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ABSTRACT 


Cassava (Manihot esculenta Crantz) was domesticated approximately 8,000 years ago 

and is a staple food for over 500 million people in about 105 tropical and subtropical 

countries. Vegetatively propagated for its starch-rich storage roots, cassava has an 

exceptional capacity to grow on marginally fertile soils and in regions with low annual 

rainfall. However, production in Africa - the largest producer of cassava - is constrained 

by numerous biotic and abiotic factors, including viral infection (e.g. cassava mosaic 

viruses and cassava brown streak viruses), pests and post-harvest physiological 

deterioration (PPD). PPD is an endogenous process that renders the roots unmarketable 

and unpalatable within approximately 24-48 hours after harvest. Although harvesting 

triggers a wound response, cassava is unable to modulate the accumulation of reactive 

oxygen species (ROS), resulting in oxidative damage and the development of symptoms 

referred to as vascular streaking. Over-expression constructs containing selected genes 

involved in ROS detoxification (ASCORBATE PEROXIDASE (APX), CATALASE, 

GALACTURONIC ACID REDUCTASE, γ-GLUTAMYLCYSTEINE SYNTHETASE 

(GSH1) and SUPEROXIDE DISMUTASE) and driven by the root-specific PATATIN 

promoter (StPAT) were successfully crafted. The protocol for Agrobacterium-mediated 

transformation of friable embryogenic callus (cultivar TMS60444) was extensively 

modified to guarantee production of transgenic cassava and progress was monitored 

using constructs harbouring the GUSPlus reporter gene. PCR-based analyses and 

Southern blot hybridisation revealed successful and stable integration of the transgenes 

with >85% of lines having T-DNA inserted into a single genomic fragment. The APX 

transgene and peroxidase activity were successfully up-regulated in transgenic cassava 

storage roots. Additionally, enhanced accumulation of the antioxidant thiol, glutathione, 

was measured in GSH1 transformed plants. Unique data elucidating suitable reference 

genes to study transgene expression profiles using real-time PCR is provided. And 

experiments to develop an assay to measure PPD in glasshouse-cultivated storage roots 

were performed. The data presented in this thesis aims to expand our knowledge of 

cassava tissue culture, transformation, PPD and prolong the shelf-life of cassava storage 

roots via enhancement of ROS-detoxifying pathways. 
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ABBREVIATIONS 

1O2   singlet oxygen 
ACMV African cassava mosaic virus 
APX   ascorbate peroxidase 
BAP 6-benzylaminopurine 
bp   base pair 
BSA   bovine serum albumin 
CAM   cassava axillary medium 
CAT catalase 
CBM   cassava basic medium 
CBSD cassava brown streak disease 
cDNA   complementary DNA 
CEM   cassava elongation medium 
CIAP calf intestinal alkaline phosphatase 
CIAT international centre of tropical agriculture 
CIM   cassava induction medium 
CMD   cassava mosaic disease 
CMM   cassava maturation medium 
COM cassava shoot organogenesis medium 
CT   threshold cycle 
DIG digoxigenin 
ds   double stranded 
DTT dithiothreitol 
E   amplification efficiency 
EST   expressed sequence tag 
FEC   friable embryogenic callus 
FW   fresh weight 
FzW   frozen weight 
g gram 
GalUR   galacturonic acid reductase 
GD   Gresshof & Doy medium 
GFP   green fluorescent protein 
GR   glutathione reductase 
GSH   reduced glutathione 
GSSG   oxidised glutathione 
GST   glutathione transferase 
GUS/GUSPlus β-glucuronidase 
H2O2   hydrogen peroxide 
HCN   hydrogen cyanide 
HO•   hydroxyl radical 
HPLC high performance liquid chromatography 
HPRG   hydroxyproline-rich glycoprotein 
hr hour 
HPX   horseradish peroxidase 
IITA international institute of tropical agriculture 
Kb kilobase 
KJ   kilojoule 
L litre 
LB   Luria-Bertani medium 
M   molar 
MB   monobromobimane 
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mg milligram 
min minute 
ml millilitre 
mm millimetre 
mM millimolar 
MS Murashige & Skoog medium 
MV   methyl viologen 
mwt   molecular weight 
N normal 
NAA 1-naphthaleneacetic acid 
NEFC   non-embryogenic friable callus 
NFW sterile, nuclease free water 
ng nanogram 
nm nanometer 
O2

•¯ superoxide anion radical 
OD   optical density 
PAL   phenylalanine ammonia lyase 
PCD   programmed cell death 
PCR   polymerase chain reaction 
POX peroxidase 
PPD   post-harvest physiological deterioration 
PSI & II photosystem I & II 
rfA reading frame cassette A 
RFP   red fluorescent protein 
ROS   reactive oxygen species 
rpm   revolutions per minute 
RT   reverse transcription 
S.D.   standard deviation 
S.E.   standard error 
SDW   sterile, distilled water 
SH Schenk & Hildebrant medium 
SOD   superoxide dismutase 
SOSG singlet oxygen sensor green 
StPAT PATATIN promoter 
Tm   melting temperature 
U unit 
UV ultraviolet 
v/v   volume/volume 
w/v weight/volume 
x g   gravitational force 
γ-EC γ-glutamylcysteine 
γ-GCS γ-glutamylcysteine synthetase 
μg  microgram 
μl microlitre 
μm micrometre 
μM micromolar 
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1 INTRODUCTION 


1.1 CASSAVA: A WORLD CROP 
1.1.1 History and phylogeny 
Cassava is an ancient crop that was domesticated approximately 8,000 years ago. Its 

origin is a debated topic and based on recent phylogenetic analyses Léotard et al. (2009) 

propound it to be in the south western Amazonian rim, whilst Duputié et al. (2011) 

suggest it was in Mesoamerica (south west Mexico; Figure 1.1). During the 16th Century 

cassava was transported by Portuguese sailors to west Africa and originally grown only 

in the Gulf of Guinea. However, an increase in trade led to cultivation of the crop in 

central regions of Africa and by the 18th Century it was farmed in the provinces of East 

Africa, where plants were probably introduced from Madagascar and via Indian Ocean 

trade routes. Cultivation expanded rapidly and by the 20th Century cassava was grown 

throughout all sub-Saharan Africa and South and South East Asia. 

Figure 1.1 Origin and domestication of cassava. Proposed origins (circled) of cassava (a); 
map generated using ArcGIS (Version 9). Processing of cassava in South America (b; source of 

image unknown). 
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Cassava (genus Manihot) belongs to the family Euphorbiaceae, which also includes 

agriculturally and economically important crops such as rubber (Hevea braziliensis), 

castor bean (Ricinus communis) and jatropha (Jatropha curcas; Abdulla et al., 2011). 

Between 11 and 19 groups of Manihot have been described based on plant morphology 

and eco-geographic similarities, comprising trees (group Glazioviannae), perennial sub

shrubs (Tripartitae and Graciles) to nearly acaulescent sub-shrubs (group Stipularis; 

Allem, 2002; Pax, 1910; Rogers & Appan, 1973). Within these groups approximately 98 

species of Manihot have been catalogued that are all monoecious except for those in the 

group Stipularis that are dioecious. Female (staminate) flowers open 1-2 weeks before 

the male (pistillate) flowers and are normally cross-pollinated by insects, resulting in a 

highly heterozygous gene pool. The domesticated crop (M. esculenta Crantz; Figure 

1.2a) - a shrub that typically grows 1-4 m in height - is also known as manioc, yuca and 

tapioca and is closely related to two sub species M. esculenta ssp. Flabellifolia and M. 

esculenta ssp. Peruviana that are regarded as the wild progenitors (Allem, 2002). 

Figure 1.2 Cassava (M. esculenta Crantz). Plant grown in India (photograph by S. E. Bull) (a) 
and harvested storage roots in Kenya (photograph courtesy of Charles Orek) (b). 
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1.1.2 Cassava storage root anatomy 
Cassava is grown primarily for its starch-rich storage roots (Figure 1.2b) that are 

differentiated from adventitious roots. Consequently these roots lack the meristematic 

tissue/bud primordia present in true, stem tissue-derived tubers such as potato (Solanum 

tuberosum) that facilitate dormancy and reproduction (Morris & Taylor, 2010). The 

mature cassava storage root comprises several tissue layers that can be grouped into 

three categories, (i) the bark or periderm, (ii) the peel, including the bark, cortical 

parenchyma and phloem, (iii) edible parenchyma, comprising cambium, storage 

parenchyma and xylem vessels (Figure 1.3; Cabral et al., 2000; Hunt et al., 1977). The 

peel accounts for approximately 11-20% of the root weight and is removed prior to 

processing (Montagnac et al., 2009a). The anatomy of cassava roots is studied rarely, 

but a recent investigation into cellular organisation and structure of 1-3 month old 

developing adventitious roots in wild (M. glaziovii and M. fortalezensis) and domesticated 

(M. esculenta cultivar UnB 122 and UnB 201) varieties revealed greater numbers of 

xylem vessels in the domesticated cassava and also variation in the lignification of cell 

walls. These observations likely reflect the hybrid origin of cassava and the crops 

tolerance to drought and disease (Bomfim et al., 2011). 

Figure 1.3 Cassava storage root anatomy. Diagram modified from Hunt et al. (1977). 
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1.1.3 Importance, uses and cultivation of cassava 
Cassava is a staple food providing as much as a third of daily calorie intake for 

approximately 500 million people in about 105 countries (FAO, 2008). Starch accounts 

for approximately 80% of the root dry weight ensuring that cassava yields more energy 

per hectare (1045 KJ hectare-1) than other major crops, such as rice (652 KJ hectare-1; 

Montagnac et al., 2009a). Thus, in the developing world cassava is amongst the top four 

most important crops (with rice, sugarcane and maize) and global production in 2009 is 

estimated at 233 million tonnes (FAOSTAT, 2009a). Africa, where cassava is grown 

primarily for food, is the largest producer with yields estimated to exceed 118 million 

tonnes per year (Figure 1.4; FAOSTAT, 2009a). Cassava as a food is prepared in a 

variety of ways that differ between continents and countries. Boiling, mashing, frying and 

drying are widely used to produce granules, flour and chips that have a seemingly 

endless list of applications. In west Africa cassava is often processed into gari – the 

cassava is pulped, fermented for 3-10 days and then heated to form a semolina. A 

typical Brazilian product is polvilhoazedo (fermented starch used in baking), whereas in 

Cameroon the resplendently named Meduame-M-Bong (boiled and washed roots) is 

prepared and eaten with meats and fish (Balagopalan, 2002). In Asia and South East 

Asia the crop is grown mainly for animal feed and industrial purposes. For example, 

sweeteners, acids, alcohols, biodegradable plastics and there is also growing interest in 

using cassava as a source of biofuel (Balat & Balat, 2009; Jansson et al., 2009). 

Figure 1.4 Cassava production in 
Africa. Country labels: Angola (0), 

Benin (1), Cameroon (2), Congo (3), 

Democratic Republic of Congo (4), 

Côte d’Ivoire (5), Ghana (6), 

Madagascar (7), Malawi (8), 

Mozambique (9), Nigeria (10), 

Tanzania (11) and Uganda (12). Data 

gathered from FAOSTAT (2009a) and 

collated using ArcGIS (Version 9). 
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Cassava is vegetatively propagated via stem cuttings that are used to multiply stocks 

and for planting. Approximately five to ten cuttings, which are typically 20 cm in length, 

can be obtained from a single plant. This approach ensures that farmers are not required 

to purchase seed or are reliant upon seed generation, which seldom occurs in M. 

esculenta, probably as a consequence of extensive domestication. Furthermore, in times 

of famine the farmer does not consume the “seed” of cassava, unlike other staple crops 

such as maize. Cassava is frequently intercropped with other staple foods (e.g. maize) 

and is grown in regions 30°N to 30°S in a range of agro-ecologies, including marginally 

fertile soils, variable rain-fed conditions (from 600 mm per year in semi-arid tropics to 

1000 mm in humid tropics) and at temperatures between 25-35°C (El-Sharkawy, 2004). 

The tolerance of cassava to drought and other environmental stresses means that when 

other crops fail cassava roots can usually still be harvested (Burns et al., 2010). 

However, despite these advantageous traits cassava production is generally mediocre 

with current yields barely averaging 20% of those obtained under optimal conditions, 

particularly in Africa (Fermont et al., 2009). 

1.2 	 PROBLEMS ASSOCIATED WITH THE CONSUMPTION AND PRODUCTION 
OF CASSAVA 

1.2.1 	 Nutrient content and cyanogenic glucosides 
Cassava is rich in carbohydrates but the roots have very low quantities of minerals, 

protein and vitamins compared with the leaves (Table 1.1; Montagnac et al., 2009a). 

Cassava also contains large amounts of cyanogenic compounds that are converted to 

hydrogen cyanide (HCN) following tissue disruption and catalysis by enzymes (e.g. β

glucosidases; Blagbrough et al., 2010; Burns et al., 2010; Zagrobelny et al., 2008). A 

bitterness in taste caused by these compounds usually deters insects and herbivores. 

Although there is wide variation in the concentration of cyanogenic compounds between 

cultivars, non-bitter roots generally have <100 mg HCN equivalents kg-1 fresh weight 

(FW), whereas bitter roots may contain >450 mg HCN equivalents kg-1 FW (Chiwona-

Karltun et al., 2004; Sundaresan et al., 1987). Various processing techniques listed 

above can remove more than 96% of the cyanogens and thus reduce cassava toxicity for 

consumption (Montagnac et al., 2009b). Occasionally, however, consumption of the 

bitter varieties - usually at times of drought and/or war - can cause serious illness, 

especially in children who may experience stunted growth and irreversible paralysis of 

the legs (Nhissco et al., 2008; Nzwalo & Cliff, 2011). 
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Table 1.1 Nutrient content of cassava roots and leaves. 

Nutrient* Roots Leaves 

Vitamin A (μg) 5 - 35 8300 - 11800 

Vitamin C (mg) 14.9 - 50 60 - 370 

Protein (g) 0.3 - 3.5 1 - 10 

Carbohydrate (total, g) 25.3 - 35.7 7 - 18.3 

Zinc (ppm) 14 71 

* 	 Approximate quantity of selected nutrients, vitamins and mineral per 100 g tissue. Data  

collated from Montagnac et al. (2009a). 

1.2.2 	 Biotic and abiotic stresses 
Cassava production in Africa is greatly constrained by several biotic factors, including 

cassava green mite (Skovgård et al., 1993), cassava mealy bug, cassava bacterial blight 

(Boher & Verdier, 1994), cassava brown streak disease (CBSD; Hillocks & Jennings, 

2003) and cassava mosaic disease (CMD; Patil & Fauquet, 2009). CMD is caused by 

whitefly-transmitted begomoviruses (family Geminiviridae) for which several species 

have been identified throughout cassava growing regions of Africa (Berrie et al., 2001; 

Bull et al., 2006; Bull et al., 2003; Hong et al., 1993; Stanley & Gay, 1983). The disease - 

characterised by a yellow-green mosaic of the leaves, leaf distortion, stunted growth and 

decrease in the size of root - is probably the most significant biotic constraint to cassava 

production in Africa. Although the true incidence and severity of CMD is difficult to 

quantify (Sseruwagi et al., 2004), African cassava mosaic virus (ACMV) alone is 

estimated to cause 28-40% crop losses totalling 28-49 million tonnes per year (Thresh et 

al., 1994; Thresh et al., 1997). CBSD is also the result of a viral infection (cassava brown 

streak viruses) and characterised by brown streaking symptoms in the storage root. 

There is only scant information about CBSD compared to CMD, especially concerning 

virus transmission, but recent publications offer new insights into the molecular 

characteristics of the virus and disease aetiology (Mbanzibwa et al., 2011; Winter et al., 

2010), providing new tools and knowledge to evolve disease resistance programmes. 

Cassava production is also hindered by numerous abiotic factors that include infertile 

soils, post-harvest root deterioration, planting of unimproved traditional varieties and 

inadequate farming practices. The planting of sub-optimal material, for example 
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unimproved varieties or diseased cuttings, is exacerbated by the fact that cassava is 

vegetatively propagated. Without an organised and systematic dissemination of disease-

free and improved cultivars, inferior material may be grown and distributed between 

farmers. This problem is often compounded by inefficient planting densities, as well as 

poor weed, pest and disease management (Hillocks, 2002). Unfortunately, even effective 

farming practices and good yields can be significantly impeded by post-harvest 

physiological deterioration (PPD). The storage root functions as an energy reserve to the 

plant and thus there is no selective advantage to repair wounds and damage to the root 

following harvest. Ordinarily the root deteriorates within 1-2 days after harvest, which in 

village societies is generally not a major problem since roots are harvested and 

consumed when required. However, with an increase in cassava production for 

marketing and industrial processes, PPD significantly affects crop losses, root quality, 

economic costs, marketability, consumer availability and commercial processes (Page & 

Beeching, 2011). For example, starch extraction rates are reported to be significantly 

reduced in processing plants in Latin America and Indonesia. Additionally, in Thailand - 

the largest exporter of cassava-based products - the crop is grown close to processing 

plants to minimise deterioration and freshly harvested roots are used daily. As a 

consequence of PPD, some urban consumers and processors import other sources of 

carbohydrate, exacerbating the problems for rural farmers (Onwueme, 2002; Plumbley & 

Rickard, 1991). 

1.3 POST-HARVEST PHYSIOLOGICAL DETERIORATION 
1.3.1 Biochemical and molecular understanding 
PPD was first reported in Argentina in 1928 and described by Castagnino (1943) as the 

appearance of blue/black veins, a symptom later referred to as ‘vascular streaking’ 

(Averre, 1967; Figure 1.5). This phenotype develops within 48 hours after harvest 

(Drummond, 1953) and arises in the xylem parenchyma at wound sites and later in 

storage parenchyma (Booth, 1976; Montaldo, 1973). Early research revealed 

microorganisms are not involved in PPD since none could be cultured from freshly 

deteriorated areas of the root and treatment with fungicides and bactericides failed to 

prevent PPD, indicating vascular streaking is an endogenous process (Noon & Booth, 

1977). It was later concluded that the blue/black product is due to the oxidation of 

hydroxycoumarins by peroxidases and hydrogen peroxide (H2O2). Hydroxycoumarins are 

secondary metabolites that are involved in plant defence and include esculetin and 

scopoletin. Application of phenolic compounds to freshly harvested root sections 
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revealed that only scopoletin caused a rapid and intense discolouration indicative of PPD 

(Wheatley & Schwabe, 1985). The synthesis of scopoletin via the phenylpropanoid 

pathway in cultivar MCOL22 increases during PPD, peaking 24 hours after harvest at 

100 nmol g-1 FW as measured using High Performance Liquid Chromatography (HPLC), 

before gradually returning to basal levels (approximately 20 nmol g-1 FW) in subsequent 

days (Buschmann et al., 2000b). Accumulation can also be visualised since 

hydroxycoumarins fluoresce under ultraviolet (UV) light (Buschmann et al., 2000b; 

Wheatley & Schwabe, 1985). Interestingly, there was no correlation between 

quantification of fluorescence and subjective scoring of symptoms in 25 cultivars of 

cassava roots after five days storage. This discrepancy was attributed to stabilisation 

and gradual degradation of hydroxycoumarin content prior to symptom development 

(Salcedo et al., 2010). The involvement of scopoletin in defence and PPD was implicated 

further since phenylalanine ammonia lyase (PAL), a key enzyme in its production, was 

up-regulated following treatment of cassava cell suspension cultures with pathogens 

including Fusarium oxysporum (Gómez-Vásquez et al., 2004) and increased levels of the 

protein have also been detected within 24 hours post harvest (Owiti et al., 2011). 

Similarly, a 17% increase in PAL activity has been reported in sweet potato following 

wounding and storage for two days at 15°C (Reyes et al., 2007). The biosynthetic 

pathway for scopoletin in harvested cassava roots is being elucidated using HPLC and 

mass spectrophotometer techniques (Bayoumi et al., 2008a; 2010; Bayoumi et al., 

2008b) and which may offer insights into the factors affecting its production and 

regulation. 

Figure 1.5 Cross-sections of harvested cassava root. Symptomless root immediately following 

harvest (a) and PPD symptoms (vascular streaking) 48 hour post-harvest (b). Unknown cultivar 

acquired from supermarket (UK). Photographs by J. Beeching (University of Bath). 
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PPD resembles a wound response that manifests changes in cell wall structure, lipid 

composition (Lalaguna & Agundo, 1989), increased ethylene synthesis and respiration, 

programmed cell death and a wound-induced oxidative burst (Beeching et al., 1998; 

Reilly et al., 2004). An increase in the phytohormone ethylene has been detected in 

cassava approximately 16 hours post-harvest (Hirose et al., 1984), although during late 

PPD (>48 hour post-harvest) protein accumulation of 1-aminocyclopropane-1-carboxylic 

acid (ACC) oxidase (the enzyme involved in the rate limiting step in ethylene production) 

is down-regulated (Owiti et al., 2011). In other root crops, such as potato tubers and 

sugarbeet, wounding also led to an increase in ethylene biosynthesis. Interestingly, in 

potatoes this did not appear to be associated with wound healing (suberisation; Lulai & 

Suttle, 2004) and in sugarbeet an increase in respiration was also detected but which did 

not detrimentally affect storage (Fugate et al., 2010). Thus whilst an increase in ethylene 

biosynthesis is commensurate with a wound response, its role during PPD remains 

unclear. An increase in respiration required to provide energy for defence pathways has 

also been detected within 24 hours of cassava root harvest (Hirose et al., 1984) and 

increased approximately 186% in wounded sugarbeet four days after harvest (Lafta & 

Fugate, 2011). Fluctuations in antioxidant capacity (measured via changes in, for 

example, phenolic compounds, ascorbate, glutathione and carotenoids) have also be 

catalogued in harvested/wounded root crops. Wegener & Jansen (2010) reported 

significant increases in ascorbate and phenolic compounds in potato. Whilst Reyes et al. 

(2007) concluded that potato and sweet potato tissue with high levels of ascorbate are 

intrinsically better prepared for wounding. As such, synthesis of phenolic compounds are 

directed for lignin production and suberisation. The formation of protective barriers via 

the accumulation of lignin, suberisation and crosslinking of hydroxyproline-rich 

glycoproteins (HRGPs; reviewed by Deepak et al., 2010) is an important aspect of the 

plant wound response and which has been observed in cassava (Han et al., 2001; Owiti 

et al., 2011; Reilly et al., 2007). Lastly, programmed cell death (PCD) – a controlled 

process for cellular suicide - has also been implicated in plant wound defence (Gadjev et 

al., 2008). It is not known whether cellular breakdown during PPD is PCD or simply 

physical disruption, but studies are currently underway to understand better the process 

in transgenic cassava (K. Jones, pers. comm.). However, an increase in cysteine 

proteases (caspases) that are involved in cleaving proteins and thus instigating cell 

death, have been detected in protein analyses during PPD, especially 48-72 hour post 

harvest (Owiti et al., 2011) and also in a microarray (Reilly et al., 2007), suggesting that 

PCD is to some extent implicated in PPD. The complex interrelation between the 
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numerous pathways associated with a wound response ensures difficulty in unravelling 

the biochemical and molecular processes during PPD. However, despite this, recent 

publications using advanced techniques such as peptide tagging and microarray analysis 

(cited above) are providing researchers with an overview of PPD and the opportunity to 

highlight potentially important pathways and products. Amongst these, the production 

and control of reactive oxygen species has been pinpointed and forms the basis of 

research presented in this thesis. 

1.3.2 Reactive oxygen species and their involvement in PPD 
Reactive oxygen species (ROS) and their detoxification have been implicated in PPD. 

ROS are molecules that are derived from non-toxic molecular oxygen (O2) and include 

singlet oxygen (1O2), superoxide anion radical (O2
•¯), H2O2 and hydroxyl radical (HO•). In 

plants, ROS are produced during the normal metabolism of photosynthesis and 

respiration, involving photosystems I and II (PSI and PSII), mitochondrial electron 

transport chain, membranes and peroxisomes. The photosynthetic centre PSII generates 
1O2 due to insufficient energy dissipation through carbon fixation, instead transferring 

excitation energy from chlorophyll to O2. 1O2 can be physically quenched by compounds 

such as carotenoids that deactivate 1O2 to O2 (Triantaphylidès & Havaux, 2009). 1O2 

oxidises amino acids and causes membrane damage and is unique amongst ROS since 

O2
•¯, H2O2 and HO• are generated via a series of reduction reactions. O2

•¯ can be formed 

from PSI, PSII and membrane NADPH oxidases and has a short life span (Møller et al., 

2007). Unable to cross membranes, O2
•¯ can be dismutated by superoxide dismutase 

that exist in different isoforms and results in the production of H2O2 (discussed in Chapter 

7). Although less reactive than O2
•¯, H2O2 readily permeates membranes and is therefore 

capable of disrupting enzymes via oxidation of their thiol groups. H2O2 is removed by 

catalases (located in glyoxysomes and peroxisomes) and peroxidases (POX) located in 

different cellular compartments, but particularly chloroplasts. The final reductive stage 

(Fenton reaction) gives rise to HO• that has extremely high oxidising potential compared 

to the other ROS and cause significant cellular damage (Garg & Manchanda, 2009). 

Importantly, although ROS are toxic by-products of aerobic reactions, O2
•¯ and H2O2 

serve crucial roles in signalling and defence gene activation (Galvez-Valdivieso & 

Mullineaux, 2010; Møller & Sweetlove, 2010; Triantaphylidès & Havaux, 2009). Under 

stress conditions, such as high light intensity, drought and wounding (Jaspers & 

Kangasjarvi, 2010), an increase in ROS production is therefore co-ordinately balanced 
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between accumulation, scavenging and signalling to prevent sustained oxidative 

damage. 

An oxidative burst occurs within 15 minutes of cassava root harvesting and is 

hypothesised to be the trigger for PPD (Reilly et al., 2004). H2O2 production was 

detected following vacuum infiltration of root sections with 3,3-diaminobenzidine 

tetrahydrochloride (DAB), revealing accumulation in the cortical parenchyma within 24 

hours after harvest and later in the storage parenchyma (Buschmann et al., 2000a). A 

rapid H2O2 burst (approximately 2-3 minutes) has also been detected in cassava cell 

suspension cultures exposed to pathogens including species of Fusarium (Gómez-

Vásquez et al., 2004). More sophisticated analysis of ROS production and modulation is 

starting to emerge providing detailed insights into their involvement in PPD. The 

presence of 1O2 has been identified at parenchyma cell walls and close to the site of 

wounding using a singlet oxygen sensor green (SOSG) probe, appearing within only four 

hours after harvest (Iyer et al., 2010). A microarray analysis of roots undergoing PPD 

revealed that many of the 63 up-regulated (≥1.8 fold) genes had roles in ROS generation 

and modulation, including catalase (EC 1.11.1.6; Reilly et al., 2001), ascorbate 

peroxidases and secretory peroxidases (EC 1.11.1.7), all of which are involved in H2O2 

detoxification (Reilly et al., 2007). Some of these findings are supported by recent 

iTRAQ-based analysis of cassava root proteome with increases detected for superoxide 

dismutase during early (6-24 hours) and for catalase during late (48-96 hours) PPD 

(Owiti et al., 2011). Importantly, ROS detoxification not only relies upon enzymatic 

reactions but also the involvement of antioxidant compounds such as glutathione (Foyer 

& Noctor, 2011; Mahmood et al., 2010; Chapter 6). Although harvesting triggers a burst 

of ROS that cause a cascade of defence responses, it appears that in cassava a typical 

wound response is inadequate. In particular, wound repair appears to be lacking in 

cassava (Beeching et al., 1998; Han et al., 2001) allowing a continued imbalance 

between stress and homeostasis. 

1.4 DETERIORATION IN OTHER TROPICAL TUBER CROPS 
1.4.1 Sweet potato (Ipomea batatas; Family Convulaceae) 
Cassava is particularly susceptible to PPD but all tuberous crops, including sweet potato, 

yam and cocoyam are classed as perishable (compared to grain crops; Page & 

Beeching, 2011). In 2009, sweet potato was the 13th most important crop in the world 
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with the vast majority (>80%) of production in China (FAOSTAT, 2009b). Sweet potato is 

usually propagated from vine cuttings that give rise to tuberous roots which function as 

propagules. The tubers contain 50-80% (dry weight) starch and are a source of vitamin C 

and provitamin A. However, like cassava they have a poor protein content (estimated 

5%) comprising predominately the storage protein sporamin (Shewry, 2003). The tubers 

adaptation for dormancy (albeit relatively brief) offers some explanation as to why the 

crop can be stored for weeks or months depending on the cultivar and storage conditions 

(Onwueme, 1978). The construction of thatched covered pits is a common practice in 

almost all sweet potato growing countries and where roots can be stored for 

approximately eight weeks (Gooding & Campbell, 1964). However, yields are afflicted by 

post-harvest losses as a consequence of physical damage, microbial infection (e.g. 

Fusarium rot) and due to pests such as sweet potato weevils (Cylas formicarius). The 

relatively thin and delicate skin of roots is easily scrapped or bruised during harvest, with 

25% of crops being damaged even prior to transport to market – a process that further 

exacerbates the propensity for crop losses (Ray & Ravi, 2005). 

In sweet potato, respiration, sprouting and biochemical fluctuations indicative of a wound 

response contribute to weight loss and unfavourable root characteristics. Respiration 

peaks within 24 hours after harvest but gradually decreases, as does starch content, 

during storage (Picha, 1986). Interestingly, the rate of respiration increased in high O2 

concentration environments, suggesting an involvement of ROS possibly as signalling 

molecules (Chang & Kays, 1981). Sprouting is also a major problem since it occurs 

rapidly in sweet potato, especially when stored at high temperature and humidity. 

However, storing roots in structures that provide a temperate climate (i.e. 14°C and 

diffused light) can suppress sprouting by 99% (Data, 1988). Similar to cassava, 

harvesting and subsequent spoilage due to pathogens induces a wound response with 

heightened expression of genes in the phenylpropanoid pathway, including PAL whose 

expression peaks within 24 hours and is accompanied by increases in POX activity and 

phenolic compound accumulation. Interestingly, however, vascular streaking and 

extensive oxidative damage ostensibly does not arise in sweet potato. The reason for 

this is unknown but may be associated with the rapid curing and suberisation of exposed 

parenchyma cells to form a wound periderm, thus reducing O2 flux and continued post

harvest damage. Optimal conditions for curing are reportedly 29-33°C and 80-95% 

humidity for 4-7 days prior to storage at approximately 14°C and 90% humidity (Picha, 

1986; Ray & Ravi, 2005). Importantly, the expansion of conventional breeding 
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programmes and advances in biotechnology (Yang et al., 2011) should provide new 

options to combat post-harvest losses in sweet potato. 

1.4.2 Yams (Dioscorea spp.; Family Dioscoreaceae) and cocoyams (Family 
Araceae) 
Yams (e.g. Dioscorea rotundata Poir; white yam) are grown predominantly in west Africa 

with Nigeria ranked as the largest producer worldwide (Arnau et al., 2010; FAOSTAT, 

2009c). The dioecious plant is relatively tolerant of dry conditions but growth is severely 

restricted at temperatures below 20°C and require fertile soils to grow well. Marginal soils 

that can support cassava or sweet potato are unlikely to be adequate for yam production; 

soil in the yam growing regions of west Africa is, generally, relatively high in 

phosphorous (Onwueme, 1978). Yams can be propagated by vine cuttings, seed or 

tuber, although seed production is highly variable and on average only 5-6 seeds may be 

obtained from a single female plant of D. rotundata. Propagation by tuber is by far the 

most common and it is the attributes of the tuberous root that, of the root species 

discussed here, ensures yams are probably the least susceptible to deterioration. 

Derived from the hypocotyl (region of stem between the radicle and cotyledons), yam 

tubers comprise meristematic tissue serving as propagules and, unlike sweet potato, 

have a tough cork periderm providing a protective barrier to damage, pathogens and 

water loss (Arnau et al., 2010). 

Post-harvest storage of yams affects various parameters, including sugar and phenolic 

content and respiration. In D. alata (“Florido”) and D. cayenesis-rotundata (“Krenglè”), 

phenolic compounds were in greater abundance in proximal root tissue compared to 

distal parts, although content throughout the tuber decreased during storage (0-6 

months). Conversely, sugar content increased during storage and was most abundant in 

distal tissue, probably due to starch hydrolysis (Kouakou et al., 2010). Suppression of 

respiration and water loss via effective wound healing/lignification following harvest is 

similar to sweet potato and dependent upon optimal light, humidity and temperature 

(Passam et al., 1977; Passam & Noon, 1977). Various techniques are applied to provide 

the optimal balance and ‘yam barns’ are a common sight in west Africa (Onwueme, 

1978). However, achieving optimal storage conditions in tropical and sub-tropical 

developing countries can be challenging. Moreover, given the tuberous characteristics of 

yam, a more arresting problem is the prevention of sprouting. Recent studies utilising in 

vitro grown microtubers have assessed various environmental conditions upon 
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dormancy, concluding that reduced temperature (i.e. approximately 18°C) rather than 

light is more important to minimise tuber sprouting (Ovono et al., 2010). Like cassava 

and sweet potato, yams are also susceptible to microbial infection, in particular to fungal 

species Fusarium and Aspergillus, especially following wounding. Indeed, pathogen 

infection is considered the most significant cause of post-harvest losses in yam 

cultivation (Aboagye-Nuamah et al., 2005). 

The cocoyams including tannia “new cocoyam” (Xanthosoma sagittifolium) and taro “old 

cocoyam” (Colocasia esculenta) are edible aroids that require average daily 

temperatures above 21°C and a plentiful water supply. The corms and cormels are rich 

in starch and, in general, post-harvest losses are largely due to microbial infection 

following wounding (Onwueme, 1978). As for sweet potato and yam, storage conditions 

affect post-harvest losses due to increased rate of respiration leading to weight loss and 

the conversion of starch to sugars. Factors that not only influence storage but also crop 

characteristics as a food source. Under tropical ambient conditions reduced weight loss, 

respiration rates and decay were attributed to effective curing of wounds - a process that 

is promoted by high temperatures (i.e. >20°C) - although the impact upon tissue varies 

between different species. However, under conditions of low temperature (15°C) and 

high humidity (85%) cormels of both tannia and taro could be stored for approximately 5

6 weeks (Agbor-Egbe & Rickard, 1991). These various studies for sweet potato, yam 

and cocoyam underline the intrinsic differences between cassava storage roots and 

other tropical root crops. Of particular note is the inability of cassava roots to serve as 

propagules, lack of dormancy and the incapacity to establish an effective wound 

periderm following harvest/damage, resulting in continuous accumulation of ROS and 

stress induced defence responses.  

1.5 TECHNIQUES TO DELAY PPD IN CASSAVA ROOTS 
1.5.1 Traditional approaches 
There are numerous traditional approaches to minimise PPD in cassava, including pre-

harvest pruning and various storage techniques. Pruning the foliage of MCOL22 plants 

2-3 weeks prior to root harvest resulted in only 4% of roots being deteriorated after 20 

days in storage; in comparison, approximately 96% of roots were deteriorated from un

pruned plants (Rickard & Coursey, 1981). The effects of pre-harvest pruning have also 

been assessed in six cultivars with varying susceptibility to PPD; MCOL22 and SM627-5 
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are highly susceptible, MCOL72 and MVEN77 moderately susceptible, whilst MBRA337 

and MPER245 are least susceptible. Following pruning at intervals 0-39 days before 

harvest, susceptibility to PPD in all cultivars was reduced overall to less than 25% of un

pruned plants in roots stored for 25 days following harvest. However, whilst pruning may 

prolong the shelf-life of cassava roots, the procedure affects root qualities due to an 

increase in sugar content, presumably as a result of starch hydrolysis (van Oirschot et 

al., 2000). Another approach commonly used on small farms is simply to retain roots in 

the ground until they are required. However, the plants are therefore more susceptible to 

pests and diseases and the roots become increasingly woody. Significantly, it also 

means the valuable land is being utilised simply as a means of storage when it could be 

used for new harvests and other crops – certainly not a feasible option for cassava 

grown for commercial processes (Westby, 2002). Other techniques include coating the 

roots in wax and wrapping in air-tight bags to exclude oxygen (Wheatley & Schwabe, 

1985). However, these techniques are time-consuming and expensive for such a low 

cost commodity and suitable only for export to markets that are prepared to pay a high 

price for cassava. 

1.5.2 Conventional breeding and biotechnology 
Traditional farming techniques discussed above have been complemented with 

continuous advances in both knowledge and technology aimed at improving cassava. 

Conventional breeding programmes have long been key in encouraging these advances 

and resulted in the introgression of important traits into the cassava germplasm with 

improvements recorded for bacterial blight resistance, virus resistance (Hahn et al., 

1980; Okogbenin et al., 2007), protein content (Chávez et al., 2005), starch quality 

(Ceballos et al., 2007) and PPD (Morante et al., 2010), as well as in developing 

techniques such as marker-assisted breeding (Rudi et al., 2010). Marker-assisted 

breeding is estimated to reduce by several years the cycle for conventional breeding and 

developing resistance to PPD alone has been predicted to save $3 billion over a 25 year 

period in sub-Saharan African countries (Rudi et al., 2010). However, traditional breeding 

remains fraught with limitations, notably the heterozygous nature of the crop renders it 

difficult to identify the true breeding value of parental lines, poor fertility and introgression 

of the selected trait(s) into farmer-preferred cultivars without affecting their favoured 

characteristics remains difficult (Ceballos et al., 2004; Kawano, 2003; Nassar & Ortiz, 

2010). Thus, production of improved plant lines by conventional breeding can take 

approximately 10 years from the first parental crossing to distribution of the improved 
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plants (M. Fregene, pers. comm.). Notwithstanding these complications, several cultivars 

have been developed recently that are remarkably resistant to PPD. Of particular note 

are GM905-66, AM206-5 and WAXY4 that were totally devoid of PPD symptoms even 

after 40 days storage (Morante et al., 2010). The basis for PPD resistance in these 

clones has not been conclusively defined but for GM905-66 it is likely to be associated to 

high carotenoid content (Sánchez et al., 2006). AM206-5 and WAXY4 are amylose-

starch mutants (Ceballos et al., 2007) and it has been suggested that the waxy-starch 

gene may be linked to PPD, although the precise relation is unclear (Morante et al., 

2010). Despite the constraints in breeding programmes, the progressive development of 

cultivars with improved nutritional and agronomic traits collectively broadens our 

knowledge of factors affecting PPD and thus provide possible targets for its control 

(Chávez et al., 2005). 

Biotechnology both complements and facilitates breeding programmes and an Expert 

Consultation by the FAO viewed biotechnology as the most appropriate technique to 

resolve PPD in cassava (Wenham, 1995). To date, however, biotechnology has not been 

used directly to combat PPD and itself remains a problematic field of research. The lack 

of progress in generating transgenic plants has been attributed to numerous difficulties, 

including financial burdens, a need for appropriate facilities, lengthy process and an 

apparent lack of common knowledge and skills. These problems and constraints are 

addressed in detail in Chapter 4. The development of transgenic plants is a key aspect 

for researchers involved in the BioCassava Plus programme, who seek to improve zinc, 

iron, protein (Abhary et al., 2011) and vitamin A content, reduce levels of cyanogenic 

compounds, develop disease resistance and extend the shelf-life of cassava roots 

(Blagbrough et al., 2010; Sayre et al., 2011). Advances in molecular mapping (Akano et 

al., 2002; Okogbenin et al., 2007), sequencing of cDNA clones and expressed sequence 

tags (ESTs; Lokko et al., 2007; Sakurai et al., 2007) and specifically the recent 

elucidation of the cassava genome sequence (Cassava Genome Project 2009), all 

provide tools for these biotechnology-based projects. Furthermore, recent advances in 

proteome technology also provide detailed information regarding gene expression 

profiles during PPD (Owiti et al., 2011) and embryogenesis (Baba et al., 2008). An 

internationally promoted goal is to transfer the skills and knowledge surrounding 

biotechnology to laboratories in developing countries, in particular Africa, to ensure the 

necessary infrastructure is in the hands of those who seek to gain from the exciting new 

advances in cassava biotechnology (Bull et al., 2011). 
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1.6 RESEARCH OBJECTIVES 
Research into cassava PPD has in recent years revealed the significant involvement of 

enzymes and antioxidant compounds in the production and detoxification of ROS. The 

ultimate aim is to prolong the shelf-life of cassava storage roots via the generation of 

transgenic plants over-expressing selected genes driven by a root-specific promoter. The 

specific research objectives were: 

(a) Adapt a binary expression cassette (pCAMBIA 1305.1) to allow efficient cloning 

of selected genes: ASCORBATE PEROXIDASE  (MecAPX2), CATALASE  (MecCAT1) 

and SUPEROXIDE DISMUTASE  (MecSOD2) isolated from cassava. GALACTURONIC 

ACID REDUCTASE  (GalUR) from strawberry and γ-GLUTAMYLCYSTEINE 

SYNTHETASE  (GSH1) isolated from Arabidopsis. MecAPX2, MecCAT1 and MecSOD2 

encode enzymes involved in detoxification of hydrogen peroxide and superoxide 

radicals. GalUR and GSH1 are involved in the production of the antioxidant compounds 

ascorbate and glutathione, respectively. The genes will be driven by a root-specific 

promoter (StPAT) from PATATIN, which encodes the major storage protein in potato. 

