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Abstract 

 

Gas turbines are one of the most widely-used power generating technologies in the world 

today. In the face of climate change and continued global financial pressures placed on 

industries, one of the biggest challenges facing engine designers is how to continually 

improve turbine efficiencies. 

Rim seals are fitted in gas turbines at the periphery of the wheel-space formed between 

rotor discs and their adjacent casings. These seals reduce the ingestion of hot gases that can 

cause catastrophic damage to some of the most highly stressed components in the engine. In 

gas turbine engines this ingestion is principally caused by circumferential pressure 

asymmetries in the mainstream annulus, radially outward of the rim seal. A superposed 

sealant flow, bled from the compressor, is used to reduce or, at the limit, prevent ingestion. 

As the use of this sealing air can reduce the cycle efficiency, it is important to know how 

much flow is required to prevent ingestion and to understand the associated fluid dynamics 

and heat transfer when ingestion occurs. 

This thesis presents experimental results from a specifically designed research facility 

which models an axial turbine stage with generic, but engine-representative, rim seals. The 

test section featured stator vanes and symmetrical rotor blades. Measurements of pressure, 

CO2 gas concentration and swirl ratio are used to assess the performance of different seal 

designs. Although the ingestion through the rim seal is a consequence of an unsteady, three-

dimensional flow field, and the cause-effect relationship between pressure and the sealing 

effectiveness is complex, the experimental data is shown to be successfully calculated by 

simple effectiveness equations developed from a theoretical orifice model. 

Effectiveness data were collected at the design condition for a datum radial-clearance 

single seal, and compared with a double overlap equivalent and a further derivative with a 

series of radial fins. The benefit of using double rim seal configurations was demonstrated, 

where the ingested fluid was shown to be predominately confined to the outer wheel-space 

between the two sets of seals. The radial fins increased the level of swirl in this outer wheel-

space, rotating the captive fluid with near solid body rotation. This improved the attenuation 

of the pressure asymmetry which governs the ingress, and improved the performance of the 

inner geometry of the seal. A criterion for ranking the performance the different seals was 

proposed, and a performance limit was established for double seals, in which the inner seal 

is exposed to rotationally induced ingress only.  
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Experiments were also performed at off-design conditions, where the effect on ingress of 

varying the flow coefficient (CF) was demonstrated for both under-speed and over-speed 

conditions. The correlated effectiveness curves were used to predict the required levels of 

sealant flow to prevent ingestion, and the variation with CF was in mainly good agreement 

with the theoretical curve for combined ingress, which covers the transition from rotationally 

induced to externally induced ingress. Departure of the measured values from the theoretical 

curve occurred at very low values of CF for all the seals tested. This was attributed to flow 

separation at large deviation angles between the flow and the symmetric turbine blades. 

The effectiveness measurements determined from gas concentration were then used to 

establish a new effectiveness based on pressure. A hypothetical location on the vane 

platform was assumed to exist where the measured pressures would ensure consistency 

between the two definitions. Experimental measurements for a radial clearance seal showed 

that as predicted, the normalised pressure difference across the seal at this location was 

linearly related to the pressure difference at an arbitrary location on the vane platform. When 

compared to the original concentration effectiveness measurements, good agreement was 

found with the values of effectiveness determined by the theoretical pressure model. It was 

shown in principle how parameters obtained from measurements of pressure and 

concentration in a rig could be used to calculate the sealing effectiveness in an engine. 

The design of a novel 1.5-stage facility, complete with representative turned rotor blades, 

is then described. The rig experimentally models hot gas ingestion in a downstream, as well 

as an upstream wheel-space. The methodology behind the design process was outlined, and 

details were given on the proposed design operating conditions. Experience gained from 

conducting experiments in the previous facility heavily influenced the design of the new rig. 

The instrumentation capabilities have been summarised and an explanation of the intended 

measurements given. 
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Nomenclature 

 
Symbols 

A  area 

b  characteristic radius of seal  

B  constant 

c      concentration; chord length 

C  resultant velocity at exit from vanes; constant 

Cd,e Cd,i discharge coefficients for egress, ingress 

CF  flow coefficient [ = W / Ωb ] 

cp  specific heat 

Cp  pressure coefficient [ = (p - p̄ ) / (
1
/2 ρΩ

2
b

2
) ] 

Cw  non-dimensional flow rate [ = ṁ / μb ] 

Cw,i  non-dimensional ingress flow rate 

Cw,0  non-dimensional sealing flow rate 

Cw,min minimum value of Cw,o to prevent ingress 

Cβ1   modified internal swirl ratio [ = β1
2
 / (1-r1

2
/r2

2
) ]  

e  imbalance offset 

E  modulus of elasticity 

F  force 

g  normalized pressure difference across seal clearance [ = (p1-p2min) / Δp ] 

g*  value of g when Cw,0 = 0 

ĝ  value of g to ensure εp = εc 

G  gap ratio [ = S / b ] 

Gc  seal-clearance ratio [ = sc / b ] 

hbuffer depth of buffer cavity 

I  second moment of area 

K, ka, kc empirical constants 

Le  entrance length 

ṁ  mass flow rate 

M  Mach number 
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p  absolute static pressure 

p0  total pressure 

r  radius 

Rew  axial Reynolds number in annulus [ = ρWb / μ ] 

Rew
*
  alternative definition of axial Reynolds number in annulus [ = ρWcx / μ ] 

Re  rotational Reynolds number [ = ρΩb
2 
/ μ ] 

s  entropy 

sc  seal clearance 

soverlap axial overlap of radial clearance seal 

S  axial clearance between stator and rotor 

T  temperature; torque 

U bulk-mean velocity through rim-seal clearance [ = ṁ / 2πρbsc ]; linear blade 

speed 

v  Poisson's ratio 

V  velocity relative to blades 

V  tangential component of velocity 

W  axial velocity in annulus 

Ws  work generated by stage 

x  nondimensional axial distance in annulus [ = 2z / sc ] 

z  axial distance 

α  vane exit angle 

β  blade angle; swirl ratio in wheel-space [ = Vϕ / Ωr ] 

β- β0  deviation angle 

δ  uncertainty; interference 

δ*  displacement thickness of boundary layer 

ΔCp  non-dimensional pressure difference [ = Δp / (
1
/2ρΩ

2
b

2
) ] 

Δp  peak-to-trough pressure difference in annulus [ = pmax-pmin ] 

Гc  ratio of discharge coefficients [ = Cd,i / Cd,e ] 

ГΔp  ratio of driving force for EI and RI ingress [ = ΔCp / Cβ1 ]  

ε  sealing effectiveness [ = Cw,0 / Cw,e = Φ0 / Φe ] 

εc  concentration effectiveness [ = (cs-ca) / (co-ca) ] 
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εp  pressure effectiveness  

  ̂  value of εp equal to εc 

ζ  similarity parameter 

ηs  isentropic efficiency of stage 

Φ  non-dimensional sealing parameter [ = Cw / 2πGcReϕ ] 

Φi  value of Φ when Cw = Cw,i 

Φmin  value of Φ when Cw = Cw,min 

Φmin'  value of Φ0 when ε = 0.95 

Φ0  value of Φ when Cw = Cw,0 

θ  angular coordinate, non-dimensional vane pitch 

λN  isentropic coefficient of vanes 

λR  isentropic coefficient of blades 

λT  turbulent flow parameter [ = Cw,oRe


 

Λ  degree of reaction [ = (T2-T3) / (T1-T3) ] 

μ  dynamic viscosity 

ρ  density 

σ  standard deviation 

χ  similarity parameter 

ψ  blade loading coefficient [ = 2cpΔT0 / U
2
 ] 

Ω  angular velocity of rotating disc 

 

Subscripts 

a  annulus 

ax  axial 

A  location A on vane platform in annulus 

c  concentration 

CI  combined ingress 

e  egress 

EI  externally-induced ingress 

i  ingress; inner 

max  maximum   
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min  minimum 

o  outer 

rad  radial 

RI  rotationally-induced ingress 

s  stator  

0  superposed flow; design condition 

1,2  locations in wheel-space and annulus 

ϕ  angular coordinate 

 

Superscripts 

    average value 

+  value for upper 95% uncertainty limit 

−           value for lower 95% uncertainty limit 

*  value with zero ingress 

 '  value at εc = 0.95 
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Chapter 1: Introduction 

 

1.1 History of the gas turbine 

 
In 1791 British coalmaster and inventor John Barber filed a patent for a gas turbine 

entitled “A method of Rising Inflammable Air for the Purposes of Procuring Motion”. 

Working fluid was produced from heated coal mixed with air, which was compressed and 

then burnt. This produced a high speed jet that impinged on radial blades located on a 

turbine wheel rim (Figure 1.1). Unfortunately due to the technological restrictions of the 

time, nothing practical ever came of his patent. However Barber was credited as the first 

man to describe in detail the principle behind the modern day gas turbine. 

 

Figure 1.1: Sketch from John Barber’s patent (1791) 

 

For the next century development was focused on the reciprocating steam engine, and 

efforts were made to improve the efficiency of the steam process. In around 1850 Ferdinand 

Redtenbacher, regarded by many as the founder of scientific mechanical engineering, wrote 

to German physicist and leading expert in technical thermodynamics at the time, Gustav 

Zeuner stating: 

“The fundamental principle of the generation and use of steam is wrong. It is hoped 

steam engines will disappear in a not far distant future, as soon as we know more about the 

nature and effects of heat.”  

In the early 1900’s, various engineers across Europe worked independently to develop a 

practically functioning gas turbine, as previously described theoretically by John Barber. 
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One of the biggest challenges that existed was the design of an efficient compressor to raise 

the pressure of the air. The efficiency of turbo compressors available at the time was simply 

too low to make gas turbines designs feasible. 

Franz Stolze in Germany took out a patent in 1872 featuring the first multi-stage axial 

flow compressor driven by a multi-stage reaction turbine. The ‘fire turbine’ was the first gas 

turbine to be built and tested between 1900 and 1904 with limited success; the cycle thermal 

efficiency was too low as the compressor consumed the majority of the energy produced by 

the turbine.  

In 1903, Rene Armengaud and Charles Lemale also built and successfully tested the first 

of several experimental gas turbines with internally water cooled discs and blades. Their 

design featured a Rateau rotary compressor and a Curtis stage impulse turbine. However the 

operational efficiency of their early power turbine was limited to less than three percent. 

German engineer Hans Holzwarth attempted to get around the compression problem by 

developing a design that worked using a constant volume, or isochoric process. Similar to an 

internal combustion engine, valves were used to supply air to a closed combustion chamber 

featuring spark plugs, then expanded through a 2-stage Curtis turbine. The design, developed 

in 1905 was the first large scale industrially usable gas turbine. Although in theory the 

turbine was expected to deliver 1000 hp, large heat losses resulted in this value being closer 

to 200 hp. 

The Swiss company Brown, Boveri & Cie (BBC) took up the manufacture of an 

advanced Holzwarth gas turbine in 1928. The first unit went into operation in 1933 at a 

German steel plant with blast furnace exhaust gas used as fuel (Figure 1.2). However the 

success of the constant volume gas turbine was short lived; with the improvement of axial 

flow compressors, constant pressure (isobaric) gas turbines with continuous combustion 

prevailed due to their significant advantages. 
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Figure 1.2: Holzwarth gas turbine in operation at Thyssen & Co 1933 

 

In 1939, the director of Brown Boveri, Dr Adolf Meyer presented a paper on “The 

Combustion Gas Turbine: Its History, Developments and Prospects” to the Institution of 

Mechanical Engineers in London. In his address, Dr Meyer foresaw the numerous future 

applications for the gas turbine and also predicted the benefits of a combined cycle gas 

turbine steam plant. A dominant role for the development of cooling technology, high 

temperature materials, and turbine aerodynamics was outlined.  

This presentation coincided with the introduction of the first practical, commercially used 

industrial gas turbine for electric power generation. Built by BBC, it was situated in 

Neuchâtel, Switzerland. The design featured an axial compressor, axial turbine and generator 

arranged in line and coupled along a common shaft, a concept similar to that of today’s 

modern gas turbines. The turbine had a power output of 4 MW at the generator terminals, 

and a thermal efficiency of 17.4%. The plant stayed operational for 63 years, serving as a 

standby unit until 2002 when after 1,908 cycles a damaged generator unit finally caused its 

withdrawal from service. In 1988 ASME designated it an International Historic Mechanical 

Engineering Landmark. Today it is on display in Birr, Switzerland near the Alstom R&D 

site (Figure 1.3). 
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Figure 1.3: The world’s first industrial gas turbine, GT Neuchâtel 1939 – ASME (2007)  

 

The development of the gas turbine aero-engine took place in parallel with their 

stationary counterparts. In the early days of powered flight, piston engines were 

predominately used to power propeller driven aircraft. However, military designers in the 

1930s soon realised that their aircraft were limited both in velocity and maximum altitude. 

The competing mechanism of using larger engines to produce more power whilst increasing 

the weight of the aircraft resulted in maximum speeds of around 350 mph.  Attempts to spin 

propellers faster came up against compressibility effects as the tips approached the speed of 

sound, and climbing in altitude was limited as the decreased density reduced both engine and 

propeller efficiency. 

Sir Frank Whittle and Dr Hans Von Ohain are jointly credited with independently 

inventing the jet engine. It was Whittle in 1930 that first realised that the future of aircraft 

propulsion would require a new power-plant capable of forcibly expelling air through an 

exhaust. However he received no support from the British Air Ministry, who deemed his 

design unworkable. Whittle persisted and filed a patent entitled “Improvements in Aircraft 

Propulsion”, featuring a compound axial centrifugal compressor and a single stage axial 

turbine. It was not until 1937 that Whittle’s work was realised through public financing for 

his company, Power Jets Ltd. The W.1 eventually flew in the Gloster E.28/39 in May, 1941.  

Meanwhile in Germany, Von Ohain had put forward his idea for a turbojet engine, 

similar to Whittle’s design, in 1935. His engine, named the HeS 3B, was built by aircraft 

manufacturer Ernst Heinkel to power the He 178 aircraft. This resulted in the first jet-

powered flight taking place in Germany in August, 1939, exactly one week before the 

outbreak of the Second World War. Von Ohain’s work influenced the world’s first 
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operational production turbojet, the Junkers JUMO 004 which powered the Messerschmitt 

Me 262. 

Hunt (2011) presents a detailed account of the history of the industrial gas turbine from 

1940 to 1990. The first industrial gas turbine to run in the United Kingdom was in 1945. The 

500 bhp experimental machine was built by C A Parsons, the company behind the modern 

steam turbine. Westinghouse made significant contributions to the development of the 

industrial gas turbine in the United States, including the first combustion turbine used 

commercially. The W21 was installed in 1949 at the Mississippi River Fuel Corporation and 

was fuelled by natural gas. It became the world’s first engine to operate for more than 

100,000 hours. 

In 1950, Siemens obtained permission from the Allied Control Council to resume 

development of gas turbines. The first Siemens gas turbine was named VM 1, VM for the 

German word “verbrennungsmaschine” meaning combustion engine. It was designed for an 

output of 1.5 MW and the compressor shared many similar features with the JUMO 004. 

Driakunchak et al. (2011) and Hunt (2011) describe the Siemens VM 5 as the world first 

truly commercial gas turbine. Shown in Figure 1.4, the 5.4 MW gas turbine was installed in 

1958 at the Dortmund-Horder-Hutten-Union smelting plant. With uncooled turbine blading, 

turbine inlet temperatures were limited to 700°C, resulting in an efficiency of 29%.  

 

 

Figure 1.4: Siemens VM 5 blast furnace gas turbine 

 

Improvements continued into the 1960’s when Siemens decided to build what was then 

the largest single-shaft gas turbine in the world. The VM 80 had a mass flow rate of 184 kg/s 

and a pressure ratio of 6:1, generating 23.4 MW at an efficiency of 32%. It commenced 
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commercial operation in 1962 acting as a peaking plant and supplying district heating to the 

city of Munich. 

The Westinghouse 501 series of heavy duty gas turbine engines were developed from 

1968 up to 1998. During this period, power output increased from 45 to 249 MW as turbine 

entry temperature was raised from 963 to 1500°C through advances in turbine cooling. 

Combined cycle configurations allowed efficiencies of up to 58% to be realised. Similar 

advancements were made at both Siemens and GE during the same timeframe. Siemens 

purchased the Westinghouse turbine business in 1998, consolidating the engine programmes 

under one common nomenclature.  

Recently, the Siemens SGT5-8000H (Figure 1.5) set the record for the most powerful gas 

turbine in the world. Rated at a gross power output of 375 MW in simple cycle operation 

and 570 MW in combined cycle, the power plant can achieve a combined cycle efficiency of 

60.75%. 

 

Figure 1.5: Siemens SGT5-8000H gas turbine engine 
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1.2 Industrial Gas Turbine Applications 

 
Today gas turbines have developed into one of the most proven and reliable power 

generation technologies. The lower weight and size per unit of power output gives the gas 

turbine significant advantages in comparison to other power generation devices. Gas 

turbines used for producing shaft power fall into two main categories, heavy frame and aero-

derivative engines: 

Heavy frame engines are physically large power generation units ranging from 3 to 375 

MW in simple cycle configuration, with typical efficiencies from 30 to 48%. They are used 

in applications where space and weight restrictions are not an issue. The advantages of 

heavy frame gas turbines are long life, high availability, and slightly higher efficiencies in 

comparison to aero-derivate equivalents. They are characterised by low pressure ratios 

(usually below 20:1) and low noise levels. When coupled to a steam turbine and operated in 

combined cycle configuration, thermal efficiencies of greater than 60% are achievable. 

Aero-derivative engines are adapted for electrical generation by removing the bypass fan 

and adding a power turbine at the exhaust. Typical power ranges are from 2.5 to 50 MW and 

efficiencies from 35 to 45%. The ability to start-up, shut down and handle load changes 

more quickly than industrial machines is one of their biggest advantages. They are also more 

compact and useful for smaller power outputs. Whilst they produce fewer emissions than 

other gas turbines due to design restrictions, they tend to operate using more expensive fuels. 

In single spool gas turbines, power can be extracted mechanically from an output shaft, 

either at the front (cold) or the rear (hot) end of the turbine, and used to drive an electrical 

generator. These engines operate at either 3000 or 3600 rpm to match either 50 or 60 Hz 

generators. Alternatively a free power turbine coupled aerodynamically at the rear of the 

engine can be used. This configuration allows for easier starts on the turbine components, as 

the power turbine can be allowed to run at different speeds to the gas generator. This has a 

significant impact on off-design performance, allowing far greater flexibility in output speed 

at a given power. 

Power generation turbines for supply to national grid systems are categorised in three 

ways, depending on their utilization: 

Peak loppers (peaking power plants) have low utilization, typically less than 10%. They 

are employed to satisfy the peak demand for electrical power. Unit cost is crucial, response 

time onto full load is very important and thermal efficiency is relatively unimportant. For 

this reason simple gas turbine cycles burning natural gas or diesel are usually employed in 
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this role. Peak loppers can be single spool or free power turbine, aero-derivative or heavy 

frame type. 

Base load power plants achieve as near to 100% utilization as possible to supply the 

continuous demand for electrical power. The emergence of the combined gas and steam 

cycle in the 1960’s has enabled the gas turbine to be considered as a primary power 

generator. Gas turbines are used in combined cycle configuration for maximum possible 

thermal efficiency; start and acceleration times are therefore unimportant. They compete 

with coal and nuclear fired steam plants, where the availability of natural gas and lower 

emissions has made them ever more increasingly popular. 

Mid merit (intermediate) power stations have typically 30-50% utilisation and serve the 

extra requirement for electrical power which is seasonal, typically in the winter period where 

demand increases for domestic heating and lighting. They employ simple cycle gas turbines 

of a higher technology level than those used for peak lopping. The higher unit cost is 

justified by higher thermal efficiency, given the higher utilisation. Most engines are aero-

derivative adjusted for optimum simple cycle thermal efficiency. 

Gas turbines are also extensively found in pipeline pumping and compression 

applications in some of the harshest environments in the world. Turbines operating on 

natural gas pipelines can typically consume 7 to 10% of the fluid being pumped as fuel, 

tapped off the pipeline itself.  

In addition, gas turbine engines have been successfully used for marine propulsion 

applications. In 1967, the Royal Navy took the strategic decision that all future propulsion of 

their warships would be gas turbine based. The new Queen Elizabeth-class aircraft carriers 

currently under construction will be principally powered by two Rolls-Royce Marine Trent 

36 MW gas turbine generators. 
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1.3 Gas Turbine Theory 

 

Figure 1.6:  Simple gas turbine system - adapted from Saravanamuttoo et al. (2001) 

 

A simple gas turbine system is depicted graphically in Figure 1.6. The working fluid is 

first accelerated through a compressor raising the pressure of the flow. In an ideal system 

this process is isentropic, where no energy is lost to heat due to friction and aerodynamic 

losses. The addition of energy in the form of fuel then takes place in the combustion 

chamber, where the compressed air is ignited to raise the working temperature. As ideally 

this occurs at constant pressure, the specific volume of the fluid increases. Expansion of this 

hot gas through a turbine then allows for work to be extracted, providing useful energy in 

addition to driving the compressor. Again, ideally this expansion occurs isentropically in the 

ideal case and the fluid leaves the gas turbine at the same pressure it entered at. The useful 

energy can either be accelerated through a nozzle to create thrust, as in a turbojet aircraft 

engine, or used to drive an additional turbine to generate mechanical power or electricity. 

This process can be described thermodynamically by the Brayton cycle, of which the 

corresponding T-s and p-v diagrams are shown in Figure 1.7 (a) and (b).  

 

Figure 1.7: Temperature-entropy and pressure-volume plots for Brayton cycle 
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In reality the compression and expansion process are non-isentropic, resulting in a change 

in entropy as the fluid flows through the compressor and turbine sections. This is shown in 

Figure 1.7 (a) by the diagonal dotted lines connecting 1 to 2 and 3 to 4, for the compression 

and expansion processes respectively. 

In the ideal case, the overall efficiency of the gas turbine is primarily dependent upon the 

pressure ratio of the compressor. However when component losses are taken into account, 

the cycle efficiency becomes dependent on the turbine entry temperature (TET) as well as 

pressure ratio, as a result of more work output for the same amount of fuel.  

 

1.4 Internal cooling 

 
 

 

Figure 1.8: The progress of turbine entry temperature for Rolls-Royce engines since 1940 (Cumpsty 

(2003)) 

 

Figure 1.8 illustrates the progress of TET for Rolls-Royce aero engines since 1940. 

Typical turbine entry temperatures for modern day gas turbines are in excess of 1800 K. 

This has pushed the limits of metallurgic technology, as even the most advanced single-

crystal Nickel alloys used to manufacture turbine blades would melt at 1550 K. In order to 

reduce temperatures downstream of the combustor to acceptable levels, cooling air is bled 
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off from the main-gas path at several axial locations upstream in the compressor. A 

complicated internal network, known as the secondary air system, is used to distribute this 

relatively cool air (900 K) for sealing and purging of blades, discs, shafts, cavities and 

bearing chambers. A typical turbine cooling and sealing arrangement is shown in Figure 1.9.  

 

 

Figure 1.9: Typical turbine cooling and sealing arrangement – Rolls-Royce (1996) 

 

The continued striving for improved gas turbine efficiency and performance has placed 

an increasing significance on the capability of the secondary air system to manage this 

expensive cooling air in the most effective way. Anywhere between 15 to 25% of the flow 

through the engine may be bled off for this purpose, in turn reducing the efficiency and 

specific work output. At a constant TET, the specific fuel consumption (sfc) can be said to 

increase by about 4% for a 5% increase in cooling flow (Cumpsty (2007)). However the 

benefits of an increased TET are substantial, even when the additional losses introduced by 

the cooling system are taken into account. 
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1.5 Introduction to Ingress 

 
An important function of the secondary air system is to reduce the ingress of hot 

mainstream gas into the wheel-space between the stationary and rotating discs. This is 

principally caused by the non-axisymmetric pressure variation as the flow passes over the 

vanes and blades. This type of ingestion, known as externally-induced (EI) ingress, occurs at 

the locations where the external pressure in the annulus is greater than that in the wheel-

space, as shown in Figure 1.10.  

 

  

Figure 1.10: Variation of static pressure in the annulus that leads to externally induced ingress 

 

Even if the external flow were axisymmetric however, ingress can still occur due to 

rotational effects. The rotating fluid in the wheel-space creates a radial pressure gradient 

which can cause the pressure to drop below that of in the mainstream annulus. This ‘disc-

pumping effect’ causes the egress of fluid near the rotating disc, where the centrifugal 

effects are greatest. To conserve radial mass flow, ingress of external fluid through the rim 

seal occurs near the stator disc. This type of ingestion is known as rotationally-induced (RI) 

ingress. 

When the effects of both EI ingress and RI ingress are significant, the term combined 

ingress (CI) is used. This type of ingestion can be of practical relevance when an engine is 

operating at ‘off-design’ conditions. 
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A non-contacting rim seal, shown in Figure 1.11, is used to reduce the ingested fluid, in 

conjunction with sealing air supplied from the compressor to pressurise the wheel-space. 

Too much sealing air will reduce the performance of the turbine through the interaction of 

the discharging sealing air (known as the egress) and the mainstream gas path, creating 

aerodynamic losses. Conversely, too little sealing air can cause the overheating of critical 

components, resulting in disastrous consequences. As noted by Johnson et al. (1994), for an 

advanced 2-stage gas turbine, a 50% reduction in rim seal coolant purge flow could increase 

turbine efficiency by 0.5%, corresponding to a reduction in sfc of 0.9%. 

In terms of internal air systems, the engine designer wants to know the following: the 

most effective seal geometry; how much sealing air is required to limit ingestion to an 

acceptable level; when ingress occurs, how much hot gas enters the wheel-space; how this 

ingested fluid affects the temperatures on the rotating and stationary components. 

 

 

Figure 1.11: Typical rim seal configuration in a high pressure turbine stage 
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1.6 Thesis Aims 

 
The main experimental aim of this thesis is to measure the sealing characteristics of a 

series of generic rim-seal geometries, which will better inform the gas turbine engine 

designer. It is hoped that these experimental measurements will provide a fundamental 

insight into the ingress problem and inform improvements for future internal air system 

designs. 

The experimental data will allow the engine designer to estimate the initial effect of 

ingress without the need for extensive computational research. An extensive range of seal 

effectiveness measurements aimed at better informing the designer will be presented. 

The experimental sections of this thesis aim to address the following questions: 

 What is the most effective rim seal configuration to help prevent hot gas 

ingestion into the upstream wheel-space of a gas turbine? 

 What is the effect on ingress of varying the flow coefficient from the design 

condition? 

 How can experimental data measured using a test facility be used to inform the 

design of gas turbine rim seals? 

