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Thesis Summary 

_______________________________________________________________________ 

Current methods for assessing the health of insects and their colonies are carried out by 

researchers making dissections on individual insects (which inevitably kills them) or 

making visual inspections of colonies and then documenting their observations.  For 

colonies, researchers look for behavioural signs which indicate healthy individuals 

where foragers are regularly bringing in resources or in weak colonies, where there are 

fewer foragers working with a more lethargic and less purposeful manner. These 

methods are prone to large errors and they kill many insects in the process. The research 

detailed in this thesis addresses the subjective and destructive nature of these methods. 

This thesis also describes new methods using x-ray CT to develop and adopt protocols to 

accurately study insects non-invasively. Chapter one covers the current literature on 

tomography and some background on the different CT methods. Chapter two gives a 

thorough description of the new methods being developed to study insects non-

invasively and details techniques that can be adopted by researchers who require non-

invasive approaches to their work. Chapter three describes in detail three examples of 

research that has been conducted on locusts, ladybirds and butterflies to non-invasively 

study aspects of their morphology. The methods described maintain the integrity of the 

specimens for future use if so required.  Chapter four covers a specific example of a fine 

detail study on plasticity of the honeybee brain using X-ray MicroCT and discusses the 

potential for live scanning to observe brain plasticity in insects. Chapter five extends the 

work from chapter two to show the usefulness of CT for studying insect behaviour by 

documenting and describing previously unreported honeybee storage behaviour. Chapter 

six draws conclusions from the other chapters and discusses future research. 
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CHAPTER 1  

Literature Review 

_______________________________________________________________________ 

1.1 Introduction 

Current methods for assessing colony health in insects are carried out by researchers 

documenting their observations while making visual inspections.  Typically, researchers 

look for behavioural signs which indicate a healthy individuals or colonies where 

foragers are regularly bringing in resources or weak colonies where there are fewer 

foragers working in a more lethargic and less purposeful behaviour.  In honeybees (Apis 

mellifera) colonies, frames can be removed or observation hives can be used to observe 

queen activity such as egg policing and ovipositing or worker hygiene behaviour; 

however, the methods are based on the experience of the observer which can take years 

to develop.  In stingless bees, colony health can be assessed by manually splitting the 

hive box apart to view internal structures and evidence of queen activity (Dollin 1996a 

& 1996b); however, due to the subjective nature of the methods, large errors can occur.  

The process of opening the hive is particularly invasive for stingless bees, because of the 

central position of the brood chamber.  Many hundreds of bees are often killed from one 

observation alone.  The bees’ small size makes them vulnerable to drowning in the spilt 

honey that invariably occurs during the process.  Closing the hive after visual inspection 

also kills bees, and places the queen at risk of being harmed, as they are squashed in the 

process. Nevertheless, behavioural and morphological studies on insects continue and 

because many species are cryptic, have propensities to live in cavities and current 

methods are invasive and prone to large errors, new methods for studying them are 

emerging. Therefore, it is important to develop methods which can more accurately and 

less invasively assess colony health. 
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1.2 Non-invasive imaging 

On the 8
th

 of November 1895, Wilhelm Conrad Röntgen (accidentally) discovered an 

image cast from one of his cathode ray generators.  He later repeated the image by 

taking an X-ray photograph of his wife's hand which revealed her wedding ring and her 

bones.  The photograph initiated great scientific interest in the new found radiation 

which he called “X-radiation”, because he did not know what type of radiation it was, 

hence the modern term, X-rays.  In general, non-invasive imaging is associated with X-

rays or medical imaging, which is a non-invasive method for evaluating anatomy and 

physiology.  Although it is now know that X-rays can be invasive (and can damage 

biological tissues) at higher energies, the term non-invasive is based on the fact that, at 

the lower energies used in current imaging modalities, they do not create any damaging 

biological effects. 

 

1.3 Techniques available for non-invasive imaging 

As a field of scientific investigation, non-invasive imaging constitutes a sub-discipline 

of biomedical engineering, medical physics or medicine depending on the context.  

Methods such as nuclear medicine use radioactive materials to diagnose or treat various 

pathologies and are generally considered to be invasive.  Many of the techniques 

developed for non-invasive imaging such as X-rays, nuclear magnetic resonance 

imaging (MRI) and ultrasonography (U/S) also have industrial applications, although the 

energies used in industrial applications would be considered to be highly invasive for 

biological samples.  In the case of U/S, the probe consists of ultrasonic pressure waves 

which return echoes from the various tissue interfaces.  The echoes show details of the 

internal structures.  U/S waves do not travel through large interfaces or air and thus 

limits its use.  In the cases of X-rays and MRI, either X-radiation or a magnetic field 

respectively pass through the subject/sample to identify, separate and quantify different 

tissue types such as bone, muscle or fat.  In general, MRI is the best modality for 

differentiating soft tissues, is non-invasive and has very long image acquisition times 
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whereas X-rays are better for resolving smaller structures and have much faster in image 

acquisition times.  