(b) Isolate the regulatory sequence of cassava MecPX3, which encodes a putative 

secretory peroxidase. Gene expression is root specific and up-regulated during PPD, 

suggesting it may be an ideal promoter for future studies. 

(c) Critically appraise the cassava transformation protocol using the model cultivar 

TMS60444. The ability to generate transgenic plants is of paramount importance for 

success of this project. 

(d) Generate in vitro transgenic cassava plantlets using the created expression 

constructs. These plantlets will be characterised to identify independent lines and 

confirm integration of the transgene. 

(e) Establish an infrastructure for growing cassava plants for storage root production 

in a glasshouse environment at the University of Bath. Roots will be assessed for PPD 

and preliminary molecular and biochemical analyses will be performed to characterise 

the selected transgenic plants. 
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2 MATERIALS & METHODS 


2.1 DNA AMPLIFICATION FOR CLONING AND ANALYSIS 
2.1.1 Polymerase chain reaction (PCR) for target sequence amplification 
PCR incorporating proof-reading polymerase was used to isolate the coding regions of 

genes involved in modulation of ROS as described in Chapter 3. Reactions were 

prepared in sterile 0.2 ml thin-walled PCR tubes and consisted of approximately 100 ng 

DNA template, 5 μl 10X KOD DNA polymerase buffer, 2 μl of 25 mM MgCl2, 5 μl of 2 mM 

dNTPs, 1.5 μl of 10 μM forward primer (Table 2.1), 1.5 μl of 10 μM reverse primer (Table 

2.1), 1 μl KOD DNA polymerase (Novagen) and sterile, distilled water (SDW) to 50 μl. 

Reactions were cycled in a PTC-200 Peltier Thermal Cycler (MJ Research) at 94°C (3 

min) and then 25 cycles of 94°C (40 sec), 50-60°C* (40 sec), 72°C for a time dependent 

upon expected amplicon length (1 min per 1 Kb amplification), and a final step of 72°C 

for 10 min. * The annealing temperature was adjusted to approximately 5°C below the 

melting temperature (Tm) of the primers and within the range of 50-60°C. Amplification 

products were visualised by agarose gel electrophoresis (Section 2.4.2). 

2.1.2 PCR amplification for genotyping/screening 
PCR using Taq DNA polymerase was used to check successful ligation and cloning of 

DNA fragments, as well as for screening transformed bacteria and plant material. 20 μl 

reactions comprised 2 μl template DNA or lysate (Sections 2.2.8 and 2.3.1), 2 μl of 10X 

ThermoPol buffer (New England Biolabs; NEB), 4 μl of dNTPs (1.25 mM), 1 μl of 10 μM 

forward primer (Table 2.1), 1 μl of 10 μM reverse primer (Table 2.1), 0.2 μl of Taq DNA 

polymerase (NEB) and 9.8 μl of SDW. Reactions were cycled in a PTC-200 Peltier 

Thermal Cycler (MJ Research) at 94°C (3 min), followed by 25 cycles of 94°C (40 s), 50

60°C* (40 s) and 72°C for a time dependent upon expected amplicon length (1 min per 1 

Kb amplification), and a final step of 72°C for 10 min. * The annealing temperature was 

adjusted to approximately 5°C below the melting temperature (Tm) of the primers and 

within the range of 50-60°C. Amplification products were visualised by agarose gel 

electrophoresis (Section 2.4.2). 

2.1.3 Quantitative real-time PCR and data analysis 
Real-time PCR was used to determine expression levels of transgenes and reference 

genes in cassava plants. 1 μl of cDNA (Section 2.6.4), 0.5 μl of 10 μM forward primer 
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(Table 2.1), 0.5 μl of 10 μM reverse primer (Table 2.1), 10.5 μl molecular grade, 

nuclease-free water (NFW; Sigma-Aldrich) and 12.5 μl SYBR® Premix Ex Taq™ 

(TaKaRa) was combined in sterile 0.2 ml tubes maintained on ice before transferring 20 

μl of the mix to LightCycler® capillaries (Roche). To minimise pipetting errors, master 

mixes were prepared where possible. Capillaries were capped, centrifuged at 400 x g 

(pulse setting) and loaded into the carousel of the LightCycler® (Roche) real-time PCR 

machine. Data was collected using the LightCycler® software (Version 1.5). Duplicates of 

each sample were prepared and CT values used for comparative expression analysis 

using the formula 2-ΔCT (Livak & Schmittgen, 2001): 

2 - CT (Transgene) – CT (Reference gene) 

PCR amplification efficiencies were calculated (E = 10(-1/slope)) using the slope of a 

standard curve generated from a dilution series of cDNA as template DNA. Efficiencies 

are represented as a percentage (%E = (E-1) x 100). An optimal slope is -3.32, which 

translates into E=2 and refers to a doubling in the amount of DNA per cycle. 

Comparative primer efficiencies were determined between a selected reference gene 

and target gene using the 2-ΔCT formula and the standard deviation (S.D.) calculated: 

S.D. = √S.D.1 
2 + S.D.2 

2 

2.2 CLONING & BACTERIAL TRANSFORMATION TECHNIQUES 
2.2.1 TA cloning 
The desired fragments derived from PCR amplification (Section 2.1.1) were cloned into 

the TA vector (pCR®2.1-TOPO®) as directed by the manufacturer (Invitrogen). PCR by 

KOD DNA polymerase (Section 2.1.1) generates blunt-ended fragments due to the 

proof-reading capability of the enzyme and thus deoxyadenosine overhangs were added 

in a separate step to enable cloning. 1-7 μl of PCR product was combined with 1 μl of 

10X ThermoPol buffer, 1 μl of 2 mM dATP, 1 μl of Taq DNA polymerase (NEB) and SDW 

to 10 μl in sterile 0.2 ml thin-walled PCR tubes. The reaction was incubated at 70°C for 

20 min in a PTC-200 Peltier Thermal Cycler (MJ Research). 1 μl of the reaction mix was 

removed for TA cloning and used to transform One Shot® TOP10 Chemically Competent 

E. coli, as outlined by the manufacturer (Invitrogen). 
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2.2.2 Gateway® cloning of target sequence 
The Gateway® cloning system was used to transfer each of the target coding regions into 

the expression vector via an intermediate vector; the strategy is discussed in detail in 

Chapter 3. The PCR products including the added terminal attB sites were cloned into 

pDONR™/Zeo (Invitrogen) and used to transform One Shot® Omnimax 2-T1 Chemically 

Competent E. coli in accordance with the manufacturer’s guidelines. The following 

reaction used the LR Clonase™ II Enzyme Mix (Invitrogen) to transfer the target 

sequence into the expression cassette for transformation of One Shot® ccdB Survival™ 

T1R Chemically Competent E. coli (Invitrogen).  

2.2.3 Conversion to a Gateway® compatible system 
The Gateway® Vector Conversion System was used to convert pCAMBIA 1305.1 into a 

Gateway® compatible vector using Reading Frame A (rfA), according to the 

manufacturer’s guidelines (Invitrogen). Further details are provided in Chapter 3. 

2.2.4 Preparation of electrocompetent Agrobacterium tumefaciens LBA4404 
Agrobacterium tumefaciens LBA4404 (henceforth referred to simply as Agrobacterium) 

was used in the transformation of cassava. 10 ml of YEP broth (1% peptone, 1% yeast 

extract, 0.5% NaCl, 0.5% sucrose, pH 7.5) containing 50 μg ml-1 rifampicin and a colony 

of Agrobacterium was cultured for approximately 48 hr at 28°C, shaking 200 rpm. 5 ml 

was used to inoculate 500 ml of YEP and cultured at 28°C, 200 rpm until the optical 

density (OD)600 = 0.5-1, as determined by a spectrophotometer (GeneQuant, Pharmacia 

Biotech). The culture was retained on ice and centrifuged at 2790 x g at 4oC for 15 min. 

The pellet was resuspended in 500 ml of ice cold 1 mM HEPES/KOH buffer (pH 7.0) and 

centrifuge at 2790 x g for 15 min at 4°C. Cells were resuspended in 250 ml of ice cold 1 

mM HEPES/KOH buffer (pH 7.0) and centrifuged as previously. The cells were 

resuspended in 200 ml 10% (v/v) glycerol at 4°C, centrifuged as previously and then 

resuspended in 1.5 ml 10% (v/v) glycerol at 4°C. 40 μl aliquots were transferred to sterile 

0.5 ml microfuge tubes, flash frozen in liquid nitrogen and stored at -70°C. 

2.2.5 Electroporation of Agrobacterium LBA4404 
Agrobacterium were transformed with plasmid DNA (expression vectors) via 

electroporation. Approximately 2 μl of plasmid DNA (Sections 2.2.6 and 2.2.7) was 

added to 50 μl of Agrobacterium (Section 2.2.4) and immediately transferred to an ice-

cold electroporation cuvette (Bio-Rad, 2 mm gap). Electroporation was performed as a 
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single pulse at 2.5 kV using a MicroPulser (Bio-Rad). 750 μl sterile Luria-Bertani (LB) 

media (25 g Luria broth (Sigma-Aldrich) in 1 L SDW) was immediately added to the mix 

and then incubated at 28°C with shaking (200 rpm) for 2 hr. The culture was spread onto 

LB agar plates (40 g Luria agar (Sigma-Aldrich) in 1 L SDW) supplemented with 50 μg 

ml-1 rifampicin, 50 μg ml-1 kanamycin, 100 μg ml-1 streptomycin and incubated for 40 hr at 

28°C. 

2.2.6 Small scale preparation of plasmid DNA (Minipreps) 
Bacterial colonies were selected from LB agar culture plates using a sterile inoculation 

loop and cultured in 5 ml LB media containing the appropriate antibiotic(s). E. coli 

cultures were incubated overnight at 37°C with shaking (200 rpm), whilst Agrobacterium 

cultures were incubated for approximately 40 hr. DNA was extracted using the QIAprep® 

Spin Miniprep Kit (Qiagen) and eluted in 50 μl SDW. 

2.2.7 Midi scale preparation of plasmid DNA (Midipreps) 
100 ml LB media containing the appropriate antibiotic(s) was inoculated with a colony of 

E. coli or Agrobacterium from a LB agar culture plate. Liquid cultures were shaken (200 

rpm) at 37°C overnight for E. coli and approximately 40 hr for Agrobacterium cultures. 

DNA was extracted using the QIAGEN Plasmid Midi Kit (Qiagen) and eluted in 50 μl 

SDW. 

2.2.8 Preparation of bacterial colonies for PCR screening/genotyping 
Bacterial colonies were pre-treated to disrupt cell structures and improve amplification 

efficiency for PCR genotyping/screening (Section 2.1.2). Reactions comprised 25 μl of 

T0.1E buffer (10 mM Tris-HCl (pH8), 0.1 mM EDTA), 1 µl of 0.7 mg ml-1 proteinase K 

(Sigma-Aldrich) and a bacterial colony selected using a sterile inoculation loop. 

Reactions were prepared in sterile 0.2 ml thin-walled PCR tubes and cycled in a PTC

200 Peltier Thermal Cycler (MJ Research) at 55°C (15 min) then 80°C (15 min). 

Subsequently, 2 μl of lysate was used in PCR amplification (Section 2.1.2). 

2.3 ISOLATION & CLONING OF CASSAVA GENOMIC DNA 
2.3.1 Isolation of genomic DNA from in vitro material 
Three small/medium sized leaves from an in vitro plantlet were transferred to a sterile 1.5 

ml microfuge tube containing approximately 200 μl of sterile glass beads (1 mm 
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diameter). The tubes were immersed in liquid nitrogen before homogenising the tissue to 

a fine powder using an amalgamator (Silamat® S5) for 6 sec. 1 ml of extraction buffer (50 

mM Tris-HCl (pH8), 100 μg proteinase K (Sigma-Aldrich), 2% (v/v) SDS, 100 mM LiCl, 

10 mM EDTA (pH8)) was added to the sample and incubated at room temperature on a 

shaker (100 rpm) for 15 min. The samples were centrifuged at 16,100 x g at 4°C for 15 

min. Approximately 700 μl of the supernatant was transferred to a sterile 2 ml microfuge 

tube and 5 μl of 20 mg ml-1 RNase A (Invitrogen) was added and samples incubated at 

37°C for 1 hr. Following incubation, 1 ml of phenol (pH 8.0; Sigma-Aldrich) was added, 

the tube shaken vigorously and then centrifuged at 16,100 x g for 5 min at room 

temperature. The upper phase was transferred to a sterile 2 ml microfuge tube 

containing 1 ml phenol:chloroform (1:1), the sample vigorously shaken and centrifuged at 

16,100 x g for 5 min at room temperature. The upper phase was again transferred to a 

sterile 2 ml microfuge tube containing 1 ml of phenol:chloroform:isoamylalcohol 

(25:24:1). The sample was vigorously shaken and centrifuged at 16,100 x g for 5 min at 

room temperature. This step was repeated and the supernatant was then mixed with 

0.25X volume of 10 M ammonium acetate in a sterile 1.5 ml microfuge tube. 2.5X volume 

of cold (-20°C) absolute ethanol was added to the sample, tube inverted several times 

and the samples incubated at -20°C for 30 min to aid DNA precipitation. Following 

incubation, the samples were centrifuged at 16,100 x g at 4°C for 25 min. The 

supernatant was discarded and the pellet resuspended in 750 μl SDW. 750 μl of 

phenol:chloroform:isoamylalcohol (25:24:1) was added and the sample mixed gently and 

then centrifuged at 16,100 x g for 5 min. The aqueous phase was transferred to a sterile 

1.5 ml microfuge tube containing 0.25X volume of 10 M ammonium acetate and 2.5X 

volume cold (-20°C) absolute ethanol was added. The tube was gently inverted to mix 

and incubated at room temperature for 5 min to aid precipitation. Samples were 

centrifuged at 16,100 x g at 4°C for 15 min and the supernatant discarded. The pellet 

was washed in 1 ml 70% (v/v) ethanol by inverting the tube several times and 

centrifuged at 16,100 x g for 10 min at room temperature. The pellet was air dried and 

resuspended in 100 μl SDW. Samples were stored at -20°C. 

2.3.2 Preparation of plating cells for lambda phage 
50 ml LB media containing 0.2% (w/v) maltose and 10 mM MgSO4 was inoculated with a 

colony of E. coli XL1-Blue MRA (P2) (Stratagene) and incubated at 37°C, shaking (200 

rpm). The culture was grown to an OD600 = 1 and centrifuged at 1780 x g for 10 min. The 

supernatant was collected and diluted to an OD600 = 0.5 using ice cold 10 mM MgSO4. 
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2.3.3 Infection of plating cells with phage 
Lambda particles in SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM Tris-HCl (pH7.5), 

0.002% (w/v) gelatin) were added to 200 μl of plating cells (Section 2.3.2) in a 15 ml 

falcon tube and incubated at 37°C for 20 min. 4 ml of top agar (LB agar, 0.8% (w/v) 

agarose) maintained at 45°C was added and the tube was inverted to mix. The sample 

was poured on pre-warmed (37°C) LB agar plates supplemented with 0.2% (w/v) 

maltose and 10 mM MgSO4. Plates were incubated overnight at 37°C. Various dilutions 

of particles were plated. 

2.3.4 Purification of lambda phage DNA 
Lambda DNA was isolated from plaques extracted using a sterile pipette tip and cultured 

in 24.5 ml of LB media (supplemented with 0.5 ml 20% (w/v) maltose, 25 μl 1 M MgCl2, 

25 μl 1 M CaCl2) and shaken (200 rpm) overnight at 37°C. 100 μl of chloroform was 

added and shaken for 1 min. Culture was centrifuge at 16,100 x g for 10 min and 2 μl of 

10 mg ml-1 DNase I and 20 μl of 10 mg ml-1 RNase were added to the collected 

supernatant. Samples were incubated at 37°C for 45 min. 17 ml of extraction buffer (20% 

(w/v) PEG (8,000 mwt), 2 M NaCl, 10 mM Tris-HCl (pH8), 10 mM MgCl2) was added and 

cooled on ice for 2-3 hr. Samples were centrifuged at 16,100 x g for 10 min at 4°C and 

the pellet resuspended in 500 μl TE buffer (10 mM Tris-HCl (pH8), 1mM EDTA) and 

transferred to a 1.5 ml microfuge tube. 5 μl of 10% (w/v) SDS and 10 μl 5 M NaCl were 

added and the mix shaken. An equal volume (approximately 500 μl) of phenol:chloroform 

(1:1) was added and shaken vigorously for 15 min before centrifuging at 16,100 x g for 

10 min. The aqueous layer was transferred to a sterile 1.5 ml microfuge tube and an 

equal volume (approximately 500 μl) of chloroform was added, shaken vigorously for 15 

min and centrifuged at 16,100 x g for 10 min. The supernatant was added to an equal 

volume of absolute isopropanol (approximately 500 μl), mixed gently and retained at 

-70°C for 30 min. The sample was centrifuged at 16,100 x g at 4°C for 10 min and the 

pellet washed with 1 ml 70% (v/v) ethanol and centrifuged at 16,100 x g for 10 min (room 

temperature). The pellet was air dried and resuspended gently in 100 μl of SDW. 

2.3.5 GenomeWalker™ Universal Kit 
The GenomeWalker™ Universal Kit was used as directed by the manufacturer (Clontech 

Laboratories) using genomic DNA extracted from cassava cultivar TMS60444 (Section 

2.3.1). The kit generates pools (or “libraries”) of adaptor-ligated genomic DNA fragments 

following digestion by restriction enzymes DraI, EcoRV, PvuII and StuI. Amplification 
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primers specific to the adaptors (AP1 and AP2; Table 2.1) and known target sequence 

(Table 2.1; Chapter 7) were used in nested PCR using the Advantage® 2 PCR Enzyme 

System (Clontech Laboratories; Figure 2.1). Fragments were cloned (Section 2.2.1) and 

the nucleotide sequence elucidated (Section 2.4.9). 

Figure 2.1 GenomeWalker™ protocol. Samples of cassava genomic DNA are digested using 

restriction enzymes DraI, EcoRV, PvuII and StuI and the fragments ligated to GenomeWalker™ 
adaptors. N: amine group in adaptor to prevent 3’ extension. Adaptor specific primer (AP1) and a 

gene specific primer (GSP1) are used to amplify fragments from the libraries. A subsequent, 

nested PCR using AP2 and GSP2 primers ensure specific amplification of target sequence that 

can be observed in ethidium bromide-stained agarose gels. Figure modified from 

GenomeWalker™ Universal Kit User Manual (Clontech Laboratories). 
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Table 2.1 Oligonucleotides used to PCR-amplify target sequence. 

Primer name Nucleotide sequence (5’ → 3’)* 

apxF1 AAA GCA GGC TCA AAA ATG CCG AAG AAC TAC C 

apxR1 AAG CTG GGT GTT ACG CCT CAG CAA ATC C 

antiapxF1 AAA GCA GGC TCC TTA CGC CTC AGC AAA TCC 

antiapxR1 AGA AAG CTG GGT GAT GCC GAA GAA CTA CC 

catF1 AAA AGC AGG CTC GGT CAT GGA TCC TTG CAA G 

catR1 GAA AGC TGG GTC TCA TAT ATT TGG CCT CAC G 

anticatF1 AAA GCA GGC TCG TCA TAT ATT TGG CCT CAC 

anticatR1 GAA AGC TGG GTA ATG GAT CCT TGC AAG TTC  

gshF2 AAG CAG GCT CTA CCA TGG CGC TCT TGT CTC 

gshR2 GAA AGC TGG GTG TTA GTA CAG CAG CTC TTC 

antigshF1 AAA GCA GGC TCC TTA GTA CAG CAG CTC TTC G 

antigshR1 GAA AGC TGG GTT ATG GCG CTC TTG TCT CA 

garF1 AAA AAG CAG GCT ACA CCA TGG CAA AGG TTC C 

garR1 GAA AGC TGG GTC TCA TAA TTC TTC GTC AAC TTC C 

antigarF1 AAA GCA GGC TCG TCA TAA TTC TTC GTC AAC 

antigarR1 GAA AGC TGG GTC ATG GCA AAG GTT CCT TC 

sodF1 AAA GCA GGC TCG ACA ATG GTG AAG GCC GTT G 

sodR1 AGA AAG CTG GGT CCT ATC CTT GCA AAC CA 

antisodF1 AAA GCA GGC TAC CTA TCC TTG CAA ACC A 

antisodR1 GAA AGC TGG GTT ATG GTG AAG GCC GTT GC 

Pat-Pst F CCT CTG CAG TTG TAG TTA ATG CGT ATT AG 

Pat-Pml R CCT CGT CAC GTG CAT ATA ACA AGC ATG G 

GUSattfor AAA AGC AGG CTC GAT GGT AGA TCT GAG GGT A 

GUSattrev GAA AGC TGG GTG TCA CAC GTG ATG GTG ATG G 

attB1 GGG GAC AAG TTT GTA CAA AAA AGC AGG CT 

attB2 GGG GAC CAC TTT GTA CAA GAA AGC TGG GT 

M13F GTA AAA CGA CGG CCA G 

M13R CAG GAA ACA GCT ATG AC 

DESTSeq F1 CAT CAC TAA TGA CAG TTG CGG TGC 

DESTSeqR1 GCA CAT ACA AAT GGA CGA ACG G 

CAMBSeqF1 GGC TCG TAT GTT GTG TGG AAT TG 

CAMBSeqR1 GCT ATG TAA TAT TTA CAC CAT AAC C 

Hygro-For CCA CTA TCG GCG AGT ACT TCT ACA CAG C 

Hygro-Rev GCC TGA ACT CAC CGC GAC GTC TGT C 

HygII F TCT CGA TGA GCT GAT GCT TTG G 

HygII R AGT ACT TCT ACA CAG CCA TCG G 

PP2A-LP2 TGC AAG GCT CAC ACT TTC ATC 
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PP2A-RP2 CTG AGC GTA AAG CAG GGA AG 

18S For ATG ATA ACT CGA CGG ATC GC 

18S Rev CTT GGA TGT GGT AGC CGT T 

SNARE For GAA GAG GTT TCT GAA GGA TCT CG 

SNARE Rev CCT ACC CAT CTG AGT ATT GTC CCA 

UBC-F ATT CAG GCA ATC TTC TAC GA 

UBC-R GCT CCA CAC TCA TTC ACA AC 

Transgene R GTC ACC AAT TCA CAC ATC ACC AC 

APX Transgene-F TAT GCT GCT GAT GAA GAG GC 

UBQ10-F TGC ATC TCG TTC TCC GAT TG 

UBQ10-R GCA AAG ATC AAT CGT TGT TGA 

GCS Transgene F GGT CAG AAC AGG AGT TAC GCC 

AP1 GTAATACGACTCACTATAGGGC 

AP2 ACTATAGGGCACGCGTGGT 

PX3-GSP1 GACAAAGCAGTCATGGGCGAAGAGGCGAAG 

PX3-GSP2 GAGCAGAAGAAGTAGGAAGAAGGAGAGAG 

PX3-GSP3 ATGGAAAGCAAAATGAGCTTCCTGGTTC 

PX3-GSP9 GATACCGAGTACAATCTGTTCTGA 

* The partial and full-length attB recombination site sequences (blue font), start codons (yellow 

highlight), stop codons (grey highlight), restriction sites (red font) and Kozak sequences (italicised 

font). Oligonucleotides synthesised by Sigma-Aldrich (UK) or Microsynth AG (Switzerland). 

2.4 DNA MANIPULATION & CHARACTERISATION 
2.4.1 Purification of PCR products 
PCR samples were purified using the QIAquick PCR Purification Kit (Qiagen) and eluted 

in 20 μl SDW, according to the manufacturer’s guidelines. Samples were quantified as 

outlined in Section 2.4.8. 

2.4.2 Agarose gel electrophoresis 
DNA samples were mixed with blue/orange 6X loading buffer (Promega) and 

electrophoresed in an ethidium bromide-containing (0.25 µg µl-1) 1% (w/v) agarose gel. 

Gels were prepared and electrophoresed in 1X TBE buffer (89 mM Tris-borate, 2 mM 

EDTA (pH8)) at 100V. For large DNA fragments (e.g. lambda and genomic DNA) 0.8% 

(w/v) gels were prepared with TAE buffer (40 mM Tris-acetate, 1 mM EDTA (pH8)) and 

electrophoresed overnight at 10V. The DNA was viewed using a GDS 7500 UV 
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transilluminator (UVP) and Grab-IT 2.0 software. Samples were co-electrophoresed with 

Quick-load® 1 Kb Ladder (NEB), Lambda DNA HindIII Digest (NEB) or Quick-load® 100 

bp DNA Ladder (NEB) depending on expected fragment size. 

2.4.3 DNA isolation from agarose gels 
The QIAEX® II Gel Extraction Kit (Qiagen) was used according to the manufacturer’s 

guidelines to isolate desired fragments from agarose gels. 

2.4.4 Restriction enzyme digestion of DNA 
Digestion of plasmid DNA, PCR products and genomic DNA was achieved using 

restriction enzymes (NEB) in accordance with the manufacturer’s guidelines. Standard 

digestions comprised 3 μl of 10X reaction buffer, approximately 500 ng DNA, 0.5 μl of 

restriction enzyme (equal to 10 U) and SDW to 30 μl. Reactions were incubated at 37°C 

for 1 hr and terminated by either heat-inactivation or by adding EDTA (10 mM), 

depending on manufacturer’s recommendations. 

2.4.5 Conversion of sticky-end to blunt ended DNA 
Blunting of DNA fragments was accomplished using DNA Polymerase I, Large (Klenow) 

Fragment (NEB), following the manufacturer’s guidelines. The enzyme utilises 

polymerisation and 3’→5’ exonuclease activity to remove 3’ overhangs and fill in 5’ 

overhangs. 

2.4.6 Dephosphorylation of DNA 
Dephosphorylation of DNA was performed with calf intestinal alkaline phosphatase 

(CIAP), following the manufacturer’s protocol (NEB), to prevent re-circularisation/re

ligation of DNA fragments during subsequent ligation stages (Section 2.4.7). 

2.4.7 Ligation of DNA fragments 
Ligation reactions used T4 DNA Ligase (Promega) in accordance with the 

manufacturer’s guidelines with overnight incubation at 4°C. 1 μl of ligation product was 

used to transform One Shot® TOP10 Chemically Competent E. coli, as outlined by the 

manufacturer (Invitrogen). 
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2.4.8 Quantification of DNA 

DNA concentration was determined using either a spectrophotometer (GeneQuant, 

Pharmacia Biotech) at a wavelength of 260 nm and calculated using OD260 = 50 μg ml-1 

double-stranded DNA (dsDNA; Sambrook et al., 1989) or a NanoDrop 

(ThermoScientific). 

2.4.9 Nucleotide sequencing of DNA 
DNA sequencing was performed by Microsynth AG (Switzerland), Lark Technologies 

(UK) or Geneservice (UK). 

2.4.10 Software and programs for data analyses 
DNA sequences were edited and manipulated using Geneious software (Version 5.1; 

Biomatters Ltd) and analysed using web-based databases and programs including, 

National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/), 

Cassava Online Archive (http://cassava.psc.riken.jp/index.pl), Phytozome 

(http://www.phytozome.net/cassava), The Arabidopsis Information Resource (TAIR; 

http://www.arabidopsis.org/), Genevestigator (http://www.genevestigator.com; Hruz et 

al., 2008), PlantCARE (www.bioinformatics.psb.ugent.be/webtools/plantcare/html), 

peroxibase (http://www.peroxibase.toulouse.inra.fr/). Amplification primers were 

designed using the online NetPrimer package (www.premierbiosoft.com) and statistical 

analyses used SPSS (Version 18; SPSS, 2010). 

2.4.11 Preparation of genomic DNA for Southern blot hybridisation 
200 µl reactions comprised 20 µl 10X HindIII buffer (NEB), 4 µl of 100 mM spermidine, 4 

µl HindIII (100 U μl-1; NEB), 0.2 µl RNase A (Invitrogen, Purelink™, 20 mg ml-1), 20 µg 

DNA (Section 2.3.1) and SDW. The reactions were placed in sterile, thin-walled PCR 

tubes and incubated at 37°C overnight in a PTC-200 Peltier Thermal Cycler (MJ 

Research). To confirm complete digestion, 10 µl aliquots were electrophoresed in a TAE 

gel containing ethidium bromide (Section 2.4.2). To precipitate the DNA, 45 µl of 3 M 

NaAOc and 500 µl absolute ethanol were added to the tubes and incubated at -20°C for 

approximately 4 hr. The samples were centrifuged (16,100 x g) at 4°C for 30 min. The 

supernatant was removed and the samples air-dried for approximately 30 min. The pellet 

was gently resuspended in 30 µl SDW. Samples were co-electrophoresed with 1.5 µl 

digoxigenin (DIG)-labelled DNA Molecular Weight Marker III (Roche) in a TAE gel at 20V 

(Section 2.4.2). 
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2.4.12 Southern blotting 
Electrophoresed agarose gels (Section 2.4.2) were soaked in 0.25 N HCl and gently 

agitated on a shaker for 30 min. The HCl was poured out, the gel rinsed briefly using 

SDW and soaked in denaturation solution (500 mM NaOH, 1.5 M NaCl) and returned to 

the shaker for 30 min. The denaturation solution was replaced with neutralisation 

solution (500 mM Tris, 1.5 M NaCl, 1 mM EDTA, pH7.2) for 30 min on the shaker. The 

DNA was transferred by capillary action (Southern, 1975) to a nylon membrane (Hybond 

N+, GE Healthcare) overnight using 20X SSC (3 M NaCl, 300 mM sodium citrate, 

pH7.6). The membrane was removed and the DNA covalently bound to the membrane 

using a CL-1000 Ultraviolet Crosslinker (UVP). 

2.4.13 DIG hybridisation of Southern blot 
Membranes were placed in a hybridisation tube containing 10 ml DIG Easy Hyb solution 

(Roche) and incubated (pre-hybridisation) for approximately 4 hr at 42°C. The solution 

was poured out and approximately 200 ng DIG-labelled probe (Section 2.4.14) was 

heated (100°C for 8 min) and added to 10 ml DIG Easy Hyb (pre-warmed to 42°C) 

before transfer to the hybridisation tube. The membrane was incubated overnight at 

42°C, removed and washed three times in W1 (2X SSC, 0.1% (v/v) SDS) at room 

temperature for 5 min each. The membrane was then washed in W2 (0.2X SSC, 0.1% 

(v/v) SDS) at 68°C for 15 min (gently shaken) and then W3 (0.1X SSC, 0.1% (v/v) SDS) 

at 68°C for 15 min, shaking gently. The membrane was transferred to wash buffer (WB; 

Solution B1 (100 mM maleic acid, 150 mM NaCl, pH7.5) and 0.3% (v/v) Tween20) at 

room temperature for 3 min. WB was removed and replaced with 60 ml B2 (0.5 g 

blocking reagent (Roche) in 50 ml B1) and incubated (gently shaken) for 30 min. 5 µl 

anti-digoxigenin-AP Fab fragments (Roche) was added to 40 ml B2 and incubated on the 

membrane for 30 min. The membrane was washed twice with WB for 15 min each 

before a final wash for 1-2 hr. The membrane was incubated in 40 ml B3 (100 mM Tris-

HCl pH9.5, 100 mM NaCl, 50 mM MgCl2) for 5 min. 50 µl CDP-Star (Roche) was mixed 

in 5 ml B3 and repeatedly pipetted over the membrane for 10 min. Excess moisture was 

removed from the membrane using 3MM filter paper before it was wrapped in cling film 

and placed in a light-protected cassette with intensifying screens and autoradiograph film 

(Kodak, BioMax Light Film) and incubated at 37°C for approximately 15-30 min. Film was 

developed using a Curix 60 automatic developer (AGFA). 
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2.4.14 Preparation of DIG-labelled probe for hybridisation 
A 50 µl reaction contained 2.5 µl of 10 μM HygII F primer (Table 2.1), 2.5 µl of 10 μM 

HygII R primer (Table 2.1), 5 µl buffer (NEB), 5 µl PCR DIG-Labelling Mix (Roche), 50 ng 

plasmid DNA containing hptII (e.g. pCAMBIA 1305.1), 0.2 µl Taq Polymerase (NEB) and 

SDW. Samples were placed in sterile, thin-walled PCR tubes and cycled initially at 94°C 

(3 min), followed by 35 cycles of 94°C (1 min), 55°C (1 min), 72°C (1 min) and then 72°C 

(10 min). Products were resolved in a TAE gel (Section 2.4.2) and the correct sized 

fragment (approximately 400 bp) was isolated (Section 2.4.3). Eluted samples were 

stored at -20°C. 

2.5 TISSUE CULTURE, TRANSFORMATION & MAINTENANCE OF CASSAVA 
2.5.1 Generation of somatic embryos and friable embryogenic callus 
Tissue culture and Agrobacterium-mediated transformation of friable embryogenic callus 

(FEC) from cassava cultivar TMS60444 was initially undertaken as previously described 

(Zhang & Gruissem, 2004; Zhang & Puonti-Kaerlas, 2004) and with guidance by P. 

Zhang (Shanghai Institutes for Biological Sciences, China). In summary, stem cuttings of 

in vitro TMS60444 plantlets were placed on cassava axillary medium (CAM; 1X MS salts 

with vitamins (Murashige & Skoog, 1962), 2% (w/v) sucrose, 2 μM CuSO4, 10 mg L-1 6

benzylaminopurine (BAP), 0.3% (w/v) Gelrite™, pH 5.8) and incubated at 28°C (24 hr 

dark) for 4-6 d to enlarge the axillary meristems (i.e. buds). The buds were removed and 

transferred to cassava induction medium (CIM; 1X MS salts with vitamins, 2% (w/v) 

sucrose, 2 μM CuSO4, 12 mg L-1 picloram, 0.3% (w/v) Gelrite™, pH 5.8) and incubated 

at 28°C (24 hr dark) to induce formation of primary somatic embryos (Figure 2.2). After 2 

weeks the embryogenic tissue was sub-cultured on fresh CIM and this procedure was 

repeated every two weeks to generate secondary somatic embryos. After approximately 

8 weeks the somatic embryos were transferred to GD-based medium (1X GD salts with 

vitamins (Gresshoff & Doy, 1974), 2% (w/v) sucrose, 12 mg L-1 picloram, 0.3% (w/v) 

Gelrite™, pH 5.8; incubate 28°C, 16 hr photoperiod) to induce the formation of FEC. 

After approximately 3-4 weeks the developing FEC were isolated from the embryos and 

incubated on fresh GD. Every 3 weeks the FEC were sub-cultured and non-embryogenic 

friable callus (NEFC) were removed to improve the purity of FEC. After approximately 6

9 weeks on GD media the FEC were transferred to SH liquid media (1X SH salts with 

vitamins (Schenk & Hildebrandt, 1972), 1X MS vitamins, 6% (w/v) sucrose, 12 mg L-1 

picloram, pH 5.8) that were incubated at 28°C, shaken at 100 rpm and 24 hr 

photoperiod. The media was replenished 2-3 times per week and sieved/filtered every 2 
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weeks for approximately 4-6 weeks to assist removal of NEFC and to aid proliferation 

(Figure 2.2). 

Figure 2.2 Agrobacterium-mediated transformation of FEC and regeneration of in vitro 
plantlets. Protocol as described by P. Zhang (Zhang & Gruissem, 2004; Zhang & Puonti-Kaerlas, 

2004) using cassava cultivar TMS60444. Media for each stage in green font; stages where 

hygromycin B antibiotic selection is used demarked by the red boxes.  

2.5.2 Agrobacterium-mediated transformation of FEC and regeneration of 
embryos 
The prepared FEC were inoculated with a suspension of Agrobacterium harbouring the 

target plasmid for approximately 5 d (Figure 2.2). Following this co-cultivation, the FEC 

were cultured in SH liquid media containing 25 mg L-1 hygromycin B (henceforth referred 

to as hygromycin) to initiate selection of transformed tissue for approximately 1 week. 

FEC were spread on MSN media (1X MS salts with vitamins, 2% (w/v) sucrose, 1 mg L-1 

1-naphthaleneacetic acid (NAA), 0.3% (w/v) Gelrite™, pH 5.8) supplemented with 25 ml 

L-1 hygromycin and incubated at 28°C (16 hr photoperiod) to induce regeneration of 

embryos/cotyledons. Developing embryos appeared following 2-6 weeks incubation and 

were further cultured on cassava maturation medium (CMM; 1X MS salts with vitamins, 

2% (w/v) sucrose, 2 μM CuSO4, 0.1 mg L-1 BAP, 0.3% (w/v) Gelrite™, pH 5.8; incubate 

28°C, 16 hr photoperiod), cassava elongation medium (CEM; 1X MS salts with vitamins, 

2% (w/v) sucrose, 2 μM CuSO4, 0.4 mg L-1 BAP, 0.3% (w/v) Gelrite™, pH 5.8; incubate 
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28°C, 16 hr photoperiod) and cassava shoot organogenesis media (COM; 1X MS salts 

with vitamins, 2% (w/v) sucrose, 2 μM CuSO4, 1 mg L-1 BAP, 0.5 mg L-1 indol-3-butyric 

acid (IBA), 4 mg ml-1 AgNO3, 0.3% (w/v) Gelrite™, pH 5.8; incubate 28°C, 16 hr 

photoperiod) to develop roots and shoots. Immature plant material was transferred to 

cassava basic medium (CBM; 1X MS salts with vitamins, 2% (w/v) sucrose, 2 μM 

CuSO4, 0.3% (w/v) Gelrite™, pH 5.8; incubate 28°C, 16 hr photoperiod) to develop in 

vitro plantlets (Figure 2.2). This material was subjected to a rooting test to screen for 

transgenic material and PCR amplification of antibiotic resistance genes (hptII) and 

transgenes (Section 2.1.2).  

2.5.3 Transfer of in vitro cassava plantlets to soil 
4 week old in vitro plantlets were gently extracted from their culture pots, washed in tepid 

water to remove media and planted in Levington’s M2 compost mixed with perlite (3:1). 

Plants were covered with a vented lid and retained in a climate control room (28°C, 16 hr 

photoperiod) for 1 month prior to transfer to the glasshouse (28°C, >50% humidity) with 

supplementary lighting providing a 16 hr photoperiod for 4 months. Plants were fertilised 

with 1 g L-1 Vitax fertilizer twice weekly and watered daily, allowing the soil to become dry 

between watering. All transgenic material was maintained under conditions approved by 

the University of Bath Genetic Modification Safety Committee. The cassava tissue 

culture, transformation and plant propagation protocol is discussed in more detail in 

Chapter 4. 

2.5.4 Harvesting of cassava plants, storage roots and PPD assays 
Morphological data of harvested plants was catalogued and storage roots were used for 

RNA extraction (Section 2.6.1) and PPD assays. Plant height was measured (cm) from 

the root stock to the apical growth tip/leaf. Soil was washed from the intact roots and the 

root stock was removed (cutting the stem approximately 2 cm above the base of the 

stem) and weighed (g). Simultaneously, the youngest fully expanded leaf and the 5th leaf 

down were isolated, wrapped in aluminium foil and frozen in liquid nitrogen. Roots 

greater than approximately 1 cm in diameter were removed. A slice from the central 

region of the root was taken, the bark discarded and then grated into a mortar containing 

liquid nitrogen (Figure 2.3). The tissue was ground to a fine powder and transferred to a 

pre-cooled, sterile 15 ml plastic tube and stored at -80°C. This slice/section represents 0 

hr post-harvest. A thin slice (approximately 5 mm) was removed from the extremities of 

the two remaining halves and placed interior side down on a sterile Petri dish. The root 
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samples were stored in a covered plastic box at 26°C. At the appropriate time point (24 

hr and 72 hr or 96 hr) a root cutting was removed and the dry tissue was skimmed from 

the upper end. Two slices (approximately 5 mm each) were taken and the inner face was 

photographed (Figure 2.3). The bark was removed and samples were ground to a fine 

powder in liquid nitrogen using a pestle and mortar. Samples were transferred to a pre

cooled, sterile 15 ml plastic tube and stored at -80°C. Pestle and mortars were baked at 

200°C for 6 hr and then flame-sterilised prior to use. 