An additional aim of this PhD is the design of a novel 1.5 stage experimental facility. The 

design methodology, as well as an outline of future experimental measurements, is 

documented as part of this thesis. The rig was designed as an engine representative model of 

both the upstream, as well as the downstream wheel-space of a gas turbine, from which 

experimental correlations could be scaled and applied to a full sized engine. The test facility 

will allow for detailed investigations into the sealing characteristics and wheel-space fluid 

dynamics of various generic and company proprietary rim seal configurations. 

The rig has been specifically designed to accommodate infrared temperature probes for 

heat transfer measurements on the rotor surface. This novel approach will enable the effects 

of ingress on the rotor side of both wheel-spaces to be established. 

The addition of turned rotor blades and an energy absorbing dynamometer will allow for 

more engine representative and engine relevant measurements to be made. A larger 

mainstream gas path annulus will also enable the interaction of the main and secondary 

flows to be studied in greater detail. It is envisaged the experimental measurements made 

using this facility will form the basis for future theses from the University of Bath.  
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1.7 Thesis Outline 

 
Chapter 1 gives an introduction to the historical development of the industrial gas turbine 

and their application in the power generation industry. The basic theory and principles 

behind the operation of a gas turbine is explained, and the hot gas ingestion problem faced 

by engine designers is introduced. The aims and objectives of this thesis and a list of 

publications resulting from this work are given. 

Chapter 2 provides a review of the current literature relevant to the phenomenon of hot 

gas ingestion. The fundamental fluid dynamics of a free disc and a rotor-stator cavity are 

discussed. This is followed by an extensive review of the existing experimental and 

theoretical research into rotationally-induced, externally-induced and combined ingress. The 

previous research into ingress conducted at Bath is also considered. 

Chapter 3 outlines experimental data collected using the Bath single stage research 

facility operating at the design condition. Measurements of pressure and effectiveness 

determined using a CO2 gas concentration technique, were used to compare the relative 

performance of three different rim seal configurations. The data were shown to agree well 

with a previously published theoretical orifice model. 

Chapter 4 presents ingestion measurements at off-design conditions, were the flow 

coefficient in the annulus was varied either side of the design point. The effect on the 

minimum sealing flow required to seal the wheel-space against ingress was demonstrated for 

three rim seal designs. The variation of the experimental data was in mainly good agreement 

with the theoretical curve for combined ingress, which covers the transition from rotationally 

induced to externally induced ingress. 

Chapter 5 presents an alternative definition of effectiveness based on pressure 

measurements. A theoretical model was developed and validated using experimental data for 

a radial-clearance seal. It was shown in principle how parameters obtained from 

measurements of pressure and gas concentration in a rig could be used to calculate the 

sealing effectiveness in a gas turbine engine. 

Chapter 6 describes the design of a novel 1.5 stage facility which experimentally models 

hot gas ingestion in a downstream, as well as an upstream wheel-space. The rig capability is 

outlined, and the technical aspects of the design are documented. An explanation of the 

intended measurements is also provided. 
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Chapter 7 provides the conclusions of this thesis and recommendations for future 

research into the ingress problem to be conducted using the new facility. 

 

1.8 Generic versus Confidential Seal Geometries 

 

In addition to the generic seal designs presented in this thesis, many additional 

geometries were tested that could not be included due to their confidential nature. An 

extensive series of tests on Siemens complicated seal profiles were omitted as these could 

not have been published in the open domain without a thesis embargo. However, one set of 

Siemens proprietary seals, currently under consideration for patent protection, will appear in 

a future publication. 

 

1.9 Publications 

 

This thesis has produced six publications in total; four conference papers and two journal 

manuscripts. Two additional papers based on the work of this thesis are expected to be 

published at the 2015 ASME Turbine Technical Conference in Montreal. These include: (i) 

a paper based on the design of the 1.5 stage facility (as outlined in Chapter 6), and (ii) a 

paper on the performance of proprietary rim seals (currently under patent) supported by CFD 

work of Teuber (2014) at Siemens. Data for (ii) was not included here to avoid a thesis 

embargo. Two unrelated publications have also been completed during this PhD. 

Conference publications: 

1. Sangan, C. M., Pountney, O. J., Scobie, J. A., Wilson, M., Owen, J. M. and Lock, G. 

D., 2012, “Experimental Measurements of Ingestion Through Turbine Rim Seals. 

Part 3: Single and Double Seals,” ASME Paper GT2012-68493. 

2. Scobie, J. A., Sangan, C. M., Teuber, R., Pountney, O. J., Owen, J. M., Wilson, M., 

and Lock, G. D., 2013, “Experimental Measurements of Ingestion Through Turbine 

Rim Seals. Part 4: Off-Design Conditions,” ASME Paper No. GT2013-94147. 

3. Sangan, C. M., Scobie, J.A., Owen, J. M., Lock, G. D., Tham, K. M., and Laurello, 

V. P., 2014, “Performance of a Finned Turbine Rim Seal,” ASME Paper GT2014-

25626. To appear in ASME Journal. 
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4. Owen, J. M., Wu, K., Scobie, J. A., Sangan, C. M., Cho, G., and Lock, G. D., 2014, 

“Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals,” 

ASME Paper GT2014-25200. To appear in ASME Journal. 

5. Scobie, J. A., Sangan, C. M., and Lock, G. D., 2014, “Flow visualisation 

experiments on sports balls,” To be presented at The Engineering of Sport 10 

conference, Sheffield 2014. 

 

Journal publications: 

1. Sangan, C. M., Pountney, O. J., Scobie, J.A., Wilson, M., Owen, J. M., and Lock, G. 

D., 2013, “Experimental Measurements of Ingestion Through Turbine Rim Seals. 

Part 3: Single and Double Seals,” ASME J. Turbomach., 135, p.051011. 

2. Scobie, J. A., Sangan, C. M., O. J., Owen, J. M., Wilson, M., and Lock, G. D., 2014, 

“Experimental measurements of hot gas ingestion through turbine rim seals at off-

design conditions,” Proc. IMechE Part A: J. Power and Energy, published 

OnlineFirst on March 25, 2014. 

3. Scobie, J. A., Pickering, S. G., Almond, D. P., and Lock, G. D., 2013, “Fluid 

dynamics of cricket ball swing,” Proc. IMechE Part P: J. Sports Engineering and 

Technology, 227 (3), pp. 196-208. 
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Chapter 2: Literature Review 

 

This chapter will give a succinct overview of the fluid dynamics found in rotating 

systems, before moving on to look at the ingress problem in greater detail. The case of 

rotationally induced ingress is considered, followed by externally induced and combined 

ingress. A review of the current experimental facilities looking into the ingress problem is 

provided, along with a summary of the previous ingestion research work carried out at the 

University of Bath. 

 

2.1 The Free Disc 

 

One of the simplest rotational flow scenarios is a disc spinning with uniform angular 

velocity (Ω) in free air (Figure 2.1). To satisfy the no-slip condition within the rotor 

boundary layer, the fluid must accelerate by friction from zero at the free-stream to the 

tangential disc speed, Vϕ = Ωr, at the surface. The so called ‘disc-pumping’, caused by the 

centrifugal forces acting on the fluid leads to a radial outflow, Vr. To satisfy the conservation 

of mass, it is necessary that fluid is entrained axially (Vz) into the boundary layer to facilitate 

this radial fluid flow. The flow near the axis of rotation tends to be laminar. For large values 

of angular velocity the flow can become turbulent even at low radius, and a transition region 

will exist. 

  
Figure 2.1: Local velocity profiles for a simple disc spinning in free air – adapted from Childs (2011) 
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2.2 Stationary disc in a rotating fluid 

 

Figure 2.2 shows the local velocity profiles for a stationary disc in a rotating fluid. The 

flow rotating outside the boundary layer is in equilibrium under the influence of the 

centrifugal force which results in a radial-pressure gradient. Near the disc surface the 

tangential velocity, Vϕ, decreases with a corresponding decrease in the local centrifugal 

force. The radial pressure gradient causes the flow near the surface to flow radially inwards, 

and for reasons of continuity this motion is compensated by an axial flow (Vz) away from the 

surface. 

 

Figure 2.2: Local velocity profiles for a stationary disc in a rotating fluid - adapted from Childs (2011) 

 

2.3 Rotor-Stator Systems 

 

A rotor-stator system consists of a rotating disc and a stationary disc separated by an 

axial clearance that forms a cavity known as a wheel-space, as shown in Figure 2.3. This 

type of configuration is commonly found in gas turbines between rotor discs and their 

adjacent casings. The flow physics of rotor-stator systems is more complex than the 

individual cases; the characteristics will vary with the proximity of the stator and rotor, the 

presence of a stationary or rotating shroud, and the supply of any imposed flow.   
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Figure 2.3: Rotor-stator system – adapted from Childs (2011) 

 

Before the existence of extensive experimental data and numerical solutions, Batchelor 

(1951) proposed that an inviscid core of fluid existed between the rotating and stationary 

discs, which rotated in solid body rotation at an angular velocity somewhere between that of 

the stator and rotor. The core is confined between the two boundary layers which develop on 

the rotor and stator surfaces. In order to supply the rotor boundary layer, fluid is entrained 

from the core and pumped radially outward. At the stator surface there is a radial inflow, and 

movement of fluid from the boundary layer to the core. The characteristic velocity profiles 

for Batchelor flow are shown in Figure 2.4. 

 

 

Figure 2.4: Characteristic velocity profiles in a rotor-stator system for Batchelor flow: (a) tangential 

velocity, (b) radial velocity, and (c) axial velocity – adapted from Childs (2011) 
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In contrast to Batchelor, Stewartson (1953) suggested that the flow was more like that of 

the free disc, where the tangential velocity in the rotor boundary layer reduces from the rotor 

speed (Ωr) to zero away from the boundary layer. He concluded that no boundary layer was 

necessary on the stator surface and no core rotation existed. The characteristic velocity 

profiles for Stewartson flow are shown in Figure 2.5.  

 

 

Figure 2.5: Characteristic velocity profiles in a rotor-stator system for Stewartson flow: (a) tangential 

velocity, (b) radial velocity, and (c) axial velocity – adapted from Childs (2011) 

 

This paradox became known as the Batchelor-Stewartson controversy, and only when 

experimental measurements were made was it shown that each model is valid depending on 

the flow conditions. For an enclosed rotor-stator system with no superposed flow, a rotating 

core will exist and Batchelor flow best describes the flow structure. For an open system with 

no shroud, or an enclosed system subjected to a superposed flow rate greater than the free 

disc entrainment rate which suppresses the core, Stewartson flow will best describe the flow 

structure. 
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Figure 2.6: Flow regimes for an enclosed rotor-stator system – Daily and Nece (1960) 

 

Daily and Nece (1960) carried out an experimental and theoretical study which enabled 

rotor-stator flow to be categorised by the gap-ratio, G, and the rotational Reynolds number, 

Reϕ, as shown by Figure 2.6. Velocity profile measurements in an enclosed rotor-stator 

system revealed four regimes, defined as followed: 

 Regime I: Laminar flow, with a small clearance and merged rotor-stator boundary 

layers (Couette flow). For a constant Reϕ, the frictional heating on the rotor will 

decrease with an increase in G. 

 Regime II: Laminar flow, with a large clearance and separated rotor-stator boundary 

layers resulting in a rotating core between the two discs. The presence of the stator 

reduces the core rotation, and hence the frictional heating, below that of a free disc. 

However as G increases, the influence of the stator reduces and the frictional heating 

will increase. For G > 0.1, the stator will have no effect and the frictional heating will 

be equivalent to that of a free disc. 

 Regime III: Turbulent flow, with a small clearance and merged rotor-stator boundary 

layers. This regime is similar in nature to Regime I. 

 Regime IV: Turbulent flow, with a large clearance and separated rotor-stator 

boundary layers resulting in a rotating core between the two discs. This regime is 

similar in nature to Regime II. 
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2.4 RI ingress 

 

One of the earliest experimental studies of ingestion was performed at the University of 

Sussex by Bayley and Owen (1970). They investigated a shrouded stator separated axially 

from a rotor disc, similar to setup shown in Figure 2.3. A superposed radial flow of air, Cw,o, 

was supplied to the wheel-space at the centre of the stator disc and flowed radially-outward, 

discharging through the seal clearance into a quiescent atmosphere. Owing to the sub-

atmospheric pressure created by the rotating fluid in the system, external air could be drawn 

into the wheel-space. Static pressure measurements were made on the stator wall; sub-

atmospheric readings indicated ingestion had taken place. Increasing the superposed radial 

flow rate increased the relative pressure inside the wheel-space and consequently reduced 

the amount of ingested air. At sufficiently high flow rates, ingress did not occur and the 

system was said to be “sealed”. The authors showed that Cw,min, the minimum non-

dimensional sealant flow rate required to prevent ingestion, was proportional to Reϕ and Gc. 

For G >> Gc and Reϕ < 4 × 10
6
, the following empirical relationship, now termed the Bayley-

Owen criterion for RI ingress, was proposed: 

       Re610min cw, G.C               (2.1) 

This criterion has been widely quoted and has often been used in situations, such as EI 

ingress, where it has no validity. 

Further research into rotationally induced ingress in rotor-stator systems was performed 

by Phadke and Owen (1983) using five different seal configurations. Using pressure 

measurements and flow visualisation experiments, Cw,min was found to be lower for radial-

clearance seal geometries in comparison to the axial-clearance equivalent with a common 

clearance. Unlike the axial-clearance configurations, the radial-clearance seals exhibited a 

pressure-inversion effect at large sealant flow rates, where the pressure inside the wheel-

space increased with increasing rotational speed. The greater the overlap the larger the 

magnitude of this pressure inversion effect, therefore improving the performance. 

Suggestions were made for why this effect had occurred, although no definitive explanation 

was given. 

In Hartford Connecticut, Graber et al. (1987) pioneered sealing effectiveness 

measurements in turbine rigs using a gas concentration technique. Experiments were 

performed in rotating rig facility with a shrouded rotor and a shroudless stator disc. Four 

peripheral seal geometries and two different swirl ratios in the annulus were investigated. 

Due to the flow rate in the annulus being very small (< 0.03 m/s), and in the absence of any 
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evidence of a circumferential variation in pressure, it is likely that the flow was very close to 

axisymmetric and therefore any ingestion that occurred would have been due to rotational 

effects.  The sealant flow was seeded with CO2 and concentration measurements were made 

on the stator wall to determine how much unseeded air from the annulus had been ingested. 

In the absence of ingress, the value of concentration measured on the stator wall would have 

been equal to the seeded value in the sealant flow. Measurements were made at multiple 

radial locations on the stator and the mean of these samples was taken as the level of 

concentration in the wheel-space, cs. The cooling effectiveness parameter was therefore 

defined as: 

a

as
c

cc

cc
ε






0

            (2.2) 

where ca and c0 are the measured concentration levels in the annulus and sealant flow line 

respectively. The typical variation of cooling effectiveness with sealant flow rate is shown in 

Figure 2.7. 

  

Figure 2.7: Typical seal cooling effectiveness parameter as a function of purge flow rate – adapted from 

Graber et al. (1987) 

 

Figure 2.7 shows that increasing the cooling effectiveness above 80% becomes a law of 

diminishing returns. If acceptable disc temperatures can be tolerated at conditions less than 

the no ingestion rate, large amounts of sealing flow can be saved. Therefore it is apparent a 

designer must be aware of not only the minimum amount flow rate required to prevent 

ingestion, but also the shape of this distribution/relationship. The results of Graber et al. 

(1987) were in reasonable agreement with the findings of Phadke and Owen (1983). The 
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degree of external swirl in the annulus was found to have little impact upon sealing 

effectiveness. 

Phadke and Owen (1988a) expanded on their earlier work with a three part series of 

papers, the first of which once again looked at ingestion in the absence of external flow. 

Inspired by the work of Graber et al. (1987), the authors added CO2 gas concentration 

measurements to their previously implemented techniques. Flow visualisation showed that 

the previously unexplained pressure inversion effect was due to impingement of the radially 

pumped flow on the periphery of the stator. This impinging jet formed a protective fluid 

curtain that helped prevent ingress.  

Chew (1991) questioned the validity of some of the Phadke and Owen (1983) results at 

small seal clearances. Analysis of the pressure difference across the seal with no rotation 

implied discharge coefficients greater than unity. It was concluded that the most likely 

explanation for this was from errors that occurred in setting the seal gap, Gc. A mathematical 

model was developed by linking boundary layer flow in the wheel-space through momentum 

integral analysis, to a simple orifice model for the seal clearance. The model was used to 

predict the amount of ingested flow and minimum sealing flow to prevent ingestion. The 

turbulent flow parameter, λT, was used as the boundary layer flow in the rotor-disc system 

depends on it. By using the empirical constant k = 0.65, determined from Phadke and Owen 

(1983), the theory agreed with the measurements of Graber et al. (1987), as shown in Figure 

2.8. It was shown that the ingested flow, Cw, is approximately 20% of the minimum sealant 

flow rate to seal the system, Cw,min. 

 

  
Figure 2.8: Comparison of model prediction with data of Graber et al. – adapted from Chew (1991) 
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Chew et al. (1992) made further comparisons of the mathematical model with several 

geometries including the radial-clearance seal configurations tested by Dadkhah et al. 

(1992), and the experimental data of Daniels et al. (1992). The importance of further 

research to account for the influence of external flow was identified. 

 

2.5 EI ingress 

 

Abe et al. (1979) performed the first investigation that showed ingress could be governed 

by the external flow in the annulus rather that the rotational speed of the disc. Where in 

previous studies measurements had been made at atmospheric conditions with simplified 

geometries, the study featured actual turbine disc geometries and an external flow supply. 

The presence of 27 vanes positioned upstream of the seal clearance on the stator platform 

turned the flow approximately 50°. This created the required pressure asymmetries for EI 

ingress to take place, in the absence of rotor blades. Measurements of pressure, velocity and 

the density of propane gas were used to determine the performance of several complex rim-

seal designs. The authors concluded ingress was predominantly governed by the ratio of 

sealing to annulus air flow rate, the rim-seal clearance, and the shape of the rim-seal. Wheel-

space and disc temperatures of a real engine compared well with calculated temperature 

distribution from the experiment. The results highlighted ingress was under-predicted by 

tests conducted at atmospheric conditions and paved the way for future investigations into 

the effects of external flow. 

Phadke and Owen (1988b, c) investigated the effect on ingress in the presence of quasi-

asymmetric and non-asymmetric annular flows. In the absence of vanes and blades, these 

circumferential pressure asymmetries were created by blocking off segments of the annulus 

with honeycomb sections attached to wire mesh. Tests were conducted with three rim-seal 

geometries, including both axial and radial clearance seals, at Rew and Reϕ values up to 1.2 × 

10
6
. Three experimental criterions were used to establish Cw,min, the minimum non-

dimensional sealant flow rate required to prevent ingress. Pressure readings provided an 

indirect measurement of ingress by comparing the pressure inside the wheel-space to that 

outside in the annulus. Qualitative flow visualisation was achieved by seeding the external 

flow with smoke particles and observing the level of smoke that entered the wheel-space. 

Finally, gas concentration measurements were made with nitrous oxide at a fixed location on 

the stator wall. The three methods were found to give qualitatively similar results, although 

the pressure measurements tended to overestimate Cw,min. 
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The findings of the quasi-asymmetric experiments showed two regimes existed, a 

rotationally dominated regime at small values of Rew / Reϕ and an external flow dominated 

regime at large values. In the rotational regime, where Rew → 0, Cw,min increased with Reϕ 

(consistent with the findings of Phadke and Owen (1988a)). For the largest values of Rew, 

Cw,min was proportional to Rew and independent of Reϕ. At small values of Rew, there was a 

decrease in Cw,min with increasing Rew creating an undershoot. This behaviour was attributed 

to the sealing effect of an axisymmetric external flow. For both regimes and all seals tested, 

Cw,min increased with increasing clearance ratio, Gc. 

In Phadke and Owen (1988c), the results of tests conducted with non-axisymmetric 

external flow were presented. Variations of asymmetry were created by using different 

combinations of honeycomb mesh, which allowed the effects of pressure asymmetry to be 

separated from Rew. The results showed in the externally induced regime, Cw,min increased 

linearly with Cp,max
½
, the non-dimensional maximum circumferential pressure difference in 

the annulus. Phadke and Owen correlated their results using the following relationship: 

21

maxmin 2
/

cw, KPπGC               (2.3) 

where K is an empirical constant and:  

2

maxmax Re
2

1
wp,CP               (2.4) 

As shown by Figure 2.9, the experimental data correlated well with a value of K = 0.6. It 

was suggested a conservative estimate of Cw,min could be found by assuming the larger value 

determined for the two regimes. The results also indicated a double-shrouded radial 

clearance seal would outperform other seal geometries in minimising the amount of ingested 

fluid into the wheel-space.  
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Figure 2.9: The variation of Cw,min with 2πGcPmax
1/2 - Phadke and Owen (1988c) 

 

Hamabe and Ishida (1992) made gas concentration measurements to determine the 

sealing effectiveness in a single stage turbine rig featuring upstream stator vanes but no 

downstream rotor blades. The authors used a previously developed orifice model to predict 

the distribution of effectiveness with sealing flow rate. It was found that the shape of the 

external circumferential pressure profile affects the sealing effectiveness considerably. In the 

model, the pressure profile was estimated using three simplified wave forms, labelled A, B 

and C at the top of Figure 2.10. Although none of the estimations gave exact correlation with 

the measurements of effectiveness, the saw-tooth model (C) gave the best prediction. As 

shown in Figure 2.10, only by using the measured external pressure distribution did good 

agreement occur. It was therefore concluded that knowledge of the pressure in the annulus 

was required to accurately predict the sealing effectiveness. 
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Figure 2.10: Sealing effectiveness as a function of sealing flow parameter – adapted from Hamabe and 

Ishida (1992) 

 

A new experimental test facility at the University of Sussex was presented by Dadkhah et 

al. (1992), capable of reaching rotational Reynolds numbers of 3 × 10
6
. The rig featured 

external flow, in the absence of vanes and blades, and reversible disc assemblies to allow 

investigation into upstream and downstream wheel-space cavities. Gas concentration and 

pressure measurements took place to determine ingestion levels. The results suggested that if 

a value of ε = 0.95 could be tolerated the sealing flow rate could be reduced by as much as 

35%. Figure 2.11 shows the relative tangential velocity in the core plotted against the 

parameter λt(r/b)
-13/5

, obtained by several methods including the momentum-integral solution 

of Chew (1991). The empirical correlation shows the core rotation is completely suppressed 

at a value of 0.486, twice the free disc entrainment value.  
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Figure 2.11: Variation in relative tangential velocity of the wheel-space core flow at r/b = 0.658 and x/s = 

0.5 - Dadkhah et al. (1992) 

 

Stator guide vanes were then fitted to the Sussex rig to create pressure asymmetries in the 

annulus for the investigation of Chew et al. (1994). Once again, N2O gas concentration 

measurements were used to determine sealing effectiveness. They confirmed this 

effectiveness was dependent on the hub static pressure distribution downstream of the vanes 

for a simple axial-clearance seal. Discharge coefficients for egress and ingress were 

measured without vanes and with a stationary rotor disc. The results were used to solve a 

simple orifice model, similar to that used by Hamabe and Ishida (1992). In comparison to 

the experimental measurements, the orifice model overestimated the level of ingestion, 

possibly due to the neglect of inertial effects. Steady CFD calculations demonstrated 

encouraging agreement with experimental values, and allowed the effect of ingestion on the 

rotor side of the wheel-space to be examined. However, ingress levels at high sealant flow 

rates were under-predicted. Reasons for this were attributed to a lack of detailed modelling 

in the annulus, unsteady effects not captured by the computations and insufficient spatial 

resolution. The long term goal of unsteady calculations, including all features of the turbine 

stage was established. 

The first published experimental investigation for a turbine rig with both vanes and 

blades was presented by Green and Turner (1994). The rig was adapted from Chew et al. 

(1994), with the addition of 32 rotor blades close to the seal clearance, and the same 
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measurement techniques were employed. Surprisingly, the results showed the inclusion of 

the blades caused a reduction in ingestion rather than an increase (Figure 2.12). It was 

suggested at low sealant flow rates, the effect of the blades could be to smooth out the 

pressure asymmetries caused by the vanes, thus decreasing ingestion. The authors concluded 

that the blades, together with the vanes play an important role on ingestion, and that future 

experiments should be performed at conditions close to engine operating levels if the results 

are to contribute to design practices. 

 

  
Figure 2.12: Variation of sealing effectiveness with non-dimensional sealant flow rate for four external 

flow conditions – adapted from Green and Turner (1994) 

 

A detailed review of the hot gas ingestion mechanisms found in gas turbines was given 

by Johnson et al. (1994). Amongst the physical mechanisms discussed are: 

 Disc pumping (equivalent to RI ingress) 

 Periodic and unsteady pressure fields due to vanes and blades (equivalent to EI 

ingress) 

 Asymmetry in the seal geometry 

 Turbulent transport 

 Flow entrainment 
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Bohn et al. (1995) made pressure and velocity measurements using Laser Doppler 

Velocimetry (LDV) in a 1-stage rig complete with 30 vanes in Aachen, Germany. This high 

speed test facility was capable of operating at near engine conditions, with vane exit Mach 

numbers reaching up to 0.7 and rotor speeds of 15,000 rpm. It was shown through velocity 

measurements in the wheel-space that ingress could occur not only on the stator, but also on 

the rotor side of the wheel-space under certain conditions. Circumferential static pressure 

measurements in the annulus at three axial locations downstream of the trailing edge of the 

vanes were presented. The results showed the axial decay in magnitude of the peak-to-

trough pressure difference over two vane pitches. This was responsible for the increase in 

ingestion levels as the vanes were moved closer to the rim-seal. In addition, by comparing 

the radial static pressure distribution in the wheel-space to the average vane pitch pressure in 

the annulus, a pressure criterion, p*, was used to determine when ingress occurs. The 

measurements also showed the pressure in the wheel-space was non-axisymmetric at radius 

ratios larger than 0.972, as shown in Figure 2.13. 

 

 

Figure 2.13: Maximum circumferential pressure difference in wheel-space - Bohn et al. (1995) 

 

Hills et al. (1997) compared 3D steady CFD predictions with experimental pressure 

measurements made in the rig described by Chew et al. (1994), with redesigned guide vanes 

and pegs to represent the rotor blades. At high sealant flow rates the experimental and 
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computational results diverged; this was attributed to interaction of the sealing and 

mainstream flows. It was concluded a combined CFD calculation featuring annulus and 

cavity flows may be required to capture this effect. 

The rig at Aachen was then adapted into a 1.5 stage turbine, including 62 twisted rotor 

blades and a dynamometer to remove the excess power that was consequently generated. 

Bohn et al. (1999) used the pressure criterion, p*, and CO2 gas concentration measurements 

to determine the effects of Rew and Reϕ on the sealing effectiveness of two seal geometries 

(shown in Figure 2.14). The results showed increasing Rew had a detrimental effect on 

sealing performance for both geometries due to the increase in pressure asymmetry in the 

annulus. The effect of Reϕ was shown to be dependent on geometry. 3D numerical 

simulations performed without blades, identified Gap Recirculation Zones (GRZs) near the 

rotating disc which varied in diameter with circumferential position. 