 

1.4 Computed tomography (CT) 

1.4.1 Tomography  

Tomography is the method of imaging a single plane, or “slice”, of an object resulting in 

a tomogram.  In 1917, the mathematician Radon devised a formula which became 

known as the “Radon Transform” and in 1921 Bocage used this formula to develop 

focal-plane tomography. Focal-plane tomography was introduced into X-ray 

transmission imaging in the 1920’s (Bocage 1921). Bocage achieved this by passing X-

rays through various objects and moving the X-ray source and target so that only the 

desired layer was maintained in sharp focus while other layers were blurred out (Fig. 1). 

The visual effect was similar to that of a narrow depth-of-field in photography, where a 

desired focal plane remains sharp and all the other objects in the field are blurred (Hsieh 

2003). 
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1.4.2 CT 

The main disadvantage of focal plane tomography is the presence of the unwanted 

(blurred) information on either side of the desired plane. In CT, the X-rays, used to 

acquire the data, do not enter other sections of the object. They only pass through the 

layer being examined, so that unwanted planes are completely omitted. Also, if a 

sufficient number of views or projections are taken, the distribution of attenuation 

coefficients within the layer may be determined. The reconstruction of the image from 

its projections is performed by a computer. In the mid-1960s Godfrey Hounsfield 

considered whether he could reconstruct a three-dimensional representation of the 

contents of a box from a set of readings taken through the box at randomly selected 

directions. He found that by considering the three-dimensional object within the box as a 
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series of slices, reconstruction was easier than treating the content as a volume. He 

tested the theoretical principle by working with a matrix of numbers set to zero with a 

square in the middle where each number was set at 1000. He entered these data into a 

computer programme to get simulated absorption values and then reconstructed the 

picture.  In 1973 he was instrumental in building the first medical head CT scanner 

which was funded by EMI (Hounsfield 1973). Later on, he developed a linear greyscale 

equation based on X-ray attenuation:  

HU = 1000 x ((μX - μwater) / μwater))              [1] 

Where HU is the Hounsfield Unit, μX is the X-ray attenuation coefficient of a tissue and 

μwater is the X-ray attenuation coefficient of distilled water at standard temperature and 

pressure. After using this equation, water is given the value of zero and air is given the 

value of -1000 which means that tissues with μX higher than water have a positive value 

and tissues with a lower μX than water have a negative value. This made it possible to 

attribute a HU value for different tissues based on their X-ray attenuation coefficients.  

 

1.4.3 Back-Projection 

First attempts at CT used a method of reconstruction known as back-projection. 

Reconstruction was performed by back-projecting an object’s profile across a plane, i.e. 

the magnitude of each ray-sum is applied to all points that make up the ray (Fig 2). 

Generally, Back-Projection does not produce a good reconstruction because each ray-

sum is applied to all points along the ray which includes those of high and low densities 

and this creates star type artifacts (Brooks and Di Chiro 1976).  

The algorithm that is currently being used in almost all applications of sum-along-ray 

tomography is the filtered back-projection algorithm. The algorithm is accurate and 

works well with fast implementation (Kak and Slaney 1988) and it is based on the 

Radon transform: 

             [2] 
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Where, g( ,s) as a 1-D projection at an angle ( ) and g( ,s) is the line integral of the 

image intensity, f(x, y), along a line l that is distance s from the origin and at angle   off 

the x-axis. 

All points on this line satisfy the equation: 

 

x*sin( ) – y*cos( ) = s              [3] 

Therefore, the projection function g( ,s) can be rewritten as: 

          [4] 

The collection of these g( ,s) at all   (Fig 2) is called the Radon Transform of image 

f(x,y). 
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Figure 2: An object of random shape, f(x, y) and its projection are shown for an 

angle of  . Figure adapted from Kak (1979). 

When given the Fourier transform of a projection at enough angles the projections can 

be assembled into a complete estimate of the two-dimensional transform and then 

inverted to arrive at an estimate of a random object (Fig 3). 
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Figure 3: A schematic diagram of how CT values are calculated using the Sum along 

ray method. Arrows indicate direction of X-ray beam. In this simple illustration, the 

object has been divided into 4 pixels that have density values of either 6 or 4 HU’s. 

 

1.4.4 Iterative methods 

Applying corrections to repeated iterations “iterative method” can overcome artefacts 

that occur with back-projections markedly. The strategy of iterative methods is to apply 

corrections to arbitrary initial cell densities in an attempt to match the measured ray-

projections (Brooks and Di Chiro 1976) and because former matchings are lost as new 

corrections are made, the procedure is repeated until the calculated projections agree 

with the measured ones to within the desired accuracy. 
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1.4.5 Analytic reconstruction 

Analytic reconstruction is based on ray sum projection data and again the spatial 

resolution needs to be limited to just the slice required (Brooks and Di Chiro 1976).  In 

analytical reconstruction, a “band limit” is created so that the image will contain known 

frequencies. This means that the image can be reconstructed on an array of points, the 

projections can be sampled at the same interval and that Fourier transforms can be 

replaced by discrete Fourier series.  