Figure 2.3 Method for assessing PPD in glasshouse-cultivated cassava storage roots. 
Intact storage root (approximately >1 cm diameter) isolated from root stock and sectioned into 

three. Central section represents 0 hr time point post-harvest (a). Remaining two sections placed 

on sterile Petri dish and incubated (26°C, dark). After 24 hr and 72 hr or 96 hr (b) a sample is 

removed, the desiccated end skimmed off (approximately 5 mm of tissue) and two sections are 

cut, each approximately 5-10 mm thick (c). Photograph taken of the inner face of each section to 

assess PPD. Dotted lines indicate approximate cutting positions. Diagram not to scale. 

2.6 RNA EXTRACTION AND MANIPULATION 
2.6.1 RNA extraction from cassava storage roots and leaves 
Approximately 0.5 g of frozen, powdered tissue (Section 2.5.4) was transferred to a pre

cooled (stored on ice) sterile 15 ml tube and approximately 6 ml pre-warmed (50°C) 

extraction buffer was added (2% (w/v) CTAB, 2% (w/v) PVP-40, 100 mM Tris-HCl, 25 

mM EDTA, 2 M NaCl, 0.5 g L-1 spermidine and 2% (v/v) β-mercaptoethanol, added prior 

to use). Samples were mixed and incubated at 50°C for 15 min. An equal volume of 

chilled (4°C) chloroform:isoamylalcohol (24:1; Sigma-Aldrich) was added and the 

44 



samples mixed. Tubes were centrifuged at 2790 x g for 10 min at 4°C. The supernatant 

was transferred to a sterile 15 ml tube and an equal volume of chloroform:isoamylalcohol 

(24:1) added. Samples were mixed and centrifuged as previously. 1 ml of the 

supernatant was aliquoted into sterile 1.5 ml microfuge tubes containing 315 μl 8 M LiCl 

(Sigma-Aldrich), inverted until mixed and incubated at 4°C overnight. Samples were 

centrifuged (16,100 x g) for 20 min at 4°C, the supernatant removed and pellet air-dried 

for approximately 10 min by inverting the tube on sterile tissue. Pellets were 

resuspended in a total of 70 μl NFW for DNase treatment (Section 2.6.2). 

2.6.2 DNase treatment of RNA samples 
70 μl of total nucleic acid sample (Section 2.6.1) was gently mixed with 10 μl TURBO™ 

buffer, 17 μl NFW and 3 μl TURBO™ DNase (Ambion) in a 0.2 ml sterile, thin-walled 

PCR tube. Samples were incubated at 37°C for 30 min in a PTC-200 Peltier Thermal 

Cycler (MJ Research) before being cleaned-up using the Plant Mini RNA Extraction kit 

as directed by the manufacturer (Qiagen). RNA was eluted in 30 μl NFW and stored at 

80°C. 

2.6.3 RNA quantification 
1 μl of extracted RNA sample (Section 2.6.2) was quantified and the integrity determined 

using the Experion™ RNA StdSens Analysis kit (Bio-Rad Laboratories) – a chip based 

microfluidics automated electrophoresis system. RNA was used immediately for cDNA 

synthesis (Section 2.6.4). 

2.6.4 cDNA synthesis (reverse-transcription PCR; RT-PCR) 
cDNA was synthesised using 1 μg of RNA (Sections 2.6.2 and 2.6.3), oligo(dT)20 and 

SuperScript™III First-Strand Synthesis SuperMix as directed by the manufacturer 

(Invitrogen). cDNA was stored at -20°C. For each biological sample, two cDNA synthesis 

reactions were performed serving as technical replicates for analysis (Section 2.1.3). 

2.7 BIOCHEMICAL & HPLC TECHNIQUES 
2.7.1 Total protein extraction from cassava 
An equal volume of frozen, powdered tissue (Section 2.5.4) was mixed with extraction 

buffer (50 mM HEPES buffer, 2 mM sodium metabisulphite, pH7.2). The homogenate 

was transferred to a sterile 2 ml microfuge tube and centrifuged (10,000 x g) at 4°C for 
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30 min. The supernatant was transferred to a sterile microfuge tube and centrifuged as 

previously. The supernatant was stored at -20°C. 

2.7.2 Bradford assay 
The Bradford assay was performed to determine the total protein content of samples. 

250 μl of Bradford reagent (Sigma-Aldrich) and 5 μl protein sample (Section 2.7.1) were 

gently mixed in a 96-well plate (NUNC) and incubated in the dark at room temperature 

for 30 min. Bovine serum albumin (BSA; NEB) standards (0.1 – 1.4 mg ml-1) were 

prepared. Absorbance (595 nm) was measured using an Omega Microplate Reader 

(BMG) and a standard curve generated using the control samples. Total protein content 

(mg ml-1) of the test samples was determined. 

2.7.3 Ascorbate peroxidase (APX) enzyme assay 
APX enzyme activity was assayed using a spectrophotometric method via the rate of 

guaiacol oxidation (tetraguaiacol formation; Chance & Maehly, 1955). The assay 

measures the activity of both APX and guaiacol peroxidases since both enzymes can 

use guaiacol (2-methoxyphenol, an organic compound that darkens during oxidation) as 

an electron donor (Mehlhorn et al., 1996). 950 μl APX assay buffer (50 mM NaOAc, 15 

mM guaiacol) was placed in a plastic cuvette. 10 μl of buffer (50 mM HEPES buffer (pH 

7), 2 mM sodium metabisulphite) was added and the sample loaded into a Cary 50 

recording spectrophotometer (Varian; A470). Readings were taken every 0.5 sec and 

temperature maintained at 30°C. The 10 min run was started and 40 μl of 240 mM H2O2 

added. A470 versus time was plotted and the gradient of the line determined to calculate 

the rate of reaction. This procedure was repeated with pure horseradish peroxidase 

(HPX) enzyme to generate a standard curve. Root extracts (Section 2.7.1) were then 

tested and A470 readings converted to units of APX based on the standard curve. Two 

technical replicates were used for each standard control and experimental sample. 

Samples were standardised based on their total protein content (Section 2.7.2) to 

account for variation in protein extraction efficiency and pipetting differences between 

samples. 

2.7.4 Tissue preparation for determination of non-protein thiols 
Approximately 200 mg of frozen, powdered tissue (Section 2.6.1) was mixed with 2 ml 

0.1 N HCl (828 µl concentrated HCl in 99.17 ml NFW) in a 2 ml microfuge tube 

(Eppendorf, PCR Clean range) and stored on ice. Samples were centrifuged (16,100 x g) 
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for 10 min at 4°C. The supernatant was transferred to a sterile 2 ml microfuge tube and 

centrifuged as previously. Supernatants were stored at -80°C. For each sample a 

dithiothreitol (DTT) treated and non-treated preparations are required. For DTT 

treatment, which allows measurement of oxidised and reduced glutathione (GSSG and 

GSH, respectively), 25 μl of supernatant was mixed with 25 μl of 0.1 M NaOH and 1 μl of 

0.1 M DTT and the mix was incubated in the dark at 37°C for 15 min. For non-treated 

samples (which results in measurement of GSH only) 25 μl supernatant was mixed with 

25 μl of 0.1 M NaOH. Both DTT- and non-treated samples were derivatised by mixing 50 

μl of the neutralised extract with 35 μl SDW, 10 μl of 1 M Tris-HCl (pH 8.0) and 5 μl of 10 

mM monobromobimane (MB, prepared in 100% acetonitrile; Newton et al., 1981) for 

non-treated samples or 5 μl of 100 mM MB for DTT treated samples. The solutions were 

mixed and incubated in the dark at 37°C for 15 min. 100 μl of 9% (v/v) acetic acid was 

added to the samples, mixed and loaded onto a Costar spin-X 0.22 μm spin filter. Tubes 

were centrifuged for 4 min at 16,100 x g. 200 μl of elution was transferred to a HPLC 

sample vial and 80 μl was injected into the HPLC - a Waters 2690 Alliance HPLC with 

spherisorb C18.ODS2 4.6 X 250 mm column, 5 μm packing with 1 cm guard cartridge. 

Flow rate of 1 ml min-1 and utilised buffer B (100% acetonitrile) and buffer C (2.5 ml 

acetic acid, 0.5 ml 3 M KOH in 1 L SDW, pH3.2). Detection via a Waters 474 

fluoromonitor with excitation at 390 nm and emission at 482 nm. 

2.7.5 Preparation and derivatisation of standards for HPLC 
To obtain quantitative data it is necessary to generate known standards of GSH, cysteine 

and γ-glutamylcysteine (γ-EC). 15 mM stocks of each standard were prepared in 0.1 N 

HCl and stored at -20°C. Concentration of standards was assessed via a 5,5’-dithiobis

(2-nitrobenzoic acid; DTNB) assay (Sigma-Aldrich). 50 μl of each 1 mM GSH, γ-EC and 

cysteine were further mixed together with 350 μl of 0.1 N HCl to generate a combined 

stock of thiol (0.1 mM). 25 μl of this stock was neutralised by adding 25 μl of 100 mM 

NaOH and mixed with 35 μl SDW, 10 μl of 1 M Tris-HCl (pH 8.0) and 5 μl of 10 mM MB. 

Stock was incubated in the dark at 37°C for 15 min. 900 μl of 5% (v/v) acetic acid was 

added, mixed and 500 μl was loaded onto a Costar Spin-X 0.22 μm spin filter, 

centrifuged for 4 min at 13,000 x g in a centrifuge. 200 μl of the elution was transferred to 

a HPLC sample vial. 10 μl (0.025 nmol), 20 μl (0.05 nmol), 40 μl (0.1 nmol) and 50 μl 

(0.125 nmol) were injected into the HPLC. 
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3 CREATION OF EXPRESSION CASSETTES FOR 

CASSAVA TRANSFORMATION 

3.1 INTRODUCTION 
Plant transformation utilises vector systems for the integration and expression of 

transgenes in the plant host genome. The delivery of target DNA can be achieved using 

various techniques, including Agrobacterium-mediated transformation, microparticle 

bombardment (usually referred to as biolisitic inoculation), electroporation and chemical 

mediated (e.g. polyethylene glycol) transformation (Barampuram & Zhang, 2011; Rao et 

al., 2009; Shewry et al., 2008). Agrobacterium- and biolistic-mediated transformation are 

predominately employed in cassava biotechnology (Schöpke et al., 1996; Zhang et al., 

2000a), although the latter technique has a propensity to introduce multiple copies of the 

transgene and superfluous vector DNA, which may be deleterious to gene expression 

and undesirable in transgenic crops for commercialisation (Taylor & Fauquet, 2002). 

Agrobacterium-mediated transformation, however, has proven to be more reliable in 

integrating single copies of the transgene with consistent expression over generations 

and is the favoured technique of the Plant Biotechnology Group (ETH Zürich, 

Switzerland) where cassava transformation for this investigation was performed. Due to 

the absence of a suitable commercially or freely available expression cassette, an 

Agrobacterium compatible vector was modified with features specific to the project 

requirements i.e. a root-specific promoter to drive transgene expression, selectable 

marker genes (e.g. antibiotic resistance gene and visual reporter gene) and an 

appropriate cloning system. 

3.1.1 Binary/expression cassettes and Agrobacterium strains 
There is a medley of binary vectors available for plant transformation (Lee & Gelvin, 

2008) that have become increasingly sophisticated since the introduction of pBIN 

(Bevan, 1984). Amongst the most widely used are the pGreen (Hellens et al., 2000), 

pCAMBIA (www.cambia.org) and Gateway® vectors (Karimi et al., 2007; Karimi et al., 

2002). In cassava transformation, vectors including pHMG (Zhang et al., 2000b), 

pILTAB313 (Schöpke et al., 1996), pBI121 (Ihemere et al., 2006), pPZP111 and 

pCAMBIA 2301 (Jørgensen et al., 2005) and also the RNAi construct pRNAi-dPro 

(Vanderschuren et al., 2007) have all been used successfully. Most of these vectors are 
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the result of modification and indeed the range of pCAMBIA vectors are themselves 

based on pPZP, which were developed for their small size and stability in Agrobacterium 

(Gelvin, 2009; Hajdukiewicz et al., 1994). Similarly for vectors, there is a plethora of non

pathogenic/disarmed Agrobacterium strains harbouring the vir helper plasmids required 

for replication and T-DNA transfer from a binary vector (Gelvin, 2009; Lee & Gelvin, 

2008). Li et al. (1996) compared strains LBA4404 (Ooms et al., 1982), C58C1 and 

EHA105 (Hood et al., 1993) each carrying uidA-containing plasmids (Section 3.1.3) for 

their ability to transform somatic cotyledons of cassava. LBA4404 gave the highest 

transient expression rate and has subsequently become the favoured strain by many 

different research groups undertaking cassava transformation (Ihemere et al., 2006; 

Vanderschuren et al., 2007; Zhang et al., 2003b). 

3.1.2 Marker genes to screen transformed plant material 
Selectable marker genes located in the T-DNA are pivotal in the identification of 

transformed plant material. Surprisingly few cells integrate the target DNA, which is not a 

problem in transformation of plant species such as Arabidopsis where large numbers of 

seeds can be easily screened, but in recalcitrant species the poor efficiency limits 

available transgenic material. Over 50 classical selectable marker genes have been 

documented (Miki & McHugh, 2004; Sundar & Sakthivel, 2008) including bar that 

encodes phosphinotricin acetyl transferase, which imparts resistance to the herbicide 

Basta and has been used to generate transgenic cassava (Sarria et al., 2000). However, 

antibiotic resistance genes are most commonly used, such as nptII (encoding neomycin 

phosphotransferase; Fraley et al., 1983) and hptII (encoding hygromycin 

phosphotransferase; Waldron et al., 1985) that prevent disruption of protein synthesis in 

transformed tissue by aminoglycoside antibiotics (e.g. kanamycin, paramomycin and 

geneticin) and hygromycin, respectively. Interestingly, hygromycin is reported to 

negatively impact on the regeneration of cassava tissue cultured material (Schöpke et 

al., 1996; Schreuder et al., 2001), yet this stringency ensures less non-transformed 

material develops if optimal concentrations are used (Schreuder et al., 2001; Zhang & 

Puonti-Kaerlas, 2004). Transgenic cassava have been successfully generated using 

both hptII (Schreuder et al., 2001; Zhang & Gruissem, 2004; Zhang et al., 2003b) and 

nptII-containing plasmids (Chellappan et al., 2004; Jørgensen et al., 2005). Significantly, 

pCAMBIA supply a range of vectors with both hptII and nptII that can be modified without 

encountering complications with intellectual ownership rites. 
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3.1.3 Visual reporter genes for identification of transformed material 
Visual reporter genes are important for monitoring transformation progress, confirming 

identification of transgenic material and also for studying gene expression patterns. 

Raemakers et al. (1996) and Munyikwa et al. (1998) utilised the luciferase (luc) gene 

isolated from firefly (Ow et al., 1986) to screen tissue cultured material and mature 

cassava plants following treatment with the substrate luciferin. Alternatively, Schöpke et 

al. (1996), Li et al. (1996) and Zhang & Gruissem (2004) all used constructs containing 

the E. coli uidA reporter gene that encodes β-glucuronidase (gusA or GUS) and 

produces a blue/black precipitate following the addition of an appropriate substrate (e.g. 

5-bromo-4-chloro-3-indoxyl-β-D-glucuronic acid, cyclohexylammonium salt; X-gluc) 

(Jefferson et al., 1987). The green fluorescent protein (GFP) originally isolated from 

jellyfish (Chalfie et al., 1994) has also been used in cassava transformation (N. Taylor, 

pers. comm.; Taylor et al., 2004). The screening of material with fluorescence marker 

genes such as luc and gfp is non-destructive unlike the assay for GUS activity. However, 

the latter approach is less labour-intensive and does not require the experience and 

equipment needed for isolating tissue transformed with fluorescence marker genes. 

pCAMBIA 1305.1 (NCBI accession AF354045; Figure 3.1) contains the synthetic 

GUSPlus gene derived from Staphylococcus sp. sequence and the produced GUSPlus 

is up to ten times more detectable than the conventional E. coli GUS (Broothaerts et al., 

2005; pCAMBIA, 2011). 

Figure 3.1 Simplified map of pCAMBIA 1305.1. Features include the CaMV35S promoter (Odell 

et al., 1985) regulating expression of the GUSPlus reporter gene and hygromycin antibiotic 
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resistance gene (hptII; blue arrow); T-DNA borders (depicted by black boxes); the multiple cloning 

site (MCS; orange box); positions of nos and CaMV35S polyA regions are also marked (red 

lines). The genes required for survival in bacteria have been omitted for simplicity, with the 

exception of the nptII resistance gene (blue arrow). Figure provided by M. T. Page (University of 

Bath). 

3.1.4 Cloning strategy 
Target genes are cloned into pCAMBIA 1305.1 using restriction enzyme digestion and 

DNA ligation techniques - a relatively simple approach but one that is time consuming 

and potentially problematic when cloning several genes. A prominent complication is the 

necessity to identify unique enzyme recognition sites in the correct positions that are 

lacking in the selected promoter and transgene to prevent fragmentation during 

digestion. However, in recent years the Gateway® cloning system (Invitrogen) has been 

developed that utilises the site-specific recombination properties of bacteriophage 

lambda (Karimi et al., 2007; Landy, 1989). The target sequence is flanked (via PCR) with 

the appropriate lambda sequence, known as attachment or attB sites, to allow 

recombination at specific sites (attP) in an intermediate or donor vector (pDONR™). This 

process is  colloquially known as the BP reaction (Figure 3.2a). Further recombination 

between the attL sites in the product (entry clone) and the attR sites in the expression or 

destination vector transfers the target sequence (the LR reaction), creating the desired 

final expression clone (Figure 3.2b). Both the BP and LR reactions require the 

involvement of bacteriophage lambda and E. coli enzymes, provided as BP clonase™ 

and LR clonase™ (Invitrogen). The presence of ccdB – a bacterial suicide gene – in the 

host vector is used to screen for successfully recombined plasmids. The necessary 

infrastructure to adapt a binary vector to be Gateway® cloning compatible is available 

from Invitrogen (Karimi et al., 2002). 

Figure 3.2 Overview of Gateway® cloning. att sites (attB) are added to the target sequence via 

PCR and the product mixed with the donor vector. Recombination of the attB and vector-based 

attP sites, catalysed by BP clonase™ mix, results in the integration of the gene to form the entry 
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clone (a). The newly formed att sites (attL) in the entry clone recombine with attR sites in the 

destination vector, catalysed by LR clonase™ mix, yielding the final expression construct (b). The 

ccdB gene allows screening of recombined plasmids. Figure adapted from www.invitrogen.com. 

3.1.5 Selection of a promoter for transgene expression 
Promoters used in plant biotechnology are traditionally divided into three categories; 

constitutive (active continuously in all tissues), spatiotemporal (tissue or developmental 

specific) and inducible (regulated by an external signal or chemical; Potenza et al., 

2004). To date only a few promoters have been isolated from cassava including the 

regulatory region from C15, which has sequence similarities to cytochrome P450 

proteins and C54 that is considered to be related to a glutamic acid-rich protein (Pt2L4). 

Translational fusions to uidA showed expression predominately in the starch-rich 

parenchyma cells of transgenic cassava storage roots with some expression in vascular 

tissue (Zhang et al., 2003a). MecPX3 is a putative secretory peroxidase from cassava 

and was of particular interest due the gene expression profile (Reilly et al., 2007), but 

unfortunately the regulatory sequence remained uncharacterised (please see Chapter 7 

for further details). Although little is known about cassava gene promoters, the use of 

endogenous sequence to regulate transgene expression remains a contentious issue 

given the possibility for gene silencing (Kooter et al., 1999; Vaucheret et al., 1998) and to 

what extent this may arise in cassava has not been examined. Importantly, the chosen 

promoter should be root/tuber specific and/or closely associated with PPD to ensure 

optimal gene expression. Various heterologous promoters have been adopted for 

transgene expression in cassava, including potato GRANULE-BOUND STARCH 

SYNTHASE 1 (GBSS1) and PATATIN used for altering starch content and production in 

storage roots (Ihemere et al., 2006; Raemakers et al., 2005). Furthermore, PATATIN 

(PS20) promoter-uidA fusions revealed GUS activity in potato tubers was approximately 

500-fold greater than in leaves and 5,000-fold greater compared to roots (Wenzler et al., 

1989). Even in Arabidopsis - a species that clearly lack tubers or storage roots – GUS 

production was highly root specific although some expression was observed in the 

leaves (Martin et al., 1997). The characteristics of PATATIN promoters therefore make 

them suitable candidates for investigations into PPD of cassava. 

3.1.5.1 Gene function and promoter characteristics of PATATIN 

PATATIN is a family of 40 kDa glycoproteins that function as the primary storage protein 

in potato tubers (S. tuberosum). They also serve as a lipid acyl hydrolases, cleaving fatty 
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acids in membranes in response to wounding of the tuber and enhancing suberisation for 

plant defence (Racusen & Foote, 1980; Shewry, 2003). The first nucleotide sequences of 

intact, functional PATATIN genes from potato were provided during the 1980s and 

comprise PAT21 (Bevan et al., 1986), PS20 (Mignery et al., 1988) and B33 (Rocha-Sosa 

et al., 1989). cDNA and Northern blot analyses revealed that two major transcripts of 

PATATIN exist (each approximately 1,500 nucleotides in length) that were differentiated 

based on nucleotide sequence and expression profile. Class I transcripts lack a 22 

nucleotide insertion in the 5’-untranslated region (5’-UTR) and are tuber specific, 

whereas class II transcripts contain the additional sequence, are 100-fold less abundant 

in tubers and instead expressed primarily in roots (Mignery et al., 1984; Mignery et al., 

1988; Pikaard et al., 1987). Although there is heterogeneity amongst transcripts, the 5’ 

flanking sequence of both class I and II are highly homologous until bp position -87 and 

then diverge. The conserved region contains the TATA, CAAT and core enhancer (CE) 

elements (Mignery et al., 1988; Twell & Ooms, 1988; Figure 3.3). PATATIN expression 

accompanies tuberisation (Stupar et al., 2006) but exogenous sucrose can also stimulate 

expression in non-tuber tissue such as leaves and stems, although sucrose is not 

believed to be directly responsible for gene expression (Grierson et al., 1994; Rocha-

Sosa et al., 1989). A common feature of class I PATATIN promoters is the highly 

conserved 100 bp region containing the so-called A-box and B-box elements that are 

critical for gene expression (Grierson et al., 1994; Jefferson et al., 1990; Figure 3.3). This 

region is located within the minimal promoter (up to position -344 bp) and was identified 

using truncated promoter-uidA fusions. A+B-box repeats have also been identified at 

more distal positions (e.g. -582 bp in PAT21 and -809 in B33) and have also been 

implicated in gene expression (Liu et al., 1990; Liu et al., 1991). Interestingly, deletions in 

a conserved 10 bp motif (GCTAAACAAT) within the B-box of PAT21 (within the minimal 

promoter region) led to a reduction in both tuber specificity and sucrose-inducible gene 

expression in transgenic potato. Furthermore this research led to the identification of the 

STOREKEEPER protein that binds within the B-box and is hypothesised to regulate 

PATATIN expression in potato tubers (Zourelidou et al., 2002). 
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Figure 3.3 Typical Class I PATATIN promoter. Information based on PAT21 promoter (Bevan 

et al., 1986) showing translation initiation site (ATG), 5’-UTR (hatched area) and transcription start 

(+1). Approximate location of 22 bp sequence, absent in class I but present in class II PATATIN 

promoters. Class I and Class II have high sequence homology until bp position -87, the region 

containing putative TATA, CAAT and core enhancer (CE) elements. A-box and B-box elements 

(100 bp in length) and the minimal promoter region to bp -344 shown. Diagram not to scale. 

3.2 RESEARCH OBJECTIVES 
The objective is to create expression constructs containing sense and antisense genes, 

previously identified to modulate ROS, for Agrobacterium-mediated transformation of 

cassava. To achieve this the pCAMBIA 1305.1 binary vector will be modified to integrate 

a class I PATATIN promoter (termed here as StPAT) and also the necessary 

components to clone target sequence using Gateway® technology. For simplicity, the 

techniques and results will be described together in this chapter. 

3.3 METHODS & RESULTS 
3.3.1 PCR isolation and sequencing of the PATATIN promoter 
The PATATIN promoter (StPAT) was PCR amplified (Section 2.1.1) from the vector 

(provided of P. Zhang; Shanghai Institutes for Biological Sciences, China) using primers 

Pat-PstI F and Pat-Pml R (Table 2.1), which contain the restriction enzyme recognition 

sites for PstI and PmlI, respectively. The product (approximately 1,020 bp) was observed 

following agarose gel electrophoresis (Section 2.4.2) and isolated (Section 2.4.3) for 

cloning into the pCR®2.1-TOPO® TA vector and transformation of One Shot® TOP10 

chemically competent E. coli (Section 2.2.1). Following sub-culturing of selected colonies 

and plasmid isolation (Section 2.2.6), vector specific primers were used to confirm the 

nucleotide sequence (Section 2.4.9). The cloned fragment was subsequently digested 

from the TA vector using restriction enzymes PstI and PmlI (Section 2.4.4). Agarose gel 

electrophoresis was used to visualise that the appropriate sized product had been 

isolated in readiness for ligation into the pCAMBIA vector. 
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3.3.2 Restriction enzyme digestion of pCAMBIA 1305.1 and ligation of StPAT 
promoter 
The pCAMBIA 1305.1 vector was digested by restriction enzymes PstI and PmlI (Section 

2.4.4), removing the LacZ alpha fragment, CaMV35S promoter, catalase intron and 

GUSPlus (Figure 3.4a). The products were electrophoresed in an agarose gel to ensure 

the unwanted fragment (approximately 2,818 bp) had been excised. The desired 

fragment (linearised vector, approximately 9,028 bp) was then isolated from the gel 

(Section 2.4.3), treated with CIAP (Section 2.4.6) to minimise the possibility for ligation of 

the excised fragment and re-circularisation in subsequent reactions. The PstI and PmlI 

recognition sites were selected in part due to the fact that neither is present in the 

StPAT promoter. The linearised vector (Figure 3.4b) and isolated StPAT promoter 

(Section 3.3.1; Figure 3.4c) were ligated and the mix was used to transform One Shot® 

TOP10 Chemically Competent E. coli, which were plated on LB agar media 

supplemented with 50 μg ml-1 kanamycin. Plasmid DNA was extracted from a selection 

of colonies (Section 2.2.6) and the presence of the intermediate vector (termed 

pCAM:PAT:INTER) was confirmed via sequencing using primers CAMBSeqF1 (anneals 

upstream of the MCS) and DESTSeqR1 (anneals downstream of the right T-DNA border; 

Table 2.1; Section 2.4.9), thus amplifying across the ligation boundaries. 
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Figure 3.4 Modification of pCAMBIA 1305.1 to incorporate the StPAT promoter. Restriction 

digestion of pCAMBIA 1305.1 by PstI and PmlI (a), generating a linearised vector (b) for ligation 

of the StPAT promoter (c). The intermediate vector (d) is referred to as pCAM:PAT:INTER. 

Promoters (green arrows), antibiotic resistance genes (blue arrows), polyA positions (red lines) 

and the T-DNA borders (black boxes) are shown. Relevant restriction enzyme recognition sites 

indicated. Figure provided by M. T. Page (University of Bath). 
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3.3.3 Conversion of pCAM:PAT:INTER to be Gateway® compatible 
The adaptation of a vector to enable Gateway® cloning requires a blunt-end restriction 

site in the correct location for insertion of the Gateway® cassette. The cassette (supplied 

as part of the Gateway® Vector Conversion System; Invitrogen) comprises the 

recombination sites required for insertion of genes from entry clones (Section 2.2.3), as 

well as the ccdB and chloramphenicol resistance gene. pCAM:PAT:INTER (Figure 3.5a) 

was digested with PmlI (a blunt-ending restriction enzyme) to linearise the vector 

immediately downstream of the StPAT promoter. The vector was subsequently treated 

with CIAP to remove the 5’ phosphates and prevent re-circularisation (Section 2.4.6; 

Figure 3.5b). The selected Gateway® reading frame cassette (rfA; Figure 3.5c) was 

ligated into the vector and the mix was used to transform One Shot® Omnimax 2-T1 

Chemically Competent E. coli (Invitrogen), which are resistant to the negative impact of 

the ccdB gene. Extracted plasmid DNA (Section 2.2.6) was digested using BsrGI, whose 

enzyme recognition site is specific to Gateway®-related sequences (Section 2.4.4). The 

products were electrophoresed (Section 2.4.2) and compared to the expected banding 

pattern (10,066 bp, 1,283 bp and 402 bp; data not shown). The vector was partially 

sequenced using primer DESTSeqF1, which binds in the StPAT promoter 137 bp 

upstream of the insertion site of the rfA Gateway® cassette, to ensure it was in the 

correct orientation (Table 2.1; Section 2.4.9; Figure 3.5d). 
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Figure 3.5 Conversion of pCAM:PAT:INTER into a Gateway® compatible expression 

construct. Restriction enzyme digested with PmlI (a) to generate blunt ends immediately 

downstream of StPAT promoter (b). Gateway® Reading Frame Cassette rfA (Invitrogen) (c) was 

ligated into the linearised vector to generate the final destination vector pCAM:PAT:GW (d). 
Promoters (green arrows), antibiotic resistance genes (blue arrows), polyA positions (red lines), 

T-DNA borders (black boxes), att sites (red boxes), ccdB and chloramphenical resistance gene 

(CmR) shown. Relevant restriction enzyme recognition sites indicated. Figure provided by M. T. 

Page (University of Bath). 
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3.3.4 PCR amplification and cloning of target sequence into Gateway® donor 
vector 
The coding region of ASCORBATE PEROXIDASE, GALACTURONIC ACID 

REDUCTASE, γ-GLUTAMYLCYSTEINE SYNTHETASE, CATALASE and 

SUPEROXIDE DISMUTASE (Table 3.1), previously isolated and cloned from different 

plant host species, were PCR amplified (Section 2.1.1) using sequence specific primers 

(Tables 2.1 and 3.1). 

Table 3.1 Target sequence used in expression constructs. 

Amplicon 
Target sequence Amplification Accession length Origin Referenceprimers* number (bp) 

apxF1 & 

ASCORBATE apxR1 

PEROXIDASE AY973622 775 M. esculenta (Reilly et 
antiapxF1 & (Cassava) al., 2007)(MecAPX2) antiapxR1 

catF1 & 
catR1 

CATALASE AF170272 1,507 M. esculenta (Reilly et 
(MecCAT1) anticatF1 & (Cassava) al., 2001) 

anticatR1 

garF1 &  

GALACTURONIC ACID garR1 Fragaria 
REDUCTASE AF039182 960 ananassa (Agius et 

antigarF1 & al., 2003)(GalUR) antigarR1 (Strawberry) 

γ
GLUTAMYLCYSTEINE 

SYNTHETASE 
(AtGSH1) 

SUPEROXIDE 
DISMUTASE 
(MecSOD2) 

(May & 
gshF2 & Leaver, 
gshR2 Arabidopsis 1994), 

AF419576 1,569 thaliana obtained 
antigshF1 & (Thale cress) from 
antigshR1 RIKEN, 

Japan 
sodF1 & 
sodR1 

AY642137 487 M. esculenta (Reilly et 
antisodF1 & (Cassava) al., 2007) 
antisodR1 

StPAT (PATATIN) Pat-Pst F S. tuberosum (Ihemere et 
promoter Pat-Pml R Unpublished 1,020 (Potato) al., 2006) 

GUSattfor (pCAMBIA,GUSPlus reporter gene GUSattrev AF354045 2,078 Saccharomyces 2011) 

* nucleotide sequence provided in Table 2.1 
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The attB sites required for the first stage of Gateway® cloning are 29 nucleotides in 

length, which is too long to integrate into a single primer and thus a two-step PCR was 

performed. The coding sequence amplification primers comprised approximately 10 

nucleotides of attB site sequence immediately adjacent to the initiation codon. Also 

included in the 5’ primer was the native Kozak sequence for each of the genes of interest 

to ensure maximal expression (Kozak, 1987; Tables 2.1 and 3.1). An aliquot of the first 

PCR was used as the template DNA for a further PCR (Section 2.1.1) using primers 

attB1 and attB2 (Table 2.1) to amplify the target sequence and incorporate the full-length 

attB recombination sites. To serve as a control for plasmid stability and monitor 

transformation progress, the coding sequence of the GUSPlus reporter gene in 

pCAMBIA 1305.1 was PCR amplified using primers GUSattfor and GUSattrev as 

described above (Tables 2.1 and 3.1). The PCR products were successfully cloned into 

an intermediate vector (pDONR™/Zeo; Invitrogen) using BP clonase™ as outlined by 

the manufacturer (Invitrogen). pDONR™/Zeo was selected because it contains the 

Zeocin™ resistance gene (zeo) rather than the more conventional nptII. pCAM:PAT:GW 

contains nptII for bacterial selection and thus utilising a donor vector with the same 

antibiotic resistance gene would interfere with screening of colonies in subsequent 

stages of cloning. The products of the BP clonase™ catalysed reaction were used to 

transform One Shot® Omnimax 2-T1 Chemically Competent E. coli, which were selected 

on LB agar media supplemented with 50 μg ml-1 Zeocin™ (Section 2.2.2). Extracted 

plasmid DNA (Section 2.2.6) was restriction enzyme digested using BsrGI to screen for 

colonies with the expected banding pattern. Selected samples were sequenced using 

vector primers (M13F & M13R; Table 2.1) to confirm integrity of the target sequence. 

This procedure resulted in the successful creation of intermediate (or entry) clones 

named pENTR™-MecAPX2, pENTR™-MecCAT1, pENTR™-GalUR, pENTR™-AtGSH1, 

pENTR™-MecSOD2 and pENTR™-GUSPlus. 

Selected pENTR™-based clones were recombined with the pCAM:PAT:GW cassette 

using LR clonase™, as outlined by the manufacturer (Invitrogen). The plasmid mix was 

used to transform One Shot® ccdB Survival™ T1R Chemically Competent E. coli, plated 

on LB agar media supplemented with 50 μg ml-1 kanamycin. Plasmid DNA was extracted 

from bacterial colonies and sequenced with primers DESTSeqF1 and DESTSeqR1 

(Section 2.4.9) to confirm the successful integration of target sequence. The final 

expression constructs were termed pDEST™-MecAPX2, pDEST™-MecCAT1, 
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pDEST™-GalUR, pDEST™-AtGSH1, pDEST™-MecSOD2 and pDEST™-GUSPlus 

(Figure 3.6). 

Figure 3.6 Simplified map of the pCAM:PAT:GW expression cassette. Promoters (green 

arrows), antibiotic resistance genes (blue arrows), positions of PolyA (red lines) and the T-DNA 

borders (black boxes) shown. Relevant restriction enzyme recognition sites indicated. Figure 

provided by M. T. Page (University of Bath). 

3.3.5 PCR amplification and cloning of target sequence in antisense orientation 
and negative control 
Antisense constructs of the selected genes were generated to assess to what extent the 

over-expression constructs are regulated and influenced by the StPAT promoter and 

ROS pathways. The silencing of genes involved in modulation of ROS would in theory 

lead to increased oxidative stress. Although it is also possible that endogenous genes 

would compensate for altered gene expression. The approach to clone the genes in 

antisense orientation was fundamentally the same as for the over-expression/sense 

orientation constructs described in the sections above. The important difference is that 

the attB1 sequence was incorporated in the complementary-strand rather than the 

sense-strand primer. Likewise, the sense-strand primers were designed with the attB2 

sequence (Table 2.1). The swapping of the attB sites at the ends of the PCR-amplified 

coding sequences allows the gene to be orientated in the vector so that it is transcribed 
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in the antisense. The generated clones were termed pDEST™-antiAPX, pDEST™

antiCAT, pDEST™-antiGalUR, pDEST™-antiGSH1 and pDEST™-antiSOD. Lastly, the 

pDEST™-GUSPlus construct was digested using restriction enzymes PstI and NcoI 

(Section 2.4.4) to remove the StPAT promoter. The linearised vector was blunt-ended 

(Section 2.4.5), re-ligated and used to transform E. coli One Shot® TOP10 cells. Cells 

were plated on LB agar media supplemented with 50 μg ml-1 kanamycin and colonies 

were subsequently screened following plasmid extraction via sequencing using primers 

CAMBSeqF1 and CAMBSeqR1, which anneals to the GUSPlus sequence (Table 2.1; 

Sections 2.2.6 and 2.4.9) to ensure the expected promoterless construct (pDEST™-

GUSPlus(-)PAT) had been created (Figure 3.7). Transformation using a promoterless 

construct should offer insights into the function and regulation of expression of StPAT in 

planta. 

Figure 3.7 Creation of pDEST™-GUSPlus(-)PAT. pDEST™-GUSPlus was digested with 

restriction enzymes PstI and NcoI (recognition sites located immediately upstream and 

downstream, respectively, of the StPAT promoter). The linearised vector was re-ligated to 

generate a promoterless construct. Antibiotic resistance genes (blue arrows), CaMV35S promoter 

(green arrow), polyA positions (red lines), T-DNA borders (black boxes), att sites (red boxes), 

GUSPlus and positions of selected restriction enzyme sites shown. Figure provided by M. T. Page 

(University of Bath). 

62 



3.4 DISCUSSION 
This chapter describes the successful modification of the pCAMBIA 1305.1 vector to 

incorporate the root-specific StPAT promoter and components for Gateway® cloning of 

the target genes. The basic cassette, named pCAM:PAT:GW, was used to clone the 

coding regions of MecAPX2, MecCAT1, GalUR, AtGSH1, MecSOD2 and also GUSPlus 

(Table 3.1). The over-expression constructs are termed pDEST™-MecAPX2, pDEST™

MecCAT1, pDEST™-GalUR, pDEST™-AtGSH1, pDEST™-MecSOD2 and pDEST™-

GUSPlus and the corresponding antisense constructs pDEST™-antiAPX, pDEST™

antiCAT, pDEST™-antiGalUR, pDEST™-antiGSH1, pDEST™-antiSOD were also 

successfully developed to serve as a direct comparison to their sense-orientated 

constructs. The GUSPlus reporter gene construct (pDEST™-GUSPlus) will serve as a 

visual control during the transformation process (Chapter 4) and ultimately offers a 

means to observe gene expression in plant tissue. Although GUS assays result in 

destruction of the tissue sample, it is a superior marker system compared to luc or gfp 

where experience and specialist equipment is required. The over-expression and 

antisense constructs listed above were used to successfully electroporate Agrobacterium 

strain LBA4404 (Sections 2.2.4 and 2.2.5) required for cassava transformation (Chapter 

4). The strain of Agrobacterium has proven to influence transformation success (Li et al., 

1996) but LBA4404 has been used repeatedly in genetic transformation of cassava by 

various research groups (Ihemere et al., 2006; Jørgensen et al., 2005; Li et al., 1996; 

Vanderschuren et al., 2007; Vanderschuren et al., 2009; Zhang & Gruissem, 2004). 

Attempts were made originally to convert the pCAM:PAT:GW into an RNAi cassette via 

the incorporation of components of the pHELLSGATE RNAi Gateway® vector (Helliwell & 

Waterhouse, 2005), but due to time constraints this proposal was not pursued. 

