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Abstract 

The chemokine receptor CXCR3, which has three known variants (CXCR3-A, 

CXCR3-B and CXCR3-Alt), has been implicated in the recruitment of mast cells to 

tissues in many different chronic diseases with its agonists found in elevated levels 

in many pulmonary diseases. All three variants of CXCR3 were detected in cord 

blood-derived mast cells at the mRNA level. Using an antibody that is unable to 

distinguish individual CXCR3 isoforms, we detected a marked down-regulation of 

intracellular protein during maturation from progenitor cells, with no concomitant 

changes in the modest surface expression of CXCR3. The known CXCR3 

agonists CXCL9, CXCL10 and CXCL11 as well as the reported CXCR3-B agonist 

CXCL4, were able to induce Akt and ERK1/2 phosphorylation, as well as partial 

degranulation. Responses to all agonists were inhibited by pre-treatment with 

selective CXCR3 antagonists and pertussis toxin. Use of novel isoform-selective 

inhibitors indicates that the p110γ isoform of PI3K is required for degranulation and 

signalling responses to CXCR3 agonists. Unexpectedly, dual (but not individual) 

isoform inhibition of the class I β and δ isoforms substantially inhibited signalling 

and degranulation responses, indicating a hitherto unrecognised synergy between 

these isoforms, which provide a conduit for CXCR3 signalling in mast cells. 
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Chapter 1  Introduction


1. Introduction 

1.1The Immune System 

The immune system is the body’s defence mechanism which acts to protect the 

body from the potential threats of foreign pathogens. Two main branches of 

immunity are recognised: innate and adaptive immunity. A specific immune 

response — such as a generation of specific antibodies against a specific 

pathogen, for example — is known as an adaptive immune response, occurring 

during the lifetime of an individual as an adaption to infection with that pathogen. 

Adaptive immune responses are capable of generating lifelong protective immunity 

to re-infection of the same pathogen. This is in contrast to innate immunity, which 

is immediately available to combat a wide range of pathogens without requiring 

prior activation. Despite these systems having different immunological profiles, it is 

critical that they interact in such a way so as to initiate the body’s full defence 

system. 

The responses of both the innate and adaptive immunities depend on the activities 

of a group of white blood cells termed leukocytes. Immune responses are 

mediated by leukocytes, which derive from precursors in the bone marrow. A 

pluripotent hematopoietic stem cell gives rise to the lymphocytes responsible for 

adaptive immunity, and also myeloid lineages which participate in both the innate 

and adaptive immunity. 

1.1.1 Innate Responses 

Innate immune responses provide the first line of defence. This is proved by the 

simplest of barrier protection, which is provided by the skin and epithelial of the 

pulmonary and the gut; however, in the instance that these frontline defences are 

breached, the innate immunity then has a second line of defence which largely 

involves granulocytes. These leukocytes are a diverse collection of white blood 

cells whose prominent granules provide their characteristics. These cells are 

comprised of neutrophils and macrophages — the ‘so-called’ eaters of the innate 

immunity due to their ability to phagocytise invading pathogens and dendritic cell, 

and are the sentinels of the immune system. 

1




Chapter 1  Introduction 

The innate immune system discriminates between both self and non-self by 

utilising the receptors which bind features on micro-organisms with regular 

patterns known as Pathogen-Associated Molecular Patterns (PAMPs), which are 

recognised by Pattern-Recognition Receptors (PRRs). Amongst the membrane-

bound PRRs, the best-known PRRs are the Toll-Like Receptors (TLRs) which 

sense a wide array of microbial ligands at the cell surface or within endosomes 

(Kawai and Akira, 2006). At present, 11 TLRs have been discovered in mammals 

(TLR1-TLR11). Interaction of TLRs with their specific PAMP induces NFκB 

signalling and MAP kinase pathways, and therefore the secretion of pro-

inflammatory cytokines and co-stimulatory molecules. Cytoplasmic PRRs include 

the Caspase-Recruiting Domain (CARD) helicases — such as retinoic acid-

inducible protein I and melanoma differentiation- associated protein 5, which are 

involved in antiviral responses (Kawai and Akira, 2006) — and the nucleotide 

binding oligomerisation domain NOD-Like Receptor (NLR) family, which 

recognises primary microbial molecules of bacterial origin (Inohara et al., 2005). 

There are reports of a number of PRRs which do not remain associated with the 

cell that produces them; these include complement receptors, collectins, pentraxin 

proteins and peptidoglycan recognition proteins, all of which are secreted proteins. 

One of the most well-known colectins is mannose-binding lectin, a major PRR 

binding to a wide range of bacteria, fungi and protozoa via sugar groups, 

phospholipids, nucleic acids or non-glycosylated proteins (Dommett et al., 2006). 

These cells of the innate system are specifically inherited in the genome and, 

when fighting against further infection, will generate the same innate 

immunological response. This is in contrast to the adaptive immune response, 

which will adapt their response according to the specific invading particle. 

1.1.2 Adaptive Immunity 

Adaptive immunity is commonly split into two different classes: humoral and cell-

mediated. Humoral responses are generated by B-cells which, upon activation, 

differentiate into plasma cells which secrete antibodies. Cell-mediated responses 

are generated by T-lymphocytes, which are further divided into two different 

subsets: the first, which, upon activation, differentiate into cytotoxic T-cells which 
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kill cells infected with viruses; the second, described as T-helper cells, activate 

other cells such as B-cells and those of the innate immunity. 

Innate immunity acts as the activation trigger for the adaptive immune response by 

the production of pro-inflammatory cytokines. This action recruits further 

leukocytes to the point of inflammation. Dendritic cells play the leading role in the 

activation of the adaptive immunity. Immature dendritic cells recognise the 

conserved patterns on pathogens, activating maturation of the dendritic cell and 

expression of a range of co-stimulatory molecules (Akira et al., 2001; Vestweber, 

2003). Subsequently, dendritic cells then migrate and present the processed 

antigen via the major histocompatibility complex to naïve T-lymphocytes, whilst a 

second co-stimulatory signal is received via the binding of B7 to CD28 

(Banchereau and Steinman, 1998; Reis de Sousa et al., 2001). Figure 1.1 

highlights the innate and acquired immune systems’ interaction. 

The complexity of the immune system is achieved by the dynamic and ever-

evolving variety of cells which this system comprises. It is important to orchestrate 

this response in order to achieve a speedy reaction and to accordingly determine 

resolution of inflammation. One such cell which orchestrates the immune response 

is the mast cell. An orchestra comprises many different instruments; however, only 

one conductor directs the music they make. Following this analogy, mast cells are 

few but essential to promoting the immune and inflammatory responses (Kinet, 

2007). 
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Figure 1.1:  Interaction of  the  innate and acquired  immunity. The innate and 
adaptive immune systems are interrelated in ways which have not yet been fully 
established. Antigens are phagocytosed or endocytosed in a non-specific manner 
by neutrophils, subsequently resulting in them being neutralised in the body. 
Alternatively antigens phagocytosed by macrophages can be presented to T-cells, 
generating a highly specific T-cell response. Responses such as these are 
partially dependent on PRRs — such as TLRs and NOD-like receptors — which 
recognise PAMPs presence on a variety of microorganisms. There are also a 
variety of soluble PRRs, such as complement proteins (C1Q), mannose-binding 
protein (MBP), and acute phase reactants, such as C-reactive protein (CRP), all of 
which play a role in innate responses by opsonising microorganisms and 
subsequently binding to apoptotic cellular debris in a non-specific manner. In 
addition, the co-stimulation of B-cells through TLRs (such as TLR9) can result in 
the production of specific antibodies to antigens. Moreover, cytokines such as 
interferons, Tumour Necrosis Factor (TNF), and interleukin 1 (IL1), might stimulate 
the activity of both the innate and adaptive immune responses. Antibody 
production can also reflex back on the innate immunity by activating mast cells, 
thereby resulting in the further recruitment and activation of the innate immunity. 
Adapted from Gregersen and Behrens, (2006). 
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1.1.3 The Inflammatory Response 

The inflammatory response describes the complex biological response of the 

inflammatory tissues to harmful stimuli, such as pathogens or invading bacteria. It 

is the protective mechanism by which an organism attempts to remove potential 

harmful stimuli while, at the same time, inducing the healing process. Both the 

innate and acquired immunity are required in order for an immune response to be 

successful. Inflammatory responses have been classified into two types: acute and 

chronic. 

Acute inflammation is a rapid response to an injurious agent which serves to 

deliver mediators of host defence-leukocytes and plasma proteins to the site of 

injury. The response comprises four components: 

2.	 Alterations in vascular calibre which lead to an increase in blood flow. 

3.	 Structural changes in the microvasculature which permit plasma proteins 

and leukocytes to leave the circulation. 

4.	 Migration of phagocytes out of the venules and into interstitial spaces. 

5.	 Recruitment of lymphocytes to the site of injury by cells of the innate 

immune system. 

Once the inflammatory process has begun, it continues until the infection which 

originally caused the response has been eradicated. Phagocytes continue to 

consume and destroy bacteria whilst the acquired immune system binds and 

disposes of the harmful toxins; this is a fundamental process, as the inflammatory 

response should only last as long as the infection exists. Moreover, prolonged 

inflammatory responses result in chronic inflammation, subsequently leading to 

simultaneous destruction and repair of the infected tissues. Such inflammation 

which operates unchecked can consequently lead to a host of diseases, such as 

asthma, atherosclerosis and rheumatoid arthritis, to which mast cells are heavily 

linked. However, in the absence of the inflammatory response, infections would 

never heal, and the destruction of the infected tissues would seriously compromise 

the health of the individual. 
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1.1.4 The Resolution of Inflammation 

The resolution of inflammation is initiated during the first few hours following the 

initiation of an inflammatory response. After entering tissues, granulocytes 

promote the switch of arachidonic acid-derived prostaglandins and leukotrienes to 

lipoxins, which in turn initiate the termination sequence. Neutrophil recruitment 

thus ceases, and programmed death by apoptosis is subsequently engaged. 

These events coincide with the biosynthesis, from omega-3 polyunsaturated fatty 

acids of resolvins and protectins, which critically shorten the period of neutrophil 

infiltration by initiating apoptosis (Serhan and Savill, 2005). Consequently, 

apoptotic neutrophils undergo phagocytosis by macrophages, thereby leading to 

neutrophil clearance and the release of anti-inflammatory and reparative 

cytokines, such as transforming growth factor- 1. The anti-inflammatory 

programme ends with the departure of macrophages through the lymphatics. 

Stromal cells — such as fibroblasts — also contribute to the resolution of 

inflammation by the withdrawal of survival signals and the normalisation of 

chemokine gradients, thereby allowing infiltrating leukocytes to undergo apoptosis 

or to otherwise leave the tissue through the draining lymphatics (Serhan et al., 

2007). 

1.2Mast Cells 

1.2.1 Historical Background 

Mast cells were first described in the doctoral thesis of Paul Ehrlich in 1878, in 

which he refers to them as Mastzellen, most likely deriving from the German word 

‘mastig’, meaning well-fed. They were initially given this name due to the 

misconception that these cells were over-fed due to their unique staining 

characteristics and large granules. The large amount of granules present in mast 

cells also accordingly led Ehrlich to the mistaken belief that they exist to nourish 

the surrounding tissue. Furthermore, the name ‘mast cell’ may have also arisen 

from the Greek word ‘masto’, literally meaning ‘to feed’. 

1.2.2 What are Mast Cells? 

Since the first discovery of mast cells, it is now widely believed that mast cells are 

one of the key immune effecter cells in consideration of their primary function in 

host defence against parasites and other invading pathogens. Mast cells are 
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members of the innate immune system, and are often considered to be the first-

line responders to immunological insults, simply because of their prevalence in 

areas highly exposed to the external environment. They originate from CD34+ 

hematopoietic pluripotent stem cells but do not mature until leaving the bone 

marrow, and circulate in peripheral blood as mast cell committed progenitors or 

‘immature’ mast cells (Födinger et al., 1994; Kirshenbaum et al., 1991). This 

phenotype is, so far, poorly characterised. Progenitors are isolated from peripheral 

blood express c-Kit+, CD34+, CD117+ but lack expression of FcεRI and FcεRII. 

Studies have shown that CD34+ cells lacking c-Kit or CD13 will not develop into 

mast cells (Agis et al., 1993; Kirshenbaum et al., 1999). 

It is from the peripheral blood that mast cells enter the tissues where the mast cell 

will develop into a fully mature cell. The tissue that a committed mast cell 

progenitor enters will ‘tailor’ the differentiation to distinct phenotypes — a 

phenomenon referred to as mast cell heterogeneity (Enerbäck, 1966). The key 

growth factor for mast cells is Stem Cell Factor (SCF), which will not only guide the 

differentiation of mast cells but also regulate all growth, survival, migration, 

adhesion and degranulation (Galli et al., 1994; Nilsson et al., 1999). Moreover, 

mature mast cells can normally be found widely distributed throughout the 

vascularised tissues, especially with numerous found beneath the epithelial 

surfaces of the skin, the respiratory system, the gastrointestinal and genitourinary 

tracts, and also in the central nervous system (Johnson and Krenger, 1992; 

Nilsson et al., 1999; Silver et al., 1996). These cells can be identified in most 

tissues as relatively large cells which express high levels of c-Kit (the receptor for 

SCF) and FcεRI (the high-affinity IgE receptor). Microscopically, these cells are 

easy to identify with toluidine blue or alcian blue dyes. 
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Despite being described as having an immobile nature (mature mast cells are 

generally found to be ‘fixed’ in the tissues and not circulating in the blood), mast 

cells are widely distributed throughout the body, therefore allowing them to 

encounter pathogens and environmental antigens invading the body. Mast cells 

are commonly found throughout the skin, mucosa of the genitourinary, respiratory 

and gastrointestinal tracts, as well as most vascularised tissues of mammals, 

including the lymphoid organs (Sayed et al., 2008). 

1.2.3 Mast Cell Subtypes 

Mature human mast cells can be divided into two distinct sub-categories 

depending on variations in the protease composition in the mast cell granules. 

These subsets are therefore defined as mast cells containing tryptase or those 

containing both tryptase and chymase (Irani et al., 1986). The Mast cell subset will 

depend largely on the type of tissue it resides in. Mast cells containing tryptase are 

predominately found in lung tissue and intestinal mucosa while mast cells 

containing both tryptase and chymase are found predominately in the skin and 

intestinal submucosa (Irani et al., 1986; Nilsson and Nilsson, 1995). 

1.2.4 Activation of Mast Cells 

Mast cells are very effective as both effector cells, which amplify inflammation, and 

as regulatory cells, which are able to suppress certain immune responses. Mature 

mast cells are primarily activated by IgE aggregation as a result of an antigen 

binding to a high affinity receptor FcεRI on the mast cell surface. The basic 

structure of an FcεRI receptor present on mast cell consists of four joined subunits 

— α, β and two γ subunits, as shown in Figure 1.2. Moreover, mature human mast 

cells constitutively express high affinity receptor FcεRI, with activation initiated 

when adjacent FcεRIs are cross-linked either by antigens interacting with receptor 

bound IgE or antibodies directed against either receptor bound IgE or the receptor 

itself. The cross-linking of these receptors induces a cascade of intracellular 

signalling events, which subsequently leads to the rapid release and de novo 

synthesis of mediators (Kuehn and Gilfillan, 2007; Nishida et al., 2005; Tkaczyk et 

al., 2002). Over recent years, it has also become clear that degranulation of 

mature mast cells can occur by IgG binding to FcγRI (Tkaczyk et al., 2002; 

Woolhiser et al., 2001). 
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Figure 1.2: 2D Schematic of the FcεRI structure.The FcεRI is a 
heterotetrameric structure containing four polypeptide subunits: one α-chain, one 
β-chain, and two disulphide-linked γ chains. The α-chain provides the ligand-
binding function of FcεRI, and has been recognised as a member of the Ig gene 
superfamily on the basis of its predicted amino acid sequence. The functions of 
the β and γ-chains are unclear, although roles in cell surface trafficking and trans-
membrane signalling have been suggested. Adapted from Pang et al., (1993). 

Similar to the two-signal model in the activation of T-cells, antigen signalling 

through the FcεRI is often modified by the co-inhibitory or co-stimulatory signals in 

mast cells. This has been noted in the administration of αCD28 to bone marrow-

derived mast cells, which enhances TNF secretion (Tashiro et al., 1997). TLR 

ligands have also been demonstrated in order to synergise with antigen to 

potentiate cytokine secretions by cross-linking of the FcεRI on mast cells. On the 

other hand, the Ig receptor FcγRIIB (Malbec and Daëron, 2007) and platelet 

endothelial cell adhesion molecule-1 (Wong et al., 2002) utilise the ITIMs present 

on the FcεRIIgE so as to suppress mast cell function. 

9




Chapter 1  Introduction


1.2.5 IgE Independent Modes of Mast Cell Activation 

In addition to the activation by IgE/antigen, it is now known that mast cells can be 

stimulated by complementary components by both viral and bacterial pathogens, 

hormones, cytokines and chemokine. Mast cells express a wide range of 

complement receptors, including C3aR, C5aR CR2, CR4, and the recently 

described collectin/C1qR (Edelson et al., 2006; Marshall, 2004). These receptors 

have been highlighted as playing an important role in cecal ligation and the 

puncture model of septic peritonitis in which complement-mediated activation of 

mast cells is essential for the clearance of invading bacteria. Furthermore, the 

range of TLRs present on mast cells have recently been shown to differentially 

activate mast cells through interactions between lipopolysaccharide and 

peptidoglycan (Prodeus et al., 1997). Moreover, mast cells are directly activated 

through this mechanism by different bacteria, and act as a first-line defence 

against bacterial infections (Tkaczyk et al., 2002). Other IgE independent 

mechanisms of mast cell activation by hormones include oestrogen inducing mast 

cell degranulation in vitro studies or the inhibition of histamine release 

(Theoharides et al., 2006). Importantly, mast cells influence immune responses via 

the release of a wide range of mediators from within the granules store in the 

cytoplasm, whether their activation method is by IgE cross-linking of the FcεRI 

receptor or the IgE independent mechanisms, such as those highlighted above. 

1.2.6 Mediator Release from Mast Cells 

Mast cells are involved in a variety of biological processes, and their anatomical 

location close to epithelial surfaces in the skin, the respiratory system and 

gastrointestinal tract, makes mast cells a key frontline defence against invasion. In 

studies carried out by Malaviya et al. (1994) and Echtenacher et al. (1996), mast 

cells are described as having a key role in innate immunity. The primary way in 

which mast cells can modulate immune responses is their capacity to produce and 

secrete a large array of inflammatory mediators upon activation. The mediators 

which are released from mast cells stem from three different categories, as shown 

in Figure 1.3. 
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Figure  1.3:  Variety  of mast  cell mediators. Mature mast cells release a wide 
range of mediators at different stages. The first mediators released are the 
preformed granule mediators, followed by the newly-formed mediators and, thirdly, 
the release of cytokines. 
 

The three categories are:  

1. Preformed secretary granule-associated mediators, such as histamine and 

heparin: these mediators are the first released by a mast cell following 

activation, and are of great importance during the early phases of acute 

allergic inflammatory reactions.  

2. Newly-formed lipid mediators: these products result from the arachidonic 

acid metabolism following the activation of mature mast cells, and include 

the formation of leukotriene C4 and prostaglandin D2. These mediators are 

synthesised within minutes of activation, and their production may persist 

for 30 minutes or longer, thereby playing an important role in the acute 

inflammatory response (Secor et al., 2000).  

3. Cytokines, chemokines and growth factors: these are synthesised and 

secreted by the mast cells at a later stage, approximately 4-12 hours after 

initial activation. The formation of these mediators is critical when 

orchestrating the late phase response, which develops within a couple of 

hours of the induction of the inflammatory response. The sheer variety of 
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mediators can then be released from mast cells following activation, which 

allows mast cells to be versatile in the modulation of different immune 

responses. 

1.2.7 Modulation of Immune Responses by Mast Cells 

The key role of mast cells in innate immunity was first highlighted in studies on 

mast cell-deficient mice, therein demonstrating defective clearance and survival 

during bacterial infections. The possible role of mast cells in innate immunity was 

further suggested by evidence of complement fragment 3-induced degranulation of 

mature mast cells, and that the resulting release of TNF-a was a key factor in the 

recruitment of neutrophils and subsequent bacterial clearance (Prodeus et al., 

1997). 

Our current understanding of how mast cells interact with micro-organisms by 

either direct or indirect interaction is that it most likely involves different receptors 

expressed on the surface of mast cells. These include CD48 recognising Fim H (a 

29-kDa mannose binding lectin expressed by E.coil and other enterobacteria) 

(Malaviya et al., 1994), toll-like receptors (Varadaradjalou et al., 2003), and 

complement receptors (Prodeus et al., 1997). The interaction between mast cells 

and micro-organisms induces the activation of mast cells and mediator release, 

inducing inflammatory responses or a direct killing of the pathogen, thereby 

resulting in bacterial clearance. The effects which mediators have on different cells 

of the innate immune system are highlighted in Figure 1.4. 

This emerging evidence points to a pivotal role which mast cells play in innate 

immune responses. It has also become clear that mast cells are not limited to the 

innate immune system and are rather initiators of the acquired immune responses. 

As a part of the adaptive immune system, mast cells have the ability to present 

antigens to T-cells via either MHC class I or II molecules (Mekori and Metcalfe, 

1999). A large array of co-stimulatory molecules have been identified on the 

surface of mast over the years, including ICAM-1, ICAM-3, CD43, CD80, CD86 

and CD40L, all of which enable them to interact with a wide range of cells. The 

result of these interactions includes T-cell proliferation and cytokine release, 

immunomodulation towards Th2 phenotype, and the induction of IgE production by 
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B-cells (Gauchat et al., 1993; Mekori and Metcalfe, 1999). Figure 1.4 provides an 

overview of the central role mast cell can play in modulating immune responses — 

both innate and acquired — interacting with a wide range of cell types.  
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Figure 1.4: The role of mast cells in immune system. Mast cells act in such a 
way so as to orchestrate the immune system; this includes the regulation of 
epithelial, smooth muscle, endothelial function, activation of neutrophils, 
eosinophils lymphocytes and many tissue functions, such as wound-healing. 
Adapted from Bischoff, (2007). 
 
Wound-healing or fibrosis is a very complex biological process which results from 

the interplay of different tissue structures and a large number of resident and 

infiltrating cells. It is the body's natural process of regenerating dermal and 

epidermal tissue. When an individual is wounded, a set of complex biochemical 

events takes place in a closely orchestrated cascade with the sole objective to 

repair the damage. These events overlap in time and may be artificially 

categorised into separate phases: inflammatory, proliferative, and remodelling. 

Ultimately, mast cells are considered to be important orchestrators in this whole 
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process by releasing mediators in three different ways and time points. The mast 

cell can orchestrate to limit damage, to re-vascular damaged tissue, to proliferate 

the connective cellular elements, and to remodel the matrix support (Metcalfe et 

al., 1997; Noli and Miolo, 2001). 

1.3How are Mast Cells Implicated in Disease? 

Mast cells can incur negative as well as positive immune responses, such that 

they both enhance and later suppress certain features of an immune response, 

primarily due to the fine balance between beneficial healing or impaired healing 

following the degranulation threshold being exceeded (Christy and Brown, 2007). 

At this point, mast cells turn into damaging effector cells, subsequently impairing 

the protective immune response. 

Figure 1.5 demonstrates how mast cells can be at the centre of influence of many 

responses notable in diseases. Much of what is currently understood regarding the 

role of mast cells in disease comes from studies of hypersensitivity reactions; 

these are a group of pathogenic immune responses eliciting from antigens which 

are not inherently harmful; it is an overeager immune response that induces these 

pathological conditions. Hypersensitivity reactions have been classified into four 

types; type I-IV, determined by the major effecter mechanisms employed. 
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Figure 1.5: Role of mast cells in initiating disease. The activation of mast cells 
not only requires the synthesis of IgE by B-cells but also IL-4 released from T 
helper 2 cells in order to have full mediator release. The release of the newly 
formed mediators results in the early reaction normally seen in the skin and 
mucosal areas affecting blood vessels and sensory nerves resulting in pain. The 
cytokine release initiates the late phase reaction interacting with a wide range of 
cells. Adapted from Bischoff, (2007). 

1.3.1 Type I Hypersensitivity Reaction 

The term ‘hypersensitivity’ normally brings to mind allergic reactions (hay fever, 

atopic dermatitis and systemic anaphylaxis), all of which are classified into the 

Type I reactions. Mast cells are central to these responses. Type I reactions are 

noticeable within minutes of antigen activation of the mast cell due to the robust 

response induced by FcεRI cross-linking. During the initial sensitisation, certain 

individuals develop (for currently unknown reasons) IgE to these antigens, thereby 

upon subsequent re-exposure to the same antigen, robust mast cell responses. 

This includes early symptoms of vascular permeability and local swelling to the 

late phase responses by influx of inflammatory cells, tissue re-modelling, over 
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production of mucus in the airways, and local cutaneous swelling. Allergic 

inflammation is the most common of inflammatory diseases associated with mast 

cells, and is classified under the Type I hypersensitivity reactions. This is caused 

by the prolonged over-production of IgE in response to exposure to certain 

antigens; these can range from harmful antigens, such as venom and bacterial 

products, to harmless antigens, such as pollen, food and dust mites. Binding of 

IgE to these harmless antigens results in the cross-linking of FcεRI, therefore 

initiating a similar response to that of a harmful antigen, initiating the release of 

mediators, resulting in increased permeability of blood vessels, tissue oedema, 

leukocyte recruitment and inflammation. Typical examples of allergy reactions are 

hay fever, allergic asthma, atopic eczema and drug- and food-related allergies. 

These allergic responses are well-characterised in the context of Th2-type 

responses. 

1.3.2 Type II Hypersensitivity Reaction 

Type II hypersensitivity reactions are classical, and defined by interaction of IgG or 

IgM antibody with a cell surface antigen. This can be followed by the binding of 

complement-mediated cell lysis. Mast cells participate in Type II reactions, both 

directly though the binding of complement proteins, or otherwise via IgG antibody-

inducing degranulation of mast cells. They can also influence Type II reactions by 

influencing T-cell responses, thereby helping B-cell isotype switching. Mast cells 

have been implicated in the Type II disease bullous pemphigoid, which is a chronic 

subepidermal blistering of the skin, classically characterised by the presence of 

IgG auto-antibodies to hemidesmosomal antigens BP20 and BP180. In the case of 

this disease, mast cells triggered by complement activation are a key source of the 

neutrophil chemoattractant CXCL8 (Nelson et al., 2006). 

1.3.3 Type III Hypersensitivity Reaction 

Antigen-antibody complexes mediate the major immune destruction in Type III 

hypersensitivities by depositing in organs and tissues, binding complement, and 

attracting macrophages and neutrophils. Similar to Type II reactions, there are 

many reports to suggest a role for mast cells in Type III reactions. It has been 

shown that the ability of both antibodies and complement to induce the activation 

of mast cells resulting in the production of different chemoattractants, recruiting 
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pathology-effecter cells. Arthus reactions (a local antibody-mediated 

hypersensitivity reaction involving antibody-antigen complexes which fix 

complement, which is deposited in the walls of small vessels, causing acute 

inflammation with an infiltration of neutrophils), Rheumatoid Arthritis (RA) and 

systemic lupus erythematous, are such diseases classified as Type III reactions. 

The role of mast cells in RA is largely supported by the evidence that mast cell-

deficient mice do not develop RA (Lee et al., 2002). Developments in new 

treatments targeting RA are investigating ways in which to reduce the 

inflammation of the joints by reducing the number of mast cells present. 

1.3.4 Type IV Hypersensitivity Reaction 

Delayed-type hypersensitivities are also known as Type IV hypersensitivity 

reactions. These reactions often occur many days following initial exposure to 

antigen and are mediated by antigen-specific CD4+ T-cells. Multiple Sclerosis 

(MS), a CNS-demyelinating disease, is amongst the most widely studied of Type 

IV hypersensitivity reactions. The current evidence of the role of mast cells in MS 

is in both murine and human models, where mast cells accumulate at the site of 

inflammatory demyelination in the brain and spinal cord, and are often found de-

granulated (Ibrahim et al., 1996). High levels of the mast cell-specific protease 

tryptase are found in the cerebrospinal fluid of MS patients, indicating mast cell 

activation (Rozniecki et al., 1995). 

1.3.5 Tumour Development 

Tumour development is a multi-step process, interacting genetically-altered 

malignant cells with the non-neoplastic cells in the surrounding area (Hanahan and 

Weinberg, 2000). A developing neoplasm often contains many different 

leukocytes; for example, macrophages, neutrophils, eosinophils and mast cells. 

The relationship between mast cells and tumours has long been established, since 

Westphal first reported the presence of A large number of mast cells in the 

periphery of tumours in 1891 (Prager and Bearden, 1962). Mast cells were 

originally thought to be a host response to neoplasia; however, evidence gathered 

over recent years has suggested that the actual role of mast cells may support 

tumour development (Dimitriadou and Koutsilieris; Ribatti et al., 2001). 
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1.4 Mast Cell Models 

Human mast cells utilised in studies can develop from heameopotiec progenitor 

cells found in cord blood, foetal liver, peripheral blood and bone marrow. Surface 

expression of the FcεRI receptor occurs constitutively, expressed at low levels in 

mature cells when differentiated from progenitor cells in vitro with recombinant 

human stem cell factor. This occurs in cells obtained from all of the 

abovementioned tissues aside from foetal liver. Addition of IL-4 induces the 

expression of FcεRI in foetal liver, and induces maximum regulation of FcεRI in 

mast cells derived from umbilical cord blood. 

It has been shown that mast cells derived from umbilical cord blood precursors 

express CD13 and CD117. CD13 has been detected on cultured mast cells 

derived from foetal liver and cord blood derived precursors. CD13 is a 150kDa cell 

surface glycoprotein which is identical to the aminopeptidase N — a membrane 

bound glycoprotein thought to be involved in the regulatory metabolism of peptides 

by a wide range of cells; furthermore, it is also known to be expressed on stem 

cells during early stages of myeloid and lymphoid cell development. CD117 is also 

known as c-Kit, which is the receptor for the agonist SCF. Both the human and 

mouse c-Kit ligand induces differentiation of human mast cells in a long-term 

culture of the mononuclear cells of umbilical cord blood. Moreover, human mast 

cells are commonly characterised by the presence of two specific proteases: 

tryptase and chymase. The two subsets comprise mast cells, which just contain 

trypase, and those which contain both tryptase and chymase. Evidence suggests 

that it is possible to switch from single- to double-positive with prolonged culture 

with IL-4 (Toru et al., 1998). It is thought that, in the majority of mast cells cultured 

under SCF conditions, the granule content will just develop tryptase. 

The study of mast cells is challenging for a wide variety of reasons. Firstly, mast 

cells are found in the body in small numbers in both humans and experimental 

animals, and so it is difficult to obtain large numbers of such cells for experimental 

purposes. One solution for overcoming these problems is the development of mast 

cell culture systems. It was discovered that a large number of mast cells could be 

grown from the bone marrow of mice or rats by addition of IL-3 (Razin and Marx, 

1984). This was the first reported mast cell model which enabled large-scale 
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experiments. There were, however, drawbacks to the system. Despite the 

expression of FcεRI, the cells generated only developed immature phenotypic 

characteristic. Furthermore, over time, there have been many other different 

methods of generating mast cells from many different sources, including foetal 

liver (Irani et al., 1992b), bone marrow (Kirshenbaum and Metcalfe, 2006),cord 

blood (Durand et al., 1994), as well as CD34+ peripheral blood (Kirshenbaum and 

Metcalfe, 2006). Additional to the development of these primary mast cells models, 

many mast cell line models exist; for example, HMC-1 (Butterfield et al., 1990), 

LAD-2 (Kirshenbaum et al., 2003) and the widely used rat mast cell line RBL-2H3 

(Oliver et al., 1988). 

The utilisation of these primary mast cell models and mast cell lines has 

accordingly enabled the discovery of how mast cells respond to a wide range of 

different physiological and pathological mediators. These models have also 

subsequently enabled deeper understanding of the role of mast cells in 

inflammatory responses. 

1.4.1 The Cytokine Milieu at the Precursor Stage 

A previous study (Mitsui et al., 1993) indicates that human mast cells differentiated 

from cord blood and developed by cytokine control are similar to human mast cells 

in the lung and gut mucosa according to similarities in sub-structural granule 

patterns of the cells. The majority of these cells contained only tryptase — unlike 

skin mast cells, which contain both tryptase and chymase (Mitsui et al., 1993). 

Other studies, on the other hand, reveal that levels of chymase are almost doubled 

per individual mast cell in bone marrow derived compared to cord blood-derived 

mast cells (Shimizu et al., 2002). This would indicate that the mast cell receptor 

profile is most likely shaped by the cytokines milieu present at the relevant 

progenitor stage. 

Over the last decade and from a wide variety of sources, many studies have 

developed methods with the aim of culturing mast cells. Progenitor cells derived 

from cord blood are amongst the most widely studied. According to their neutral 

protease contents, two subtypes of human mast cells have so far been identified; 

those which are tryptase positive and those that are both chymase and tryptase 
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positive (Beil and Pammer, 2001; Craig and Schwartz, 1990; Forsythe and Ennis, 

2000). There is the possibility that a third sub-set of mast cells exist which are 

chymase positive but tryptase negative (Li et al., 1996). It is thought that mast cells 

derived from cord blood are believed to be predominately only tryptase positive, 

with low levels of mast cells containing both tryptase and chymase (Irani et al., 

1992a). Moreover, previous studies suggest that the majority of mast cells cultured 

under SCF will only develop tryptase (Mitsui et al., 1993). 

1.4.2 The Importance of IL4 Addition of Mast Cell Development 

The mast cells used in this study and the subsequent studies were generated from 

human cord blood derived CD133+ progenitors by culturing these cells in the 

presence of SCF and IL-6 in a serum-free medium for 8 weeks, with additional 

supplementing mature mast cells with serum and IL-4. The late addition of IL-4 is 

to maximise the expression of FcεRI and to enhance degranulatory responses 

when FcεRI becomes aggregate (Dahl et al., 2002; Sayama et al., 2002). Studies 

have revealed that addition of IL-4 in culture medium up regulates FcεRI (Kinet, 

1999). 

1.5Chemokines and Chemokine Receptors 

1.5.1 A Brief History of Chemokine/Chemokine Receptor System 

The coordinated movement of the leukocytes is critical to both innate and adaptive 

immune systems, and is primarily mediated by the chemokine system. The history 

of chemokines first began in 1977, when the secreted platelet factor 4 

(PF4/CXCL4) was purified without actual knowledge of its function or receptor 

(Walz et al., 1977; Wu et al., 1977). It was not until a decade later that the next 

chemokine (interleukin-8 (IL-8/CXCL8) was discovered, which showed 

chemotactic activity for neutrophils, establishing that chemokines are key elements 

in the control of leukocyte migration (Yoshimura et al., 1987). It was not until 1992 

at the 3rd International Symposium on Chemotactic Cytokines at Baden, Austria, 

that the term ‘chemokines’ was proposed and the name has remained. The next 

major finding in the chemokine field came with certain chemokines functioning as 

HIV-suppressive factors in vitro by blocking viral interaction with specific 

chemokine receptors, and that some chemokine receptors act as co-receptors for 

viral entry (Bleul et al., 1996; Cocchi et al., 1995; Feng et al., 1996; Oberlin et al., 
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1996). One year later, it followed with the discovery that CCR5 was a major co-

receptor for the entry of HIV (Deng et al., 1996). This research formed the initial 

foundation that would subsequently lead to the release of the first pharmaceutical 

chemokine target-based drug being approved for medical use — maraviroc, a 

CCR5 inhibitor used in the treatment of HIV — which has subsequently led the 

way for development of more chemokine-based treatments. The next reported 

chemokine target-based treatment is Schering-Plough's vicriviroc, which is 

showing potent antiretroviral activity in clinical trials, which is targeted against 

CCR5. 

1.5.2 Nomenclature and Structural Characteristics of Chemokines 

Following the first chemokine being discovered, their role became am interesting 

topic for investigation and debate as to their role and function in inflammatory 

responses (Thelen, 2001). Chemokines or chemotactic cytokines, as they are still 

sometimes referred to, are small secretary or membrane-bound proteins with 

molecular masses of 6-14kDa. There are around 50 chemokines which have been 

discovered to date, all of which have been traditionally divided into two major 

groups based upon their sequence homology and the position of the first two 

cysteine residues at the NH2 terminus, C-X-C chemokines (or α chemokines) and 

CC (or β chemokines). The CXC chemokines contain a single non-conserved 

amino acid between the first two cysteines of this motif, whereas the CC 

chemokines have these residues juxtaposed. Two other minor groups of 

chemokines exist — C and CX3C, both having so far only one member per group. 

The former one lacks cysteines one and three of the typical chemokine structure 

(Kelner et al., 1994), whereas the latter exhibits three amino acids between the 

first two cysteines and is also the only membrane-bound chemokine through a 

mucin-like stalk (Bazan et al., 1997). 

The expression profile of chemokines in a particular inflammatory site ultimately 

determines the type of infiltrating leukocyte; therefore, recruiting the correct cells to 

the right areas is done in order to reduce inflammation. As such, chemokines have 

been further characterised by their physiological features, considering the 

conditions and locations of chemokine production, as well as the cellular 
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distribution of chemokine receptors, subsequently leading to the separation of


chemokines into so-called inflammatory (or alternatively called inducible) 

chemokines and homeostatic (or constitutive, housekeeping, or lymphoid) 

chemokines (Moser and Loetscher, 2001) (Figure 1.6). 

Figure 1.6: Characterisation of chemokine receptors by the role in immune 
responses. Chemokines are classified into three different charactertories: 
homeostatic, inflammatory and non-signalling. The classification depends on their 
characteristic features. 

Inflammatory chemokines are expressed in inflamed tissues by resident and 

infiltrated cells on stimulation by pro-inflammatory cytokines or during contact with 

pathogenic agents. In contrast, homeostatic chemokines and their receptors are 

produced in discrete microenvironments within lymphoid or non-lymphoid tissues, 
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such as the skin and mucosa (Moser and Loetscher, 2001). These chemokines 

are involved in creating the directional map which the adaptive immune system 

follows during antigen surveillance. 

