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ABSTRACT 

 

Photocatalytic reduction of CO2 offers a solution to the depletion of fossil fuels and the high 

levels of atmospheric CO2 exacerbating the global warming. It is, therefore, necessary to 

develop more efficient photocatalysts that utilize the solar energy and efficiently convert CO2 

to useful fuels. For this purpose, this MPhil focused on the development of perovskite catalysts 

supported on silica materials (SBA-15 and KIT-6) for the photoreduction of carbon dioxide 

(CO2). 

  

Silica supports SBA-15 and KIT-6 were synthesized by hydrothermal treatment and a 

subsequent calcination at 550 °C. After this, different semiconductors called perovskites 

(mixed oxides MFeO3) were deposited on the support materials in varying amounts (5%, 10%, 

and 20%) to know the effect of the incorporation with the use of a sol-gel method. The 

perovskites selected were LaFeO3, BiFeO3, AlFeO3, and YFeO3 due to their suitable bandgap 

and promising photocatalytic response in the visible light. In addition, TiO2 was also deposited 

to make a comparison about bandgap and future photocatalytic conversion. 

 

Both SBA-15 and, KIT-6 were analyzed with N2 adsorption-desorption and XRD showing 

cylindrical pores with a diameter of around 7 nm and high specific surface areas. These 

characteristics make the supports good candidates to be a host of metal oxides species, and 

their pore diameter is suitable to allow that the CO2 molecules will be adsorbed without 

problems (CO2 size=3.4 Å). 

 

This work revealed that the incorporation of species into the silica support resulted in a high 

loss of specific surface area. The inclusion of TiO2 into the support had a different effect in 

comparison with the perovskites due to the Ti species reacted with the particle surface of silica 

materials preventing the dispersion inside of the channels of the support. The perovskites, 

however, were well dispersed provoking changes in the internal support structure observed for 

example in the pore diameter sizes. XRD confirmed the formation of most perovskites and 

TiO2, except AlFeO3. 

 

Bandgap calculation from UV-visible spectroscopy measurements suggested that the bandgap 

of the perovskites in the silica supports increased due to their nanoconfinement, while TiO2 
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bandgap did not change much due to poor nanoconfinement. Calculations on conduction and 

valence bands revealed that best samples for CO2 photocatalytic reduction were the LaFeO3 

(KIT-6, and SBA-15) at 5%, and YFeO3 supported at 5% and 10% wt loading on SBA-15 since 

both resulting materials have bandgaps in the visible range and conduction and valence bands 

straddling the redox potentials for CO2 photocatalytic reduction with water (CO2/CH3OH) 

 

In conclusion, the synthesis of ferrite perovskites nanoconfined on mesoporous silicas SBA-15 

and KIT-6 have been investigated following impregnation with a sol-gel process. The results 

indicate that LaFeO3, BiFeO3, and YFeO3 ferrite perovskites can be incorporated in SBA-15 

and KIT-6 mesoporous silicas. Properties such as specific surface area and UV-vis absorption 

strongly depend on the amount of perovskites used. The samples LaFeO3 (KIT-6, and SBA-

15) at 5% and YFeO3/SBA-15 supported at 5% and 10% were identified as the best candidates 

of the investigated catalysts for CO2 photocatalytic reduction. 
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1. INTRODUCTION 

 

Energy is an indispensable factor for the people, but the most significant problem is that we are 

exploiting large amounts of it. Fossil fuels are an essential help for the production of some 

products such as steel, cement, etc., and nearly 80% of the energy supply of the world is based 

on these fuels.1 The consumption of fossil energy produces a global problem, and it is expected 

to face a severe crisis because of large volumes of production of carbon dioxide (CO2).
2  

 

The supply of secure, clean and sustainable energy is the most significant challenge that the 

people face in the 21st century. However, unlike the power generation, it is not possible to 

substitute renewable energy sources for fossil fuels to reduce emissions such as CO2. These 

emissions are mostly accumulating in the atmosphere, although the future effects of these 

emissions are still uncertain. Among renewable energy resources, solar energy is by far the 

most significant exploitable resource. It constitutes the primary power source on earth 

providing more energy in one hour than all the renewable energy produced in one year. 

 

Solar fuels are compounds that have captured and stored solar energy in chemical energy. One 

example of this is the natural photosynthesis, where the sun is used as energy to carry out some 

useful reactions.3 The process of natural photosynthesis is a combination of water oxidation 

and carbon dioxide reduction (or CO2 fixation) reactions under bright and diffuse light 

conditions by which plants convert CO2 of the atmosphere and water accompanied with oxygen 

(O2) and other carbon products.4  

 

Artificial photosynthesis only mimics the activity and the use of CO2 with the use of 

semiconductors, and water to produce fuels such as hydrogen. Research into artificial 

photosynthesis processes have increased in recent years due to the problems of global warming 

and decreasing of fossil fuels reserves.5 The challenge to reduce costs compared with fossil 

energy as the materials need to be very inexpensive to make a solar based process economical.  

 

This Mphil focusses on the preparation of new materials which can be employed in 

photoreduction to convert CO2 into solar fuels. Two mesoporous silica supports were selected 

due to their inert and mechanically high stability as well as high in the surface area and large 
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pore size. The selection of different semiconductors (called perovskites) was studied to 

incorporate into the matrix of the silica support at different amounts.  

 

Techniques such as N2 physisorption and X-Ray diffraction were realized to determine the 

physical and textural properties of these materials. UV-visible spectroscopy was performed as 

well to learn the bandgap of the samples and to obtain an idea about the probable products to 

achieve considering the redox potentials of CO2 and the band edges. 

 

The specific aims of this MPhil are: 

 

• Develop new materials along the use of two mesoporous silica supports (SBA-15 and 

KIT-6) for using in the photoreduction of CO2 into solar fuels (CH3OH).  

• Study of different perovskites (LaFeO3, BiFeO3, YFeO3, and AlFeO3) at various 

amounts (5%, 10%, and 20%) inside the silica support. This will help to determine the 

final product and to obtain a better catalytic performance.  

• Perform characterization to study the physical and textural properties of the materials 

such as N2 adsorption-desorption, X-Ray diffraction (XRD), and UV-visible. 

• Analyze and compare the results with the properties of TiO2 catalyst. 
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2. BACKGROUND 

 

2.1. Carbon dioxide (CO2) 

 

Carbon dioxide (CO2) is a gas formed by a central carbon and two atoms of oxygen, (figure 1) 

where the molecules are covalently bonded (O=C=O). Among its physical properties include 

non-flammable, colorless, odorless gas, acidic odor, density around 1.98 kg/m3, and its 

molecular weight is 44.01 g/mol.6 

 

 

Figure 1. CO2 (Carbon dioxide) structure, oxygen atoms are in blue bond to the grey circle (carbon)  

 

The amount of CO2 has been increasing in recent years due to the growing emissions from 

fossil fuel combustion. Emissions of this gas have accelerated activities to convert it as a carbon 

source for the production of fuels and chemicals.7 There are three approaches to reduce CO2 

emissions. 1) efficient use of carbon-based power sources, 2) use of alternative carbon-free 

energy source and 3) use of a post-treatment carbon-capture technology.8 However, the main 

problem is that CO2 is a very stable molecule due to its thermodynamic stability and kinetic 

inertness. The transformation of CO2 can be achieved via in two routes: 

 

1) The feeding of a high-energy reactant (e.g., H2), unsaturated compounds and 

organometallic compounds. 

2) The supply of external energy such as solar or electrical energy. 

 

In brief, the photocatalysis (PC) and photoelectrocatalysis (PEC) are two highly attractive 

routes for the reduction of CO2. 
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2.2. Carbon capture and storage (CCS) 

 

One step toward reducing CO2 emissions is to capture the carbon dioxide emissions generated 

during combustion and store them in an adequate place. This process of carbon capture and 

storage, sometimes called CCS, has the potential to reduce future world emissions from energy 

by 20%.9 In CCS, CO2 is captured from power plants and then injected underground into 

reservoirs. While it may be critical for the continued use of fossil fuels in a carbon-constrained 

world, there is a broad political consensus that the global temperature rise should be limited to 

2°C.  

 

The scientific analysis defines that CO2 must start to fall from 2020 onward. However, CCS is 

inevitable if the fossil fuels continued to be burned at more than 10% of all the present rate.  

The combustion of fossil fuels supplies more than 85% of energy for industrial activities and is 

the main greenhouse gas contributor. Coal will provide 28% of the global power by 2030, as 

part of a 57% increase in CO2 emissions. 

 

Although current CCS technology is only in the initial phase, the scale of the ambition to reduce 

CO2 emissions by 20% is massive. Capture technologies allow the separation of carbon dioxide 

from gases produced in electricity generation. This technique can be achieved by one of three 

methods pre-combustion capture, post-combustion capture, and oxyfuel combustion. CO2 is 

then transported by pipeline for storage where millions of tonnes of carbon dioxide are already 

carried annually for commercial purposes.10 This scheme is illustrated in Figure 2. 

 

 

Figure 2. Carbon capture and storage (CCS) process.11 
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2.3. Photocatalytic CO2 

 

Photocatalytic CO2 is known as one of the most favorable renewable energy technologies 

because of the ability to convert carbon dioxide with water into different solar fuels such as 

CH4, HCO2H, and CH3OH. The process consists of the addition of one or more electrons to a 

photoexcited species. However, this technology is still limited by its small solar conversion 

efficiency due to the fast recombination of electrons (e-) and holes (h+), moderate charge 

consumption and the low adsorption of the CO2 at the catalytic site.12 The catalysts such as 

semiconductors improving the photocatalytic reduction of CO2 with water. These 

semiconductors involve several main steps in the CO2 photoreduction with H2O (Figure 3).13,14 

 

 

Figure 3. Schematic illustration of the mechanism of reduction of CO2 with H2O on a semiconductor.15 

 

1) Electrons (e-) and holes (h+) pairs are generated when the semiconductor 

photocatalyst is irradiated by the energy of a light source that it is equal or greater 

than the band-gap energy (Eg) of the utilized material.  

2) The band-gap excitation (photoexcitation) leads to the formation of e- in the 

conduction band (CB) and h+ in the valence band (VB). 

3) After photoexcitation, the electron-hole pairs should be separated partially, and be 

transferred to redox active species across the interface and minimize electron-hole 

recombination. A significant fraction of e- and h+ pairs recombine together with the 

energy being released in the form of heat or photons. 

4) Once e- and h+ are created, they can migrate to the surface and be trapped at the trap 

sites or recombine at the surface of the semiconductor. 
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5) Simultaneously, H2O is oxidized by the h+ to produce O2 and e- could migrate to 

the surface and reduce CO2 to solar fuels if surface adsorbates possess a redox 

potential appropriate for a thermodynamically allowed reaction. 

 

Reduction of CO2 is an ascending reaction where CB and VB of the photocatalyst should 

straddle the reduction potential of CO2 and the oxidation potential of water respectively. A 

higher CB edge relative to the reduction potential of CO2 facilitates the transfer of electrons 

from CB to CO2 (vacuum level). A lower VB edge relative to the oxidation potential of water 

helps the transfer of holes from VB to water.  

 

If a CO2 photocatalyst CB and VB straddles the redox potentials of CO2 and water, under the 

irradiation of light, the removal of electrons from VB to CO2, as well from the water to VB are 

thermodynamically favorable. Electrons in CB reduce CO2, whereas holes in VB oxidize water 

to oxygen. The formal reduction potentials of the reactions regarding thermodynamics with the 

photoreduction of CO2 and H2O versus normal hydrogen electrode (NHE) are given in Table 

1. 