 

 

Figure 2.14: Geometric configurations tested by Bohn et al. (1999, 2000) and Bohn and Wolff (2003) 

 

The influence of rotor blades on ingestion was examined by Bohn et al. (2000) by 

comparing their results with previous experiments by Bohn et al. (1995) without rotor 

blades. The peak-to-trough magnitude of the circumferential pressure difference in the 
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annulus, measured 1.5 mm downstream from the vane trailing edge, was larger when the 

rotor blades were present. For configuration 1, the rotor blades were shown to have a 

detrimental effect on effectiveness. However, for configuration 2, the opposite was observed 

where an improvement took place with the rotor blades included. Numerical 3D unsteady 

computations also showed an improvement in sealing efficiency when compared to steady 

calculations for the same configuration without blades. 

Khilnani and Bhavnani (2001) investigated the sealing performance of simple and engine 

realistic geometries in an external flow rig without vanes or blades. Measurements of CO2 

gas concentration and static pressure were used to determine Cw,min for a range of Rew and 

Reϕ values (Figure 2.15). The results showed good agreement with the findings of Phadke 

and Owen (1998c), although the results did not become completely independent of Reϕ due 

to the limits of Rew. The measurements were therefore said to be conducted within the 

combined ingress regime. 

 

 

Figure 2.15: Effect of Reϕ on variation of Cw,min with Rew – adapted from Khilnani and Bhavnani (2001) 

 

An unsteady CFD model simulating hot gas ingestion was presented by Hills et al. 

(2002), who showed considerably better agreement with the previously published 

experimental data presented in Hills et al. (1997), than was achieved with steady models. 

Circumferential pressure asymmetries caused by the rotating blades were shown to have a 
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large influence on ingestion despite being considerably smaller than the pressure 

asymmetries due to the stationary vanes. The authors concluded the vane only measurements 

presented in Green and Turner (1994), shown in Figure 2.12, were made in error and the 

rotor blades do in fact contribute to ingestion. The simple orifice theory model presented by 

Chew et al. (1994) was extended to include inertial effects due to swirl velocity. The model 

had some success in capturing the experimental trends. 

Bohn and Wolf (2003) developed a new approximation for sealing effectiveness based on 

Cw,min, Gc and Cp,max. CO2 gas concentration and steady pressure measurements were made 

for four different rim-seal geometries.  The correlations display a linear variation of Cw,min 

with Cp,max
½
. It was also showed that the performance of rim-seals could be ranked using 

different values of the empirical constant K, based on the least squares error when fitted to 

the experimental data (Figure 2.16). It was suggested that the single value of K = 0.6 used by 

Phadke and Owen (1988c) to correlate their data for multiple seals was overly conservative. 

The influence of vane exit angle was shown to have marginal effect on ingestion. 

 

 

Figure 2.16: Comparison of K values for different rim-seal geometries - Bohn and Wolf (2003)) 

 

Gentilhomme et al. (2003) presented measurements of ingestion in a single-stage turbine 

rig complete with vanes and blades. Two operating conditions were tested covering a wide 

range of vane exit Mach numbers. The authors concluded the amount of ingress will depend 
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on the vane, blade and seal geometries, as well as the relative location of the seal clearance. 

As shown in Figure 2.17, the sealing effectiveness data for each test condition collapsed 

with the seal gap to annulus velocity ratio, U / W. CFD predictions of pressure asymmetry at 

the seal were used in the simple ingestion model described by Hills et al. (2002). The results 

severely underestimated ingestion levels in comparison to the experimental measurements, 

and showed strong sensitivity to the swirl velocity assumed for the seal flow. 

 

 

Figure 2.17: Concentration measurements made at two operating conditions – adapted from Gentilhomme 

et al. (2003) 

 

Further 2D LDV measurements were presented by Bohn et al. (2003) with the Aachen rig 

in a new configuration featuring 16 stator vanes on either side of 32 blades. The unsteady 

measurements indicated a strong effect of both the stator vanes and rotor blades on ingestion 

in the upstream cavity. It was shown even for large sealant flow cases, ingestion occurs in 

the high pressure regions directly in front of the rotor blades. These regions intensified when 

the blades passed by the stator wake compared to the ingestion when the blades pass by the 

stator passage.  

Results of different numerical approaches were presented by Jakoby et al. (2004), using 

data from the Aachen test rig for validation. A 360° simulation of the time-dependent flow 

field, including the main gas path, was used in an attempt to find large scale structures 

discovered in the experiments. When the sealant flow rate was small enough, low-pressure 

zones, which rotated at approximately 80% of the rotor speed, were found to strongly 
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influence the hot gas ingestion. Although, with the 360° model, comparisons with 

effectiveness data were better than those achieved using sector models, the CFD still 

significantly under-predicted the ingestion. 

Cao et al. (2004) presented a combined CFD and experimental study which also featured 

an unsteady 3D 360° simulation without vanes or blades. The computations showed 

alternating regions of ingress and egress rotating at just below the rotor speed. Fast response 

unsteady pressure transducers, installed in a 2 stage axial turbine rig located in Rugby, UK, 

were used to measure the pressure in the wheel-space and confirm the CFD prediction. 

The influence of axial and radial-clearance seal geometries on ingestion into the upstream 

cavity of the new Aachen rig configuration was investigated experimentally by Bohn et al. 

(2006). Circumferential and radial distributions of pressure and CO2 gas concentration 

measurements in the wheel-space were presented for different operating conditions and 

sealant flow rates. As expected, the radial-clearance seal outperformed the axial seal in 

preventing ingestion. The radial-clearance seal measurements also indicated a compact 

rotating core extending radially outwards to the rim seal region. 

Johnson et al. (2006) used an orifice model to calculate effectiveness measurements from 

the Aachen turbine rig described in Bohn et al. (2003). They used 2D time-dependent CFD 

for the annulus hub circumferential pressure distribution in their model, which allowed the 

effects of the vanes and blades to be taken into account. A single ‘lumped’ discharge 

coefficient (Cd) of 0.4 gave good agreement with the experimental data obtained from the 

rig. The importance of the time-dependent pressure field over the rim seal on ingestion was 

shown when the vanes and blades are closely spaced. 

Roy et al. (2007) performed sealing effectiveness and Particle Image Velocimetry (PIV) 

experiments in a low-speed single-stage turbine rig at Arizona State University. Tangential 

velocity measurements showed ingress and egress occurring concurrently at different 

regions of the cavity. The results of a 3D unsteady CFD sector analysis detected large scale 

unsteady structures in the wheel-space. 

Johnson et al. (2008) modified the orifice model presented in Johnson et al. (2006) to 

include two discharge coefficients, Cd,i for ingress and Cd,e for egressing flow. Comparison 

made with sealing effectiveness data obtained from the Arizona State rig showed an 

improvement in the agreement. It was concluded the effects of swirl could be compensated 

for by adjusting the discharge coefficients, therefore it was not necessary to complicate the 

model by adding a swirl term. Figure 2.18 demonstrates the best correlation with the ASU 

single overlap seal was achieved using Cd,i = 0.2 and Cd,e = 0.27. 
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Figure 2.18: Comparison of ASU experimental data and orifice model predictions – adapted from Johnson 

et al. (2008) 

 

Further experimental measurements performed at ASU were published by Zhou et al. 

(2011). Three rim-seal configurations were tested, including a double seal, to determine the 

influence of seal geometry on ingestion. The instantaneous fluid velocity field was mapped 

using PIV at multiple circumferential positions, and CO2 gas concentration measurements 

were used to determine the effectiveness. At low sealant flow rates, the measured radial and 

tangential velocity components identified areas where ingress and egress occurred. An 

unsteady 3D CFD sector model under-predicted ingestion, as the circumferentially rotating 

low pressure zones, predicted by 360° simulations, could not be captured. 

Additional rim-seal configurations, featuring an inner labyrinth seal, were then tested by 

Balasubramanian et al. (2011) in an aft-cavity rig. The ingestion measurements indicated 

that the inner wheel-space was completely purged at the highest sealant flow rate, but 

ingress still occurred in the outer wheel-space. 

Wang et al. (2012) performed numerical simulations of the ASU rig geometry using a 

radial clearance seal and a 360° time-dependent approach. Circumferential distributions of 

ingress and egress flows in the wheel-space were found to rotate at the rotor speed. For 

lower sealant flow rates where ingestion was significant, the flows were not associated with 

the numbers of vanes or blades. Such a computationally expensive approach is time 

consuming and requires significant expertise and insight. This highlights the important role 
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experiments play not only in providing economically viable data, but also validation of these 

complicated CFD codes. 

Eastwood et al. (2012) investigated re-ingestion of sealant flow in a two stage turbine 

stator well rig at the University of Sussex. The test facility was developed to study the 

interaction of stator well cooling and main annulus air. Gas concentration measurements 

showed the amount of egress flow re-ingested into the downstream wheel-space was 

approximately 7% for the realistic sealing flow rates tested. The amount of re-ingestion 

reduced with increasing sealing flow. 

Palafox et al. (2013) discussed a new 1.5-stage hot gas ingestion rig, designed to operate 

at near-engine conditions, including representative Mach and Reynolds numbers. The rig, 

shown in Figure 2.19, is designed with the capability of providing CO2 gas concentration 

data, as well as pressure and temperature measurements. 

 

 

Figure 2.19: Section view of GE 1.5 stage hot gas ingestion rig - Palafox et al. (2013) 
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2.6 Ingestion research at the University of Bath 

 

Owen (2011a) developed a theoretical model to predict ingress through the seal clearance 

in the absence of external flow. The model was derived for compressible and incompressible 

inviscid swirling flows, and the incompressible equations were solved analytically. The seal 

clearance was treated as an orifice ring, as shown in Figure 2.20. The inflow and outflow 

areas are represented by δAi and δAe respectively. Two discharge coefficients, Cdi for ingress 

and Cde for egress, were used to account for viscous losses, similar to Johnson et al. (2008).  

 

  

Figure 2.20: Orifice model ring – Owen (2011a) 

 

To avoid using separate correlations, a new non-dimensional sealing parameter, Φ0, was 

derived which combined Cw,0, Gc, and Reϕ into a single flow parameter as follows: 

   
Ωb

U

πG

C
Φ
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w,
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0

0                          (2.5) 

where U is the bulk-mean velocity through the rim-seal clearance. 

As both Reϕ and Cw,0 include viscous terms which cancel in Eq. 2.5, Φ0 is therefore an 

inertial parameter. The sealing effectiveness is therefore defined as: 

       
ee

i

Φ

Φ

Φ
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Assuming that the effect of the external swirl, β2, was negligible (as shown by Graber et 

al. (1987)), the relationship between Φ0 and ε was shown to be a function of the minimum 

Φmin,RI and Γc, the ratio of the discharge coefficients. The definitions of both are as follows: 

d,e

d,i

c
C

C
Γ                (2.7) 

and 
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where Cβ1 is the modified internal swirl ratio, defined as: 
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For the basic theory case where Cde = Cdi (Γc =1), and assuming Φmin,RI = 0.097, 

equivalent to the Bayley-Owen Criterion (calculated from Eq. 2.1), good agreement was 

found in comparison with the data of Graber et al. (1987). The theoretical overestimate of 

effectiveness as Φ0 → Φmin,RI was attributed to the effect of diffusion, which the model did 

not take into account.  

Owen (2011b) extended the orifice model theory to cover externally induced ingress and 

combined ingress. The EI and combined orifice equations were derived from first principles, 

for compressible and incompressible inviscid swirling flow. Just as in Johnson et al. (2008), 

two empirical discharge coefficients, Cd,i and Cd,e for ingress and egress respectively, were 

used to account for viscous losses. To allow the equations to be solved analytically, a ‘saw-

tooth’ profile was assumed for the circumferential variation in the annulus. For EI ingress 

with negligible external swirl (i.e. β1 = β2 = 0), the variation between of ε with Φ0 was shown 

to depend only on two parameters Φmin,EI and Γc, where: 

21

min
3

2 /

pd,e,EI ΔCCΦ             (2.10) 

and 

22

2

1
bρΩ

Δp
ΔC p             (2.11) 

where Δp was the peak-to-trough circumferential pressure difference in the annulus. 
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Figure 2.21: Arbitrary circumferential variation of pressure and radial velocity in external annulus - 

Owen (2011b) 

 

The combined ingress orifice equations were solved for negligible external swirl to give 

the following ratio between the minimum sealant flow to prevent ingress for the combined 

and rotationally induced cases: 

Δp

/
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                      (2.12) 

where the external pressure parameter is defined as: 

1β

p

Δp
C

ΔC
Γ              (2.13) 

Flow conditions in the combined ingress regime are such that neither RI nor EI ingress 

dominate. The solution of the orifice equations in Figure 2.22 shows the transition between 

the EI and RI asymptotes as amplitude of the circumferential variation in pressure (ΓΔp
½
) 

increases. 
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Figure 2.22: Theoretical variation of Cw,min,com / Cw,min,RI with ΓΔp
½ according to Eq. 2.12 - Owen (2011b) 

 

The EI orifice model was compared with the experimental data and numerical models of 

Johnson et al. (2006) and Johnson et al. (2008). Using equal discharge coefficients (Γc = 1), 

the agreement between theory and data was good. This assumption however, was not 

expected to provide a good fit for all experimental data, therefore a least-squares fit was 

recommended for future comparisons to determine Γc. Insufficient published data was 

available to validate the combined ingress theory. 

Sangan et al. (2013a) presented an experimental study of EI ingress using the 1-stage 

facility described in Section 3. Measurements of CO2 gas concentration were made at the 

design condition for two generic rim-seal geometries. 

The authors used the EI orifice model developed by Owen (2011b) to form an explicit 

relationship between Φ0 and ε: 

  233232
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


          (2.14) 

This is known as the EI effectiveness equation. The model therefore provides an estimate 

of Φmin,EI from experimental data without any knowledge of the pressure distribution in the 

annulus, or the associated rim-seal discharge coefficients, making it a powerful tool for rim-

seal design.  

The non-dimensional ingress flow into the wheel-space, Φi, was determined from the 

measurements of Φ0 and ε using: 
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)(εΦΦi 11
0              (2.15) 

By combining Eqs. 2.14 and 2.15: 
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Figure 2.23 shows the comparison between the experimental data and the theoretical 

variation of effectiveness, determined by Eq. 2.14, for the axial-clearance seal. For the 

design condition the data are shown to be characterised by Φmin,EI, which is independent of 

Reϕ. The ingested flow rate was also presented as Φi,EI, along with the theoretical variation 

obtained using Eq. 2.16. The results showed the agreement between the optimum theoretical 

curves and the experimental data was very good. The radial-clearance seal was found to 

require 26% of the sealing flow rate to prevent ingestion compared to the axial-clearance 

seal. 

 

 

Figure 2.23: Comparison between theoretical effectiveness curves and experimental data for axial-

clearance seal - Sangan et al. (2013a) 

 

Sangan et al. (2013b) measured the variation of ε with Φ0 for three values of Reϕ under 

RI ingress conditions. The same rim-seal geometries were used as Sangan et al. (2013a). The 

RI orifice model developed by Owen (2011a) was used to form an explicit relationship 

between Φ0 and ε for the rotationally induced case: 
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            (2.17) 

This is known as the RI effectiveness equation. 

Once again in combination with Eq. 2.15, the non-dimensional ingress flow into the 

wheel-space for RI ingress can be derived from Eq. 2.17: 
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As shown in Figure 2.24, the ratio of Φmin,EI / Φmin,RI was determined as 3.9 for the axial 

seal and 2.9 for the radial-clearance seal. 

 

 

Figure 2.24: Comparison of sealing effectiveness for EI and RI ingress - Sangan et al. (2013b) 

 

Zhou et al. (2013a) developed a statistical fitting technique based on a maximum 

likelihood method to determine the optimum values of Φmin,EI, Φmin,RI and Γc in order to fit 

the solutions of Eqs. 2.14 and 2.17. It was shown that the model required a minimum of 16 

data points to give acceptably close agreement with ‘true values’ in over 90% of the cases. 

The fitting error, σ, in addition to the 95% confidence limits for all three variables were 

calculated in the technique. 
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Owen et al. (2012a) compared sealing effectiveness values determined from the saw-

tooth model for EI ingress with experimental data from Johnson et al. (2006). In addition, 

steady 3D CFD was used to compute the effectiveness at several values of sealing flow rate. 

The computations in Figure 2.25 shows how the value of ΔCp varied throughout the annulus.  

The normalised axial and radial locations, x and y, used in this figure were defined as: 

innerouter

inner

c rr

rr
y

s

z
x




 ,2                     (2.19) 

where rinner and router are the inner and outer radii, respectively, of the external annulus.  

Locations of mathematical consistency were shown to exist, where the normalised 

pressure difference across the seal with no sealant flow, g*, is consistent for the orifice 

model fit and the computations of pressure. The red dotted lines show the ‘sweet spot’ 

locations in the annulus where this consistency criterion is satisfied exist near the upstream 

and downstream edges of the seal clearance. 

 

 

Figure 2.25: Close-up of contours of ΔCp computed near seal clearance, dotted line corresponds to locus 

where the consistency criterion was satisfied - Owen et al. (2012a) 

 

The combined ingress equations were validated by Owen et al. (2012b), using the data of 

Phadke and Owen (1998c). The agreement between the CI equation and the experimental 

data for an axial-clearance seal is shown in Figure 2.26. It was suggested, based upon the fit 

of the EI asymptote to data, that EI ingress occurs for Cw,min,CI / Cw,min,RI = Φmin,CI / Φmin,RI > 2, 

and below this value the effects of rotation cannot be ignored. 
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Figure 2.26: CI equation fitted to data of Phadke and Owen (1998c), CI fit is Eq. 2.12, EI asymptote is Eq. 

2.10, and RI asymptote is Eq. 2.8 - adapted from Owen et al. (2012b) 

 

Teuber et al. (2012) investigated the extrapolation of sealing effectiveness from 

experimental test rigs to gas turbine engine conditions. A scaling method was proposed to 

allow sealing flow rates to prevent ingestion, measured at incompressible flow conditions, to 

be extrapolated to engine-representative Mach numbers. The authors showed that, by 

correcting ΔCp and assuming that the discharge coefficients are unaffected by Mach number,  

the sealing effectiveness, εc, determined by concentration measurements in an experimental 

rig at one Mach number, could be used to compute the effectiveness in an engine at another 

Mach number. Their suggested correction for Φmin is: 
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where the ratio on the RHS of Eq. 2.19 is determined from the ratio of the Mach numbers. 

However, unless the location of the ‘sweet spot’ is known, where the consistency criterion is 

satisfied, the effectiveness cannot be related to the pressure differences in the engine. This 

makes the method of limited use to designers. 
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Figure 2.27: Variation of adiabatic and concentration effectiveness with non-dimensional sealing flow 

parameter – Pountney et al. (2013) 

 

Pountney et al. (2013) made temperature measurements on the rotor side of the wheel-

space using thermochromic liquid crystal (TLC), to determine the convective heat transfer 

coefficient, h, and the adiabatic surface temperature, Tad. An adiabatic effectiveness, εad, was 

defined for the rotor surface and from this a thermal buffer ratio, η, was derived as the ratio 

of Φmin,c to Φmin,ad. Results for a mitred seal configuration, presented in Figure 2.27, showed 

the adiabatic effectiveness on the rotor, εad, was significantly higher than the sealing 

effectiveness determined by concentration, εc, and consequently η = 2.09. 
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2.7 Summary 

 

In conclusion this chapter has identified the most prominent literature relevant to the 

ingestion problem. It was shown the phenomenon can be categorised into three subsets: 

rotationally induced, externally induced and combined ingress. Although extensive research 

into RI and EI ingress exists, little experimental and theoretical consideration has been 

afforded to the scenario when the effects of both are significant. Combined ingress is of 

practical importance for gas turbines that regularly operate at off-design conditions, as well 

as in double seals where the pressure asymmetries that usually lead to externally induced 

ingress are damped out in an outer wheel-space, causing combined ingress to dominate 

across an inner seal. 

Figure 2.28 shows the operating capabilities of current test facilities performing research 

into hot gas ingestion, many of which feature in this chapter. The operating points shown for 

each rig represent the test conditions found in the published literature and not the limitations 

of each individual facility. It should be noted this figure was produced using the definition of 

Rew found in the nomenclature of this thesis, based on the characteristic disc radius, b. Using 

this definition, the flow coefficient CF, analogous to the ratio Rew / Reϕ, of the Bath single 

stage test rig is also plotted. The facilities that lie above this line correspond to a larger 

operating flow coefficient, and those that lie below equate to smaller flow coefficients. The 

figure shows that all the test facilities operate at similar flow coefficients.  

Typical rotational Reynolds numbers found in gas turbine engines are of the order 2-3 × 

10
7
 (Childs (2011)). From Gentilhomme (2004), a typical design point flow coefficient for 

an industrial gas turbine is around CF = 0.6, resulting in an axial Reynolds numbers of 1.2-

1.8 × 10
7
.  
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Figure 2.28: Operating capabilities of current rotating wheel-space test facilities 

 

Other researchers have used alternative definitions of Rew when presenting their work, 

usually based on vane axial chord length or vane exit velocity. Figure 2.29 shows the 

operating capabilities of the test facilities using the following definition of Rew: 

μ

ρWc x*

w Re                 (2.21) 

Using this definition has allowed the new Penn State research rig to be included for 

comparison. This is a 1.5 stage facility currently under construction that can operate at near 

engine conditions, similar to the GE Global rig presented by Palafox et al. (2013). The 

reduction in axial Reynolds number capability for the Bath rig using this definition is due to 

the comparatively small axial size of the vane aerofoils used (cx). Although Figure 2.23 and 

Figure 2.29 do not demonstrate a comparison of the complete individual rig capabilities, 

they do give an indication of the philosophies adopted by each research group. 
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Figure 2.29: Operating capabilities of current rotating wheel-space test facilities – alternative definition of 

Rew used 

 

In practice it is uneconomical and sometimes impossible to make meaningful 

measurements using full size gas turbine replicas operating at real engine conditions. 

Consequently, research is often conducted using scaled test rigs to model the fluid dynamic 

behaviour at a more benign environment. Experiments using simpler geometries than those 

found in real engines are used to further understand the fundamental fluid dynamic 

principles involved. From these experiments, accurate results can be used to determine 

design criteria that can be scaled to engine operating conditions through the use of 

theoretical models. The experimental measurements also provide valuable CFD validation 

data. This allows for greater confidence to be gained when extrapolating results from 

computational codes to real life engine scenarios. 
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Chapter 3: Experimental measurements of 

ingestion through single and double rim seals 

 

This chapter presents concentration sealing effectiveness measurements, pressure and 

swirl ratio measurements made experimentally using the University of Bath single-stage rig, 

for three rim seal geometries at EI and RI ingress conditions. Details of the test geometry, 

experimental operating conditions, concentration and pressure measurement techniques are 

all discussed in detail prior to the presentation of the experimental results. Finally, 

experimental uncertainty levels and practical implications are considered. The author of this 

thesis conducted all the experimental testing and analysis involved in this chapter. 

 

3.1 Experimental test rig 

 
This section summarises the University of Bath single-stage experimental gas turbine test 

facility. For a full description of the design and commissioning of this facility, the reader is 

directed towards Sangan (2011).  

 

3.1.1 Test section 

 
The 1-stage test rig experimentally simulates hot gas ingestion into the wheel space of an 

axial turbine stage. The test section of the facility, shown in Figure 3.1, features a single 

turbine stage with 32 vanes and 41 blades. The disc to which the blades were attached could 

be rotated by an electric motor. To avoid the necessity of a dynamometer to extract excess 

power, the blades were symmetric NACA 0018 aerofoils.  

The vanes and blades, formed from nylon by rapid-prototyping, were secured to 

aluminium platforms which form the periphery of the stator and rotor respectively. Both the 

stationary and rotating discs (highlighted in red and blue, respectively, in Figure 3.1) were 

manufactured from transparent polycarbonate to allow optical access to the wheel-space for 

the application of thermochromic liquid crystal (TLC). The characteristic radius of the 

facility, b, measured from the centreline to the inside of the stator shroud was 190 mm. 
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Figure 3.1: 1-stage rig test section showing turbine stage - the stator is shown in red and the rotor in blue 

 

Displacement transducers were used to measure the axial deflection of the disc. The axial 

clearance of the seal was found to increase slightly when under rotation and when sealing 

flow pressurised the wheel-space, but at the maximum value of sealant flow tested the axial 

deflection was < 8% of the clearance. Displacement transducers were also used to measure 

the radial growth of the disc, rotor platform and radial-clearance of the seal under rotation. 

In all cases, the measured radial growth agreed with FEA predictions and was found to be 

linearly proportional to the square of the disc speed. 

Compressed air is supplied to the rig for the external flow via a radial diffuser and 32 

feed pipes (one per stator vane). The static pressure of the air in each feed pipe was 

measured to be axisymmetric to within ± 5%. The pipes in turn supplied a convergent 

transition section which fed into the test section annulus. The height of this annulus, h, was 

limited to 10 mm in order to create the necessary flow velocities at the design point for the 

largest rotational speed. Sangan (2011) estimated the boundary layer thickness to be 3.47% 

of the total flow area through the annulus using the one-seventh power law approximation. It 

was therefore concluded that a substantial amount of the ingestion into the wheel-space 

came from the mainstream flow rather than the boundary layer. 

Figure 3.1 shows the different mass flows involved in the experiment. Both the sealant 

and external mass flow rates were measured using orifice plates manufactured to EN ISO 

5167-2. The orifice plates were calibrated using a Rotameter to within ± 3% uncertainty.  
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Figure 3.2: 1-stage rig test section showing sealing and mainstream flows- the stator is shown in red and 

the rotor in blue 

 

The vanes and blades in the annulus produced a flow structure representative of those 

found in engines, albeit at lower Reynolds and Mach numbers. With reference to the 

velocity triangle in Figure 3.3, the air leaves the vane at an angle α with a velocity C and 

corresponding Mach number M = C/a. The design condition vane exit and blade inlet angles 

were determined from CFD analysis performed by Siemens as α = 73.5° and β0 = 56.7° 

respectively. From Saravanamuttoo et al. (2009): 

0,

0

1
tantan

FC
                     (3.1) 

which resulted in a design point flow coefficient (CF,0 = Rew / Re) of 0.539, where Rew is the 

Reynolds number based on the axial component of velocity in the annulus.  

The disc could be rotated up to speeds of 4000 rpm, providing a maximum 

rotational Reynolds number, Re (based on disc radius) up to 1.1 × 10
6
. This value is 

typically an order-of-magnitude less than that found in gas turbines. However, for 

rotating flow the turbulent flow structure in the boundary layers is principally 
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governed by the turbulent flow parameter, λT, and depends only weakly on Re 

[Owen and Rogers (1989)]. Hence the flow structure in the rig is considered to be 

representative of that found in the cooling systems of engines. 