Throughout history, many of these chemokines have had many different names 

assigned to them. It was the consensus of opinion within the field that their 

nomenclature be standardised based on their structure and how they were 

traditionally considered. The proposed chemokine nomenclature is based on the 

chemokine receptor nomenclature currently in use, utilising CC, CXC, XC or CX3C 

followed by an R (representing it is a receptor) followed by a number, therefore 

generating the current chemokine receptors known as CCR1-9, CXCR1-7, XCR1 

and CX3CR1. The new nomenclature for chemokines follows a similar pattern, 

replacing the R with an L with the view of representing the fact that this is a ligand, 

not a receptor. Figure 1.7 highlights the old and new nomenclature of the human 

chemokine systems along with their respective receptor and genomic locations. 
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Systematic Human Chemokine 
name Chromosome Human Ligand receptor(s) 

CXCL1 4q12-q13 GROα/MGSA-α CXCR2 > CXCR1 
CXCL2 4q12-q13 GROβ/MGSA-β CXCR2 
CXCL3 4q12-q13 GROγ/MGSA-γ CXCR2 
CXCL4 4q12-q13 PF4 Unknown 
CXCL5 4q12-q13 ENA-78 CXCR2 
CXCL6 4q12-q13 GCP-2 CXCR1, CXCR2 
CXCL7 4q12-q13 NAP-2 CXCR2 
CXCL8 4q12-q13 1L-8 CXCR1, CXCR2 
CXCL9 4q21.21 Mig CXCR3 
CXCL10 4q21.21 IP-10 CXCR3 
CXCL11 4q21.21 I-TAC CXCR3 
CXCL12 10q11.1 SDF-1α/β CXCR4 
CXCL13 4q21 BLC/BCA-1 CXCR5 
CXCL14 Unknown BRAK/bolekine Unknown 
CXCL15 Unknown Unknown (Lungkine 

in mouse) Unknown 

Systematic Human Chemokine 
name Chromosome Human Ligand receptor(s) 

CCL1 17q11.2 I-309 CCR8 
CCL2 17q11.2 MCP-1/MCAF CCR2 
CCL3 17q11.2 MIP-1α /LD78α CCR1, CCR5 
CCL4 17q11.2 MIP-1β CCR5 
CCL5 17q11.2 RANTES CCR1, CCR3, CCR5 
(CCL6) Unknown 

(mouse only) Unknown 
CCL7 17q11.2 MCP-3 CCR1, CCR2, CCR3 
CCL8 17q11.2 MCP-2 CCR3 
(CCL9/CCL10) Unknown 

(mouse only) Unknown 
CCL11 17q11.2 Eotaxin CCR3 
(CCL12) Unknown 

(mouse only) Unknown 
CCL13 17q11.2 MCP-4 CCR2, CCR3 
CCL14 17q11.2 HCC-1 CCR1 
CCL15 17q11.2 HCC-2/Lkn-1/MIP-1δ CCR1, CCR3 
CCL16 17q11.2 HCC-4/LEC CCR1 
CCL17 16q13 TARC CCR4 
CCL18 17q11.2 DC-CK1/PARC/AMAC-1 Unknown 
CCL19 9p13 MIP-3β /ELC/exodus-3 CCR7 
CCL20 2q33-q37 MIP-3α /LARC/exodus-1 CCR6 
CCL21 9p13 6Ckine/SLC/exodus-2 CCR7 
CCL22 16q13 MDC/STCP-1 CCR4 
CCL23 17q11.2 MPIF-1 CCR1 
CCL24 7q11.23 MPIF-2/Eotaxin-2 CCR3 
CCL25 19p13.2 TECK CCR9 
CCL26 7q11.23 Eotaxin-3 CCR3 
CCL27 9p13 CTACK/ILC CCR10 
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Figure 1.7: Nomenclature of Chemokine Receptors and their agonists. 
Chemokines can be classed according to the number of amino acids separating 
the first two cysteine residues at the NH2 terminal. The receptors for CXC 
subclasses are shown in green; the C-C subclasses are in light blue; and the 
minor subclasses are in blue. The pairing of chemokines to their receptors is 
principally based on receptor-binding assays, and has identified receptors which 
have just one agonist, whereas other receptors have multiple. Each of the agonists 
throughout history has been recorded with a common name and systemic name. 
Adapted from Murphy et al., (2000). 

The chemokine family can be loosely grouped as a group of three gene clusters 

representing duplicated genes with similar function and a smaller number of 

isolated genes representing highly conserved chemokines, with no functional and 

little or no receptor sharing, allowing broad grouping of the chemokines according 

to function. The CXC 4q12-13 cluster chemokines act mainly on neutrophils, while 

the CC 17q11.2 cluster chemokines are predominantly monocyte and effector T-

cell chemoattractants. The CXC chemokines in the 4q21.21 mini-cluster act 

specifically as T-cell chemoattractants, as highlighted in Figure 1.7. 
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1.5.3 Chemokine Receptor Structure 

Chemokines mediate their effects by binding to G-protein coupled, 7-

transmembrane serpentine receptors called chemokine receptors. The classical 

structure of a chemokine receptor is highlighted in Figure 1.8. Studies published in 

1991 describe the first chemokine receptors (CXCR1 and CXCR2) which, like all 

signalling chemokine receptors identified since, belong to the family of G protein-

coupled receptors (Holmes et al., 1991; Murphy and Tiffany, 1991). 

NterminusNterminus

Extracellular Extracellular ExtracellularExtracellular Extracellular Extracellular

1 21 32 3
SS SS

1 2 3 4 5 6 71 2 3 4 5 6 7

Cytoplasmic Cytoplasmic CytoplasmicCytoplasmic Cytoplasmic Cytoplasmic

1 21 32 3

CterminusCterminus

Figure 1.8: Schematic depicting a typical GPCR. A representational diagram of 
an unfolded chemokine receptor, highlighting the 7-transmembrane domains, the 
intra and extracellular loops with the second intracellular loop being critical for 
signalling of GPCRs. The N-terminus hangs on the outside of the cell with the C-
terminus stored intracellularly. 

The agonist-receptor network is complex: some chemokine receptors have just a 

single ligand, e.g. CXCR4 only mediates its effect via CXCL12, whereas other 

receptors can have multiple ligands; for example, CXCR3 mediating its effect via 4 

different agonists, CXCL9, CXCL10, CXCL11 and CXCL4. It is common for single 

chemokines to act as ligand for multiple different receptors, and that each receptor 

can bind an array of chemokines. 
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The complexity of the chemokine/chemokine receptor system may provide a very 

complicated but nevertheless effective way of regulating the cellular responses 

and functions of different cell types, thereby creating a robust system of over-

lapping ligands and receptors which protect the host. For example, CXCR3 

agonists CXCL9, CXCL10 and CXCL11 are involved in responses driven by Th1 

cells, and are accordingly reported to be antagonists for CCR2, which is thought to 

play a role in Th-2 driven response (Loetscher and Clark-Lewis, 2001). 

Furthermore, CCL11 as an agonist for CCR3 has been shown to be a partial 

agonist for CCR2 and CCR5 (Martinelli et al., 2001). Cross-reactivity seems to be 

a fundamental property of the chemokine/chemokine receptor system acting as a 

self-regulating system to protect the host. 

Chemokine receptors are expressed on the majority of the cells involved in the 

immune system, with each type of cell having a unique and distinct array of 

chemokine receptors depending on the function of the cell. Chemokine receptors 

share 25-80% identity at an amino acid level, indicating a common ancestor with 

several similar features and motifs shared amongst different chemokine receptors. 

1.5.4 Conserved Motifs in the Chemokine System 

With similar homology throughout the chemokine receptor system, certain key 

motifs have been highly conserved through the evolution of the 

chemokine/chemokine receptor linage. Such important conversed motifs include 

the DRYLAIVHA motif, the NPXXY motif and the Gly at junction of 7th TM and cyto 

domain. 

a) Functional motifs in agonists: 

The CXC chemokines are further sub-classified according to the presence or 

absence of ELR motif in the N-terminal, Glu-Leu-Arg (ELR)+ and Glu-Leu-Arg 

(ELR) -. the ELR+ group of chemokines includes CXCL1, CXCL2, CXCL3, CXCL5, 

CXCL6, CXCL7, CXCL8 and CXCL15, all of which have been shown to have 

angiogenic activity and attract mainly neutrophils and polymorphonuclear (PMN) 

leukocytes to the sites of inflammation. ELR - chemokines — to which CXCL4, 

CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14 and CXCL16 belong — 
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have mainly angiostatic properties and attract lymphocytes and monocytes with 

poor chemotactic ability for neutrophils (Laing and Secombes, 2004). 

b) Receptor signalling motifs 

DRYLAIV: 

The sequence DRYLAIVHA is found at a length of 340 to 370 amino acids — an 

acidic flexible N-terminal segment or a variation n the second extracellular loop. 

This flexible N-terminus is important during activation. The DRYLAIV motif is 

conserved in all signalling chemokine receptors, and is a variant of the acidic 

residue arginine aromatic residue motif found at this position. In all signalling 

chemokine receptors, it is considered necessary for G protein coupling and 

calcium signalling. Exceptions to this rule include the non-signalling promiscuous 

chemokine receptor-like molecules, Duffy Antigen Receptor for Chemokines 

(DARC) and D6, which will be discussed later on in this paper. 

The interaction between R of the DRY motif with its adjacent D/E residue at 

position 3.49 and an additional D/E at position 6.30 near the cytoplasmic end of 

TM6 is known as the ionic lock (Ballesteros et al., 2001). Charge-neutralising 

mutation of D/E6.30 in TM6 results in increased constitutive activity (Ballesteros et 

al., 2001; Montanelli et al., 2004). Another characteristic feature of chemokine 

receptors is the highly conserved NPXXY motif found within TM7, in which N 

residue acts as an on/off switch by adopting two active and inactive conformational 

stages (Govaerts et al., 2001; Urizar et al., 2005). 

NPXXY 

The NPXXY motif (with the X representing amino acid) in the 7th trans-membrane 

domain is highly conserved within the chemokine receptor family. This motif is 

thought to contribute to the internalisation and signal transduction of chemokine 

receptors (He et al., 2001). Positions of Asn, Pro, and Tyr residues are almost 

invariable within the motif. The inner two residues are generally hydrophobic in 

nature, whilst the residues that flank Tyr and Asn may vary (Probst et al.). Asn7.49 

of the highly conserved NPxxY motif in TM 7 acts as an on/off switch by adopting 

alternative conformations in the inactive and active receptor states (Govaerts et al., 

2001; Urizar et al., 2005). Upon receptor activation, N7.49 is proposed to adopt 
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the trans-conformation to interact with D2.50 of the (N/S)LxxxD motif in TM2 

(Remko et al., 2007). The NPXXY motif has been associated with receptor 

trafficking (Barak et al., 1995). 

1.5.5 Silent Chemokine Receptors 

The inflammatory process depends on the precise control of each part. It has been 

long thought that chemokine receptors play a role in the recruitment of 

inflammatory cells to the site of infection or injury; however, not all chemokine 

receptors which have been so-far discovered to date have this function; these are 

so-called atypical chemokine receptors and have apparent non-signalling or ‘silent’ 

properties, and raise the question as to the function of these abundant receptors. 

The chemokine system includes at least three ‘silent’ receptors — DARC, D6 and 

CCX CKR — each of which has distinct specificity and tissue distribution (Locati et 

al., 2005). Mechanistically, DARC and D6 represent a subclass of chemokine 

internalising receptors, ‘interceptors,’ taking chemokines into nucleated cells in the 

apparent absence of signalling (Nibbs et al., 2003). These receptors have 

moderate-to-high homology when compared to classical receptors, but ultimately 

lack in G protein-coupling motifs and are incapable of eliciting chemotactic or 

activating responses to a ligand (Liu et al., 2006). These receptors are different 

from their chemotactic counterparts, as they show a mutation in the second 

intracellular loop. Typically, chemokine receptors display the motif ‘DRYLAIV’ in 

their second intracellular loop, with this motif accordingly acting as a key mediator 

in the coupling to downstream signalling. 

1.5.6 D6 Receptor 

The D6 receptor is a typical chemokine receptor but has a mutation in its 

DRYLAIV motif: it has been mutated to DKYLEIV and also has replaced an 

aspartic acid residue to an asparagine in the second trans-membrane domain — 

both key components of G-protein dependent signalling. The D6 receptor shares 

similarities in terms of structure with other chemokines, binding at least 13 CC 

chemokines (Nibbs et al., 1997), all of which are known to be inflammatory. 

Curiously, D6 has been demonstrated as being unable to bind constitutive 

chemokines (Fra et al., 2003). Chemokines which bind to D6 are also rapidly 
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internalised, followed by dissociation from the receptor, and remain trapped within 

the cell for degradation. Meanwhile, D6 recycles back to the plasma membrane for 

further ligand sequestration (Hansell et al., 2006). 

In vivo studies reveal that deletion of D6 can result in the increased susceptibility 

to skin cancer and inflammatory similar to psoriasis (Nibbs et al., 1997). Anti-

inflammatory tumour suppressor properties of D6 are also supported by in vivo 

with null mice studies (Bonecchi et al., 2004; Jamieson et al., 2005). D6 is 

expressed at low levels by circulating leukocytes (Borroni et al., 2006); however, 

high levels of D6 were found on endothelial cells of lymphatic afferent vessels in 

the skin, gut and lungs (Nibbs et al., 2001) and in the placenta (Bonini et al., 

1997). D6 cannot couple with signalling pathways used by chemokines, but 

instead poses unusual intracellular trafficking properties to mediate repeated 

rounds of chemokine internalisation (Fra et al., 2003; Weber et al., 2004; Bonecchi 

et al., 2004). Moreover, D6 undergoes rapid constitutive ligand-independent 

trafficking both to and from plasma membrane, utilising β-arrestin and clathrin 

dependent route of internalisation; this feature is unique amongst mammalian 

chemokine receptors (Weber et al., 2004). 

1.5.7 DARC 

Similar to the D6 receptor, DARC has its DRYLAIV motif mutated. DARC has the 

motif DRYLGH resulting in the receptor being unable to signal. DARC may act as 

either a reservoir or transporter to both CC and CXC chemokines, maintaining the 

presence of chemokines with the circulation, releasing them when required. This 

mechanism can also aid the desensitisation of leukocytes. DARC also uses 

chemokine sequestration in order to control the CC and CXC chemokines which it 

binds (Nibbs et al., 2003; Rot, 2005; Du et al., 2002); this limits chemokine 

availability and regulates blood chemokine levels (Fukuma et al., 2003; Jilma-

Stohlawetz et al., 2001). Moreover, it has been suggested that DARC promotes 

chemokine transcytosis across blood vessel endothelial cells. Furthermore, whilst 

chemokines internalised by D6 are degraded, the fate of chemokines internalised 

by DARC may be cell context-dependent, and it is further possible that they can 

maintain their biological activities. Therefore, it has been stated that DARC 
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expressed on erythrocytes and vascular endothelial cells may act as either 

biological sink or a transporter for both CC and CXC chemokines, respectively. 

This suggests that, in contrast to chemokine decoy/scavenger D6, DARC plays a 

more complex role in chemokine homeostasis (Pruenster and Rot, 2006). 

1.5.8 CCR11/CCXCKR 

Recent work carried out by Comerford et al suggests that, along with D6 and 

DARC, CCX-CKR also shows biochemical properties of a chemokine-

sequestrating atypical chemokine receptor (Comerford et al., 2006). In contrast to 

previously described ‘atypical’ receptors, CCX-CKR binds homeostatic 

chemokines, namely CCL19, CCL21 and CCL25, and also exhibits weak 

interactions with human CXCL13 (Gosling et al., 2000). Similar to DARC and D6, 

CCX-CKR does not couple with typical signalling pathways, and displays 

alterations within DRYLAIVHA motif. CCX-CKR has been shown to internalise and 

degrade CCL19 in vitro high efficiency and in β-arrestin independent manner; 

however, in contrast to most chemokine receptors, this process was abolished 

through caveolin-1 manipulations. 

1.5.9 Glycosaminoglycans 

Chemokines do not only bind to GPCRs: they are also known to be capable of 

binding to proteoglycans. This process is facilitated by highly acidic 

glycosaminoglycan (GAG) chains (Handel et al., 2005). The majority of 

chemokines need high (in the micro-molar range) concentrations to bind to GAGs, 

although it has been demonstrated that CXCL4 can bind GAGs in a nano-molar 

range. It is thought that the interaction of chemokines with the endothelial cell-

expressed proteoglycans is to immobilise high concentrations of locally generated 

chemokines on the luminal surface of the microvascular endothelium. It has been 

proposed that chemokines are present on the surface of the endothelial, triggering 

the signalling in leukocytes resulting in the up-regulation of selecting molecules 

resulting in the adhesion and migration of leukocytes through the endothelial 

barrier and into the tissue. 
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1.6The Biological Function of Chemokines 

The immune system of the body is a dynamic system. In order to effectively fight 

infections and diseases, cells must first migrate around the body to the area under 

attack. and not wait until the fight comes to them. Cell movement is not only 

essential for encountering pathogens, but also for initiating the complex 

interactions between different immune cells. Chemokine receptors and their 

agonists create the navigation system of the body and induce the migration of 

immune cells. 

1.6.1 Migration 

Migration is a multi-step process involving the co-ordinated interaction of adhesion 

molecules and chemokines and their receptors between leukocytes and 

endothelial cells, and the regulated migration from the bone marrow to the blood, 

and further from the blood to the tissue. The cytoskeletal re-organisation and 

polarisation of leukocytes requires integrin activation by chemokines, thereby 

allowing firm adhesion and migration. 

There are several defined mechanisms of migration. The term ‘chemotaxis’ is the 

directed migration of a cell towards a chemotactic gradient; similarly, haptotaxis 

also describes the directional movement of a cell towards a chemotactic gradient 

but on an immobilised substrate. Chemokinesis involves the random movement of 

cell which is independent of any chemotactic gradient. Chemofugetaxis is the 

active movement of a cell away from a chemokine source. This phenomenon was 

first described following the observation that high (but not low) concentrations of 

CXC12 has the ability to induce chemofugetaxis in a sub-population of T-cells; 

furthermore, it is also thought to contribute to thymic emigration (Poznansky et al., 

2000). Directional migration requires three distinct features of a cell, including the 

extension of pseudopodia, gradient sensing and polarisation, and directional 

movement. 

1.6.2 Extension of Pseudopodia 

In chemokinesis, pseudopodia are extending and contracting from the cytoplasm 

over the cell surface. Following cell activation, these pseudopodia are focused 

towards the leading edge of a cell due to the accumulation of such signalling 

31




Chapter 1  Introduction


molecules; for example, PtdIns (3,4,5)3. This movement and rearrangement of 

signalling molecules is considered critical in the initiation of directional migration. 

1.6.3 Polarisation 

The process of polarisation in directional migration in leukocytes requires the cell 

to be polarised, with the molecular processes at the front (leading edge) of a 

moving cell being distinct from those at the back (uropod) (del Pozo et al., 1995). 

This polarised shape of the cell is the result of a redistribution of F-Actin from a 

fairly uniformed distribution throughout the cell, to being concentrated within the 

leading edge (Coates et al., 1992; Howard and Oresajo, 1985; Parent and 

Devreotes, 1999). Furthermore, it is known that leukocytes do possess some 

intrinsic cell polarity where there is differential sub-cellular localisation of the F-

actin filaments and assembled myosin, thereby allowing rapid responses to 

chemoattractant gradients. 

1.6.4 Actin Polymerisation 

During the process of migration, the polymerisation of actin filaments is critical to 

establishing and maintaining cell polarity. The functional unit of actin is known as 

globular action (G-actin), and is the polymerisation of these intrinsically polarised 

units by the action of ATP. Once bound together, these generate filamentous 

action (F-actin), which is generated by the polymerisation at one end of the 

filament (known as the barbed end), whereas depolymerisation occurs at the 

opposing or pointed end. The formation of F-actin at the leading edge drives the 

plasma membrane forward, subsequently resulting in the protrusion of the cell. 

The growth of F-actin is only halted by the binding of a capping protein on the 

barbed end of the filament, thereby maintaining or stabilising the filament or 

promoting depolymerisation. The phosphorylation and dephosphorylation rates are 

relatively equal, thus ensuring the maintenance of the current filament length. This 

process is known as tread-milling (Revenu et al., 2004; Vicente-Manzanares et al., 

2005). 

Despite the fact that inducing the migration is the primary function of chemokine, 

there is nevertheless increasing evidence for the role of chemokines in non-
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migration responses which are also modulated by chemokines, including 

lymphocyte differentiation and effecter functions (Luther and Cyster, 2001). 

1.6.5 Lymphocyte Modulation by Chemokines 

During T-cell activation, CCR5 and CXCR4 are recruited to the immunological 

synapse and, in this context, as opposed to delivering signals competing with 

those induced by TCR and adhesion molecules, they function as T-cell co-

stimulators (Molon et al., 2005). Indeed, heterodimerisation of CCR5 with other 

chemokine receptors, such as CXCR4 or CCR2, elicit the coupling of Gq to the 

receptor, and this change in G protein results in preferential chemokine-induced 

cell adhesion rather than chemotaxis (Mellado et al., 2001a; Mellado et al., 

2001b). It has also been demonstrated that T-cell chemokine receptors coupled 

with Gq and/or G11 protein are recruited to the immunological synapse by a Gi-

independent mechanism (Molon et al., 2005). CXCR4 has been also shown to be 

physically associated with the T-cell Receptor to induce signalling events in T-cells 

(Kumar et al., 2006). 

Further evidence shows that some chemokines can act as modulators of 

angiogenesis, thereby promoting inflammatory responses, tumour growth or 

interference with angiogenesis, thereby inhibiting tumour growth (Homey et al., 

2002). Furthermore, several chemokines have been shown to be potent activators 

of innate immune cell, such as basophils and eosinophils, mediating different 

release responses (Bischoff et al., 1993; Jinquan et al., 2000; Kampen et al., 

2000). 

Many different molecules can be found in the directed migration of motile cells. 

Several different molecules exist, with the most notable being the chemokine 

family, as described in detail in this study. 

1.6.6 Lipid Chemoattractants 

Mast cells are a key source of other mediators besides chemokines which are able 

to induce migration. These potent mediators of inflammation are derivatives of 

Arachidonic Acid (AA) a 20-carbon unsaturated fatty acid produced from 

membrane phospholipids. 
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The principal pathways of arachidonic acid metabolism are: 

•	 the 5-lipoxygenase pathway, which produces a collection of leukotrienes 

(LT). 

•	 the cyclooxygenase (COX) pathway, which produces prostaglandin H2 

(PGH2). PGH2 serves as the substrate for two enzymatic pathways; one 

leading to the production of several prostaglandins (PG); the other leading 

to the production of thromboxanes (Tx). 

The release of leukotriene B4 — which has been demonstrated as a potent 

mediator of neutrophil chemotaxis and stimulator of leukocyte adhesion to 

endothelial cells — is of particular interest. Leukotriene B4 mediates its effect via 

GPCRs B-LT1 and B-LT2. The receptor B-LT1 has been shown to be restricted to 

leukocytes (Kamohara et al., 2000; Tager et al., 2003). The release of this 

mediator from mast cells has been implicated in a wide range of inflammatory 

diseases; for example, increased levels in murine models of Chronic Obstructive 

Pulmonary Disease (COPD), asthma and RA (Crooks et al., 2000; Montuschi and 

Barnes, 2002). This evidence has since been further backed-up in studies by the 

administration of LTB4 antagonist in models of RA, reducing levels of inflammation 

(Griffiths et al., 1995). 

1.6.7 Neuropeptides and Mast Cells 

Human skin mast cells respond to neuropeptide stimulation with a rapid release of 

histamine and minimal generation of PGD2 and LTC4 (Bischoff, 2004). As such, 

they are uniquely positioned in such a way so as to respond to neuropeptides 

produced by nearby neurons. Mast cells express receptors for neuropeptides, 

such as Substance P (SP), Nerve Growth Factor (NGF), calcitonin gene-related 

peptide (CGRP) and Vasoactive Intestinal Polypeptide (VIP) (Kulka et al., 2008). 

These neuropeptides are believed to activate mast cells either by direct G protein 

binding or by ligating specific surface receptors (Ferry, 2002). The neuropeptide 

activation of human mast cells not only activates degranulation and release of 

preformed granule contained mediators, but can also induce the production of 
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cytokines and chemokines, including GM-CSF, IL-3, MCP-1, IP-10, RANTES and 

IL-8. These mediators can recruit and activate T-lymphocytes, eosinophils and 

other inflammatory cells. 

1.6.8 The Chemokine Expression Profile of Mature Mast Cells 

Many factors can influence the range of chemokine receptors which are expressed 

on the surface of a specific cell. The health and age of the host and anatomical 

location of specific cell types are contributing factors. In the case of in vitro studies, 

the activation and cytokine milieu which are exposed to the cell are also 

considered to be contributing factors that can ultimately determine the chemokine 

profile, as well as the mast cell sub-type that will develop. At least nine chemokine 

receptors (CXCR1, CXCR2, CXCR3, CXCR4, CX3CR1, CCR1, CCR3, CCR4 and 

CCR5) have been described as being expressed by human mast cells of different 

origins (Juremalm and Nilsson, 2005). Moreover, seven chemokines (CXCL1, 

CXCL5, CXCL8, CXCL14, CX3CL1, CCL5 and CCL11) have been shown to act on 

some of these receptors and to induce mast cell migration (Juremalm and Nilsson, 

2005). 

1.6.9 The Role of Chemokines in Disease 

Due to the sheer number and variety of biological functions which involve the 

chemokine system, mis-regulation of this system can result in great harm to the 

host. Chemokines have been implicated in a wide range of inflammatory diseases, 

including autoimmune, cardiovascular, cancer, transplantation, neuro-

inflammation, HIV and allergic inflammatory diseases (Gerard and Rollins, 2001). 

Figure 1.9 provides an overview of certain chemokine receptors involved in the 

case of different diseases. 
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Figure  1.9:  Chemokine  receptors  and  disease. Chemokine receptors can be 
classified according to their function. Homeostatic chemokine receptors are 
responsible for orchestrating trafficking and homing of leukocytes during their 
immune surveillance role. The inflammatory chemokine receptors are important 
components of the immune system. Non-signalling chemokine receptors act as a 
chemokine sink to remove excess chemokines from the system. Adapted from 
Johnson et al., (2004). 

 

One strategy for investigating the role of chemokines in disease is the 

implementation of the knockout murine models. Gene-targeting approaches have 

proved particularly useful when dissecting the role of specific chemokines and 

their receptors in vivo. The ability to remove or alter with precision a single gene 

by gene-targeting or knockout is now a routine technique which is commonly 

adopted when creating animal models that can be used to study the 

pathophysiology of various diseases. The aim of a gene knockout is to ablate the 

function of the targeted gene in order to discern its role in vivo. Table 1.1 provides 

an overview of certain chemokine knockout models which have been developed. 
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Targeted 

Subunit 

Immunological 

Phenotype 

References 

CCR1 Imbalance in Th1/Th2 cytokines. Prolonged Blease et al., 

allograft survival in a transplantation model, 2000b; Gao et al., 

resistance to EAE development and 2000; Gerard et al., 

decreased pancreatitis-associated lung injury. 1997; Khan et al., 

Increased glomerular injury in nephrotoxic 2001; Rottman et 

nephritis and increased susceptibility to A. al., 2000; Topham 

fumigatus and T. gondii infection compared to et al., 1999. 

wild-type mice. 

CCR2 Defects in macrophage recruitment and in the Blease et al., 

production of Th1 cytokines, such as 2000a; Boring et 

interferon-γ (IFNγ). Unable to clear infection al., 1997; Fife et al., 

by Listeria monocytogenes and more 2000; Izikson et al., 

susceptible to the injurious effects of 2000; Kurihara et 

intrapulmonary challenge with Aspergillus al., 1997. 

fumigatus spores. Resistant to experimental 

autoimmune encephalitis induced by the MOG 

peptide. 

CCR3 Eosinophil recruitment to the lung is severely Ma et al., 2002. 

curtailed, with eosinophils remaining in the 

sub-endothelial space; paradoxically, there is 

an increase in airway hyper-responsiveness. 

Eosinophils were absent in the CCR3 

knockout mice, mast cell numbers and IL-4 

expression were normal in allergic skin 

inflammation model. 

CCR4 No effect on Th2 differentiation. Resistant to Chvatchko et al., 

LPS-induced endotoxin shock in both low- and 2000. 

high-dose models. 

CCR5 Impaired macrophage function and reduced Zhou et al., 1998; 

efficiency in the clearance of Listeria infection Zhou et al., 1998; 

as well as enhanced T cell-dependent Tran et al., 2000; 
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immune response (DTH reaction). No Barcellos et al., 

protection against the development of EAE or 2000. 

against the development of multiple sclerosis, 

although they do show delayed disease onset. 

CCR6 2–15-fold increase in specific T cell subsets Cook et al., 2000, 

within the mucosa (CD4+ and CD8+ ah-TCR Varona et al., 2001, 

T cells) Develop more severe and persistent Lukacs et al., 2001. 

inflammation than wild type mice in 2.4-DNFB-

induced contact hypersensitivity. Conversely 

in a DTH model, developed no inflammation. 

Reduced airways resistance, fewer 

eosinophils around the airways, reduced IL-5 

in the lung and reduced serum IgE compared 

to wild type mice. 

CCR7 Severely delayed kinetics regarding antibody Forster et al., 1999. 

responses and lack of contact sensitivity and 

DTH reactions. Due to impaired lymphocyte 

migration, there are profound morphological 

alterations in all secondary lymphoid organs, 

and upon activation, DCs fail to migrate into 

the draining lymph nodes. 

CCR8 Defective Th2 immune responses in models of Chensue et al., 

Schistosoma mansonii-soluble egg antigen 2001. 

(SEA)-induced granuloma formation as well 

as in ovalbumin and cockroach antigen-

induced airways inflammation, resulting in 50– 

80% reduction in eosinophil recruitment. Th2 

cells developed normally, they showed 

aberrant Th2 cytokine production. 

CCR9 Appear phenotypically normal. Wurbel et al., 2001; 

CXCR2 Decreased neutrophil recruitment but also an Cacalano et al., 

increase in the number of B cells, and 1994; Del Rio et al., 

lymphadenopathy and splenomegaly. 2001; Frendeus et 
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Increased susceptibility to Toxoplasma gondii al., 2000; 

infection, urinary tract infection and is Devalaraja et al., 

necessary for normal wound healing. Reduces 2000; Boisvert et 

the progression of atherosclerosis, implying a al., 2000. 

role for this receptor in macrophage 

recruitment to atherosclerotic plaques. 

CXCR3 Resistance to development of acute allograft Hancock et al, 

rejection, and CXCR3 deficient allograft 2000; Widney et al., 

recipients treated with a brief, sub-therapeutic 2005. 

course of cyclosporin A maintained their 

allografts permanently and without evidence 

of chronic rejection. 

CXCR4 CXCR4 embryonic lethal embryo lethal. Ma et al., 2002; 

Tachibana et al., 

1998; 

CXCR5 Altered B cell migration and abnormal Forster et al., 1996. 

germinal centre formation in the spleen, and 

lack of Peyer’s patches. 

CX3CR1 Increased graft survival time. Selective Haskell et al., 2001; 

reduction in natural killer cells. Jung et al., 2000. 

Table 1.1: Examples of chemokine knockout murine model. The table above 
provides certain examples of several different murine models available for each 
chemokine receptor, and the insights which these models have provided into the 
role of their specific receptor. 

Chemokines influence allergic diseases, not only by the recruitment of leukocytes 

but also the activation of different leukocytes, inducing the release of a wide range 

of inflammatory mediators inducing Th2 promotion and IgE synthesis. It was 

originally believed that the CC-chemokines were the primary chemokines involved 

in allergic response, with CCL5 and CCL5 being the best known as chemo-

attractants for inflammatory cells, such as eosinophils, basophils and mast cells. 

Other CC-chemokines, such as CCL3, CCL7 and CCL13, have also been 

associated with leukocyte recruitment in the case of allergic diseases. The majority 
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of these chemokines are known to bind CCR3 — which is expressed on Th2-cells, 

basophils, mast cells — and is a major receptor on eosinophils (Kitaura et al., 

1996). Therefore, this has led to the belief that antagonists against CCR3 may be 

a good target as an alternative approach in the treatment of allergic disorders 

(Pease and Williams, 2001). 

1.6.10 Dimerisation of Chemokine Receptors 

The simplest way to view GPCR signalling is according to the model of a 

monomeric GPCR binding an agonist on the N-terminus side of the receptor. This 

induces conformational change of the receptor, altering the 7 trans-membrane 

domains in such a way so as to allow interaction of the G-proteins (Armbruster and 

Roth, 2005). Signalling is not only restricted to monomeric receptors; these 

receptors will form homodimers and heterodimers with other receptors 

(Breitwieser, 2004). The precise structural characteristics of dimerisation are not 

fully understood, although two models have been proposed: 1) contact 

dimerization; and 2) domain-swapping. For contact dimerisation, each receptor is 

an individual entity, contacting each other by non-covalent interactions between 

trans-membrane helices. Domain-swapping shares helices which form covalent 

links between two polypepetide chains; however, there is no clear evidence to 

support either of these theories with regards to chemokine dimersation, but 

provides useful theoretical knowledge to envisage dimerisation. Hernanz-Falcón et 

al. (2004) have suggested that the trans-membrane domains 1 and 4 are involved 

in the dimerisation of CCR5. Furthermore, dimerisation has also been observed 

between CXCR1 and CXCR2, thereby forming both homo- and heterodimers. Vila-

Coro et al also report CXCL12 stimulated dimerisation of CXCR4 receptor (Vila-

Coro et al., 1999b). Although heterodimerisation can occur with certain chemokine 

receptors, this cannot be a generalisation for all chemokine receptors, but it is 

most likely they can only couple to a few others, indicating the need for each case 

to be individually examined. 

The functional relevance of dimerisation may be important in many aspects of 

leukocyte biology. Chemokines are bound to the surface of the epithelium and 

may induce the characteristic rolling of the cell. Dimerisation of receptors may not 
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only decrease the required threshold for activation, but may also provide increased 

sensitivity and specificity within the system (Rodríguez-Frade et al., 2001). 

1.7 Conformation Changes of the Chemokine Receptor 

There is a two-step model of receptor activation for chemokines. The amino-

terminus of the receptor is thought to tether the chemokine with high affinity, 

following which the chemokine N-terminus activates a ligand-binding pocket with 

the TM helices. The resulting conformational changes result in the recruitment of 

heterotrimeric G proteins and subsequent downstream signalling. 

1.7.1 Gprotein Dissociation 

Chemokine receptors — like other members of the GPCR family — transduce 

signals via heterotrimeric G-proteins. The name ‘G-protein’ is short for guanine 

nucleotide-binding proteins, which act as ‘molecular switches’, mediating their 

effects by switching between an inactive Guanosine Diphosphate (GDP) and 

active Guanosine Triphosphate (GTP) bound state. The active state results in the 

activation of many different downstream cell processes. 

The interaction of an agonist with its respective chemokine receptor and the 

alteration of the 7 trans-membrane receptors all occur at the cell’s surface. The 

agonist and receptor complex must undergo a specific process in order to turn this 

into a cellular function. Moreover, activation of the receptor occurs after the 

coupling of an agonist. After activation, the second messenger signalling cascade 

is provided by a heterotrimeric guanine nucleotide binding protein (G-protein) just 

under the surface of the membrane (Neer, 1995). The G-protein accordingly acts 

as the molecular switch to initiate different functions within a cell. The G-protein 

comprises α, β and γ subunits. Activation of a chemokine receptor initiates the 

exchange of GDP for GTP on the α subunit. The result of this exchange removes 

the hydrophobic pocket to which the βγ subunit binds, subsequently reducing the 

affinity between Gα-GTP and βγ-subunit; the result of this is the dissociation of the 

two complexes (Lambright et al., 1994). 
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After the disassociation event, the β-γ subunit is free to activate or inhibit 

downstream signalling molecules. Termination of this response is rapid due the 

GTP being hydrolysed back to GDP through innate GTPase activity, thereby 

allowing the re-association of the α and βγ-complex (Hamm, 1998; Sprang, 1997). 

The specific downstream effectors depend on the G-protein which is activated. G-

proteins are characterised by their G-α subunits. Initial experiments employing 

Pertussis toxin(PTX) blockade suggests that Gαi/O proteins are primarily 

responsible for downstream signalling, as physiological responses — such as 

chemotaxis — were readily inhibited by pre-incubation of cells with the toxin 

(Thelen et al., 1988); however, it is now known that there are three other classes: 

Gs, Gq and G12/13. PTX catalyses the ADP-ribosylation of the α subunits of the G-

proteins Gi, and Go resulting in the inability of the G-protein to interact with the cell 

membrane. All of these subunits and the βγ-subunit couple to and activate many 

different signalling pathways, including PLCβ2 and β3 (Katz et al., 1992), PI3K 

(Stephens et al., 1994; Tang and Downes, 1997), MAPK cascade (Inglese et al., 

1995), adenylyl cyclase (Tang and Gilman, 1991), β-adrenergic receptor kinase, 

and K+ and Ca2+ channels (Cabrera-Vera et al., 2003). 
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1.7.2  Phospholipase C/ Protein Kinase C 

Phospholipase C/Protein Kinase C cascade has been demonstrated to activate 

downstream of many different chemokine receptors. PLC is a crucial modulator of 

phosphoinositides at the plasma membrane. There are 6 different isoforms of 

PLC, β, γ, δ, ε, ζ and η. The structural differences of PLC isoforms are highlighted 

in Figure 1.10.  
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Figure  1.10:  Structural  differences  of  PLC  isoforms. The four domains of 
PLCδ, the PH domain, EF-hands (EF), catalytic domain (containing highly 
conserved X and Y regions) and the C2 domain (C2) are also present in most 
isoforms of other PLC families. The unique region of PLCγ, inserted through a 
flexible loop of the catalytic domain, includes the second PH domain: two SH2 (Src 
homology 2) regions and one SH3 (Src homology 3) region. PLCε contains the 
domain with a guanyl-nucleotide exchange factor activity (CDC25) and two 
predicted RA (Ras association) domains which are implicated in the binding of 
small GTPases from the Ras family. In PLCβ, the unique region (tail) is present at 
the C-terminus. The sequences unique to PLCη (tail) are, as in PLCβ, located at 
the C-terminus. Adapted from Katan, (2005). 
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Most chemokines share the ability to bind to chemokine receptors which trigger 

these downstream cascades, rapidly activating phosphoinositide-specific 

phospholipase C-ß2 (PLC-ß2) and PLC-ß3 isoenzymes, which subsequently leads 

to inositol-1,4,5-triphosphate(IP3) and diacylglycerol (DAG) formation and to a 

transient rise in the concentration of intracellular free calcium (Ca2+) by utilising 

PtdIns(4,5)P2 as a substrate (Hawkins et al., 1984; Cicchetti et al., 2002). In the 

neutrophils of mice that lack the genes encoding PLC-ß2 and PLC-ß3, the 

chemokine-induced calcium elevation is fully suppressed, which further supports 

the conclusion that PLC-ß2 and PLC-ß3 are the sole PLC isoforms activated by 

chemokines in immune cells (Li et al., 2000). 