 

Table 1. CO2 Reduction potentials 

Reaction 𝑬𝒐 (𝑽) 𝒗𝒔 𝑵𝑯𝑬 (𝒑𝑯 = 𝟕) 

𝑪𝑶𝟐 + 𝟐𝑯+ + 𝟐𝒆− → 𝑯𝑪𝑶𝑶𝑯 

𝑪𝑶𝟐 + 𝟐𝑯+ + 𝟐𝒆− → 𝑪𝑶 + 𝑯𝟐𝑶 

𝑪𝑶𝟐 + 𝟒𝑯+ + 𝟒𝒆− → 𝑯𝑪𝑯𝑶 + 𝑯𝟐𝑶 

𝑪𝑶𝟐 + 𝟔𝑯+ + 𝟔𝒆− → 𝑪𝑯𝟑𝑶𝑯 + 𝑯𝟐𝑶 

𝑪𝑶𝟐 + 𝟖𝑯+ + 𝟖𝒆− → 𝑪𝑯𝟒 + 𝟐𝑯𝟐𝑶 

-0.58 

-0.53 

-0.48 

-0.38 

-0.24 

 

From a thermodynamic view, the creation of methane and methanol are more favorable in CO2 

reduction due to these reactions take place at lower potentials. However, the kinetic makes 

methane and methanol formation harder than carbon monoxide. Moreover, the 2-8 electrons 

and protons reactions to obtain the desired products are difficult. 

 

UV radiation commits less than 4% while visible light accounts for more than 40% of sunlight, 

from 400 nm to 800 nm (3.12 – 1.56 eV).16 A semiconductor should have a sufficient bandgap 

to fit the spectral absorption of visible light. As well, it needs to have its conduction band above 

the reduction potential of CO2 facilitate the electron transfer. The measurement of the bandgap 
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of materials is essential in the semiconductor. Bandgap energy is significant in insulators (> 4 

eV) but lower for semiconductors (< 4 eV). 

 

The photocatalysts involve photoreactions which occur at the surface of a catalyst. These 

reactions can be carried out in two ways: 

 

1. When the initial photo-excitation takes place in an adsorbate molecule, which then 

interacts with the ground state of the catalyst substrate, the process is referred to a 

catalyzed photoreaction. 

2. When the initial photoexcitation takes place in the catalyst substrate, and the 

photoexcited catalyst then interacts with the ground state adsorbate molecule, the 

process is a sensitized photoreaction.17 

 

Annual anthropogenic CO2 emissions from fossil fuel combustion have a current level of CO2 

in the atmosphere about 400 ppm, approximately 43% higher than the level recorded in pre-

industrial times. CO2 reduction efficiency is generally low, many of the carbon products 

detected may not have originated from photoreduction. Although its low efficiency, artificial 

photosynthesis of CO2 to fuel has become an attractive route due to its economically and 

environmentally friendly behavior. From an economic and environmental point of view, 

recycling of CO2 to fuels such methane under solar irradiation mimics natural photosynthesis 

without using extra energy and there is no destructive effect on the environment. 

 

This technology has some difficulties and barriers due to the non-effective catalysts, low yield, 

and selectivity. But, the approach of the semiconductor photocatalysts offers great potential for 

transforming earth-abundant materials into high energy density chemical via complex 

photoreactions that harness solar photons represents an exciting opportunity. This is, therefore, 

a far more attractive approach from a sustainability perspective.18,19 

 

2.4. Band theory 

 

The description of the states of electrons in an atom is according to their four quantum numbers. 

When an atom is combined to form substances, the orbitals merge providing a high number of 

energy levels for electrons. When large numbers of particles are close to each other, the 
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available energy levels form a nearly continuous band where the electrons may move (see 

Figure 4) 

 

 

Figure 4. Description of bandgap 

 

In some substances, a considerable gap remains between the highest band containing electrons 

(called valence band) and the band with no electrons (called conduction band). These materials 

that fall within the category of semiconductors have a narrow gap between the valence and 

conduction bands, where an amount of energy is needed to remove an electron from the valence 

band to a higher unoccupied band. So the electronic band structure of solids can explain the 

distinction between metals, insulators, and semiconductors.20 The difference of electronic band 

structures of the three solids is shown in Figure 5. 

 

• Metals: They are excellent conductors since the valence and conduction bands overlap 

in metals, little energy removes an electron. 

• Insulators: The large gap between the valence and conduction bands of an insulator 

requires high energy to remove an electron. Thus, insulators do not conduct.  

• Semiconductors: They have a small non-overlapping gap between the valence and 

conduction bands. Pure semiconductors are neither excellent insulators nor conductors. 

Semiconductors are semi-conductive. 

 

An important parameter in the band theory is the Fermi level, the top of the available electron 

energy levels at low temperatures. The position of the Fermi level with the relation to the 

conduction band is a crucial factor in determining electrical properties. 
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Figure 5. The difference of electronic band structure of solids.20 

 

2.5. Semiconductor 

 

A semiconductor has a favorable combination of electronic structures, light absorption, and 

charge transport because its energy gap (bandgap) exists between the top of the filled (valence 

band) and the bottom of the vacant (conduction band). The semiconductor can form 

photoinduced electrons and holes upon irradiation, a phenomenon governed by the band energy 

position.21 

 

There are two types of semiconductors: p-type and n-type.22 

 

• The p-type semiconductors have a significant hole concentration higher than electrons. 

The term p-type refers to the positive charge of the hole where the holes are majority 

carriers. In these, the impurity of some trivalent element (such as boron, aluminum, 

Indium, Galium, etc.) can accept one electron (acceptor semiconductor). For these 

semiconductors, the Fermi level lies closer to the VB than the CB. 

 

• The n-type semiconductors have a larger electron concentration compared to that of 

holes. The term n-type comes from the negative charge of the electron. In these 

semiconductors, the impurity of some pentavalent element such as Phosphorus, 

Bismuth, etc., in this case, the impurity atom donates one electron, (donor 

semiconductor). In this case, the Fermi level is higher and lies closer to the CB than the 

VB. 
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2.6. Photocatalytic supports 

 

In addition to semiconductor catalysts, some porous materials such as zeolites, silica 

mesoporous can also be utilized in photocatalytic reactions. Such porous materials with a high 

surface area, tunable porosity, and dimensionalities are suitable for capturing small CO2 or H2O 

molecules in their cavities.23,24 The incorporation of CO2 reduction sites into these porous 

materials is a promising strategy to provide a suitable catalyst structure, in which CO2 can be 

efficiently adsorbed, activated and reduced by photogenerated electrons. 

 

Ikeue et al.25 studied a series of CO2 photoreduction reactions over 3D dimensional support 

containing highly dispersed TiO2. They incorporated TiO2 species into the framework of the 

support by hydrothermal synthesis and performed CO2 photoreduction with H2O to produce 

CH3OH in the gas phase over the obtained catalysts. The previous results are because of the 

formation of charge transfer excited complexes of Ti3+ -O- under the UV irradiation on the 

isolated TiO2 species in the framework.  

 

These results indicated that the structure with large pore sizes having a three-dimensional 

channel structure was suitable not only for achieving high dispersion state of the TiO2 species. 

But also, for achieving a large amount of adsorbed CO2 and a high efficiency to generate 

CH3OH. The increase of CO2 photoreduction activity was ascribed to the larger pore size and 

the resulting higher dispersion of TiO2 species in Ti-SBA-15. The utilization of mesoporous 

materials (MCM-41, SBA-15, KIT-6, etc) for highly dispersed TiO2 species leads to relatively 

high efficiency for CO2 photoreduction into CH3OH, which makes them promising candidates 

for CO2 photoreduction.26 

 

It is known that light harvesting process is strongly dependent on the surface of the 

photocatalyst. It usually improves through the incorporation of macroporous or mesoporous 

architectures for the utilization of light. The surface area of a photocatalyst can be enhanced by 

dispersing in a porous support. The support moreover can define the potential, chemistry of 

immobilization strategies and the control of the surface reactivity.  

 

Mesoporous materials are one of the types of porous materials according to IUPAC with a pore 

diameter in the range of 2-50 nm. These mesoporous supports are made up of pore walls, which 
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have ordered arrays of uniform nanochannels and high surface area (600-1300 m2/g).27 A 

transparent porous silica material is an extraordinary support for TiO2 photocatalysts, due to its 

low cost, availability, mechanical robustness and the high surface area. It can improve 

photocatalyst dispersion and increase adsorption of CO2 and H2O on the catalyst.28 Silica 

consists of entirely condensed silanoxy bridges (=Si-O-Si=) in the framework and silanol 

functional groups on the surface.29 Pure mesoporous silica can be found in three structure types: 

 

• Hexagonal (1D regular hexagonal of mesopores channels) 

• Lamellar (2D system of silica sheets interleaved) 

• Cubic (3D bicontinuous network of pores) 

 

The mesoporous materials are based on the arrangement of pores, ordered or disordered, in an 

amorphous framework. This arrangement varies from 1D pores to 3D interconnected pores. 

Ordered mesostructures can be defined by space group symmetry, whereas disordered 

mesostructured have no such notation. The characteristic properties such as porosity and 

stability of disordered materials are comparable to those of ordered structures.  

 

One question to resolve is what mesostructured material is superior 2D or 3D? This is difficult 

to answer due to the priority selection with respect to the characteristic of the pore. Among the 

most used and studied mesoporous supports made up of silica are SBA-15 and KIT-6, these 

supports are described below.30–32 

 

2.6.1. SBA-15 

 

SBA-15 (Santa Barbara amorphous) is a mesoporous silica material that has cylindrical pores 

ordered in a hexagonal structure where nanorods are interconnected by the network.33 The pores 

are responsible for the high surface area that facilitates the diffusion of the reactants through 

the structure.34 See Figure 6. 
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Figure 6. Structure of SBA-15 

 

The silica structure is not a functional catalyst. It is a host or template for catalysts with 

nanoparticles or for adding functional groups to the silica structure. Its key features are: 

 

• It can reach pore sizes of 30 nm in two dimensions 

• It exhibits a wall thickness of 3 to 7 nm 

• The length of the pores varies from 200 nm. 

• Its wall thickness improves the thermal and hydrothermal stability in comparison with 

MCM-41 and related materials. 

• Its surface area is around 800-1500 m2/g more than the conventional TiO2. 

 

Yang et al.35 studied the semiconductor TiO2 embedded in the mesoporous SBA-15 for 

photocatalytic activity. Their studies showed much higher photodegradation ability than pure 

commercial TiO2 (P-25). Experimental results indicated that the photocatalytic activity of 

titania/silica mixed materials depends on the adsorption ability of the composite and the 

photocatalytic activity of titania. 

 

2.6.2. KIT-6 

 

KIT-6 has a three-dimensional cubic la3d symmetry with a complex pore geometry and two 

sets of independent channels which are separated by an amorphous silica wall as illustrated in 

Figure 7.36,37 Due to its unique properties related to a 3D channel network, it provides highly 

opened spaces for direct access to guest species without pore blockage and immobilization of 

large molecules.38 Its main features are: 

 

• It consists of ellipsoidal cages that are 3D connected by smaller cage connecting pores. 
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• It possesses large readily tunable pores with thick pore walls. 

• High hydrothermal stability. 

• High surface area (between 600 to 800 m2/g) and a large pore volume. 

 

 

Figure 7. Structure of KIT-6.36 

 

2D ordered porous materials possess narrow pore size distribution, tunable porosity, high 

surface area, and a broad range of molecular size for adsorption and for active compound 

release properties. Meanwhile, 3D disordered porous materials are ruled by the randomness, 

connectivity, and tortuosity of the pore space. Both materials use cost-effective silica source 

that would be the best choice in the synthesis of large pore mesoporous silicas for industrial 

application.39 

 

2.6.3. Synthesis of mesoporous silica support 

 

Mesoporous silica is obtained by the addition of an organic template surfactant to the synthesis 

of SiO2. The synthesis of the mesoporous silica is called sol-gel method because the solution 

(sol) is a colloidal system where micelles are formed by surfactants dispersed in an aqueous 

solution. A surfactant is an amphiphilic molecule that is composed of hydrophilic and 

hydrophobic parts. The hydrophilic component (lipid soluble in water) is sometimes a 

hydrocarbon chain that helps to form micelles. 

