barrier to racemisation, and therefore the half-life.

Figure 41: The circular dichroism plots of $\left(R_{\mathrm{a}}\right)$-BazOL (-)-394 (black) and $\left(S_{\mathrm{a}}\right)$-BazOL (+)-394 (red), recorded as a 0.01 mM solution of each enantiomer in CHCl_{3}.

Figure 42: The variable temperature CD spectra of a 0.01 mM solution of $\left(R_{a}\right)$ - $\mathrm{BazOL}(-)-394$ in 1,1,2,2-tetrachloroethane.

Figure 43: The variable temperature CD spectra of a 0.01 mM solution of $\left(S_{a}\right)$-BazOL $(+)-394$ in 1,1,2,2-tetrachloroethane.

To calculate the relevant kinetic parameters, a CD spectrum of a 0.01 mM solution of $\left(S_{a}\right)$-BazOL (+)-394 in 1,1,2,2-tetrachloroethane was recorded every 5 minutes for 845 minutes at three temperatures: $333.15 \mathrm{~K}, 343.15 \mathrm{~K}, 353.15 \mathrm{~K}\left(60{ }^{\circ} \mathrm{C}, 70{ }^{\circ} \mathrm{C}, 80\right.$ ${ }^{\circ} \mathrm{C}$) (Figure 44). As expected, the rate of racemisation increased with a higher temperature.

Figure 44: CD spectra of $\left(S_{a}\right)$-BazOL (+)-394 in 1,1,2,2,-tetrachloroethane at 0.01 mM concentration at $333.15 \mathrm{~K}(\mathrm{a}), 343.15 \mathrm{~K}(\mathrm{~b}), 353.15 \mathrm{~K}(\mathrm{c})$.

To calculate the barrier to racemisation from this data, the rate constant (k) of the racemisation had to be calculated for each temperature. Since the absorption of the circular polarised light was strong at 304 nm , a first order rate equation was adopted for the data at this wavelength (Figure 45).

$$
\ln \frac{C}{C_{0}}=-k t
$$

$$
\ln C=-k t-\ln C_{0}
$$

$$
\text { where: } \ln C=\ln (-\mathrm{CD})_{\mathrm{t}} ; t=\text { time; } \ln A_{0}=\ln (-\mathrm{CD})_{0}
$$

Figure 45: Linear regression analysis of the kinetic measurements at 333.15 K (a); 343.15 K (b); 353.15 K (c); using data points at $\lambda=304 \mathrm{~nm}$.

Table 13: The rate constants calculated from the linear regression analysis of the kinetic measurements at different temperatures.

$\mathbf{T}(\mathbf{K})$	$\mathbf{k}\left(\mathbf{s}^{-1}\right)$	$\mathbf{1 / T}\left(\mathbf{K}^{-1}\right)$
333.15	8.725×10^{-6}	0.003002
343.15	23.890×10^{-6}	0.002914
353.15	49.388×10^{-6}	0.002832

From the three values for the rate constant k, the activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ could now be calculated using the linear form of the Arrhenius equation (Figure 46).

$$
\ln k=-\frac{E_{a}}{R} \frac{1}{T}+\ln A
$$

Figure 46: Linear regression analysis of the rate constants k, related to the different temperatures.

The activation energy E_{a} is therefore $84.902 \mathrm{~kJ} \mathrm{~mol}^{-1}$, with the pre-exponential factor equating to $e^{19.044} \mathrm{~s}^{-1}$. These values can be used to calculate the half-life of racemisation in solution of $\left(S_{\mathrm{a}}\right)$-BazOL $(+)-394$ at $293.15 \mathrm{~K}\left(20{ }^{\circ} \mathrm{C}\right)$ through application to the Arrhenius equation. The rate constant at this temperature is $1.38 \times$ $10^{-7} \mathrm{~s}^{-1}$, so therefore the half-life is 1389 h , or 57.9 days. To quantify the barrier to racemisation, or the Gibbs free energy of activation ΔG^{\ddagger}, the linear form of the Eyring equation can be employed, plotting the $\ln (\mathrm{k} / \mathrm{T})$ against $1 / \mathrm{T}$ (Figure 47).

Figure 47: Linear regression analysis of the Eyring equation for the calculation of thermodynamic quantities of activation.

From the linear Eyring plot, the enthalpy and entropy of activation can be calculated as $\Delta \mathrm{H}^{\ddagger}=82.055 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}^{\ddagger}=-96.060 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, respectively. The equation for $\Delta \mathrm{G}^{\ddagger}$ is expressed as:

$$
\Delta G^{\ddagger}=\Delta H^{\ddagger}-T \Delta S^{\ddagger}
$$

Therefore, the Gibbs free energy of activation, or barrier to racemisation, at 293.15 K $\left(20^{\circ} \mathrm{C}\right)$ is:

$$
\Delta G_{293.15 \mathrm{~K}}^{\ddagger}=110.25 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The thermodynamic and kinetic values are summarised in Table 14.

Table 14: Summary of the thermodynamic and kinetic quantities for $\left(S_{a}\right)$-BazOL (+)-394.

$\mathrm{k}_{333.15 \mathrm{~K}} / \mathrm{s}^{-1}$	$\mathrm{k}_{343.15 \mathrm{~K}} / \mathrm{s}^{-1}$	$\mathrm{k}_{353.15 \mathrm{~K}} / \mathrm{s}^{-1}$	$\mathrm{E}_{\mathrm{a}} / \mathrm{kJ} \mathrm{mol}^{-1}$	A/s ${ }^{-1}$	$\Delta \mathbf{H}^{\ddagger} / \mathrm{kJ}$ mol^{-1}	$\Delta \mathbf{S}^{\ddagger} / \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	$\boldsymbol{\Delta} \mathbf{G}^{\ddagger}{ }_{293.15 \mathrm{~K}}$ $/ \mathrm{kJ} \mathrm{mol}{ }^{-1}$
8.725×10^{-6}	23.890×10^{-6}	49.388×10^{-6}	84.902	1.865×10^{8}	82.055	-96.060	110.215

By using the equation for the Gibbs free energy of activation, the relationship between $\Delta \mathrm{G}^{\ddagger}$ and temperature can be plotted (Figure 48). For comparison, while the ΔG^{\ddagger} value at 493.15 K for BINOL 213 has previously been calculated to be 158 kJ $\mathrm{mol}^{-1},{ }^{231}$ the corresponding value for $\left(S_{\mathrm{a}}\right)$-BazOL $(+)-394$ at 493.15 K is 129.4 kJ mol^{-1}, according to the experimental data in this project. The increased stability to racemisation of BINOL 213 suggests that the distance in space ($\mathrm{d}_{\text {nap }}$), parallel to the biaryl bond, between the fused 6-membered rings (through C4a-C5-C6-C7-C8-C8a) has to be much shorter than that $\left(\mathrm{d}_{\mathrm{az}}\right)$ of the fused 7-membered rings (through C3a-C4-C5-C6-C7-C8-C8a) of $\left(S_{a}\right)$-BazOL $(+)-394$ (Figure 49). The distance $d_{n a p}$ is shorter than d_{az}, as the biaryl bond of BINOL 213 links two 6-membered rings together, rather than the two 5-membered rings of $\left(S_{a}\right)$-BazOL (+)-394. The difference in these distances is evidently more influential, compared to the steric repulsion of the blocking groups, towards the stability to racemisation, since the 8,8 'ethoxy groups of $\left(S_{a}\right)$-BazOL $(+)$-394 are larger than the 8,8 '-hydrogens of BINOL 213.

Figure 48: The Gibbs free energy of activation of $\left(S_{a}\right)$-BazOL (+)-394 as a function of temperature.

$d_{a z}>d_{\text {nap }}$

Figure 49: The distances, parallel to the biaryl bond, between the 7-membered rings (C3a-C4-C5-C6-C7-C8-C8a) of a 1,1'-biazulene (d_{az}) and between the 6-membered rings (C4a-C5-C6-C7-C8-C8a) of 1,1'-binaphthalene ($\mathrm{d}_{\text {nap }}$).

2.4. Development of 2,2'-biazulene-1,1'-diphosphine ("2,2'-BazPhos")

2.4.1. 2,2'-biazulene formation through Pd-catalysed homocoupling

During the stage of the project in which the development of the nickel-catalysed homocoupling reaction of ethyl 3-bromo-2,4-dimethoxyazulene-1-carboxylate 333
was taking place (Table 7), other reactions useful towards the synthesis of the 1,1'-biazulene-2,2'-diphosphine target were being carried out concurrently, but on monoazulene derivatives. One example of these experiments not mentioned earlier in this report, was the palladium-catalysed homocoupling reaction of azulen-2-yl triflate 338, mediated by bis(pinacolato)diboron $\left(\mathrm{B}_{2} \mathrm{pin}_{2}\right)$, to form diethyl 4,4'-dimethoxy-2,2'-biazulene-1,1'-dicarboxylate 405. This type of biaryl formation, introduced by Miyaura et al., originated from a side process for the palladiumcatalysed cross coupling of dialkoxydiboron species with aryl halides to form aryl boronic esters. ${ }^{232}$ The same group later expanded the substrate scope for the borylation of aryl triflates, and also tailored the reaction to favour the previously unwanted biaryl formation in a two step, one-pot procedure. ${ }^{233}$ The biaryl formation from the homocoupling of aryl halides or aryl triflates was optimised and streamlined to a one-step process by Bräse et al., applying the reaction to a variety of electronrich and electron-poor substrates. ${ }^{234}$

This methodology was thus applied to azulen-2-yl triflate 338 by heating 0.13 mmol of this substrate with 0.5 equivalents of $\mathrm{B}_{2} \mathrm{pin}_{2}, 4 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$, and 3.0 equivalents of potassium carbonate in anhydrous DMSO for 14 hours. Unfortunately, the only product identified from this reaction was ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337, formed as a result of losing the triflyl group. This experiment was repeated with dioxane as the solvent, but only a trace of desired 2,2'-biazulene 405 was detected by mass spectrometry. To combat the possibility of the reaction failing as a result of the presence of oxygen, another reaction was carried out with DMSO that was degassed by sparging with nitrogen. To our delight, this resulted in the formation of the desired 2, ' '-biazulene 405 in 34% yield. On increasing the scale of the reaction to 0.42 mmol , the $2,2^{\prime}$-biazulene 405 was isolated in an improved 42%
yield (Scheme 94). Very recently, and subsequent to the research described here, in the synthesis of biazulene diimides by Gao et al., the formation of tetraethyl [2,2'-biazulene]-1, $1^{\prime}, 3,3$ '-tetracarboxylate could be achieved in 71% yield. ${ }^{235}$ This was achieved through the homocoupling of diethyl 2-chloroazulene-1,3-dicarboxylate, by heating with $\mathrm{Ni}(\mathrm{COD})_{2}$ in DMF at $50^{\circ} \mathrm{C}$. A more impressive 97% yield was achieved for the homocoupling of the 6-(azulen-2-yl) derivative of this starting material, so this may represent an alternative protocol to improve the formation of 2,2-biazulenes in this project.

Scheme 94: The Pd-catalysed homocoupling reaction of azulen-2-yl triflate 338, via Miyaura borylation, to form diethyl 4,4'-dimethoxy-[2,2'-biazulene]-1,1'-dicarboxylate 405.

2.4.2. Installation of phosphine groups at 1-position

After the success of the 2, '-homocoupling reaction, strategies for the installation of a phosphine group at the 1-position were explored to potentially complete the synthesis of a rac-2,2'-biazulene-1,1'-diphosphine ligand, using ethyl 2,4-dimethoxyazulene-1-carboxylate 326 as a (monomeric) model substrate due to its availability. At first, attempts were made to exploit the nucleophilic nature of the 3position of this azulene derivative, by treating it with phosphorus-containing electrophiles to make the desired 3-(diphenylphosphino)-azulene via an $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ process (Scheme 95). However, no reactivity was observed between this azulene and chlorodiphenylphosphine at room temperature. The treatment of azulene 326 with chlorodiphenylphosphine in the presence of DMAP, heated to reflux in THF,
also induced no reaction. No reaction was produced when azulene 326 was treated with diphenylphosphinic chloride and catalytic DMAP at room temperature, either. Interestingly, the same reaction but with 1.1 equivalents of DMAP produced a small amount of 2,4-dimethoxyazulene 349. However, it was clear from the lack of reactivity in this process that the 3-position of the azulene needed some prior activation in order to form the desired carbon-phosphorus bond.

Scheme 95: No reaction was observed between ethyl 2,4-dimethoxyazulene-1-carboxylate 326 and phosphorus-containing electrophiles chlorodiphenylphosphine, nor diphenylphosphinic chloride.

Efforts were made to install the phosphine group using organolithium reagents, in the hope that the two methoxy groups at 2,4-positions could direct the lithiation to the 3position (Scheme 96). The first experiment through this approach involved the treatment of the same model azulene 326 with n-butyllithium at $-78^{\circ} \mathrm{C}$ and allowing to warm up to room temperature. The presumed azulen-3-yllithium intermediate was cooled again to $-78^{\circ} \mathrm{C}$ and quenched with chlorodiphenylphosphine. Unfortunately, only olefinic degradation products were detected, which were perhaps produced through nucleophilic addition of n-butyllithium to the 7 -membered ring of the azulene. For increased control over the lithiation, n-butyllithium was instead added to the 3 bromoazulene 333, with the temperature maintained at $-78{ }^{\circ} \mathrm{C}$ until quenching with chlorodiphenylphosphine. A different azulene-like product was detected by NMR, but instead of the desired product 406, mass spectrometry showed formation of 1-(2,4-
dimethoxyazulen-1-yl)pentan-1-one 408, which is the result of nucleophilic addition of the organolithium to the ester group.

Scheme 96: The attempts at 3-lithiation of ethyl 2,4-dimethoxyazulene-1-carboxylate 326, followed by quenching with chlorodiphenylphosphine.

As there was too much functionality that was sensitive to side reactions on the treatment with organolithium reagents, transition metal cross coupling reactions were also explored (Scheme 97). The treatment of ethyl 2,4-dimethoxyazulene-1carboxylate 326 with N-iodosuccinimide gave the crude 3 -iodoazulene 336, which was then heated with diphenylphosphine, copper(I) iodide and caesium carbonate in toluene at $100{ }^{\circ} \mathrm{C}$ for 18 hours, according to a process reported by Venkataraman et al. ${ }^{236}$ Unfortunately, this process only converted the 3-iodoazulene 336 back to the dehalogenated azulene 326. The same result was achieved, following a process originally developed by Stelzer et al., when the same 3-iodoazulene 336 was heated with diphenylphosphine, palladium diacetate and triethylamine at reflux in acetonitrile. ${ }^{237}$ Another attempt at a carbon-phosphorus cross coupling came from following the procedure reported by Tang et al., in which diphenylphosphine oxide could be coupled with aryl halides by using nickel(II) chloride, zinc, and 2,2'bipyridine in water. ${ }^{238}$ After forming the 3-bromoazulene 333 through treatment of
azulene 326 with N-bromosuccinimide, the application of this method only resulted in conversion back to dehalogenated azulene 326.

Scheme 97: The attempts at the formation of azulen-1-yl phosphine 406 or phosphine oxide 407 through transition metal cross coupling.

The next idea explored was to form a 2-((diphenylphosphoryl)oxy)azulene 409 that could be lithiated at the 3-position, leading to a 1,3-migration of the diphenylphosphoryl group from the oxygen atom to the azulene, producing an azulen-3-yl phosphine oxide 411. First developed by Heinicke et al., the reaction works well with arenes generally, due to the excellent ortho-directing ability for lithiation of the oxy-phosphoryl group. ${ }^{239,240}$ The method was appealing for this project, as it looked like an easier way of installing a phosphine group on the compound, through the nucleophilicity of the oxygen rather than the azulene. Once the 2-((diphenylphosphoryl)oxy)azulene 409 is formed, an intramolecular, rather than intermolecular, process is then required for the installation of a phosphine group at the 3-position (Scheme 98). The base used for the lithiation is lithium
diisopropylamide (LDA), rather than n-butyllithium, so the ester at the 1-position of the azulene is less likely to react in this process.

Scheme 98: The plan to lithiate the 3-position of the azulene, leading to migration of the phosphoryl group to there from the oxygen atom.

Following the method of Díez-González et al., ${ }^{241}$ ethyl 2-hydroxy-4-methoxyazulene-3-carboxylate 337 was treated with chlorodiphenylphosphine, triethylamine and catalytic DMAP in THF at room temperature for 3 days, followed by heating at $40^{\circ} \mathrm{C}$ for 15 hours. The crude mixture was then treated with hydrogen peroxide to oxidise the phosphanyl to a phosphoryl group. The process yielded the desired 2((diphenylphosphoryl)oxy)azulene 412, but it could not be separated from diphenylphosphine oxide and another aromatic, phosphorus-containing impurity. Instead of carrying out the reaction as a two-step process, the 2-hydroxyazulene 337 was treated with diphenylphosphinic chloride at $-78{ }^{\circ} \mathrm{C}$ to access the desired 2 ((diphenylphosphoryl)oxy)azulene 412 directly (Scheme 99). Using a stoichiometric quantity of DMAP, according to Parquette et al., ${ }^{242}$ the reaction was run for 16 hours, and it proceeded a lot more smoothly, giving the product 412 in 84% yield, with no difficulties in the purification.

Scheme 99: The treatment of ethyl 2-hydroxy-4-methoxyazulene-3-carboxylate 337 with diphenylphosphinic chloride and DMAP to give ethyl 2-((diphenylphosphoryl)oxy)-4-methoxyazulene1 -carboxylate 412.

The 2-((diphenylphosphoryl)oxy)azulene 412 was treated with 1.0 equivalent of freshly made lithium diisopropylamide at $-78^{\circ} \mathrm{C}$ in THF, stirring at this temperature for 2.5 hours, and then allowing to warm to room temperature to induce the migration step of the reaction. Oddly, the crude product consisted mostly of 2-hydroxyazulene 337, which is what one might expect if the solvent is moist, and the quenching of the LDA results in nucleophilic hydroxide ions that react with the phosphoryl group. The THF was sourced by distillation over sodium and benzophenone, so the near complete conversion of the starting material to 2-hydroxyazulene 337 through this route seems implausible. To facilitate the lithiation step, 2((diphenylphosphoryl)oxy)azulene 412 was treated with N-iodosuccinimide, which produced a near-clean crude sample of the 3-iodoazulene product 413 in 58% yield (Scheme 100). Unfortunately, when the 3-iodoazulene 413 was treated with n butyllithium for the halogen-lithium exchange, degradation of the azulene occurred. This result may be a consequence of the instability of iodo groups at the 1- or 3positions of azulenes. ${ }^{243,244}$

Scheme 100: The iodination of 2-((diphenylphosphoryl)oxy)azulene 412 with N -iodosuccinimide, followed by attempted lithiation of the 3-iodoazulene 413 to induce the migration of the phosphoryl group.

The 2-((diphenylphosphoryl)oxy)azulene 412 could also react with N chlorosuccinimide to produce the 3-chloroazulene 415, which was stable to column chromatography, in 49% yield (Scheme 101). This product was made with a view to react with sodium in a halogen-sodium exchange to produce the arylsodium intermediate, which then would undergo the migration. ${ }^{240}$ This process, however, was not carried out in this project.

Scheme 101: The chlorination of 2-((diphenylphosphoryl)oxy)azulene 412 with N-chlorosuccinimide, and planned halogen-sodium exchange of the 3-chloroazulene 415 to induce the migration step.

2.4.3. Reduction of ester groups

To allow more flexibility in the reactions that could be performed in this synthetic route, methods were explored to convert the ester group of 326 into something less influential in the outcome of reactions in which it ostensibly is not participating. The ester could not simply be converted to a hydrogen atom, by decarboxylation with
orthophosphoric acid, as a larger group would probably be needed to ensure atropisomerism in the final ligand. Fortunately, it was revealed in two papers by Hansen et al. that an ester group at the 1- or 3-position of the azulene could be reduced to a methyl group by reacting it with diisobutylaluminium hydride (DIBAL-H), a relatively mild reducing agent. ${ }^{195,245}$ The authors used this reagent to convert several examples of dimethyl azulene-1,2-dicarboxylates 416 to (1-methylazulen-2yl)methanol derivatives 417 (Scheme 102). The 1 -ester is reduced further than the 2ester because, on formation of the (azulen-1-ylmethoxy)diisobutylaluminum intermediate, the carbon-oxygen bond is cleaved and the electron density shifts from the 7-membered ring to the 1-position, stabilising the carbocation, and eventually forming a methyl group. A 2-methyl carbocation cannot be stabilised by resonance in the same fashion, so the hydroxymethyl group is retained here.

Scheme 102: The reaction of DIBAL-H with dimethyl azulene-1,2-dicarboxylates 416 to give (1-methylazulen-2-yl)methanol derivatives 417, by Hansen.

Following this method, to ethyl 2,4-dimethoxyazulene-1-carboxylate 326 was added 10.0 equivalents of DIBAL-H in two portions at $0^{\circ} \mathrm{C}$ and allowed to warm up to room temperature, stirring for 27 hours. Happily, the desired 2,4-dimethoxy-1methylazulene product 418 was isolated in 37% yield, which was oddly low considering the crude NMR spectrum showed that the product was almost clean at this stage (Scheme 103). When the reaction was repeated, increasing the scale from 0.20 mmol to 1.6 mmol , the mass of the crude product 418 corresponded to a yield
that was over 100%, despite appearing mostly clean by NMR. Therefore, while the product may be unstable on silica, the column is perhaps required to more rigorously remove inorganic aluminium salts are not visible by proton NMR.

Scheme 103: The reduction by DIBAL-H of ethyl 2,4-dimethoxyazulene-1-carboxylate 326 to 2,4-dimethoxy-1-methylazulene 418.

The next consideration was choosing at which point this step could be performed within the synthetic route towards a 2,2'-biazulene-1,1'-diphosphine ligand. The azulene product 418 obtained from this reduction was treated with boron tribromide in order to form the corresponding 2-hydroxyazulene 419 (Scheme 104). After the addition of one equivalent of boron tribromide and stirring overnight in DCM, not much conversion had taken place according to the TLC. The addition of another equivalent resulted in degradation of the product. Thus, an ester at the 1-position is perhaps essential for a clean dealkylation, with degradation pathways a result of keto-enol tautomerisation. ${ }^{216}$

Scheme 104: The attempted dealkylation of 2,4-dimethoxy-1-methylazulene 418 with boron tribromide.

Another option was to reduce the ester to the methyl group once the 2 ((diphenylphosphoryl)oxy)azulene 412 had been made. Accordingly, this azulene
was treated with 5.0 equivalents of DIBAL-H and stirred in DCM for 3 hours (Scheme 105). This reaction produced a small amount of what was tentatively identified as perhaps the azulen-1-yl methanol 421. If this was the correct identity, it was produced in $\sim 16 \%$ yield. This compound 421 is probably unstable, as the hydroxy group could be eliminated by the movement of electron density from the 7membered ring, stabilising the resultant carbocation. If this reaction were to be repeated, an increased quantity of DIBAL-H may be required to completely reduce the ester to the methyl group.

Scheme 105: The reduction with DIBAL-H on 2-((diphenylphosphoryl)oxy)azulene 412, which yielded possibly azulen-1-yl methanol 421.

2.4.4. Synthesis towards 2,2'-BazPhos

The desired precursor for the lithiation and migration of the diphenylphosphoryl group, which was 4-methoxy-1-methylazulen-2-yl diphenylphosphinate 420, could not be synthesised cleanly from the methods that were tested. Therefore, it was decided to abandon this strategy for the installation of a phosphine group at the 1position of the ligand, and different synthetic methods were considered. As mentioned previously in this account, Ito and co-workers had been able to form (3,6-
di-tert-butylazulen-1-yl)diphenylphosphine 285 by halogen-lithium exchange of the corresponding 1-iodoazulene 284, achieved by using lithium tri-n-butylmagnesate (Scheme 49). ${ }^{181}$ Crucially, this reaction had literature precedent, and it was possible to reduce esters in the electron-rich positions of the azulene, so a new plan was devised around these methods (Scheme 106). The tosyl derivative of tropolone 297 can undergo a condensation reaction with the sodium salt of dimethyl malonate 132 to produce methyl 2-oxo-2H-cyclohepta[b]furan-3-carboxylate $422 .{ }^{187}$ Due possibly to the lower $\mathrm{p} K_{\mathrm{aH}}$ of methoxide compared to ethoxide, the major pathway of the reaction is different to that of the synthesis of the ethyl ester derivative 298, and leads to the absence of the 8-hydroxy group (see mechanism in Scheme 52). A hydrogen atom in this position is desirable, as there is no requirement for a bulky group here for atropisomerism, and reduced steric hindrance at this position may allow greater flexibility and efficiency in the synthetic route. The 2 H -cyclohepta[b]furan-2-one 422 reacts with the thermally in situ generated ketene acetal from trimethyl orthoacetate 324 to make methyl 2-methoxyazulene-1carboxylate 423. ${ }^{187}$ After this point, each proposed chemical step had not yet been performed on the corresponding substrate, but was precedented for other substrates, either in this project or in the literature. The azulene product $\mathbf{4 2 3}$ of the [8+2]-addition-elimination reaction could probably be dealkylated to form the 2 hydroxyazulene 424, and then converted to the triflate 425. In a process similar to that in Scheme 94, the azulen-2-yl triflate could hopefully be converted to the 2,2'biazulene 426, via the palladium-catalysed Miyaura borylation and Suzuki crosscoupling. The ester groups on this 2,2'-biazulene 426 could probably be reduced by using DIBAL-H to produce 1,1'-dimethyl-2,2'-biazulene 427, which would potentially permit halogen-lithium exchange chemistry to take place cleanly to synthesise the
diphosphine. Because of the methyl groups at 1,1'-positions, this substrate should only react with N-iodosuccinimide at the other two remaining electron-rich positions, giving 1,1'-diiodo-3,3'-dimethyl-2,2'-biazulene 428. This biazulene 428 would hopefully then be converted to the (2,2'-biazulene-1,1-diyl)-bis-(diphenylphosphine) 429 via the literature method depicted in Scheme 49.

Scheme 106: Synthetic plan for a 2,2'-biazulene-1,1'-diphosphine ligand. Solid reaction arrows signify that the reaction has been previously performed in the literature, specifically on that compound; each dashed arrow represents a chemical step previously unreported for that compound.

The first two steps of this planned synthesis were adopted from a paper by Pham (Scheme 107). On a scale of 20 mmol , a freshly made solution of sodium methoxide was added to 2-tosyloxytropone 297 and dimethyl malonate 132 in methanol at $0^{\circ} \mathrm{C}$, and was allowed to warm to room temperature, stirring for 6 hours. The desired $2 \mathrm{H}-$ cyclohepta[b]furan-2-one 422 was then smoothly isolated in 55% yield. When the
scale of the process was increased to 60 mmol, this resulted in an increased 76% yield of 422, though this experiment was only carried out once. Nevertheless, this step made for a solid basis of the synthetic route. To test the next step, the [8+2]-addition-elimination to synthesise the azulene moiety, 2 H -cyclohepta[b]furan-2-one 422 was heated with trimethyl orthoacetate and toluene at $200^{\circ} \mathrm{C}$ for 6 hours, on a relatively small scale of 2 mmol in a microwave tube. This process gave the desired compound of methyl 2-methoxyazulene-1-carboxylate 423 in 48% yield. When the scale of the reaction was increased to 10 mmol , carried out in an round bottom pressure flask (Ace Glass Inc.) and heated for 7 hours, the yield was increased to 68%. When the limit to the capacity of the pressure flask was approached, at a scale of 15 mmol , the product 423 could still be made in 53% yield, after heating for 11 hours in total.

297

422

PhMe, $200^{\circ} \mathrm{C}$
11 h, 53\%
422 (15 mmol scale)

423

Scheme 107: The condensation reaction of 2-tosyloxytropone 297 with dimethyl malonate 132 to form 2 H -cyclohepta[b]furan-2-one 422, followed by the [8+2] reaction with trimethyl orthoacetate 324 to form methyl 2-methoxyazulene-1-carboxylate 423.

The demethylation reaction was first carried out on a scale of 0.46 mmol , whereby methyl 2-methoxyazulene-1-carboxylate 423 was treated with an equivalent of boron tribromide for 45 minutes. As expected, the reaction smoothly produced methyl 2-hydroxyazulene-1-carboxylate 424 in 88% yield, without the requirement of chromatographic separation (Scheme 108). This experiment could be performed on a larger scale; for instance, using 7.0 mmol of starting material, a yield of 93% for the

2-hydroxyazulene 424 was obtained. The conversion of the hydroxy group to a triflate was also uncomplicated. Testing this reaction on a small scale of 0.40 mmol , the 2-hydroxyazulene 424 was stirred with 1.5 equivalents of triflic anhydride and 2.0 equivalents of triethylamine in DCM at $0^{\circ} \mathrm{C}$ for 40 minutes. After column chromatography, the azulen-2-yl triflate 425 was isolated in 72\% yield. By increasing the scale to 6.5 mmol , and by adding the triflic anhydride as a solution in DCM rather than neat, the yield of this reaction increased to 87%. Since the both the demethylation and triflation reactions worked so reliably, these two steps could be combined into a single, two-pot process. This meant that the crude mixture for demethylation reaction could be given a simple aqueous wash, dried, and without recording the yield or crude NMR analysis, the triflation reaction could be immediately carried out. This modification meant the two steps could be completed within 6 hours, and on a scale of 10.6 mmol, resulted in 78% overall yield of $\mathbf{4 2 5}$.

Scheme 108: The boron tribromide-mediated demethylation of methyl 2-methoxyazulene-1carboxylate 423, followed by conversion of the hydroxy group to a triflate.

The palladium-catalysed homocoupling reaction was also successful (Table 15). On the first attempt, 0.30 mmol of azulen-2-yl triflate 425 was stirred with $4 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, 0.5$ equivalents of $\mathrm{B}_{2} \mathrm{pin}_{2}$ and 3.0 equivalents of potassium carbonate in 2 mL of degassed DMSO at $80{ }^{\circ} \mathrm{C}$ for 15 hours. This reaction yielded the desired 2,2'-biazulene 426 in 23% yield (Table 15, entry 1). By increasing the reaction scale almost ten-fold, at 5.6 mmol , and at roughly double the concentration $(0.28 \mathrm{M}$ with
respect to the azulen-2-yl triflate 425), a much improved 44% yield of 426 was produced (Table 15, entry 2). Another experiment, on a scale of 3.2 mmol, employed a loading of the palladium complex at $3.1 \mathrm{~mol} \%$, gave a further increase in yield at 48% (Table 15, entry 3). However, it is difficult to say which of the two parameter changes, if any of them, led to this improved result. When the palladium loading was reduced to $2 \mathrm{~mol} \%$, at scales of 4.8 mmol and 8.3 mmol , this gave yields of 29% (Table 15, entry 4) and 20% (Table 15, entry 5) respectively. Though the latter was carried out at a significantly higher concentration than the others of 0.42 M , the reduced yields were probably either a result of the lower palladium loading, or increased quantity of moisture in the bottle of solvent. The latter factor may have had some influence in the significant formation of both 2-hydroxyazulene 424 and methyl azulene-1-carboxylate 430, which were inseparable from each other by column chromatography.

Table 15: Summary of the Pd-catalysed homocoupling reaction of azulen-2-yl triflate 425 to form dimethyl [2,2'-biazulene]-1,1'-dicarboxylate 426.

a) Scale of the reaction with respect to the molar quantity of azulen-2-yl triflate $\mathbf{4 2 5}$ b) Concentration with respect to the molar quantity of azulen-2-yl triflate 425 in the volume of DMSO c) Reaction was allowed to operate overnight, or until the starting material had been completely consumed by TLC d) Compounds 424 and 430 were inseparable by column chromatography; thus for entries 4 and 5 , yields were estimated by integration of peaks in proton NMR spectrum e) Yield was not recorded.

Now with practicable amounts of a 2,2'-biazulene species 426, the structure had to be modified to be compatible with strongly nucleophilic organometallic reagents. In order to reduce the two ester groups, the biazulene 426 was mixed with 10 equivalents of DIBAL-H in DCM at $0{ }^{\circ} \mathrm{C}$. The TLC analysis of the reaction mixture after 80 minutes showed the complete consumption of the starting material, so a work-up procedure was applied at this point. However, instead of the expected 1,1'-dimethyl-2,2'-biazulene 427, the NMR and mass spectrometry analysis of the crude mixture revealed an impure sample of [2,2'-biazulene]-1,1'-diyl dimethanol 431, which was not stable to column chromatography, and so could not be isolated. The reaction was repeated, this time allowing to stir at room temperature overnight, which gave 1,1'-dimethyl-2,2'-biazulene 427 in 33\% yield (Scheme 109). Unfortunately, with an increase in the scale of the reaction to 0.74 mmol , the reaction took place less smoothly. At first, 10 equivalents of DIBAL-H were added, but after allowing the mixture to stir for 18 hours, the reaction was still incomplete, so another 10 equivalents of DIBAL-H were added. After running for another 4 hours, the 1,1'-dimethyl-2,2'-biazulene 427 was inseparable from small amounts of unidentified side products by column chromatography, but still corresponded to approximately the same yield.

Scheme 109: The reduction of dimethyl [2,2'-biazulene]-1,1'-dicarboxylate 426 with DIBAL-H to yield 1,1'-dimethyl-2,2-biazulene 427.

The less pure, but more plentiful sample of 1,1'-dimethyl-2,2'-biazulene 427 was then treated with N-iodosuccinimide. Because of concerns over how stable the desired 1,1'-diiodoazulene product 428 would be, the reaction mixture was shielded from light with aluminium foil. After near completion of the reaction by TLC analysis after 100 minutes, neutral alumina was added to the solution, and the mixture was concentrated under reduced pressure to prepare a dry-loaded sample for column chromatography. This purification method gave the desired diiodo product 428 in 12% yield, and the product was stable enough for full characterisation (Scheme 110).

Scheme 110: The reaction of 1,1 '-dimethyl-2,2'-biazulene $\mathbf{4 2 7}$ with N-iodosuccinimide to produce 1,1'-diiodo-3,3'-dimethyl-2,2'-biazulene 428.

At this stage, the synthesis was potentially one step away from accessing racemic (3,3'-dimethyl-[2,2'-biazulene]-1,1'-diyl)bis-(diphenylphosphine) 429, or "(\pm)-2,2'BazPhos", assuming the methyl groups are oriented in such a way as to induce atropisomerism. Following the methods of Ito ${ }^{181}$ and Oshima et al., ${ }^{246}$ the organometallic species lithium tri-n-butylmagnesate was made in situ through the addition of n-butyllithium to a solution of n-butylmagnesium chloride in ether at -60 ${ }^{\circ} \mathrm{C}$ (Scheme 111). After 10 minutes, a solution of the $1,1^{\prime}$-diiodo-2,2'-biazulene 428 in ether was added at the same temperature, and the mixture was allowed to stir for 30 minutes, before the addition of chlorodiphenylphosphine. After allowing it to warm up to room temperature, the reaction was allowed to run for 100 minutes. However, after column chromatography, the only products isolated were n butyldiphenylphosphine oxide and the starting material. Oddly, this indicates that not only did the 1,1 '-diiodo- 2,2 '-biazulene 428 not undergo halogen-lithium exchange, but was stable to the reaction conditions, work-up and column chromatography on silica. This left a nucleophilic source of an n-butyl fragment to react with chlorodiphenylphosphine, which was then oxidised on exposure to air.

Scheme 111: The attempted magnesium-iodide exchange of 1,1 '-diiodo-2,2'-biazulene 428 with tri-nbutylmagnesate, followed by the reaction with chlorodiphenylphosphine.

2.5. Development of "1,1'-BazPhos" through the Hafner method

2.5.1. C-H activation of azulene 2-position

So far, the routes towards a chiral ligand described in this account have been based around Nozoe's method for the construction of the azulene skeleton, that is, the condensation reaction of a tropone derivative with an active methylene compound. One key reason why this reaction had led to success was that it allowed the 2position of the azulene to be functionalised with an alkyl ether group, which could be converted to a hydroxy group in one step for the 1,1'-BazOL ligand 394. However, several synthetic steps were required to convert the ether to a phosphonate ester (389), which would then most likely need a further two steps to access the phosphine group. With this disadvantage in mind, it would be desirable to access the phosphine more directly. The inherent problem with the 2-position is that it is not as reactive as the most electron-rich (1 and 3) and most electron-poor (4, 6 and 8) positions, ${ }^{247,248}$ towards electrophiles and nucleophiles respectively. Thus, special protocols have to be adopted for C-H activation at this position.

Some success has been achieved in functionalising the 2-position via deprotonation, followed by quenching the conjugate base with an electrophile (Scheme 112). The challenged faced with this strategy is that the electrophilic positions of azulene are potentially incompatible with strong organometallic bases, if they can also behave as nucleophilic species. Moreover, for unsubstituted azulene, Sugihara et al. had calculated that there was only a small energy difference between the azulen-2-yl anion (without a countercation) and the diradical species formed by single electron donation from the 7 -membered ring to the 5 -membered ring, with the latter canonical form leading to decomposition. ${ }^{249}$ Nevertheless, the authors were able to use lithium
tetramethylpiperidide (LTMP), a non-nucleophilic base, for the lithiation of 1,3dihaloazulenes (432 and 433) at the 2-position. The intermediates, stabilised by the electron withdrawing ability of the halide groups, could be subsequently quenched with various electrophiles, such as chlorotrimethylsilane, chlorodiphenylphosphine, trimethylborate, dimethylformamide and carbon dioxide to obtain a versatile library of 2-functionalised azulene derivatives 434 in moderate to good yields. With later developments, the group were able to carry out a lithiation at the 2-position of 1tosylazulene 435 at $-100{ }^{\circ} \mathrm{C}$, followed by the addition of similar electrophiles. ${ }^{250}$ The strong directing ability of the sulfone was demonstrated in a competition reaction with 1,3-dichloroazulene 432, showing that 1-tosylazulene 435 was more readily lithiated. However, if the reaction was performed at $-70^{\circ} \mathrm{C}$, the lithiation suffered issues with selectivity, as the ortho-position of the p-tolyl group could be deprotonated instead of the azulene. This side intermediate would undergo cyclisation via nucleophilic aromatic substitution at the 8 -position of the azulene. This side process could be prevented either by performing the reaction at $-100{ }^{\circ} \mathrm{C}$, or by using N, N diethylsulfonamide (436), rather than p-toluenesulfonate, as the directing group.

$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Cl}$ (432) or $\mathrm{Br}(433)$ or $\mathrm{R}_{1}=\mathrm{SO}_{2}$ (p-tol) (435) or $\mathrm{SO}_{2} \mathrm{NEt}_{2}(436), \mathrm{R}_{2}=\mathrm{H}$

Scheme 112: The directed deprotonation of azulenes with LTMP, followed by quenching with electrophiles to produce azulen-2-yl derivatives 434, by Sugihara.

The same group was also able to employ late transition metal catalyzed C-H activation to carry out similar transformations (Scheme 113). By treating azulene 263 with bis-(pinacolato)diboron, in the presence of an iridium(I) complex and with bipyridine as a ligand, the azulen-2-yl boronate ester 437 was made selectively in 70% yield. ${ }^{216}$ The regioselectivity arises from the coordination of the 5 -membered ring of the azulene to the iridium centre, forming an η^{5}-complex. The insertion of the metal then takes place at the proximal 2-position, as it is more electron-poor and therefore more acidic than the 1- and 3- positions. The reaction was, however, sensitive to sterics, as derivatives 4,6,8-trimethylazulene and guaiazulene gave respective yields of 32% and 5% for the azulen-2-yl boronate ester products. The versatility of this iridium chemistry was built upon by Takai et al., who were able to carry out similar chemistry with tertiary silanes, to produce 2 -silylazulenes 438 with no regioisomeric side products. ${ }^{251}$ Studies have been reported by Doucet et al. on the palladium-catalyzed direct arylation of guaiazulene 265, an inexpensive, naturally occurring azulene derivative. ${ }^{252}$ Given the various sites on this molecule that are reactive under these conditions ($2-\mathrm{CH}, 3-\mathrm{CH}$ and $4-\mathrm{C}-\mathrm{Me}$), achieving a good level of regioselectivity presented a challenge. By employing conditions that favoured Hecklike pathways, various 2-arylguaiazulene species 439 were selectively synthesized in 51-56\% yield.

Scheme 113: The late transition metal catalysed C-H activation reactions of azulene 263 and guaiazulene 265.

While both of these types of $\mathrm{C}-\mathrm{H}$ functionalisation show versatility in the derivatisation of the 2-position, they may not be immediately suitable for the aims of this project. It has been shown that chlorodiphenylphosphine is a suitable electrophile to combine with the azulen-2-yllithium intermediate, but the formation of this intermediate in the first place is a delicate process, with its success heavily dependent on the choice of substituents on the starting material. A method with a transition metal catalyst may show greater functional group tolerance, but has not yet been adapted for the creation of azulene-phosphorus bonds, and a lot of time would therefore be demanded for the development of such a process.

2.5.2. Hafner's method for the synthesis of azulenes

Another ubiquitous method to make azulenes, around which a synthetic method towards a chiral ligand could be based, was originally developed by German chemist Klaus Hafner. Originally published in $1958,{ }^{253}$ the reaction of 2,4,6-trimethylpyrylium perchlorate 440 with an excess of sodium cyclopentadienide 441 yielded $43-49 \%$ of 4,6,8-trimethylazulene 442 according to a later account from Organic Syntheses (Scheme 114). ${ }^{254}$ The reaction works by nucleophilic addition of the cyclopentadienide anion to the pyrylium species, followed by an electrocyclic ring opening of 443 to extend the conjugated m-system. Cyclisation of 444 and elimination of a molecule of water from 445 , yields the azulene product 442 . A similar process can also be carried out with less reactive pyridinium salts - for example, Lash et al. were able to synthesise 6-tert-butylazulene and 6-phenylazulene from the reaction of sodium cyclopentadienide 441 with the corresponding N-butylpyridinium bromide salts in 66% and 81% yields, respectively. ${ }^{255}$

Scheme 114: The synthesis of 4,6,8-trimethylazulene 442 by Hafner, with mechanism.

There has been some variation of the substituents on the pyrylium or pyridinium reaction partner, for example, with the synthesis of 6-methoxy-4,8-dimethylazulene
from 4-methoxy-2,6-dimethylpyrylium tetrafluoroborate by Hansen et al., ${ }^{256}$ or, by Razus et al., ${ }^{257}$ of various 1,6-biazulene derivatives from the corresponding 4-(azulen-1-yl)pyrylium perchlorate salts. The use of substituted derivatives of cyclopentadienide, particularly to yield an azulene derivative with a substituent at the 2-position, is comparatively rare. The only examples of this type of reaction found in the literature, to the best of our knowledge, were of the synthesis of alkyl azulene-2carboxylate derivatives. When N -butyl 4-methylpyridinium bromide was treated with sodium (ethoxycarbonyl)cyclopentadienide by Koenig et al., an equimolar mixture of ethyl 6-methylazulene-1-carboxylate and ethyl 6-methylazulene-2-carboxylate was obtained; the product of selective hydrolysis of this mixture, 6-methylazulene-2carboxylic acid, was isolated in 9.3% overall yield. ${ }^{258}$ A more efficient result was obtained by Hansen, for the reaction of sodium (methoxycarbonyl)cyclopentadienide 446 with 2,4,6-trimethylpyrylium tetrafluoroborate 447 (Scheme 115). When methanol was used as the solvent, methyl 4,6,8-trimethylazulene-2-carboxylate 448 was formed in 47% yield, and was the only regioisomer detected, perhaps because of the steric hindrance of the 4,8-methyl groups. ${ }^{259}$

Scheme 115: The selective synthesis of methyl 4,6,8-trimethylazulene-2-carboxylate 448 from sodium (methoxycarbonyl)cyclopentadienide 446 with 2,4,6-trimethylpyrylium tetrafluoroborate 447, by Hansen.

2.5.3. Synthesis of azulen-2-yl phosphines

Given the remarkable selectivity, and without the use of harsh organometallic reagents on the azulene structure, or expensive transition metal complexes, this method in Scheme 115 could potentially be adapted towards the synthesis of a 1,1 'BazPhos ligand. While several literature methods ${ }^{260,261,262}$ exist for the synthesis of the (diphenylphosphino)cyclopentadienide salt 450, this species has never been treated with a pyrylium or pyridinium cation to make an azulen-2-yl phosphine species, and would make a very direct way of doing so. Following the method of Erker et al., on a scale of 30 mmol , sodium cyclopentadienide 441 was treated with chlorodiphenylphosphine in THF at $-78{ }^{\circ} \mathrm{C}$, and the solution was allowed to stir overnight at room temperature (Scheme 116). After concentrating the mixture in vacuo, the residue was then dissolved in toluene and filtered through Celite, before treating with ${ }^{n} \mathrm{BuLi}$ to deprotonate the 5 -membered ring. This procedure gave the desired product of lithium (diphenylphosphino)cyclopentadienide 450 in 76% yield, which was stored under an atmosphere of argon to prevent any reaction with oxygen or water.

Scheme 116: The synthesis of lithium (diphenylphosphino)cyclopentadienide 450 from chlorodiphenylphosphine and sodium cyclopentadienide 441.

Before the idea for the synthesis of azulen-2-yl phosphine in this manner had been considered, the synthesis of 4,6,8-trimethylazulene 442 had been carried out earlier in this laboratory, following the method of Hansen et al., which was an adaptation of
the original by Hafner. ${ }^{256}$ At $0{ }^{\circ} \mathrm{C}$, to 2,4,6-trimethylpyrylium tetrafluoroborate 447 was added sodium cyclopentadienide 441 (freshly made from cyclopentadiene and sodium hydride), and the mixture was stirred for 30 min to give 4,6,8trimethylazulene 442 in 39% yield (Scheme 117). The extra equivalent of sodium cyclopentadienide 441 is required as it reacts with the water that is eliminated in the formation of the azulene.

442
Scheme 117: The synthesis of 4,6,8-trimethylazulene 442 from 2,4,6-trimethylpyrylium tetrafluoroborate 447.

A similar method could thus be applied to the phosphine-functionalised cyclopentadienide species 450. The first time this reaction was carried out, the addition of a solution of lithium (diphenylphosphino)cyclopentadienide 450 in THF to 2,4,6-trimethylpyrylium tetrafluoroborate 447 , at $0^{\circ} \mathrm{C}$, resulted in a brilliant blue mixture. However, the colour changed to a dull brown during the aqueous work-up, but despite this, the desired product 451 was stable to column chromatography, coeluting with excess (diphenylphosphino)cyclopentadiene $449\left(\mathrm{CpPPh}_{2}\right)$. Another fraction from the column contained the analogous oxides of these products: the azulene-2-yl phosphine oxide 452 and (diphenylphosphinyl)cyclopentadiene 453 $\left(\mathrm{CpP}(\mathrm{O}) \mathrm{Ph}_{2}\right)$, showing that these phosphine species were sensitive to air oxidation. The reaction was repeated, allowing the azulene formation to complete overnight. Instead of an aqueous work-up, a silica plug was applied under the argon atmosphere to the crude reaction mixture to either neutralise or remove any ionic
species from the system that could be leading to any decomposition of the azulene. After column chromatography, the fraction of azulene-2-yl phosphine 451 with excess $\mathrm{CpPPh}_{2} 449$ could be purified by crystalllisation with hot ethanol to give the desired product 451 in 3.0% yield (Scheme 118). A second recrystallisation with hot ethanol was applied to the solid that was dissolved in the filtrate, but this second crop yielded the corresponding azulene-2-yl phosphine oxide 452 instead, in 2.0\% yield.

Scheme 118: The synthesis of diphenyl(4,6,8-trimethylazulen-2-yl)phosphine 451 from 2,4,6trimethylpyrylium tetrafluoroborate 447 and lithium (diphenylphosphino)cyclopentadienide 450.

The reaction was increased in scale, from 1.42 mmol to 11.2 mmol of pyrylium salt 447, but this time, the recrystallisation did not yield pure azulene-2-yl phosphine 451. Instead, as it was evident that the phosphine group was sensitive to air oxidation, this fraction was treated with hydrogen peroxide to convert it to the phosphine oxide 452, with a view to reducing the diphenylphosphinyl group at the end of the ligand synthesis. After column chromatography, and recrystallisation (THF/hexane 4:1), azulen-2-yl phosphine oxide 452 was produced in 1.3% overall yield (Scheme 119).

Scheme 119: The synthesis of diphenyl(4,6,8-trimethylazulen-2-yl)phosphine oxide 452, through the oxidation of azulen-2-yl phosphine 451.

In order to increase the yield and efficiency of this process, the hydrogen peroxide oxidation step was applied immediately after the formation of the azulene. Unfortunately, after column chromatography, the recrystallisation could not be repeated successfully to isolate the azulen-2-yl phosphine oxide 452 (Scheme 120). The purity could, however, be improved through the selective solvation of the desired product in tert-methyl butyl ether, but not to the extent that an accurate yield of the compound could be determined. Nevertheless, this impure sample of azulen-2-yl phosphine oxide 452 was treated with N -bromosuccinimide, completely converting the starting material to a mixture of the corresponding 1-bromoazulene and a smaller amount of the corresponding 1,3-dibromoazulene. A Suzuki reaction on this substrate was performed by adding to the reaction mixture p-tolylboronic acid, catalytic $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, sodium carbonate as the base and water, and the mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 18 hours. ${ }^{263}$ The procedure yielded a sample of the $1-p$ -tolylazulen-2-yl phosphine 454, which co-eluted with triphenylphosphine oxide sourced from the palladium complex, in $<31 \%$ yield (derived from total mass of the fraction). The ferric chloride catalysed oxidative homocoupling reaction was attempted on this substrate 454, once in methanol ${ }^{177}$ and once in benzene. ${ }^{264}$ However, the only substance identified from these reactions was recovered starting
material, with the formation of the 1,1 '-biazulene product perhaps prevented by steric hindrance of the phosphine and 4-methyl groups.

Scheme 120: The synthesis of azulen-2-yl phosphine oxide 452 through azulene formation and then $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidation in one pot, followed by bromination and Suzuki coupling for form 1-(p-tolyl)azulen-2-yl phosphine 454.

To try improving the yield of azulen-2-yl phosphine oxide 452, the reaction was repeated with a filtration through neutral alumina, rather than through silica, between the azulene formation and oxidation steps. Since this change in protocol did not facilitate the purification of this azulene, the impure sample from this reaction was treated with trichlorosilane and triethylamine, heating at reflux in toluene for 15 hours. This process completely reduced the phosphine oxide to the phosphine, so to the mixture was added borane, to protect the free phosphine from oxidation. Fortunately, after purification by column chromatography, the azulen-2-yl phosphine borane adduct 455 was isolated, without recrystallisation, in 1.6% overall yield. With this positive result in mind, the procedure for the formation of the azulen-2-yl phosphine was changed to include treatment with borane, in place of an oxidation
step. By doing this, the azulen-2-yl phosphine borane 455 could be isolated in a much improved 12% yield, again without requiring crystallisation (Scheme 121). This therefore represented a much more efficient protocol than what was achieved previously for the synthesis of a pure azulen-2-yl phosphine species. A few changes were made to try improving this yield, none of which succeeded in doing so: the quantity of phosphino-cyclopentadienide was doubled to 4 equivalents, giving 11\% yield of 455 and making purification by column chromatography more difficult; the order of addition was changed, by adding the pyrylium salt 447 to the solution of phosphino-cyclopentadienide 450, which gave 3.0% yield of 455 ; also, carrying out the azulene formation at $60^{\circ} \mathrm{C}$ resulted in 6.8% yield of 455 .

Scheme 121: The formation of azulen-2-yl phosphine 451, followed by the addition of borane in the same pot to form the azulen-2-yl phosphine borane adduct 452.

While the yield of 12% was still modest, the reaction gave practicable quantities of the phosphine borane adduct 455 . To make the corresponding 1,1'-biazulene 457 the phosphine borane adduct 455 was treated with N-bromosuccinimide in THF, and stirred until the reaction was virtually complete by TLC, giving a mixture of the corresponding 1-bromoazulene 456 and corresponding 1,3-dibromoazulene (Scheme 122). The crude mixture was added to $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}$, zinc powder and tetra-$n$-butylammonium iodide for a homocoupling reaction similar to that in Table 7. After heating at $50^{\circ} \mathrm{C}$ for 20 hours, purification by column chromatography gave the free
azulen-2-yl phosphine 451 in 19\% yield, recovered azulen-2-yl phosphine borane 455 in 17% yield, some azulen-2-yl phosphine oxide 452 that co-eluted with triphenylphosphine oxide, and another fraction that could not be identified. The mass spectrum of the latter fraction gave an m / z value of 721.3408 , which corresponds to a species that perhaps consists of a 1,1'-biazulene skeleton, but the integrations of the peaks on the proton NMR spectrum indicated a symmetrically substituted monomeric azulene. This unidentified substance was heated with morpholine to displace the phosphine group from the borane, but this process gave an inseparable mixture of azulen-2-yl phosphine oxide 452 and morpholine-borane adduct. The homocoupling reaction was later repeated to include a basic aqueous wash in the work-up procedure for the brominated azulene mixture, but neither the unidentified species, nor any 1,1'-biazulene species were produced.

Scheme 122: Bromination of azulen-2-yl phosphine borane 455, followed by attempted homocoupling to form the 1,1 '-biazulene 457.

Another idea that was explored was to use a less electrophilic pyrylium derivative, in order to eliminate possible side reactions and gain more control over the synthesis of the azulene. The account by Hansen et al., which had a procedure that was followed for this mode of synthesising azulenes, described the synthesis of 6-methoxy-4,8-
dimethylazulene 459 from sodium cyclopentadienide 441 and 4-methoxy-2,6dimethylpyrylium tetrafluoroborate 447, in 48% yield. ${ }^{256}$ In contrast to the 2,4,6trimethylpyrylium salts, this reaction required heating at reflux in THF, which demonstrates the effect of the electron donating 4-methoxy group on the electrophilic reaction partner. Following the method in this paper, the 4-methoxypyrylium salt 458 was synthesised in 20% yield by alkylation of 2,6-dimethyl-ү-pyrone 460 with dimethyl sulfate, followed by the anion exchange with tetrafluoroboric acid (Scheme 123). For a preliminary test, the 4-methoxypyrylium salt 458 was added to 4 equivalents unfunctionalised sodium cyclopentadienide 441 and after heating at reflux for 17 hours, the desired product of 6-methoxy-4,8-dimethylazulene 459 was isolated in 39% yield. After this, the 4-methoxypyrylium salt 458 was added to 4 equivalents of lithium (diphenylphosphino)cyclopentadienide 450, and was heated in THF at $60^{\circ} \mathrm{C}$ for 15 hours. The reaction was simply quenched by pouring over ice, and purification by column chromatography gave an impure sample of the desired 6-methoxyazulen-2-yl phosphine 461. This sample was later oxidised with hydrogen peroxide, which produced a pure sample of the phosphine oxide 462 in 2.1% yield overall, after column chromatography. The synthesis of the 6-methoxyazulen-2-yl phosphine 461 was repeated, but the crude product was treated with borane in THF to protect the phosphine from oxidation. Unfortunately, the desired phosphine borane 463 could not be purified adequately through column chromatography and recrystallisation with ethanol. Thus, the use of 4-methoxy-2,6-dimethylpyrylium tetrafluoroborate 458 did not improve the yield or efficiency of the formation of an azulen-2-yl phosphine species.

Scheme 123: The synthesis of 4-methoxy-2,6-dimethylpyrylium tetrafluoroborate 458, and from this, the synthesis of 6-methoxy-2,4-dimethylazulene 459, 6-methoxyazulene phosphine oxide 462, and 6methoxyazulene phosphine borane 463.

Another attractive option was to try using an analogous pyridinium salt for the formation of the same trimethylazulen-2-yl phosphine 451, due to the impressive yields obtained by Lash et al. for the formation of 6-tert-butylazulene and 6phenylazulene in this way, mentioned earlier in this report. ${ }^{255}$ Another advantage was the requirement of only one equivalent of cyclopentadienide for the reaction to work. Following the method of Tang et al., ${ }^{265}$ the pyridinium salt 465 was formed by the alkylation of $2,4,6$-collidine 464 with methyl iodide, and allowing the mixture to stir overnight gave the desired alkylated product 465 in an unusually low 16\% yield, which was attributed to the age of the sample of alkylating agent (Scheme 124). The pyridinium salt 465 was then mixed with 1.0 equivalent of phosphinocyclopentadienide 450, and heated at reflux in DMF for 4 hours. Unfortunately, the reaction only produced a sample with indeterminate aromatic peaks by NMR, containing a small amount of azulen-2-yl phosphine oxide 452.