IP3, by interaction with its receptor, induces the mobilisation of cytosolic calcium. 

This results in the entry of Ca2+ ions through Calcium Release-Activated Channels 

(CRAC channels) (Luik and Lewis, 2007; Luik et al., 2006). The result of these 

channels opening is directly related to reduce the levels of calcium from the 

intracellular stores such as the endoplasmic reticulum. There are two key 

components which are considered critical to mediating this process: firstly, Stromal 

Interaction Molecule 1 (STIM1), which is located in the endoplasmic reticulum and 

acts as a calcium senor; and ORAI1, which is a functional component of the Ca2+ 

release-activated Ca2+ (CRAC) channels (Roos et al., 2005). Furthermore, it is 

believed that the depletion of calcium from the intracellular stores results in the re-

localisation of STIM1 from a diffuse distribution to a focal point near the plasma 

membrane. The redistribution of STIM1 to the plasma membrane allows the 

interaction with the CRAC channels, thereby allowing the replenish of the 

intracellular stores (Figure 1.11) (Luik et al., 2006). 
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Figure  1.11: Overview of PLC activation. The G-protein subunit of the GPCR 
activates phospholipase C (PLC), which cleaves phosphatidylinositol-4,5-
bisphosphate (PtdIns(4,5)P2) to produce inositol-1,4,5-trisphosphate (InsP3) and 

diacylglycerol (DAG). IP3 causes the release of calcium from stores within the 

endoplasmic reticulum, which is detected by STIM1. This causes the opening of 
CRAC channels in the plasma membrane. Adapted from Ley et al., (2007). 
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1.8Phosphoinositide 3Kinase 

1.8.1 Overview 

The early research on phosphorlayted forms of phosphoinositide lipids focuses on 

the conversion of PIP2 by PLC. In the mid-1980s, researchers discovered that the 

lipid PIP2 can serve as a substrate for the phosphoinositide 3-kinase or PI3K 

family, which is characterised by their ability to catalyse the phosphorylation of D3 

of the inositol ring on membrane-bound phosphoinositide lipids to produce PI-

3,4,5-P3 (PIP3). The first known receptor to associate with and activate PI3K was 

platelet-derived growth factor (Auger et al., 1989; Kaplan et al., 1987). PIP3 acts 

as a secondary messenger, which actively recruits intracellular signalling 

molecules, such as Ser/Thr protein kinase B/Akt, Tec family tyrosine kinases and 

the Grp1/Arf exchange factor to the plasma membrane. 

1.8.2 Classes of PI3K 

Mammals have 8 isoforms of PI3K and are subdivided into three main classes 

according to their varying in vivo substrates and structural characteristics. The 

subset of PI3K enzymes which are acutely activated by membrane bound 

receptors are known as Class 1 PI3Ks. Of these, the Class IA PI3Ks signal the 

downstream of tyrosine kinases and consist of a catalytic subunit, p110α (Hiles et 

al., 1992), p110β (Hu et al., 1993), and p110δ (Vanhaesebroeck et al., 1997), and 

are complexed to one of five regulatory subunits (collectively known as p85s) 

containing a Src homology 2 (SH2) domain (Stoyanov et al., 1995). The p85s are 

encoded by three genes: the first three regulatory subunits are all splice variants of 

the same gene (Pik3r1); the other two are expressed by other genes (Pik3r2 and 

Pik3r3, p85β and p55γ, respectively) (Carpenter et al., 1990; Fruman et al., 1996; 

Inukai et al., 1996; Pons et al., 1995; Skolnik et al., 1991). Of the regulatory 

subunits, p85α is the most highly expressed. The three catalytic subunits are 

expressed by separate genes (Pik3ca, Pik3cb and Pik3cd for p110α, p110β and 

p110δ, respectively). 

The Class 1B family has only one member, p110γ (Krugmann et al., 1999; 

Stoyanov et al., 1995), which can interact with one of two regulatory subunits 

(p84/87 or p101 encoded by the PIK3R6 and PIK3R5 gene respectively) and is 

activated by Gβγ subunits downstream of G-protein coupled receptors. The p110γ, 
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like Class 1A isoform, forms heterodimers but varies from Class 1A isoforms as it 

lacks the N-terminus p85. In vitro Class 1A and 1A isoforms have been shown to 

catalyse PtdIns, PtdIns(4)P and PtdIns (4,5)P2 into their respective products; 

however, in vivo, their preferred substrate is PtdIns (4,5), which is converted into 

PtdIns (3,4,5)P3 (Fruman and Cantley, 2002; Vanhaesebroeck et al., 1999). Most 

of the ligands which activate Class IB PI3K are involved in coordinating the body's 

response to injury and infection. 

Class II PI3Ks are encoded according to three separate genes: PI3K Class II α, β, 

γ. The Class II PI3K α and β are ubiquitously expressed, whereas the Class II γ 

has been shown to be almost solely in the liver. In vitro assays demonstrate that 

the Class II isoforms can bind phospholipids in a calcium-independent manner via 

a C-terminal domain; compared to the Class I PI3Ks, Class II PI3Ks demonstrates 

lipid specificity utilising Ptd to PtdIns(3)P and PtdIns(4)P to PtdIns(3,4)P2 

(MacDougall et al., 1995). It is therefore likely that the Class II PI3Ks will induce 

the accumulation of lipids with a profile distinct from that stimulated by the Class I 

PI3Ks (Vanhaesebroeck and Waterfield, 1999). 

The Class III PI3K is the least well-known and least studied of the isoforms in the 

PI3K family. Class III PI3Ks are only thought to comprise one member — the 

human homologue of the yeast vesicular protein-sorting protein, Vps34 (vascular 

protein sorting 34) — which, both in vitro and in vivo, only catalyses PtdIns and is 

thought to play a role in intracellular trafficking events (Yan and Backer, 2007). 

There structural differences of the different PI3K isoforms are highlighted in Figure 

1.12. 
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Figure  1.12:  The  PI3K  family. Class 1 PI3K are heterodimeric enzymes 

consisting of a catalytic and adaptor subunit. The adaptor subunit comprises a N-

terminal p85-binding domain, which binds a p85 regulator subunit, a RBD (RAS 

binding domain) mediating activation by GTPase RAS, a C2 domain and a helical 

domain. Class 1B PI3Ks is similar to the Class 1A, but lacks the p85 binding 

domain, instead having p101 as its adaptor subunit. P101 subunits enable the 

interaction between p110y and the BY subunits of the G proteins, which are 

activated by G-protein coupled receptors. Class II PI3K comprises three members 

and are similar to Class IB but contain additional PX and C2 domains towards the 

C-terminal. Class III comprise a single member with a Vps34 catalytic subunit. 

Adapted from Bader et al.,(2005). 

 


Mammalian cells express PtdIns(3)P constitutively; however, once these cells are 

stimulated, PtdIns(3,4)P2 and PtdIns(3,4,5)P3 are expressed in abundance. This 

difference in expression profile would suggest that PtdIns(3,4)P2 and 

PtdIns(3,4,5)P3 play a role as intracellular mediators (Figure 1.13). 
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Figure 1.13: Pathways of phosphoinositide metabolism. The major routes of 

phosphoinositide metabolism thought to operate in mammalian cells are depicted; 

where known, the main enzyme activities thought to catalyse these conversions 

are also noted. The activation of Class I PI3Ks by cell-surface receptors is shown, 

thus leading to the rapid synthesis of PtdIns(3,4,5)P3 and, via the action of 5 

phosphatases, the synthesis of PtdIns(3,4)P2. Adapted from (Hawkins  et  al., 

2006). 

 


1.8.3  PH Domains 

The activation of PI3K results in the accumulation of PtdIns(3,4)P2 and 

PtdIns(3,4,5)P3 at the plasma membrane, which then recruits proteins via the lipid 

binding domains (known as Pleckstrin Homology (PH) domains). A protein domain 

of approximately 120 amino acids occurs in a wide range of proteins involved in 

intracellular signalling or as a constituent of the cytoskeleton. Work from a number 

of different laboratories has built the concept that: (i) some PH domains bind 

phosphoinositides; (ii) a subset of these PH domains bind PtdIns(3,4,5)P3 and/or 

PtdIns(3,4)P2 with high affinity and specificity; and (iii) several proteins which 

contain these PtdIns(3,4,5)P3/PtdIns(3,4)P2-specific PH domains play key roles in 

mediating Class I PI3K-dependent regulations of important cellular responses 

(Hawkins  et  al 2006). However, it is still unclear precisely how 

PtdIns(3,4,5)P3/PtdIns(3,4)P2 engagement with the PH domain of an effector 

protein regulates its activity. This interaction is of sufficient affinity that the target 
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protein undergoes a net change from a predominantly cytosolic to a predominantly 

plasma membrane location.  
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Figure 1.14: Activation of Class 1 PI3K results in binding of PtdIns(3,4,5)P3 to 
a wide  variety  of  PH domains. Phosphorylation of PIP2 to PIP3 culminates in 
increased levels, thus resulting in the sensing by PH domain with appropriate 
affinity and specification, leading to the activation of a wide range of PH domains. 
These PH-domain-containing effectors belong to several different protein families, 
some of which are shown together with specific examples and an indication of the 
downstream responses which they are thought to regulate. Adapted from Hawkins 
et al., (2006). 
 

It is now also thought that PtdIns(3,4,5)P3/PtdIns(3,4)P2 binding to PH domains 

can often derepress an intramolecular inhibition mediated by the PH domain, 

subsequently inducing significant activation of the effector. Examples of this are 

apparent in the activation of GEFs (guanine nucleotideexchange factors) for small 

GTPases. PtdIns(3,4,5)P3 binding is thought to relieve a PH-domain-mediated 

inhibition of the Dbl catalytic domain and to also bring the GEF into proximity with 

its lipid-tethered GTPase (Welch  et  al., 2003). Furthermore, PDK 

(Phosphoinositide-Dependent Kinase)-mediates phosphorylation and activation of 

PKB (also known as Akt) (Komander et al., 2004; McManus et al., 2004; Mora et 

al., 2005). Both PDK and PKB possess PH domains which bind 

PtdIns(3,4,5)P3/PtdIns(3,4)P2, thus allowing an increase in their relative effective 

concentration on Class I PI3K activation. PDK appears to be ‘constitutively active’, 
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and its activity is ultimately considered independent of phosphoinositide/PH 

domain binding. Moreover, it also has a major role to play in PI3K-independent 

phosphorylation of the activation loop in several ‘AGC family’ kinases. In contrast, 

however, the ability of PDK to phosphorylate PKB in its activation loop is highly 

dependent on Class I PI3K activity. PtdIns(3,4,5)P3/PtdIns(3,4)P2 binding to the 

PH domain of PKB is required to make Thr308 in the activation loop available for 

phosphorylation by PDK. Figure 1.14 highlights the PtdIns(3,4,5)P3/PtdIns(3,4)P2 

binding to PH with the wide downstream effectors activated. The PI3K family has 

been implicated in a wide range of biological processes, such as cell survival, 

proliferation, cell migration and degranulation with the signalling pathways 

highlighted in Figure 1.15. 
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Figure 1.15: Signalling events following formation of phosphoinositide lipids 
by  PI3K. Agonist stimulation of chemokine receptor activated class IB PI3K via 

action of Gβγ subunits and the Ras. This leads to accumulation of PI3K products 
PtdIns(3,4,5)P3 and indirectly PtdIns(3,4)P2 in the membrane and interaction with 
variety of effector proteins by binding to the PH domain.  
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1.8.4 Protein Kinase B 

One of the most widely studied molecules phosphorylated by the activation of 

PI3K is the serine/threonine kinase, Protein Kinase B (PKB, also known as Akt) 

(Burgering and Coffer, 1995). There are three known members in the Akt family: 

Aktα, Aktβ and Aktγ, all of which share close homology to the protein kinases A, G 

and C, collectively form the AGC kinase family (Manning and Cantley, 2007). The 

precise activation of the kinases is not yet fully understood; however, 

phosphorylation of Akt is thought to occur at two key sites — the Ser473 in the 

hydrophobic region of the C-terminal regulatory down and Thr308 within the 

kinase activation loop (Toker and Newton, 2000). Alteration of Akt by activation of 

PI3K results in accumulation of PtdIns(3,4,5)P3 at the plasma membrane. After 

relocation to the plasma membrane, this lipid recruits Akt via its PH domain. Upon 

reaching the plasma membrane, it is thought that PDK-1 induces the 

phosphorylation of the Thr308, whereas the rictor-mTOR complex directs 

phosphorylates Ser473 in the hydrophobic region of Akt (Sarbassov et al., 2005). 

In order for Akt to be fully active, both of these residues have to become 

phosphorylated. Moreover, the regulation of Akt activation has been shown to be 

controlled by the dephosphorlaytion of PtdIns(3,4,5)P3 by the cellular phosphatase 

SHIP, resulting in decreased levels of PtdIns (3,4,5)P3 at the cellular membrane 

leaving the remaining Akt in its inactive form in the cytoplasm (Stambolic et al., 

1998). Moreover, activation of Akt is known to induce the phosphorylation of a 

number of proteins further downstream of itself, particularly those involved in the 

regulation of glucose metabolism and cell survival (Wymann et al., 2000). Further 

downstream signalling pathways include mTOR. 

A role for Akt activation within the degranulation of mast cells has appeared over 

the last decade, and is currently being investigated (Ali et al., 2008; Wymann et 

al., 2003). Akt can be directly dephosphorylated, thus inactivating Akt; this is 

induced by the PH domain leucine-rich repeat protein phosphatase (PHLPP), 

which specifically dephosphorylates the hydrophobic motif of Akt (Ser473 in Akt1) 

(Gao et al., 2005). PHLPP levels are markedly reduced in the instance of several 

colon cancers and glioblastoma cell lines, which have elevated Akt 

phosphorylation, induced apoptosis and restricted tumour growth. Moreover, the 
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reintroduction of PHLPP into a glioblastoma cell line causes a dramatic 

suppression of tumour growth (Gao et al., 2005). 

1.9Assessing the Role of PI3K 

Many different approaches have been studied through PI3K in order to assess the 

role of a particular gene. Each of the methods has its advantages and 

disadvantages, all of which will be discussed in the following section. The use of 

antibodies or inhibitors has been used to block the function of proteins by affecting 

the proteins from binding. Other studies have utilised the use of knock-in/knock-

out animal models. Further studies, in the middle of these two extremes in order to 

try and utilise RNA interference against specific isoforms of interest — transcribed 

but degraded before generation of the protein. 

1.9.1	 Pharmacological Intervention: first generation ‘dirty’ PI3K 

inhibitors 

The PI3K family comprises a group of enzymes possessing several structural 

elements and binding domains. Studies aiming to reveal the role of the PI3K family 

have utilised pharmacological inhibitors. Moreover, the majority of studies have 

used the broad-spectrum isoform PI3K inhibitors Wortmannin and LY294002. 

Wortmannin, a metabolite of Penicillium funiculosum, is one such molecule. 

Wortmannin’s anti-inflammatory actions were first recognised in 1974 by 

Wiesinger et al. (1974) and, approximately a decade later, it was described as a 

potent inhibitor of the respiratory burst in neutrophils and monocytes (Baggiolini et 

al., 1987). It was not until 1993 that PI3K was recognised as one of the many 

molecular targets of Wortmannin (Arcaro and Wymann, 1993). The action of 

Wortmannin involves interacting with the ATP-binding pocket by forming a 

covalent interaction with the catalytic lysine residue, and it is likely that the reactive 

nature of the Wortmannin structure makes it prone to forming unexpected and 

possibly hazardous combinations with other biological molecules (Wymann et al., 

1996). 

LY294002 was first described as a PI3K inhibitor by the Lilly Research Laboratory, 

in 1994. LY294002 is ATP-competitive, has low molecular weight and planar with 
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relatively low potency against the PI3Ks. Moreover, it has been found to inhibit — 

or at least interact with — a plethora of other intracellular targets at concentrations 

little removed from those required for PI3K inhibition (Gharbi et al., 2007). Despite 

the limitations of these first generation PI3K inhibitors — such as poor selectivity, 

toxic effects and the inability to distinguish between specific PI3K isoforms, for 

instance — they have nevertheless been proven as pivotal tools in research when 

striving to fully understand the role of PI3K (Rommel et al., 2007; Ward and Finan, 

2003). The pre-treatment of murine T and B lymphocytes, freshly isolated T 

lymphocytes with LY294002 or Wortmannin demonstrates a role for PI3K in the 

peak chemotactic response (Reif et al., 2004; Sotsios et al., 1999). Moreover, in 

recent years, a new general broad-spectrum inhibitor, ZSTK474, is reported to 

lack the off-target limitations of the widely used inhibitors LY294002 and 

Wortmannin (Kong and Yamori, 2007). Similar to LY294002, ZSTK474 is also an 

ATP-competing inhibitor of PI3K. The chemical structure of each of the three PI3K 

general inhibitors is highlighted in Figure 1.16. 

ZSTK474LY294002 Wortmannin 

1st 

Generation 

PIK75 TGX221 IC87114 AS605240 

2nd 

Generation 

ZSTK474LY294002 Wortmannin

1st

Generation

PIK75 TGX221 IC87114 AS605240

2nd

Generation

Figure 1.16: Chemical structure of PI3K inhibitors. 

The use of these inhibitors is limited due to their broad-spectrum nature, which has 

consequently led to confusion as to which specific PI3K isoforms are involved in 

different cellular functions. This has subsequently led to questions posed 

concerning exactly which class of PI3K can be involved, and therefore underplays 

the contribution of these family members within different models. In more recent 
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years, however, there has been much excitement concerning the development of 

PI3K isoform specific inhibitors — the so-called second-generation inhibitors. 

1.9.2 SecondGeneration Inhibitors 

Given the high degree of similarity that exists between the amino acids forming the 

ATP-binding pockets of the four class I PI3Ks, it was expected that isoform 

selective inhibitors with at least 50-fold difference in potency would be difficult to 

obtain; this, however, was disproved with the discovery of the quinazolinone 

purine series, exemplified by IC87114 and described by the ICOS Corporation 

(Sadhu et al., 2003). Although only these compounds have been used within the 

last decade, they have already significantly contributed to the current body of 

knowledge regarding the different isoform specific functions. PIK75 has been 

noted as a class 1α inhibitor, and has accordingly demonstrated a role in insulin-

signalling (Knight et al., 2006). IC87114 and AS605240 are selective inhibitors for 

the δ and γ isoforms respectively, and have accordingly highlighted a role for 

these isoforms in the case of neutrophil trafficking (Camps et al., 2005; Puri et al., 

2004). Moreover, each of these inhibitors appears to mediator their effect by 

competitively binding at the ATP binding site. The advancement of PI3K isoform-

specific inhibitors has subsequently allowed, and is continuing to be critical in, 

unravelling the roles of each of the specific isoforms. 

1.9.3 Genetic Approaches 

The contribution of knock-out and knock-in mice models has greatly increased our 

knowledge regarding many different systems and their particular isoforms, each 

with many different signalling pathways. The PI3K family is just one of these. In 

order to produce knockouts using recombinant DNA technology, the normal DNA 

sequence of the gene being studied is altered so as to prevent the synthesis of a 

normal gene product. Cloned cells in which this DNA alteration is successful are 

then injected into mouse embryos in order to produce chimeric mice; the chimeric 

mice are then bred with the aim of yielding a strain in which all the cells of the 

mouse contain the disrupted gene. 
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The advantages of knockout mice are: 

•	 The ability to study gene function in a living animal; 

•	 The ability to test drugs and therapies; and 

•	 Ease of breeding and maintaining. 

Disadvantages: 

•	 15% of gene knockouts are lethal; 

•	 There is only the ability to study embryonic development, as genes may 

have different functions in adults; 

•	 The knockout may produce no observable change(s); and 

•	 The knockout may illustrate no correlation with human gene activity. 

The kinase dead or knock-in models, at which point mutation within the gene of 

interest, is generated resulting in the transcription of the isoform and production of 

protein but yet it provides no functional signals. The knock-in method was 

developed in which a mutated DNA sequence was exchanged for the endogenous 

sequence without any other disruption of the gene. Some knock-in strategies rely 

on the use of gene vectors with flanking sequences — termed loxP — which, upon 

exposure to an enzyme called Cre recombinase, undergoes reciprocal 

recombination, subsequently leading to the deletion of the intervening DNA. With 

this method, it is possible to replace a gene sequence with a sequence of the 

investigator’s choice and to accordingly delete unnecessary sequences. The 

advantages of knock-in mice are: 

•	 Specific integration site; 

•	 The transgene genetic environment is totally controlled; and 

•	 Only one transgenic line is necessary. 

The major drawback of this method is that the molecular biology work is 

considered to be significantly more complex and can take longer to perfect. 

However, it is worth noting that compensatory mechanisms in protein expression 

by other PI3K isoforms exist. In an attempt to overcome this, these knock-in 
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murine models have needed to maintain protein stoichiometry. A list of some of 

the PI3K murine models are summarised in Table 1.2. 

Targeted 

Subunit 

Genetic 

Approach 

Viability Immunological 

Phenotype 

References 

P110α KO	 Embryonic Not applicable 

lethal 

P110β KO	 Embryonic Not applicable 

lethal 

P110δ KO Viable	 ↓ neutrophil tethering 

and trafficking across 

inflamed venules. ↓ B 

cell number and 

proliferation 

P110δ KI Viable	 ↓ neutrophil migration 

and PIP3 generation. ↓ 

B and T cell number and 

proliferation 

P110γ KO Viable	 ↓ neutrophil and 

macrophage migration 

in vivo and in vitro. ↓ T 

proliferation 

P110γ KI Viable	 ↓ Decrease in vivo and 

in vitro chemotaxis 

Bi et al., 1999.


Bi et al., 2002.


Puri et al., 

2004; 

Jou et al., 

2002; Clayton 

et al., 2002. 

Okkenhaug et 

al., 2002. 

Hirsch et al., 

2000; Li et al., 

2000; 

Rodriguez-

Borlado et al., 

2003. 

Patrucco et 

al., 2004. 

Class II α Not yet Not Not applicable 

generated applicable 

Class II β KO Viable Wound healing Harada et al., 

unaffected 2005. 

Class III Not yet Not 

generated applicable 
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Table 1.2: Phenotypes of mice that have PI3K catalytic subunit genetically 

targeted. Adapted from Vanhaesebroeck et al., (2005). 

A review reports that the use of knock-out murine models allows a potential 

functional redundancy between the PI3K isoforms (Vanhaesebroeck and 

Waterfield, 1999). The variation in species used to generate these murine models 

also has drawbacks; this is where the ‘middle ground’ in studying PI3K becomes 

an invaluable tool, as it allows specific targeting on gene function in humans. 

1.9.4 RNA Interference 

Murine models are not perfect and, like any technique implemented, have 

disadvantages. One problem which has been associated with knockout models is 

functional redundancy between particular isoforms. If one particular gene is knock-

out, other isoforms within this family subsequently compensate for the absence of 

this gene and may artificially drive functionality through other members. Moreover, 

RNA interference could potentially overcome this problem as it has only a of 

knockdown 80-90% of normal levels, thereby allowing background function of the 

selected isoforms; therefore, any potential compensatory mechanisms by other 

isoforms with the same family may not become active. 

RNA interference is a naturally occurring event in which double-stranded RNA 

molecules induce the degradation of the corresponding mRNA. This, in turn, 

inhibits the translation of mRNA. RNA interference is the silencing of gene by 

target messenger RNA, and this technique has been used in research for many 

years, initially being utilised in plants, followed in the 1990s in invertebrates. The 

switch to mammalian systems has proved a much bigger challenge: the biggest 

problem was the struggle to introduce long, double-stranded RNA in mammalian 

cells. As a result of this, the cells’ initiation interferon response led to wide protein 

inhibition (Bass, 2001); however, this issue has been overcome during the last 

decade as a result of the utilisation of small double-stranded RNA molecules, 

normally 21-23 base pairs long. These small double-stranded RNA molecules 

(siRNA) have been utilised in order to decrease target mRNA levels correlating to 

a decrease in protein expression of up to 90% (Gresch et al., 2004). The 

mechanism of siRNA action is highlighted in Figure 1.17. 
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Figure 1.17: Schematic representation of siRNA mediating complementary 
mRNA degradation. Long dsRNA are introduced into the cell and are cleaved by 
enzymes, known as Dicers, into siRNA of 21-23 nucleotides in length. These 
siRNAs are then incorporated into the RISC complex, where the two strands are 
unwound, thereby allowing one strand to bind to complementary mRNA within the 
cells. The mRNA is then cleaved and degraded by nucleases, with the RISC free 
to bind further siRNAs. Abbreviations of dsRNA — double-stranded RNA, siRNA 
— short interfering RNA, RISC — RNA-induced silencing complex. Adapted from 
Sioud and Sørensen, (2004). 

The principle that RNA interference is based upon is that only specific target gene 

will be down-regulated. The majority of studies focus on one target gene and 

several additional genes; however, recent data suggests that care must be taken 

in order to avoid off-target effects. Furthermore, it is possible to knock-down genes 

with homology similar to the target gene, and they are therefore knocked down as 

so-called off-target (Jackson and Linsley, 2004). 

There are several methods available in order to facilitate the entry of siRNA into 

mammalian cells in vitro; lipid based carriers and viruses, for instance, have been 

used with varying success. Moreover, the direct application of siRNAs onto 

mucosal membranes has been demonstrated to be an efficient up-take of siRNA, 
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thereby helping to explain why the lung has shown the most successful application 

of siRNA technology in vivo to date. 

The application of siRNA possesses many challenges, especially in the case of 

humans; lipid-based carriers and viruses, for example, have been used with 

varying success. It has been demonstrated in Phase I results of the first two 

therapeutic siRNA trials demonstrated that siRNAs are well-tolerated and have 

suitable pharmacokinetic properties. Moreover, Kumar et al. (2008) demonstrate 

that siRNA treatment can dramatically suppress HIV infection in T-cells, which 

therefore highlights the importance of siRNA as a potential powerful therapeutic 

target over the next decade. 

1.10 MitogenActivated Protein Kinase 

The Mitogen-Activated Protein Kinase (MAPK) pathway is made up of many 

different subunits. The most widely studied of these is the ERK (extracellular 

signal regulated kinase), JNK (c-jun-NH2-terminal kinase), and the p38 kinases. 

These different subunits each plays a key role in signal transduction from the 

plasma membrane to the nucleus. Moreover, MAPKs primarily reside in the 

cytoplasm; however, upon activation, these molecules have the capacity to 

phosphorylate nuclear substrates, such as protein kinases, cell-cycle regulators 

and transcription factors. Furthermore, activation of MAPKs induces a cascade of 

phosphorylation events via proteins kinases. Numerous protein kinases are 

involved in different stages of this process, each regulated through G-proteins, 

scaffolds, substrates, adaptors and regulator proteins. This, in turn, induces a wide 

range of cellular functions, including differentiation, cell proliferation, inflammatory 

responses and apoptosis (Weston et al., 2002). 

1.10.1 Extracellular Signal Regulated Kinase 

ERK is the most well-known member of the MAPK family. Activation of this protein 

is carried out after stimulation via receptor tyrosine kinases, GPCRs and integrins. 

The subsequent activation of ERK is catalysed upstream by the kinases MEK1 or 

MEK2, subsequently resulting in the homodimerisation of ERK1/2 and 

translocation to the nucleus where they can further stimulate other kinases and 

transcription factors (Kolch, 2005). CXCR3 agonists demonstrate the ability to 
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activate the MAPK pathway, utilising the ERK1/2 response as a read-out for 

MAPK activation (Figure 1.18) (Smit et al., 2003). 
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Figure 1.18: Simplified GPCR activation of MAPK pathway. The activation of 
GPCR accordingly activates the MAPK family, which subsequently results in the 
activation of the three main MAPK families — ERK, JNK and p38. The primary but 
overlapping responses include cell growth and differentiation (ERK), matrix 
regulation (JNK), and inflammatory cytokine production (p38). Adapted from 
Sweeney and Firestein, (2007). 
 

1.10.2  Rho in Cell Polarisation 

Cell polarity is essential for the process of cell migration and degranulation, and is 

regulated by conserved protein complexes, including the Par complex, Rho 

GTPases and their regulators. Increasing evidence indicates that differential sub-

cellular localisation and activity of the Par complex — consisting of Par3, Par6, 

and atypical protein kinase C (aPKC) — are critical for polarisation (Kraynov et al., 

2000). 

 

It is also known that the spatial coordination of Rac and Rho activity is essential for 

degranulation. The molecular mechanisms regulating these GTPases during 

degranulation are unknown. Members of the Rho family of GTPases are emerging 
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as key regulators of cell migration; specifically, Rac activity is increased at the 

leading edge of a migrating cell (Wang et al., 2002). Depending on the 

physiological context, Rac and Cdc42 can function as mediators and/or regulators 

of the Par complex. Moreover, PI3K has been shown to predominantly activate 

Rac or Cdc42 (Raftopoulou and Hall, 2004; Srinivasan et al., 2003; Weiner, 2002). 

This activity drives the actin polymerisation which underlies lamellipodia formation 

and subsequent forward protrusions (Xu et al., 2003). Rac activity leads to 

lamellipodia formation and forward protrusion. Moreover, rho activity is 

hypothesised to be required later in order to stabilise the cell during the contractile 

events of migration. 

A large body of evidence has indicated that Rac proteins, and/or components of F-

actin networks which are dependent on Rac activity, may form part of a positive-

feedback loop, capable of stimulating PtdIns(3,4,5)P3 production preferentially at 

the leading edge (Park et al., 2004; Sasaki et al., 2004). It has been further 

demonstrated that RhoA and its downstream effector ROCK regulates the 

assembly and activity of the Par complex during cell migration. 

1.11 Mast Cell Signalling 

Antigen-dependent mast cell activation is regulated by a complex series of 

intracellular signalling processes which are activated following antigen/IgE cross-

linking to FcεRI. The proximal-signalling events required to release the mediators 

seem to be common for all categories of mediator, whereas the distal signalling 

events diverge to regulate different mechanisms, by which the mediators are then 

released (Gilfillan and Tkaczyk, 2006). 

One of the main families of kinases which are involved in mast cell signalling is the 

SRC family kinases which, during the initial stages, is LYN and mainly resides in 

lipid rafts (Kovarova et al., 2006). The exact involvement of LYN is unclear; 

however, it has been reported that antigen-mediated allergic reactions are absent 

in LYN-/- mice (Hibbs et al., 1995). One possibility for the involvement of LYN in 

activating both positive and negative pathways for FcεRI mediated degranulation, 
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with the negative pathways being mediated by the PI3K regulator SHIP 

(Hernandez-Hansen et al., 2004). 

The activation of LYN has been shown to phosphorylate the tyrosine residues in 

the FcεRI β and γ-chains. Following phosphorylation, the immunoreceptor 

tyrosine-based activation motifs (ITAMs) of the FcεRI β and γ-chains provide 

docking sites for the SH2 domains of LYN and ZAP70-related tyrosine kinase SYK 

(spleen tyrosine kinase) (Chen et al., 1996; Furumoto et al., 2004). The activation 

of SYK and/or LYN induces the phosphorylation of the trans-membrane adaptor 

molecule LAT (Linker for the Activation of T-cells), and is critical for the guidance 

and direction of downstream signalling (Saitoh et al., 2000). 

Phosphorylation of LAT results in the recruitment of several molecules such as 

cytosolic adaptor molecules; for example, GRB2 (growth-factor-receptor-bound 

protein 2), GADS (GRB2-related adaptor protein), SHC (SH2-domain-containing 

leukocyte protein C), and SLP76 (SH2-domain-containing leukocyte protein of 

65kDa); guanine-nucelotide-exchange factors and adaptor molecules, such as 

SOS (Son of Sevenless homologue) and VAV; and signalling enzymes, such as 

phospholipase Cγ1 (PLCγ1). The results of all the molecules being recruited 

subsequently enables the formation of macromolecules through either direct or 

indirect binding to LAT, thereby allowing diversification of the downstream 

signalling required for the release of all the various mediators stored in the 

cytoplasm of mast cells. 

The crucial residues of LAT involved in regulating signalling and degranulation are 

Y132, Y171, Y191 and Y226; these 4 residues interact though direct or indirect 

interaction with the signalling enzyme PLCγ, the result of which induces the 

mobilisation of intracellular calcium and activation of PKC. There are two forms of 

PLC expressed within mast cells: PLCγ1 and PLCγ2; both of these require re-

localisation to the plasma membrane prior to their activation. The precise role of 

PLCγ has been difficult to assess in the case of mast cells, as knock-out of PLC in 

mice is lethal (Ji et al., 1997). However, a study suggests that, in bone marrow-

derived mast cells in PLC-deficient mice, reduced degranulation response when 

challenged with antigen has been observed (Wang et al., 2000). LAT is now 
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known to be not the only adaptor molecule required for mast cell activation. 

Studies in LAT-deficient bone marrow-derived mast cells still demonstrate residual 

calcium mobilisation and degranulation, (Saitoh et al., 2000). 

Another trans-membrane adaptor molecule, Non-T-cell Activation Linker (NTAL) 

— sometimes referred as LAT2 due to the structural similarity to LAT — has been 

identified as a key component for mast cell activation by providing key docking 

sites. NTAL has been shown to rapidly phosphorylate tyrosine residues in an LYN-

and SYK-dependent manner following FcεRI activation (Brdicka et al., 2002; 

Tkaczyk et al., 2004). However, it is believed that NTAL has a role to play in the 

negative regulation of mast cell induced degranulation due to the increased 

capacity to signal and de-granulate in NTAL knock-out mice (Volná et al., 2004). 

Moreover, it is also believed that NTAL and LAT compete for the same pool of 

associating signalling molecules in lipid rafts (Tkaczyk et al., 2004). NTAL 

functions in a similar way to LAT by recruiting GRB2. Despite the similarity 

between LAT and NTAL, they do not bind to exactly the same molecules. LAT has 

a site (Y132) which, when phosphorylated, allows binding of PLCy, whereas 

NTAL, on the other hand, has a region between 104 and 114, containing the 

sequence YIDP allowing the binding of SRC-family kinases such as LYN and FYN 

(Linnekin, 1999). 

Studies reveal that the absence of the FceRI β chain only partially limits mast cell 

activation, whereas knock-out of the γ chain completely abolishes mast cell 

activation. This has subsequently led to the conclusion that the γ chain is required 

for degranulation, whereas the β chain is involved in the amplification of the 

signals (Ra et al., 1989; Repetto et al., 1996; Takai et al., 1994). This amplification 

pathway is thought to involve another SRC-family kinase FYN, which doesn’t 

activate LAT but another kinase family — the PI3Ks (Gu et al., 2001; Parravicini et 

al., 2002). An overview of mast cell signalling is highlighted in Figure 1.19. 
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Figure  1.19:  Brief  overview  of  signalling  molecules  involved  in  mast  cell 

degranulation. Activation of FcεRI and c-Kit result in the activation of both the 
principle signalling pathways (red arrows) and the complementary pathways (black 
arrows). The role that NTAL might have to play in these pathways is yet to be 
confirmed experimentally. The blue and green arrows indicate the activation of 
downstream signalling pathways, which subsequently leads to degranulation 
(adapted from Gilfillan and Tkaczyk, 2006). 
 

PI3K provides a docking site for PH domains of several signalling molecules which 

are considered important for mast cell activation containing these PH domains, 

including PLCγ 1 and 2, VAV and Burtons tyrosine kinase (BTK), (Iwaki  et  al., 

2005; Salojin  et  al., 2000). There have been many different approaches utilised 

over the years with the aim of deciphering the role of PI3K in mast cell activation 

and subsequent degranulation. Initial studies began with the broad-spectrum PI3K 

inhibitors, Wortmannin and LY294002, which were observed to inhibit both 

antigen-mediated calcium mobilisation and degranulation (Barker  et  al., 1995; 

Barker et al., 1998). Moreover, it is widely recognised that these inhibitors have a 

wide range of off-target effects hitting other kinases. Genetic approaches have 
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generated mice lacking the p85α or p85β subunits individually, mice lacking 

catalytic p110γ, p110δ subunits, or mice with a knock-in point mutation of 

p110δD910A, thereby revealing the involvement of p110δ but not p110γ as the 

key PI3K isoform involved in mast cell activation. Mast cells derived from the bone 

marrow of p85α and p85β knock-out mice show normal antigen mediated calcium 

flux and degranulation. 

PI3K plays a multiple role in mast cells — not only in terms of the release of 

mediators but also in chemotaxis, adhesion and homeostasis. As with all PI3K-

induced responses, specific isoforms are responsible for mediating different 

reactions. Examples of this are in p110δ-deficient bone marrow-derived mast cells, 

where chemotaxis and adhesion are severely diminished compared to wild type 

mast cells (Jolly et al., 2004). In vivo studies also demonstrate the loss of 

peritoneal and gastrointestinal mast cells in p85α-deficient mice (Kim et al., 2004). 

1.12 CXCR3 

Historically, CD183 was the third CXC chemokine receptor discovered and was 

subsequently given the name CXCR3 as it is now more commonly known. CXCR3 

is a PTX-sensitive, seven-transmembrane domain-spanning G protein-coupled 

receptor which binds the pro-inflammatory non-ELR motif CXC chemokines: 

monokine, induced by human IFN-γ (Mig)/CXCL9, IFN-inducible 10-kDa protein 

(IP-10)/CXCL10 and IFN-inducible T-cell α chemo-attractant (I-TAC)/CXCL11. 