 

1.4.6 Algebraic Reconstruction Technique (ART) 

ART is one of the iterative methods and the algorithms follow an intuitive form. For 

example, with X-ray CT, when the beam passes through the object each projected 

density is compared back across the reconstruction space in which the densities are 

iteratively modified. The iterations can bring each reconstructed projection into 

agreement with the measured projection. The ART algorithm consists of altering the 

grayness of each pixel intersected by the ray in order to make the ray sum agree with the 

corresponding element of the measured projection. Assuming that the image being 

reconstructed is enclosed in a square space of (n x n) array of pixels, ρj(j = 1,…,n
2
) is 

grayness or density number, which is uniform within the pixel but different from other 

pixels. The ART algorithm was first published by Gordon et al. (1970). Rather than 

trying to handle a given system of equations as a whole, the ART works by an iterative 

process and has been shown to converge to the least squares solution. Another example 

is for ionospheric observations (Bust et al. 1997; Mitchell et al. 1998). The one 

described below is the ART algorithm with relaxation from Censor (1983). An initial 

guess,   
 , is obtained from the background ionosphere and for the k + 1th iteration: 

 

  
      

          
 
   ∑      

  
    

∑    
 
      

                     [5] 
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where   , the relaxation parameter, is a number or series of numbers used to control the 

convergence of the algorithm,    is the length element of raypath i through pixel j, im is 

the loop over m from 1 _ n for each i, and n is the total number of pixels in the grid. The 

current iterate,   
 , is refined to a new value,   

   , by considering a single ray, i, and 

changing the electron density value of the pixels, j, intersected by the ray. The 

discrepancy between the measured TEC and the TEC calculated through the current 

image is then redistributed among the pixels along the ray in proportion to the length of 

intersection with each pixel    . The algorithm then cycles through all raypaths until 

convergence is achieved.  

 

1.4.7 Multiplicative Algebraic Reconstruction Technique (MART) 

The MART technique involves a multiplicative correction to the voxel intensity based 

on the ratio of the recorded pixel intensity Pi and the projection of voxel intensities 

∑  
    

    from the previous iteration k: 

   

  
      

 (
  

∑  
    
  
)

    

              [6] 

 

where μ is a relaxation parameter usually chosen between 0 and 2. Each voxel’s 

intensity is corrected to satisfy one projection or pixel at a time, with a single iteration 

being completed after every projection has been considered. This method has been 

shown to provide the maximum information based entropy solution, to represent the 

most probable reconstruction image based on the recorded projections (Atkinson and 

Soria 2007). Elsinga et al. (2006) indicate that this algorithm is preferable to that of ART 

because of the artefacts created in the reconstructed field when using ART. 
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1.4.8 Simultaneous Algebraic Reconstruction Technique (SART) 

A variation on algebraic approaches SART yields reconstructions of good quality and 

numerical accuracy with only one iteration (Kak and Slaney 1988). The main features of 

SART are to reduce errors in the approximation of ray integrals of a smooth image by 

finite sums, the traditional pixel basis is abandoned in favour of bilinear elements. Also, 

for a circular reconstruction region, only partial weights are assigned to the first and last 

picture elements on the individual rays. To further reduce the noise resulting from the 

unavoidable but considerably smaller inconsistencies with real projection data, the 

correction terms are simultaneously applied for all the rays in one projection. This is in 

contrast with the ray-by-ray updates in ART. In addition, a heuristic procedure is used to 

improve the quality of reconstructions. Also, a longitudinal Hamming window is used to 

emphasise the corrections applied near the middle of a ray relative to those applied near 

its ends. 

In SART, superior reconstructions are obtained by using a model of the forward 

projection process that is more accurate than what can be obtained by the choice of pixel 

basis functions. This is done by using bilinear elements which are the simplest higher 

order basis functions. The basic functions obtained from bilinear elements are pyramid 

shaped, each with a support extending over a square region of multiple pixels. 

 

1.5  Limitations of x-ray CT 

A limitation of iterative methods is the need to select a finite iteration time. This means 

that there is a practical necessity of stopping before the best possible solution has been 

achieved. The result is that although some high-frequency detail is lost, some noise is 

reduced (Shepp and Logan 1974). 

A major limitation of analytic methods is the assumption of band-limiting when it 

includes frequencies that are higher than the limit selected. If these frequencies are 

present in the projections after sampling intervals, they will reappear as “aliasing” 

(Bracewell 1965) and will cause a blurry edge to objects.  
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Processing speed is also a limitation in CT. Iterative methods require more time per 

iteration than a complete analytic reconstruction. X-ray dosage is a major consideration 

and therefore, faster processing means reduced doses. For live objects, motion artifacts 

occur and faster processing helps to reduces these.  

 

1.6 Types of scanners 

1.6.1 First-Generation Scanners 

The original CAT scanner required pressing the patient's head against a rubber 

membrane and into a water-filled box. The box rotated in 1-degree increments while a 

single, narrow X-ray beam and single-detector assembly collected data during a five- to 

six-minute scan. 

 

1.6.2 Second-Generation Scanners 

Second generation scanners used 20 narrow beams and detectors, which allowed a 

complete scan in the time the patient could hold a breath.  

 

1.6.3 Third-Generation Scanners 

In third generation scanners, the beam was widened into a fan shape to cover the entire 

width of the patient. An array of 250 detectors was linked to the X-ray tube, which 

rotated together around the patient in approximately than five seconds.  