Scheme 124: The attempted synthesis of azulen-2-yl phosphine 451 from N-methyl-2,4,6-collidinium iodide 465.

The final idea explored towards this mode of synthesising azulen-2-yl phosphine derivatives, was to form the lithium cyclopentadienide derivative through the reaction of sodium cyclopentadienide 441 with diphenylphosphinyl chloride, followed by deprotonation with n-butyllithium. This way, the neutral $\mathrm{CpP}(\mathrm{O}) \mathrm{Ph}_{2}$ intermediate 453 could be handled under air, making the work-up procedure more convenient. Once this procedure had been carried out, the lithium (phosphinyl)cyclopentadienide salt 466 was not characterised by NMR, but the formation of the desired product was suggested by the addition of a small amount of the sample to a suspension of trimethylpyrylium salt 447, which resulted in a purple solution (Scheme 125). However, when the remainder of the sample was treated with trimethylpyrylium salt 447, no azulene product could be isolated, perhaps due to the now reduced nucleophilicity of the cyclopentadienide derivative 466.

Scheme 125: The attempted synthesis of azulen-2-yl phosphine oxide 452 from lithium (diphenylphosphinyl)cyclopentadienide 466.

2.5.4. Limitations and future synthetic developments

Overall, the application of this alternative method towards the synthesis of a $1,1^{\prime}$ BazPhos ligand, based around the azulene chemistry pioneered by Hafner, yielded a very direct method of accessing azulen-2-yl phosphine species. However, the poor yields and often difficult purification for this azulene formation are obvious disadvantages, and represent a great hindrance in the synthesis of a chiral ligand. The chemistry based around the Nozoe-type azulenes has been more facile to develop, despite requiring a greater number of functional group interconversions to reach the target ligands.

The best yield achieved for a pure azulen-2-yl phosphine was 12% (as its borane adduct 455), which was low probably due mostly to the steric hindrance of the bulky phosphine groups on the cyclopentadienide nucleophile. Nonetheless, the chemistry of this Hafner type of azulene synthesis seems to be inherently inefficient, as the best literature examples only reach a maximum of around 50% yield with pyrylium derivatives as the electrophilic partner. This poor performance is probably due to the
elimination of water into the system leading to side reactions and necessitating the use of an excess of cyclopentadienide. The performance may perhaps be improved by including a means of quickly scavenging water out of the system, e.g. the use of $4 \AA$ molecular sieves. To add to this, the azulene motif itself probably makes a competing nucleophile, as it has been shown that it can undergo conjugate addition to α, β-unsaturated carbonyls. ${ }^{266}$ The side products that are made are also not often easy to identify, which makes it difficult to obtain a clear understanding of the reaction.

On the bright side, as the azulen-2-yl phosphine species 451 is accessible, it would be interesting to investigate how the geometric and electronic properties of this species translate into its performance as a non-chiral ligand in homogeneous catalysis. Monophosphine ligands are ubiquitous for this purpose, particularly for transition metal catalysed hydrogenation and carbon-carbon bond formation. The success of this result can also inspire further investigation into the use of other cyclopentadienide derivatives for the synthesis of azulenes (Scheme 126). The inexpensive hydrocarbon indene has relatively acidic carbon-hydrogen bonds, and through the reaction of indenide salts 468 with pyrylium or pyridinium salts 467 , could make a convenient method of making benzoazulene derivatives 469. Other cyclopentadienide derivatives 471 may be accessed by addition of sodium cyclopentadienide 441 to electrophiles, followed by deprotonation, in a similar way to reactions described in Scheme 115 and Scheme 116.

467

Scheme 126: The proposed formation of benzo[a]azulene derivatives 469 from an indenide anion 468, and derivatisation of cyclopentadienide 441 through addition to electrophiles.

2.6. Development of 1,1-biazulene-2,2'-phosphoric acid ("1,1'-BazPA")

2.6.1. Ideal chiral biazulene-acid targets

The application of axially chiral biaryl diol-derived phosphoric acids in organocatalysis is a relatively new field in asymmetric synthesis. ${ }^{267,268,269}$ One of the original targets of this project was to synthesise a biazulene-based phosphoric acid, to examine how the unique geometric and electronic properties of azulene translates into the performance at 'specific' acid catalysis. Based on previous literature showing that the high enantioselectivity generally results from a narrow chiral pocket, for example with chiral spinol-derived phosphoric acids $472,270,271,272$ the ideal biazulene-phosphoric acid would probably possess a biaryl bond between the two 7membered rings, so that any bulky groups positioned 'ortho' to the hydrogen phosphate group are closer together in space. To decrease the $\mathrm{p} K_{a}$ value by induction, the hydrogen phosphate can be positioned on either the 4-carbon or the 6carbon on the azulene. Combining these two design criteria together leads to two ideal options: the 5,5'-biazulene-4,4'-phosphoric acid 473 or the 5,5'-biazulene-6,6'phosphoric acid 474 (Figure 50). From the synthetic point of view, the former structure 473 has an advantage, as the 5-membered rings positioned above and
below the hydrogen phosphate may have sufficient steric bulk to influence the orientation of the substrate. If not, a substituent $\left(R_{2}\right)$, such as mesityl, can be introduced to the 3,3'-positions of the structure of 473 by halogenation and a Suzuki reaction.

473
5,5'-biazulene-4,4'phosphoric acid

5,5'-biazulene-6,6'phosphoric acid

based on SPINOLphosphoric acid 472
$R_{1}=$ group to impede racemisation
$\mathrm{R}_{2}=$ group to sterically
enhance chiral environment

Figure 50: Ideal designs for a biazulene-based chiral phosphoric acid.

The structures in Figure 50 are greatly different from the 1,1 '-biazulene or 2,2 'biazulene derivatives that were synthesised or targeted in this project, so their development was not explored. However, a 1,1'-biazulene-2,2'-phosphoric acid could potentially be accessed in one step from the 1,1'-biazulene-2,2'-diol structures that were synthesised for different purposes, and would therefore not represent a great investment of time. These more immediately accessible chiral acids would most likely not be the final design, because in order to have a effective chiral acid catalyst, the esters at the $3,3^{\prime}$-positions would probably have to be replaced with more rigid, bulky aryl groups (c.f. "TRIP" catalyst). ${ }^{273}$ This type of structure may be accessed in the same number of steps by synthesising the 2 H -cyclohepta[b]furan-2one precursors derived from aryl active methylene compounds, as in Table 8.

2.6.2. Synthesis of 1,1'-BazPa

For the first attempt to synthesise the phosphoric acid, the 1,1'-biazulene-2,2'-diol (as an inseparable mixture of methyl and ethyl esters (\pm)-475) was treated with 1.2 equivalents of phosphorus oxychloride and 2.4 equivalents of triethylamine, and heated at reflux in DCM for an hour (Scheme 127). ${ }^{274}$ After hydrolysis of the phosphorochloridate intermediate and treating the organic solution with dilute HCl , the work-up procedure was not straight-forward. The proton NMR spectrum of the solute from the organic layer was messy and indeterminate. It was dissolved in DCM again, and after washing with dilute aqueous NaOH solution, most of the distinct azulene colour remained in the organic layer, so the organic layer was filtered through silica. The NMR spectrum showed mostly clean product (\pm)-476, as a mixture of methyl and ethyl esters carried over from the starting material. After applying column chromatography, the NMR spectrum looking no different, the product (\pm)-476 was isolated in $\sim 12 \%$ yield (based on the molecular weight of the diethyl ester).

Scheme 127: The conversion of 1,1'-biazulene-2,2'-diol (\pm)-475 (mixed esters) into its corresponding phosphoric acid (\pm)-476.

The product ($\mathbf{\pm}$)-476, due to the hydrogen phosphate group, streaked on the silica column, so to improve the isolable yield for a repeat experiment, the phosphate was
to be alkylated before column chromatography (Scheme 128). A different procedure was adopted, following a paper by MacMillan, ${ }^{275}$ by which the biazulene diol $(\pm)-\mathbf{3 7 0}$, this time comprising pure ethyl ester, was treated with 2.0 equivalents of POCl_{3} and using pyridine as the solvent. The crude acid product was treated with a solution of TMS-diazomethane in THF, and while the identity of the methylated product (\pm)-477 was confirmed by mass spectrometry, it could not be isolated cleanly after column chromatography. Interestingly, the NMR spectrum of $(\pm)-477$ showed that the two azulene moieties were no longer equivalent, due to the symmetry lost from the conversion of a hydrogen phosphate to a methyl phosphate.

Scheme 128: The conversion of 1,1'-biazulene-2,2'-diol (\pm)-370 into its corresponding phosphoric acid, with subsequent alkylation to the methyl phosphate ester $(\pm)-477$.

The final attempt at synthesising a $1,1^{\prime}$-biazulene-2,2'-phosphoric acid was carried out by heating biazulene diol (\pm) - 370 in anhydrous orthophosphoric acid to remove the ester groups, and the crude diol was treated with POCl_{3} in pyridine (Scheme 129). After hydrolysis with water and treatment with dilute aqueous HCl , the work-up procedure was problematic, as the crude product appeared to be partly aqueous and partly organic-soluble. The NMR spectra of the organic extracts, using DCM, and then ethyl acetate, showed no evidence of the formation of the desired product $(\pm)-478$. The aqueous layer, however, was allowed to evaporate to dryness, and a
solution of the residue in chloroform was filtered through silica. The NMR spectrum of this residue showed a clean sample of what appeared to be the desired product, although the structure could not be confirmed by mass spectrometry. If this sample was of the desired compound $(\pm)-478$, the mass corresponded to 12% yield.

Scheme 129: The $\mathrm{H}_{3} \mathrm{PO}_{4}$-mediated deethoxycarbonylation of 1,1'-biazulene-2,2'-diol (\pm)-370, followed by conversion of the crude diol to the phosphoric acid (\pm)-478.

2.6.3. Limitations

Overall, there were a number of factors that constituted problems with the synthesis of these biazulene-phosphoric acid targets. While the isolated yields of the products were low, the starting material was either mostly or completely consumed each time, as evidenced by the NMR spectra of the crude material. Observing the experiment taking place, the reactions did not appear to proceed cleanly, as they tended to produce intractable material in the flask. This observation was common with the reaction of the same biazulene diol species (\pm)- $\mathbf{3 7 0}$ with triflic anhydride to make the biazulene ditriflate (\pm)-372, so perhaps the treatment with strong electrophiles lead to decomposition of the starting material. The solubility of the starting material may be a factor in how cleanly the reaction proceeds, as the 1,1'-biazulene-2,2'-diol (\pm)-370 with 8,8 -methoxy groups generally had poor solubility in most organic solvents. However, the analogous compound with 8,8'-ethoxy groups (\pm)-394 had much
improved general solubility, so the conversion of this species to the phosphoric acid, which was not attempted in this project, may result in a cleaner reaction.

Another factor that added complication to the procedure was the amphiphilic properties of the phosphoric acid targets, due to the polar hydrogen phosphate group at one end of the molecule, and the large, relatively apolar aromatic hydrocarbon structure at the other end. This property perhaps was the reason why purification by a simple acid-base extraction could not be performed on the biazulene phosphoric acid product with 3,3 '-ester groups (\pm)-476. Despite this, the biazulene phosphoric acid without the 3,3 '-ester groups (\pm)-478 was retained in the aqueous layer, and could be isolated after evaporation of the water. The low yield in this case may be due to the multiple steps incorporated in the procedure to make that product, as well as the questionable stability of the intermediate diol.

2.7. Asymmetric Diels-Alder reaction

The chiral 1,1'-BazOL ligand, diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 394, had been synthesised and resolved to yield workable quantities of its individual enantiomers. Thus, the next step in the project was to apply the ligands to an asymmetric reaction. The Diels-Alder cycloaddition was seen as an appropriate choice due to its ubiquity in synthetic chemistry. As covered in the introduction of this report, the paper by Harada et al. described the Ti-catalysed reaction between cyclopentadiene and several α, β-unsaturated esters, using 1,1 'biphenyl diols that varied in bite angle as the chiral ligands (Scheme 42). ${ }^{139}$ The results showed that the reaction was highly sensitive towards the bite angle of the diol ligand. The best results obtained were at a moderate $70-80 \%$ e.e., which was
ideal for the purposes of this project because, while the process was clearly suited for this Diels-Alder reaction, it meant there was room to improve the selectivity by screening new ligands.

2.7.1. Ti-catalysed Diels-Alder reaction with 1,1'-BazOL

Unfortunately, as the paper by Harada was a letter, no detailed method was included in the content. In lieu of this, the experimental method described by Wulff et al. for the Al-catalysed Diels-Alder reaction of cyclopentadiene with various $\alpha, \beta-$ unsaturated carbonyl compounds, using VANOL 288 and VAPOL 289 as ligands, was adapted for a Ti-catalysed process in this project (Table 16). ${ }^{276}$ For each experiment, the chosen ligand was stirred with titanium(IV) chloride in DCM for 30 minutes at room temperature. After cooling to $-20^{\circ} \mathrm{C}$, tert-butyl acrylate 479 was added and the mixture was stirred for 15 minutes, which was followed by the addition of cyclopentadiene $\mathbf{2 4 2}$, and allowing the reaction to take place for 22 hours. The mixture was then given an aqueous wash, and purified by column chromatography. The ligands chosen for comparison with $\left(R_{a}\right)-1,1^{\prime}-B a z O L ~(-)-394$ and $\left(S_{a}\right)-1,1^{\prime}-$ BazOL (+)-394 were $\left(R_{a}\right)$-BINOL 213 and $\left(S_{a}\right)$-VAPOL 289. The reactions were run with a catalytic loading, which encompasses both the loading of the ligand and TiCl_{4}, at $10 \mathrm{~mol} \%$, aside from a comparison between $\left(R_{\mathrm{a}}\right)$-BINOL 213 and $\left(R_{\mathrm{a}}\right)-1,1^{\prime}$-BazOL $(-)-394$ at $5 \mathrm{~mol} \%$ (Table 16, entries 2 and 5). Initially, the determination of the total yield of norbornene adducts endo-480 and exo-480 was attempted by integration of the product peaks on the proton NMR spectrum, using the ligand as an internal standard. Unfortunately, this method tended to calculate yields of over 100%, so the isolated yields of 480 are instead listed. These values may not be truly representative of the quantity of products synthesised, as small quantities were probably lost due to their volatility. The ratio of endo- to exo-adducts was
consistently good for each experiment, achieving above 90:10 each time; changing the ligand did not show a clear influence on these results. Disappointingly, none of the experiments showed any enantioselectivity. Initially to calculate the e.e. values, attempts were made to optimise the resolution of the products by chiral HPLC, as the equipment was readily accessible, but the peaks could not be completely separated. The use of a chiral NMR shift reagent was also investigated towards determining the enantiomeric excess. A sample of the norbornene adduct (endo- and exo-adducts 480 mixed) was mixed with a gradually increased quantity of $\mathrm{Eu}(\mathrm{ffc})_{3} 481,{ }^{277}$ recording the proton NMR spectrum at 0, 0.2, 0.5 and 1.0 equivalents (Figure 51). Gradual shifts of the peaks were observed with each addition, particularly with the olefinic peaks, but the resolution of the enantiomers observed was insufficient.

Several Diels-Alder experiments were carried out, varying the ligand and catalytic loading, before the enantioselectivities were able to be determined. Eventually, the e.e. values were calculated through chiral GC, but by the time the apparatus could be used, there was no time left to further change the conditions of the procedure. It is evident that the chiral element of the reaction i.e. the ligand, was not able to induce enantioselectivity in the synthesis of the adducts because of a fundamental fault with the set-up of the experiments. It is unlikely that more time was required to form the Ti-ligand complex, as the addition of the ligand to the solution of TiCl_{4} brought about an instant colour change. It is more likely that the diene and dienophile were able to react without the assistance of the Lewis acid. Thus, to suppress this uncatalysed process, the experiment could be carried out at a lower temperature, so that the carbonyl group will be required to coordinate to the Lewis acid to activate the cycloaddition. More rigorous measures could also be made to exclude water and
oxygen from the system, as it is possible that multicentre Ti-complexes, comprising bridging oxo ligands, may have formed, shutting down the catalysed reaction.

Table 16: The attempts at the Ti-catalysed asymmetric Diels-Alder reaction between tert-butyl acrylate 479 and cyclopentadiene 242.

Entry	Ligand	Catalyst loading lmol\%	Isolated yield /\%	endo/exo	\% e.e.
1	$\left(R_{\mathrm{a})}\right)$-BINOL 213	10	40	$96: 4$	0
2	$\left(R_{\mathrm{a}}\right)$-BINOL 213	5	37	$95: 5$	0
3	$\left(\mathrm{~S}_{\mathrm{a}}\right)$-VAPOL 289	10	30^{*}	$93: 7$	0
4	$\left(R_{\mathrm{a}}\right)$-BazOL 394	10	20	$95: 5$	0
5	$\left(R_{\mathrm{a})}\right.$-BazOL 394	5	33	$96: 4$	0
6	$\left(S_{\mathrm{a})}\right.$-BazOL 394	10	29	$95: 5$	0
*sample also contained indeterminate dicyclopentadienide-like species.					

Figure 51: The proton NMR spectra in CDCl_{3} of a sample of norbornene adduct 480, with gradual addition of $\mathrm{Eu}(\mathrm{tfc})_{3} 481$.

2.8. Conclusions and future work

While it would be desirable at this stage to have employed a chiral biazulene ligand or acid to induce enantioselectivity in asymmetric catalysis, several notable objectives have been achieved. That desired stage was nearly reached, with the synthesis, resolution and detailed characterisation of an atropisomeric 1,1'-biazulene-2,2'-diol ("1,1'-BazOL", 394), plus the attempted application of this ligand to an asymmetric Ti-catalysed Diels-Alder reaction. Before deciding to investigate the effects of the biazulene moiety within the context of diol ligands, the original aim of the project was to develop a chiral 1,1'-biazulene-based diphosphine ligand. This objective was almost achieved with the synthesis of the atropisomeric $1,1^{\prime}$-biazulene-$2,2^{\prime}$-diphosphonate ester species (\pm) - 389 , which is likely to be two synthetic steps away from a racemic 1,1'-biazulene-2,2'-diphosphine. The incorporation of the resolution procedure, using the $1,1^{\prime}-$ BazOL-((bis)menthyl carbonate) derivative 404, could allow access to single enantiomers of the diphosphine ligand, assuming the configuration is retained throughout the subsequent synthetic steps. Another synthetic target that was pursued was a $2,2^{\prime}$-biazulene- 1,1 '-diphosphine, and access to a racemic form of this ligand is potentially one step away, using 1,1'-iodo-3,3'-dimethyl-2,2'-biazulene 428. However, it has not yet been confirmed that the 3,3'methyl groups are sufficiently large to induce atropisomerism in a 2,2'-biazulene species.

$\left(R_{a}\right)$-394

$\left(S_{a}\right)-394$

(\pm)-389

428

Figure 52: Key compounds synthesised in the routes towards biazulene ligands: $\left(R_{a}\right)$ - and $\left(S_{a}\right)-1,1^{\prime}-$ BazOL 394, (\pm)-1,1'-biazulene-2,2'-diphosphonate 389 and 1,1'-diiodo-2,2'-biazulene 428.

During a project that is characterised by the aim to synthesise unusual, novel compounds, it is necessary to develop novel chemical processes along the way to make those compounds. This project has been no exception, as a variety of new reactions and compounds based around azulene have been developed in order to access these new, unique chiral ligands. These chemical transformations can be categorised by those that have not previously been reported on azulene substrates, such as a transition metal catalysed coupling of a biazulene triflate with a dialkyl phosphite, or the boron tribromide-mediated selective 2-dealkylation of a 2,4dialkoxyazulene. Other new developments can be categorised by the expansion of the substrate scope of precursors towards azulenes (Scheme 130), such as the novel 3-aryl-2H-cyclohepta[b]furan-2-ones synthesised from arene-containing active methylene compounds; some of which could then be directly converted to the corresponding 1-arylazulene. In addition, the selective synthesis of a monomeric azulen-2-yl phosphine species has been achieved from a pyrylium salt and a phosphine-functionalised cyclopentadienide has been accomplished. This reaction paves the way to expand further the substrate scope of functionalised Cp rings to be converted to azulenes in a Hafner-like process.

Scheme 130: Examples of novel azulene compounds synthesised from components that had not previously been used to prepare azulene derivatives.

This project now has plenty of exciting developments to be carried out in the future, with the most immediate aim of continuing the application of the resolved $1,1^{\prime}$-BazOL ligand 394 towards asymmetric catalysis. While the biazulene motif was designed to be a privileged ligand, that is, to be employed for wide-ranging asymmetric reactions, further efforts are most urgently required to be expended towards inducing enantioselectivity in the same asymmetric Ti-catalysed Diels-Alder reactions. The experiments thus far were carried out under atmosphere of N_{2} with standard Schlenk techniques, using alumina-filtered DCM as solvent. Instead, storage of reagents in a glovebox and purifying the solvent by distillation over calcium hydride will ensure a more rigorous exclusion of oxygen from the system, thereby helping to prevent deactivation of the titanium-1,1'-BazOL catalyst.

An X-ray crystal structure has been obtained for $1,1^{\prime}$-BazOL 394, which revealed some important geometric and steric properties of the free ligand, but it would also be desirable to obtain quantitative information of geometric properties, such as the bite angle, of a 1,1'-BazOL-metal complex. This can be achieved either through X-ray crystal analysis of that complex, or by computer modelling studies, and this data will give a more accurate idea of suitable asymmetric reactions to which the ligand can be applied.

Because of the success in resolving the 1,1-BazOL species 394, it could be used as a new moiety in the library of BINOL-phosphonite-phosphine ligands 482 reported by Pringle et al. (Scheme 131), which were applied successfully towards rhodiumcatalysed asymmetric hydrogenation of olefins. ${ }^{278}$ These ligands 482 are suited towards asymmetric catalysis because of the combined rigidity of the axially chiral BINOL unit and the 4-membered chelating ligand-metal ring, similar to the MiniPhos series of ligands 168 (Figure 12). The reaction of 1,1'-BazOL 394 with phosphorus trichloride, followed by diphenyl((trimethylsilyl)methyl)phosphine 483 may allow easier access to a chelating diphosphine-like chiral ligand like 484, than the transition-metal cross coupling methods that have been explored so far in the project.

482

$\left(R_{a}\right)-394$

$\left(R_{a}\right)-485$

Scheme 131: The BINOL-phosphonite-phosphine ligand series 482, and the proposed application of 1,1'-BazOL 394 to this series.

The step to potentially complete the synthesis of (3,3'-dimethyl-[2,2'-biazulene]-1, 1^{\prime} diyl)bis(diphenylphosphine) 429, that is, the double halogen-lithium exchange process of 1,1'-diiodo-3,3'-dimethyl-2,2'-biazulene 428 followed by quenching with chlorodiphenylphosphine (Scheme 111), was only attempted once, only yielding recovered starting material. The repetition of this experiment, with variation of reagents, like the organolithium species, or conditions, such as temperature, may be
sufficient to bring about the desired chemical transformation. However, if these modifications do not work, it may be necessary to alter the synthetic route to access a wider range of 2,2'-biazulene precursors (Scheme 132). One idea could be to start from the easily accessibly methyl 2-hydroxyazulene-1-carboxylate 424 and undergo orthophosphoric acid-mediated deethoxycarbonylation to remove the ester group. Following this, the corresponding azulen-1-yl sulfonium hexafluorophosphate salt 486 would hopefully be formed through a reaction, recently reported by Lewis et al., with tetrahydrothiophene 1-oxide 485, trifluoroacetic anhydride (TFAA) and potassium hexafluorophosphate. ${ }^{279}$ The azulen-1-yl sulfonium salts like 486 tetrahydrothiophene oxide have been shown to be stable and make excellent cross coupling partners for Suzuki reactions; a strategy which could be exploited to synthesise 1-phenyl-2-hydroxyazulene 487. The steps outlined in Scheme 106 may be then applied to create the potentially atropisomeric 1,1 '-diphenyl-2,2'-biazulene 488, avoiding the difficult DIBAL-H reduction process to convert esters to methyl groups (Scheme 109). Finally, this precursor may be treated with N-iodosuccinimide to install iodines at the electron rich positions, which then may be converted to the diphosphine 489 through halogen-lithium exchange.

Scheme 132: A synthetic plan to access the potentially atropisomeric (3,3'-diphenyl-[2,2'-biazulene]-1,1'-diyl)bis(diphenylphosphine) 489.

3. EXPERIMENTAL

General directions

All reactions were carried out under an atmosphere of N_{2} or argon, through the use of a Schlenk line, unless otherwise stated. Anhydrous solvents were either purchased from Fisher Scientific or Sigma-Aldrich, or purified through anhydrous alumina columns using an Innovative Technology Inc. PS-400-7 solvent purification system, or purified by distillation (over sodium/benzophenone ketyl or calcium hydride). Solvents were deoxygenated either by channelling a stream of N_{2} through the liquid (sparging), or by the freeze-thaw-pump method. Thin layer chromatography (TLC) was carried out on aluminium plates coated with silica gel (Alugram ${ }^{\circledR}$ SIL G/UV 254 nm), and visualisation was achieved with UV light or KMnO_{4}, ceric ammonium molybdate and iodine dips, followed by gentle heating. Solvents were removed using Büchi rotary evaporators and with high vacuum on a Schlenk line. Flash column chromatography was carried out using Davisil LC 60 Å silica gel (35-70 micron) purchased from Sigma-Aldrich.

NMR spectra were run in CDCl_{3} unless otherwise stated, on Bruker Avance 250, Bruker Avance 300, Bruker Avance 400, Bruker Avance 500 II+ or Agilent A500a instruments. IR spectra were recorded on a Perkin-Elmer 1600 FT-IR instrument. Capillary melting points were recorded on a Büchi 535 melting point apparatus, and are uncorrected. High resolution mass spectrometry (HRMS) was carried out using a micrOTOF ESI-TOF spectrometer coupled to an Agilent 1200 LC system for autosampling. X-ray crystallography was carried out on a Nonius Kappa CCD diffractometer with Mo-Ka radiation $(\lambda=0.71073 \AA$). Chiral HPLC was carried out with a Chiralcel OD ($200 \times 4.6 \mathrm{~mm}$, particle size $20 \mu \mathrm{~m}$) or Chiralcel OC stationary
phases (200 $\times 4.6 \mathrm{~mm}$, particle size $20 \mu \mathrm{~m}$), using UV detection. Chiral GC analysis was carried out on an Agilent 5977A GC-MS apparatus, with a Beta-Dex 120 column ($60 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) with helium as carrier gas. The GC runs were conducted at $90{ }^{\circ} \mathrm{C}$ for 15 min , then increased by $10^{\circ} \mathrm{C}$ per min until $200^{\circ} \mathrm{C}$ was reached, and maintained at $200^{\circ} \mathrm{C}$ for 10 min .

The preparation of this compound was based on a method by von Eggers Doering. ${ }^{196}$ At $0{ }^{\circ} \mathrm{C}$, to a stirred mixture of tropolone 323 (12.2 g, $\left.100 \mathrm{mmol}, 1.00 \mathrm{eq}.\right)$ and p-toluenesulfonyl chloride ($19.1 \mathrm{~g}, 100 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was slowly added pyridine (30 mL), and then was allowed to warm to r.t. The mixture was stirred for 3 h , forming a viscous consistency after 1 h . To the mixture was added water (120 mL), stirred for 15 min and the precipitate was collected by filtration to give 7-oxocyclohepta-1,3,5-trien-1-yl 4-methylbenzene-1-sulfonate 297 ($25.7 \mathrm{~g}, 93.1 \mathrm{mmol}$, 93%) as an off-white solid, used without further purification; $\mathrm{R}_{f} 0.60$ (EtOAc); $\delta \mathrm{H}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, 10-\mathrm{CH}), 7.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 7-\mathrm{CH})$, 7.37-7.33 (2H, dd, J $8.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 11-\mathrm{CH}$), 7.24-6.95 (4H, m, 3,4,5,6-CH), 2.45 $\left(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{CH}_{3}\right)$.

Data in agreement with those previously reported. ${ }^{280}$

Ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298

The preparation of this compound was based on method by Nozoe. ${ }^{197}$ At $0^{\circ} \mathrm{C}$, to a stirred suspension of 7-oxocyclohepta-1,3,5-trien-1-yl 4-methylbenzene-1-sulfonate 297 ($13.8 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and diethyl malonate 294 ($14.0 \mathrm{~mL}, 100.0 \mathrm{mmol}$, 2.00 eq.) in ethanol (100 mL) was added by cannula NaOEt solution (freshly prepared from Na metal ($2.30 \mathrm{~g}, 100.0 \mathrm{mmol}, 2.00 \mathrm{eq}$.$) and ethanol (100 \mathrm{~mL}$)). The mixture was allowed to warm to r.t. in the ice bath, while the ice melted, forming a gel-like consistency after 10 min . After 16 h , to the mixture was added water (250 mL), and the solution was extracted with $\mathrm{DCM}(3 \times 100 \mathrm{~mL})$. The organic extracts were discarded, and to the aqueous layer was added $\mathrm{HCl}_{(\mathrm{aq})}(5 \mathrm{M}, 150 \mathrm{~mL})$, which changed from an orange/brown solution to a bright yellow suspension. After chilling at $2{ }^{\circ} \mathrm{C}$ for 2 h , the mixture was filtered to give ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 ($9.48 \mathrm{~g}, 40.5 \mathrm{mmol}, 81 \%$) as a bright yellow fluffy solid; $\mathrm{R}_{f} 0.00$ (EtOAc); $\delta \mathrm{H}\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 8.76$ (1H, d, J $10.5 \mathrm{~Hz}, 4-\mathrm{CH}$), $7.70-7.47(3 \mathrm{H}, \mathrm{m}, 5,6,7-\mathrm{CH}), 4.23\left(2 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, 10-\mathrm{CH}_{2}\right), 1.28(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}$, $\left.11-\mathrm{CH}_{3}\right)$.

Data in agreement with those previously reported. ${ }^{197}$

Methyl (325) and ethyl 2,4-methoxyazulene-1-carboxylate 326

The preparation of this compound was based on a method by Pham. ${ }^{198}$ Under atmosphere of air, at r.t., to a suspension of ethyl 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 ($400 \mathrm{mg}, 1.71 \mathrm{mmol}, 1.00$ eq.) in trimethyl orthoacetate 324 ($1.08 \mathrm{~mL}, 8.54 \mathrm{mmol}, 5.00 \mathrm{eq}$.) was added toluene (1.00 mL), and then heated in at $200{ }^{\circ} \mathrm{C}$ for 3 h , under microwave radiation. The resultant deep red solution, loaded directly onto a column, was purified by column chromatography $(20 \rightarrow 100 \%$ EtOAc in petroleum ether) to give an inseparable mixture of methyl 325 and ethyl 2,4-methoxyazulene-1-carboxylate 326 (299 mg, $1.17 \mathrm{mmol}, 70 \%$, $\mathrm{Me} / \mathrm{Et}$ $\sim 2: 1$) as a red solid.

Methyl 2,4-methoxyazulene-1-carboxylate 325

At r.t., to a stirred suspension of sodium methoxide ($659 \mathrm{mg}, 12.2 \mathrm{mmol}, 10.5 \mathrm{eq}$.$) in$ methanol (4.00 mL) was added a solution of methyl 325 and ethyl 2,4-methoxyazulene-1-carboxylate 326 ($296 \mathrm{mg}, \sim 1.16 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in methanol $(11.0 \mathrm{~mL})$. The mixture was heated at reflux and stirred for 21 h , then allowed to cool. To the mixture was then added $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 30 \mathrm{~mL})$ and extracted with DCM (3 $\times 20 \mathrm{~mL})$. The combined organic extracts were washed with water $(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give methyl 2,4-methoxyazulene-1-carboxylate 325 ($266 \mathrm{mg}, 1.08 \mathrm{mmol}$, 93\%) as a red solid; $\mathrm{R}_{f} 0.62$ (EtOAc); $\delta_{H}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.44$ (1H, dd, J 10.0 Hz , $1.0 \mathrm{~Hz}, 8-\mathrm{CH}), 7.57$ (1H, ddd, J $11.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6-\mathrm{CH}), 7.34$ (1H, td, J 10.0 Hz, 1.0 Hz, 7-CH), 7.17 (1H, d, J $11.0 \mathrm{~Hz}, 5-\mathrm{CH}$), 7.03 (1H, s, 3-CH), 4.16 (3H, s, 12$\left.\mathrm{CH}_{3}\right), 4.14\left(3 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}_{3}\right), 3.96\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right)$.

Data in agreement with those previously reported. ${ }^{193}$

Methyl 2,4-dimethoxy-3-bromoazulene-1-carboxylate 327

The preparation of this compound was based on a method by Nozoe. ${ }^{194}$ Under atmosphere of air, at r.t., to an aluminium foil-covered stirred suspension of N bromosuccinimide ($410 \mathrm{mg}, 2.30 \mathrm{mmol}, 1.10$ eq.) in benzene (50 mL) was gradually added methyl 2,4-dimethoxyazulene-1-carboxylate 325 ($515 \mathrm{mg}, 2.09 \mathrm{mmol}, 1.00$ eq.). After stirring for 1 h , to the reaction mixture was added N-bromosuccinimide (83 $\mathrm{mg}, 0.466 \mathrm{mmol}, 0.40$ eq.) and was further stirred for 20 min . The mixture was washed with water (50 mL), and the organic phase was separated, dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give methyl 2,4-dimethoxy-3-bromoazulene-1-carboxylate 327 (610 mg , $1.88 \mathrm{mmol}, 89 \%$) as a purple solid (m.p. $69-73^{\circ} \mathrm{C}$), and was used without further purification; $\mathrm{R}_{f} 0.41$ (2:1 petroleum ether/EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.33$ (1H, dd, $J 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 8-\mathrm{CH}$), 7.55 (1 H , ddd, J $11.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6-\mathrm{CH}$), 7.20 ($1 \mathrm{H}, \mathrm{td}, J 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 7-\mathrm{CH}$), 7.04 (1H, d, J $11.0 \mathrm{~Hz}, 5-\mathrm{CH}$), 4.10 (3H, s, 12$\left.\mathrm{CH}_{3}\right), 4.09\left(3 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}_{3}\right), 3.98\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.7(9-\mathrm{C})$, 163.8 (4-C), 163.6 (2-C), 137.6 (8a-C), 136.9 (8-C), 136.4 (6-C), 126.0 (3a-C), 123.3 (7-C), 112.1 (5-C), 105.6 (1-C), 95.4 (3-C), 62.2 (12-C), 56.2 (11-C), 51.3 (10-C); $v_{\text {max }}$ (film) 2982, 2931, 2846, 1677, 1594, 1569, 1527, 1481, 1454, 1403, 1377, 1336, 1298, 1264, 1212, 1191, 1098, 1000, 969, 941, 902, 871, 788, 762, $715 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{Br}+\mathrm{H}^{+}, 325.0075\right.$; found, 325.0073.
(土)-Dimethyl 2,2',8,8'-tetramethoxy-1,1'-biazulene-3,3'-dicarboxylate 328

The preparation of this compound was based on a method by lyoda. ${ }^{199}$ At r.t., to a mixture of zinc powder ($48 \mathrm{mg}, 0.734 \mathrm{mmol}, 1.50 \mathrm{eq}$.), tetrabutylammonium iodide (180 mg, $0.489 \mathrm{mmol}, 1.00$ eq.) and, dispensed within a glovebox, bis(diphenylphosphine)nickel(II) bromide ($36 \mathrm{mg}, 0.049 \mathrm{mmol}, 0.10 \mathrm{eq}$.) was added a solution of methyl 2,4-methoxy-3-bromoazulene-1-carboxylate 327 (158 mg, 0.489 mmol, 1.00 eq.) in THF (1.20 mL). The stirred mixture was heated at $50^{\circ} \mathrm{C}$ for 3 h and then allowed to cool. The reaction mixture was loaded directly onto a silica column. Purification by column chromatography (2:1 petroleum ether/EtOAc) yielded (\pm)-dimethyl 2,2',8,8'-tetramethoxy-1,1'-biazulene-3,3'-dicarboxylate 328 (59 mg, $0.120 \mathrm{mmol}, 49 \%$) as a pink/purple crystalline solid (m.p. $208-211{ }^{\circ} \mathrm{C}$, crystals suitable for X-ray crystallography were grown by slow vapour diffusion of hexane into a solution of 328 in DCM); $\mathrm{R}_{f} 0.40$ (1:1 petroleum ether/EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 9.41 (2H, dd, J 10.0, 1.0 Hz, 4, 4'-CH), 7.46 (2H, J $11.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6,6$ 'CH), 7.22 (2H, td, J $\left.10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right), 6.88$ (2H, d, J $10.5 \mathrm{~Hz}, 7,7$ '-CH), 3.99 $\left(6 \mathrm{H}, \mathrm{s}, 10,10^{\prime}-\mathrm{CH}_{3}\right), 3.72\left(6 \mathrm{H}, \mathrm{s}, 11,11^{\prime}-\mathrm{CH}_{3}\right) 3.43\left(6 \mathrm{H}, \mathrm{s}, 12,12^{\prime}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 166.0\left(9,9^{\prime}-\mathrm{C}\right), 165.9\left(2,2^{\prime}-\mathrm{C}\right), 163.5\left(8,8^{\prime}-\mathrm{C}\right), 138.5$ (3a,3a'-C), 135.0 ($4,4^{\prime}-\mathrm{C}$), 133.8 ($6,6^{\prime}-C$), 129.1 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 123.0 ($5,5^{\prime}-\mathrm{C}$), 115.8 ($1,1^{\prime}-\mathrm{C}$), 111.8 ($7,7^{\prime}-\mathrm{C}$), 104.2 ($3,3^{\prime}-C$), 61.0 ($11,11^{\prime}-C$), 56.5 ($12,12^{\prime}-C$), 51.1 ($10,10^{\prime}-C$); $v_{\max }$ (film) 2986, 2942,

2843, 1673, 1591, 1570, 1526, 1473, 1448, 1387, 1334, 1300, 1261, 1209, 1186, 1164, 1093, 1074, 990, 938, 872, 790, $644 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{8}+\mathrm{H}\right]^{+}, 491.1705$; found, 491.1704.

The preparation of this compound was based on a method by Talaz. ${ }^{200}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of (\pm)-dimethyl 2,2',8, $\mathbf{8}^{\prime}$-tetramethoxy-1,1'-biazulene-3,3'dicarboxylate 328 ($132 \mathrm{mg}, 0.268 \mathrm{mmol}, 1.00$ eq.) in DCM (2 mL) was added dropwise BBr_{3} (1.0 M in hexanes, $0.540 \mathrm{~mL}, 0.540 \mathrm{mmol}, 2.00$ eq.). The mixture was allowed to warm to r.t., and stirred for 105 min . To the mixture was added methanol (5 mL), and then was poured into DCM $(20 \mathrm{~mL})$. The solution was washed with water ($2 \times 10 \mathrm{~mL}$), dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give (\pm)-dimethyl 2,2'-dihydroxy-8,8'-dimethoxy-1,1'-biazulene-3,3'-dicarboxylate 329 ($117 \mathrm{mg}, 0.253 \mathrm{mmol}, 94 \%$) as a deep red solid; $\mathrm{R}_{f} 0.44$ (1:1 petroleum ether/EtOAc); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*} 10.78$ (2H, s, 11, 11'-OH), 8.98 (2H, dd, J $9.6 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 4,4$ '-CH), 7.39 (2H, td, J 10.0 Hz , $\left.1.0 \mathrm{~Hz}, 6,6^{\prime}-\mathrm{CH}\right), 7.19\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.0 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right), 6.91(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5 \mathrm{~Hz}, 7,7$ '-CH), $4.05\left(6 \mathrm{H}, \mathrm{s}, 10,10^{\prime}-\mathrm{CH}_{3}\right), 3.56\left(6 \mathrm{H}, \mathrm{s}, 11,11^{\prime}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*} 169.3\left(9,9^{\prime}-\mathrm{C}\right.$ or $\left.2,2^{\prime}-\mathrm{C}\right)$, 169.0 ($9,9^{\prime}-\mathrm{C}$ or $2,2^{\prime}-\mathrm{C}$), 163.0 ($8,8^{\prime}-\mathrm{C}$), 137.6 (3a,3a'-C), 132.4 ($4,4^{\prime}-\mathrm{C}$ or $\left.6,6^{\prime}-C\right), 132.1$ ($4,4^{\prime}-\mathrm{C}$ or $6,6^{\prime}-\mathrm{C}$), 130.5 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 123.5 ($5,5^{\prime}-\mathrm{C}$), 111.9 ($1,1^{\prime}-\mathrm{C}$), 111.8 (7,7'-C), 97.8 ($3,3^{\prime}-C$), 56.4 ($11,11^{\prime}-C$), 51.2 ($10,10^{\prime}-C$); $v_{\max }$ (film) 3376, 2953, 2922, 2852, 1738, 1702, 1630, 1596, 1574, 1452, 1438, 1398, 1315, 1265, 1245,

1218, 1202, 1182, 1166, 1099, 1083, 1005, 989, 961, 871, 789, 723, $684 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{8}+\mathrm{Na}\right]^{+}, 485.1212$; found, 485.1214.

* due to the lack of 2D NMR spectra recorded, carbon and hydrogen atoms are assigned tentatively, based on those of biazulene diol 370 .
(\pm)-Dimethyl 2,2'-di(trifluoromethanesulfonyloxy)-8,8'-dimethoxy-1,1-biazulene-

3,3-dicarboxylate 330

This compound was prepared based on a method by Cai. ${ }^{152}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of (\pm)-dimethyl $2,2^{\prime}$-dihydroxy-8,8'-dimethoxy-1,1'-biazulene-3,3'dicarboxylate 329 ($117 \mathrm{mg}, 0.253 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) and pyridine (0.060 \mathrm{~mL}, 0.760$ mmol, 3.00 eq.) in DCM (2.5 mL) was added dropwise trifluoromethanesulfonic anhydride ($0.10 \mathrm{~mL}, 0.591 \mathrm{mmol}, 2.33 \mathrm{eq}$.), immediately changing colour from deep red to red/purple. The mixture was allowed to warm to r.t., and stirred for 14 h . To the mixture was added pentane (3 mL), loaded onto pad of silica and filtered through with $D C M /$ pentane $(1: 1,80 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(20 \rightarrow 50 \%$ EtOAc in petroleum ether) to give (\pm)-dimethyl 2,2'-di(trifluoromethanesulfonyloxy)-8,8'-dimethoxy-1,1-biazulene-3,3-dicarboxylate 330 $(62 \mathrm{mg}, 0.0853 \mathrm{mmol}, 34 \%)$ as a deep purple crystalline solid (m.p. $242-245{ }^{\circ} \mathrm{C}$, dec.); $\mathrm{R}_{f} 0.32$ (1:1 petroleum ether/EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*} 9.80(2 \mathrm{H}$, dd, J $10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 4,4^{\prime}-\mathrm{CH}$), 7.81 (2H, ddd, J $11.0 \mathrm{~Hz}, 9.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6,6^{\prime}-\mathrm{CH}$), 7.44 (2H, t, J $\left.9.8 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right), 7.13\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0 \mathrm{~Hz}, 7,7^{\prime}-\mathrm{CH}\right), 3.99\left(6 \mathrm{H}, \mathrm{s}, 10,10^{\prime}-\mathrm{CH}_{3}\right)$, $3.60\left(6 \mathrm{H}, \mathrm{s}, 12,12^{\prime}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*} 167.2\left(8,8^{\prime}-\mathrm{C}\right), 164.1$ (9,9'-C), 149.4 ($2,2^{\prime}-\mathrm{C}$), 140.1 ($\left.4,4^{\prime}-\mathrm{C}\right), 138.9$ ($6,6^{\prime}-\mathrm{C}$), 136.6 (3a,3a'-C), 126.6 ($8 \mathrm{a}, 8 a^{\prime}-\mathrm{C}$), 124.4
($5,5^{\prime}-\mathrm{C}$), 117.9 ($q,{ }^{1} J_{C F} 321.0 \mathrm{~Hz}, 11,11^{\prime}-\mathrm{C}$), 113.2 ($7,7^{\prime}-\mathrm{C}$), 112.7 ($1,1^{\prime}-\mathrm{C}$), 106.1 (3,3'-C), 56.6 (12,12'-C), 51.1 (10,10'-C); $v_{\max }($ film) 3000, 2955, 2849, 1707, 1688, 1598, 1569, 1532, 1515, 1459, 1441, 1416, 1387, 1317, 1299, 1270, 1218, 1190, 1132, 1090, 1048, 1002, 982, 947, 918, 901, 856, 814, 797, 753, 724, 709, 686, 669, $653 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{O}_{12} \mathrm{~S}_{2}+\mathrm{H}\right]^{+}, 727.0379$; found, 727.0375.

* due to the lack of 2D NMR spectra recorded, carbon and hydrogen atoms are assigned tentatively, based on those of biazulene ditriflate 372 .

Ethyl 2,4-dimethoxyazulene-1-carboxylate 326

The preparation of this compound was based on a method by Pham. ${ }^{198}$ Under atmosphere of air at r.t., to microwave tubes ($7 \times 10 \mathrm{~mL}$ capacity) was added ethyl 8 -hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 ($2.80 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.00$ eq.), trimethyl orthoacetate 324 ($7.70 \mathrm{~mL}, 60.5 \mathrm{mmol}, 5.05 \mathrm{eq}$.) and toluene (7.0 mL). The tubes were sealed, and the suspension was stirred, heating under air at $200^{\circ} \mathrm{C}$, for 5 h (CAUTION: the reaction was run behind a blast shield). The resultant deep red solution was loaded onto a silica column, and purified by column chromatography $(5 \rightarrow 25 \%$ EtOAc in petroleum ether) to give ethyl 2,4-dimethoxyazulene-1-carboxylate 326 ($2.45 \mathrm{~g}, 9.40 \mathrm{mmol}, 79 \%$) as a red, crystalline solid (m.p. 103-105 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.51$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 9.39 (1H, d, J $10.3 \mathrm{~Hz}, 8-\mathrm{CH}$), 7.51 (1H, ddd, J $10.9 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6-\mathrm{CH}), 7.29$ (1H, t, J $10.0 \mathrm{~Hz}, 7-\mathrm{CH}$), 7.11 (1H, d, J $10.8 \mathrm{~Hz}, 5-\mathrm{CH}), 7.01$ (1H, s, 3-CH), 4.45 (2H, q, J $\left.6.8 \mathrm{~Hz}, 12-\mathrm{CH}_{2}\right), 4.12\left(3 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}_{3}\right), 4.11\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 1.45(3 \mathrm{H}, \mathrm{t}, J 7.1$ $\mathrm{Hz}, 13-\mathrm{CH}_{3}$); $\delta \mathrm{c}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.6$ (2-C), 165.2 (9-C), 160.3 (4-C), 138.9 (8aC), 135.0 (8-C), 132.8 (6-C), 131.8 (3a-C), 124.0 (7-C), 111.3 (5-C), 96.9 (3-C), 96.8 (1-C), 59.4 (12-C), 58.1 (11-C), 56.4 (10-C), 14.6 (13-C); $v_{\max }$ (film) 2977, 2938, 2837, 1659, 1589, 1575, 1540, 1501, 1455, 1420, 1394, 1344, 1309, 1265, 1198, 1171, 1130, 1088, 1029, 980, 786, 745, 700, $658 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}, 283.0941$; found, 283.0953 .

Ethyl 3-bromo-2,4-dimethoxyazulene-1-carboxylate 333

The preparation of this compound was based on a method by Nozoe. ${ }^{193}$ Under atmosphere of air, at r.t., to a stirred solution of ethyl 2,4-dimethoxyazulene-1carboxylate 326 ($150 \mathrm{mg}, 0.576 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (10.0 mL) was added N bromosuccinimide ($103 \mathrm{mg}, 0.576 \mathrm{mmol}, 1.00 \mathrm{eq}$.). After 5 min , the reaction mixture was concentrated under reduced pressure, and dissolved in ethyl acetate (30 mL). The solution was washed with $\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq)}}(1.0 \mathrm{M}, 15 \mathrm{~mL})$, water $(2 \times 10 \mathrm{~mL})$ and saturated brine. The organic layer was then dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography (10\% EtOAc in petroleum ether) to give ethyl 3-bromo-2,4-dimethoxyazulene-1-carboxylate 333 (172 mg, $0.506 \mathrm{mmol}, 88 \%$) as a maroon/purple oily solid; $\mathrm{R}_{f} 0.63$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.9 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 8-\mathrm{CH}), 7.56$ (1H, ddd, J $10.9 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 6-\mathrm{CH}$), 7.20 (1H, td, J $9.9 \mathrm{~Hz}, 0.7 \mathrm{~Hz}, 7-\mathrm{CH}$), 7.05 (1H, d, J $11.0 \mathrm{~Hz}, 5-\mathrm{CH}$), $4.43\left(2 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, 12-\mathrm{CH}_{2}\right), 4.10\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right) 4.09$ $\left(3 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 13-\mathrm{CH}_{3}\right) ;$ cc (126 MHz, CDCl ${ }_{3}$) 164.4 (9-C), 163.8 (4-C), 163.5 (2-C), 137.7 (8a-C), 136.9 (8-C), 136.3 (6-C), 125.9 (3a-C), 123.3 (7-C), 112.0 (5-C), 106.0 (1-C), 95.5 (3-C), 62.2 (11-C), 60.1 (12-C), 56.2 (10-C), 14.4 (13-C); $v_{\max }($ film $) 2927,2853,1675,1592,1572,1535,1500,1480,1456,1406$, 1381, 1310, 1265, 1211, 1195, 1167, 1117, 1093, 1082, 1030, 999, 956, 856, 789,

748, 721, $696 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrO}_{4}+\mathrm{Na}\right]^{+}, 361.0046$; found, 361.0061.

Ethyl 3-iodo-2,4-dimethoxyazulene-1-carboxylate 336

Under atmosphere of air, to a stirred solution of ethyl 2,4-dimethoxyazulene-1carboxylate 326 ($44 \mathrm{mg}, 0.169 \mathrm{mmol}, 1.00$ eq.) in THF (5.0 mL) was added N iodosuccinimide ($38 \mathrm{mg}, 0.169 \mathrm{mmol}, 1.00 \mathrm{eq}$.), and the mixture was allowed to stir for 2 h . The mixture was then concentrated under reduced pressure, dissolved in diethyl ether $(15 \mathrm{~mL})$, washed with $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}(1.0 \mathrm{M}, 10 \mathrm{~mL})$, with water $(2 \times 10 \mathrm{~mL})$ and with saturated brine. The organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give ethyl 3-iodo-2,4-dimethoxyazulene-1-carboxylate 336 ($59 \mathrm{mg}, 0.153 \mathrm{mmol}, 90 \%$) as a thick burgundy oil; $\mathrm{R}_{f} 0.62$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.36$ (1H, dd, J $10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 8-\mathrm{CH}$), 7.56 (1H, ddd, J $11.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6-\mathrm{CH}), 7.19$ (1H, td, J $10.0 \mathrm{~Hz}, 0.5 \mathrm{~Hz}, 7-\mathrm{CH}$), 7.02 (1H, d, J $11.0 \mathrm{~Hz}, 5-\mathrm{CH}$), 4.44 (2H, q, J 7.0 $\left.\mathrm{Hz}, 12-\mathrm{CH}_{2}\right), 4.12\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 4.11\left(3 \mathrm{H}, \mathrm{s}, 11-\mathrm{CH}_{3}\right), 1.45(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, 13-$ CH_{3}); $\delta с$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.5 (9-C), 164.1 (4-C), 162.2 (2-C), 137.0 (8-C), 136.1 (6-C), 135.9 ($8 \mathrm{a}-\mathrm{C}$), 124.3 (3a-C), 123.1 (7-C), 111.6 (5-C), 108.5 (3-C), 105.4 (1-C), 62.1 (11-C), 60.1 (12-C), 56.4 (10-C), 14.5 (13-C); $v_{\max }($ film) 2976, 2933, 1679, 1593, 1535, 1485, 1456, 1409, 1382, 1347, 1301, 1267, 1211, 1193, 1094, 1078, 1028, $990,953,855,821,789,763,723,702,680 \mathrm{~cm}^{-1}$.

No corresponding m / z value could be obtained by mass spectrometry.

(土)-3,3'-Diethyl 2,2',8,8'-tetramethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 334

The preparation of this compound was based on a method by lyoda. ${ }^{199}$ Under atmosphere of air, at r.t., to a stirred solution of ethyl 2,4-dimethoxyazulene-1carboxylate 326 ($110 \mathrm{mg}, 0.423 \mathrm{mmol}, 1.00$ eq.) in THF (10 mL) was added N bromosuccinimide ($75 \mathrm{mg}, 1.00 \mathrm{eq}$.). After 15 min , the reaction mixture was concentrated under reduced pressure, and dissolved in ethyl acetate (25 mL). The solution was washed with $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq)}}(2.0 \mathrm{M}, 2 \times 15 \mathrm{~mL})$, water $(15 \mathrm{~mL})$ and the organic layer was dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated to give crude ethyl 3-bromo-2,4-dimethoxyazulene-1-carboxylate 333. Under atmosphere of N_{2}, to a microwave tube charged with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}(31 \mathrm{mg}$, $0.0423 \mathrm{mmol}, 0.10 \mathrm{eq}.), \mathrm{Zn}$ powder ($41 \mathrm{mg}, 0.625 \mathrm{mmol}, 1.50 \mathrm{eq}$.) and tetra- $n-$ butylammonium iodide ($156 \mathrm{mg}, 0.423 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added a solution of the crude bromoazulene in THF (1.50 mL), and the mixture was stirred and heated at 50 ${ }^{\circ} \mathrm{C}$ for 17 h . After cooling, the mixture was loaded directly onto a silica column and purified by column chromatography ($5 \rightarrow 33 \%$ EtOAc in petroleum ether) to give (\pm)-3,3'-diethyl 2,2',8,8'-tetramethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 334 (32 mg, $0.0607 \mathrm{mmol}, 29 \%$) as a pink/red solid (m.p. $199-201^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.43$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.39(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.9 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 4,4$ '-CH), 7.45
(2H, ddd, J $10.8 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6,6$ '-CH), 7.21 (2H, td, J $9.9 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 5,5^{\prime}-$ $\mathrm{CH}), 6.87\left(2 \mathrm{H}, \mathrm{d}, J 10.7 \mathrm{~Hz}, 7,7\right.$ '-CH), $4.47\left(4 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 12,12^{\prime}-\mathrm{CH}_{2}\right), 3.72(6 \mathrm{H}, \mathrm{s}$, $\left.11,11^{\prime}-\mathrm{CH}_{3}\right), 3.43\left(6 \mathrm{H}, \mathrm{s}, 10,10^{\prime}-\mathrm{CH}_{3}\right), 1.45\left(6 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 13,13^{\prime}-\mathrm{CH}_{3}\right) ; \delta \mathrm{c}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 166.1$ (9,9'-C), 165.7 (2,2'-C), 163.5 (8,8'-C), 138.5 (3a,3a'-C), 135.0 ($4,4^{\prime}-\mathrm{C}$), 133.8 ($6,6^{\prime}-\mathrm{C}$), 128.7 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 122.8 ($5,5^{\prime}-\mathrm{C}$), 116.2 ($1,1^{\prime}-\mathrm{C}$), 111.5 ($7,7^{\prime}-\mathrm{C}$), 104.8 (3,3'-C), 61.1 (11,11'-C), 59.8 (12,12'-C), 56.5 (10,10’-C), 14.6 ($13,13^{\prime}-C$); $v_{\max }(f i l m)$ 2978, 2926, 2842, 1665, 1591, 1571, 1526, 1472, 1453, 1437, 1396, 1379, 1361, 1332, 1312, 1300, 1262, 1207, 1188, 1165, 1132, 1089, 1072, 984, 947, 894, 874, 825, 790, 751, 707, $687 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{8}+\mathrm{Na}\right]^{+}, 541.1838$; found, 541.1813.

Ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337

The preparation of this compound was based on a method by Talaz. ${ }^{200}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of ethyl 2,4-dimethoxyazulene-1-carboxylate 326 ($2.45 \mathrm{~g}, 9.41 \mathrm{mmol}$, 1.00 eq.) in DCM (50 mL) was added slowly $\mathrm{BBr}_{3}(1.0 \mathrm{M}$ in hexanes, $9.50 \mathrm{~mL}, 1.01$ eq.). After stirring for 40 min , to the reaction mixture was added methanol (5.0 mL) to quench. The solution was diluted with DCM $(100 \mathrm{~mL})$ and washed with water (3×50 mL). The organic layer was dried over anhydrous MgSO_{4}, filtered and the filtrate was concentrated under reduced pressure to give 2-hydroxy-4-methoxyazulene-1carboxylate 337 ($2.28 \mathrm{~g}, 9.23 \mathrm{mmol}, 98 \%$) as an orange/brown crystalline solid (m.p. $98-100{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.37$ (4:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.82(1 \mathrm{H}, \mathrm{s}$, 2-OH), 8.84 (1H, d, J $9.5 \mathrm{~Hz}, 8-\mathrm{CH}$), 7.38 (1H, td, J $10.2 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 6-\mathrm{CH}), 7.17$ (1H, t, J $10.0 \mathrm{~Hz}, 7-\mathrm{CH}), 6.94(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}), 6.93(1 \mathrm{H}, \mathrm{d}, J 10.6 \mathrm{~Hz}, 5-\mathrm{CH}), 4.50(2 \mathrm{H}, \mathrm{q}, ~ J$ $\left.7.2 \mathrm{~Hz}, 10-\mathrm{CH}_{2}\right), 4.01\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{CH}_{3}\right), 1.51\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2 \mathrm{~Hz}, 11-\mathrm{CH}_{3}\right)$; $\delta \mathrm{c}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 169.4$ (2-C), 168.6 (9-C), 160.4 (4-C), 136.6 (8a-C), 133.6 (3a-C), 132.7 (8C), 132.0 (6-C), 123.5 (7-C), 110.5 (5-C), 101.3 (3-C), 98.5 (1-C), 60.0 (11-C), 55.9 (10-C), 14.3 (12-C); $v_{\max }($ film $) 2981,2936,2908,2837,1628,1596,1535,1478$, 1450, 1436, 1396, 1381, 1351, 1316, 1266, 1171, 1128, 1091, 1069, 1021, 958, 924, 871, 821, 806, 785, 763, 739, 714, $670 \mathrm{~cm}^{-1} ;$ HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}+\right.$ $\mathrm{Na}^{+}, 269.0790$; found, 269.0785 .

Ethyl 4-methoxy-2-(trifluoromethanesulfonyloxy)azulene-1-carboxylate 338

The preparation of this compound was based on a method by Morita. ${ }^{206}$ At $0{ }^{\circ} \mathrm{C}$, to a stirred solution of ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 (502 mg , $2.04 \mathrm{mmol}, 1.00$ eq.) and triethylamine ($570 \mu \mathrm{~L}, 4.08 \mathrm{mmol}, 2.00$ eq.) in DCM (5.0 mL) was added dropwise trifluoromethanesulfonic anhydride ($520 \mu \mathrm{~L}, 3.06 \mathrm{mmol}$, 1.50 eq.). The mixture was allowed to warm to r.t., and after 6 h , was poured into DCM (25 mL) and washed with water ($2 \times 15 \mathrm{~mL}$). The organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography (20\% EtOAc in petroleum ether) to give ethyl 4-methoxy-2-(trifluoromethanesulfonyloxy)azulene-1-carboxylate 338 (484 mg, 1.28 mmol , 63\%) as a vivid red solid (m.p. 101-103 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.44$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}, 8-\mathrm{CH}), 7.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.5 \mathrm{~Hz}, 6-\mathrm{CH}), 7.37$ (1H, $\mathrm{t}, \mathrm{J} 10.0 \mathrm{~Hz}, 7-\mathrm{CH}), 7.24(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}), 7.19(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, 5-\mathrm{CH}), 4.48(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $\left.7.0 \mathrm{~Hz}, 11-\mathrm{CH}_{2}\right), 4.16\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 1.47\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right)$; $\delta \mathrm{c}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 165.2$ (4-C), 163.5 (9-C), 150.4 (2-C), 140.5 (8-C), 138.8 (6-C), 136.5 (8a-C), 128.5 (3a-C), 124.6 (7-C), 118.9 (q, ${ }^{1} J_{\text {CF }} 320 \mathrm{~Hz}, 13-\mathrm{C}$), 112.4 (5-C), 106.5 (1-C), 104.4 (3-C), 60.3 (11-C), 56.8 (10-C), 14.3 (12-C); $v_{\max }($ film) 2994, 2955, 1683, 1597, 1570, 1538, 1516, 1463, 1440, 1416, 1395, 1382, 1335, 1299, 1273, 1237, 1201, 1134, 1119, 1046, 1017, 987, 958, 922, 888, 857, 839, 788, 752, 736, 704, 669, 655 $\mathrm{cm}^{-1} ;$ HRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calc for $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}+\mathrm{Na}\right]^{+}, 401.0283$; found, 401.0276.

(1-ethoxyvinyl)diphenylphosphine 346

346

The preparation of this compound was based on a method by Kochetkov. ${ }^{208}$ At r.t., to a solution of ethoxyacetylene 344 (40% wt. in hexanes, $0.926 \mathrm{~mL}, 3.87 \mathrm{mmol}, 1.00$ eq.) in acetonitrile (degassed by sparging with $N_{2}, 2.00 \mathrm{~mL}$) was added diphenyl(trimethylsilyl)phosphine 345 ($1.00 \mathrm{~g}, 3.87 \mathrm{mmol}, 1.00 \mathrm{eq}$.), and the mixture was allowed to stir for 68 h . The mixture was then concentrated in vacuo, and the residue was purified by distillation (0.51 Torr) to give (1ethoxyvinyl)diphenylphosphine 346 ($790 \mathrm{mg}, 3.08 \mathrm{mmol}, 40 \%$) as a pale yellow oil; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51-7.45(4 \mathrm{H}, \mathrm{m}), 7.34-7.31(6 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 24.5 \mathrm{~Hz}$, $2.2 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{dd}, J 8.4 \mathrm{~Hz}, 2.2 \mathrm{~Hz}), 3.81(2 \mathrm{H}, \mathrm{q}, J 6.9 \mathrm{~Hz}), 1.23(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz})$; סP (122 MHz, CDCl 3) -3.38 .

Data in agreement with those previously reported. ${ }^{208}$

Ethyl 2-(diphenylphosphino)-4-methoxyazulene-1-carboxylate 341

The preparation of this compound was based on a method by Cai. ${ }^{152}$ At r.t., to a solution of [1,3-bis(diphenylphosphino)propane]dichloronickel(II) (28 mg, 0.0528 mmol, 0.10 eq.) in DMF (degassed by sparging with $\mathrm{N}_{2}, 0.75 \mathrm{~mL}$) was added diphenylphosphine ($60 \mu \mathrm{~L}, 0.345 \mathrm{mmol}, 0.65 \mathrm{eq}$.) , and the mixture was stirred at 100 ${ }^{\circ} \mathrm{C}$ for 45 min . To the mixture was then added a solution of ethyl 4-methoxy-2-(trifluoromethanesulfonyloxy)azulene-1-carboxylate 338 ($200 \mathrm{mg}, 0.528 \mathrm{mmol}, 1.00$ eq.) and 1,4-diazabicyclo[2.2.2]octane ($118 \mathrm{mg}, 1.06 \mathrm{mmol}, 2.00 \mathrm{eq}$.) in DMF (degassed by sparging with $\mathrm{N}_{2}, 1.25 \mathrm{~mL}$). After stirring at $100^{\circ} \mathrm{C}$ for another 55 min , to the mixture was added diphenylphosphine ($70 \mu \mathrm{~L}, 0.403 \mathrm{mmol}, 0.76$ eq.). The mixture was stirred at $100^{\circ} \mathrm{C}$ for another 18 h , then allowed to cool and diluted with EtOAc (25 mL). The mixture was washed with water ($4 \times 20 \mathrm{~mL}$), dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(10 \rightarrow 100 \%$ EtOAc in petroleum ether, then to $10 \% \mathrm{MeOH}$ in EtOAc), but the only identified compounds were starting material 338 and 2-hydroxyazulene 337.

Ethyl 1-(diphenylphosphoryl)-4-methoxyazulene-1-carboxylate 347

The preparation of this compound was based on a method by Zhang. ${ }^{209}$ At r.t., to a mixture of ethyl 4-methoxy-2-(trifluoromethanesulfonyloxy)azulene-1-carboxylate 338 ($50 \mathrm{mg}, 0.132 \mathrm{mmol}, 1.00 \mathrm{eq}$.), diphenylphosphine oxide ($53 \mathrm{mg}, 0.264 \mathrm{mmol}, 2.00$ eq.), palladium diacetate ($3 \mathrm{mg}, 0.0132 \mathrm{mmol}, 0.10 \mathrm{eq}$.) and 1,4bis(diphenylphosphino)butane ($9 \mathrm{mg}, 0.0199 \mathrm{mmol}, 0.15 \mathrm{eq}$.) in DMSO (degassed by freeze-pump-thaw, 0.50 mL) was added diisopropylethylamine ($120 \mu \mathrm{~L}, 0.690$ mmol, 5.22 eq.). The mixture was then stirred and heated at $100^{\circ} \mathrm{C}$ for 15 h , then allowed to cool. After diluting with ethyl acetate (50 mL), the organic phase was washed with water ($3 \times 15 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(50 \rightarrow 100 \%$ EtOAc in petroleum ether, then 5\% MeOH in EtOAc) and recrystallisation (1:1 THF/hexane) to give ethyl 1-(diphenylphosphoryl)-4-methoxyazulene-1-carboxylate 347 ($5.5 \mathrm{mg}, 0.0128 \mathrm{mmol}$, 10%) as a magenta solid (m.p. 220-223 ${ }^{\circ} \mathrm{C}$ (dec.)); $\mathrm{R}_{f} 0.07$ (EtOAc); $\delta \mathrm{H}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 9.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.2 \mathrm{~Hz}, 8-\mathrm{CH}), 7.85(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.4 \mathrm{~Hz}, 6-\mathrm{CH}), 7.75-7.70(4 \mathrm{H}$, m, 15-CH), 7.53-7.48 (2H, m, 17-CH), 7.46-7.41 (4H, m, 16-CH), 7.36 (1H, t, J 10.0 $\mathrm{Hz}, 7-\mathrm{CH}), 7.31$ (1H, d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{PH}} 6.9 \mathrm{~Hz}, 3-\mathrm{CH}\right), 7.19$ (1H, d, J $\left.11.3 \mathrm{~Hz}, 5-\mathrm{CH}\right), 4.11$ (3H, s, $\left.10-\mathrm{CH}_{3}\right), 3.96\left(2 \mathrm{H}, \mathrm{q}, ~ J 7.2 \mathrm{~Hz}, 11-\mathrm{CH}_{2}\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right)$; $\delta \mathrm{c}(126$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 166.2 (4-C), 164.8 (9-C), 141.6 (8-C), 140.7 (6-C), 140.3 (d, ${ }^{3} \mathrm{~J}_{\mathrm{CP}} 10.9$
$\mathrm{Hz}, 8 \mathrm{a}-\mathrm{C}$), 136.6 (d, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}} 106.8 \mathrm{~Hz}, 2-\mathrm{C}\right), 135.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 108.8 \mathrm{~Hz}, 14-\mathrm{C}\right), 131.6$ (d, $\left.{ }^{2} J_{\mathrm{CP}} 9.7 \mathrm{~Hz}, 15-\mathrm{C}\right), 131.1$ (d, $\left.{ }^{4} J_{\mathrm{CP}} 2.7 \mathrm{~Hz}, 17-\mathrm{C}\right), 129.8$ (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{CP}} 15.3 \mathrm{~Hz}, 3 \mathrm{a}-\mathrm{C}\right), 128.1$ (d, $\left.{ }^{3} J_{\mathrm{CP}} 12.4 \mathrm{~Hz}, 16-\mathrm{C}\right), 123.7$ (7-C), 122.3 (d, $\left.{ }^{2} \mathrm{~J}_{\mathrm{CP}} 13.8 \mathrm{~Hz}, 3-\mathrm{C}\right), 119.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}} 8.1\right.$ $\mathrm{Hz}, 1-\mathrm{C}), 112.2$ (5-C), 60.0 (11-C), 56.9 (10-C), 13.7 (12-C); $\delta \mathrm{P}$ ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 26.3 (13-P); $v_{\max }($ film $) 3057,2919,2855,1683,1596,1566,1534,1461,1437,1408$, 1385, 1323, 1271, 1221, 1177, 1115, 1104, 1039, 954, 893, 790, $720 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}+\mathrm{H}\right]^{+}, 431.1412$; found, 431.1420 .

Ethyl 2-bromo-4-methoxyazulene-1-carboxylate 348

The preparation of this compound was based on a method by Ito. ${ }^{210}$ At r.t., to a stirred solution of ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 (174 mg, $0.707 \mathrm{mmol}, 1.00$ eq.) in toluene (degassed by sparging with $\mathrm{N}_{2}, 45 \mathrm{~mL}$) was added $\mathrm{PBr}_{3}\left(100 \mu \mathrm{~L}, 1.06 \mathrm{mmol}, 1.50\right.$ eq.), and the mixture was stirred at $90^{\circ} \mathrm{C}$ for 26 h . After allowing to cool to r.t., to the mixture was added $\mathrm{PBr}_{3}(100 \mu \mathrm{~L}, 1.06 \mathrm{mmol}, 1.50$ eq.), and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 19 h , and then allowed to cool to r.t. The mixture was then washed with water $(3 \times 40 \mathrm{~mL})$ and with saturated brine, and the organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($0 \rightarrow 20 \%$ EtOAc in petroleum ether) to give ethyl 2-bromo-4-methoxyazulene-1-carboxylate 348 ($12 \mathrm{mg}, 0.0388 \mathrm{mmol}, 5.5 \%$) as a maroon solid (m.p. 104-106 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.17$ (4:1 petroleum ether/EtOAc); $\delta н(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 9.47$ (1H, d, J $10.0 \mathrm{~Hz}, 8-\mathrm{CH}$), 7.75 (1H, ddd, J $11.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6-$ CH), $7.55(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}), 7.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.0 \mathrm{~Hz}, 7-\mathrm{CH}), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0 \mathrm{~Hz}, 5-\mathrm{CH})$, $4.47\left(2 \mathrm{H}, \mathrm{q}, ~ J 7.0 \mathrm{~Hz}, 11-\mathrm{CH}_{2}\right), 4.16\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right)$; бс (75 MHz, $\left.\mathrm{CDCl}_{3}\right) 164.8$ (9-C), 162.7 (4-C), 138.8 (8a-C), 137.9 (8-C), 137.4 (6-C), 130.8 (3a-C), 126.2 (2-C), 123.5 (7-C), 117.8 (3-C), 115.3 (1-C), 111.5 (5-C), 60.2 (11-C), 56.7 (10-C), 14.5 (12-C); $v_{\max }(f i l m)$ 2971, 2921, 2846, 1674, 1639, 1592, 1567, 1534, 1475, 1456, 1403, 1381, 1354, 1320, 1283, 1260, 1215, 1174, 1109,
$1078,1033,995,982,951,879,845,820,808,782,752,730,706,678,653 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{3}+\mathrm{Na}\right]^{+}, 330.9946$; found, 330.9945 .

2,4-dimethoxyazulene 349

The preparation of this compound was based on a method by Koch. ${ }^{211}$ Under atmosphere of air, a sealed tube charged with a suspension of ethyl 2,4-dimethoxyazulene-1-carboxylate 326 ($100 \mathrm{mg}, 0.384 \mathrm{mmol}, 1.00 \mathrm{eq}$) and LiCl (407 mg , $9.60 \mathrm{mmol}, 25.0$ eq. $)$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(1: 1,2.0 \mathrm{~mL})$ was heated at $160^{\circ} \mathrm{C}$, stirring for 2.5 h . After allowing it to cool to r.t., the resultant brown oil was dissolved in ethyl acetate $(40 \mathrm{~mL})$, washed with water $(2 \times 20 \mathrm{~mL})$ and saturated brine $(2 \times 10 \mathrm{~mL})$, and the organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($10 \rightarrow 33 \%$ EtOAc in petroleum ether) to give 2,4 dimethoxyazulene 349 ($6 \mathrm{mg}, 0.0319 \mathrm{mmol}, 8.3 \%$) as a red solid (m.p. $62-65{ }^{\circ} \mathrm{C}$); R_{f} 0.57 (3:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.05$ (1H, d, J $9.4 \mathrm{~Hz}, 8-\mathrm{CH}$), 7.39 (1H, ddd, J $10.9 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6-\mathrm{CH}), 7.07$ (1H, d, J $2.4 \mathrm{~Hz}, 3-\mathrm{CH}$), 7.02 (1H, t, J $9.7 \mathrm{~Hz}, 7-\mathrm{CH}), 6.98$ (1H, d, J $10.9 \mathrm{~Hz}, 5-\mathrm{CH}), 6.69$ (1H, d, J $2.3 \mathrm{~Hz}, 1-\mathrm{CH}$), $4.13\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 4.03\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right)$; $\delta \mathrm{c}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.4(2-\mathrm{C}), 159.4$ (4-C), 138.7 (8a-C), 133.1 (8-C), 131.0 (6-C), 127.8 (3a-C), 120.1 (7-C), 108.5 (5-С), 100.2 (3-C), 99.5 (1-C), 57.5 (10-C), 56.3 (9-C); $v_{\max }($ film) 3113, 3013, 2928, 2833, 1594, 1568, 1539, 1512, 1451, 1436, 1395, 1356, 1333, 1289, 1257, 1220, 1221, 1194, 1170, 1127, 1068, 1024, 988, 936, 860, 820, 814, 772, 728, 704, $666 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for [$\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}+\mathrm{H}\right]^{+}, 189.0910$; found, 189.0909.

8-Hydroxy-3-(4-nitrophenyl)-2H-cyclohepta[b]furan-2-one 355

The preparation of this compound was based on a method by Nozoe..197 At $0{ }^{\circ} \mathrm{C}$, to a stirred suspension of 7-oxocyclohepta-1,3,5-trien-1-yl 4-methylbenzene-1-sulfonate 297 ($690 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq}$) and ethyl 4-nitrophenylacetate $350(1.04 \mathrm{~g}, 5.00$ mmol, 2.00 eq.) in ethanol (7.5 mL) was slowly added NaOEt solution (freshly prepared from Na metal ($118 \mathrm{mg}, 5.13 \mathrm{mmol}, 2.05 \mathrm{eq}$.$) and ethanol (5.0 \mathrm{~mL}$)), instantly forming a deep purple mixture. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then allowed to warm to r.t., before it was stirred for another 3 h , becoming brown/orange in colour. After allowing it to stand for 16 h , to the mixture was added water (25 mL), forming a solid precipitate that was then collected by filtration, washing with water. The solid was dissolved in DMF (20 mL), forming a purple solution, and to this was added $\mathrm{HCl}_{(\text {(qq) }}(5 \mathrm{M}, 10 \mathrm{~mL})$, forming an orange suspension that was stored at $2{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was then filtered, washing the collected precipitate with water to give the crude product, which was purified by recrystallisation (hot DMF, 60 mL) to produce 8-hydroxy-3-(4-nitrophenyl)-2H-cyclohepta[b]furan-2-one 355 ($370 \mathrm{mg}, 1.31$ mmol, 52%) as an orange solid (m.p. $>300^{\circ} \mathrm{C}$ (dec.)); $\delta н\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 11.93$ (1H, br s, 8-OH), $8.30(2 H, d, J 8.9 H z, 11-C H), 7.92(2 H, d, J 9.0 H z, 10-C H), 7.91-$ 7.88 (1H, m), 7.33-7.21 (3H, m); $\delta c\left(126 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}\right) 166.1$ (2-C), 145.0 (13-C), $141.8,139.4$ (9-C), 134.2, 132.7, 131.2, 128.3 (10-C), 127.8, 123.8 (11-C), 100.0 (3C); $v_{\max }($ film $) 3110,1728,1634,1590,1565,1518,1465,1420,1340,1320,1281$,

1239, 1149, 1109, 1085, 1034, 1009, 934, 858, 811, 785, 758, 734, 713, 687, 674, $653 \mathrm{~cm}^{-1}$; HRMS (ESI-) m / z calc for $\left[\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{NO}_{5}\right]^{-}$, 282.0402; found, 282.0420.

Due to the limited solubility of 355 , some peaks in the ${ }^{13} \mathrm{C}$-NMR data could not be observed, and HMBC spectrum was of limited quality. The signal at $\delta \mathrm{c}=100.0 \mathrm{ppm}$ was apparent by HMBC, but not by ${ }^{13} \mathrm{C}-\mathrm{NMR}$.

8-Hydroxy-3-phenyl-2H-cyclohepta[b]furan-2-one 356

The preparation of this compound was based on a method by Nozoe. ${ }^{197}$ At r.t., to a stirred suspension of 7-oxocyclohepta-1,3,5-trien-1-yl 4-methylbenzene-1-sulfonate 297 ($690 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.00$ eq.) and ethyl phenylacetate 351 ($800 \mu \mathrm{~L}, 4.88 \mathrm{mmol}$, 1.95 eq.) in tert-butanol (12.5 mL) was added a solution of potassium tert-butoxide (1.0 M in tert-butanol, $5.00 \mathrm{~mL}, 2.00$ eq.), forming an orange/brown mixture, which was allowed to stir for 20 h . To the mixture was then added water (60 mL) and extracted with toluene $(3 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with saturated brine, dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give 3-phenyl-2H-cyclohepta[b]furan-2-one as an inseparable mixture with ethyl phenylacetate 351.

The aqueous layer was then concentrated under reduced pressure to remove toluene and tert-butanol. To this solution was added $\mathrm{HCl}_{(\mathrm{aq})}(5 \mathrm{M}, 18 \mathrm{~mL})$, forming a precipitate, which was stored at $2{ }^{\circ} \mathrm{C}$ for 1 h . The precipitate collected by filtration to give crude 8-hydroxy-3-phenyl-2H-cyclohepta[b]furan-2-one 356 (201 mg, 0.845 $\mathrm{mmol}, 34 \%$) as a copper coloured solid, used without further purification; $\delta \mathrm{H}$ (500 MHz, DMSO-d $\mathrm{d}_{6} 11.47$ (1H, br s, 8-OH), 7.66 (1H, d, J $11.3 \mathrm{~Hz}, 4-\mathrm{CH}$), 7.56 (2H, dd, J $8.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 10-\mathrm{CH}$), 7.46 ($2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 11-\mathrm{CH}$), 7.33 ($1 \mathrm{H}, \mathrm{tt}, J 7.5 \mathrm{~Hz}, 1.4 \mathrm{~Hz}$, 12-CH), 7.11-7.15 (2H, m, 5,7-CH), 7.07-7.02 (1H, m, 6-CH); дc (126 MHz, DMSO$\left.d_{6}\right) 166.7$ (2-C), 145.2 (8-C), 144.7 (3a-C), 140.7 (8a-C), 133.2 (5-C or 7-C), 131.4
(6-C and 9-C), 130.2 (5-C or 7-C), 128.5 (11-C), 128.1 (10-C), 127.5 (4-C), 127.0 (12-C), 103.4 (3-C); $v_{\max }($ film $) 3049,1765,1702,1633,1593,1576,1536,1497$, 1466, 1444, 1398, 1318, 1302, 1276, 1226, 1166, 1101, 1078, 1061, 1027, 967, 930, 910, 866, 845, 816, 750, 736, 696, $677 \mathrm{~cm}^{-1}$; HRMS (ESI-) m / z calc for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{3}\right]^{-}$, 237.0551; found, 237.0544.

8-Hydroxy-3-(naphthalen-1-yl)-2H-cyclohepta[b]furan-2-one 357

The preparation of this compound was based on a method by Nozoe. ${ }^{197}$ At r.t., to a stirred suspension of 7-oxocyclohepta-1,3,5-trien-1-yl 4-methylbenzene-1-sulfonate 297 ($690 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.00$ eq.) and methyl-1-naphthaleneacetate 352 ($880 \mu \mathrm{~L}$, $5.00 \mathrm{mmol}, 2.00$ eq.) in tert-butanol (7.5 mL) was added a solution of potassium tert-butoxide (1.0 M in tert-butanol, $5.00 \mathrm{~mL}, 2.00 \mathrm{eq}$.), forming an orange/brown mixture after 5 min . The mixture was allowed to stir for 24 h , and to it was added water (30 mL) and allowed to stir for 2 min , before concentrating under reduced pressure to remove any tert-butanol. The aqueous solution was extracted with toluene ($2 \times 50 \mathrm{~mL}$), and the combined organic extracts were discarded. To the aqueous layer was added $\mathrm{HCl}_{(\mathrm{aq})}(5 \mathrm{M}, 20 \mathrm{~mL})$, forming an orange/yellow precipitate. After storing at $2{ }^{\circ} \mathrm{C}$ for 2 h , the precipitate was collected by filtration, washing with water, giving crude 8-hydroxy-3-(naphthalen-1-yl)-2H-cyclohepta[b]furan-2-one 357 (398 $\mathrm{mg}, 1.38 \mathrm{mmol}, 55 \%$) as an orange solid, and was used without further purification (m.p. 225-230 ${ }^{\circ} \mathrm{C}$ (dec.)); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 11.55$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 8-\mathrm{OH}$), $8.00(2 \mathrm{H}$, app tt, J $8.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}), 7.64-7.44(6 \mathrm{H}, \mathrm{m}), 7.21-7.16$ (1H, m), 7.06-7.01 (2H, m); $v_{\max }($ film $) 3046,1697,1630,1595,1530,1457,1430,1398,1334,1304$, $1274,1255,1226,1210,1165,1141,1129,1083,1061,1032,1013,981,966,865$, $805,792,778,762,732,681,670 \mathrm{~cm}^{-1} ;$ HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$, 289.0865; found, 289.0883.

Sample of compound 357 contained some impurity, making it difficult to correlate signals between ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, and therefore know which peaks in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum correspond to the product.

Methyl 4-(8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-yl)benzoate 358

297

not isolated

358

The preparation of this compound was based on a method by Nozoe. ${ }^{197}$ At r.t., to a stirred suspension of 7-oxocyclohepta-1,3,5-trien-1-yl 4-methylbenzene-1-sulfonate 297 ($690 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.00$ eq.) and methyl 4-(2-methoxy-2-oxoethyl)benzoate 353 ($1.04 \mathrm{~g}, 5.00 \mathrm{mmol}, 2.00$ eq.) in tert-butanol (7.5 mL) was added a solution of potassium tert-butoxide (1.0 M in tert-butanol, $5.00 \mathrm{~mL}, 2.00$ eq.), forming an viscous orange/brown mixture after 5 min . After allowing it to stir for 17 h , water (50 mL) was added to the mixture. The aqueous mixture was extracted with toluene $(3 \times 40 \mathrm{~mL})$, and the combined organic extracts were discarded. The aqueous layer was concentrated under reduced pressure to remove residual toluene, and then to it was added $\mathrm{HCl}_{(\mathrm{aq})}(5 \mathrm{M}, 18 \mathrm{~mL})$, forming an orange suspension. The mixture was stored at $2{ }^{\circ} \mathrm{C}$ for 24 h , and then the precipitate was collected by filtration, washing with water, to give crude methyl 4-(8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-yl)benzoate 358 ($526 \mathrm{mg}, 1.77 \mathrm{mmol}, 71 \%$) as an orange solid, which was used without further purification (m.p. $280-284{ }^{\circ} \mathrm{C}$ (dec.)); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 11.77$ (1H, br s, $8-\mathrm{OH}$), 8.02 (2H, d, J $8.5 \mathrm{~Hz}, 11-\mathrm{CH}), 7.81-7.74$ (1H, m, 4-CH), 7.76 (2H, d, J $8.5 \mathrm{~Hz}, 10-$ $\mathrm{CH}), 7.27-7.12(3 \mathrm{H}, \mathrm{m}, 5,6,7-\mathrm{CH}), 3.87\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{CH}_{3}\right)$; $\delta c\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ 166.3 (13-C), 166.0 (2-C), 146.6 (8-C), 145.2 (3a-C), 141.2 (8a-C), 136.8 (9-C), 134.0 (5-C or $6-C$ or $7-C$), 132.2 ($5-\mathrm{C}$ or $6-\mathrm{C}$ or $7-\mathrm{C}$), 130.6 (5-C or $6-\mathrm{C}$ or $7-\mathrm{C}$),
129.4 (11-C), 128.0 (10-C), 127.8 (4-C), 127.4 (12-C), 101.6 (3-C), 52.2 (14-C); $v_{\max }($ film $) 3074,1720,1666,1633,1602,1567,1530,1509,1467,1417,1348,1314$, 1282, 1235, 1182, 1113, 1096, 1070, 1019, 970, 902, 873, 856, 821, 767, 756, 739, 711, 697, $688 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}, 319.0577$; found, 319.0539.

8-Methoxy-3-(4-nitrophenyl)-2H-cyclohepta[b]furan-2-one) 359

The preparation of this compound was based on a method by Pham. ${ }^{198}$ Under atmosphere of air, a sealed tube charged with 8-hydroxy-3-(4-nitrophenyl)-2H-cyclohepta[b]furan-2-one 355 (200 mg, $0.706 \mathrm{mmol}, 1.00 \mathrm{eq}$.), trimethyl orthoacetate $324(1.50 \mathrm{~mL})$ and toluene (1.50 mL) was heated under air at $200^{\circ} \mathrm{C}$, stirring for 3 h (CAUTION: the reaction was run behind a blast shield).. The mixture was allowed to cool to r.t., producing a maroon precipitate. The solid was collected by filtration, washing with DCM to produce 8-methoxy-3-(4-nitrophenyl)-2H-cyclohepta[b]furan-2one 359 ($139 \mathrm{mg}, 0.467 \mathrm{mmol}, 66 \%$) as a fluffy maroon solid, which required no further purification (m.p. $>300^{\circ} \mathrm{C}(\mathrm{dec}$.$)); \delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 70^{\circ} \mathrm{C}\right) 8.30(2 \mathrm{H}, \mathrm{d}$, J $8.9 \mathrm{~Hz}, 12-\mathrm{CH}), 7.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, 11-\mathrm{CH}), 7.93-7.90(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}), 7.58$ (1H, d, J $11.9 \mathrm{~Hz}, 7-\mathrm{CH}$), $7.39-7.35(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}), 7.32-7.28(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}), 4.11(3 \mathrm{H}, \mathrm{s}$, $9-\mathrm{CH}_{3}$); $\delta \mathrm{c}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 70^{\circ} \mathrm{C}\right) 147.4$ (8-C), 145.6, 145.4, 144.4, 138.4 (10C), 134.5 (5-C), 132.1 (6-C), 128.2 (11-C), 127.8 (4-C), 126.9 (7-C), 123.3 (12-C), 101.1 (3-C), 58.1 (9-C); $v_{\max }($ film $) 3080,2996,1726,1708,1621,1593,1581,1538$, 1497, 1459, 1447, 1416, 1381, 1362, 1318, 1268, 1237, 1189, 1142, 1117, 1106, 1079, 1036, 968, 912, 872, 850, 821, 805, 780, 765, 744, 732, 710, $687 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{5}+\mathrm{Na}\right]^{+}, 320.0535$; found, 320.0513.

The solubility of 359 in DMSO- d_{6} in the NMR tube, even at raised temperature, was limited, so therefore the carbonyl peak was absent from ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum and assignments for quaternary carbons are tentative due to limited quality of the 2D NMR data.

2,4-Dimethoxy-1-(4-nitrophenyl)azulene 362

The preparation of this compound was based on methods by Pham and Hansen. ${ }^{212}$ Under atmosphere of air, a sealed tube charged with 8-hydroxy-3-(4-nitrophenyl)-2H-cyclohepta[b]furan-2-one 355 (200 mg, $0.706 \mathrm{mmol}, 1.00 \mathrm{eq}$.), trimethyl orthoacetate $324(1.50 \mathrm{~mL})$ and N -methylpyrrolidone (1.50 mL) was stirred at $200^{\circ} \mathrm{C}$ for 6 h , then allowed to cool to r.t. The mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$, and then washed with water $(4 \times 10 \mathrm{~mL})$ and with saturated brine. The organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The crude product was dissolved in DCM (2 mL) and filtered through a pad of silica, washing through with petroleum ether/ethyl acetate (19:1), and concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($5 \rightarrow 10 \%$ EtOAc in petroleum ether) to give 2,4 -dimethoxy-1-(4-nitrophenyl)azulene 362 ($13 \mathrm{mg}, 0.420 \mathrm{mmol}, 6.0 \%$) as a red/brown solid (m.p. 196-199 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.26$ (4:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.31 (2H, d, J $9.0 \mathrm{~Hz}, 13-\mathrm{CH}), 8.30$ (1H, d, J $10.0 \mathrm{~Hz}, 8-\mathrm{CH}), 7.78$ (2H, d, J 9.0 Hz , 12-CH), 7.50 (1H, ddd, J $11.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6-\mathrm{CH}$), 7.20 (1H, s, 3-CH), 7.12 (1H, d, J $11.0 \mathrm{~Hz}, 5-\mathrm{CH}), 7.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5 \mathrm{~Hz}, 7-\mathrm{CH}), 4.19\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 4.11(3 \mathrm{H}$, $\left.\mathrm{s}, 10-\mathrm{CH}_{3}\right) ; \delta c\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 163.3$ (2-C), 159.9 (4-C), 145.3 (14-C), 142.2 (11-C), 134.7 (8a-C), 132.7 (6-C), 132.3 (8-C), 130.7 (12-C), 128.6 (3a-C), 123.6 (13-C), 121.7 (7-C), 113.0 (1-C), 110.5 (5-C), 96.2 (3-C), 57.8 (10-C), 56.6 (9-C); $v_{\max }(f i l m)$

2923, 2852, 1586, 1572, 1540, 1496, 1456, 1420, 1407, 1327, 1307, 1258, 1217, 1191, 1167, 1119, 1106, 1079, 1053, 996, 953, 882, 843, 822, 759, 745, 704, 682, $667 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}\right]^{+}, 332.0893$; found, 332.0928.

8-methoxy-3-phenyl-2H-cyclohepta[b]furan-2-one 360 and 2,4-dimethoxy-1phenylazulene 363

356

363

The preparation of this compound was based on a method by Pham. ${ }^{198}$ Under atmosphere of air, a sealed tube charged with 8-hydroxy-3-phenyl- 2 H -cyclohepta[b]furan-2-one 356 ($50 \mathrm{mg}, 0.210 \mathrm{mmol}, 1.00$ eq.), trimethyl orthoacetate $324(1.0 \mathrm{~mL})$ and toluene (1.0 mL) was heated under air at $200^{\circ} \mathrm{C}$, stirring for 6.5 h (CAUTION: the reaction was run behind a blast shield). After cooling to r.t., a copper coloured fluffy precipitate of 8-methoxy-3-phenyl-2H-cyclohepta[b]furan-2-one 360 ($21.5 \mathrm{mg}, 0.0852 \mathrm{mmol}, 41 \%$) was collected by fitration, washing with toluene, and no further purification was required (m.p. 208-210 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.37$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.62-7.58(3 \mathrm{H}, \mathrm{m}, 4,11-\mathrm{CH}), 7.44(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8$ Hz, 12-CH), 7.33 (1H, t, J $7.3 \mathrm{~Hz}, 13-\mathrm{CH}$), 7.00 (1H, d, J $12.2 \mathrm{~Hz}, 7-\mathrm{CH}), 6.89$ (1H, dd, J $11.2 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 5-\mathrm{CH}$), 6.80 (1H, dd, J $12.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 6-\mathrm{CH}), 4.11$ (3H, s, 9CH_{3}); $\delta с$ (126 MHz, CDCl_{3}) 167.4 (2-C), 145.4 (3a-C), 145.3 (8-C), 144.9 (8a-C), 132.4 (5-C), 130.9 (10-C), 129.8 (6-C), 128.7 (12-C), 128.4 (11-C), 128.2 (4-C), 128.1 (7-C), 127.6 (13-C), 107.4 (3-C), 59.4 (9-C); $v_{\max }($ film) 3069, 2989, 2941, 2852, 1702, 1623, 1584, 1535, 1511, 1473, 1463, 1443, 1427, 1385, 1324, 1304, 1292, 1269, 1238, 1184, 1156, 1092, 1066, 1028, 999, 923, 904, 896, 861, 763, 745, 727, 703, $678 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$, 253.0865; found, 253.0859 .

The filtrate was concentrated under reduced pressure and purified by column chromatography $(5 \rightarrow 25 \%$ EtOAc in petroleum ether) and 2,4-dimethoxy-1phenylazulene 363 ($1.6 \mathrm{mg}, 0.00605 \mathrm{mmol}, 2.8 \%$) as a pale pink residue; $\mathrm{R}_{f} 0.68$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}), 7.61-7.28$ (6H, m), $7.20(1 \mathrm{H}, \mathrm{s}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.0 \mathrm{~Hz}), 4.17(3 \mathrm{H}, \mathrm{s})$, $4.08(3 \mathrm{H}, \mathrm{s}) ; \mathrm{HRMS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calc for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{H}\right]^{+}, 265.1229$; found, 265.1218. Insufficient quantity isolated to carry out further characterisation.

Methyl 4-(8-methoxy-2-oxo-2H-cyclohepta[b]furan-3-yl)benzoate 361

The preparation of this compound was based on a method by Pham. ${ }^{198}$ Under atmosphere of air, a sealed tube charged with methyl 4-(8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-yl)benzoate 358 ($100 \mathrm{mg}, 0.337 \mathrm{mmol}, 1.00$ eq.), trimethyl orthoacetate $324(1.0 \mathrm{~mL})$ and toluene (1.0 mL) was heated at $200^{\circ} \mathrm{C}$, stirring for 5 h. The mixture was allowed to cool to r.t., producing a crimson coloured precipitate. The solid was collected by filtration, washing with toluene, giving methyl 4-(8-methoxy-2-oxo-2H-cyclohepta[b]furan-3-yl)benzoate 361 ($40 \mathrm{mg}, 0.129 \mathrm{mmol}, 38 \%$) as a fluffy crimson solid, used without further purification (m.p. $\left.248-251^{\circ} \mathrm{C}\right)$; $\delta \mathrm{H}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 1: 1\right)^{*} 7.95-7.93$ (2H, m, 12-CH), 7.59 (1H, d, J $\left.11.0 \mathrm{~Hz}, 4-\mathrm{CH}\right)$, 7.54-7.52 (2H, m, 11-CH), 7.06 (1H, d, J $11.9 \mathrm{~Hz}, 7-\mathrm{CH}), 6.98-6.87$ (2H, m, 5,6-CH), $3.98\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{CH}_{3}\right) ; ~ \delta c\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 1: 1\right)^{*} 167.5$ (2-C), 167.0 (14-C), 146.9 (8-C), 146.0 (3a-C), 144.6 (8a-C), 135.8 (10-C), 133.2 (6C), 131.1 ($5-\mathrm{C}$), 129.6 (12-C), 128.4 (13-C), 128.2 ($4-\mathrm{C}$), 127.9 (11-C), 127.0 (7-C), 105.9 (3-C), 58.5 (9-C), 51.9 (15-C); $v_{\max }($ film) 2958, 2849, 1789, 1740, 1717, 1625, 1608, 1591, 1567, 1543, 1520, 1504, 1453, 1425, 1413, 1375, 1316, 1280, 1259, 1233, 1184, 1171, 1149, 1102, 1078, 1019, 970, 955, 896, 870, 857, 822, 780, 757, 748, 733, 707, $686 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}, 333.0739$; found, 333.0716.

* Residual CHCl_{3} solvent peak calibrated at $\delta \mathrm{H} 7.26 \mathrm{ppm}$, $\delta \mathrm{c} 77.00 \mathrm{ppm}$.
(\pm)-3,3'-Diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 370

The preparation of this compound was based on a method by Kozlowski. ${ }^{214}$ Under atmosphere of air, at r.t., to a stirred solution of ethyl 2-hydroxy-4-methoxyazulene-1carboxylate 337 ($2.20 \mathrm{~g}, 8.94 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in 1,2-dichloroethane (10 mL) and acetonitrile $(20 \mathrm{~mL})$ was added di- μ-hydroxo-bis $\left[\left(N, N, N^{\prime}, N^{\prime}\right.\right.$ tetramethylethylenediamine)copper(II)] chloride 369 ($208 \mathrm{mg}, 0.894 \mathrm{mmol}$ (by mol. weight of monomer), 0.10 eq.). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 89 h in a sealed vessel. After allowing to cool to r.t., the suspension was stored at $-18^{\circ} \mathrm{C}$ for 2 h , and the mixture was filtered, washing with cold CHCl_{3}, to give (\pm)-3,3'-diethyl 2,2'-dihydroxy-8, 8'-dimethoxy-[1, 1'-biazulene]-3,3'-dicarboxylate 370 (1.08 g, 2.20 mmol , 49%) as a red solid. After storing the filtrate for an additional 3 days at $-18{ }^{\circ} \mathrm{C}$, a $2^{\text {nd }}$ crop of product ($124 \mathrm{mg}, 0.252 \mathrm{mmol}, 5.6 \%$) was collected by filtration as a red solid (m.p. $>300{ }^{\circ} \mathrm{C}$ (dec. ca. $233{ }^{\circ} \mathrm{C}$)); $\delta \mathrm{H}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.84(2 \mathrm{H}$, br s, 2,2’-OH), 9.03 (2H, d, J $9.5 \mathrm{~Hz}, 4,4$ '-CH), 7.41 (2H, t, J $10.2 \mathrm{~Hz}, 6,6$ '-CH), 7.21 (2H, t, J 10.0 Hz, 5,5'-CH), $6.93(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5 \mathrm{~Hz}, 7,7$ '-CH), 4.60-4.50 (4H, m, 11,11’-CH2), 3.58 $\left(6 \mathrm{H}, \mathrm{s}, 10,10^{\prime}-\mathrm{CH}_{3}\right), 1.52\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, 12,12^{\prime}-\mathrm{CH}_{3}\right)$; $\delta c\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.1$ ($9,9^{\prime}-\mathrm{C}$ or $2,2^{\prime}-\mathrm{C}$), 169.0 ($9,9^{\prime}-\mathrm{C}$ or $2,2^{\prime}-\mathrm{C}$), 163.0 ($8,8^{\prime}-\mathrm{C}$), 137.7 (3a,3a'-C), 132.3
(4,4'-C or $6,6^{\prime}-C$), 132.0 ($4,4^{\prime}-\mathrm{C}$ or $6,6^{\prime}-C$), 130.4 ($8 \mathrm{a}, 8 a^{\prime}-C$), 123.5 ($5,5^{\prime}-\mathrm{C}$), 111.9 (1,1'-C), 111.7 (7,7 '-C), 98.0 (3,3'-C), 60.3 (11,11'-C), 56.5 (10,10'-C), 14.7 (12,12'C); $v_{\max }($ film $) 2924,2852,1740,1686,1628,1595,1572,1449,1422,1396,1380$, $1357,1313,1259,1215,1205,1183,1170,1130,1098,1082,1022,957,870,838$, 810, 789, 746, 725, $698 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{8}+\mathrm{Na}\right]^{+}, 513.1525$; found, 513.1551.

(\pm)-Diethyl 2-hydroxy-8,8'-dimethoxy-2'-(((trifluoromethyl)sulfonyl)oxy)-[1,1'-

biazulene]-3,3'-dicarboxylate 371

The preparation of this compound was based on a method by Mikami. ${ }^{215} \mathrm{At}-78{ }^{\circ} \mathrm{C}$, to a stirred suspension of $(\pm)-3,3$ '-diethyl $2,2^{\prime}$ 'dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate $370(200 \mathrm{mg}, \quad 0.408 \mathrm{mmol}, 1.00$ eq. $), \quad 4$ (dimethylamino)pyridine ($10 \mathrm{mg}, 0.0816 \mathrm{mmol}, 0.20$ eq.) and 2,6-lutidine ($120 \mu \mathrm{~L}$, $1.02 \mathrm{mmol}, 2.50$ eq.) in DCM (10.0 mL) was added dropwise trifluoromethanesulfonic anhydride ($170 \mu \mathrm{~L}, 1.01 \mathrm{mmol}, 2.48 \mathrm{eq}$.), and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was allowed to warm to r.t., stirred for another 17 h , and to it was added water (5.0 mL) to quench, stirring for 10 min . The mixture was diluted with DCM (30 mL), and the phases were separated. The organic layer was washed further with water $(2 \times 20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography to give (\pm)-3,3'-diethyl $8,8^{\prime}$ -dimethoxy-2,2'-bis(trifluoromethanesulfonyloxy)-[1, 1'-biazulene]-3,3'-dicarboxylate 372 (121 mg, $0.160 \mathrm{mmol}, 39 \%$) and (\pm)-diethyl 2-hydroxy-8,8'-dimethoxy-2'-(((trifluoromethyl)sulfonyl)oxy)-[1,1'-biazulene]-3,3'-dicarboxylate 371 (106 mg, 0.170
$\mathrm{mmol}, 42 \%$) as a red/brown solid (m.p. 128-131 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.40$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.87(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{OH}), 9.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}, 4-$ $\mathrm{CH}), 9.06(1 \mathrm{H}, \mathrm{d}, J 9.5 \mathrm{~Hz}, 17-\mathrm{CH}), 7.72(1 \mathrm{H}, \mathrm{t}, J 10.5 \mathrm{~Hz}, 6-\mathrm{CH}), 7.44(1 \mathrm{H}, \mathrm{t}, J 10.5$ $\mathrm{Hz}, 19-\mathrm{CH}), 7.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.0 \mathrm{~Hz}, 5-\mathrm{CH}), 7.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.0 \mathrm{~Hz}, 18-\mathrm{CH}), 7.08$ (1H, d, J $11.0 \mathrm{~Hz}, 7-\mathrm{CH}), 6.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5 \mathrm{~Hz}, 20-\mathrm{CH}), 4.54\left(2 \mathrm{H}, \mathrm{q}, ~ J 7.0 \mathrm{~Hz}, 24-\mathrm{CH}_{2}\right)$, 4.57-4.42 (2H, m, 11-CH2), $3.66\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 3.60\left(3 \mathrm{H}, \mathrm{s}, 23-\mathrm{CH}_{3}\right), 1.54(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $7.0 \mathrm{~Hz}, 12-\mathrm{CH}_{3}$ or $25-\mathrm{CH}_{3}$), $1.45\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right.$ or $\left.25-\mathrm{CH}_{3}\right)$; $\delta \mathrm{c}(75 \mathrm{MHz}$, CDCl_{3}) 169.4 (15-C), 169.0 (22-C), 167.4 (8-C), 164.0 (9-C), 162.6 (21-C), 149.5 (2C), 139.7 (4-C), 138.4 (6-C), 137.7 (16a-C), 136.4 (3a-C), 132.6 (17-C), 132.3 (19C), 130.3 (21a-C), 125.8 ($8 \mathrm{a}-\mathrm{C}$), 123.8 ($5-\mathrm{C}$ or $18-\mathrm{C}$), 123.7 ($5-\mathrm{C}$ or $18-\mathrm{C}$), 118.0 (d, $\left.{ }^{1} J_{\text {CF }} 321.0 \mathrm{~Hz}, 13-\mathrm{C}\right), 114.8$ (1-C), 112.9 (7-C), 111.9 (20-C), 109.8 (14-C), 106.5 (3C), 97.8 (16-C), 60.4 (11-C or 24-C), 60.3 (11-C or $24-C$), 56.6 (10-C), 56.2 (23-C), 14.6 (12-C or $25-\mathrm{C}$), 14.3 (12-C or $25-\mathrm{C}$); $v_{\max }($ film) 2989, 2940, 2849, 1698, 1633, 1596, 1570, 1518, 1476, 1456, 1420, 1402, 1385, 1321, 1309, 1266, 1237, 1210, $1195,1133,1082,1058,1018,953,928,865,835,788,765,731,697,682 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{10} \mathrm{~S}+\mathrm{Na}\right]^{+}, 645.1018$; found, 645.1032.

(\pm)-3,3'-Diethyl

8,8'-dimethoxy-2,2'-bis(trifluoromethanesulfonyloxy)-[1,1'-

biazulene]-3,3'-dicarboxylate 372

The preparation of this compound was based on a method by Mikami. ${ }^{215} \mathrm{At}-78{ }^{\circ} \mathrm{C}$, to a stirred suspension of 3,3'-diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 370 ($200 \mathrm{mg}, 0.408 \mathrm{mmol}, 1.00 \mathrm{eq}$.), 4-(dimethylamino)pyridine ($10 \mathrm{mg}, 0.0816 \mathrm{mmol}, 0.20$ eq.) and $2,6-$ lutidine ($240 \mu \mathrm{~L}, 2.07 \mathrm{mmol}, 5.06$ eq.) in DCM (10.0 mL) was added trifluoromethanesulfonic anhydride ($170 \mu \mathrm{~L}, 1.01 \mathrm{mmol}$, 2.46 eq.). The mixture temperature was maintained at $-78^{\circ} \mathrm{C}$ for 5 h . To it was then added trifluoromethanesulfonic anhydride ($170 \mu \mathrm{~L}, 1.01 \mathrm{mmol}, 2.46 \mathrm{eq}$.), the mixture was allowed to warm to r.t. in dry ice/acetone bath. After stirring for an additional 17 h , water (5.0 mL) was added slowly, and allowed to stir for 5 min . The mixture was diluted with DCM (30 mL), and the two phases were separated. The organic phase was washed further with water ($3 \times 15 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(10 \rightarrow 50 \%$ EtOAc in petroleum ether) to give (\pm)-3,3'-diethyl 8,8'-dimethoxy-2,2'-bis(trifluoromethanesulfonyloxy)-[1,1'-biazulene]-3,3'-dicarboxylate 372 (145 mg, $0.193 \mathrm{mmol}, 47 \%$) as a magenta solid (m.p. $183-185{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.23$ (1:1 petroleum
ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.81$ (2H, dd, J $10.2 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 4,4$ '-CH), 7.81 (2H, ddd, J $10.9 \mathrm{~Hz}, 9.7 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6,6^{\prime}-\mathrm{CH}$), 7.43 (2H, t, J $9.8 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}$), 7.14 ($2 \mathrm{H}, \mathrm{d}, J 11.1 \mathrm{~Hz}, 7,7 \mathrm{~T}^{\prime}-\mathrm{CH}$), $4.51\left(4 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, 11,11^{\prime}-\mathrm{CH}_{2}\right), 3.61\left(6 \mathrm{H}, \mathrm{s}, 10,10^{\prime}-\right.$ CH_{3}), $1.47\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 12,12^{\prime}-\mathrm{CH}_{3}\right)$; $\delta \mathrm{c}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.2(8,8$ '-C), 163.8 ($9,9^{\prime}-C$), 149.4 (2,2'-C), 140.1 ($4,4^{\prime}-C$), 138.7 ($6,6^{\prime}-C$), 136.6 (3a,3a'-C), 126.4 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 124.2 ($5,5^{\prime}-\mathrm{C}$), 117.9 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 321.0 \mathrm{~Hz}, 13,13^{\prime}-\mathrm{C}$) 113.0 ($7,7^{\prime}-\mathrm{C}$), 112.6 ($1,1^{\prime}-\mathrm{C}$), 106.8 ($\left.3,3^{\prime}-\mathrm{C}\right)$, 60.5 ($\left.11,11^{\prime}-\mathrm{C}\right)$, 56.6 ($10,10^{\prime}-\mathrm{C}$), 14.3 ($\left.12,12^{\prime}-\mathrm{C}\right)$; $v_{\max }($ film $)$ 2924, 2851, 1690, 1598, 1570, 1516, 1458, 1412, 1391, 1316, 1268, 1191, 1135, 1086, 1048, 1021, 954, 923, 875, 846, 832, 805, 790, 759, 726, $690 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{O}_{12} \mathrm{~S}_{2}+\mathrm{Na}\right]^{+}, 777.0511$; found, 777.0513.

(\pm)-8,8'-Dimethoxy-2'-(trifluoromethanesulfonyloxy)-[1,1'-biazulene]-2-yl

trifluoromethanesulfonate 377 and (\pm)-2'-ethoxy-8,8'-dimethoxy-[1,1'-biazulen]-

2-yl trifluoromethanesulfonate 380

The preparation of this compound was based on methods by Ito ${ }^{194}$ and Mikami. ${ }^{215}$ Under atmosphere of air, at $0^{\circ} \mathrm{C}$, to phosphorus pentoxide (800 mg) was added $\mathrm{H}_{3} \mathrm{PO}_{4 \text { (aq) }}(85 \mathrm{wt} . \%, 1.20 \mathrm{~mL})$. The mixture was then stirred at $95^{\circ} \mathrm{C}$, and to it was added (\pm)-3,3'-diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1, 1'-biazulene]-3,3'dicarboxylate 370 ($200 \mathrm{mg}, 0.408 \mathrm{mmol}, 1.00 \mathrm{eq}$.), stirred for 2 h , and then allowed to cool to r.t. To the resultant slurry was slowly added water (20 mL), and extracted with DCM $(2 \times 25 \mathrm{~mL})$. The organic extracts were combined and washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and water $(2 \times 20 \mathrm{~mL})$. The organic layer was then dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude intermediate mixture as a maroon oil. Under
atmosphere of N_{2}, at $-78{ }^{\circ} \mathrm{C}$, to a stirred solution of the crude diol, 4(dimethylamino)pyridine ($10 \mathrm{mg}, 0.0816 \mathrm{mmol}, 0.20 \mathrm{eq}$.) and 2,6-lutidine ($250 \mu \mathrm{~L}$, $2.15 \mathrm{mmol}, 5.27$ eq.) in DCM (20 mL) was added dropwise trifluoromethanesulfonic anhydride ($170 \mu \mathrm{~L}, 1.01 \mathrm{mmol}, 2.47 \mathrm{eq}$.), and the mixture was allowed to stir at -78 ${ }^{\circ} \mathrm{C}$ for 45 min . To this was then added trifluoromethanesulfonic anhydride ($170 \mu \mathrm{~L}$, $1.01 \mathrm{mmol}, 2.47 \mathrm{eq}$.$) , and stirred at -78^{\circ} \mathrm{C}$ for another 45 min . The mixture was allowed to warm to r.t., and to it was added water (20 mL), allowing to stir for 10 min , and then the phases were separated. The aqueous layer was extracted with DCM $(60 \mathrm{~mL})$, and the combined organic extracts were washed with water $(2 \times 20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($10 \rightarrow 50 \%$ EtOAc in petroleum ether) to give (\pm)-8, 8^{\prime}-dimethoxy-2'-(trifluoromethanesulfonyloxy)-[1,1'-biazulene]-2-yl trifluoromethanesulfonate 377 $(110 \mathrm{mg}, 0.181 \mathrm{mmol}, 44 \%)$ as a purple crystalline solid (m.p. $174-176{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.19$ (4:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2 \mathrm{~Hz}, 4,4 \mathrm{CH})$, 7.59 (2H, td, J 11.0 Hz, 9.8 Hz, 1.2 Hz, 6,6'-CH), 7.21 (2H, s, 3,3'-CH), 7.08 (2H, t, J $9.5 \mathrm{~Hz}, 5,5{ }^{\prime}-\mathrm{CH}$), $6.91\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0 \mathrm{~Hz}, 7,7 \mathrm{~T}^{\prime}-\mathrm{CH}\right), 3.69\left(6 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right) ;$; (126 MHz , $\left.\mathrm{CDCl}_{3}\right) 165.6$ (8,8'-C), 150.0 (2,2'-C), 139.1 (4,4'-C), 136.6 (6,6'-C), 136.3 (3a,3a'-C), 122.1 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 120.3 ($5,5^{\prime}-\mathrm{C}$), 118.4 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 320.4 \mathrm{~Hz}, 10,10^{\prime}-\mathrm{C}$), 112.4 (1,1'-C), 109.6 (7,7'-C), 105.2 (3,3'-C), 56.3 (9,9'-C); $v_{\max }($ film $) 3015,2939,2844,1597,1568$, 1523, 1482, 1457, 1441, 1411, 1382, 1265 1241, 1230, 1196, 1181, 1162, 1078, 1004, 958, 916, 875, 822, 788, 781, 764, 745, 725, 690, $679 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}+\mathrm{H}\right]^{+}$, 611.0264; found, 611.0277.