Importantly, the introduction of the Gateway® system in pCAM:PAT:GW allowed efficient 

cloning of the genes without the potential complications of restriction enzyme site 

digestion and ligation. This unique cassette has now been adopted by researchers at the 

University of Bath to generate transgenic cassava (K. A. Jones, pers. comm.), as well as 

by scientists at ETH Zürich, Switzerland, for research into improved starch and biofuel 

production (S. C. Zeeman, pers. comm.). 
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4 TISSUE CULTURE AND TRANSFORMATION 

OF CASSAVA 

4.1 INTRODUCTION 
4.1.1 CASSAVA BIOTECHNOLOGY 
4.1.1.1 in vitro tissue culture of cassava 
The unique capacity of plants to reproduce from vegetative/non-zygotic tissue (via 

somatic embryogenesis) has been exploited for cassava tissue culture. Somatic embryos 

have been generated from mature seed, leaf explants (Stamp & Henshaw, 1982), shoot 

apical or axillary meristem (i.e. bud) tissue (Szabados et al., 1987) cultured on MS 

medium supplemented with auxin (e.g. the synthetic auxins 2,4-dichlorophenoxyacetic 

acid (2,4-D) or picloram) and/or cytokinin (e.g. BAP). Division of morphogenetically 

competent cells occurs in the adaxial tissues leading to the development of 

embryogenetic protrusions (torpedo structures) and subsequently primary somatic 

embryos (Stamp, 1987; Figure 4.1a). Maintenance and further propagation of these 

embryos on MS media supplemented with auxin prevents plant development and gives 

rise to successive cycles of secondary somatic embryos. The transition to continuous 

embryogenic gene expression rather than germination has not been investigated in 

cassava but DNA methylation influenced by auxins is thought to be a contributory factor 

(George et al., 2008b). Cycling of secondary somatic embryos is not indefinite since the 

tissue is likely to mature and the process of somatic embryogenesis will need to be 

reinitiated to replenish in vitro stocks. Somatic embryos cultured on basic MS media 

incubated with a 16 hr photoperiod leads to the development of cotyledons and will 

eventually regenerate into plantlets (Stamp & Henshaw, 1986; Stamp & Henshaw, 

1987). The inclusion of a cytokinin (e.g. BAP) in the media can be used to induce shoot 

development directly from non-differentiated tissue (i.e. avoiding embryo germination), a 

process referred to as shoot organogenesis (Figure 4.2). Importantly, the 

maturation/regeneration of somatic embryos not only tests the viability of embryos to 

germinate, but also serves as a conduit in the production of pathogen-free plantlets for 

distribution to researchers, breeders and farmers (Raemakers et al., 1999). 
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Figure 4.1 Somatic embryogenesis in cassava cultivar TMS60444. Primary somatic embryos 

from axillary meristematic tissue (i.e. buds) (a), clusters of FEC (indicated by red arrows) 

emerging on secondary somatic embryos (b), maturing embryo from FEC, root axis and emerging 

cotyledons visible (c). 

Secondary somatic embryos can also be cultured on GD media supplemented with 

picloram to establish friable embryogenic callus (FEC; Figures 4.1b and 4.2). FEC 

contain hundreds/thousands of morphogenetically competent, totipotent cells 

approximately ≤ 1 mm in diameter that rapidly proliferate in a disorganised manner - a 

process enhanced by transferring the developing FEC to SH liquid medium containing 

picloram (Raemakers et al., 2006; Taylor et al., 1996). From FEC, embryos can mature 

on MS-based media (lacking auxin but containing cytokinin; Figure 4.1c) and eventually 

regenerate into plantlets, completing the cycle of somatic embryogenesis and cassava 

regeneration (Figure 4.2). Protoplasts, which serve as relatively amenable systems for 

biochemical analyses and transformation, have been isolated from cassava leaf tissue 

(Shahin & Shepard, 1980) and FEC (Sofiari et al., 1998). However protoplast isolation 

further complicates the tissue culture process and became largely redundant for 

modification of cassava following successful transformation of FEC - an ideal host tissue 

for maximising the probability of integration of T-DNA into large numbers of cells. The 

efficiency by which FEC can be produced is cultivar dependent and research today 

almost exclusively uses TMS60444, developed at IITA in Nigeria. Notwithstanding, 

various publications report successful generation of FEC and/or secondary somatic 

embryos from other cultivars, including Bujá Petra and Rosinha from South America 

(Ibrahim et al., 2008), Adira 4 from Indonesia (Schreuder et al., 2001) and various TME 

and TMS lines from Africa (Hankoua et al., 2005). 
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Figure 4.2 Schematic representation of somatic embryogenesis and regeneration of 
cassava. 

4.1.1.2 Cassava transformation techniques 
Transformation of cassava evolved in the 1990s with the implementation of 

electroporation, biolistic and Agrobacterium-mediated techniques. Initially only transient 

gene expression was obtained in embryogenic tissues electroporated with a plasmid 

containing uidA (Luong et al., 1995), as well as in biolistically inoculated leaf (Franche et 

al., 1991) and root tissue (Arias-Garzon & Sayre, 1993). However, Li et al. (1996) used 

Agrobacterium-mediated transformation of somatic embryo cotyledons (also using uidA

containing plasmids) and generated stably transformed material via shoot 

organogenesis. In the same year, transgenic plantlets were also regenerated from FEC 

transformed with pUC19 (containing nptII and uidA) by biolistic inoculation (Schöpke et 

al., 1996; Taylor et al., 1996). Biolistic bombardment of somatic cotyledons has since 

also resulted in stably transformed cassava (Zhang et al., 2000a). Unfortunately, various 

difficulties were encountered with all these techniques, including poor regeneration 

efficiency of plantlets from somatic embryos, intrinsic variation (including tissue quality) 

between transformation experiments (Schreuder et al., 2001), difficulty in using the 

protocol with farmer-preferred cultivars and the potential for chimeras and somaclonal 

variation (Raemakers et al., 1997; Raemakers et al., 2001). Eventually, Agrobacterium
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mediated transformation of FEC (González et al., 1998; Zhang et al., 2000b) became 

more widely adopted since it was regarded to be more efficient, less expensive, 

increases the likelihood of single-insert lines and carries less risk of generating chimeras 

since differentiated tissue is not used. However, the technique remained complicated, 

laborious and uptake by research groups proved limited. 

Peer-reviewed papers exploiting transgenic cassava are seldom published and usually 

report only a few independent transgenic lines. For example, Chellappan et al. (2004) 

reports 5-13 lines of cassava that confer resistance to geminiviruses. Only three lines of 

ACMV-resistant plants were generated by Vanderschuren et al. (2007) using 

Agrobacterium-mediated transformation of FEC. Similarly, Ihemere et al. (2006) 

screened 872 embryo explants identifying only five lines with enhanced starch 

production following Agrobacterium-mediated transformation of somatic cotyledons. The 

same approach resulted in a 1% success rate (equivalent to a single plant line) in 

generating transgenic material by Sarria et al. (2000). Jørgensen et al. (2005), however, 

was more successful obtaining in excess of 80 independent lines using Agrobacterium

mediated transformation of somatic cotyledons to generate cassava with reduced 

cyanogenic glucoside content, but tissue preparation and screening was considerably 

laborious (K. Jørgensen, pers. comm.). Evidently, whilst cassava transformation has 

been implemented by several research groups, there remains significant variation in 

success that likely reflect inherent problems with the different protocols and acquisition of 

knowledge. 

4.2 RESEARCH OBJECTIVES 
The primary objective was to generate transgenic cassava via Agrobacterium-mediated 

transformation of FEC using the constructs described in Chapter 3. However, numerous 

constraints and problems frustrated the achievement of this objective, so much so that 

for continuation of the project these problems needed to be surmounted via a 

comprehensive review of the protocol(s). This chapter briefly documents the preliminary 

data that led to the appraisal, followed by the key experiments undertaken to 

troubleshoot the protocol and produce transgenic cassava. The experiments are 

presented in the following format: Observations/Background, Experiment Outline, 

Results. The collective data and results are discussed. 
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4.3 RESULTS 
4.3.1 Transformation of cassava utilising the published protocol 
Cassava tissue culture and transformation were undertaken as described (Zhang & 

Gruissem, 2004; Zhang & Puonti-Kaerlas, 2004), summarised in Section 2.5 and with 

guidance by P. Zhang (Shanghai Institutes for Biological Sciences, China). Using this 

method, 14 independent batches of FEC (cultivar TMS60444) were produced and used 

for Agrobacterium-mediated transformation with the designed expression constructs 

(Table 3.1), including pCAMBIA 1305.1 and pDEST™-GUSPlus, which contain the 

GUSPlus reporter gene to visualise transformation progress. A total of 141 

transformation experiments (i.e. co-cultivation of Agrobacterium and several plates of 

FEC per expression construct) were attempted and 155 in vitro plantlets were generated 

(Table 4.1). However, none of the plantlets were transgenic as evidenced by rooting 

assays (Section 2.5.2), where transferred apical growth tips failed to develop roots in 

CBM+H40 (CBM supplemented with 40 µg ml-1 hygromycin). Furthermore, no products 

were observed in agarose gels (Section 2.4.2) following PCR-amplification of hptII and 

relevant transgene using specific primers (Table 2.1; Section 2.1.2) from isolated DNA 

(Section 2.3.1; data not shown). In brief, all attempts to generate transgenic plantlets 

failed. The stability or possible detrimental influence of gene expression or the cassette 

per se upon transformation and regeneration success were eliminated following 

successful transformation of Arabidopsis (Page, 2009). 

Table 4.1 Transformation of independent batches of FEC using expression constructs. 

Number of 
Gene 

orientation Expression construct FEC 
batches 
used † 

Number of 
transformations*§ 

Number of in 
vitro plantlets 

pCAMBIA 1305.1 8 21 6 

Over-
expression 

(sense 
orientation) 

pDEST™-GUSPlus
pDEST™-AtGSH1
pDEST™-GalUR

pDEST™-MecAPX2
pDEST™-MecSOD2

 5 
13 
9 

13 
14 

7 
22 
12 
20 
22 

16 
2 

23 
24 
29 

pDEST™-MecCAT1 11 16 19 
pDEST™-antiGSH1 4 5 5 
pDEST™-antiGalUR 4 5 7 

Antisense pDEST™-antiAPX 3 3 7 
pDEST™-antiSOD 4 4 10 
pDEST™-antiCAT 4 4 7 

TOTAL: 14 141 155 
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† 	 independent batches of FEC generated and maintained from cultivar TMS60444 

* 	 number of occasions a stock of Agrobacterium harbouring an expression construct was  

cultured and used to transform FEC 
§ 	 tissue culture and transformation protocol based on Zhang & Gruissem (2004), Zhang &  

Puonti-Kaerlas (2004) and advice (P. Zhang) 

Throughout the course of the investigation when the original protocol was used 

(approximately one to two years) numerous alterations and recommendations were 

tested (Table 4.2). These qualitative experiments served to improve knowledge and 

catalogue all aspects of the cassava transformation protocol, spawning more structured 

experiments to tackle identified bottlenecks. These experiments are outlined and 

discussed in detail in the following sections. It is noteworthy that the various difficulties 

encountered were not confined to this investigation but were also experienced by other 

researchers in the group, highlighting the apparent lack of a robust and reliable protocol. 
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Table 4.2 Preliminary experiments and considerations to improve the Agrobacterium-mediated cassava transformation protocol. 
Question Observations & considerations Experiment outline & conclusions 

Is stringent autoclaving of 
media affecting pH and 
other properties? 

Autoclaving is known to affect 
properties of media and therefore it 
was wondered if FEC development, 
in particular, was being compromised 
by sub-optimal media. For example, 
discolouration of autoclaved media 
due to sucrose hydrolysis was 
frequently observed. 

GD (pH 5.8) was prepared and the pH measured pre- and post-autoclaving. The 
pH dropped by approximately 0.3 following autoclaving and therefore the pH of 
pre-autoclaved media was adjusted to accommodate this fluctuation. Changes in 
pH were also closely associated with the addition of supplementary stock 
solutions sometimes added after autoclaving (see below). Additionally, CBM in 
particular was prone to sucrose hydrolysis and therefore a less stringent 
autoclave cycle was programmed to prevent this reaction whilst maintaining sterile 
conditions. 

Is the preparation and 
storage of media and 
chemicals as advised by 
the manufacturer and 
transformation protocol? 

Stocks of chemicals used for media 
preparation were poorly managed 
and being prepared slightly differently 
by researchers. 

A comprehensive review into the preparation, storage and management of 
communal stocks was undertaken and led to the implementation of numerous 
standard operating procedures (SOPs). The SOPs were vital to ensure minimal 
variation between stocks and thus batches of media. 

Are auxins and cytokinins 
(e.g. picloram and BAP) 
being decomposed during 
autoclaving? 

Plant hormones used in culture 
media may not be heat labile and 
therefore their addition prior to 
autoclaving may be affecting media 
properties. 

FEC (FEC4) were propagated on GD plates prepared with picloram added prior to 
or after media sterilisation. After three weeks incubation (28°C, 16 hr photoperiod) 
growth was visually assessed but no distinguishable difference was observed. 
Due to the increased risk of contamination and changes to media via addition of 
hormones post-autoclaving, current practise was continued whilst acknowledging 
that some degradation of hormones probably occurs. 

Are the protocols outlined 
in Zhang & Gruissem 
(2004) resulting in sub
optimal media? 

Due to the various considerations 
outlined above, it was questioned 
whether the adopted protocol was 
resulting in media of variable quality. 
Protocols were therefore obtained 
from the Donald Danforth Plant 
Science Centre (DDPSC; N. Taylor, 
pers. comm.) for comparison. 

GD and MS-based media were prepared following DDPSC protocols. The 
preparation was largely similar to those outlined by  Zhang & Gruissem (2004) but 
nutrients were added separately and supplements (e.g. hormones) were added 
after sterilisation. FEC propagated on GD plates developed as expected but the 
development of somatic embryos from leaf lobes on MS-based media was poor. 
However, this was attributed to the fact that leaf lobes were used rather than the 
media itself. Notably, the use of Noble agar at DDPSC resulted in a far superior 
media and was investigated further. Overall, the DDPSC media preparation 
protocols were probably more precise but they were also more labour-intensive 
and considered unnecessary. Please see Section 4.3.2 for further details. 
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Does the isolation and 
transfer of transformed 
FEC to fresh media 
improve regeneration 
capacity? 

The protocol used at DDPSC states 
that it is necessary to hand-pick 
transformed FEC and transfer 
frequently to fresh media, thus 
isolating them from decomposing 
(non-transformed) FEC and 
constantly replenish nutrient 
availability. 

The following experiment was undertaken: 

a) Propagation of FEC in SH liquid media 
b) Co-cultivation of Agrobacterium and FEC as described by Zhang & Gruissem 
(2004) 
c) Wash FEC in SH+C500 
d) FEC in SH+C500+H15 (10 d) 
e) Transfer to MSN+C500+H25 and incubate for 2 weeks (28°C, 16 hr 
photoperiod). 
f) Select swollen, yellow FEC, transfer to fresh media and incubate (as above) for 
2 weeks. 

Unfortunately, FEC failed to regenerate and were discarded after one month. 

Was the concentration of 
hygromycin antibiotic 
hindering regeneration in 
the above experiment?  

Hygromycin is known to negatively 
affect regeneration capacity of 
cassava embryos. Therefore the 
above experiment was repeated but 
using a reduced concentration of 
hygromycin antibiotic, as well as an 
increased period of incubation on 
MSN to further aid regeneration. 

The following experiment was undertaken: 

a) Propagation of FEC in SH liquid media 
b) Co-cultivation of Agrobacterium and FEC as described by Zhang & Gruissem 
(2004) 
c) Wash FEC in SH+C500 
d) FEC in SH+C500+H15 (10 d) 
e) Transfer to MSN+C500+H20 and incubate for 2 weeks (28°C, 16 hr 
photoperiod). 
f) Select swollen, yellow FEC, transfer to fresh media and incubate (as above) for 
2 weeks. Repeat selection twice. 

Unfortunately, FEC failed to regenerate and were discarded after two months 
cycled on MSN+C500+H20. Please see Section 4.3.4 for further details. 

Is the co-cultivation of 
FEC in SH liquid media 
and Agrobacterium 
affecting transformation 
capacity?  

It appeared that FEC cultured in SH 
liquid media were becoming more 
globular than those on GD plates. 
Also, co-cultivation was currently 
performed for 4 d compared to the 30 

The following experiment was undertaken: 

a) Propagation of FEC on GD plates 
b) Co-cultivation following DDPSC protocol – FEC transferred to a 6-well Petri 
dish, homogenised and 2 ml Agrobacterium suspension added and incubated for 
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min incubation used at the DDPSC, 
where liquid media is avoided. 

30 min. 
c) Wash FEC in GD+C500 
d) Transfer to MSN+C500+H25 and incubate for 2 weeks (28°C, 16 hr 
photoperiod). 
e) Select swollen, yellow FEC, transfer to fresh media and incubate (as above) for 
2 weeks. 

FEC failed to regenerate and were discarded after one month. Please see 
Section 4.3.3 for further details. 

Is co-cultivation of FEC 
using the DDPSC method 
more efficient than that 
currently used? Is 
subsequent regeneration 
being hindered by 
antibiotic concentration? 

The co-cultivation protocol from the 
DDPSC seems less stressing for 
FEC and also avoids liquid media. 
However, no FEC regenerated in the 
above experiment suggesting post-
transformation stages are a problem; 
possibly the concentration of 
antibiotic, which was reduced in an 
effort to promote growth. 

The following experiment was undertaken: 

a) Propagation of FEC on GD plates 
b) Co-cultivation following DDPSC protocol – FEC transferred to a 6-well Petri 
dish, homogenised and  2 ml Agrobacterium suspension added and incubated for 
30 min. 
c) Wash FEC in GD+C500 
d) Transfer to MSN+C500+H10 and incubate for 2 weeks (28°C, 16 hr 
photoperiod). 
e) Select swollen, yellow FEC, transfer to fresh media and incubate (as above) for 
2 weeks. Repeat selection twice. 

Some FEC regenerated into cotyledons but GUS assays revealed they were not 
transgenic, suggesting antibiotic selection or co-cultivation were ineffective. 
Please see Sections 4.3.2 and 4.3.4 for further details. 

Is it necessary to remove 
FEC from GD propagation 
plates for inoculation with 
Agrobacterium? 

Zhang & Gruissem (2004) describe 
using FEC from SH liquid media 
whilst DDPSC transfers FEC to Petri 
dishes. Each approach extends the 
time required for transformation and 
increases resources used. Is it not 
possible to inoculate directly to 
clusters of FEC on GD? 

The following experiment was undertaken: 

a) Propagation of FEC on GD plates 
b) Co-cultivation via pipetting of Agrobacterium onto FEC clusters and incubate 
for 4 d, as described by Zhang & Gruissem (2004). 
c) Wash FEC in SH+C500 
d) FEC in SH+C500+H15 (10 d) 
e) Transfer to MSN+C500+H25 and incubate for 4 weeks (28°C, 16 hr 
photoperiod). 

FEC failed to regenerate  and were discarded after one month. 
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With the exclusion of the 
SH liquid media stage 
prior to co-cultivation is it 
necessary to propagate 
FEC on SH plates instead 
to improve regeneration? 

The SH liquid media is intended to 
mature the FEC thus improving 
capacity for transformation and 
regeneration. However, is this 
critically important? And does 
antibiotic concentration after co
cultivation negatively affect selective 
regeneration? 

The following experiment was undertaken: 

a) Propagate FEC on SH plates 
b) Co-cultivation via pipetting of Agrobacterium onto FEC clusters and incubate 
for 4 d, as described by Zhang & Gruissem (2004). 
c) Wash FEC in SH+C500 
d) Transfer to SH+C500+H5 and SH+C500+H20 plates and incubate for 2 weeks 
(28°C, 16 hr photoperiod). 
e) Transfer to MSN+C250+H20 

FEC failed to regenerate and were discarded after one month. Please see 
Section 4.3.3 for further details. 

Is it more appropriate to 
use GD-based solid media 
after co-cultivation rather 
than SH-based liquid 
media? 

FEC cultured on SH media appear to 
be inefficiently transformed and 
incapable of regeneration, yet FEC 
on GD remain friable and propagate 
successfully. Additionally, it would 
seem logical to wash the FEC in 
liquid media containing the basal 
salts of the following incubation 
phase. 

The following experiment was undertaken: 

a) Propagate FEC on GD plates 
b) Co-cultivation via pipetting of Agrobacterium onto FEC clusters and incubate 
for 4 d, as described by Zhang & Gruissem (2004). 
c) Wash in GD+C500 
d) Transfer to GD+C250+H5 and also GD+C250+H20 and incubate for 2 weeks 
(28°C, 16 hr photoperiod). 
e) Transfer to MSN+C500+H20 

Some FEC from GD+C250+H5 regenerated to establish green cotyledons but not 
all were transgenic, suggesting poor transformation efficiency and/or sub-optimal 
concentrations of hygromycin. Please see Section 4.3.3 for further details. 

Is hygromycin hindering 
regeneration and should 
an alternative antibiotic 
selectable marker be 
used? 

Hygromycin may compromise 
regeneration if protocol is not 
optimised. Recommendations were 
made to test the protocol using nptII 
containing plasmids (N. Taylor, pers. 
comm.). 

Media preparation, tissue culture techniques and transformation using 
Agrobacterium harbouring pCAMBIA 2301 (an nptII, uidA plasmid and selected 
using paramomycin) was undertaken according to the protocol from DDPSC. 
Interestingly, whilst embryos did successfully regenerate to form cotyledons none 
were transgenic, suggesting recommended concentrations of paramomycin were 
insufficient. 
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4.3.2 EXPERIMENT I: to determine the extent that light, media setting agent and 
culture chamber affect FEC cultivation. 

4.3.2.1 Experiment I: Observations/Background 
The culturing of FEC (Section 2.5.1) invariably resulted in a number of complications. 

Firstly, the FEC appeared very moist, soft and white on the GD media rather than being 

friable and yellowish in colour (Figure 4.3a). Secondly, moisture collected on the lid of 

the culture dishes during incubation, which presumably affected light penetration as well 

as media properties (Figure 4.3b). Thirdly, sieving of FEC cultured in SH liquid media 

prior to transformation to remove non-embryogenic friable callus (NEFC) – rapidly 

growing, disorganised translucent callus consisting of large vacuolated cells in a liquid 

matrix (Taylor et al., 1996) - unfortunately appeared to damage the tissue, resulting in 

globular FEC. Lastly, the SH liquid media culturing stages, both prior to and following co

cultivation with Agrobacterium, was highly susceptible to microbial contamination with 

losses habitually between 50-100%. Collectively these problems dramatically hindered 

the ability to transform FEC. 

a b 

Figure 4.3 Morphological variation in FEC cultured on GD media. A selection of FEC clusters, 

which appear pale and moist compared with the ideal FEC (boxed in red) that is more friable and 

yellowish in appearance (a). Moisture accumulates on culture plates during incubation (b), which 

in-turn possibly affects FEC morphology. 

4.3.2.2 Experiment I: Outline 
Two independent batches of FEC (FEC7 and FEC9, generated one month apart) were 

sub-cultured on 48 GD plates (approximately eight clusters of FEC per plate); 24 plates 

were prepared with Gelrite™, as described in Zhang & Gruissem (2004; Section 2.5.1), 
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whilst the other 24 contained Noble agar, a highly purified setting agent (Difco™). 12 

plates prepared with each setting agent were wrapped in aluminium foil (to simulate 

continuous darkness) whilst the other half remained uncovered and exposed to 16 hr 

photoperiod. The plates were incubated in three different chambers – an advanced, 

climate controlled incubator (Sanyo MLR Plant Growth Incubator), Climate Controlled 

Room and a General Plant Growth Chamber (Weiss Gallenkamp), the latter of which had 

been used previously for experiments (Table 4.1). Conditions in all chambers were set at 

28°C with 16 hr photoperiod. Thus in total, two plates were prepared for each of the 24 

different growth conditions, with each plate containing approximately eight clusters of 

FEC. Photographs of plates from each of the conditions, as well as close-up images of 

selected clusters of FEC (two per condition), were taken prior to incubation and after 

three weeks to assess FEC growth, morphology and the moisture content on culture dish 

lids. Following incubation, the FEC were co-cultivated for two d with Agrobacterium 

harbouring pCAMBIA 1305.1 (Section 2.5.2). Samples were used in a GUS assay to 

determine transformation efficiency (Figure 4.4). 

Figure 4.4 Procedure to assess FEC development under different growth conditions. FEC7 

and FEC9 were sub-cultured on GD media prepared with Noble agar (light grey boxes) and 

Gelrite™ (dark grey boxes) and incubated in three different chambers in continuous darkness or 

16 hr photoperiod (symbolised by a moon and sun, respectively). After three weeks the FEC were 

co-cultivated for 2 d with Agrobacterium harbouring pCAMBIA 1305.1 and then samples were 

used in a GUS assay. Two plates of FEC were prepared for each condition. Photographs were 

taken prior to and following incubation to assess FEC development, as well as following the GUS 

assay to determine the transformation capacity of FEC. 
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The production of primary somatic embryos from axillary meristem tissue (Section 2.5.1) 

was also suggested to affect FEC development. Leaf explants, which have been used 

successfully in tissue culture (N. Taylor, pers. comm.; Stamp & Henshaw, 1982), were 

therefore selected as an alternative source of meristematic tissue. Leaf lobes were 

isolated from 1-2 month old in vitro plantlets (cultivar TMS60444) and propagated on five 

CAM plates and incubated for 4 d at 28°C in darkness (Section 2.5.1). Bud tissue was 

also propagated on CAM and developing somatic embryos from both tissue types were 

photographed for comparative analysis. 

4.3.2.3 Experiment I: Results 
There was neither phenotypic abnormalities nor a discernible difference in the rate of 

growth of FEC7 and FEC9 maintained in light or dark conditions in all three climate 

chambers (data not shown). However, FEC9 appeared to have less NEFC and were 

more friable, reflecting the variation in quality between different batches of FEC tissue 

despite being produced via the same procedure. For simplicity, the results for FEC9 only 

will be presented below. FEC cultured on plates prepared with Noble agar were clearly 

more friable and yellowish in appearance following 22 d incubation compared with FEC 

cultured on Gelrite™-containing plates, irrespective of the climate chamber used (Figure 

4.5). Overall, the blue/black precipitate indicative of successful transformation observed 

following the GUS assay (Figure 4.6) was most prevalent in FEC grown in the Sanyo 

MLR Plant Growth Incubator on Noble agar (Figure 4.6a). Interestingly, FEC that had 

been cultured on Gelrite™-containing GD media in the General Plant Growth Chamber 

failed to give a blue/black precipitate following the GUS assay (Figure 4.6f), suggesting 

either non-detectable levels of transformation or transformation had failed. Only culture 

plates incubated in the Sanyo MLR Plant Growth Incubator were consistently devoid of 

moisture on their lids, unlike those in the other two climate chambers tested (data not 

shown). 
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Figure 4.5 Development of FEC in different growth conditions. FEC9 sub-cultured on GD 

media prepared with Gelrite™ (a) or Noble agar (b). Clusters were photographed on 0 d (left 
images) and 22 d (right images) following incubation at 28°C, 16 hr photoperiod using climate 

chambers - Sanyo MLR Plant Growth Incubator, Climate Controlled Room and General Plant 

Growth Chamber. 
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Figure 4.6 Results of GUS assay using FEC9 co-cultivated with Agrobacterium harbouring 
pCAMBIA 1305.1 and cultured in different growth chambers. Blue/black precipitate can be 

observed in successfully transformed FEC cultivated on Noble-based media (a, b & c) and 

Gelrite™ (d & e) but not visible in FEC cultured on Gelrite™-containing GD and incubated in the 

General Plant Growth Chamber (f). Sanyo MLR Plant Growth Incubator (a & d), Climate 

Controlled Room (b & e) and General Plant Growth Chamber (c & f). 
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The experiment to assess somatic embryo and FEC development from leaf explants, as 

described by N. Taylor, proved to be a laborious process. Not only was the isolation of 

leaf lobes (Figure 4.7a) more fiddly than the removal of buds, but considerably more 

primary somatic embryos could be generated from bud tissue. Additionally, large 

quantities of NEFC was produced from leaf lobes (Figures 4.7b and 4.7c) compared with 

the use of axillary meristem tissue (observational data). The combination of time 

restrictions and these observations meant further investigation into the sub-culturing of 

secondary somatic embryos and the production of FEC was unwarranted. Initiation of all 

cassava tissue culture for this investigation therefore used axillary meristematic tissue. 

Figure 4.7 Primary somatic embryo development from leaf explants. Leaf lobes were isolated 

from in vitro TMS60444 plantlets and plated on CAM (a) that were incubated (28°C, continuous 

dark) for 4 d. Large quantities of NEFC (b) and indicated by red arrow in (c) were observed and 

few primary somatic embryos developed, indicated by white arrow in (c). 

4.3.3 EXPERIMENT II: to determine whether FEC cultivation in SH liquid media 
negatively impacts on FEC morphology, transformation and regeneration. 

4.3.3.1 Experiment II: Observations/Background 
The cultivation of FEC in SH liquid media (Section 2.5.1), both prior to and following 

Agrobacterium co-cultivation (Figure 2.2), was time-consuming and highly susceptible to 

microbial contamination. Media needed to be replenished three times per week for a total 

of approximately five weeks and it was common to lose between 50-100% of the FEC 

tissue at these stages, thereby seriously hampering progress. Furthermore, the 

morphology of salvaged FEC changed dramatically from the small, friable clusters 

observed on GD plates (Figure 4.8a) to more globular structures during culturing in the 
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SH liquid media (Figure 4.8b). In-turn, there was a reduction in the efficiency of 

transformation, as determined by GUS assays, suggesting these globular units were not 

efficiently transformed. Only a faint blue precipitate was observed in some FEC (Figure 

4.8c) and it is questionable whether the blue hue is in fact due to specific expression of 

GUSPlus in vivo or simply a collateral affect of transformation, tissue type, non-specific 

gene expression or possibly microscopy technique. Whatever the explanation, the FEC 

were neither morphologically as expected nor was the extent of precipitate following a 

GUS assay in-keeping with published results (Zhang & Puonti-Kaerlas, 2004). 

The globular FEC observed during cultivation in SH liquid media also had poor capacity 

to develop primary somatic embryos and regenerate cotyledons. The swollen, yellowish 

(presumed transformed) FEC appeared to survive selection on MSN+H25 (Section 2.5.2) 

for up to six weeks, compared with the decaying white (presumed non-transformed) FEC 

also seen (Figure 4.8d). However, they consistently failed to regenerate. Only following 

the transfer of these structures to CMM (lacking antibiotic selection) and then 

subsequently to CEM, COM and CBM (Section 2.5.2) did approximately 40% 

(observational data) regenerate into plantlets (listed in Table 4.1). However, molecular 

and biochemical analyses revealed these plantlets were non-transgenic. 
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A

Figure 4.8 Morphological changes to FEC and impact on transformation and regeneration 
capacity. FEC sub-cultured on GD media containing Noble agar (a); in SH liquid media (b); GUS 

assay of FEC (from SH liquid media) following co-cultivation with Agrobacterium harbouring 

pCAMBIA 1305.1 (c); FEC plated on MSN+H25 - yellow FEC considered transformed and white 

FEC disintegrating (non-transformed) (d). 

4.3.3.2 Experiment II: Outline 
The culturing of FEC in SH liquid media introduced formidable problems to the protocol 

and was therefore omitted. Instead, co-cultivation of FEC and Agrobacterium would be 

tested directly on GD and SH plates, the latter serving as a substitute for SH liquid 

media. FEC9 were sub-cultured on approximately 10 Petri dishes of GD and SH media 

and incubated (28°C, 16 hr photoperiod) for 22 d. Photographs of selected clusters were 

taken immediately after sub-culturing and then again after 22 d to allow comparative 

phenotypic assessment of FEC development. After 22 d, Agrobacterium harbouring 

pCAMBIA 1305.1 (Section 2.2.5) was pipetted directly onto the FEC clusters, thus by

passing the SH liquid media cultivation used previously (Section 2.5.2). The plates were 

incubated for 4 d (16 hr photoperiod) at 24°C (as reported previously Section 2.5.2). The 
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co-cultivated material was scraped off using sterile forceps and washed in either GD or 

SH solution containing carbenicillin (500 mg L-1; GDS+C500 and SHS+C500, 

respectively) to suppress growth of Agrobacterium. This procedure was repeated until 

the wash solution was clear. FEC were then spread on either GD or SH plates containing 

carbenicillin (250 mg L-1; GD+C250 and SH+C250, respectively) for 2 d before transfer to 

media containing low concentrations of hygromycin (5 mg ml-1; GD+C250+H5 and 

SH+C250+H5) and incubated for 10 d (28°C, 16 hr photoperiod). Transformation 

success was assessed via a GUS assay immediately following co-cultivation and after 

10 d incubation on the hygromycin containing media. The “acclimatisation” period 

following co-cultivation is broadly commensurate with the original protocol (Section 2.5) 

but instead was undertaken on plates rather than in liquid media. 

4.3.3.3 Experiment II: Results 
Wild-type (i.e. untransformed) FEC9 sub-cultured on GD and SH media and incubated 

for approximately 22 d yielded comparable quantities of FEC, although FEC on SH 

plates appeared more developed and yellowish in colour (Figure 4.9). Notably, this 

experiment was undertaken prior to the adoption of Noble agar (i.e. plates were prepared 

using Gelrite™) and thus the clusters appear moist (see Section 4.3.2 for further details). 

Figure 4.9 Examples of wild-type FEC sub-cultured on GD and SH media. FEC were plated 

on GD (a & b) and SH (c & d) media prepared with Gelrite™ and incubated (28°C, 16 hr 

photoperiod). Clusters were photographed immediately following sub-culturing (left images) and 

22 d later (right images). 

82 



GUS assays of FEC co-cultivated with Agrobacterium harbouring pCAMBIA 1305.1 and 

subsequently incubated on SH+C250 and then SH+C250+H5 failed to produce a 

blue/black precipitate (data not shown). This indicates unsuccessful transformation of the 

SH cultured FEC material. Excitingly, however, FEC initially cultivated on GD+C250 

revealed a significant increase in blue colouration following 10 d subsequent cultivation 

on GD+C250+H5 (Figure 4.10). This data suggests the acclimatisation period is crucial 

for efficient expression of GUSPlus and presumably the hptII antibiotic resistance gene. 

a b 

Figure 4.10 GUS assay using FEC co-cultivated with Agrobacterium harbouring pCAMBIA 
1305.1 on GD plates. 2 d after co-cultivation and incubation on GD+C250 (a) and after 10 d 

subsequent incubation on GD+C250+H5 to further acclimatise FEC (b). Incubation at 28°C, 16 hr 

photoperiod. 

4.3.4 EXPERIMENT III: to determine whether hygromycin hindered FEC 
regeneration and root development. 

4.3.4.1 Experiment III: Observations/Background 
The toxicity of hygromycin was hypothesised to be a credible problem due to two key 

observations. Firstly, as presented in Figure 4.8d, potentially transformed and non-

transformed material on MSN+H25 is clearly distinguishable yet no FEC regenerated. 

Only when the material was placed on media devoid of hygromycin (i.e. CMM, CEM etc) 

did regeneration occur. Secondly, the recommended concentration of hygromycin in the 

rooting assay (40 mg L-1; P. Zhang, pers. comm.) was even sufficient to hinder the 
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development of roots of confirmed hygromycin-resistant plants (positive controls) 

sourced from library stocks at ETH Zürich (data not shown). It was therefore necessary 

to investigate hygromycin toxicity and identify a range of concentrations suitable to allow 

regeneration of potentially transformed material, but sufficient to minimise development 

of non-transformed FEC. Interestingly, feedback from colleagues undertaking 

Arabidopsis transformation reported a wide variation in seed germination of transgenic 

material, which was accredited to the quality/purity of hygromycin being used and 

supplied from Duchefa. 

4.3.4.2 Experiment III: Outline 
Hygromycin toxicity was assessed for both root development and FEC regeneration. 

CBM was prepared with a range of hygromycin concentrations (0, 0.05, 0.1, 0.2, 0.4, 0.8, 

1.0, 1.6, 5, 7.5, 10, 12.5, 15, 17.5 and 20 mg L-1, termed CBM+H0 → CBM+H20) using 

antibiotic from Roth AG, Switzerland. Two pots containing apical cuttings of wild-type 

TMS60444 plantlets and another two pots contained the apical meristems of known 

hygromycin-resistant plantlets (dsAC1-152 sourced from the ETH Zürich plant library), 

serving as the positive controls for each test concentration. In total, 90 wild-type and 90 

hptII transgenic plantlets were used to assess 15 different concentrations of hygromycin 

in CBM. The material was incubated (28°C, 16 hr photoperiod) for three weeks and root 

growth photographed. 

A range of hygromycin concentrations (0, 1.5, 2.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 

20 mg L-1) were also used to supplement MSN media (MSN+H0 → MSN+H20) to assess 

the impact upon FEC regeneration. Clusters of FEC9 were sub-cultured on MSN (three 

plates per concentration and three clusters per plate) and selected clusters were 

photographed at 1, 2, 3 and 5 weeks incubation (28°C, 16 hr photoperiod) to assess 

regeneration capacity. The experiment was repeated and data collated. 

4.3.4.3 Experiment III: Results 
After three weeks incubation the wild-type TMS60444 cuttings failed to develop roots in 

media containing ≥1.6-5 mg L-1 hygromycin (CBM+H1.6 and CBM+H5; Figure 4.11b-c). 

Conversely, all hygromycin-resistant cuttings developed roots in CBM containing even 

the highest concentrations of hygromycin (CBM+H20), in-keeping with expectations 

(Figure 4.9e-h). This experiment was repeated to verify the observations. Thus, effective 
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screening of plantlets via a rooting assay can be achieved using only 5 mg L-1 

hygromycin, a concentration 8-fold less than was recommended. 

Figure 4.11 Rooting assay of wild-type TMS60444 and hptII transgenic cuttings in CBM 
supplemented with hygromycin. TMS60444 plantlets (a-d) and hygromycin-resistant transgenic 

material (e-h) in CBM+H0 (a & e); CBM+H1.6 (b); CBM+H5 (c & f); CBM+H10 (d & g) and 

CBM+H20 (h). Samples photographed after 3 weeks incubation (28°C, 16 hr photoperiod). 

With regard FEC regeneration on MSN, there was a gradual decrease in the number of 

embryos/cotyledons developing on media containing increased concentrations of 

hygromycin (Figure 4.12). At 3 weeks incubation, FEC on MSN+H0 → MSN+H1.5 

developed cotyledons (Figure 4.13) and after 5 weeks FEC on MSN+H15 were also 

regenerating, albeit few in number (average of 1.6). This suggests that FEC had either 

acquired resistance or, more likely, antibiotic in the media was degrading and possibly 

ineffective in reaching some of the uppermost FEC in the cluster. Notwithstanding, on 

MSN+H20 the hygromycin concentration was sufficient to suppress regeneration even at 

5 weeks incubation, with the FEC appearing more callus-like in appearance and 

probably no-longer competent (Figure 4.13). 
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Figure 4.12 Number of developing embryos/cotyledons regenerating from wild-type 
TMS60444 FEC on MSN supplemented with hygromycin. Material was collected following 5 

weeks incubation (28°C, 16 hr photoperiod). S.E. shown. 
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Figure 4.13 Wild-type TMS60444 FEC on MSN supplemented with hygromycin. Media 

prepared with hygromycin concentrations shown (MSN+H0 → MSN+H20). Material incubated 

(28°C, 16 hr photoperiod) and monitored over 5 weeks for embryo/cotyledon development. 
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4.4 DISCUSSION 
The cassava transformation protocol as described by Zhang & Puonti-Kaerlas (2004) 

and Zhang & Gruissem (2004) resulted in complications, including variation in tissue 

quality, FEC morphology, poor regeneration capacity of embryos and microbial 

contamination. Agrobacterium-mediated transformation of FEC from cultivar TMS60444 

using 12 expression constructs, including those that contain GUSPlus (Table 3.1), was 

attempted on 141 occasions from which 155 plantlets were regenerated. However, 

rooting experiments and molecular analyses revealed that none of these plantlets were 

stably transformed. Fundamental difficulties regarding cassava transformation were not 

confined to this project but also experienced by other members of the group at ETH 

Zürich (H. Vanderschuren, pers. comm.; J. Owiti, pers. comm.; M. Stupak, pers. comm.; 

C. Faso, pers. comm.). The consequence was that only a few stably transformed lines 

had been generated over a period of several years, despite daily and on-going 

experiments. The requisite for a reliable protocol for both this project and for cassava 

research generally evolved into an extensive re-evaluation of the procedure. In 

summary, between January 2007 and December 2008, all attempts at transformation 

failed comprehensively to deliver any transgenic plantlets. In approximately six months 

when the modified protocol was being implemented (early 2009), several hundred 

transgenic plants were produced. Moreover, due to on-going modifications and 

transformation attempts, approximately 50% of up-coming material was discarded due to 

constraints on space, resources, sanity(!) and crucially, provisional screening of 

generated plantlets revealed it was simply not required. The successfully modified 

protocol for Agrobacterium-mediated transformation of cassava FEC was recently 

published (Bull et al., 2009). 

4.4.1 FEC propagation and optimisation of growth conditions 
The maintenance and propagation of FEC is fundamental for successful and efficient 

transformation. Although this process does require some skill and experience it is not the 

panacea to cassava tissue culture since the choice of climate chamber and media 

setting agent also affect FEC growth. Gelrite™, used by Zhang & Gruissem (2004), is a 

gellan gum derived from Pseudomonas elodea that provides a clear media, is used at 

lower concentrations and is relatively inexpensive compared to high-grade agars. 