 

 

 

Figure 3.3: Profiles and velocity triangles for vanes and blades 

 

Table 3.1 details the operating conditions at the three on-design rotational speeds tested. 

The flow exiting the vanes is virtually incompressible and near atmospheric pressure; the 

density, ρ, speed of sound, a, and air viscosity, μ, are determined from the static temperature 

and pressure measured inside the wheel-space on the stator at r/b = 0.993. 

Parameter Disc Speed (RPM) 

2000 3000 3500 

α 73.5° 

β0 56.7° 

Rew/ Reϕ 0.538 

Reϕ 5.32 × 10
5
 8.17 × 10

5
 9.68 × 10

5
 

Rew 2.86 × 10
5
 4.40 × 10

5
 5.21 × 10

5
 

Ωb 39.8 m/s 59.7 m/s 69.6 m/s 

ṁa 0.33 kg/s 0.49 kg/s 0.58 kg/s 

W0 21.5 m/s 32.2 m/s 37.6 m/s 

V0 39.1 m/s 58.6 m/s 68.4 m/s 

C 75.5 m/s 113.3 m/s 132.2 m/s 

M 0.225 0.339 0.398 
 

Table 3.1: Operating conditions for the three on-design rotational speeds 
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The axial spacing between the vane trailing edge and the blade leading edge was 12 mm, 

equivalent to 0.52 vane axial chords. The rim-seal clearance was 2 mm and located 

equidistant between the vane and blade. To take into account of radial growth under rotation, 

the rotor disc was designed with a 0.4 mm radial step. A chamfer was also machined onto 

the leading edge of the rotor shroud to prevent flow impingement. 

 

Figure 3.4: Simplified diagram of massflows and concentrations in test section for axial-clearance seal 

 

The effectiveness ε used in the Bath theoretical orifice model is based on the ratio of the 

isentropic massflow rates of ingress and egress. The model ignores the friction, diffusion, 

heat transfer and mixing that occurs in the physical world. The term theoretical effectiveness 

is therefore used here for ε, which with reference to Figure 3.4 is defined as: 
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1               (3.2) 

where the subscripts e, i and 0 denote the egress, ingress and sealing flows respectively. It 

follows that the sealing effectiveness equals unity when the ingress is zero, and equals zero 

when there is no sealing flow. Expressed in terms of the flow parameter Φ, Eq. 3.2 becomes: 
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ΦΦ
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
1               (3.3) 

It is difficult (and unnecessary) to determine ε experimentally; instead gas concentration 

measurements can be used to determine the concentration effectiveness, εc. 
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3.1.2 Concentration measurements 

 
To measure the degree of ingestion, the sealant air was seeded with approximately 1% 

CO2 and introduced into the wheel-space at a low radius (r/b = 0.642) through an inlet seal. 

The concentration of CO2 was monitored at the entrance to the wheel-space, c0, and in the 

unseeded upstream flow through the annulus, ca. The variation of concentration cs with 

radius (0.55 < r/b < 0.993) along the stator in the wheel-space was determined by sampling 

through 15 tubes of diameter 1.6 mm (shown in Figure 3.5). The gas was extracted by a 

pump, which delivered the samples to a Signal Group 9000 MGA dual channel infrared gas 

analyser. The analyser was calibrated using an alpha-grade pure N2 as zero-gas and a 3% 

CO2 in N2 as the span-gas; this enabled a linear calibration of the analyser to take place. The 

pump was set to 0.3 l/min (equivalent to 0.000006 kg/s), which was the minimum sampling 

flow rate possible. In comparison, the sealant flow rate (ṁ0) was varied between 0.001-0.07 

kg/s therefore the disturbance to the boundary layer was deemed negligible.  

Concentration sealing effectiveness, εc, was therefore determined from the CO2 

concentration measurements on the stator wall using the following equation: 

ao

as
c

cc

cc




                  (3.4) 

For consistency with Eqs. 3.2 and 3.3, εc = 1 when cs = c0 (zero ingress) and εc = 0 when cs = 

ca (zero sealing flow). 

The definition of effectiveness used in the orifice model is based upon the pressure 

difference between the annulus and wheel-space. The model does not consider diffusion 

resulting from the concentration difference across the rim-seal. It was assumed that the 

diffusion term was small and that εc = ε; this allowed the orifice equations to be fitted to the 

measured variation of εc with Φ0. 
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Figure 3.5: Rig test section showing concentration measurement locations - red represents stationary 

components, blue rotating 

 

3.1.3 Pressure measurements 

 
Steady pressure measurements were made at various locations in the test rig using a 

Scanivalve
©
 system with Druck PDCR 22 transducers. The circumferential variation of static 

pressure in the annulus was measured at two locations: location A, on the stator shroud hub 

2.5 mm downstream of the trailing edge of the vane; and B, in the outer casing above the 

centre-line of the seal clearance. At both locations the variation of static pressure was 

determined from 15 taps, each of 0.5 mm diameter, equally spaced across a single vane pitch 

(0 < θ < 1), as shown in Figure 3.3 and Figure 3.6. Data for location A was averaged over 

four vane pitches at 90° separations. 

 

 

Figure 3.6: Rig test section showing pressure measurement instrumentation and typical pressure 

asymmetry in the annulus 
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The pressure coefficient, Cp, is defined as:  

222/1 b

pp
C aa

p






                (3.5) 

where pa is the local static pressure at the normalised angular measurement location between 

vanes, θ, and ap  the mean pressure across this pitch. The variation of Cp with θ at location 

A is plotted in Figure 3.7 for the design condition with Reϕ = 8.17 × 10
5
 and zero sealant 

flow. i.e. Φ0 = 0.  

 

Figure 3.7: Circumferential distribution of Cp over non-dimensional vane pitch at design condition 

 
It should be emphasised that this distribution is measured at an arbitrary location in a single 

stage rig with symmetrical rotor blades. It is expected that the inclusion of realistic turned 

blades would have had an effect on this pressure variation due to a stronger bow wave 

interaction from the rotor blades. 

EI ingress is related to the non-dimensional pressure difference in the annulus, ΔCp, 

where: 

222/1 b

p
C a

p






              (3.6) 

Δp being the peak-to-trough static pressure difference. From Figure 3.7, this non-

dimensional driving potential ΔCp is equal to 0.82. Sangan et al. (2011) showed that ΔCp 

decreases slightly as the flow rate of sealing air increases. For the saw-tooth orifice model 
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derived by Owen (2011b), the sealing parameter for necessary to prevent EI ingress, Φmin,EI 

is related to ΔCp by: 

2/1

,min,
3

2
pedEI CCΦ               (3.7) 

where Cde is the discharge coefficient for egress through the rim-seal. For mathematical 

consistency in the EI orifice model, it is necessary that there is zero ingress when ΔCp = 0. 

However, as ΔCp will depend on where in the annulus it is measured, caution must be taken 

when comparing values from different studies. 

Static pressure was also measured in the wheel-space at the same radial locations as the 

concentration measurements in order to determine the wheel-space fluid dynamics. Seven 

total pressure probes (shown in Figure 3.6) positioned at an axial position of z/s = 0.25 away 

from the stator disc were used to measure the variation of tangential velocity with radius. 

The swirl ratio of the fluid in the inviscid core between the boundary layers in the wheel-

space is defined as: 

r

V





               (3.8) 

were Vϕ is the tangential component of velocity in the core. In a rotating inviscid fluid the 

radial component of velocity must be zero and the axial gradients of the axial and tangential 

components of velocity must also be zero. All radial flow occurs inside the boundary layers, 

and the value of β adjusts to satisfy the continuity of the flow rate in the boundary layers. 
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3.2 Single rim-seal 

 

3.2.1 Geometry of single seal 

 
The geometry and static dimensions of the single radial-clearance rim seal are shown in 

Figure 3.8 and Table 3.2. This seal was bolted into the underside of the rotor shroud forming 

a seal lip positioned at a smaller radius than the stator shroud. A thumb-nail sketch of the 

seal configuration and measurement location (denoted by the white circle) is shown. It 

should be noted that the external flow is from left to right, i.e. from the stator towards the 

rotor. The seal-clearance ratio, Gc = sc,ax / b = 0.0105 used in Eq.2.5 for all seal geometries, 

is based on an static axial clearance sc,ax of 2 mm. 

 

 

Figure 3.8: Geometry of radial-clearance seal  

 

 

 

 

 

Geometric Symbol Dimension 

h 10 mm 

b 190 mm 

S 20 mm 

sc,ax 2 mm 

sc,rad 1.28 mm 

soverlap 1.86 mm 

Table 3.2: Dimensions of radial-clearance seal 
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3.2.2 Experimental results of single seal 

 

 

Figure 3.9: Variation of εc with Φ0 for radial-clearance seal: EI and RI ingress (Symbols denote data; lines 

are theoretical curves) 

 

For the results in Figure 3.9, the effectiveness values were based on the concentration 

measurements made on the stator surface at r/b = 0.958. The figure illustrates that εc 

increases with increasing Φ0, as the sealing flow pressurises the wheel-space and reduces 

ingestion through the rim-seal. The data collapses onto a single curve, which is independent 

of rotational Reynolds number, Reϕ. The sealing effectiveness for the RI case is significantly 

greater than that for the EI case; i.e. for the same sealing flow rates, EI ingress causes much 

more ingestion. The RI tests were conducted with the inlet to the annulus closed but with the 

outlet open to the atmosphere. As the stationary vanes and rotating blades were still present 

in the annulus, rotation would have created swirl in the external fluid. However, as found by 

Graber et al. (1987), the external swirl did not appear to affect RI ingress, as confirmed by 

the collapse of the data in Figure 3.9 with rotational speed. The EI tests were conducted by 

adjusting the mainstream mass flow rate to maintain balanced velocity triangles for each 

rotational speed, as shown in Figure 3.3. 
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The theoretical effectiveness curves were based on Eqs.2.14 and 2.17, and were fitted to 

the data based on the maximum likelihood method described by Zhou et al. (2013a). The 

estimated values of Φmin and Γc and their 95% confidence intervals are shown in Table 3.3 

for both the EI and RI data. Also shown is the standard deviation, σ, between the data and 

the fitted curves. The ratio of Φmin,RI/Φmin,EI is approximately 39%. 

 

 

 

 

 

Both sets of data show very good agreement between the theoretical curves and the data, 

as highlighted by the relatively small values of σ in Table 3.3. It can be seen from Table 3.3 

that the confidence intervals are around 10% of the estimated value of Φmin for both cases. 

As Figure 3.9 shows, it is very difficult to determine the precise value of Φ0 when ε first 

equals unity, and there is a consequential uncertainty in the determination of Φmin. The value 

of Φ0 at ε = 0.95 has a smaller associated uncertainty, and there is a case for using this rather 

than Φmin as a design criterion for RI and EI ingress. 

Parameter EI RI 

Φmin 0.0934 0.0361 

Φmin
-
 0.0882 0.0330 

Φmin
+
 0.100 0.0407 

Γc 1.17 0.305 

Γc
-
 0.928 0.254 

Γc
+
 1.45 0.354 

σ 0.0185 0.0131 

Table 3.3: Parameters for radial-clearance seal at EI and RI ingress conditions 
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Figure 3.10: Effect of sealing flow rate on radial distribution of effectiveness 

 

Figure 3.10 shows the radial variation of εc on the stator surface for tests at Reϕ = 8.17 × 

10
5
. The tests were conducted for several values of Φ0/Φmin and λT; in all cases ingress 

occurred. As expected, εc increases as Φ0/Φmin increases. For all sealant flow rates the 

effectiveness is broadly invariant with radius for r/b > 0.65, suggesting that near-complete 

mixing has occurred in a region very close to the rim-seal. If the flow was not fully mixed 

then there would be concentration gradients in the stator boundary layer and consequently a 

radial variation. The rapid increase in εc at the smaller radii is caused by the presence of the 

inner seal, which prevents or strongly reduces the ingestion of fluid into the region where the 

sealing flow is introduced.  
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Figure 3.11: Effect of sealing flow rate on radial distribution of swirl ratio and static pressure coefficient 

for radial-clearance seal (Symbols denote measured values; lines denote fitted distribution for β and 

calculated distribution for Cp) 

 

Figure 3.11 illustrates the variation of swirl ratio and static pressure coefficient in the 

wheel-space with non-dimensional radius at Reϕ = 8.17 × 10
5
 for several values of λT and 

hence Φ0. The measurement points for the total pressure in the wheel-space (at z/S = 0.25) 

are also shown on the silhouette in the middle of the figure. In all cases ingress occurred 

with an annulus swirl ratio, βa = 1.8, determined from the isentropic velocity triangle shown 

in Figure 3.3. For λT = 0, there is no superposed flow and the core rotation β = 0.44 is 

observed for r/b < 0.8, in agreement with Daily et al (1964). The swirl ratio at the larger 

radii outside of the core region increases radially outward with the influence of highly 

swirling ingested flow. The case λT = 0 has the maximum ingress and the concentration 

effectiveness everywhere in the wheel-space is zero. Increasing the sealing flow caused a 

reduction in the core rotation as the wheel-space is pressurised. The level of swirl at the 

periphery of the wheel-space also reduced as the increased sealant flow decreased ingestion 

from the annulus.  
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Consider now the variation of Cp in the wheel-space, shown on the right hand side of 

Figure 3.11. For a rotating inviscid core, the radial momentum equation reduces to a balance 

between the pressure force and the centripetal acceleration so that: 

r

V

dr

dp
2

1 


                           (3.9) 

Using the definitions of Cp and β, Eq. 3.9 can be integrated to give: 


x

x

dxx=
bΩρ.

p-p
=C

ref

ref

p
2

22
2

50
            (3.10) 

where pref is the pressure at x = r/b = xref; for the results presented here, xref  = 0.6. The 

numerical integration was carried out using Simpson’s rule, with values of β obtained from a 

least-squares cubic spline fitted to the experimental data. 

The results show very good agreement between the calculated and measured distributions 

of Cp. This shows that the radial distribution of the swirl ratio determines the radial 

distribution of pressure in the wheel-space. 

In an engine, the pressure distribution at the inlet to the wheel-space is fixed by the outlet 

pressure of the compressor and by the flow rate of the sealing air. For given conditions, the 

distribution of swirl and pressure in the wheel-space is also fixed by the flow rate, and as 

shown this determines the pressure near the outlet of the wheel-space. In principle therefore, 

if the variation of the swirl ratio with flow rate were known, the sealing effectiveness could 

be calculated. 
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3.3 Double rim seal 

 
This section assesses the performance of a double radial-clearance seal. For turbine 

applications, the advantage of a double seal is that the annular cavity (or outer wheel-space) 

between the inner and outer seals acts as a damping chamber so that the circumferential 

pressure differences generated in the annulus are attenuated (as highlighted in Figure 3.12). 

The amount of sealing air required to prevent ingress through the inner seal (into the inner 

wheel-space) is therefore significantly less than that required for a single seal. If the pressure 

asymmetry in the outer wheel-space is eliminated, EI ingress will dominate for the outer seal 

and RI ingress for the inner one. 

 

 

Figure 3.12: Variation of static pressure in a turbine annulus. Red and blue indicate regions of high 

pressure and low pressure with respect to the wheel-space, respectively. For the double rim-seal shown, 

the pressure asymmetry is attenuated in the outer wheel-space between the two seal clearances.  
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3.3.1 Definitions of sealing effectiveness for double seals 

 

 

Figure 3.13: Simplified diagram of massflows and concentrations in test section for double seal 

 

Figure 3.13 illustrates a double seal with inner and outer radii b' and b and clearances sc' 

and sc respectively, where primes are used to denote the inner seal. The concentrations c0, c1, 

c2 and c3 refer respectively to the concentration at positions at inlet, the stator at location 1 in 

the inner wheel-space, the stator at location 2 in the outer wheel-space, and the annulus at 

location 3. 

There are several ways of defining the concentration effectiveness for the double seal. 

For example, the inner seal could have a concentration effectiveness εc,12 = 0 when c1 = c2 

and εc,12 = 1 when c1 = c0. Hence, for the inner seal: 

20

21
12,

cc

cc
c




             (3.11) 

For the outer seal, it could be assumed that εc,23 = 0 when c2 = c3 and that εc,23 = 1 when c2 

= c0. Hence, for the outer seal:  

30

32
23,

cc

cc
c




             (3.12) 

For the combined seals, it could be assumed that εc,13 = 0 when c1 = c3 and that εc,13 = 1 

when c1 = c0. Hence, for the combined seals:  
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31
13,

cc

cc
c




             (3.13) 

However, for the theoretical effectiveness based on the non-dimensional flow parameter, 

as shown in Eq. 3.3 for a single seal, there are only two appropriate definitions of 

effectiveness: 

  
i

c





0

0
23,                     (3.14) 
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             (3.15) 

where Φi and Φi' are the respective non-dimensional ingress flow parameters for the outer 

and inner seals. This creates a paradox as there are now more definitions for εc than for ε. To 

understand this paradox, it can be shown for Eqs. 3.11 to 3.13 that: 

23,

23,13,

12,
1 c

cc

c








                   (3.16) 

For the general case of Φ0 < Φmin, Eq. 3.16 implies that εc,12 ≠ εc,13. This in turn means 

that these definitions produce two different values of Φi', the ingress parameter for the inner 

seal. This is physically impossible therefore Eqs. 3.11 and 3.13 are inconsistent.  

From a physical, rather than a theoretical point of view, there is another factor. There 

may be differences between the concentration measured on the stator and that which exists 

elsewhere in the wheel-space. Therefore although c2 might be the correct concentration to 

determine ingress through the outer seal, there is no reason to believe that it is the 

appropriate value for ingress through the inner seal. Because of this, only Eq. 3.13 is used 

for comparison of the performance of different double seals. 
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3.3.2 Geometry of double seal 

 
A secondary inner radial-clearance seal was added to the single radial-clearance seal 

configuration to form the double seal shown in Figure 3.14. One advantage of this double 

seal design is that it can be assembled from both the axial and radial directions. For double 

seals, the effectiveness was determined in the inner wheel-space at r/b = 0.85 and in the 

outer wheel-space at r/b = 0.958. 

 

 

Figure 3.14: Geometry of double radial-clearance seal 

 

 

 

 

 

 

 

 

 

Geometric Symbol Dimension 

h 10 mm 

b 190 mm 

S 20 mm 

t 5 mm 

sc,ax 2 mm 

sc,rad 1.28 mm 

soverlap 1.86 mm 

hbuffer 16.5 mm 

Table 3.4: Dimensions of double radial-clearance seal 
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3.3.3 Experimental results of double seal 

 

 

Figure 3.15: Variation of εc with Φ0 for single and double radial-clearance seals: EI ingress (Symbols 

denote data; lines are theoretical curves) 

 

 

 

 

 

 

Figure 3.15 shows the variation of measured concentration effectiveness for the double 

radial-clearance seal plotted versus Φ0 for EI ingress. As before, EI measurements were 

made at three values of Reϕ corresponding to the operational design points listed in  

Table 3.1. Also shown is the theoretical variation of effectiveness according to Eq.2.14; 

again the agreement between the optimised theoretical curves based on the method described 

by Zhou et al. (2013a) and the experimental data is very good despite the complexity of the 

fluid dynamics in the annulus and wheel-space. The values for Φmin,EI and Γc, as well as their 

Parameter EI Inner EI Outer 

Φmin 0.0455 0.0932 

Φmin
-
 0.0435 0.0885 

Φmin
+
 0.0433 0.0977 

Γc 0.745 1.54 

Γc
-
 0.619 1.28 

Γc
+
 0.868 1.91 

σ 0.0097 0.0179 

Table 3.5: Parameters for inner and outer wheel-spaces for double radial-clearance seal at EI ingress 

conditions 
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upper and lower bounds and the standard deviation between the equation and the data, are 

shown in Table 3.5 for both the inner and outer wheel-spaces. The ratio of sealant flow rate 

required to seal the inner wheel-space of the double radial-clearance in comparison to the 

outer wheel-space seal was approximately 49%  

Figure 3.15 also includes the data for the single radial-clearance seal, previously shown 

in Figure 3.9. The data for the double seal is presented in terms of εc,23 and εc,13 according to 

Eqs. 3.14 and 3.16 respectively. Both the outer seal, with effectiveness εc,13, and the inner 

seal, with effectiveness εc,23, are shown to be individually characterised by a unique value of 

Φmin,EI which is independent of Reϕ. In the outer wheel-space of the double seal the 

effectiveness is virtually the same as the single seal results for the whole range of sealing 

flow rates tested; i.e. εc,23 for the double seal is virtually equal to εc for the single seal. 

However, in the inner wheel-space of the double seal the effectiveness is significantly 

higher, meaning εc,13 > εc,23. From the respective values of Φmin,EI in Table 3.5, sealing the 

inner wheel-space requires approximately 50% of the air required to prevent ingress through 

the outer seal.  

 

Figure 3.16: Effect of sealing flow rate on radial variation of effectiveness for single and double radial-

clearance seals 
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The variation of εc with radius for the double radial-clearance seal is presented in Figure 

3.16. The tests were performed for EI ingress at the design operating point equivalent to Reϕ 

= 8.17 × 10
5
 for several values of Φ0/Φmin and λT. Also included is the data for the single 

radial-clearance seal at the same values of λT, previously presented in Figure 3.10. In the 

outer wheel-space of the double seal (r/b > 0.913), the effectiveness is virtually the same as 

the single seal equivalent for all radial locations. The slight variation of εc with r/b is 

possibly due to the proximity of the radial seal to the stator. In the inner wheel-space 

however, the effectiveness of the double seal is significantly higher than that of the single 

seal for the same sealing flow rates. Ingestion is therefore predominantly constrained within 

the outer wheel-space. This is consistent with the results presented in Figure 3.15. 

 

 

Figure 3.17: Effect of sealing flow rate on radial distribution of swirl ratio for single and double radial-

clearance seals 

 

Figure 3.17 shows the variation of swirl ratio with non-dimensional radius at Reϕ = 8.17 

× 10
5
 for the double radial-clearance seal.

 
Once again, data for the single radial-clearance 

seal, previously presented in Figure 3.11, is included for comparison. As discussed above, at 

common values of λT there are significant differences in the amount of ingress between the 
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single and double seals. Despite this, the swirl ratios in the inner wheel-space for the two 

cases are similar, illustrating that β is governed principally by λT. The exception to this trend 

is at r/b = 0.875 where local effects of the lower portion of the rotating radial seal are 

observed for the double seal. In the outer wheel-space the swirl is seen to increase rapidly 

with radius from β ≈ 0.44 to β ≈ 0.86 for the λT = 0 case under the influence of highly 

swirling ingested flow. 

In double rim-seals the circumferential variation of pressure that leads to EI ingress is 

attenuated in the annular space between the two seals. If the pressure asymmetry in the outer 

wheel-space is eliminated, EI ingress will dominate for the outer seal and RI ingress for the 

inner one. By definition, the performance limit for any double seal is one in which the inner 

seal is exposed to purely rotationally induced ingress.  

 

 

Figure 3.18: Variation of εc with Φ0 for double radial-clearance seal: EI and RI ingress (Symbols denote 

data; lines are theoretical curves) 

 

Figure 3.18 shows the variation of εc,23 and εc,13 for both EI and RI ingress. Values for 

both Φmin,EI and Φmin,RI can be determined which are independent of Reϕ. It can be seen for 

the inner seal, Φmin,EI > Φmin,RI, indicating the performance limit has not been reached and the 

pressure asymmetries have not been completely damped out in the outer wheel-space for this 

double seal design. 
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3.4 Finned rim seal 

 
In the 1980s, Chew et al. (1988) used radial fins to reduce the pressure drop in rotating 

cavities with radial inflow. The fluid entered the system at disc speed and the fins kept the 

fluid swirl close to this rotational value as it flowed radially inward.  

In Figure 3.12 the pressure asymmetry in a turbine annulus is shown to be attenuated in 

the outer wheel-space of a double rim-seal. As discussed above, the performance limit of the 

inner seal would be reached if the circumferential pressure asymmetries in the intermediate 

annulus were eliminated. Under these conditions the inner seal would experience 

rotationally-induced ingress. The concept behind the finned seal is to encourage the flow to 

reach solid-body rotation, and therefore help to damp out the pressure asymmetries. 

 

 

 

Figure 3.19: Isometric schematic of finned double seal 
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3.4.1 Geometry of finned seal 

 
The configuration in Figure 3.20 featured the same geometry as the previous double 

radial-clearance seal including for the addition of 37 radial fins, introduced between the 

inner and outer seals. 37 was selected as the closest prime number to the blade count in order 

to avoid resonance issues. The fins extend the full radial height between the seal lips and 

created ‘pockets’ inside the double seal on the rotor side attachment. The dimensions of the 

seal are tabulated in Table 3.6 and an isometric view is shown schematically in Figure 3.19. 

 

 

Figure 3.20: Geometry of finned rim-seal 

 

 
 

 

 

  

Geometric Symbol Dimension 

h 10 mm 

b 190 mm 

S 20 mm 

t 5 mm 

sc,ax 2 mm 

sc,rad 1.28 mm 

soverlap 1.86 mm 

hbuffer 16.5 mm 

No. pockets 37 

Table 3.6: Dimensions of finned rim-seal 
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3.4.2 Experimental results of finned seal 

 

 

Figure 3.21: Variation of εc with Φo for seals double seal and double finned seal (Symbols denote data; 

lines are theoretical curves) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 shows the variation of εc plotted versus Φ0 for the finned double seal 

compared with the original un-finned version. It is clear from this figure that the addition of 

the radial fins to the datum double seal provides an improved sealing performance over the 

full range of Φ0 in both the inner and outer wheel-spaces. The results of the statistical orifice 

model fit are included in Table 3.7. Using Φmin* (the value of Φ0 when ε = 0.9) as a ranking 

parameter, the  ratio of  Φmin* for the finned seal compared to that for the datum double seal 

Parameter EI Inner EI Outer 

Φmin 0.0413 0.0956 

Φmin
-
 0.0384 0.0885 

Φmin
+
 0.0445 0.103 

Γc 0.428 0.722 

Γc
-
 0.350 0.592 

Γc
+
 0.529 0.905 

σ 0.0118 0.020 

Table 3.7: Parameters for inner and outer wheel-spaces of finned double seal at EI ingress conditions 
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is 80% and 90% for the inner and outer wheel-spaces respectively. This could result in a 

potentially significant reduction in sealing air for the engine designer. 

 

 

Figure 3.22: Effect of sealing flow rate on measured radial variation of effectiveness for finned and double 

radial-clearance seals (Open symbols denote double seal; shaded symbols denote double finned seal) 

 

Figure 3.22 shows the radial variation of concentration sealing effectiveness εc, measured 

on the stator for both the datum double seal and the finned-seal. The experiments were 

conducted at Reϕ = 8.2 × 10
5
 with λT = 0.02, 0.04 and 0.07. The values of Φ0/Φmin are also 

labelled. As mentioned above, there are differences between the values of Φmin for the two 

seals; consequently at the same value of λT (hence the same Φ0) there are some differences in 

the ingress through these seals into the wheel-space. 