From the column was also isolated (\pm)-2'-ethoxy-8,8'-dimethoxy-[1,1'-biazulen]-2-yl trifluoromethanesulfonate $\mathbf{3 8 0}$ ($10 \mathrm{mg}, 0.0197 \mathrm{mmol}, 4.8 \%$) as a pale purple solid
(m.p. $127-130{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.23$ (4:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.23$ (1H, d, J $9.6 \mathrm{~Hz}, 4-\mathrm{CH}$), 8.01 (1H, d, J $9.1 \mathrm{~Hz}, 14-\mathrm{CH}$), 7.51 (1H, ddd, J $11.0 \mathrm{~Hz}, 9.8$ Hz, 1.2 Hz, 6-CH), 7.28 (1H, ddd, J $10.8 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 16-\mathrm{CH}$), 7.19 (1H, s, 3$\mathrm{CH}), 7.00(1 \mathrm{H}, \mathrm{t}, J 9.6 \mathrm{~Hz}, 5-\mathrm{CH}), 6.96(1 \mathrm{H}, \mathrm{t}, J 9.6 \mathrm{~Hz}, 15-\mathrm{CH}), 6.82(1 \mathrm{H}, \mathrm{d}, J 11.0$ Hz, 7-CH), 6.77 (1H, d, J $10.7 \mathrm{~Hz}, 17-\mathrm{CH}), 6.70(1 \mathrm{H}, \mathrm{s}, 13-\mathrm{CH}), 4.23$ (2H, q, J 7.0 $\left.\mathrm{Hz}, 20-\mathrm{CH}_{2}\right), 3.60\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 3.53\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.32(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, 21-$ CH_{3}); $\delta \mathrm{c}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.2$ (8-C), 164.7 (12-C), 161.3 (18-C), 150.2 (2-C), 139.9 (13a-C), 138.7 (4-C), 136.2 (6-C), 136.1 (3a-C), 131.8 (14-C), 130.4 (16-C), 124.3 (18a-C), 122.4 ($8 \mathrm{a}-\mathrm{C}$), 119.7 (15-C), 119.5 ($5-\mathrm{C}$), 118.4 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 321 \mathrm{~Hz}, 10-\mathrm{C}$), 115.9 (1-C), 111.6 (11-C), 109.3 (7-C), 108.6 (17-C), 105.5 (3-C), 97.3 (13-C), 65.6 (20-C), 56.23 (9-C or 19-C), 56.19 (9-C or 19-C), 14.8 (21-C); $v_{\max }($ film) 2985, 2935, 2849, 1594, 1567, 1518, 1494, 1456, 1408, 1387, 1359, 1261, 1243, 1202, 1187, 1163, 1137, 1116, 1100, 1041, 1006, 974, 942, 887, 843, 827, 784, 767, 728, 707, 684, $662 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}+\mathrm{Na}\right]^{+}, 529.0903$; found, 529.0912.

In a separate experiment under similar conditions, the desired product (\pm)-8,8'-dimethoxy-2'-(trifluoromethanesulfonyloxy)-[1, 1'-biazulene]-2-yl trifluoromethanesulfonate 377 was isolated in an increased yield (168 mg, 0.274 mmol, 52%), with only a trace of side product (\pm)-2'-ethoxy-8,8'-dimethoxy-[1,1'-biazulen]-2-yl trifluoromethanesulfonate 380.

(土)-2,2'-Dibromo-8,8'-dimethoxy-1,1'-biazulene 381

The preparation of this compound was based on methods by Ito. ${ }^{194,210}$ Under atmosphere of air, at $95^{\circ} \mathrm{C}$, to a stirred mixture of phosphorus pentoxide (800 mg) in $\mathrm{H}_{3} \mathrm{PO}_{4 \text { (aq) }}$ ($85 \mathrm{wt} . \%, 1.20 \mathrm{~mL}$) was added (\pm)-3,3'-diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 370 ($200 \mathrm{mg}, 0.408 \mathrm{mmol}, 1.00 \mathrm{eq}$.). The mixture was stirred at $95{ }^{\circ} \mathrm{C}$ for 30 min , and then allowed to cool to r.t. To the resultant slurry was slowly added water (20 mL), and the aqueous mixture was extracted with DCM $(2 \times 20 \mathrm{~mL})$. The organic extracts were combined and washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and water $(3 \times 20 \mathrm{~mL})$. The organic phase was then dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude (\pm)-8, 8^{\prime}-dimethoxy-[1, 1^{\prime}-biazulene]-2, 2^{\prime}-diol 375 as a maroon oil. Under atmosphere of N_{2}, at r.t., to a stirred solution of the crude diol in toluene (12.5 mL) was added phosphorus tribromide ($400 \mu \mathrm{~L}, 4.22 \mathrm{mmol}, 10.3$ eq.). The mixture was then heated at $110{ }^{\circ} \mathrm{C}$ for 9 h , and allowed to cool to r.t. The excess reagent was quenched by the addition of water (20 mL) and the mixture was extracted with ethyl acetate $(40 \mathrm{~mL})$. The organic extract was washed with water ($3 \times$ 15 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($10 \rightarrow 25 \%$ EtOAc in petroleum ether) to yield (\pm)-2, 2'-dibromo-8, 8^{\prime} -
dimethoxy-1,1'-biazulene 381 ($34 \mathrm{mg}, 0.0709 \mathrm{mmol}, 17 \%$) as a purple solid (m.p. $187-189{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.23$ (4:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.18$ ($2 \mathrm{H}, \mathrm{d}$, $\left.J 9.5 \mathrm{~Hz}, 4,4^{\prime}-\mathrm{CH}\right), 7.49\left(2 \mathrm{H}\right.$, ddd, J $\left.11.0 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 6,6^{\prime}-\mathrm{CH}\right), 7.41$ (2H, s, 3,3'-CH), 6.96 ($2 \mathrm{H}, \mathrm{t}$, J $9.6 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}$), 6.79 ($2 \mathrm{H}, \mathrm{d}$, J $11.1 \mathrm{~Hz}, 7,7$ '-CH), 3.56 (6 H , $\left.\mathrm{s}, 9,9^{\prime}-\mathrm{CH}_{3}\right) ; ~ \delta c\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*} 163.2$ ($8,8^{\prime}-\mathrm{C}$), 138.7 (2,2'-C), 136.2 (4,4'-C), 135.5 (6,6’-C), 127.7 (3a,3a’-C), 126.4 (8a,8a'-C), 123.9 (1,1'-C), 119.2 (5,5’-C), 118.9 (7,7'-C), 109.5 (3,3'-C), 56.6 ($9,9^{\prime}-C$); $v_{\max }($ film $) 2929,2852,1592,1562,1523$, 1487, 1450, 1397, 1376, 1358, 1256, 1211, 1190, 1173, 1154, 1012, 940, 877, 793, 752, 720, 668, $632 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}, 492.9409$; found, 492.9466.

* carbon atoms are assigned tentatively, due to lack of 2D spectra obtained for compound 381.

($\mathbf{() - 2 ' - (D i p h e n y l p h o s p h o r y l) - 8 , 8 ' - d i m e t h o x y - [1 , 1 ' - b i a z u l e n] - 2 - y l ~}$

trifluoromethanesulfonate 382

(\pm)-377

2) $\mathrm{HSiCl}_{3}, \mathrm{NEt}_{3}$, $\mathrm{PhMe}, 10{ }^{\circ} \mathrm{C}$ then $\mathrm{BH}_{3}, \mathrm{THF}$, rt.

(\pm)-382

The preparation of this compound was based on a method by Zhang. ${ }^{209}$ At r.t., to a mixture of diphenylphosphine oxide ($50 \mathrm{mg}, 0.245 \mathrm{mmol}, 3.00 \mathrm{eq}$.), palladium diacetate ($2.0 \mathrm{mg}, 0.0082 \mathrm{mmol}, 0.10$ eq.) and 1,4-bis(diphenylphosphino)butane ($3.5 \mathrm{mg}, 0.0082 \mathrm{mmol}, 0.10$ eq.) was added a solution of (\pm)-8,8'-dimethoxy-2'-(trifluoromethanesulfonyloxy)-[1,1'-biazulene]-2-yl trifluoromethanesulfonate 377 (50 $\mathrm{mg}, 0.0819 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in DMSO (degassed by freeze-thaw-pump, 1.0 mL), and allowed to stir for 10 min . To the mixture was then added N, N-diisopropylethylamine ($60 \mu \mathrm{~L}, 0.345 \mathrm{mmol}, 4.21$ eq.), stirred at $100^{\circ} \mathrm{C}$ for 41 h , and then allowed to cool to r.t. The mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$, washed with water (4×10 mL) and with saturated brine. The organic layer was then dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which could not be completely purified by column chromatography $\left(0 \rightarrow 5 \% \mathrm{MeOH}\right.$ in DCM). At $0^{\circ} \mathrm{C}$, to a stirred solution of the impure product $(23 \mathrm{mg}$, $<0.0328 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and triethylamine ($50 \mu \mathrm{~L}, 0.358 \mathrm{mmol}, 11.0 \mathrm{eq}$.) in toluene (degassed by freeze-thaw-pump, 1.0 mL) was added dropwise trichlorosilane ($30 \mu \mathrm{~L}$, $0.291 \mathrm{mmol}, 8.90$ eq.). The mixture was then stirred at $100^{\circ} \mathrm{C}$ for 19 h , allowed to
cool to r.t., and then to this was added borane-THF complex (1.0 M in THF, $70 \mu \mathrm{~L}$, $0.070 \mathrm{mmol}, 2.10 \mathrm{eq}$.$) , and stirred for 1 \mathrm{~h}$. The mixture was then quenched by the addition of $\mathrm{MeOH}(1.0 \mathrm{~mL})$, diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with water $(3 \times 10$ $\mathrm{mL})$. The organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(0 \rightarrow 2 \% \mathrm{MeOH}$ in DCM $)$ to give (\pm)-2'-(diphenylphosphoryl)-8,8'-dimethoxy-[1,1'-biazulen]-2-yl trifluoromethanesulfonate $382\left(8.1 \mathrm{mg}, 0.0122 \mathrm{mmol}, 15 \%\right.$ overall) as a deep blue solid (m.p. $125-130{ }^{\circ} \mathrm{C}$); R_{f} 0.22 (19:1 DCM/MeOH); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3 \mathrm{~Hz}, 4-\mathrm{CH}), 7.96(1 \mathrm{H}$, d, J $9.5 \mathrm{~Hz}, 18-\mathrm{CH}$), 7.70 (1H, dd, J $11.8 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 12 \mathrm{a}-\mathrm{CH}$ or 12 a - CH), 7.68 (1 H , dd, J $11.8 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 12 \mathrm{a}-\mathrm{CH}$ or $12 \mathrm{a}^{\prime}-\mathrm{CH}$), 7.56 ($1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 6.2 \mathrm{~Hz}, 3-\mathrm{CH}$), 7.56 (1H, ddd, J $11.0 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6-\mathrm{CH}) 7.45$ (1H, ddd, J $10.9 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$, $20-\mathrm{CH}), 7.44-7.42(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{CH}), 7.38-7.34\left(2 \mathrm{H}, \mathrm{m}, 13 \mathrm{a}, 13 \mathrm{a}{ }^{\prime}-\mathrm{CH}\right), 7.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $12.2 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 12 \mathrm{~b}-\mathrm{CH}$ or $12 \mathrm{~b}-\mathrm{CH}) 7.02(1 \mathrm{H}$, dd, J $12.2 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 12 \mathrm{~b}-\mathrm{CH}$ or 12b'-CH), 7.01-6.97 (1H, m, 14’-CH), 6.93 (1H, t, J $9.5 \mathrm{~Hz}, 5-\mathrm{CH}) 6.91$ (1H, t, J 9.5 $\mathrm{Hz}, 19-\mathrm{CH}), 6.87-6.83(2 \mathrm{H}, \mathrm{m}, 13 \mathrm{a}, 13 \mathrm{~b}-\mathrm{CH}), 6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.3 \mathrm{~Hz}, 7-\mathrm{CH}) 6.71$ (1H, d, J $11.2 \mathrm{~Hz}, 21-\mathrm{CH}), 6.64(1 \mathrm{H}, \mathrm{s}, 17-\mathrm{CH}), 3.57\left(3 \mathrm{H}, \mathrm{s}, 23-\mathrm{CH}_{3}\right), 3.53(3 \mathrm{H}, \mathrm{s}, 9-$ CH_{3}); $\delta \mathrm{c}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.0$ (8-C), 166.0 (22-C), 148.8 (16-C), 140.8 (4-C), 138.9 (6-C), 138.6 (d, $\left.{ }^{3} J_{\mathrm{CP}} 15.9 \mathrm{~Hz}, 3 \mathrm{a}-\mathrm{C}\right), 138.3$ (18-C), 136.9 (d, ${ }^{1} \mathrm{~J}_{\mathrm{CP}} 110.0 \mathrm{~Hz}, 2-$ C), 136.2 (20-C), 135.7 (17a-C), 135.0 ($d,{ }^{1} J_{C P} 105.1 \mathrm{~Hz}, 11-\mathrm{C}$), 133.0 ($d,{ }^{1} \mathrm{~J}_{\mathrm{CP}} 105.7$ $\mathrm{Hz}, 11^{\prime}-\mathrm{C}$), 131.9 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CP}} 9.5 \mathrm{~Hz}, 12 \mathrm{a}, 12 \mathrm{a}^{\prime}-\mathrm{C}$), 131.0 ($\left.\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{CP}} 2.8 \mathrm{~Hz}, 14-\mathrm{C}\right), 130.4$ (d, $\left.{ }^{2} J_{\mathrm{CP}} 9.9 \mathrm{~Hz}, 12 \mathrm{~b}, 12 \mathrm{~b}{ }^{\prime}-\mathrm{C}\right), 129.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CP}} 2.9 \mathrm{~Hz}, 14{ }^{\prime}-\mathrm{C}\right), 127.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 11.7 \mathrm{~Hz}\right.$, 13a,13a'-C), 127.0 ($d,{ }^{3} J_{\mathrm{CP}} 12.3 \mathrm{~Hz}, 13 \mathrm{~b}, 13 \mathrm{~b}-\mathrm{C}$), 126.0 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CP}} 11.9 \mathrm{~Hz}, 3-\mathrm{C}$), 125.7 (d, $\left.{ }^{2} J_{\mathrm{CP}} 11.8 \mathrm{~Hz}, 1-\mathrm{C}\right), 125.0$ (d, $\left.{ }^{3} J_{\mathrm{CP}} 12.0 \mathrm{~Hz}, 8 \mathrm{a}-\mathrm{C}\right), 122.9$ (22a-C), 119.3 (19-C), 118.8 (5-C), 118.4 (q, $\left.{ }^{1} J_{\text {CF }} 322 \mathrm{~Hz}, 24-\mathrm{C}\right), 116.5$ (15-C), 109.9 (21-C), 108.6 (7-C),
103.6 (17-C), 56.3 (9-C or 23-C), 56.2 ($9-\mathrm{C}$ or $23-\mathrm{C}$); $\delta \mathrm{P}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.0$ (10P); $v_{\max }($ film $) 2924,2859,1667,1597,1561,1525,1455,1264,1209,1163,1143$, 950, 887, 807, 721, $698 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{PS}+\mathrm{H}\right]^{+}$, 663.1213; found 663.1197 .

yl)phosphonate 389

The preparation of this compound was based on a method by Stawinski. ${ }^{219}$ A mixture of palladium diacetate $(5.5 \mathrm{mg}, 0.0246 \mathrm{mmol}, 0.10$ eq. $)$, 1,4bis(diphenylphosphino)butane ($21 \mathrm{mg}, 0.0492 \mathrm{mmol}, 0.20$ eq.), potassium acetate ($24 \mathrm{mg}, 0.246 \mathrm{mmol}, 1.00$ eq.) was dissolved in THF (0.5 mL) and stirred at $60^{\circ} \mathrm{C}$ for 30 min . To the mixture was then added triethylamine ($100 \mu \mathrm{~L}, 0.738 \mathrm{mmol}, 3.00 \mathrm{eq}$.), diethyl phosphite ($100 \mu \mathrm{~L}, 0.738 \mathrm{mmol}, 3.00$ eq.) and a solution of $(\pm)-8,8$ '-dimethoxy-2'-(trifluoromethanesulfonyloxy)-[1,1'-biazulene]-2-yl
trifluoromethanesulfonate 377 (150 mg, $0.246 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (1.5 mL), and heated at $68{ }^{\circ} \mathrm{C}$ for 45 h . After allowing to cool to r.t., the mixture was concentrated under reduced pressure and purified by column chromatography $(0 \rightarrow 10 \% \mathrm{MeOH}$ in DCM) to give the crude product. After dissolving in ethyl acetate (20 mL), washing with water ($5 \times 10 \mathrm{~mL}$) and with saturated brine, the solution was concentrated under reduced pressure to give (土)-diethyl [2'-(diethoxyphosphoryl)-8,8'-dimethoxy-[1,1'-biazulene]-2-yl]phosphonate 389 ($56 \mathrm{mg}, 0.0958 \mathrm{mmol}, 39 \%$) as a deep blue solid (m.p. $156-158{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.21$ (19:1 DCM/MeOH); $\delta н\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.25$ (2H, d, J $9.3 \mathrm{~Hz}, 4,4$ '-CH), $7.69\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{PH}} 6.9 \mathrm{~Hz}, 3,3^{\prime}-\mathrm{CH}\right), 7.48(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.2 \mathrm{~Hz}, 6,6$ '-CH),
$6.84\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.6 \mathrm{~Hz}, 5,5{ }^{\prime}-\mathrm{CH}\right), 6.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8 \mathrm{~Hz}, 7,7$ '-CH), 3.94-3.87(2H, m, 11a,11a'- CH_{2}), 3.85-3.77 (2H, m, 11b,11b'- CH_{2}), 3.60-3.54 (2H, m, 13a,13a'-CH2), $3.52\left(6 \mathrm{H}, \mathrm{s}, 9,9\right.$ ' $-\mathrm{CH}_{3}$), 3.42-3.34 (2H, m, 13b, 13b'- CH_{2}), $1.10(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 12,12$ '-
 C), 138.3 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 20.0 \mathrm{~Hz}, 3 \mathrm{a}, 3 \mathrm{a}-\mathrm{C}$), $132.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 199.9 \mathrm{~Hz}, 2,2^{\prime}-\mathrm{C}\right), 130.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}\right.$ 14.2 Hz, 1, 1'-C) 124.6 (d, $\left.{ }^{3} J_{\mathrm{CP}} 17.4 \mathrm{~Hz}, 8 \mathrm{a}, 8 \mathrm{a}{ }^{\prime}-\mathrm{C}\right), 123.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}} 13.4 \mathrm{~Hz}, 3,3^{\prime}-\mathrm{C}\right)$, 117.9 (d, $\left.{ }^{5} J_{C P} 1.9 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{C}\right), 108.5\left(\mathrm{~d},{ }^{5} J_{\mathrm{CP}} 1.2 \mathrm{~Hz}, 7,7{ }^{\prime}-\mathrm{C}\right), 61.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}} 5.9 \mathrm{~Hz}\right.$, $\left.11,11^{\prime}-\mathrm{C}\right), 60.9$ ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CP}} 6.3 \mathrm{~Hz}, 13,13^{\prime}-\mathrm{C}$), 56.3 ($9,9^{\prime}-\mathrm{C}$), 16.2 ($\mathrm{d},{ }^{3} J_{\mathrm{CP}} 6.7 \mathrm{~Hz}, 12,12^{\prime}-$ C), 16.1 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 6.3 \mathrm{~Hz}, 14,14 \mathrm{C}-\mathrm{C}$); $\delta \mathrm{P}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.6$ (10,10'-P); $v_{\max }($ film $)$ 2975, 2925, 2850, 1597, 1561, 1528, 1496, 1477, 1450, 1436, 1408, 1386, 1364, 1341, 1292, 1264, 1242, 1229, 1217, 1193, 1178, 1159, 1122, 1095, 1047, 1025, 941, 909, 841, 824, 789, 726, 695, $666 \mathrm{~cm}^{-1} ;$ HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{P}_{2}\right.$ $+\mathrm{H}^{+}, 587.1964$; found 587.1929.

Ethyl 2,4-diethoxyazulene-1-carboxylate 319

The preparation of this compound was based on a method by Pham. ${ }^{198}$ Under atmosphere of air, an ACE pressure RBF (capacity 50 mL) was charged with 8-hydroxy-2-oxo-2H-cyclohepta[b]furan-3-carboxylate 298 ($3.00 \mathrm{~g}, 12.8 \mathrm{mmol}$), triethyl orthoacetate $318(9.0 \mathrm{~mL})$ and toluene (6.0 mL) and heated under air at $200{ }^{\circ} \mathrm{C}$, stirring for 6 h (CAUTION: the reaction was run behind a blast shield). After cooling to r.t., the resultant deep red solution was loaded onto a silica column, and purified by column chromatography ($5 \rightarrow 25 \%$ EtOAc in petroleum ether) to give ethyl 2,4-diethoxyazulene-1-carboxylate 319 ($2.43 \mathrm{~g}, 8.42 \mathrm{mmol}, 66 \%$) as a red crystalline solid; $\mathrm{R}_{f} 0.45$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.38$ (1H, d, J 10.0 $\mathrm{Hz}, 8-\mathrm{CH}), 7.40(1 \mathrm{H}$, ddd, J $11.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6-\mathrm{CH}), 7.22(1 \mathrm{H}, \mathrm{td}, J 10.0 \mathrm{~Hz}$, $1.0 \mathrm{~Hz}, 7-\mathrm{CH}), 6.98$ (1H, d, J $10.5 \mathrm{~Hz}, 5-\mathrm{CH}), 6.93$ (1H, s, 3-CH), $4.42(2 \mathrm{H}, \mathrm{q}, ~ J 7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 4.33\left(2 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.21\left(2 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.54(3 \mathrm{H}, \mathrm{t}, J 7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.51\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

No NMR data has been previously reported for 319; the only data previously reported is a description ("reddish orange needles") and a melting point (119-120 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{193}$

Ethyl 4-ethoxy-2-hydroxyazulene-1-carboxylate 393

The preparation of this compound was based on a method by Talaz. ${ }^{200}$ To a stirred solution of ethyl 2,4-diethoxyazulene-1-carboxylate 319 ($2.43 \mathrm{~g}, 8.43 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in DCM (80 mL), at $0{ }^{\circ} \mathrm{C}$, was slowly added $\mathrm{BBr}_{3}(1.0 \mathrm{M}$ in heptane, $8.50 \mathrm{~mL}, 1.01$ eq.), instantly forming a yellow/brown solution. The mixture was allowed to stir for 80 min, then to it was added $\mathrm{MeOH}(10 \mathrm{~mL})$, forming an orange solution. The solution was diluted with DCM $(80 \mathrm{~mL})$ and washed with water $(2 \times 60 \mathrm{~mL})$. After drying with anhydrous MgSO_{4}, the organic phase was filtered. The filtrate was concentrated under reduced pressure to give pure ethyl 4-ethoxy-2-hydroxyazulene-1-carboxylate 393 ($2.10 \mathrm{~g}, 8.08 \mathrm{mmol}, 96 \%$) as an orange/brown solid, which was used without further purification (m.p. $107-110{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.45$ (3:1 petroleum ether/EtOAc); $\delta \mathrm{H}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.70(1 \mathrm{H}$, br s, 2-OH$), 8.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5 \mathrm{~Hz}, 8-\mathrm{CH}), 7.53(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ $10.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6-\mathrm{CH}), 7.22$ (1H, t, J $10.0 \mathrm{~Hz}, 7-\mathrm{CH}), 7.02$ (1H, d, J $10.6 \mathrm{~Hz}, 5-\mathrm{CH}$), $6.98(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}), 4.51\left(2 \mathrm{H}, \mathrm{q}, ~ J 7.0 \mathrm{~Hz}, 12-\mathrm{CH}_{2}\right), 4.29\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, 9-\mathrm{CH}_{2}\right)$, $1.56\left(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, 10-\mathrm{CH}_{3}\right), 1.50\left(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, 13-\mathrm{CH}_{3}\right) ; \delta c\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 169.6 (2-C), 168.8 (11-C), 160.4 (4-C), 137.0 (8a-C), 134.1 (3a-C, 133.0 (8-C), 132.3 (6-C), 123.7 (7-C), 111.7 (5-C), 101.6 (3-C), 98.8 (1-C), 64.8 (9-C), 60.2 (12-C), 14.8 (10-C), 14.6 (13-C); $v_{\max }($ film $) 2986, ~ 2933,2894,1628,1596,1532,1478,1454$, 1441, 1421, 1385, 1356, 1316, 1264, 1221, 1200, 1135, 1082, 1067, 1004, 993, 959,

925, 894, 836, 827, 785, 741, 729, $667 \mathrm{~cm}^{-1} ;$ HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}+\right.$ $\mathrm{Na}]^{+}, 283.0946$; found, 283.0946 .

(\pm)-3,3'-Diethyl

 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 394

The preparation of this compound was based on a method by Kozlowski. ${ }^{214}$ Under atmosphere of air, to a stirred solution of ethyl 4-ethoxy-2-hydroxyazulene-1carboxylate 393 ($2.01 \mathrm{~g}, 8.06 \mathrm{mmol}, 1.00$ eq.) in acetonitrile (40 mL) and 1,2dichloroethane $(20 \mathrm{~mL})$ was added di- μ-hydroxo-bis $\left[\left(N, N, N^{\prime}, N^{\prime}\right.\right.$ tetramethylethylenediamine)copper(II)] chloride 369 (187 mg, 0.806 mmol (by mol. weight of monomer), 0.10 eq.). The mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 42 h , allowed to cool to r.t., and then diluted with DCM (100 mL). The solution was washed with $\mathrm{HCl}_{(\mathrm{aq})}(0.5 \mathrm{M}, 70 \mathrm{~mL})$ and with water $(2 \times 60 \mathrm{~mL})$. The organic layer was then dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was then purified by column chromatography ($20 \rightarrow 100 \%$ EtOAc in petroleum ether, then $5 \% \mathrm{MeOH}$ in EtOAc) to give (\pm)-3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 394 (1.27 g, $2.44 \mathrm{mmol}, 61 \%$) as a red solid (m.p. $210-212{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.54$ (1:1 petroleum ether/EtOAc); $\delta н\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.74(2 \mathrm{H}, \mathrm{br}$ s, 2,2'-OH), $9.02(2 \mathrm{H}$, dd, J $9.7 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 4,4$ '-CH), 7.32 (2H, td, J $10.2 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6,6$ '-CH), 7.14 (2H, t, J $9.8 \mathrm{~Hz}, 5,5$ '-CH), 6.82 (2H, d, J $10.3 \mathrm{~Hz}, 7,7$ '-CH), 4.52 (4H, m, 12,12’-CH2), 3.85-
$3.70\left(4 \mathrm{H}, \mathrm{m}, 9,9^{\prime}-\mathrm{CH}_{2}\right), 1.50\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 13,13^{\prime}-\mathrm{CH}_{3}\right), 0.41(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}$, $10,10^{\prime}-\mathrm{CH}_{3}$); $\delta с$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 168.7 (11,11'-C), 168.5 (2,2'-C), 162.4 (8,8'-C), 137.6 (3a,3a’-C), 132.4 ($4,4^{\prime}-C$), 132.0 ($6,6^{\prime}-C$), 131.1 ($8 \mathrm{a}, 8 a^{\prime}-C$), 123.0 ($5,5^{\prime}-\mathrm{C}$), 112.1 ($1,1^{\prime}-C$), 111.8 ($7,7^{\prime}-C$), 97.8 ($3,3^{\prime}-C$), 64.2 ($9,9^{\prime}-C$), 60.1 (12,12'-C), 14.6 (13,13'-C), 13.2 (10,10'-C); $v_{\max }($ film $) 2978,2925,1625,1596,1572,1527,1470$, $1438,1418,1380,1356,1312,1261,1214,1178,1118,1095,1007,956,927,889$, 869, 813, 788, 731, 701, $683 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{8}+\mathrm{Na}\right]^{+}$, 541.1838; found, 541.1883.

General method: $\left(R_{\mathrm{a}}\right)$-3,3'-Diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate X

393

The preparation of this compound was based on a method by Sekar. ${ }^{225}$ At r.t., to a vial charged with Cu salt ($0.125 \mathrm{mmol}, 0.025$ eq.) and $\left(R_{\mathrm{a}}\right)-1,1$ '-bi(2-naphthylamine) ($7 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.050$ eq.) was added DCM (2.0 mL), and the mixture was allowed to stir for 3 h . To this was then added 2,2,6,6-tetramethyl-1-piperidinyloxy (4 $\mathrm{mg}, 0.025 \mathrm{mmol}, 0.050 \mathrm{eq}$.), and the mixture was stirred for 30 min before adding ethyl 4-ethoxy-2-hydroxyazulene-1-carboxylate 393 ($130 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00 \mathrm{eq}$.), and fitting onto the vial a pierced cap to allow intake of air. The mixture was stirred for 18 days, loaded directly onto a silica column and purified by column chromatography ($5 \rightarrow 50 \%$ EtOAc in petroleum ether) to give scalemic 3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate) 394 as a red solid.
$\left(R_{\mathrm{a}}\right) /\left(S_{\mathrm{a}}\right)$ - diethyl 1,15-diethoxy-8-(2-((E)-((R)-1-phenylethyl)imino)methyl)phenyl)diazuleno[2,1-d:1',2'-f][1,3,2]dioxaborepine-6,10-dicarboxylate 400

(\pm)-394

398

(R)-399

The preparation of this compound was based on a method by James. ${ }^{226}$ Under atmosphere of air, at r.t., to a solution of (\pm)-3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate) 394 ($52 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and 2formylphenylboronic acid ($15 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ eq.) in CDCl_{3} (2.0 mL) was added (R) - α-methylbenzylamine (0.55 M in $\mathrm{CDCl}_{3}, 200 \mu \mathrm{~L}, 1.10$ eq.), and the mixture was allowed to stir for 40 min . After this, an aliquot of the mixture was analysed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy; $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.04(2 \mathrm{H}, \mathrm{dd}, J 9.7 \mathrm{~Hz}, 1.0 \mathrm{~Hz}), 8.34$ (1H, s), 7.51-7.21 (m), 7.16 (2H, t, J 9.8 Hz$), 6.85(2 \mathrm{H}, \mathrm{d}, ~ J 10.6 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $6.7 \mathrm{~Hz}), 4.58-4.47(4 \mathrm{H}, \mathrm{m}), 4.12(4 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6 \mathrm{~Hz}), 3.88-3.74(4 \mathrm{H}, \mathrm{m}), 1.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.7 \mathrm{~Hz}), 1.50(6 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}), 0.44(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz})$.
($R_{\text {a }}$)-3,3'-diethyl 2,2'-diacetoxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 401

The preparation of this compound was based on a method by Emrick. ${ }^{164}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of $\left(R_{a}\right)$-3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'dicarboxylate 394 ($30 \mathrm{mg}, 0.0578 \mathrm{mmol}, 1.00$ eq.) and triethylamine ($80 \mu \mathrm{~L}, 0.578$ mmol, 10.0 eq) in DCM (1.0 mL) was slowly added acetyl chloride ($30 \mu \mathrm{~L}, 0.413$ mmol, 7.14 eq.), changing from red to magenta in colour, forming a precipitate. The mixture was allowed to warm to r.t., and stirred for 17 h . The reaction was quenched by the addition of water (10 mL). After adding ethyl acetate $(15 \mathrm{~mL})$, the phases were separated, and the organic layer was washed with water $(2 \times 10 \mathrm{~mL})$. The organic layer was then dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($10 \rightarrow 50 \%$ EtOAc in petroleum ether) to give $\left(\mathrm{R}_{\mathrm{a}}\right)-3,3^{\prime}-$ diethyl 2,2'-diacetoxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 401 (27 mg, $0.0446 \mathrm{mmol}, 77 \%$) as a magenta solid (m.p. $86-90{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.32$ (1:1 petroleum ether/EtOAc); [a]d ${ }^{19}-1400$ (c 0.005, CHCl_{3}); HPLC retention time, 30.7 min (Chiralcel OD $250 \times 4.6 \mathrm{~mm}$ ID, $9: 1$ hexane/2-propanol, UV detection 238 nm , flow
rate $\left.0.75 \mathrm{~mL} \mathrm{~min}^{-1}, 20^{\circ} \mathrm{C}\right)$; $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.68(2 \mathrm{H}, \mathrm{dd}, J 10.1 \mathrm{~Hz}, 1.0 \mathrm{~Hz}$, 4,4'-CH), 7.59 (2H, ddd, J $10.3 \mathrm{~Hz}, 9.7 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 6,6$ '-CH), 7.26 (2H, t, J 10.2 Hz , $\left.5,5^{\prime}-\mathrm{CH}\right), 6.92\left(2 \mathrm{H}, \mathrm{d}, 10.9 \mathrm{~Hz}, 7,7^{\prime}-\mathrm{CH}\right), 4.42-4.34\left(4 \mathrm{H}, \mathrm{m}, 12,12^{\prime}-\mathrm{CH}_{2}\right), 3.80-3.72$ ($4 \mathrm{H}, \mathrm{m}, 9,9^{\prime}-\mathrm{CH}_{2}$), $2.09\left(6 \mathrm{H}, \mathrm{s}, 15,15^{\prime}-\mathrm{CH}_{3}\right), 1.39\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, 13,13^{\prime}-\mathrm{CH}_{3}\right), 0.24$ ($6 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, 10,10^{\prime}-\mathrm{CH}_{3}$); бc ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 169.0 (14,14’-C), 165.0 ($8,8^{\prime}-\mathrm{C}$), 164.7 ($11,11^{\prime}-C$), 154.2 ($2,2^{\prime}-C$), 138.0 ($4,4^{\prime}-C$), 137.9 ($3 a, 3 a^{\prime}-C$), 136.4 ($6,6^{\prime}-C$), 128.6 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 122.8 ($5,5^{\prime}-\mathrm{C}$), 115.8 ($1,1^{\prime}-\mathrm{C}$), 112.5 ($7,7^{\prime}-\mathrm{C}$), 105.7 ($3,3^{\prime}-\mathrm{C}$), 64.4 ($9,9^{\prime}-\mathrm{C}$), 59.6 (12,12'-C), 21.1 ($15,15^{\prime}-\mathrm{C}$), 14.5 ($13,13^{\prime}-\mathrm{C}$), 13.1 ($10,10^{\prime}-\mathrm{C}$); Chiral HPLC $v_{\max }($ film $)$ 2962, 2924, 2852, 1767, 1680, 1595, 1570, 1531, 1509, 1451, 1429, 1410, 1383, 1364, 1314, 1266, 1234, 1200, 1171, 1074, 1026, 997, 934, 890, 789, $753,724,665 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{10}+\mathrm{Na}\right]^{+}, 625.2050$; found, 625.2053.

The preparation of this compound was based on a method by Emrick. ${ }^{164}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of $\left(S_{a}\right)$-3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'dicarboxylate 394 ($14.5 \mathrm{mg}, 0.0280 \mathrm{mmol}, 1.00$ eq.) and triethylamine ($50 \mu \mathrm{~L}, 0.363$ mmol, 13.0 eq.) in DCM (1.0 mL) was added acetyl chloride ($20 \mu \mathrm{~L}, 0.280 \mathrm{mmol}$, 10.0 eq.), and the mixture was allowed to warm to r.t., and stirred for 80 min . To the reaction mixture was added water $(3.0 \mathrm{~mL})$ to quench. The mixture was diluted with ethyl acetate (15 mL) and the phases were separated. The organic layer was washed with water $(3 \times 10 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(20 \rightarrow 40 \%$ EtOAc in petroleum ether) to give (S_{a})-3,3'-diethyl 2,2'-diacetoxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 401 $(8.6 \mathrm{mg}, 0.0143 \mathrm{mmol}, 51 \%)$ as a magenta solid; $[\alpha]_{\mathrm{D}}{ }^{19}+1400\left(\mathrm{c} 0.005, \mathrm{CHCl}_{3}\right)$; HPLC retention time, 25.0 min (Chiralcel OD $250 \times 4.6 \mathrm{~mm}$ ID, $9: 1$ hexane/2propanol, UV detection 238 nm , flow rate $0.75 \mathrm{~mL} \mathrm{~min}^{-1}, 20^{\circ} \mathrm{C}$). methylcyclohexyl)oxy)carbonyl)oxy)-[1,1'-biazulene]-3,3'-dicarboxylate and $\quad\left(S_{a}\right)$-Diethyl (8,8'-diethoxy-2,2'-bis((()(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)oxy)-[1,1'-biazulene]-3,3'-dicarboxylate 404

$\left(S_{a}, 1 R, 2 S, 5 R\right)-404$

The preparation of these compounds was based on a method by Wan. ${ }^{228}$ At r.t., to a mixture of (\pm)-3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'dicarboxylate 394 ($1.08 \mathrm{~g}, 2.07 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and tetra-n-butylammonium bromide ($267 \mathrm{mg}, 0.829 \mathrm{mmol}, 0.40$ eq.) in $\mathrm{DCM}(10 \mathrm{~mL})$ was added a solution of NaOH (375
$\mathrm{mg}, 9.33 \mathrm{mmol}, 4.50$ eq. $)$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the biphasic mixture was allowed to stir. To this was then slowly added (-)-menthyl chloroformate $402(1.30 \mathrm{~mL}, 6.22$ $\mathrm{mmol}, 3.00 \mathrm{eq}$.), and the mixture was stirred vigorously for 66 h . The mixture was then diluted with DCM (30 mL) and the two phases were separated. The aqueous layer was further extracted with DCM (30 mL), and the combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to a small volume of DCM. The solution was filtered through a plug of silica gel $\left(25 \rightarrow 50 \%\right.$ EtOAc/1\% NEt_{3} in petroleum ether) and concentrated under reduced pressure to give the crude product. Separation of the diastereomers was achieved by recrystallisation (7:1 hexane/THF) to give pure (R_{a})-diethyl (8,8'-diethoxy-2,2'-bis(((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)oxy)-[1,1'-biazulene]-3,3'-dicarboxylate 404 ($295 \mathrm{mg}, 0.333 \mathrm{mmol}, 32 \%$) as a fluffy magenta solid, isolated by filtration. The filtrate was then concentrated under reduced pressure, and purified by further recrystallisation (9:1 hexane/THF) to give pure $\left(\mathrm{S}_{\mathrm{a}}\right)$-diethyl (8,8'-diethoxy-2,2'-bis(((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)oxy)-[1,1'-biazulene]-3,3'-dicarboxylate 404 ($116 \mathrm{mg}, 0.131 \mathrm{mmol}, 13 \%$) as a fluffy magenta solid, isolated by filtration. The filtrate was then purified by column chromatography $(10 \rightarrow 17 \%$ EtOAc in petroleum ether) and recrystallisation (19:1 hexane/THF) to give a $2^{\text {nd }}$ crop of pure $\left(\mathrm{R}_{\mathrm{a}}\right)$-diethyl (8,8'-diethoxy-2,2'-bis((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)oxy)-[1,1'-biazulene]-3,3'-dicarboxylate 404 (59 mg, $0.0666 \mathrm{mmol}, 6.4 \%$) as a fluffy magenta solid.
($R_{a}, 1 R, 2 S, 5 R$)-404: (m.p. $219-221^{\circ} \mathrm{C}$, crystals suitable for X-ray crystallography were grown by storage of a solution of 404 in EtOH at $\left.-18{ }^{\circ} \mathrm{C}\right)$; $\mathrm{R}_{f} 0.29(3: 1$ petroleum ether/EtOAc); [a]d ${ }^{19}$-1900 (c $\left.0.005, \mathrm{CHCl}_{3}\right) \delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.71(2 \mathrm{H}$, dd, J $10.0 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 4,4^{\prime}-\mathrm{CH}$), 7.58 (2H, ddd, J $10.9 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6,6$ '-CH),
$7.25\left(2 \mathrm{H}, \mathrm{td}, J 9.9 \mathrm{~Hz}, 0.6 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right), 6.92(2 \mathrm{H}, \mathrm{d}, J 10.9 \mathrm{~Hz}, 7,7$ '-CH), 4.37 (2H, q, $J 7.3 \mathrm{~Hz}, 12-\mathrm{CH}_{2}$ or $\left.12^{\prime}-\mathrm{CH}_{2}\right), 4.37\left(2 \mathrm{H}, \mathrm{q}, ~ J 7.3 \mathrm{~Hz}, 12-\mathrm{CH}_{2}\right.$ or $\left.12^{\prime}-\mathrm{CH}_{2}\right), 4.28(2 \mathrm{H}$, td, $J 11.0 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 15,15^{\prime}-\mathrm{CH}$), 3.82 (app dq, J $8.6 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 9,9$ '- $\underline{H} H$), 3.75 (2 H , app dq, J $\left.8.4 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 9,9^{\prime}-\mathrm{CH} \underline{H}\right), 1.91-1.86\left(2 \mathrm{H}, \mathrm{m}, 16,16\right.$ '- $\left.\mathrm{CH}_{\text {eq }}\right), 1.57-1.52(2 \mathrm{H}$, m, 18,18'-CHH), $1.46\left(2 \mathrm{H}, \mathrm{dq}, J 13.0 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 19,19^{\prime}-\mathrm{CH}_{\text {eq }}\right), 1.38(6 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}$, $\left.13,13^{\prime}-\mathrm{CH}_{2}\right), 1.32-1.25\left(2 \mathrm{H}, \mathrm{m}, 17,17^{\prime}-\mathrm{CH}\right), 1.16\left(2 \mathrm{H}, \mathrm{tt}, J 11.9 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 20,20^{\prime}-\right.$ $\mathrm{CH}), 1.12-1.07\left(2 \mathrm{H}, \mathrm{m}, 22,22^{\prime}-\mathrm{CH}\right), 0.93\left(2 \mathrm{H}, \mathrm{q}, J 11.5 \mathrm{~Hz}, 16,16^{\prime}-\mathrm{CH}_{\mathrm{ax}}\right), 0.83(6 \mathrm{H}, \mathrm{d}$, $\left.J 6.7 \mathrm{~Hz}, 21,21^{\prime}-\mathrm{CH}_{3}\right), 0.85-0.72\left(4 \mathrm{H}, \mathrm{m}, 18,18^{\prime}-\mathrm{CH}^{H} \underline{H}, 19,19^{\prime}-\mathrm{CH}_{\mathrm{ax}}\right), 0.46(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$ $\left.\mathrm{Hz}, 24,24^{\prime}-\mathrm{CH}_{3}\right), 0.24\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 10,10^{\prime}-\mathrm{CH}_{3}\right), 0.06(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9 \mathrm{~Hz}, 23,23$ 'CH_{3}); дс (126 MHz, CDCl_{3}) 165.4 ($8,8^{\prime}-\mathrm{C}$), 164.8 (11,11'-C), 153.8 (2,2'-C), 152.0 (14,14'-C), 138.2 ($4,4^{\prime}-\mathrm{C}$), 137.8 (3a,3a'-C), 136.4 ($6,6^{\prime}-\mathrm{C}$), 128.3 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 122.7 ($\left.5,5^{\prime}-\mathrm{C}\right), 116.0$ ($\left.1,1^{\prime}-\mathrm{C}\right), 112.4$ ($7,7^{\prime}-\mathrm{C}$), 105.7 (3,3'-C), 78.3 (15,15'-C), 64.6 ($9,9^{\prime}-C$), 59.6 (12,12'-C), 46.9 (20,20'-C), 40.6 (16,16'-C), 34.0 (18,18'-C), 31.3 (17,17'-C), 25.8 (22,22'-C), 23.3 (19,19'-C), 22.0 ($21,21^{\prime}-C$), 20.1 ($24,24^{\prime}-C$), 15.7 ($23,23^{\prime}-C$), 14.5 (13,13'-C), 13.1 (10,10’-C); $v_{\max }($ film $) 2953,2930,2869,1757,1685,1595$, $1571,1512,1450,1434,1410,1384,1330,1270,1227,1207,1178,1094,1074$, 1033, 1000, $980,958,925,891,827,781,720 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{O}_{12}+\mathrm{H}\right]^{+}, 883.4633$; found, 883.4631.
$\left(S_{a}, 1 R, 2 S, 5 R\right)$-404: (m.p. $213-215{ }^{\circ} \mathrm{C}$, crystals suitable for X-ray crystallography were grown by storage of a solution of 404 in hexane/THF $(9: 1 \mathrm{v} / \mathrm{v})$ at $\left.-18{ }^{\circ} \mathrm{C}\right)$; $[\alpha]_{\mathrm{D}}{ }^{19}$ -1500 (c $0.005, \mathrm{CHCl}_{3}$); $\mathrm{R}_{f} 0.26$ (3:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $9.68\left(2 \mathrm{H}, \mathrm{dd}, J 10.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 4,4^{\prime}-\mathrm{CH}\right), 7.58(2 \mathrm{H}, \mathrm{ddd}, J 10.9 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}$, $\left.6,6^{\prime}-\mathrm{CH}\right), 7.25\left(2 \mathrm{H}, \mathrm{td}, J 9.8 \mathrm{~Hz}, 0.6 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right), 6.93\left(2 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, 7,7^{\prime}-\mathrm{CH}\right)$, 4.41-4.31 ($\left.4 \mathrm{H}, \mathrm{m}, 12,12^{\prime}-\mathrm{CH}_{2}\right), 4.25\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 10.8 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 15,15^{\prime}-\mathrm{CH}\right), 3.91-3.79$ $\left(4 \mathrm{H}, \mathrm{m}, 9,9^{\prime}-\mathrm{CH}_{2}\right), 1.70\left(2 \mathrm{H}\right.$, app quint d, J $\left.7.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 22,22^{\prime}-\mathrm{CH}\right), 1.56-1.50(6 \mathrm{H}$,
m, 16, 16' $-\mathrm{CH}_{\text {eq }}, 18,18$ '- $\mathrm{CH} \boldsymbol{H}, 19,19^{\prime}-\mathrm{CH}_{\text {eq }}$), $1.36\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 13,13\right.$ '- $\left.\mathrm{CH}_{3}\right), 1.27-$ $1.23\left(2 \mathrm{H}, \mathrm{m}, 17,17^{\prime}-\mathrm{CH}\right), 1.22\left(2 \mathrm{H}, \mathrm{tt}, J 11.6 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 20,20^{\prime}-\mathrm{CH}\right), 0.90(2 \mathrm{H}, \mathrm{qd}, J$ $\left.12.8 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 19,19^{\prime}-\mathrm{CH}_{\mathrm{ax}}\right), 0.73\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6 \mathrm{~Hz}, 21,21^{\prime}-\mathrm{CH}_{3}\right), 0.71(2 \mathrm{H}, \mathrm{m}$, $\left.18,18^{\prime}-\mathrm{CH} \underline{H}\right), 0.69\left(6 \mathrm{H}, \mathrm{d}, J 7.0,24,24^{\prime}-\mathrm{CH}_{3}\right), 0.63(2 \mathrm{H}$, app q, J $12.1 \mathrm{~Hz}, 16,16$ '-CHax), $0.57\left(6 \mathrm{H}, \mathrm{d}\right.$, J $7.0 \mathrm{~Hz}, 23,23$ '- $\left.-\mathrm{CH}_{3}\right), 0.36\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, 10,10\right.$ ’ $\left.-\mathrm{CH}_{3}\right)$; бс (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 165.1 (8,8'-C), 164.7 (11,11'-C), 154.0 (2,2'-C), 151.4 (14,14'-C), 138.0 ($4,4^{\prime}-\mathrm{C}$), 137.5 ($3 \mathrm{a}, 3 a^{\prime}-\mathrm{C}$), 136.4 ($6,66^{\prime}-\mathrm{C}$), 127.3 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 122.6 ($5,5^{\prime}-\mathrm{C}$), 116.1 ($\left.1,1^{\prime}-\mathrm{C}\right), 112.2$ ($7,7^{\prime}-\mathrm{C}$), 105.8 ($3,3^{\prime}-\mathrm{C}$), 78.8 (15,15’-C), 64.5 ($\left.9,9^{\prime}-\mathrm{C}\right), 59.6$ (12,12'-C), 46.3 (20,20'-C), 39.6 (16,16'-C), 34.0 (18,18'-C), 31.0 (17,17'-C), 25.7 (22,22'-C), 23.2 (19,19'-C), 21.9 (21,21'-C), 20.5 (24,24'-C), 16.0 ($23,23^{\prime}-C$), 14.5 ($13,13^{\prime}-C$), 13.2 (10,10’-C); $v_{\max }($ film $) 2952,2952,2870,1755,1678,1594,1568,1511,1451$, 1437, 1409, 1382, 1330, 1233, 1208, 1189, 1179, 1107, 1094, 1074, 1033, 1001, 978, 957, 926, 912, 890, 862, 827, 792, 781, 767, 721, $669 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{O}_{12}+\mathrm{H}\right]^{+}, 883.4633$; found, 883.4643.
(R_{a})-3,3'-Diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 394

The preparation of this compound was based on a method by Katsuki. ${ }^{230}$ At r.t., to a stirred solution of $\left(R_{a}\right)$-diethyl (8,8'-diethoxy-2,2'-bis(((($\left.1 R, 2 S, 5 R\right)$-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)oxy)-[1,1'-biazulene]-3,3'-dicarboxylate 404 (280 mg, 0.317 mmol, 1.00 eq.) in THF (10 mL) was slowly added NaOEt (2.0 M in EtOH, 1.60 $\mathrm{mL}, 3.20 \mathrm{mmol}, 10.0$ eq.). After stirring for 2 h , the solution was concentrated under reduced pressure, dissolved in $\mathrm{KOH}_{(\mathrm{aq})}(1.0 \mathrm{M}, 150 \mathrm{~mL})$, and washed with hexane (2 $\times 40 \mathrm{~mL})$. To the aqueous layer was added $\mathrm{HCl}_{(\mathrm{aq})}(5.0 \mathrm{M}, 60 \mathrm{~mL})$, forming a deep red precipitate, and stored at $2{ }^{\circ} \mathrm{C}$ for 1.5 h . The mixture was then filtered, washing with water, to give $\left(\mathrm{R}_{\mathrm{a}}\right)$-3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'dicarboxylate 394 ($142 \mathrm{mg}, 0.274 \mathrm{mmol}, 86 \%$) as a deep red solid (crystals suitable for X-ray crystallography were grown by storage of a solution of 394 in EtOH at -18 $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{19}-2400\left(\mathrm{c} 0.005, \mathrm{CHCl}_{3}\right)$.
($S_{\text {a }}$)-3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 394

The preparation of this compound was based on a method by Katsuki. ${ }^{230}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of $\left(S_{a}\right)$-diethyl (8,8'-diethoxy-2,2'-bis(((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)oxy)-[1,1'-biazulene]-3,3'-dicarboxylate 404 (131 mg, $0.148 \mathrm{mmol}, 1.00$ eq.) was slowly added $\mathrm{NaOEt}(2.0 \mathrm{M}$ in $\mathrm{EtOH}, 740 \mu \mathrm{~L}, 1.48 \mathrm{mmol}$, 10.0 eq.). On completion of addition, the solution was raised out of ice bath and allowed to warm to r.t., and stirred for 1.5 h . After concentrating under reduced pressure, the solid was dissolved in $\mathrm{KOH}_{(\mathrm{aq})}(1 \mathrm{M}, 30 \mathrm{~mL})$ and water $(70 \mathrm{~mL})$, and washed with hexane $(2 \times 25 \mathrm{~mL})$. On addition of $\mathrm{HCl}_{(\mathrm{aq})}(5.0 \mathrm{M}, 20 \mathrm{~mL})$ to the aqueous layer, a red precipitate formed instantly. After storing at $2^{\circ} \mathrm{C}$ for 2.5 h , the mixture was filtered, washing with water, to give $\left(\mathrm{S}_{\mathrm{a}}\right)$-3,3'-diethyl 2,2'-dihydroxy-8,8'-diethoxy-[1,1'-biazulene]-3,3'-dicarboxylate 394 (66 mg, $0.128 \mathrm{mmol}, 86 \%$) as a deep red solid; $[a]_{\mathrm{D}}{ }^{19}+2400\left(\mathrm{c} 0.005, \mathrm{CHCl}_{3}\right)$.

Diethyl 4,4'-dimethoxy-[2,2'-biazulene]-1,1'-dicarboxylate 405

The preparation of this compound was based on a method by Bräse. ${ }^{234}$ At r.t., to a mixture of bis(diphenylphosphino)ferrocene]palladium dichloride (14 mg, 0.0169 mmol, 0.04 eq.), bis(pinacolato)diboron ($54 \mathrm{mg}, 0.212 \mathrm{mmol}, 0.50$ eq.) and potassium carbonate ($175 \mathrm{mg}, 1.27 \mathrm{mmol}, 0.50 \mathrm{eq}$.) was added a solution of ethyl 4-methoxy-2-(trifluoromethanesulfonyloxy)azulene-1-carboxylate 338 ($160 \mathrm{mg}, 0.423$ mmol, 1.00 eq.) in DMSO (degassed by sparging with $\mathrm{N}_{2}, 5.0 \mathrm{~mL}$). The resulting suspension was stirred at $80^{\circ} \mathrm{C}$ for 16 h , and then allowed to cool to r.t. The mixture was diluted with DCM (30 mL) and washed with water $(3 \times 20 \mathrm{~mL})$. The organic phase was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($20 \rightarrow 50 \%$ EtOAc in petroleum ether) to give diethyl 4,4'-dimethoxy-[2,2'-biazulene]-1,1'-dicarboxylate 405 ($41 \mathrm{mg}, 0.0883 \mathrm{mmol}, 42 \%$) as a maroon solid (m.p. 97-100 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.45$ (1:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $9.59\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8 \mathrm{~Hz}, 8,8^{\prime}-\mathrm{CH}\right), 7.68\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.5 \mathrm{~Hz}, 6,6^{\prime}-\mathrm{CH}\right), 7.64\left(2 \mathrm{H}, \mathrm{s}, 3,3^{\prime}-\right.$ CH), $7.30\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.3 \mathrm{~Hz}, 7,7{ }^{\prime}-\mathrm{CH}\right), 7.14\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right), 4.17$ (6H, s, $\left.10,10^{\prime}-\mathrm{CH}_{3}\right), 4.10\left(4 \mathrm{H}, \mathrm{q}, ~ J 6.9 \mathrm{~Hz}, 11,11^{\prime}-\mathrm{CH}_{2}\right), 0.91\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, 12,12^{\prime}-\mathrm{CH}_{3}\right) ; \delta \mathrm{c}$ (126 MHz, CDCl_{3}) 166.2 (9,9'-C), 163.3 ($4,4^{\prime}-\mathrm{C}$), 147.9 (2,2'-C), 139.8 ($8 \mathrm{a}, 8 \mathrm{a}^{\prime}-\mathrm{C}$), 138.2 ($8,8^{\prime}-C$), 136.4 ($6,6^{\prime}-C$), 130.8 ($3 \mathrm{a}, 3 a^{\prime}-C$), 122.8 ($7,7^{\prime}-C$), 116.7 ($3,3^{\prime}-C$), 116.1

2986, 1687, 1600, 1568, 1515, 1461, 1419, 1381, 1329, 1305, 1274, 1200, 1169, 1134, 1106, 1088, 1062, 1021, 955, 926, 881, 865, 831, 785, 753, 721, 710, 672 $\mathrm{cm}^{-1} ;$ HRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calc for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}, 481.1622$; found, 481.1689.