CXCL9, CXCL10 and CXCL11 (Loetscher et al., 2000; Murphy et al., 2000; Zlotnik 

et al., 1999);(Khan et al., 2000). CXCR3 was cloned and identified as a receptor 

for CXCL9 and CXCL10 by Loetscher et al. (1996) and was subsequently 

identified as a receptor for CXCL11 (Cole et al., 1998). CXCL9, CXCL10 and 

CXCL11 are selective, potent agonists of CXCR3 (Kd 0.1–5 nM) (Cole et al., 1998; 

Loetscher et al., 1996). Additional chemokines have been reported to bind to 

CXCR3 (e.g., CXCL13 (Jenh et al., 2001) and CCL11 (Xanthou et al., 2003). 

Notably, the reported affinities are generally weak and the biological significance 

of the interactions is questionable. Similarly, the agonists for CXCR3 have been 

reported to be antagonists of CCR3 (Loetscher et al., 2001) and CCR5 (Petkovic 

et al., 2004), but high concentrations of the CXCR3 ligands are required to achieve 

inhibition of CCR3 or CCR5 biological functions. CXCL11 has a higher binding 
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affinity for CXCR3 than either CXCL9 or CXCL10 and is a more potent activator of 

CXCR3 (Clark-Lewis et al., 2003; Meyer et al., 2001; Sauty et al., 2001). Similarly, 

CXCL11 is a more potent antagonist to CCR3 than CXCL9 or CXCL10 (Loetscher 

et al., 2001). 

Recent studies show that different CXCR3 ligands exhibit unique temporal and 

spatial expression patterns, suggesting that they have non-redundant functions in 

vivo. Moreover, the CXCR3 ligands share low sequence homology (around 40% 

amino acid identity) and exhibit differences in their potencies and efficacies at 

CXCR3, with CXCL11 being the dominant ligand in several assays (Cole et al., 

1998; Meiser et al., 2008). CXCR3 is expressed in a wide variety of cells, including 

activated T lymphocytes, NK cells, malignant B lymphocytes, endothelial cells, and 

thymocytes (Loetscher et al., 1996; Loetscher et al., 1998; Qin et al., 1998; 

Romagnani et al., 2001; Trentin et al., 1999; Van Der Meer et al., 2001). 

The binding of chemokines to CXCR3 induces cellular responses which are 

involved in leukocyte traffic, most notably integrin activation, cytoskeletal changes 

and chemotactic migration (Loetscher et al., 2000; Murphy et al., 2000; Zlotnik et 

al., 1999). Signal transduction has not been further analysed but may include the 

same enzymes (including phospholipases, protein kinase B and C, PI3K, MAP 

kinases, G protein-coupled receptor kinases, and small GTPases) identified in the 

signalling cascade as induced by other chemokine receptors (Loetscher et al., 

2000; Murphy et al., 2000; Zlotnik et al., 1999). 

In recent years, however, two main variants of CXCR3 receptor have been 

identified, namely CXCR3-B (Lasagni et al., 2003) and CXCR3-alt (Ehlert et al., 

2004). Both variants are generated via alternative splicing of mRNA, encoding the 

original CXCR3 receptor (henceforth referred to as CXCR3-A). In the case of 

CXCR3-B, alternative splicing results in the translation of CXCR3-B mRNA 

generating a 416–amino acid receptor containing a longer NH2-terminal 

extracellular domain different from the CXCR3-A sequence in the first 52 amino 

acid residues; the remaining receptor at a protein level, on the other hand, was 

identical (Lasagni et al., 2003). Moreover, it has also been reported that CXCR3-B 

could be bound to a G protein that is not Gαi as CXCR3-B is not pertussis toxin-

sensitive. Pertussis toxin insensitive hetrotrimetric G proteins include members of 
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the Gα12 and Gq families and the Gi family member Gz, although the latter is 

predominately expressed in neurons and platelets (Kouroumalis  et  al., 2005). 

CXCR3-B is expressed at a lower concentration than CXCR3-A, but has been 

shown to be functional against all classical CXCR3 ligands, CXCL9, CXCL10 and 

CXCL11. This form of receptor has been shown to bind Platelet Factor 4 

(PF4/CXCL4) in addition to the three classical CXCR3 agonists (Lasagni  et  al., 

2003). Figure 1.20 highlights the structural differences between the CXCR3 

isoforms. 
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Figure  1.20:  2D  Schematic  of  the  CXCR3  variants. The three variants of 
CXCR3 have structure differences. CXCR3B has a slightly longer NH2 terminus, 
by 52 aa when compared to CXCR3A. CXCR3 is the truncated form of CXCR3, 
and has a predicted four, possibly five, transmembrane spanning domains. 
 

In contrast, CXCR3-alt is a truncated version of CXCR3 (lacking 101 amino acids), 

which consequently exhibits a dramatically altered C terminus and has a predicted 

4-5 transmembrane domain structure (Ehlert et al., 2004). Despite this drastically 

modified structure, CXCR3-alt has nevertheless been shown to bind and respond 

to CXCL11, yet is unresponsive to CXCL9 and CXCL10. In addition, CXCL11 — 

but not other CXCR3 agonists — also binds to CXCR7; a receptor which has been 
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associated with increased adhesiveness, invasiveness and reduced apoptosis of 

human umbilical vein endothelial cells and tumour cells (Burns et al., 2006). 

1.12.1 CXCR3 and its Agonists on Mast Cells 

Previous studies carried out on mast cells reveal that CXCR3 is the most 

abundantly expressed, functional chemokine receptor on human lung mast cells. 

In contrast, CXCR3 expression by bone marrow mast cells is low (Brightling et al., 

2005). It is thought from this study that the CXCR3 activation may facilitate the 

migration of mast cells within tissue, and may therefore be important in the micro-

localisation of mast cells within specific tissue structures. However, although 

CXCR3 was the chemokine receptor most highly expressed, human lung mast 

cells is also expressed in the chemokine receptors CCR3, CXCR1, and CXCR4 in 

more than 10% of cells (Brightling et al., 2005). 

It has been widely reported that CXCR3 agonists play a key role in the recruitment 

of CXCR3 positive mast cells to the tissues in many diseases (Ruschpler et al., 

2003; Wardlaw et al., 1986; Yousem, 1997). Such diseases include Rheumatoid 

Arthritis, (Ruschpler et al., 2003), post-lung transplant bronchiolitis obliterans 

syndrome (Belperio et al., 2003), and sarcoidosis (Miotto et al., 2001). ASM 

bundles are contracted in asthma and is predominately mediated by activation of 

mast cell CXCR3 by ASM-derived CXCL10, but not CXCL9 or CXCL11, therefore 

suggesting a different role for the various CXCR3 agonists in diseases. 

1.12.2 Therapeutic Potential of CXCR3 

Studies using CXCR3-KO (CXCR3-/-) show a delayed acute or chronic rejection of 

cardiac or pancreatic allograft in murine models of transplant rejection. In some 

cases — especially in combination with immunosuppressive therapy — CXCR3-/-

mice were able to maintain the allograft. Moreover, in the case of similar models, 

treatment with an antibody directed against either CXCR3 or CXCL10 significantly 

prolongs allograft survival. In addition, anti-CXCL10 antibodies inhibited chronic 

experimental colitis, and a Phase II clinical trial has been launched with the aim of 

further studying the effects of one of the antibodies (MDX1100) in the treatment of 
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ulcerative colitis. The same antibody will also be tested in a Phase II trial for 

rheumatoid arthritis. 

Disease References 

Multiple sclerosis	 Sorensen et al., 1999. 

Rheumatoid arthritis	 Qin et al., 1998. 

Atherosclerosis	 Mach et al., 1999. 

Chronic obstructive pulmonary disease	 Saetta et al., 2002. 

Inflammatory bowel disease	 Yuan et al., 2001. 

Psoriasis	 Rottman et al., 2001. 

Hepatitis C	 Shields et al., 1999. 

Sarcoidosis	 Agostini et al., 1998. 

SARS	 Glass et al., 2004; Danesh et al., 

2008. 

Transplant rejection	 Hancock et al., 2000; Hancock et al., 

2001; Inston et al., 2007. 

Metastasis of melanoma and colon	 Kawada et al., 2004; Kawada et al., 

cancer cells to the lymph nodes	 2007. 

Metastasis of breast cancer cells to the	 Walser et al., 2006. 

lungs 

HIV	 Hatse et al., 2007. 

Table 1.3: Involvement of CXCR3 in human disease. Adapted from Wijtmans 

et al., (2008). 

Use of protein-based CXCR3 antagonists also confirms that the blocking of this 

receptor helps to reduce skin inflammation (Proudfoot and Kosco-Vilbois, 2003) 

and neuro-inflammation in mice model (Vergote et al., 2006). 

A hallmark of CXCR3 is its prominent expression in in vitro cultured 

effector/memory T-cells, and in T-cells present in many types of inflamed tissues. 

In addition, CXCL9, CXCL10 and CXCL11 are commonly produced by local cells 

in inflammatory lesion, therefore suggesting that CXCR3 and its chemokines 

participate in the recruitment of inflammatory cells. Therefore, CXCR3 is a target 
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for the development of small molecular weight antagonists which may be used in 

the treatment of diverse inflammatory diseases. Essentially, a better 

understanding of all the CXCR3 variants is needed in order to fully develop any 

therapeutic potential of CXCR3. CXCR3 and its agonists have been implicated in 

several immune-mediated inflammatory diseases, and, similarly, a few reports 

describe the vast differences in potencies of the three CXCR3 ligands (Heise et 

al., 2005). Most of the therapeutic studies based around CXCR3 concentrate on 

the therapeutic potential of CXCR3 within tumours. Moreover, studies have looked 

at CXCR3 ligands as potent inhibitors of tumour growth in mice (Arenberg et al., 

2001) to the attraction of CD8+ T-lymphocytes by CXCR3 ligands as potent anti 

tumour activities (Hensbergen et al., 2005). A number of studies also consider the 

development of CXCR3-antagonists, as a high prevalence of CXCR3 ligand 

expression is usually observed, especially in inflamed joints of RA patients 

(Wedderburn et al., 2000) in MS lesions (Balashov et al., 1999) during pancreatitis 

in Type 1 diabetes (Frigerio et al., 2002) and during allograft rejection in animal 

models and transplantation patients (Agostini et al., 2001). Table 1.3 highlights 

some of the diseases which have been linked with CXCR3 involvement. 

1.12.3 CXCR7 

CXCR7 is a 7-transmembrane receptor member of the G-protein coupled receptor 

family. It was previously thought that this protein was a receptor for VIP and was 

considered to be an orphan receptor (Law and Rosenzweig, 1994). CXCR7 is 

encoded in humans in the second chromosome — the same chromosome where 

the genes to CXCR1, CXCR2 and CXCR4 are encoded. The binding of the 

chemokines CXCL12/SDF-1 and CXCL11 has been demonstrated by various 

scholars, including Balabanian et al. (2005) and Burns et al. (2006). Recent 

findings in zebra fish suggest that CXCR7 primarily functions by sequestering the 

chemokine CXCL12. Membrane-associated CXCR7 has also been found to be 

expressed on many tumour cell lines, on activated endothelial cell, and on foetal 

liver cells. Unlike many other chemokines receptors, CXCR7 has not yet been 

shown to induce cell migration or to otherwise induce the mobilisation of 

intracellular calcium (Dambly-Chaudière et al., 2007). Furthermore, it has been 

recently demonstrated that CXCR7 also regulates the expression of the pro-

angiogenic factors interleukin-8 or vascular endothelial growth factor, which are 
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likely to participate in the regulation of tumour angiogenesis and the activation AKT 

pathways (Wang et al., 2008). 

1.13 Regulation of GPCR Signalling 

The expression of GPCRs on the cell surface is a finely controlled process. The 

first step is the generation of a receptor in the endoplasmic reticulum, where the 

GPCR is assembly-ready for transportation to the cellular membrane. The newly 

assembled glycosylated receptor is then considered ready to interact with its 

specific agonist. Signalling via GPCRs is very sensitive following activation. 

Moreover, the sensitivity or negative regulation has been termed desensitisation. 

Desensitisation occurs very quickly following activation by its agonist. This 

activation event reduces the responsiveness of the receptor to further stimulation. 

The reduction in responsiveness is due to the G protein-coupled receptor kinases 

phosphorylating the receptor induced conformational changes, which results in the 

binding of inhibitory β-arrestin protein that induces the dissociation of the G-protein 

(Pao and Benovic, 2002; Vroon et al., 2006). The disassociation of the G-proteins 

can also occur via second messenger-dependent kinases; for example, protein 

kinase A and C. In contrast to the G-protein receptor kinases, this disassociation 

occurs in the presence or absence of agonist, and has been named heterologous 

desensitisation. This type of desensitisation is responsible for cellular hypo-

responsiveness (Kristiansen, 2004). Moreover, GPCR signalling is further 

controlled by the internalisation of the receptor; this control process of GPCR 

signalling is longer than desensitisation and can take up to several minutes 

(Luttrell and Lefkowitz, 2002). 

Once a GPCR has been internalised, there are two resulting outcomes: recycling 

of the receptor back to the surface, or degradation of the receptor. Recycling of the 

receptor back to the surface requires the receptor to undergo dephosphorylating 

and the removal of the β-arrestin, thereby allowing the resensitation of the receptor 

to its appropriate agonist. Use of modified chemokines demonstrates longer 

recycling times, thereby indicating different rates depending on the agonist 

stimulating the receptor (Pastore et al., 2003). Degradation of the receptor is via a 

lysomal degradation pathway. 
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1.13.1 Chemokine Receptor Internalisation and Intracellular Trafficking 

The expression of the chemokine receptor on the surface is a balance between 

the rate of internalisation and the rate of replacement (recycling or synthesis of 

new protein) (Mueller et al., 2002). Chemokine receptors undergo a basal level of 

internalisation and the degradation or recycling in the absence of the agonist. 

Agonist-binding can enhance the internalisation and trafficking of these receptors, 

and can accordingly increase the rate of receptor sensitisation versus 

desensitisation, and recycling versus degradation (Neel et al., 2005). Two major 

routes of receptor trafficking exist: clathrin-mediated endocytosis, and lipid 

raft/caveolae dependent internalisation. Moreover, it is possible that certain 

receptors can internalise via both pathways whilst others may utilise one preferred 

pathway. The pathway of internalisation selected by a particular receptor will 

partially depend on the specific cell type and the different expression of specific 

adaptor proteins, membrane lipid composition in close location to the receptor or 

other unknown factors (Neel et al., 2005). 

1.13.2 Pathways for Internalisation of Chemokine Receptors 

The internalisation of the receptor and its agonist by clathrin-coated pits is the best 

characterised endocytic process (Mukherjee et al., 1997). Activation of a receptor 

by its agonist induces a phosphorylation of Ser and Thr residues in intracellular 

loops and C-terminus of the receptor due to action of GRKs (G protein-coupled 

receptor kinases, which are activated by the kinase activity of second messengers, 

such as PKC) which subsequently leads to the uncoupling of the G protein from 

the receptor and, in some cases, the receptor desensitisation. Receptor 

phosphorylation and/or presence of di-leucine motif in the C-terminus of 

chemokine receptor are crucial for the binding of adaptor proteins which link the 

receptor to a lattice of clathrin that ultimately facilitates its internalisation (Neel et 

al., 2005). Adaptin-1 and β-arrestin have been found to play an important role in 

chemokine receptor internalisation. β-arrestin binding to receptor occurs through 

phosphorylated residues in the C-terminus, but can also occur through the 

intracellular loops. Furthermore, it has also been reported that CXCR4 β-arrestin 

binds to both carboxyl-terminus and the third intracellular loop (Cheng et al., 
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2000). AP-2 binds to some chemokine receptors, including CXCR2 and CXCR4, 

via highly conserved Leu-Leu, Ile-Leu and Leu-Ile motif within the C-terminus 

(Heilker et al., 1996; Fan et al., 2001). Association of the adaptor proteins is 

required for the recruitment of clathrin and through action of dynamin, formation of 

clathrin-coated vesicles (Mousavi et al., 2004). Following receptor internalisation, 

clathrin-coated vesicles are uncoated and receptor-ligand complexes are directed 

to the early endosomal compartment. The receptor can then be directed to the 

perinuclear recycling compartment and can be recycled back to the plasma 

membrane or can otherwise enter the late endosomal compartment and be 

directed to the lysosomal compartment for degradation. 

An alternative pathway for the internalisation of a chemokine receptor may occur 

via lipid rafts or through cholesterol enriched structures, called caveolae (Parton 

and Simons, 2007; Palade, 1953). Caveolae are stabilised by caveolin-1 (CAV-1) 

and CAV-2 cholesterol-binding proteins and form characteristic flask-shape 

structures with no obvious coat (Stan, 2005). Once internalised, some receptors 

can enter the compartment, known as caveosome, and fuse with early endosomes 

also used in clathrin-dependent pathways (Sharma et al., 2003). Despite some 

reports that chemokine receptors — such as CCR5 and CXCR4 (Manes et al., 

1999; Manes et al., 2000; Nguyen and Taub, 2002) — have been found to some 

degree in lipid rafts; coveolae/lipid rafts-dependent internalisation does not appear 

to be a common feature for the chemokine receptors. 

1.13.3 Regulation of Chemokine Receptor Trafficking by Rab GTPases 

Rabs are small GTPases which are involved in the regulation of a variety of 

cellular trafficking events. The exchange of GDP for GTP, GTP hydrolysis w and 

GDP displacement are regulated by Guanine nucleotide Exchange Factors 

(GEFs), GTPase-Activating Proteins (GAPs) and GDP Dissociation Inhibitors 

(GDIs), respectively. Rab5 mediates early endocytic responses which are required 

for the fusion of early endosomes (Rybin et al., 1996). Moreover, Rab5 interacts 

with Class I of PI3K and induces the production of PI3P. Rab5 and PI3P recruit 

EEA-1 (Early Endosomal Antigen) and other proteins involved in fusion with early 

endosomes. Furthermore, the internalisation of CXCR2, CXCR4 and CCR5 
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requires activity of Rab5 and is significantly blocked by expression of Rab5 

dominant negative mutant (Fan et al., 2003; Venkatesan et al., 2003). 

There are two types of endocytic recycling — rapid and slow pathway — to which 

Rab4 and Rab11a contribute respectively (Ullrich et al., 1996; Sheff et al., 1999; 

Sonnichsen et al., 2000). The slow recycling pathway involving localised on 

perinuclear compartment Rab11a seems to be important in the case intracellular 

trafficking of chemokine receptors. This is shown for the case of CXCR2 which, 

upon agonist-induced internalisation, localises to Rab11a-containing compartment 

(Fan et al., 2003). Rapid recycling pathway through Rab4 positive endosomes 

bypasses the perinuclear endosomes and occurs in PI3K-dependent manner 

(Hunyady et al., 2002). It is not known which mechanisms regulate these different 

recycling pathways. Rab7 is involved in the directing of late endosomes to the 

lysosomal compartment. Prolonged exposure of chemokine receptor to ligand may 

result in their degradation in lysosomes. Moreover, Rab7 is thought to be 

important in the process of lysosomal sorting. Involvement of Rab7 is shown for 

the CXCR2 receptor where the blocking of Rab7 activity results in the decreased 

localisation of this receptor to the lysosomal compartment, and its accumulation in 

early and recycling endosomes (Fan et al., 2003). 

1.13.4 Regulation and Functional Consequences of Internalisation 

Receptor internalisation following ligand-binding is most likely the reason for down-

regulation of most chemokine receptors (Neel et al., 2005). The rate of this 

process can be dependent on multiple factors involving C-terminus of receptor, the 

type of ligand, cell type or phosphorylation status. Phosphorylation of Ser and Thr 

residues and presence of di-leucine motif in the carboxyl-terminus is shown to be 

required for the internalisation of some chemokine receptors. This has been 

reported for CXCR4 receptor, for example (Neel et al., 2005). In contrast, the 

internalisation of CXCR3 by any of its ligands is not affected by the mutational 

change in the LLLRL motif located in the C-terminus. However, mutational change 

of C-terminal Ser and Thr residues inhibited CXCL9- and CXCL10-nduced 

internalisation with no effect of CXCL11, whereby action was dependent on the 

third intracellular loop of CXCR3 in 300-19 cells (Colvin et al., 2004). The rate of 

internalisation also depends on the type of ligand. Most chemokine receptors bind 
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with high affinity more then one chemokine, and these chemokines may 

differentially induce the internalisation of the receptor. This situation is observed 

for CXCR2, which binds two ligands — CXCL6 and CXCL8 — with high affinity; 

however, the latter is more efficacious in inducing internalisation of CXCR2 

(Feniger-Barish et al., 2000). Similar findings have been reported for the CXCR3 

receptor, which becomes internalised by CXCL9, CXCL10 and CXCL11, with 

CXCL11 being the principal chemokine responsible for CXCR3 internalisation 

(Sauty et al., 2001). Cell context may also affect the rate of internalisation and the 

pathway through which a receptor becomes internalised; this may be due to the 

availability of different endocytic compartments, such as caveolae, and the 

expression of various proteins, such as β-arrestin and other adapt proteins. For 

example, CXCL11 reduces surface expression of endogenous CXCR3 in T-cells 

down to 20% whereas, in transfected L1.2 cells, only 50% reduction of basal 

expression of surface CXCR3 is detected (Meiser et al., 2008). Moreover, the 

internalisation of some receptors — such as CCR5 — has been reported to occur 

via both clathrin and caveolae-dependent pathway. However, in some cell types, 

such as Chinese Hamster Ovary (CHO), CCR5 internalises mainly clathrin-

dependent endocytosis (Signoret et al., 2005); in other cell types, on the other 

hand, namely Human Embryonic Kidney cells (HEK293), the dominant pathway for 

CCR5 internalisation is via caveoli (Venkatesan et al., 2003). 

The factors which mediate the fate of internalised receptors are largely unknown. 

They possibly include the duration and concentration of ligand stimulation, and 

different sorting motifs present within intracellular domains of the receptor. As is 

the case of the CCR5 receptor, short stimulation leads to the direction of recycling 

endosomes, whereas longer stimulation cause its localisation to late endosomal 

compartment (Signoret et al., 2000). Similarly, at the early time of stimulation with 

CXCL8, CXCR2 enters recycling endosomes while the extended stimulation time 

leads to its direction to the lysosomes (Fan et al., 2003). Moreover, intracellular 

trafficking is an important aspect of the chemokine receptor function, and has been 

studied for multiple receptors. Some findings suggest the role of internalisation of 

chemokine receptors in trans-endothelial migration (Sauty et al., 2001). However, 
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the requirements for internalisation in chemotaxis and signalling remain 

controversial and still need to be addressed. 
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1.14 Hypothesis and Aims 

The aims of the first part of this thesis were as follows: 

•	 To establish the expression of CXCR3 on the human mast cell line, HMC-1, 

and the primary mast cell model derived from cord blood mast cells, and to 

determine their suitability as a mast cell model. 

Hence, the following hypotheses were proposed: 

•	 All variants of CXCR3 will be expressed on HMC-1 and will induce 

migration of the HMC-1 cell line. 

•	 The primary mast cell model will mirror more closely mast cells in the 

human body than the cell line, HMC-1. 

The following objectives were established in order to test these hypotheses: 

•	 Examine the expression of CXCR3 variants on the HMC-1 cell line by 

investigating expression at the mRNA and protein level. 

•	 Investigate the signalling profile of CXCR3 agonists in the HMC-1 cell line. 

•	 Analyse functional responses of CXCR3 on the HMC-1 cell line by 

examining chemotactic responses. 

•	 Examine cell surface markers on primary mast cell models so as to ensure 

correct differentiation from precursors to mature mast cells. 

•	 Establish the mast cell phenotype generated in the primary model and 

check if the function mirrors the current understanding. 

•	 Analyse certain signalling pathways involved in FcεRI via western blotting, 

and utilise available inhibitors to establish their importance in mast cell 

degranulation. 

The second aim of this thesis was to establish the role of CXCR3 on the 

primary mast cell model derived from cord blood. As such, the following 

hypotheses were proposed: 

•	 CXCR3 variants will all be expressed on the primary mast cell model, and 

will augment sub-optimal FcεRI induced degranulation. 
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•	 CXCR3 activation will induce PI3K and PLC activation, which will be critical 

to the release of mediators from mast cells. 

The following tasks were subsequently established to test these hypotheses: 

•	 Examine CXCR3 at mRNA and protein levels. 

•	 Induce the degranulation of primary mast cell models utilising sub-optimal 

antigen concentration, then stimulate with CXCR3 agonists. 

•	 Examine any augmentation of degranulation by CXCR3 in order to 

determine if this response is CXCR3-specific, utilising small molecular 

CXCR3 antagonists. 

•	 Investigate the pathways activated by CXCR3, and accordingly examine 

their involvement in degranulation of these pathways, utilising specific 

isoform inhibitors. 
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2. Methods and Materials 

2.1Methods 

2.1.1 Cell Types and Culture Conditions 

The focus of this work was to characterise the signalling and function of CXCR3 

and its variants in human mast cells. The models that were used were mast cells 

differentiated and matured for CD133+ precursor cells derived from human cord 

blood or the human leukemic mast cell line, HMC-1. Furthermore, the THP-1 cell 

line was utilized to investigate the presence of variants of CXCR3 in other 

leukocytes. All primary cells and cell lines were routinely maintained in their 

respective media supplemented with antibiotics and 10% foetal bovine serum as 

described in detail below. Cells were cultured ever 3-4 days as required and 

maintained at 37oC and 5% CO2. Prior to experimental procedures, cell viability 

was determined using trypan blue to stain any dying cells. 

2.1.2 Cord Blood Derived CD133+ Precursors 

CD133+ progenitor cells (Stem Cell Technologies) were grown in presence of 

Stem Cell Factor (SCF) (100 ng/ml); IL-6 (100 ng/ml) and IL-3 (30 ng/ml). 

Cytokines were applied in Stem pro serum-free medium containing 50U/ml 

penicillin, 50µg/ml streptomycin and 1% l-glutamine. Cultures were maintained at 

37 °C and 5% CO2 in 6-well plates at cell density 0.5 × 106/ml. Cells were fed 

twice per week during the first 4 weeks of culturing, and thereafter once per week 

by removing half of the volume of the cytokine-supplemented medium and adding 

fresh medium containing 2× cytokine cocktail. After 8 weeks, cultures were 

supplemented with 5% FCS and IL-4 (10ng/ml) (Mirkina et al., 2007). 

2.1.3 THP1 

THP-1 cells(Sigma-Aldrich, Poole, UK) were maintained in 175cm2 tissue culture 

flask in RPMI 1640 medium supplemented with 10% foetal bovine serum (FBS), 

50U/ml penicillin and 50µg/ml streptomycin. Cells were grown to a maximum of 1.5 

x 106 cells and diluted with fresg complete medium to 5x105 cells every 3-4days. 

THP-1 cells were maintained in a humidified incubator at 37oC and 5% CO2. 

80




Chapter 2 – Methods and Materials


2.1.4 HMC1 

HMC-1 cells (Mayo Foundation for Medical Education and Research, Rochester, 

USA, MMV-88-049) were maintained in 175cm2 tissue culture flask in Iscove's 

modified Dulbecco's medium(IMDM) without phenol red medium supplemented 

with 10% foetal bovine serum (FBS), 50U/ml penicillin, and 50µg/ml streptomycin. 

Cells were grown to a maximum of 1.5 x 106 cells and diluted with fresh complete 

medium to 5x105 cells every 3-4days. HMC-1 cells were maintained in a 

humidified incubator at 37oC and 5% CO2. 

2.1.5	 Evaluation of CD133+ Precursor Differentiation in to Immature Mast 

Cells. 

In order to verify that the differentiation procedure was successful, cells off all ages 

were routinely stained for the presence of the mast cell specific marker tryptase. 

1 x 105 of primary mast cells were washed twice in RPMI and centrifuged onto 

polylysine-coated glass slides in a Cytospin3 cytocentrifuge at 250g. The resulting 

smears were then air-dried and fixed by submersion in an acetone: methanol 

solution (1:1) for 1 minute. The smears were then carefully washed in TBS buffer 

(pH 7.6) and a circle drawn around the outside of the smear using a SuperPap pen 

to create a hydrophobic ring around the smear in order to generate a concentrated 

pool of antibody over the smear. 100µl of anti-human mast cell tryptase mAb or 

isotype matched control was added to the appropriate smear and incubated at 4oC 

overnight. 

To visualise the presence of tryptase within human mast cells, prepared smears 

were stained using the alkaline phosphatase/anti-alkaline phosphatase (APAAP) 

method according to the manufacturer's (DAKO) instructions, briefly outline as 

follows. After incubation overnight, excess anti-human tryptase antibody was 

washed away using TBS buffer (pH 7.6) and then a drop of Dako REAL™ Link, 

Secondary Antibody (LINK) (Bottle A) was added to each smear and left at room 

temperature for 30 minutes. After incubation, excess secondary antibody was 

washed off and a drop of Dako REAL™ APAAP Immunocomplex (APAAP) (Bottle 
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B) was added to each smear for 30 minutes at room temperature. During this time 

the Chromogen Red-containing Substrate Working Solution (CHROM) was 

prepared by mixing thoroughly 750µL AP Substrate Buffer (Bottle F) with 30 µL 

Chromogen Red 1 (Bottle C), 30µL Chromogen Red 2 (Bottle D) and 30 µL 

Chromogen Red 3 (Bottle E) in that exact order and with thorough mixing after the 

addition of each chromogen. Use CHROM within 20 minutes. Any volume of 

CHROM that was not used was discarded. Smears were rinsed again in TBS 

(pH7.6) to remove the excess APAAP and a drop of CHROM was added to each 

smear for 20 minutes at room temperature. Slides were then washed again in 

TBS (pH 7.6) and air dried then analysed microscopically. 

2.1.6 Evaluation of Mast Cell Maturity. 

1 x 105 of primary mast cells were washed twice in RPMI and centrifuged onto 

polylysine-coated glass slides in a cytospin3 cytocentrifuge at 250g. The resulting 

smears were then air-dried and fixed by submersion in an acetone: methanol 

solution (1:1) for 1 minute. Smears were then air-dried before submersion in May-

Grunwald’s eosine-methylene blue solution modified for 1 minute. Smears were 

rinsed with dH2O and air-dried. Smears were then submersed in Giemsa’s azur 

eosin methylene blue solution for 1 minute. After incubation period, excess stain 

was washed off using dH2O and again left to air dry. 

Slides were then analysed microscopically. 

2.1.7 Transmission Electron Microscopy (TEM) 

TEM is a microscopy technique whereby a beam of electrons is transmitted 

through an ultra thin specimen, interacting with the specimen as it passes through 

it. An image is formed from the electrons transmitted through the specimen, 

magnified and focused by an objective lens and appears on an imaging screen, a 

fluorescent screen in most TEMs, plus a monitor, or on a layer of photographic 

film, or to be detected by a sensor such as a CCD camera. 

A biocompatible surfactant-n-dodecylammonium α-glutamate was diluted to a 

2.5% final concentration in complete culture medium. 1x106/ml were re-suspended 

in this medium to fix the cells at room temperature over a two hours period then 
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stored overnight at 4oC. Samples were washed three times, each for a period of 5 

minutes in 0.1 Sodium Cacodylate buffer. Samples were post fixed in 1% Osmium 

Tetroxide + 1% Potassium Ferrocyanide for 1 hour before washed three times with 

dH2O. After post fixation, each sample was encapsulated in 3% agarose and cut 

into cubes. Each cube was subsequently washed in dH2O twice each for a period 

of five minutes. 1% aqueous Uranyl Acetate was applied to each cube before 

stored at room temperature in the dark for one hour. The cubes were then 

dehydrated using increasing concentrations of acetone – 50, 70, 90 and 95% at 

4oC, cubes were treated with each dilution twice over a period of ten minutes per 

concentration before final dehydration in 100% dry acetone at room temperature. 

This final dehydration with 100% acetone was applied to each cube 4 times over a 

period of twenty minutes. After dehydration samples were infiltrated in Spurrs 

Epoxy Resin: 100% dry acetone 1:1 for a period of 1-2 hours then 100% Spurrs 

Epoxy resin for 2 hours then fresh resin overnight. Each sample was then 

embedded in moulds and cured in a 70oC oven for 8 hours. 

2.1.8 Freezing/Thawing of Cells 

For storage, 1x106 cells/ml in exponential growth were re-suspended in freeze 

medium containing 10% dimethyl sulpohoxide (DMSO), and 90% foetal calf 

serum. The cell suspension was transferred to cryotube (1ml/tube), cooled 

overnight at 1oC/minute in isopropanol to -80oC and transferred to liquid nitrogen 

tanks for long-term storage. For resuscitation of cells from liquid nitrogen, cells 

were rapidly defrosted for one-minute in a 37oC water bath, washed once in RPMI-

1640 and re-suspended in correct medium and volume and cultured as previously 

stated. 

2.1.9 Degranulation 

Mature mast cells were passively sensitised overnight in culture media containing 

chimeric human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE (1 µg/ml). 

The mature mast cells were then washed twice in RMPI-1640 without phenol red, 

0.1% BSA and re-suspended at 1x106/ml in RPMI-1640 without phenol red, 0.1% 

BSA. 90µl of cell suspension was added to each well. Degranulation was induced 

by addition of 10x NP-BSA or specific chemokine. When the effects of inhibitors 
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were examined, these, or controls, were added 30 min prior to the addition of NP-

BSA or specific chemokine. Degranulation was performed at 37oC, 5% CO2 for 

150 minutes, after which β-hexosaminidase release was measured as a readout of 

degranulation. To measure total β-hexosaminidase release, control well were 

treated with 1% TRITON-X solution. 

To measure β-hexosaminidase release, 90 µl of cell supernatants were transferred 

to 96-well flat bottom plates and mixed with 90 µl of chromogenic β-

hexosaminidase substate p-nitrophenyl-N-acetyl-β-d-glucosaminide (1.3 mg/ml in 

0.1 M sodium citrate buffer, pH 4.5). Incubation of supernatant and substrate took 

place at 37oC, 5% CO2 for 90 minutes. After incubation for 1.5 h at 37 °C, the 

reaction was stopped by the addition of 90 µl of 2M NaOH, and the release of the 

product p-nitrophenol was determined by monitoring the O.D. at 405 nm in an 

ELISA reader. 

2.1.10 Determination of Protein Expression 

Immunoblotting and flow cytometry are techniques which can be utilised to 

facilitate the detection of a protein of interest. As the techniques are also used in 

the analysis of signalling pathways and functional studies, these topics will be 

discussed in much greater detail in the section below with specifics to this study, 

however, a brief overview of these techniques will be presented here. 

Immunoblotting uses whole cell lysates which are then analysed for the expression 

of a particular protein using electrophoresis to separate the proteins according to 

their size. The transfer of these proteins onto a nitrocellulose membrane facilitates 

their detection by incubating this membrane in the presence of antibodies against 

the protein of interest which can be detected by the use of HRP-secondary 

antibody. Flow cytometry also uses whole cells which has the advantage as the 

antibodies can be added directly to the sample without the need for protein 

separation. 
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2.1.11 Immunoblotting 

Immunoblotting or western blotting is a technique that facilitates the detection of a 

protein of interest or the phosphorylated form of that protein. Within this study, 

cells were stimulated with numerous chemokines triggering downstream signalling 

events characterised by the phosphorylation of proteins within that pathway. By 

lysing the cells, the mixture of proteins contained within the cell can be extracted. 

The whole cell lystates are then dispensed into wells within a polyacrylamide gel. 

Upon applying an electrical current across the gel, the proteins separate according 

to their molecular weight, with smaller proteins migrating the furthest. These 

separated proteins are then transferred onto a nitrocellulose membrane which can 

be ‘probed’ using an antibody against a protein of interest. Following incubation 

and binding of the primary antibody to the protein of interest, a secondary antibody 

is applied which is coupled to a horseradish peroxidise tag. Upon delivering a 

chemiluminescent agent there is a reaction which produces luminescence that is 

in relation to the amount of protein detected. This luminescence is detected using 

a sensitive photographic film, allowing visualisation of the protein of interest. 

Immunoblotting was utilised in this study to allow the visualisation of the 

phosphorylation of Akt, ERK1/2 and S6.This phosphorylation was used as a 

readout of chemokine stimulation (CXCL4, CXCL9, CXCL10, CXCL11, CXCL12, 

CXCL16 and CCL2) in mature mast cells and THP-1 cell line. This method was 

also used to visualise the variants of CXCR3 and CXCR7. Furthermore, to 

determine the involvement of different proteins involved in mast cell signalling 

needed for a functional response, we utilised this method to indentify key 

components of this signalling pathway through inhibition of specific molecules. 

2.1.12 Stimulation of Cells and Collection of Whole Cell Extracts 

1 x 106 of primary mast cells or THP-1 cells per point were washed twice in RPMI 

1640 and incubated at 37oC in serum free RMPI 1640 for 60 minutes. Cells were 

or were not stimulated with specific chemokine diluted in RPMI 0.1% BSA. 

Stimulations were terminated by aspiration of the supernatant followed by the 

addition of ice cold lysis buffer (50mM Tris-HCL ph 7.5, 150mM sodium choride, 

1% Nonidet P40, 10% Glycerol, 5mM EDTA, 1mM sodium vanadate, 1mM sodium 
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molybdate, 10mM sodium fluoride, 40µg/ml PMSF, 0.7µg/ml Pepstatin A, 10µg/ml 

aprotinin, 10µg/ml leupeptin, 10µg/ml soyabean trypsin inhibitor). Lysates were 

rotated at 4oC for fifteen minutes, followed by centrifugation at 17,500g. The 

protein rich supernatant were diluted in 5x loading buffer (10% SDS, 50% glycerol, 

200mM Tris HCL pH 6.8, Bromophenol blue) heated to 95oC for 5 mins and stored 

at -20oC. 