However, some plant material is prone to hyperhydricity (particularly herbaceous and 

woody shoots), a phenomenon that may be exacerbated by the use of Gelrite™ at low 

concentrations (Kevers et al., 2004). Whilst not the most inspiring of topics, the use of 
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setting agent has been reported to affect plant tissue culture. Garin et al. (2000) noted an 

increase in successful generation of somatic embryos of Pinus strobus on 1% Gelrite™ 

media compared with 0.6% media. Additionally, Owens & Wozniak (1991) were able to 

minimise significant variation in shoot and somatic embryo generation from sugarbeet 

callus by optimising the concentration of selected agent (e.g. 0.12% Gelrite™ but 0.7% 

Bacto agar) to obtain an equal gel matrix potential. Similarly, shoot regeneration of Aloe 

polyphylla was significantly hampered by the use of Gelrite™ compared to agar-based 

media (George et al., 2008a; Ivanova & Van Staden, 2011). The use of Gelrite™ at a 

sub-optimal concentration could explain the moist or hyperhydric FEC produced during 

this investigation. Noble agar, extracted from species of red algae and the purist of the 

Difco™ brand agars, instead allowed consistent production of desirable FEC, as well as 

improving somatic embryo generation. Ergo, all plated media was prepared with Noble 

agar with the exception of CBM where no discernible morphological difference was 

observed in plantlets grown in Gelrite™ containing media. Other setting agents used in 

cassava transformation include phytagel (Sigma-Aldrich; Schöpke et al., 1996) and 

microagar (Duchefa; Schreuder et al., 2001) but these were not investigated due to the 

excellent results achieved with Noble agar. 

The advanced climate regulation system in the Sanyo MLR Plant Growth Incubator was 

superior for all stages of tissue culture, compared to the Climate Controlled Room and 

General Plant Growth Chamber (Weiss Kallenkamp). Most noticeable was the large 

amount of moisture collecting on the lids of the culture dishes, which inevitably led to the 

production of mushy FEC. To what extent this affected FEC growth was not determined 

but it was hypothesised that there would be changes to media conditions (e.g. pH, 

nutrient concentrations, etc), as well as light penetration. GUS assays using FEC 

transformed with pCAMBIA 1305.1 also revealed a slight improvement in transformation 

capacity of tissue maintained in the Sanyo MLR Plant Growth Incubator. The production 

and long-term maintenance of high quality FEC is paramount to reduce somaclonal 

variation; Raemakers et al. (2001) demonstrated FEC maintained for more than two 

years generated into plants with reduced vigour and greyish leaf colour compared to 

those from FEC that had been cultured for up to six months. Crucially, the adoption of 

Noble agar and advanced climate chambers ensured persons who had limited 

experience of tissue culture were able to generate FEC of mediocre quality that could 

still be transformed and regenerated into healthy plants. 
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4.4.2 Culturing in SH liquid media altered FEC morphology and increased the 
likelihood of microbial contamination 
The problems associated with cultivating material in liquid media, namely morphological 

changes to FEC and microbial contamination, posed the most serious bottleneck in 

cassava tissue culture. Although liquid media has been used successfully to generate 

transgenic cassava (Raemakers et al., 2005; Zhang et al., 2005; Zhang et al., 2010), in 

this study contamination caused loses of 50-100% and FEC consistently failed to 

regenerate on hygromycin-containing MSN. Interestingly, liquid media stages have been 

abandoned by N. Taylor (pers. comm.) who first developed FEC via this method (Taylor 

et al., 1996). Given the problems experienced, the transformed Agrobacterium was 

pipetted directly onto the FEC propagation plates, a technique also used in the 

transformation of Brachypodium distachyon (a temperate grass; Alves et al., 2009). The 

supposed role of SH media is to induce maturity of the FEC (P. Zhang, pers. comm.), 

which correlates with the observed changes in morphology. The morphological changes 

to FEC are possibly explained by auxin content, physical damage via the sieving process 

and also due to the characteristics of liquid cultures. The altering of gene expression to 

maintain an embryogenic programme has been linked to DNA methylation and 

influenced by auxin (e.g. picloram). A degradation or sub-optimal concentration of auxin 

could have influenced the transition from FEC to early embryogenesis observed with the 

formation of globular units. Stress has also been proposed to mediate signal 

transduction cascade leading to changes to gene expression (George et al., 2008b). 

Additionally, an imbalance in water potential of the media may result in distended, 

hyperhydric FEC and also oxygen content in the solution may be insufficient for the 

submerged tissue (George et al., 2008a). The duration of FEC in SH liquid media may 

have been too long since torpedo structures and sometimes even cotyledons were 

observed. Indeed, the cultivation of secondary somatic embryos in SH liquid media, 

supplemented with 12 mg L-1 picloram, prior to transfer to auxin-free media for 

germination, has been reported to be the most efficient method for embryo development 

(Groll et al., 2001). Whilst all these factors raise questions regarding cassava somatic 

embryogenesis, optimisation of the liquid media stages was disregarded due to the 

propensity for contamination in the sucrose rich media and was unnecessary given the 

accomplishments of culturing FEC on GD plates only. 

Acclimatising FEC on GD plates supplemented with carbenicillin and low concentrations 

of hygromycin following co-cultivation markedly improved regeneration capacity. Similar 
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strategies were described by Zhang & Gruissem (2004) but using SH liquid media and 

Schreuder et al. (2001) who used a combination of liquid media and plates for post co

cultivation maturation. The acclimatisation process on GD used in this study clearly 

enabled the FEC to effectively express genes in the T-DNA (e.g. hptII) whilst on 

selection media that previously was too stringent. Raemakers et al. (2001) also 

demonstrated the significance of maturation using the luc reporter gene following biolistic 

bombardment of FEC. Extended acclimatisation via the weekly transfer of co-cultivated 

FEC onto media supplemented with increasing amounts of antibiotic (GD+H5 → GD+H8 

→ GD+H15) also assisted FEC recovery and encouraged development on MSN+H20. 

Suspected transformed FEC were originally transferred by hand from GD to MSN but 

this procedure proved hugely laborious. Alternative strategies such as spreading material 

on sterile filter paper and nylon membrane were tested, but most effective was the use of 

sterilised nylon mesh. The co-cultivated FEC could be spread and efficiently transferred 

to the necessary media on a weekly basis without the membrane disintegrating (data not 

shown). This also prevented disruption to material, minimised fluctuation in nutrient and 

antibiotic concentrations and also reduced the risk of contamination. It transpired that 

spreading FEC thinly was crucial to prevent accumulation of NEFC, especially on the 

GD-based media, and also to lessen Agrobacterium growth. The cotyledon structures 

that developed following several cycles on MSN were transferred to media to promote 

shoot formation (CEM). Agrobacterium growth around the developing cotyledons on 

CEM could seriously hamper growth of the shoot but this was easily suppressed with the 

inclusion of 100 mg L-1 carbenicillin (CEM+C100). 

4.4.3 Optimised antibiotic concentration is crucial for efficient FEC selection and 
regeneration 
The results from the rooting experiment (Section 4.3.4) suggests that a maximum 

concentration of approximately 10 mg L-1 hygromycin is sufficient to screen in vitro 

cuttings. This is 4-fold less than the advised concentration (40 mg L-1; P. Zhang pers. 

comm.), although in keeping with published data that recommended 8 mg L-1 (Zhang et 

al., 2000a; Zhang & Puonti-Kaerlas, 2004). Similarly, an appropriate concentration of 

antibiotic for selective regeneration in MSN plates was 10-15 mg L-1, which is 

comparable with data from Schreuder et al. (2001) who studied the increase in weight of 

non-transformed FEC plated on media supplemented with various concentrations of 

hygromycin, paramomycin and kanamycin. Curiously, Schöpke et al. (1996) recorded 
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FEC survival on media supplemented with as much as 175 mg L-1, although the relatively 

short test duration (one week) may have affected interpretation; according to Zhang et 

al., (2000b) 96% of non-transformed suspension cells were killed at 50 mg L-1 within four 

weeks. Data presented in this thesis identified that over a period of approximately five 

weeks even non-transformed FEC can regenerate whilst on media supplemented with 15 

mg L-1 hygromycin. This suggests that changes in media conditions do occur (possibly a 

degradation of the antibiotic) and hence why media was replenished on a weekly basis. 

With the remarkable improvement in regeneration of transformed FEC as gauged by 

transformation with pCAMBIA 1305.1 and GUS assays, it became apparent that media 

for embryo development (CMM) and shoot regeneration (COM), outlined in Zhang & 

Gruissem (2004) and Section 2.5.2, were redundant. Instead, transfer of established 

green cotyledons directly to CEM+C100 and then cycled on fresh media every two 

weeks induced large numbers of shoots and plantlets with a normal phenotype (please 

see following chapters for further details). Omission of the CMM and COM stages not 

only simplified the protocol but also ensured the developing material was not subject to 

repeatedly changing environments. The numerous adaptations radically improved 

efficiency of the transformation protocol (Figures 4.14 and 4.15; Bull et al., 2009) and are 

briefly summarised below: 

•	 Omission of SH liquid media stages both prior to and following co-cultivation of 

FEC and Agrobacterium. 

•	 Acclimatisation of co-cultivated FEC on GD media with increasing concentration 

of hygromycin. 

•	 Optimisation of hygromycin concentration in regeneration media (MSN) and for 

rooting assay. 

•	 Extensive use of nylon mesh to support co-cultivated FEC on regeneration media 

and allowing frequent transfer of material to freshly prepared media. 

•	 Use of Noble agar in all media (except CBM) to prevent hyperhydric tissue. 

•	 Use of an advanced climate chamber (Sanyo MLR Plant Growth Incubator). 

•	 Direct inoculation of FEC on GD propagation media. 

•	 Omission of CMM and COM stages, replaced with cycling of material on CEM to 

establish juvenile shoots. 
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Figure 4.14 Procedure for generating transgenic cassava plants. Swollen axillary bud on 

CAM (a). Primary somatic embryos (indicated by arrows) developing on a bed of NEFC on CIM 

(b). Maturing somatic embryos on CIM. Dashed line indicates approximate suggested division for 

further propagation (c). Cluster of FEC on GD appropriate for Agrobacterium inoculation (d). FEC 

following co-cultivation spread onto mesh on GD+C250 (e). Developing embryo/cotyledon 

(indicated by arrow) on MSN+C250+H15. Transformed FEC seen as swollen, yellowish 

structures. Non-transformed are smaller, white clusters (f). Developing embryo/cotyledon 

transferred to CEM+C100 (g). Appearance of immature shoots following several weeks on 

CEM+C100 (h). in vitro transgenic cassava plantlet (i). Developing embryos/cotyledons from 

MSN+C250+H15 used for GUS assay. Blue precipitate clearly visible throughout all tissue (j). 
GUS assay of leaves (k). Rooting assay of transgenic plantlets (left and centre) and wild-type 

TMS60444 (right) on CBM+C50+H10 (l). Scale bar is 5 mm. Figure from Bull et al. (2009). 
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Grow Agrobacterium LBA4404 (incl. plasmid) on 
plates 2 d (28°C, dark)  

Grow Agrobacterium LBA4404 (incl. plasmid) in 
liquid culture 2 d (28°C, dark), shake 200 r.p.m. 

Co-cultivate FEC and Agrobacterium 
4 d, (24°C, 16 hr light)  

Phase III 
Agrobacterium
mediated 
transformation 

Isolate FEC and culture on GD 
2-3 weeks (28°C, 16 hr light)  
Sub-culture for up to 6 months 

Transfer embryos to GD. 2-3 weeks (28°C, dark) 
Phase II 
Production of friable 
embryogenic callus (FEC) 

FEC viability assay 
MSN+C250, 10 d (16 hr light) 
Replenish media every 10 d 

Grow wild-type, in vitro TMS60444 plantlets   
approximately 6-8 weeks, 28°C, 16 hr light 

Transfer stem cuttings to CAM 
2-4 d, dark, 28°C 

Transfer buds to CIM. 2 weeks, dark, 28°C 

Propagate and multiply developing embryos on 
CIM. 2 weeks, dark, 28°C. Repeat for 6-8 weeks. 

Phase I 
Production 
of somatic 
embryos 

Culture co-cultured FEC  
GD+C250, 4 d (28°C, 16 hr light) 

Culture co-cultured FEC  
GD+C250+H5, 1 week, (28°C, 16 hr light)  

Culture co-cultured FEC  
GD+C250+H8, 1 week, (28°C, 16 hr light) 

Culture co-cultured FEC  
GD+C250+H15, 1 week, (28°C, 16 hr light)  

Phase IV 
Maturation and 
development of 
transformed FEC 

Wash FEC and Agrobacterium 
GDS+C500. Repeat until supernatant is clear. 

GUS assay 
24 hr (dark) 

Screen plantlets using rooting test 
CBM+C50+H10, 2 weeks (28°C, 16 hr light)  
Southern blot & PCR to determine lines 

GUS assay 
24 hr (dark)  

Phase VI 
Analysis of transgenic 
plantlets 

Culture co-cultured FEC  
MSN+C250+H15, 1 week (28°C, 16 hr light)  
Repeat for approximately 6 weeks 

Isolate developing embryos/cotyledons  
CEM+C100, 2 weeks (28°C, 16 hr light)  
Repeat until shoots appear (2 – 5 weeks) 

Regenerate transgenic plants  
CBM+C50, 2 weeks (28°C, 16 hr light) 

Phase V 
Selection and 
regeneration of 
transgenic plantlets 

Figure 4.15 Overview of Agrobacterium-mediated transformation of FEC from cassava 
cultivar TMS60444. For detailed information please refer to Bull et al. (2009). 
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5 CASSAVA TRANSFORMATION WITH ASCORBATE 
PEROXIDASE 

5.1 INTRODUCTION 
Ascorbate peroxidase (APX; EC. 1.11.1.11) is an enzyme found mainly in photosynthetic 

plants and algae. It uses ascorbate (ascorbic acid or vitamin C) as a reducing agent to 

convert H2O2 to water and monodehydroascorbate, forming part of the ascorbate-

glutathione pathway (Asada, 1999). It has a high affinity to H2O2, more so than CAT 

where effective removal of H2O2 relies upon a high concentration of enzyme at specific 

locations (Mittler & Poulos, 2005). APX is encoded by a small gene family, which is more 

closely related to yeast and bacterial (class I) peroxidases than classical plant (class III) 

peroxidases (Mittler & Zilinskas, 1991; Passardi et al., 2007), with seven genes identified 

in tomato (Najami et al., 2008), eight in rice (Teixeira et al., 2006) and nine in 

Arabidopsis (Mittler et al., 2004). Found in various cellular compartments, APX in 

Arabidopsis has been described in the thylakoid membrane (tAPX) and stroma (sAPX) of 

the chloroplast, microsomal bodies (mAPX) i.e. in peroxisomes and glyoxysomes, the 

cytosol (cAPX) and also in mitochondria (mitAPX; Mittler et al., 2004). Recently, Panchuk 

et al. (2005) revealed that APX expression is differentially regulated during leaf 

senescence in Arabidopsis, suggesting functional specialisation of the different 

isoenzymes. To date, whilst it is presumed cassava also contains different types of APX, 

only a cytosolic form (MecAPX2; NCBI accession AY973622) has been identified 

(Gómez-Vásquez et al., 2004). 

Although expression and regulation of APX in cassava has not been fully elucidated, a 

microarray analysis using cultivar CM2177-2 revealed that expression of MecAPX2 was 

up-regulated following root harvest. Expression levels peaked (1.7-fold increase) at 24 hr 

post-harvest before returning to basal levels (Reilly et al., 2007). Isamah (2004) also 

showed that POX activity in cassava roots (cultivar Oyolu) peaked at 24 hr post-harvest, 

although data was not provided as to the precise expression of APX. A MecAPX2 cDNA 

probe corresponding to the EST identified in the microarray analysis was used in 

Northern blot hybridisation to corroborate these findings (Reilly et al., 2007). However, 

this revealed peak expression occurred later after harvest (between 48 hr and 72 hr), a 

discrepancy that was also observed with other genes tested e.g. MecCAT2 (NCBI 

accession AY973614). This was suggested to be an artefact of the experimental design 
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since the microarray analysis was performed in Colombia using field-grown roots, where 

the onset of PPD symptoms was more rapid than in the UK glasshouse-cultivated roots 

that were used for Northern blot analysis. Despite the discrepancy, it was concluded that 

MecAPX2 expression is up-regulated during PPD and thus serves an important role in 

regulating H2O2 accumulation. 

Despite scant information regarding APX in cassava, studies involving over-expression 

and antisense/gene silencing constructs in other plant species proffer an insight into the 

role of APX in the ROS-scavenging pathway. Over-expression of the ASCORBATE 

PEROXIDASE-LIKE 1 gene from Capsicum annum (pepper) in transgenic tobacco 

resulted in increased plant growth and also improved tolerance to methyl viologen- (MV, 

a superoxide generating compound) mediated oxidative stress (Sarowar et al., 2005). 

Unlike the aforementioned study, many projects that seek to modify plant defence rely on 

multigene constructs, utilising several genes in the ROS-defence pathway. For example, 

over-expression of APX and SOD in chloroplasts and driven by the oxidative stress 

inducible SWEET POTATO PEROXIDASE ANIONIC 2  (SWPA2) promoter, led to 

enhanced tolerance to MV-mediated stress in potato plants (Tang et al., 2006). The 

same construct used to transform tall fescue plants also resulted in decreased ROS 

accumulation in response to abiotic stress (Lee et al., 2007). Conversely, a wheat tAPX 

knockout mutant led to a 40% decrease in activity and experienced reduced growth and 

photosynthetic activity (Danna et al., 2003). An antisense of tAPX in Arabidopsis also led 

to a 50% reduction in enzyme activity and increased sensitivity to the superoxide-

inducing herbicide paraquat (Tarantino et al., 2005), whilst an antisense cAPX resulted in 

tobacco plants with reduced tolerance to high light and oxidative stress (Örvar & Ellis, 

1997). These selected studies and basic knowledge of APX in cassava clearly show the 

important role of the enzyme and raises the possibility that over-expression of APX may 

improve modulation of H2O2 in transgenic cassava. 

5.2 RESEARCH OBJECTIVES 
The goal is to transform FEC of TMS60444 with the over-expression construct pDEST™

MecAPX2 and the antisense construct pDEST™-antiAPX to generate transgenic plants. 

The StPAT promoter used to regulate transgene expression in the constructs should 

result in expression predominantly in root tissue. Transgene expression profiles and 

enzyme activity will be measured in independent transgenic lines and the harvested 

storage roots will be assessed for delayed PPD. 
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5.3 RESULTS 
5.3.1 Putative APX genes in cassava 
Nucleotide BLAST searches (Section 2.4.10) using the nine APX sequences from 

Arabidopsis led to the identification of seven orthologous transcripts in cassava, which 

clustered in a phylogenetic tree according to predicted cellular location (Figure 5.1). 

MecAPX1 and MecAPX2 cluster with Arabidopsis genes that are reportedly located in 

the cytosol, whereas MecAPX3 groups with genes expressed in microsomal bodies. 

Only one transcript of a chloroplastic APX could be identified in cassava (named here as 

Mec-chlAPX). The functional characteristics of AtAPX4 and AtAPX6 (and thus the 

cassava orthologs) are unclear but are possibly located in the cytosol. BLAST search for 

orthologs of AtAPX3 and AtAPX5 derived the same transcript in cassava. Similarly 

transcripts of MecAPX1 and MecAPX7 were identical except for a 3 bp insertion (valine) 

in the latter (Figure 5.1). Collectively, these data indicate that APX exists as a small gene 

family in cassava and transcripts have been putatively identified that are likely to function 

in several cellular locations. 

Figure 5.1 Phylogenetic tree of APX nucleotide sequence from Arabidopsis and cassava. 

Arabidopsis sequence obtained from TAIR database: AtAPX1 (AT1G07890), AtAPX2 

(AT3G09640), AtAPX3 (AT4G35000), AtAPX4 (AT4G09010), AtAPX5 (AT4G35970), AtAPX6 

(AT4G32320), AtAPX7 (AT1G33660), At-tAPX (AT1G77490) and At-sAPX (AT4G08390). 
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Cassava sequence (sourced from Phytozome database): MecAPX1 & MecAPX7 

(cassava4.1_014642m & cassava4.1_014423m), MecAPX2 (cassava4.1_024509m), MecAPX3 & 

MecAPX5 (cassava4.1_013189), MecAPX4 (cassava4.1_027646m), MecAPX6 

(cassava4.1_018316), Mec-chlAPX (cassava4.1_009867m). Groups based on predicted cellular 

locations (circled) and gene selected as transgene (red font). Bootstrap values (1000 replicates) 

shown. 

5.3.2 Successful generation of pDEST™-MecAPX2 transgenic cassava 
Independent batches of FEC (FEC6, FEC9 and FEC10, cultivar TMS60444) were 

transformed as described by Bull et al. (2009) using pDEST™-MecAPX2 to successfully 

generate approximately 150 in vitro plantlets. The plantlets were catalogued into four 

groups (Group A → D) depending on the batch of FEC used and date transformed and 

then assigned a letter (A → Z and subsequently AA → AZ if more than 26 plants from a 

particular group were produced). For example, APX:CF refers to the sixth plant labelled 

from Group C, whilst APX:DAF is the 32nd plant labelled from Group D. Successful 

expression of hptII integrated into the plant genomes was confirmed via a rooting assay 

(Bull et al., 2009), with only five samples (3% of tested plantlets) failing to establish roots 

and thus presumed non-transgenic and discarded. 30 plantlets representing each of the 

four groups were selected and maintained for further analyses. Genomic DNA was 

extracted from in vitro leaf tissue (Section 2.3.1) and used in PCR-amplifications using 

primers to hptII (Hygro-For & Hygro-Rev; Table 2.1) and StPAT promoter/transgene 

(DESTSeqF1 & apxR1, Table 2.1; Section 2.1.2). The target hptII sequence was 

successfully amplified in all samples, with the exception of APX:AA, APX:AN and 

APX:DAE, yielding a product of approximately 1 Kb (Figure 5.2). Similarly, the predicted 

sized product (also approximately 1 Kb) using DESTSeqF1 & apxR1 primers was 

obtained from almost all samples with the exception of APX:AA and APX:CAD (Figure 

5.2). It is noteworthy that 28 plantlets transformed with the respective antisense 

construct (pDEST™-antiAPX) also successfully passed the rooting test but due to time 

restrictions they were retained as in vitro stocks and not analysed further. 
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Figure 5.2 PCR-amplification products using pDEST™-MecAPX2 transformed in vitro 

plantlets. Products using hptII specific primers (Hygro-For & Hygro-Rev) (upper image) and 

StPAT promoter/transgene primers (DESTSeqF1 & apxR1) (lower image). Products from 

plasmid DNA (+) and genomic DNA from wild-type TMS60444 (–) are shown. DNA ladder (bp) 

indicated. Plants grouped according to batch of FEC used and date transformed (Group A → D). 

Genomic DNA isolated from the transgenic and wild-type in vitro plantlets was digested 

using HindIII and electrophoresed (Section 2.4.11) for Southern blot hybridisation with a 

DIG-labelled hptII-annealing probe (Sections 2.4.13 and 2.4.14). All samples, with the 

exception of APX:CAE, hybridised to the probe (Figure 5.3) indicating stable integration 

of the T-DNA in the plant genome. Interestingly, only one or two genomic fragments 

were hybridised in 77% and 23% of samples, respectively. These data suggest minimal 

T-DNA integration, although precise transgene copy number was not determined. 

Approximately eight independent lines could be identified amongst plants in Group A 

alone (Figure 5.3a) and 10 lines were identified from Groups B, C and D collectively 

(Figure 5.3b). It is conceivable that some of the lines in Group A are the same as those 

identified in Groups B, C and D. For this to be irrevocably confirmed it would be 

necessary to hybridise all predicted independent lines on a single membrane. However, 

due to time constraints further analysis was based solely on the plant lines from Groups 

B, C and D. 
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a 

Figure 5.3 Southern blot hybridisation of HindIII digested genomic DNA from in vitro 
plantlets transformed with pDEST™-MecAPX2. Transformation Group A (a) and 

transformation Groups B, C and D (b). Samples hybridised to a hptII-annealing DIG-labelled 

probe. DNA ladder (bp; lanes L), plasmid DNA (+) and wild-type TMS60444 genomic DNA (–) 

shown. 

Plantlets from the 10 independent lines identified in Group B (APX:BG and APX:BH), 

Group C (APX:CH, APX:CT, APX:CV and APX:CX) and Group D (APX:DAE, APX:DAF, 

APX:DAM and APX:DAV) were multiplied in vitro and approximately five plantlets per 

line were then transferred to soil to establish plants in the glasshouse (Section 2.5.3). 

5.3.3 Morphology of pDEST™-MecAPX2 transgenic plants 
25 pDEST™-MecAPX2 transgenic and three wild-type TMS60444 plants were 

successfully established in the glasshouse (Table 5.1) and produced true storage roots 

(albeit smaller than field-grown roots). This is the first occasion large scale propagation 

of pot-based storage roots has been achieved at the University of Bath. Furthermore, all 
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plants had a normal phenotype (Figure 5.4), lacking abnormalities often associated with 

poor plant husbandry or genetic mutations (somaclonal variation) in cassava e.g. 

thickened stems, irregular leaf development, yellow/grey leaf colour and stunted growth. 

Unfortunately some material was lost due to microbial contamination of media during 

propagation of in vitro plantlets, as well as failings with the systems that regulate 

environment conditions. This resulted in a varying number of plants that were available 

for analysis per line (Table 5.1). Lines APX:DAE and APX:DAM incurred the greatest 

loss and are represented by two plants each. Additionally, due to a sampling error, data 

collected for lines APX:BH and APX:CH were disregarded. 

Plant height was measured from the root stock to apical growth tip and in some cases 

was variable between plants of the same line. Most dramatically APX:DAE plant one was 

37 cm in height whilst plant two was 92 cm. However, overall the mean plant height of 

independent lines were commensurate with wild-type data (Figure 5.5) as determined by 

independent-samples t-test (Table 5.1). 

Table 5.1 Morphology of glasshouse cultivated plants. 

Number Mean plant Mean root stock 
height (cm), Number weight (g), Plant line of S.E. & t-test† 

of roots S.E. & t-test† 

plants (max. / min.) (max. / min.) 

APX:BG 4 69.5, 6.96 p=0.759 8 55.8, 3.35 p=0.187 (86 / 52) (65 / 49) 

APX:CT 3 88.3, 3.18 p=0.341 5 56.7, 6.01 p=0.286 (92 / 82) (65 / 45) 

APX:CV 3 70.0, 8.08 p=0.811 5 51.0, 2.08 p=0.515 (84 / 56) (55 / 48) 

73.3, 6.97 64.3, 6.09APX:CX 4 (86 / 56) p=0.975 8 (82 / 55) p=0.093 

64.5, 27.50 64.0, 6.00APX:DAE 2 (92 / 37) p=0.744 3 (70 / 58) p=0.102 

APX:DAF 3 85.7, 0.68 p=0.417 5 57.0, 12.01 p=0.504 (87 / 85) (81 / 44) 

APX:DAM 2 76.0, 2.00 p=0.889 4 53.5, 11.50 p=0.703 (78 / 74) (65 / 42) 

77.5, 5.62 52.5, 5.25APX:DAV 4 (89 / 63) p=0.761 6 (67 / 43) p=0.528 

TMS60444 3 73.7, 11.84 n/a 5 47.7, 4.18 n/a(86 / 50) (56 / 43) 

† independent-samples t-test (wild-type versus transgenic line), significance p ≤ 0.05 (*) 

n/a not applicable (wild-type cassava, cultivar TMS60444) 
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Figure 5.4 pDEST™-MecAPX2 transgenic plant. Whole plant (a) and root stock (b). Plant 

photographed five months after transfer of in vitro plantlet to soil and maintenance in glasshouse. 

Examples typical of growth for both transgenic and wild-type material. 
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Figure 5.5 Mean height of glasshouse cultivated plants. Eight independent lines of pDEST™

MecAPX2 transgenic plants and wild-type cassava (TMS60444) were assessed. S.E. shown. 

An average of 1.75 roots were harvested from each plant with a mean root stock weight 

of 55.8 g (including wild-type data). As for plant height, there was no statistically 

significant difference between the mean weight of root stocks from transgenic plants 

compared with wild-type material, as determined by independent-samples t-tests (Table 

5.1; Figure 5.6). Plants invariably produced storage roots of varying size with one larger 

root and then two or three thinner roots, as can be seen in Figure 5.4b. 
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Figure 5.6 Mean root stock weight of glasshouse cultivated plants. Eight independent lines 

of pDEST™-MecAPX2 transformed plants and wild-type cassava (TMS60444). S.E. shown. 

102 



5.3.4 Trial experiments to devise a PPD assay for glasshouse cultivated roots 
The visual assessment of PPD symptoms in field-grown storage roots has been 

described and tend to follow two different approaches. The first, denoted here as the 

“whole root method”, requires trimming the proximal and distal ends that are then 

covered with cling film before storing the roots away from direct sunlight at ambient 

conditions. In tropical and sub-tropical countries where this method has been used this is 

usually 28°C and >80% humidity. At designated time points, randomly selected roots are 

sliced, the symptoms of each slice scored and a mean score for the root calculated (van 

Oirschot et al., 2000; Wheatley et al., 1985). The second approach (referred to here as 

the “harvest and slice method”) necessitates slicing the root(s) immediately after harvest, 

incubating the material (as above) and then scoring symptoms of different slices at 

selected time points, which are usually between 0 hr and 4-5 d. Overall, the former 

technique is considered more representative of harvesting and thus PPD but relies upon 

a plentiful supply of roots for analysis. Unfortunately there are no reports of suitable 

procedures to assess PPD in the smaller storage roots of glasshouse-cultivated plants. 

Therefore trial experiments adopting these two approaches were undertaken for this 

investigation using a further 21 roots of the 10 independent lines of pDEST™-MecAPX2 

transformed plants (Table 5.2). 

Table 5.2 pDEST™-MecAPX2 transgenic glasshouse-cultivated roots used for assessing 

techniques to score PPD symptoms. 

Transformation group Plant line 
Number of 

harvested roots 

Group B 
APX:BG 

APX:BH 

1 

4 

Group C 

APX:CH 

APX:CT 

APX:CV 

APX:CX 

2 

1 

3 

2 

Group D 

APX:DAE 

APX:DAF 

APX:DAM 

APX:DAV 

2 

1 

4 

1 
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5.3.4.1 “Harvest and slice” method 
A selection of glasshouse-cultivated roots were harvested (Table 5.2), sliced 

approximately 5 mm in thickness and placed on moist filter paper in Petri dishes to 

minimise desiccation. Material was incubated in a plastic box at 26°C and 1 ml of SDW 

was used to remoisten the filter paper every 48 hr. Material was sampled and 

photographed at 0, 6, 12, 24, 48, 72 and 96 hr post harvest. No or only minimal PPD 

symptoms were observed in tissue at 0 hr and 6 hr post-harvest (Figures 5.7a and 5.7b) 

but deterioration (light brown discolouration) was more apparent in tissue assessed 12 hr 

post-harvest (Figure 5.7c). By 24 hr post-harvest the root slices were clearly deteriorated 

with discolouration seen mainly in the cortical parenchyma (Figure 5.7d). The storage 

parenchyma also developed brown discoloration but usually became white/grey and 

desiccated - symptoms that were repeated in tissue at 48 hr, 72 hr and 96 hr post

harvest (Figure 5.7e-g). Interestingly, these symptoms appeared akin to general 

deterioration and desiccation rather than the expected blue/black vascular streaking 

synonymous with PPD observed in field-grown roots. 

Further small-scale trials were completed to understand better whether the placing of 

root slices directly on moistened paper was affecting symptom development. For 

example, slices were placed on dry filter paper and a pot of water in the storage box 

provided humidity. In theory, this approach should provide a more constant environment, 

minimising fluctuations in humidity, but unfortunately material developed symptoms 

similar to those seen in Figure 5.7a-g and thus was not considered a significant 

improvement to the technique. A further modification tested root samples incubated at 

ambient room conditions but they became highly desiccated within 6-12 hr (data not 

shown). In summary, whilst the “harvest and slice” method may be used for field-grown 

storage roots, the thinner roots from glasshouse-cultivated plants are seemingly too 

prone to desiccation. Additionally, it was highly laborious and difficult to sample tissue at 

the selected time points. 

5.3.4.2 “Whole root” method 
The limited availability of glasshouse-cultivated roots meant this technique required 

modification from the outset. Rather than using intact roots, as has been documented 

with field-grown material (van Oirschot et al., 2000), the roots were divided into two and 

placed on Petri dishes in a plastic box for incubation at 26°C. A slice of root was also 

removed to represent 0 hr collected material. One half of the root was removed, 
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desiccated tissue was trimmed from the end and symptoms observed at 24 hr post

harvest, whilst the second half was incubated and assessed 96 hr post-harvest. In 

general, mild or no PPD symptoms were observed in tissue sampled 24 hr post-harvest 

but symptoms were clearly evident 96 hr post-harvest (Figure 5.7h). Significantly, 

incubating partially intact roots ensured the tissue was not desiccated and symptoms 

were more typical of PPD i.e. vascular streaking. The findings from the trial experiments 

discussed here led to the implementation of the technique described in Section 2.5.4 and 

which was applied for the assessment of PPD presented in this chapter. 
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Figure 5.7 Roots assessed for PPD symptoms. APX:TAD root slices at 0 hr (a), 6 hr (b), 12 hr 

(c), 24 hr (d), 48 hr (e), 72 hr (f) and 96 hr post-harvest (g). Roots incubated on moist filter paper 

in a covered box at 26°C, dark. 90 mm diameter Petri dishes used in experiments (a-g). Cross-

section of a halved root at 96 hr post-harvest and incubated at 26°C, dark. Note streaking 

symptoms rather than general deterioration observed in other samples (h). Roots harvested from 

glasshouse cultivated plants. 
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5.3.5 PPD assay of pDEST™-MecAPX2 transformed plant lines 
44 glasshouse-cultivated storage roots from transgenic plants and five roots of wild-type 

TMS60444 were harvested (Table 5.1) and symptoms of PPD assessed at 0 hr, 24 hr 

and 96 hr post-harvest. Root nomenclature is as follows – expression construct : plant 

line : plant & root number. For example, line APX:DAE had two plants, plant A yielded 

only one suitable root (APX:DAE:AR1), whereas plant B produced two roots 

(APX:DAE:BR1 and APX:DAE:BR2; Figure 5.8). In all samples (both transgenic and 

wild-type) no PPD symptoms were observed at 0 hr but discolouration was visible in 

some roots at 24 hr (Figures 5.8, 5.9 and 5.10). However, symptoms were not 

necessarily consistent between roots from within lines or even from the same plant. For 

example, root TMS60444:AR1 has no symptoms whilst TMS60444:AR2 displayed mild 

symptoms of PPD at 24 hr post-harvest (Figure 5.9). Similar results were observed with 

transgenic material - APX:DAE:BR2 has mild PPD symptoms at 24 hr post-harvest but a 

root from the same plant (APX:DAE:BR1) was symptomless (Figure 5.8). At 96 hr post

harvest, all transgenic (Figures 5.8 and 5.10) and wild-type roots (Figure 5.9) had 

developed severe PPD symptoms. It is important to note that although some roots (e.g. 

APX:DAE:BR2; Figure 5.8) appeared resistant to PPD at 96 hr post-harvest, the material 

was in-fact highly desiccated and chalky in texture. This possibly reflects general 

deterioration rather than PPD. 

Figure 5.8 Transgenic APX:DAE roots following harvest. Sections of roots shown 0 hr, 24 hr 

and 96 hr post-harvest. Three roots were harvested and assessed from two plants (APX:DAE:A 

and APX:DAE:B). 
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Figure 5.9 Wild-type TMS60444 roots following harvest. Sections of roots shown 0 hr, 24 hr 

and 96 hr post-harvest. Five roots were harvested and assessed from three plants (TMS60444:A; 

TMS60444:B and TMS60444:C). 

Although symptoms of PPD could be observed, it proved difficult to implement a scoring 

system (i.e. 0 for symptomless tissue → 5, severe symptoms) due to extensive variation 

in symptoms. For example, roots APX:DAV:AR2 and APX:DAV:BR1 (96 hr) have severe 

PPD symptoms and were scored 5, but the symptoms are clearly different despite being 

from the same plant line (Figure 5.10). Also, almost all roots harvested at 0 hr and 24 hr 

time points lacked PPD symptoms yet samples were severely deteriorated 96 hr 

following harvest, suggesting progressive changes in PPD in the storage roots arose 

between 24 hr and 96 hr post-harvest. Ergo, it was neither possible to measure PPD 

symptoms nor identify lines that may have delayed PPD based on visual assessments. 
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Figure 5.10 Transgenic APX:DAV roots following harvest. Sections of roots shown 0 hr, 24 hr 

and 96 hr post-harvest. Six roots were harvested and assessed from three plants (APX:DAV:A; 

APX:DAV:B and APX:DAV:C). 

5.3.6 Real-time PCR analysis: amplification primer design and validation of 
reference genes 
Comparative real-time PCR to measure transgene expression requires reference genes 

whose expression is consistent throughout the differing experimental treatments, tissue 

and conditions. Real-time PCR is seldom used in cassava research and no reference 

genes have been characterised for PPD studies. Validation of proposed reference genes 

was therefore required to permit analysis of transgene expression in the pDEST™

MecAPX2 plants. Amplification primers for genes 18S, SOLUBLE N-ETHYL 

MALEIMIDE-SENSITIVE FACTOR ATTACHMENT PROTEIN RECEPTORS  (SNARE), 

PROTEIN SERINE/THREONINE PHOSPHATASE  (PP2A; Figure 5.11), UBIQUITIN C 

(UBC; Figure 5.12) and POLYUBIQUITIN 10  (UBQ10) were designed (Table 2.1) using 

alignments of published sequence. These genes, whose products are involved in protein 

synthesis, vesicle trafficking and signalling were selected based on published information 
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from Arabidopsis (Czechowski et al., 2005) and advice (C. Laloi, pers. comm.). 

Amplification primers were designed to anneal at the 3’-end of the coding sequence to 

maximise amplification efficiency since cDNA was primed using oligo(dT)20 (Section 

2.6.4). 

Figure 5.11 Nucleotide alignment of PP2A sequence. Arabidopsis genomic DNA (TAIR 

accession AT2G42500; lane 1), Arabidopsis coding sequence (TAIR accession AT2G42500; lane 

2), cassava genomic DNA (Phytozome database accession cassava7768; lane 3),  poplar coding 

sequence (accession 0001s04500; lane 4) and cassava EST sequence (Cassava Online 

Database accession EST259718.1; lane 5). Position of intron (grey rectangle), PCR-amplification 

primers (PP2A-LP2 & PP2A-RP2; green arrows), termination codon (orange box) and 3’-UTR 

(blue rectangle) shown. 
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Figure 5.12 Nucleotide alignment of UBC sequence. Arabidopsis (TAIR accession 

AT5G25760) and cassava EST-derived sequence (Cassava Online Database accession 

contig1089). Positions of PCR-amplification primers (UBC-F and UBC-R; green arrows), 

termination codon (orange box) and 3’-UTR (blue rectangle) shown. 

Primers were also designed for transgene amplification. The sense-strand primer (APX 

Transgene-F; Table 2.1) flanked an exon-exon boundary to prevent amplification from 

contaminating genomic DNA, whilst the generic complementary-sense strand primer 

(Transgene R; Table 2.1) was positioned within the vector (downstream of the 

termination codon and upstream of the polyA site) to improve amplification specificity 

(Figure 5.13). Nucleotide BLAST searches revealed the APX Transgene-F sequence 

aligned to only one position in the cassava genome and no sequence homology to the 

Transgene R primer was detected. 
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Figure 5.13 Nucleotide sequence alignment of APX. pDEST™-MecAPX2 sequence (lane 1), 

coding sequence from cassava (Cassava Online Archive accession contig03195; lane 2) and 

genomic cassava DNA (Phytozome database; lane 3). Positions of introns (grey rectangles), APX 

Transgene-F & Transgene R primers (green arrows), termination codon (orange box) and 

Gateway® att-sites (dark grey rectangle) are shown. 

5.3.6.1 PCR-amplification of reference genes using Taq DNA Polymerase  
Amplification primers for the proposed reference genes were used in PCR with standard 

Taq DNA Polymerase (Section 2.1.2) to check specificity. Template cDNA was derived 

from 1 μg total RNA of wild-type TMS60444:AR1, TMS60444:BR1 and transgenic 

APX:BG and APX:DAE roots (Sections 2.6.1-2.6.4). Primers for UBC (UBC-F & UBC-R) 

and SNARE (SNARE For & SNARE Rev; Table 2.1) generated the predicted sized 

amplicons (137 bp and 156 bp in length, respectively) observed following agarose gel 

electrophoresis (Section 2.4.2). Importantly, non-specific priming was not observed for 

either primer pair, indicating good specificity to the target sequence (Figure 5.14).  
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Figure 5.14 Putative UBC and SNARE PCR-amplification products. UBC amplification (lanes 

2-5) and SNARE amplification products (lanes 6-9) from cDNA derived from wild-type 

TMS60444:AR1 (lanes 2 & 6), TMS60444:BR1 (lanes 3 & 7), APX:BG:AR1 (lanes 4 & 8) and 

APX:DAE:AR1 (lanes 5 & 9). DNA ladder (bp) shown (lane 1). 