Ethyl 2-((diphenylphosphoryl)oxy)-4-methoxyazulene-1-carboxylate 412

The preparation of this compound was based on a method by Parquette. ${ }^{242}$ At -78 ${ }^{\circ} \mathrm{C}$, to a stirred solution of ethyl 2-hydroxy-4-methoxyazulene-1-carboxylate 337 (160 $\mathrm{mg}, 0.650 \mathrm{mmol}, 1.00$ eq.) and DMAP ($87 \mathrm{mg}, 0.715 \mathrm{mmol}, 1.10 \mathrm{eq}$.) in THF (6.0 mL) was added dropwise diphenylphosphinic chloride ($140 \mu \mathrm{~L}, 0.730 \mathrm{mmol}, 1.12$ eq.). The resultant mixture was stirred for 16 h , allowing it to warm up to r.t. inside the acetone/dry ice bath. The solution was quenched with water (20 mL) and extracted with ethyl acetate (50 mL). The organic extract was then washed with water ($2 \times 20 \mathrm{~mL}$) and saturated brine, dried over MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($10 \rightarrow 66 \%$ EtOAc in petroleum ether) to give ethyl 2-((diphenylphosphoryl)oxy)-4-methoxyazulene-1-carboxylate 412 (243 mg, 0.544 mmol, 84%) as a bright red solid (m.p. $183-185^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.15$ (1:1 petroleum ether/EtOAc); дн (500 MHz, CDCl ${ }_{3}$) 9.47 (1H, d, J $\left.9.8 \mathrm{~Hz}, 8-\mathrm{CH}\right), 8.10-8.05(4 \mathrm{H}, \mathrm{m}$, $15-\mathrm{CH}$), 7.57 (1H, ddd, J $10.3 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 6-\mathrm{CH}$), $7.51-7.48(2 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH})$, $7.50(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}), \mathrm{p} 7.46-7.42(4 \mathrm{H}, \mathrm{m}, 16-\mathrm{CH}), 7.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.8 \mathrm{~Hz}, 7-\mathrm{CH}), 7.05$ ($1 \mathrm{H}, \mathrm{d}, J 10.8 \mathrm{~Hz}, 5-\mathrm{CH}$), $4.50\left(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, 11-\mathrm{CH}_{2}\right), 4.04\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 1.43$ (3H, t, J $7.2 \mathrm{~Hz}, 12-\mathrm{CH}_{3}$); $\delta \mathrm{c}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.7$ (9-C), 162.8 (4-C), 155.7 (d, $\left.{ }^{2} J_{\mathrm{CP}} 7.6 \mathrm{~Hz}, 2-\mathrm{C}\right), 137.4(8 \mathrm{a}-\mathrm{C}), 137.3$ (8-C), 135.5 (6-C), $132.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}} 2.9 \mathrm{~Hz}, 17-\right.$
C), 131.9 ($\mathrm{d},{ }^{2} J_{\mathrm{CP}} 10.5 \mathrm{~Hz}, 15-\mathrm{C}$), 131.3 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 138.8 \mathrm{~Hz}, 14-\mathrm{C}$), 130.6 (3a-C), 128.5 (d, $\left.{ }^{3} J_{\mathrm{CP}} 13.4 \mathrm{~Hz}, 16-\mathrm{C}\right), 123.7$ (7-C), 111.5 (5-C), 104.8 (1-C)*, 104.6 (d, ${ }^{3} J_{\mathrm{CP}} 4.2 \mathrm{~Hz}$, 3-C), 59.7 (11-C), 56.3 (10-C), 14.7 (12-C); $\delta \mathrm{P}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.5$ (13-P); $v_{\max }$ (film) 3079, 2977, 2921, 2842, 1673, 1591, 1573, 1539, 1505, 1468, 1452, 1452, 1407, 1396, 1385, 1355, 1342, 1303, 1269, 1236, 1206, 1178, 1130, 1111, 1069, 1035, 998, 958, 934, 895, 862, 831, 810, 787, 749, 730, 690, $669 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calc for $\left[\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}+\mathrm{H}^{+}, 447.1361\right.$; found, 447.1344.
*possibly a doublet, hidden by adjacent doublet.

Ethyl

 2-((diphenylphosphoryl)oxy)-3-iodo-4-methoxyazulene-1-carboxylate)413

Under atmosphere of air at r.t., to a round-bottom flask wrapped in aluminium foil, charged with a stirred solution of ethyl 2-((diphenylphosphoryl)oxy)-4-methoxyazulene-1-carboxylate 412 ($50 \mathrm{mg}, 0.112 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in THF (5.0 mL) was added portionwise N -iodosuccinimide ($28 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.10 \mathrm{eq}$.), and the mixture was allowed to stir for 1 h . To the mixture was added more N iodosuccinimide ($10 \mathrm{mg}, 0.0444 \mathrm{mmol}, 0.40 \mathrm{eq}$.), allowing then to stir for 30 min to make a pink/red suspension. The mixture was diluted with ethyl acetate (20 mL), washed with $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq)}}(1 \mathrm{M}, 5.0 \mathrm{~mL})$, with water $(2 \times 10 \mathrm{~mL})$ and with saturated brine. The organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give crude ethyl 2-((diphenylphosphoryl)oxy)-3-iodo-4-methoxyazulene-1-carboxylate 413 (37 mg, $0.0647 \mathrm{mmol}, 58 \%$) as a pink/red solid (m.p. $\left.133-139{ }^{\circ} \mathrm{C}\right)$; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.47$ (1H, d, J $10.0 \mathrm{~Hz}, 8-\mathrm{CH}$), 8.11-8.03 (4H, m, 15-CH), 7.59 (1H, ddd, J $11.0 \mathrm{~Hz}, 10.0$ $\mathrm{Hz}, 1.1 \mathrm{~Hz}, 6-\mathrm{CH}), 7.50-7.43$ (6H, m, 16,17-CH), 7.28 (1H, t, J $9.9 \mathrm{~Hz}, 7-\mathrm{CH}), 7.06$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8 \mathrm{~Hz}, 5-\mathrm{CH}), 4.49\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 11-\mathrm{CH}_{2}\right), 4.04\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 1.42$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 12-\mathrm{CH}_{3}\right) ; \delta \mathrm{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.7$ (9-C), 162.8 (4-C), 155.6 (d, ${ }^{2} \mathrm{~J}_{\mathrm{CP}}$ $7.8 \mathrm{~Hz}, 2-\mathrm{C}), 137.3$ (8-C), 135.6 (6-C), 132.3 (d, $\left.{ }^{4} \mathrm{~J}_{\mathrm{CP}} 2.9 \mathrm{~Hz}, 17-\mathrm{C}\right), 131.9$ (d, ${ }^{2} \mathrm{~J}_{\mathrm{CP}}$ $10.7 \mathrm{~Hz}, 15-\mathrm{C}), 130.6$ (3a-C), 129.3 (d, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}} 141.2 \mathrm{~Hz}, 14-\mathrm{C}\right), 128.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 13.6 \mathrm{~Hz}\right.$,

16-C), 124.3 ($8 \mathrm{a}-\mathrm{C}$), 123.7 (7-C), 112.9 (3-C), 111.5 (5-C), 104.6 (1-C), 59.7 (11-C), 56.3 (10-C), 14.7 (12-C); $\delta \mathrm{P}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 31.3$ (13-P); $v_{\max }($ film) 2952, 2923, 2850, 1673, 1633, 1592, 1573, 1539, 1468, 1452, 1437, 1408, 1396, 1355, 1342, 1303, 1268, 1236, 1206, 1177, 1130, 1111, 1069, 1034, 958, 934, 895, 862, 832, 787, $750,710,690,669 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calc for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O} \mathrm{O}_{5} \mathrm{P}+\mathrm{H}\right]^{+}$, 573.0328; found, 573.0323.

Ethyl 3-chloro-((diphenylphosphoryl)oxy)-4-methoxyazulene-1-carboxylate 415

Under atmosphere of air, at r.t., to a stirred solution of ethyl 2-((diphenylphosphoryl)oxy)-4-methoxyazulene-1-carboxylate 412 (30 mg, 0.067 mmol, 1.00 eq.) in DCM (4.0 mL) was added N -chlorosuccinimide ($10 \mathrm{mg}, 0.074$ mmol, 1.10 eq.), and the mixture was allowed to stir for 1 h . To the mixture was then added more N-chlorosuccinimide ($4 \mathrm{mg}, 0.030 \mathrm{mmol}, 0.45 \mathrm{eq}$.), allowing then to stir for 17 h . The mixture was diluted with $\mathrm{DCM}(15 \mathrm{~mL})$, washed with $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}(1 \mathrm{M}$, 10 mL) and with water ($2 \times 10 \mathrm{~mL}$), and the organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(25 \rightarrow 50 \%$ EtOAc in petroleum ether) to give ethyl 3-chloro-((diphenylphosphoryl)oxy)-4-methoxyazulene-1-carboxylate 415 (16 mg, $0.0333 \mathrm{mmol}, 50 \%$) as a pink/red solid (m.p. 212-215 ${ }^{\circ} \mathrm{C}$ (dec.)); $\mathrm{R}_{f} 0.43$ (1:3 petroleum ether/EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $9.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}, 8-\mathrm{CH}), 8.03-7.95$ (4H, m, 15-CH), 7.58 (1H, t, J $10.3 \mathrm{~Hz}, 6-$ CH), 7.55-7.43 (6H, m, 16,17-CH), 7.16 (1H, t, J $9.9 \mathrm{~Hz}, 7-\mathrm{CH}), 6.98$ (1H, d, J 11.0 $\mathrm{Hz}, 5-\mathrm{CH}), 4.04\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 3.99\left(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, 11-\mathrm{CH}_{2}\right), 1.00(3 \mathrm{H}, \mathrm{t}, J 7.1$ $\mathrm{Hz}, 12-\mathrm{CH}_{3}$); $\delta \mathrm{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.0$ (4-C), 164.0 (9-C), 149.8 (d, ${ }^{2} J_{\mathrm{CP}} 9.8 \mathrm{~Hz}, 2-$ C), 138.4 (8-C), 137.4 (6-C), 135.0 (d, $\left.{ }^{4} J_{\mathrm{CP}} 1.1 \mathrm{~Hz}, 8 \mathrm{a}-\mathrm{C}\right), 132.2$ (d, ${ }^{4} \mathrm{~J}_{\mathrm{CP}} 2.9 \mathrm{~Hz}, 17-$ C), 131.9 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CP}} 10.6 \mathrm{~Hz}, 15-\mathrm{C}$), $131.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 138 \mathrm{~Hz}, 14-\mathrm{C}\right), 128.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 13.7\right.$ $\mathrm{Hz}, 16-\mathrm{C}), 123.3$ (d, $\left.{ }^{4} \mathrm{~J}_{\mathrm{CP}} 1.4 \mathrm{~Hz}, 3 \mathrm{a}-\mathrm{C}\right)$, 123.1 (7-C), 111.8 (5-C), 107.9 (1-C or 3-C),
107.7 (1-C or $3-\mathrm{C}$), 60.0 (11-C), 56.4 (10-C), 14.1 (12-C); $\delta \mathrm{P}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 32.9$ (13-P); $v_{\max }($ film $) 3061,2924,2852,1772,1687,1596,1572,1530,1508,1462$, 1453, 1439, 1409, 1382, 1342, 1307, 1272, 1232, 1212, 1198, 1168, 1128, 1109, 1076, 1025, 997, 954, 928, 882, 836, 800, 785, 770, 754, 728, 715, 699, $674 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClO}_{5} \mathrm{P}+\mathrm{Na}\right]^{+}, 503.0791$; found, 503.0799.

2,4-Dimethoxy-1-methylazulene 418

The preparation of this compound was based on a method by Hansen. ${ }^{195}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of mixed methyl 2,4-dimethoxyazulene-1-carboxylate 325 and ethyl 2,4-dimethoxyazulene-1-carboxylate 326 ($\sim 1: 3 \mathrm{Me} / \mathrm{Et}, 50 \mathrm{mg}, 0.195 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (3.0 mL) was slowly added DIBAL-H (1.0 M in DCM, $980 \mu \mathrm{~L}, 0.980 \mathrm{mmol}$, 5.00 eq.), changing in colour from orange/red to pink/red within 5 min . The solution was allowed to warm up to r.t., and stirred for 3 h . The mixture was cooled again to 0 ${ }^{\circ} \mathrm{C}$, and to it was added DIBAL-H (1.0 M in DCM, $980 \mu \mathrm{~L}, 0.980 \mathrm{mmol}, 5.00 \mathrm{eq}$.), before allowing to warm to r.t. The mixture was allowed to stir for 24 h , then to it was added ethyl acetate (25 mL) and water (5.0 mL), before filtering through Celite. The crude product was washed through with ethyl acetate (20 mL), and the phases were separated. The organic solution was washed with water $(3 \times 10 \mathrm{~mL})$ and saturated brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography (10\% EtOAc in petroleum ether) to give 2,4-dimethoxy-1methylazulene 418 ($15 \mathrm{mg}, 0.0741 \mathrm{mmol}, 38 \%$) as a violet solid (m.p. $101-104{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.51$ (4:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}, 8$ CH), 7.38 (1H, t, J $10.5 \mathrm{~Hz}, 6-\mathrm{CH}), 7.10$ (1H, s, 3-CH), 7.01 (1H, t, J $10.0 \mathrm{~Hz}, 7-\mathrm{CH}$), $6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5 \mathrm{~Hz} 7-\mathrm{CH}), 4.13\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 4.07\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 2.44(3 \mathrm{H}, \mathrm{s}$, $11-\mathrm{CH}_{3}$); $\delta c\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.2$ (2-C), 158.3 (4-C), 134.4 (8a-C), 130.9 (6-C), 130.7 (8-C), 126.3 (3a-C), 118.7 (7-C), 110.2 (1-C), 109.4 (5-C), 94.9 (3-C), 57.5
(10-C), 56.6 (9-C), 8.3 (11-C); $v_{\max }($ film $) 2998,2966,2919,2844,1591,1563,1538$, 1524, 1496, 1455, 1418, 1385, 1370, 1342, 1302, 1256, 1229, 1211, 1196, 1168, 1142, 1099, 1021, 1008, 973, 939, 854, 777, 748, 699, $659 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$, 203.1072; found, 203.1072.

1-(Hydroxymethyl)-4-methoxyazulen-2-yl diphenylphosphinate 421

The preparation of this compound was based on a method by Hansen. ${ }^{195}$ At $0^{\circ} \mathrm{C}$, to a solution of ethyl 2-((diphenylphosphoryl)oxy)-4-methoxyazulene-1-carboxylate 412 ($68 \mathrm{mg}, 0.152 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (3.0 mL) was slowly added DIBAL-H (1.0 M in hexanes, $760 \mu \mathrm{~L}, 5.00$ eq.). The mixture was allowed to warm to r.t., stirred for 3 h . The mixture was diluted with EtOAc (10 mL) and at $0^{\circ} \mathrm{C}$, to it was added water (5.0 mL) and allowed to stir for 5 min . The mixture was diluted further with EtOAc (10 mL), and filtered through Celite. The filtrate was then washed with saturated aqueous Rochelle salt $(2 \times 10 \mathrm{~mL})$, with water $(2 \times 15 \mathrm{~mL})$ and with saturated brine. The organic layer was dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(0 \rightarrow 5 \% \mathrm{MeOH}$ in DCM$)$ to give impure 1 -(hydroxymethyl)-4-methoxyazulen-2-yl diphenylphosphinate 418 (10 mg, <0.025 mmol, <16\%) as a red/brown solid; $\mathrm{R}_{f} 0.33$ ($5 \% \mathrm{MeOH}$ in DCM); $\delta \mathrm{H}$ (500 MHz , $\left.\mathrm{CDCl}_{3}\right) 8.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.6 \mathrm{~Hz}), 7.99-7.94(4 \mathrm{H}, \mathrm{m}), 7.60-7.55(\mathrm{~m}), 7.53-7.48(\mathrm{~m}), 7.10$ (1H, t, J 9.7 Hz), 6.94-6.92 (2H, m), $5.01(2 \mathrm{H}, \mathrm{br}$ s), $4.04(3 \mathrm{H}, \mathrm{s}) ; \delta \mathrm{f}(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 32.07.

Methyl 2-oxo-2H-cyclohepta[b]furan-3-carboxylate 422

The preparation of this compound was based on a method by Pham. ${ }^{187}$ At $0^{\circ} \mathrm{C}$, to a stirred suspension of 7-oxocyclohepta-1,3,5-trien-1-yl 4-methylbenzene-1-sulfonate 297 ($16.6 \mathrm{~g}, 60.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and dimethyl malonate 132 ($14.0 \mathrm{~mL}, 123 \mathrm{mmol}$, 2.04 eq.) in MeOH (100 mL) was added by cannula NaOMe solution (freshly prepared from Na metal ($2.77 \mathrm{~g}, 120 \mathrm{mmol}, 2.00$ eq.) and $\mathrm{MeOH}(100 \mathrm{~mL})$). After 5 min, the suspension had changed from cream to yellow/brown in colour, and was allowed to warm to r.t. After stirring for 6 h , water was added $(200 \mathrm{~mL})$, and the mixture was stored at $-18{ }^{\circ} \mathrm{C}$ for 16 h . The precipitate collected by filtration, washing with water to give pure methyl 2-oxo-2H-cyclohepta[b]furan-3-carboxylate 422 (9.31 $\mathrm{g}, 45.6 \mathrm{mmol}, 76 \%)$ as a yellow solid; $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.4 \mathrm{~Hz}$, $\mathrm{CH})$, 7.65-7.61 (1H, m, CH), 7.51-7.47 (2H, m, CH), 7.36-7.34 (1H, m, CH), 3.94 $\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right)$.

Data in agreement with those previously reported. ${ }^{187}$

Methyl 2-methoxyazulene-1-carboxylate 423

The preparation of this compound was based on a method by Pham. ${ }^{187}$ To an ACE pressure round-bottom flask (capacity 50 mL) was added methyl $2-\mathrm{oxo}-2 \mathrm{H}$ -cyclohepta[b]furan-3-carboxylate 422 ($3.00 \mathrm{~g}, 14.7 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , trimethyl$ orthoacetate $324(8.00 \mathrm{~mL})$ and toluene (7.00 mL). The mixture was stirred under air at $200{ }^{\circ} \mathrm{C}$ for 8 h , allowed to cool to r.t. overnight, and then stirred at $200^{\circ} \mathrm{C}$ again for a further 3 h (CAUTION: the reaction was run behind a blast shield). After allowing to cool, the mixture was loaded onto a silica column and purified by column chromatography $(5 \rightarrow 14 \%$ EtOAc in petroleum ether) to give methyl 2 -methoxyazulene-1-carboxylate 423 ($1.68 \mathrm{~g}, 7.78 \mathrm{mmol}, 53 \%$) as a red, crystalline solid; $\mathrm{R}_{f} 0.22$ (3:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.35$ (1H, dd, J 9.7 Hz, 1.5 Hz, 8-CH), 8.05 (1H, d, J $9.8 \mathrm{~Hz}, 4-\mathrm{CH})$, 7.50-7.42 (2H, m, 6-CH and either $7-\mathrm{CH}$ or $5-\mathrm{CH}), 7.32-7.27(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}$ or $7-\mathrm{CH}), 6.65(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}), 4.03(3 \mathrm{H}, \mathrm{s}$, $\left.10,11-\mathrm{CH}_{3}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, 10,11-\mathrm{CH}_{3}\right)$.

Data in agreement with those previously reported. ${ }^{192}$

Methyl 2-hydroxyazulene-1-carboxylate 424

The preparation of this compound was based on a method by Talaz. ${ }^{200}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of methyl 2-methoxyazulene-1-carboxylate 423 ($1.52 \mathrm{~g}, 7.04 \mathrm{mmol}$, 1.00 eq.) in DCM (100 mL) was added boron tribromide (1.0 M in heptanes, 7.10 $\mathrm{mL}, 7.10 \mathrm{mmol}, 1.01 \mathrm{eq}$.), which instantly formed a brown/yellow cloudy mixture. After stirring for $40 \mathrm{~min}, \mathrm{MeOH}(10 \mathrm{~mL})$ was added, forming an orange/red solution, which was washed with water $(2 \times 50 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give methyl 2-hydroxyazulene-1-carboxylate 424 ($1.33 \mathrm{~g}, 6.55 \mathrm{mmol}$, 93%) as an orange solid; $\mathrm{R}_{f} 0.49$ (3:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $10.73(1 \mathrm{H}, \mathrm{br}$ s, 2-OH), $8.83(1 \mathrm{H}, \mathrm{dd}, J 9.5 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 8-\mathrm{CH}), 8.07(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}$, $4-\mathrm{CH}), 7.46(1 \mathrm{H}, \mathrm{tt}, J 9.1 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 6-\mathrm{CH}), 7.44(1 \mathrm{H}, \mathrm{td}, J 9.9 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 5-\mathrm{CH}$ or 7-CH) 7.32 (1H, ddd, J $10.3 \mathrm{~Hz}, 8.9 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 5-\mathrm{CH}$ or $7-\mathrm{CH}), 6.72$ (1H, s, 3-CH), $4.02\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right)$.

Compound 424 has previously been reported in the literature, but without accompanying NMR data. ${ }^{281,282}$

Methyl 2-(((trifluoromethyl)sulfonyl)oxy)azulene-1-carboxylate 425

The preparation of this compound was based on a method by Morita. ${ }^{206}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of methyl 2-hydroxyazulene-1-carboxylate $424(1.33 \mathrm{~g}, 6.55 \mathrm{mmol}$, 1.00 eq.) and triethylamine ($1.82 \mathrm{~mL}, 13.1 \mathrm{mmol}, 2.00$ eq.) in DCM (70 mL) was added by cannula a solution of trifluoromethanesulfonic anhydride ($1.66 \mathrm{~mL}, 9.82$ mmol, 1.50 eq.) in DCM (50 mL), which instantly changed colour from orange to magenta. The mixture was allowed to warm to r.t., and stirred for 90 min before the addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ to quench. The mixture was diluted with DCM $(50 \mathrm{~mL})$, and the phases were separated. The organic layer was washed with $\mathrm{HCl}_{(\mathrm{aq})}(0.5 \mathrm{M}, 50$ mL) and with water ($2 \times 50 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography (20% EtOAc in petroleum ether) to give methyl 2-(((trifluoromethyl)sulfonyl)oxy)azulene-1-carboxylate 425 (1.91 g, 5.71 $\mathrm{mmol}, 87 \%$) as a purple, crystalline solid (m.p. $68-70{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.32$ (3:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.1 \mathrm{~Hz}, 0.6 \mathrm{~Hz}, 8-\mathrm{CH}), 8.47(1 \mathrm{H}$, dd, J $9.7 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 4-\mathrm{CH}$), 7.91 (1H, tt, J $9.9 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6-\mathrm{CH}), 7.69(1 \mathrm{H}, \mathrm{t}, J 10.0$ $\mathrm{Hz}, 7-\mathrm{CH}), 7.58(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.8 \mathrm{~Hz}, 5-\mathrm{CH}), 7.13(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}), 4.00\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right) ; \delta c$ (75 MHz, CDCl_{3}) 163.6 (9-C), 153.2 (2-C), 140.4 (3a-C), 140.3 (6-C), 139.89 (4-C or 8-C), 139.88 (4-C or 8-C), 139.2 ($8 \mathrm{a}-\mathrm{C}$), 129.9 (7-C), 128.8 (5-C), 118.8 (q, ${ }^{1} J_{\text {CF }} 320$ Hz, 11-C), 107.9 (3-C), 106.5 (1-C), 51.3 (10-C); $v_{\max }($ film) 2961, 1691, 1612, 1595,

1581, 1535, 1514, 1462, 1424, 1407, 1306, 1292, 1228, 1197, 1137, 1055, 1042, 987, 968, 940, 898, 860, 817, 790, 764, 730, 706, $673 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}+\mathrm{Na}\right]^{+}, 357.0020$; found 357.0039.

Dimethyl [2,2'-biazulene]-1,1'-dicarboxylate 426

The preparation of this compound was based on a method by Bräse. ${ }^{234}$ At r.t., to a mixture of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ (163 mg, $0.225 \mathrm{mmol}, 0.04 \mathrm{eq}$), $\mathrm{B}_{2} \mathrm{pin}_{2}(714 \mathrm{mg}, 2.82 \mathrm{mmol}$, 0.50 eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.35 \mathrm{~g}, 16.9 \mathrm{mmol}, 3.00$ eq.) was added a solution of methyl 2-(((trifluoromethyl)sulfonyl)oxy)azulene-1-carboxylate 425 ($1.88 \mathrm{~g}, 5.63 \mathrm{mmol}, 1.00$ eq.) in DMSO (degassed by freeze-pump-thaw, 20 mL). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h , allowed to cool, and then diluted with DCM (120 mL). The solution was washed with $\mathrm{NaOH}_{(\text {(q) })}(2.5 \mathrm{M}, 50 \mathrm{~mL})$ and water $(2 \times 50 \mathrm{~mL})$, and the organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($10 \rightarrow 50 \%$ EtOAc in petroleum ether) to give dimethyl $\left[2,2^{\prime}\right.$ -biazulene]-1,1'-dicarboxylate 426 ($459 \mathrm{mg}, 1.24 \mathrm{mmol}, 44 \%$) as a blue/violet solid; R_{f} 0.18 (3:1 petroleum ether/EtOAc); $\delta н\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.59$ (2H, d, J $10.0 \mathrm{~Hz}, 8,8$ 'CH), 8.39 (2H, d, J $\left.9.6 \mathrm{~Hz}, 4,4^{\prime}-\mathrm{CH}\right), 7.73\left(2 \mathrm{H}, \mathrm{tt}, J 9.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6,6^{\prime}-\mathrm{CH}\right) 7.53$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.0 \mathrm{~Hz}, 7,7^{\prime}-\mathrm{CH}$), $7.42\left(2 \mathrm{H}, \mathrm{s}, 3,3^{\prime}-\mathrm{CH}\right), 7.39\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.7 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right), 3.67$ ($6 \mathrm{H}, \mathrm{s}, 10,10^{\prime}-\mathrm{CH}_{3}$).

Data in agreement with those previously reported. ${ }^{205}$

1,1'-dimethyl-2,2'-biazulene 427

The preparation of this compound was based on a method by Hansen. ${ }^{195}$ At $0{ }^{\circ} \mathrm{C}$, to a stirred solution of dimethyl [2,2'-biazulene]-1,1'-dicarboxylate 426 ($50 \mathrm{mg}, 0.135$ mmol, 1.00 eq.) in DCM (4.0 mL) was slowly added DIBAL-H (1.0 M in hexanes, $1.35 \mathrm{~mL}, 10.0$ eq.), instantly changing colour from deep violet to blue/green. The solution was allowed warm to r.t., stirred for 17 h , and quenched with water (1.0 mL). The mixture was diluted with $\operatorname{DCM}(10 \mathrm{~mL})$ and filtered through a bed of Celite, washing through with DCM $(4 \times 10 \mathrm{~mL})$. The filtrate was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($5 \rightarrow 10 \%$ EtOAc in petroleum ether) to give 1,1'-dimethyl-2,2'-biazulene 427 (12 mg, $0.0439 \mathrm{mmol}, 33 \%$) as a dark green solid (m.p. $199-201{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.47$ (9:1 petroleum ether/EtOAc); $\delta \mathrm{H}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.33\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.7 \mathrm{~Hz}, 8,8\right.$ '-CH) $8.28\left(2 \mathrm{H}, \mathrm{d}, J 9.4 \mathrm{~Hz}, 4,4^{\prime}-\mathrm{CH}\right)$, $7.56\left(2 \mathrm{H}, \mathrm{s}, 3,3^{\prime}-\mathrm{CH}\right), 7.53\left(2 \mathrm{H}, \mathrm{tt}, J 9.9 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 6,6^{\prime}-\mathrm{CH}\right), 7.15(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.8 \mathrm{~Hz}$, 7,7’-CH), 7.11 (2H, t, J $\left.9.6 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right)$, $2.75\left(6 \mathrm{H}, \mathrm{s}, 9,9^{\prime}-\mathrm{CH}_{3}\right)$; $\delta c\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 146.8 (2,2'-C), 139.7 (3a,3a’-C), 137.5 (8a,8a’-C), 136.8 (6,6’-C), 135.7 (4,4'-C), 133.6 ($8,8^{\prime}-C$), 124.7 ($1,1^{\prime}-\mathrm{C}$), 122.6 ($5,5^{\prime}-\mathrm{C}$), 121.9 (7,7’-C), 118.4 (3,3'-C), 11.9 (9,9'-C); $v_{\max }($ film $) 2963,2915,2849,1566,1532,1460,1410,1381,1293,1259$, $1215,1181,1086,1015,967,951,930,879,856,809,795,731,720,695,677 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{22} \mathrm{H}_{18}+\mathrm{H}^{+}, 283.1487\right.$; found, 283.1500.

1,1'-Diiodo-3,3'-dimethyl-2,2'-biazulene 428

Under atmosphere of air at r.t., to a round-bottom flask wrapped in aluminium foil, charged with a stirred solution of 1,1'-dimethyl-2,2'-biazulene 427 ($68 \mathrm{mg}, 0.241$ mmol, 1.00 eq.) in DCM (17 mL) was added N-iodosuccinimide ($114 \mathrm{mg}, 0.506$ mmol, 2.10 eq.), and allowed to stir for 80 min . To the mixture was then added neutral alumina $(\sim 0.5 \mathrm{~g})$, the solvent was removed in vacuo, and the crude product was purified by column chromatography $(1 \rightarrow 5 \%$ EtOAc in petroleum ether, neutral alumina) to give 1,1'-diiodo-3,3'-dimethyl-2,2'-biazulene 428 ($15 \mathrm{mg}, 0.0285 \mathrm{mmol}$, 12%) as a dark blue solid (m.p. $>300^{\circ} \mathrm{C}$ (dec.)); $\mathrm{R}_{f} 0.54$ (9:1 petroleum ether/EtOAc, neutral alumina); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 8.35(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.7 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 4,4$ '-CH), 7.87 (2H, dd, J $9.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 8,8^{\prime}-\mathrm{CH}$), 7.14 (2H, tt, J $9.9 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 6,6$ '- CH), 6.77 (2 H , $\left.\mathrm{t}, \mathrm{J} 10.1 \mathrm{~Hz}, 5,5^{\prime}-\mathrm{CH}\right), 6.75\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.1 \mathrm{~Hz}, 7,7^{\prime}-\mathrm{CH}\right), 2.35\left(6 \mathrm{H}, \mathrm{s}, 9,9^{\prime}-\mathrm{CH}_{3}\right)$; $\delta \mathrm{c}(126$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 151.9$ (2,2'-C), 140.1 (3a,3a'-C), 138.8 (4,4'-C), 138.7 (8a,8a'-C), 138.0 (6,6'-C), 134.0 ($\left.8,8^{\prime}-C\right), 126.6$ ($1,1^{\prime}-C$), 123.7 ($5,5^{\prime}-C$), 123.0 ($7,7^{\prime}-C$), 79.4 (3,3'-C), 12.2 (9,9'-C); $v_{\max }($ film $) 2982,2905,2852,1573,1447,1373,1318,1293,1259$, 1218, 1157, 1047, 1016, 959, 944, 879, 830, 785, 734, 721, $681 \mathrm{~cm}^{-1}$; HRMS (ASAP +) m / z calc for $\left[\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{I}_{2}+\mathrm{H}^{+}, 534.9420\right.$; found, 534.9426.

(3,3'-dimethyl-[2,2'-biazulene]-1,1'-diyl)bis(diphenylphosphine) 429

The preparation of this compound was based on a method by Ito. ${ }^{181} \mathrm{At}-60{ }^{\circ} \mathrm{C}$, to a solution of n-butylmagnesium chloride (2.0 M in THF, $40 \mu \mathrm{~L}, 2.76$ eq.) in $\mathrm{Et}_{2} \mathrm{O}$ (degassed by sparging with $\mathrm{N}_{2}, 0.50 \mathrm{~mL}$) was added dropwise a solution of n butyllithium (2.43 M in hexanes, $60 \mu \mathrm{~L}, 5.14 \mathrm{eq}$.), and the mixture was allowed to stir for 10 min . To the mixture was added dropwise a solution of 1,1'-diiodo-3,3'-dimethyl-2,2'-biazulene 428 ($15 \mathrm{mg}, 0.0285 \mathrm{mmol}, 1.00$ eq.) in $\mathrm{Et}_{2} \mathrm{O}$ (degassed by sparging with $\mathrm{N}_{2}, 1.50 \mathrm{~mL}$), forming a dark green solution. After allowing to stir for 35 min, to the mixture was added dropwise chlorodiphenylphosphine ($50 \mu \mathrm{~L}, 0.273$ mmol, 9.57 eq.), and the reaction was allowed to warm to r.t. while in the dry ice/chloroform bath. After allowing to stir for 100 min , water (2.0 mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic extract was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give the crude product, and purified by column chromatography ($1 \rightarrow 25 \%$ EtOAc in petroleum ether) to give impure starting material.

Lithium (diphenylphosphino)cyclopentadienide 450

The preparation of this compound was based on a method by Erker. ${ }^{262}$ To a Schlenk flask charged with THF (30 mL) was added a solution of sodium cyclopentadienide 441 (2.0 M in THF, $15.0 \mathrm{~mL}, 1.00 \mathrm{eq}$.). At $-78^{\circ} \mathrm{C}$, to this stirred solution was added dropwise chlorodiphenylphosphine ($5.50 \mathrm{~mL}, 30.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.), and stirred for 16 h, allowing to warm up to r.t. The solvent was then removed in vacuo to give a brown/red solid, which was dissolved in toluene (60 mL) and filtered through a pad of Celite. The Celite was then washed with toluene $(30 \mathrm{~mL})$. At $-78^{\circ} \mathrm{C}$, to the combined filtrate, with stirring, was added dropwise a solution of n-butyllithium (1.97 M in hexanes, $15.5 \mathrm{~mL}, 1.00$ eq.), then allowed to warm to r.t. After stirring for 2.5 h , the solvent was removed in vacuo, and the resultant solid was triturated with hexane (2 $\times 30 \mathrm{~mL}$) and dried in vacuo to give lithium (diphenylphosphinyl)cyclopentadienide $450(5.88 \mathrm{~g}, 22.9 \mathrm{mmol}, 76 \%)$ as a golden yellow solid; $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right) 7.30-$ $7.24(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}), 7.14-7.06(6 \mathrm{H}, \mathrm{m}, 7,8-\mathrm{CH}), 5.95-5.89(4 \mathrm{H}, \mathrm{m}, 2,3-\mathrm{CH}) ; \delta \mathrm{P}(122$ $\left.\mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right)$-20.47 (4-P).

Data in agreement with those previously reported. ${ }^{262}$

4,6,8-trimethylazulene 442

This compound was prepared according to the method by Hansen..256 At $0^{\circ} \mathrm{C}$, to a stirred suspension of sodium hydride (60% suspension in oil, $938 \mathrm{mg}, 23.4 \mathrm{mmol}$, 1.80 eq.) in THF (50 mL) was added dropwise freshly cracked cyclopentadiene 242 ($4.50 \mathrm{~mL}, 53.5 \mathrm{mmol}, 4.20 \mathrm{eq}$.). The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. After 5 min , the suspension had changed colour from white to deep red. At room temperature, to a stirred suspension of 2,4,6-trimethylpyrylium tetrafluoroborate 447 ($2.69 \mathrm{~g}, 12.8 \mathrm{mmol}, 1.0$ eq.) in THF (50 mL) was added by cannula the solution of sodium cyclopentadienide, immediately forming a deep purple colour, and was stirred for 2 h . The solvent was removed under reduced pressure, then crude mixture was dissolved in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$, washed with water $(4 \times 75 \mathrm{~mL})$ and again with saturated brine. The organic phase was dried over anhydrous MgSO_{4}, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (pentane), followed by recrystallisation (EtOH) to yield 4,6,8-trimethylazulene 442 ($854 \mathrm{mg}, 5.01 \mathrm{mmol}, 39 \%$) as deep purple plates; R_{f} 0.22 (pentane); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.67(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}), 7.37(2 \mathrm{H}, \mathrm{br}$ s, $5,7-\mathrm{CH})$, $7.08(2 \mathrm{H}, \mathrm{s}, 1,3-\mathrm{CH}), 2.90\left(6 \mathrm{H}, \mathrm{s}, 9,11-\mathrm{CH}_{3}\right), 2.67\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right)$.

Data in agreement with those previously reported. ${ }^{245}$

Diphenyl(4,6,8-trimethylazulen-2-yl)phosphine 451

The preparation of this compound was based on a method by Hansen. ${ }^{256}$ At $0^{\circ} \mathrm{C}$, to a stirred suspension of 2,4,6-trimethylpyrylium tetrafluoroborate 447 ($300 \mathrm{mg}, 1.42$ mmol, 1.00 eq.) in THF (10 mL) was added by cannula lithium (diphenylphosphinyl)cyclopentadienide 450 ($732 \mathrm{mg}, 2.84 \mathrm{mmol}, 2.00 \mathrm{eq}$.) in THF $(10 \mathrm{~mL})$, forming a deep blue/violet mixture, which was allowed to stir for 40 h before filtering through a silica plug, under atmosphere of argon. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($0 \rightarrow 4 \%$ EtOAc in petroleum ether) and recrystallisation (EtOH) to give diphenyl(4,6,8-trimethylazulen-2-yl)phosphine 451 (15 mg, 0.0423 mmol, 3.0%) as purple plates (m.p. $135-137{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.45$ (9:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47-7.41$ (4H, m, 14-CH), 7.35-7.32 (6H, m, $15,16-\mathrm{CH}), 7.20\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 3.1 \mathrm{~Hz}, 1,3-\mathrm{CH}\right), 7.03(2 \mathrm{H}, \mathrm{s}, \mathrm{J} 5,7-\mathrm{CH}), 2.75(6 \mathrm{H}, \mathrm{s}$, 9,11- CH_{3}), $2.60\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right) ; \delta \mathrm{P}\left(122 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-14.92$ (12-P); $v_{\text {max }}(\mathrm{film}) 3051$, 2980, 2967, 2926, 1578, 1537, 1466, 1433, 1372, 1333, 1291, 1217, 1185, 1141, 1109, 1084, 1023, 997, 909, 847, 806, 745, 721, 694, $627 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{P}+\mathrm{H}\right]^{+}, 355.1616$; found, 355.1631.
${ }^{13} \mathrm{C}-$ NMR spectrum not obtained due to insufficient quantity and stability of compound.

Diphenyl(4,6,8-trimethylazulen-2-yl)phosphine oxide 452

The preparation of this compound was based on a method by Hansen. ${ }^{256}$ At $0^{\circ} \mathrm{C}$, to a stirred solution of 2,4,6-trimethylpyrylium tetrafluoroborate $447(2.36 \mathrm{~g}, 11.2 \mathrm{mmol}$, 1.00 eq.) in THF (40 mL) was added by cannula a solution of lithium (diphenylphosphinyl)cyclopentadienide 450 ($5.76 \mathrm{~g}, 22.5 \mathrm{mmol}, 2.00$ eq.) in THF (40 mL). After stirring for 1 h , under an atmosphere of argon, the solution was filtered through a pad of silica, washing through with ethyl acetate (40 mL), and was concentrated under reduced pressure to give the crude diphenyl(4,6,8-trimethylazulen-2-yl)phosphine 451, which could not be completely purified by column chromatography ($0 \rightarrow 2 \%$ EtOAc in petroleum ether) or recrystallisation (EtOH). Thus, at $0{ }^{\circ} \mathrm{C}$, to a stirred solution of the impure diphenyl(4,6,8-trimethylazulen-2-yl)phosphine 451 ($1.06 \mathrm{~g},<2.98 \mathrm{mmol}, 1.00$ eq.) in THF (10 mL) was added hydrogen peroxide solution (35% wt. in $\mathrm{H}_{2} \mathrm{O}, 0.350 \mathrm{~mL}, 3.57 \mathrm{mmol}, 1.20$ eq.), and allowed to stir for 25 min , before the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq)}}$ ($10 \mathrm{wt} \%,$. mL) to quench excess hydrogen peroxide. The aqueous solution was extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(50 \rightarrow 100 \%$ EtOAc in petroleum ether) and recrystallisation (4:1 THF/hexane) to give diphenyl(4,6,8-trimethylazulen-2-yl)phosphine oxide 452 ($54 \mathrm{mg}, 0.145 \mathrm{mmol}, 1.3 \%$) as purple
plates (m.p. 181-183 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.20$ (EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81-7.73(4 \mathrm{H}, \mathrm{m}$, 14-CH), $7.56-7.41(6 \mathrm{H}, \mathrm{m}, 15,16-\mathrm{CH}), 7.54\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 5.5 \mathrm{~Hz}, 1,3-\mathrm{CH}\right), 7.11(2 \mathrm{H}, \mathrm{s}$, $5,7-\mathrm{CH}), 2.82\left(6 \mathrm{H}, \mathrm{s}, 9,11-\mathrm{CH}_{3}\right), 2.63\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right) ; \delta \mathrm{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 150.1$ (6C), 149.2 ($4,8-\mathrm{C}$), 136.3 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 14.0 \mathrm{~Hz}, 3 \mathrm{a}, 8 \mathrm{a}-\mathrm{C}$), 134.3 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 110.2 \mathrm{~Hz}, 2-\mathrm{C}$), 133.7 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 105.0 \mathrm{~Hz}, 13-\mathrm{C}$), $131.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}} 10.2 \mathrm{~Hz}, 14-\mathrm{C}\right), 131.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CP}} 2.8 \mathrm{~Hz}\right.$, $16-C), 128.3$ (5,7-C), 128.3 ($\left.d,{ }^{3} J_{\mathrm{CP}} 12.3 \mathrm{~Hz}, 15-\mathrm{C}\right), 120.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}, 1,3-\mathrm{C}\right)$, 29.0 (10-C), 25.2 (9,11-C); δ P ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 26.3 (12-P); $v_{\max (f i l m)}$ 3054, 2918, 2855, 1578, 1537, 1481, 1467, 1435, 1368, 1335, 1292, 1219, 1182, 1159, 1141, 1098, 1084, 1072, 1024, 940, 911, 845, 805, 745, 720, $694 \mathrm{~cm}^{-1}$; HRMS (ESI+) m/z calc for $\left[\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{OP}+\mathrm{H}\right]^{+}, 371.1564$; found, 371.1575 .

Diphenyl(4,6,8-trimethyl-1-(p-tolyl)azulen-2-yl)phosphine oxide 454

not isolated pure

The preparation of this compound was based on a method by Zhang. ${ }^{263}$ Under atmosphere of air, at r.t., to an aluminium foil-covered solution of crude diphenyl(4,6,8-trimethylazulen-2-yl)phosphine oxide 452 (100 mg, $\sim 0.270 \mathrm{mmol}$, 1.00 eq.) in THF (degassed by sparging with $\mathrm{N}_{2}, 10 \mathrm{~mL}$) was added portionwise N bromosuccinimide ($48 \mathrm{mg}, 0.270 \mathrm{mmol}, 1.00 \mathrm{eq}$.). After allowing to stir for 20 min , to the mixture was added sodium carbonate ($286 \mathrm{mg}, 2.70 \mathrm{mmol}, 10.0 \mathrm{eq}$.), p tolylboronic acid $(74 \mathrm{mg}, \quad 0.540$ mmol, 2.00 eq. $)$, tetrakis(triphenylphosphine)palladium ($31 \mathrm{mg}, 0.027 \mathrm{mmol}, 0.10 \mathrm{eq}$.) and water (3.0 mL), and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 18 h . After allowing it to cool, the mixture was diluted with water (25 mL) and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($50 \rightarrow 100 \%$ EtOAc in petroleum ether) to give diphenyl(4,6,8-trimethyl-1-(p-tolyl)azulen-2-yl)phosphine oxide 454, which coeluted with triphenylphosphine oxide (39 mg, $<0.0846 \mathrm{mmol},<31 \%$) as a dark blue solid; $\mathrm{R}_{f} 0.35$ (EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.70-7.63 (m), 7.57-7.42 (m), 7.41-7.38 $(2 \mathrm{H}, \mathrm{m}), 7.31-7.25(4 \mathrm{H}, \mathrm{m}), 7.04(1 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, \mathrm{s}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}), 6.73$
($2 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}$), $2.78(3 \mathrm{H}, \mathrm{s}), 2.58(3 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 2.23(3 \mathrm{H}, \mathrm{s}) ; \delta \mathrm{p}(122 \mathrm{MHz}$, CDCl_{3}) 24.7; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{OP}+\mathrm{H}^{+}, 461.2034\right.$; found, 461.2020.

Boranyldiphenyl(4,6,8-trimethylazulen-2-yl)phosphine 455

The preparation of this compound was based on a method by Hansen. ${ }^{256}$ At $0{ }^{\circ} \mathrm{C}$, to a suspension of 2,4,6-trimethylpyrylium tetrafluoroborate $447(1.10 \mathrm{~g}, 5.23 \mathrm{mmol}$, 1.00 eq.) in THF (30 mL) was added a solution of lithium (diphenylphosphinyl)cyclopentadienide $450(2.68 \mathrm{~g}, 10.5 \mathrm{mmol}, 2.00 \mathrm{eq}$) in THF (30 mL). After stirring at $0^{\circ} \mathrm{C}$ for 1 h , the mixture was filtered through a pad of neutral alumina under atmosphere of argon. To the stirred filtrate, at r.t., was slowly added a solution of borane-THF complex ($11.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 2.10 eq.). After stirring for 16 h , the reaction was quenched by the addition of methanol (10 mL). The solution was then concentrated under reduced pressure to a small volume, and added to ethyl acetate $(60 \mathrm{~mL})$. The solution was washed with water $(3 \times 50 \mathrm{~mL})$ and with saturated brine, and the organic layer was dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography ($0 \rightarrow 10 \%$ EtOAc in petroleum ether) to give boranyldiphenyl(4,6,8-trimethylazulen-2-yl)phosphine 455 (228 $\mathrm{mg}, 0.621$ $\mathrm{mmol}, 12 \%$) as a purple solid (m.p. $148-150{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.53$ (3:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.73-7.66 (4H, m, 14-CH), 7.51-7.41 (6H, m, $15,16-\mathrm{CH}), 7.46\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 5.1 \mathrm{~Hz}, 1,3-\mathrm{CH}\right), 7.12(2 \mathrm{H}, \mathrm{s}, 5,7-\mathrm{CH}), 2.83(6 \mathrm{H}, \mathrm{s}, 9,11-$ $\left.\mathrm{CH}_{3}\right), 2.65\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{br} \mathrm{d}, 17-\mathrm{BH}_{3}\right) ; \delta \mathrm{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.7(6-\mathrm{C})$, 148.7 (4,8-C), 136.5 ($\left.\mathrm{d},{ }^{3} J_{\mathrm{CP}} 11.5 \mathrm{~Hz}, 3 \mathrm{a}, 8 \mathrm{a}-\mathrm{C}\right), 133.0$ (d, $\left.{ }^{2} J_{\mathrm{CP}} 9.9 \mathrm{~Hz}, 14-\mathrm{C}\right), 131.1$
(d, $\left.{ }^{1} J_{\mathrm{CP}} 62.7 \mathrm{~Hz}, 2-\mathrm{C}\right), 130.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CP}} 2.5 \mathrm{~Hz}, 16-\mathrm{C}\right), 130.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 58.9 \mathrm{~Hz}, 13-\mathrm{C}\right)$, 128.5 (d, $\left.{ }^{3} J_{\mathrm{CP}} 10.2 \mathrm{~Hz}, 15-\mathrm{C}\right), 128.3$ (d, $\left.{ }^{5} \mathrm{~J}_{\mathrm{CP}} 1.2 \mathrm{~Hz}, 5,7-\mathrm{C}\right), 120.8$ (d, ${ }^{2} J_{\mathrm{CP}} 10.5 \mathrm{~Hz}$, 1,3-С), 29.0 (10-С), 25.2 ($9,11-\mathrm{C}$); бр ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 12.38-11.65 (m, 12-Р); бв (96 MHz, CDCl ${ }_{3}$) -34.5 (17-B); $v_{\text {max }}(f i l m) 3675,2987,2971,2901,2380\left(v_{B H}\right)$, , 1578, 1537, 1483, 1468, 1435, 1408, 1394, 1377, 1333, 1290, 1218, 1187, 1140, 1102, 1027, 1066, 907, 882, 847, 809, 797, 766, 740, $690 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BP}+\mathrm{Na}\right]^{+}, 391.1763$; found, 391.1796.

4-Methoxy-2,6-dimethylpyrylium tetrafluoroborate 458

The preparation of this compound was based on a method by Hansen. ${ }^{256}$ At r.t., to 2,6-dimethyl- γ-pyrone 460 ($1.00 \mathrm{~g}, 8.06 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added dimethyl sulfate ($1.20 \mathrm{~mL}, 12.7 \mathrm{mmol}, 1.57$ eq.), and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h . The mixture was then cooled to $-5^{\circ} \mathrm{C}$, and to it was slowly added $\mathrm{HBF}_{4(\mathrm{aq})}(50 \mathrm{wt} . \%$, $1.45 \mathrm{~mL}, 8.20 \mathrm{mmol}, 1.01$ eq.) and stirred for 2 h . The mixture was allowed to warm to r.t., and to it was added tert-butyl methyl ether (1.00 mL), stirring for another 1 h . The solid product was collected by filtration, washing with DCM, to give 4-methoxy-2,6-dimethylpyrylium tetrafluoroborate 458 ($361 \mathrm{mg}, 1.60 \mathrm{mmol}, 20 \%$) as an off-white solid; $\delta н\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 6.08(2 \mathrm{H}, \mathrm{s}, 3,5-\mathrm{CH}), 3.16\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 2.23(6 \mathrm{H}, \mathrm{s}$, $\left.7,8-\mathrm{CH}_{3}\right)$; дв ($96 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) 1.94 (10-B).

Compound 458 has previously been reported in the literature, but without accompanying NMR data.

6-Methoxy-4,8-dimethylazulene 459

The preparation of this compound was based on a method by Hansen. ${ }^{256}$ At r.t., to a 2-neck round bottom flask charged with THF (2.0 mL) was added sodium cyclopentadienide 441 (2.0 M in THF, $2.65 \mathrm{~mL} .5 .31 \mathrm{mmol}, 4.00 \mathrm{eq}$.). At $-5{ }^{\circ} \mathrm{C}$, to this stirred solution was added portionwise 4-methoxy-2,6-dimethylpyrylium tetrafluoroborate 458 ($300 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.00$ eq.), instantly forming a magenta solution, which was then allowed to warm to r.t. and then stirred at $68{ }^{\circ} \mathrm{C}$ for 17 h . After allowing it to cool to r.t., the reaction mixture was poured over crushed ice. The aqueous mixture was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$), and the combined organic extracts were washed with saturated brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $(0 \rightarrow 1 \%$ EtOAc in petroleum ether) to give 6-methoxy-4,8-dimethylazulene 459 ($97 \mathrm{mg}, 0.521 \mathrm{mmol}, 39 \%$) as a magenta solid; $\mathrm{R}_{f} 0.48$ (9:1 petroleum ether/EtOAc); $\delta \mathrm{H}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.54(1 \mathrm{H}, \mathrm{t}$, J $3.9 \mathrm{~Hz}, 2-\mathrm{CH}$), 7.37 (2H, d, J $3.9 \mathrm{~Hz}, 1,3-\mathrm{CH}$), 6.81 (2H, s, 5,7-CH), 3.96 (3H, s, $\left.10-\mathrm{CH}_{3}\right), 2.91\left(6 \mathrm{H}, \mathrm{s}, 9,11-\mathrm{CH}_{3}\right)$.

Data in agreement with those previously reported. ${ }^{256}$

(6-Methoxy-4,8-dimethylazulen-2-yl)diphenylphosphine oxide 462

The preparation of this compound was based on a method by Hansen. ${ }^{256} \mathrm{At}-5^{\circ} \mathrm{C}$, to a stirred solution of lithium (diphenylphosphinyl)cyclopentadienide 450 ($1.36 \mathrm{~g}, 5.31$ mmol, 4.00 eq.) in THF (5.0 mL) was added portionwise 4-methoxy-2,6dimethylpyrylium tetrafluoroborate 458 ($300 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , and the$ mixture was stirred at $-5{ }^{\circ} \mathrm{C}$ for 20 min , changing in colour to deep purple. The mixture was then stirred at $60{ }^{\circ} \mathrm{C}$ for 15 h , and then allowed to cool to r.t., and poured onto crushed ice. The aqueous mixture was extracted with ethyl acetate ($2 \times$ 50 mL), and the combined organic extracts were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give crude (6-methoxy-4,8-dimethylazulen-2-yl)diphenylphosphine 461, which could not be completely purified by column chromatography ($0 \rightarrow 1 \%$ EtOAc in petroleum ether). Thus, at r.t., to a stirred solution of the impure (6-methoxy-4,8-dimethylazulen-2yl)diphenylphosphine 461 ($93 \mathrm{mg},<0.251 \mathrm{mmol}, 1.00$ eq.) in THF (2.0 mL) was added hydrogen peroxide (35 wt . \% in $\mathrm{H}_{2} \mathrm{O}, 120 \mu \mathrm{~L}, 1.26 \mathrm{mmol}, 5.00$ eq.), and the mixture was allowed to stir for 2 h . The reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{qq)}}$ ($10 \mathrm{wt} . \%$ in $\mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{~mL}$), and to this was added ethyl acetate $(20 \mathrm{~mL})$, and the phases were separated. The organic layer was washed with water (3×10 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column
chromatography ($0 \rightarrow 2 \% \mathrm{MeOH}$ in DCM) to give (6-methoxy-4,8-dimethylazulen-2yl)diphenylphosphine oxide 462 ($11 \mathrm{mg}, 0.0285 \mathrm{mmol}, 2.1 \%$ overall) as a red/purple solid (m.p. $180-183{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.26$ (19:1 DCM/MeOH); $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.79-7.74 ($4 \mathrm{H}, \mathrm{m}, 14-\mathrm{CH}$), 7.53-7.49 (2H, m, 16-CH), $7.50\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 5.4 \mathrm{~Hz}, 1,3-\mathrm{CH}\right), 7.46-$ $7.43(4 \mathrm{H}, \mathrm{m}, 15-\mathrm{CH}), 6.79(2 \mathrm{H}, \mathrm{s}, 5,7-\mathrm{CH}), 3.96\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 2.81(6 \mathrm{H}, \mathrm{s}, 9,11-$ CH_{3}); $\delta \mathrm{c}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.9$ (6-C), 149.9 (4,8-C), 134.3 (d, ${ }^{1} \mathrm{~J}_{\mathrm{CP}} 104.8 \mathrm{~Hz}, 13-$ C), 133.8 ($\mathrm{d},{ }^{3} J_{\mathrm{CP}} 14.3 \mathrm{~Hz}, 3 \mathrm{a}, 8 \mathrm{a}-\mathrm{C}$), 131.9 ($\mathrm{d},{ }^{2} J_{\mathrm{CP}} 10.4 \mathrm{~Hz}, 14-\mathrm{C}$), $131.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}\right.$ $112.2 \mathrm{~Hz}, 2-\mathrm{C}), 131.4\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CP}} 2.8 \mathrm{~Hz}, 16-\mathrm{C}\right) 128.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 12.0 \mathrm{~Hz}, 15-\mathrm{C}\right), 121.1$ (d, $\left.{ }^{2} J_{\mathrm{CP}} 12.3 \mathrm{~Hz}, 1,3-\mathrm{C}\right), 113.9$ (5,7-C), 55.9 (10-C), 25.6 ($9,11-\mathrm{C}$); $\delta \mathrm{P}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 25.1 (12-P); $v_{\max }($ film $) 3071,2999,2918,2850,1581,1556,1526,1483,1461,1454$, 1436, 1357, 1337, 1294, 1262, 1217, 1173, 1132, 1113, 1097, 1083, 1062, 1026, 997, 965, 928, 908, 885, 836, 812, 741, 720, $693 \mathrm{~cm}^{-1}$; HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}+\mathrm{Na}\right]^{+}, 409.1328$; found, 409.1347.