2.1.13 Electrophoretic	 Separation, Transfer and Immunoblotting of 

Cellular Proteins 

Solubilised proteins were electrophoresed on a one dimensional 10% sodium 

dodecyl sulphate-polyacrlamide gel (SDS-PAGE). This was carried out using the 

Bio-Rad Mini Protean II system. Samples were loaded into a stacking gel and run 

at 80V in running buffer containing 25mM Tris base, 192 mM Glycine and 

0.1%(w/v) SDS. Upon reaching the resolving gel, samples were electrophoresed 

at 180V. The proteins were transferred by electoblotting for 60 minutes at 40mV 

onto nitrocellulose membrane 0.45µM soaked in semi-dry transfer buffer (70% 

H2O, 20% methanol and 10% blot buffer (39mM Glycine, 48M Tris base and 

0.0375% SDS)). Membranes were incubated for 60 minutes at room temperature 

in block buffer (TBS-tween containing 5% milk), with slight agitation and rinsed 

three times for five minutes in TBS-tween. The membrane was incubated in the 

specified 1o antibody dilution 1:1000 in TBS-tween supplemented with 0.01% 

sodium azide and 5% milk overnight with slight agitation. The membrane was 

washed three times for five mintues in TBS-Tween and incubated in the 2o 

antibody couple to horse radish peroxidise (HRP) diluted 1:10,000 in block buffer 

for 60minutes at room temperature and washed in TBS-Tween three times for five 

minutes. Visualisation of the protein was performed by incubating the membrane 

in 5ml of Enhanced Chemiliminescent reagent (ECL), for one minute and exposing 

to Fuji medical x-ray film. 
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2.1.14 Membrane Stripping and Reprobing 

In order to verify whether the samples were equally loaded the membranes were 

stripped of antibody and reprobed with a pan antibody that detects absolute levels 

of protein. Firstly the membrane was rehydrated in TBS for 10 minutes and then 

placed in 100mls of stripping buffer to remove bound antibody, (100mM 2-

Mecaptoethanol, 2% SDS, 62.5mM Tris-HCL pH 6.7) and incubated at 60oC for 30 

minutes. After extensive washing with TBS-Tween, the membrane was incubated 

for 60 minutes at room temperature in block buffer, washed three times in TBS-

Tween. Blots were re-probed with a different primary antibody and the 

immunoblotting procedure is carried out as described above. 

2.1.15 Flow Cytometry 

Flow cytometric analysis is a highly selective technique used to count, examine 

and sort single cells with use of a laser. Within this study this technique was 

utilised to determine the expression of cell surface receptors and also used to 

investigate proteins levels at an intracellular level. 

The sample being analysed is directly into a stream of fluid that passes through a 

number of detectors, which can analyse the properties of the particles that pass 

through it, such as size and granularity. With the use of fluorescently labelled 

antibodies surface receptors or intracellular proteins can be detected and the 

expression levels compared to other samples. For example, incubation with a 

specific anti-human CXCR3 can be compared to its specific isotype control to 

determine the proteins levels of CXCR3 on the cell. 

2.1.16 Determining Expression of Cell Surface Receptors 

Mast cell models and THP-1 cell line were washed twice in PBS 5% BSA and re-

suspended in 100µl. 5µl of PE-conjugated anti-human antibodies against the 

receptor of interest or the respective immunoglobulin isotype control was added 

and incubated on ice and darkness for 30mins. Cells were washed twice in PBS 

5% BSA and re-suspended in 300µl for analysis. 
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2.1.17 Determination of Expression Levels of Intracellular Proteins 

1 x 106 mast cell models or THP-1 cell line were incubated at 37oC in serum free 

RPMI for 30 minutes. Cells were centrifuged at 17,500g, and fixed by aspiration of 

the supernatant and addition of 2% formaldehyde in PBS for 10 minutes at room 

temperature followed by 1 min on ice. Cells were washed in PBS and 

permeabilised by the addition of 90% methanol at –20oC, which slowly vortexing 

followed by incubation at 4oC for 30minutes. Cells were washed, re-suspended in 

100µl of PBS 0.1% BSA and blocked for 10 minutes at room temperature. 5µl of 

specific PE-conjugated antibody or appropriate PE-conjugated isotype control 

added (1 in 20 dilution) and incubated at on ice and in the dark for 30minutes. 

Cells were washed twice and re-suspended in 400µl PBS, for flow cytometric 

analysis using a Becton Dickinson FACS Canto flow cytometer and analysed 

using FACSDiva software. 

2.1.18 RNA Extraction with Trizol 

10x106 were homogenised with 1ml of Trizol tm in a sterile RNAase free microfuge 

tube by pipetting vigorously up and down. RNA was then extracted according to 

the Trizol manufacturer’s instructions. In brief, samples were incubated at room 

temperature for 5 mins, spun at 17,500g for 10 minutes at 4oC and the top layer 

collected and placed in a fresh tube. 0.2 chloroform was added to samples which 

where then shaken vigorously for 15 seconds and incubated at room temperature 

for 2 minutes. Samples were then centrifuged in a chilled microfuge for 15 minutes 

at 17,500g before the upper layer carefully removed and placed in fresh tube. 

0.5ml of propan-2-ol was added to each sample which were then incubated at 

room temperature for 10 minutes to allow nucleic acid precipitation. Samples were 

then centrifuged at 9000g, for 10 minutes at 4oC. RNA pellets were washed in 

75% EtOH, air dried and re-suspended in the RNA storage solutions. The optical 

absorbance at 260nM and 280nM was measured using a spectrophotometer and 

used to determine the RNA concentration. Purity was estimated from the 

OD260/OD280. 

RNA samples were DNAase treated using the DNA-freeTM kit according to the 

manufacturer’s instructions (Invitrogen). In brief, 5µg of each RNA sample was 
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diluted in 1xDNAaseI buffer containing 1µl of DNAaseI with the total volume made 

up to 50µl with diethylpyroCarbonate (DEPC) treated water. Sample were mixed 

and incubated at 37oC for 30 minutes. 5µl of DNAase inactivation reagent was 

then added and samples mixed thoroughly during incubation at room temperature 

for 2 minutes. Samples were centrifuged at 6000g for 1.5 minutes and the 

supernatant containing DNAase treated RNA, placed in a fresh tube. 

2.1.19 cDNA Synthesis from RNA 

cDNA was reversed transcribed from DNAase-treated RNA using the superscript 

TM first strand synthesis system for RT-PCR according to manufacturer’s 

instructions (Qiagen). Briefly, 5µg of each RNA sample was mixed with 10µg/ml 

Oligo(dT)12-18, 200nM dNTP mix and the volume made up to 10µl with DEPC 

treated water. Samples were incubated at 65oC for 5 minutes then placed on ice 

for ~1 minute. To each sample, 9µl of a mixture containing the following 

components (final concentrations) was added: 1xRT-buffer, 5mM MgCl2, 10nM 

DTT, and 1µl of RNaseOUT TM recombinant Rnase inhibitor. Samples were 

incubated at 42oC for 2 minutes and then 1µl (50 units) of superscript TM II 

reverse transcriptase was added to each sample (except –RT controls). Reactions 

were incubated at 42oC for 50 minutes before being terminated by incubation at 

70oC for 15 minutes. Samples were collected by centrifugation and 1µl of 

RNAaseH added to each one. These were incubated at 37oC for 20 minutes and 

then stored at –20oC until used for PCR amplification. 

2.1.20 Polymerase Chain Reaction (PCR) 

PCR for all applications was performed using a NewEngland Biolabs master mix. . 

Reaction mix for PCR was as follows: 2x NewEngland Biolabs master mix (12.5 

µL), 10µM 5’ primer (2 µL), 10µM 3’ primer (2 µL), approximately 1 µg cDNA and 

distilled water (up to 25 µL volume). All reactions were mixed well by pipetting 

before being placed in a thermocycler. 

Appropriate thermocycler programs were used according to the application: 

Amplification of cDNA: Initial denaturation: 94°C 5 mins, (denaturation: 94°C 1 
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min, annealing: 60°C 30 sec, extension: 72°C 1 min) x 35, final extension: 72°C 10 

min, final hold: 4°C; PCR products were then analysed by agarose gel 

electrophoresis as described below. 

2.1.21 Agarose Gel Electrophoresis 

1.2% of agarose was prepared in 100 ml of 1xTAE buffer and melted by heating in 

a microwave for 2 minutes, followed by gentle mixing until completely dissolved. 

2 µL of ethidium bromide (10 mg/mL) was added to 100 mL of cooled agarose 

solution, mixed and slowly poured in an appropriate tank. Required combs were 

placed into the gel and any air bubbles were removed. Gel was left to set for 30-60 

minutes. 1x TAE buffer (running buffer) was added to an appropriate gel running 

tank. The gel was then placed in the tank and the comb removed. PCR products 

were mixed with 6 x gel loading buffer and loaded on to the gel alongside with 

DNA ladder. Electrophoresis was preformed at 90V in the TAE running buffer until 

bromophenol blue (from the loading buffer) has run 3/4 the length of the gel. After 

that point gel (preferably within its holder) was carefully transferred to visualise 

and photograph PCR products on the UV transluminator with photo camera build. 

2.1.22 In Vitro Cell Migration Assay 

The ChemoTx System is a disposable 96-well format migration assay. The system 

is set up with the appropriate agonists in the lower wells, over which a 5µm pore 

size filter is placed, through which the cell migrate. This filter is designed to mirror 

the 96 well plate structure beneath. Surrounding each well on the filter is a 

hydrophobic material that focuses the cell suspension directly over the ligand 

below, eliminating the need for the upper chambers. Following the incubation time, 

the migrated cells were collect and counted. 

2.1.23 Chemotaxis 

Chemotaxis assays were performed in 96-well chemotaxis chambers with 

polycarbonate membranes (5µm pore size). The lower chambers were filled with 

29µl of chemokine diluted in RPMI-1640, 0.1% BSA and carefully overlaid with the 

polycarbonate membrane. Cells were washed twice in RPMI-1640 and re-
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suspended in RPMI-1640, 0.1% BSA at a concentration of 3.2x106 cells/ml. 25µl of 

the cell suspension was loaded on top of the filter. 

Migration was performed at 37oC, 5% CO2 for 180 minutes, after which non-

migrated cell on the top of the filter were rinsed off with PBS. Following 

centrifugation (350g, 10 minutes) the filter was removed and the migrated cells 

were re-suspended in 300µl PBS, 0.1% BSA. Analysis of migration was performed 

using FACS Canto (BD Biosciences, UK). Samples were performed in triplicate 

with each being analysed for 60 seconds. Data is expressed as chemotactic index. 

2.1.24 Chemotactic Index 

The chemotatic index was calculated as follows: Number of cells migrated/basal 

levels of migration. 

2.1.25 Actin Polymerisation 

1 x 106 of primary mast cells or THP-1 cells per point were washed twice in RPMI 

1640 and incubated at 37oC in serum free RMPI 1640 for 60 minutes. When the 

effects of inhibitors were examined, these, or controls, were added 30 min prior to 

stimulation with chemokine. Cells were or were not stimulated with specific 

chemokine diluted in RPMI 0.1% BSA at a specific time period. After stimulation 

cells were fixed in 4% paraformaldehyde (w/v) for 10 minutes at room temperature 

before centrifuged at 10,000 rpm for 10 seconds before resuspended in 0.2% 

Triton X-100 (v/v) at room temperature for 5 min to permeabilise the samples. 

After washing three times with PBS, the samples were blocked in 1% FBS in PBS 

for 30 min at 37°C and then incubated with TRITC-conjugated phallodin (0.1 µg/ml 

for 1 h at room temperature. Cells were washed twice in PBS 5% FBS and re-

suspended in 300µl for analysis. Flow cytometric analysis using a Becton 

Dickinson FACS Canto flow cytometer and analysed using FACSDiva software. 
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2.1.26 Ca2+ via Flex Station 

Mast cells were loaded with Fluo-4 AM and [Ca2+]i was measured as described 

previously in conjunction with a fluorometric imaging plate reader (FLIPR; 

Molecular Devices Ltd., Wokingham, UK) (Cronshaw et al., 2006). Mature mast 

cells or THP-1 cells were washed twice and resuspended at 10 x 106 cells/ml in 5 

ml loading buffer (RPMI without phenol Red indicator supplemented with 10% 

FCS, 2.5mM probenecid and 20 mM HEPES). This cell suspension was loaded 

with 5 mM Fluo-4 AM in the dark for 1 hour at 37oC. Cells were washed twice in 

assay buffer (Hanks’ balanced saline solution/20 mM HEPES without phenol Red 

indicator) and resuspended at 7 x 106/ml. Cell suspension (50 µl; 350,000 cells) 

was added to each well of a black-walled, clear-bottomed plate (Corning Costar 

UK Ltd., High Wycombe). After loading, the plate was centrifuged at 1200 

revolutions per minute for 5 min at room temperature and then incubated at 37oC 

for 1 hour. The cell plate was then loaded into the FLIPR instrument. The cells 

were then excited at 488 nm using the FLIPR laser, and the fluorescence emission 

wavelength was at 525nm. Fluorescence readings were taken at 1-s intervals for 

times indicate. Agonist (50 ml) was added (dispense speed, 30 ml/s) after 1 min 

using the FLIPR. Raw fluorescence data were exported for each well and 

tabulated versus time within Microsoft Excel (Microsoft Corp). 

Figure 2.1 – FlexStation 3 Microplate used to measure automated calcium 

responses. Picture taken from Bucher Biotech. 
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2.2Materials 

2.2.1 Antibodies and Secondary Detection Reagents 

Antibody Species Conjugate Supplier Country 

Anti-phospho-S6 

ribosomal protein 

Rabbit N/A Cell Signalling 

Technologies 

Hitchin, UK 

S6 Ribosomal Protein 

(5G10) 

Rabbit N/A Cell Signalling 

Technologies 

Hitchin, UK 

Anti-phospho-Akt Rabbit N/A Cell Signalling 

Technologies 

Hitchin, UK 

Pan Akt Goat N/A Santa Cruz Wembley, UK 

Anti-ERK1/2(p42/p44) Rabbit N/A Cell Signalling 

Technologies 

Hitchin, UK 

Anti-Human Mast Cell 

Tryptase 

Mouse N/A Dako Cambridge, UK 

mouse IgG1 Mouse N/A Dako Cambridge, UK 

Chimeric human Fc 

anti-4-hydroxy-3-

nitrophenylacetyl 

(NP)-specific IgE 

N/A AbD Serotec Oxford, UK 

Anti-human CCR1 Mouse PE R and D Abingdon, UK 

Anti-human CCR2 Mouse PE R and D Abingdon, UK 

Anti-human CCR3 Mouse PE R and D Abingdon, UK 

Anti-human CCR5 Mouse PE R and D Abingdon, UK 

Anti-human CCR7 Mouse FITC R and D Abingdon, UK 

Anti-human CXCR3 Mouse PE R and D Abingdon, UK 

Anti-human CXCR3 Mouse N/A R and D Abingdon, UK 

Anti-human CXCR4 Mouse FITC R and D Abingdon, UK 

Anti-human CXCR6 Mouse PE R and D Abingdon, UK 

Anti-human CXCR7 Mouse PE R and D Abingdon, UK 

Anti-human CXCR7 Mouse N/A R and D Abingdon, UK 

Mouse IgG1 isotype Mouse PE R and D Abingdon, UK 
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control 

Mouse IgG2a isotype 

control 

Mouse PE R and D Abingdon, UK 

Mouse IgG2a isotype 

control 

Mouse FITC R and D Abingdon, UK 

Anti-human CD133 Mouse PE Miltenyi Biotec Surrey, UK 

Anti-human CD13 Mouse PE Beckon 

Dickenson 

Oxford, UK 

Anti-human CD54 Mouse PE Beckon 

Dickenson 

Oxford, UK 

Anti-human CD117 Mouse PE Beckon 

Dickenson 

Oxford, UK 

Anti-human CD63 Mouse PE Beckon 

Dickenson 

Oxford, UK 

Anti-human CD203c Mouse PE Miltenyi Biotec Watford, UK 
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2.2.2 Cell Culture 

Item/Reagent Supplier Country 

10ml plastic pipettes Greiner Bio-one Stonehouse, UK 

25ml plastic pipettes Greiner Bio-one Stonehouse, UK 

50ml tubes Greiner Bio-one Stonehouse, UK 

Pasteur Pipette Fisher Scientific Loughborough, UK 

200mM L-Glutamine Invitrogen Paisley, UK 

6 well tissue culture plates Nunc(Fisher Scientific) Loughborough, UK 

96 microwell plates Nunc(Fisher Scientific) Loughborough, UK 

Cryotubes Nunc(Fisher Scientific) Loughborough, UK 

RPMI-1640 Gibco Paisley, UK 

Foetal Bovine Serum Gibco Paisley, UK 

IMDM Gibco Paisley, UK 

Penicillan/Streptomycin Gibco Paisley, UK 

Sterile Phosphate buffered 

saline(PBS) 

Gibco Paisley, UK 

Stem-Pro Invitrogen Paisley, UK 

IL-3 Novartis Institutes for 

Biomedical Research 

(NIBR) Vienna 

Vienna, Austria 

IL-6 Novartis Institutes for 

Biomedical Research 

(NIBR) Vienna 

Vienna, Austria 

SCF Novartis Institutes for 

Biomedical Research 

(NIBR) Vienna 

Vienna, Austria 

IL-4 Novartis Institutes for 

Biomedical Research 

(NIBR) Vienna 

Vienna, Austria 

Cord Blood CD133+ Cells Stem Cell Technologies Grenoble, France 

THP-1 Sigma-Aldrich Poole, UK 

HMC-1 Mayo Foundation for Rochester, USA 
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Medical Education and 

Research. 

175cm2 tissue culture flasks Nunc(Fisher Scientific) Loughborough, UK 

75cm2 tissue culture flasks Nunc(Fisher Scientific) Loughborough, UK 

RPMI-1640 w/o Phenol Red Gibco Paisley, UK 

Polysine Slides VWR International West Sussex, UK 

SuperPap Pen Zymed Laboratories 

(Invitrogen) 

Paisley, UK 

May-Grunwald’s eosine-

methylene blue solution 

modified 

Merck (VWR 

International) 

West Sussex, UK 

Giemsa’s azur eosin 

methylene blue solution 

Merck(VWR 

International) 

West Sussex, UK 

96-well chemotaxis 

chambers 

Neuro Probe (Receptor 

Technologies) 

Leamington Spa, UK 

2.2.3 Chemokines


Chemokine Supplier Country 

Human recombinant CXCL4 Peprotech London, UK 

Human recombinant CXCL9 Peprotech London, UK 

Human recombinant 

CXCL10 

Peprotech London, UK 

Human recombinant 

CXCL11 

Peprotech London, UK 

Human recombinant 

CXCL12 

Peprotech London, UK 

Human recombinant 

CXCL16 

Peprotech London, UK 

Human recombinant CCL2 Peprotech London, UK 

Human recombinant CCL5 Peprotech London, UK 

Human recombinant CCL11 Peprotech London, UK 

Human recombinant CCL22 Peprotech London, UK 
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2.2.4 Chemicals 

Chemical Supplier Country 

Bromophenol Blue BDH-International Leicestershire, UK 

Bovine Serum Albumin Sigma-Aldrich Poole, UK 

Dimethyl sulfoxide Sigma-Aldrich Poole, UK 

EGTA Sigma-Aldrich Poole, UK 

Ethanol Fisher Scientific Loughborough, UK 

Methanol Fisher Scientific Loughborough, UK 

Glycerol Sigma-Aldrich Poole, UK 

Tris-HCL Sigma-Aldrich Poole, UK 

Trizol Reagent Invitrogen Paisley, UK 

Tween-20 Sigma-Aldrich Poole, UK 

Triton-X Sigma-Aldrich Poole, UK 

Phallodin Sigma-Aldrich Poole, UK 

Sodium Azide Sigma-Aldrich Poole, UK 

Paraformaldehyde Sigma-Aldrich Poole, UK 

4-Nitrophenyl n-acetly-B-D-

Glucosaminide 

Sigma-Aldrich Poole, UK 

NP-BSA Biosearch Technologies Novato, CA, USA 

Fluo-4-AM Invitrogen Paisley, UK 

Sodium Hydroxide Sigma-Aldrich Poole, UK 

Sodium dodecyl sulphate Sigma-Aldrich Poole, UK 

Precision protein all blue 

standards 

Biorad Hemel Hempsted, UK 

ECL Advance western 

blotting detection reagent 

GE Healthcare Slough, UK 

X-Ray Film Fuji Bedfordshire, UK 

Pertussis toxin Calbiochem Leicestershire, UK 

ZSTK-474 Axxora Platform Nottingham, UK 

T487 UCB Cambridge, UK 

NBI-74330 UCB Cambridge, UK 
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N-oxide metabolite of NBI-

74330 

UCB Cambridge, UK 

AS605240 Echelon Bioscience 

(Tebu-bio) 

Le Perray en Yvelines 

Cedex, France 

IC87114 Symansis 

(Caltagmedsystems) 

Buckingham, UK 

PIK75 Axon Medchem Groningen, The 

Netherlands 

TGX-221 Cayman Chemical Michigan, USA 

TGX-121 Novartis Institutes for 

Biomedical Research 

(NIBR) Vienna 

Vienna, Austria 

U73122 Calbiochem Leicestershire, UK 

U73343 Calbiochem Leicestershire, UK 

Y27632 Sigma-Aldrich Poole, UK 

2-APB Cayman Chemical Michigan, USA 

2.2.5 PCR Sequences


Oligo Sequence 5’ to 3’ 

CXCR3A/Alt CCAAGTGCTAAATGACGCCG 

CXCR3B GACAGTTATAGGAGGAGCTGCTC 

CXCR7 GCCGTCATTTGATTGCCCGC 

Β-Actin ATGGATGATGATATCGCCGCG 

CXCR3A/Alt GCAAGAGCAGCATCCACATC 

CXCR3B CAGTGTCAGCACCAGCAGC 

CXCR7 CGAAGAGGTTGATGGAGAAG 

Β-Actin CTAGAAGCATTTGCGGTGGAC 
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3	 Characterisation of Mast Cell Models 

3.1	 HMC1 as a Model for Investigation of CXCR3 Signalling and 

Function on Mast Cells 

3.1.1 Introduction to Study 

HMC-1 is a unique human mast cell line which can serve as a resource for mast cell 

proteins including granule proteins and mast cell genetic material (DNA and RNA). 

The HMC-1 line was derived from a patient with mast cell leukaemia and it is believed 

it is comprised of immature mast cells. These cells may respond in different ways 

compared to mature mast cells. HMC-1 cells lack a functional IgE receptor and have 

two point mutations in the intracellular juxtamemberane domain (Val560Gly) and in 

the catalytic domain (Asp816Val) of the c-Kit receptor (Furitsu et al., 1993). 

3.1.2 CXCR3 Expression and Signalling on HMC1 Cell Line 

To investigate if the HMC-1 cell line was an appropriate model to study responses 

induced by CXCR3 agonists, mRNA and cell surface expression of CXCR3 and its 

variants were examined. Figure 3.1a reveals that only 2 variants of CXCR3 are 

present within the HMC-1 cells. CXCR3A and CXCR3B mRNA were detectable but 

there was no expression of CXCR3-alt (Figure 3.1a). At least one of these variants is 

translated to a protein level. Use of a non-isoform discriminating antibody revealed 

expression of CXCR3 at a surface level (Figure 3.1b) 

Biochemical signals robustly activated by chemokine agonists include 

phosphorylation and activation of Akt (a downstream readout for PI3K activation) and 

the ribosomal protein S6. HMC-1 cells are a poor model for investigating 

phosphorylation events due to very high basal levels of phosphorylation (Figure 3.1c). 

Using CXCL9 as a representative agonist of CXCR3 basal levels of phosphorylation, 

it was not possible to determine elevation of phosphorylation of these proteins above 

basal levels by CXCL9 (Figure 3.1c). 
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Figure 3.1: Expression and signalling of CXCR3 on HMC1. a) mRNA expression 
of CXCR3 variants in HMC-1 cells. mRNA (5µg) from 5 x 106 HMC-1 was extracted 
and reverse transcribed in the presence (+) or absence (–) of reverse transcriptase to 
ensure that samples were not contaminated with genomic DNA. mRNA levels of 
CXCR3 variants and CXCR7 were examined using specific primers as described in 
materials and methods. Arrows point to bands of mRNA expression for each CXCR3 
variant or CXCR7 respectively. b) Cell surface expression of CXCR3 (orange) on 
HMC-1 cells. Briefly 1x106 cells were washed in PBS and incubated with the 
respective PE conjugated antibody at 4oC, cells were washed in PBS and analysed 
on a FACS Calibre using Cell Quest software. Unstained (purple) and non-specific 
isotype stained (green) populations were used as negative controls. c) CXCL9 
signalling in HMC-1 cells. Aliquots of HMC-1 (1×106 cells/ml) were left untreated or 
stimulated at 37 °C with CXCL9 for 1-5 min and lysed by the addition of 1× sample 
buffer. Cell lysates were resolved by SDS-PAGE, transferred to nitrocellulose 
membranes and immunoblotted with a phospho-specific Akt or S6 Ab and proteins 
were visualised with ECL. The blots were stripped and reprobed with anti-S6 Ab to 
verify equal loading and efficiency of protein transfer (lower panel). The data are 
representative of three other experiments. 
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3.1.3 CXCR3 Agonists Fail to Induce Migration of HMC1 Cells


To further evaluate if HMC-1 could act as an appropriate mast cell model I examined 

their function by investigating if CXCR3 agonists could induce migration of HMC-1 

cells. Figure 3.2 demonstrates that all four CXCR3 agonists failed to induce migration 

of HMC-1 cells. It was possible to induce migration of HMC-1 cells to the mast cell 

growth factor SCF. The migration observed was induced at 10nM, peaked at 100nM 

and started to decrease at 300nM (Figure 3.2a). The THP-1 cell line was utilised 

through out this thesis to act as a comparison of CXCR3 responses during evaluation 

of the mast cell model. In THP-1 cells, all CXCR3 agonists were capable of inducing 

chemotactic responses (Figure 3.2b). It was notable that CCL2 was a more potent 

chemotactic agent than the CXCR3 agonists in inducing migration of THP-1 cells. 

Figure 3.2b reveals that the peak response was 7.8 on the chemotactic index, clearly 

demonstrating a stronger response compared to the greatest response induced by 

CXCR3 agonists. 

100




Chapter 3 – Characterisation of Mast Cell Models


a) 

b) 

Figure 3.2: Migration of HMC1 or THP1 to different stimuli. a) HMC-1 cells or b) 
THP-1 cells (8x104/25µl) were placed on the upper membrane of a 96-well 
chemotaxis plate above lower chambers containing varying concentrations of CXCR3 
agonists or SCF. Chemotaxis across a 5µm pore size membrane was determined 
after 3 hour incubation at 37oC in 5% CO2 as described in material and methods. 
Data shown is derived from a single experiment performed in triplicate; data is 
representative of three experiments. 
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3.2 Generation of Primary Mast Cell Model 

3.2.1	 Generation and Characterisation of Human Cord Blood Derived 

Mast Cells 

CD133+ progenitor cells were differentiated into human mature mast cells by growing 

CD133+ progenitor cells in serum-free Stempro medium in the presence of SCF and 

IL-6 for 8 weeks. In addition IL-3 was added for the first 2 weeks to induce 

proliferation and IL-4 and serum were added to this cocktail after the initial 8-week 

period had passed. This method of initial serum-free conditions, followed by a 

subsequent serum supplementation has previously been reported to support the 

formation of functional human mast cells (Dahl et al., 2002). Figure 3.3 demonstrates 

the expression of surface markers that indicate the differentiation of CD133+ cells into 

mature mast cells. Precursors (0 – 2 wks) stained positive for the myeloid antigen 

CD13, the mast cell growth receptor CD117, CD133 (the progenitor marker used to 

isolate the cells) and IL-3R a growth marker for myeloid cells. Precursor cells 

however did not stain positive for the FcεRIa receptor commonly associated with 

mature mast cells. During differentiation and maturation a loss of CD133 and IL-3R 

expression is observed and accompanied by an upregulation of the FcεRIa. Mature 

mast cells (>9 wks) are observed to have total loss of CD133 and IL-3R expression, 

whereas the FcεRIa is highly expressed, which is a key characteristic of mature mast 

cells. 
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Figure 3.3: Expression markers on CD133+ progenitors through to mature mast 
cells. Representative surface expression profiles of CD13, CD117, CD133 CD123 
and FcεRIa on precursors (0-2 weeks), immature (~2-9 weeks) and mature (9 weeks 
+) cells. The respective immunoglobulin isotype controls are shown in blue. Briefly 
1x106 cells were washed in PBS and incubated with the respective PE conjugated 
antibody at 4oC, cells were washed in PBS and analysed on a FACS Calibre using 
Cell Quest software. 

Further to the expression of these cells surface markers the mature cells were 

observed to display typical phenotypic features of mature mast cells such as 

metachromasia and the abundant expression of granular mast cell tryptase (Figure 

3.4). Tryptase was detected in both immature and mature cells. However the mild 

staining observed in the precursor stage was thought to be due to non-specific 

binding of the substrate system. Staining was visually more intense in the mature 

cells compared to immature cells, with 90 % of the mature population staining positive 

for human mast cell tryptase (Figure 3.4). 
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Figure 3.4: Characteristic tryptase staining of CD133+ precursors. 
Representative images demonstrating characteristic tryptase staining throughout 
development of CD133+ progenitor cells into mature human mast cells. Briefly 1 x 105 

of primary mast cells were washed twice in RPMI and centrifuged onto poly-L-lysine-
coated glass slides in a cytospin3 cytocentrifuge at 250g. The resulting smears were 
air-dried and fixed by submersion in an acetone-methanol solution for 1 min. The 
smears were then carefully washed in TBS buffer (pH 7.6) and 100µl of anti-human 
mast cell tryptase mAb was added to the appropriate smear and incubated at 4oC 
overnight. To visualise the presence of tryptase within human mast cells, prepared 
smears were stained using the alkaline phosphatase/anti-alkaline phosphatase 
(APAAP) method according to the manufacturer's instructions. Magnification is at x20 

A further defining characteristic of a mature mast cell is the ability to release a vast 

range of pre-formed and newly formed mediators. Using a light microscopy and a 

May-Grunwald/Giemsa stain (Figure 3.5). I was able to demonstrate that CD133+ 

cells have a large nucleus but little sign of any preformed granules. Immature cells 

have faint granule staining which is in contrast to the heave staining of the mature 

mast cells stain, displaying the presence of a wide range of mediators stored within 

the cytoplasm of these mast cells. 
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Figure 3.5: Characteristic MayGrunwald/Giemsa staining of CD133+ 
precursors. Representative images demonstrating, characteristic May 
Grunwald/Giemsa staining throughout the development of CD133+ progenitor cells 
into mature human mast cells. Briefly 1 x 105 of primary mast cells were washed twice 
and centrifuged onto poly-L-lysine-coated glass slides at 250g. The resulting smears 
were then air-dried and fixed by submersion in an acetone: methanol solution (1:1) for 
1 minute. Smears were then air-dried before submersion in May-Grunwald’s eosine-
methylene blue solution modified for 1 minute. Smears were rinsed with dH2O and air-
dried. Smears were then submersed in Giemsa’s azur eosin methylene blue solution 
for 1 minute. After the incubation period, the excess stain was washed off using dH2O 
and again left to air dry. Magnification is 40x. 
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Finally, in the characterisation of mast cells, ultra-thin slices were taken at different 

stages of differentiation. These slices were analysed by TEM and revealed that 

precursors have a large nucleus and little else present in their cytoplasm (Figure 3.6). 

The immature mast cells were observed to have clear compartments where the 

granules of the mast cells are stored. Whereas the mature mast cells have developed 

larger compartments, which are filled with dark stained matter indicative of the 

presence of granules. 

Figure 3.6: TEM pictures of mast cells at different stages of differentiation and 
maturation. Examples of mast cells from different stages of development were 
prepared for imaging under TEM as described in Materials and Methods. Each stage 
has two different mast cells pictured under TEM. Measurement bar is 1µm. 
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3.3 Characterisation of Primary Mast Cell Model 

3.3.1 Introduction to Study 

Prior to investigating CXCR3 expression and function of this primary mast cell model 

it was important to validate this human cord-blood derived primary mast cell model. 

The cross-linking of the IgE-loaded high-affinity IgE receptor by multivalent antigens 

has been demonstrated to result in mast cell activation and subsequent release of 

multiple pro-inflammatory mediators. Other membrane activation events can either 

prime mast cells for subsequent degranulation or can act in synergy with FcεRI signal 

transduction. 

An allergen is able to bind to antigen-binding sites, situated on the variable regions of 

the IgE molecules on the mast cell surface allowing the clustering of the intracellular 

domains of the cell-bound Fc receptors, which are associated with the cross-linked 

IgE molecules. This induces a complex sequence of reactions inside the mast cell 

that lead to its activation. The dose-response curve for FcεRI-mediated degranulation 

is bell-shaped regardless of whether the IgE or the Ag concentration is varied. 

Moreover, certain early signalling events continue to increase whereas degranulation 

drops under sub-optimal conditions (Gimborn et al., 2005). 
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3.3.2 Antigen Induces Degranulation in Dose Dependent Manner 

Treatment of mature mast cells with NP-BSA (0.1 – 1000 ng ml-1 , 2 hrs, 37oC?) 

resulted in a dose-dependent increase in beta-hexaminidase release (Figure 3.7) This 

was observed to reach maximal release using 100 ng ml-1 NP-BSA with 

concentrations greater than this resulting in lesser beta-hexaminidase release. The 

curve generated from this dose response treatment started to exhibit bell-shaped 

characteristics similar to results previously discovered in other studies. 

Figure 3.7: IgE/Ag dose response. Mature mast cells (1x106/ml) were treated 
overnight with chimeric human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE 
(1 µg/ml). Cells were stimulated with NP-BSA for 2 hours. Samples were centrifuged 
for 10mins and supernatants transferred to new wells before addition of β-
hexosaminidase substrate for 1.5 hours to measure β-hexosaminidase release. Data 
are expressed as % the total β-hexosaminidase release. Results are expressed as 
mean ± SEM of 4 experiments performed in triplicate. 
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3.3.3	 Investigating the Mechanism of IgE CrossLinking Induced 

Degranulation. 

PI3K has recently been described as a key-signalling molecule in the degranulation 

mechanism in mast cells (Wymann et al., 2003). Therefore it was important in this 

study to evaluate the role of the PI3K family in mast cell degranulation induced by 

cross-linking of FcεRI. 

FcεRI initiate their signalling processes via activation of tyrosine kinases, either 

intrinsically or by recruitment of cytosolic kinases (Gilfillan and Tkaczyk, 2006; 

Roskoski, 2005). They have been demonstrated to utilise the class 1A PI3Ks to 

mediate subsequent downstream signalling events. GPCRs, such as those for 

adenosine, prostaglandin (PG)E2, sphingosine 1 phosphate (S1P) and complement 

component C3a, mediate their responses via class 1B PI3K. (Wymann et al., 2003). 

Utilising the general isoform non-selective inhibitor of the PI3K family, ZSTK474, 

revealed that at least one isoform of PI3K is involved in the degranulation of mast 

cells by cross linking of IgE by treatment with 100 ng/ml of antigen (Figure 3.8). Pre-

treatment with concentrations < 1 µM demonstrated little inhibition of degranulation 

whilst concentrations > 1 µM, demonstrated clear inhibition of degranulation induced 

by treatment with antigen. 100% inhibition was only achieved at 10 µM with an IC50 of 

1.15 µM. This is above the IC50 of the compound to be specific for PI3K indicating the 

involvement of other signalling molecules in the mechanism of degranulation. 

ZSTK474 IC50 for PI3K is between 10 and 50 nM. 
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Figure 3.8 – Crosslinking of IgE/Ag induced degranulation is PI3K dependent. 
Mature mast cells (1x106/ml) were treated overnight with chimeric human Fc anti-4-
hydroxy-3-nitrophenylacetyl (NP)-specific IgE (1µg/ml). Cells were treated with 
ZSTK474 at concentrations indicated for 30mins before stimulation with 100 ng/ml 
NP-BSA for 2 hours. Samples were centrifuged for 10mins and supernatants 
transferred to new wells before addition of β-hexosaminidase substrate for 1.5 hours 
to measure β-hexosaminidase release. Data are expressed as % inhibition compared 
to the control IgE/Ag response. Results are expressed as mean ± SEM of 4 
experiments performed in triplicate. 
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3.3.4	 The Role of Specific PI3K isoforms in Degranulation by Cross

Linking of IgE. 

PI3K can be considered a central regulator of critical downstream signalling 

processes for receptor-mediated mast cell responses. Evidence from murine studies 

appears to indicate that in vitro studies both p110δ and p110γ are required for FcεR1-

driven mast cell degranulation, whereas in vivo, p110δ (but not p110γ) is 

indispensable for allergic responsiveness (Ali et al., 2004; Ali et al., 2008; Laffargue et 

al., 2002). The role of PI3K in human mast cells has yet to be fully elicited. This study 

aims to highlight potential key PI3K isoforms in FcεRI induced degranulation in the 

human mast cell model. 

Isoform specific PI3K inhibitors were used to investigate the role of individual PI3K 

catalytic isoforms in IgE/Ag-induced degranulation. A recent comprehensive analysis 

of inhibitor selectivity revealed that the most selective compounds include the 

quinazolinone purine inhibitors of PI3K such as IC87114 which targets PI3Kδ , the 

chromones that preferentially target PI3Kβ/δ (TGX-121), the 

pyridinylfuranopyrrimidine that preferentially targets PI3Kα (PIK75) and the 

thiazolidinediones that preferentially target PI3Kγ (AS605240) (Knight et al., 2006; 

Smith et al., 2007). At least one compound from each of these chemotypes exhibits 

10-100-fold selectivity between their primary target(s) versus other class I PI3Ks 

(Table 3.1). 
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Class I PI3K isoforms 
IC50(�M) 

α β γ δ 

IC50 F.S IC50 F.S IC50 F.S IC50 F.S 
PIK75 0.0078 1 0.343 44 n/a n/a 0.907 116 

TGX-221 5 714 0.007 1 3.5 500 0.1 14 

IC87114 > 200 >1539 16 123 61 469 0.13 1 

TGX-121 >5 >100 0.05 1 >50 >1000 0.05 1 

AS605240 0.06 7.5 0.27 34 0.008 1 0.3 38 

ZSTK474 n/a n/a 0.012 2 0.053 9 0.006 1 

Table 3.1: IC50 values (µM) for isoformdiscriminating PI3K inhibitors. All values 
are based on in vitro assays of inhibitor activity against purified protein activity. F.S 
represents the fold selectively of each inhibitor. (Knight et al., 2006; Smith et al., 
2007). 

PIK75 which displays around 116-fold selectivity against PI3Kα versus the δ isoform 

respectively had no inhibitory effect on mast cell degranulation at concentrations 

known to be specific for p110α (Figure 3.9a). It is notable however that inhibition of 

degranulation by PIK75 starts to occur at concentrations predicated to impinge on 

other PI3K isoforms. In rank order of potency target, p110δ is the next isoform 

inhibited, indicating a potential role for p110δ in IgE/Ag induced degranulation. 