Similar results were obtained following PCR-amplification using primers for 18S (18S For 

& 18S Rev; Table 2.1), yielding a single sized product of approximately 169 bp (Figure 

5.15a). However, the designed UBQ10 primers (UBQ10-F & UBQ10-R) generated 

various sized products, suggesting sub-optimal amplification specificity (Figure 5.15a). 

Amplification of PP2A sequence was successful, generating a single product of 

approximately 150 bp (Figure 5.15b) from cDNA, whilst from wild-type genomic DNA the 

expected larger-sized (227 bp) product (due to the intron) was also produced (Figure 

5.15b). Based on these studies all reference gene primer pairs are suitable for real-time 

PCR analysis with the exception of UBQ10-F and UBQ10-R. 

a b 

Figure 5.15 Putative UBQ10, 18S and PP2A PCR-amplification products. UBQ10 

amplification (lane 2) and 18S amplification products (lane 3) from cDNA derived from 

TMS60444:AR1 (a). PP2A amplification products using template cDNA derived from 

TMS60444:AR1 (lane 2) and TMS60444 genomic DNA (lane 3) (b). DNA ladder (bp) shown 

(lanes 1). 
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5.3.6.2 Verification of reference and transgene primers in real-time PCR 
Amplification primers for the proposed reference genes (SNARE, UBC, 18S and PP2A) 

successfully amplified target sequence from cDNA derived from wild-type 

TMS60444:AR1 (0 hr and 24 hr post-harvest) in real-time PCR. Five dilutions of cDNA 

were amplified in duplicate (Section 2.6.4) to generate data for standard curve analysis 

and melting and amplification profiles. For all primer pairs statistically significant R2 

values (R2 > 0.980) were obtained (Figure 5.16) from the standard curves, indicating 

minimal variability between assay replicates and that amplification is comparable even 

with varying quantity of template cDNA. Furthermore, there is only minimal variation in 

CT values in amplifications using tissue analysed at 0 hr and 24 hr post-harvest (Figure 

5.16). The mean difference in CT values between the two time points using 18S primers 

was a mere 0.20, whilst for PP2A primers the difference ranged from 0.20 to 1.02, 

suggesting stable gene expression even after 24 hr deterioration. Greater variation was 

observed with UBC data, with differences in CT values ranging from 1.24 to 4.68; the 

greatest variation arising in the least dilute cDNA samples. No data is available for 

performance of the SNARE primers using material 24 hr post harvest. Importantly, APX 

Transgene-F and Transgene R primers also amplified successfully (R2 = 0.9954; Figure 

5.17) from cDNA derived from APX:BG:AR1 (amplicon 128 bp in length) and, as 

expected, failed to amplify from TMS60444:AR1. Amplification and melting profiles for all 

proposed reference genes and transgene were in-keeping with successful and specific 

amplification (Figures 5.18-5.20). A limited screen of cDNA derived from APX:BG:AR1 

was also used to assess primer efficiencies of the reference genes to confirm there was 

no/minimal variation between tissue (data not shown). 
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Figure 5.16 Standard curve analysis of real-time PCR amplification. Dilutions of wild-type 

TMS60444:AR1 derived cDNA amplified with: 18S For & 18S Rev (0 hr: y=-4.1358x+25.474, R2 = 

0.9904; 24 hr: y=-4.4381x+26.407, R2 = 0.9900) (a); UBC-F & UBC-R (0 hr: y=-4.0959x+35.573, 

R2 = 0.9967; 24 hr: y=-4.5859x+36.078, R2 = 0.9902) (b); PP2A-LP2 & PP2A-RP2 (0 hr : y=

4.2188x+37.305, R2 = 0.9972; 24 hr: y=-5.0311x+40.032, R2 = 0.987) (c); SNARE For & SNARE 

Rev (0 hr:  y=-3.8019x+36.429, R2 = 0.9973; 24 hr data not available) (d). 0 hr (red) and 24 hr 

(black) data points and linear regression lines. 

Figure 5.17 Standard curve analysis of PCR amplification using transgene specific 

primers. Dilutions of APX:BG:AR1 derived cDNA and transgene primers (APX Transgene-F & 

Transgene R). 0 hr: y=-3.9747x+31.422, R2 = 0.9954;  24 hr: data not available. 
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Figure 5.18 Real-time PCR analysis of SNARE and PP2A amplification. Melting (a) and 

amplification profiles (b). Amplification from cDNA derived from APX:BG:AR1 material, 0 hr post

harvest. 

Figure 5.19 Real-time PCR analysis of APX and UBC amplification. Melting (a) and 

amplification profiles (b). Amplification from cDNA derived from APX:BG:AR1 material, 0 hr post

harvest. 
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Figure 5.20 Real-time PCR analysis of 18S amplification. Melting (a) and amplification profiles 

(b). Amplification from TMS60444 wild-type root material, 0 hr post-harvest. 

Amplification efficiency (E) was calculated from the slope of the standard curves (Section 

2.1.3; Figures 5.16 and 5.17) and varied between primers and age of tissue used (Table 

5.3). PP2A primers were the least efficient whereas SNARE primers (using 0 hr tissue) 

were the most efficient. Interestingly, all amplification efficiencies were less than the 

recommended 90-105% (Bio-Rad, 2010). However, although efforts were made to obtain 

high quality RNA, the exudation of polysaccharides, for example, that are abundant in 

roots probably influenced primer annealing and amplification efficiencies. This problem 

was exacerbated through the use of degraded tissue that is high in phenolic compounds, 

resulting in a 10.4% mean reduction in amplification efficiency between material 

harvested at 0 hr and 24 hr - an unavoidable consequence of PPD studies. 
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  Table 5.3 Efficiency of real-time PCR amplification. 

Gene Slope* (0 hr) E (%) 0 hr Slope* (24 hr) E (%) 24 hr 

18S -4.1358 74.4 -4.4381 68.0 

UBC -4.0959 75.4 -4.5859 65.2 

PP2A -4.2188 72.6 -5.0311 58.0 

SNARE -3.8019 83.2 n/d n/d 
MecAPX2 -3.9747 78.48 n/d n/dtransgene 

* from linear regression calculations (Figures 5.16 and 5.17). 

n/d not done 

5.3.6.3 Relative efficiencies of reference and transgene primers 
The relative efficiencies of proposed reference and target gene primers (ΔCT 

comparison; Section 2.1.3) resulted in linear regression slopes of 0.2442 (APX 

Transgene-F/Transgene R & PP2A-LP2/PP2A-RP2; Figure 5.21a), -0.1727 (APX 

Transgene-F/Transgene R & SNARE For/SNARE Rev; Figure 5.21b), 0.1213 (APX 

Transgene-F/Transgene R & UBC-F/UBC-R; Figure 5.21c) and 0.1611 (APX Transgene-

F/Transgene R & 18S For/18S Rev; Figure 5.21d), which compare to the recommended 

slope = 0.1. During the ongoing collection of data PP2A was selected as the reference 

gene to measure transgene expression in pDEST™-MecAPX2 transformed lines. 

Figure 5.21 Relative efficiency of reference and transgene amplification. APX Transgene-


F/Transgene R & PP2A-LP2/PP2A-RP2 (y=0.2442x-5.8823, R2 = 0.4705) (a); APX Transgene
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F/Transgene R & SNARE For/SNARE Rev (y=-0.1727x-5.0065, R2 = 0.2567) (b); APX 

Transgene-F/Transgene R & UBC-F/UBC-R (y=0.1213x-4.1505, R2 = 0.6097) (c); APX 

Transgene-F/Transgene R & 18S For/18S Rev (y=0.1611x+5.9488, R2 = 0.4143) (d). S.D. shown. 

5.3.7 Comparative analysis of MecAPX2 expression in transgenic cassava 
Two or three storage roots from each of the eight independent lines of pDEST™

MecAPX2 transformed cassava were selected and used for real-time PCR analysis 

following RNA extraction (Figure 5.22) and RT-PCR (Section 2.6). Expression of the 

transgene was calculated relative to the PP2A reference gene using the formula 2-ΔCT 

(Section 2.1.3) and due to time constraints only material sampled 0 hr post-harvest was 

analysed. 

Figure 5.22 Analysis of RNA extracted from cassava roots. Selected samples - APX:CT:AR1 

(lane 2), APX:CT:BR1 (lane 3), APX:CT:CR1 (lane 4), APX:CX:AR1 (lane 5), APX:CX:BR1 (lane 

6), APX:CX:CR1 (lane 7), APX:DAE:AR1 (lane 8), APX:DAM:AR1 (lane 9), APX:DAM:BR1 (lane 

10), TMS60444:AR1 (lane 11), TMS60444:BR1 (lane 12), TMS60444:CR1 (lane 13) and RNA 

ladder (lane 1). All samples 0 hr post-harvest (a). Chromatogram of APX:CT:AR1 (b). Data 

obtained using the Experion™ Automated Electrophoresis System. 
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Interestingly, transgene expression could not be detected in any root of line APX:DAV 

(APX:DAV:AR2, APX:DAV:BR1 or APX:DAV:CR1), with relative expression and S.D. 

calculated at 0.00074, 0.12; 0.00099, 0.30 and 0.03461, 0.35, respectively (Figure 5.23). 

Further investigation is required but this result may simply reflect an experimental error. 

Variation in relative expression between roots from the same line was also apparent 

highlighting the need for more biological replicates. For example, roots APX:BG:AR1, 

APX:BG:BR1 and APX:BG:DR1 recorded relative expression and S.D. values of 18.54, 

0.39; 76.10, 0.07 and 46.37, 0.09, respectively. Importantly, APX Transgene-F and 

Transgene R primers that are specific to the pDEST™-MecAPX2 construct failed to 

amplify a product from wild-type roots (TMS60444:AR1, TMS60444:BR1 and 

TMS60444:CR1), in-keeping with expectations. 
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Figure 5.23 Expression of APX transgene compared to PP2A at 0 hr post-harvest. Three 

storage roots analysed per line, except for APX:DAF where two roots were analysed. Wild-type 

roots (TMS60444:AR1, TMS60444:BR1 and TMS60444:CR1) and S.D. shown. 

Interestingly, despite previous reports suggesting the StPAT promoter is root specific in 

transgenic cassava (Ihemere et al., 2006), data here clearly reveals over-expression of 

the transgene in leaf tissue of all transgenic lines (Figure 5.24). Indeed, the mean 

relative expression in leaves for all lines (excluding APX:DAV where leaf data was not 

collected) is 2.87-fold greater than in the roots. Overall, line APX:CV had the greatest 

expression of the transgene in both roots and leaves (Figure 5.24). 
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Figure 5.24 Mean expression of APX transgene compared to PP2A in roots and leaves of 

independent lines. Data (0 hr post-harvest) from eight independent plant lines of pDEST™

MecAPX2 transformed plants. Wild-type data (TMS60444) and S.D. shown. Note: leaf data for 

APX:DAV not collected. 

5.3.8 APX enzyme activity 
In addition to transgene expression analysis, preliminary data was collected for APX 

activity. Protein extracts from root samples (0 hr post-harvest) APX:BG:AR1, 

APX:CT:AR1, APX:CV:AR1, APX:CX:AR1, APX:DAE:AR1, APX:DAF:AR1, 

APX:DAM:AR1, APX:DAV:AR2 representing each of the eight lines and wild-type 

TMS60444:AR1 were prepared and used to measure APX activity (Sections 2.7.1-2.7.3). 

Due to time constraints it was not feasible to analyse additional biological samples. 

Activity of APX in lines APX:BG and APX:CV were commensurate with transcript 

analysis, representing both increased transcription and activity (Figure 5.25). 

Additionally, minimal activity was recorded in line APX:DAM (Figure 5.25) that also had 

comparatively low expression of the transgene as measured by real-time PCR. Most 

surprising is the significant level of APX activity in line APX:DAV that was 4-fold higher 

than APX:BG, the line with the second highest level of activity, despite no transgene 

transcript/amplification being detected in real-time PCR analysis (Figure 5.25).  
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Figure 5.25 Mean equivalent HPX units (APX activity) in pDEST™-MecAPX2 transformed 
and wild-type roots. Eight pDEST™-MecAPX2 transgenic lines and wild-type tissue 

(TMS60444). For clarity values are shown per line (n=2), S.E. shown. 

A preliminary screen of enzyme activity using field-grown roots of three cultivars with 

varying susceptibility to PPD revealed an increase in APX activity following harvest 

(Figure 5.26). This increase is most dramatic in TMS60444 tissue compared with cultivar 

MVEN-77, which is reportedly less susceptible to PPD. These data provide useful 

baseline information into the characteristics of cultivar TMS60444 and it will be 

interesting to analyse and compare the glasshouse-cultivated transgenic roots at the 

later time points (i.e. 24 hr and 96 hr post-harvest) to determine whether this activity 

profile is conserved. 
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Figure 5.26 Mean HPX equivalent units (APX activity) in cultivars of cassava with varying 
susceptibility to PPD. TMS60444 (most susceptible), MNGA-2 (moderately susceptible) and 

MVEN-77 (least susceptible). n=2 and S.E. shown. 

5.4 DISCUSSION 
5.4.1 Successful production of pDEST™-MecAPX2 transgenic cassava 
This chapter describes the production of more than 150 in vitro pDEST™-MecAPX2 

plantlets, which was made possible following improvements to the Agrobacterium

mediated transformation protocol (discussed in Chapter 4). Approximately 44 plants with 

storage roots suitable for analysis were produced in approximately five months in the 

glasshouse at the University of Bath. No phenotypic abnormalities were observed (e.g. 

stunted growth and leaf discolouration) and there was no statistical difference 

(determined by independent-samples t-tests) in either plant height or root stock weight of 

the transgenic material compared with wild-type plants. It is interesting to note that more 

than 10 independent lines were identified from only 30 analysed plants, whereas only 

approximately five lines of cassava were generated by Chellappan et al. (2004), Ihemere 

et al. (2006) and Vanderschuren et al. (2007). 
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5.4.2 High proportion of single hybridised fragments amongst transgenic plants 
It was unexpected that all tested transgenic plants had only one (77% of total) or two 

(23% of total) insertion fragments (i.e. genomic fragments to which the DIG-hptII probe 

annealed). Publications by Ihemere et al. (2006), Schreuder et al. (2001) and Zhang et 

al. (2003b) reported single genomic fragment hydridisations in only 33%, 18% and 42%, 

respectively, of plants. The reason for this phenomenon is unknown but perhaps 

integration capacity was influenced by the incorporation of Gateway® infrastructure in the 

expression cassette. Alternatively, were modifications to the transformation protocol 

important? For example, co-culturing Agrobacterium and FEC directly on culture plates, 

exclusion of liquid media stages or recovery phase following co-cultivation? An important 

consideration is whether embryos/plantlets with T-DNA in numerous genomic locations 

were incapable of regeneration and/or phenotypically abnormal and thus not selected for 

further growth. Multiple copies of a transgene have been reported to result in gene 

silencing (Vaucheret et al., 1998) and it is therefore possible that, should APX be 

silenced in the transgenic plantlets, then accumulation of H2O2 may affect regeneration 

capacity or phenotype. Presumably, however, endogenous expression of genes such as 

CAT would be up-regulated to maintain homeostasis. In addition, the inability to PCR 

amplify the transgene or hptII from some plant samples may be associated with aberrant 

T-DNA insertions missing one or both ends. This situation has been described in 

transgenic tobacco (Gheysen et al., 1990) and more extensive analysis of the transgenic 

cassava plants is required to assess the extent of T-DNA incorporation, transgene copy 

number and vector backbone integration in the plant genome. Importantly, adoption of 

the improved cassava transformation protocol made available a significant number of 

plantlets for screening. 

5.4.3 Scoring of PPD in harvested glasshouse-cultivated storage roots is 
complex 
The trial experiments to determine an appropriate technique to assess PPD in 

glasshouse-cultivated storage roots - a practice for which there are no published reports 

- resulted in the use of partially intact roots. This induced symptoms typical of PPD but 

unfortunately the analysis proved inconclusive, in part because of the selected time 

points. Generally, no symptoms were observed at 24 hr post-harvest but by 96 hr post

harvest all samples had severe PPD symptoms, rendering comparative analysis 

impossible. A late time point of 48 hr or possibly 72 hr post-harvest may have aided a 

clearer visual distinction between lines. However, it should be considered that whilst a 96 
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hr time point may not have been appropriate for lines described in this chapter, it cannot 

be ruled out that distinguishable differences may be observed in plants transformed with 

other constructs. Thus, it is likely that preliminary trials will need to be undertaken prior to 

harvest in future experiments to ensure appropriate time points are selected. 

In addition to the challenges faced in determining appropriate time points, the significant 

variation in symptoms, not only between roots from the same line but even between 

roots from an individual plant, also hindered interpretation. There is no clear explanation 

for symptom variation, but it probably reflects different stages of root development. 

Introducing more time points would enable an all-embracing analysis of symptoms, but 

as experienced when undertaking the assay trials, the large sample sizes, time and 

labour required is simply too demanding upon resources. One solution could be to use a 

greater number of time points but simply fewer roots. It may also be productive to grow 

more plants per line and use the “whole root method” on only the largest root of each 

plant. This would certainly require more resources but may lead to measurable data that 

is sufficient to identify key lines. A recent report by Salcedo et al. (2010) highlights the 

difficulties also faced with assessing PPD in field-grown roots. They showed there was 

no correlation between the accumulation of hydroxycoumarins (measuring fluorescence 

using image analysis software) and visual assessment, suggesting the former is not a 

reliable technique and visual assessment, although susceptible to personal 

interpretation, remains the preferred approach. Clearly, significant progress has been 

made with regard to PPD assays using glasshouse-cultivated storage roots and further 

optimisation should eventually result in establishment of a common protocol. 

5.4.4 New data validating reference genes for real-time PCR 
This is the first report of real-time PCR analysis of cassava roots undergoing PPD and 

thus provides original information pertaining to the validation of suitable reference genes. 

Real-time PCR is largely unused in cassava research, possibly because no baseline 

data has been published and also perhaps due to the intrinsic problems encountered 

with generating transgenic cassava for analysis. However, progress is being made and 

recently 18S has been used as the reference gene in promoter expression analysis 

(Beltrán et al., 2010) and analysis of plants with increased production of provitamin A 

(Welsch et al., 2010). 18S was also used for PPD time course analyses, albeit in 

Northern blot hybridisation (Reilly et al., 2007). However, due to the possibility of 

biological variability in samples and fluctuations in gene expression, Bustin et al. (2009) 
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highly recommends that more than one reference gene is used for real-time PCR 

analysis. Data in this chapter provides evidence that 18S as well as PP2A, SNARE and 

UBC are all potentially suitable candidates for comparative gene analysis. UBQ10 may 

also be appropriate but requires further investigation. Validation is required for all 

proposed reference genes using material from later time points e.g. 48 hr, 72 hr and 96 

hr post-harvest, which unfortunately was not feasible to complete as part of this 

investigation. Elucidating a set of reference genes is an important task and similar 

ventures are being undertaken, predominately in Arabidopsis (Czechowski et al., 2005) 

but also in other plant species, such as poplar (Brunner et al., 2004; Regier & Frey, 

2010). 

The PCR amplification efficiencies (E) of the reference and target genes are lower than 

the generally recommended 90-105% (Bio-Rad, 2010), suggesting PCR conditions are 

sub-optimal. However, Schmittgen & Livak (2008) state that there are no particular rules 

regarding the tolerance margins of E and that amplifications of target and reference 

sequence should be within 10%; a criteria that is fulfilled in this chapter. Whilst the RNA 

extraction procedure used in this investigation is sufficient to provide good quality RNA 

there may be contaminants that impede amplification. This explanation is substantiated 

by the fact that E reduces when PCR is used with more deteriorated samples from 24 hr 

time point – an unavoidable aspect of studying PPD in cassava roots. Although the 

tissue may present unwelcome complications, endeavours were made to minimise 

further variability via the use of Experion™ RNA analysis chips, which provide a highly 

advanced and accurate method to determine RNA quantity and integrity. Furthermore, a 

100-fold difference in calculated gene expression can occur depending on the choice of 

RT enzyme used (Ståhlberg et al., 2004) and thus the most efficient SuperScript™ III 

(Invitrogen) was used to prepare cDNA. Optimisation of real-time PCR techniques 

should be considered in future investigations but it is apparent that using deteriorated 

cassava roots will almost inevitably affect E. 

5.4.5 Experiment design affects real-time PCR data interpretation 
Real-time PCR data was analysed using the 2-ΔCT method, a simplified version of the  2

ΔΔCT described by Livak & Schmittgen (2001) and Schmittgen & Livak (2008). There are 

various techniques that can be used for gene expression analysis depending upon 

experiment design (Bustin et al., 2009), including a formula described by Pfaffl (2001): 
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 (Etarget) ΔCT target (calibrator - test) 

Expression ratio =  (Eref) ΔCT ref (calibrator - test) 

Where Etarget is the amplification efficiency of the target gene; Eref amplification efficiency 

of the reference gene; ΔCT target (calibrator - test) is the CT of the target gene in the 

calibrator minus the CT of the target gene in the test sample; ΔCT ref (calibrator - test) is 

the CT of the reference gene in the calibrator minus CT of the reference gene in the test 

sample. 

The 2-ΔCT formula assumes equal E for target and reference gene, whereas the Pfaffl 

formula incorporates E and thus provides a more accurate expression ratio. Given that 

data presented in this chapter reveals a decrease in E using material sampled at 24 hr 

post-harvest, it would be interesting to apply this formula in future experiments. It was 

not possible to adopt for this investigation since the formula also requires data from a 

calibrator, in this scenario wild-type tissue, and thus requires primers to amplify the 

“gene-of-interest” (GOI) rather than the transgene specifically. The data presented in this 

chapter clearly demonstrates successful expression of the transgene in most transgenic 

lines, indicating construct stability in planta. 

5.4.6 StPAT promoter ostensibly regulates transgene expression in both roots 
and leaves of cassava 
The real-time PCR data in pDEST™-MecAPX2 lines surprisingly revealed expression in 

leaves. This was unexpected since research by Ihemere et al. (2006) reported the StPAT 

promoter to be root specific in cassava. Further experiments are required to understand 

this result but it is conceivable that the close proximity (approximately 250 bp) of the 

CaMV35S promoter regulating hptII expression to the StPAT promoter may be resulting 

in constitutive expression of the transgene. An elegant study by Yoo et al. (2005) used 

constructs containing the promoter of LATERAL ROOT PRIMORDIA1, a root-specific 

gene, revealing trans activation of the transgene when the CaMV35S promoter was also 

incorporated into the construct. This hypothesis would certainly explain the constitutive 

expression observed in the transgenic lines. Moreover, the construct used by Ihemere et 

al. (2006) arranged genes in series ensuring a greater distance between the promoters, 

whereas for this investigation the divergent promoters were either side of the MCS and 

therefore in much closer proximity to one another. Whilst this seems a feasible 

explanation it is interesting to note that pDEST™-GUSPlus in Arabidopsis plants resulted 
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in GUS expression predominately in the roots (Page, 2009; Figure 5.27). Critically, the 

transgenic cassava plants harbouring the pDEST™-GUSPlus and pDEST™-GUSPlus(

)PAT will provide important information regarding gene expression in cassava and which 

are currently being grown in the glasshouse (Chapter 7). 

Figure 5.27 GUS detection in pDEST™-GUSPlus transformed Arabidopsis. Expression 

clearly visible predominately in root tissue. Figure courtesy of M. T. Page (University of Bath). 

The StPAT promoter is probably derived from the StB33 promoter (Rocha-Sosa et al., 

1989) but lacks approximately 45 bp immediately upstream of the transcriptional start 

site. The 22 bp sequence that is used predominately to classify PATATIN promoters as 

class I or class II (Pikaard et al., 1987) lies within this missing region and thus, whilst 

StPAT sequence is highly homologous to other class I PATATIN promoters the absence 

of this region prevents unambiguous classification of StPAT as class I (i.e. predominantly 

tuber specific). StPAT was used by Ihemere et al. (2006) and therefore, despite the 

anomalous sequence, has been proven to be root specific in transgenic cassava. 

Recently, promoter deletion analysis has revealed the StPAT promoter to be wound 

inducible, with cis regulatory motifs located in the 261 bp region at the 3’ end. However, 

no increase in transgene transcript was detected after wounding – a discovery that is 

purportedly due to the time period between wounding and analysis; increased 

expression was only transient and returned to basal levels prior to analysis. Alternatively, 

transcript data may be explained by the sampling strategy i.e. a whole leaf was 

harvested but only a few cells exhibited a wound response (Page, 2009). These 

observations or their significance have not been studied in cassava but will be an 

important consideration with the cassava transformed with pDEST™-GUSPlus and 

pDEST™-GUSPlus(-)PAT. 
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The notable variation in gene expression between root and leaves from the same line 

probably reflects the challenges faced with scoring and assessing PPD in cassava. More 

biological samples will of course improve data interpretation and mathematical models 

can be used to standardise replicates (Willems et al., 2008). Variation in gene 

expression may be influenced by the developmental stage of the storage root, transgene 

copy number and/or by the position of T-DNA integration. van Leeuwen et al. (2001) 

used luc-transformed Arabidopsis to demonstrate that the position of T-DNA affects 

spatial and temporal promoter activity. The results for line APX:DAV were curious – 

almost undetectable levels of transcription based on real-time PCR analysis and yet this 

line appears to have the highest level of enzyme activity. Whilst experimental error 

cannot be ruled out, post-transcriptional gene silencing may also be possible, with 

increased activity of endogenous POX to accomodate suppressed APX expression. 

The increasing level of enzyme activity in TMS60444 between 6 hr and 72 hr has also 

been reported recently by Owiti et al. (2011), with expression increasing from 12 hr to 96 

hr. Interestingly, however, this data neither tallies with protein abundance that declines 

during late PPD nor transcript abundance (J. Owiti, unpublished data). Reilly et al. (2007) 

also showed an increase in activity during PPD but peaking at 24 hr post-harvest, unlike 

either the data present here or by J. Owiti. These various discrepancies could be 

explained by the different analytical techniques employed; iTRAQ and mRNA analysis 

were based on a restricted number of isoforms, whereas enzyme activity measures not 

only APX but the substrate is also catalysed by guaiacol peroxidases.  

5.4.7 Future work 
The results presented in this chapter provide a basis for further and necessary 

experiments to characterise pDEST™-MecAPX2 transformed plants. These include 

expansion of real-time PCR to include more biological samples as well as to incorporate 

material from the late-harvest time points. Not only will these data provide information 

about APX expression but will be coupled with improved characterisation of the 

proposed reference gene expression profiles. With advances in real-time PCR it would 

be interesting to review the discrepancy in the APX expression profile between data 

obtained from microarray and Northern blot hybridisation (Reilly et al., 2007). Given that 

transgene expression has been confirmed in this chapter, it would seem prudent to 

extend analysis and amplify the GOI (cAPX), permitting baseline data collection for wild-

type cassava. Other work may also elaborate on enzyme assays to include associated 
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enzymes, such as CAT, measure the influence of APX transgene. Notably, given that the 

method described in this thesis was labour-intensive, trials have now been initiated to 

utilise a microplate system that allows easy measurements of APX and associated 

enzymes (Murshed et al., 2008). If promising results emerge then measuring ascorbate 

content (Gillespie & Ainsworth, 2007; Vislisel et al., 2007) and perhaps inducing 

oxidative stress (e.g. high light intensity or MV) could also be considered. 
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6 CASSAVA TRANSFORMATION WITH 

γ-GLUTAMYLCYSTEINE SYNTHETASE 

6.1 INTRODUCTION 
6.1.1 Synthesis of glutathione in plants 
The two-step pathway for glutathione synthesis in plants occurs in plastids (in particular 

the chloroplast) and the cytosol. γ-glutamylcysteine synthetase (γ-GCS; EC 6.3.2.2), also 

sometimes referred to as glutamate-cysteine ligase, synthesises γ-glutamylcysteine (γ 

EC) from L-cysteine and L-glutamate in an ATP-dependent reaction (Figure 6.1). In 

Arabidopsis, γ-GCS is encoded by a single gene (GSH1; TAIR accession AT4G23100) 

and includes transit peptide sequence at the 5’-end that locates the protein exclusively in 

plastids. This has been convincingly shown via gfp and red fluorescent protein (rfp) 

reporter gene fusions and immunocytochemistry in Arabidopsis and Brassica juncea 

leaves and suspension cultures (Wachter et al., 2005). GSH1 in plants was first 

sequenced from Arabidopsis (May & Leaver, 1994) but has since been characterised in 

other species, including B. juncea, Pisum sativum, Picea abies, Glycine max, R. 

communis and Lycopersicon esculentum (NCBI database search). Phylogenetic 

analyses led to the categorisation of three classes of GSH1; (1) γ-proteobacteria (e.g. E. 

coli; Watanabe et al., 1986), (2) non-plant eukaryotes (e.g. mammals and Drosophila) 

and (3) plants and α-proteobacteria. Although there is no significant pairwise similarity 

between groups, conserved amino acid sequence motifs were identified (Copley & 

Dhillon, 2002). 

The intermediate product (γ-EC), which has no discernible function in plants, is 

converted to reduced glutathione (GSH) with the addition of L-glycine in a reaction 

catalysed by glutathione synthetase (GSH-S; EC 6.3.2.3; Figure 6.1). GSH-S is also 

encoded by a single gene in Arabidopsis  (GSH2; TAIR accession AT5G27380), which 

generates two transcripts - the shorter (more abundant) transcript encodes a cytosolic 

GSH-S whilst the longer transcript/protein is targeted to plastids (Wachter et al., 2005). 

Thus, the first stage in glutathione synthesis occurs only in plastids whilst the second 

reaction can arise either in plastids or the cytosol. 
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Figure 6.1 Simplified pathway for glutathione synthesis in plants. L-cysteine and L-glutamate 

are used to produce γ-glutamylcysteine (γ-EC) via an ATP-dependent reaction catalysed by γ 

glutamylcysteine synthetase (γ-GCS). γ-EC can be exported from the chloroplast to the cytosol 

and is converted to reduced glutathione (GSH) with the addition of L-glycine, a reaction catalysed 

by glutathione synthetase (GSH-S). GSH synthesised in the chloroplast can be exported to other 

cellular locations. Oxidation of GSH via ROS and enzymatic reactions (orange arrows) results in 

GSSG production but which in-turn can be reduced by glutathione reductase (GR). Enzymes in 

blue font. 

6.1.2 Forms and functions of glutathione in plants 
Glutathione is a thiol tripeptide (γ-Glu-Cys-Gly; C10H17O6N3S) and homologous GSH 

forms have also been identified in some plant species that have substituted L-glycine 

with other C-terminal amino acids. For example, γ-Glu-Cys-β-Ala (homoglutathione; 

hGSH; Macnicol, 1987) and γ-Glu-Cys-Ser (hydroxymethylGSH) have been identified in 

legumes and cereals, respectively (cited in Foyer et al., 2005). The presence of 

homologous GSH is likely to be the result of gene duplication and divergence in 

specificity during evolution. The pathway for the production of such alternative forms of 

GSH is not well understood but research suggests that, in legumes at least, they are 

synthesised from genes different to those in the GSH pathway (Macnicol, 1987). In the 

root nodules of the legumes bean (Phaseolus vulgaris), mungbean (Vigna radiata) and 
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soybean (Glycine max), hGSH was the most abundant tripeptide thiol (Matamoros et al., 

1999). In cassava, no alternative forms of GSH have been reported, although current 

knowledge regarding glutathione and its synthesis in this plant species is remarkably 

scarce and therefore it is highly unlikely homologous GSH would have been discovered. 

Glutathione has prominent roles in plants systems, including responding to biotic and 

abiotic stress. It is the most abundant form of organic sulphur in plants apart from that 

incorporated into proteins. Being less reactive than cysteine, glutathione is crucial for 

sulphur storage and transport via the phloem. It is also important in the detoxification of 

heavy metals, such as cadmium and copper, serving as a precursor of phytochelatins 

((γ-Glu-Cys)n-Gly) that bind and sequester such metals to the vacuole. Other functions 

include the detoxification of xenobiotics via the conjugation with GSH and catalysed by 

glutathione transferases (GSTs); the resulting complexes are subsequently transported 

to the vacuole (Dixon et al., 1998). Finally, glutathione has also been implicated in 

drought and UV protection with relevance to signalling and regulatory pathways (Ball et 

al., 2004; Gomez et al., 2004; Meyer, 2008). These various functions have been 

comprehensively reviewed (Foyer et al., 2005; Maughan & Foyer, 2006; Szalai et al., 

2009) and it is beyond the scope and objectives of this chapter to discuss them all in 

detail. Specifically, it is the role of glutathione in the detoxification of H2O2 that is the 

focus for this study into cassava PPD. 

6.1.3 Glutathione and its role in H2O2 detoxification 
The multitude of roles of glutathione necessitates a homeostasis between the reduced 

and oxidised glutathione disulphide (GSSG) forms. Optimal conditions in leaves have 

been described as approximately >90% GSH and <10% GSSG with any divergence from 

this ratio, namely an increase in GSSG relative to GSH, being indicative of oxidative 

stress (Foyer et al., 2005). Biotic or abiotic stress can result in elevated production of 

ROS, such as O2
•¯ or HO•, that may oxidise GSH to GSSG. GSSG is also generated 

following detoxification of H2O2 into water – a reaction that uses GSH as a reducing 

agent and which can be catalysed by GSTs showing glutathione peroxidase activity 

(Dixon et al., 1998). GSH also serves as a reductant in the synthesis of cysteine 

(Leustek, 2002; Smith et al., 2010). Importantly, cellular homeostasis is maintained via 

the reduction of GSSG to GSH by glutathione reductase (GR; Figure 6.1) located in the 

cytosol, chloroplast, mitochondria and peroxisomes. Although there is very limited 

information available for cassava, a microarray analysis of cassava roots undergoing 
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PPD revealed an up-regulation of a predicted GST. Cassava GST (EST accession 

DT883580) was expressed 2-fold and 2.3-fold at 12 hr and 24 hr post-harvest, 

respectively, before returning to basal levels of expression. This appears to implicate a 

role of glutathione in cassava roots and possibly in the detoxification of H2O2, a known 

contributor to PPD (Reilly et al., 2007). For clarity, throughout this thesis the term 

glutathione is used to denote both reduced (GSH) and oxidised (GSSG) forms; the 

appropriate abbreviations are used when specifically required. 

6.1.4 Regulation of glutathione synthesis and involvement of γ-GCS 
Induction and regulatory mechanisms for gene expression in glutathione synthesis is 

complex and remain to be fully mapped (Rausch et al., 2007). Arabidopsis plants treated 

with jasmonic acid and heavy metals (e.g. copper and cadmium) responded by 

increasing transcription of GSH1 and GSH2 but not following exposure to H2O2 (Xiang & 

Oliver, 1998). However, increased H2O2 - brought about by treatment with aminotriazole 

(a catalase inhibitor) - did result in a 4-fold increase in glutathione (GSH) content in 

Arabidopsis suspension cultures (May & Leaver, 1993; May et al., 1998) and a 3-fold 

increase in glutathione (specifically GSSG) in barley (Hordeum vulgare L.; Smith et al., 

1985). Interestingly, Queval et al. (2009) recently showed that H2O2-activated up-

regulation of glutathione in catalase-deficient Arabidopsis  (cat2) is associated with 

increased transcription of ADENOSINE 5’-PHOSPHOSULPHATE REDUCTASE  (APR) 

and SERINE ACETYLTRANSFERASE  (SAT) that are involved in cysteine synthesis. 

APR is located in plastids whereas SAT is present in various cellular locations, including 

the chloroplast, where it was strongly induced by H2O2. In Arabidopsis root cultures, 

application of L-cysteine in solution resulted in increased cysteine, γ-EC and GSH 

concentrations but decreased APR transcription and activity. Specifically, root cultures 

incubated with glutathione induced a significant decrease in APR mRNA levels and 

enzyme activity (Vauclare et al., 2002). These data clearly interconnect the expression of 

genes involved in cysteine and glutathione synthesis, particularly the plastid located γ 

GCS. 

Regulation of glutathione synthesis also appears to involve post-translational 

modification of γ-GCS. Elucidation of the protein crystal structure from B. juncea 

(Hothorn et al., 2006) revealed that, despite significant sequence differences between it 

and other γ-GCS, its conformation is surprisingly similar to that from E. coli (Hibi et al., 

2004). However, a plant-unique regulatory system was revealed that was based on two 
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disulphide bonds (CC1 and CC2). In vivo analysis of γ-GCS in Arabidopsis root extracts 

demonstrated that oxidative stress treatments, including H2O2, altered the balance of 

oxidised (“active”) and reduced (“inactive”) forms (Hicks et al., 2007). The oxidised 

enzyme is a homodimer but reduction of the CC2 bond results in dissociation into 

monomers and thus inactivation of the enzyme. CC2 is highly conserved in plants (and 

also in the evolutionary related α-proteobacteria) whereas CC1 is not, suggesting it is 

unlikely to be a second redox switch (Gromes et al., 2008), although predictions suggest 

reduction of CC1 in B. juncea would allow a β-hairpin motif to shield the active site 

(Hothorn et al., 2006). Whilst the CC2 redox switch seems a likely control for glutathione 

production, the compound that mediates the switch remains unknown. γ-GCS in extracts 

from Nicotiana tabacum cell suspension cultures were completely inhibited by 

glutathione (Hell & Bergmann, 1990) but reports postulate that glutathione is not directly 

involved due to its low reactivity and the involvement of thioredoxins or glutaredoxins 

(proteins that alter the structure and activity of target proteins; Meyer et al., 2009) have 

been speculated (Gromes et al., 2008; Rausch et al., 2007). Clearly, the regulation and 

involvement of multiple redox, signalling and synthesis pathways is highly intricate and a 

comprehensive assessment and analysis is beyond the scope of this chapter. However, 

it is noteworthy that cysteine availability and synthesis as well as γ-GCS post

translational modifications have all been implicated in glutathione synthesis and 

regulation. 

6.1.5 Over-expression of GSH1 in planta 

The important and multifarious roles of glutathione have led to the development of 

transgenic plants over-expressing GSH1 to improve crop growth and sustainability to 

pathogen attack and other stresses. Over-expression of GSH1 in Arabidopsis resulted in 

a 2-fold increase in GSH content and enhanced resistance to heavy metals (Xiang et al., 

2001). In Indian mustard, a 2-fold increase in glutathione improved plant tolerance to 

organic pollutants, such as the herbicide atrazine (Flocco et al., 2004). Interestingly, it 

appears that whilst over-expression of GSH1 results in enhanced glutathione content in 

plants, cellular targeting to either the cytosol or plastids impacts differently on cysteine 

flux. This was demonstrated in poplar hybrid (Populus tremula x Populus alba) 

transformed with bacterial γ-GCS targeted to the cytosol where a 10-fold increase in γ 

EC and a 3-fold increase in glutathione occurred without affecting the GSH:GSSG ratio 

or depleting foliar cysteine pools (Noctor et al., 1996). However, whilst a chloroplastic-

targeted γ-GCS in poplar resulted in similar quantities of glutathione, increased amino 
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acid synthesis in the chloroplast was also detected (Noctor et al., 1998). Although GSH 

is a feedback inhibitor of the cysteine pathway, the levels of mRNA and activities of 

enzymes involved in sulphate assimilation were only affected by exogenously applied 

GSH with a strong reduction in APR activity. These findings suggest sulphate 

assimilation in poplar was sufficient to accommodate increased γ-GCS expression and 

glutathione production (Hartmann et al., 2004). Despite this, GSH content in γ-GCS 

transformed poplar leaf discs increased significantly when incubated with cysteine, 

indicating that cysteine supply remains, to some extent, a limiting factor for glutathione 

synthesis (Noctor et al., 1996). Recent evidence obtained from measuring 35S flux in 

transgenic poplars revealed that over-expressing γ-GCS directed to the cytosol, but not 

chloroplast-targeted, led to increased sulphur (i.e. as cysteine) into GSH (Scheerer et al., 

2009). 