Boranyldiphenyl(6-methoxy-4,8-dimethylazulen-2-yl)phosphine 463

The preparation of this compound was based on a method by Hansen..256 At $-5^{\circ} \mathrm{C}$, to a stirred solution of lithium (diphenylphosphinyl)cyclopentadienide $450(1.36 \mathrm{~g}, 5.31$ mmol, 4.00 eq.) in THF (5.0 mL) was added portionwise 4-methoxy-2,6dimethylpyrylium tetrafluoroborate 458 ($300 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.00$ eq.), immediately changing in colour to deep purple. The mixture was then stirred at $60{ }^{\circ} \mathrm{C}$ for 17 h , allowed to cool to r.t., and then was poured onto crushed ice. The aqueous mixture was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$), and the combined organic extracts were washed with saturated brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude diphenyl(6-methoxy-4,8-dimethylazulen-2-yl)phosphine 461 as a thick brown oil. Under atmosphere of N_{2}, at $0{ }^{\circ} \mathrm{C}$, to a solution of the crude diphenyl(6-methoxy-4,8-dimethylazulen-2-yl)phosphine 461 in THF (20 mL) was added borane (1.0 M in hexanes, $5.50 \mathrm{~mL}, 5.50 \mathrm{mmol}, 4.13 \mathrm{eq}$.), and the mixture was allowed to warm to r.t. and stirred for 1 h . To the mixture was then added more borane (1.0 M in hexanes, $1.40 \mathrm{~mL}, 1.40 \mathrm{mmol}, 1.05 \mathrm{eq}$.), and stirred for 17 h . The reaction was quenched by the addition of $\mathrm{MeOH}(10 \mathrm{~mL})$, and the solution was concentrated under reduced pressure. The residue was dissolved in ethyl acetate (100 mL), washed with water (100 mL) and with saturated brine, and the organic layer was dried over anhydrous
MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude product, on which was purification was attempted by column chromatography ($0 \rightarrow 20 \%$ EtOAc in petroleum ether) and recrystallisation (EtOH) to give impure boranyldiphenyl(6-methoxy-4,8-dimethylazulen-2-yl)phosphine 463 (69 $\mathrm{mg},<0.180 \mathrm{mmol},<14 \%$) as a red/maroon solid (m.p. 99-103 ${ }^{\circ} \mathrm{C}$ (dec.)); $\mathrm{R}_{f} 0.24$ (4:1 petroleum ether/EtOAc); $\delta н\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.78-7.57 (m), 7.50-7.40 (m), 7.42 $\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 5.1 \mathrm{~Hz}, 1,3-\mathrm{CH}\right), 6.79(2 \mathrm{H}, \mathrm{s}, 5,7-\mathrm{CH}), 3.95\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 2.80(6 \mathrm{H}, \mathrm{s}$, 9,11- CH_{3}); δ Р ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 13.6-10.5 (m, 12-P); $\delta в ~(96 ~ M H z, ~ C D C l ~ 3) ~ 35.1 ~(17-B) ; ~$ HRMS (ESI+) m / z calc for $\left[\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BOP}+\mathrm{Na}\right]^{+}, 407.1707$; found, 407.1715 .

1-methyl-2,4,6-collidinium iodide 465

The preparation of this compound was based on a method by Tang. ${ }^{265}$ At $0{ }^{\circ} \mathrm{C}$, to a solution of 2,4,6-collidine 464 ($1.32 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in DCM (10 mL) was added dropwise methyl iodide ($1.00 \mathrm{~mL}, 16.0 \mathrm{mmol}, 1.60 \mathrm{eq}$.). The mixture was allowed to warm to r.t. and stirred for 16 h , forming an off white precipitate. The precipitate was collected by filtration, and purified by recrystallisation (MeOH) to give 1-methyl-2,4,6-collidinium iodide 465 ($159 \mathrm{mg}, 0.604 \mathrm{mmol}, 6.0 \%$) as a white needlelike solid. The two mother liquors were combined, concentrated under reduced pressure, and purified by recrystallisation to give a $2^{\text {nd }}$ crop of 1-methyl-2,4,6collidinium iodide 465 ($101 \mathrm{mg}, 0.383 \mathrm{mmol}, 3.8 \%$) as an off-white, needle-like solid. The mother liquor from the $2^{\text {nd }}$ recrystallation was allowed to concentrate at atmospheric pressure to give a $3^{\text {rd }}$ crop of 1-methyl-2,4,6-collidinium iodide 465 (157 $\mathrm{mg}, 0.600 \mathrm{mmol}, 6.0 \%$) as a pink-tinted crystalline solid; $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.55$ $(2 \mathrm{H}, \mathrm{s}), 4.00(3 \mathrm{H}, \mathrm{s}), 2.73(6 \mathrm{H}, \mathrm{s}), 2.50(3 \mathrm{H}, \mathrm{s})$.

Data in agreement with those previously reported. ${ }^{265}$

(\pm)-8,8'-dimethoxy-1,1'-biazulene-2,2'-diyl hydrogenphosphate 478

The preparation of this compound was based on methods by Ito ${ }^{194}$ and MacMillan. ${ }^{275}$ Under atmosphere of air, at $0^{\circ} \mathrm{C}$, to phosphorus pentoxide (800 mg) was added $\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq)}}(85 \mathrm{wt} . \%, 1.20 \mathrm{~mL})$. The mixture was then stirred at $95{ }^{\circ} \mathrm{C}$, and to it was added (\pm)-3,3'-diethyl 2,2'-dihydroxy-8,8'-dimethoxy-[1, 1'-biazulene]-3,3'dicarboxylate 370 ($200 \mathrm{mg}, 0.408 \mathrm{mmol}, 1.00 \mathrm{eq}$.), stirred for 1 h , and then allowed to cool to r.t. To the resultant slurry was slowly added water (20 mL), and extracted with DCM $(2 \times 20 \mathrm{~mL})$. The organic extracts were combined and washed with water $(3 \times 20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure to give the crude intermediate mixture as a maroon oil. Under atmosphere of N_{2}, at r.t., to a stirred solution of the crude diol in pyridine (1.50 mL) was added dropwise phosphoryl chloride ($80 \mu \mathrm{~L}, 0.816 \mathrm{mmol}, 2.00 \mathrm{eq}$.), forming a dark brown precipitate. The mixture was stirred for 15 min , and to it was added water (5.0 mL), and allowed to stir for another 10 min . The mixture was diluted with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 30 \mathrm{~mL})$, extracted with DCM (30 mL), and extracted with EtOAc (25 $\mathrm{mL})$. The aqueous layer was allowed to concentrate at atmospheric pressure. To the resultant burgundy residue was added $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$, and the solution was filtered through a pad of silica. The filtrate was concentrated under reduced pressure to give
(\pm)-8,8'-dimethoxy-1,1'-biazulene-2,2'-diyl hydrogenphosphate 478 (20 mg, 0.0480 mmol, 12\%) as a burgundy solid; $\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3 \mathrm{~Hz}), 7.49$ (2 H , ddd, J $11.0 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$), $7.41(2 \mathrm{H}, \mathrm{s}), 6.96(2 \mathrm{H}, \mathrm{t}, J 9.6 \mathrm{~Hz}), 6.78(2 \mathrm{H}, \mathrm{d}$, $J 11.0 \mathrm{~Hz}), 3.55(6 \mathrm{H}, \mathrm{s})$.

General method: tert-Butyl (1S*,2S*,4S*)-bicyclo[2.2.1]hept-5-ene-2-carboxylate endo-480 and tert-Butyl ($1 S^{*}, 2 R^{*}, 4 S^{*}$)-bicyclo[2.2.1]hept-5-ene-2-carboxylate exo-480

The preparation of this compound was based on methods by Harada ${ }^{139}$ and Wulff. ${ }^{276}$ At r.t., to a stirred solution of the chosen ligand in DCM (1.0 mL) was slowly added titanium tetrachloride (1.0 M in DCM), and the mixture was allowed to stir for 30 min . The mixture was then either cooled to $-20^{\circ} \mathrm{C}$ or left at r .t. To the mixture was added tert-butyl acrylate 479 (1.00 eq.), and the mixture was stirred for 15 min , before cyclopentadiene 242 (5.00 eq.) was added, and the mixture was stirred for 22 h . The reaction was quenched by adding saturated brine (1.0 mL), then the mixture was allowed to warm to r.t. and diluted with DCM $(20 \mathrm{~mL})$. The organic layer was washed with water (10 mL), dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography $\left(0 \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentane) to give a mixture of tert-butyl (1S*,2S*,4S*)-bicyclo[2.2.1]hept-5-ene-2-carboxylate (endo-480) and tert-butyl $\left(1 S^{*}, 2 R^{*}, 4 S^{*}\right)$-bicyclo[2.2.1]hept-5-ene-2-carboxylate (exo-480) as a pale yellow oil; $\mathrm{R}_{f} 0.56$ ($9: 1$ pentane/ $\mathrm{Et}_{2} \mathrm{O}$).
tert-Butyl (1S*,2S*,4S*)-bicyclo[2.2.1]hept-5-ene-2-carboxylate (endo-480): Chiral GC retention times, 27.50 min and $27.70 \mathrm{~min} ; \delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.18(1 \mathrm{H}$, dd, J $5.7 \mathrm{~Hz}, 3.1 \mathrm{~Hz}), 5.93(1 \mathrm{H}, \mathrm{dd}, J 5.7 \mathrm{~Hz}, 2.8 \mathrm{~Hz}), 3.17-3.15(1 \mathrm{H}, \mathrm{m}), 2.88-2.85(2 \mathrm{H}$,
m), 1.83 (1H, ddd, J $11.7 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 3.7 \mathrm{~Hz}$), 1.41 ($9 \mathrm{H}, \mathrm{s}$), 1.40-1.36 (2H, m), 1.25 (1H, d, J 8.1 Hz).

Data in agreement with those previously reported. ${ }^{283}$

4. REFERENCES

1. McConathy, J.; Owens, M. J., Primary Care Companion J. Clin. Psychiatry 2003, 5, 70-73.
2. Owens, M. J.; Rosenbaum, J. F., CNS Spectr. 2002, 7, 34-39.
3. Brenna, E.; Fuganti, C.; Serra, S., Tetrahedron: Asymmetry 2003, 14, 1-42.
4. Bentley, R., Chem. Rev. 2006, 106, 4099-4112.
5. Enders, D.; Backes, M., Tetrahedron: Asymmetry 2004, 15, 1813-1817.
6. Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R., Tetrahedron Lett. 1966, 7(43), 5239.
7. Gillard, R. D.; Wilkinson, G.; Osborn, J. A.; Stockwell, P. B., Proc. Chem. Soc. (London) 1964, 284-285.
8. Young, J. F.; Osborn, J. A.; Jardine, F. H.; Wilkinson, G., Chem. Commun. 1965, (7), 131-132.
9. Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G., J. Chem. Soc. A 1966, (12), 1711-1732.
10. Osborn, J. A.; Wilkinson, G.; Young, J. F., Chem. Commun. 1965, (2), 17.
11. Evans, D.; Osborn, J.; Wilkinson, G., J. Chem. Soc. A 1968, (12), 3133-3142.
12. Chabala, J. C.; Mrozik, H.; Tolman, R. L.; Eskola, P.; Lusi, A.; Peterson, L. H.; Woods, M. F.; Fisher, M. H., J. Med. Chem. 1980, 23, 1134-1136.
13. Mohammadi, N. A.; Rempel, G. L., Macromolecules 1987, 20, 2363-2368.
14. Azpeitia, S.; Fernández, B.; Garralda, M. A.; Huertos, M. A., Eur. J. Inorg. Chem. 2016, 2891-2895.
15.Buter, J.; Heijnen, D.; Wan, I. C.; Bickelhaupt, F. M.; Young, D. C.; Otten, E.; Moody, D. B.; Minnaard, A. J., J. Org. Chem. 2016, 81, 6686-6696.
15. Knowles, W. S.; Sabacky, M. J., Chem. Commun. 1968, (22), 1445-1446.
16. Horner, L.; Buthe, H.; Siegel, H., Tetrahedron Lett. 1968, 9(37), 4023-4026.
17. Morrison, J.; Burnett, R. E.; Aguiar, A. M.; Morrow, C. J.; Phillips, C., J. Am. Chem. Soc. 1971, 93(5), 1301-1303.
18. Dang, T. P.; Kagan, H. B., J. Chem. Soc. D 1971, (10), 481.
19. Kagan, H. B.; Dang, T. P., J. Am. Chem. Soc. 1972, 94 (18), 6429-6433.
21.Knowles, W. S.; Vineyard, B. D.; Sabacky, M. J., Chem. Commun. 1972, (1), 10-11.
20. Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D.; Weinkauff, D. J., J. Am. Chem. Soc. 1975, 97(9), 2567-2568.
21. Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J., J. Am. Chem. Soc. 1977, 99(18), 5946-5952.
22. Knowles, W. S., Adv. Synth. Catal. 2003, 345(1-2), 3-13.
23. Koenig, K. E.; Sabacky, M. J.; Bachman, G. L.; Christopfel, W. C.; Barnstorff, H. D.; Friedman, R. B.; Knowles, W. S.; Stults, B. R.; Vineyard, B. D.; Weinkauff, D. J., Ann. N. Y. Acad. Sci. 1980, 333(1), 16-22.
24. Zhang, W.; Chi, Y.; Zhang, X., Acc. Chem. Res. 2007, 40, 1278-1290.
25. Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumu, K.; Ito, T.; Souchi, T.; Noyori, R., J. Am. Chem. Soc. 1980, 102(27), 7932-7934.
26. Tamao, K.; Yamamoto, H.; Matsumoto, H.; Miyake, N.; Hayashi, T.; Kumada, M., Tetrahedron Lett. 1977, 18(16), 1389-1392.
27. Grubbs, R. H.; DeVries, R. A., Tetrahedron Lett. 1977, 18(22), 1879-1880.
28. Miyashita, A.; Takaya, H.; Souchi, T.; Noyori, R., Tetrahedron 1984, 40(8), 1245-1253.
29. Noyori, R.; Ohta, M.; Hsiao, Y.; Kitamura, M.; Ohta, T.; Takaya, H., J. Am. Chem. Soc. 1986, 108 (22), 7117-7119.
30. Fodale, V.; Santamaria, L. B., Eur. J. Anaesthesiol. 2002, 19(7), 466-473.
31. Gesell, A.; Rolf, M.; Ziegler, J.; Díaz Chavez, M. L.; Huang, F-C.; Kutchan, T. M., J. Biol. Chem. 2009, 284(36), 24432-24442.
34.Takaya, H.; Ohta, T.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Inoue, S.; Kasahara, I.; Noyori, R., J. Am. Chem. Soc. 1987, 109(5), 1596-1597.
32. Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R., J. Org. Chem. 1987, 52(14), 3174-3176.
33. Harrison, I. T.; Lewis, B.; Nelson, P.; Rooks, W.; Roszowski, A.; Tomolonis, A.; Fried, J. H., J. Med. Chem. 1970, 13, 203-205.
34. Nishi, T.; Kitamura, M.; Ohkuma, T.; Noyori, R., Tetrahedron Lett. 1988, 29(48), 6327-6330.
35. Ohkuma. T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori. R., J. Am. Chem. Soc. 1995, 117, 2675-2676.
36. Ohkuma. T.; Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori. R., J. Org. Chem. 1996, 61, 4872-4873.
37. Ohkuma. T.; Ikehira, H.; Ikariya, T.; Noyori. R., Synlett 1997, 467-468.
38. Ohkuma. T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R., J. Am. Chem. Soc. 1998, 120, 13529-13530.
42.Tani, K.; Yamagata, T.; Akutagawa, S.; Kumobayashi, H.; Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R.; Otsuka, S., J. Am. Chem. Soc. 1984, 106, 5208-5217.
39. Noyori, R., Angew. Chem. Int. Ed. 2002, 41, 2008-2022.
40. Ohrai, K.; Kondo, K.; Sodeoka, M.; Shibasaki, M., J. Am. Chem. Soc. 1994, 116, 11737-11748.
41. Coya, E.; Sotomayor. N.; Lete, E., Adv. Synth. Catal. 2015, 357, 3206-3214.
42. Noyori, R.; Takaya, H., Acc. Chem. Res. 1990, 23, 345-350.
43. Akutagawa, S., App. Catal., A. 1995, 128, 171-207.
44. Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M., Synthesis, 2007, (9), 1279-1300.
45. Knowles, W. S., Acc. Chem. Res. 1983, 16 (3), 106-112.
46. Svensson, G.; Albertsson, J.; Frejd, T.; Klingstedt, T., Acta Cryst. C. 1986, 42, 1324-1327.
47. Schmid, R.; Cereghetti, M.; Heiser, B.; Schönholzer, P.; Hansen, H.-J., Helv. Chim. Acta 1988, 71, 897-929
48. Frejd, T.; Klingstedt, T., Acta Chem. Scand. 1989, 43, 670-675.
49. Heiser, B.; Broger, E. A.; Crameri, Y., Tetrahedron: Asymmetry 1991, 2(1), 51-62.
50. Mezzetti, A.; Tschumper, A.; Consiglio, G., J. Chem. Soc. Dalton Trans. 1995, 49-56.
51. Chakrapani, H.; Liu, C.; Widenhoefer, R. A., Org. Lett. 2003, 5(2), 157-159.
52. Schmid, R.; Foricher, J.; Cereghetti, M.; Schönholzer, P., Helv. Chem. Acta 1991, 74, 370-389.
53. Genêt, J.-P.; Ratovelomanana-Vidal, V.; Caño de Andrade, M. C.; Pfister, X.; Guerreiro, P.; Lenoir, J. Y., Tetrahedron Lett. 1995, 36(27), 4801-4804.
58.Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G., J. Am. Chem. Soc. 2003, 125, 10536-10537.
54. Wang, D.-W.; Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.; Li, Y.-X., J. Org. Chem. 2009, 74, 2780-2787.
55. Zhang, X.; Mashima, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Takaya, H., Tetrahedron Lett. 1991, 32(49), 7283-7286.
61.Zhang, X.; Mashima, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Takaya, H., J. Chem. Soc. Perkin Trans. 1. 1994, 2309-2322.
56. Toriumi, K.; Ito, T.; Takaya, H.; Souchi, T.: Noyori, R., Acta Cryst. B. 1982, 38, 807-812.
57. Zhang, X.; Taketomi, T.; Yoshizumi, T.; Kumobayashi, H.; Akutagawa, S.; Mashima, K.; Takaya, H., J. Am. Chem. Soc. 1993, 115, 3318-3319.
64.Uemura, T.; Zhang, X.; Matsumura, K.; Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki, K.; Takaya, H., J. Org. Chem. 1996, 61, 5510-5516.
65.Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X., J. Am. Chem. Soc. 2010, 132, 8909-8911.
58. Wang, D.-S.; Zhou, Y.-G., Tetrahedron Lett. 2010, 51, 3014.
59. Tanaka, K.; Nishida, G.; Ogino, M.; Hirano, M.; Noguchi, K., Org. Lett. 2005, 7(14), 3119-3121.
60. Tanaka, K.; Shirasaka, K., Org. Lett. 2003, 5(24), 4697-4699.
61. Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H., Adv. Synth. Catal. 2001, 343, 264-267.
62. Chen, G.; Tokunaga, N.; Hayashi, T., Org. Lett. 2005, 7(11), 2285-2288.
71.Wada, A.; Noguchi, K.; Hirano, M.; Tanaka, K., Org. Lett. 2007, 9(7), 12951298.
63. Nishida, G.; Ogaki, S.; Yusa, Y.; Yokozawa, T.; Noguchi, K.; Tanaka, K., Org. Lett. 2008, 10(13), 2849-2852.
64. Pai, C.-C.; Li, Y.-M.; Zhou, Z.-Y.; Chan, A. S. C., Tetrahedron Lett. 2002, 2789-2792.
74.de Paule, S. D.; Jeulin, S., Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P., Tetrahedron Lett. 2003, 44, 823-826.
65. Sun, Y.; Wan, X.; Guo, M.; Wang, D.; Dong, X.; Pan, Y.; Zhang, Z., Tetrahedron: Asymmetry 2004, 15, 2185-2188.
66. Yang, M.; Zhang, X.; Lu, X., Org. Lett. 2007, 9(24), 5131-5133.
77.Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X., J. Org. Chem. 2000, 65, 62236226.
67. Wu, S.; Wang, W.; Tang, W.; Lin, M.; Zhang, X., Org. Lett. 2002, 4(25), 44954497.
68. Raghunath, M.; Zhang, X., Tetrahedron Lett. 2005, 46, 8213-8216.
69. Trost, B. M.; Van Vranken, D. L.; Bingel, C., J. Am. Chem. Soc. 1992, 114, 9327-9343.
70. Trost, B. M., Acc. Chem. Res. 1996, 29(8), 355-364.
71. Trost, B. M.; Zambrano, J. L., Richter, W., Synlett 2001, 907-909.
72. Larksarp, C.; Alper, H., J. Am. Chem. Soc. 1997, 119, 3709-3715.
84.Zhou, X.-Y.; Wang, D.-S.; Bao, M.; Zhou, Y.-G., Tetrahedron Lett. 2011, 52, 2826-2829.
73. Huang, K.; Guan, Z.-H.; Zhang, X., Tetrahedron Lett. 2014, 55, 1686-1688.
74. Zhang, C.-X.; Hu, Y.-H.; Chen, C.-F.; Fang, Q.; Yang, L.-Y.; Lu, Y.-B.; Xie, L.-J.; Wu, J.; Li, S.; Fang, W., Chem. Sci. 2016, 7, 4594.
87.Vidal-Ferran, A.; Mon, I.; Bauzá, A.; Frontera, A.; Rovira, L., Chem. Eur. J. 2015, 21, 11417-11426.
75. Burk, M. J.; Feaster, J. E.; Harlow, R. L., Organometallics 1990, 2653-2655.
76. Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L., J. Am. Chem. Soc. 1993, 115, 10125-10138.
90.Mashima, K.; Kusano, K.-H.; Sato, N.; Matsumura, Y.; Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya, H., J. Org. Chem. 1994, 59, 3064-3076.
77. Inoue, S.; Osada, M.; Koyano, K.; Takaya, H.; Noyori, R., Chem. Lett. 1985, 1007-1008.
78. Miyashita, A.; Karino, H.; Shimamura, J.; Chiba, T.; Nagano, K.; Nohira, H.; Takaya, H., Chem Lett. 1989, 1849-1852.
79. Chiba, T.; Miyashita, A.; Nohira, H., Tetrahedron Lett. 1993, 34(14), 23512354.
80. Yamamoto, N.; Murata, M.; Morimoto, M.; Achiwa, K., Chem. Pharm. Bull. 1991, 39(4), 1085-1087.
81. Yoshikawa, K.; Yamamoto, N.; Murata, M.; Awano, K.; Morimoto, T.; Achiwa, K., Tetrahedron: Asymmetry 1992, 3(1), 13-16.
96.Landis, C. R.; Halpern, J., J. Am. Chem. Soc. 1987, 109, 1746-1754.
82. Sakuraba, S.; Morimoto, T.; Achiwa, K., Tetrahedron: Asymmetry 1991, 2(7), 597-600.
83. Yamanoi, Y.; Imamoto, T., J. Org. Chem. 1998, 64, 2988-2989.
84. Imamoto, T.; Wanatabe, J.; Wada, Y.; Masuda, H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi, K., J. Am. Chem. Soc. 1998, 120, 1635.
85. Gridnev, I. D.; Yasutake, M.; Imamoto, T.; Beletskaya, I. P., Proc. Natl. Acad. Sci. 2004, 101(15), 5385-5390.
86. Tamura, K.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Imamoto, T., Org. Lett. 2010, 12(19), 4400-4403.
87. Shibata, T.; Tsurata, H.; Danjo, H.; Imamoto, T., J. Mol. Catal. A: Chem. 2003, 196, 117-124.
88. Kündig, E. P.; Bourdin, B.; Bernardinelli G., Angew. Chem. Int. Ed. Engl. 1994, 33(18), 1856-1858.
89. Olson, A. S.; Seitz, W. J.; Hossain, M. M., Tetrahedron Lett. 1991, 32(39), 5299-5302.
90. Bruin, M. E.; Kündig, E. P., Chem. Commun. 1998, 2635-2636.
91. Kündig, E. P.; Saudan, C. M.; Bernardinelli, G., Angew. Chem. Int. Ed. 2001, 38(9), 1219-1223.
92. Thamapipol, S.; Bernardinelli, G.; Besnard, C.; Kündig, E. P., Org. Lett. 2010, 5604-5607.
93. Murata, M.; Morimoto, T.; Achiwa, K., Synlett 1991, 827-829.
94. Andersen, N. G.; Parvez, M.; Keay, B. M., Org. Lett. 2000, 2(18), 28172820.
95. Andersen, N. G.; McDonald, R.; Keay, B. M., Tetrahedron: Asymmetry 2001, 12, 263-269.
96. Allen, D. W.; Taylor, B. F., J. Chem. Soc., Dalton Trans. 1982, 51-53.
97. Poon, D. J.; Overman, L. E., Angew. Chem. Int. Ed. Engl. 1997, 36(5), 518521.
98. Jeulin, S.; de Paule, S. D.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P., Angew. Chem. Int. Ed. 2004, 43, 320-325.
99. Jeulin, S.; de Paule, S. D.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P., Proc. Natl. Acad. Sci. 2004, 101(16), 5799-5804.
100. Wadamoto, M.; Yamamoto, H., J. Am. Chem. Soc. 2005, 127, 1455614557.
101. Pinto, A.; Jia, Y.; Neuville, L.; Zhu, J., Chem. Eur. J. 2007, 13, 961-967.
102. Ge, S.; Hartwig, J. F., J. Am. Chem. Soc. 2011, 133, 16330-16333.
103. Korenaga, T.; Osaki, K.; Maenishi, R.; Sakai, T., Org. Lett. 2009, 11(11), 2325-2328.
104. Korenaga, T.; Maenishi, R.; Hayashi, K.; Sakai, T., Adv. Synth. Catal. 2010, 352, 3247-3254.
105. Hu, S.-B.; Chen, Z.-P.; Zhou, J.; Zhou, Y.-G., Tetrahedron Lett. 2016, 57, 1925-1929.
106. Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E., J. Chem. Soc., Chem. Commun. 1995, 685-686.
107. Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E.; Demartin, F.; Pilati, T., J. Org. Chem. 1996, 61, 6244-6251.
108. Benincori, T.; Cesarotti, E.; Piccolo, O.; Sannicolò, F., J. Org. Chem. 2000, 65, 2043-2047.
109. Berens, U.; Brown, J. M.; Long, J.; Selke, R., Tetrahedron: Asymmetry 1996, 7(1), 285-292.
110. Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E.; Demartin, F.; Pilati, T.; Zotti, G., J. Organomet. Chem. 1997, 529, 445-453.
111. Ohta, T.; Takaya, H.; Noyori, R., Inorg. Chem. 1988, 27, 566-569.
112. Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T., Organometallics 1993, 12, 4188-4196.
113. Benincori, T.; Piccolo, O.; Rizzo, S.; Sannicolò, F., J. Org. Chem. 2000, 65, 8340-8347.
114. Noyori, R.; Tomino, I.; Tanimoto, Y., J. Am. Chem. Soc. 1979, 3129-3131.
115. Sakane, S.; Maruoka, K.; Yamamoto, H., Tetrahedron Lett. 1985, 26(45), 5535-5538.
116. Sakane, S.; Maruoka, K.; Yamamoto, H., Tetrahedron 1986, 42(8), 22032209.
117. Maruoka, K.; Hoshino, Y.; Shirasaka, T.; Yamamoto, H., Tetrahedron Lett. 1988, 29(32), 3967-3970.
118. Maruoka, K.; Itoh, T.; Shirasaka, T.; Yamamoto, T., J. Am. Chem. Soc. 1988, 110, 310-312.
119. Mikami, K.; Terada, M.; Nakai, T., J. Am. Chem. Soc. 1989, 111, 19401941.
120. Brunel, J. M., Chem. Rev. 2005, 105, 857-897.
121. Mikami, K.; Motoyama, Y.; Terada, M., Inorg. Chim. Acta 1994, 222, 71-75.
122. Harada, T.; Ueda, S.; Yoshida, T.; Inoue, A.; Takeuchi, M.; Ogawa, N.; Oku, A., J. Org. Chem. 1994, 59, 7575-7576.
123. Harada, T.; Yoshida, T.; Inoue, A.; Takeuchi, M.; Oku, A., Synlett 1995, 283-284.
124. Harada, T.; Takeuchi, M.; Hatsuda, M.; Ueda, S.; Oku, A., Tetrahedron: Asymmetry 1996, 7(9), 2479-2482.
125. Zhang, F.-Y.; Yip, C.-W.; Cao, R.; Chan, A. S. C., Tetrahedron: Asymmetry 1997, 8(4), 585-589.
126. Zhang, F.-Y.; Chan, A. S. C., Tetrahedron: Asymmetry 1997, 8(21), 36513655.
127. Zhang, F.-Y.; Yip, C.-W.; Chan, A. S. C., J. Am. Chem. Soc. 1997, 119, 4080-4081.
128. Shen, X.; Guo, H.; Ding, K., Tetrahedron: Asymmetry 2000, 11, 4321-4327.
129. Kim, J. G.; Camp, E. H.; Walsh, P. J., Org. Lett. 2006, 8(20), 4413-4416.
130. Huang, W.-C.; Liu, W.; Wu, X.-D.; Ying, J.; Pu, L., J. Org. Chem. 2015, 80, 11480-11484.
131. Zhang, L.; Tu, B.; Ge, M.; Li, Y.; Chen, L.; Wang, W.; Zhou, S., J. Org. Chem. 2015, 80, 8307-8313.
132. Long, J.; Hu, J.; Shen, X.; Ji, B.; Ding, K., J. Am. Chem. Soc. 2002, 124, 10-11.
133. Kinoshita, T.; Okada, S.; Park, S.-R.; Matsunaga, S.; Shibasaki, M., Angew. Chem. Int. Ed. 2003, 42, 4680-4684.
134. Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki, M., J. Am. Chem. Soc. 2004, 126, 7559-7570.
135. Brussee, J.; Jansen, A. C. A., Tetrahedron Lett. 1983, 24(31), 3261-3262.
136. Dongwai, C.; Hughes, D. L.; Verhoeven, T. R.; Reider, P. J.; van Rijn, R.; Smith, A. B., Org. Synth. 1999, 76, 1-3.
137. Dongwai, C.; Payack, J. F.; Bender, D. R.; Hughes, D. L.; Verhoeven, L. L.; Reider, P. J.; van Rijn, R.; Smith, A. B., Org. Synth. 1999, 76, 6-9.
138. Yoon, T. P.; Jacobsen, E. N., Science 2003, 299, 1691-1693.
139. Anderson, A. G.; Steckler, B. M., J. Am. Chem. Soc. 1959, 81(18), 49414946.
140. Liu, R. S. H., J. Chem. Educ. 2002, 79(2), 183-185.
141. Guarrera, M.; Turbino, L.; Rebora, A., J. Eur. Acad. Dermatol. Veneareol. 2001, 15, 486-496.
142. Tanaka, Y.; Shigenobu, K., Cardiovasc. Drug Rev. 2001, 19, 297-312.
143. Ikegai, K.; Imamura, M.; Suzuki, T.; Nakanishi, K.; Murakami, T.; Kurosaki, E.; Noda, A.; Kobayashi, Y.; Yokota, M.; Koide, T.; Kosakai, K.; Okhura, Y.;

Takeuchi, M.; Tomiyama, H.; Ohta, M., Bioorg. Med. Chem. 2013, 21, 39343948.
159. Asato, A. E.; Peng, A.; Hossain, M. Z.; Mirzadegan, T.; Bertram, J. S., J. Med. Chem. 1993, 36, 3137-3147.
160. Löber, S.; Hübner, H.; Buschauer, A.; Sanna, F.; Argiolas, A.; Melis, M. R.; Gmeiner, P., Bioorg. Med. Chem. Lett. 2012, 22, 7151-7154.
161. Peet, J.; Selyutina, A.; Bredihhin, A., Bioorg. Med. Chem. 2016, 24, 16531657.
162. Liu, R. S. H.; Asato, A. E., J. Photochem. Photobiol. C 2003, 4(3), 179-194.
163. Zhang, X.-H.; Li, C.; Wang, W.-B.; Cheng, X.-X.; Wang, X.-S.; Zhang, B.W., J. Mater. Chem. 2007, 17, 642-649.
164. Puodziukynaite, E.; Wang, H.-W.; Lawrence, J.; Wise, A. J.; Russell, T. P.; Barnes, M. D.; Emrick, T., J. Am. Chem. Soc. 2014, 136, 11043-11049.
165. Ito, S.; Morita, N., Eur. J. Org. Chem. 2009, 4567-4579.
166. Ghazvini Zadeh, E. H.; Tang, S.; Woodward, A. W.; Liu, T.; Bondar, M. V.; Belfield, K. D., J. Mater. Chem. C. 2015, 3, 8495-8503.
167. Murai, M.; Ku, S.-Y.; Treat, N. D.; Robb, M. J.; Chabinyc, M. L.; Hawker, C. J., Chem. Sci. 2014, 5, 3753-3760.
168. Dragu, E. A.; Ion, A. E.; Shova, S.; Bala, D.; Mihailciuc, C.; Voicescu, M.; Ionescu, S.; Nica, S., RSC Adv. 2015, 5, 63282-63286.
169. Wang, F.; Lin, T. T. He, C.; Chi, H.; Tang, T.; Lai, Y.-H., J. Mater. Chem., 2012, 22, 10448-10451.
170. Wabayashi, S.; Kato, Y.; Mochizuki, K.; Suzuki, R.; Matsumoto, M.; Sugihara, Y.; Shimizu, M., J. Org. Chem. 2007, 72, 744-749.
171. Son, Y.-A.; Gwon, S.-Y.; Kim, S.-H., Mol. Cryst. Liq. Cryst. 2014, 600, 189195.
172. Yamaguchi, Y.; Ogawa, K.; Nakayama, K.; Ohba, Y.; Katagiri, H., J. Am. Chem. Soc. 2013, 135, 19095-19098.
173. Yao, J.; Cai, Z.; Liu, Z.; Yu, C.; Luo, H.; Yang, Y.; Yang, S.; Zhang, G.; Zhang, D., Macromolecules 2015, 48, 2039-2047.
174. Gosavi, P. M.; Moroz, Y. S.; Korendovych, I. V., Chem. Commun. 2015, 51, 5347-5350.
175. Lash, T. D., Acc. Chem. Res. 2016, 49, 471-482.
176. Tajiri, A.; Fukuda, M.; Hatano, M.; Morita, T.; Takase, K., Angew. Chem. Int. Ed. 1983, 22(11), 870-871.
177. Chen, A. H.; Yen, H. H.; Kuo, Y. C.; Chen, W. Z., Synth. Commun. 2007, 37(17), 2975-2987.
178. Sigrist, R.; Hansen, H.-J., Helv. Chim. Acta. 2014, 97, 1165-1175.
179. Ostaszewski, R.; Hansen, H.-J., Heterocycles, 2015, 90(2), 1135-1141.
180. Asao, T.; Ito, S.; Morita, N., Tetrahedron Lett. 1989, 30(48), 6693-6696.
181. Ito, S.; Kubo, T.; Morita, N.; Matsui, Y.; Wanatabe, T.; Ohta, A.; Fujimori, K.; Murafuji, T.; Sugihara, Y.; Tajiri, A., Tetrahedron Lett. 2004, 45, 28912894.
182. Bao, J.; Wulff, W. D.; Rheingold, A. L., J. Am. Chem. Soc. 1993, 115, 38143815.
183. Nozoe, T.; Seto, S.; Matsumura, S.; Takashi, A., Proc. Japan. Acad. 1956, 5, 339-343.
184. Nozoe, T.; Takase, K.; Shimazaki, N., Bull. Chem. Soc. Jpn. 1964, 37(11), 1644-1648.
185. Nozoe, T.; Takase, K.; Kato, M.; Nogi, T., Tetrahedron 1971, 27 (24), 60236035.
186. Cavazza, M.; Guella, G.; Pietra, F., Tetrahedron 2000, 56 (13), 1917-1922.
187. Nolting, D. D.; Nickels, M.; Price, R.; Gore, J. C.; Pham, W., Nat. Protoc. 2009, 4(8), 1113-1117.
188. Yang, P.-W.; Yasunami, M.; Takase, K., Tetrahedron Lett. 1971, (45), 4275-4278.
189. Chen, A.; Yasunami, M.; Takase, K., Tetrahedron Lett. 1974, (30), 25812584.
190. Yasunami, M.; Chen, A.; Yang, P. W.; Takase, K., Chem. Lett. 1980, 579582.
191. Yanagisawa, T.; Kosakai, K.; Tomiyama, T.; Yasunami, M.; Takase, K., Chem. Pharm. Bull. 1990, 38(12), 3355-3358.
192. Nozoe, T.; Yang, P. W.; Wu, C. P.; Huang, T. S.; Lee, T. H.; Okai, H.;

Wakabayashi, H.; Ishikawa, S., Heterocycles 1989, 29 (7), 1225-1232.
193. Nozoe, T.; Wakabayashi, H.; Shindo, K.; Ishikawa, S.; Wu, C. P.; Yang, P. W., Heterocycles 1991, 32 (2), 213-220.
194. Ito, S.; Ando, M.; Nomura, A.; Morita, N.; Kabuto, C.; Mukai, H.; Ohta, K.; Kawakami, J.; Yoshizawa, A.; Tajiri, A., J. Org. Chem. 2005, 70, 3939-3949.
195. Fallahpour, R. A.; Hansen, H.-J., Helv. Chim. Acta. 1992, 75(7), 2210-2214.
196. Doering, W. V. E.; Hiskey, C. F., J. Am. Chem. Soc. 1952, 74 (22), 56885693.
197. Nozoe, T.; Asao, T.; Yasunami, M.; Wakui, H.; Suzuki, T.; Masayoshi, A., J. Org. Chem. 1995, 60, 5919-5924.
198. Pham, W.; Weissleder, R.; Tung, C., Tetrahedron Lett. 2002, 43 (1), 19-20.
199. Iyoda, M.; Sato, K.; Oda, M., Tetrahedron Lett. 1985, 26 (32), 3829-3832.
200. Talaz, O.; Gulcin, I.; Goksu, S.; Saracoglu, N., Bioorg. Med. Chem. 2009, 17(18), 6583-6589.
201. Iyoda, M.; Otsuka, H.; Sato, K.; Nisato, N., Oda, M., Bull. Chem. Soc. Jpn. 1990, 63, 80-87.
202. Cahiez, G.; Chaboche, C.; Mahuteau-Betzer, F.; Ahr, M., Org. Lett. 2005, 7(10), 1943-1946.
203. Nagano, T.; Hayashi, T., Org. Lett. 2005, 7(3), 491-493.
204. Monopoli, A.; Calò, V.; Ciminale, F.; Cotugno, P.; Angelici, C.; Cioffi, N.; Nacci, A., J. Org. Chem. 2010, 75, 3908-3911.
205. Morita, N.; Takase, K., Bull. Chem. Soc. Jpn. 1982, 55, 1144-1152.
206. Ito, S.; Yokoyama, R.; Okujima, T.; Terazono, T.; Kubo, T.; Tajiri, A.; Wanatabe, M.; Morita, N., Org. Biomol. Chem. 2003, 1, 1947-1952.
207. Ager, D. J.; East, M. B.; Eisenstadt, A.; Laneman, S. A., Chem. Commun. 1997, 2359-2360.
208. Kochetkov, A. N.; Efimova, I. V.; Trotsyanskaya, I. G.; Kazankova, M. A.; Beletskaya, I. P., Russ. Chem. Bull. 1998, 47(9), 1744-1748.
209. Zhang, T.-Z.; Dai, L.-X.; Hou, X.-L., Tetrahedron: Asymmetry 2007, 18, 251-259.
210. Ito, S.; Nomura, A.; Morita, N.; Kabuto, C.; Kobayashi, H.; Maejima, S.;

Fujimori, K.; Yasunami, M., J. Org. Chem. 2002, 67, 7295-7302.
211. Koch, M.; Blacque, O.; Venkatesan, K., Org. Lett. 2012, 14(6), 1580-1583.
212. Nagel, M.; Hansen, H.-J., Synlett 2002, 692-696.
213. Li, X.; Hewgley, B. J.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C., J. Org. Chem. 2003, 68, 5500-5511.
214. Podlesny, E. E.; Kozlowski, M. C., J. Org. Chem. 2013, 78, 466-476.
215. Aikawa, K.; Miyazaki, Y.; Mikami, K., Bull. Chem. Soc. Jpn. 2012, 85(2), 201-208.
216. Kurotobi, K.; Miyachi, M.; Takakura, K.; Murafuji, T.; Sugihara, Y., Eur. J. Org. Chem. 2003, 3663-3665.
217. Liu, L.; Wu, H.-C.; Yu, J.-Q., Chem. Eur. J. 2011, 17, 10828-10831.
218. Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L., J. Org. Chem. 2004, 67, 5578-5587.
219. Kalek, M.; Jezowska, M.; Stawinski, J., Adv. Synth. Catal. 2009, 351, 32073216.
220. Chen, J.; Liu, D.; Fan, D.; Liu, Y.; Zhang, W., Tetrahedron 2013, 69, 81618168.
221. Kendall, A. J., Salazar, C. S.; Martino, P. F.; Tyler, D. R., Organometallics 2014, 33, 6171-6178.
222. Koh, J.-H.; Larsen, A. O.; White, P. S.; Gagné, M. R., Organometallics 2002, 21(1), 7-9.
223. Leseurre, L.; Le Boucher d'Herouville, F.; Püntener, K.; Scalone, M.; Genêt, J.-P.; Michelet, V., Org. Lett. 2011, 13(12), 3250-3253.
224. Kim, K. H.; Lee, D.-W.; Lee, Y.-S.; Ko, D.-H.; Ha, D.-C., Tetrahedron 2004, 60, 9037-9042.
225. Alamsetti, S. K.; Poonguzhali, E.; Ganapathy, D.; Sekar, G., Adv. Synth. Catal. 2013, 355, 2803-2808.
226. Kelly, A. M.; Pérez-Fuertes, Y.; Fossey, J. S.; Yeste, S. L.; Bull, S. D.; James, T. D., Nat. Protoc. 2008, 3(2), 215-219.
227. Fabbri, D.; Delogu, G.; De Lucchi, O., J. Org. Chem. 1995, 60, 6599-6601.
228. Li, Z.; Liang, X.; Wu, F.; Wan, B., Tetrahedron: Asymmetry 2004, 15, 665669.
229. Kennedy, N.; Cohen, T., J. Org. Chem. 2015, 80, 8134-8141.
230. Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T., Tetrahedron: Asymmetry 1991, 2(7), 481-494.
231. Meca, L.; Řeha, D.; Havlas, Z., J. Org. Chem. 2003, 68, 5677-5680.
232. Ishiyama, T.; Murata, M.; Miyaura, N., J. Org. Chem. 1995, 60, 7508-7510.
233. Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N., Tetrahedron Lett. 1997, 38(19), 3447-3450.
234. Nising, C. F.; Schmid, U. K.; Nieger, M.; Bräse, S., J. Org. Chem. 2004, 69, 6830-6833.
235. Xin, H.; Ge, C.; Yang, X.; Gao, H.; Yang, X.; Gao, X., Chem. Sci. 2016, DOI:10.1039/c6sc02504h.
236. Van Allen, D.; Venkataraman D., J. Org. Chem. 2003, 68, 4590-4593.
237. Brauer, D. J.; Hingst, M.; Kottsieper, K. W.; Liek, C.; Nickel, T.; Tepper, M.; Stelzer, O.; Sheldrick, W. S., J. Organomet. Chem. 2002, 645, 14-26.
238. Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y., Org. Lett. 2011, 13(13), 3478-3481.
239. Heinicke, J.; Böhle, I.; Tzschach, A., J. Organomet. Chem. 1986, 317, 1121
240. Heinicke, J.; Kadyrov, R., J. Organomet. Chem. 1996, 520, 131-137.
241. Lal, S.; McNally, J.; White, A. J. P.; Díez-González, S., Organometallics 2011, 30(22), 6225-6232.
242. Yu, J.; RajanBabu, T. V.; Parquette, J. R., J. Am. Chem. Soc. 2008, 130, 7845-7847.
243. Leino, T. O.; Baumann, M.; Yli-Kauhaluoma, J.; Baxendale, I. R.; Wallén, E. A. A., J. Org. Chem. 2015, 80, 11513-11520.
244. Dubovik, J.; Bredihhin, A., Synthesis 2015, 47, 2663-2669.
245. Fallahpour, R.-A.; Sigrist, R.; Hansen, H.-J., Helv. Chim. Acta 1995, 78(6), 1408-1418
246. Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K., J. Org. Chem. 2001, 66, 4333-4339.
247. McDonald, R. N.; Petty, H. E.; Wolfe, N. L.; Paukstelis, J. V., J. Org. Chem. 1974, 39, 1877-1887.
248. Chen, S.-L.; Klein, R.; Hafner, K., Eur. J. Org. Chem. 1998, 423-433.
249. Kurotobi, K.; Tabata, H.; Miyauchi, M.; Mustafizur, R. A. F. M.; Migita, K.; Murafuji, T.; Sugihara, Y.; Shimoyama, H.; Fujimori, K., Synthesis 2003, (1), 30-34.
250. Shibasaki, T.; Ooishi, T.; Yamanouchi, N.; Murafuji, T.; Kurotobi, K.; Sugihara, Y., J. Org. Chem. 2008, 73, 7971-7977.
251. Murai, M.; Takami, K.; Takeshima, H.; Takai, K., Org. Lett. 2015, 17, 17981801.
252. Zhao, L.; Bruneau, C.; Doucet, H., Chem. Commun. 2013, 49, 5598.
253. Hafner, K.; Kaiser, H., Liebigs Ann. Chem. 1958, 618 (1-3), 140-152.
254. Hafner, K.; Kaiser, H.; Bangert, K.; Boekelheide, V., Org. Synth. 1964, 44, 94.
255. Lash, T. D.; El-Beck, J. A.; Ferrence, G. M., J. Org. Chem. 2007, 72, 84028415.
256. Rogano, F.; Stojnic, D.; Linden, A.; Abou-Hadeed, K.; Hansen, H., Helv. Chim. Acta 2011, 94 (7), 1194-1215.
257. Razus, A. C.; Pavel, C.; Lehadus, O.; Nica, S.; Birzan, L., Tetrahedron 2008, 64, 1792-1797.
258. Koenig, T.; Rudolf, K.; Chadwick, R.; Geiselmann, H.; Patapoff, T.;

Klopfenstein, C. E., J. Am. Chem. Soc. 1986, 108, 5024-5025.
259. Rippert, A. J.; Hansen, H.-J., Helv. Chim. Acta 1995, 78, 238-241.
260. Casey, C. P.; Bullock, R. M.; Fultz, W. C.; Rheingold, A. L., Organometallics 1982, 1, 1591-1596.
261. Brasse, C. C.; Englert, U.; Salzer, A.; Waffenschmidt, H.; Wasserscheid, P., Organometallics 2000, 19, 3818-3823.
262. Cornelissen, C.; Erker, G.; Kehr, G.; Fröhlich, R., Organometallics 2005, 24, 214-225.

263 Li, F.; Song, Q.; Yang, L.; Wu, G.; Zhang, X., Chem. Commun. 2013, 49, 1808-1810.
264. Razus, A. C.; Nitu, C.; Carvaci, S.; Birzan, L.; Razus, S. A.; Pop, M.; Tarko, L., J. Chem. Soc. Perkin Trans. 1 2001, 1227-1233.
265. Yang, F.; Xu, X.-L.; Gong, Y.-H.; Qiu, W.-W.; Sun, Z.-R.; Zhou, J.-W.;

Audebert, P.; Tang, J., Tetrahedron 2007, 63, 9188-9194.
266. Wu, C.; Devendar, B.; Su, H.; Chang, Y.; Ku, C., Tetrahedron Lett. 2012, 53(37), 5019-5022.
267. Terada, M., Synthesis 2010, (12), 1929-1982.
268. Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M., Chem. Rev. 2015, 114(18), 9047-9153.
269. Correia, J. T. M., Synlett 2015, 26, 416-417.
270. Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y., J. Org. Chem. 2010, 75, 8677-8680.
271. Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen, J.-J.; Zhou, Q.-L., Angew. Chem. Int. Ed. 2011, 50, 11483-11486.
272. Zhang, Y.; Zhao, R.; Bao, R. L.-Y.; Shi, L., Eur. J. Org. Chem. 2015, 33443351.
273. Adair, G.; Mukherjee, S.; List, B., Aldrichim. Acta 2008, 41(2), 29-51.
274. Holzwarth, R.; Bartsch, R.; Cherkaoui, Z.; Solladié, Eur. J. Org. Chem 2005, 3536-3541.
275. Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C., J. Am. Chem. Soc. 2006, 128, 84-86.
276. Heller, D. P.; Goldberg, D. R.; Wu, H.; Wulff, W. D., Can. J. Chem. 2006, 84, 1487-1503.
277. Byrne, B.; Rothchild, R., Chirality 1999, 11, 529-535.
278. Hazeland, E. L.; Chapman, A. M.; Pringle, P. G.; Sparkes, H. A., Chem. Commun. 2015, 51, 10206-10209.
279. Cowper, P.; Jin, Y.; Turton, M. D.; Kociok-Köhn, G.; Lewis, S. E., Angew. Chem. Int. Ed. 2016, 55, 2564-2568.
280. Claramunt, R. M.; Sanz, D.; Pérez-Torralba, M.; Pinilla, E.; Torres, M. R., Eur. J. Org. Chem. 2004, 4452-4466.
281. Matsubara, Y.; Morita, M.; Takekuma, S.; Zhao, Z.; Yamamoto, H.; Nozoe, T., Bull. Chem. Soc. Jpn. 1991, 64, 2865-2867.
282. Lee, D.-S.; Yang, P.-W.; Morita, T.; Nozoe, T., Heterocycles 1995, 41(2), 249-253.
283. Kim, T.-S.; Seo, S.-Y.; Shin, D., Synlett 2015, 1243-1247.

5. APPENDICES

5.1 NMR appendix

381

PROTON_01

2APG021.10.fid

5.2. X-ray crystallography appendix

X-ray crystallography data for (\pm)-328.
Crystal data and structure refinement.

Identification code	k13sel4
Empirical formula	C28 H26 O8
Formula weight	490.49
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
Unit cell dimensions	
Volume	1166.46(5) \AA^{3}
Z	2
Density (calculated)	$1.396 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.103 \mathrm{~mm}^{-1}$
F(000)	516
Crystal size	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
Theta range for data collection	3.76 to 27.39°
Index ranges	-11<=h<=11; -11<=k<=11; -20<=\|<= 20
Reflections collected	22324
Independent reflections	$5275[\mathrm{R}(\mathrm{int})=0.0515]$
Reflections observed (>2sigma)	3613
Data Completeness	0.994
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.974 and 0.933
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5275 / 0 / 331
Goodness-of-fit on F^{2}	1.007
Final R indices [l>2sigma(I)]	$\mathrm{R} 1=0.0459 \quad w R 2=0.1040$
R indices (all data)	$\mathrm{R} 1=0.0798$ wR2 $=0.1195$
Largest diff. peak and hole	0.189 and $-0.241 \mathrm{e}^{-3}$

Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right) . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	y	U(eq)	
O(1)	$10502(2)$	$9063(1)$	$8953(1)$	$38(1)$
O(2)	$11196(1)$	$7340(1)$	$8128(1)$	$35(1)$
O(3)	$7279(2)$	$2119(1)$	$8318(1)$	$34(1)$
O(4)	$8776(1)$	$4874(1)$	$7109(1)$	$32(1)$
O(5)	$1678(2)$	$2003(1)$	$4511(1)$	$32(1)$
O(6)	$3133(1)$	$3438(1)$	$7940(1)$	$34(1)$
O(7)	$3582(1)$	$4143(1)$	$6101(1)$	$32(1)$
O(8)	$1331(2)$	$-505(1)$	$4449(1)$	$39(1)$
C(1)	$6219(2)$	$4369(2)$	$7628(1)$	$23(1)$
C(2)	$7868(2)$	$5212(2)$	$7653(1)$	$24(1)$
C(3)	$8525(2)$	$6540(2)$	$8336(1)$	$23(1)$
C(4)	$7252(2)$	$6557(2)$	$8763(1)$	$23(1)$
C(5)	$7423(2)$	$7677(2)$	$9481(1)$	$27(1)$
C(6)	$6272(2)$	$7808(2)$	$9941(1)$	$32(1)$
C(7)	$4654(2)$	$6839(2)$	$9791(1)$	$36(1)$
C(8)	$3742(2)$	$5513(2)$	$9152(1)$	$34(1)$
C(9)	$4223(2)$	$4759(2)$	$8492(1)$	$27(1)$
C(10)	$5785(2)$	$5182(2)$	$8299(1)$	$23(1)$
C(11)	$5200(2)$	$2909(2)$	$6990(1)$	$23(1)$
C(12)	$3938(2)$	$2835(2)$	$6240(1)$	$25(1)$
C(13)	$3277(2)$	$1357(2)$	$5705(1)$	$25(1)$
C(14)	$4142(2)$	$430(2)$	$6127(1)$	$24(1)$
C(15)	$3899(2)$	$-1098(2)$	$5778(1)$	$30(1)$
C(16)	$4678(2)$	$-2094(2)$	$6120(1)$	$34(1)$
C(17)	$5852(2)$	$-1815(2)$	$6918(1)$	$33(1)$
C(18)	$6599(2)$	$-484(2)$	$7574(1)$	$29(1)$
C(19)	$6400(2)$	$956(2)$	$7599(1)$	$26(1)$
C(20)	$5350(2)$	$1434(2)$	$6953(1)$	$23(1)$
C(21)	$10127(2)$	$7770(2)$	$8516(1)$	$26(1)$
C(22)	$12731(2)$	$8536(2)$	$8182(1)$	$40(1)$
C(23)	$1433(2)$	$2862(2)$	$7978(1)$	$41(1)$
C(24)	$7930(2)$	$4147(2)$	$6205(1)$	$41(1)$
C(25)	$1905(2)$	$4134(2)$	$6040(1)$	$36(1)$
C(26)	$2018(2)$	$826(2)$	$4844(1)$	$27(1)$
C(27)	$368(2)$	$1561(2)$	$3696(1)$	$36(1)$
C(28)	$8214(2)$	$1799(2)$	$9091(1)$	$35(1)$

Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$.