 

Several surfactants can be used in the mesoporous silica synthesis as cetyltrimethylammonium 

bromide (CTAB) and Pluronic 123 (commonly named P123). The use of block copolymers is 

one of the most promising routes regarding high degree of ordering and resulting in a material 

with excellent hydrothermal stability. Because of their rich phase behavior, low cost and non-

toxic degradation.40 Pluronic polymers (P123) consist of a hydrophobic polypropylene oxide 
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block (PPO) surrounded by two hydrophilic polyethylene oxide blocks (PEO) and can be 

written as (PEO)X-(PPO)Y-(PEO)X. The hydrophilic polymers favor the hexagonal phases or 

even cubic of the most hydrophilic polymers with long PEO chains.41 The formation of SBA-

15 is proposed in three stages, the micellar formation, hydrothermal process, and calcination.42 

 

• Micellar formation 

 

In the initial stage of the synthesis, the direct structure agent (P123) is dissolved in aqueous 

media to give a micellar solution. The micelles are spherical with a core with PPO chains and 

a corona consisting of PEO groups (as shown in Figure 8). All this is described as the core-

corona spherical model. 

 

 

Figure 8. Micellar formation.43 

 

Although the PEO chains are hydrophilic to ensure an amphiphilic character, the PEO corona 

is less polar; this results in a weak interaction between the O-Si-O groups and the PEO groups 

of the micellar corona.44 

 

Organosilicates such as tetraethyl orthosilicate (TEOS) are used as the source of silica. When 

it interacts with the water media, it hydrolyzes into silica acid and starts to condense and 

polymerize at 35 °C forming a silica network. The reason of this is the attraction between the 

silica and PEO. When the silica oligomer has grown, they have little contact with the micellar 

corona to cause the adsorption of it. TEOS is better to put before the emulsion to avoid the 

formation of free silica spheres. 
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• Hydrothermal treatment 

 

The aim of the hydrothermal treatment is the formation of the hexagonal structure which begins 

when a white precipitate is created. This effect is due to the consolidation of the silica network 

by incubation of particles at a higher temperature (around 80 °C). 

 

After the addition of silica, the micelles core-corona increases in electron density and the 

arrangement of the surfactants micelles create a mesosphere whose structure is determined by 

weak forces. The pluronic micelles join the adsorbed silica into flocs of micelles.45 Next, the 

silica polymer disperses to destabilize the flocs, and they are associated with solid particles. 

Finally, there is a transition from Pluronic micelles into a cylindrical shape (rods) that rearrange 

into a hexagonal phase due to the attraction between silica and PEO that originates from silica 

polymerization.46 

 

As time progress, the core-corona interface is reduced and increase silica polymerization in this 

region. The polymerization continues in the corona region where the polymerization starts and 

close to the core and then propagates out of the zone. When the temperature increases, the 

mesopores size, and the surface area increase in size and the microporosity decrease. After the 

surfactants are eliminated, an amorphous silica structure is obtained, and the intrawall porosity 

grows in size as result of PEO from silica. 

 

• Calcination 

 

The calcination of the particles around 500°C for 6 hours removes the organic polymer 

components (surfactants), and the silica network is enhanced. At this stage, the hexagonal 

structural retains its size. Above 300 °C, the water from the structure is released, the rest of the 

organic polymers are burned out, and the hexagonal framework decreased as we can see in 

Figure 9. Finally, the mesopore volume decreases indicating the micropores are emptied from 

surfactants.47 Upon the removal of the polymer, smaller pores (<2 nm) inside the silica wall are 

created as a cast of the PEO part. These small pores are called intrawall pores, and they connect 

to the primary mesopores, that is the reason that SBA-15 is a bicontinuous material.48 
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Figure 9. Surfactant removal from ordered mesoporous silica materials by calcination. 

 

2.7. Titanium dioxide (TiO2) 

 

Titanium dioxide (TiO2) is the most promising material for photocatalytic activities due to its 

chemical stability, low-cost and no risks to the environment.49 TiO2 is an n-type semiconductor 

existing in four polymorphs forms: anatase (tetragonal), brookite (orthorhombic), rutile 

(tetragonal) and TiO2 (monoclinic) as illustrated in Figure 10. Thermodynamic calculations 

predict that rutile is the stablest phase at all temperatures.50 

 

 

Figure 10. Crystal structure of anatase, rutile, and brookite.51 

 

Several strategies have been used to improve the absorption ability of an inorganic 

photocatalyst, especially on TiO2 since it is the most widely studied photocatalyst. They are 

described in the following paragraphs.  

 

2.7.1. Metal deposition 

 

The most employed modification method is to load nano-sized metals at TiO2 surface by 

photodeposition impregnation. The surface metal nanoparticles significantly affect the 
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photochemical properties of TiO2 support. Various metal nanoparticles such as Pt, Au, and Ag 

have been used in TiO2 photocatalyst where Au and Ag have often been coupled to TiO2 to 

utilize the property of localized surface plasmonic resonance (LSPR). This LSPR is the 

collective free electron charge oscillation in the metallic nanoparticles that are excited by light; 

this phenomenon strongly depends on particle size, shape, and local dielectric environment. 

See Figure 11. 

 

 

Figure 11. Semiconductor-metal nanocomposite system.52 

 

Ku, Y et al., studied metallic platinum on TiO2 particles. The dispersion of the metallic platinum 

was uniform, and it did not alter the morphology of the TiO2 particles. However, the absorbance 

of the Pt/TiO2 catalyst for light with wavelength more than 400 nm was much improved by the 

addition of metallic platinum. The decomposition and mineralization of acetone increased with 

the UV light intensity for experiments conducted in the photoreactor coated with Pt/TiO2. The 

conclusion in this study revealed that the activity of TiO2 by the deposition of a metal  (Pt) 

increased due to the increase of electron transfer rate to the oxidant allowing visible light 

absorption and providing defect states in the bandgap.53 

 

2.7.2. Doping 

 

Doping with elements has been pursued to sensitize photocatalysts with a full bandgap toward 

visible light absorption. Doping with metal ions (Fe3+, Zn2+, etc.) and non-metal ions (C, N, S, 

B, etc.) have already been widely studied. This method does not only retard the fast charge 

recombination but also enable visible light absorption by creating defect states in the bandgap. 

CB electrons or VB holes are trapped in the defect sites inhibiting the recombination and 

increasing the charge transfer.54 The mechanism of TiO2 doped is illustrated in Figure 12. 
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Figure 12. Photocatalyst mechanism of TiO2 doped under visible light irradiation.55 

 

2.7.3. Surface charge modification 

 

The surface interaction with oxide semiconductors can influence the photocatalytic reaction 

rate and mechanism. Metal oxides such as silica, alumina, and zirconia are the standard 

inorganic surface charge modifiers.  

 

Shariq et al. examined the effect of the photocatalytic degradation of aqueous pollutants using 

SiO2-TiO2 photocatalyst.56 The results indicated that the surface properties of TiO2 modified 

with silica-enhanced the degradation of cationic contaminants such as amines. These results 

were possible due to the increase of surface area and the introduction of Si-O groups which 

increased the adsorption on TiO2. It only worked with cationic pollutants, not with anionic. 

These results also showed that a lower pH value (pH=6→3) affects the mobility of suspended 

TiO2 particles. 

 

2.7.4. Dye-sensitization of TiO2 

 

Coupling of organic dyes to the surface of TiO2 has attracted much attention as a sensitization 

method for visible light utilization. During visible light irradiation, excited electrons are 

transferred from the dyes to the semiconductors. Advantages of the dye-sensitized 

photocatalytic reactions are the fast injection of electrons to the semiconductor and slow 

backward reaction. This response occurs only from the dye molecules adsorbed on the surface 

of the photocatalyst.57 See Figure 13. 
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Figure 13. Mechanism of dye-sensitized semiconductor Photocatalysis. 

 

Trenczek-Zajac et al. investigated a coupled system by mixing TiO2 with CdS and its 

photocatalytic activity in UV-vis using methyl orange (MO).58 It was demonstrated that small 

amount of CdS (5 mol%) or TiO2 (5 mol%) in the nanocomposite improves the photocatalytic 

properties. The sensitization can be explained by the electron transfer from CdS grains to TiO2 

and the extended absorption of visible light. The highest photocatalytic activity under exposure 

to UV-vis light was obtained for the composition of 5 mol% TiO2 and 95 mol% CdS. 

 

TiO2/Cds samples exhibited more desirable photocatalytic activity in visible light when 

compared to pure TiO2 and CdS. These improved photocatalytic properties of the couple 

semiconductors are related to efficient charge transport between TiO2 and CdS. The results 

reported the photodegradation of methyl orange in the presence of various TiO2/CdS 

nanocomposites. 

 

2.8. Perovskites 

 

A perovskite is a type of mineral composed of calcium, titanium, and oxygen in the form of 

CaTiO3. All materials with the same crystal structure are named perovskites (ABX3). In this 

structure, A are positive ions at the corners of the unit, B are negative ions occupying the face 

position and X are oxygen.59 Oxide perovskites form large families among the structures of 

oxide compounds. Their essential features are exceptional thermal stability, electronic 

structure, ionic conductivity, electron mobility, redox behavior and a wide range of Ferro, piezo 

and electrical properties.60,61 The perovskite structure is illustrated in Figure 14. 
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Figure 14. Schematic drawing of the crystal structure of perovskite.62  

 

Several oxide perovskites have been developed with visible light activity. Various strategies 

have been employed for enhancing the photocatalytic performance emphasizing the advantages 

and challenges offered by these materials.63 In the multiferroic materials, the electric and 

magnetic properties are mutually controlled, which enables their use in potential devices such 

as sensors and data storage.64  

 

2.8.1 Ferrite Perovskites 

 

Efficient energy conversion and storage often requires perovskites with a set of specific 

properties concerning their electronic, physical, and chemical natures. These requirements are 

so complex that more often than not we fail to find a candidate that can satisfy all the needs 

simultaneously for the CO2 photoreduction. As a result, the lack of suitable materials has indeed 

become an important challenge in energy research. 

 

The most commonly encountered form of iron oxide in nature, hematite is a semiconductor 

with and an almost ideal bandgap for CO2 photoreduction. Hematite (Fe2O3) stands out as a 

suitable candidate due to due to its reported bandgap of 2.0-2.2 eV.65,66 Moreover, hematite and 

other iron oxide compounds have known shortcomings such as short exciton diffusion length, 

low electron conductivity, and lower conduction band edge potential.67 However certain ferrite-

based perovskites have shown good photocatalytic activities, circumventing the shortcomings 

seen in binary iron oxides.68 

 

This class of binary iron oxides compounds involves MFeO3 perovskite-ionic ferrites which 

have a mixed electronic-ionic conductivity.69 Some of the most important are: LaFeO3, BiFeO3, 

YFeO3, and AlFeO3, which are described in the following sections. 
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2.8.1. Lanthanum Ferrite (LaFeO3) 

 

LaFeO3 is an essential p-type semiconductor with a narrow bandgap of 2.65 eV.70 It has 

demonstrated excellent photocatalytic activity under visible light irradiation (Figure 15). Its 

crystal structure is orthorhombic, and its lattice parameters are a=5.556 Å, b= 5.565 Å, and c= 

7.862 Å.71 LaFeO3 is well-known as a visible light photocatalytic active due to its unique 

optoelectronic property.72 

 

Liu et al., prepared materials of the type LaMeOx (Me= Zn, Co, and Fe) supported on SBA-15. 