In contrast to other publications, Creissen et al. (1999) reported oxidative stress damage 

in transgenic tobacco expressing chloroplast-targeted γ-GCS. In-keeping with the 

aforementioned reports, a 3-fold increase in foliar glutathione content was measured but 

paradoxically foliar levels of H2O2 in transgenic lines were approximately double that in 

wild-type material. This manifested itself as leaf chlorosis or necrosis - a phenotype that 

was suggested to be caused by continuous oxidative damage as a consequence of 

failure of the redox-homeostasis in the chloroplast. Since these symptoms have not been 

observed in other plants, e.g. poplar, it was suggested that the growth habitats of 

different plants may reflect their varying capacity to oxidative stress (Creissen et al., 

2000). These detrimental effects of glutathione hyperaccumulation are important 

considerations for researchers seeking to improve plant defence via over-expression of 

GSH1. Interestingly, in Streptococcus agalactiae, a single bifunctional enzyme (γ-GCS

GS) is required for glutathione production and it is not inhibited by GSH (Janowiak & 

Griffith, 2005). This discovery poses an interesting prospect for increasing glutathione 

production in planta. In summary, the various publications cited here indicate that 

increased levels of glutathione can be achieved via over-expression of GSH1 in planta 

resulting in enhanced tolerance to various stresses. However, it is likely that glutathione 

accumulation will be limited by regulatory feedback mechanisms and/or cysteine 

availability. To what extent the absolute level of glutathione is dependent on the plant 

species has not been investigated (Maughan & Foyer, 2006).  
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6.2 RESEARCH OBJECTIVES 
The goal is to utilise the modified Agrobacterium-mediated cassava transformation 

protocol (Chapter 4) to generate pDEST™-AtGSH1 transgenic cassava with enhanced 

glutathione content. We hypothesise this will result in improved modulation of ROS and 

reduce oxidative damage. Generated material will be assessed to determine successful 

integration of the T-DNA, gene expression, PPD assays and samples will also be 

prepared to measure glutathione (GSH and GSSG), γ-EC and cysteine content. Note: 

AtGSH1 used in these experiments was isolated from Arabidopsis (Table 3.1). 

6.3 RESULTS 
6.3.1 Identification of a putative cassava GSH1 sequence 
BLAST searches using Arabidopsis GSH1 (TAIR accession AT4G23100) identified the 

homologous GSH1 coding sequence in cassava nucleotide sequence databases 

(Section 2.4.10). The putative sequence, 1,572 nucleotides in length, has 74.4% 

sequence similarity to Arabidopsis GSH1 but greater homology (89.4%) to the putative 

coding sequence from castor bean (R. communis), another species of Euphorbiaceae. 

Putative translated amino acid sequence of cassava GSH1 has 80.6% and 89.9% 

similarity to Arabidopsis and castor bean, respectively. In both nucleotide and amino acid 

alignments most sequence variation arises at the 5’-end (Figure 6.2), which in 

Arabidopsis GSH1 has been shown to encode the transit peptide (approximately 240 

nucleotides in length) required to direct the gene product to plastids (Wachter et al., 

2005). This is the first report of an orthologous GSH1 gene being identified in cassava. 
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Figure 6.2 Nucleotide sequence alignment of the putative coding regions of GSH1 in 
cassava, castor bean and the defined GSH1 of Arabidopsis. Arabidopsis (TAIR accession 

AT4G23100), castor bean (NCBI accession XM_002509754.1) and cassava (RIKEN Cassava 

Online Archine accession Cassava35987). 
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6.3.2 Generation of pDEST™-AtGSH1 transgenic cassava 
pDEST™-AtGSH1 transformed plantlets were produced from three independent batches 

of FEC cultivar TMS60444 (FEC6, FEC9 and FEC10) as described by Bull et al. (2009). 

97 in vitro plantlets were screened using the rooting assay to ensure successful 

integration and expression of hptII, with only three plantlets failing to develop roots and 

thus presumed non-transgenic. The plantlets, catalogued into three groups (Group A → 

C) depending on the batch of FEC used and date transformed, were labelled with the 

group and then assigned a letter, A → Z and subsequently AA → AZ if more than 26 

plants from a particular group were produced. For example, GCS:AK refers to the 

eleventh plant produced from Group A, whilst GCS:CAB is the 28th plant generated from 

Group C. 30 pDEST™-AtGSH1 transformed plantlets were selected for further analysis. 

Genomic DNA was extracted from in vitro leaf tissue (Section 2.3.1) and used in PCR-

amplifications using primers specific to hptII (Hygro-For & Hygro-Rev; Table 2.1) and 

StPAT promoter/transgene (DESTSeqF1 & gshR2; Table 2.1; Section 2.1.2). The target 

hptII sequence was successfully amplified in all samples yielding a product of 

approximately 1 Kb (Figure 6.3). Similarly, the predicted sized product (approximately 

1.7 Kb) using DESTSeqF1 & gshR2 primers was obtained from almost all samples with 

the exception of GCS:CI, GCS:CO and GCS:CAG (Figure 6.3). It is noteworthy that 31 

plantlets transformed with the respective antisense construct (pDEST™-antiGSH1) also 

successfully passed the rooting test but due to time restrictions they were retained as in 

vitro stocks and not analysed further. 

Figure 6.3 PCR-amplification products using pDEST™-AtGSH1 transformed in vitro 
plantlets. Products using hptII specific primers (Hygro-For & Hygro-Rev) (upper image) and 

StPAT promoter/transgene primers (DESTSeqF1 & gshR2) (lower image). Template plasmid 

DNA (+) and genomic DNA from wild-type TMS60444 (–) are shown. DNA ladder (bp; lane L) 

indicated. Plants grouped based on batch of FEC used and date transformed (Group A → C). 
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Genomic DNA isolated from the transgenic and wild-type in vitro plantlets was digested 

using HindIII (Section 2.3.1) and electrophoresed for Southern blot hybridisation with a 

DIG-labelled hptII-annealing probe (Sections 2.4.11-2.4.14). All samples, with the 

exception of GCS:AK, hybridised to the probe (Figure 6.4) indicating stable integration of 

the T-DNA in the plant genome. An unexpected 90% of samples possessed only one 

hybridised genomic fragment, whilst only 7% had two fragments and 3% (representing 

one line, GCS:BN) had four fragments in the plant genome. Approximately six 

independent lines could be identified amongst plants in Groups A and B (Figure 6.4a) 

and 10 lines were also identified from Group C (Figure 6.4b). Whether any lines 

identified in Groups A and B and Group C are the same was not investigated and only 

plantlets from the 10 lines identified in Group C (GCS:CC, GCS:CG, GCS:CH, GCS:CK, 

GCS:CM, GCS:CT, GCS:CZ, GCS:CAB, GCS:CAC and GCS:CAJ) were multiplied in 

vitro and grown to successfully establish plants in the glasshouse. 

a 

b 

Figure 6.4 Southern blot hybridisation of HindIII digested genomic DNA from in vitro 
plantlets transformed with pDEST™-AtGSH1. Transformation Groups A and B (a) and 

transformation Group C (b). Samples hybridised to a hptII-annealing DIG-labelled probe. DNA 

ladder (bp; lanes L), plasmid DNA (+) and wild-type TMS60444 genomic DNA (–) shown. 
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6.3.3 Morphological characteristics of glasshouse cultivated plants 
Plants representing the ten selected lines of pDEST™-AtGSH1 and also wild-type 

material were successfully cultivated in the glasshouse at the University of Bath. Mean 

root stock weight (Table 6.1; Figures 6.5 and 6.6) and plant height (Table 6.1; Figure 6.7) 

were not significantly different from wild-type plants, as determined by independent-

samples t-tests (Table 6.1) and no phenotypic abnormalities were observed in any 

plants. Due to intermittent problems with the environment control systems some juvenile 

plants failed to develop and thus some lines (GCS:CK, GCS:CZ and GCS:CAJ) were 

represented by only one or two plants. 

Table 6.1 Morphological data of glasshouse cultivated pDEST™-AtGSH1 transformed and 
wild-type plants. 

Number Mean plant Number Mean root stock 
Plant line of height (cm), t-test† of weight (g), t-test† 

S.E. & S. E. &plants (max. / min.) roots (max. / min.) 

GCS:CC 3 81.67, 0.67 p=0.317 8 55.67, 8.65 p=0.772 (83 / 81) (68 / 39) 
65.75, 6.69 53.00, 5.57 GCS:CG 4 (80 / 50) p=0.480 6 (68 / 42) p=0.940 

GCS:CH 4 70.25, 3.15 p=0.683 9 61.25, 4.13 p=0.272 (75 / 61) (73 / 55) 
67.00, 13.00 55.00, 1.00 GCS:CK 2 (80 / 54) p=0.671 4 (56 / 54) p=0.768 

GCS:CM 3 84.33, 2.19 p=0.221 7 56.33, 7.86 p=0.713 (87 / 80) (67 / 41) 
73.50, 6.25 56.75, 1.84 GCS:CT 4 (85 / 56) p=0.987 7 (61 / 52) p=0.565 

69.00 55.00GCS:CZ 1 (69) § 1 (55) § 


72.50, 4.52 47.75, 1.75
GCS:CAB 4 (84 / 69) p=0.922 8 (52 / 44) p=0.551 

78.25, 3.77 53.25, 4.57 GCS:CAC 4 (83 / 67) p=0.543 8 (62 / 41) p=0.909 

77.00, 7.00 64.50, 5.50 GCS:CAJ 2 (84 / 70) p=0.755 4 (70 / 59) p=0.277 

TMS60444 3 73.33, 7.27 n/a 3 52.33, 6.36 n/a(85 / 60) (65 / 45) 

§ insufficient data for S.E. calculation or analysis 

n/a not applicable (i.e. wild-type TMS60444) 
† independent-samples t-test (transgenic line versus wild-type), significance p ≤ 0.05 (*) 
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Figure 6.5 Example root stocks of pDEST™-AtGSH1 transformed (a) and wild-type cassava 
(b). No statistically significant difference was calculated between root stock weights of transgenic 

and wild-type material. Storage roots approximately 10 cm in length. 
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Figure 6.6 Mean root stock weight of glasshouse cultivated plants. Ten independent lines of 

pDEST™-AtGSH1 transformed plants and wild-type cassava (TMS60444). S.E. shown. 
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Figure 6.7 Mean height of glasshouse cultivated plants. Ten independent lines of pDEST™

AtGSH1 transgenic plants and wild-type cassava (TMS60444) were assessed. S.E. shown. 

6.3.4 Comparison of PPD symptoms between transgenic and wild-type roots 
As discussed in Chapter 5, the assessment of PPD symptoms in the roots of 

glasshouse-cultivated plants (both transgenic and wild-type material) proved problematic 

due to the lack of symptom difference at the selected time points as well as considerable 

variation in symptoms. Similar observations were also apparent with the pDEST™

AtGSH1 plants and are therefore not discussed in detail here. Six roots of wild-type 

TMS60444 plants were analysed at 0 hr, 24 hr and 96 hr time points (as described in 

Section 2.5.4) and revealed some discoloration (browning) of root samples at 24 hr post

harvest. All samples were severely deteriorated at 96 hr post-harvest (Figure 6.8). These 

general observations also apply to all the transgenic material, including line GCS:CC 

shown in Figure 6.9. Some of the root samples appear devoid of PPD symptoms but 

closer inspection revealed the tissue to be highly desiccated, chalky in texture, and thus 

the expected PPD process is unlikely to have occurred. This can be observed in, for 

example, TMS60444:BR2 (96 hr; Figure 6.8) and GCS:CC:AR1 (96 hr; Figure 6.9). 
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Figure 6.8 Wild-type TMS60444 root samples following harvest. Sections of roots shown 0 hr, 

24 hr and 96 hr post-harvest. Six roots were harvested and assessed from three plants 

(TMS60444:A; TMS60444:B and TMS60444:C). 
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Figure 6.9 GCS:CC root samples following harvest. Sections of roots shown 0 hr, 24 hr and 96 

hr post-harvest. Eight roots were harvested and assessed from three plants (GCS:CC:A; 

GCS:CC:B and GCS:CC:C). n/a: not available. 

6.3.5 Comparative real-time PCR analysis of transgene expression  
Total RNA was extracted from two storage roots (Section 2.6.1) of each line of 

pDEST™-AtGSH1 transformed mature plants, as well as from wild-type cassava. 

Unfortunately, in some cases the RNA was deemed too degraded for RT-PCR (Figure 
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6.10), probably a consequence of sub-optimal RNA extraction technique and/or 

degradation of the root tissue. Due to time constraints it was not possible to re-extract 

RNA from frozen tissue stocks and thus real-time PCR was performed on remaining 

samples. Ergo, lines GCS:CH, GCS:CK, GCS:CM, GCS:CT, GCS:CZ and GCS:CAB 

were represented by a single root each, whilst for lines GCS:CC, GCS:CAC and 

GCS:CAJ two roots were analysed. No real-time PCR data is currently available for line 

GCS:CG. 

Figure 6.10 Analysis of RNA extracted from pDEST™-AtGSH1 transgenic cassava roots. 
Selected samples - GCS:CK:BR1 (lane 2), GCS:CM:AR1 (lane 3), GCS:CT:AR1 (lane 4) and 

RNA ladder (bp; lane 1). 28S RNA (upper bands) and 18S RNA (lower bands). All samples 0 hr 

post-harvest (a). Chromatogram of GCS:CT:AR1 highlighting the extent of RNA degradation (b). 
Data obtained using the Experion™ Automated Electrophoresis System. 

Standard Taq-based PCR (Section 2.1.2) successfully amplified the target sequence 

from GCS:CC:BR1 cDNA using amplification primers GCS Transgene F (located at 

position 1,470 – 1,490 in Figure 6.2) and Transgene R (Table 2.1; Figure 6.11). Minimal 

amplification from cDNA derived from wild-type TMS60444 root tissue was also 

observed although neither primer was predicted to anneal following BLAST comparisons 

and was thus likely to be the result of non-specific priming (Figure 6.11). The 

amplification product was not sequenced to verify these predictions. Whilst not ideal, 

real-time PCR using wild-type material recorded CT values of approximately 40 and were 

thus regarded as background and not likely to influence the transgene specific 

amplification/data collection. Standard curve analysis revealed excellent reproducibility 

between technical replicates (R2 = 0.9968) and an amplification efficiency of 76.7% (E = 

1.74; Figure 6.12) that is highly similar to the PP2A reference gene (72.6%; Section 

2.1.3). 
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Figure 6.11 pDEST™-AtGSH1 PCR-amplification products. Amplification products using 

primers GCS Transgene F & Transgene R from cDNA derived from TMS60444 (lane 2) and 

(selected sample) GCS:CC:BR1 root tissue (lane 3). DNA ladder (bp) shown (lane 1). Root tissue 

sampled at 0 hr post-harvest. 
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Figure 6.12 Standard curve analysis of real-time PCR amplification using transgene 
specific primers. Dilutions of GCS:CC:AR1 derived cDNA (selected sample) and transgene 

primers (GCS Transgene F & Transgene R). 0 hr: y = -4.1258x + 34.552, R2 = 0.9968;  24 hr and 

96 hr data not available. 

Real-time PCR successfully detected transgene transcripts in all nine lines tested. Most 

significantly, a 10-fold up-regulation (compared to the reference gene) was observed in 

line GCS:CC, whilst an increase of 8.08 and 9.37-fold were also calculated in lines 

GCS:CM and GCS:CT, respectively. The lowest expression was observed in line 

GCS:CAB with only 0.57-fold increase. No transcripts were obtained from TMS60444 

material (2-ΔCT = 0.0003), in-keeping with the expectation that amplification primers were 
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specific to the transgene/pDEST™-AtGSH1 construct (Figure 6.13). As described in 

Section 2.6.4, two technical replicates were prepared for each biological sample and 

then two preparations were made for each replicate to ensure accurate CT data were 

collected. 
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Figure 6.13 Mean relative expression of AtGSH1 transgene comparative to PP2A in roots. 
Nine independent lines of pDEST™-AtGSH1 transformed roots analysed 0 hr post-harvest. Wild-

type data (TMS60444) and S.D. shown. 

6.3.6 HPLC analysis of thiols in cassava roots and leaves 
Samples from the primary storage root and leaves from each harvested pDEST™

AtGSH1 transgenic plant were used to measure thiol content using HPLC (Sections 

2.7.4 and 2.7.5). Quantities of cysteine, γ-EC, GSH and GSSG were accurately 

quantified in all samples at 0 hr post-harvest providing a comprehensive overview of 

glutathione production in cassava. In total, 32 roots and their respective leaf samples 

were analysed and compared to data obtained from six roots of three wild-type 

TMS60444 plants. 

6.3.6.1 Cysteine content 
The mean quantity of cysteine in transgenic roots was remarkably consistent across the 

different lines, ranging from 4.3-6.0 nmoles g-1 frozen weight (FzW) and was comparable 

to wild-type data (4.8 nmoles g-1 FzW; Table 6.2). In leaf material, however, greater 

variation and quantity in cysteine load was observed between the different lines (6.0-17.0 

nmoles g-1 FzW), although these differences were not deemed statistically significant 
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(Table 6.2). Caution should be applied when drawing conclusions from these statistical 

analyses since it is possible that the relatively small sample size (n=2-4) is influencing 

data interpretation. The observed disparity in cysteine distribution between the roots and 

leaves occurred in both transgenic and wild-type plants where, on average, leaves had 

approximately twice as much cysteine compared to the corresponding roots (9.0 and 4.8 

nmoles g-1 FzW, respectively; Table 6.2). This suggests that the transgene, whilst 

possibly affecting cysteine load, is not per se directly linked to variation in cysteine 

distribution in cassava leaf and root tissue. Interestingly, there is a medium positive 

correlation (Pearson Correlation) between the quantity of cysteine and glutathione in 

roots (r=0.488, n=38, p=0.002) and a large positive correlation in leaves (r=0.766, n=34, 

p < 0.0005). These correlations indicate that increased glutathione production via over-

expression of the AtGSH1 transgene is being accommodated by cysteine availability. 

Table 6.2 Cysteine content in storage roots and leaves of pDEST™-AtGSH1 transgenic and 
wild-type cassava. 

Plant line 
Mean Cys content 
(roots) nmoles g-1 t-test† 

Mean Cys content 
(leaves) nmoles g-1 FzW, t-test† 

FzW, S.E. (max. / min.) S.E. (max. / min.) 

GCS:CC 4.3, 0.67 
(5 / 3) 

p=0.598 
n=3 

11.3, 0.67 
(12 / 10) 

p=0.155 
n=3 

GCS:CG 4.3, 0.48 
(5 / 3) 

p=0.474 
n=4 

6.0, 1.00 
(9 / 5) 

p=0.107 
n=4 

GCS:CH 5.8, 0.85 
(8 / 4) 

p=0.366 
n=4 

9.8, 1.03 
(12 / 7) 

p=0.650 
n=4 

GCS:CK 6.0, 1.00 
(7 / 5) 

p=0.329 
n=2 

8.5, 0.50 
(9 / 8) 

p=0.766 
n=2 

GCS:CM 5.3, 0.88 
(7 / 4) 

p=0.626 
n=3 

11.0 , 0.00 
(11 / 11) 

p=0.158 
n=3 

GCS:CT 5.0, 0.71 
(7 / 4) 

p=0.854 
n=4 

11.3, 1.44 
(13 / 7) 

p=0.302 
n=4 

GCS:CZ 5.5, 1.50 
(7 / 4) 

p=0.604 
n=2 12.0 § § 

n=1 

GCS:CAB 5.0, 0.58 
(6 / 4) 

p=0.844 
n=4 

8.5, 1.04 
(11 / 6) 

p=0.762 
n=4 

GCS:CAC 6.0, 0.91 
(8 / 4) 

p=0.273 
n=4 

11.0, 0.71 
(13 / 10) 

p=0.178 
n=4 

GCS:CAJ 4.5, 1.50 
(6 / 3) 

p=0.793 
n=2 

17.0, 1.00 
(18 / 16) 

p=0.017 * 
n=2 

TMS60444 4.8, 0.54 
(6 / 3) 

n/a 
n=6 

9.0, 1.56 
(11 / 7) 

n/a 
n=3 

§ insufficient data for S.E. calculation or analysis 

n/a not applicable (i.e. wild-type TMS60444) 
† independent-samples t-test (transgenic line versus wild-type), significance p ≤ 0.05 (*) 
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6.3.6.2 γ-EC, GSH and GSSG content 
The mean quantity of γ-EC in lines of transgenic root ranged between 7.0 nmoles g-1 

FzW in line GCS:CZ to 13.0 nmoles g-1 FzW in line GCS:CC. Generally the quantity of γ 

EC in transgenic roots was greater than in wild-type material, although this was 

statistically significant only in lines GCS:CG, GCS:CM and GCS:CT (Table 6.3). 

Similarly, the corresponding leaf tissue of the aforementioned lines also represented the 

least and greatest quantity of γ-EC detected amongst the ten transgenic lines, although 

GCS:CK also had only 7.0 nmoles g-1 FzW (Table 6.3). As for the root analysis, the 

levels of γ-EC were consistently greater than the mean content in wild-type leaves (5.0 

nmoles g-1 FzW; Table 6.3). Quantities were statistically greater in all lines, with the 

exception of GCS:CG and GCS:CK. These data clearly indicate an increased production 

of γ-EC in leaves of transgenic plants compared to wild-type plants - a conclusion that 

corroborates the real-time PCR data (Section 6.3.5) and confirming successful over-

expression of the AtGSH1 transgene. Not surprisingly, there was a strong positive 

correlation between the quantity of γ-EC and glutathione in both roots (r=0.761, n=38, p 

< 0.0005) and leaves (r=0.553, n=34, p=0.001), indicating that increased production of γ 

EC (the intermediate product in gluthathione synthesis) is being utilised by GSH-S and 

thus enhancing levels of glutathione. 
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Table 6.3 γ-EC content in storage roots and leaves of pDEST™-AtGSH1 transgenic and 
wild-type cassava. 

Mean γ-EC content Mean γ-EC content 
Plant line (roots) nmoles g-1 FzW, 

S.E. & (max. / min.) 
t-test† (leaves) nmoles g-1 FzW, 

S.E. & (max. / min.) 
t-test† 

GCS:CC 

GCS:CG 

13.0, 2.08 
(17 / 10) 

10.5, 1.04 
(13 / 8) 

p=0.104 
n=3 

p=0.014 * 
n=4 

16.7, 1.45 
(19 / 14) 
8.0, 1.47 
(12 / 5) 

p=0.003 ** 
n=3 

p=0.181 
n=4 

GCS:CH 9.5, 1.19 
(12 / 7) 

p=0.147 
n=4 

14.5, 1.04 
(17 / 12) 

p=0.001 *** 
n=4 

GCS:CK 9.5, 1.50 
(11 / 8) 

p=0.357 
n=2 

7.0, 0.00 
(7 / 7) 

p=0.219 
n=2 

GCS:CM 11.0, 1.73 
(14 / 8) 

p=0.031 * 
n=3 

17.3, 3.93 
(25 / 12) 

p=0.038 * 
n=3 

GCS:CT 9.5, 0.96 
(12 / 8) 

p=0.045 * 
n=4 

8.3, 0.48 
(9 / 7) 

p=0.024 * 
n=4 

GCS:CZ 7.0, 2.00 
(9 / 5) 

p=0.937 
n=2 7.0 § n=1 

GCS:CAB 7.3, 0.25 
(8 / 7) 

p=0.920 
n=4 

13.0, 0.71 
(14 / 11) 

p=0.001 *** 
n=4 

GCS:CAC 11.5, 1.56 
(15 / 8) 

p=0.066 
n=4 

11.3, 1.32 
(14 / 9) 

p=0.017 * 
n=4 

GCS:CAJ 8.0, 2.00 
(10 / 6) 

p=0.758 
n=2 

14.0, 1.00 
(15 / 13) 

p=0.009 ** 
n=2 

TMS60444 7.2, 0.37 
(8 / 6) 

n/a 
n=5 

5.0, 1.00 
(7 / 4) 

n/a 
n=2 

§ insufficient data for S.E. calculation or analysis 

n/a not applicable (i.e. wild-type TMS60444) 
† independent-samples t-test (transgenic line versus wild-type), significance p ≤ 0.05 (*),    

p ≤ 0.01 (**) and p ≤ 0.001 (***) 

On average, 93.7% of glutathione in transgenic roots is GSH and comparable to 88.7% 

in wild-type tissue (Figure 6.14). Interestingly, the GSH:GSSG ratio in leaves is markedly 

lower with only 65.3% of glutathione in transgenic material being GSH, which was 

similarly observed in wild-type leaves (66.5% GSH; Figure 6.15). The altered ratio in 

cassava leaves raises interesting questions regarding the redox state of glutathione in 

roots and leaves of cassava and whether foliar tissue is reflecting an abiotic and/or biotic 

stress (please see discussion). 
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Figure 6.14 Glutathione in cassava storage roots. Mean total glutathione (GSH and GSSG) 

and GSH in storage roots representing ten pDEST™-AtGSH1 transgenic lines. Wild-type 

(TMS60444) data and S.E. shown. 

1000


900
 GSH and GSSG 
GSH 

nm
ol

es
 g

-1
 fr

oz
en

 w
ei

gh
t 

800 
700 
600 
500 
400 
300 
200 
100 

0 

Plant line 

Figure 6.15 Glutathione in cassava leaves. Mean total glutathione (GSH and GSSG) and GSH 

in leaves representing ten pDEST™-AtGSH1 transgenic lines. Wild-type (TMS60444) data and 

S.E. shown. 
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In all transgenic plant lines there was an increase in glutathione content in both roots and 

leaves. This increase was statistically significant in lines GCS:CC, GCS:CG, GCS:CT 

and GCS:CAC, as determined by independent-samples t-test (Table 6.4; Figure 6.16). 

The greatest increase was measured in line GCS:CC that had 2.65-fold more glutathione 

than wild-type plants. In leaves, a 2.95 fold increase was observed in line GCS:CAJ but 

this was not deemed statistically significant (Table 6.4; Figure 6.16). It is likely that 

biological variation i.e. differing quantities of glutathione in roots of the same line, 

coupled with the relatively small sample size, resulted in some lines appearing on 

average to have large quantities of glutathione but which were not statistically significant, 

such as GCS:CAJ. Analysis of additional biological samples should provide more 

comprehensive information regarding the independent transgenic lines. Only plant lines 

GCS:CC and GCS:CAC had statistically significant increased levels of glutathione in 

both storage roots and leaves (Table 6.4; Figure 6.16). 

Table 6.4 Glutathione in storage roots and leaves of pDEST™-AtGSH1 transgenic cassava 
compared to wild-type plants. 

Fold Fold 
Plant Line increase t-test† increase t-test† 

(Roots) (Leaves) 

GCS:CC 2.65 p=0.025 * 2.13 p=0.002 ** 
n=3 n=3 

GCS:CG 1.74 p=0.006 ** 1.36 p=0.427 
n=4 n=4 

GCS:CH 2.41 p=0.078 1.94 p=0.001 *** 
n=4 n=4 

GCS:CK 2.14 p=0.202 1.36 p=0.144 
n=2 n=2 

GCS:CM 1.66 p=0.087 2.60 p=0.002 ** 
n=3 n=3 

GCS:CT 1.66 p=0.002 ** 1.93 p=0.066 
n=4 n=4 

GCS:CZ 1.31 p=0.671 1.29 § 
n=2 	 n=1 

GCS:CAB 1.41 p=0.057 1.14 p=0.476 
n=4 n=4 

GCS:CAC 2.17 p=0.036 * 1.78 p=0.031 * 
N=4 n=4 

GCS:CAJ 1.82 p=0.407 2.95 p=0.197 
n=2 	 n=2 

§ 	 insufficient data for analysis 
†	  independent-samples t-test (transgenic line versus wild-type), significance p ≤ 0.05 (*),  

p ≤ 0.01 (**) and p ≤ 0.001 (***) 
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Figure 6.16 Summary of glutathione content of pDEST™-AtGSH1 transformed and wild-
type (TMS60444) cassava. Roots and leaves of ten independent plant lines and wild-type 

(TMS60444) cassava. Statistical significance (independent-samples t-test, transgenic line versus 

wild-type) indicated: p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***) and S.E. shown. 

6.4 DISCUSSION 
This chapter describes the successful creation and characterisation of cassava over-

expressing AtGSH1 following Agrobacterium-mediated transformation of cultivar 

TMS60444 with pDEST™-AtGSH1. This is the first report of cassava transformed with 

genes involved in glutathione synthesis and unique in also measuring GSH, GSSG, γ-EC 

and cysteine content of storage roots and leaves. The results raise interesting topics of 

discussion regarding glutathione production in cassava as well as the function(s) of 

glutathione in prolonging the shelf-life of storage roots and PPD. 

6.4.1 Increased glutathione content does not appear to affect symptoms of PPD. 
Visual assessments of roots sampled at 0 hr, 24 hr and 96 hr post-harvest revealed no 

apparent variation in PPD symptoms between transgenic and wild-type material. 

However this finding is somewhat inconclusive since the selected time points were 

possibly inappropriate for assessing deterioration in glasshouse-cultivated storage roots; 

the onset and rate of PPD is likely to be far more rapid than in larger, field-grown roots. 

The reader is directed to the discussion in Chapter 5 where similar observations and 
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constraints to the analysis of pDEST™-MecAPX2 transformed plants were appraised 

and that are also relevant to the pDEST™-AtGSH1 transgenic cassava presented here. 

Notwithstanding the set-backs in sampling, it appears that increased glutathione content 

per se does not noticeably minimise root deterioration at 24 hr or 96 hr post-harvest. 

However, there are possible exceptions that certainly merit further investigation. For 

example, roots of GCS:CC - the most highly expressing line - analysed 24 hr after 

harvest do appear to be less symptomatic compared to wild-type roots, but clearly a 

more robust system for assessment is required to draw definitive conclusions. 

It should be remembered that H2O2 flux was not measured in cassava samples and thus 

it is conceivable that modulation of H2O2 accumulation may have been improved but not 

to an extent that resulted in preventing deterioration at the selected time points. 

Measuring H2O2 is all the more important when one considers that Creissen et al. (1999) 

observed necrosis and enhanced H2O2 production in tobacco plants over-expressing 

plastid targeted γ-GCS. Herschbach et al. (2010) also reported similar oxidative damage 

in transgenic poplars but only in plants over 4½ months in age. However, these 

symptoms were not observed in cassava and therefore, even if levels of H2O2 were 

raised, available evidence suggests that it was not detrimental to plant growth. An 

enhancement of H2O2 modulation may also be closely related to increased expression of 

scavenging enzymes such as APX, CAT and/or GSTs (Dixon & Edwards, 2010). Reilly et 

al. (2007) reported a 2.5 fold increase in transcription of a predicted GST 12-24 hr post

harvest, possibly implicating GSH in harvested roots/PPD. This gradual expansion of 

knowledge raises exciting possibilities to investigate and substantiate the proposed link 

between glutathione production and PPD in cassava, with particular focus on gathering 

gene expression data for enzymes such as GST and measurements of H2O2. 

6.4.2 Is there a restriction on glutathione accumulation in pDEST™-AtGSH1 

cassava? 
Real-time PCR amplification of the transgene in roots of line GCS:CC revealed a 10-fold 

increase compared with the reference gene (PP2A) and yet there was only a 2.65-fold 

increase in glutathione content; a 1.9-fold mean increase was calculated amongst all 

transgenic lines. A 2-fold increase in glutathione was also obtained in Arabidopsis (Xiang 

et al., 2001), B. juncea (Flocco et al., 2004) and a 3-fold increase in poplar (Noctor et al., 

1996), in-keeping with the data presented here. Collectively, these data suggest that 

glutathione production is limited by regulatory feedback pathways such as post
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translation modifications of γ-GCS and involvement in cysteine production is highly 

controlled (Noctor et al., 2011) and that transgenic cassava is no exception. Interestingly, 

Liedschulte et al. (2010) recently showed a 20-fold increase in glutathione production in 

tobacco using the bifunctional enzyme γ-GCS-GSH-S isolated from S. thermophilus and 

without having any apparent deleterious impact on plant growth. This enzyme is neither 

redox regulated nor sensitive to feedback inhibition by glutathione, allowing 

unprecedented levels of glutathione to accumulate. The bifunctional enzyme originally 

isolated from S. agalatiae (Janowiak & Griffith, 2005) was requested for incorporation 

into this project but due to time constraints and problems experienced with the 

transformation protocol (Chapter 4) further exploration with the clone was prevented. The 

use of bifunctional enzymes present an interesting prospect for future experiments, albeit 

for academic research rather than for commercialisation of cassava. 

6.4.3 Why is the GSH:GSSG redox in roots and leaves different? 
The optimal GSH:GSSG balance in plants has been reported to be >90% GSH and 

<10% GSSG (Noctor et al., 2011). This is commensurate with the data collected from 

cassava roots but there is a disparity with the ratio measured in leaves where a greater 

proportion of GSSG was detected. One simple explanation may be that the baseline ratio 

of glutathione in cassava leaves is more imbalanced than in other plants. However, it 

seems more probable that the unusual GSH:GSSG ratio is the consequence of oxidative 

stress in foliar tissue (Mahmood et al., 2010). Since wild-type plants have the same foliar 

glutathione ratio as transgenic plants it seems implausible that the transgene is 

responsible for modification of the redox balance. It also seems unlikely that the different 

ratio is a consequence of stress via harvesting itself since the leaf tissue and roots were 

sampled simultaneously to prevent any signal transduction (Ghanta et al., 2011; Şahin & 

Tullio, 2010) and thus minimise the possibility of different accumulation patterns. 

Paradoxically, leaf tissue was immersed in liquid nitrogen within seconds of harvest, 

whereas root tissue was peeled, grated and then frozen – a process that may take a 

couple of minutes and thus far more likely to incur oxidative stress and damage than the 

leaves. If increased foliar GSSG content is the consequence of oxidative damage, further 

experiments need to be conducted to understand what the cause of the stress may be. 

For example, light, nutrient depletion and drought may all trigger an oxidative stress 

response (Ball et al., 2004; Noctor et al., 2011). 
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6.4.4 Is thiol distribution and accumulation in leaves and roots offering insights 
into transport and signalling? 
The strong positive correlation between cysteine availability and glutathione content in 

leaves could indicate that foliar glutathione synthesis is driving production and regulation 

throughout the plant. The weaker positive correlation in roots, despite the root-specific 

StPAT promoter, is commensurate with this hypothesis. It is known that in plants the 

uptake of sulphates from the soil is directed to the leaves via the xylem for cysteine 

production (Smith et al., 2010; Takahashi et al., 2011) and is therefore the likely focal 

point for enhanced glutathione content in cassava. Sulphate assimilation is therefore 

possibly constrained in the roots, which may be reflected in the minimal variation in 

cysteine content. Poplar leaf discs over-expressing GSH1 increased glutathione 

production when incubated in a cysteine rich solution (Noctor et al., 1996), highlighting 

the impact of cysteine availability on GSH synthesis. It should be noted that no transcript 

data is available for transgene expression in cassava leaves and it is predicted (based 

on evidence in Chapter 5) that the transgene is being over-expressed in foliar tissue. 

Additionally, the cellular localisation of γ-GCS in roots has not been determined but is 

presumed to be in amyloplasts, where the cellular dynamics and redox state have not 

been elucidated. The presumed transport in the phloem of glutathione to roots coupled 

with enhanced transcription of transgene in roots may be leading to increased gene 

regulation and sulphur flux in roots (Li et al., 2006). In poplar this has been linked to 

higher rates of phloem loading and possibly increased defence gene expression as well 

as a decrease in transcription of APR (Herschbach et al., 2010), a finding that is 

coherent with the knowledge that GSH is involved in cysteine synthesis regulation 

(Vauclare et al., 2002). 

6.4.5 Summary and future work 
The findings presented here provide an in-sight into glutathione synthesis in cassava and 

serve to direct future research. The primary objective is to prolong the shelf-life of 

cassava storage roots but by undertaking additional experiments a broader 

characterisation of glutathione synthesis in cassava should be achieved. The results 

presented in this chapter utilised material harvested at 0 hr and therefore it is necessary 

to investigate transgene expression (i.e. real-time PCR) and glutathione content (i.e. 

HPLC analysis) in the root and leaf tissue sampled at 24 hr and 96 hr post-harvest, as 

well as to measure γ-GCS activity in key lines (G. Creissen, pers. comm.). Incorporating 
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a greater number of biological samples should also provide sufficient data for 

comprehensive statistical analysis.  

Since there appears to be some discrepancy in transgene expression patterns, namely 

the possibility that it is not root specific and/or being influenced by the neighbouring 

CaMV35S promoter (see Chapter 5 for further discussion), it would seem prudent to 

investigate gene expression profiles in more detail and in particular extend real-time 

PCR assessments to incorporate endogenous genes. Following identification of key lines 

there is also scope to expose the plants to various stresses, including H2O2, and also 

perhaps biotic stresses such as cassava mosaic viruses since enhanced glutathione 

content may have significant benefits to plant defence other than the intended desire to 

modulate H2O2 accumulation and PPD. Future work may also address in more detail the 

genes involved in the cysteine assimilation pathway and sulphur flux between leaves and 

roots since it has been shown that glutathione influences cysteine synthesis and may 

cast light on the interaction between roots and leaves. Ultimately, these approaches 

should broaden our knowledge of glutathione production in cassava, allowing improved 

knowledge as well as opportunities to extend the shelf-life of cassava. 
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7 IMPROVING ROS-MODULATION AND TRANSGENE 

EXPRESSION IN CASSAVA 

7.1 INTRODUCTION 
The enzymes and antioxidants involved in ROS modulation in plants provide various 

means to regulate oxidative stress. In addition to GSH1 required for glutathione 

biosynthesis and APX involved in H2O2 breakdown (please see Chapters 5 and 6 for 

further information) other genes of interest include GALACTURONIC ACID 

REDUCTASE and SUPEROXIDE DISMUTASE. 

7.1.1 Galacturonic acid reductase in ascorbate production 
Ascorbate is a multifaceted molecule with roles in stress response, serving as a reducing 

agent in H2O2 degradation catalysed by APX (Smirnoff, 2000; Chapter 5). Several 

biosynthetic pathways to ascorbate have been described that comprise various 

intermediate reactions and products. The Smirnoff-Wheeler pathway, which uses D-

glucose as the primary substrate, has been studied using Arabidopsis mutants and 

appears to be the predominant route for ascorbate production in plants. The 

“galacturonate pathway”, however, utilises D-galacturonic acid - a component released 

from cell wall pectins during hydrolysis - as a substrate that is reduced to L-galacturonic 

acid by galacturonic acid reductase (GalUR; EC 1.1.1.19). This is converted to ascorbate 

via L-galactono-γ-lactone (Smirnoff et al., 2001; Valpuesta & Botella, 2004). Improving 

ascorbate content in plants for plant stress resistance and human nutrition has led to 

concerted efforts to over-express genes in the pathways, including GalUR (Ishikawa et 

al., 2006). Over-expression of GalUR isolated from strawberry (F. ananassa) and under 

control of the CaMV35S promoter resulted in a 2-3 fold increase in ascorbate in 

Arabidopsis (Agius et al., 2003). In potato tubers (S. tuberosum L. cultivar Taedong 

Valley) a 1.6-2 fold increase in ascorbate content was detected by HPLC and the plants 

displayed enhanced resistance to abiotic stress including MV treatment (Hemavathi et 

al., 2009). Interestingly, over-expression of strawberry GalUR assessed in isolated hairy 

roots of tomato (S. lycopersicum cultivar Money Maker) and treated with D-galacturonic 

acid produced a 2.5 fold increase in ascorbate content, suggesting the substrate may be 

a limiting factor in its biosynthesis (Oller et al., 2009). A microarray study of harvested 

cassava roots revealed up-regulation (2.4-fold at 24 hr) of an enzyme involved in 

ascorbate biosynthesis (UDP-glucose dehydrogenase) but which is not involved in the 
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galacturonate pathway (Reilly et al., 2007). GalUR expression has not been identified in 

cassava but based on the aforementioned publications it seems reasonable to 

hypothesise that an increase in ascorbate can be achieved via over-expression of GalUR 

and that may improve tolerance to ROS. 