 

1.6.4 Fourth-Generation Scanners 

Fourth generation scanners were in use by 1976. They used a large, stationary ring of 

detectors that required only the X-ray tube to rotate around the patient. Faster computers 

and detectors made it possible to scan at 1cm/sec. 
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1.6.5 Modern CT scanners 

Nowadays, synchrotron beamlines can complete scans and reconstruct 3-D images in a 

matter of seconds and CT scanners can complete a 1cm scan in as little as one-third of a 

second and recent techniques have been developed to enable scanning software to 

produce 3D images and physical 3D models (Udupa and Herman 2000). To produce 3D 

images, many slices are acquired, then reconstructed using software to produce a 3D 

model, which can then be manipulated and virtually dissected along infinite planes 

(Appendix 1). It is generally accepted that the term MacroCT applies to CT applications 

using human body scanners for “macroscopic” studies (resolution down to 0.5mm) and 

that MicroCT applies to laboratory or Synchrotron CT applications at the “microscopic” 

level (resolution down to 1.0µm). 

Given the need to develop new methods for the study of insects, the overall aim of my 

thesis was to test the hypotheses that:  

1. MacroCT can be used to non-destructively image behaviour in insect 

colonies; 

2. MicroCT can be used to image the anatomical features of insects; 

3. CT facilitates the study of insect physiology 

The research described in this study was conducted as proof of concept for testing the 

three hypotheses above. 
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CHAPTER 2 

Description of the methods 

_____________________________________________________________  

2.1 Introduction 

In recent years, CT has been adopted to visualise macroscopic characteristics of insects 

and their behaviour (Tollner, 1991; Fuchs et al., 2004; Greco et al., 2005, 2006, 2009; 

Perna et al., 2008).  Also, with the improvements in spatial resolution and tissue 

differentiation that are occurring with MacroCT, conventional micro-focus and 

synchrotron based MicroCT, new methods for the non-invasive imaging of insects are 

emerging (e.g., Hörnschemeyer et al., 2002; Betz et al. 2004Johnson et al., 2004, 

Wirkner & Prendini 2007; Tafforeau et al., 2006;; Greco et al., 2008; Heethoff  et al., 

2009).  The basic principles of conventional micro-focus source MicroCT are similar to 

those used in medical CT scanners; however, it is now possible to achieve spatial 

resolutions down to a few micrometres (Bettuzzi et al., 2004; Feeney et al., 2006).  

Diagnostic radioentomology (CT) is the collective term used for the non-invasive study 

of insects using X-radiation (radiographs, MacroCT, and MicroCT).  Traditional 

methods for colony health and the morphological classification of bees have been 

conducted with the aid of observation hives and dissecting light microscopes, 

respectively.  These techniques are, understandably, limited.  For example, observation 

hives offer only a view of one side of one frame within an entire hive and the use of light 

microscopy when used for amber inclusions (e.g., Wille and Chandler, 1964; Michener, 

1982; Engel, 1995, 1996, 1997, 2000; Rozen, 1996; Camargo et al., 2000; Oliveira, 

2002; Hinojosa-Díaz and Engel, 2008), particularly with specimens preserved in opaque 

pieces (Lak et al., 2008, 2009), are grossly limited.  Schlüter and Stürmer (1982) 

attempted to address methods of examining insect inclusions in opaque amber pieces 

and to supplement traditional light microscopic study of even clear specimens.  Those 

researchers and Gerling and Hermann (1978), Gerling et al. (1981) and Velthuis and 

Gerling (1983) produced traditional radiographs which provided the first, albeit limited, 

steps toward enhanced visualisation of cryptic bee behaviour and fossil material.  More 
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recently, detailed information for the study of bees has been obtained with the use of 

scanning electron microscopy (SEM) (e.g., Serrão, 2001, 2005) and transmission 

electron microscopy (TEM) (e.g., Araujo et al., 2005).  While SEM and TEM studies 

currently provide the highest level of detail, sample preparations are laborious and are 

often invasive to completely destructive (e.g., Serrão, 2001).  SEM and TEM can be 

used for the investigation of amber inclusions (e.g., Grimaldi et al., 1994; Engel, 2001); 

however, these methods are generally not suitable because they require destruction of 

the material.  The development of non-invasive imaging methods such as CT, therefore, 

offers promise to scientists who need to preserve their specimens or observe behaviour 

non-invasively.  