They analyzed their performance in the H2S removal. The results showed that the hexagonal 

arrangement of SBA-15 was not wrecked. They tested in eight successive sulfidation cycles, in 

which the materials LaFeO3/SBA-15 exhibited better performance and stability in H2S than 

La2ZnO4 and La2CoO4 supported on SBA-15.73 This experiment concluded that LaFeO3 did not 

destroy the arrangement of mesoporous materials. 

 

 

Figure 15. Schematic drawing of the crystal structure of perovskite LaFeO3 

 

2.8.2. Bismuth Ferrite (BiFeO3) 

 

BiFeO3 is an attractive rhombohedral perovskite material because of its multiferroic 

antiferromagnetic properties (Figure 16).74 It is getting a lot of attention due to its narrow 

bandgap and photocatalytic activity under visible light.75 The bandgap of BiFeO3 is around 

3.00 eV for crystals and 2.67 eV in thin films. It is in the visible region making it promising to 

harvest the solar energy. The band gap has been shown to be influenced by the size and 

morphology of the crystals in individual cases.76,77  
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Figure 16. Schematic drawing of the crystal structure of perovskite BiFeO3.78 

 

Gao et al. designed a BiFeO3 photocatalyst by sol-gel method with a tunable size and a suitable 

bandgap. This material was used in the degradation of methyl orange (MO) under visible light. 

It showed a high visible light response due to the small bandgap (2.1 eV). It was concluded that 

the particle size of BiFeO3 might be the primary factor influencing the photocatalytic efficiency 

and the light response, although more research is necessary to improve the BiFeO3 

photocatalytic performance.75 

 

2.8.3. Aluminium Ferrite (AlFeO3) 

 

AlFeO3 is an orthorhombic type perovskite material, which retains collinear ferromagnetic 

structure.79 This perovskite also offers the advantage of magnetic recovery of the particles 

which are useful in practical applications. The lattice parameters of AlFeO3 are a= 4.909 Å and 

c= 13.393 Å. 

 

2.8.4. Yttrium Ferrite (YFeO3) 

 

YFeO3 is an orthoferrite material with a distorted perovskite structure. YFeO3 is 

thermodynamically unstable at high temperatures which makes the synthesis of pure perovskite 

a challenging task.80 This perovskite has been widely studied for its magnetic and magneto-

optical properties and used in the gas sensor, environmental applications, and catalysis, this 

material is illustrated in Figure 17. 
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Figure 17. Schematic drawing of the crystal structure of perovskite YFeO3.81 

 

Diez-Garcia et al. examined the behavior of YFeO3 thin films under illumination. They reported 

two methods consisting of a deposition of nanoparticles synthesized by ionic liquid route and 

spin coating of a sol-gel precursor. Both approaches created highly textured films with an 

orthorhombic phase and direct bandgap transition at 2.45 eV. XPS confirmed a Fe3+ oxidation 

state in both films with a surface composition of 70:30 Y: Fe. Both materials exhibited a 

response to light, producing hydrogen in alkaline solutions with a potential of 1.05 V.82 This 

behavior confirms the use of YFeO3 for photoreduction due to its bandgap and excellent answer 

under illumination. 

 

2.9. CO2 reaction 

 

2.9.1. Adsorption and activation of CO2 

 

The study of the adsorption and activation of CO2 is the primary step for improving the 

efficiency of CO2 reduction.83  

 

Xin Li et al. studied the adsorption of CO2 on heterostructure CdS (Bi2S3)/TiO2 nanotubes 

(TNT) photocatalysts.84 CdS and Bi2S3 were used as sensitizers and applied to modify TNT 

photocatalyst. This research indicated that Bi2S3 and CdS modification can decrease the surface 

area and the amount absorbed of CO2, but significantly increase the visible light absorption 

capability and the photocatalytic activity of TNT. Moreover, the amounts adsorbed of CO2 on 

TNT-Bi2S3 are higher than those of TNT-CdS.  

 

After the surface modification, the adsorption capacities of the modified TNT for CO2 were 

decreased. It is also worth noticing that the higher adsorption capacity of CO2 is nearly in 
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agreement with the increase of surface area of the sample. This concluded that the surface area 

plays a crucial role in the enhancement of CO2 adsorption. CO2 adsorption ability and charge 

carrier separation improves when the surface area increases and it leads to the formation of 

partially charged species. This phenomenon happens through interaction with surface atoms 

where the high surface area is suitable for capturing small CO2 or H2O molecules in their 

cavities. This effect facilitates the CO2 adsorption that leads to the formation of charged species 

𝐶𝑂2
𝛿● with interactions with the surface.57  

 

The role of the mesoporous silica is a very important material because it is applied as adsorbent 

and support. The molecular properties of silica are strongly affected by the nature of their 

surface sites. 

 

2.9.2. CO2 adsorption mode 

 

Adsorption is not only a very important industrial process but also a powerful methodology 

for the characterization of the surface of materials. The study of the interaction of carbon 

dioxide with the surface of a group of well-characterized porous, amorphous, ordered, and 

crystalline silica.85 

 

Metal complexes, metal oxides, and silica support are known to activate CO2 and form a variety 

of activated CO2 complexes.86 CO2 exhibits different types of coordination modes on the 

surface of the catalyst (oxygen and carbon coordination). Figure 18 shows the different ways 

that the CO2 can be adsorbed. 

 

 

Figure 18. The structures of adsorbed CO2 on catalysts. 
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CO2 is activated trough carbon type coordination on organo-functionalized SBA-15 materials. 

These carbonite species react with adsorbed water or surface hydroxy groups forming product 

carbonates, bicarbonates or formats. In the carbon coordination mode, the anchoring of the 

carbon atom in the CO2 molecule on the silica surface makes difficult the hydrogenation. A 

hydrogen atom attacks one oxygen in the absorbed molecule to form a carboxyl species 

(●COOH). 87  This attachment is more favored when CO2 is bound to the surface by the carbon 

atom because the cleavage of the C-O occurs first. The adsorbed CO can efficiently desorb 

from the surface of the catalyst with a weak CO2 adsorption.88 

 

The adsorbed CO can accept additional electrons to form carbon radicals and subsequently mix 

with up to four H radicals If the catalyst has a moderate adsorption strength.89 The adsorbed 

CO can be hydrogenated to form various hydrocarbon products, the equations of this mode are 

presented below. 

 

(a) ●𝑂 = 𝐶 = 𝑂𝑎𝑑𝑠 − + 𝐻+ →  ●𝐶𝑂𝑂𝐻𝑎𝑑𝑠 

(b) ●𝐶𝑂𝑂𝐻𝑎𝑑𝑠 +  𝑒− →  𝐶𝑂𝑎𝑑𝑠 + 𝑂𝐻−. 

 

2.9.3. Surface defects 

 

It is widely accepted that the surface defects of nanocatalysts serving as an active site play a 

decisive role in the adsorption and reactivity of catalytic reactions. The formation of abundant 

and specific defect sites on the surface of supported nanocatalysts is a promising approach for 

tailoring the surface morphology and electronic structure to enhance catalytic activity.  

 

Abundant surface vacancy clusters serve as active sites. The silica support with surface defects 

has been reported by Azsis et al.90 The high activity of Ti/SBA-15 is due to the presence of 

both intra- and interparticle porosity which led to a high concentration of basic sites and oxygen 

vacancy sites. The presence of defect sites and oxygen vacancies in MSN (mesostructured silica 

nanoparticles) is responsible for the formation of surface carbon species, while Ti sites 

dissociated hydrogen form atomic hydrogen. The surface carbon species then interacted with 

an atomic hydrogen to form methane. 
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The nature of the support plays a crucial role in the high activity of CO2. Single metal oxides 

and mesoporous materials possess different characteristic and show good potential to be used 

as supports for Ti catalyst. 

 

2.9.4. Reaction mechanism 

 

Although the CO2 reaction is a simple reaction, its mechanism appeared to be difficult to 

establish. Presently, there are still arguments on the nature of the intermediate compound 

involved in the process and on the methane formation scheme. 

 

Firstly, CO2 and H2 are absorbed onto metal sites, followed by dissociation to form CO, O and 

H atoms, and migration onto the MSN surface.91 The CO then interacted with oxide surfaces 

of the MSN to form bridged carbonyl and linear carbonyl. Bidentate formate was also formed 

through the interaction with atomic hydrogen. Meanwhile, the O atom split over onto the 

surface of the MSN and was stabilized in the oxygen vacancy site near the metal site. The 

adsorbed oxygen then reacted with atomic hydrogen to form hydroxyl on the MSN surface in 

which a further reaction with another atomic hydrogen formed a water molecule. 

 

Finally, the adsorbed carbon species was further hydrogenated to methane and another water 

molecule.92 The proposed mechanism process is illustrated in Figure 19. The oxygen vacancies 

can serve as reactive surface sites because the CO2 species are generated as result of electron 

gain by CO2. The regeneration of oxygen vacancies in the photocatalysts is therefore still a 

problem that needs to be solved.93  

 

 

Figure 19. Dissociation of CO2 supplies an oxygen atom.94 
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2.9.5. Conditions of CO2 reaction 

 

The two typical reaction modes that have been utilized for the photocatalytic reduction of CO2 

with H2O are solid-liquid and solid-vapor. In the solid-liquid mode, the photocatalyst is 

immersed in an aqueous solution where CO2 and the solid-liquid phase interacts occurring the 

photoreaction. But, there are several problems related to the interaction between CO2 and H2O 

in the liquid phase such as the low solubility of CO2 in H2O. In the solid-gas interaction, the 

catalyst is surrounded by CO2 and H2O vapor.95 

 

The main differences between the two modes are when the photogenerated electrons are 

created, this e- are used for the reduction of H2O to H2 in solid-liquid phase. While in the solid-

gas mode, the same electrons allow the exposure of the catalyst surface to CO2 and reduce the 

formation of H2. The conclusion is that the solid-gas phase is preferably in the reduction of 

CO2. The reaction modes can be illustrated in Figure 20. 

 

 

Figure 20. Reactor for photocatalytic reduction of CO2 with H2O. a) solid-gas mode, b) solid-liquid mode.96 

 

Xie et al. tested the implementation of a reaction mode based on solid-vapor. They found that 

the use of this type of reaction mode increased the selectivity of photogenerated electrons in 

the reduction of CO2 to CO in comparison with the solid-liquid system.96 The primary factor 

was the reduction of H2O to H2 first than carbon fuels. This research confirms that the water 

acts as an electron donor in the system and also the solid-vapor system is better in comparison 

with the traditional method. 

´ 
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2.10. Summary 

 

The aim of this chapter is to know the photocatalytic reduction of carbon dioxide (CO2) as a 

generate valuable chemical method by artificial catalysts to obtain solar fuels such as methane, 

due to the increasing CO2 emissions and the shortage of the fossil resources. An efficient CO2 

photoreduction catalysis involves the combination of catalysts, semiconductor such as TiO2, 

and perovskites. TiO2 is the golden material due to its special characteristics such as a large 

surface area and strong adsorption ability.  

 

To prevent the recombination of e- and h+ pairs mesoporous network structures such Ti 

incorporated SBA and KIT series was reported to enhance the adsorption of the reactive species 

and utilization of the incident light and thereby increase the photocatalytic activity. The 

photoreduction of CO2 over TiO2 via the confined space effect of the ordered mesoporous 

structure not only shows a higher production efficiency of CH3OH than the commercial TiO2 

but also exhibits better stability for CO2 photoreduction. 

 

SBA-15 and KIT-6 have been chosen as support due to their main characteristics such as 

surface areas and large in pore sizes. The beneficial study of the synthesis of the silica supports 

helps to know the optimal conditions (temperature, time of calcination, steps) to have a good 

surface area and large pore sizes. This study and analysis were described in the section 2.6.3.  