$\mathrm{O}(1)-\mathrm{C}(21)$	$1.2167(19)$
$\mathrm{O}(2)-\mathrm{C}(22)$	$1.443(2)$
$\mathrm{O}(3)-\mathrm{C}(28)$	$1.4286($
$\mathrm{O}(4)-\mathrm{C}(24)$	$1.432(2)$
$\mathrm{O}(5)-\mathrm{C}(27)$	$1.4404(19)$
$\mathrm{O}(6)-\mathrm{C}(23)$	$1.438(2)$
$\mathrm{O}(7)-\mathrm{C}(25)$	$1.437(2)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.409(2$
$\mathrm{C}(1)-\mathrm{C}(11)$	$1.481(2$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.425(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.390(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.388(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.387(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.415(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.407(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.429(2)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.387(2)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.387(2)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.390(2)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.419(2)$

$\mathrm{C}(21)-\mathrm{O}(2)-\mathrm{C}(22)$
$\mathrm{C}(2)-\mathrm{O}(4)-\mathrm{C}(24)$
$\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{C}(23)$
C(10)-C(1)-C(2)
C(2)-C(1)-C(11)
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)$
C(2)-C(3)-C(4)
$C(4)-C(3)-C(21)$
$C(5)-C(4)-C(10)$
C(6)-C(5)-C(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$
$C(8)-C(9)-C(10)$
$C(1)-C(10)-C(4)$
C(20)-C(11)-C(12)
$C(12)-\mathrm{C}(11)-\mathrm{C}(1)$
$\mathrm{O}(7)-\mathrm{C}(12)-\mathrm{C}(11)$
C(12)-C(13)-C(14)
C(14)-C(13)-C(26)
C(15)-C(14)-C(20)
C(14)-C(15)-C(16)
C(16)-C(17)-C(18)
116.34(14)
118.86(13)
120.84(14)
107.25(13)
123.87(14)
121.55(14)
107.05(14)
125.50(14)
128.42(16)
129.42(17)
130.25(17)
120.21(15)
128.14(15)
107.78(14)
107.56(13)
122.69(13)
119.40(13)
106.81(13)
124.73(14)
128.66(15)
129.34(16)
130.13(15)
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(18)$
119.84(14)

C(18)-C(19)-C(20)
128.23(15)

C(11)-C(20)-C(14)
107.39(13)
$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{O}(2)$
121.51(15)
$\mathrm{O}(2)-\mathrm{C}(21)-\mathrm{C}(3)$
112.58(14)
$\mathrm{O}(8)-\mathrm{C}(26)-\mathrm{C}(13)$
126.14(15)

$\mathrm{O}(2)-\mathrm{C}(21)$	$1.346(2)$
$\mathrm{O}(3)-\mathrm{C}(19)$	$1.3662(19)$
$\mathrm{O}(4)-\mathrm{C}(2)$	$1.360(2)$
$\mathrm{O}(5)-\mathrm{C}(26)$	$1.3472(19)$
$\mathrm{O}(6)-\mathrm{C}(9)$	$1.3583(19)$
$\mathrm{O}(7)-\mathrm{C}(12)$	$1.3633(18)$
$\mathrm{O}(8)-\mathrm{C}(26)$	$1.2145(19)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.409(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.410(2)$
$\mathrm{C}(3)-\mathrm{C}(21)$	$1.462(2)$
$\mathrm{C}(4)-\mathrm{C}(10)$	$1.480(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.380(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.393(2)$
$\mathrm{C}(11)-\mathrm{C}(20)$	$1.401(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.398(2)$
$\mathrm{C}(13)-\mathrm{C}(26)$	$1.468(2)$
$\mathrm{C}(14)-\mathrm{C}(20)$	$1.481(2)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.379(2)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.389(2)$

$\mathrm{C}(19)-\mathrm{O}(3)-\mathrm{C}(28)$	$119.98(12)$
$\mathrm{C}(26)-\mathrm{O}(5)-\mathrm{C}(27)$	$115.33(13)$
$\mathrm{C}(12)-\mathrm{O}(7)-\mathrm{C}(25)$	$117.53(13)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(11)$	$128.88(14)$
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	$127.40(14)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$111.05(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(21)$	$127.10(15)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$124.72(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	$106.86(13)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$127.94(17)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$129.63(17)$
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	$111.66(14)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$126.06(14)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(4)$	$126.16(14)$
$\mathrm{C}(20)-\mathrm{C}(11)-\mathrm{C}(1)$	$129.54(14)$
$\mathrm{O}(7)-\mathrm{C}(12)-\mathrm{C}(13)$	$129.19(14)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$111.32(13)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(26)$	$128.35(14)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$124.38(15)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(20)$	$106.90(13)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$127.96(16)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$129.69(16)$
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(20)$	$111.93(13)$
$\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(19)$	$126.86(14)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(14)$	$125.69(14)$
$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(3)$	$125.90(16)$
$\mathrm{O}(8)-\mathrm{C}(26)-\mathrm{O}(5)$	$121.58(14)$
$\mathrm{O}(5)-\mathrm{C}(26)-\mathrm{C}(13)$	$112.28(13)$

Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$. The anisotropic displacement factor exponent takes the form: $-2 \mathrm{gpi}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}\right]$
$\left.\begin{array}{lllllll}\text { Atom } & \text { U11 } & \text { U22 } & \text { U33 } & \text { U23 } & \text { U13 } & \text { U12 } \\ & & & & & \\ \text { O(1) } & 34(1) & 26(1) & 42(1) & -6(1) & 9(1) & 0(1) \\ \text { O(2) } & 24(1) & 30(1) & 44(1) & -1(1) & 9(1) & 3(1) \\ \text { O(3) } & 38(1) & 25(1) & 30(1) & 3(1) & -5(1) & 11(1) \\ \text { O(4) } & 27(1) & 32(1) & 31(1) & -4(1) & 5(1) & 9(1) \\ \text { O(5) } & 33(1) & 26(1) & 29(1) & 6(1) & -2(1) & 6(1) \\ \text { O(6) } & 25(1) & 32(1) & 37(1) & 1(1) & 8(1) & 1(1) \\ \text { O(7) } & 27(1) & 20(1) & 44(1) & 6(1) & -2(1) & 9(1) \\ \text { O(8) } & 39(1) & 24(1) & 37(1) & -2(1) & -7(1) & 4(1) \\ \text { C(1) } & 24(1) & 18(1) & 24(1) & 3(1) & 2(1) & 7(1) \\ \text { C(2) } & 25(1) & 21(1) & 24(1) & 4(1) & 4(1) & 10(1) \\ \text { C(3) } & 23(1) & 20(1) & 23(1) & 3(1) & 1(1) & 6(1) \\ \text { C(4) } & 26(1) & 19(1) & 22(1) & 5(1) & 2(1) & 8(1) \\ \text { C(5) } & 32(1) & 21(1) & 25(1) & 4(1) & 3(1) & 8(1) \\ \text { C(6) } & 41(1) & 27(1) & 28(1) & 1(1) & 9(1) & 12(1) \\ \text { C(7) } & 42(1) & 38(1) & 34(1) & 4(1) & 16(1) & 18(1) \\ \text { C(8) } & 30(1) & 37(1) & 36(1) & 9(1) & 12(1) & 11(1) \\ \text { C(9) } & 27(1) & 24(1) & 27(1) & 6(1) & 4(1) & 6(1) \\ \text { C(10) } & 26(1) & 19(1) & 24(1) & 6(1) & 3(1) & 8(1) \\ \text { C(11) } & 23(1) & 18(1) & 26(1) & 3(1) & 4(1) & 5(1) \\ \text { C(12) } & 25(1) & 18(1) & 30(1) & 6(1) & 6(1) & 6(1) \\ \text { C(13) } & 25(1) & 20(1) & 28(1) & 3(1) & 3(1) & 5(1) \\ \text { C(14) } & 25(1) & 20(1) & 27(1) & 4(1) & 7(1) & 4(1) \\ \text { C(15) } & 34(1) & 22(1) & 29(1) & 1(1) & 5(1) & 6(1) \\ \text { C(16) } & 42(1) & 20(1) & 37(1) & 3(1) & 9(1) & 11(1) \\ \text { C(17) } & 40(1) & 22(1) & 40(1) & 10(1) & 12(1) & 15(1) \\ \text { C(18) } & 31(1) & 26(1) & 32(1) & 10(1) & 6(1) & 12(1) \\ \text { C(19) } & 24(1) & 22(1) & 29(1) & 4(1) & 7(1) & 5(1) \\ \text { C(20) } & 23(1) & 20(1) & 26(1) & 4(1) & 6(1) & 6(1) \\ \text { C(21) } & 28(1) & 24(1) & 22(1) & 4(1) & 1(1) & 8(1) \\ \text { C(22) } & 26(1) & 39(1) & 46(1) & 0(1) & 9(1) & -1(1) \\ \text { C(23) } & 25(1) & 46(1) & 45(1) & 10(1) & 8(1) & 1(1) \\ \text { C(24) } & 38(1) & 45(1) & 30(1) & -8(1) & 13(1) & 1(1) \\ \text { C(25) } & 34(1) & 36(1) & 41(1) & 9(1) & 6(1) & 18(1) \\ \text { C(26) } & 26(1) & 22(1) & 29(1) & 3(1) & 5(1) & 4(1) \\ \text { C(27) } & 33(1) & 38(1) & 29(1) & 8(1) & -4(1) & 8(1) \\ \text { C(28) } & 36(1) & 38(1) & 28(1) & 8(1) & 1(1) & 15(1) \\ & & & & & & 1\end{array}\right)$

Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(5)	8481	8466	9688	32
H(6)	6644	8672	10418	39
H(7)	4074	7125	10189	44
H(8)	2622	5051	9166	41
H(15)	3082	-1523	5225	36
H(16)	4364	-3091	5759	41
H(17)	6206	-2667	7039	39
$\mathrm{H}(18)$	7361	-573	8081	35
H(22A)	12473	9400	7956	61
H(22B)	13359	8124	7829	61
H(22C)	13405	8895	8799	61
H(23A)	1415	2564	8547	62
H(23B)	808	1962	7499	62
H(23C)	916	3669	7916	62
H(24A)	7450	3032	6157	62
H(24B)	8727	4346	5850	62
$\mathrm{H}(24 \mathrm{C})$	7035	4566	5990	62
H(25A)	1188	3083	6011	53
H(25B)	1483	4490	5508	53
H (25C)	1900	4823	6561	53
H(27A)	697	1009	3236	55
H(27B)	179	2487	3519	55
$\mathrm{H}(27 \mathrm{C})$	-663	887	3779	55
H(28A)	7457	1049	9323	52
$\mathrm{H}(28 \mathrm{~B})$	8774	2755	9539	52
$\mathrm{H}(28 \mathrm{C})$	9052	1373	8943	52

Dihedral angles $\left[{ }^{0}\right]$.

Atom1 - Atom2 - Atom3 - Atom4
Dihedral

$\mathrm{C}(24)-\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	33.7(2)
$\mathrm{C}(24)-\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	-145.45(16)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(4)$	-178.23(14)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(4)$	1.5(2)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	1.04(17)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-179.25(13)
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	179.04(13)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-0.28(17)
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(21)$	5.5(2)
$C(1)-C(2)-C(3)-C(21)$	-173.77(14)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	179.05(14)
$\mathrm{C}(21)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-7.3(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	-0.55(16)
$\mathrm{C}(21)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	173.07(13)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	179.67(16)
$\mathrm{C}(10)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.8(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	0.1(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-1.0(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	2.1(3)
$\mathrm{C}(23)-\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$	4.9(2)
$\mathrm{C}(23)-\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	-175.41(14)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)$	178.43(17)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-1.2(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	178.51(14)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	-1.2(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(4)$	-1.34(16)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(4)$	178.96(14)
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	-0.3(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	179.29(16)
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(4)$	179.48(13)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(4)$	-0.9(3)
C(5) - C(4)-C(10) - C(1)	-178.39(15)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(1)$	1.19(16)
C(5) - C(4)-C(10) - C(9)	1.8(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	-178.66(14)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(20)$	-108.2(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(20)$	72.1(2)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	77.7(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	-102.00(19)
$\mathrm{C}(25)-\mathrm{O}(7)-\mathrm{C}(12)-\mathrm{C}(13)$	62.8(2)
$\mathrm{C}(25)-\mathrm{O}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	-121.14(17)
$\mathrm{C}(20)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(7)$	-177.71(14)
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(7)$	-2.4(2)
$\mathrm{C}(20)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-0.95(19)
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	174.31(15)
$\mathrm{O}(7)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	176.54(16)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	0.18(19)
$\mathrm{O}(7)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(26)$	0.2(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(26)$	-176.15(16)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-176.69(16)
$\mathrm{C}(26)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-0.2(3)

C(12) - C(13) - C(14) - C(20)	0.61(18)
C(26) - C(13) - C(14) - C(20)	177.11(15)
C(13) - C(14) - C(15) - C(16)	178.98(18)
C(20) - C(14) - C(15) - C(16)	2.3(3)
C(14) - C(15) - C(16) - C(17)	2.9(3)
C(15) - C(16) - C(17) - C(18)	-2.1(3)
C(16) - C(17) - C(18) - C(19)	-1.7(3)
$\mathrm{C}(28)-\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(18)$	-8.9(2)
$\mathrm{C}(28)-\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(20)$	170.82(15)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(3)$	-179.61(17)
C(17) - C(18) - C(19) - C(20)	0.7(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(19)$	-175.99(16)
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(19)$	9.2(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(14)$	1.29(18)
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{C}(14)$	-173.53(16)
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(11)$	1.6(2)
C(18) - C(19) - C(20) - C(11)	-178.67(17)
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(14)$	-175.19(15)
C(18) - C(19) - C(20) - C(14)	4.5(3)
C(15) - C(14)-C(20) - C(11)	175.96(17)
C(13) - C(14)-C(20) - C(11)	-1.19(18)
C(15) - C(14)-C(20) - C(19)	-6.7(3)
C(13) - C(14) - C(20) - C(19)	176.14(15)
$\mathrm{C}(22)-\mathrm{O}(2)-\mathrm{C}(21)-\mathrm{O}(1)$	-6.2(2)
$\mathrm{C}(22)-\mathrm{O}(2)-\mathrm{C}(21)-\mathrm{C}(3)$	172.83(14)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(21)-\mathrm{O}(1)$	160.71(16)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(21)-\mathrm{O}(1)$	-11.6(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(21)-\mathrm{O}(2)$	-18.2(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(21)-\mathrm{O}(2)$	169.42(14)
$\mathrm{C}(27)-\mathrm{O}(5)-\mathrm{C}(26)-\mathrm{O}(8)$	4.4(2)
$\mathrm{C}(27)-\mathrm{O}(5)-\mathrm{C}(26)-\mathrm{C}(13)$	-175.86(15)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(26)-\mathrm{O}(8)$	-170.57(18)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(26)-\mathrm{O}(8)$	13.7(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(26)-\mathrm{O}(5)$	9.7(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(26)-\mathrm{O}(5)$	-166.05(15)

Axial view of biazulene (\pm)-328.

Unit cell of biazulene (\pm)-328

X-ray crystallographic data for ($\left.R_{a}, 1 R, 2 S, 5 R\right)$-404.

Table 1. Crystal data and structure refinement for s16sel1

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.684^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$ sigma (I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
s16sel1
C52.25 H66.72 O12.12
888.70
150.01(10) K
1.54184 A

Orthorhombic
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
$a=12.61370(10) \AA \quad \alpha=90^{\circ}$.
$b=16.68850(10) \AA \quad \beta=90^{\circ}$.
$c=23.7719(2) \AA \quad \gamma=90^{\circ}$.
5004.07(7) \AA^{3}

4
$1.178 \mathrm{Mg} / \mathrm{m}^{3}$
$0.673 \mathrm{~mm}^{-1}$
1906
$0.300 \times 0.250 \times 0.080 \mathrm{~mm}^{3}$
3.236 to 73.128°.
$-15<=h<=15,-19<=k<=20,-22<===29$
57208
$9956[R($ int $)=0.0304]$
100.0 \%

Semi-empirical from equivalents
1.00000 and 0.71916

Full-matrix least-squares on F^{2}
9956 / 0 / 614
1.019
$R 1=0.0347, w R 2=0.0907$
$R 1=0.0373, w R 2=0.0926$
0.06(4)
n/a
0.402 and -0.184 e. A^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel1. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	2491(1)	5654(1)	3208(1)	42(1)
$\mathrm{O}(2)$	-2287(2)	4345(2)	4036(1)	83(1)
$\mathrm{O}(3)$	-2405(1)	4014(1)	3131(1)	54(1)
$\mathrm{O}(4)$	-639(1)	4012(1)	2472(1)	33(1)
$\mathrm{O}(5)$	-1331(2)	5043(1)	1976(1)	49(1)
$\mathrm{O}(6)$	-1184(1)	3777(1)	1642(1)	45(1)
$\mathrm{O}(7)$	652(1)	6382(1)	2490(1)	41(1)
$\mathrm{O}(8)$	3709(2)	3838(1)	1032(1)	51(1)
$\mathrm{O}(9)$	3064(2)	2970(1)	1664(1)	49(1)
O(10)	1767(1)	3454(1)	2503(1)	29(1)
$\mathrm{O}(11)$	3328(1)	3645(1)	2951(1)	51(1)
$\mathrm{O}(12)$	2278(1)	2573(1)	3092(1)	42(1)
C(1)	4138(2)	5761(3)	2764(1)	77(1)
C(2)	3559(2)	5889(2)	3313(1)	60(1)
C(3)	1773(2)	5585(1)	3623(1)	32(1)
C(4)	1986(2)	5897(1)	4157(1)	38(1)
C(5)	1367(2)	5889(1)	4637(1)	40(1)
C(6)	366(2)	5579(1)	4723(1)	42(1)
C(7)	-293(2)	5196(1)	4345(1)	40(1)
C(8)	-100(2)	5005(1)	3783(1)	32(1)
C(9)	-814(2)	4575(1)	3428(1)	35(1)
C(10)	-1888(2)	4309(2)	3576(1)	47(1)
C(11)	-3505(2)	3784(2)	3217(2)	68(1)
C(12)	-3887(3)	3445(3)	2673(2)	104(2)
C(13)	-298(2)	4494(1)	2910(1)	30(1)
C(14)	-1086(2)	4360(1)	2018(1)	35(1)
C(15)	-1668(2)	3958(1)	1100(1)	40(1)
C(16)	-2572(2)	3369(1)	1032(1)	43(1)
C(17)	-3096(2)	3437(1)	455(1)	42(1)
C(18)	-4009(2)	2842(2)	398(1)	51(1)
C(19)	-2270(2)	3341(2)	-2(1)	51(1)
C(20)	-1372(2)	3947(2)	67(1)	53(1)
C(21)	-824(2)	3877(2)	645(1)	47(1)
C(22)	121(2)	4455(2)	722(1)	52(1)
C(23)	1033(2)	4225(3)	334(2)	80(1)
C(24)	-165(2)	5338(2)	650(2)	64(1)
C(25)	686(2)	4867(1)	2902(1)	27(1)
C(26)	848(2)	5183(1)	3445(1)	29(1)
C(27)	1373(2)	4858(1)	2400(1)	28(1)
C(28)	1640(2)	5466(1)	2013(1)	31(1)
C(29)	1278(2)	6264(1)	2046(1)	37(1)
C(30)	226(3)	7159(2)	2620(1)	53(1)
C(31)	-333(3)	7074(2)	3172(1)	62(1)
C(32)	1514(2)	6896(1)	1676(1)	50(1)
C(33)	2171(3)	6892(2)	1204(1)	57(1)
C(34)	2775(2)	6292(2)	974(1)	53(1)
C(35)	2854(2)	5500(2)	1139(1)	43(1)
C(36)	2362(2)	5121(1)	1593(1)	34(1)
C(37)	2501(2)	4295(1)	1733(1)	33(1)

C(38)	$3154(2)$	$3705(1)$	$1439(1)$	$38(1)$
C(39)	$3709(2)$	$2338(2)$	$1423(1)$	$53(1)$
C(40)	$3238(3)$	$1550(2)$	$1589(1)$	$62(1)$
C(41)	$1893(2)$	$4171(1)$	$2220(1)$	$28(1)$
C(42)	$2555(2)$	$3257(1)$	$2864(1)$	$32(1)$
C(43)	$2924(2)$	$2276(1)$	$3559(1)$	$41(1)$
C(44)	$3385(2)$	$1486(1)$	$3371(1)$	$40(1)$
C(45)	$4010(2)$	$1074(2)$	$3841(1)$	$49(1)$
C(46)	$4382(2)$	$251(2)$	$3644(1)$	$63(1)$
C(47)	$3331(3)$	$1016(2)$	$4369(1)$	$54(1)$
C(48)	$2860(3)$	$1820(2)$	$4542(1)$	$64(1)$
C(49)	$2194(2)$	$2189(2)$	$4065(1)$	$51(1)$
C(50)	$1596(4)$	$2979(2)$	$4209(2)$	$77(1)$
C(51)	$705(4)$	$2840(3)$	$4606(2)$	$96(1)$
C(52)	$2344(4)$	$3644(2)$	$4405(1)$	$83(1)$
O(13)	$-4459(14)$	$4806(11)$	$4237(8)$	$67(5)$
C(61)	$-5190(20)$	$4161(18)$	$4229(12)$	$69(7)$
C(62)	$-4800(30)$	$3436(17)$	$4502(14)$	$78(8)$

Table 3. Bond lengths $[\AA \AA]$ for s16sel1.

Table	,	$C(17)-C(19)$	$1.514(4)$
		$\mathrm{C}(17)-\mathrm{C}(18)$	1.526(3)
O(1)-C(3)	1.344(3)	$\mathrm{C}(17)-\mathrm{H}(17)$	1.0000
$\mathrm{O}(1)-\mathrm{C}(2)$	1.424(3)	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{O}(2)-\mathrm{C}(10)$	1.204(3)	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{O}(3)-\mathrm{C}(10)$	1.336(3)	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{O}(3)-\mathrm{C}(11)$	1.454(3)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.527(4)
$\mathrm{O}(4)-\mathrm{C}(14)$	1.349(3)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9900
$\mathrm{O}(4)-\mathrm{C}(13)$	1.384(2)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9900
$\mathrm{O}(5)-\mathrm{C}(14)$	1.184(3)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.542(3)
$\mathrm{O}(6)-\mathrm{C}(14)$	1.328(3)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{O}(6)-\mathrm{C}(15)$	1.458(3)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{O}(7)-\mathrm{C}(29)$	1.334(3)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.544(4)
$\mathrm{O}(7)-\mathrm{C}(30)$	1.438(3)	$\mathrm{C}(21)-\mathrm{H}(21)$	1.0000
$\mathrm{O}(8)-\mathrm{C}(38)$	1.215(3)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.524(4)
$\mathrm{O}(9)-\mathrm{C}(38)$	1.343(3)	$\mathrm{C}(22)-\mathrm{C}(24)$	1.526(4)
$\mathrm{O}(9)-\mathrm{C}(39)$	1.450(3)	$\mathrm{C}(22)-\mathrm{H}(22)$	1.0000
$\mathrm{O}(10)-\mathrm{C}(42)$	1.353(2)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{O}(10)-\mathrm{C}(41)$	1.383(2)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{O}(11)-\mathrm{C}(42)$	1.189(3)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{O}(12)-\mathrm{C}(42)$	1.310(3)	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800
$\mathrm{O}(12)-\mathrm{C}(43)$	1.464(2)	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(2)$	1.510(4)	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9800	$\mathrm{C}(25)-\mathrm{C}(26)$	1.408(3)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9800	C(25)-C(27)	1.476(3)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9800	C(27)-C(41)	1.388(3)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900	C(27)-C(28)	1.411(3)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900	C(28)-C(29)	1.410(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.398(3)	C(28)-C(36)	1.468(3)
$\mathrm{C}(3)-\mathrm{C}(26)$	1.412(3)	C(29)-C(32)	1.405(3)
C(4)-C(5)	1.384(3)	$\mathrm{C}(30)-\mathrm{C}(31)$	1.494(4)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	0.9900
$\mathrm{C}(5)-\mathrm{C}(6)$	1.380(4)	$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	0.9900
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.381(3)	$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	1.395(3)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.395(4)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(32)-\mathrm{H}(32)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	1.427(3)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.373(4)
$\mathrm{C}(8)-\mathrm{C}(26)$	1.471(3)	$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
C(9)-C(13)	1.400(3)	$\mathrm{C}(34)-\mathrm{C}(35)$	1.382(4)
C(9)-C(10)	1.469(3)	$\mathrm{C}(34)-\mathrm{H}(34)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	1.494(5)	C(35)-C(36)	1.397(3)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900	$\mathrm{C}(35)-\mathrm{H}(35)$	0.9500
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900	C(36)-C(37)	1.429(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800	C(37)-C(41)	1.402(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800	$\mathrm{C}(37)-\mathrm{C}(38)$	1.463(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800	C(39)-C(40)	1.496(4)
C(13)-C(25)	1.389(3)	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	0.9900
C(15)-C(16)	1.514(3)	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	0.9900
C(15)-C(21)	1.524(3)	$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15)$	1.0000	$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9800
C(16)-C(17)	1.526(3)	$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900	$\mathrm{C}(43)-\mathrm{C}(44)$	1.508(3)

$\mathrm{C}(43)-\mathrm{C}(49)$	$1.521(4)$	$\mathrm{C}(50)-\mathrm{C}(52)$	$1.529(5)$
$\mathrm{C}(43)-\mathrm{H}(43)$	1.0000	$\mathrm{C}(50)-\mathrm{H}(50)$	1.0000
$\mathrm{C}(44)-\mathrm{C}(45)$	$1.530(3)$	$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	0.9800
$\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~A})$	0.9900	$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	0.9800
$\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~B})$	0.9900	$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	0.9800
$\mathrm{C}(45)-\mathrm{C}(47)$	$1.523(4)$	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	0.9800
$\mathrm{C}(45)-\mathrm{C}(46)$	$1.525(4)$	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	0.9800
$\mathrm{C}(45)-\mathrm{H}(45)$	1.0000	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	0.9800
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	0.9800	$\mathrm{O}(13)-\mathrm{C}(61)$	$1.42(3)$
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	0.9800	$\mathrm{O}(13)-\mathrm{H}(13)$	0.8400
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	0.9800	$\mathrm{C}(61)-\mathrm{C}(62)$	$1.46(4)$
$\mathrm{C}(47)-\mathrm{C}(48)$	$1.525(4)$	$\mathrm{C}(61) \mathrm{H}(61 \mathrm{~A})$	0.9900
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	0.9900	$\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~B})$	0.9900
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	0.9900	$\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~A})$	0.9800
$\mathrm{C}(48)-\mathrm{C}(49)$	$1.540(4)$	$\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~B})$	0.9800
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	0.9900	$\mathrm{C}(62)-\mathrm{H}(62 \mathrm{C})$	0.9800
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	0.9900		
$\mathrm{C}(49)-\mathrm{C}(50)$	$1.558(4)$		
$\mathrm{C}(49)-\mathrm{H}(49)$	1.0000		
$\mathrm{C}(50)-\mathrm{C}(51)$	$1.486(6)$		

Table 4. Bond angles $\left[^{\circ}\right]$ for s16sel1.

$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{C}(2)$	122.19(17)
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)$	116.8(2)
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(13)$	118.69(15)
$\mathrm{C}(14)-\mathrm{O}(6)-\mathrm{C}(15)$	118.87(16)
$\mathrm{C}(29)-\mathrm{O}(7)-\mathrm{C}(30)$	121.65(18)
$\mathrm{C}(38)-\mathrm{O}(9)-\mathrm{C}(39)$	117.35(19)
$\mathrm{C}(42)-\mathrm{O}(10)-\mathrm{C}(41)$	115.79(15)
$\mathrm{C}(42)-\mathrm{O}(12)-\mathrm{C}(43)$	117.36(16)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	105.5(2)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	110.6
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	110.6
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	110.6
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	110.6
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.8
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	120.30(19)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(26)$	112.16(17)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(26)$	127.5(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	129.6(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	115.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	115.2
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	129.9(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	115.0
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	115.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	128.9(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	115.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	115.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	128.6(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	115.7
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	115.7
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.8(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(26)$	128.3(2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(26)$	106.93(17)
$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{C}(8)$	106.00(18)
C(13)-C(9)-C(10)	127.6(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	126.4(2)
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{O}(3)$	122.2(2)
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	125.9(2)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	111.9(2)
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	106.6(3)
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.4
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.4
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	110.4
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	110.4
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.6
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5

$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(25)$	$121.90(17)$
$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(9)$	$125.02(18)$
$\mathrm{C}(25)-\mathrm{C}(13)-\mathrm{C}(9)$	$112.54(17)$
$\mathrm{O}(5)-\mathrm{C}(14)-\mathrm{O}(6)$	$128.6(2)$
$\mathrm{O}(5)-\mathrm{C}(14)-\mathrm{O}(4)$	$126.24(19)$
$\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{O}(4)$	$105.17(16)$
$\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(16)$	$106.03(19)$
$\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(21)$	$108.43(18)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(21)$	$113.09(18)$
$\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{H}(15)$	109.7
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	109.7
$\mathrm{C}(21)-\mathrm{C}(15)-\mathrm{H}(15)$	109.7
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$112.0(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.2
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.2
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.2
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.2
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	107.9
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{C}(16)$	$109.7(2)$
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{C}(18)$	$112.7(2)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$111.0(2)$
$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{H}(17)$	107.7
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	107.7
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	107.7
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)$	$111.3(2)$
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.4
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.4
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.4
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.4
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	108.0
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$112.2(2)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.2
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.2
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.2
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.2
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	107.9
$\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{C}(20)$	$108.22(19)$
$\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{C}(22)$	$113.52(19)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$113.9(2)$
$\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{H}(21)$	106.9
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	106.9
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	106.9
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(24)$	$110.7(3)$

$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$110.7(2)$
$\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(21)$	$114.0(2)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	107.0
$\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{H}(22)$	107.0
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	107.0
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(26)$	$106.60(17)$
$\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(27)$	$122.10(17)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(27)$	$131.25(17)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(3)$	$125.00(18)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(8)$	$107.89(17)$
$\mathrm{C}(3)-\mathrm{C}(26)-\mathrm{C}(8)$	$127.10(17)$
$\mathrm{C}(41)-\mathrm{C}(27)-\mathrm{C}(28)$	$106.22(17)$
$\mathrm{C}(41)-\mathrm{C}(27)-\mathrm{C}(25)$	$122.43(16)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(25)$	$131.34(18)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$124.50(19)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(36)$	$127.49(18)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(36)$	$107.99(17)$
$\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(32)$	$120.7(2)$
$\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(28)$	$111.98(17)$
$\mathrm{C}(32)-\mathrm{C}(29)-\mathrm{C}(28)$	$127.3(2)$
$\mathrm{O}(7)-\mathrm{C}(30)-\mathrm{C}(31)$	$106.2(2)$
$\mathrm{O}(7)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	110.5
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	110.5
$\mathrm{O}(7)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	110.5
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	110.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	108.7
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	109.5
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.5
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.5
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5
$\mathrm{H}(31 \mathrm{~B})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(29)$	$128.8(2)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	115.6
$\mathrm{C}(29)-\mathrm{C}(32)-\mathrm{H}(32)$	115.6
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	$130.8(2)$
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	114.6
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	114.6
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$128.6(2)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	115.7
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34)$	115.7
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$128.5(2)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35)$	115.8

$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{H}(35)$	115.8
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$124.3(2)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(28)$	$128.5(2)$
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(28)$	$107.22(17)$
$\mathrm{C}(41)-\mathrm{C}(37)-\mathrm{C}(36)$	$105.48(17)$
$\mathrm{C}(41)-\mathrm{C}(37)-\mathrm{C}(38)$	$127.14(19)$
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	$127.37(18)$
$\mathrm{O}(8)-\mathrm{C}(38)-\mathrm{O}(9)$	$122.2(2)$
$\mathrm{O}(8)-\mathrm{C}(38)-\mathrm{C}(37)$	$125.7(2)$
$\mathrm{O}(9)-\mathrm{C}(38)-\mathrm{C}(37)$	$112.11(18)$
$\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{C}(40)$	$108.2(2)$
$\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	110.1
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	110.1
$\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	110.1
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	110.1
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	108.4
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	109.5
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~B})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{O}(10)-\mathrm{C}(41)-\mathrm{C}(27)$	$120.62(16)$
$\mathrm{O}(10)-\mathrm{C}(41)-\mathrm{C}(37)$	$126.28(18)$
$\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{C}(37)$	$113.08(17)$
$\mathrm{O}(11)-\mathrm{C}(42)-\mathrm{O}(12)$	$128.41(19)$
$\mathrm{O}(11)-\mathrm{C}(42)-\mathrm{O}(10)$	$125.48(19)$
$\mathrm{O}(12)-\mathrm{C}(42)-\mathrm{O}(10)$	$106.10(16)$
$\mathrm{O}(12)-\mathrm{C}(43)-\mathrm{C}(44)$	$106.61(18)$
$\mathrm{O}(12)-\mathrm{C}(43)-\mathrm{C}(49)$	$107.2(2)$
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(49)$	$112.58(19)$
$\mathrm{O}(12)-\mathrm{C}(43)-\mathrm{H}(43)$	110.1
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{H}(43)$	110.1
$\mathrm{C}(49)-\mathrm{C}(43)-\mathrm{H}(43)$	110.1
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	$112.0(2)$
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~A})$	109.2
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~A})$	109.2
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~B})$	109.2
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~B})$	109.2
$\mathrm{H}(44 \mathrm{~A})-\mathrm{C}(44)-\mathrm{H}(44 \mathrm{~B})$	107.9
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{C}(46)$	$111.6(2)$
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{C}(44)$	$109.9(2)$
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	$109.8(2)$
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{H}(45)$	108.5
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{H}(45)$	108.5
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45)$	108.5
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{H}(46 \mathrm{~B})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{C}(45)-\mathrm{C}(47)-\mathrm{C}(48)$	$112.6(2)$
$\mathrm{C}(45)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	109.1
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	109.1

$\mathrm{C}(45)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.1	$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.1	$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5
$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	107.8	$\mathrm{H}(51 \mathrm{~B})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$	$111.5(2)$	$\mathrm{C}(50)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	109.3	$\mathrm{C}(50)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.5
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	109.3	$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.3	$\mathrm{C}(50)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.3	$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5
$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	108.0	$\mathrm{H}(52 \mathrm{~B})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5
$\mathrm{C}(43)-\mathrm{C}(49)-\mathrm{C}(48)$	$106.8(2)$	$\mathrm{C}(61)-\mathrm{O}(13)-\mathrm{H}(13)$	109.5
$\mathrm{C}(43)-\mathrm{C}(49)-\mathrm{C}(50)$	$112.7(2)$	$\mathrm{O}(13)-\mathrm{C}(61)-\mathrm{C}(62)$	$113(2)$
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$	$116.1(2)$	$\mathrm{O}(13)-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~A})$	108.9
$\mathrm{C}(43)-\mathrm{C}(49)-\mathrm{H}(49)$	106.9	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~A})$	108.9
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{H}(49)$	106.9	$\mathrm{O}(13)-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~B})$	108.9
$\mathrm{C}(50)-\mathrm{C}(49)-\mathrm{H}(49)$	106.9	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~B})$	108.9
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(52)$	$112.8(3)$	$\mathrm{H}(61 \mathrm{~A})-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~B})$	107.7
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(49)$	$111.9(3)$	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~A})$	109.5
$\mathrm{C}(52)-\mathrm{C}(50)-\mathrm{C}(49)$	$112.5(3)$	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~B})$	109.5
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{H}(50)$	106.4	$\mathrm{H}(62 \mathrm{~A})-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~B})$	109.5
$\mathrm{C}(52)-\mathrm{C}(50)-\mathrm{H}(50)$	106.4	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{C})$	109.5
$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{H}(50)$	106.4	$\mathrm{H}(62 \mathrm{~A})-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{C})$	109.5
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	109.5	$\mathrm{H}(62 \mathrm{~B})-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{C})$	109.5
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.5		
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.5		

Table 5. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel1. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$36(1)$	$58(1)$	$32(1)$	$-9(1)$	$3(1)$	$-14(1)$
$\mathrm{O}(2)$	$54(1)$	$137(2)$	$59(1)$	$-13(1)$	$24(1)$	$-35(1)$
$\mathrm{O}(3)$	$34(1)$	$68(1)$	$60(1)$	$-1(1)$	$4(1)$	$-14(1)$
$\mathrm{O}(4)$	$40(1)$	$26(1)$	$33(1)$	$-3(1)$	$-6(1)$	$-4(1)$
$\mathrm{O}(5)$	$66(1)$	$35(1)$	$46(1)$	$-8(1)$	$-18(1)$	$14(1)$
$\mathrm{O}(6)$	$56(1)$	$35(1)$	$42(1)$	$-10(1)$	$-19(1)$	$9(1)$
$\mathrm{O}(7)$	$49(1)$	$24(1)$	$51(1)$	$2(1)$	$3(1)$	$4(1)$
$\mathrm{O}(8)$	$50(1)$	$63(1)$	$41(1)$	$-7(1)$	$18(1)$	$-1(1)$
$\mathrm{O}(9)$	$58(1)$	$50(1)$	$40(1)$	$-3(1)$	$14(1)$	$16(1)$
$\mathrm{O}(10)$	$32(1)$	$27(1)$	$28(1)$	$0(1)$	$-3(1)$	$1(1)$
$\mathrm{O}(11)$	$41(1)$	$60(1)$	$50(1)$	$21(1)$	$-14(1)$	$-17(1)$
$\mathrm{O}(12)$	$47(1)$	$30(1)$	$49(1)$	$9(1)$	$-17(1)$	$-4(1)$
$\mathrm{C}(1)$	$44(2)$	$132(3)$	$56(2)$	$-25(2)$	$12(1)$	$-32(2)$
$\mathrm{C}(2)$	$39(1)$	$95(2)$	$45(1)$	$-19(1)$	$3(1)$	$-24(1)$
$\mathrm{C}(3)$	$37(1)$	$31(1)$	$30(1)$	$-2(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(4)$	$44(1)$	$37(1)$	$34(1)$	$-7(1)$	$-2(1)$	$-5(1)$
$\mathrm{C}(5)$	$53(1)$	$39(1)$	$28(1)$	$-8(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(6)$	$54(1)$	$45(1)$	$28(1)$	$-7(1)$	$7(1)$	$6(1)$
$\mathrm{C}(7)$	$44(1)$	$41(1)$	$34(1)$	$0(1)$	$11(1)$	$4(1)$
$\mathrm{C}(8)$	$36(1)$	$29(1)$	$32(1)$	$-1(1)$	$4(1)$	$1(1)$
$\mathrm{C}(9)$	$34(1)$	$33(1)$	$38(1)$	$2(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(10)$	$39(1)$	$50(1)$	$52(1)$	$2(1)$	$6(1)$	$-8(1)$
$\mathrm{C}(11)$	$36(1)$	$82(2)$	$85(2)$	$6(2)$	$4(1)$	$-17(1)$
$\mathrm{C}(12)$	$48(2)$	$156(4)$	$109(3)$	$-14(3)$	$-9(2)$	$-37(2)$
$\mathrm{C}(13)$	$35(1)$	$24(1)$	$31(1)$	$1(1)$	$-2(1)$	$-1(1)$
$\mathrm{C}(14)$	$34(1)$	$33(1)$	$37(1)$	$-4(1)$	$-5(1)$	$2(1)$
$\mathrm{C}(15)$	$43(1)$	$38(1)$	$38(1)$	$-9(1)$	$-11(1)$	$7(1)$
$\mathrm{C}(16)$	$47(1)$	$39(1)$	$42(1)$	$-6(1)$	$-9(1)$	$4(1)$
$\mathrm{C}(17)$	$40(1)$	$40(1)$	$45(1)$	$-8(1)$	$-11(1)$	$5(1)$
$\mathrm{C}(18)$	$50(1)$	$43(1)$	$61(2)$	$-5(1)$	$-12(1)$	$0(1)$
$\mathrm{C}(19)$	$47(1)$	$64(2)$	$43(1)$	$-19(1)$	$-10(1)$	$3(1)$
$\mathrm{C}(20)$	$43(1)$	$75(2)$	$41(1)$	$-14(1)$	$-3(1)$	$-4(1)$
$\mathrm{C}(21)$	$39(1)$	$53(1)$	$48(1)$	$-20(1)$	$-8(1)$	$7(1)$
$\mathrm{C}(22)$	$38(1)$	$65(2)$	$54(1)$	$-24(1)$	$-5(1)$	$3(1)$
$\mathrm{C}(23)$	$44(2)$	$113(3)$	$83(2)$	$-52(2)$	$6(2)$	$-6(2)$
$\mathrm{C}(24)$	$49(2)$	$64(2)$	$78(2)$	$-10(2)$	$-5(1)$	$-9(1)$
$\mathrm{C}(25)$	$33(1)$	$22(1)$	$26(1)$	$0(1)$	$0(1)$	$1(1)$
$\mathrm{C}(26)$	$34(1)$	$25(1)$	$27(1)$	$-1(1)$	$2(1)$	$1(1)$
$\mathrm{C}(27)$	$32(1)$	$30(1)$	$23(1)$	$0(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(28)$	$33(1)$	$33(1)$	$27(1)$	$4(1)$	$-3(1)$	$-4(1)$
$\mathrm{C}(29)$	$42(1)$	$34(1)$	$36(1)$	$4(1)$	$-5(1)$	$-4(1)$
$\mathrm{C}(30)$	$69(2)$	$33(1)$	$57(2)$	$3(1)$	$-4(1)$	$18(1)$
$\mathrm{C}(31)$	$68(2)$	$45(1)$	$74(2)$	$-3(1)$	$9(2)$	$24(1)$
$\mathrm{C}(32)$	$66(2)$	$35(1)$	$51(1)$	$12(1)$	$-4(1)$	$-2(1)$
$\mathrm{C}(33)$	$74(2)$	$50(1)$	$48(1)$	$24(1)$	$-5(1)$	$-14(1)$
$\mathrm{C}(34)$	$59(2)$	$64(2)$	$37(1)$	$18(1)$	$2(1)$	$-16(1)$
$\mathrm{C}(35)$	$41(1)$	$58(1)$	$31(1)$	$7(1)$	$1(1)$	$-7(1)$
$\mathrm{C}(36)$	$32(1)$	$44(1)$	$26(1)$	$3(1)$	$-2(1)$	$-6(1)$
$\mathrm{C}(37)$	$32(1)$	$42(1)$	$24(1)$	$-1(1)$	$0(1)$	$-1(1)$

C(38)	$33(1)$	$52(1)$	$29(1)$	$-7(1)$	$-1(1)$	$0(1)$
C(39)	$48(1)$	$60(2)$	$52(1)$	$-17(1)$	$6(1)$	$15(1)$
C(40)	$74(2)$	$54(2)$	$58(2)$	$-6(1)$	$7(1)$	$20(1)$
C(41)	$32(1)$	$30(1)$	$24(1)$	$0(1)$	$-2(1)$	$-1(1)$
C(42)	$31(1)$	$35(1)$	$28(1)$	$-1(1)$	$-1(1)$	$0(1)$
C(43)	$48(1)$	$35(1)$	$40(1)$	$8(1)$	$-14(1)$	$-5(1)$
C(44)	$38(1)$	$41(1)$	$42(1)$	$11(1)$	$-2(1)$	$1(1)$
C(45)	$40(1)$	$47(1)$	$61(1)$	$21(1)$	$-11(1)$	$-4(1)$
C(46)	$48(1)$	$57(2)$	$85(2)$	$30(2)$	$11(1)$	$14(1)$
C(47)	$71(2)$	$47(1)$	$46(1)$	$15(1)$	$-11(1)$	$-3(1)$
C(48)	$102(3)$	$51(2)$	$39(1)$	$4(1)$	$-10(1)$	$-4(2)$
C(49)	$67(2)$	$40(1)$	$46(1)$	$-1(1)$	$-1(1)$	$1(1)$
C(50)	$114(3)$	$56(2)$	$60(2)$	$-8(1)$	$8(2)$	$11(2)$
C(51)	$118(3)$	$90(3)$	$78(2)$	$-22(2)$	$10(2)$	$20(3)$
C(52)	$161(4)$	$40(1)$	$49(2)$	$-3(1)$	$15(2)$	$3(2)$
O(13)	$53(9)$	$72(11)$	$78(11)$	$-21(9)$	$15(8)$	$-19(8)$
C(61)	$60(14)$	$78(17)$	$69(15)$	$-15(13)$	$5(12)$	$-24(14)$
C(62)	$83(19)$	$62(16)$	$90(20)$	$-16(14)$	$-5(16)$	$-18(15)$

Table 6. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel1.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1A)	4893	5879	2816	116
H(1B)	3843	6117	2476	116
$\mathrm{H}(1 \mathrm{C})$	4054	5202	2645	116
$\mathrm{H}(2 \mathrm{~A})$	3874	5557	3615	72
H(2B)	3592	6459	3427	72
H(4)	2655	6153	4196	46
H(5)	1679	6135	4958	48
H(6)	93	5635	5093	51
$\mathrm{H}(7)$	-968	5044	4486	48
$\mathrm{H}(11 \mathrm{~A})$	-3934	4257	3325	81
$\mathrm{H}(11 \mathrm{~B})$	-3559	3379	3520	81
$\mathrm{H}(12 \mathrm{~A})$	-4636	3296	2708	157
$\mathrm{H}(12 \mathrm{~B})$	-3469	2968	2578	157
$\mathrm{H}(12 \mathrm{C})$	-3807	3846	2375	157
H(15)	-1952	4517	1103	47
H(16A)	-3108	3469	1327	51
H(16B)	-2299	2817	1082	51
$\mathrm{H}(17)$	-3399	3989	422	50
$\mathrm{H}(18 \mathrm{~A})$	-4304	2874	18	77
H(18B)	-4561	2972	673	77
$\mathrm{H}(18 \mathrm{C})$	-3746	2298	467	77
H(19A)	-2607	3415	-374	62
$\mathrm{H}(19 \mathrm{~B})$	-1975	2791	13	62
H(20A)	-1660	4495	23	64
$\mathrm{H}(20 \mathrm{~B})$	-841	3861	-234	64
H(21)	-535	3320	672	56
H(22)	379	4387	1117	63
H(23A)	1639	4578	405	120
H(23B)	808	4280	-58	120
H(23C)	1239	3668	407	120
H(24A)	461	5669	724	96
H(24B)	-730	5480	915	96
H(24C)	-411	5431	264	96
H(30A)	-276	7332	2324	64
H(30B)	802	7560	2649	64
H(31A)	-686	7579	3266	93
H(31B)	183	6941	3465	93
H(31C)	-862	6645	3145	93
H(32)	1180	7393	1758	60
H(33)	2207	7389	1009	68
H(34)	3196	6440	659	64
H(35)	3300	5172	915	52
H(39A)	4445	2378	1565	64
H(39B)	3724	2388	1009	64
H(40A)	3693	1114	1454	93
H(40B)	2532	1497	1421	93
H(40C)	3180	1522	1999	93
H(43)	3505	2664	3645	49
H(44A)	3859	1578	3046	49

H(44B)	2804	1129	3247	49
$H(45)$	4648	1407	3928	59
$H(46 A)$	4740	-24	3955	95
$H(46 B)$	4876	315	3329	95
$H(46 C)$	3769	-65	3522	95
$H(47 A)$	3769	806	4682	65
$H(47 B)$	2748	630	4302	65
$H(48 A)$	3441	2193	4642	76
$H(48 B)$	2409	1746	4878	76
$H(49)$	1643	1784	3961	61
$H(50)$	1270	3171	3850	92
$H(51 A)$	310	3340	4659	143
$H(51 B)$	987	2659	4969	143
$H(51 C)$	232	2429	4452	143
$H(52 A)$	1928	4111	4521	125
$H(52 B)$	2817	3795	4095	125
$H(52 C)$	2766	3452	4723	125
$H(13)$	-3902	4669	4068	101
$H(61 A)$	-5374	4034	3834	83
$H(61 B)$	-5853	4332	4420	83
$H(62 A)$	-5339	3015	4483	117
$H(62 B)$	-4154	3253	4310	117
$H(62 C)$	-4634	3552	4897	117

Table 7. Torsion angles [] for s16sel1.

$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	170.8(3)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	13.1(3)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(26)$	-167.1(2)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-179.7(2)
$\mathrm{C}(26)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	0.4(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.6(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-0.8(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	2.2(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	177.0(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(26)$	-1.9(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(13)$	-178.2(2)
C(26)-C(8)-C(9)-C(13)	0.9(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	4.3(4)
$\mathrm{C}(26)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-176.5(2)
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{O}(2)$	4.0(4)
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	-175.7(2)
$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(2)$	175.3(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(2)$	-7.8(4)
$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(3)$	-5.0(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(3)$	171.9(2)
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	-177.6(3)
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(25)$	-83.5(2)
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(9)$	105.6(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{O}(4)$	169.65(18)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{O}(4)$	-12.9(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{C}(25)$	-2.0(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{C}(25)$	175.4(2)
$\mathrm{C}(15)-\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{O}(5)$	-1.2(4)
$\mathrm{C}(15)-\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{O}(4)$	178.70(18)
$\mathrm{C}(13)-\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{O}(5)$	-9.1(3)
$\mathrm{C}(13)-\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{O}(6)$	170.96(17)
$\mathrm{C}(14)-\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(16)$	-125.2(2)
$\mathrm{C}(14)-\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(21)$	113.1(2)
$\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-174.86(18)
$\mathrm{C}(21)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-56.2(3)
C(15)-C(16)-C(17)-C(19)	55.1(3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-179.6(2)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)$	-56.0(3)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)$	179.8(2)
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	57.8(3)
$\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{C}(20)$	171.9(2)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{C}(20)$	54.6(3)
$\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{C}(22)$	-60.7(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{C}(22)$	-178.0(2)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(15)$	-55.2(3)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	177.5(2)
$\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	167.8(3)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-67.7(3)
$\mathrm{C}(15)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(24)$	-66.6(3)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(24)$	57.9(3)
$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(26)$	-169.70(17)
$\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(26)$	2.2(2)

$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(27)$	7.9(3)
$\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(27)$	179.84(17)
$\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(3)$	177.56(18)
$\mathrm{C}(27)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(3)$	0.2(3)
$\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(8)$	-1.5(2)
$\mathrm{C}(27)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(8)$	-178.85(18)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(26)-\mathrm{C}(25)$	1.5(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(26)-\mathrm{C}(25)$	-178.7(2)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(26)-\mathrm{C}(8)$	-179.61(18)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(26)-\mathrm{C}(8)$	0.2(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(25)$	179.5(2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(25)$	0.4(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(3)$	0.4(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(3)$	-178.69(19)
C(13)-C(25)-C(27)-C(41)	-71.4(2)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{C}(41)$	105.6(2)
$\mathrm{C}(13)-\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{C}(28)$	107.7(2)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{C}(28)$	-75.4(3)
C(41)-C(27)-C(28)-C(29)	-179.70(19)
C(25)-C(27)-C(28)-C(29)	1.1(3)
C(41)-C(27)-C(28)-C(36)	-0.9(2)
C(25)-C(27)-C(28)-C(36)	179.92(19)
$\mathrm{C}(30)-\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(32)$	-2.3(3)
$\mathrm{C}(30)-\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(28)$	177.4(2)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{O}(7)$	0.3(3)
$\mathrm{C}(36)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{O}(7)$	-178.25(19)
C(27)-C(28)-C(29)-C(32)	180.0(2)
C(36)-C(28)-C(29)-C(32)	1.5(4)
C(29)-O(7)-C(30)-C(31)	-174.2(2)
$\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(32)-\mathrm{C}(33)$	177.9(3)
C(28)-C(29)-C(32)-C(33)	-1.8(4)
C(29)-C(32)-C(33)-C(34)	-1.1(5)
C(32)-C(33)-C(34)-C(35)	3.5(5)
C(33)-C(34)-C(35)-C(36)	-2.2(5)
C(34)-C(35)-C(36)-C(37)	-179.4(2)
C(34)-C(35)-C(36)-C(28)	-0.4(4)
C(29)-C(28)-C(36)-C(35)	0.6(4)
C(27)-C(28)-C(36)-C(35)	-178.2(2)
C(29)-C(28)-C(36)-C(37)	179.7(2)
C(27)-C(28)-C(36)-C(37)	1.0(2)
C(35)-C(36)-C(37)-C(41)	178.5(2)
C(28)-C(36)-C(37)-C(41)	-0.6(2)
C(35)-C(36)-C(37)-C(38)	-0.5(3)
C(28)-C(36)-C(37)-C(38)	-179.68(19)
C(39)-O(9)-C(38)-O(8)	3.6(3)
C(39)-O(9)-C(38)-C(37)	-177.45(19)
C(41)-C(37)-C(38)-O(8)	-176.7(2)
C(36)-C(37)-C(38)-O(8)	2.2(4)
C(41)-C(37)-C(38)-O(9)	4.4(3)
C(36)-C(37)-C(38)-O(9)	-176.7(2)
$\mathrm{C}(38)-\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{C}(40)$	-160.9(2)
$\mathrm{C}(42)-\mathrm{O}(10)-\mathrm{C}(41)-\mathrm{C}(27)$	-99.6(2)
$\mathrm{C}(42)-\mathrm{O}(10)-\mathrm{C}(41)-\mathrm{C}(37)$	82.0(2)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{O}(10)$	-178.04(16)
$\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{O}(10)$	1.2(3)

$C(28)-C(27)-C(41)-C(37)$	$0.5(2)$	$C(46)-C(45)-C(47)-C(48)$	$-174.4(3)$
$C(25)-C(27)-C(41)-C(37)$	$179.79(17)$	$C(44)-C(45)-C(47)-C(48)$	$-52.3(3)$
$C(36)-C(37)-C(41)-O(10)$	$178.57(17)$	$C(45)-C(47)-C(48)-C(49)$	$57.1(4)$
$C(38)-C(37)-C(41)-O(10)$	$-2.4(3)$	$O(12)-C(43)-C(49)-C(48)$	$176.09(19)$
$C(36)-C(37)-C(41)-C(27)$	$0.1(2)$	$C(44)-C(43)-C(49)-C(48)$	$59.2(3)$
$C(38)-C(37)-C(41)-C(27)$	$179.12(19)$	$O(12)-C(43)-C(49)-C(50)$	$-55.2(3)$
$C(43)-O(12)-C(42)-O(11)$	$7.6(3)$	$C(44)-C(43)-C(49)-C(50)$	$-172.1(2)$
$C(43)-O(12)-C(42)-O(10)$	$-171.70(17)$	$C(47)-C(48)-C(49)-C(43)$	$-58.1(3)$
$C(41)-O(10)-C(42)-O(11)$	$-0.2(3)$	$C(47)-C(48)-C(49)-C(50)$	$175.2(3)$
$C(41)-O(10)-C(42)-O(12)$	$179.10(16)$	$C(43)-C(49)-C(50)-C(51)$	$166.1(3)$
$C(42)-O(12)-C(43)-C(44)$	$-118.4(2)$	$C(48)-C(49)-C(50)-C(51)$	$-70.2(4)$
$C(42)-O(12)-C(43)-C(49)$	$120.8(2)$	$C(43)-C(49)-C(50)-C(52)$	$-65.8(3)$
$O(12)-C(43)-C(44)-C(45)$	$-175.36(18)$	$C(48)-C(49)-C(50)-C(52)$	$57.9(4)$
$C(49)-C(43)-C(44)-C(45)$	$-58.1(3)$	-	
$C(43)-C(44)-C(45)-C(47)$	$52.3(3)$	-	

Table 8. Hydrogen bonds for s16sel $1\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$\mathrm{O}(13)-\mathrm{H}(13) \ldots \mathrm{O}(2)$	0.84	2.11	$2.886(19)$	153.5

Axial view of $\left(R_{a}, 1 R, 2 S, 5 R\right)$-404.

X-ray crystallographic data for ($S_{a}, 1 R, 2 S, 5 R$)-404.