 

2.2 Proof of concept for using X-ray Computer Tomography in insect biology 

studies  

Computer Tomography (CT) has been used as a non-invasive method to visualise 

internal and external human morphology since the early 1970s and, more recently, has 

been used to study soil ecology and movement in cryptic insects (Tollner 1991; Harrison 

et al. 1993; Fuchs et al. 2004; Johnson et al. 2004). Modern, medical MacroCT scanners 

can achieve image resolutions of 0.3 mm and MicroCT scanners can achieve as little as 

0.5 μm. CT is inherently non-invasive, because it does not create or promote any 

physical changes within the sample being studied. Essentially, the x-rays scan through 

an object/sample and the resultant beam is captured by a series of detectors. The 

information from the captured beam is then stored as a digital dataset, which can be 

reconstructed to produce two dimensional and three dimensional images of the 

object’s/sample’s structure (Udupa and Herman 2000). The stored information can also 

give an indication of the different densities that apply to the different structures within 

the object/sample (Udupa and Herman 2000). The doses used while scanning are 

measured and the x-ray beam’s energy is too low to generate a significant biological 

effect (Kanao et al., 2003; Brenner and Hall 2007). As described above, current methods 

for observing nest structures, nesting behaviour and internal morphology of bees are 

invasive.  
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Prior to the research presented here, nobody had used CT to scan colonies of insects, so 

it was unknown whether CT would be sensitive enough to detect behaviour in colonies 

or to identify components such as individual insects, larvae or pupae. Therefore, I 

decided to test this by scanning a honeybee (Apis mellifera) hive with the purpose of 

observing their honey storage behaviour using MacroCT. The descriptions below apply 

jointly to MacroCT and MicroCT. 

 

2.3 Sample preparation 

One of the strengths of using CT for observing insects is that there is minimal or no 

sample preparation required. Generally, the only requirement to perform a CT 

experiment is that the sample needs to be positioned securely on the scanner bed for 

MacroCT (Fig. 4) or in the scanner sample stage for MicroCT (Fig. 5). For MacroCT of 

live colonies within beehives, scans generally take less 30 sec so individual bee 

movements do not cause any significant movement artefacts. There are also recent 

developments in movement correction software that will overcome these minor artefacts 

in the near future. 
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Figure 4: Sample preparation for MacroCT. Essentially the only preparation 

required is that the sample (bee hive) is positioned securely on the scanner bed. 

 

Movement artefacts are more significant when scanning live bees in MicroCT scanners. 

MicroCT scans of individual bees can take as long as 30 min. Even securely fastened 

bees continue to move slightly during scans, so it is useful to either anaesthetise them 

with medical grade CO2 and/or cool them down in a freezer for 10 min prior to scanning. 

A combination of cooling and CO2 can keep individual bees motionless for 

approximately 25 min. If assessment of a particular body segment is required, reducing 

the scan field size to that segment will take less time, thereby reducing the need for CO2 

and/or cooling. 
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Figure 5: A schematic diagram of sample positioning for MicroCT. Essentially the 

only preparation required is that the sample (bee) is positioned securely on the sample 

stage so that the sample remains motionless during the scan. 

 

2.4 Data capture  

Once a sample has been positioned appropriately the scanner’s proprietary software will 

guide the researcher on how to perform the required scan. During the scan, the x-ray 

beam passes through the sample to an array of detectors that record the x-ray beam 

attenuations produced from the sample’s unique characteristics as a digital dataset in raw 

volume format. The raw volume data set can later be processed to provide 2D and 3D 

images of the sample as well as quantitative measurements such as volume of the 

sample’s components or structures. The initial choice of scan parameters will influence 

the resolution of the final 2D and 3D images and the sensitivity of the quantitative 

measurement’s resolution. The scanner’s proprietary software will offer many choices 

for parameter selection; however, for best image resolution and quantitative 
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measurements, the most significant parameters to select are x-ray beam energy 

(amperage and voltage), scan field size, slice thickness and detector number. 

 

2.5 X-ray beam energy  

The x-ray beam’s energy is determined by the amount of current (amperage) and the 

force of that current (voltage) selected to create the beam. The amperage determines the 

number of x-ray beam photons available during the scan (flux); thus, increasing the 

amperage will increase the intensity of the beam. The voltage determines the x-ray beam 

strength during the scan; thus, increasing the voltage will increase the strength of the 

beam. Large A. mellifera beehives require high energy levels (e.g. 120 mA at 150 kV), 

smaller stingless bee hives require lower energy levels (e.g. 80 mA at 120 kV) and 

individual bees can be scanned using even lower energies (e.g. 100 µA at 40 kV) to 

achieve appropriate image quality and quantitative measurements. For energy efficiency, 

x-ray dose minimisation and radiation safety it is useful to use the lowest energy levels 

to achieve the required results. Generally larger and denser samples require higher 

energy levels than smaller, less dense samples. Researchers will need to assess the 

energy level requirements independently and reduce amperage and voltage accordingly 

for their particular study. 

 

2.6 Scan field size  

The maximum scan field available during a scan is the fixed circular area of the scanner 

dimensions multiplied by the fixed length of the scanner’s longitudinal travel. 

Researchers can select a smaller scan field size to include only the sample’s region of 

interest (ROI). Thus, the adjusted scan field size becomes the raw volume data set in 

which the sample’s ROI is contained. It is this raw volume data set that can be processed 

later to provide the 2D and 3D images and quantitative measurements. Smaller scan 

field sizes produce better spatial resolution than larger scan field sizes, because each 

detector will have less information to record and process. Shorter scan field travel will 
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reduce scanning times and, thus, reduce the likelihood of movement artefacts.  Therefore 

it is better to select the smallest scan field necessary to cover the sample’s ROI. 