 

The perovskite metal oxides have aroused as promising photocatalyst materials to operate CO2 

transformation reactions because of their stable crystal structure, and high catalytic activity. 

The ferrite perovskite material has its native bandgap in the visible region (3.2 eV), so it is 

necessary to expand its position to the corresponding reduction potential to get the desired 

products (CH3OH). One of the methods that I studied in this work to expand the bandgap of 

the semiconductor is to confined in the mesoporous material. Herein, I demonstrated the facile 

synthesis of the silica support, ferrite perovskites, and characterization by various techniques 

(e.g. N2 adsorption-desorption, XRD, and Uv-Vis).  And finally, the study of the reaction 

mechanism and pathways of CO2 reduction, as well as their dependent factors are also analyzed 

and discussed. This is expected to increase the efficiency of the reduction through controlling 

the selectivity towards the CH3OH product. 
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The work done in Eslava group has been: (i) synthesis of SBA-15 and KIT-6 through the 

hydrothermal method and analyzed by N2 adsorption-desorption, XRD, and UV-Vis 

measurement, (ii) Semiconductors (TiO2, LaFeO3, BiFeO3, AlFeO3, and YFeO3) synthesized 

by sol-gel route and analyzed with the same methods as silica supports, and (iii) Synthesis and 

study of confined photocatalysts in the mesoporous silica support at different loadings. 
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3. EXPERIMENTAL METHODOLOGY 

 

3.1. Materials 

The material utilized in this project are:  

 

• Pluronic 123 ([poly (ethylene oxide)-block- poly (propylene oxide)-block- poly (ethylene 

oxide)], (EO20-PO70-EO20, Aldrich) 

• Tetraethyl orthosilicate (99.99% trace metal basis, sigma Aldrich) 

• 1-butanol (99.4%, Sigma Aldrich) 

• Titanium (IV) isopropoxide (97%, sigma Aldrich) 

• 2-Propanol (anhydrous 99.5%, sigma Aldrich). 

• Lanthanum (III) nitrate hexahydrate (La (NO3)3·6H2O), sigma Aldrich 

• Iron (III) nitrate nonahydrate (Fe (NO3)3·9H2O), sigma Aldrich 

 

3.2. Photocatalytic supports 

 

3.2.1. SBA-15 

SBA-15 was synthesized by the hydrothermal method proposed by Zhao et al.97 Pluronic 123 

surfactant was dissolved (4 g) in an HCl 2M solution (8.75 g) and distilled water (120 g) and 

vigorously stirred for 4 h at 35°C. Then, 8.6 g of TEOS (Tetraethylorthosilicate) was added as 

the silica source, and the solution was kept under stirring for 24 h at 35°C. After that, the 

material obtained was transferred to a Teflon-lined autoclave and heated at 90°C for 24 h. The 

product was recovered by filtration, dried at 80°C. To remove P123 and liberate the silica pores, 

heat treatment was performed in air in an oven at 550°C for 6h with a rate of 2°C/min for 

surfactant template removal. 

 

3.2.2. KIT-6 

KIT-6 was synthesized following the process proposed by Kleitz et al.98 6g of Pluronic 123 was 

dissolved in 11.9g of HCl 0.75 M solution and 217 g of distilled water. To this, 6 g of 1-butanol 

was added under vigorous stirring at 35°C. After 1 h stirring, 9 g of  TEOS was added dropwise, 

and after another hour 3.9 g of TEOS was poured. The mixture was left under stirring at 35°C 

for 24 h and subsequently heated for 24 h in a Teflon-lined autoclave at 100°C. 

 



31 

 

The product obtained after the hydrothermal treatment immediately was filtered without 

washing and dried at 100°C overnight. Finally, the template was removed by extraction with 

an ethanol-HCl mixture, and it was calcined at 550°C for 9 h for surfactant template removal. 

 

3.3 Semiconductors 

 

3.3.1. TiO2 

The semiconductor TiO2 was synthesized following the procedure by Yang et al.35 Titanium 

IV isopropoxide (TTIP) was added dropwise in 2-Propanol (volume ratio TTIP: 2-propanol of 

1:8). Water was slowly added to the resulting solution to cause the hydrolysis of the TTIP 

(TTIP: water volumetric ratio of 1:10). The stirring was maintained for 2 h to hydrolyze TTIP 

completely. The material was recovered by centrifugation with a mixture of ethanol and 

deionized water. In the end, the solution was dried at 80°C overnight and calcined at 700°C for 

2 h. 

 

3.3.2. LaFeO3 

LaFeO3 was synthesized as follows.70 La (NO3)3·6H2O and Fe (NO3)3·9H2O were dissolved in 

equimolar amounts (0.005 mol) with citric acid (0.010 mol) in a 25 ml H2O and ethanol mixture 

(H2O: ethanol 1:2) to yield a homogeneous solution. The solution was stirred for 10 min, 

sonicated for another 10 min at room temperature, and finally heated in a bath at 70° C until 

evaporation. The resulting gel from the evaporation was dried at 90°C for 24 h in an oven and 

calcined at 600°C (with a heating rate of 2 °C/min) for 5h. 

 

3.3.3. BiFeO3 

The BiFeO3 powder was synthesized by a simple sol-gel route.75 0.005 mol of Bi (NO3)3·5H2O 

and Fe (NO3)3·9H2O were dissolved in stoichiometric proportions (1:1 molar ratio) in 50 ml of 

ethylene glycol (0.4 M) as the precursor solution. The mixture was stirred for 90 min at 80°C 

to obtain a viscous gel (sol). Next, it was kept at 120°C for 3 days to form a xerogel powder. 

Then, the powder was first calcined at 300°C for 4 h as a pre-treatment and finally at 600°C for 

2 h. 
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3.3.4. AlFeO3 

AlFeO3 was synthesized as follows.99 0.005 mol of Al (NO3)3·9H2O and Fe (NO3)3·9H2O were 

dissolved in stoichiometric proportions (1:1 molar ratio) in 20 ml of distilled water. 10 ml 

NH4OH (25% concentration) was added dropwise to the mixture until the appearance of a dark 

red solution, showing the formation of iron hydroxide. The solution was kept under stirring for 

one hour, and a small amount of acetone was added to allow the reaction to precipitate. Next, 

the liquid was maintained at 70°C in a bath until evaporation. The gel was dried at 80°C 

overnight and calcined at 700°C for 1 h. 

 

3.3.5. YFeO3 

YFeO3 was synthesized under hydrothermal conditions as follows.100 0.005 mol of 

Y(NO3)3·6H2O and Fe(NO3)3·9H2O were dissolved in stoichiometric proportions (1:1 molar 

ratio) in 30 ml distilled water under stirring. Next, 30 g of solid NaOH as a mineralizing agent 

was added to the solution. Next, the mixture was transferred to a Teflon-lined autoclave where 

the crystallization was performed at 240°C for 72 h. The dark product was filtered several times 

with distilled water to obtain crystals and dried at 80°C overnight in air. 

 

3.4. Synthesis of SiO2-Semiconductors 

 

3.4.1. SiO2-TiO2 

The TiO2/SiO2 materials were prepared by hydrolysis of titanium IV isopropoxide into the 

silica support (KIT-6 or SBA-15) via sol-gel method following the procedure by Yang et al.35 

The silica material was sonicated in isopropanol. Then, the required amount of TTIP was added 

dropwise to the solution under stirring for 45 min. Water was then slowly added (TTIP: water 

with volumetric ratio 1:10) to cause the hydrolysis of TTIP, and the solution was stirred at room 

temperature for 2 h. The material was recovered by centrifugation with deionized water and 

ethanol, dried at 80°C and calcined at 700 °C for 2h. 

 

3.4.2. MFeO3-SiO2 (where M= La, Bi, Al, and Y) 

MFeO3/SiO2 materials were synthesized following the process proposed by Liu et al.73 We take 

the preparation of LaFeO3/SiO2 as an example. 0.01 mol of La (NO3).6H2O and 0.01 mol of 

Fe(NO3).9H2O were dissolved in 4.5 ml of deionized water, Then, drops of HNO3 (6M, 
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previously prepared) were poured until the solution changed color to avoid hydrolysis. 

Afterward, citric acid was added (citric acid/Fe= 1.5 molar ratio).  

 

Then, 0.25 g of the synthesized silica support was added to the mixture. The solution was kept 

at 60 °C over a water bath under stirring until a viscous gel was formed. The gel was aged at 

room temperature for three days and dried at 80 °C overnight, and finally, it was calcined at 

550 °C for 6 h. Similar procedure was realized with the preparation of BiFeO3/SiO2, 

YFeO3/SiO2, and AlFeO3/SiO2.  

 

The theoretical weight of silica and M (M= La, Bi, Al, and Y) supported catalyst was controlled 

to be 5%, 10%, and 20% respectively. For comparison, pure semiconductor without the 

addition of SiO2 powders was prepared using the methods above, which can be defined as 

weight= 0%.101 

 

3.5. Characterization  

 

3.5.1. X-Ray Diffraction (XRD) 

The supports, catalysts, and perovskites were characterized by XRD using a Brucker D8-

Advance and Cu Kα radiation with a wavelength of 1.5418 Å, with a continuous scan of 0.6° 

min-1 without rotation in the ranges 1.0°< 2θ < 5° and 30° < 2θ < 80° with a constant scan rate. 

 

The crystallite sizes were calculated from the Scherrer equation (Equation 1).102 

 

𝐷 =
0.9𝜆

𝛽 cos 𝜃
                   (1) 

 

Where λ is the wavelength of the X-rays, θ is the diffraction angle, and β is the corrected full 

width at half-maximum (FWHM) calculated by OriginPro. 

 

3.5.2. Nitrogen adsorption-desorption 

The textural properties (specific surface area, pore volume, and pore diameter distribution) of 

the catalysts were determined from nitrogen isotherms measured using a Micromeritics 3Flex. 

The specific surface area was calculated by the Brunauer-Emmett-Teller (BET) equation, while 
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the pore diameter distribution and pore volume were determined using Barrett-Joyner-Halenda 

(BJH) method. Before the physisorption of N2, the samples were degassed at 350°C for 2h. 

 

Wall thickness (δ) was calculated (Equation 2) from the difference between the lattice 

parameter (hexagonal array) and pore diameter.103  

 

δ = 𝑎𝑜 − 𝐷𝑝                   (2) 

 

𝑎𝑜 =
2𝑑100

√3
                   (3) 

 

Where ao is the cell parameter (hexagonal array) (Å), d100 is the inter-planar distance (from 

Scherrer’s equation), d= λ/2 sin (θ), λ is the X-rays wavelength (Å), θ is the diffraction angle, 

δ is the wall thickness (Å) and Dp is the pore diameter (from BJH calculations, N2 physisorption 

isotherm) (Å). 

 

3.5.3. UV-visible spectroscopy (UV-vis DRS) 

The catalysts were characterized by UV-Vis spectroscopy in a Perkin Elmer Lambda 40 

equipped with an integrating sphere. The reflectance data was processed using the Kubelka-

Munk function (F (R∞)), Equation 4, in which R∞ is the reflectance at infinite depth. 

 

𝐹(𝑅∞) =
(1−𝑅∞)

2𝑅∞
                       (4) 

 

The band edge position of the semiconductor at the point zero charge can be calculated using 

the following empirical equations: 102 

 

𝐸𝑉𝐵 = 𝑋 − 𝐸𝑒 + 0.5𝐸𝑔           (5) 

 

𝐸𝐶𝐵 = 𝐸𝑉𝐵 − 𝐸𝑔                      (6) 
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Where EVB represents the valence band (VB) edge potential, X is the electronegativity of the 

semiconductor, Ee is the energy of free electrons on the hydrogen scale (~4.5 eV), ECB is the 

conduction band (CB), and Eg is the band gap of the semiconductor. 