Table 1. Crystal data and structure refinement for s16sel11.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection Index ranges
Reflections collected
Independent reflections
Completeness to theta $=66.711^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$ sigma (I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
s16sel11
C52 H66 O12
883.04
150.01(10) K
1.54184 A

Orthorhombic
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
$a=12.4749(17) \AA \quad \alpha=90^{\circ}$.
$b=17.3916(10) \AA \quad \beta=90^{\circ}$.
$c=22.547(3) \AA \quad \gamma=90^{\circ}$.
4891.8(9) \AA^{3}

4
$1.199 \mathrm{Mg} / \mathrm{m}^{3}$
$0.684 \mathrm{~mm}^{-1}$
1896
$0.300 \times 0.050 \times 0.020 \mathrm{~mm}^{3}$
3.209 to 66.711°.
$-14<=h<=14,-13<=k<=20,-25<=1<=26$
34755
$8646[R($ int $)=0.0993]$
99.9 \%

Semi-empirical from equivalents
1.00000 and 0.65916

Full-matrix least-squares on F^{2}
8646 / 56 / 634
0.909
$R 1=0.0660, w R 2=0.1350$
$R 1=0.1431, w R 2=0.1710$
-0.1(3)
0.00032(8)
0.201 and -0.180 e. A^{-3}

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel11. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	X	y	z	U(eq)
C(1)	-3550(8)	7000(5)	266(4)	90(3)
C(2)	-2435(8)	6665(5)	355(4)	70(2)
C(3)	-1979(8)	6328(5)	-206(4)	76(3)
C(4)	-897(8)	5966(5)	-110(4)	81(3)
C(5)	-912(7)	5345(5)	375(4)	71(2)
C(6)	162(8)	4925(6)	462(5)	86(3)
C(7)	524(9)	4477(6)	-87(5)	109(4)
C(8)	1065(9)	5464(7)	658(4)	103(4)
C(9)	-1337(7)	5707(5)	928(3)	61(2)
C(10)	-2456(7)	6047(5)	843(4)	68(2)
C(11)	-1156(7)	5326(5)	1930(4)	65(2)
C(12)	-891(7)	4821(4)	2866(3)	55(2)
C(13)	-1461(7)	5038(4)	3377(4)	69(3)
C(14)	-2546(9)	5321(7)	3440(5)	99(4)
O(5)	-2960(13)	5476(9)	2862(6)	115(7)
C(15)	-4057(16)	5753(17)	2917(14)	158(13)
C(16)	-4790(20)	5049(18)	2960(20)	270(30)
O(5A)	-3057(18)	5140(9)	2891(8)	77(7)
C(15A)	-4180(20)	5310(20)	3000(30)	260(40)
C(16A)	-4450(30)	5980(30)	2570(20)	230(30)
C(17)	-737(7)	5009(4)	3865(3)	62(2)
C(18)	-943(10)	5261(5)	4443(4)	86(3)
C(19)	-224(11)	5240(5)	4917(4)	92(4)
C(20)	796(12)	4985(7)	4955(5)	106(4)
C(21)	1405(10)	4633(6)	4534(3)	92(3)
C(22)	1170(9)	4479(5)	3950(3)	73(3)
C(23)	2920(9)	3882(7)	3839(5)	107(4)
C(24)	3455(9)	3466(8)	3322(5)	134(5)
C(25)	275(7)	4723(4)	3615(3)	57(2)
C(26)	176(6)	4635(4)	3002(3)	46(2)
C(27)	972(6)	4457(3)	2557(3)	44(2)
C(28)	1166(6)	3764(4)	2251(3)	45(2)
C(29)	623(6)	3072(4)	2349(3)	51(2)
C(30)	-540(10)	2474(5)	3079(4)	99(4)
C(31)	-927(11)	2752(6)	3665(5)	132(6)
C(32)	743(8)	2372(4)	2063(3)	66(2)
C(33)	1447(8)	2194(5)	1601(3)	72(3)
C(34)	2230(8)	2626(5)	1337(4)	73(3)
C(35)	2533(7)	3366(4)	1454(3)	62(2)
C(36)	2080(6)	3884(4)	1857(3)	50(2)
C(37)	2427(6)	4657(4)	1942(3)	54(2)
C(38)	3332(7)	5033(5)	1647(4)	69(2)
C(39)	4222(11)	6222(7)	1461(7)	141(6)
C(40)	3654(17)	6732(13)	1020(10)	124(8)
C(40A)	4100(30)	7037(13)	1541(15)	129(11)
C(41)	1727(6)	4981(4)	2352(3)	49(2)
C(42)	2228(7)	5971(4)	3004(3)	57(2)
C(43)	2374(8)	7069(4)	3644(4)	69(2)
C(44)	2596(8)	7895(5)	3505(4)	77(3)

C(45)	$3508(9)$	$7995(7)$	$3035(5)$	$103(4)$
C(46)	$3110(19)$	$8200(20)$	$2417(10)$	$209(18)$
C(46A)	$3700(20)$	$8732(13)$	$2855(17)$	$121(14)$
C(47)	$4590(10)$	$7698(9)$	$3225(7)$	$166(7)$
C(48)	$2832(8)$	$8311(5)$	$4086(5)$	$87(3)$
C(49)	$1909(8)$	$8238(5)$	$4523(4)$	$83(3)$
C(50)	$1656(8)$	$7403(5)$	$4666(4)$	$76(3)$
C(51)	$702(9)$	$7317(6)$	$5078(4)$	$93(3)$
C(52)	$1470(8)$	$6963(5)$	$4089(4)$	$70(2)$
O(1)	$-1420(5)$	$5108(3)$	$1392(2)$	$68(2)$
O(2)	$-871(6)$	$5940(3)$	$2083(3)$	$89(2)$
O(3)	$-1286(4)$	$4722(3)$	$2291(2)$	$61(1)$
O(4)	$-3033(7)$	$5487(6)$	$3877(4)$	$146(4)$
O(6)	$1841(5)$	$4061(3)$	$3620(2)$	$72(2)$
O(7)	$-112(5)$	$3137(3)$	$2793(2)$	$61(2)$
O(8)	$3958(5)$	$4719(4)$	$1314(2)$	$83(2)$
O(9)	$3362(6)$	$5789(4)$	$1767(3)$	$105(3)$
O(10)	$1679(4)$	$5751(3)$	$2518(2)$	$54(1)$
O(11)	$2790(5)$	$5565(3)$	$3299(3)$	$78(2)$
O(12)	$2001(5)$	$6707(3)$	$3086(2)$	$66(2)$

Table 3. Bond lengths $[\AA \AA]$ for s16sel11.

		$\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{D})$	0.9800
		$\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{E})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(2)$	1.521(12)	$\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~F})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9800	$\mathrm{C}(17)-\mathrm{C}(18)$	1.399(11)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9800	$\mathrm{C}(17)-\mathrm{C}(25)$	1.470(11)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9800	$\mathrm{C}(18)-\mathrm{C}(19)$	1.396(15)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.504(12)	$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(2)-\mathrm{C}(10)$	1.539(10)	C(19)-C(20)	1.350(15)
$\mathrm{C}(2)-\mathrm{H}(2)$	1.0000	$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	1.506(12)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.361(14)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900	$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900	$\mathrm{C}(21)-\mathrm{C}(22)$	1.376(10)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.537(10)	$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900	$\mathrm{C}(22)-\mathrm{O}(6)$	1.335(10)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900	$\mathrm{C}(22)-\mathrm{C}(25)$	1.413(12)
$\mathrm{C}(5)-\mathrm{C}(9)$	1.495(11)	$\mathrm{C}(23)-\mathrm{O}(6)$	1.466(11)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.539(12)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.525(14)
$\mathrm{C}(5)-\mathrm{H}(5)$	1.0000	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9900
$\mathrm{C}(6)-\mathrm{C}(7)$	1.529(13)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9900
$\mathrm{C}(6)-\mathrm{C}(8)$	1.531(14)	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6)$	1.0000	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9800	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9800	C(25)-C(26)	1.396(9)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9800	C(26)-C(27)	1.445(9)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800	C(27)-C(41)	1.388(9)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800	$\mathrm{C}(27)-\mathrm{C}(28)$	1.411(8)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800	C(28)-C(29)	1.397(9)
$\mathrm{C}(9)-\mathrm{O}(1)$	1.480(8)	$\mathrm{C}(28)-\mathrm{C}(36)$	1.462(10)
C(9)-C(10)	1.528(11)	$\mathrm{C}(29)-\mathrm{O}(7)$	$1.362(9)$
$\mathrm{C}(9)-\mathrm{H}(9)$	1.0000	$\mathrm{C}(29)-\mathrm{C}(32)$	1.386(9)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900	$\mathrm{C}(30)-\mathrm{O}(7)$	1.426(9)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900	$\mathrm{C}(30)-\mathrm{C}(31)$	1.487(11)
$\mathrm{C}(11)-\mathrm{O}(2)$	1.177(10)	$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{O}(1)$	1.314(10)	$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	0.9900
$\mathrm{C}(11)-\mathrm{O}(3)$	1.339(8)	$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	0.9800
$\mathrm{C}(12)-\mathrm{O}(3)$	1.398(9)	$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	0.9800
$\mathrm{C}(12)-\mathrm{C}(26)$	1.403(10)	$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	0.9800
C(12)-C(13)	1.405(10)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.397(11)
C(13)-C(17)	1.424(12)	$\mathrm{C}(32)-\mathrm{H}(32)$	0.9500
$\mathrm{C}(13)-\mathrm{C}(14)$	1.446(12)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.368(11)
$\mathrm{C}(14)-\mathrm{O}(4)$	1.192(12)	$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
$\mathrm{C}(14)-\mathrm{O}(5 \mathrm{~A})$	1.428(13)	$\mathrm{C}(34)-\mathrm{C}(35)$	1.367(11)
$\mathrm{C}(14)-\mathrm{O}(5)$	1.429(12)	$\mathrm{C}(34)-\mathrm{H}(34)$	0.9500
$\mathrm{O}(5)-\mathrm{C}(15)$	1.455(13)	$\mathrm{C}(35)-\mathrm{C}(36)$	1.398(9)
$\mathrm{C}(15)$-C(16)	1.534(14)	$\mathrm{C}(35)-\mathrm{H}(35)$	0.9500
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900	$\mathrm{C}(36)-\mathrm{C}(37)$	1.426(10)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900	C(37)-C(41)	$1.392(10)$
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800	$\mathrm{C}(37)-\mathrm{C}(38)$	1.464(10)
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800	$\mathrm{C}(38)-\mathrm{O}(8)$	1.214(10)
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800	$\mathrm{C}(38)-\mathrm{O}(9)$	1.343(10)
$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.456(14)	C(39)-C(40A)	1.44(2)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	1.544(14)	$\mathrm{C}(39)-\mathrm{O}(9)$	1.482(11)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{C})$	0.9900	C(39)-C(40)	1.509(17)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{D})$	0.9900	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	0.9900

$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	0.9900	$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	0.9800
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	0.9900	$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	0.9800
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{D})$	0.9900	$\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{D})$	0.9800
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9800	$\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{E})$	0.9800
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9800	$\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{~F})$	0.9800
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	0.9800	$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	0.9800
$\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{D})$	0.9800	$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	0.9800
$\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{E})$	0.9800	$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	0.9800
$\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{~F})$	0.9800	$\mathrm{C}(48)-\mathrm{C}(49)$	$1.521(13)$
$\mathrm{C}(41)-\mathrm{O}(10)$	$1.392(8)$	$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	0.9900
$\mathrm{C}(42)-\mathrm{O}(11)$	$1.197(9)$	$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	0.9900
$\mathrm{C}(42)-\mathrm{O}(12)$	$1.323(9)$	$\mathrm{C}(49)-\mathrm{C}(50)$	$1.520(12)$
$\mathrm{C}(42)-\mathrm{O}(10)$	$1.348(9)$	$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	0.9900
$\mathrm{C}(43)-\mathrm{O}(12)$	$1.481(8)$	$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	0.9900
$\mathrm{C}(43)-\mathrm{C}(44)$	$1.496(12)$	$\mathrm{C}(50)-\mathrm{C}(51)$	$1.519(12)$
$\mathrm{C}(43)-\mathrm{C}(52)$	$1.520(12)$	$\mathrm{C}(50)-\mathrm{C}(52)$	$1.527(10)$
$\mathrm{C}(43)-\mathrm{H}(43)$	1.0000	$\mathrm{C}(51)-\mathrm{H}(50)$	1.0000
$\mathrm{C}(44)-\mathrm{C}(48)$	$1.526(11)$	$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	0.9800
$\mathrm{C}(44)-\mathrm{C}(45)$	$1.565(13)$	$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	0.9800
$\mathrm{C}(44)-\mathrm{H}(44)$	1.0000	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	0.9800
$\mathrm{C}(45)-\mathrm{C}(46 \mathrm{~A})$	$1.37(2)$	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	0.9900
$\mathrm{C}(45)-\mathrm{C}(47)$		0.9900	
$\mathrm{C}(45)-\mathrm{C}(46)$	$1.508(16)$		
$\mathrm{C}(45)-\mathrm{H}(45)$	$1.52(2)$		
$\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	1.0000		
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	1.0000		

Table 4. Bond angles [${ }^{\circ}$] for s16sel11.

		$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{H}(9)$	109.5
		$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(2)$	110.2(7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.6
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5	$\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.6
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.6
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5	$\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.6
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.1
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	112.6(8)	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(1)$	127.4(7)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(10)$	109.5(7)	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(3)$	124.9(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(10)$	110.3(8)	$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{O}(3)$	107.7(7)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	108.1	$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(26)$	120.5(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	108.1	$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	128.0(8)
$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{H}(2)$	108.1	C(26)-C(12)-C(13)	111.3(7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.5(7)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	107.6(7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.1	C(12)-C(13)-C(14)	130.2(10)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.1	$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)$	122.0(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.1	$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{O}(5 \mathrm{~A})$	122.8(14)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.1	$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{O}(5)$	121.6(12)
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.8	$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(13)$	129.8(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	112.6(8)	$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(14)-\mathrm{C}(13)$	105.0(13)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.1	$\mathrm{O}(5)-\mathrm{C}(14)-\mathrm{C}(13)$	108.3(10)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.1	$\mathrm{C}(14)-\mathrm{O}(5)-\mathrm{C}(15)$	108.9(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.1	$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	108(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.1	$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	110.2
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	107.8	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	110.2
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(4)$	107.6(8)	$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	110.2
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(6)$	113.7(8)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	110.2
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	114.4(8)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.5
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{H}(5)$	106.9	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	106.9	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	106.9	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(8)$	109.2(9)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	113.3(9)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{C}(5)$	112.8(8)	$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	107.1	$\mathrm{C}(14)-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	104(3)
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{H}(6)$	107.1	$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	105(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	107.1	$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{C})$	110.8
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5	$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{C})$	110.8
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{D})$	110.8
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{D})$	110.8
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{H}(15 \mathrm{C})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{D})$	108.9
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{D})$	109.5
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{E})$	109.5
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5	$\mathrm{H}(16 \mathrm{D})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{E})$	109.5
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~F})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{H}(16 \mathrm{D})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~F})$	109.5
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{H}(16 \mathrm{E})$-C(16A)-H(16F)	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	C(18)-C(17)-C(13)	126.3(9)
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(25)$	128.4(10)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(5)$	108.5(7)	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(25)$	105.1(6)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	107.3(7)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	126.0(10)
$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(10)$	112.4(7)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	117.0
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{H}(9)$	109.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	117.0

$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	131.5(10)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	114.7
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	114.3	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	114.7
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	114.3	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	129.1(8)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	129.1(11)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34)$	115.5
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	115.5	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	115.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	115.5	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	128.3(8)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	129.5(12)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35)$	115.8
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	115.2	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{H}(35)$	115.8
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	115.2	C(35)-C(36)-C(37)	124.9(7)
$\mathrm{O}(6)-\mathrm{C}(22)-\mathrm{C}(21)$	120.4(9)	C(35)-C(36)-C(28)	128.2(7)
$\mathrm{O}(6)-\mathrm{C}(22)-\mathrm{C}(25)$	111.2(6)	C(37)-C(36)-C(28)	106.8(6)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(25)$	128.4(9)	C(41)-C(37)-C(36)	106.3(7)
$\mathrm{O}(6)-\mathrm{C}(23)-\mathrm{C}(24)$	104.2(8)	C(41)-C(37)-C(38)	127.3(7)
$\mathrm{O}(6)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	110.9	C(36)-C(37)-C(38)	126.4(7)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	110.9	$\mathrm{O}(8)-\mathrm{C}(38)-\mathrm{O}(9)$	123.2(8)
$\mathrm{O}(6)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	110.9	$\mathrm{O}(8)-\mathrm{C}(38)-\mathrm{C}(37)$	125.2(8)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	110.9	O(9)-C(38)-C(37)	111.6(7)
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	108.9	C(40A)-C(39)-O(9)	111.4(14)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5	O(9)-C(39)-C(40)	105.4(13)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5	$\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	110.7
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	110.7
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	$\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	110.7
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	C(40)-C(39)-H(39B)	110.7
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	H(39A)-C(39)-H(39B)	108.8
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(22)$	124.5(7)	$\mathrm{C}(40 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.3
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(17)$	109.9(8)	$\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.3
$\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{C}(17)$	125.1(7)	C(40A)-C(39)-H(39D)	109.3
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(12)$	105.9(6)	$\mathrm{O}(9)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{D})$	109.3
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	130.5(7)	$\mathrm{H}(39 \mathrm{C})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{D})$	108.0
$\mathrm{C}(12)-\mathrm{C}(26)-\mathrm{C}(27)$	123.4(6)	$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	109.5
$\mathrm{C}(41)-\mathrm{C}(27)-\mathrm{C}(28)$	106.4(6)	$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{C}(41)-\mathrm{C}(27)-\mathrm{C}(26)$	123.8(6)	$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	129.8(6)	$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	125.2(6)	$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(36)$	126.7(6)	$\mathrm{H}(40 \mathrm{~B})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(36)$	108.0(6)	$\mathrm{C}(39)-\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{D})$	109.5
$\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(32)$	119.2(7)	$\mathrm{C}(39)-\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{E})$	109.5
$\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(28)$	111.8(6)	$\mathrm{H}(40 \mathrm{D})-\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{E})$	109.5
$\mathrm{C}(32)-\mathrm{C}(29)-\mathrm{C}(28)$	129.0(7)	$\mathrm{C}(39)-\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{~F})$	109.5
$\mathrm{O}(7)-\mathrm{C}(30)-\mathrm{C}(31)$	105.1(7)	$\mathrm{H}(40 \mathrm{D})-\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{~F})$	109.5
$\mathrm{O}(7)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	110.7	$\mathrm{H}(40 \mathrm{E})-\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{~F})$	109.5
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	110.7	$\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{C}(37)$	112.4(6)
$\mathrm{O}(7)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	110.7	$\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{O}(10)$	120.8(6)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	110.7	$\mathrm{C}(37)-\mathrm{C}(41)-\mathrm{O}(10)$	126.5(7)
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	108.8	$\mathrm{O}(11)-\mathrm{C}(42)-\mathrm{O}(12)$	128.2(7)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	109.5	$\mathrm{O}(11)-\mathrm{C}(42)-\mathrm{O}(10)$	125.5(7)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.5	$\mathrm{O}(12)-\mathrm{C}(42)-\mathrm{O}(10)$	106.3(7)
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.5	$\mathrm{O}(12)-\mathrm{C}(43)-\mathrm{C}(44)$	106.8(7)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5	$\mathrm{O}(12)-\mathrm{C}(43)-\mathrm{C}(52)$	106.0(7)
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5	C(44)-C(43)-C(52)	113.1(7)
$\mathrm{H}(31 \mathrm{~B})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{C})$	109.5	$\mathrm{O}(12)-\mathrm{C}(43)-\mathrm{H}(43)$	110.3
C(29)-C(32)-C(33)	127.6(8)	$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{H}(43)$	110.3
$\mathrm{C}(29)-\mathrm{C}(32)-\mathrm{H}(32)$	116.2	$\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{H}(43)$	110.3
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	116.2	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(48)$	108.1(8)
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	130.7(7)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	112.6(8)

$\mathrm{C}(48)-\mathrm{C}(44)-\mathrm{C}(45)$	$112.9(8)$
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{H}(44)$	107.7
$\mathrm{C}(48)-\mathrm{C}(44)-\mathrm{H}(44)$	107.7
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{H}(44)$	107.7
$\mathrm{C}(46 \mathrm{~A})-\mathrm{C}(45)-\mathrm{C}(47)$	$104.4(18)$
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{C}(46)$	$129.3(14)$
$\mathrm{C}(46 \mathrm{~A})-\mathrm{C}(45)-\mathrm{C}(44)$	$115.7(15)$
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{C}(44)$	$114.8(11)$
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	$114.1(13)$
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{H}(45)$	94.4
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{H}(45)$	94.4
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45)$	94.4
$\mathrm{C}(46 \mathrm{~A})-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	107.2
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	107.2
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	107.2
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{H}(46 \mathrm{~B})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{D})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{E})$	109.5
$\mathrm{H}(46 \mathrm{D})-\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{E})$	109.5
$\mathrm{C}(45)-\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{~F})$	109.5
$\mathrm{H}(46 \mathrm{D})-\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{~F})$	109.5
$\mathrm{H}(46 \mathrm{E})-\mathrm{C}(46 \mathrm{~A})-\mathrm{H}(46 \mathrm{~F})$	109.5
$\mathrm{C}(45)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	109.5
$\mathrm{C}(45)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.5
$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.5
$\mathrm{C}(45)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5
$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5
$\mathrm{H}(47 \mathrm{~B})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(44)$	$111.8(8)$
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	109.3
$\mathrm{C}(44)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	109.3
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.3

$\mathrm{C}(44)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.3
$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	107.9
$\mathrm{C}(50)-\mathrm{C}(49)-\mathrm{C}(48)$	$111.9(8)$
$\mathrm{C}(50)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	109.2
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	109.2
$\mathrm{C}(50)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	109.2
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	109.2
$\mathrm{H}(49 \mathrm{~A})-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	107.9
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(49)$	$112.8(8)$
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(52)$	$110.7(8)$
$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(52)$	$109.2(8)$
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{H}(50)$	108.0
$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{H}(50)$	108.0
$\mathrm{C}(52)-\mathrm{C}(50)-\mathrm{H}(50)$	108.0
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	109.5
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.5
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.5
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5
$\mathrm{H}(51 \mathrm{~B})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5
$\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{C}(50)$	$112.9(7)$
$\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	109.0
$\mathrm{C}(50)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	109.0
$\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.0
$\mathrm{C}(50)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.0
$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	107.8
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(9)$	$115.6(6)$
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(12)$	$115.1(6)$
$\mathrm{C}(22)-\mathrm{O}(6)-\mathrm{C}(23)$	$120.2(7)$
$\mathrm{C}(29)-\mathrm{O}(7)-\mathrm{C}(30)$	$121.2(6)$
$\mathrm{C}(38)-\mathrm{O}(9)-\mathrm{C}(39)$	$115.1(8)$
$\mathrm{C}(42)-\mathrm{O}(10)-\mathrm{C}(41)$	$118.0(6)$
$\mathrm{C}(42)-\mathrm{O}(12)-\mathrm{C}(43)$	$117.6(6)$

Table 5. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel11. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[h^{2} a^{*} 2 U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U11	u^{22}	u^{33}	u^{23}	u^{13}	u^{12}
C(1)	88(8)	83(7)	100(7)	26(6)	-16(6)	9(6)
C(2)	77(6)	67(5)	66(5)	12(4)	-13(4)	-8(5)
C(3)	91(7)	79(6)	59(5)	23(4)	-17(5)	0(5)
C(4)	104(8)	77(6)	63(5)	17(4)	7(5)	-16(6)
C(5)	71(6)	68(5)	73(5)	16(4)	1(4)	-8(5)
C(6)	67(6)	85(7)	105(7)	32(6)	9(5)	-4(5)
C(7)	95(9)	85(8)	147(11)	2(7)	49(8)	1(6)
C(8)	80(8)	128(10)	101(8)	16(7)	-5(6)	9(7)
C(9)	70(6)	62(5)	52(4)	22(4)	-9(4)	-9(4)
C(10)	77(6)	63(5)	63(5)	10(4)	-11(4)	0(5)
$\mathrm{C}(11)$	75(6)	51(5)	69(5)	21(4)	8(4)	1(4)
C(12)	72(5)	43(4)	50(4)	12(3)	10(4)	2(4)
C(13)	75(6)	44(4)	87(6)	16(4)	41(5)	24(4)
C(14)	94(8)	94(8)	108(9)	38(7)	29(7)	41(7)
O(5)	100(12)	74(11)	171(16)	45(10)	47(10)	59(10)
C(15)	106(19)	220(30)	140(20)	40(20)	18(17)	120(20)
C(16)	90(20)	390(70)	320(50)	-40(50)	-70(30)	100(30)
$\mathrm{O}(5 \mathrm{~A})$	68(12)	31(10)	131(16)	32(9)	17(10)	31(9)
C(15A)	310(70)	90(30)	370(70)	-30(40)	0(60)	-90(40)
C(16A)	70(20)	300(60)	310(60)	200(50)	20(30)	80(30)
$\mathrm{C}(17)$	88(6)	31(3)	66(5)	1(3)	30(5)	7(4)
$\mathrm{C}(18)$	136(9)	40(4)	84(6)	-5(4)	55(7)	-2(5)
C(19)	174(12)	65(6)	37(4)	-10(4)	26(6)	-32(7)
$\mathrm{C}(20)$	150(12)	98(8)	71(7)	-13(6)	1(8)	3(9)
C(21)	143(10)	92(7)	43(4)	-12(4)	-8(5)	-1(7)
C(22)	118(8)	61(5)	39(4)	-4(4)	-6(5)	-4(5)
C(23)	104(9)	125(9)	92(7)	6(7)	-52(7)	25(8)
C(24)	105(10)	194(14)	104(9)	-1(9)	-30(8)	67(10)
C(25)	87(6)	32(4)	52(4)	-4(3)	13(4)	1(4)
C(26)	66(5)	31(3)	41(4)	1(3)	6(3)	5(3)
$\mathrm{C}(27)$	61(5)	37(3)	32(3)	-4(3)	0(3)	-4(3)
C(28)	62(5)	35(4)	39(3)	-6(3)	1(3)	1(3)
C(29)	74(5)	34(4)	44(4)	-6(3)	-4(4)	0(3)
C(30)	169(11)	43(5)	84(6)	-9(4)	55(7)	-35(6)
C(31)	224(15)	72(7)	99(8)	-13(6)	101(10)	-37(8)
C(32)	97(7)	45(4)	55(5)	-12(4)	11(5)	-11(4)
C(33)	103(7)	47(5)	66(5)	-19(4)	14(5)	-10(5)
C(34)	94(7)	60(5)	66(5)	-18(4)	18(5)	10(5)
C(35)	65(5)	67(5)	55(4)	-15(4)	12(4)	10(4)
C(36)	56(4)	46(4)	47(4)	-7(3)	3(3)	7(3)
C(37)	56(5)	60(4)	47(4)	-5(3)	5(3)	-3(4)
C(38)	69(6)	72(6)	68(5)	3(4)	14(5)	-17(5)
C(39)	126(12)	112(10)	185(15)	-13(10)	84(11)	-47(9)
$\mathrm{C}(40)$	102(15)	111(14)	159(17)	40(14)	35(13)	4(12)
$\mathrm{C}(40 \mathrm{~A})$	130(20)	98(18)	160(20)	-40(16)	76(18)	-46(16)
$\mathrm{C}(41)$	58(5)	50(4)	40(3)	-10(3)	-2(3)	-3(3)
$\mathrm{C}(42)$	64(5)	52(5)	56(4)	-10(4)	0(4)	-8(4)
C(43)	94(7)	49(4)	65(5)	-18(4)	-23(5)	0(4)
$\mathrm{C}(44)$	75(6)	64(6)	92(7)	-16(5)	-7(5)	-6(5)

C(45)	$82(8)$	$112(9)$	$116(9)$	$-32(7)$	$10(7)$	$-15(7)$
C(46)	$94(19)$	$420(50)$	$111(19)$	$90(30)$	$39(15)$	$80(30)$
C(46A)	$90(20)$	$44(13)$	$230(40)$	$-9(18)$	$70(20)$	$-30(13)$
C(47)	$96(11)$	$211(17)$	$191(17)$	$-48(14)$	$42(11)$	$9(11)$
C(48)	$82(7)$	$65(6)$	$114(8)$	$-40(5)$	$-8(6)$	$-10(5)$
C(49)	$90(7)$	$64(6)$	$96(7)$	$-32(5)$	$0(6)$	$1(5)$
C(50)	$87(7)$	$63(6)$	$79(6)$	$-23(4)$	$-21(5)$	$11(5)$
C(51)	$110(9)$	$91(8)$	$79(7)$	$-16(5)$	$7(6)$	$7(7)$
C(52)	$90(7)$	$53(5)$	$66(5)$	$-17(4)$	$-6(5)$	$-8(4)$
O(1)	$74(4)$	$66(4)$	$63(3)$	$22(3)$	$-15(3)$	$-15(3)$
O(2)	$151(7)$	$52(4)$	$64(4)$	$12(3)$	$1(4)$	$0(4)$
O(3)	$57(3)$	$50(3)$	$77(4)$	$19(3)$	$-4(3)$	$-2(2)$
O(4)	$126(7)$	$167(8)$	$146(7)$	$36(6)$	$84(6)$	$66(7)$
O(6)	$84(4)$	$81(4)$	$50(3)$	$-4(3)$	$-21(3)$	$9(3)$
O(7)	$95(4)$	$35(3)$	$53(3)$	$-8(2)$	$21(3)$	$-13(3)$
O(8)	$77(4)$	$104(5)$	$68(4)$	$-15(3)$	$29(3)$	$-15(4)$
O(9)	$91(5)$	$77(5)$	$145(7)$	$-20(4)$	$55(5)$	$-37(4)$
O(10)	$75(4)$	$42(3)$	$44(2)$	$-2(2)$	$0(2)$	$-11(2)$
O(11)	$87(4)$	$57(4)$	$91(4)$	$-23(3)$	$-34(4)$	$8(3)$
O(12)	$81(4)$	$46(3)$	$72(3)$	$-15(3)$	$-13(3)$	$-1(3)$

Table 6. Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel11.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1A)	-3533	7373	-60	135
H(1B)	-3782	7257	631	135
$\mathrm{H}(1 \mathrm{C})$	-4053	6586	169	135
$\mathrm{H}(2)$	-1950	7089	488	84
H(3A)	-1914	6739	-508	92
H(3B)	-2480	5935	-361	92
$\mathrm{H}(4 \mathrm{~A})$	-376	6370	1	98
H(4B)	-651	5732	-487	98
H(5)	-1447	4949	249	85
H(6)	55	4542	787	103
H(7A)	1154	4167	12	164
H(7B)	706	4839	-405	164
$\mathrm{H}(7 \mathrm{C})$	-58	4140	-219	164
H(8A)	1714	5163	736	154
H(8B)	850	5735	1020	154
$\mathrm{H}(8 \mathrm{C})$	1210	5839	343	154
$\mathrm{H}(9)$	-834	6119	1063	73
H(10A)	-2705	6277	1220	81
H(10B)	-2963	5634	731	81
H(15A)	-4251	6068	2567	189
H(15B)	-4130	6076	3277	189
H(16A)	-5539	5219	2998	399
H(16B)	-4716	4735	2602	399
H(16C)	-4596	4743	3309	399
H(15C)	-4298	5472	3416	311
H(15D)	-4637	4859	2914	311
H(16D)	-5199	6128	2618	339
H(16E)	-3984	6420	2659	339
H(16F)	-4322	5811	2161	339
H(18)	-1636	5464	4521	104
H(19)	-501	5442	5277	110
H(20)	1136	5061	5327	128
H(21)	2094	4471	4662	111
H(23A)	2886	3548	4194	128
H(23B)	3314	4359	3940	128
H(24A)	4208	3368	3419	201
H(24B)	3411	3786	2965	201
$\mathrm{H}(24 \mathrm{C})$	3088	2976	3252	201
H(30A)	19	2075	3130	118
H(30B)	-1138	2254	2845	118
H(31A)	-1236	2321	3887	197
H(31B)	-1476	3148	3605	197
H(31C)	-326	2969	3888	197
H(32)	295	1966	2196	79
H(33)	1368	1691	1444	86
H(34)	2617	2376	1030	88
H(35)	3128	3552	1234	75
H(39A)	4718	5867	1255	169
H(39B)	4637	6535	1747	169

H(39C)	4928	6059	1618	169
H(39D)	4205	6101	1032	169
H(40A)	3250	6413	740	186
H(40B)	4183	7040	803	186
H(40C)	3161	7075	1231	186
H(40D)	3348	7155	1627	194
H(40E)	4320	7305	1179	194
H(40F)	4549	7207	1873	194
H(43)	3040	6811	3789	83
H(44)	1926	8122	3335	93
H(45)	3666	8540	3147	124
H(45A)	3292	7697	2675	124
H(46A)	2515	7856	2311	313
H(46B)	3694	8132	2131	313
H(46C)	2863	8731	2412	313
H(46D)	4158	8990	3148	181
H(46E)	3021	9009	2820	181
H(46F)	4065	8726	2470	181
H(47A)	5121	7810	2916	249
H(47B)	4550	7141	3287	249
H(47C)	4804	7949	3596	249
H(48A)	3489	8092	4266	104
H(48B)	2966	8861	4004	104
H(49A)	2095	8512	4894	100
H(49B)	1264	8486	4353	100
H(50)	2296	7175	4867	92
H(51A)	654	6783	5215	140
H(51B)	44	7454	4866	140
H(51C)	791	7658	5421	140
H(52A)	1395	6409	4180	84
H(52B)	790	7139	3908	84

Table 7. Torsion angles [${ }^{\circ}$] for s16sel11.

C(1)-C(2)-C(3)-C(4)	-177.5(7)
$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-54.3(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	56.1(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	-56.1(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	176.6(8)
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	173.2(8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-62.6(11)
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	-62.1(10)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	62.0(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{O}(1)$	176.7(7)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{O}(1)$	-55.6(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(10)$	58.2(9)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(10)$	-174.1(7)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(2)$	-178.8(7)
$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(2)$	-59.6(9)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	55.1(10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	179.6(8)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	175.8(6)
$\mathrm{C}(26)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	1.2(9)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-10.0(15)
$\mathrm{C}(26)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	175.4(9)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(4)$	178.1(12)
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(4)$	-8.6(19)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(5 \mathrm{~A})$	16.0(16)
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(5 \mathrm{~A})$	-170.7(10)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(5)$	-9.2(17)
$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(5)$	164.2(11)
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{O}(5)-\mathrm{C}(15)$	-7(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(5)-\mathrm{C}(15)$	179.3(16)
$\mathrm{C}(14)-\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	-84(3)
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	7(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	171.0(17)
$\mathrm{C}(14)-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	116(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)$	172.5(7)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)$	-2.2(14)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(25)$	-2.9(8)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(25)$	-177.6(8)
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-179.1(8)
C(25)-C(17)-C(18)-C(19)	-4.6(14)
C(17)-C(18)-C(19)-C(20)	-0.7(18)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-3(2)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	4(2)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(6)$	-173.6(11)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(25)$	7.9(19)
$\mathrm{O}(6)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{C}(26)$	-8.5(12)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{C}(26)$	170.1(9)
$\mathrm{O}(6)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{C}(17)$	162.9(7)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{C}(17)$	-18.5(14)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{C}(26)$	-171.6(7)
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{C}(26)$	3.7(8)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{C}(22)$	15.9(13)
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{C}(22)$	-168.7(8)

$\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(12)$	169.5(7)
$\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(12)$	-3.0(8)
$\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	-15.3(12)
$\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	172.1(6)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(26)-\mathrm{C}(25)$	-173.9(6)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(26)-\mathrm{C}(25)$	1.1(8)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(26)-\mathrm{C}(27)$	10.5(10)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(26)-\mathrm{C}(27)$	-174.4(6)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(41)$	-75.0(10)
$\mathrm{C}(12)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(41)$	99.4(9)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	104.5(10)
$\mathrm{C}(12)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	-81.1(10)
C(41)-C(27)-C(28)-C(29)	176.1(7)
C(26)-C(27)-C(28)-C(29)	-3.4(12)
C(41)-C(27)-C(28)-C(36)	0.7(8)
C(26)-C(27)-C(28)-C(36)	-178.9(7)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{O}(7)$	-1.6(11)
$\mathrm{C}(36)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{O}(7)$	173.0(7)
C(27)-C(28)-C(29)-C(32)	178.4(8)
C(36)-C(28)-C(29)-C(32)	-7.0(13)
$\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(32)-\mathrm{C}(33)$	179.9(9)
C(28)-C(29)-C(32)-C(33)	-0.1(16)
C(29)-C(32)-C(33)-C(34)	4.6(18)
C(32)-C(33)-C(34)-C(35)	-0.7(18)
C(33)-C(34)-C(35)-C(36)	-3.5(16)
C(34)-C(35)-C(36)-C(37)	-178.2(8)
C(34)-C(35)-C(36)-C(28)	-0.2(14)
C(29)-C(28)-C(36)-C(35)	7.1(13)
C(27)-C(28)-C(36)-C(35)	-177.6(7)
C(29)-C(28)-C(36)-C(37)	-174.7(7)
C(27)-C(28)-C(36)-C(37)	0.7(8)
C(35)-C(36)-C(37)-C(41)	176.6(7)
C(28)-C(36)-C(37)-C(41)	-1.8(8)
C(35)-C(36)-C(37)-C(38)	-2.7(13)
$\mathrm{C}(28)-\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	179.0(7)
$\mathrm{C}(41)-\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{O}(8)$	175.9(8)
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{O}(8)$	-5.0(14)
$\mathrm{C}(41)-\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{O}(9)$	-7.0(12)
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{O}(9)$	172.1(8)
C(28)-C(27)-C(41)-C(37)	-1.9(8)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{C}(37)$	177.7(7)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{O}(10)$	172.7(6)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(41)-\mathrm{O}(10)$	-7.7(11)
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(41)-\mathrm{C}(27)$	2.3(9)
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(41)-\mathrm{C}(27)$	-178.4(7)
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(41)-\mathrm{O}(10)$	-171.9(7)
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(41)-\mathrm{O}(10)$	7.3(13)
$\mathrm{O}(12)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(48)$	172.3(7)
$\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(48)$	56.1(10)
$\mathrm{O}(12)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	-62.4(11)
$\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	-178.6(8)
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46 \mathrm{~A})$	176(2)
C(48)-C(44)-C(45)-C(46A)	-62(2)
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(47)$	-62.7(13)

Axial view of $\left(S_{a}, 1 R, 2 S, 5 R\right)$-404.

X-ray crystallographic data for $\left(R_{\mathrm{a}}\right)$-394.

Table 1. Crystal data and structure refinement for s16sel7.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.684^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ${ }^{2}$
Final R indices [l>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
s16sel7
C30 H30 O8
518.54
150.00(10) K
1.54184 Å

Orthorhombic
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
$a=7.0912(3) \AA \quad \alpha=90^{\circ}$.
$b=9.4533(4) \AA \quad \beta=90^{\circ}$.
$c=37.611(2) \AA \quad \gamma=90^{\circ}$.
2521.3(2) \AA^{3}

4
$1.366 \mathrm{Mg} / \mathrm{m}^{3}$
$0.817 \mathrm{~mm}^{-1}$
1096
$0.180 \times 0.050 \times 0.020 \mathrm{~mm}^{3}$
4.824 to 68.414°.
$-8<=\mathrm{h}<=8,-6<=\mathrm{k}<=11,-45<=1<=45$
13591
$4633[R($ int $)=0.0483]$
99.8 \%

Semi-empirical from equivalents 1.00000 and 0.71798

Full-matrix least-squares on F^{2}
4633 / 0 / 355
1.124
$R 1=0.0643, w R 2=0.1503$
$R 1=0.0725, w R 2=0.1545$
-0.11(17)
n/a
0.309 and -0.305 e. \AA^{-3}

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel7. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	X	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	130(6)	4794(4)	3549(1)	29(1)
O(2)	-965(5)	5929(4)	2947(1)	31(1)
O(3)	727(5)	7670(4)	2693(1)	28(1)
O(4)	6558(6)	6337(4)	4056(1)	29(1)
O(5)	3021(6)	6723(4)	4486(1)	32(1)
O(6)	2968(8)	5819(4)	5140(1)	43(1)
O(7)	3121(6)	3515(4)	5266(1)	28(1)
O(8)	3551(5)	2922(4)	3469(1)	24(1)
C(1)	1599(8)	5649(5)	3503(1)	22(1)
C(2)	1852(7)	6621(5)	3222(1)	22(1)
C(3)	414(7)	6698(5)	2949(1)	24(1)
C(4)	-688(8)	7728(6)	2410(1)	29(1)
C(5)	-285(9)	6637(6)	2128(2)	36(1)
C(6)	3611(7)	7328(5)	3278(1)	22(1)
C(7)	4334(8)	8358(5)	3056(1)	25(1)
C(8)	6022(8)	9107(6)	3083(1)	29(1)
C(9)	7407(8)	8966(6)	3339(1)	30(1)
C(10)	7481(7)	8073(5)	3635(1)	26(1)
C(11)	6196(7)	7089(5)	3758(1)	23(1)
C(12)	8209(8)	6670(6)	4272(1)	30(1)
C(13)	7961(9)	5901(6)	4621(2)	37(1)
C(14)	4415(7)	6729(5)	3608(1)	22(1)
C(15)	3171(8)	5699(5)	3743(1)	22(1)
C(16)	3240(7)	4814(5)	4061(1)	22(1)
C(17)	3129(8)	5350(5)	4409(1)	24(1)
C(18)	3119(8)	4249(5)	4664(1)	23(1)
C(19)	3064(8)	4582(6)	5035(1)	27(1)
C(20)	3138(9)	3895(6)	5638(1)	31(1)
C(21)	3345(9)	2572(7)	5854(2)	39(1)
C(22)	3186(7)	2957(5)	4473(1)	22(1)
C(23)	3109(8)	1615(5)	4626(1)	26(1)
C(24)	3064(9)	281(5)	4459(2)	30(1)
C(25)	3125(8)	-19(5)	4105(1)	29(1)
C(26)	3305(8)	901(5)	3816(1)	27(1)
C(27)	3401(7)	2350(6)	3806(1)	22(1)
C(28)	5457(8)	3158(6)	3353(1)	30(1)
C(29)	5392(9)	3641(7)	2974(1)	35(1)
C(30)	3270(7)	3326(5)	4089(1)	20(1)

Table 3. Bond lengths $[\AA$] for s16sel7.

		$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
		$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
O(1)-C(1)	1.330(6)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800
$\mathrm{O}(1)-\mathrm{H}(1)$	1.00(7)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{O}(2)-\mathrm{C}(3)$	1.219(7)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.409(7)
$\mathrm{O}(3)-\mathrm{C}(3)$	1.350(6)	$\mathrm{C}(15) \mathrm{C}$ (16)	1.460(7)
$\mathrm{O}(3)-\mathrm{C}(4)$	1.462(6)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.407(7)
$\mathrm{O}(4)-\mathrm{C}(11)$	1.353(6)	$\mathrm{C}(16)-\mathrm{C}(30)$	1.411(7)
$\mathrm{O}(4)-\mathrm{C}(12)$	1.459(6)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.415(7)
$\mathrm{O}(5)-\mathrm{C}(17)$	1.331(6)	$\mathrm{C}(18)-\mathrm{C}(22)$	1.418(7)
$\mathrm{O}(5)-\mathrm{H}(5)$	0.99(5)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.431(7)
$\mathrm{O}(6)-\mathrm{C}(19)$	1.237(7)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.497(8)
$\mathrm{O}(7)-\mathrm{C}(19)$	1.332(6)	$\mathrm{C}(20) \mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{O}(7)-\mathrm{C}(20)$	1.446(6)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{O}(8)-\mathrm{C}(27)$	1.382(6)	$\mathrm{C}(21) \mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{O}(8)-\mathrm{C}(28)$	1.438(6)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
C(1)-C(2)	1.412(7)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(15)$	$1.434(7)$	$\mathrm{C}(22)-\mathrm{C}(23)$	1.395(7)
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.431(7)$	C(22)-C(30)	1.485(7)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.450(7)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.409(7)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.508(7)	$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900	$\mathrm{C}(24)-\mathrm{C}(25)$	1.362(8)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900	$\mathrm{C}(24) \mathrm{H}(24)$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9800	C(25)-C(26)	1.397(7)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9800	$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	0.9800	C(26)-C(27)	1.372(7)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.383(7)	$\mathrm{C}(26)$ - $\mathrm{H}(26)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(14)$	1.477 (7)	$\mathrm{C}(27)-\mathrm{C}(30)$	1.412(7)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.394(8)	C(28)-C(29)	1.499(7)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{C}(9)$	1.382(8)	$\mathrm{C}(28) \mathrm{H}(28 \mathrm{~B})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	0.9800
$\mathrm{C}(9)$ - $\mathrm{C}(10)$	1.397(7)	$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500	$\mathrm{C}(29) \mathrm{H}(29 \mathrm{C})$	0.9800
$\mathrm{C}(10)-\mathrm{C}(11)$	1.382(7)		
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	-	
$\mathrm{C}(11)-\mathrm{C}(14)$	$1.425(7)$		
$\mathrm{C}(12)-\mathrm{C}(13)$	1.509(8)		
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900		

Table 4. Bond angles $\left[{ }^{\circ}\right]$ for s16sel7.

$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{H}(1)$	104(4)	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(4)$	115.5(4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{O}(4)-\mathrm{C}(12)$	120.0(4)	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(17)-\mathrm{O}(5)-\mathrm{H}(5)$	105(3)	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(19)-\mathrm{O}(7)-\mathrm{C}(20)$	116.4(4)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(11)$	125.2(5)
$\mathrm{C}(27)-\mathrm{O}(8)-\mathrm{C}(28)$	114.3(4)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(6)$	109.0(4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	126.4(5)	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(6)$	125.7(5)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(15)$	123.2(4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(1)$	106.4(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)$	110.5(5)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	132.1(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	107.8(4)	$\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	121.5(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.3(5)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(30)$	106.8(4)
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)$	133.9(4)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	123.7(5)
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	122.3(5)	$\mathrm{C}(30)-\mathrm{C}(16)-\mathrm{C}(15)$	129.4(5)
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	122.6(5)	$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(16)$	123.9(5)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	115.1(4)	$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)$	124.7(5)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	110.8(4)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	111.5(4)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(22)$	106.9(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	119.9(4)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5	$\mathrm{C}(22)-\mathrm{C}(18)-\mathrm{C}(19)$	133.2(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5	$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{O}(7)$	120.6(5)
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.1	$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(18)$	121.4(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.5	$\mathrm{O}(7)-\mathrm{C}(19)-\mathrm{C}(18)$	118.0(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5	$\mathrm{O}(7)-\mathrm{C}(20)-\mathrm{C}(21)$	108.5(5)
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5	$\mathrm{O}(7)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	110.0
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	110.0
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{O}(7)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	110.0
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	110.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(2)$	124.3(5)	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	108.4
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(14)$	129.4(5)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(14)$	106.3(4)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	129.1(5)	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	115.5	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	115.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	127.9(5)	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	116.1	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(18)$	124.9(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	116.1	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(30)$	128.1(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	129.7(5)	$\mathrm{C}(18)-\mathrm{C}(22)-\mathrm{C}(30)$	107.0(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	115.1	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	129.0(5)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	115.1	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	115.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	130.4(5)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	115.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	114.8	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	128.5(5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	114.8	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	115.8
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(10)$	120.4(5)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	115.8
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(14)$	111.8(4)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	129.3(5)
C(10)-C(11)-C(14)	127.7(5)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	115.4
$\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{C}(13)$	106.6(5)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	115.4
$\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	110.4	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	130.3(5)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	110.4	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	114.8
$\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	110.4	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	114.8
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	110.4	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{O}(8)$	114.8(4)
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.6	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(30)$	128.9(5)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{O}(8)-\mathrm{C}(27)-\mathrm{C}(30)$	116.2(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{O}(8)-\mathrm{C}(28)-\mathrm{C}(29)$	107.9(4)

$\mathrm{O}(8)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	110.1	$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.5
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	110.1	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5
$\mathrm{O}(8)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	110.1	$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	110.1	$\mathrm{H}(29 \mathrm{~B})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	108.4	$\mathrm{C}(16)-\mathrm{C}(30)-\mathrm{C}(27)$	$126.5(5)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	109.5	$\mathrm{C}(16)-\mathrm{C}(30)-\mathrm{C}(22)$	$107.9(4)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.5	$\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{C}(22)$	$125.6(4)$

Table 5. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel7. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
O(1)	$28(2)$	$27(2)$	$32(2)$	$4(2)$	$-1(2)$	$-6(2)$
O(2)	$26(2)$	$32(2)$	$34(2)$	$4(2)$	$-5(2)$	$-2(2)$
O(3)	$30(2)$	$26(2)$	$27(2)$	$4(2)$	$-5(2)$	$0(2)$
O(4)	$30(2)$	$29(2)$	$28(2)$	$5(1)$	$-8(2)$	$-7(2)$
O(5)	$52(3)$	$15(2)$	$28(2)$	$-1(1)$	$2(2)$	$0(2)$
O(6)	$76(3)$	$28(2)$	$24(2)$	$-2(2)$	$1(2)$	$1(2)$
O(7)	$30(2)$	$31(2)$	$22(2)$	$4(1)$	$0(2)$	$1(2)$
O(8)	$18(2)$	$29(2)$	$25(2)$	$2(1)$	$2(1)$	$0(1)$
C(1)	$23(3)$	$18(2)$	$24(2)$	$0(2)$	$1(2)$	$0(2)$
C(2)	$25(2)$	$21(2)$	$20(2)$	$0(2)$	$1(2)$	$3(2)$
C(3)	$26(3)$	$19(2)$	$26(2)$	$1(2)$	$1(2)$	$2(2)$
C(4)	$27(3)$	$29(3)$	$31(3)$	$2(2)$	$-7(2)$	$6(2)$
C(5)	$38(3)$	$35(3)$	$35(3)$	$-2(3)$	$-6(2)$	$7(3)$
C(6)	$26(3)$	$18(2)$	$21(2)$	$0(2)$	$4(2)$	$0(2)$
C(7)	$29(3)$	$21(3)$	$25(2)$	$2(2)$	$4(2)$	$1(2)$
C(8)	$34(3)$	$23(3)$	$30(3)$	$3(2)$	$6(2)$	$0(2)$
C(9)	$27(3)$	$27(3)$	$35(3)$	$2(2)$	$5(2)$	$-6(2)$
C(10)	$22(2)$	$23(3)$	$31(3)$	$-1(2)$	$1(2)$	$-6(2)$
C(11)	$25(3)$	$21(2)$	$24(2)$	$0(2)$	$1(2)$	$4(2)$
C(12)	$28(3)$	$36(3)$	$27(3)$	$-2(2)$	$-8(2)$	$-3(3)$
C(13)	$43(4)$	$31(3)$	$37(3)$	$3(2)$	$-14(3)$	$0(3)$
C(14)	$24(2)$	$21(3)$	$21(2)$	$-2(2)$	$2(2)$	$1(2)$
C(15)	$24(2)$	$20(2)$	$22(2)$	$-2(2)$	$0(2)$	$1(2)$
C(16)	$19(2)$	$26(3)$	$22(2)$	$2(2)$	$0(2)$	$-8(2)$
C(17)	$29(3)$	$15(2)$	$30(3)$	$2(2)$	$2(2)$	$-1(2)$
C(18)	$29(3)$	$12(2)$	$27(2)$	$3(2)$	$0(2)$	$-1(2)$
C(19)	$25(3)$	$26(3)$	$30(3)$	$4(2)$	$1(2)$	$1(2)$
C(20)	$27(3)$	$42(3)$	$25(3)$	$2(2)$	$0(2)$	$2(3)$
C(21)	$33(3)$	$56(4)$	$30(3)$	$11(3)$	$1(2)$	$2(3)$
C(22)	$18(2)$	$19(2)$	$28(2)$	$1(2)$	$1(2)$	$2(2)$
C(23)	$32(3)$	$19(2)$	$28(3)$	$4(2)$	$3(2)$	$3(2)$
C(24)	$35(3)$	$11(2)$	$42(3)$	$6(2)$	$5(3)$	$1(2)$
C(25)	$35(3)$	$11(2)$	$40(3)$	$1(2)$	$7(3)$	$-5(2)$
C(26)	$30(3)$	$23(2)$	$29(3)$	$-2(2)$	$4(2)$	$0(2)$
C(27)	$11(2)$	$32(3)$	$23(2)$	$-2(2)$	$0(2)$	$1(2)$
C(28)	$22(3)$	$32(3)$	$34(3)$	$0(2)$	$6(2)$	$-1(2)$
C(29)	$28(3)$	$47(4)$	$31(3)$	$3(2)$	$4(2)$	$-3(3)$
C(30)	$13(2)$	$20(2)$	$27(2)$	$0(2)$	$1(2)$	$-1(2)$

Table 6. Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for s16sel7.

	x	y	z	U(eq)
H(1)	-630(110)	4910(80)	3327(19)	50(20)
$\mathrm{H}(5)$	3020(90)	6760(60)	4750(15)	24(14)
H(4A)	-689	8682	2302	35
$\mathrm{H}(4 \mathrm{~B})$	-1954	7556	2513	35
H(5A)	-1146	6775	1927	54
H(5B)	-467	5688	2227	54
$\mathrm{H}(5 \mathrm{C})$	1020	6738	2046	54
$\mathrm{H}(7)$	3575	8588	2856	30
$\mathrm{H}(8)$	6246	9797	2905	35
H(9)	8469	9568	3310	35
H(10)	8596	8155	3773	31
H(12A)	8297	7702	4313	36
H(12B)	9374	6350	4152	36
H(13A)	9016	6129	4779	56
H(13B)	7932	4879	4578	56
H(13C)	6775	6196	4732	56
H(20A)	1950	4383	5702	38
H(20B)	4202	4545	5688	38
H(21A)	3575	2821	6103	59
H(21B)	4410	2019	5763	59
H(21C)	2187	2012	5836	59
H(23)	3083	1597	4879	32
H(24)	2981	-512	4613	35
H(25)	3030	-994	4046	35
H(26)	3373	451	3591	33
H(28A)	6197	2273	3373	35
H(28B)	6065	3888	3503	35
H(29A)	6659	3920	2897	53
H(29B)	4536	4451	2953	53
H(29C)	4937	2867	2823	53

Table 7. Torsion angles [] for s16sel7.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$179.5(5)$	$\mathrm{C}(14)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$0.0(9)$
$\mathrm{C}(15)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$-0.3(6)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$1.8(10)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-1.4(8)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-0.9(10)$
$\mathrm{C}(15)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$178.8(4)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-0.7(11)$
$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{O}(2)$	$-0.6(7)$	$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(10)$	$6.8(7)$
$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	$178.4(4)$	$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(14)$	$-172.8(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$	$-2.3(7)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(4)$	$-179.4(5)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$	$176.4(5)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)$	$0.2(10)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$178.7(4)$	$\mathrm{C}(11)-\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{C}(13)$	$167.0(5)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$-2.5(8)$	$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(15)$	$-1.3(7)$
$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-84.3(6)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(15)$	$179.0(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$180.0(5)$	$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(6)$	$-178.6(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$1.1(9)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(6)$	$1.8(8)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(14)$	$0.2(5)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	$-179.8(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(14)$	$-178.7(5)$	$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	$0.0(5)$
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-179.8(5)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(11)$	$-2.2(8)$

$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(11)$	177.6(5)
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(1)$	-177.8(5)
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(1)$	-0.2(5)
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	4.0(9)
$\mathrm{C}(6)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-178.4(5)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	-179.5(5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	0.3(6)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	-1.1(8)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	178.8(4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	66.2(8)
$\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-111.8(6)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(30)$	-119.5(7)
$\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(30)$	62.5(8)
$\mathrm{C}(30)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(5)$	-178.1(5)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(5)$	-2.7(9)
$\mathrm{C}(30)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	1.1(7)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	176.5(5)
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(22)$	177.9(5)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(22)$	-1.3(7)
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-2.5(9)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	178.3(5)
$\mathrm{C}(20)-\mathrm{O}(7)-\mathrm{C}(19)-\mathrm{O}(6)$	-2.3(8)
$\mathrm{C}(20)-\mathrm{O}(7)-\mathrm{C}(19)-\mathrm{C}(18)$	177.6(5)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(6)$	2.2(9)
$\mathrm{C}(22)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(6)$	-178.4(6)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(7)$	-177.8(5)
$\mathrm{C}(22)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(7)$	1.6(10)
$\mathrm{C}(19)-\mathrm{O}(7)-\mathrm{C}(20)-\mathrm{C}(21)$	-175.9(5)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(22)-\mathrm{C}(23)$	-176.8(5)
C(19)-C(18)-C(22)-C(23)	3.7(10)
C(17)-C(18)-C(22)-C(30)	0.9(6)
C(19)-C(18)-C(22)-C(30)	-178.5(6)
$\mathrm{C}(18)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	176.3(6)
$\mathrm{C}(30)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	-1.0(10)
C(22)-C(23)-C(24)-C(25)	1.5(11)
C(23)-C(24)-C(25)-C(26)	2.2(11)
C(24)-C(25)-C(26)-C(27)	-2.7(12)
C(25)-C(26)-C(27)-O(8)	-179.1(6)
C(25)-C(26)-C(27)-C(30)	-2.7(11)
$\mathrm{C}(28)-\mathrm{O}(8)-\mathrm{C}(27)-\mathrm{C}(26)$	-92.6(6)
$\mathrm{C}(28)-\mathrm{O}(8)-\mathrm{C}(27)-\mathrm{C}(30)$	90.6(5)
$\mathrm{C}(27)-\mathrm{O}(8)-\mathrm{C}(28)-\mathrm{C}(29)$	174.5(4)
C(17)-C(16)-C(30)-C(27)	-179.0(5)
C(15)-C(16)-C(30)-C(27)	5.9(9)
C(17)-C(16)-C(30)-C(22)	-0.4(6)
C(15)-C(16)-C(30)-C(22)	-175.5(5)
C(26)-C(27)-C(30)-C(16)	-175.0(6)
O(8)-C(27)-C(30)-C(16)	1.3(8)
C(26)-C(27)-C(30)-C(22)	6.6(9)
O(8)-C(27)-C(30)-C(22)	-177.0(4)
C(23)-C(22)-C(30)-C(16)	177.3(5)
C(18)-C(22)-C(30)-C(16)	-0.3(6)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(30)-\mathrm{C}(27)$	-4.1(8)
C(18)-C(22)-C(30)-C(27)	178.3(5)

Table 8. Hydrogen bonds for s16sel7 [\AA and ${ }^{\circ}$].

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1) \ldots \mathrm{O}(2)$				
$\mathrm{O}(5)-\mathrm{H}(5) \ldots \mathrm{O}(6)$	$1.00(7)$	$1.74(7)$	$2.623(5)$	$145(7)$
	$0.99(5)$	$1.71(5)$	$2.603(5)$	$147(5)$