7.1.2 Superoxide dismutase 
Superoxide dismutase (SOD; EC 1.15.1.1) is the first line of defence against ROS 

catalysing the dismutation of O2
•¯ into oxygen and H2O2 (2 O2

•¯ + 2H+ → H2O2 + O2). O2
•¯ 

arises in cellular compartments where an electron transport chain is present, especially 

the chloroplast, mitochondria and peroxisomes. Phospholipid membranes are 

impermeable to O2
•¯ and therefore it is important SOD exists in various locations. SOD 

enzymes are classified into three groups according to their metal cofactor and which 

have differing cellular sites i.e. copper/zinc SOD (Cu/ZnSOD) are present in chloroplasts 

and the cytosol, manganese SOD (MnSOD) in mitochondria and peroxisomes, whereas 

iron SOD (FeSOD) are in chloroplasts (Alscher et al., 2002). In cassava, two full-length 

Cu/ZnSOD cDNA have been isolated. MecSOD1 (NCBI accession AF170297) was 

cloned and characterised from cell cultures and is highly expressed in intact stems and 

storage roots. There are only low levels of expression in leaves and petioles and no 

expression in fibrous roots. Expression of cytosolic MecSOD1 was up-regulated 

following stress treatments such as MV and wounding (Lee et al., 1999). Cytosolic 

MecSOD2 (NCBI accession AY642137) was also isolated from cassava suspension 

cultures and transcript analysis revealed high expression in stems but low levels in 

leaves and roots. Similarly to MecSOD1, the gene was highly induced by abiotic stresses 

including MV exposure, high temperature (37°C) and wounding in leaf tissue (Shin et al., 

2005). These remain the only characterised SOD genes in cassava, although 

mitochondrial MnSOD activity has been detected in harvested cassava roots (Isamah et 

al., 2003). Interestingly, total SOD activity appears not to increase significantly following 

harvest, although an increase in Cu/ZnSOD activity was detected within 24 hr post

harvest before returning to basal levels (Isamah et al., 2003; Reilly et al., 2004). These 

findings are supported by microarray analysis that failed to detect significant increases 

(≥1.8 fold) in gene transcripts in harvested cassava root (Reilly et al., 2007). 

The important role of SOD in combating ROS accumulation has resulted in the 

development of plants with improved oxidative defence. Over-expression of a 

chloroplast-targeted Cu/ZnSOD from pea resulted in tobacco plants with improved 
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photosynthetic capacity at high light intensity and reduced cellular damage following MV 

treatment (Gupta et al., 1993a). Interestingly, although not surprisingly, the increase in 

SOD activity and thus H2O2 production was compensated by enhanced expression of 

endogenous APX (Gupta et al., 1993b). Over-expression of a cytosolic Cu/ZnSOD from 

the mangrove plant Avicennia marina in rice led to improved tolerance to MV-induced 

oxidative stress and drought stress (Prashanth et al., 2008). These selected studies 

highlight the capacity of transgenic plants to tolerate oxidative stress and by boosting 

MecSOD2 expression in cassava roots may assist in minimising oxidative damage and 

PPD. 

7.1.3 MecPX3 encodes a secretory peroxidase in cassava 
Among the many genes expressed during plant defence responses are class III POX 

(EC 1.11.1.7). They belong to a multigene family and have diverse roles, participating in 

lignin and suberin formation and metabolism of ROS (Almagro et al., 2009). The heam

containing enzymes are located in vacuoles and cell walls and are able to oxidise 

phenolic substrates (e.g. hydroxycoumarins) at the expense of H2O2, thus aiding the 

modulation of ROS to minimise cellular damage (Passardi et al., 2007). The biotic or 

abiotic stress induced expression of POX is conferred by various cis regulatory elements 

in the promoter sequence (Sasaki et al., 2007) and in Arabidopsis the majority of class III 

POX are expressed in roots (Tognolli et al., 2002; Welinder et al., 2002). Interestingly, 

MecPX3 (NCBI accession AY973612) - identified during a microarray study of harvested 

cassava roots - is reported to encode a secretory peroxidase whose expression is up-

regulated and peaks (based on selected time points) at 24 hr after sampling (Reilly et al., 

2007; Figure 7.1). Whilst there is only limited information regarding MecPX3, the spatial 

and temporal expression of the gene suggested a link between root specific and wound 

induced expression (Figure 7.1). Given the lack of characterised cassava root and PPD 

specific promoters, the regulatory region of MecPX3 was identified to have enormous 

potential to drive transgene expression in future experiments. 
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Figure 7.1 Expression profile of MecPX3 in cassava. Northern blot of MecPX3 mRNA (upper 
image) in root tissue assessed 0 hr, 12 hr, 24 hr and 72 hr post-harvest. Leaf tissue – wounded 

but attached leaves (lane A), wounded and detached leaves (lane D) and control, unwounded 

attached leaves (lane CK). 18S RNA loading control (lower image). Figure modified from Reilly et 

al. (2007). 

7.2 RESEARCH OBJECTIVES 
The goal is to utilise the modified Agrobacterium-mediated cassava transformation 

protocol (Chapter 4) to generate pDEST™-GalUR, pDEST™-antiGalUR, pDEST™

MecSOD2 and pDEST™-antiSOD transgenic cassava. The over-expression constructs 

should result in improved modulation of ROS accumulation and thus may reduce 

oxidative damage. The plants will be screened to identify independent transgenic lines 

and preliminary assessment for PPD will be undertaken. In addition, plantlets 

transformed with pDEST™-GUSPlus will be generated to allow studies into the StPAT 

promoter in cassava. Lastly, the promoter region of MecPX3 will be isolated from 

cassava with the prospect to study expression profiles. 

7.3 RESULTS 
7.3.1 Generation of pDEST™-GalUR transgenic cassava 
Two independent batches of FEC cultivar TMS60444 (FEC6 and FEC9) were 

transformed as described by Bull et al. (2009) using pDEST™-GalUR. 59 in vitro 

plantlets were generated of which 57 successfully passed the rooting test, representing 

97% of tested plants. Transgenic plantlets were labelled as outlined in previous chapters. 

It is noteworthy that eight plantlets transformed with the antisense construct (pDEST™

antiGalUR) also successfully passed the rooting test but were not analysed further due 

to time constraints. Genomic DNA was extracted from in vitro leaf tissue (Section 2.3.1) 

of 30 selected pDEST™-GalUR plantlets and used in PCR-amplifications using primers 

to hptII (Hygro-For & Hygro-Rev; Table 2.1) and StPAT promoter/transgene 

(DESTSeqF1 & garR1, Table 2.1; Section 2.1.2). The target hptII and transgene 

sequence were successfully amplified in all samples, generating fragments of the correct 
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size (approximately 1 Kb and 1.2 Kb, respectively). As predicted, neither product was 

generated from wild-type TMS60444 cassava DNA samples (Figure 7.2). 

Figure 7.2 PCR-amplification products from pDEST™-GalUR transformed in vitro plantlets. 

Products using hptII specific primers (Hygro-For & Hygro-Rev) (upper image) and StPAT 

promoter/transgene primers (DESTSeqF1 & garR1) (lower image). Products from genomic DNA 

of wild-type TMS60444 (negative control) are shown. DNA ladder (bp) indicated (lane L). Plants 

grouped based on batch of FEC used and date transformed (Group A → C). 

Genomic DNA isolated from 19 selected transgenic and wild-type in vitro plantlets was 

digested using HindIII and electrophoresed for Southern blot hybridisation with a DIG-

labelled hptII-annealing probe (Sections 2.4.11-2.4.14). All transgenic samples 

hybridised to the probe (Figure 7.3) indicating stable integration of the T-DNA in the plant 

genome. 74% (equal to 14 samples) revealed hybridisation to only one genomic 

fragment, plant samples GalUR:AI, GalUR:BD and GalUR:CC each had two hybridised 

fragments and only a single sample (GalUR:AO) had three. Nine independent lines were 

identified (GalUR:AM, GalUR:AO, GalUR:BP, GalUR:BAA, GalUR:BAC, GalUR:BAD, 

GalUR:BAG, GalUR:CH and GalUR:CL) and plantlets multiplied in vitro (approximately 

five plantlets per line) for transfer to soil and growth in the glasshouse (Section 2.5.3). 
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Figure 7.3 Southern blot hybridisation of HindIII digested genomic DNA from in vitro 

plantlets transformed with pDEST™-GalUR. All samples hybridised to a hptII-annealing DIG-

labelled probe and plants grouped based on batch of FEC used and date transformed (Group A 

→ C). DNA ladder (bp; lane L) and wild-type TMS60444 genomic DNA (negative control) shown. 

7.3.2 Morphology of pDEST™-GalUR transgenic plants 
25 pDEST™-GalUR transgenic and five wild-type TMS60444 plants were successfully 

grown in the glasshouse (Table 7.1). Storage roots were harvested from all plants with 

the exception of GalUR:AM:B and GalUR:BP:D where the roots were too small for 

analysis. Additionally, plantlets from line GalUR:CL became irretrievably contaminated 

during the early stages of propagation in soil and therefore were discarded. All harvested 

plants had a normal phenotype but, as occurred in similar experiments, failings with the 

systems that regulate the environmental conditions resulted in some losses and thus 

different numbers of biological replicates were available for each line. Most affected were 

GalUR:AM, GalUR:AO and GalUR:CH that are represented by two plants each. 

Generally there was no statistically significant difference in the mean plant height of 

transgenic lines compared with wild-type plants, with the exception of GalUR:BAA and 

GalUR:BAG (Table 7.1; Figure 7.4). However, based on available evidence it seems 

unlikely this has any biological implication and probably due to ongoing modifications to 

the growth regime. There was no statistically significant difference in the mean root stock 

weight of transgenic line and wild-type material (Table 7.1; Figure 7.5). 
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Table 7.1 Morphological characteristics of glasshouse cultivated pDEST™-GalUR plants. 

Number Mean plant Number Mean root 
Plant line of height (cm), t-test† of stock weight t-test† 

S.E. & (g), S.E. & plants (max. / min.) roots (max. / min.) 

GalUR:AM 2 48.3, 2.19 p=0.963 3 41.5, 4.50 p=0.272 (51 / 44) (46 / 37) 

53.0, 3.00 47.0, 3.00GalUR:AO 2 (56 / 50) p=0.193 4 (50 / 44) p=0.492 

GalUR:BP 5 54.8, 3.48 p=0.125 7 58.3, 6.65 p=0.737 (64 / 45) (71 / 42) 

53.6, 0.68 50.8, 4.32GalUR:BAA 5 (56 / 52) p=0.017 * 7 (66 / 42) p=0.600 

50.7, 3.84 47.7, 6.94GalUR:BAC 3 (55 / 43) p=0.516 5 (60 / 36) p=0.487 

GalUR:BAD 3 48.3, 3.48 p=0.970 4 40.0, 10.79 p=0.243 (54 / 42) (60 / 23) 

GalUR:BAG 4 55.8, 1.11 p=0.009 ** 5 40.5, 5.55 p=0.140 (58 / 53) (56 / 32) 

51.5, 3.50 38.0, 7.00GalUR:CH 2 (55 / 48) p=0.367 3 (45 / 31) p=0.193 

TMS60444* 5 48.2, 1.66 n/a 7 55.0, 6.38 n/a(52/ 42) (71 / 32) 

† independent-samples t-test (transgenic line versus wild-type), significance p ≤ 0.05 (*)  

and p ≤ 0.01 (**) 

n/a not applicable (i.e. wild-type TMS60444) 
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Figure 7.4 Mean height of glasshouse cultivated pDEST™-GalUR plants. Eight independent 

lines of pDEST™-GalUR transgenic plants and wild-type cassava (TMS60444) were assessed. 

S.E. shown. 
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Figure 7.5 Mean root stock weight of glasshouse cultivated pDEST™-GalUR plants. Eight 

independent lines of pDEST™-GalUR transformed plants and wild-type cassava (TMS60444). 

S.E. shown. 
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7.3.3 PPD assay of pDEST™-GalUR transgenic plants 
The 38 storage roots from glasshouse-cultivated transgenic plants and seven roots of 

wild-type TMS60444 were assessed for symptoms of PPD at 0 hr, 24 hr and 72 hr post

harvest. It is noteworthy that unlike in previous experiments (Chapters 5 and 6), roots 

were surveyed at 72 hr rather than 96 hr, to minimise complications regarding the rate of 

PPD. As expected, no PPD symptoms were observed in either transgenic or wild-type 

roots at the 0 hr time point (Figures 7.6 and 7.7). Similarly, almost all root samples 

observed 24 hr post-harvest had no symptoms with mild discoloration in a few sections 

of both transgenic and wild-type root, for example GalUR:BP:BR1 and TMS60444:ER1, 

respectively. At 72 hr post-harvest most tissue had symptoms indicative of PPD and less 

general deterioration/decay compared to previous observations at 96 hr. Furthermore, 

the gradation in symptom severity between adjacent slices seems more apparent. For 

example, in GalUR:BP:BR2 the section closest to the wounded end (left in photograph) 

has more severe symptoms than the more distal section (right in photograph; Figure 

7.7). Whilst this is only an observation and does not apply to all root sections, it does 

support the supposition that at 72 hr post-harvest PPD is a more active process with 

roots less likely to undergo decay and desiccation - events common place in samples 

harvested at 96 hr. 
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Figure 7.6 Wild-type TMS60444 roots following harvest. Sections of roots shown 0 hr, 24 hr 

and 72 hr post-harvest. Seven roots were harvested and assessed from five plants (TMS60444:A; 

TMS60444:B; TMS60444:C; TMS60444:D and TMS60444:E). 
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Figure 7.7 Transgenic GalUR:BP roots following harvest. Sections of roots shown 0 hr, 24 hr 

and 72 hr post-harvest. Seven roots were harvested and assessed from four plants (GalUR:BP:A, 

GalUR:BP:B, GalUR:BP:C and GalUR:BP:E). 

7.3.4 Generation of pDEST™-MecSOD2 and pDEST™-GUSPlus transgenic 
cassava 
32 in vitro plantlets transformed with pDEST™-MecSOD2 and 26 plantlets containing 

pDEST™-GUSPlus were confirmed transgenic following a rooting assay. These results 

were substantiated by the production of the expected sized fragment following PCR-

amplification with primers specific to hygII (Hygro-F & Hygro-R; Table 2.1) in all 

pDEST™-MecSOD2 samples (Figure 7.8) but failed in GUSPlus:AG, GUSPlus:AP and 

GUSPlus:AS (Figure 7.9). PCR of these samples need to be repeated to understand 

whether this was due to an experimental error or incomplete integration of the T-DNA. 

Failure to generate a product using primers specific to the StPAT promoter (Pat-Pst F & 

Pat-Pml R; Table 2.1) was also observed in GUSPlus:AL and GUSPlus:AT, although the 

other 23 tested samples yielded expected sized fragments. Southern blot hybridisation 
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using a hptII-annealing DIG-labelled probe was performed and as predicted hybridised to 

all representative samples of pDEST™-MecSOD2 samples. However, due to poor 

separation of the DNA during electrophoresis (data not shown) it was not possible to 

determine independent lines, although 13/15 samples appeared to hybridise to only a 

single genomic fragment. Southern blot hybridisation of selected pDEST™-GUSPlus 

plantlets confirmed integration of hptII in the plant genome in 18/20 samples. For 

samples GUSPlus:AI and GUSPlus:AJ the DNA appears to be degraded and thus 

hydridisation to the probe did not occur (Figure 7.10). 18 in vitro plantlets were also 

produced following transformation of FEC (FEC9) with pDEST™-antiSOD. Curiously, 

56% of the tested samples were not transgenic, which is an uncharacteristically poor 

success rate and further investigation is required to determine whether this is due to sub

optimal experimental conditions or possibly a transgene effect. 

Figure 7.8 PCR-amplification products from pDEST™-MecSOD2 transformed in vitro 
plantlets. Products using hptII specific primers (Hygro-For & Hygro-Rev). Amplification from 

genomic DNA from wild-type TMS60444 (negative control; lane ―) and plasmid DNA template 

(positive control; lane +) are shown. DNA ladder (bp; lane L). Plants grouped based on batch of 

FEC used and date transformed (Group A → D). 

Figure 7.9 PCR-amplification products from pDEST™-GUSPlus transformed in vitro 

plantlets. Products using hptII specific primers (Hygro-For & Hygro-Rev) (upper image) and 

StPAT promoter primers (Pat-Pst F & Pat-Pml R) (lower image). Products from genomic DNA 

from wild-type TMS60444 (negative control; lane -) and plasmid DNA template (positive control; 

lane +) are shown. DNA ladder (bp) indicated. Plants grouped based on batch of FEC used and 

date transformed (Group A and B). 
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Figure 7.10 Southern blot hybridisation of HindIII digested genomic DNA from in vitro 

plantlets transformed with pDEST™-GUSPlus. All samples hybridised to a hptII-annealing 

DIG-labelled probe and plants grouped based on batch of FEC used and date transformed 

(Group A and B). DNA ladder (bp; lane L) and wild-type TMS60444 genomic DNA (negative 

control) shown. 

7.3.5 Isolation and characterisation of the MecPX3 promoter 
Since discovering that MecPX3 gene expression occurs only in root tissue and increased 

following harvest, there has been interest to isolate the promoter region. Preparatory 

work was undertaken by K. Reilly (University of Bath) who created and screened a 

lambda-based genomic library of MCOL22 (Sections 2.3.2-2.3.4). A number of plaques 

were identified that purportedly contained the MecPX3 gene and from which DNA was 

extracted (Section 2.3.4) for further analysis. 

7.3.5.1 Lambda-cloned genomic DNA isolation 
DNA was extracted from plaques (named PX3ii and PX3iii; Section 2.3.4) of lambda-

cloned genomic DNA and aliquots were successfully digested with BamHI, HindIII, KpnI 

and PstI restriction enzymes (Section 2.4.4). The products were resolved on a TAE 

agarose gel (Section 2.4.2; Figure 7.11) and prepared for Southern blot hybridisation 

using a [α-32P]-dCTP labelled probe of MecPX3 cDNA (Section 2.4.12). The probe 

hybridised successfully to fragments of PX3ii DNA, confirming presence of the MecPX3 

gene (Figure 7.11). The probe failed to hybridise to the PX3iii samples, suggesting either 

a technical error or a problem with the initial screening phase. Attempts were undertaken 
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to sequence the PX3ii genomic clone (courtesy of Lark Sequencing, UK) but for 

unknown reasons this technique proved ineffective and therefore alternative strategies 

were considered to isolate the promoter. 

Figure 7.11 Restriction fragment length polymorphism of lambda DNA of cassava genomic 
library (a) and Southern blot (b). MecPX3 cDNA (lane 1), HindIII and PstI digested lambda DNA 

(lanes 2 & 3, respectively). BamHI, HindIII, KpnI and PstI digested DNA (lanes 4-7) PX3ii and 

(lanes 8-11) PX3iii, respectively. Hybridization using a [α-32P]-dCTP labelled probe of MecPX3 

cDNA. 

7.3.6 GenomeWalker™ isolation of MecPX3 promoter 
Following unsuccessful attempts to derive the MecPX3 promoter from lambda libraries 

the GenomeWalker™ kit using cultivar BRA337 was adopted (Section 2.3.5). Although 

the coding sequence of MecPX3 is known (NCBI accession AY973612) it was necessary 

to first characterise the transcript sequence to ensure primers designed for use with the 

GenomeWalker™ kit were optimally positioned i.e. not spanning exon-exon junctions. 

Sequence specific amplification primers for the coding region of MecPX3 were generated 

(PX3-GSP3 & PX3-GSP9; Table 2.1) with the reverse primer positioned approximately 

90 bp upstream of the putative termination codon to avoid an AT-rich region at the 3’-end 

of the coding sequence. PCR-amplification products (approximately 1.5 Kb) were 

successfully generated (Sections 2.1.2 and 2.4.1), cloned (Sections 2.2.1 and 2.2.6) and 

sequenced (Section 2.4.9), allowing identification of three introns in the isolated 

sequence (Figure 7.12). Interestingly, five nucleotide discrepancies were also identified 

throughout the sequence but whether these were technical errors or possibly due to 

differences between cultivars (published sequence used CM2177-2 whereas the 

sequence presented here was from TMS60444) was not addressed. 
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Figure 7.12 Nucleotide alignment of MecPX3 putative coding sequence from cassava. 

Genomic DNA sequence from TMS60444 and coding sequence from CM2177-2 (NCBI 

accession AY973612). Introns (grey rectangles), predicted termination codon (orange box), start 

codon (yellow box) and amplification primers (green arrows) shown. 
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There is 65.6% sequence identity between cassava coding sequence (AY973612) and 

the most homologous gene in Arabidopsis (AT2G18980) and 78.9% to that in castor 

bean (NCBI accession XM_002532757.1). Expression maps of AT2G18980 revealed 

gene transcription primarily in root tissue and up-regulation to various stimuli including 

wounding and oxidative stress (Figure 7.13). These data suggest that the MecPX3 

promoter could be a prospective candidate to regulate transgene expression in 

investigations of cassava PPD. 

Figure 7.13 Expression of AT2G18980 in Arabidopsis. Gene expression based on tissue type 

(a) and stimulus of gene (lowest expression profiles deleted from figure for simplicity) (b). Data 

obtained from Genevestigator (Hruz et al., 2008). 
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Amplification primers specific to MecPX3 coding sequence (PX3-GSP1 and PX3-GSP2) 

successfully amplified a fragment approximately 1 Kb in length in a two-step/nested PCR 

process from the EcoRV digested library – the largest single product generated from the 

four libraries (Figures 7.12 and 7.14a). The fragment was cloned (Section 2.2.1), 

sequenced (Section 2.4.9) and a second pair of primers (data not shown) were designed 

to amplify sequence upstream. This resulted in a fragment of approximately 2.5 Kb in 

length from the EcoRV digested library (Figure 7.14b). Sequence analysis confirmed 

successful amplification of the region upstream of the MecPX3 coding sequence and 

permitted the generation of primers to PCR-amplify an intact promoter region 

(approximately 2 Kb) from isolated genomic DNA (Section 2.3.1). 

Figure 7.14 Amplification products of MecPX3 sequence. Products following amplification with 

primers PX3 GSP1 (not shown) and PX3 GSP2 (a) and other specific primers (b). Template DNA 

from libraries digested with DraI (lanes 2), EcoRV (lanes 3), PvuI (lanes 4) and StuI (lanes 5). 

Positive control provided by manufacturer (lane 6). DNA ladder (bp; lanes 1). Adaptor-ligated 

libraries produced with the GenomeWalker™ kit (Clontech) using BRA337. 

Preliminary sequence analysis of both DNA strands revealed various cis regulatory 

motifs that are involved in signal transduction, implicating MecPX3 expression in 
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response to abiotic and biotic stresses. These include numerous motifs involved in light 

responsiveness such as the AT1-motif, I-Box and GT1-motif all of which have been 

characterised in S. tuberosum. Numerous W-Box motifs were also identified that are 

associated with WRKY transcription factors with roles in wound inducible expression 

(Hara et al., 2000; Walley et al., 2007). Additionally, motifs were also identified with links 

to phytohormones including abscisic acid, methyl jasmonate and gibberellin (Table 7.2). 

Table 7.2 Regulatory motifs identified in MecPX3 promoter sequence. 

Response Motif* Sequence 

Abscisic acid responsiveness ABRE ACGTGGC 

ACE AAAACGTTTA 

AT1-motif ATTAATTTTACA 

Box 4 ATTAAT 

Light responsiveness 
Box I 

G-Box

TTTCAAA 

 CACGTT 

GAG-motif AGAGAGT 

GT1-motif ATGGTGGTTGG 

I-Box TATTATCTAGA 

MeJA responsiveness 
TGACG-motif

CGTCA-motif 

TGACG 

CGTCA 

Gibberellin responsiveness 
TATC-box 

P-Box 

TATCCCA 

CAACAAACCCCTT 

Drought inducibility MBS TAACTG 

* Selection of cis regulatory motifs identified from PlantCARE database (Section 2.4.10). 

7.4 DISCUSSION 
This is the first report of cassava transformed with genes to over-express MecSOD2 and 

GalUR, as well as their antisense forms. Importantly, transgenic cassava harbouring 

GUSPlus have been generated that should offer important insights into transgene 

expression driven by the StPAT promoter. 
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7.4.1 Over-expression of GalUR has shown to enhance ascorbate content in 

planta and is predicted to occur in pDEST™-GalUR cassava 
The successful generation of pDEST™-GalUR transgenic plants is previously unreported 

in cassava, presenting a unique medium to study ascorbate production and its role in the 

crop. Over-expression of GalUR has been used effectively to enhance ascorbate content 

and improve tolerance to abiotic stress in other plant species, including Arabidopsis 

(Agius et al., 2003), potato (Hemavathi et al., 2009) and tomato (Oller et al., 2009). It 

therefore seems reasonable to predict that the pDEST™-GalUR cassava will also have 

enhanced ascorbate content. Although over-expression of GalUR may improve tolerance 

to PPD, an increase in ascorbate for food/nutritional value is unlikely to have significant 

commercial value since cassava leaves are already relatively rich in ascorbate;  in (raw) 

cassava roots there is approximately 14.9-50 mg 100 g-1 and in leaves 60-370 mg 100 g

1. In comparison, carrots have approximately 5.9 mg 100 g-1 and green beans 16.3 mg 

100 g-1 (data cited in Montagnac et al., 2009a). Whatever the levels of ascorbate in the 

pDEST™-GalUR transgenic plants, the physiological data collected here suggests the 

transgene does not detrimentally impact on either plant height or root stock weight. 

Although plant lines GalUR:BAA and GalUR:BAG were significantly taller compared with 

wild-type plants (based on independent-samples t-test), it would be prudent to await 

further data to determine whether this has biological significance. No phenotypic 

differences were observed in transgenic potato (Hemavathi et al., 2009) or tomato (Oller 

et al., 2009). 

7.4.2 Assessing pDEST™-GalUR roots at 72 hr post-harvest improved symptom 

characterisation 
Assessing pDEST™-GalUR roots at 72 hr (rather than 96 hr) post-harvest allowed 

improved visualisation of PPD symptoms. As discussed in Chapters 5 and 6, the roots 

observed at 96 hr post-harvest were often decayed and noticeably desiccated. However, 

the symptoms assessed at 72 hr post-harvest were more in-keeping with vascular 

streaking typical of PPD. Whether this is due to the shorter time period or a result of the 

transgene was not determined. However, wild-type root sections were also improved 

suggesting time was the principal cause – a logical conclusion since a further 24 hr 

incubation is highly likely to increase the risk of deterioration and desiccation. The 

distinct differentiation in symptoms between 24 hr and 72 hr time points highlights that 

whilst improvements have been made to the assay procedure, further work is required to 
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optimise the protocol to enable quantitative scoring and comparative assessments of 

glasshouse-cultivated roots. 

7.4.3 Over-expression of pDEST™-MecSOD2 in cassava has excellent potential 
to modulate oxidative stress 
Whilst considerable work remains to be done to fully analyse the pDEST™-MecSOD2 

transformed plants, it is encouraging to note that over-expression of SOD in other plant 

species has resulted in enhanced stress tolerance. For example, over-expression of 

cytosolic SOD from tomato conferred increased tolerance to MV in sugarbeet 

(Tertivanidis et al., 2004). If SOD expression is up-regulated in the transgenic cassava, it 

will be desirable to learn whether this alone influences the expression of genes 

associated with H2O2 breakdown. This phenomenon has been described in tobacco 

where over-expression of a chloroplast-targeted Cu/ZnSOD from pea reduced cellular 

damage following MV treatment but also resulted in enhanced expression of 

endogenous APX (Gupta et al., 1993a; Gupta et al., 1993b). Since it is assumed that 

H2O2 will accumulate, transforming plants with constructs containing SOD and APX 

genes would be a logical progression. 

7.4.4 MecPX3 promoter is a candidate to regulate transgene expression in 
cassava 
Isolation of the MecPX3 promoter from genomic lambda-constructed libraries was 

technically challenging and unfortunately yielded very limited information. It is unknown 

why sequencing of the PX3ii genomic clone proved problematic but may be associated 

with its size, which is likely to result in primer annealing difficulties (i.e. non-specific 

binding) and the possibility of conformation/structural complications. There may also 

have been hindrances with the quantity and purity of DNA sampled, although this seems 

unlikely given the rigorous quality control procedures by the company undertaking the 

sequencing work (Lark Technologies; pers. comm.). The height of the problems 

experienced with the lambda library coincided with the transfer of work to ETH Zürich, 

Switzerland, to generate transgenic cassava and where alternative strategies were 

reviewed. The GenomeWalker™ technology proved highly effective and enabled 

identification and isolation of the MecPX3 promoter region. Frustratingly, release of the 

cassava genome sequence (Cassava Genome Project 2009) occurred immediately after 

this achievement, rendering ongoing efforts to isolate the promoter somewhat redundant. 
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However, alignments of isolated and published sequence did enable verification of the 

MecPX3 promoter region. 

The various abiotic and biotic regulatory cis elements tentatively identified in the MecPX3 

promoter indicate suitability of the promoter for transgene expression in cassava 

modified to prolong shelf-life. These findings complement the expression profiles 

published by Reilly et al. (2007) and also the majority of class III peroxidases in 

Arabidopsis that are known to be expressed in roots (Tognolli et al., 2002; Welinder et 

al., 2002). Whilst the StPAT promoter used throughout this investigation is reportedly 

root specific in cassava (Ihemere et al., 2006), adoption of the MecPX3 promoter may 

offer a more specific role in PPD resistance. 

7.4.5 Future Experiments 
The achievements presented in this chapter provide a unique opportunity to gather 

extensive information regarding GalUR and SOD expression in cassava. Gene 

expression and enzyme activity data need to be obtained for selected lines of pDEST™-

GalUR and pDEST™-SOD transformed plants, requiring real-time PCR experiments and 

the design of suitable amplification primers. Commensurate with comments in previous 

chapters, it seems prudent to use gene specific rather than transgene specific primers to 

obtain a more comprehensive view of expression in planta. Regarding pDEST™-GalUR 

plants, it would be interesting to measure content of ascorbate – techniques that can be 

performed in microplate format (Gillespie & Ainsworth, 2007; Vislisel et al., 2007) or 

using HPLC (Epsey et al., 2010; Gazdik et al., 2008). The relative merits of these 

techniques requires review but there is the prospect to undertake HPLC work in 

collaboration with N. Smirnoff at the University of Exeter, UK. 

Further characterisation of the MecPX3 promoter is needed and research programmes 

are underway to generate deletions of the 2 Kb isolated sequence to identify minimal 

regions critical for expression. Given the possible effect of the CaMV35S promoter 

neighbouring the StPAT promoter in constructs utilised in this thesis, it may be sensible 

to redesign the vector to eliminate/minimise possible interference. 
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8 GENERAL DISCUSSION


The data presented in this thesis have advanced 25 years of cassava tissue culture 

research through the provision of a robust and reliable transformation protocol - an 

achievement that creates an essential platform for future studies. The data also reveals 

new and exciting information regarding the redox state of cassava via the measurement 

of thiols (glutathione and its derivatives) and highlights the crops capacity for 

improvement using biotechnology. Ultimately, ensuing studies should improve 

knowledge and provide solutions to tackle the devastating problems associated with 

PPD and that necessitated this research. 

8.1 Optimisation of the Agrobacterium-mediated transformation protocol 
radically improved success rate 
The generation of transgenic cassava has proven a nemesis for many researchers, 

including my former colleagues (H. Vanderschuren, pers. comm.; J. Owiti, pers. comm.; 

M. Stupak, pers. comm.; C. Faso, pers. comm.). The review of tissue culture techniques 

as well as acquisition of primary data and compilation of advice would have one believe 

that cassava tissue culture and transformation have mystical qualities. The results and 

conclusions presented in this thesis have confirmed this assertion to be utter poppycock, 

with the proposition that such fantastical notions are the product of political agendas. 

That said, Agrobacterium-mediated transformation of FEC is not without its 

complications and adoption of the original protocol(s) (Zhang & Gruissem, 2004; Zhang 

& Puonti-Kaerlas, 2004) seriously hampered progress of this project; almost two years 

research and 141 transformation attempts failed to yield transgenic plants. However, a 

comprehensive review of the protocol and implementation of numerous modifications 

ensured unrivalled success in generating transgenic material. FEC cultivation in 

efficiently regulated climate chambers (Sanyo MLR Plant Growth Incubator) to prevent 

moisture accumulation on culture dish lids and the replacement of Gelrite™ for Noble 

agar in media promoted consistent production of viable, non-hyperhydric FEC. 

Optimisation of the setting agent concentration (or type) resulted in significant 

improvements in tissue culture of other plant species including P. strobus (Garin et al., 

2000), A. polyphylla (Ivanova & Van Staden, 2011), sugarbeet (Owens & Wozniak, 1991) 

and interestingly Noble agar is the preferred agent used in cassava tissue culture at the 

DDPSC (N. Taylor, pers. comm.). Additionally, the abandonment of SH liquid media 

stages proved crucial since significant losses due to contamination (invariably 50-100%) 
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meant weeks of FEC cultivation were wasted and morale dwindled. Interestingly, the use 

of liquid media was introduced by Taylor et al. in (1996), who now uses only plated 

media (N. Taylor, pers. comm.). Co-cultivation of FEC and Agrobacterium directly on GD 

plates – a technique used in transformation of B. distachyon (Alves et al., 2009), frequent 

use of nylon mesh to support and transfer material between media, frequent 

replenishment of media, optimisation of hygromycin concentrations and acclimatisation 

of transformed FEC collectively proved highly influential (Chapter 4) and resulted in 

publication of the modified Agrobacterium-mediated transformation protocol (Bull et al., 

2009). 

8.2 A robust transformation system is likely to expedite cassava research 
The evolution of a robust transformation protocol permitted essential progress to achieve 

the research objectives discussed in this thesis and also enhanced uptake of the 

technique in Africa. A project is currently underway - supported by the Bill & Melinda 

Gates Foundation - to transfer knowledge and technology to a research laboratory in 

Tanzania. The project was funded as a direct consequence of research presented in this 

thesis. Preliminary results are promising with the successful implementation of the 

protocol using cultivar TMS60444 and somatic embryos have also been established from 

farmer-preferred cultivars, including Kibandameno, TME7, Mahando, Katakya, Sagalatu, 

Mzungu and Milundikachini (Bull et al., 2011). Similar initiatives are also being instigated 

in Kenya and South Africa (H. Vanderschuren, pers. comm.) with interest from groups in 

Denmark, Japan and Scotland. As cassava biotechnology is more widely adopted, we 

expand our understanding of the crop and should more efficiently integrate desirable 

traits into farmer-preferred cultivars. The continuing improvements, investment and 

accessibility of Agrobacterium-mediated transformation of FEC has in recent years led to 

an increase in its implementation, with publications reporting, for example, improved 

provitamin A content (Welsch et al., 2010), protein content (Zhang et al., 2003b; Abhary 

et al., 2011), drought resistance (Zhang et al., 2010), virus resistance (Vanderschuren et 

al., 2007; Vanderschuren et al., 2009; Zhang et al., 2005) as well as used to study 

promoter characteristics (Beltrán et al., 2010). 
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8.3 Development of cassava harbouring the GUSPlus reporter gene will provide 
insights into StPAT promoter expression and may influence acquisition of 
alternative promoters 
The production of pDEST™-GUSPlus and pDEST™-GUSPlus(-)PAT transformed 

cassava will provide valuable insights into transgene expression driven by the StPAT 

promoter. As detailed in Chapter 5, transgene (MecAPX2) expression does not appear to 

be restricted to root tissue but also occurs in leaves. This result was unexpected since 

Ihemere et al. (2006) reported root-specific expression in transgenic cassava and 

pDEST™-GUSPlus is also known to be predominately expressed in Arabidopsis roots 

(Page, 2009). To what extent the neighbouring CaMV35S promoter may be affecting 

trans expression needs to be determined, an occurrence that has been reported 

previously in planta (Yoo et al., 2005). However it is difficult to explain why this would 

arise in the transgenic cassava plants presented in this thesis but not in other reports. 

Peremarti et al. (2010) wrote that “currently, the creation of transgenic plants with stable 

gene expression relies on a healthy dose of luck…!”. These curious observations 

coupled with the rather mysterious origins of the StPAT promoter highlight the need for 

an extensive review and screening for potentially suitable root-specific and/or PPD-

specific promoters. This was broached in this investigation with the successful isolation 

of the regulatory sequence of MecPX3 (Chapter 7). Additionally, the promoter from PtL4 

linked to GUSPlus has been shown to confer activity predominately in transgenic 

cassava storage roots and vascular stem tissue (Beltrán et al., 2010), whilst pDJ3S – the 

promoter controlling expression of the storage protein (dioscorin) in yam – revealed GUS 

activity in transgenic carrot roots (Arango et al., 2010). With researchers at ETH Zürich, 

a comprehensive analysis of predicted root specific promoters is being initiated. Had we 

but world enough, and time, this new project would have be developed in this thesis. 

8.4 Assessment of PPD in glasshouse-cultivated storage roots is complex but 
preliminary results are encouraging 
The assessment of PPD in glasshouse-cultivated storage roots was undertaken using 

material transformed with pDEST™-MecAPX2 (Chapter 5), pDEST™-AtGSH1 (Chapter 

6) and pDEST™-GalUR (Chapter 7) and which proved inconclusive. This was largely 

due to inappropriate time-points since most PPD ostensibly occurred between 24 hr and 

96 hr post-harvest. Importantly, pDEST™-GalUR material was assessed at 72 hr rather 

than 96 hr and whilst this did improve symptom characterisation (i.e. less desiccation 

and general decay) it remained too complex to gather analysable data. In addition to the 
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protracted sampling times, symptoms observed between roots of the same line and even 

the same plant were surprisingly diverse. This is probably due to root size and stage of 

development (Wheatley et al., 1985). Difficulty characterising storage roots is not 

confined to the glasshouse-cultivated material but also field roots; Salcedo et al. (2010) 

showed there was no correlation between the accumulation of hydroxycoumarins 

(measuring fluorescence using image analysis software) and visual assessment, 

suggesting that whilst visual assessment may be susceptible to personal interpretation it 

is apparently the preferred approach. One possible solution to some of the problems 

encountered could be to use the “whole root method” on only the largest root of each 

plant. It would appear advantageous to also use an earlier “late” time point, for example 

48 hr rather than 72 hr or 96 hr, in an attempt to gain greater differentiation between 

lines. It is apparent that further research is required to optimise a suitable protocol. 

Ultimately, is would be desirable to establish the transgenic plants in confined field trials 

to measure the true impact of the transgenes on PPD in mature plants - a goal that may 

be possible with collaborators in South America (J. Beeching, pers. comm.). 

8.5 Extensive collection of transgenic cassava is a valuable tool to assess ROS 
modulation and antioxidant status 
More than 150 characterised in vitro cassava plantlets transformed with pDEST™

MecAPX2, pDEST™-AtGSH1, pDEST™-MecSOD2 and pDEST™-GalUR, comprising 

more than 40 independent lines, have been generated as part of this investigation. This 

constitutes the largest worldwide collection of cassava with transgenes implicated in 

modulating oxidative stress. As discussed in Chapters 5-7, the vast majority (>85%) of 

the lines comprised a single genomic fragment containing T-DNA, whereas only 30-40% 

has been reported in other publications (Ihemere et al., 2006; Zhang et al., 2003b). Why 

this phenomena should occur is unknown and transgene copy number remains to be 

determined, but certainly it is promising for developing cassava for commercialisation. 

Preliminary analyses of the transgenic plants also revealed stable integration of the 

transgenes and thus serve as an important tool to assess ROS modulation during PPD. 

As discussed, analyses remain within the early phase and numerous experiments need 

to be completed to fully characterise the plants. Notwithstanding, available data is very 

encouraging with over-accumulation of transgene transcripts and enzyme activity in 

pDEST™-MecAPX2 plants and the chance that pDEST™-GalUR plants have enhanced 

ascorbate content. The confirmed accumulation of glutathione in pDEST™-AtGSH1 

cassava based on HPLC analysis, as well as ratios between GSH and GSSG in roots 
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and leaves is an interesting result and requires further investigation to establish the 

homeostasis between GSH, GSSG and cysteine flux (Chapter 6). Whether or not the 

various transgenic plants have improved resistance to ROS remains to be identified, but 

it is reassuring that transgenic plants are morphologically commensurate (based on plant 

height and root stock weight) with wild-type plants. This provides confidence that the 

modified expression cassette (Chapter 3) seemingly does not detrimentally affect 

transformed plants. Lastly, the transformation of FEC with single transgenes is providing 

valuable information regarding their role and affect on PPD. However, there is now 

scope to combine transgenes in multigene constructs in an attempt to expedite ROS 

modulation. This is particularly relevant in plants transformed with pDEST™-MecSOD2 

where increased activity may result in enhanced levels of H2O2. Chloroplast-targeted 

Cu/ZnSOD and APX have been used to transform sweet potato effecting enhanced 

drought tolerance. Interestingly, tuber size was detrimentally affected but this was 

attributed to an insufficiency of water for development (Lu et al., 2010). Similarly, a 

cytosolic Cu/ZnSOD and APX combination in transgenic tobacco improved H2O2 levels 

compared with wild-type material (Faize et al., 2011). 

The achievements detailed in this investigation have consigned problems associated 

with Agrobacterium-mediated cassava transformation to the history books. In-turn this 

enabled the generation of a plethora of transgenic cassava harbouring genes potentially 

able to minimise the devastating effects of PPD. The unique transgenic plants serve as 

an exceptional platform for future research and will allow rapid expansion of our 

knowledge of this staple food crop. 
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