At all radii within both the inner and outer wheel-spaces, the finned seal provides an 

improved effectiveness over the datum seal. As expected, εc increases as λT increases. In the 

inner wheel-space for both seals the effectiveness is essentially constant for 0.65 < r/b < 

0.85, suggesting that near-complete mixing has occurred in a region very close to the inner 



Experimental measurements of ingestion through single and double rim seals 

 

 ~96~

 

rim-seal. In the outer wheel-space (r/b > 0.913) there is a significant reduction in 

effectiveness as the ingress is contained between the two seals. For the finned seal, εc is 

again invariant with radius. However for the datum seal εc decreases with increasing radius, 

indicating that the flow here has not mixed fully. This suggests that the fins enhanced the 

mixing between ingress and egress within the intermediate annulus; the swirl data presented 

below supports this suggestion. 

 

 

Figure 3.23: Effect of sealing flow rate on radial distribution of swirl ratio for finned and double radial-

clearance seals 

 

Figure 3.23 illustrates the variation of swirl ratio, β, with non-dimensional radius, again 

for both double seals. The seal geometry and measurement locations for total pressure in the 

wheel-space (at z/S = 0.25) are shown on the right of the figure. The data for both seals are 

shown for pairs of common superposed flow rates (λT = 0, 0.04 and 0.08) at Reϕ = 8.2 × 10
5
. 

Within the inner wheel-space (r/b < 0.9) the swirl ratio β for both seals is similar and is 

governed principally by λT; this indicates that the inner seal is able to constrict the ingress 
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predominantly within the outer wheel-space. Increasing the sealing flow (i.e. increasing λT) 

caused a reduction in the core rotation. For a given sealing flow rate, β (and the associated 

static pressure) increases with radius. 

In the outer wheel-space there are significant differences in the distribution of swirl for 

the two seal geometries. As observed previously for the datum double seal, β increases 

rapidly with radius under the influence of highly-swirling ingress, with the distribution 

dependent on λT. In contrast, the finned seal produces a much higher swirl relative to the 

datum seal, with 0.8 > β > 0.9 (virtually independent of λT) indicating near solid-body 

rotation. It is encouraging to see that the data support the concept behind the design of the 

finned seal discussed above, and the improved performance across the inner seal is probably 

linked to a reduction in the pressure asymmetry within the intermediate annulus. 

 

 

Figure 3.24: Radial distribution of swirl ratio and pressure coefficient (static) for finned and double 

radial-clearance seals (Symbols denote measured values; lines denote fitted distribution for β and 

calculated distribution for Cp) 
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Figure 3.24 shows comparisons between the distributions of Cp, calculated from Eq. 3.10, 

and the values obtained from the measured static pressures for the double and finned seals. 

The experiments were conducted at Reϕ = 8.2 × 10
5
 with λT = 0. In both cases there is very 

good agreement between the calculated and measured distributions of Cp within the inner 

wheel-space, i.e. r/b < 0.9. This shows two important things: (i) the radial distribution of the 

swirl ratio determines the radial distribution of pressure in the wheel-space; (ii) the 

distributions of swirl and pressure are controlled by λT and there is very little effect of 

ingress on these distributions. 

In the outer wheel-space the geometric features of both the datum seal and the finned 

seal, as well as the ingress into the intermediate annulus, have affected the distribution of 

swirl and pressure. Externally-induced ingress is controlled by the pressure difference 

between the annulus and the wheel-space near the rim-seal. Figure 3.24 shows that the 

finned seal increases the pressure in the immediate annulus relative to the datum seal, and 

this explains the superior performance across the outer seal. Clearly, ingress cannot occur if 

the pressure in the wheel-space, radially inward of the seal, is greater than the maximum 

pressure in the annulus. 

 

Figure 3.25: Seal performance ranking shown in order of magnitude of Φmin' 
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Figure 3.25 shows a bar chart ranking the three geometries in order of sealing 

performance. As stated above, as the value of Φ0 at ε = 0.95 has a smaller associated 

uncertainty, Φmin' is used as a ranking criterion for both the inner and outer wheel-spaces. 

Although the single and double radial-clearance seals exhibit similar performance at the 

outer sampling location (in fact the single seal has a slightly lower value of Φmin'), the 

benefit of protecting the inner wheel-space is evident. The ratio of Φmin' for the finned seal 

compared to the datum double seal is 82% and 94% for the inner and outer wheel-spaces 

respectively. This could result in a potentially significant reduction in sealing air for the 

engine designer. 

 

3.5 Measurement uncertainties 

 

3.5.1 Uncertainty in effectiveness 

 
The definition of sealing effectiveness is given in Eq. 3.4 where the subscripts a, o and s 

respectively denote the air in the annulus, the sealing air at inlet, and the surface of the 

stator. If δε, δs, δ0, δa are the uncertainties in ε, cs, c0, ca respectively then: 
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If (± δ0 ± δa) / (c0 - ca) << 1 then: 
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hence: 
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If the uncertainty is a percentage of the full-scale range, which was the case in the 

experiments, then δs = δ0 = δa = δ, say, and Eq. 3.20 simplifies to: 
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The average standard deviation, σ, in the range 0 < ε < 1 can be calculated from Eq. 3.22 

by: 
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The CO2 gas analyser had an overall uncertainty of 0.015% of each of its ranges. In the 

tests, where the 1% range was used, the concentration of gas in the sealing flow was close to 

the 1% range maximum. Hence δ / (c0 - ca) ≈ 0.015, and from Eq. 3.23 it follows that σ ≈ 

0.046. This value, which is an upper bound, exceeds the standard deviation found from the 

fitted Φ0 – ε curves, the values of which are given in Tables 3.3, 3.5 and 3.7. If the 

experimental uncertainty of the measurements were also taken into account in the calculation 

of the standard deviation, the values presented in Tables 3.3, 3.5 and 3.7 would be expected 

to increase. 

 

3.6 Summary 

 
This chapter presents measurements of CO2 gas concentration, pressure and swirl ratio 

inside the wheel-space of a single-stage axial turbine research facility. The results were used 

to assess the sealing performance of three rim seal geometries: a datum radial-clearance 

single seal, a radial-clearance double seal, and a double seal variant featuring a series of 

radial fins. 

Although the ingestion through rim seals is a consequence of an unsteady, three-

dimensional flow field, and the cause-effect relationship between pressure and the sealing 

effectiveness is complex, the experimental data is shown to be successfully calculated by the 
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simple effectiveness equations (Eqs. 2.14 and 2.17) developed from a theoretical orifice 

model. For all the seals tested, the data illustrated that the effectiveness can be correlated 

using two empirical parameters, which were independent of Reϕ. 

The benefit of using a double seal was demonstrated: the ingested fluid was shown to be 

predominately confined to the outer wheel-space radially outward of the inner seal; in the 

inner wheel-space the effectiveness was shown to be significantly higher. In the practical 

situation of an engine, the inner stator wall could operate at an acceptably low metal 

temperature with the hot, ingested gas confined to the outer wheel-space protected by a more 

robust alloy.  

A criterion for ranking the performance of the different seal designs was proposed. The 

performance limit for any double seal is shown to be one in which the inner seal is exposed 

to rotationally-induced ingress only. 

The performance of the double rim-seal was further improved in both the inner and outer 

wheel-spaces by the addition of radial fins, over a wide range of sealant flow rates. 

Measurements of pressure and swirl in the outer wheel-space demonstrated that the fins 

helped to produce solid-body rotation. It is conjectured that this increase in swirl reduced the 

pressure asymmetries and consequently improved the performance of the inner seal. The fins 

also increased the pressure in the outer wheel-space and reduced ingress through the outer 

seal. 

This improvement in sealing effectiveness could result in a potentially significant 

reduction in sealing air for the engine designer. However, by encouraging swirl within the 

intermediate annulus, the windage on the rotor will increase with a corresponding reduction 

in stage efficiency (The relative windage rise could be examined by monitoring the rotor 

torque with and without the finned seal installed).  In mitigation, it is important to remember 

that the stage efficiency is also dependent on the mixing losses in the main annulus; these 

losses are influenced by the egress-mainstream interaction. If the sealing flow emerges from 

the wheel-space with a swirl closer to that of the mainstream (note βa > 1) then these mixing 

losses may reduce. 

Future optimisation studies of the finned design could examine the number of pockets, 

geometries more complex than the simple radial fins, or an improved aerodynamic profile. 

Any improvement arising from the introduction of intricate design features would compete 

against the disadvantage of increased manufacturing complexity. 
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As expected for all seals, the swirl ratios increased with increasing radius and decreased 

with increasing sealing flow rate. For a given sealing flow rate, there was little difference 

between the radial distribution of swirl ratio for the different seals, despite the difference in 

the amount of ingestion. The radial distribution of pressure was shown to be governed by the 

swirl ratio, and these swirl and pressure distributions were in turn governed by the turbulent 

flow parameter, λT. 

Although the ingestion through the rim seal is a consequence of an unsteady, three-

dimensional flow field, and the cause-effect relationship between pressure and the sealing 

effectiveness is complex, the experimental data is shown to be successfully calculated by 

simple effectiveness equations developed from a theoretical orifice model. The data illustrate 

that, for similar turbine-stage velocity triangles, the effectiveness can be correlated using 

two empirical parameters. In principle, these correlations could be extrapolated to a 

geometrically-similar turbine operating at engine representative conditions. 
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Chapter 4: Experimental measurements of 

ingestion at off-design conditions 

 

All gas turbines spend some time (e.g. during starting, idling, reduced power, maximum 

power, acceleration and deceleration) at off-design conditions far removed from the design 

point of the turbine. Satisfactory off-design operation over a wide range of rotational speeds 

and inlet conditions is therefore an important requirement for all engines. In the case where 

the rotational speed of the engine is constant, such as in a single-shaft industrial turbine, 

performance can be improved by actively controlling the flow rate through the compressor 

using variable vanes. These vanes can be individually rotated around their axis which 

changes the design point of the compressor. However due to the harsher environment found 

in the turbine, the nozzle guide vanes are fixed therefore off-design operation is inevitable 

which may have a significant effect on ingestion. 

The flow in the mainstream annulus of the turbine is usually characterised by the flow 

coefficient, CF, defined as: 

     
b

W
CF


               (4.1) 

where W is the mean axial component of velocity in the annulus downstream of the turbine 

vanes,  b is the outer radius of the turbine disc and Ω is its angular speed. For a given exit 

angle of the vanes, CF defines the swirl ratio of the mainstream flow, and at the design point 

of engines CF 0.5. Modern turbines, with larger vane exit-angles, tend to operate at lower 

values of CF than the older ones. 

The pressure asymmetry in the annulus, and consequently EI ingress, increases as CF 

increases. At the design point, where rotational effects are relatively small, EI ingress is 

usually assumed to dominate. However, at over-speed or low-CF conditions rotation can 

have a significant effect on ingress, and the term combined ingress (CI) is used here to 

denote the ingestion that occurs when the effects of rotation and the external-pressure 

distribution are both significant. For off-design operation, it is important to consider 

combined ingress as the general case with EI and RI ingress as special or limiting cases. 

The author of this thesis conducted all the experimental testing and analysis involved in 

this chapter.  
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4.1 Background 

 
At the design point in a gas turbine, ingestion of hot gas through the rim seal is 

dominated by EI ingress. However, at off-design conditions, the effects of rotation can be 

significant. These conditions lead to combined ingress (CI) involving both externally-

induced (EI) and rotationally-induced (RI) ingress.  

Phadke and Owen (1988b and c) correlated Cw,min, the minimum sealing flow rate needed 

to prevent ingress, in a simple rotor-stator system with a number of different rim-seal 

geometries. Their tests were conducted without vanes and blades in the external annulus, and 

circumferential pressure asymmetries were created by blocking sections of the annulus with 

honeycomb and wire mesh. The tests showed that EI ingress was caused by the pressure 

asymmetry produced by the external flow. The axial Reynolds number is defined as: 

μ

ρWb
w Re                            (4.2) 

For Rew = 0, where RI ingress occurs, Cw,min ∝ Reϕ; for large values of Rew, where EI ingress 

dominates, Cw,min ∝ Rew.  The term combined ingress is now used to denote the transition 

from RI to EI ingress. 

Khilnani and Bhavnani (2001) investigated the sealing performance of an axial seal in a 

rig with external flow. In the absence of blades or vanes, eccentricity in the external annulus 

was assumed to have caused the circumferential variations in the external pressure. Static 

pressure measurements in the wheel-space were used to determine Cw,min for a range of Rew 

and Re. Figure 2.15 shows the effect of Re on the variation of Cw,min with Rew, and their 

results were broadly consistent with those of Phadke and Owen. 

Owen et al. (2012b) fitted the CI equation developed from their orifice model (Owen 

(2011b)) to the experimental data of Phadke and Owen (1988c).  

For the CI case, from Eq. 2.8: 
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For simplicity, it is assumed here that Cd,e,CI = Cd,e,RI = Cd,e,EI. 

The non-dimensional pressure difference can be correlated to the flow coefficient using: 
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Fa

/

p CkΔC 
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              (4.4) 

where ka is found from least-squares fit to the experimental pressure data. It follows that: 
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The CI equation (Eq. 2.12) can therefore be written as:  
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where kc is an empirical constant defined in Eq. 4.6. As: 
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and 
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Eq. 4.7 can be written as:  
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The RHS of equation (4.9) approaches the EI asymptote as Rew/Re → ∞, and Eq. 4.10 

becomes:  
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The CI equation (Eq. 4.10) is shown fitted to the data of Phadke and Owen (1988c) in 

Figure 2.26 and to the data of Khilnani and Bhavnani (2001) in Figure 4.1. (The data shown 

in Figure 4.1 were obtained from the data shown in Figure 2.15; Figure 4.1 was not shown in 

the paper of Khilnani and Bhavnani (2001)) In both figures, the CI equation captures the 
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transition from RI to EI ingress and collapses the data obtained for a wide range of Rew and 

Re onto a single curve. The fact that the Cw,min ratio in Figure 4.1 is much higher than that in 

Figure 2.26  was attributed to the fact that the pressure asymmetry in the annulus of the rig 

of Khilnani and Bhavnani was significantly higher than that in the rig of Phadke and Owen.  

It should also be noted that the departure of the CI curve from its EI asymptote increases as 

Rew/Re decreases. 

 

 

Figure 4.1: CI equation fitted to data of Khilnani and Bhavnani (2001) (Solid line is Eq. 4.10; broken 

line is Eq. 4.11) 

 

4.2 Pressure measurements 

 

All data presented in this section are for three rotational disc speeds (corresponding to 

Re = 5.32 × 10
5
, 8.17 × 10

5
 and 9.68 × 10

5
), with the mainstream flow-rate varied to create 

the off-design velocity triangles in the turbine annulus. At the design condition Rew/Re = 

0.538, where Rew is the Reynolds number based on the axial component of velocity in the 

annulus. Off-design Rew/Re (which is analogous to the flow coefficient, CF) is varied from 

zero (i.e. in the absence of external flow) up to 0.858. When CF < 0.538, the rig was 

operating at an over-speed condition; when CF > 0.538, the rig was said to be operating at an 

under-speed condition. 
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4.2.1 Flow direction relative to the blade 

 

Figure 4.7 shows the velocity triangles for the vanes and the symmetrical blades at the 

design and an off-design condition. α and β are the respective angles of the resultant velocity 

of the flow, relative to the axial direction, in the stationary and rotating frames. In the rig, α 

was set at 73
o
 and β0, the blade angle, was 56

o
; at the design condition, β = β0; at off-design 

conditions, β-β0 is the ‘deviation angle’ between the resultant velocity in the rotating frame 

and the blade. 

 

 

Figure 4.2: Velocity triangles shown for design and under-speed conditions 

 

 

Figure 4.3: Variation of deviation angle with flow coefficient (Symbols denote where concentration 

measurements were made for axial-clearance seal) 
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From the velocity triangles, it follows that:  
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At the design point, which is denoted by the subscript 0: 
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and, the flow coefficient at the design point for the rig was CF,0 = 0.538. For the over-speed 

condition, where CF < 0.538, β < β0; for the under-speed condition, β > β0. When Ω = 0 or 

W→∞, β = α and β-β0 = 17
o
; when W = 0, β = - and β-β0 = - 146

o
. 

Figure 4.3 shows the variation of the deviation angle, β-β0, with the flow coefficient, and 

the symbols denote where measurements were made for the axial-clearance seal. The 

experimental range exceeded any range likely to be experienced in an engine, particularly at 

the low values of CF. 

 

4.2.2 Pressure measurements in the annulus 

 

 

Figure 4.4: Circumferential distribution of Cp over non-dimensional vane pitch at three different flow 

coefficients 



Experimental measurements of ingestion at off-design conditions 

 

 ~109~

 

 

Figure 4.4 shows the effect of CF on the circumferential distribution of Cp (defined by Eq. 

3.5). The static pressures were measured on the vane platform downstream of the vanes in 

the absence of sealing flow, and p̄  was the mean static pressure over one vane pitch.  

 

 

Figure 4.5: Measured variation of ΔCp
½ at locations A and B in annulus with flow coefficient and with 

deviation angle 

 

According to the orifice model, summarised in Section 2.6, EI ingress is related to the 

non-dimensional pressure difference in the annulus, ΔCp, defined by Eq. 3.6. ΔCp, which is 

equivalent to the peak-to-trough difference of Cp, increases as flow coefficient increases. 

Eq. 3.7 demonstrates how the sealing parameter necessary to prevent EI ingress, Φmin,EI, 

is related to ΔCp. Sangan et al. (2011) showed that ΔCp decreased slightly as the flow rate of 

sealing air increases. 

For mathematical consistency in the EI orifice model, it is necessary that there is zero 

ingress when ΔCp = 0. However, as shown below, the value of ΔCp depends on where in the 

annulus it is evaluated. As shown by Owen et al. (2012a) in Figure 2.25, the consistency 

criterion can only be satisfied in small regions near the rim seal, and the values of ΔCp 
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measured in an experimental rig are unlikely to satisfy this criterion. This topic is discussed 

further in Chapter 5. 

Figure 4.5 shows the measured variation of ΔCp
½
 with the flow coefficient, and with the 

deviation angle β-β0, measured at locations A and B in the annulus.  The experimental 

measurements show no significant effect of Re, and ΔCp
½ 

increases linearly with CF; despite 

the large experimental range, there was no obvious effect of the deviation angle on this 

linear variation. The experimental data in Figure 4.5 for location A were correlated by Eq. 

4.4, where ka = 1.66. 

 

4.3 Concentration measurements 

 

Results for two single and one double seal are presented here, principally to illustrate the 

similarities between the off-design performance of different seals. There are, of course, 

quantitative differences in the effectiveness of these seals, as demonstrated in Chapter 3. 

 

4.3.1 Variation of sealing effectiveness 

 

 

Figure 4.6: Variation of sealing effectiveness with Φ0 for RI ingress for four seals (Symbols denote 

experimental data; lines are theoretical curves) 
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Figure 4.6 shows the variation of ε with Φ0 for the case where the external flow was zero, 

which (as shown in Sangan et al.
 
(2011b)) corresponds to RI ingress. The RI effectiveness 

equation (Eq. 2.17) was fitted to the experimental data using the statistical technique 

described in Zhou et al. (2013a), and the agreement between the theoretical curve and the 

data was very good for all four seals. It can be seen that the results for the outer seal of the 

double radial-clearance seal agree very closely with those for the single radial-clearance 

seal, and the radial-clearance seal was much more effective than the axial-clearance one. 

 

 

Figure 4.7: Effect of flow coefficient on variation of effectiveness with sealing parameter for radial-

clearance seal (Symbols denote experimental data; lines are theoretical curves) 

 

Figure 4.7 shows the effect of the flow coefficient on the variation of the sealing 

effectiveness with the sealing parameter, Φ0, for the radial-clearance seal. The RI data and 

the EI design condition data are the same values as presented in Figure 3.8. The 

effectiveness decreased as CF increased, which was consistent with the pressure 

measurements discussed in Section 4.2.2, where ΔCp increased as CF increases. In some of 

the experiments it proved impossible to achieve a fully sealed system but, apart from the 

values near ε = 1, the theoretical curves (with equation Eq. 2.14 used for CF > 0 and Eq. 2.17 

for CF = 0) provide a good fit to the data.   
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Figure 4.8: Effect of flow coefficient on variation of effectiveness with sealing parameter for axial-

clearance seal (Symbols denote experimental data; lines are theoretical curves) 

 

Noting the different scale from that in Figure 4.7, Figure 4.8 shows the effect of CF on 

the variation of ε with Φ0 for the axial-clearance seal. For any value of ε, the values of Φ0 are 

significantly larger than those for the radial-clearance seal, which is consistent with 

measurements made at the design condition in the previous chapter. Although there was 

good agreement between the theoretical curves and the data for the three smaller values of 

CF, the effectiveness data for the largest value display a distinct kink around Φ0 ≈ 0.2. If the 

anomalous data are removed, the remaining data can be satisfactorily fitted, as shown by the 

broken curve in Figure 4.8. 

The ‘kink phenomenon’ for the axial-clearance seal was also observed at the other under-

speed conditions, which are not shown here. (The phenomenon was not observed for the 

other three seals, for which the sealing flow rates were significantly lower.) Tests were 

conducted with increasing and decreasing values of Φ0 but the results were repeatable and 

no hysteresis effects were found. Although pressure measurements in the annulus shed no 

light on the kink phenomenon, it is speculated that it might be peculiar to the rig geometry 

and it could have been caused by the interaction between the sealing and mainstream flows 

at large sealing flow rates. The large sealant flow rates required to purge the wheel-space for 

the under-speed conditions could have impacted the discharge coefficients through the seal 

clearance. Future CFD research may be able to explain this behaviour. Interestingly, 
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Gentilhomme et al.
 
(2002) observed similar behaviour in their effectiveness measurement 

curves, as shown in Figure 2.17. 

 

 

Figure 4.9: Effect of flow coefficient on variation of effectiveness with sealing parameter for outer 

sampling point of double seal (Symbols denote experimental data; lines are theoretical curves) 

 

The effectiveness curves for the outer and inner sampling points of the double seal are 

shown in Figure 4.9 and Figure 4.10 respectively. The outer seal results are very similar to 

those shown in Figure 4.7 for the single radial-clearance seal. This is consistent with the 

conclusion drawn in Chapter 3, and demonstrates that the agreement shown in Figure 3.14 at 

the design condition can be extrapolated to off-design conditions. Again noting the change 

in scale from Figure 4.9, Figure 4.10 shows the values of Φ0 to seal the inner seal are 

significantly smaller than for the outer one. 
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Figure 4.10: Effect of flow coefficient on variation of effectiveness with sealing parameter for inner 

sampling point of double seal (Symbols denote experimental data; lines are theoretical curves) 

 

For each of the four seals tested, the values of Φmin and their confidence intervals 

determined from the fitted effectiveness curves could be used to produce the variation of 

Φmin with CF. Before the above effectiveness curves were obtained, a separate series of 

concentration tests was conducted to determine Φmin for the axial-clearance seal. As it was 

difficult, and sometimes impossible, to determine the precise value of Φ0 when ε = 1, the 

value of Φ0 when ε = 0.95 was used to define a new sealing parameter Φmin'. The measured 

variation of Φmin' with flow coefficient is discussed below. 

 

4.3.2 Variation of Φmin' with flow coefficient 

 

Figure 4.11 shows the variation of Φmin' with flow coefficient for the axial-clearance seal 

where, as stated above, Φmin' denotes the value of Φ0 when ε = 0.95. The direct 

measurements were of Φmin' based on concentration measurements, at r/b = 0.958, for Re= 

5.52, 8.17 and 9.68 × 10
5
. The indirect values were calculated from the effectiveness curves 

discussed above, and the ‘uncertainty bars’ on the figure were based on the upper and lower 

bounds of the fitted effectiveness curves at ε = 0.95. It should be noted that, at large flow 
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coefficients where there was a kink in the effectiveness data, the effectiveness curves 

excluding the kinks (the dashed line in Figure 4.8) were used to determine Φmin'. 

 

Figure 4.11: Variation of Φmin' with flow coefficient for axial-clearance seal - Solid symbols denote indirect 

values of Φmin' deduced from effectiveness curves; open symbols denote direct measurements of Φmin'; 

solid line is fitted CI curve (Eq. 4.14); broken line is EI asymptote (Eq. 4.15) 

 

The fitted CI curve was obtained from Eq. 4.7, which is rewritten here in terms of Φmin' 

as: 
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where the constant kc was found from a least-squares fit of the indirect measurements (Note: 

the redundant subscript CI has been omitted). For consistency with the other seals (where 

only indirect measurements were made), no direct measurements were used in the fit.  As CF 

→ ∞ and Φmin'→Φmin,EI', Eq. 4.14 reduces to 
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which is the equation for the EI asymptote shown in Figure 4.11. For the axial-clearance 

seal, Φmin,RI' = 0.055 and kc = 115; these values and those for the other seals are shown in 

Table 4.1. As discussed previously, owing to the increasing effect of rotation, the difference 

between the EI asymptote and the CI curve increases as CF decreases. 

Figure 4.11 has a similar form to Figures 2.26 and Figure 4.1, which show the CI curve 

fitted to the data of Phadke and Owen (Figure 2.26) and Khilnani and Bhavnani (Figure 4.1). 

Unlike the rig used here, there were no vanes or blades in the external annuli of the rigs used 

by these two pairs of researchers; the circumferential external pressure variations in their 

two rigs were caused by eccentricities or partial blockages in the annuli. As noted for 

Figures 2.26 and Figure 4.1, the deviation between the CI curve and the EI asymptote in 

Figure 4.11 increases as CF decreases and as the effects of rotation increase. It can be seen 

that even at the design point (CF = 0.538) there is a small difference between the CI curve 

and the EI asymptote.  

Based on the observation that Vr,max = 0.105Ωr near a rotating free disc using the 1/7
th
 

power law velocity profile from Von Kármán, Hamabe and Ishida (1992) expressed the 

increased pressure coefficient due to the rotor pumping action and compared it to the non-

dimensional external pressure gradient. They proposed the following parameter: 

     

2

max, Re

Re011.0














wpC
k             (4.16) 

where if k >> 1, the rate of ingestion will be affected by the disc pumping and if k << 1, by 

the external flow. This order of magnitude analysis was later confirmed by Chew et al. 

(1994). 

It should be noted however that ΔCp,max will depend where in the annulus it is evaluated 

at. For the data measured at location A in Figure 4.5, k = 1 at a flow coefficient, CF ≈ 0.25. 

This agrees with the results presented in Figure 4.11, where the effects of rotation are 

significant at CF < 0.25. Owen et al. (2012b) suggested that that EI ingress occurs for Φmin,CI 

/ Φmin,RI > 2, and below this value the effects of rotation cannot be ignored. Again, this is 

consistent with the results in Figure 4.11. 