 

2.7 Slice thickness  

Once the scan field size has been determined, slice thickness should be selected for the 

required spatial resolution. Smaller slice thicknesses result in higher spatial resolution, 

because there are more slices per unit of sample material. Slice thickness can be reduced 

to 0.3 mm for MacroCT and 0.5 µm for MicroCT. Researchers should be aware that 

smaller slice thicknesses produce more slices per unit of sample material and, thus, 

larger datasets. Larger datasets create the need for more powerful computer hardware 

and software during post-processing analyses. 

 

2.8 Detector number  

Higher numbers of detectors produce higher spatial resolution because there are more 

detectors receiving and processing information per unit of sample material. Some 

scanners offer a selection for the number of detectors used during the scanning process. 

Researchers should be aware that higher numbers of detectors require longer scanning 

times. Also, more pixels per slice and, thus, larger file sizes per slice are produced. 

Larger file sizes create larger data sets and the need for more powerful computer 

hardware and software during post-processing analyses. 

 

2.9 Data storage  

Once the sample has been scanned with the appropriate parameters, the resulting dataset 

needs to be stored appropriately. Scanners have limited space for data storage and 

usually auto-delete data sets that have not been stored permanently or exported. There 

are numerous storage devices available that can store electronic datasets (CDs, DVDs, 

flash drives etc.); however, external hard drives are the largest and most robust forms of 
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data storage devices. Appropriate storage of data sets is an important component of CT 

scanning which should be considered when planning an experiment. In particular, some 

behaviour experiments can continue for months and regular scanning can produce data 

sets of considerable size. A typical beehive behaviour experiment over six months can 

accumulate two 900 Mb datasets per month, totalling 10.8 Gb of storage space and 

MicroCT datasets of single insects can often be as large as 100-200Gb each. 

 

2.10 Post-processing  

Once datasets are appropriately stored, they can be post-processed to enable sample 

analyses. Post-processing can be performed directly on the CT scanner; however, this 

prevents the use of the scanner for other examinations or prevents other users from 

accessing the scanner. Therefore, remote post-processing with independent software 

enables researchers to use CT ex situ. There are several post-processing software 

packages available which can convert CT datasets to 2D and 3D images and several that 

can also provide quantitative measurements (Fig. 6).  
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Figure 6: A BeeView post-processing table representing quantitative measurements 

of wax volume in a managed A. mellifera hive. 

 

From personal experience, software packages such as VG STUDIO MAX V1.2 voxel 

data analysis and visualization software (Volume Graphics GmbH, Wieblinger Weg 92a 

69123 Heidelberg Germany) and BeeView 3D rendering software (Disect Systems Ltd 

Suffolk, UK) produce the highest quality results and are the most versatile. BeeView has 

been the most affordable and, for the purpose of my experiments, has been the preferred 

choice of software. I suggest that researchers trial the various software packages 

available and determine which package is the most appropriate for their requirements. 

Post-processing is performed as a precursor to data analysis. It is essential that post-

processing is performed with both the aims and results of the experiment in mind. For 

example, production of quantitative volume measurements is not necessary if the 

experiment requires sophisticated 3D images. 
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2.11 Data analyses  

Data analyses are dependent on the aims of the experiments and can range from simple 

2D or complex 3D visualisation of structures to more complex temporal studies of 

behavioural changes in colony structure or the external and internal morphology of 

individual insects. 

To cover the application of these methods, Table 1 provides a summary the options for 

scanning insects and their colonies, their implications and which method is the most 

appropriate for the scientific investigation being considered. 
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CHAPTER 3 

Application of CT to morphology of locusts, ladybirds and butterflies 

_____________________________________________________________ 

3.0 General Introduction 

The research described in this chapter will show the usefulness of CT for examining 

insects non-invasively. I will describe the application of CT for observing the detailed 

morphology of specimens from three insect genera (Orthoptera, Coleoptera and 

Lepidoptera). The first section will describe the intricate tracheolar respiratory system 

that delivers oxygen directly to tissues and cells which is a distinctive feature of many 

arthropods including the insects (Chapman 1998; Lease et al. 2006). Then I will describe 

in detail the malpighian tubules in insects using the ladybird beetle (Coccinella 

septempunctata). Finally, I will show the changes to the tracheal system of insects that 

occurs during metamorphosis using the blue morpho butterfly (Morpho menelaus) as a 

representative insect. 

 

3.1 CT of the locust 

3.1.1 Introduction 

In insects, the tracheal system plays a vital role in delivering oxygen from the 

atmosphere directly to cells via the haemolymph and in expelling carbon dioxide derived 

from cellular respiration back into the atmosphere. In 2006, Lease et al. determined that 

the tracheal volume (VT) should be considered as the total volume of air in an insect’s 

tracheae and air sacs combined. Since the vast majority of insects have a paucity of the 

oxygen-carrying respiratory proteins haemocyanin and haemoglobin (Chapman, 1998); 

VT greatly determines the amount of oxygen available during insect respiration (Lease et 

al. 2006).  
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Different methods have been used to determine VT in insects including a) water 

displacement (Wigglesworth, 1950) b) use of inert gases (Bridges et al. 1980; Lease et 

al. 2006) c) Stereology   (Schmitz and Perry 1999; Hartung et al. 2004) and d) 

Stereology in combination with synchrotron X-ray imaging (Kaiser et al. 2007; Greenlee 

et al. 2009; Socha et al. 2010 and Kirton et al. 2012). All have potential advantages and 

disadvantages. Because of the high resolution factor, insect imaging is being 

revolutionised by the use of X-ray Synchrotron imaging (Kaiser et al. 2007; Greenlee et 

al. 2009; Socha et al. 2010; Greco et al. 2011; Greco et al. 2012; Kirton et al. 2012) 

however, adequate long term access to synchrotron facilities is a limiting factor for 

entomologists who require non-invasive approaches to their research.  