 

A method to estimate the electronegativity was developed by Robert Mulliken with the use of 

the values of the first ionization energy (IE) and the electron affinity (EA) to calculate the 

electronegativity of the semiconductors. The values are: LaFeO3- 5.54 eV, BiFeO3- 5.89 eV, 

YFeO3- 5.63 eV, AlFeO3- 5.61 eV and TiO2-5.81 eV. The purpose of this is to find the band 

edges and the possible products according to their redox potentials.104 
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4. RESULTS AND DISCUSSION 

 

4.1. Photocatalytic support  

 

The results of the characterization techniques performed on the SBA-15 and KIT-6 supports 

are presented in the following sections. 

  

4.1.1. X-Ray Diffraction (XRD) 

 

Small angle X-ray diffraction (SAXS) patterns were measured on SBA-15 and KIT-6. SBA-15 

presented an intense sharp peak which can be indexed as d100 spacing and two well-resolved 

peaks indexed as d110 and d200 spacings  (Figure 21-A). The d100 reflection is distinctive of the 

SBA-15 mesoporous material structure; the d110 indicates the 2D pore system, and the d200 

indicates the periodicity of the pore system. The presence of the three distinct Bragg diffractions 

confirms a 2D hexagonal lattice with p6mm symmetry arrangement of mesopores and high 

crystallinity according to JCPDS card no. 744-1394.105–107 

 

The KIT-6 pattern showed a sharp and intense peak at 2θ=1.06° corresponding to d211 reflexion 

and two weak peaks indexed as d220 and d420  (Figure 21-B). These peaks indicate that the 

material is well ordered and belongs to continuous cubic space group la3d, according to JCPDS 

card no. 744-1394.37  
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Figure 21. Small- angle XRD patterns of (A) SBA-15 and (B) KIT-6. 
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The wide-angle XRD patterns of the silica supports are shown in Figure 41, Appendix 7.1. The 

patterns revealed no defined diffraction, indicating the amorphous nature of the SiO2 walls. 

There is only one broad peak at a 2θ value of 20-30° characteristic of silicas.108 

 

4.1.2. N2 adsorption-desorption 

 

In Figure 22, the supports SBA-15 and KIT-6 showed a shape of isotherm that is classifiable 

as type IV and hysteresis H1 loop according to IUPAC. This type of isotherm is characteristic 

of the mesoporous materials with pores with a constant cross-section (cylindrical).109 The 

isotherm presented an inflection at P/Po= 0.6-0.85 presenting a near-equilibrium desorption 

that corresponds to the existence of mesopores with a narrow pore size distribution. Hysteresis 

loop H1 occurs when the adsorption and desorption branches are vertical with a parallel design, 

distinctive for uniform cylindrical pores.110 

 

The three-dimensional KIT-6  pore system presented narrower hysteresis loop in comparison 

to the 2D SBA-15. The interconnected 3D network of channel pores (KIT-6) is smaller than 

the independent mesopore system with cylindrical channels in SBA-15.111  
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Figure 22. N2 adsorption-desorption isotherms of support SBA-15 and KIT-6. 
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Pore size distribution of KIT-6 and SBA-15 (Fig 23) confirmed that the adsorption and 

desorption have a well-defined pore size diameter with a pore size centered at 8 nm measured 

during desorption, at meniscus equilibrium conditions.112,113 

 

Both materials are known to have a secondary pore system in their walls (intrawall pores),  with 

sizes in the micropore range.105 The presence of intrawall pores explains the large surface areas 

measured, with values of 933 and 833 m2/g for SBA-15 and KIT-6, respectively.114 The low 

amount pores detected in KIT-6 (~4 nm) must result from cavitation effects, that is, from the 

sudden nucleation of nitrogen in ink-bottle pores with narrow necks in the material. Their 

amount is negligible compared to the abundance of the 8 nm pores.115,116  

 

There is a strong relationship between the adsorption and desorption pore size distribution. The 

adsorption pore size distribution corresponds to a progressive filling of mesopores, whereas 

desorption generally leads to a sudden emptying of the same pores. As a consequence, the 

desorption branch gives a narrower pore size distribution than the adsorption branch. This is 

the reason that the desorption branch is the parameter reported in table 2 as true pore size. But 

others authors claim that the adsorption branch should be used instead, as it gives the complete 

pore size distribution and not the size of the necks from which the condensed gas could quickly 

be evacuated upon desorption.117  
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Figure 23. Pore size distribution of SBA-15 and KIT-6 (A) adsorption (B) desorption 

 

Textural properties obtained from the 3FlexTM are presented in Table 2 in which SBA-15 and 

KIT-6 have shown a large specific surface area and pore volume. The main differences between 

these materials are their pore sizes and the structure connectivity for SBA-15 (2D) and KIT-6 

(3D) pore structure.118 The large pore wall thickness (δ) was calculated with the information of 

d100 spacing and pore diameter.119 

 

Table 2. Textural properties of SBA-15 and KIT-6 supports 

Supports 
SBET  

(m2/g) 

Dp 

(nm) 

Vt  

(cm3/g) 
ao 

δ  

(nm) 

SBA-15 933 7.7 1.12 8.9 1.6 

KIT-6 833 7.7 1.03 18.9 2.4 
Where: SBET: BET surface area, Dp= pore diameter, Vt= total pore volume, ao= unit cell parameter estimated from 

the XRD. Equations 2 and 3 (see Experimental section).120 
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To summarise, SBA-15 and KIT-6 were successfully synthesized with pore diameters around 

8 nm, high specific surface area, and cylindrical pores. These characteristics make the supports 

good candidates to be a host of metal oxides species, and their pore diameter is suitable to allow 

the CO2 molecule to be adsorbed with no problem (CO2 size=3.4 Å).121 

 

4.2. Semiconductors 

 

4.2.1. N2 adsorption-desorption 

 

The information about the specific surface area (SBET) and pore volumes of all the materials 

prepared are listed in Table 3. SBA-15 and KIT-6 decreased their specific surface areas 

significantly with a load of photocatalysts (up to 50-75%), indicating that there was deposition 

of the photocatalysts on the silica supports.  

 

Comparison between the results obtained for SBA-15 and KIT-6 indicate that they behave 

differently as supports for TiO2. KIT-6 incorporates much less TiO2 than SBA-15. The 

differences could be attributed to the differences in mesopore structure shape, KIT-6 

comprising a three-dimensional pore structure, which can affect how Ti precursors diffuse and 

react with the silica surfaces.122 

 

The deposition of LaFeO3, BiFeO3, AlFeO3, and YFeO3 on both KIT-6 and SBA-15 seems quite 

consistent for both silica supports since the specific surface area decreased similarly for both 

cases. The results of surface area and pore volume verified that the perovskites were deposited 

on the silica supports. Whether this deposition was inside the pore channels or on the external 

surface of the silica particles requires analysis of the pore size distribution curves.123 
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Table 3. Textural properties of semiconductors with SBA-15 as support 

 SBA-15 KIT-6 

Sample 
SBET 

(m2/g) 

Dp 

(nm) 

Vt 

(cm3/g) 

SBET 

(m2/g) 

Dp 

(nm) 

Vt 

(cm3/g) 

TiO2 (20%) 281 7.6 0.42 483 6.6 0.52 

TiO2 (10%) 455 7.6 0.58 641 6.5 0.75 

TiO2 (5%) 727 6.5 1.10 733 5.4 0.77 

LaFeO3 (20%) 201 3.3 0.18 238 3.6 0.18 

LaFeO3 (10%) 429 4.9 0.52 379 3.7 0.38 

LaFeO3 (5%) 507 7.7 0.72 493 7.2 0.68 

BiFeO3 (20%) 238 3.5 0.19 187 5.5 0.20 

BiFeO3 (10%) 274 5.5 0.32 320 6.5 0.50 

BiFeO3 (5%) 378 5.5 0.41 373 6.6 0.54 

YFeO3 (20%) 305 4.8 0.31 365 3.8 0.22 

YFeO3 (10%) 381 4.8 0.34 464 6.4 0.61 

YFeO3 (5%) 521 5.6 0.51 550 6.5 0.71 

AlFeO3 (20%) 361 3.8 0.37 418 5.6 0.56 

AlFeO3 (10%) 488 4.3 0.51 522 6.4 0.68 

AlFeO3 (5%) 577 5.5 0.56 638 6.5 0.84 

Where: SBET: BET surface area, Dp= Pore diameter, Vt= total pore volume. 

 

Figures 24-32 present the N2 adsorption-desorption isotherms and pore size distributions of all 

the materials prepared. The effect in adsorption-desorption isotherms involves a combination 

of physical mechanics which is reproduced in different types of hysteresis loops giving 

information about the pore size and shape. 

 

TiO2/SBA-15 samples (Fig 24-A) show sharp capillary condensation around P/Po=0.6-0.9 for 

all samples containing TiO2, but the maximum amount adsorbed decreases with increasing 

loading of the precursors. The isotherm shape conservation means that the incorporation of 

TiO2 into SBA-15 did not destroy the structure of the support. This effect can be attributed to 

the incorporation of TiO2 in SBA-15 post-synthesis where the titanium species could have 

reacted with the surface of the walls (silanol groups). As a result, the surface area and pore 

volume decreased, but the characteristic pore arrangement of SBA-15 was kept.  
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TiO2/KIT-6 isotherms in Figure 24-B show the same behavior as in SBA-15. There is a sharp 

capillary condensation around P/Po=0.6-0.8, and the isotherm shape is kept with the loading of 

TiO2. The amount of nitrogen adsorbed decreases with the amount of TiO2 indicating its loading 

on the SBA-15. There is also a small kink in the desorption at P/Po= 0.45-0.5, characteristic of 

nitrogen cavitation. This effect occurs in ink-bottle type pores where the evaporation during the 

desorption is limited by a hemispherical meniscus in the pore neck, and the pore body remains 

full until there is a sudden bubble nucleation of the nitrogen, typically occurring at 

P/Po=0.40.124  
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Figure 24. Nitrogen adsorption desorption isotherm for TiO2 series catalysts: (A) SBA-15 and (B) KIT-6 

 

The pore size distributions (PSD) of TiO2/SBA-15 samples were calculated on adsorption-

desorption isotherms using BJH model (Fig. 25). In complex porosities, the adsorption PSD 

gives information of the pore body and the desorption PSD of the pore neck. The incorporation 
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of TiO2 into the support mainly affected the adsorption PSD, indicating a slight shrinkage of 

the pore body size of 2-3 nm.  

 

However, the desorption showed that most samples have the same pore neck size, except the 

5% TiO2/SBA-15 which shrunk 1 nm. These results show that there was an incorporation of 

TiO2 in the pore network, specifically for the 5% loading which also affects the pore neck size. 