The solution of the CI orifice equations captures the transition from RI to EI ingress as 

the amplitude of the circumferential variation of pressure increases. Any departure of the 

data from this curve must therefore be related to the effect of the blades. 

There appears to be no systematic departure between the measured values and the CI 

curve in Figure 4.11 until CF < 0.1. The sudden increase in Φmin', which is shown by the 
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direct and indirect measurements of Φmin' at these small values of CF, is thought to be caused 

by massive separation of the flow over the blades at extreme deviation angles (│β-

β0│>130°). Although many additional measurements were conducted to confirm that this 

‘blade effect’, which also occurred for the other seals tested, was repeatable, it was 

surprising that the deviation angle appears to have no significant effect for │β-β0│< 130°.  

 

 

Figure 4.12: Variation of Φmin' with flow coefficient for radial-clearance and axial-clearance seals - Solid 

symbols denote indirect values of Φmin' deduced from effectiveness curves; solid lines are fitted CI curves 

(Eq. 4.14); broken lines are EI asymptotes (Eq. 4.15) 

 

Figure 4.12 shows the variation of Φmin' with flow coefficient for the radial-clearance 

seal. It can be seen that Φmin' is significantly smaller than for the axial-clearance seal, which 

is consistent with the results presented in Sangan et al. (2011) for EI and RI ingress in single 

seals.  As for the radial-clearance seal, the ‘blade effect’ for the axial-clearance seal occurs 

only at very large deviation angles. 
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Figure 4.13: Variation of Φmin' with flow coefficient deduced from effectiveness curves for double seal - 

Solid symbols denote indirect values of Φmin' deduced from effectiveness curves; solid lines are fitted CI 

curves (Eq. 4.14); broken lines are EI asymptotes (Eq. 4.15) 

 

Figure 4.13 shows the variation of Φmin' with flow coefficient for the double seal. The 

results for the outer seal are similar to those shown in Figure 4.12 for the single radial-

clearance seal, and the values of Φmin' for the inner seal are significantly smaller than for the 

outer one. Again this is consistent with results presented in Chapter 3 for EI ingress in 

double seals.  

The sharp increase in Φmin' at small CF occurs at similar deviation angles to that found for 

all the seals tested. This suggests that the ‘blade effect’ is insensitive to seal geometry.  

 

Parameter Axial-Clearance 

Seal 

Radial-Clearance 

Seal 

Double Outer 

Seal 

Double Inner 

Seal 

kc 115 70.4 58.3 60.3 

Φmin,RI' 0.055 0.0226 0.0237 0.0107 

Cd,e,EI' 0.357 0.115 0.109 0.0503 
 

Table 4.1: Parameters for CI fit for four seals tested 
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It is important to note that the results presented were obtained for incompressible flow in 

a rig with symmetrical blades and over a CF range much larger than the normal operating 

range of engines. It was shown above that the effect of blades is complicated and depends on 

the geometry and relative location of the vanes, blades and seal: in some studies, the blades 

had a favourable effect on ingress; in others, the effect was adverse. Except under extreme 

conditions, the current results showed no significant effect of the blades for any of the seals 

tested. Although the ‘blade effect’, or systematic departure of the measured values of  Φmin'  

from the CI curves, only occurred here at extremely low values of  CF, it would be unsafe to 

conclude that this effect could not occur inside the operating range of a real turbine. (The 

fact that the measurements were made for  incompressible flow is considered to be of 

secondary importance: extrapolation of effectiveness data from incompressible to 

compressible flow is discussed in Teuber et al.(2012)) 

It might seem surprising that the measured values of ΔCp provided no evidence of the 

‘blade effect’: even at the smallest values of CF measured, the variation of ΔCp
1/2 

with CF 

remained linear. However,  it has been shown computationally (see Zhou et al. (2013b)) that 

ingress is controlled by the magnitude of ΔCp near the seal clearance: presumably the 

measurements made on the vane platform and on the outer surface of the annulus were 

insensitive to the effects near the seal itself. This topic is discussed further in Chapter 5. 

 

4.4 Summary 

 

This chapter presents off-design results for both over-speed, where the (symmetrical) 

blades rotate faster than at the design point, and under-speed conditions. The design flow 

coefficient was CF = 0.538, and tests were conducted for 0 < CF < 0.9, which is a larger 

range than the operating range of engines. The ‘deviation angle’ between the flow over the 

blades and vanes, which increases as CF decreases, varied between zero, at the design point, 

to 146° at CF = 0.  Single and double seals were tested for rotational Reynolds numbers were 

in the range 5.32 < Re/10
5
 < 9.68, and the flow was incompressible. The sealing 

effectiveness, ε, was determined using concentration measurements with CO2 tracer gas, and 

pressure measurements were made using a Scanivalve system. 

For both rotationally-induced (RI) and externally-induced (EI) ingress, the Bath 

effectiveness equations were used to correlate the variation of ε, the sealing effectiveness, 

with Φ0, the nondimensional sealing flow parameter. The effectiveness equations were also 

used to determine Φmin', the value of Φ0 at ε = 0.95, and the combined ingress (CI) equation 
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was used to correlate the variation of Φmin' with CF and to determine the EI asymptote for 

each of the seals. 

The principal conclusions are listed below: 

 The pressure measurements showed that ΔCp
½
 (where ΔCp is the nondimensional 

peak-to-trough pressure difference in the annulus) was proportional to CF. This 

proportionality occurred even at low values of CF, where the deviation angle between 

the blades and vanes was very large (> 130
o
).  

 For CF > 0.1, and for all the seals tested, the CI equation was in mainly good 

agreement with the variation of Φmin' determined from the effectiveness curves; this 

implies that for a wide variation of CF either side of the design point, the blade-

deviation angle did not influence the degree of ingress.  

 For CF < 0.1 and deviation angles > 130
o
, there was a sharp increase in Φmin'; this is 

believed to be a ‘blade effect’ caused by separation of the flow over the blades. 

 The difference between the CI correlations and the EI asymptotes increased as CF 

decreased, and there was even a small but significant difference at the design point of 

CF = 0.538. 

It should be noted that these conclusions were drawn from data obtained in an 

experimental rig, with symmetrical blades and no fillet radii, operating over a CF range 

much larger than that experienced in engines. The ‘blade effect’, which only occurred in the 

rig for CF < 0.1, might occur at larger values of CF in the operating range of a real turbine. 

In principle, and within the limits of dimensional similitude, the results presented here 

should apply to a geometrically-similar engine operating at the same fluid-dynamic 

conditions. It is shown for a large range of operating conditions, Φmin' is proportional to 

ΔCp
½
, and it is tentatively suggested that this relationship could be used to extrapolate the 

results from and experimental rig to an engine. 
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Chapter 5: Use of pressure measurements to 

determine sealing effectiveness 

 

Until this point, the 1-stage test rig has been used to determine εc, the sealing 

effectiveness based on gas concentration measurements. However, design codes for internal 

air systems usually estimate effectiveness from pressure, εp, rather than concentration. The 

orifice model can be used to relate the amount of ingress to the pressure difference across the 

rim seal but, the effectiveness determined in this way is strongly affected by the locations 

where the pressures are measured. In order to incorporate the model into design codes, the 

designer needs to know where in the turbine pressures should be evaluated. More broadly, it 

is necessary to understand the relationship between εc and εp in order to extrapolate 

measurements obtained from experimental rigs to engine conditions. 

In this section a theoretical model has been developed to enable the value of εp to be 

determined from pressure measurements made at any arbitrary location on the vane 

platform, upstream of the seal clearance in a rig or engine. The model is based on the 

hypothesis that there is a unique location, referred to as the ‘sweet spot’, where the pressure 

distribution on the vane platform would ensure that εc = εp for all sealing flow rates. Pressure 

and concentration measurements made in the 1-stage test rig are used to validate the 

theoretical model and to determine the corresponding values of εc and εp.  

The author of this thesis conducted all the experimental testing and analysis involved in 

this chapter. Additional CFD analysis performed by a co-author of Owen et al. (2014) has 

been included in Section 5.3 for completeness. 

As discussed in Section 2.5, pressure criteria have been used previously by Phadke and 

Owen (1988), Green and Turner (1994) and Bohn et al. (1995 and 1999) to quantify 

ingestion levels. The non-dimensional static pressure difference across the shroud, p*, was 

defined as: 

hub

hub

p

prp
p




)(
*               (5.1) 

where p(r) is the static pressure measured at a certain radial location, and phub is the mean 

static pressure over one vane pitch on the stator shroud hub in the annulus. It follows when 

p* is negative ingress will occur, and when p* = 0, ingestion has been prevented. As noted 
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by Phadke and Owen (1988b), this definition is arbitrary and other criteria may be more 

appropriate, such as the maximum pressure in the annulus rather than the arithmetic mean. 

5.1 Use of orifice model to calculate effectiveness 

 
The Bath orifice model derived in Owen (2011a and b) and summarised in Section 2.6 

was based on pressures. It was assumed that EI ingress is related to Δp, the peak-to-trough 

pressure difference in the annulus, where:  

min2max2 ,, pppΔ                (5.2) 

The sealing effectiveness in the model is related to g, the normalised pressure difference 

across the seal, where:  

Δp

pp
g

,min21 
                           (5.3) 

As shown by Figure 2.20, the subscripts 1 and 2 refer to locations in the wheel-space and 

annulus respectively, and these locations were not specified in the orifice model. The 

relationship between p1 and p2 is shown diagrammatically by Figure 2.21; it follows that 

ingress will be prevented from occurring when p1 reaches p2,max and therefore g = 1. 

By assuming a linear saw-tooth model for the circumferential distribution of pressure in 

the annulus, the orifice equations were solved by Owen (2011b) to give: 

          2323

min

1 /
c

/o g)(Γg
Φ

Φ
              (5.4) 

It was also shown from the orifice equations that: 

    

23
1

1

/
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g

g
Γε 







 
               (5.5) 

 As discussed above, εp is the sealing effectiveness based on pressure differences, and Γc 

is the ratio of the discharge coefficients for ingress and egress through the seal clearance 

(Cd,i/Cd,e). 

In practice, g (and therefore εp) depends on the sealing flow rate, and it also depends on 

where the pressures are measured. That is, g = g(Φo,x), where x is that axial location in the 

annulus where Δp is measured. At the sweet spot (where   =   ,      ̂     and g = ĝ), Eq. 

5.5 becomes:  
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Using Eq. (2.14), the effectiveness equation for εc, it follows from Eq. 5.6 that:  

3232
11

1
ˆ

/
c

/

c )ε(Γ
g





             (5.7) 

Defining ĝ* = ĝ when Φo= 0, and εc = 0, it follows from Eq. 5.7 that: 

     
32
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ˆ
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c

/

c

Γ

Γ
*g


               (5.8) 

It is shown in the following section how ĝ and p̂  can be determined from experimental 

measurements. 

 

5.1.1 Determination of effectiveness from pressure measurements 

 
In the model developed below, it is assumed that the sweet spot, where g* = ĝ*, can be 

found on the vane platform upstream of the clearance. This is consistent with the results of 

Owen et al. (2012a) shown in Figure 2.25, who used steady 3D CFD based on the geometry 

of the Bath rig (but without blades and with an axial-clearance seal) to determine the sealing 

effectiveness.  

In the annulus, p2,min , p2,max and Δp depend on both Φo and x, where x is the 

nondimensional axial distance from the centre of the seal clearance; in the wheel-space, p1 is 

invariant with x and depends only on Φo.  To make these dependencies explicit, Eq. 5.3 is 

rewritten as: 

    
,x)(ΦΔp

,x)(Φp)(Φp
,x)(Φg

o

o,o

o

min21 
             (5.9) 

Similarly, at location A where the pressures are measured in the annulus, x = xA and:   

),x(ΦΔp

),x(Φp)(Φp
),x(Φg

Ao

Ao,o

Ao

min21 
           (5.10) 

Eliminating p1 from Eqs. 5.7 and 5.8, it follows that:   
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o
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min2min2 
          (5.11) 

Using a ‘separation-of-variables’ approach, it is assumed that: 

  )x,Φp(x)Δζx,ΦΔp Aoo (             (5.12) 

and 

  )x,χ(x)Δp(Φ]x,Φpx),(Φ[p AoAo,o,  min2min2          (5.13) 

where ζ( ) and χ( ) are similarity parameters that depend on x but are assumed to be 

invariant with Φo. At location A, ζ( A) = 1 and χ( A) = 0. 

Eq. 5.11 can now be written as: 

         )]x()x,(g[)x()x,(g Ao
1

o                          (5.14) 

Consequently, at the sweet spot where   =    and g = ĝ, Eq. 5.14 becomes: 

)]x̂()x,(g[)x̂()(ĝ)x̂,(g Ao
1

oo                (5.15) 

As )ˆ(x and )ˆ(x  are constants, Eq. 5.15 can be expressed more simply as 

CxgBg Aoo  ),()(ˆ                                    (5.16) 

where the constants B and C are given by 
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                          (5.18) 

As     ̂  then B → 1 and C → 0. 

Knowing ĝ from Eq. 5.7, the constants B and C in Eq. 5.16 can be found from linear 

regression of ĝ versus the measured values of g(Φo,xA); this is shown in Section 5.3. 

The sealing effectiveness    ̂ , which in principle could be determined from pressure 

measurements at the sweet spot, can be calculated from Eq. 5.6 where:  
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As shown in Section 5.3, Eq. 5.19 ensures that the sealing effectiveness determined from 

pressure measurements is equivalent to that determined from concentration measurements. 

 

5.1.2 Calculation of discharge coefficients at sweet spot 

 
The discharge coefficient for egress, determined from measurements at location A, can 

be calculated from Eq. 2.10 by: 

21

min

2

3
/

Ap

Ad,e
)](xC[Δ

Φ
)(xC                        (5.20) 

This value depends on where the measurements are made, and the correct value to use is 

the one determined at the sweet spot, where: 
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ˆ              (5.21) 

At the sweet spot, Eq. 5.17 shows that: 

         B
)x,Δp(Φ

),xΔp(Φ

o

Ao 
ˆ

            (5.22) 

where, as described above, the constant B is found from linear regression of the pressure 

measurements. It follows from Eq. 5.22 that:  

    )(xΔCB)x(ΔC App
1ˆ              (5.23) 

Substitution in Eq. 5.21 gives 

)(xCB)x(C Ad,e
/

d,e
21ˆ                                                 (5.24) 

Similarly, for ingress, 

    )(xCB)x(C Ad,i
/

d,i
21ˆ                               (5.25) 

As shown in Section 5.5, the discharge coefficients determined from measurements in an 

experimental rig could be used to compute the ingress through an engine rim seal.  
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5.2 Radial-clearance rim seal 

 
This section details the experimental validation of the theoretical model using a radial-

clearance rim seal. Location A on the vane platform as shown in Figure 3.5 is used to 

determine p2. 

 

 

Figure 5.1: Geometry of radial-clearance seal 

 

 

 

 

 

 

 

Figure 5.1 illustrates the geometry of the radial-clearance rim-seal tested in this section. 

This seal slightly differs from the radial seal presented in Section 3.2, therefore the 

geometric dimensions indicating the wider axial and radial clearances are given in Table 5.1.  

Geometric Symbol Dimension 

h 10 mm 

b 190 mm 

S 20 mm 

sc,ax 2 mm 

sc,rad 2.4 mm 

soverlap 3.7 mm 

Table 5.1: Dimensions of radial-clearance seal 
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Figure 5.2: Variation of εc with Φ0 for radial-clearance seal: EI ingress (Symbols denote data; lines are 

theoretical curves) 

 

 

 

 

 

 

 

Figure 5.2 shows comparisons between the theoretical curve, Eq. 2.14, and the 

experimental values of εc based on the concentration measured on the stator at a non-

dimensional radius r/b = 0.958.  Φmin and Γc were calculated from a statistical fit of the data 

using the maximum likelihood method described by Zhou et al. (2013a). Their respective 

values were found to be 0.105 and 1.35 for the radial-clearance seal, as shown in Table 5.2. 

Once again the experimental data are in good agreement with the theoretical curve. Figure 

5.2 also shows that Reϕ, the rotational Reynolds number, has no significant effect on the 

variation of effectiveness. 

 

Parameter EI 

Φmin 0.105 

Φmin
-
 0.0999 

Φmin
+
 0.110 

Γc 1.35 

Γc
-
 1.12 

Γc
+
 1.64 

σ 0.0172 

Table 5.2: Parameters for radial-clearance seal at EI ingress conditions 
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5.3 Computation of sweet spot location 

 
In this section, CFD analysis performed by a co-author of Owen et al. (2014), is used to 

support the experiments which validate the theoretical model. The principal object of the 

CFD was to determine the location of the sweet spot and to test the hypothesis that its 

location was invariant with the sealing flow rate. As it was shown in the Chapter 4 that the 

blades had a negligible effect on ingress at the design condition, computations were 

performed with vanes but in the absence of rotating blades. 

Although, as shown above, the sealing effectiveness and the discharge coefficients can be 

calculated without knowing the location of the sweet spot, its location is needed if the 

experimental results are to be applied to an engine rim seal. As shown below, its location 

can be determined computationally using Eqs. 5.3 and 5.7.  

Figure 5.3 shows the computed axial distribution of g(x), based on Eq. 5.3, for five values 

of Φo/Φmin. The horizontal lines represent the five corresponding values of ĝ, which were 

calculated from Eq. 5.7 with the values of εc and Γc determined from the concentration 

measurements. The intercept of these two curves occurs at the point where g = ĝ and 

consequently where x =   . The vertical line corresponds to the mean of the computed values 

of   . (The values of p1 were computed on the stator surface at r/b = 0.958, which is the 

location used for the experimental measurements discussed in Section 5.4.) 

 
Figure 5.3: Effect of Φ0/Φmin on computed variation of ĝ and g with x showing location of sweet spot - 

Horizontal broken lines show values of ĝ from Eq. 5.7; solid curve shows computed variation of g(x) from 

Eq. 5.3; solid vertical line shows mean value of computed    
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Figure 5.4 shows the computed values of    for the 22 values of Φo/Φmin used for the 

pressure measurements described in Section 5.4. The mean value of    for the radial-

clearance seal was 1.18, which is just 0.18 mm upstream of the seal clearance in the 

experimental rig. Although there is no reason to believe that this value will be the same for 

all seals, it is consistent with the previous computations for an axial-clearance seal in the 

same rig, shown in Figure 2.25. The fact that there is no significant effect of the sealing flow 

rate on the computed values of    provides support for the assumption that    is invariant with 

Φo. 

 

 

Figure 5.4: Computed variation of    with Φo/Φmin - Solid line shows mean value of   , with its geometric 

position shown in relation to the seal clearance (inset) 
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5.4 Experimental measurements 

 

 

Figure 5.5: Effect of r/b on measured variation of g(xA) with Φo/Φmin for radial-clearance seal 

 

The pressure measurements were obtained for the radial-clearance seal at Reϕ = 8.17 × 

10
5
. Figure 5.5 shows the measured variation of g(xA) with Φo/Φmin. As shown in Figure 3.5, 

the static pressure on the surface of the stator, p1, was measured at 14 different radial 

locations (0.600 < r/b < 0.993) in the wheel-space. For clarity, only five of these 

measurements are shown in Figure 5.5. It can be seen that there is no location of r1/b that 

ensures that g(xA) = 1 when Φo/Φmin = 1, which confirms the fact that location A cannot be 

the sweet spot, and consequently these uncorrected measurements cannot be used to 

determine the effectiveness. 

Although, in theory, the variation of g(xA) with Φo/Φmin should be slightly nonlinear, the 

fact that the nonlinearity shown in Figure 5.5 increases as r/b decreases is attributed to the 

swirl in the wheel-space. The swirl creates a nonlinear radial pressure gradient, and the 

difference between the pressures at the measurement radius r and the seal radius b increases 

as r/b decreases.  

There are two extremes to avoid in choosing a suitable location of r/b to measure p1. As 

shown by Bohn et al. (1995) in Figure 2.13, if the radius is too close to the seal then the 

pressure in the wheel-space will be non-axisymmetric; if the radius is too small, the effects 
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of swirl will be significant. (The effect of swirl on the radial distribution of pressure in the 

wheel-space of the rig used here is discussed in Chapter 3). A value of r/b = 0.958 was 

chosen here as a compromise; this was also the radial location used to make the 

concentration measurements from which εc was determined. 

 

 
Figure 5.6: Variation of ĝ with measured values of g(xA) for radial-clearance seal (Solid line shows linear 

regression of data) 

 

Figure 5.6 shows the variation of g(xA), the values of which  were measured at r1/b = 

0.958, versus ĝ, calculated from Eq. 5.19. Linear regression was used to determine the 

values of the constants, and it was found that B = 3.07 and C = - 0.472. The standard 

deviation between the experimental values of g(xA) and the correlation was 0.012; in Section 

5.6, the uncertainty in the measured value of g(xA) was estimated to be < 0.0077. These 

results support the assumptions made in deriving eqs. (5.17 and 5.18). 

 



Use of pressure measurements to determine sealing effectiveness 

 

 ~132~

 

 
Figure 5.7: Variation of ĝ and g (xA) with Φo/Φmin for radial-clearance seal 

 

Figure 5.7 shows the variation of g(A) and ĝ  with Φo/Φmin, where the curve for ĝ was 

based on Eq. 5.7 and the values of g(xA) are the same as those shown in Figure 5.6. The 

results for ĝ demonstrate the consistency requirement that g equals unity at the sweet spot 

location, when Φo is equal to Φmin, as determined from the concentration measurements. For 

Φo = 0, ĝ = ĝ*, and it follows from Eq. (5.8) (with c  = Cd,i/Cd,e = 1.32) that ĝ* = 0.546. 

Figure 5.8 shows the comparison of sealing effectiveness determined from both pressure 

and concentration with Φo/Φmin. The values of εp were calculated from Eq. 5.19, using the 

values of B and C given above and the measured values of g(xA) shown in Figure 5.7. The 

values of εc were obtained from the concentration measurements, and Eq. 2.14 was used to 

produce the effectiveness curve; this data is repeated from Figure 5.2.  

The standard deviation between the calculated values of εp and the effectiveness curve 

was 0.017, and that between the measured values of εc and the curve was 0.019. (Note: these 

standard deviations were based on the differences between the individual calculated or 

measured values and the theoretical curve and not on the uncertainties described in Section 

5.6). The results in Figure 5.8 give confidence in the theoretical model described in Section 

5.1. 
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Figure 5.8: Variation of sealing effectiveness with Φo/Φmin for radial-clearance seal - Solid symbols denote 

values of εp from pressure measurements; open symbols denote values of εc from concentration 

measurements; solid curve is based on effectiveness equation (Eq. 2.14) 

 

The values of Cd,e and Cd,i for the radial-clearance seal determined from the 

measurements of ΔCp at location A were 0.177 and 0.239 respectively. Using Eqs. 5.24 and 

5.25 with B = 3.07, the values of Cd,e and Cd,i at the sweet spot are 0.310 and 0.419 

respectively. It is shown below how the model could be used by the engine designer. 

 

5.5 Extrapolation of effectiveness data from rig to engine 

 
In principle, orifice models provide a simple method of extrapolating the experimentally-

measured effectiveness of a particular rim seal to a turbine with similar seal geometry. 

However, the conditions – particularly the Mach number and temperatures – in engines are 

usually significantly different from those in the experimental rig. Also, the design codes 

used for internal air systems usually estimate ingress from pressures rather than from the 

concentration measurements made in most rigs. Care and attention to mathematical 

consistency are needed if orifice models are used to extrapolate rig measurements to engine 

conditions. In particular, the ‘correct’ pressures must be used in the engine, and the 

theoretical model discussed above was developed to ensure that consistency.  
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The Mach number effect was considered by Teuber et al. (2012) who showed, 

theoretically and computationally for the Bath rig, that the magnitude of ΔCp increases as the 

Mach number increases. They showed that, by correcting ΔCp and assuming that the 

discharge coefficients are unaffected by Mach number, the sealing effectiveness, εc, 

determined by concentration measurements in an experimental rig at one Mach number, 

could be used to compute the effectiveness in an engine at another Mach number. Their 

suggested correction for Φmin is given in Eq. 2.19. However, unless the location of the sweet 

spot is known, the effectiveness cannot be related to pressure differences in the engine. This 

makes the method of limited use to designers. 

The location of the sweet spot in the engine has to be determined using CFD, as 

described in Section 5.3. In the engine, unsteady CFD would be required to account for the 

turbine blades. However, as shown in Chapter 4, the symmetric blades used in the rig had 

little effect on ingress at the design condition. Therefore the steady CFD results presented 

did not include the blades. The mean value of    could then be determined from computations 

made for a range of sealing flow rates. An approximate value could be found by computing    

only for the case where the sealing flow rate is zero. For this case, ĝ = ĝ* where, as shown in 

Section 5.1.1:  
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and Γc is known from the concentration measurements in the rig. The value of p1* could be 

evaluated at any convenient radial location in the wheel-space of the engine, bearing in mind 

the qualifications given in Section 5.4. The approximate value of    could then be found by 

computing p2,min*(x) and Δp*( ) for different values of x, on the vane platform upstream of 

the seal clearance, until Eq. 5.26 is satisfied.   

In the proposed method, it is assumed that the discharge coefficients at the sweet spot for 

the rim seal in the engine are equal to those at the sweet spot in the rig. As Cd,e,engine = Cd,e,rig 

= Cd,e, it follows that: 

        
21

min
3

2 /

p,engined,eengine, CΔCΦ             (5.27) 

where ΔCp,engine  is the time-average value determined at the sweet spot in the engine.  As 

proposed by Teuber et al., this relationship is assumed to apply for all Mach numbers. 

For the case where Φ0 < Φmin, it is necessary to calculate ĝ for any flow rate by: 
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Knowing ĝ, the sealing effectiveness can be calculated from Eq. 5.6 where:  
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The uncertainties in   ̂ depend on the uncertainties in ĝ, which, as shown in Section 5.6, 

depend on the uncertainties in the pressures determined for the engine.  

The above method of extrapolation requires validation by experiments and CFD at 

engine-representative Mach numbers and density ratios not achievable in the existing Bath 

rig. Experimental rigs like the large HGIR rig described by Palafox et al. (2013) and the 

Sussex rig used by Gentilhomme et al. (2003) are more suitable for this purpose. A new 1.5 

stage ingestion rig described in Chapter 6, featuring realistic turbine blade and vane 

geometries, is under construction at the University of Bath. It is hoped in the future this rig 

will be able to provide the data necessary to thoroughly test theoretical models that could 

then be used with confidence by engine designers. 