Use of TGX-221, which has approximately 10-fold selectivity for p110β versus p110δ 

(Knight et al., 2006), had no effect on degranulation responses to IgE/Ag, even at 

concentrations predicted to impinge on p110δ activity (Figure 3.9b). It is notable, 

however, that inhibition of degranulation by TGX-221 starts to occur at concentrations 

predicated to impinge on other PI3K isoforms. In rank of order-of-potency target, 

p110δ is the next isoform inhibited, again highlighted as a potential role for p110δ. 

Interestingly, the p110δ-discriminating inhibitor IC87114 inhibits IgE/Ag-induced 

degranulation with an IC50 of 10-20 µM (Figure 3.9d) markedly higher than its 

reported IC50 for p110δ obtained against purified enzyme (Table 3.1). This is 
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surprising as there is usually good concordance between IC50’s obtained for IC87114 

against p110δ using purified enzyme (Crabbe et al., 2007; Knight et al., 2006; Smith 

et al., 2007), versus IC50’s derived from cell based assays. Given the reported IC50 for 

IC87114 versus p110β is 16 µM, it was important to assess the role of p110β in 

IgE/Ag agonist-stimulated mast cell degranulation. This was further investigated using 

2 inhibitors known to target p110β. Firstly, TGX-121 displays equipotency against 

p110β and p110δ with approximately 100-fold selectivity against these isoforms 

versus p110α and p110γ. TGX-121 inhibited IgE/Ag degranulation, (Figure 3.8c). 

The IC50 for TGX-121 is comparable to that predicted for inhibition of p110β and 

p110δ (Table 3.1). 

AS605240 displays around 10-fold selectivity against PI3Kγ versus α isoforms but 

approximately 35-fold selectivity vs. δ/β. AS605240 inhibited IgE/Ag agonist induced 

β-hexosaminidase release with an IC50 comparable to reported its IC50 for p110γ 

(Figure 3.9e). Possible concerns about off-target effects of AS606240 on p110α at 

concentrations >60nM seem unfounded, as the p110α-targeting inhibitor PIK75 had 

no effect on degranulation until ranges which are known to impinge on other PI3K 

isoforms (Figure 3.9e). 
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Figure 3.9: PI3K Isoform Specific IgE/Ag induced degranulation. Mature mast 
cells (1x106/ml) were treated overnight with chimeric human Fc anti-4-hydroxy-3-
nitrophenylacetyl (NP)-specific IgE (1µg/ml). Cells were treated with specific PI3K 
inhibitor at concentration indicated for 30mins before stimulation with 100 ng/ml NP-
BSA for 2 hours. Samples were centrifuged for 10mins and supernatants transferred 
to new wells before addition of β-hexosaminidase substrate for 1.5 hours to measure 
β-hexosaminidase release. Data are expressed as % inhibition compared to the 
control IgE/Ag response. Results are expressed as mean ± SEM of 4 experiments 
performed in triplicate. 
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3.3.5 The Role of Rho Kinase in IgE/Antigen Induced Degranulation 

Signalling by the FcεRI receptor manages the cytoskeletal re-arrangements which are 

associated with degranulation of mature mast cells. There are two important features 

of the microtubles in the degranulation of mast cells. Firstly, tubulin polymerisation-

inhibiting agents have been shown to inhibit the crosslinking of FcεRI (Martin-

Verdeaux et al., 2003; Nielsen and Johansen, 1986; Tasaka et al., 1991). Secondly, 

the mobilisation of granules by FcεRI induced activation has been demonstrated in 

the mast cell line RBL to be dependent on the microtubles (Smith et al., 2003), 

highlighting a crucial role of cytoskeletal re-arrangements in mast cell degranulation. 

One such pathway which has been implicated as key to the cytoskeletal 

rearragnement is the Rho kinase pathway (Nishida et al., 2005). Rho-kinase is an 

effector molecule of RhoA, a monomeric GTP-binding protein causing Ca2+ 

sensitization via inactivation of myosin phosphatase. The major physiological 

functions of Rho-kinase include contraction, migration and proliferation in cells. These 

actions are thought to be related to the pathophysiological features of asthma, i.e., 

airflow limitation, airway hyper-responsiveness, β-adrenergic desensitization, 

eosinophil recruitment and airway remodeling. (Kume, 2008). This study aimed to 

investigate the role of Rho kinase in degranulation induced by cross-linking of the 

FcεRI by IgE/Antigen complexes. 

Figure 3.10 indicates that Rho kinases play a key role in the degranulation of human 

mature mast cells induced by IgE/Antigen complexes. Pre-treatment of mast cells 

with the inhibitor Rho kinase Y27632 was observed to inhibited degranulation by 90 

%. This suggests that Rho kinase plays a major role in mast cell degranulation; 

however other signalling pathways could be involved. 
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Figure 3.10: Involvement of Rho kinase in Antigen induced degranulation. 
Mature mast cells (1x106/ml) were treated overnight with chimeric human Fc anti-4-
hydroxy-3-nitrophenylacetyl (NP)-specific IgE (1µg/ml). Cells were treated with 
Y27632 at concentration indicated for 30mins before stimulation with 100ng/ml NP-
BSA for 2 hours. Samples were centrifuged for 10mins and supernatants transferred 
to new wells before addition of β-hexosaminidase substrate for 1.5 hours to measure 
β-hexosaminidase release. Data are expressed as % inhibition compared to the 
control IgE/Ag response. Results are expressed as mean ± SEM of 4 experiments 
performed in triplicate. 
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3.3.6	 The Role of PLC in Mast Cell Induced Degranulation of Mast Cell by 

Antigen 

Mast cell degranulation following FcεRI-aggregation is generally believed to be 

dependent on PI3K mediated PLCγ activation. Mast cells are one of the few cell types 

that express both PLCγ1 and PLCγ2 isoforms (Barker et al., 1998). In primary 

cultures of human mast cells, FcεRI aggregation induced a rapid translocation and 

phosphorylation of PLCγ1, and subsequent IP3 production that preceded PI3K related 

signals (Tkaczyk et al., 2006). Therefore with different subsets of mast cells 

portraying different characteristics it was of interest to investigate if PLC is as crucial 

a signalling molecule in cross-linking of FcεRI to induce degranulation in human cord 

blood derived mast cells. 

Figure 3.11 demonstrates that PLC plays a key role in degranulation of cord blood 

derived mast cells by aggregation of FcεRI. Pre-treatment of cells with the 

aminosteroid U73122 which is reported to act as a specific inhibitor of PLC was 

observed to inhibit mast cell degranulation whereas use of the inactive analogue 

U73343 in the same concentration range failed to inhibit degranulation. 
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Figure 3.11: Role of PLC in IgE/Ag induced degranulation. Mature mast cells 
(1x106/ml) were treated overnight with chimeric human Fc anti-4-hydroxy-3-
nitrophenylacetyl (NP)-specific IgE (1µg/ml). Cells were treated with specific PLC 
inhibitor at concentration indicated for 30mins before stimulation with 100ng/ml NP-
BSA for 2 hours. Samples were centrifuged for 10mins and supernatants transferred 
to new wells before addition of β-hexosaminidase substrate for 1.5 hours to measure 
β-hexosaminidase release. Data are expressed as % inhibition compared to the 
control IgE/Ag response. Results are expressed as mean ± SEM of 4 experiments 
performed in triplicate. 
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3.3.7 IP3 in Mast Cell Induced Degranulation 

The activation of mast cells by aggregation of the FcεRI increases levels of IP3 due to 

the activation of phospholipases. This in turn increases the calcium flux which triggers 

the movement of intracellular secretary molecules towards the plasma membrane and 

subsequent fusion of the granular membrane with the plasma membrane. This is a 

key process in the degranulation process. 

Figure 3.12 reveals that IP3 is critical to the degranulation of mast cells by FcεRI. Pre-

treatment of mature mast cells with the IP3 inhibitor 2-AB strongly inhibits mast cell 

degranulation induced by aggregation of FcεRI. 

Figure 3.12: Generation of IP3 is critical for FcεRI aggregation induced 
degranulation. Mature mast cells (1x106/ml) were treated overnight with chimeric 
human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE (1µg/ml). Cells were 
treated with specific IP3 inhibitor, 2-AB at concentration indicated for 30mins before 
stimulation with 100ng/ml NP-BSA for 2 hours. Samples were centrifuged for 10mins 
and supernatants transferred to new wells before addition of β-hexosaminidase 
substrate for 1.5 hours to measure β-hexosaminidase release. Data are expressed as 
% inhibition compared to the control IgE/Ag response. Results are expressed as 
mean ± SEM of 4 experiments performed in triplicate. 
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3.3.8 Calcium Influx is Key to Mast Cell Degranulation 

Evidence exists for the importance of calcium dependent and independent pathways 

both being critical for mast cell degranulation by FcεRI. It was therefore essential to 

investigate if the role of calcium in the extracellular medium and its importance in 

FcεRI aggregation induced degranulation. Figure 3.13 reveals that the absence of 

calcium in the extracellular medium strongly restricts the degranulatory response 

induced by aggregation of FcεRI. Aggregation of FcεRI in medium without Ca2+ only 

induced minimal release of β-hexaminidase above basal levels. In completely calcium 

free conditions, calcium free media was pre-treated with 1mM EGTA to sequester any 

remaining calcium ions, only trace amount of β-hexaminidase release were 

detectable above basal levels. These findings clearly indicate the importance of 

calcium in the extracellular media to induce degranulation. 
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Figure 3.13: Varying Ca2+ conditions in FcεRI aggregation induced 
degranulation. Mature mast cells (1x106/ml) were treated overnight with chimeric 
human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE (1µg/ml). 1x106 

human mature cord blood-derived mast cells in appropriate buffer, (RPMI,RPMI 
without Ca2+ or RPMI without Ca2+and 1mM EGTA) and before stimulation with 
100ng/ml NP-BSA for 2 hours. Samples were centrifuged for 10mins and 
supernatants transferred to new wells before addition of β-hexosaminidase substrate 
for 1.5 hours to measure β-hexosaminidase release. Data is expressed as % of total 
β-hexosaminidase content. Results are expressed as mean ± SEM of 4 experiments 
performed in triplicate. 
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3.3.9 Summary 

�	 FcεRI aggregation by antigen induces degranulation of mature human mast 

cells derived from cord blood in a dose dependent manner. 

�	 FcεRI aggregation induced degranulation of mast cells is dependent on the γ, 

β and δ isoforms of PI3K. 

�	 PLC is a key signalling molecule needed to be activated in order to induce 

mast cell degranulation via FcεRI aggregation. 

�	 This activation results in the formation of IP3 which is highlighted as another 

key signalling molecule required in mast cell degranulation 

�	 Calcium mobilisation is crucial to mast cell activation. 
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3.4 Discussion 

The aim of this study was to successfully evaluate a mast cell model to investigate 

CXCR3 expression and its function. Two mast cell models were evaluated: HMC-1 

and primary human mast cell derived from human CD133 precursor cell isolated from 

cord blood. Investigations began by characterising the HMC-1 cell line as an 

appropriate mast cell model. 

3.4.1	 HMC1 Cell Line makes a Poor Mast Cell Model for Investigating 

CXCR3 Function. 

The HMC-1 cell line was derived from a patient with mast cell leukaemia which is 

comprised mostly of immature mast cells. Far from being ideal as a model for 

investigating mast cell function the cells may respond very differently to mature mast 

cells. HMC-1 cells lack a functional IgE receptor and have mutations in the coding 

sequence of the c-Kit proto oncogene (Furitsu et al., 1993). The benefits of utilising a 

cell line are in the numbers that can be generated and maintenance of a cell line is far 

less than the cost of the primary mast cell line utilised in this study. Under normal 

circumstances, SCF binds to c-Kit, inducing homodimerization of the receptor that 

leads to intrinsic kinase activity and results in autophosphorylation of tyrosine 

residues (Blechman et al., 1993). c-Kit then becomes the docking site for various Src 

homology domain 2 (SH2) domain signalling molecules. The mutations in the coding 

sequence produce high spontaneous tyrosine phosphorylation of c-Kit resulting in 

phosphorylation of down stream signalling proteins (Ma et al., 1999). Although 

CXCR3 was expressed at an mRNA and surface level, the mutation in the c-Kit 

results in the high basal activation of many down stream signalling proteins exposed 

the HMC-1 model as an inappropriate mast cell model to study CXCR3 signalling 

events. 

Despite the mutated c-Kit, in other studies and in this study, SCF through the binding 

of c-Kit is able to induce a chemotactic response in HMC-1 cells. SCF falls into the 

growth factor category with receptors endowed with tyrosine kinase activity that also 

stimulate cell migration. Stimulation of c-Kit with SCF induces dimerisation and 
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activation of its intrinsic tyrosine kinase activity, leading to auto-phosphorylation and 

to the phosphorylation of a number of substrates (Blume-Jensen et al., 1991; Herbst 

et al., 1991; Lev et al., 1991). In this pathway is protein kinase C, a serine/threonine 

kinase that is involved in the control of cell proliferation, differentiation, and motility 

(Nishizuka, 1988). It was discovered, however, that CXCR3 agonists failed to induce 

the migration of HMC-1 cell line. This inability to induce the migration of HMC-1 has 

also been noted in response to other chemokine agonists (Nilsson et al., 1994). 

3.4.2 Chemokine Receptors and Mast Cell Migration 

Chemokine receptors whose expression is inducible rather than constitutive, such as 

CCR1, CCR2 (receptor for monocyte chemoattractant protein 1 [MCP-1], also 

designated CCL2), CCR5, and CXCR3 agonists are known to play a prevalent role in 

the control of inflammation (Amoura et al., 2003). Airway inflammation is 

characterised by selective recruitment of mononuclear and granulocytic cells. This 

recruitment is mediated by the action of chemotactic cytokines, such as chemokines. 

A number of chemokines and their receptors have been identified and proposed as 

potential therapeutic targets to help resolve allergic airway inflammation. Chemokines 

that have been associated with allergic inflammatory diseases such as asthma and 

allergic rhinitis are CXCR3 and CCR2 agonists. 

It is widely recognised that members of the CC subfamily of the chemokine family 

exert strong chemoattractant activities on monocytes, T cells and natural killer cells 

(Rollins, 1996). This study clearly demonstrated the functional responses of CCL2 in 

the monocyte cell line, THP-1 with functional response seen in both Ca2+ mobilisation 

and chemotatic assay. 

In addition to promoting the transmigration of circulating monocytes into tissues, 

CCL2 has been shown to exert various effect on monocytes, including superoxide 

anion induction, chemotaxis, and calcium flux (Rollins, 1996). CCL2 plays a critical 

role in the regulation of human monocyte function and has largely been associated 

with modulating monocyte migration in response to inflammation (Rollins et al., 1991). 
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CCL2 also induced characteristic monocyte responses, such as Ca2+ mobilisation and 

respiratory burst (Rollins, 1996)., thus making this specific chemokine an appropriate 

positive control in this study. 

3.4.3 Development of Mast Cell Culture Systems 

Since the HMC-1 cell line model proved to be an inappropriate mast cell model to 

study CXCR3 signalling and function, the focus of this study moved to evaluate a 

primary mast cell model. The utilisation of these primary mast cell models has 

allowed the discovery of how mast cells responded to a wide range of different 

physiological and pathological mediators. These models have also allowed the 

understanding the role of mast cells in inflammatory responses. This study utilised the 

cord blood derived model to generate large volumes of mast cells to allow the study 

of the function of CXCR3 on mast cells. The first challenge of this study was to 

generate large enough volumes of mature mast cells to determine if this cord blood 

derived model was appropriate. The results in this study have shown that it was 

possible to generate pure populations of mature mast cells. However the drawbacks 

to this model were the cost of maintaining the cells throughout the maturation and 

differentiation. Also lack of cord blood availability in the local area resulted in this 

study buying CD133+ precursors which further added to the cost of this cell model. As 

a result of the cost of this model slight limitations were placed on the amount of 

experiments that were able to be performed. 

3.4.4 Evaluation of Cord Blood Derived Mast Cell Model 

This investigation began by characterising the optimal concentration of antigen that 

induces the maximal degranulatory response from cord blood derived mast cells. IgE 

antibodies bind to the antigens of allergens. These allergen-bound IgE molecules 

interact with Fcε receptors on the surface of mast cells. Activation of mast cells 

following engagement of FcεRI results in degranulation of mast cells in a dose 

dependent manner. 
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The process of degranulation via aggregation of FcεRI involves many different 

signalling molecules. Many of the signalling networks identified as being involved in 

mast cell degranulation have been dervied from the analysis of mast cells from gene-

targeted mice. Murine models have been instrumental in defining the basic 

mechanisms of anti-tumor immunity. Most of these mechanisms have since been 

shown to operate in humans as well. In common with other animal species murine 

models also have limitations. Mice do not spontaneously develop asthma and no 

model mimics the entire asthma phenotype making it critical in diseases linked to 

mast cells to also study human models (Kips et al., 2003). 

3.4.5 Role of PI3K Isoforms in Mast Cell Degranulation 

Mast cells express the class 1A PI3K, p85α, p85β and p50β regulatory subunit 

isoforms (Lu-Kuo et al., 2000; Tkaczyk et al., 2003). In addition to all three classes 1A 

PI3K catalytic subunit isoforms, p110α, p110β, and p110δ and the class 1B p110γ 

catalytic subunit (Ali et al., 2004; Okkenhaug et al., 2007). As c-Kit and the FcεRI 

initiate their signalling processes via activation of tyrosine kinases, either intrinsically 

or by recruitment of cytosolic kinases (Gilfillan and Tkaczyk, 2006; Roskoski, 2005). 

They use class 1A PI3Ks to mediate subsequent downstream signalling events. It is 

understood that GPCRs, such as adenosine, PGE2, S1P and complement 

component C3a, mediate their responses via class 1B PI3K (Gilfillan and Tkaczyk, 

2006). 

The activation of PI3K in mast cells by FcεRI aggregation induces the recruitment of 

the AKT to the plasma membrane resulting in phosphorylation of AKT by the 

serine/theronine kinase PDK-1 (Vanhaesebroeck and Alessi, 2000). Although 

activation of Akt seems to be crucial for mast cell function, the exact role of Akt in 

mast cells is not yet clear. Evidence suggests that PDK1-AKT may contribute to the 

PI3K-dependent signalling events regulating mast cell growth, homeostasis and 

cytokine production. This has been highlighted by the inhibition of PDK1 activation, 

resulting in the apoptosis of SCF-maintained mast cells (Sawamukai et al., 2007). 
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It is has been proved from gene targeting approaches in mice that gene knock-out of 

individual PI3K isoforms can alter the expression of other non-targeted isoforms and 

this is a likely complication of siRNA-based strategies. Knock-out mice lacking PI3K 

protein expression exhibit a different phenotype from knock-in mice displaying PI3K 

mutants that lack kinase activity. Such studies, in comparison of pharmacological and 

gene targeting of PI3K isoforms have revealed that PI3K isoforms have scaffolding 

roles in addition to their catalytic roles (Shaywitz et al., 2008; Vanhaesebroeck et al., 

2004). Give that this thesis has used a range of novel inhibitors with differing 

selectivity profiles, the pharmacological analysis is actually more accurate and 

reliable that the siRNA strategy. 

3.4.6	 Role of Signalling PLC in Mast cell Degranulation by Aggregation 

of FcεRI 

Upon cross-linking of FcεRI with IgE/cognate antigen complexes, the aggregation of 

multiple FcεRI complexes results in transphosphorylation of the ITAM regions of the β 

and γ-chains by Lyn, a src family protein tyrosine kinase (PTK) that is constitutively 

associated with the β-chain (Jouvin et al., 1994; Pribluda et al., 1994). After activation 

of mast cells by aggregation of FcεRI, this event recruits Lyn kinase to the 

phosphorylated β–chains and the phosphorylation of the ITAM regions present on the 

γ-chain resulting in a docking site for the spleen tyrosine kinase (SYK) (Kimura et al., 

1996; Shiue et al., 1995). The activation of the SYK has been shown to be an 

indispensable initial signal for mast cell activation by FcεRI aggregation. Studies in 

SYK-deficient mast cell lines and primary mast cells taken from SYK-deficient fetal 

liver have lacked all the features of mast cell activation, including degranulation and 

leukotriene and cytokine release (Costello et al., 1996; Zhang et al., 1996). 

Lyn is a kinase upstream of SYK activation. Lyn was the major src PTK that 

phosphorylates SYK and the FcεRI β and γ-chains. One particular study has 

demonstrated that in passive systemic anaphylaxis (PSA) in Lyn-deficient mice, PSA 

is severely diminished (Hibbs et al., 1995). This initial study has been contradicted by 

the findings in vitro that where mast cells were deficient of Lyn that degranulation was 

127




Chapter 3 – Characterisation of Mast Cell Models 

unaffected or potentially enhanced in these cells (Hernandez-Hansen et al., 2004; 

Odom et al., 2004). The discrepancy in these studies was due to a difference in the 

age of mice used; leading to the conclusion that Lyn plays a key role in mast cells of 

the young but loses its importance as the mice age. 

Activation of SYK results in the phosphorylation of several adaptor molecules. One of 

these is PLCγ, shown in this thesis and in other studies to be crucial for 

degranulation. The downstream phosphorylation of PLCγ and Vav was completely 

absent in Syk-deficient mast cells. Mast cells have been shown to express both 

isoforms of PLCγ (Wilde and Watson, 2001). The generation of IP3 by activation of 

PLC leads to mobilisation of intracellular Ca2+ , resulting in a sustained Ca2+ flux 

response that is maintained by an influx of extracellular Ca2+ (Hoth and Penner, 

1992). This study has demonstrated the key role of IP3 in mast cell degranulation 

further unraveling the signalling profile of mast cell degranulation in cord blood 

derived mast cells. Activation of mast cells by aggregation of FcεRI it is known to, in 

conjunction with DAG, the increase in intracellular calcium levels causes downstream 

activation of PKC and Ras guanyl nucleotide- releasing protein (RasGRP), known to 

contribute to the release of cytokines from mast cells (Dower et al., 2000; Ebinu et al., 

2000), further enhancing the important of PLC activation in mast cells demonstrated 

in this study. 

Further proof PLC is a key player in mast cell degranulation was the findings that both 

PLCγ1 and PLCγ2 isoforms are phosphorylated in FcεRI aggregation. This is, 

however, drastically reduced in SLP-76 and LAT-deficient mast cells. The use of 

PLCγ1 deficient mast cells has not proved a successful model to date to investigate 

PLC’s role in the mast cell due to the early embryonic lethality of PLCγ1-deficient 

mice, (Ji et al., 1997) mast cells from PLCγ2-deficient mice display reduced Ca2+ flux 

and degranulation(Wen et al., 2002). 
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3.4.7 Reliance of Calcium Influx for Mast Cell Degranulation 

This study highlighted the importance of calcium influx to the degranulatory response. 

Removal of calcium from the extracellular medium completely blocked the 

degranulation response. STIM1 has been demonstrated to be key in promoting the 

Ca2+ influx that is essential for FcεRI-mediated mast cell activation and anaphylaxis 

(Baba et al., 2008). Mast cells lacking STIM1 also had much less degranulation and 

cytokine production after FcεRI I stimulation (Baba et al., 2008). Another key 

component that has been identified is the role CRAC channels in mast cell 

degranulation. Mast cells derived from CRACM1-deficient mice showed grossly 

defective degranulation and cytokine secretion, and the allergic reactions elicited in 

vivo were inhibited in CRACM1-deficient mice (Vig et al., 2008). These studies fit in 

with the data in this thesis, as activation of PLC drive STIM1 expression from the ER 

resulting in the opening on the CRAC allowing influx of Ca2+ driving the degranulation 

response forward. 

3.4.8	 Rho Kinase is Crucial to Mast Cell Degranulation by FcεRI 

Aggregation 

This thesis has shown the dependence on activation of Rho kinase in the induced 

degranulation of mature cord blood derived mast cells by FcεRI aggregation. It has 

also indicated a key role for the influx of calcium in mast cells. It has been 

demonstrated however that in studies of exocytosis of mast cells that members of the 

SNARE family, including SNAP-23, synaptotagmin, syntaxin (t-SNARE), and 

molecules of the VAMPs family (v-SNARE) regulate granule-to-plasma or granule-to-

granule membrane fusion in response to elevated cytosolic calcium concentrations 

(Castle et al., 2002). 

It has also been highlighted that calcium independent pathways are just as crucial to 

the degranulatory process. (Nishida et al., 2005) demonstrating a key involvement of 

the Fyn/Gab2/RhoA signalling and are required for granule translocation to the 

129




Chapter 3 – Characterisation of Mast Cell Models 

plasma membrane. This study concluded that FcεRI stimulation induced the formation 

of microtubules and that this was independent of calcium; Fyn/Gab2/RhoA signalling 

was not only involved in microtubule formation but was also required for 

degranulation and the translocation of granules to the plasma membrane. 

The presence of a calcium independent pathway has also been noted in studies with 

Fyn-deficient bone marrow derived mast cells in which degranulation after FcεRI 

aggregation was impaired, despite the presence of a functional calcium flux 

(Parravicini et al., 2002). It is believed that the requirement of 2 pathways, one 

dependent, the other independent of calcium, is required to mobilise the translocation 

of granules to the plasma membrane (calcium dependent pathway), where the 

calcium independent pathway is required for the fusions of the granules with the 

plasma membrane (Nishida et al., 2005). This study and others highlights the 

importance of Rho kinase in mast cell degranulation. 
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Chapter 4 – Role of CXCR3 in Cord Blood Derived Mast Cells. 

4.1 CXCR3 Function in Human Cord Blood Derived Mast Cells 

4.1.1 Introduction to the Study 

The findings so far in this study have demonstrated that primary human mast 

cells derived from cord blood create a suitable model to study CXCR3 

responses in mast cells. It is already established that a range of mediators 

other than IgE cross-linking can activate mast cells (Kuehn and Gilfillan, 2007; 

Nishida et al., 2005; Tkaczyk et al., 2002), however the role of chemokines in 

mast cell activation has not yet been widely studied. Evidence has 

demonstrated that certain chemokines are capable of inducing augmentation 

of antigen-induced degranulation, for example CCL3 and CCL5 are capable of 

augmenting antigen-induced degranulation in a non-additive manner 

(Laffargue et al., 2002). However it has yet to be demonstrated that 

chemokines are capable of mediating granule release from mast cells via 

degranulation.Therefore it was of interest to discover the expression profile of 

chemokine receptors on the mast cell model utilised in this study and potential 

functions of chemokine receptors on mast cells. 

4.1.2	 Chemokine Expression Profile on Mature Human Cord 

Blood Derived Mast Cells 

There is considerable heterogeneity in the chemokine receptor expression 

profile of mast cells according to species, how they are derived (cord-blood 

versus bone marrow) and their final anatomical location. It was therefore 

important to establish a comprehensive chemokine expression profile for the 

mature human cord blood derived mast cells. 

CCR2 and CCR3 were found to be the most highly expressed chemokine 

receptors present on mature cord blood derived mast cells. CCR1, CXCR3 

and CXCR6 were detected in much lower levels to those found previously 

with CCR2 and CCR3. CCR5, CXCR4 and CXCR7 were present in very low 

levels whereas CCR7 was not detectable at surface levels on mature cord 

blood derived mast cells (Figure 4.1). 
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The aim of this thesis was to investigate the role of CXCR3 agonists in 

degranulation and biochemical signalling responses in mature (approximately 

over 8 week old) human cord blood derived mast cells. In a physiological 

setting CXCR3 agonists have been implicated in a range of inflammatory 

diseases. It is possible therefore that CXCR3 plays a key role in amplification 

of mast cell responses in inflammatory diseases. Of interest was to 

investigate if the inflammatory CXCR3 chemokines were also capable of 

inducing this augmentation of IgE/Ag induced degranulation. 

Figure 4.1 revealed that low levels of CXCR3 were expressed on the surface 

of mature mast cells but with currently 3 known variants of CXCR3 in 

existence it was imperative to try and decipher which variants were expressed 

on the primary mast cell model used in this study. 

Figure 4.1: Chemokine receptor expression profile on mature mast cells. 
Mature mast cells (1 x 106) were stained (40 min, 4 oC) with a specific mouse 
PE or FITC-conjugated anti-chemokine mAb or with appropriately isotype 
matched PE or FITC-conjugated mouse IgG control at the same concentration 
Chemokine receptor expression was determined by flow cytometry as 
described in Materials and Methods. Data is presented as percentage of 
positive staining above isotype control from three different donors. Error bars 
are ± S.E.M 
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4.1.3	 Expression of CXCR3 Variants and CXCR7 on CD133+ 

during Differentiation and Maturation 

Analysis by RT-PCR of CXCR3A, CXCR3B and CXCR3-alt expression during 

differentiation/ maturation of CD133+ cells revealed that mRNA of all CXCR3 

variants was detectable at every stage of differentiation (Fig 4.2). Analysis of 

surface protein expression of CXCR3 revealed low expression in all stages of 

differentiation and maturation of CD133+ cells. Due to the inability of 

commercially available antibodies to CXCR3 to reliably distinguish between 

the different forms of CXCR3, it is impossible to determine which variants are 

present at the surface. The THP-1 cell line was utilised as a comparison of 

CXCR3 variant expression (Figure 4.2). Analysis by RT-PCR of CXCR7 

revealed only progenitor cells possess mRNA for CXCR7. Equal loading of 

mRNA was confirmed by the analysis of the “house-keeping” gene β-actin. 
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Figure 4.2: Expression of CXCR3 variants and CXCR7 at the mRNA in 
different stages of mast cell development. mRNA (5µg) from 5 x 106 

human mast cells or THP-1 was extracted and reverse transcribed in the 
presence (+) or the absence (–) of reverse transcriptase to ensure that 
samples were not contaminated with genomic DNA. mRNA of CXCR3 
variants and CXCR7 was examined using specific primers as described in 
materials and methods. Arrows indicate mRNA expression for each CXCR3 
variant or CXCR7 respectively. Each channel represents a different donor at 
different stages of mast cell maturation/development. Figure below each 
channel represents surface expression at time of extraction as measured 
using FACS. m ; mature, i ; immature, p ; precursor. 

All variants of CXCR3 were expressed at the mRNA level but only low levels 

of protein were detected on the surface. Further investigation throughout the 

differentiation/maturation of CD133+ cells found protein expression of CXCR3 

had robust intracellular expression, but much lower cell surface expression. 

However, intracellular levels of CXCR3 were markedly down-regulated during 
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the differentiation/maturation process, with little change in surface levels 

(Figure 4.3). 

Figure 4.3: Effect of differentiation/maturation on CXCR3 expression in 
mast cells. Mast cells (1 x 106) were sampled at weekly intervals over a 
specific time period of 9 weeks. Samples were stained with a specific mouse 
PE-conjugated anti-CXCR3 mAb or with isotype matched PE-conjugated 
mouse IgG control at the same concentration, and examined by flow 
cytometry as described in Materials and Methods. Data is presented as 
percentage of positive staining above isotype control from three different 
donors, mean ± S.E.M. 
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Further investigation of CXCR3 protein levels in different stages of CD133+ 

differentiation/maturation via western blotting reveal CXCR3 was clearly 

present at all stages of differentiation (Figure 4.4a). Surprisingly, the bands in 

more mature cells became more diffuse, suggesting the possibility of post-

translational modification of CXCR3 by for example glycosylation. 

Although current commercial antibodies do not reliably distinguish between 

variants of CXCR3B, one antibody claims to be specific to CXCR3B. Western 

blotting revealed that at any stage of differentiation, CD133+ cells do not 

express CXCR3B at the predicted molecular weight of ~44kDa (Figure 4.4b). 

In the precursor stage there was a clear band at ~65kDa suggesting that a 

modified form of CXCR3B may be present at this stage. The THP-1 cell line 

was used as a positive control and reveals two bands, one at the expected 

molecular weight for CXCR3B and a higher band that was also found in the 

precursors (Figure 4.4b). Probing for CXCR7 revealed no protein expression 

in either cell model (Figure 4.4c). The proposed molecular weight of CXCR7 is 

41kDa, however as this is only one experiment, further experiments are 

needed to prove that the lack off expression is not only due to non binding of 

the anti-CXCR7 antibody. 
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Figure 4.4: Expression of CXCR3 variants and CXCR7 via western blots. 
Mast cells or THP-1 (1×106 cells/ml) taken from different stages of 
maturation/development were lysed by the addition of 1× sample buffer. Cell 
lysates were resolved by SDS-PAGE, transferred to nitrocellulose 
membranes, and immunoblotted with antibodies specific for a) CXCR3, b) 
CXCR3-B and c) CXCR7. Proteins were visualised with ECL and blots were 
stripped and reprobed with anti-actin Ab to verify equal loading and efficiency 
of protein transfer (lower panel). Panels a and b are representative of three 
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other experiments, panal c is derived from a single experiment. W; no of 
weeks in culture. 

To further explore the possible expression of CXCR3B, we utilised the specific 

CXCR3B antibody to investigate surface expression of CXCR3B. There was 

no detectable surface expression of CXCR3B through any stage of 

differentiation/maturation. THP-1 cells utilised as a positive control only 

demonstrated moderate levels of CXCR3B on the surface (Figure 4.5). 

Figure 4.5: FACS expression of CXCR3B. Mast cells or THP-1 (1 x 106) 
were stained with a specific mouse anti-CXCR3B mAb or with isotype 
matched PE-conjugated mouse IgG control at the same concentration for 30 
mins. Excess primary antibody was washed off and incubated with an anti-
mouse PE-conjugated secondary antibody and examined by flow cytometry 
as described in Materials and Methods. Data is representative of FACS 
staining from 2 different donors at different stages of maturation. 
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4.1.4	 CXCR3 Agonists Induce Phosphorylation of the Protein Akt 

and ERK1/2 

A range of biochemical signals are robustly induced by chemokine agonists; 

including the activation of PI3K and MAPK pathways. Therefore biochemical 

studies focused on establishing whether CXCR3 agonists could activate either 

of these pathways in the mature mast cells. To establish whether PI3K was 

activated in response to CXCR3 receptor stimulation, the phosphorylation of 

Akt was monitored. Akt is a serine/threonine kinase, whose recruitment; 

phosphorylation and subsequent activation are entirely dependent upon the 

lipid products produce by induction of the PI3K pathway. For MAPK activity 

the phosphorylation of ERK1/2 was monitored as this has been observed to 

be the major pathway preferentially activated by chemokines. All the CXCR3 

agonists were observed to induce phosphorylation of Akt and ERK1/2 (Figure 

4.6). 

Figure 4.6: CXCR3 agonists induce phosphorylation of the protein Akt 
and ERK1/2. Mature mast cells (1×106 cells/ml) were left untreated or 
stimulated at 37 °C with CXCR3 agonist for indicated time period and lysed by 
the addition of 1× sample buffer. Cell lysates were resolved by SDS-PAGE, 
transferred to nitrocellulose membranes and immunoblotted with a phospho-
specific Erk or Akt Ab and proteins were visualised with ECL. The blots were 
stripped and reprobed with anti-Akt Ab to verify equal loading and efficiency of 
protein transfer (lower panel). The data is representative of three other 
experiments. 
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4.1.5	 CXCR3 Induced Partial Degranulation of Cord Blood 

Derived Mast Cells 

Before studying whether CXCR3 agonists were able to effect antigen induced 

mast cell degranulation, it was assessed whether treatment with CXCR3 

agonists alone were able to induce degranulation of mature mast cells. Mast 

cell degranulation was assessed by measurement of β-hexosaminidase 

release. At concentrations <10nM, CXCR3 agonists were unable to induce 

release β-hexosaminidase above basal levels. However, at concentrations 

>100nM each agonist elicited partial degranulation, which represented around 

40-45% of control ionomycin induced β-hexosaminidase release (Fig 4.7a). 

The peak response of degranulation mediated by all CXCR3 agonists was 

detected after 1 min post stimulation (Fig 4.7b). Interestingly, CXCL4 induced 

significant degranulation comparable to the classical CXCR3 agonists. 
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Figure 4.7: Effect of CXCL9, CXCL10, CXCL11 and CXCL4 on mast cell 
degranulation. Mature mast cells (1x106/ml) were treated overnight with 
chimeric human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE 
(1µg/ml). The cells were then treated with a) CXCL9, CXCL10, CXCL11 or 
CXCL4 at concentration indicated or 100ng/ml NP-BSA(IgE/Ag) for 1.5 hours 
or b) indicated time period at 100nM of agonist. Control in b) was treated for 
1.5 hours. Samples were centrifuged for 10 mins and supernatant transferred 
to a new wells before addition of β-hexosaminidase substrate for 1.5 hours to 
measure β-hexosaminidase release. Data are expressed as % total β-
hexosaminidase content. Results are expressed as mean ± SEM of 4 
experiments performed in triplicate. 
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The induction of partial degranulation in the absence of antigen by CXCR3 

agonists was a surprising finding. Therefore it was important to investigate the 

role of other chemokine receptors in this process. Using human cord blood 

derived mast cells as a model, it emerged that several chemokines operating 

through different chemokine receptors such as CCR3 and CCR2 can induce 

partial degranulation of mature mast cells in the absence of antigen (Fig 4.8). 

Figure 4.8: Several chemokines induce partial degranulation of human 
mast cells. Mature mast cells (1x106/ml) were treated overnight with chimeric 
human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE (1µg/ml). Cells 
were treated with specific chemokine at concentration of 100nM for 1.5hours. 
Samples were centrifuged for 10 mins and supernatants transferred to new 
wells before addition of β-hexosaminidase substrate for 1.5 hours to measure 
β-hexosaminidase release. Data are expressed as % total β-hexosaminidase 
content. Results are expressed as mean ± SEM of 4 experiments performed 
in triplicate. 
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4.1.6	 CXCR3 Induced Partial Degranulation of Human Mast Cells 

is PTX Sensitive 

Previous studies have found that CXCR3A and CXCR3-alt-mediated 

responses are PTX sensitive indicating that they couple to Gαi/o, whereas 

CXCR3B responses are PTX insensitive. It was interesting that in the 

presented thesis observed a biochemical and functional response from 

CXCL4, despite no detectable expression of CXCR3B - the only known 

chemokine receptor for CXCL4 to date. Pre-treatment of mature mast cells 

for 16 hours with 10ng/ml PTX inhibited the partial degranulation observed in 

response to CXCL9, CXCL10 and CXCL11 (Figure 4.9). This suggests that 

the responses are mediated by a Gαi/o-coupled form of CXCR3. However in 

direct conflict with the study by blah et al the partial degranulation induced by 

the CXCR3B agonist; CXCL4 was also inhibited by pre-treatment of cells with 

PTX (Figure 4.9). 