But for larger loadings, the TiO2 precursors probably agglomerate and precipitate on the surface 

of the SBA-15 particles as we can deduce in figure 25-B, where the pore diameter persists with 

no big changes in comparison with SBA-15.125,126 But at higher amounts of TTIP, the second 

step of the N2 isotherm remains with no change. This means that the deposition of the extra 

titania can be located outside the pores or inside closing the pore completely, confirming the 

results in the pore size distribution.127 
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Figure 25. Pore size distribution of TiO2 / SBA-15 catalysts: (A) adsorption and (B) desorption. 
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The PSDs of KIT-6 loaded with TiO2 are shown in Fig 26. The maximum of the PSD curve of 

KIT-6 calculations using the adsorption branch is shifted to a bimodal distribution. The 

presence of cavitation indicated the presence of narrow necks (smaller than 4 nm), this may 

offer gas diffusion limitations for the photocatalytic reactions. The results indicated that the 

best loading was 5% since this influenced both adsorption and desorption PSD. This is 

indicative of a better uniformity and dispersion of the load of the precursors leading to a 

decrease in the pore volume of the main peak (about 8 nm).128 

 

Pore diameter from desorption is larger than the pore diameter from adsorption indicating that 

higher loading can induce agglomeration of species and deposition on the surface of the KIT-

6 particles.129  The 3D pore structure was able to accommodate dispersed TiO2 and facilitate a 

faster diffusion of the products. Moreover, the PSDs show a bimodal distribution with pore 

sizes in the range of 2-4 and >5 nm, respectively. It can be speculated to be defects in the 

ordered structure of the material depending on the degree of incorporation of the precursor. The 

wider PSDs at the range of 2-8 nm, can be further separated into two kinds of pores: one is 

about 4 nm and the other at 7 nm. These regions are affected by the adsorption of the TiO2 

particles, which caused a decrease of the pore size diameter.130 

 

Early reports indicated that KIT-6 is composed by two sets of interpenetrating mesopores, in 

which each set of mesopores is independent. Recent studies have contradicted this view, 

suggesting that these sets are interconnected by micropores. If TiO2 is within the pores of KIT-

6 can do so across both sets of pores. The result of this is the appearance of a bimodal 

distribution about 4 nm, and 5-8 nm.36 

 

The PSD of KIT-6 features not only the main peak that corresponds to the main mesoporous 

channel of KIT-6 but also a substantial amount of pores in the range between 2 and 5 nm 

(intrawall pores). The parts of PSD curves corresponding to intrawall pores show a maximum 

peak at about 3 nm, this observation indicates that the peak in PSD is real and not an artifact. 

The pore volume associated with the 3 nm modal peak increases with the increase of content, 

this means that some precursors are in the intrawall pore.131 
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Figure 26. Pore size distribution of TiO2/KIT-6 catalysts: (A) adsorption and (B) desorption 

 

The isotherms for LaFeO3 on SBA-15 and KIT-6 are shown in Figure 27. The loading of 

LaFeO3 is evident since in both cases there is a decrease of the nitrogen adsorbed. It is noted 

that the hysteresis becomes less upright with increasing loading of LaFeO3, indicating the 

change in shape of the pore network which must be due to some filling of the pores.132 
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Figure 27. Nitrogen adsorption-desorption isotherm for LaFeO3 series catalysts: (A) SBA-15 and  (B) KIT-6. 

 

The PSD of LaFeO3/SBA-15 series in Fig 28 shows the shrinkage in pore sizes in all the 

samples with the loading of LaFeO3. Both pore bodies and necks decrease in size. The higher 

the loading, the larger the shrinkage. LaFeO3 series for both supports especially for 5% loading 

became bimodal for the larger pore size.  

 

These results assume that there was a partial transformation of the SBA-15 and KIT-6 pore 

network leading to a bimodal material with two sets of well-defined pore sizes due to the 

deposition of the species inside the network. This indicates that the smaller mesopores act as 

bottlenecks and restrict the accessibility to the larger mesopores of the supports.133 
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Figure 28. Pore size distribution of LaFeO3/SBA-15 (top) and LaFeO3/KIT-6 (bottom) catalysts: adsorption 

(left) and desorption (right) 

 

The same effect seen in TiO2 was observed for LaFeO3, BiFeO3, AlFeO3 and YFeO3 with both 

supports (Fig. 29-31 and Appendices) with isotherm changes following the same trends. In 

some cases with KIT-6, the samples suffered from cavitation, with pronounced artificial peaks 

around 4 nm in desorption PSDs.  

 

These results are encouraging since it shows the procedure to deposit ferrites on SBA-15 and 

KIT-6 for all the ferrite samples was successful. While the behavior of TiO2 into SBA-15 is 

quite different because the results from PSD suggests that the precursors are not completely 

inside the pores and it can be detected that some precursors can be outside the surface. In KIT-

6, the presence of a peak around 3 nm in PSD shows that the incorporation of TiO2 is in the 

intrawall pores concluding that the most of precursors are in the framework. Although, both 
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materials showed that there was not a total deposition of precursors in comparison with the 

ferrite samples as the results indicated in the PSDs.  
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Figure 29. Nitrogen adsorption desorption isotherm for BiFeO3 series catalysts: SBA-15 (left) and KIT-6 (right) 
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Figure 30. Nitrogen adsorption desorption isotherm AlFeO3 catalysts: SBA-15 (left) and KIT-6 (right) 
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Figure 31. Nitrogen adsorption desorption isotherm for YFeO3 series catalysts: SBA-15 (left) and KIT-6 (right) 
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4.2.2. X-Ray Diffraction (XRD) 

 

Small-angle XRD patterns for the precursors (TiO2, LaFeO3, BiFeO3, AlFeO3, and YFeO3) 

with SBA-15 and KIT-6 showed that the porous structure of the supports was not destroyed 

after the formation of the precursors. They conserved the characteristic peaks of the 

mesoporous silica lead to a decrease in peak intensity.134 But the most notable changes are 

illustrated in the wide-angle XRD patterns of the samples. Because the wide-angle XRD gives 

information about the structure of the sample including the crystal phase, particle size, and peak 

position. 

 

XRD patterns of TiO2/SBA-15 are shown in Fig 32. The patterns evidenced the existence of 

titania in anatase structure corresponding to JCPDS No. 21-127. The anatase structure has 

characteristic peaks at 38°, 47°, 55°, 63° and an intense peak at 27.5°. The latter is ascribed to 

(101) plane and increase with the content of Ti species incorporated. There is an extra small 

peak around 23.5° corresponding to the rutile phase due to the high temperature of calcination 

(700 °C) indicating that there is a mixture of anatase and rutile phases. This is in agreement 

with the literature that thermal treatment influences the size and phase structure of the anatase 

phase.135 When TiO2/SBA-15 and TiO2/KIT-6 are calcined at 700°C appear a pattern of 

amorphous and anatase respectively about 2θ=25° increasing with relation to the Ti amount.136 

 

The crystallite sizes were determined from the Scherrer’s equation (equation 1) using the 

broadening of the (101) anatase peak reflection. The fact that one can observe XRD peaks of 

anatase with a crystallite size of 8.3 nm, 5.2 nm and, 8.9 nm for 5, 10, and 20% TiO2 in SBA-

15 and 7.4 nm, 9.1 nm and 10.6 nm for 5, 10, and 20% TiO2 in KIT-6. The intensity of the 

(101) TiO2 peaks decreases while the FWHM of (101) peaks increases in relation to the amount 

of Ti. The absence of titania features for low loading (5%) on SBA-15 and KIT-6 indicates the 

presence of highly dispersed titania into the structure.137 

 

The use of KIT-6 and SBA-15 mesoporous support material appears to control the titania 

crystal size restricting the growing of the TiO2 clusters inside the mesoporous channels at 5% 

loading. However, specific surface decreased gradually with the increase of titanium loading, 

but there is no specific trend on the average pore diameters. Therefore, it is accomplished that 
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the mesostructured is maintained upon TiO2 addition into the pore of SBA-15 and KIT-6 silica 

materials.  

 

These results are in agreement with what it found in PSD and adsorption-desorption isotherms 

that. TiO2/SBA-15 and TiO2/KIT-6 at 5% are possible to control the TiO2 crystal size by 

constraining the growth of the titanium dioxide clusters inside the mesoporous channels. In 

contrast, the use of an amorphous support with 10% and 20% Ti load does not induce this 

effect, leading to bigger TiO2 crystals as the titanium loading increases.138 This indicates that 

titania is well dispersed inside mesoporous materials and causes partial blockage of its pore. 

The absence of reflection of crystalline TiO2 at low titanium loading is due to the higher 

dispersion of titanium within the silica matrix, which can prevent the formation of TiO2 

domains sufficiently large to be detected by XRD. 
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Figure 32. XRD patterns of TiO2 catalysts with SBA-15 (left) and KIT-6 (right) 

 

Fig. 33 displays the wide-angle XRD patterns of LaFeO3/SBA-15 and LaFeO3/KIT-6 series. 

The pattern shows a broad diffraction around 2θ=29° attributed to amorphous silica. No 

diffraction is observed for 5% LaFeO3 loading. When the number of mixed oxides increases, 

there are peaks that appear at 2θ= 23.2, 32.5, 40.05, 58.3 and 67.9°. These peaks suggest the 

formation of LaFeO3 crystallites.  

 

They appear for 10% loading in SBA-15 and 20% loading in KIT-6. Below those percentages, 

LaFeO3 seems well dispersed in the silica pore surface area. At 20% LaFeO3/SBA-15, a new 

peak appears at 29.8° indicating the appearance of La2O3 phase.139 These results demonstrate 
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that LaFeO3 can disperse well, especially in the KIT-6 pore network, confirming the results 

from N2 adsorption-desorption. 
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Figure 33. XRD patterns of LaFeO3 catalysts with SBA-15 (left) and KIT-6 (right) 

 

5-20% BiFeO3/SBA-15 and BiFeO3/KIT-6 series are presented in Fig 34. At 5% and 10%, the 

patterns have an amorphous nature determined by the silica (SBA-15 and KIT-6) that means 

that the material was well dispersed in the structure of the support. In the case of the 

BiFeO3/SBA-15 and BiFeO3/KIT-6 at 20%, both materials present characteristic peaks of 

BiFeO3 at 2θ= 32.5°, 40.01°, 47.5°, 58.3° and 67.9° with high intensity. These results agree 

with those found in N2 physisorption, in which isotherms showed a considerate decrease of 

pore size and volume. 
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Figure 34. XRD patterns of BiFeO3 catalysts with SBA-15 and KIT-6 
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5-20% AlFeO3/SBA-15 (Fig. 35) series showed that samples are all amorphous, with only 

broad diffraction attributed to the silica. Even the unsupported pure AlFeO3 did not show sharp 

peaks indicating that the AlFeO3 powder is low crystallinity without other detectable phases, 

unlike LaFeO3 and BiFeO3 according to literature.140 
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Figure 35. XRD patterns of AlFeO3 with SBA-15 and KIT-6. 

 

All samples YFeO3/SBA-15 series and YFeO3/KIT-6 series (Fig. 36) presented no diffraction 

peaks of perovskite, just a broad diffraction attributed to amorphous silica. These results seem 

to indicate that this precursor was highly dispersed in the structure, due to the absence of well-

shaped peaks in both mesoporous supports.141 
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Figure 36. XRD patterns of YFeO3 with SBA-15 and KIT-6 
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4.2.3. UV-visible spectroscopy (UV-vis DRS) 

 

In this section, the study of the behavior of the bandgap of each semiconductor incorporated in 

the mesoporous silica was analyzed through UV-visible absorption. The purpose of the analysis 

is to verify the quantum size effect which leads to an increase in the bandgap (resulting in the 

blue shift).142 When the bandgap increases, the conduction band edge position, and the valence 

band edge position shift upward and downward respectively, so the ECB will reach the suitable 

reduction potential from CO2 to CH3OH. 

 

The visible light response and energy bandgap of the catalysts were investigated by UV-vis 

spectroscopy with a diffuse reflectance sphere. The Kubelka-Munk function was used to 

analyze the bandgap of each sample through the Tauc Plot and the conversion of eV from nm. 