 

5.6 Uncertainty in pressure measurements 

 
From Eq. 5.3: 
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where X = p1 –p2,min and Y = p2,max –p2,min. Hence: 
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The magnitude of the relative uncertainty in g is then bounded by: 
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where |δX| = |δp1| + |δp2,min| and  |δY| = |δp2,max| + |δp2,min|, and δg, δp1, δp2,min, δp2,max, are the 

uncertainties in g, p1, p2,min, p2,max respectively. Hence: 
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When the uncertainty is a percentage of the full-scale range, which was the case in the 

experiments, then |δp1| = |δp2,min| = |δp2,max| = δ, say, and Eq. 5.34 simplifies to: 
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The Druck PDCR 22 Scanivalve pressure transducers used in the experiments had a 

stated uncertainty of ±0.06% (Best Straight Line) across a range of 70 mbar, which implies 

that δ = 0.042 mbar. In the experiments, p2,max - p2,min ≈ 16.3 mbar, and g(xA) < 0.5, so from 

Eq. 5.36, |δg| ≤ 0.0077. 

 

5.7 Summary 

 
The main object of this chapter was to relate the sealing effectiveness determined from 

concentration measurements (εc) in an experimental rig to the effectiveness computed from 

pressure differences (εp) in an engine.  

A theoretical model was developed to calculate the axial location (denoted by    and 

referred to as the ‘sweet spot’) where the pressures should be measured on the vane platform 

to ensure that εp = εc. The assumption was made that    should be invariant with Φo, the 

sealing flow parameter.  

Concentration and pressure measurements were made on a single-stage turbine rig fitted 

with a radial-clearance rim seal. The concentration measurements were used, in conjunction 

with a previously published orifice model, to correlate the variation of εc with Φo for 

externally-induced ingress.   
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A nondimensional pressure difference, referred to as g(xA), was determined from 

measurements at an arbitrary location (location A) in the annulus of the rig. The pressure 

measurements showed that, as predicted by the model, ĝ , the nondimensional pressure 

difference at the sweet spot, varied linearly with g(xA) for 0 < Φo/Φmin < 1, where Φmin is the 

minimum value of Φo needed to prevent ingress through the seal clearance. 

Linear regression of ĝ versus g(xA) was used to determine two constants, B and C, from 

which it was possible to calculate the variation of εp with Φo/Φmin. The calculated values of 

εp were in good agreement with the measured values of εc and with the effectiveness 

equation derived from the orifice model. 

Steady 3D CFD, based on the geometry of the experimental rig but without the rotating 

blades, was used to compute the value of    for 0 < Φo/Φmin < 1. These computations showed 

that, as assumed in the model,    was virtually invariant with Φo. In agreement with Owen et 

al. (2012a), the computed value of    was found to be very close to the upstream edge of the 

seal clearance. 

Using the model, Cd,e(  ) and  Cd,i(  ), the discharge coefficients for egress and ingress at 

the sweet spot, could be related to Cd,e(xA) and  Cd,i(xA) , the discharge coefficients 

determined experimentally at location A in the rig.  

It was shown how, in principle, the theoretical model could be used to determine the 

effectiveness for the rim seals in an engine. This would involve the use of CFD, together 

with the values of Cd,e(  ) and  Cd,i(  ) determined from an experimental rig with a similar rim 

seal, to compute the sweet spot for the engine seal.  
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Chapter 6: Design of a 1.5 stage experimental 

test facility 

 

This chapter details the design of a novel 1.5 stage research facility which experimentally 

models hot gas ingestion into a downstream, as well as an upstream wheel-space. A 

requirement was identified for a new rotating experimental facility capable of measuring the 

effects of ingress with turned rotor blades. The downstream wheel-space differs significantly 

in some important ways: the axial flow in the annulus is from the rotor towards the stator, 

and the swirl of the ingested fluid can be in the opposite sense to the direction of rotation of 

the turbine disc.  

The rig was specifically designed for detailed instrumentation access in a more benign 

environment than is typically found in a gas turbine. Once again CO2 gas measurements will 

be used to ascertain the effectiveness of rim seal designs in both wheel-spaces. Infrared 

sensor technology is employed to determine the adiabatic surface temperatures, adiabatic 

effectiveness and Nusselt numbers for the rotating surfaces. Static and total pressure 

measurements will also be made to determine the external driving pressure, and the fluid 

dynamics in the wheel-spaces.  

The methodology behind the design process is outlined, and the technical aspects of the 

rig are documented. Initial calculations were conducted to assess the running conditions for 

the rig. The test section design was determined in conjunction with Siemens, who provided 

the vane and blade profiles. The rig is due to be operational and commissioned in July 2014. 

The author of this thesis completed the design work described in this chapter in 

conjunction with a colleague, based on knowledge and experience gained from operating 

and conducting experiments using the single stage facility described in Section 3.1. 

 

6.1 Conceptual design of the rig 

 

The rig featured a 1.5 stage (vane, blade, vane) axial turbine, where two stators separated 

by a rotor disc created two separate wheel-spaces. Sealant flow entered the upstream wheel-

space through the centre of the stator disc. In the downstream wheel-space, flow could be 

supplied at two radial locations either side of an inlet-seal. In both cases, flow moved 

radially-outward through the wheel-space, emerging through rim-seals into an external 
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annulus. The project proposal provided by Siemens required the provision for leakage flow 

from the nozzle guide vane and the inner carrier ring gap in the upstream wheel-space to be 

modelled. Additionally, both sets of stator vanes were manufactured as split blings (bladed 

rings) in order to allow for radially assembled seal designs to be tested. 

The addition of turned rotor blades results in an engine representative flow-field in the 

external annulus. This did however necessitate the drive system to be capable of removing 

the power generated by the turbine through a dynamometer, and cope with the resulting 

temperature and pressure drop across the stage. 

By moving to a larger, more representative annulus, the interaction between the main and 

secondary flow gas paths can be studied in greater detail. Additional design challenges arise 

from the larger mass flows, greater rotational speeds and making simultaneous 

measurements in both wheel-spaces. 

Experience gained from operating and conducting experiments using the single stage 

facility heavily influenced the design of the 1.5 stage rig. Repeatability in the assembly and 

set-up between tests was identified as crucial if the relative performance of different seal 

designs was to be determined. It was therefore decided to mount the drivetrain assembly 

carriage on linear guide rails to ensure repeatability in lining up the discs, whilst allowing 

for access to both the upstream and downstream wheel-spaces.  

 
Figure 6.1: 1.5-stage rig test section showing turbine stage - the stator is shown in red and the rotor in blue 
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6.2 Design operating conditions 

 

The first step in the design process was to determine the approximate running conditions. 

The rig was specified with two design operating points corresponding to rotational speeds of 

3000 and 4000 rpm. The blade and vane profiles and the corresponding velocity triangle 

angles were determined from CFD analysis performed by Siemens. The vane-blade-vane 

count was chosen as 32 upstream vanes, 48 rotor blades, followed by a further 32 

downstream vanes. This allowed for a convenient CFD sector model of 2-3-2. Each design 

point had geometrically similar velocity triangles to ensure the same non-dimensional 

driving potential, ΔCp, in the annulus for the different rotational speeds.  

 

6.2.1 Non-isentropic calculations 

 

The flow conditions through the turbine stage were calculated using non-isentropic gas 

relationships and by applying conservation of mass. These values were calculated using an 

iterative process, assuming an inlet temperature of 303 K and atmospheric static pressure at 

exit of the turbine. To account for losses in the vane and blade rows, loss coefficients were 

applied to the isentropic calculations. Values of λN and λR were arbitrarily chosen as 0.05 and 

0.11 respectively, resulting in an isentropic stage efficiency, ηs = 0.925. The operating 

conditions for the two design points are shown in Table 6.1. 

 

Parameter Disc Speed (RPM) 

3000 4000 

Rotational Reynolds Number (Reϕ) 8.64 × 10
5
 1.25 × 10

6
 

Axial Reynolds Number (Rew) 3.41 × 10
5
 4.94 × 10

5
 

Flow Coefficient (Rew / Reϕ) 0.395 0.395 

Mass Flow Rate (ṁa) 1.08 kg/s 1.56 kg/s 

Vane Exit Mach Number (M) 0.345 0.464 

Degree of Reaction (Λ) 0.0675 0.0675 

Blade Loading Coefficient (ψ) 3.4 3.4 

Isentropic Coefficient of Vanes (λN) 0.05 0.05 

Isentropic Coefficient of Blades (λR) 0.11 0.11 

Isentropic Efficiency of Stage (ηs) 0.925 0.925 

Power Generated by Stage (Ws) 7.8 kW 20 kW 

Torque Generated by Stage (Ts)  24.9 Nm 47.9 Nm 

Stage Pressure Ratio (P0,1 / P0,4) 1.10 1.18 

Stage Pressure Loss (P0,1 - P0,4) 98.1 mbar 185 mbar 

Stage Temperature Loss (T0,1 - T0,4) 7.2 °C 12.8 °C 
Table 6.1: Non-isentropic design point calculations 
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Two key non-dimensional parameters used to achieve the appropriate fluid dynamics are 

the axial and rotational Reynolds numbers. The ratio of these numbers gives the flow 

coefficient (CF = Rew/Reϕ). In line with current industrial gas turbine engine designs, and in 

order to ensure a sufficient driving potential for externally induced ingress, a target flow 

coefficient of 0.4 was chosen. This approximately matches the mean value of the first 10% 

span of a Siemens gas turbine engine design. 

The magnitude of Reϕ was made as large as possible given the constraints of the design. 

At the fastest rotational design speed, this was in the region of 1 × 10
6
. To ensure turbulent 

flow, Reϕ should be greater than 3 × 10
5
 (Theodorsen and Regier (1944)). Typical values of 

Reϕ found in gas turbine engines are in the order of 2-3 × 10
7
 (Childs (2011)). Although the 

rig is operating at an order of magnitude below this, Owen and Rogers (1989) showed that, 

for rotating flow, the flow structure in the boundary layers is principally governed by the 

turbulent flow parameter, λT, and depends only weakly on Reϕ. Hence the flow structure in 

both wheel-spaces of the rig is considered to be representative of that found in the cooling 

systems of engines. 

For consistency with the 1 stage rig, a characteristic radius b = 190 mm was maintained 

for the new design. An annulus height of 25 mm was selected, providing a hub to tip ratio 

(Ri/Ro) of 0.89, which is typical of the first few stages of many gas turbines (Khilnani and 

Bhavnani (2001)). This resulted in a much larger air flow rate capacity to supply the annulus 

than was previously available. A new compressor was purchased in order to meet the 

requirement of 1.5 kg/s that enabled in the target flow coefficient to be obtained. This 

equated to vane exit Mach number of 0.46, which was considered within the incompressible 

flow regime.  

The blade loading coefficient, ψ, (also known as temperature drop coefficient) expresses 

the work capacity of the stage. The degree of reaction, Λ, indicates the fraction of the stage 

expansion that occurs in the rotor. As shown in Table 6.1, the blade loading coefficient was 

3.4, and the degree of reaction for the stage design was less than 7%. 
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6.2.2 Velocity triangles 

 

 

Figure 6.2: Velcoity triangles for the 1.5 stage axial turbine 

 

The velocity triangles for the axial turbine stage are given in Figure 6.2 and the 

corresponding angles and velocities are given in Table 6.2. As the experimental rig models 

the first stage of a gas turbine, air entered the first stage of vanes with a purely axial flow 

velocity component, W; the vane 1 inlet angle, α1, was therefore equal to zero. It then left the 

vanes with a velocity C2 and an angle α2 = 77.5°, in the stationary frame of reference. In the 

rotating frame of reference, this is equivalent to a velocity V2 and an angle β2. At the design 

condition, β2 therefore determined the geometric metal angle of the blade. A blade turning 

angle (equivalent to β2 + β3) of approximately 130° was deemed similar to that found in a 

modern day gas turbine designs. V3 and β3 were the relative blade exit velocity and angle 

respectively. In the stationary frame of reference, the air is turned by the blade back to 

almost completely axial flow, thus minimising α3. The flow was then turned 34.5° by the 

downstream set of vanes to an angle of α4 and a resulting velocity C4, in the stationary frame 

of reference.  
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Velocity Triangle Parameter 
Disc Speed (RPM) 

3000 4000 

Vane 1 Inlet Angle (α1) 0° 

Vane 1 Exit Angle (α2) 77.5° 

Blade Inlet Angle (β2) 63.2° 

Blade Turning Angle (β2 + β3) 129.9° 

Blade Exit Angle (β3) 66.7° 

Vane 2 Inlet Angle (α3) 11.8° 

Vane 2 Exit Angle (α4) 46.3° 

Rotational Velocity (Ωb) 59.7 m/s 79.6 m/s 

Axial Velocity (W) 25.8 m/s 34.3 m/s 

Vane 1 Exit Velocity (C2) 119 m/s 159 m/s 

Blade Inlet Velocity (V2) 57.1 m/s 76.2 m/s 

Blade Exit Velocity (V3) 65.1 m/s 86.8 m/s 

Vane 2 Inlet Velocity (C3) 26.3 m/s 35.1 m/s 

Vane 2 Exit Velocity (C4) 37.3 m/s 49.7 m/s 
Table 6.2: Velocity Triangle Parameters 

 

Due to noise considerations, the value of the stage exit velocity C4 is limited. In the case 

this acceptable value was exceeded, a third set of de-swirl vanes were designed to return the 

flow to the axial direction and reduce the velocity. However the velocities in Table 6.2 for 

the two design conditions were deemed acceptable, therefore the de-swirl vanes were not 

required; this saved manufacturing costs and physical space in the rig. 
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(A) 

 

 

(B) 

Figure 6.3: Vane and blade profiles; (A) Co-ordinate geometries, (B) Representative modelling 

 

 
The vane-blade-vane co-ordinate system was obtained with 12 mm separations between 

each aerofoil and shown in Figure 6.3. The CAD modelling of these geometries and the 

resulting manufactured parts are shown in Figure 6.4. 
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Figure 6.4: Vane and blade profiles showing CAD representation and manufactured parts 
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6.2.3 Free vortex design 

 

As the linear blade speed, U, increases with increasing radius, the shape of the velocity 

triangles will vary from the root to tip of the blade. However as the tip to hub radius ratio in 

the stage is low, it was fair to assume the conditions at the mean diameter of the annulus 

represent an average of what happens to the mass flow as it passes through the stage.  

 

 

Figure 6.5: Radial variation of C2 across annuls height 

 

Figure 6.5 shows the radial variation of C2 with annular height for the free vortex case 

and the design case where Cw2 is constant. For a free vortex design, it was calculated that a 

root to tip variation of 1.5° in vane angle, α2, would be required to ensure the Cw2r = constant 

condition is met. It was deemed that the added complexity and manufacturing cost to 

produce twisted vanes was unfeasible for such a small change in angle.  
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6.2.4 Temperature entropy diagram 

 

 
Figure 6.6: T-s diagram of 1.5 stage facility 

 

The resulting temperature-entropy diagram for the stage is shown in Figure 6.6. 

Isentropic expansions are represented by the superscript dashed notation, and the thick full 

and dashed lines connect the total and static states respectively. The definitions of the 

velocities are given by the velocity triangles in Figure 6.2. No change in total temperature 

occurs across the first set of vanes as no work is done to the flow (T01 = T02). However a 

change in total pressure occurs (p01 - p02) due to friction in the vanes. Further expansion in 

the moving blade passages reduces the pressure to p3. The associated total temperature drop 

(T02 - T03) is equivalent to the stage work output per unit mass flow, Ws, divided by the 

specific heat capacity of air.  
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6.3 Design of experimental section 

 

Each of the numbers in this section refers to the exploded component view shown in 

Figure 6.7. 

The mainstream flow from the co-axial pipe (1) supplied a radial diffuser (2) featuring 32 

(one per vane) flow guides manufactured from carbon-fibre. These ensured a smooth 

transition through the change in radius, whilst also helping to establish axisymmetric flow in 

the mainstream annulus. A sealed flange was used to connect the guides to the co-axial pipe, 

and a steel plate provided support from the bedplate whilst allowing the connection to the 

stub pipes to be made. 

In order to link the radial diffuser to the annular transition, the use of thirty-two 1-inch 

aluminium inlet feed pipes (3) from the previous rig design was replicated. This was 

advantageous as it allowed for access to instrumentation at the rear of the upstream stator 

disc. Unlike an alternative plenum chamber design, the space in-between each pipe enabled 

instrumentation cables and tubing to be passed out from the inside of the rig. However, as an 

alternative to the hosing sleeve and jubilee clip arrangement, used to connect the pipe 

lengths to the stub pipes at either end in the previous rig, a new joining mechanism was 

sourced. A coupling device manufactured by Straub
®
 was used that allowed for the quick 

release and removal of the pipes, increasing the ease of access to the rear of the upstream 

stator disc, whilst also creating a seal between the two pipe faces.  

In order to determine the required length of the pipes, a calculation was performed to 

establish the fully developed flow entrance length. From White (2011), for Re ≤ 10
7
 the 

following equation is used: 

4/1
Re6.1 d

e

d

L
             (6.2) 

where Red is calculated for the maximum flow rate through the one inch pipe, which resulted 

in a velocity of 77.1 m/s in each pipe which was deemed acceptable. The maximum entrance 

length was therefore calculated as 0.772 m. 

The 2-inch sealant line from the co-axial pipe supplied a fibreglass transition (4) which 

allowed for the change in profile from a circular pipe, to square sections for the two mesh 

heaters, then back to a circular section which supplied the upstream wheel-space. The 

fibreglass downstream of the mesh heaters was lined with Rohacell to prevent heat transfer 

through the surfaces. 
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Figure 6.7: Exploded component model of rig configuration 
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The annular transition (5) was manufactured as two 180° split sections, which allowed 

for improved access to the instrumentation at the rear of the upstream stator disc (6). It also 

featured carbon-fibre inserts that acted as flow straighteners to promote transition from the 

32 one-inch circular pipes to the mainstream annulus. 

The outer annulus (9) was also manufactured as two sections to provide improved access 

to the turbine stage. Outer diameter rings where bolted to both vane sets to ensure no tip 

leakage occurred between the stator vanes and the outer casing. A steel cradle structure (not 

shown in Figure 6.7) provided the support for both the upstream stator disc and the outer 

casing. 

The titanium rotor disc (7) was attached to the shaft using a Tollok
®
 locking assembly. 

When tightened, this device creates an interference fit between the disc bore and the shaft 

hub. This allowed for the rotor disc to be removed easily and quickly, providing access to 

the downstream wheel-space, whilst ensuring accuracy when the disc is re-attached. The 

geometry of the TL 133 Tollok, and an aluminium ring on the downstream sides of the disc, 

ensured that no axial movement relative to shaft occurred during tightening. A shaft end cap 

was manufactured to cover the Tollok bolts and provide a smooth surface for the Rohacell 

lining. In the case of failure of the Tollok, this end cap and the aluminium ring prevented the 

disc from colliding with other components. 

The downstream stator disc (8) was supported by the bearing housing (10). Sufficient 

space was left at the rear of the disc to prevent impingement of the flow exiting the stage on 

the support structure, and allow for a volute to be installed for future heat transfer 

experiments in the downstream wheel-space. Thrust bearings resisted axial movement 

caused by the pressure imbalances between the two wheel-spaces, and the axial component 

of the loaded rotor blades. The rotor was connected to the dynamometer (12) via a flexible 

coupling (11). This ensured any movement or vibration caused by the drive system was not 

transferred to the turbine section, which would have altered the radial and axial clearances 

during operation.  

The drivetrain assembly carriage was mounted to linear guide rails to allow for 

movement of the rotor and downstream stator assemblies. This allowed for access to the 

upstream wheel-space, and by removing the rotor disc, access to the down-stream wheel-

space. Bosch Rexroth
®
 torque-resistant profiled ball rails were chosen which provided 

location accuracy up to 10 μm, ensuring repeatability when lining up the discs. A lead-screw 

was included to allow for precision movements when aligning the rotor-stator system. The 
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rig assembly, with support structures and guide rails mounted to the bedplate in the retracted 

position, is shown in Figure 6.8. 

 

Figure 6.8: Experimental facility in retracted position 

 

The dynamometer was a VASCAT MAC HS4 132 S asynchronous servomotor. This unit 

was capable of operating in ‘drive’ mode, where in the absence of air loading the blades it 

acted as a motor, rotating the turbine up to operating speed.  The rotational speed was 

measured internally by the dynamometer to an accuracy of ±1 rpm. When the blades were 

under load from the mainstream flow, the dynamometer was able to extract up to 34.4 kW of 

energy from the turbine through an electrical inverter. 

The rotor could also be locked in position to prevent rotation during tests in order to 

capture the EI asymptote, as shown in Figure 4.9. Five different angular positions were 

chosen in order to investigate the effect of the blade leading edge location, relative to the 

vane exit angle. 
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Figure 6.9: Sectioned general assembly of rig  
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6.3.1 Turbine stage geometry 

 

 
    

 
Figure 6.10: Dimensioned section of turbine stage (dimensions in mm) 

 

For consistency with the 1 stage rig, many of the key geometric dimensions, including 

the characteristic radius, vane blade spacing, wheel-space width and rim seal gap were 

maintained for the new design. Some of the important dimensions, along with the attachment 

arrangement for each of the components, are shown in Figure 6.10.  

Similar to the single stage rig, the datum setup once again featured simple axial clearance 

seals, formed by the shrouds at the wheel-space peripheries. 30° chamfers of 1/3 depth were 

included at the leading edge of the rotor and downstream stator platforms to prevent flow 

impingement and to resemble real gas turbine designs. Modular holes located on the 
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underside of both the stators and rotor shrouds allowed for different seal geometries to be 

attached. Inner seals located approximately half way down the cavities ensured turbulent 

Couette flow entered both wheel-spaces with the appropriate swirl. The radial length of this 

inlet seal was reduced from the previous design to allow a larger lower wheel-space in both 

the upstream and downstream sides. 

An estimate of the boundary layer thickness in the annulus was conducted treating the 

inner and outer end walls as a pair of adjacent flat plates. Using the 1/7
th
 power law for the 

turbulent boundary layer shape, the displacement thickness, δ*, was estimated using: 

20
Re

0460
.

x

x.
δ*                (6.1) 

where the Reynolds number was calculated using the estimated curve-linear length of the 

vane channel (62.4 mm) and the free-stream velocity, estimated as the vane 1 exit velocity, 

C2. For the 3000 rpm design case, δ* was calculated as 0.2 mm, resulting in a blockage 

factor equal to 1.7% of the 25 mm annulus height. This was deemed acceptable and ensured 

a substantial amount of the ingested fluid came from the mainstream flow and not just from 

the boundary layer. 

 
Figure 6.11: Rig test section showing mainstream, and upstream and downstream sealing flows (red – 

stationary, blue – rotating) 
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Upstream sealing flow was supplied to the turbine section along the centreline, as shown 

in Figure 6.11. In order to conduct reverse heat transfer experiments, this flow was heated 

using mesh heaters. A transition section was formed from the circular inner co-axial 2 inch 

pipe, to the square section mesh heaters, then back to the round profile. This transition was 

flanged to the back of the upstream stator disc. In the downstream wheel-space, flow was 

supplied at a radial height, r/b = 0.45, through 16 circumferentially distributed holes of 6 

mm in diameter. Equal distribution of this flow to each hole was ensured using a manifold.  

For future heat transfer experiments in the downstream wheel-space, sufficient space at 

the rear of the stator disc was left to accommodate a volute. This circumferentially 

contracting device would feature a mesh heater and Rohacell lining on the inner surfaces to 

evenly distribute the flow to the individual holes whilst preventing heat transfer.  

An alternative sealant flow arrangement is shown in Figure 6.12, where air is supplied to 

turbine stage at larger radius ratios. To satisfy the design criteria provided by Siemens, these 

additional sealant line holes were included in both the upstream and downstream wheel-

spaces. This allowed for the effects of leakage flow from the nozzle guide vane and the inner 

carrier ring gap to be experimentally simulated. Flow could also be extracted through the 

downstream wheel-space holes to replicate flow arrangements found in gas turbine engines. 

 
Figure 6.12: Rig test section showing alternative sealing flow entrance locations in upstream and 

downstream wheel-spaces (red – stationary, blue – rotating) 
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6.3.2 Materials 

 

To prevent heat transfer to the metallic components, Rohacell 51 insulating foam lining 

was used on the stator and rotor surfaces. Rohacell is a low density grade material with a 

very high strength to weight ratio, and a low thermal conductivity. As shown by Table 6.3, 

the thermal conductivity is very close to the value for air (equal to 0.0257 W/mK).  

Titanium was chosen for the manufacture of the rotor blisc, and also the stator vane 

blings, for its strength properties in comparison with aluminium, and also a dramatically 

reduced thermal conductivity value. This negated the use of mitred seal inserts used in the 

previous rig to help prevent heat transfer to the underside of the stator and rotor shrouds. 

To ensure the structural integrity of the rotor blisc, the 0.2% proof stress was compared 

with the maximum calculated stress experienced under rotation. Because materials such as 

titanium do not readily exhibit a yield point based on the shape of the stress-strain curve, an 

arbitrarily defined offset yield point, or proof stress, is usually used. 

 

 

Figure 6.13: Material selection of turbine section 
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Property Material 

Titanium Aluminium Rohacell 

Type Ti A6AI-4V Al 7075 T6 51 IG-F 

Density 4500 kg/m
3
 2800 kg/m

3
 52 kg/m

3
 

Young’s Modulus 116 GPa 72 GPa 70 MPa 

Poisson’s Ratio 0.34 0.33 0.25 

0.2 % Proof Stress 880 MPa 505 MPa 1 MPa 

Thermal Conductivity  8.73 W/mK 250 W/mK 0.033 W/mK 
Table 6.3: Mechanical properties of materials used 

 

6.3.3 Rotor growth 

 

The chosen Tollok design allowed torque to be transmitted between the disc and the shaft 

by creating an interference fit between the two components. However, due to the difference 

in materials the disc will grow radially under rotation at a greater rate than the Tollok, 

resulting in a relaxation of this interference. The growth of the titanium disc therefore has to 

be investigated. A simplified diagram of the Tollok and disc arrangement is shown in Figure 

6.14. 

 

Figure 6.14: Simplified diagram of Tollok and disc arrangement 

 

From Table 6.1, the maximum torque occurs generated by the stage is 47.9 Nm at 4000 

rpm. The force, F, generated by the interference at the interface between the Tollok and the 

disc is related to the contact surface area, A, by: 

pRLpAF  )2(             (6.3) 

where, as shown in Figure 6.14, R is the radius of the interface and L is the contact length. 

The torque, T, is therefore related by: 
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pLRRFT  22              (6.4) 

For an interference fit the pressure, p (equivalent to the radial stress at the disc bore, σr) is 

related to the interference by: 
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where E and v are the modulus of elasticity and Poisson’s ratio respectively. The subscript o 

symbols refer to the outer component, in this case the disc, and the subscript i the inner 

component, i.e. the Tollok. The required interference to transmit the torque is therefore 

found by combining Eqs. 6.4 and 6.5:  
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Using the dimensions shown in Figure 6.10, and a coefficient of friction, μ, between 

titanium and grey cast iron of 0.49, the interference to transmit this torque is calculated from 

Eq. 6.6 as 3.35 × 10
-8

 m, which equates to a pressure at the bore of the disc of 324 KPa. 