Figure 4.9: Effect of PTX treatment on CXCR3 agonist induced partial 
degranulation. Mature mast cells (1x106/ml) were treated overnight with 
chimeric human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE 
(1µg/ml). Cells were stimulated with 100nM of appropriate CXCR3 agonist for 
1 hour in presence or absence of PTX 10ng/ml pre-treatment for 16hrs. 
Samples were centrifuged for 10mins and supernatants transferred to new 
wells before addition of β-hexosaminidase substrate for 1.5 hours to measure 
β-hexosaminidase release. Data are expressed as % total β-hexosaminidase 
content. Results are expressed as mean ± SEM of 4 experiments performed 
in triplicate. 
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4.1.7	 CXCR3 Agonist Induced Degranulation is CXCR3 

Dependent. 

With the surprising finding that chemokines could induce partial degranulation 

of cord blood mature mast cells, it was important to verify that the partial 

degranulation induced by CXCL9 CXCL10, CXCL11 and CXCL4 was indeed 

mediated by CXCR3. It was possible that the response observed was due to 

potential contamination of the CXCR3 ligands with LPS, or that the ligands 

could be potentially mediating the effect via another chemokine receptor. 

Therefore it was important to clarify that CXCR3 was responsible for 

activating these responses. 

In recent years several classes of small-molecule compounds targeting 

CXCR3 have recently been described, including 4-N-aryl- [1,4] diazepane 

ureas (Cole et al., 2006), 1-aryl-3-piperidin- 4-yl-urea derivatives (Allen et al., 

2007), quinazolin-4-one, 3H-pyrido[2,3-d]pyrimidin-4-one derivatives (Heise et 

al., 2005; Storelli et al., 2005) (Johnson et al., 2007; Storelli et al., 2007), and 

quaternary ammonium anilide TAK-779 which also shares affinity for CCR5, 

CCR2b, (Gao et al., 2003). 

This study utilised three of these small non-peptide, non-competitive CXCR3 

antagonists namely, T487 (reported IC50 – 8nM), NBI-74330 (reported IC50 7– 

18 nM) and N-Oxide metabolite NBI-74330. Accordingly, both T487 (Fig 

4.10a) and NBI-74330 (Fig 4.10b) potently inhibited the degranulation induced 

by CXCR3 agonists. N-Oxide metabolite NBI-74330 was less potent than the 

other compounds but still demonstrated clear inhibition of CXCR3 induced 

degranulation (Figure 4.10c) In contrast, all three compounds were unable to 

inhibit partial degranulation that was induced by CCL2, a known agonist for 

CCR2 (Fig 4.10 a, b and c). 
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Figure 4.10: Effect of CXCR3 antagonist on CXCR3 and CCR2 induced 
partial degranulation. Mature mast cells (1x106/ml) were treated overnight 
with chimeric human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE 
(1µg/ml). Mast cells were treated with a selective CXCR3 antagonist at 
concentration indicated for 30 mins before stimulation with CXCR3 or CCR2 
agonist for 1 hour. Samples were centrifuged for 10 mins and supernatants 
transferred to new wells before addition of β-hexosaminidase substrate for 1.5 
hours to measure β-hexosaminidase release. Data are expressed as % 
inhibition of chemokine agonist response. Results are expressed as mean ± 
SEM of 4 experiments performed in triplicate. 
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4.1.8	 CXCR3 Induced Biochemical ignalling are CXCR3 

Dependent 

As demonstrated previously, CXCR3 agonists are able to induce robust 

biochemical signalling responses as demonstrated by the phosphorylation of 

ERK1/2 and Akt. To determine that these responses are mediated by 

activation of CXCR3; mast cells were pre-treated with 300 nM of either T487 

or NBI-74330 for 30 mins before stimulation with agonists. Both compounds 

were able to block phosphorylation of ERK1/2 and Akt induced by CXCL9, 

CXCL10, CXCL11 and CXCL4 (Fig 4.11). However Akt and ERK1/2 

phosphorylation induced by the CCR2 and CCR4 ligand CCL2 was unaffected 

by pre-treatment with either inhibitor. 

Figure 4.11: CXCR3 agonist dependent signalling. Mature mast cells 
(1×106 cells/ml) were treated with a selective CXCR3 antagonist at 
concentration indicated for 30 mins before stimulation with CXCR3 agonist for 
2 min and lysed by the addition of 1× sample buffer. Cell lysates were 
resolved by SDS-PAGE, transferred to nitrocellulose membranes, and 
immunoblotted with a phospho-specific Erk1/2 or Akt Ab and proteins were 
visualised with ECL. The blots were stripped and reprobed with anti-Akt Ab to 
verify equal loading and efficiency of protein transfer (lowest panel). The data 
is representative of three other experiments. 
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4.1.9 CCL2 Induced Partial Degranulation is CCR2 Dependent. 

CCL2 induced degranulation of mature cord blood derived mast cells was not 

inhibited by any of the CXCR3 antagonists utilised in this study. It was 

therefore important to investigate which chemokine receptor that this 

response was mediated by as CCL2 is a known agonist for CCR2. 

Accordingly this study utilised the CCR2 antagonist, RS102895 to investigate 

the CCL2 induced degranulation response. Figure 3.24 reveals that CCL2 

induced degranulation of mature cord blood mast cells was inhibited by pre-

treatment with RS102895. This compound was unable to inhibit CXCR3 

agonist induced degranulation indicating that the CXCR3 induced responses 

are not dependent on CCR2 (Figure 4.12). 

Figure 4.12: Effect of CCR2 antagonist on CXCR3 and CCR2 agonist 
induced partial degranulation. Mature mast cells (1x106/ml) were treated 
overnight with chimeric human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-
specific IgE (1µg/ml). Mast cells were treated with a selective CCR2 
antagonist, RO102895, at concentration indicated for 30 mins before 
stimulation with CXCR3 or CCR2 agonist for 1 hour. Samples were 
centrifuged for 10 mins and supernatant transferred to new well before 
addition of β-hexosaminidase substrate for 1.5 hours to measure β-
hexosaminidase release. Data is expressed as % inhibition compared to each 
agonist response. Results are expressed as mean ± SEM of 4 experiments 
performed in triplicate. 
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4.1.10 Other	 Chemokines unable to Elicit Degranulation 

Responses are still able to Stimulate Biochemical Responses. 

The induction of partial degranulation in the absence of antigen by a range of 

different chemokine receptor agonists was a surprising finding. Although not 

all the chemokine agonists utilised in this study were capable of inducing the 

partial degranulation. CXCL12 and CXCL16, agonists for CXCR4 and CXCR6 

respectively did not induce partial degranulation of human mature cord blood 

derived mast cells (Figure 4.8). This led to the question can chemokines 

induce biochemical signals such as PI3K and MAPK, without inducing partial 

degranulation. CXCL16 did not induce activation of Akt or ERK1/2 in mature 

mast cells. However CXCL12 did induce phosphorylation of ERK1/2 and Akt 

(Figure 4.13) indicating that activation of these pathways alone is not 

sufficient to induce degranulation. Therefore other signalling pathways would 

be hypothesised to be involved in chemokine receptor induced degranulation. 

Figure 4.13: CXCL12 elicits biochemical responses in mast cells. Mature 
mast cells (1×106 cells/ml) were left untreated or stimulated at 37 °C with 
CXCL12 or CXCL16 for indicated time period and lysed by the addition of 1× 
sample buffer. Cell lysates were resolved by SDS-PAGE, transferred to 
nitrocellulose membranes, and immunoblotted with a phospho-specific Erk or 
Akt Ab and proteins were visualised with ECL. The blots were stripped and 
reprobed with anti-Akt Ab to verify equal loading and efficiency of protein 
transfer (lower panel). The data is representative of three other experiments. 
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4.1.11 CXCR3	 Agonists Augment SubOptimal Ag Induced 
Degranulation 

The surprising finding that CXCR3 agonists induce partial degranulation of 

mature human cord blood derived mast cells made it crucial to re-visit the 

original hypothesis and idea behind this study that CXCR3 agonists could 

induce augmentation of sub-optimal Ag induced degranulation. 

Figure 4.14: CXCR3 augmentation of suboptimal IgE/Ag. Mature mast 
cells (1x106/ml) were treated overnight with chimeric human Fc anti-4-
hydroxy-3-nitrophenylacetyl (NP)-specific IgE (1µg/ml). Mature mast cells 
were treated overnight with chimeric human Fc anti-4-hydroxy-3-
nitrophenylacetyl (NP)-specific IgE (1µg/ml). Cells were stimulated with 
10ng/ml Ag for 1 min before stimulation with CXCR3 or CCR2 agonist for 1 
hour. Samples were centrifuged for 10mins and supernatants transferred to 
new wells before addition of β-hexosaminidase substrate for 1.5 hours to 
measure β-hexosaminidase release. Data are expressed as % total β-
hexosaminidase release. Results are expressed as mean ± SEM of 4 
experiments performed in triplicate. 
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Figure 4.14 revealed that all CXCR3 agonists are capable of augmenting sub-

optimal degranulation induced by sub-optimal concentrations of antigen (as 

determined in Figure 3.7). Sub-optimal concentrations of Ag or treatment with 

CXCR3 agonists alone induced partial degranulation; this ranged from 25-

35% of total β-hexosaminidase release (Figure 4.14). This could imply that 

the augmentation observed is more than a purely additive effect of the two 

individual stimulations. 

The augmentation of sub-optimal Ag induced degranulation by CXCR3 

agonists was CXCR3 dependent. Pre-treatment of mature human cord blood 

derived mast cells with either T487 or NBI-74330 inhibited the potentiation in 

degranulation seen with CXCR3 ligand treatment (Figure 4.15 a and b). The 

CXCR3 antagonists were unable to fully inhibit the degranulation responses 

indicating that these antagonists are unable to inhibit degranulation induced 

by sub-optimal concentrations of Ag (Figure 4.15 a and b). The respective 

IC50s for each antagonist to each CXCR3 agonist are shown in figure 4.15c. 
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Figure 4.15: CXCR3 augmentation of suboptimal IgE/Ag is CXCR3 
dependent. Mature mast cells (1x106/ml) were treated overnight with chimeric 
human Fc anti-4-hydroxy-3-nitrophenylacetyl (NP)-specific IgE (1µg/ml). Cells 
were treated with a selective CXCR3 antagonist at concentrations indicated 
for 30 mins before stimulation with 10ng/ml Ag for 1 min followed by 
stimulation with a CXCR3 or CCR2 agonist for 1 hour. Samples were 
centrifuged for 10mins and supernatants transferred to new wells before 
addition of β-hexosaminidase substrate for 1.5 hours to measure β-
hexosaminidase release. Data are expressed as % of the total β-
hexosaminidase release. Results are expressed as mean ± SEM of 4 
experiments performed in triplicate. 
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4.1.12 Upregulation	 of Mast Cell Markers Stored within the 

Granules 

Granule translocation to the plasma membrane is a key process for mast cells 

to degranulate. Two such markers that are utilised to investigate activation of 

myeloid linage cells are CD63 and CD203c; which are both upregulated in 

response to allergen challenge. CD63 is a 53-kDa glycoprotein present on the 

lysosome membrane of various cells. It has been reported to be able to 

translocate to the plasma membrane after activation in a wide variety of cell 

types (Jaiswal et al., 2002) and plays an important role in intracellular 

trafficking, recycling of plasma membrane components and integrin-

dependent post-adhesion functions. It has been previously demonstrated to 

be expressed at a high density on activated basophil membrane (Metzelaar et 

al., 1991). Furthermore in the mast cell RBL model, CD63 has been shown to 

colocalise with SNARE proteins syntaxin 3 and VAMP7, which are involved in 

fusion of secretary granules with plasma membranes (Puri et al., 2003). 

CD203c expression among hematopoietic cells is restricted to basophils, mast 

cells and their precursors and has been described as specific for this lineage 

(Bühring et al., 1999). Due to its restricted expression pattern, CD203c is 

used as a specific marker to monitor the allergen-induced activation of mast 

cells. 

Previously reported in this study was the induction of partial degranulation by 

CXCR3 agonists. By inducing degranulation it was possible that the fusing of 

the membrane and the granules could lead to an upregulation of the markers 

CD63 and CD203c. Figure 4.16 demonstrates that both CD63 and CD203c 

are up-regulated after activation of mature mast cells derived from cord blood 

in response to CXCR3 ligands. The number of cells expressing positive 

staining for each of these molecules after stimulation by CXCR3 agonists was 

approximately 50% of the levels induced by treatment with the calcium 

ionophores; ionomycin. This finding is consistent with previous data in this 

study; demonstrating that CXCR3 induced degranulation is only half the level 

observed with ionomycin treatment. 
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a) 

b) 

CD63 

CD203c 

Figure 4.16: Expression of CD63 and CD203c after CXCR3 activation
Mature mast cells (1x106/ml) were treated with CXCR3 specific agonists 
(100nM) or ionomycin (1µM) for 1.5 hours. Samples were centrifuged for 10 
mins and supernatant removed and remaining cells were collected. Mature 
mast cells (1 x 106) were stained with a specific mouse-conjugated anti-CD63 
(a) or CD203c (b) mAb or with appropriately isotype matched PE or FITC-
conjugated mouse IgG control at the same concentration. Antibodies were 
incubated for 40 mins at 4oC and staining examined by flow cytometry as 
described in Materials and Methods. Data is presented as percentage of 
positive staining above isotype control from three different donors. N = 3, 
mean ± S.E.M 
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4.1.13 Reorganisation	 of the cell membrane is critical for 

degranulation 

Several studies have suggested the involvement of cytoskeletal 

rearrangements in mast cell degranulation. Actin polymerisation-inhibiting 

agents increase both the rate and extent of FcεRI-induced degranulation 

(Frigeri and Apgar, 1999; Oka et al., 2002) and biochemical studies indicated 

that FcεRI stimulation causes a rapid increase in the level of F-actin in RBL 

mast cells (Frigeri and Apgar, 1999; Pfeiffer et al., 1985). Furthermore, 

activation-induced rearrangement of microtubules is observed in rat peritoneal 

mast cells while tubulin polymerisation inhibiting agents block degranulation 

(Martin-Verdeaux et al., 2003; Nielsen and Johansen, 1986; Tasaka et al., 

1991). The precise roles of the cytoskeletal rearrangements in the mast cell 

degranulation process have not been established. 

With the finding in this study that CXCR3 agonists can induce the partial 

degranulation of mature cord blood derived mast cells, it was therefore likely 

CXCR3 agonists were inducing the re-organisation of the cytoskeleton in 

order to mediate the release of granules from mature mast cells. The three 

“classical” CXCR3 ligands previously have been shown to induce actin 

reorganization in intestinal myofibroblasts (Kouroumalis et al., 2005). 

Figure 4.17 demonstrates that all four CXCR3 agonists can induce an 

increase in phalloidin binding indicative of actin polymerisation. Maximal actin 

polymerisation was observed for each agonist around 1-2 mins after 

stimulation with the levels of F-actin present decreasing back to basal after a 

10 min stimulation (Fig 4.17). 
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Figure 4.17: CXCR3 agonists induce actin polymerisation in mature cord 
blood derived mast cells. Human mature cord blood derived mast cells 
(1x106) were stimulated with CXCR3 agonists (100 nM) for the time periods 
indicated. Cells were fixed in 4% paraformaldehyde and permeabilised using 
1% TRITON-X. Cells were stained with 0.3µM phallodin for 40mins at 4oC. 
Samples were washed and re-suspended and analysed using a FACs canto. 
Data is presented as percentage of positive staining above negative control 
from three different donors. N = 3, mean ± S.E.M. 
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4.1.14 Polymerisation	 of Actin by CXCR3 Agonists is CXCR3 

Dependent 

The reorganisation of actin by CXCR3 agonists further supported the 

evidence that CXCR3 agonists are capable of releasing mediators from 

mature mast cells. Figure 4.18 demonstrates that pre-treatment of human 

cord blood derived mast cells with the CXCR3 antagonists; T487 or NBI-

74330 blocked CXCR3 but not CCR2 agonist induced actin reorganisation. 

This indicates that the CXCR3 agonists are only utilising a form of CXCR3 

able to induce the reorganisation of the cellular membrane. 
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Figure 4.18: CXCR3 agonists reorganise actin filaments in mature cord 
blood derived mast cells in a CXCR3 dependent manner. Human mature 
cord blood derived mast cells (1x106) were incubated in the presence or 
absence of either T487 (300 nM, 30mins) or NBI-74330 (300 nM, 30mins) 
before stimulation with CXCR3 agonists (100nM, 2 min) Cells were fixed in 
4% paraformaldehyde and permeabilised using 1% TRITONX. Cells were 
stained with 0.3µM phallodin for 40mins at 4oC. Samples were washed and 
re-suspended and analysed using a FACs canto. Data is presented as 
percentage of positive staining above negative control ± S.E.M. taken from 3 
different donors. 
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4.1.15 Involvement of Rho kinase in Actin Reorganisation


Localised disassembly of cortical F-actin has long been considered necessary 

for facilitation of exocytosis. Exposure of permeabilised mast cells to 

calcium/ATP induces cortical F-actin disassembly (calmodulin-dependent) and 

secretion (calmodulin-independent) (Sullivan et al., 1999). The signals that 

generate the actin filament reorganization are often mediated by several 

theronine kinases such as Rho kinase (ROCK). Pre-treatment of human mast 

cells with the ROCK inhibitor Y27632 completely inhibited the partial 

degranulatory response induced by all of the CXCR3 agonists (Figure 4.19). 

Figure 4.19 – Inhibitory effect of Rho kinase inhibitor on CXCR3 induced 
partial degranulation. Human mast cells (1x106) were pre-treated with 
Y27632 (30 min) at the concentrations indicated, before stimulation with 
CXCR3 agonists (100nM, 1hr). Samples were centrifuged for 10mins and 
supernatant transferred to new wells before addition of β-hexosaminidase 
substrate for 1.5 hours to measure β-hexosaminidase release. Data are 
expressed as % inhibition of agonist response. Results are expressed as 
mean ± SEM of 4 experiments performed in triplicate. 
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There is an overlap in cellular functions regulated by Rac and class I PI3K. 

CXCR3 can activate Rac via PIP3-dependent Rac guanine nucleotide 

exchange factors (GEFS) (Wang et al., 2002). With the discovery that both 

Rho kinase and PI3K were involved in the mechanism behind CXCR3 

induced partial degranulation, it was important to determine if both kinases 

were activated at different times. The reorganisation of actin occurs in the 

latter stages of the degranulation process in order to mediate the release of 

the mast cell mediators. Figure 4.20 reveals that ROCK but not PI3K is 

involved in the polymerisation of actin filaments suggesting that PI3K is 

involved in a much earlier stage of the degranulation mechanism, possibly in 

the mobilisation, but not the release of mast cell mediators. 
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Figure 4.20 – Reorganisation of actin filaments in mature cord blood 
derived mast cells is RHO kinase but not PI3K dependent. Human 
mature cord blood derived mast cells (1x106) were incubated in the presence 
or absence of either a PI3K (ZSTK474, 1 µM, 30mins) or ROCK (Y27632, 10 
µM, 30mins) inhibitor before stimulation with CXCR3 agonists (100nM, 2 
mins). Cells were fixed in 4% paraformaldehyde and permeabilised using 1% 
TRITONX. Cells were stained with 0.3µM phallodin for 40mins at 4oC. 
Samples were washed and re-suspended and analysed using a FACs canto. 
Results are expressed as mean ± SEM of 4 experiments performed in 
triplicate. 
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4.1.16 CXCR3	 Agonists do not Induce Calcium Mobilisation in 

Mature Mast Cells 

Elevation of cytosolic calcium levels is one of the most robust biochemical 

signals elicited by chemokine agonists (Heise et al., 2005). Interestingly, 

treatment of mature mast cells with all of the CXCR3 agonists at a 

concentration of 100nM failed to induce an increase in cytosolic calcium 

(Figure 4.21). Treatment of mature mast cells with 100ng/ml Ag did induced 

prolonged increases in cytosolic calcium concentrations in mature mast cells. 

Figure 4.21: Cytosolic Ca2+ levels do not increase in mast cells 
stimulated with CXCR3 agonists. Mature mast cells (50µl; 350,000 cells) 
were prepared and treated as described in the Material\Methods section. 
CXCR3 agonist (100 nM) or Ag (NP-BSA) (100 ng/ml) were applied to FLUO-
4 AM loaded mast cells and fluorescence levels were recorded using a 
FLEXstation. Traces are representative of 3 different experiments. 
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Although no increases in intracellular Ca2+ was detectable in mast cells, figure 

4.22 clearly demonstrates that Ca2+ is required for induction of mast cell 

degranulation. Treatment of mature mast cell with CXCR3 agonists in either 

Ca2+ free buffer or in the presence of 1mM EGTA failed to induce 

degranulation of mature cord blood derived mast cells. 

Figure 4.22: Effect of different extracellular Ca2+ conditions on mast cell 
degranulation. Human mature cord blood derived mast cells (1x106) in 
indicated buffers (See Materials and Methods) were stimulated CXCR3 
agonists (100 nM, 1hr). Samples were centrifuged for 10mins and supernatant 
transferred to new wells before addition of β-hexosaminidase substrate for 1.5 
hours to measure β-hexosaminidase release. Data are expressed as % total 
β-hexosaminidase release. Results are expressed as mean ± SEM of 4 
experiments performed in triplicate. 
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4.1.17 The	 Role of PLC of CXCR3 Induced Mast Cell 

Degranulation. 

The signalling cascade involved in inducing mast cell degranulation requires 

the recruitment and activation of many different kinases and other signalling 

proteins. One pivotal step is the activation of phospholipase Cγ1 and 2 

(PLCγ1/2), leading to hydrolysis of the lipid substrate PIP2 resulting in the 

formation of two key signalling intermediates, diacylgylercol (DAG) and 

inositol 1,4,5-triphosphate (IP3). DAG is the physiological activator of PKC and 

IP3 the ligand for the IP3 channel receptor (Berridge et al., 2003). 

One of the major mechanisms by which calcium is mobilised from intracellular 

stores is via the binding of IP3 on to its receptor located on the endoplasmic 

reticulum (ER) resulting in the release of Ca2+ from the ER into the cytoplasm. 

PLCß can be activated by the Gßγ sub-units after chemokine receptor ligation 

(Jiang et al., 1997; Wu et al., 1992). To determine whether the increase in 

[Ca2+]i following ligation of the CXCR3 receptor requires the enzymatic 

function of PLC isoforms, the use of U73122 a broad spectrum 

pharmacological inhibitor of PLC isoforms was emplyed. U73122 is reported 

to have an IC50 between 500 nM and 2.1 µM (Smith et al., 1996). 

CXCR3-agonist induced degranulation was abolished by U73122 but not by 

its inactive derivative U73343 indicating that PLC plays a role in the induction 

of CXCR3 induced partial degranulation of human cord blood derived mast 
‘ cells (Figure 4.23 a-d). The respective IC50 s for each agonist are shown in 

Figure 4.23e. 
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Figure 4.23: Effect of PLC inhibitors on CXCR3 mediated degranulation. 
Human mast cells (1x106) were treated with either U73122 or U73343 (30 
min) at concentrations indicated before stimulation with CXCR3 agonists (100 
nM, 1hr). Samples were centrifuged for 10mins and supernatant transferred to 
new wells before addition of β-hexosaminidase substrate for 1.5 hours to 
measure β-hexosaminidase release. Data are expressed as % inhibition of 
agonist response. Results are expressed as mean ± SEM of 4 experiments 
performed in triplicate. 
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The compound 2-aminoethyl diphenylborate (2-APB: also blocks TRP 

channels), an inhibitor of IP3 receptors in some cell types, has been used to 

assess the role of IP3R mediated increases in intracellular Ca2+ (Ma et al., 

2001). 2-APB has been described as an inhibitor of calcium release from IP3 

stores without affecting binding of IP3 to IP3R and has a reported IC50 of 42 

µM (Ascher-Landsberg et al., 1999). The data presented in this study 

suggests that the mobilisation of intracellular Ca2+ is required in the 

degranulation process. Figure 4.24a reveals that pre-treatment with the IP3R 

inhibitor 2-APB strongly inhibits CXCR3 induced degranulation. The 

respective IC50s for each agonist are shown in Figure 4.24b. 
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Log[2APB] 

Degranulation IC50(µM) 

2APB 
CXCL9 57.3 
CXCL10 34.9 
CXCL11 33.5 
CXCL4 18.6 

Figure 4.24: Effect of IP3 inhibition on CXCR3 induced degranulation. 
Human mast cells (1x106) were treated with 2-APB (30 min) at concentrations 
indicated before stimulation with CXCR3 agonist (100nM, 1 hr). Samples were 
centrifuged for 10mins and supernatant transferred to new wells before 
addition of β-hexosaminidase substrate for 1.5 hours to measure β-
hexosaminidase release. Data are expressed as % inhibition of agonist 
response. Results are expressed as mean ± SEM of 4 experiments performed 
in triplicate. 
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4.2 The Role of PI3K in CXCR3 Induced Degranulation


The signalling mechanism that induces the degranulation of mature mast cells 

is a complex process involving a wide range of different signalling molecules. 

With the reported role of PI3K isoforms in IgE/Ag-mediated mast activation 

and degranulation, the role of PI3K in the degranulation of human cord blood 

derived mast cells by CXCR3 agonists was assessed. This was evaluated by 

inducing degranulation by CXCR3 agonists in the presence of increasing 

concentrations of the PI3K inhibitor ZSTK474. Pre-treatment of mast cells 

with ZSTK474 was observed to induce dose-dependent inhibition of CXCR3 

agonist induced-degranulation of mast cells (Fig 4.25). 

Figure 4.25: Effect of PI3K inhibitor on CXCR3 agonist degranulation. 
Human mast cells (1x106) were pre-treated with increasing concentrations of 
ZSTK474 (30mins) followed by stimulation with CXCR3 agonists (conc, 1hr). 
Samples were centrifuged for 10mins and supernatant transferred to new 
wells before addition of β-hexosaminidase substrate for 1.5 hours to measure 
β-hexosaminidase release. Data are expressed as % inhibition of agonist 
response. Results are expressed as mean ± SEM of 4 experiments performed 
in triplicate. 
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In the last decade, evidence has suggested that the PI3K catalytic subunit 

p110γ may play a role in mast cell hyperactivation. This is thought to occur via 

an auto/paracrine mechanism, whereby GPCR agonists released FcεRI 

activated mast cells can relieve PI3K negative regulation by antagonising the 

lipid phosphatases SHIP and PTEN (Harris et al., 2008). Recent studies 

employing the use of murine models demonstrated that both the PI3K 

isoforms p110γ and p110δ are required for FcεRI-driven mast cell 

degranulation in vitro, however in vivo p110 γ is required whereas p110δ is 

dispensable for allergic responsiveness (Ali et al., 2004; Ali et al., 2008; 

Laffargue et al., 2002). 

Isoform-specific PI3K inhibitors were employed to investigate the role of 

individual PI3K catalytic isoforms in CXCR3-induced degranulation. The 

inhibitors utilised were IC87114 for PI3Kδ, TGX-221 for p110β , TGX-121 for 

PI3Kβ/PI3Kδ, PIK75 for PI3Kα and AS605240 for PI3Kγ. 

PIK75, which displays around 116-fold selectivity against PI3Kα versus the δ 

isoform, was observed at concentrations around the predicted IC50 to have no 

effect on mast cell degranulation induced by CXCR3 agonists (Figure 4.26a). 

Figure 4.26b reveals that at the predicted IC50 for p110β inhibitor TGX-221 

there is no inhibition of CXCR3 agonist induced degranulation. Whereas the 

equipotent inhibitor of p110β and p110δ; TGX-121 was observed to have a 

strong inhibitory effect on CXCR3 induced degranulation (Figure 4.26c). The 

IC50 for TGX-121 on CXCR3 induced degranulation is well below the 

predicted impingement of the next PI3K isoform. This would suggest that 

p110δ is the dominant isoform involved in CXCR3 induced degranulation 

however the p110δ -discriminating inhibitor IC87114 only partially inhibits 

CXCR3 agonist induced degranulation at the quoted IC50 for the p110δ 

isoform (Figure 4.26d). Furthermore there is only any notable inhibition of 

CXCR3 agonist induced degranulation when the inhibitor concentration 

reaches levels expected to impinge on p110β. This therefore suggests a 

synergy between the p110β and p110δ catalytic isoforms of PI3K in promoting 
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CXCR3 evoked mast cell degranulation. These findings compares to my 

previous observation that IgE/Ag induced degranulation that reported a good 

correlation between IC50’s obtained for IC87114 against p110δ using purified 

enzyme versus IC50’s derived from cell based assays (Crabbe et al., 2007; 

Knight et al., 2006; Smith et al., 2007). 

AS605240 displays around 10-fold selectivity against p110γ versus α 

isoforms but approximately 35-fold selectivity vs δ/β. AS605240 inhibited 

CXCR3 agonist induced β-hexosaminidase release with an IC50 comparable 

to its reported IC50 for p110γ (Figure 4.26e) and possible concerns about off-

target effects of AS606240 on p110α at concentrations >10 nM seem 

unfounded, as the p110α-targeting inhibitor PIK75 had no effect on 

degranulation (Figure 4.26e). Table 4.1 lists the IC50 values of each PI3K 

isoform inhibitor against degranulation induced by each CXCR3 agonist. 

Similar IC50’s for each inhibitor where observed against each CXCR3 agonist. 
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Figure 4.26: Effect of PI3K isoform specific inhibitors on CXCR3 agonist 
induced degranulation. Human mast cells (1x106) were pre-treated with 
increasing concentrations of PI3K isoform-discriminating inhibitors (30 min) 
before stimulation with CXCR3 agonist (100nM, 1hour). Samples were 
centrifuged for 10mins and supernatant transferred to new wells before 
addition of β-hexosaminidase substrate for 1.5 hours to measure β-
hexosaminidase release. Data are expressed as % inhibition of chemokine 
agonist responses. Results are expressed as mean ± SEM of 4 experiments 
performed in triplicate. 
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IC50 (�M) 

CXCL9 CXCL10 
CXCL11 

CXCL4 IgE/Ag 

PIK75 >0.1 >0.1 >0.1 >0.1 0.65 

TGX-221 >0.1 >0.1 >0.1 >0.1 0.44 

TGX-121 0.046 0.028 0.033 0.026 0.031 

IC87114 10.66 15.49 16.65 19.92 4.81 

AS605240 0.0101 0.0124 0.0151 0.0105 0.0228 

ZSTK474 0.003 0.064 0.108 0.124 0.637 

Table 4.1  IC50 values for inhibition of degranulation induced by CXCR3 
agonists and IgE/Ag were obtained by comparing concentration-dependent 
effects of individual inhibitors against optimal degranulation in response to 
100 nM of specific chemokines or 100ng/ml NP-BSA(Ag). N = 4. 
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4.2.1	 Further Assessing the Role of p110δ and p110β in Mast Cell 
Degranulation 

The finding that IC87114 and TGX-221 did not inhibit degranulation induced 

by both IgE/Antigen and CXCR3 agonists at their predicted IC50 values, yet 

TGX-121 inhibited CXCR3 induced degranulation responses, suggested the 

potential synergy of the delta and beta isoforms of PI3K. To evaluate this 

hypothesis mast cells were treated with approximate IC50 concentrations of 

IC87114 and TGX-221 in combination. A combined treatment of TGX-221 and 

IC87114 resulted in full inhibition of CXCR3 induced degranulation (Fig 4.27). 

This observation further supports the idea that the p110β and p110δ catalytic 

isoforms of PI3K act in synergy to promoting CXCR3 evoked mast cell 

degranulation. 

Figure 4.27 – Combination of PI3K isoform inhibitors on CXCR3 
degranulation. Human mast cells (1x106) were pre-treated with either TGX-

221 (10 nM, 30 min) and/or IC87114 (1µM, 30 min) before stimulation with 
CXCR3 agonists (1 hr). Samples were centrifuged for 10mins and 
supernatant transferred to new wells before addition of β-hexosaminidase 
substrate for 1.5 hours to measure β-hexosaminidase release. Data are 
expressed as % inhibition of control agonist responses. Results are 
expressed as mean ± SEM of 4 experiments performed in triplicate. 
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Activation of PI3K leads to the formation of 3- phosphorylated 

phosphoinositides which are able to recruit various signalling molecules to 

cellular membranes, once located at the membrane these signalling 

molecules can be phosphorylated by there activating kinases. Therefore 

measurement of the phosphorylation of these signalling molecules is a useful 

method to assess PI3K activity. One such signalling molecule is the protein 

AKT which is phosphorylated by PDK1 (T308) and MTORC2 (S473). 

In order to determine which PI3K isoforms are activated downstream of 

CXCR3; the effect of the isoform specific PI3K inhibitors on AKT 

phosphorylation was assessed by western blot. Stimulating mast cells with 

CXCL9 in the presence of the class I PI3K inhibitor ZSTK474 resulted in a 

loss of AKT phosphorylation (Figure 4.28a). The p110α inhibitor PIK75 had 

no effect on CXCL9-stimulated Akt phosphorylation (Fig 4.28b). The p110-γ 

targeting AS605240 resulted in partial inhibition of Akt phosphorylation (Figure 

4.28b). The inhibition by AS605240 was incomplete even at concentrations 

well above the reported IC50 values (Figure 4.28b). Similar to the results 

obtained for degranulation responses, the dual p110β/δ-targeting TGX-121 

completely inhibited Akt phosphorylation (Fig 4.28e). Furthermore the 

combined (but not individual) treatment of TGX-221 and IC87114, at 

concentrations predicted to be selective for β and δ isoforms respectively, 

also inhibited CXCL9-stimulated Akt phosphorylation (Fig 4.28c-e). 
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Figure 4.28: Effect of PI3K inhibitors on CXCL9, CXCL10, CXCL11, and 
CXCL4 induced phosphorylation of Akt. (AE) Mature mast cells (1×106 

cells/ml) were pre-treated with vehicle or PI3K isoform-discriminating inhibitor 
at concentrations indicated (30 mins) before stimulation with CXCL9 (100 nM, 
2 min) and lysed by the addition of 1× sample buffer. Cell lysates were 
resolved by SDS-PAGE, transferred to nitrocellulose membranes, and 
immunoblotted with a phospho-specific Akt Ab with affinity for the active 
Ser473-phosphorylated form of Akt and proteins were visualised with ECL. 
The blots were stripped and reprobed with anti-Akt Ab to verify equal loading 
and efficiency of protein transfer (lower panel). The data are representative of 
two experiments. 
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4.2.2 Summary 

�	 CXCR3 agonists induced partial degranulation of cord blood derived 

mast cells in a CXCR3 and PTX dependent manner. 

�	 CXCL4 induced responses were PTX insensitive therefore suggesting 

that it is not limited to mediating its effect via the PTX insensitive 

CXCR3-B receptor. 

�	 Other inflammatory chemokines induce partial degranulation of mature 

mast cells. 

�	 CXCR3 agonists are capable of inducing the phosphorylation of ERK 

and Akt in mast cells. 

�	 The phosphorylation of ERK and AKT by all tested CXCR3 agonists 

was PTX sensitive. 

�	 CXCR3 mediated effects in mast cells are PI3K dependent. 

�	 The PI3K isoforms suggested to be involved in these responses are 

p110γ and p110β in synergy with p110δ isoforms. 
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4.3 Discussion 

4.3.1	 Expression of CXCR3 Variants in Cord Blood Derived Mast 

Cells 

The cord blood derived mast cell model appeared to be an appropriate model 

to study CXCR3 expression and function on mast cells. All variants of CXCR3 

were expressed at the mRNA level and proteins expression of at least one 

CXCR3 variant was detectable upon the surface. It was notable that protein 

levels of CXCR3 decrease as CD133+ precursors differentiate and mature 

into mast cells. This down regulation of CXCR3 was surprising as all variants 

of CXCR3 were detectable at the mRNA throughout the maturation process. 

There are several possible explanations for the apparent disparity between 

detection of CXCR3 mRNA and lack of detectable protein expression. 

Firstly, the CXCR3 receptor could become post translationally modified which 

interferes with the ability of commercial available antibodies to recognise this 

receptor. Indeed, previous reports have shown that some human chemokine 

receptors are alleged to be sulphated and/or glycosylated at their N-terminal 

extracellular domains, (Colvin et al., 2006; Neel et al., 2005). Secondly, 

CXCR3 variants maybe expressed at the mRNA level but may either not be 

translated to protein or rapidly degraded post-translationally. In this instance, 

a novel receptor expressed on human cord blood derived mast cells may be 

responsible for the biochemical and functional responses observed. 

4.3.2	 UpRegulation of Chemokine Receptors after Mast Cell 

activation. 

The presented study reveals that levels of CXCR3 were highly expressed 

intracellularly at the progenitor stage. Despite degradation of CXCR3 as the 

cells mature, intracellular levels of CXCR3 were equal to or higher, than was 

expressed on the surface. The chemokine receptor expression profile 

expressed on mat cell is thought to be mainly expressed within cytoplasmic 

granules. Consequently it is believed upon allergic activation, chemokine 
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receptors, especially CCR3 expression is increased on the cell surface 

(Juremalm and Nilsson, 2005). It is possible that this could apply to CXCR3. 

The CXCR3 expression data presented in this thesis is in contrast to other 

studies of CXCR3 in mast cells. Other investigations have reported that in 

human bone marrow-derived precursors, expression of CXCR3 at a protein 

level is low and upon maturation, protein levels of CXCR3 are up-regulated 

(Brightling et al., 2005). Brightling et al, (2005) reports a receptor profile on 

cord blood derived mast cells including CCR1, CCR2, CCR3, CCR7, CXCR1, 

CXCR4, with CXCR3 being the most highly expressed. The differences 

between these studies and the work presented in this thesis highlight that 

mast cells derived from different sources have differing chemokine receptor 

expression profile. 