Fig 37 shows the adsorption edges and band gap where the unsupported TiO2 exhibited a 

bandgap approximately 3.34 eV resulting similar of the theoretical value of 3.20 eV as reported 

for anatase in the literature.143  

 

The incorporation of TiO2 inside the mesoporous materials gave a behavior effect where at 5% 

both SBA-15 and KIT-6 increase the bandgap instead of decreasing, (3.43 and 3.42 eV, 

respectively). These results may be not explained in terms of quantum size effects where the 

particle size decreases as the bandgap increases. We can attribute the shift of the band edge 

positions of TiO2/SiO2, as well as the increase in bandgap energy to electronic support 

interaction mediated though surface Si-O-Ti bonds and not to a quantum size effect.144,145 

 

The quantum size effect did not show any tendency at 10 to 20% Ti amount where the band 

gap showed no significant change in the bandgap energy of 3.34 eV neither with SBA-15 nor 

KIT-6 when they are used as supports. This observation ensures that the lower crystallite size 

of SiO2 as compared to TiO2 has a negligible impact on the bandgap measurements and it is 

not the cause for the bandgap widening found in the supporting materials. This finding 

emphasizes the important role of the interface between TiO2 and SiO2.
146 
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Figure 37. Uv-Vis spectrum of powder TiO2 samples 

 

The effect seen in the incorporation of TiO2 is different than the perovskites when the LaFeO3 

is incorporated into the mesoporous support. Therefore, a load of species from 5% to 20% will 

lead to a significant change in the bandgap energy confirming a different effect than TiO2 

supported catalysts as it can be seen in Figure 38.147 

 

The behavior can be explained in LaFeO3 where we can see a change in the bandgap energy of 

the LaFeO3 supported catalysts in SBA-15 at 5% (2.95 eV), 10% (2.53 eV), and 20% (2.31%). 

It can be observed a trend when the increase in the loading of LaFeO3 into the SBA-15 support 

provokes an increase in the particle size as we can see in XRD results, and therefore the 

bandgap energy reduces. This results can confirm that the quantum size effect not only modifies 

the bandgap energy but only the VB and CB band edge position shift upward and downward 

respectively. 

 

BiFeO3, YFeO3, and AlFeO3 showed the same tendency as LaFeO3, while the amount of a load 

of species in the material increases the band gap reduced its size explained by the quantum size 

effect. The Uv-visible spectrum of the semiconductor into silica support is illustrated in 

Appendix 7.2  
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Figure 38. Uv-Vis spectrum of powder LaFeO3 samples 

 

These results suggest that the addition of SBA-15 and KIT-6 can effectively suppress the 

growth of particles and as a consequence of this the particles have a small size limited by the 

channels of the support.148 Although in general these results should be taken with caution since 

it is difficult to avoid and quantify scattering effects during the data collection in these 

measurements. The same trend is shown in both supports SBA-15 and KIT-6, where the 

bandgap decreases when the particle size increases. As we can see in TiO2 and perovskites, the 

election of different silica support did not show any significant change in the bandgap, and 

band edges position. 

 

Table 4 shows the values for the valence band and the conduction band, calculated with the 

equations given (2) and (3) and the values of electronegativity (See Experimental). They were 

estimated to obtain an idea of the probable products to achieve considering the redox potentials 

of CO2 and water conversions. 
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Table 4. Bandgap of photocatalysts 

  Bandgap structure (pH=7 vs NHE) 

 Sample Eg (eV) CB VB 

1 TiO2 3.34 -0.48 2.86 

2 TiO2/SBA-15 (5%) 3.43 -0.53 2.91 

3 TiO2/SBA-15 (10%) 3.35 -0.49 2.87 

4 TiO2/SBA-15 (20%) 3.34 -0.48 2.86 

5 TiO2/KIT-6 (5%) 3.42 -0.52 2.90 

6 TiO2/KIT-6 (10%) 3.34 -0.48 2.86 

7 TiO2/KIT-6 (20%) 3.35 -0.49 2.87 

8 LaFeO3 2.12 -0.02 2.10 

9 LaFeO3/SBA-15 (5%) 2.95 -0.44 2.52 

10 LaFeO3/SBA-15 (10%) 2.53 -0.23 2.31 

11 LaFeO3/SBA-15 (20%) 2.31 -0.12 2.20 

12 LaFeO3/KIT-6 (5%) 2.81 -0.37 2.45 

13 LaFeO3/KIT-6 (10%) 2.51 -0.22 2.30 

14 LaFeO3/KIT-6 (20%) 2.20 -0.06 2.14 

15 BiFeO3 2.10 0.34 2.44 

16 BiFeO3/SBA-15 (5%) 2.54 0.12 2.66 

17 BiFeO3/SBA-15 (10%) 2.50 0.14 2.64 

18 BiFeO3/SBA-15 (20%) 2.46 0.16 2.62 

19 BiFeO3/KIT-6 (5%) 2.44 0.17 2.61 

20 BiFeO3/KIT-6 (10%) 2.28 0.25 2.53 

21 BiFeO3/KIT-6 (20%) 2.16 0.31 2.47 

22 AlFeO3 1.71 0.26 1.97 

23 AlFeO3/SBA-15 (5%) 2.81 -0.30 2.52 

24 AlFeO3/SBA-15 (10%) 2.69 -0.24 2.46 

25 AlFeO3/SBA-15 (20%) 2.48 -0.13 2.35 

26 AlFeO3/KIT-6 (5%) 2.62 -0.20 2.42 

27 AlFeO3/KIT-6 (10%) 2.56 -0.17 2.39 

28 AlFeO3/KIT-6 (20%) 2.22 0.00 2.22 

29 YFeO3 2.25 -0.01 2.25 

30 YFeO3/SBA-15 (5%) 2.99 -0.38 2.62 

31 YFeO3/SBA-15 (10%) 2.94 -0.35 2.59 

32 YFeO3/SBA-15 (20%) 2.57 -0.17 2.41 

33 YFeO3/KIT-6 (5%) 2.73 -0.25 2.49 

34 YFeO3/KIT-6 (10%) 2.70 -0.23 2.47 

35 YFeO3/KIT-6 (20%) 2.64 -0.20 2.44 
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Figure 39 shows the bandgap (Eg) and the position of the edges according to the information 

given in Table 4. For four samples the incorporation of the species at low levels 5% increased 

the bandgap substantially to the point that the CB is positioned above the CO2 to methanol 

reduction potential. However, this will also decrease the amount of solar light they can absorb.  

 

BiFeO3 perovskites failed to get the appropriate band edges in both SBA-15 and KIT-6 at 

different amounts. This is due to the positive redox potential in ECB whose values are below the 

CO2 reduction potential to thermodynamically conversion to CH3OH (ECB = 0.12) as we can 

see in Table 4. This can be explained because the reduction of CO2 to hydrocarbons requires 

that the bottom energy level of ECB needs to be more negative with respect to reduction potential 

for CO2. The yields of methanol are well correlated with the CB edge position of the 

semiconductors, indicating the necessary requirement of a negative CB edge relative to the 

CO2/CH3OH reduction potential. Moreover, we can observe that these materials are not suitable 

for water splitting (ECB= 0.00) as well.149 

 

However, LaFeO3 at 10% (SBA-15 and KIT-6), and YFeO3 at 5% and 10% (SBA-15) have the 

suitable CB and VB to provide sufficient negative and positive redox potentials for water 

oxidation and CO2 reduction. Their bandgaps are below 3 eV, appropriate to absorb the visible 

light in comparison with TiO2. Although TiO2 materials in both silica support reached the ECB 

position for the CO2/CH3OH conversion, their large bandgap energy (>3.2 eV) will not coincide 

with the visible spectrum.  Their large bandgap will absorb in the UV region that corresponds 

to only 4% to the incident solar energy, which limits the spectrum of photons that can create 

electron-hole pairs to participate in oxidation or reduction reactions.150 

 

With this information, we can suggest that LaFeO3/SBA-15 (5%), LaFeO3/KIT-6 (5%)  and 

YFeO3/SBA-15 (5%), YFeO3/SBA-15 (10%) have the appropriate band edges and bandgap to 

absorb in the visible light range. 
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Figure 39. Conduction band (CB) and valence band (VB) of semiconductors. X-axis number refer to Table 4. 

 

5. CONCLUSIONS 

 

The main conclusions of this MPhil are: 

 

The preparation of SBA-15 and KIT-6 were successfully synthesized using the hydrothermal 

method and calcination at 550 °C. They showed high specific surface area (933 and 833 m2/g 

respectively), pore size about 7 nm and the low angle XRD patterns presented the characteristic 

peaks confirming that the materials are of suitable structure and ordered mesoporosity. These 

characteristics make the supports as good candidates to be a host of metal oxides not only to 

accommodate CO2 but also the perovskites.  

 

Synthesis of the perovskites LaFeO3, BiFeO3, and YFeO3 have been successfully produced by 

the sol-gel method and confirmed by XRD. Additionally, the preparation of the perovskites in 

the presence of the mesoporous material was carried out following a sol-gel method at 75°C 

and calcination at 550°C. The formation of a ferrite-silica composite was confirmed by the 

appearance of characteristic peaks in XRD for high loadings such as 20%, with the exception 

of the AlFeO3 sample.  

 

Furthermore, TiO2 loading on SBA-15 and KIT-6 was also attempted and the presence of TiO2 

anatase and rutile confirmed by XRD. At low loadings, the TiO2 and ferrite perovskites were 

well dispersed into SiO2 supports. The increment of loading of the precursors (10% and 20%) 
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cause the rise of mean peaks of each ferrite perovskites. This effect causes the partial 

destruction of the structure of the support inducing the increase of particle size that provokes 

the decreasing of the bandgap energy, and therefore the contraction of ECB for CO2/CH3OH 

conversion. 

 

In N2 adsorption-desorption technique, the catalysts with perovskites showed the loss of 

specific surface area around 73% due to the increase in the percentage of mixed ferrite up to 

20%. The PSDs confirmed the dispersion of ferrite species into the SBA-15 and KIT-6, with 

narrower pore bodies and necks. There was a clear correlation between ferrite perovskite 

loading and shrinkage of pore sizes. However, crystallites outside the pore network were 

present, as confirmed by XRD. KIT-6 loaded with ferrites showed nitrogen cavitation effects, 

which could lead to poorer diffusion of CO2 and the resulting products. 

 

From UV-vis spectroscopy, it is concluded that LaFeO3/SBA-15 and LaFeO3/SBA-15 at 5% 

and YFeO3/SBA-15 at 5% and 10% have the suitable CB and VB edges to reduce CO2 with 

water to methanol and the narrow bandgap to absorb the visible light. BiFeO3/SBA-15 and 

BiFeO3/KIT-6 showed, however, narrower bandgap convenient to absorb in the visible range 

but a CB not suitable for CO2/CH3OH. 

 

Concluding, 5% loading was found to be the best loading to achieve a good dispersion of 

photocatalysts inside SBA-15 or KIT-6. Both supports behave similarly, although the KIT-6 

pore network was easier to get blocked due to the presence of narrower necks. Future 

experiments should be directed towards studying loading around 5% and in testing these 

composites in the photocatalytic CO2 reduction. To this end, a photocatalytic reactor with a 

quartz window for the simulated sunlight irradiation and control over humidity and mass flow 

of CO2 will be needed. 
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7. APPENDIX 

 

7.1. Pore size distribution 
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Figure 40. Pore size distribution of BiFeO3/SBA-15 catalysts: adsorption (left) and desorption (right) 
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Figure 41. Pore size distribution of BiFeO3/KIT-6 catalysts: adsorption (left) and desorption (right) 
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Figure 42. Pore size distribution of AlFeO3/SBA-15 catalysts: adsorption (left) and desorption (right) 
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Figure 43. Pore size distribution of AlFeO3/KIT-6 catalysts: adsorption (left) and desorption (right) 
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Figure 44. Pore size distribution of YFeO3/SBA-15 catalysts: adsorption (left) and desorption (right) 
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Figure 45. Pore size distribution of YFeO3/KIT-6 catalysts: adsorption (left) and desorption (right) 
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7.2. Uv-Visible spectra 
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Figure 46. Uv-Vis spectrum of powder LaFeO3 samples 
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Figure 47. Uv-Vis spectrum of powder AlFeO3 samples 
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Figure 48. Uv-Vis spectrum of powder YFeO3 samples 