For an unconstrained titanium disc spinning at 4000 rpm, the expected radial growth at 

the bore is 1.09 × 10
-5

 m, significantly larger than that required to transmit the torque. Using 

Eq. 6.5, the pressure required to create this interference is 24.5 MPa. The Tollok TL 133 

creates a surface pressure on the bore of the disc of 120 MPa, a factor of almost 5 times 

larger. 

In reality, the disc is statically pre-stressed by the Tollok, which in turn will affect the 

growth. This results in a circular problem, as the interference pressure under rotation is 

dependent on the growth, and the growth is dependent on the interference pressure. As this is 

a rather complicated problem to solve computationally, the unconstrained case was 

considered worst case. The maximum hoop stress, determined using a 1D calculation of the 

unconstrained titanium blisc at 4000 rpm was estimated as 32 MPa. From Table 6.3, the 

0.2% proof stress of the titanium used was 880 MPa, resulting in a safety factor of 27.5. This 

allowed a large margin to account for potential stress raisers caused by the geometry. 

In order to prevent further stressing of the disc by threading the titanium for the cover-

plate attachment, tapered captive nuts were used on both sides of the rotor. These were 
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distributed circumferentially over 12 positions at two radial locations. The attachment 

arrangement for the cover-plates is shown in Figure 6.10. 

 

6.3.4 Rotor whirl 

 

One consideration that had to be taken into account during the design phase was whether 

whirl of the disc was an issue. For a cantilevered rotating mass, the whirling or critical speed 

is given by: 

3

3

mL

EI
c                (6.7) 

where I is the second moment of area of the shaft, m the mass of the disc and L the length of 

the overhang from the bearings. The deflection, y, of the mass is given by: 
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where e is the distance of the centre of mass from the axis of the shaft. The rotor was 

dynamically balanced to BS ISO1940-1:2003 to within turbine specification Grade 2.5 (2.5 

mm/s), resulting in a centre of mass offset of 0.6 μm. When the denominator of Eq. 6.8 is 

equal to zero, that is 3EI / mΩ
2
L

3
 = 1, the deflection becomes infinite and whirling takes 

place. Figure 6.15 shows the deflection of the shaft at speeds up to 35,000 rpm. The critical 

speed, calculated by Eq. 6.7, is shown as 27,800 rpm, where the deflection tends to an 

asymptote. At speeds greater than this value the deflection tends to the static imbalance. At 

the 4,000 rpm design case the deflection was 2 μm, ensuring whirl is not a problem within 

the operating range. 
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Figure 6.15: Calculated whirl displacement of disc with rotational speed 

 

6.3.5 Split vane construction 

 

To allow for the testing of radial overlap seals, both the upstream and downstream stator 

vane blings were manufactured as two 180° segments. This enabled the stator platforms to 

be radially assembled as shown in Figure 6.16. Clearance holes in specifically designed lugs 

allowed for the attachment of these segments to the rear of the stator discs without 

interfering with the instrumentation tappings. 

Both the outer annulus casing and the annular transition sections were also manufactured 

as split sections to allow for access to the annulus and the rear of the upstream stator disc. 
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Figure 6.16: Split vane arrangement of upstream stator bling 

 

6.3.6 Designing for heat transfer experiments 

 

The rig was specifically designed to accommodate infrared temperature sensors for heat 

transfer measurements on the rotor surface. This novel approach will enable the effects of 

ingress on the rotor side of the wheel-space to be established. A transient reverse heat 

transfer experiment is used, where the sealant line temperature is raised to above the ambient 

mainstream flow temperature (reverse in the sense that this is the opposite of what occurs in 

the engine). It is therefore important that heat transfer to surfaces downstream of the mesh 

heaters in the sealant line is minimised. 

Detachable cover-plates on both sides of the upstream and downstream wheel-spaces 

allowed for different surface materials to be easily attached. Modifications to these cover-

plates to incorporate future instrumentation could also be easily made without the need to 

disassemble the whole test facility. The test section is shown in Figure 6.17 with the heat 

transfer cover-plates in place. These ensured near adiabatic surfaces through Rohacell lining 

of both sides of each wheel-space. 
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Figure 6.17: Turbine section in heat transfer configuration 

 

The mesh heater design used in the sealant line was replicated from the 1 stage rig (see 

Sangan (2011) for details). Two heaters were installed in series in the sealant line; one to 

increase the temperature of the air to ambient conditions, and a second to step the 

temperature by approximately 40°C. These were manufactured using fine wire meshes 

soldered to bus bars, and insulated using Tufnol.   

 

6.4 Gas turbine laboratory 

 

Figure 6.18 shows an isometric schematic of the gas turbine research laboratory used to 

house the 1.5 stage experimental facility. As part of the project the laboratory was 

completely refurbished to include a new larger test cell, capable of accommodating multiple 

rigs, and a separate control room divided by a soundproof wall. In order to achieve the 

straight length requirements for the measurement devices, the air lines were looped into and 

around the control room, then back into the test cell. 
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Mainstream flow air (shown in red) was supplied directly from a dedicated Atlas Copco 

ZS160+VSD compressor through 6-inch Victaulic piping. The compressor was capable of 

delivering up to 4,578 m
3
/hr of air (equivalent of 1.53 kg/s at atmospheric conditions) at 

pressures of up to 1.2 bar gauge. Direct control of the compressor motor speed enabled 

variation of the mass flow supplied to the rig. As the compressor raised the temperature of 

the air to above ambient conditions, heat exchangers supplied by EJ Bowman were used to 

extract up to 120 kW of power, ensuring the air supplied the rig was at a safe working 

temperature. Two PK250 shell and tube heat exchangers were used in parallel in order to 

reduce the pressure drop. Water from the department’s existing blast cooler network was 

used as the cooling medium (shown in dark blue). The mainstream flow rate was then 

measured using a Bronkhorst 6-inch thermal mass flow meter.  

Both the upstream and downstream sealant flow lines (shown in light blue) were supplied 

by the existing high pressure compressed air line through 2-inch pipes. The flow was split on 

entrance to the laboratory and each separately pressure regulated down from 7 to 2 bar gauge 

to ensure minimal feedback interactions. Shut-off valves were included to isolate each line if 

required. Massflow rates in both lines were regulated and measured using Bronkhorst mass 

flow controllers. An additional orifice plate was installed in the upstream sealant line as a 

checking device. This line was then merged with the 6-inch mainstream flow line to form a 

co-axial pipe which supplied air to the upstream end of the test facility.  

 

Figure 6.18: Isometric schematic diagram of the laboratory layout 
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6.5 Instrumentation and control 

 

The cross-sectioned view in Figure 6.19 shows the axial and radial locations where the 

different measurements are made. Due to the cover-plate system, not all of these 

measurements in the wheel-spaces are made during the same testing set. For example, the 

large infrared probe holes can be covered during the concentration tests when they are not 

required, and the thermocouples can be removed as to not interfere with the total pressure 

measurements. Data acquisition for all measurements and control of the rig was performed 

by the CADET automation system. 

 

 
Figure 6.19: Global instrumentation map showing measurement locations 
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6.5.1 Wheel-space instrumentation 

 

1. Static pressure tappings were located on the stator wall to measure the radial distribution 

of pressure in both the upstream and downstream wheel-spaces. The locations are 

outlined in Table 6.4, and were chosen in line with the previous rig design, with an 

emphasis on the outmost positions corresponding to the area of greatest interest. 

Additional locations were added radially inward of the inlet seal to determine the fluid 

dynamics of the lower wheel-space. Measurements were made through the stator discs 

and cover-plates using hypodermic tubing of 1.65 mm diameter. The tappings were then 

connected via flexible polyurethane tubing to a Scani-value with a calibrated pressure 

transducer. This allowed for multiple pressure measurements to be made in the same 

testing set using a consistent measurement device. 

2. Total pressure probes were used in conjunction with the static pressure taps to determine 

the tangential velocity in the wheel-space. The probes were located one quarter of the 

axial distance across the wheel-space (z/s = 0.25), and at every second radial location of 

static pressure. The probes were aligned perpendicular to the flow direction, although as 

this was not possible at the radially outermost position, this was aligned at 3.9° (as 

shown in Figure 6.20). From Tropea et al. (2007), for an accuracy of approximately 1% 

of dynamic head, the sensitivity to yaw angle of a square-ended Pitot probe is ± 11°. 

3. Circumferentially located pressure tappings were also included at three radial positions 

to check for asymmetries in the wheel-space. Bohn et al. (1995) showed these 

asymmetries can exist at radius ratios larger than 0.972 (Figure 2.13). Measurements 

were made at 15 locations across one vane pitch, corresponding to an 11.25° sector. This 

enabled the degree of pressure asymmetry damping to be quantified for different double 

seal designs. 

4. CO2 gas concentration tappings were included on both stator walls at various radial 

locations, consistent with the static pressure measurement positions given in Table 6.4. 

These were then connected to a Signal Group 9000 MGA dual channel infrared gas 

analyser, again with flexible polyurethane tubing to determine the concentration of CO2. 

To allow multiple measurements to be made within the same testing set, two 20 channel 

multiplexors were used to switch been the different measurement locations. As the 

tappings were fabricated from the same 1.65 mm hypodermic tubing used for the 

pressure measurements, it would have been possible to measure pressure and gas 

concentration using the same taps. However, in order to make both types of 

measurements simultaneously, separate concentration taps were included at a 90° 
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separation. By making measurements at each angle, the effect of circumferential 

variation in concentration could be determined, although from the literature, this effect is 

expected to be marginal. 

5. Fast-response thermocouples made temperature measurements in the rotating core. 

These provided valuable information that quantified the heat transfer that took place 

between the air and the surfaces as the fluid flowed radially down the stator surface. The 

thermocouples were manufactured internally using 10 micron wire beads fitted inside a 

ceramic sleeve of diameter 2.34 mm. 

6. Infrared sensors were used to make temperature measurements on the rotating surfaces 

of both sides of the rotor disc. These measurements were used to calculate the heat 

transfer coefficient of the disc, as well as the adiabatic effectiveness based on 

temperature. The sensors were 17 mm in diameter including a copper sleeve, which 

acted as thermal mass to help maintain a constant internal sensor temperature, and a 

Rohacell covering for insulation. The sensors acquired data over a spot size area 6 mm 

in diameter at an axial distance of 20 mm (equivalent to the width of the wheel-space). 

Four sensors were included that produced data at two different radial locations in both 

the upstream and downstream wheel-spaces. It was envisaged this would provide 

temperature measurements either side of a generic double seal rotor attachment. 
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Figure 6.20: Upstream wheel-space instrumentation 

 
r/b r (mm) 

0.993 188.7 

0.976 185.4 

0.958 182.1 

0.941 178.8 

0.924 175.5 

0.9 171 

0.875 166.25 

0.85 161.5 

0.825 156.75 

0.8 152 

0.75 142.5 

0.7 133 

0.65 123.5 

0.6 114 

0.55 104.5 

0.5 95 

0.45 85.5 

0.4 76 

0.35 66.5 

0.3 57 
Table 6.4: Wheel-space concentration and pressure taps locations 
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6.5.2 Annulus instrumentation 

 

In order to quantify the driving potential for externally induced ingress to occur, the 

circumferential variation of pressure in the annulus was measured at ten locations, each 

averaged over two vane pitches. As highlighted in Figure 6.22, measurements were made at 

four axial locations on the vane hub, shown in blue at a radius of 195 mm. These 

corresponded to 2.5 and 3.5 mm downstream of the stator 1 vane trailing edge, and 2.5 and 

3.5 mm upstream of the stator 2 vane leading edge. In the outer annulus casing, shown in red 

for a radius of 220 mm, measurements were made at the same four axial locations, and at an 

additional two locations in the middle of each rim seal clearance. The magnitude of 

measured static pressure is expected to be larger at the outer annulus due to the radial 

gradient of pressure. 15 measurements were made at each location across a single vane pitch 

(θ), which corresponded to an 11.25° sector. The first and last taps at the edges of the sector 

were therefore duplicates within the pressure profile, ensuring data was captured for the 

whole vane pitch.  

 

 
Figure 6.21: Closeup of rig test section showing annulus and wheel-space instrumentation 
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Figure 6.22: Pressure tap locations in the mainstream annulus – blue refers to the vane hub and red to the 

outer annulus 

 

The additional axial locations should provide greater detail of the axial decay of pressure 

asymmetry in comparison to the previous 1-stage rig design. If it is assumed that the rate of 

axial decay in pressure is the same for the two radial positions, the pressures on the vane hub 

could be extrapolated to the middle of the seal clearance. The multiple axial locations should 

also give an indication of swirl in the annulus as the maximum and minimum pressure 

locations should change circumferentially with axial distance.  

It is unclear what the static pressure measurements gathered in the region between the 

blade trailing edge and downstream stator vane leading edge will show. Ingress in the 

downstream wheel-space is expected to be dominated by the pressure asymmetries caused 

by the blade and therefore are therefore likely to be unsteady. The tappings in the outer 

casing downstream from the blade are also likely to be affected by tip leakage. 

Figure 6.23 shows how the pressure taps were taken out though the vane platforms and 

outer annulus casing. The tappings were 0.5 mm in diameter which expanded to the larger 

size of 1.65 mm to allow hypodermic tubes to be inserted. These were again connected to a 

calibrated pressure transducer via a Scani-valve. 
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Figure 6.23: Instrumentation taps in mainstream annulus 

 

 
Figure 6.24 indicates the axial locations where static pressure measurements were made 

over one vane pitch in the annulus. Each measurement location featured 15 taps and were 

averaged over two circumferential positions. This equated to 300 pressure tappings in total, 

distributed around the outer annulus. 

 

 
Figure 6.24: Static pressure measurement locations in the mainstream annulus 
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6.5.3 Additional instrumentation 

 

In order to determine the radial growth and axial deflection of the rotor disc, capacitance 

based displacement probes were used in the outer annulus and downstream wheel-space. The 

measurement locations of both are shown in Figure 6.19. The radial probe was used to 

ensure the tip clearance of 0.5 mm was maintained and only registered measurements when 

a blade tip passed by the sensor. Axial movement of the rotor could occur under loading 

from the stage or pressurising the wheel-spaces. The axial displacement probe could also be 

used to ensure the downstream stator was correctly aligned to the rotor disc. As a safety 

feature, if either sensor registered a value outside of the nominal operating range a signal 

was sent from the CADET control system to stop the rig and cut the air supply to the rig. 

Mass flow measurements in both the sealing and mainstream flow lines were primarily 

made by thermal mass flow controllers, supplied by Bronkhorst. These devices were 

accurate up to ±1% of the full scale range and maintained linearity at the smallest flow rates. 

The meters used for both sealant lines were coupled with control valves to regulate the flow. 

This enabled a sealant flow rate to be set within the rig control system, causing the mass 

flow controllers to iterate within a feedback loop until this desired level was reached.  

One additional orifice plate was included in the upstream sealant flow line as a 

confirmation device, manufactured and calibrated to EN ISO 5167-2:2003. The throat 

diameter was 25 mm and the inner pipe diameter 50 mm, resulting in a β value of 0.5. 

Orifice plates were deemed less desirable as the principal mass flow measurement device 

due to their reduced accuracy, lack of linearity at small sealant flow rates, and susceptibility 

to offset drift. 

 

6.6 Summary 

 

This chapter details the design of a novel 1.5 stage research facility which will 

experimentally simulate the fluid dynamics in an upstream and a downstream wheel-space 

of a gas turbine. The uniqueness of this facility is the ability to operate at conditions more 

conducive to producing high quality measurements, whilst matching the relevant parameters 

required for scaling to engine conditions.  

Turned rotor blades and representative fillet radii in a larger mainstream annulus will 

allow for a more engine representative flow-field in the external gas path, especially at off-

design conditions. This will enable a more detailed study on the effects of the interaction 
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between the mainstream and sealant flows on the ingestion process to take place. The 

provision for leakage flows in both wheel-spaces will allow for an investigation into the 

fluid dynamic consequences of introducing an addition flow path. The use of a second tracer 

gas would allow for this flow to be tracked as it interacts with the wheel-space fluid 

dynamics. 

By incorporating a downstream wheel-space into the design, the causes of ingestion into 

this cavity can be investigated. As this is downstream of the blade, ingress into this wheel-

space is expected to be dominated by unsteady pressure effects. The use of fast response, 

unsteady pressure transducers are likely to be required to fully understand the pressure field 

in this region. The modular nature of the rig design allows for alterations to incorporate 

additional instrumentation to easily be made at a future stage. Re-ingestion of sealing flow 

could also be investigated by seeding the upstream sealant line and making measurements in 

the downstream wheel-space. 

Figure 6.25 shows how the operating capability of the 1.5 stage facility compares with 

the other research test rigs shown in Figure 2.29. Once again the alternative definition, given 

by Eq. 2.21, is used in this chart. The figure shows the small increase, in both rotational and 

axial Reynolds number, gained by the 1.5 stage facility in comparison with the previous 

single stage rig. It also emphasises that although large investment is required in order to 

marginally increase these parameters, none of the rigs featured are capable of reaching actual 

conditions found in real gas turbines. 

 
Figure 6.25: Comparison of 1.5 stage rig operating capabilities with other test facilities – alternative 

definition of Rew used
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Chapter 7: Conclusions 

 

7.1 Design point testing 

 

Measurements of gas concentration, pressure and swirl ratio were made in the wheel-

space of the Bath single stage test rig to assess the sealing performance of three rim seal 

geometries: a datum radial-clearance single seal, a radial-clearance double seal, and a double 

seal variant featuring a series of radial fins. The data were collected at the design condition 

for Reϕ = 5.32 × 10
5
, 8.17 × 10

5
 and 9.68 × 10

5
. Although the ingestion through the rim seal 

is a consequence of an unsteady, three-dimensional flow field, and the cause-effect 

relationship between pressure and the sealing effectiveness is complex, the experimental 

data is shown to be successfully calculated by simple effectiveness equations developed 

from a theoretical orifice model. The variation of ε with Φ0 was presented for the externally 

induced and rotationally induced cases, along with radial distributions of ε, swirl ratio and 

static pressure coefficient at constant sealant flow rates. 

The benefit of using a double seal over a single seal design was demonstrated. The 

ingested fluid was shown to be predominately confined to the outer wheel-space, radially 

outward of the inner seal. This resulted in protection of the inner wheel-space, where the 

effectiveness was shown to be significantly higher. Using the statistical model, the ratio of 

sealing flow rate to prevent ingress for the inner wheel-space of the double radial-clearance 

seal to that required for the single radial-clearance was found to be approximately 49%. 

Further improvements were gained by encouraging swirl within the intermediate annulus 

through the addition of radial fins. It is conjectured that this increase in swirl reduced the 

pressure asymmetry, which governs the ingress, and consequently improved the 

performance of the inner seal. The fins also increased the pressure in the outer wheel-space 

and reduced ingestion through the outer seal.  

The addition of radial fins will have the effect of increasing the windage on the rotor, 

corresponding to a reduction in stage efficiency of the engine. However, by encouraging 

swirl at the rim seal periphery, the sealing flow will emerge from the wheel-space with a 

swirl ratio closer to that of the mainstream flow. This could have the effect of reducing 

mixing losses in the main annulus, therefore increasing the efficiency of the stage. 

For all the seals tested the swirl ratios increased with increasing radius and decreased 

with increasing sealing flow rate. For a given sealing flow rate, there was little difference 
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between the radial distribution of swirl ratio for the different seals, despite the large 

difference in the amount of ingestion. The radial distribution of pressure was shown to be 

governed by the swirl ratio, and these swirl and pressure distributions were in turn governed 

by the turbulent flow parameter, λT. 

 

7.2 Off-design testing 

 

Experiments were also conducted at off-design conditions, where the flow coefficient 

was varied over a large range either side of the design condition. Gas concentration 

measurements were again made to determine the effect on ingress for an axial-clearance 

seal, a radial-clearance seal and a double radial-clearance seal.  

For all the seals, the combined ingress orifice equation was in good agreement with the 

experimental data for flow coefficient values greater than 0.1. This implied for a large 

variation of flow conditions, the blade-deviation angle (β-β0) did not influence the degree of 

ingress. At lower values of flow coefficient the agreement was less good, owing to a sharp 

increase in Φmin', believed to be caused by a ‘blade effect’. As this increase was observed for 

all seal geometries tested, boundary layer separation of the flow over the blades was 

suggested as a possible explanation for the effect. 

Time averaged static pressure measurements at two locations in the external annulus 

showed that the square root of the non-dimensional peak-to-trough pressure difference, 

ΔCp
½
, was proportional to the flow coefficient, CF. This variation remained linear even at the 

smallest values of flow coefficient, where the ingestion measurements showed a departure 

from the CI theory. However the magnitude of ΔCp will depend on where in the annulus 

pressure measurements are made. It is postulated that if measurements were taken at a 

location closer to the seal clearance, where the pressures controlling the level of ingestion 

could be evaluated at, the effect of the blade would have been evident. 

It should be noted that the results were obtained for incompressible flow conditions in an 

experimental rig with symmetrical blades, operating over a CF range much larger than that 

experienced in engines. For a turbine with turned rotor blades and fillet radii, the ‘blade 

effect’ could have an influence on ingestion at flow coefficients within the operational range 

of a real gas turbine. 
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7.3 Effectiveness from pressure measurements 

 

The effectiveness measurements determined from gas concentration were then used to 

establish a new effectiveness based on pressure. A hypothetical location on the vane 

platform, known as the ‘sweet-spot’, was assumed to exist where the measured pressures 

would ensure consistency between the two definitions. A theoretical model was developed to 

calculate this location, based on the assumption that it would be invariant with sealing flow 

rate. 

Experimental measurements for a radial clearance seal showed that as predicted by the 

theoretical model, the normalised pressure difference across the seal at this hypothetical 

location was linearly related to the pressure difference at an arbitrary position (location A) in 

the annulus of the rig. 

The variation of εp with sealant flow rate was calculated using two constants determined 

by linear regression of the experimental data. When compared to the original concentration 

effectiveness measurements, good agreement was found with the values of effectiveness 

determined by the theoretical pressure model.  

Steady 3D CFD has been used to show the computed location of the sweet-spot was very 

close to the upstream edge of the seal clearance, and virtually invariant with sealant flow 

rate. If the pressure asymmetries were able to be measured at this sweet-spot location, any 

influence of the blade would be expected to have been captured. 

It was shown in principle how parameters obtained from measurements of pressure and 

concentration in a rig could be used to calculate the sealing effectiveness in an engine. Using 

CFD to compute pressures in the mainstream annulus and wheel-space of a real design, 

values of discharge coefficients for ingress and egress could be extrapolated to determine the 

sweet spot location for the engine. 

 

7.4 Design of a new test facility 

 

A requirement was identified for a novel 1.5 stage experimental gas turbine facility, 

capable of measuring the effects of ingress with turned rotor blades, and within a secondary 

downstream wheel-space. 
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Experience gained from conducting experiments in the previous single stage rig factored 

greatly in design of the new rig. The improvement of the alignment allowing for greater 

repeatability in the experiments was a key priority for the new facility. The 1.5 stage design 

featured linear guide rails and a precision lead screw that ensured the rig returned to same 

position after each reassembly. It is envisaged that a large proportion of time will be saved 

lining the rig up from these design modifications.  

Large consideration was also given to designing the rig with heat transfer experiments in 

mind. All surfaces downstream of the mesh heaters in both sealant flow lines were either 

lined with Rohacell, or in the case of the wheel-spaces, had the capability to do so through 

the interchangeable cover-plates. This ensured minimal heat transfer to metallic surfaces 

took place during testing. 

Turbine stage velocity triangles were used to determine the running conditions of the rig, 

and ensure the correct flow field was set up in the external annulus for ingestion to take 

place. This led to a series of calculations governing the flow characteristics at each station, 

and allowed geometric CAD models to be created providing the dimensions of the rig. 

Two design operating points were chosen relating to rotational disc speeds of 3000 and 

4000 rpm. The rig featured a 25 mm annulus height, upstream vane with a 77.5° turning 

angle, turned rotor blades with an engine representative angle of 130°, and a downstream set 

of vanes with an angle of 34.5°. An eddy current dynamometer was used to absorb the 

power produced by the stage. 

The rig was instrumented with a series of static pressure taps in the annulus, used to 

determine the driving potential for externally induced ingress to occur. Concentration 

measurements in the wheel-space using CO2 tracer gas are used to determine the 

effectiveness of different rim seal geometries. Additional instrumentation such as total 

pressure Pitot tubes, infrared sensors, thermocouples and capacitance based displacement 

probes were also implemented.  

The facility will serve as a testing ground for interchangeable generic rim seal designs, 

aimed at increasing fundamental knowledge, as well as company proprietary seals which 

will have a direct impact on gas turbine efficiencies. Siemens anticipate that new, improved 

rim seal designs will improve thermal efficiencies by 0.4%. 
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7.5 Future work 

 

The next stage of the research programme is to build and commission the new 1.5 stage 

facility. This will involve cross referencing measurements for consistency with the previous 

data obtained from the single stage rig as a form of validation. It is envisaged many of the 

generic seal tests will be repeated, including the axial, radial and double radial-clearance 

seals, before complicated Siemens proprietary seals are tested, including radially assembled 

geometries. Similar measurements of gas concentration, pressure and swirl ratio will be 

made to determine the performance of each design in the new facility.  

A distinct lack of data exists in the open literature on hot gas ingestion into a downstream 

wheel-space. The double cavity design will allow for many combinations of rim seal 

geometries to be tested. To account for these different combinations, a design of experiments 

approach is recommended. 

Although many researchers have investigated the topic, the influence rotor blades have 

on the ingestion process is still undetermined. By repeating the off-design measurements in 

the new facility, the effect of turned rotor blades and fillet radii can be looked at. The true 

effect of the blades could be isolated by manufacturing a bladeless rotor and repeating the 

measurements. It is highly likely that unsteady pressure measurements will be required to 

fully understand the influence of the blade on the ingestion process. The modular rig design 

is adaptable to accommodate these alterations, should additional instrumentation be required 

in the future. 

By virtue of the double wheel-space design, re-ingestion of sealant flow could be looked 

at within the new facility. By seeding the upstream sealant line with tracer gas, concentration 

measurements could be made in the downstream wheel-space to determine the degree of re-

ingestion that takes place. The dependence of this effect on the seal geometry of both wheel-

space peripheries could also be investigated. 

In a real gas turbine, the temperature difference between the flow in the annulus and that 

in the wheel-space results in a significant density difference between the two flows. This is 

expected to have a large effect on the ingestion process and is the subject of an ongoing 

research programme at the University. By using 100% CO2 gas as the sealant flow and a gas 

analyser with a 0-100% range, the sealant to mainstream flow density ratio found in an 

engine (approximately 1.6:1) could be replicated through the difference in density between 

the two fluids. Momentum or mass flux ratios may prove more useful in correlating these 

results.
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