Visualising the anatomy of an entire insect tracheal system including the use of modern 

stereomicroscopes remains notoriously difficult (Vinal 1919; Snodgrass 1935; Albrect 

1953; Albrecht 1956; Miller 1960a; Clarke and Richards 1976). In 1919 Vinal 

eloquently illustrated the respiratory system of the Carolina Locust, Dissosteira carolina 

and summarised and referenced much of the earlier work on locust tracheal systems. The 

paper included Malpighi’s discovery of the respiratory system of the silk worm in 1669 

and the beautifully illustrated work of Swammerdam (1758) on honey bee anatomy. 

Vinal (1919) also details the work of others  including Lyonet (1762) on the goat moth 

Cossus cossus, Strauss-Durckheim (1828) on the cockchafer Melolontha vulgaris and 

Denny’s studies of the Cockroach and finally the studies of Alt (1912) on the great 

diving beetle Dytiscus marginalis. 

Much of the research on insect respiration from the 1970’s onwards (Imms 1970; 

Chapman 1998; Klowden  2007; Nation 2008) continues to refer back to the early 

research of Swammerdam (1758), Vinal (1919)  and Snodgrass (1935) and research on 

respiratory physiology on the mechanisms of insect ventilation and flight frequently 

refers to research from Hamilton (1937), Weis-Fogh  (1952), Weis-Fogh (1956a), Weis-

Fogh  (1956b), Weis-Fogh  (1956c), Miller (1960a), Miller (1960b), Miller (1960c), 

Weis-Fogh  (1964a), Weis-Fogh (1964b), Weis-Fogh  (1964c) and Weis-Fogh (1967) 

and on the detailed light and electron microscopic studies  of tracheal and air sac 

anatomy of Maina (1989) and Hartung et al. (2004). This common practise of referring 
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to historical studies reflects the continuing difficulties with dissecting extremely small 

(10-20µm) and delicate tracheae and air sacs (Vinal 1919). Such problems include a) 

obstruction or alteration of exact anatomical and spatial relationships due to air sacs 

expanding and shifting as soon as the insect is opened (particularly with the insect under 

water or a preservative liquid) and b) air sacs/tracheae are often situated between several 

muscle layers in the thorax or fat bodies and ovaries in the abdomen and it is almost 

impossible to dissect these out without severing much of the connecting tracheal 

network. Subsequently, alternative methods to demonstrate tracheal anatomy such as 

direct injection of various dyes into the tracheal system (Wigglesworth 1950) and 

corrosion casting plus scanning electron microscopy (Meyer 1989) have been attempted. 

X-ray Computerised Tomography (X-ray CT) as well as X-ray micro-Computerised 

Tomography (X-ray microCT) are being increasingly used to study both insect colony 

behaviour (Greco et al. 2005; Grimaldi and Engel 2005; Greco et al.2006; Greco et al. 

2008; Greco et al. 2009; Greco et al. 2011a) and also individual insect anatomy 

(Hörnschemeyer et al. 2002; Greco et al. 2008; Al-Harbi et al. 2008; Engel MS 2011; 

Greco et al. 2011b; Greco et al. 2012). The phrase ‘Diagnostic Radioentomology’ (DR) 

has been adopted to describe such studies. 

Thus it was hypothesised that micro-CT would be a suitable method for visualising the 

insect tracheal system. The Desert Locust (Schistocerca gregaria) was chosen because 

its anatomy and that of several similar acrididae have been well documented (Vinal 

1919; Snodgrass 1928 and 1935; Misra 1945, 1946, 1947). 
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3.1.2 Methods 

  

3.1.2.1 The Insect 

A 10 day-old male S. gregaria was randomly selected from a stock of caged 

experimental locusts that were kept at 26°C and 40% relative humidity. The 10 day-old 

male adult insect was euthanised by freezing at – 20°C and then micro-CT scanning 

approximately 2 days later. 

 

3.1.2.2 Micro-CT scanning 

The scanned insect was suspended vertically in a 30 mm acrylic tube that was mounted 

tightly on the micro-CT’s inclination stage. This stage was used to ensure that the 

rotation axis was at 90 degrees to the x-ray source. 

Exposure factors were: kVp = 50, µA = 198.  

The data were isotropic 16 bit 2000X2000 with 1048 rows. Pixel size was 10.469 µm. 

 

3.1.2.3 Image reconstruction and viewing  

Skyscan NRecon software version 1.5.1.4 was used to reconstruct the projection data 

(Tarplee and Corps 2008).  Having obtained the projection data in the form of an image 

stack of 2-D TIFF files the data was viewed as a 3-D model using disect software, 

DISECT Systems Ltd, www.disectsystems.com (Greco et al. 2012).  