Human mast cells differentiated from cord blood developed by cytokine 

control have found to be comparable to human mast cells in the lung and gut 

mucosa by similarities found in the sub-structural granule patterns of the cells 

and that the mature cells contained only tryptase (Mitsui et al., 1993). There 

appears to be a consider heterogeneity in the chemokine receptor expression 

profile of mast cells according to species. This is dependent on whether they 

are cord blood derived or bone marrow derived and their final anatomical 

location (Juremalm and Nilsson, 2005). Hence, a mast cells chemokine 

receptor profile is most likely chaped by the cytokine milieu present at the 

relevant progenitor stage. The chemokine receptor profile will be crucial in 

determining the homing progenitor and mature mast cells. 

4.3.3	 Chemokine Agonists Induce Partial Degranulation of 

Human Mature Mast Cells 

To investigate the functional role of CXCR3 agonists within mature mast cell 

degranulation and potential mechanisms behind this degranulation process, 

functional and biochemical studies were performed following stimulation with 

CXCR3 agonists. The work began by carrying out the control experiments 

with the intention of studying the potential of CXCR3 augmentation of sub-

optimal antigen induced degranulation of mature mast cells. Previous studies 
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in mast cells have shown that GPCR agonists such as CCL5 and CCL3 are 

capable of augmenting antigen-induced degranulation in a non-additive 

manner (Laffargue et al., 2002). The evidence presented in this study using 

human cord blood derived mast cells as a model indicates that several 

chemokines operating through different chemokine receptors such as CXCR3, 

CCR3 and CCR2 can induce partial degranulation of mature mast cells in the 

absence of antigen. 

Evidence presented in this thesis highlights that not all chemokines are 

capable of inducing partial degranulation of human mast cells but are still able 

to induce biochemical signals. The data demonstrated that other chemokines, 

for example, CXCL12, can elicit signalling events but this is not sufficient to 

elicit partial degranulation. This suggests that inflammatory chemokines, and 

not homeostatic chemokines, are capable of inducing the partial degranulation 

observed. CXCR3 agonists are classed as inflammatory chemokines due to 

their nature of being all released after IFN-γ stimulation. With the inflammatory 

nature of CXCR3 agonists, they are implicated in a wide range of 

inflammatory diseases. 

One of the hallmarks of allergic inflammatory disorders is the accumulation of 

an abnormally large number of leukocytes including eosinophils, neutrophils, 

lymphocytes, basophils and macrophages in the lung (Bousquet et al., 1990). 

Another distinguishing feature that defines allergic inflammatory disorders is 

the activation of leukocytes by the release of biologically active mediators 

from such cells as mast cells (Rothenberg et al., 1999). Chemokines are key 

mediators in the recruitment of leukocytes to the site of inflammation and the 

subsequent release of a further wide range of mediators. Consequently 

chemokines are a key component in the pathogenesis of inflammatory 

responses in many allergic diseases such as asthma (Baggiolini and 

Dahinden, 1994). The data presented here could provide new insight in to the 

role of chemokines in inflammatory disease. 
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All the chemokines observed in this study induced the partial degranualtion of 

mature mast cells. To date they have been named “inflammatory” 

chemokines. The only chemokine not to induce degranulation, yet still able to 

elicit biochemical signals in this mast cell model was CXCL12, a so- called 

“homeostatic” chemokine. This revelation could provide a new role for 

chemokines in inflammatory disorders. If chemokines are capable of inducing 

the release of mediators from mature mast cells, this in turn will trigger further 

immune responses, initating an immune cascade that could result in damage 

to the host. 

The data presented in this study is in contrast to other research using murine 

bone marrow-derived mast cells, where it was found several chemokines 

(CCL2, CCL5, CXCL10 and CXCL4), are incapable of inducing partial 

degranulation of mast cells (Taub et al., 1995). This serves to underline the 

view that there is considerable heterogeneity in mast cell responsiveness and 

phenotype according to species. The purpose of this chemokine-mediated 

partial degranulation in response to higher concentrations of chemokine 

agonists is likely to function to optimise mast cell activation and tailor it 

according to the local inflammatory context. Since CXCR3 agonists have 

been reported to be present in high levels of allegic inflammatory diseases 

(Widney et al., 2000; Woodman et al., 2006),the data portrayed here indicates 

that CXCR3 agonists can contribute to, and possibly perpetuate, the allergic 

response by inducing partial mast cell degranulation. 

4.3.4 The Role of CXCL4 in Mast Cells 

CXCL4 was previously reported to bind with high affinity to the receptor 

CXCR3B, the first known chemokine receptor to be accredited to CXCL4, 

despite being the first chemokine discovered. Lasagni et al., (2003) 

demonstrated that CXCL4 binds with low nanomolar affinty to CXCR3 B but 

not CXCR3A. This study also demonstrated that this was a functional receptor 

capable of intracellular signalling but was unable to induce migratory 

responses. Recent reports challenge the findings of this particular study. 

Mueller et al., (2008) demonstrated that in L1.2 cell expressing individual 
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isoforms of CXCR3 A or B, CXCL4 was able to bind both isoforms with low 

affinty and was able to induce chemotactic responses via both receptors. This 

highlights the possiblity that CXCL4 can mediate effects through other forms 

of CXCR3 similar to the findings observed in the work presented here. 

The original study that discovered CXCR3B reported microvascular 

endothelial transfectants expressing CXCR3B were coupled to Gαs proteins. 

This is contrast to the other isoforms which are reported to bind to the Gαi 

protein. Unlike Gαi, Gαs is not reported to be sensitive to PTX. Mueller et al., 

(2008) reports that CXCL4 mediates response in CXCR3B transfectants in a 

PTX sensitive manner indicating the presence of a form of CXCR3 that is 

Gαi/o bound. It is understood that CXCL4 can play a wide role in inflammatory 

responses. Recent data has suggested that it can contribute to immune 

activation and T cell trafficking as part of the pathogenesis of ECM in 

experimental cerebral malaria models (Srivastava et al., 2008). The high 

concentrations of CXCL4 reported to be released by activated platelets might 

suggest that CXCL4 could play a role in the subsequent recruitment of 

lymphocytes into the tissues. Based on the data in this thesis the activation of 

mast cells by CXCL4 could result in the large amplification of the immune 

response suggesting it is possible that the blockade of the CXCR3/CXCL4 

axis could be a good target in atherosclerosis (Mueller et al., 2008). 

This investigation only detected the presence of CXCR3B at an mRNA level 

with no detectable presence of protein suggesting that CXCR3B did not play a 

role in the responses observed. The roles of CXCR3A and CXCR3B have 

posed interesting questions. One proposal is that CXCR3A and CXCR3B 

have opposite regulatory effects. This model was proposed by Romagnani et 

al., (2005) who examined the opposite regulatory effects of CXCL10 and 

CXCL4 on human Th1/Th2 polarisation. Luster and Ravetch, (1987) 

demonstrated the Th1-polarising activity of CXCL10 providing a positive 

amplification loop with IFN-γ which is its major inducer. A line of thought 

developed whereby the generation of CXCR3 agonists could help in the 

protection of Th2-mediated allergic inflammatory responses by amplifying the 

TH1 mediated responses against environmental allergens (Gangur et al., 

179




Chapter 4 – Role of CXCR3 in Cord Blood Derived Mast Cells.


1998). CXCL4, however, in its physiological role, is a cationic protein stored 

in the granules and secreted upon platelet activation (McLaren et al.1993). 

With regard to allergic disease increased expression of CXCL4 has been 

detected in human asthmatic subjects (Averill et al., 1992; Yamamoto et al., 

1993), indicating a role of CXCL4 in Th2 diseases. 

The data in this thesis provides a new avenue to be explored in examining the 

role of CXCL4 in allergic disease. The release of CXCL4 by platelets is 

providing key signalling in the amplification of inflammatory diseases by 

mediating granule release from mature mast cells present in the airways. 

4.3.5 CXCR3 Agonists Induce a Short Signalling Profile 

This study investigated biochemical signalling of CXCR3 agonists on mature 

mast cells concentrating specifically on the phosphorylation of the protein Akt 

and Erk1/2. The signalling profile of all CXCR3 agonists is fairly similar in 

length. The signalling profile of CXCR3 agonists varies depending on cell 

type. It has been observed that in intestinal myofibroblasts the signalling 

profile of CXCR3 agonists is longer than observed in this particular study, 

whereas the signalling profile in peripheral blood mononuclear cells is quite 

similar to the signalling prolife in mast cells observed in this thesis 

(Kouroumalis et al., 2005). This may reflect differences in the expression of 

regulatory components such as phosphatases between the different cell 

types. The robustness and duration of the activation of a given signalling 

pathway have far-reaching biological consequences. 

Studies of CXCR3 activation by CXCL11 leads to sustained phosphorylation 

of Akt in T cells that is similar to that previously observed for CXCL12 and 

CXCR4 but distinct from other chemokine receptors (Smit et al., 2003). This 

is in contrast to the data presented in this thesis, which demonstrates that in 

mast cells activation is similar for each ligand and not sustained. Persistent 

activation of Akt by CXCL12 has been explained by the fact CXCR4 is 

involved in homeostasis rather than inflammation. Therefore sustained 

activation could protect CXCR4+ cells from undergoing apoptosis- a process 

that is critical for the activation of T cells (Tilton et al., 2000). 
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In the case of CXCR3, sustained activation of Akt has only been observed at 

low concentrations, whereas higher concentrations of the activation of Akt is 

transient (Smit et al., 2003). It is proposed that the chemokine signalling 

profile can induce different properties in different cell types. Vlahakis et al., 

(2002) demonstrated that CXCR4 activation in CD4 T cells by CXCL12 led to 

the activation of the prosurvival secondary messengers, Akt and extracellular 

signal-regulated protein kinase. In contrast Akt activation through CXCR4 by 

SDF1alpha interactions is necessary to confer resistance to apoptosis. 

4.3.6 CXCR3 Specificity of the CXCR3 Agonists 

The recent discovery of CXCL11 binding to another chemokine receptor 

CXCR7 raised the question of the specificity (is this a word) of the CXCL11 

responses noted in this study. CXCR7 is another high affinity receptor for the 

inflammatory chemokine CXCL11 and the homestatic chemokine CXCL12. 

Despite binding these two chemokines, it is thought that the CXCR7 signalling 

pathway is distinct from the typical GPCR mechanism of other CXC 

chemokine receptors (Burns et al., 2006). It is still believed that CXCR7 

provides an advantage in growth and survival and evidence suggests CXCR7 

is constitutively active in tumour cells (Burns et al., 2006; Meijer et al., 2008; 

Miao et al., 2007). These studies demonstrate that CXCR7 is a key factor in 

the growth and expression of tumour cells in breast and lung cancer and 

could play a role in other malignancies. Treatment with a small molecule 

weight antagonist against CXCR7 limits growth in syngenic and xenograft 

models thus highlighting further a key role in potential cancer diseases (Burns 

et al., 2006). 

Many atypical receptors exist in the chemokine system. The most studied are 

DARC and D6 whose defined roles are the scavenging of chemokines from 

the system. It has recently been proven that CXCR7 can scavenge the 

chemokine CXCL12. Investigations have suggested a regulated expression of 

CXCR7 and CXCR4 in migrating cells of the primordium,CXCR7 is found 

predominantly in trailing cells and CXCR4 in the front cells (Dambly-

Chaudière et al., 2007; Valentin et al., 2007). This evidence suggests that 
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CXCR7 is an atypical receptor. CXCR7 shares many features similar to 

DARC and D6. Mutations in the DRYLAIV motif and the glycine associated 

with the NxxPY motif is much further down stream than in other chemokine 

receptors similar to D6. 

A more recent investigation has discovered further evidence of CXCR7 as a 

decoy receptor (Boldajipour et al., 2008). This study discovered the enhanced 

internalisation of CXCR7 in somatic cells suggesting that CXCR7 acts as a 

sink for SDF-1a, thus allowing the dynamic changes in the transcription of 

SDF-1a to be mirrored by similar dynamics at the protein level. 

Based on recent research it is now understood that the differential expression 

of CXCR4 and CXCR7 might provide a fine-tuning of CXCL12-migration. This 

view is also supported by the concept that CXCR7 acts as a scavenger 

receptor but does not exclude the possibility that the receptor also activates 

signalling pathways. It is possible that this role of CXCR7 and CXCL12 also 

applies for CXCL11 with CXCR7 tailoring CXCL11 responses to specific 

situations. No obvious or visible protein levels of CXCR7 were detected in this 

study suggesting that other receptors must act as scavenger receptors of 

CXCL11 induced responses. 

4.3.7	 CXCR3 Augmentation of SubOptimal Degranulatory 

Responses. 

This research has proved that all CXCR3 agonists are capable of inducing 

augmentation of sub-optimal Antigen induced degranulation of human mast 

cells. This augmentation process has been noted with other GPCRs. The 

degranulation of mast cells by GPCRs in the absence of antigen was first 

observed by (Tilley et al., 2000). It was then subsequently reported by 

(Laffargue et al., 2002) that CCL5 and CCL3 as well as other GPCR agonists 

like ATP, ADP, inosine and LPA were capable of augmenting antigen-induced 

calcium influx and mast cell granule release. All these investigations, 

including this one, highlighted the role of GPCR agonists in mast cell 

activation and involvement in many immune reactions: for example- system 
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anaphylaxis. A variety of research models has shown the activation of mast 

cells by chemokines both in vitro and in vivo (Alam et al., 1992; Alam et al., 

1994; Conti et al., 1995) further emphasising a key role of a wide range of 

chemokines in mast cell activation. This further endorses the role of 

chemokines in many allergic and inflammatory diseases by the accumulation 

of chemokines at many disease sites (Alam et al., 1996; Gerard and Rollins, 

2001; Gordon, 2000; Luster and Rothenberg, 1997). 

4.3.8 Role of Activation Markers in Mast Cells 

It was clearly demonstrated in this thesis that upon activation of mast cells by 

CXCR3 agonists, the activation markers CD63 and CD203c were up-

regulated. It is understood that membrane complexes containing CD63 and 

CD203c control mast cell adhesion and induced degranulation by a shared 

pathway. The translocation of granules to the cell membrane is vital to the 

exocytosis of mast cell granules. (Nishida et al., 2005) observed the 

translocation of CD63-containing granules to the plasma membrane in the 

absence of calcium. In these particular conditions they did not observe FcåRI-

induced increase of cell surface expression of CD63 by FACS analysis. It is 

considered that the membrane fusion is calcium dependent in general (Lin 

and Scheller, 2000). (Kraft et al., 2005) demonstrated that CD63, is 

associated to signalling components that are key to the formation of the 

membrane complexes containing CD63. They also established that inhibiting 

CD63 impairs the Gab2–PI3K pathway known to be essential for both 

degranulation and adhesion (Kraft et al., 2005). 

4.3.9 Pharmacological Investigations into the PI3K Family 

Following clarification of the function and biochemical effects of the CXCR3 

agonists, attention was then focused on investigating the mechanism of 

CXCR3 induced degranulation. Initial interest was on the PI3K family utilising 

inhibitors to dissect the role of the class 1 isoforms on degranulation and 

signalling. Cross-linking of the FcεRI by antigen is known to activate a Tyr 

kinase signalling cascade which provides a direct molecular link to class IA 

PI3K signalling (Deane and Fruman, 2004; Okkenhaug et al., 2007). Genetic 

or pharmacological inactivation of p110δ has been shown to lead to a 
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substantial, but not complete, block in the allergic responses in mice (Ali et al., 

2004; Lee et al., 2006; Nashed et al., 2007). Worthy of note is the fact that 

genetic inactivation of p110γ in mice has been reported to lead to a complete 

block in passive cutaneous and systemic anaphylaxis responses in vivo 

(Laffargue et al., 2002). 

This is quite remarkable given that the FcεRI Tyr kinase signalling pathway 

does not appear to provide a direct molecular link to this GPCR coupled PI3K. 

Evidence based largely on the use of in vitro cultured mast cells suggested 

that p110γ may be part of an auto/paracrine mechanism whereby exocytosed 

mast cell-derived GPCR agonists, initially released by an FcεRI-dependent 

pathway, promote hyperactivation of mast cells through GPCR signalling to 

overcome inhibition by lipid phosphatases such as SHIP and PTEN, which 

antagonize PI3K signalling (Harris et al., 2008). Recent experiments in 

murine models have shown that in vitro both p110δ and p110γ are required 

for FcεRI-driven mast cell degranulation, whereas in vivo, p110γ (but not 

p110δ) is dispensable for allergic responsiveness (Ali et al., 2004; Ali et al., 

2008; Laffargue et al., 2002). 

4.3.10 A Critical Role for PI3Kγ in CXCR3 Agonists Induced Partial 

Degranulation 

In common with all pharmacological tools to unequivocally attribute function to 

a particular isoform, it was important to establish the respective selectivity for 

these compounds. The PI3K inhibitors utilised in this study, exhibit selectivity 

between their primary isoform target and the other membranes of the family 

(Table 1). As anticipated, the data presented in this study using the p110γ-

discriminating PI3K inhibitor AS605240 indicates that p110γ makes a 

significant contribution to the signalling events that underpin CXCR3 agonist-

induced mast cell degranulation. This was also observed in signalling through 

inhibition of Akt in responses to CXCR3 agonists. The discovery that p110γ 

plays a key role in mast cell responses is supported in both in vivo and in vitro 

studies (Laffargue et al., 2002; Wymann et al., 2003). The inhibition by 
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AS605240 recorded in this study was incomplete even at concentrations well 

above the reported IC50 values, suggesting the presence of other PI3K 

isoforms. 

4.3.11 What is the contribution of other Class 1 PI3K isoforms to 

CXCR3 AgonistInduced Mast Cell Degranulation? 

The inhibitor PIK75 was utilised in this thesis to investigate the role of PI3K 

class 1A. This inhibitor is selective for the α member of the PI3K family with 

an IC50 for this isoform at approximately 8nM and had no effect on CXCR3 

induced degranulation, even at concentrations above its IC50, especially at the 

concentrations it is predicted to impinge on p110γ. This implies reduced cell 

permeability and bioavailability of this compound in comparison to the other 

PI3K isoform-discriminating inhibitors undertaken in this thesis 

Other kinases (most notably DNA-PK) have been reported to be inhibited by 

PIK75. This occurs at an IC50, at an even lower concentration, than that 

predicted for p110α. The evidence presented in this study would suggest that 

this kinase has no role to play in mast cells degranulation by CXCR3 agonists. 

The role of PI3K has become clearer over the last few years Recent genetic 

knock-in and pharmacological approaches have suggested that, of class IA, it 

is the p110α  isoform (PIK3CA) that plays the predominant role in insulin 

signalling (Chaussade et al., 2007). 

4.3.12 A Potential Synergy between p110δ and p110β 

Combined (but not individual) treatment of both p110β and p110δ 

discriminating inhibitors attenuated degranulation responses and 

phosphorylation of Akt in response to CXCR3 agonists. Compounds that 

inhibit p110β tend also to inhibit p110δ isoforms (Crabbe et al., 2007; Knight 

et al., 2006; Smith et al., 2007). Consequently these isoforms have been 

termed pharmalogs. Carefully controlled experiments with a panel of PI3K 

isoform-discriminating inhibitors with differing selectivities suggest a hitherto 

unrecognised functional relationship between p110β and p110δ. 
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Evidence has previously been presented for the coupling of p110β to GPCRs 

either by in vitro studies that documented activation of p110β by Gβγ subunits 

(Kurosu et al., 1997; Maier et al., 1999) or in cellular experiments where 

p110β function was probed by microinjection of neutralising Ab to p110β 

(Graness et al., 1998; Roche et al., 1998), RNAi against p110β (Graness et 

al., 1998) or expression of p110β (Kubo et al., 2005; Yart et al., 2002), all 

highlight activation of p110β by GPCRs. Recent evidence using cells derived 

from mice with conditional genetic inactivation of p110β has revealed that 

p110β and p110γ can couple redundantly to the same GPCRs including some 

chemokines receptors (Guillermet-Guibert et al., 2008). The work presented 

in this thesis would suggest that, at least in human mast cells, p110β operates 

in tandem with p110δ and provides a conduit for agonist-induced 

degranulation. 

4.3.13 Class1A and 1B PI3K dependent degranulation 

This thesis implicates a key role for the p110γ as well as p110delta in 

combination with p110β in CXCR3 mediated partial degranulation of human 

mast cells. Other studies have highlighted a role for both the class 1A and 1B 

PI3Ks. Dependence on PI3K has been listed in a number of systems with 

migratory processes being the most widely studied. 

Throughout the presented thesis, it was highlighted that p110γ played a key 

role in chemokine-mediated degranulation. The importance of 110 γ in other 

studies has also been emphasised) These studies focused particular attention 

on the role of p110γ with neutrophils (Hannigan et al., 2002; Hirsch et al., 

2000; Sasaki et al., 2000). The p110γ knock out murine models also revealed 

that in neutrophils, no PtdIns(3,4,5)P3 production was detected, therefore 

suggesting a role for the class 1B PI3Ks within the generation of 

PtdIns(3,4,5)P3 in these knockout murine models (Li et al., 2000). 

The biphasic generation of PtdIns(3,4,5)P3 has been shown to be dependent 

on both classes of PI3K. The first phase is dependent on p110γ, whereas the 

second is determined largely by the class1A, mostly through p110δ, but to 
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some extent influenced by p110α and p110β. This points to a potential dual 

role of the distinct classes of PI3K as both classes are seen to be crucial to 

the induction of mast cell degranulation. It is possible that the two activation 

stages of PtdIns(3,4,5)P3 by the classes of PI3K are critical to the activation 

of mast cells whereas one activation is not enough to generate degranulation. 

4.3.14 CXCR3 Reorganises the Actin Cytoskeleton. 

Initial studies on the adrenal chromaffin cell highlight that reorganisation of the 

cortical actin network is necessary to allow granules to reach exocytotic sites 

in stimulated cells. This reorganisation may involve changes in actin filament 

cross-linking, assembly and interactions with secretory granules and plasma 

membranes (Burgoyne) et al., 1987). Localised disassembly of cortical F-actin 

has long been considered necessary for the facilitation of exocytosis. Several 

studies have proved that the reorganisation of actin increases both the rate 

and extent of FcεRI-induced degranulation (Frigeri and Apgar, 1999; Oka et 

al., 2002). Biochemical studies indicate that FcεRI stimulation causes a rapid 

increase in the level of F-actin in RBL cells (Frigeri and Apgar, 1999; Pfeiffer 

et al., 1985). The precise roles of the cytoskeletal re-arrangements in the mast 

cell degranulation process have not been established. 

Chemokine signalling induces re-modelling of cytoskeleton such as the 

reorganisation of F-actin filaments that allows the cells to flatten and attain 

cellular polarisation. The classical CXCR3 agonists, CXCL9, CXCL10 and 

CXCL11 have been previously shown to promote actin reorganization 

(Kouroumalis et al., 2005). It is now well established that the dynamics of 

actin cytoskeleton are closely regulated by the activation of members of the 

Rho GTPase family including RhoA and Rac1 and their activities control mast 

cell degranulation. Rho, in particular, has been associated with stress fibre 

formation and cell contractility (Ridley and Hall, 1992). Several proteins have 

been identified as putative Rho effectors on the basis of their selective 

interaction with GTP-bound Rho. The ROCK family of kinases has been 

shown to be involved in Rho-induced formation of actin stress fibres and focal 

adhesions (Amano et al., 1997; Leung et al., 1996; Leung et al., 1995). In 
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association with this pre-treatment of human mast cells with Y27632 abolished 

CXCR3 agonist-induced actin polymerisation. 

Regulation of actin polymerization, downstream from G protein-coupled 

receptors, was originally thought to depend on PI3K activation and involves 

the activation of PKB and the GTPases Cdc42 and Rac2 (Pollard et al., 2000). 

Recently an alternative PI3K-independent mechanism for actin polymerization 

in human neutrophils has been proposed (Chodniewicz and Zhelev, 2003). 

This PI3K-independent pathway in neutrophils has been shown to be 

dependent on Src tyrosine kinases, NADPH oxidase and protein kinase A, as 

well as RhoA and ROCK. Further evidence supports the existence of a PI3K-

independent pathway. The discovery that LY294002 did not appear to have 

any effect on CXCL9-, CXCL10-, or CXCL11-induced actin polymerisation 

(Kouroumalis et al., 2005) supports the presence of a PI3K independent 

pathway of the reorganisation actin by CXCR3 agonists is PI3K independent. 

4.3.15 Clinical importance of CXCR3 Agonists 

CXCR3 and its four agonists, CXCL9, CXCL10, CXCL11 and CXCL4 play a 

role in a wide range of cellular functions and diseases. Considerable interest 

in this chemokine receptor and its agonists has raised many questions about 

its importance in a clinical setting. Clinical and pre-clinical studies suggest that 

CXCR3 and its ligands significantly contribute to the cellular infiltration that 

result in heart, lung and skin allograft rejection (Agostini et al., 2001; Belperio 

et al., 2002; Belperio et al., 2003; Hancock et al., 2000; Koga et al., 1999; 

Miura et al., 2001). 

The role of CXCR3 agonists is dependent on the diseases setting, or in many 

cases, the experimental model used (Belperio et al., 2002; Fahmy et al., 

2003; Kao et al., 2003; Zhao et al., 2002). One example of this is the role of 

CXCL9 and CXCL10 having an involvement in bronchiolitis obliterans 

syndrome after lung transplantation whereas CXCL11 plays no part (Belperio 

et al., 2003). This pattern has also been observed in acute cardiac allograft 

rejection (Zhang et al., 2004; Zhao et al., 2002). 
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CXCR3 is known to be a key target in the treatment against graft rejection. 

High levels of CXCL10 have been shown to directly correlate with instances of 

heart and lung rejection in human tissue (Agostini et al., 2001; Melter et al., 

2001). CXCL9 has been identified as the dominant factor directing CXCR3+ T 

cells into both cardiac and tracheal allografts in murine models (Belperio et al., 

2003; Miura et al., 2001). The data presented in this thesis has further 

highlighted the potential clinical importance of CXCR3 by presenting evidence 

that CXCR3 agonists are important in any immune response involving mast 

cells. Inhibition of the amplification of degranulation reponses could help 

reduce many recognised diseases such as rheumatoid arthritis, allowing 

easier resolution of imflammatory responses. 

4.3.16 Cytosolic Ca2+ not require for CXCR3 Function in Mast Cells 

In most, but not all cells, activation of chemokine receptors induces an 

increase in cytosolic calcium. In this thesis, not all CXCR3 agonists changed 

cytosolic calcium levels in mature mast cells. These results differ from studies 

in other mast cell models where CXCR3 agonists increased Ca2+(Brightling et 

al., 2005). Of notable interest is the absence of a Ca2+ which has been 

associated with other chemokine receptors and their agonists. For example, 

RANTES/CCL5 induces CCR5-mediated T-lymphocyte chemotaxis without 

changing cytosolic Ca2+ (Turner et al., 1995). Furthermore, IL-8/CXCL2 

induces CXCR2-mediated neutrophil migration without an increase in Ca2+ in 

cells from PLC-β2/β3 knockout mice (Li et al., 2000). The absence of calcium 

mobilisation in response to chemokine agonists ,despite the ability to induce a 

functional response, has also been highlighted by CXCR3 agonists. CXCR3 

agonists induced chemotaxis in human airway epithelial cells without 

mobilising cytosolic calcium (Shahabuddin et al., 2006). Coupled with the data 

presented in this study, this suggests that changes in Ca2+ are not always 

necessary for directional sensing and cell shape change. 
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4.3.17 Role of PLC in Degranulation 

This study and many other studies have shown the dependence of PI3K in 

mast cell degranulation. It has been recently highlighted that the presence of 

a PLC dependent but PI3K independent pathway leads to mast cell activation 

(Kuehn and Gilfillan, 2007). PLC-mediated hydrolysis is required for mast cell 

exocytosis. On the onset of exocytosis, PtdIns(4,5)P2 is eliminated from the 

extra cellular membrane. PLC is essential to the process of removal of 

PtdIns(4,5)P2 from the plasma membrane. PLC is required to initiate the Ca2+ 

signal at the onset of exocytosis yet Ca2+ is necessary for PLC activity. PLC 

depletes PtdIns(4,5)P2 from incipient phagosomes causing breakdown of the 

surrounding F-actin (Scott et al., 2005). It has also been proven that mast 

cells containing an F-actin cortex break down at the onset of degranulation 

(Nishida et al., 2005; Price et al., 1995). Disruption of this cortex is seen to 

enhance degranulation (Borovikov et al., 1995; Martin-Verdeaux et al., 2003). 

A fair conclusion would be that PtdIns(4,5)P2 breakdown is associated with 

the breakdown of the cortical actin cytoskeleton. Hammond et al., (2006) 

discovered that PLC is required for exocytosis, independent of the Ins(1,4,5)-

P3–Ca2+ pathway by eliminating PtdIns(4,5)P2 from the plasma membrane. 
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Figure 4.29: Proposed model for PI3K signalling role in cord blood mast 
cell degranulation. Stimulation of CXCR3 by its agonists leads 
predominantly to activation of p110γ leading to the accumulation of 
PI(3,4,5)P3 at levels sufficient to initiate activation of downstream effectors 
such PLC and drive degranulation. CXCR3 agonists also lead to the 
activation of the G protein coupled p110β isoform, though the levels of 
PI(3,4,5)P3 formed by activation of this PI3K isoform alone are insufficient to 
promote downstream effectors and initiate degranulation and/or redundant 
with p110γ-derived PI(3,4,5)P3. However, the PI(3,4,5)P3 formed by p110β 
leads instead to the recruitment of PH domain-containing adaptor proteins 
which, in turn, lead to the recruitment and activation of p110δ, via SRC by 
GPCRs, contributing to the formation of PI(3,4,5)P3. The pool of PI(3,4,5)P3 

which is formed by the combined actions of p110β and p110δ is sufficient to 
evoke PI3K effectors and elicit degranulation responses. This model allows 
for discrete and critical differences in the spatio-temporal regulation of 
PI(3,4,5)P3 accumulation by distinct PI3Ks that ensure optimal mast cell 
responses to activating stimuli. 

191




Chapter 4 – Role of CXCR3 in Cord Blood Derived Mast Cells.


4.4 Future Work 

4.4.1	 The Role of CXCR3 in Precursor and Immature Mast Cell 

Stages. 

As this study demonstrated in immature mast cells, CXCR3 agonists are 

functional at least at a biochemical signalling level. With the reported down-

regulation of CXCR3 in this investigation it would be of interest to further 

investigate the function of CXCR3 at earlier stages than the mature mast cell 

stage explored here. This study has focussed on the potential role of CXCR3 

in the migration of precursors to blood and the migration of immature mast 

cells from the blood to the tissues. It would be of considerable interest to 

further investigate the migratory role of CXCR3 agonist in these stages of 

mast cell development. 

4.4.1.1 Clarifying the Synergy of the PI3K Isoforms. 

This study highlighted the importance of PI3K isoforms in the degranulatory 

mechanism of mast cells by both CXCR3 and FcεRI induced degranulation, 

focusing essentially on the role of the synergy between the β and δ isoforms. 

With the emerging role of PI3K isoforms in mast cell degranulation it would be 

prudent to further investigate the potential synergy between the β and δ 

isoforms of PI3K. The data demonstrates the activation of signalling and 

degranulation. 

The evidence for the PI3K isoforms however is only based on the use of 

inhibitors. Therefore utilising other technologies such as siRNA interference 

to provide further evidence of the synergy of the PI3K isoforms involved in 

mast cell degranulation would be useful 

4.4.1.2 Other Mast Cell Models 

The evidence presented in this study looked specifically at a mast cell model 

derived from cord blood precursor cells. It is widely known that the differences 

in mast cells are dependent upon their final anatomical location. It would 
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therefore be of considerable interest to investigate if the key findings in this 

study are mirrored in other primary human mast cell models. 
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5. Summary 

The presented work characterises the role of the chemokine receptor CXCR3 

and its spliced variants, namely CXCR3B and CXCR3-alt, in different human 

mast cell model. In the investigation of CXCR3 in HMC-1 cell line, only 

variants CXCR3A and CXCR3B were detected while on the primary mast cell 

model all variants of CXCR3 were detected at the mRNA level. This thesis 

concludes that the HMC-1 cell line make a poor model for CXCR3 studies in 

mast cells. This is due to the mutation in the SCF receptor resulting in the 

constitutive activation of downstream signalling proteins, making signalling 

events induces by CXCR3 impossible to determine. No functional responses 

by any of the CXCR3 agonist were detected in HMC-1 in this thesis. 

The work presented in this thesis highlights the downregulation CXCR3 in the 

differentiation and maturation of CD133+ precursors into mature mast cells. 

This is in direct contrast to other studies which report the upregulation of 

CXCR3 in mast cell maturation process. It is proposed in this thesis that the 

cytokine mileu that the precursors are exposed to will determine the subtype 

of mast cells that they will eventually differentiate into. Therefore this thesis 

has also proposed that the role of CXCR3 in mast cell precursors derived 

from cord blood is to induce the migration into the tissues, the place where 

mast cells will mature. 

This thesis reports for the first time the induction of degranulation, albeit 

partial, of human mast cells by CXCR3 agonists. It has previously been 

shown that GPCRs can augment the sub-optimal antigen/FcεRI induced 

release, but never the direct release of mediators from mast cells after 

CXCR3 activation. This response was further surprising with respect to 

CXCL4, as the only current known receptor for CXCR3B which was 

undetectable at a protein level in cord blood derived mast cells. Therefore it is 

proposed in this thesis that CXCL4 could bind isoforms other than CXCR3 or 
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that CXCR3B becomes post-translationally modified making it undetectable 

by currently available commercial antibodies. 

This result highlights a new role for chemokines in mast cells never before 

reported. With this finding of direct induced degranulation of human mast cells 

by CXCR3, this study focused on how closely this responses mirrored 

antigen/FcεRI responses. 

This thesis demonstrated that pathways involved in both antigen 

degranulation and CXCR3 degranulation were identical. The pathways 

highlighted in this thesis that are critical to the degranulation response were 

the PLC and PI3K pathways. 

It is presented in this thesis that activation of individual PI3K isoforms are key 

to the degranulation response. All CXCR3 agonists induced degranulation 

that was dependent on the p110γ isoform of PI3K. However, for the first time, 

it is also reported in this thesis that p110δ isoform in synergy with p110β 

isoform are also key to induction of the degranulation response. This finding 

was observed utilising a of wide range of PI3K isoform specific inhibitors. This 

synergy was not only observed in degranulation responses but also in Akt 

phosphorylation where both p110δ and p110β isoforms were needed to be 

inhibited before complete attenuation of Akt responses. 

In summary, despite only low levels of detectable CXCR3 expression, I have 

demonstrated biochemical and functional mast cell responses to CXCR3 

agonists that are inhibited by PTX and selective CXCR3 antagonists. I provide 

the first evidence that chemokine induced partial degranulation of human cord 

blood derived mast cells responses are dependent not only on p110γ, but also 

on an unexpected p110δ and p110β synergy. These findings provide a novel 

insight into problems and opportunities to selective target of PI3K isoforms in 

allergic disease settings and general manipulation of the immune system with 

such tools. 
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6. Appendix 

6.1Buffers and Solutions 

6.1.1 Solutions and buffers for SDSPAGE and western blotting 

Lysis Buffer 4x Resolving Gel Buffer 
1.5M Trizma base pH 8.8 
0.4 % (w/v) SDS 
MilliQ Water 

1% (v/v) Nonidet P-40 
150nM NaCl 
50mM Tris pH 7.5 
5mM EDTA 
10mM Sodium Fluoride* 
1mM Phenylmethylsulfonyl fluoride* 
10µg ml-1Leupeptin* 
10µg ml-1Aprtinin* 
1µg ml-1Soybean Trypsin Inhibitor* 
1µg ml-1Pepstatin A* 
1mM Sodium Orthovanadate* 
1mM Sodium Molybdate 
MilliQ Water 

N.B * Denotes added on the day of use 

SDS-PAGE Running Buffer 5 x SDS-Sample Buffer 
25mM Trizma Base 
192mM Glycine 
0.1%(w/v) SDS 
MilliQ Water 

5% SDS 
50% Glycerol 
200mM Tris-HCl pH 6.8 
MilliQ Water 

4 x Stacking Gel Buffer 
0.5 M Trizma Base pH 6.8 
0.4% (w/v) SDS 
MilliQ Water 

Bromophenol Blue 
5% 2-mercaptoethanol 

Semi-Dry Transfer Buffer Tris-Buffered Saline(TBS) 
29mM Glycine 
48mM Trizma Base 
0.0375% SDS 

20mM Tris-HCl pH 7.5 
150mM NaCl 
MilliQ Water 

20% (v/v) Methanol 
MilliQ Water 
Tris-Buffered Saline-Tween (TBST) Stripping Buffer 
TBS + 0.1% (v/v) Tween-20 62.5mM Tris-HCL pH 6.8 

2% (w/v) SDS 
100mM 2-mercaptoethanol 
MilliQ Water 
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6.1.2 Recipes for SDSPAGE Gels 

Resolving Gel Stacking Gel 
10% 4X 

4x Resolving Buffer or 5 5 
Stacking Buffer (ml) 

MilliQ Water (ml) 8.17 6.85 
Acrylamide (ml) 6.67 2.0 
APS(10%) (µl) 150 150 

TEMED (µl) 15 15 

6.1.3 Immunoblotting Conditions for Specific Primary Antibodies


Secondary 
Antibody 
Concentration3 

Molecule Targeted By 
Primary Antibody 

Primary 
Antibody 
Species (kDa) Concentration2 

Molecular 
Weight 

Blocking 
Buffer1 Antibody 

Primary 

PhosphorSer473-Akt Rabbit 60 5% 1:1000 1:10000 
Akt1 Goat 60 5% 1:1000 1:10000 
phosphoThr402/Tyr404 Rabbit 42/44 5% 1:1000 1:10000 
ERK1/2 
phosphoSer236/236S6 Rabbit 32 5% 1:1000 1:10000 
CXCR3 Mouse 42 5% 1:100 1:10000 
CXCR7 Mouse 40 5% 1:100 1:10000 
1 Expressed as percentage (w/v) non-fat milk diluted w/v in TBST 
2 Diluted v:v in 0.01%(w/v) Sodium Azide TBST 
3 Dilution v:v in 1% (w/v) non-fat milk in TBST 

6.1.4 Recipes for Buffers in Flexstation Ca2+ Readings 

Master Buffer Assay Buffer 
500ml HPSS (w/o Ca2+) 198mls Master Buffer 
750µl CaCl2 1M 2mls Probenecid (250mM) 
10ml HEPES 1M (pH 7.3) 
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