 

3.1.2.4 Masking and Segmenting 

The TIFF image stacks were loaded into the masking and segmenting software 

“Tomomask” (www.tomomask.com) at full resolution. The application of the masking 

features within the software enabled “virtual” removal of the acrylic tube surrounding 

the locust scan before performing various “virtual” dissections to remove the legs and 

http://www.disectsystems.com/
http://www.tomomask.com/


28 

 

wings. Tomomask’s segmenting feature was used to segment and remove the 

tracheae/air sacs of the legs, wings, head, thorax and abdomen.  

 

3.1.2.5 Production of 3-D printed models  

The files were saved and converted to STL format within the Tomomask software.  The 

STL files can be either viewed in 3-D using freely available software (e.g. Meshlab) or 

alternatively printed out as 3-D models at different magnifications using a 3D printer 

such as the Z-Corps 450. 
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3.1.3 Results 

3.1.3.1 Imaging  

Initially, the 3-D views of the insect were obscured by the acrylic tube (Fig 7a) however; 

masking and segmentation of the tube (Fig 7b) enabled full visualisation of the locust 

externally including cuticular details. High Attenuation Structures (HAS) within the 

muscular tissues of the head; thorax and proximal metathoracic femora and a notable 

absence of HAS in the abdomen were observed (Fig7c). At greater magnification (Fig 

7d) details of the ramiform nature of some of the intra-thoracic HAS can be seen. 

 

Figure 7: Four 3-D views of the desert locust (S. gregaria). a) obscured by the acrylic 

tube, b) after masking and segmenting the tube showing cuticular details, c) evidence of 

the High Attenuation Structures (HAS) as white ramiform structures within the muscular 

tissues of the head, thorax and proximal metathoracic femora but not in the abdomen and 

d)greater magnification of the HAS to show detail of the ramiform patterns. 
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 High, medium and low attenuation structures varying from very dense structures (grey 

scale between 36,230 and 36,230) such as the Zinc-containing mandibles (Hillerton 

1982, Al-Harbi et al. 2008) to very low density air filled structures (grey scale between 0 

and 4,000) such as air sacs and larger tracheae were observed (Fig 8a). The grey scale 

values for soft tissue structures such as muscle and the brain ranged (from 30,279 to 

35,300) and were visualised as various shades of grey. Figure 8b shows a) the tergo-

ventral muscles b) dorsal longitudinal muscles c) air sacs and d) tracheae clearly in a 3-

D transverse section through the prothorax at the level of the first thoracic spiracle 

(larger arrow). The hollow ‘pegs’ (smaller arrows) arising from the pleural surface of the 

prothorax which keep the pronotum clear of the spiracular orifice were also clearly seen. 

Figure 8c demonstrates the software’s ability to produce oblique,  3-D cut away  virtual 

‘dissections’ at an infinite number of different angles (Greco et al. 2005). This enabled a 

longitudinal oblique view with removal the legs to demonstrate the orifices of the first 

and second thoracic and first abdominal spiracles. Figure 8d accurately demonstrates the 

cryptic tympanum, which is difficult to visualise without physical dissection, including 

the tympanic membrane, camera tympanum and thoracic air sacs positioned between 

them. 
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Figure 8: Four 3-D views of the head and thorax. a)  Sagittal view of the mandibular 

incisors (a), mandibular molars (b) , air in the oesophagus (c), air sacs (d), tracheae (e), 

mandibular adductor muscles (f), prothoracic dorsal longitudinal muscles (g), brain (h), 

pharynx (i) the circumoesophageal  commissures (j). b) transverse view through the 

prothorax at the level of the first thoracic spiracle showing the hollow ‘pegs’ (a) arising 

from the pleural surface of the prothorax (b), tergo-ventral muscles (c), dorsal 

longitudinal muscles (d), air sacs (e) and tracheae (f). c) Oblique longitudinal view with 

legs and wings segmented showing the orifices of the first & second thoracic and first 

abdominal spiracles respectively (a)-(c), camera tympanum(d), thoracic  air sacs (e) 

tergo-ventral muscles and interposed  air sacs with one of the HAS traversing them(f). d) 

transverse view at the level of the first abdominal section showing fine detail of the 

camera tympanum (a) abdominal air sacs between the tympana (b) and tracheae in the 

proximal metathoracic femora (c). 
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Figure 9 shows a 3-D view of the locust’s head and thorax. a) have been virtually 

dissected transversely at the level of the cervix, b) virtually dissected horizontally at the 

level of the posterior cibarium/anterior oesophagus and c) virtually dissected 

transversely at the mid thoracic level. The tracheae and air sacs are masked in yellow 

and the fat bodies in dark grey. The ring of perivisceral trachea surrounding the gut are 

particularly well shown as are those in the proximal metathoracic legs. 

 

Figure 9: Three views of the head and thorax. a) 3-D transverse view of small air sacs 

within the labium (a), the HAS (b), compound eyes (c), left antenna (d) labial palps (e) 

maxillary palps (f) and air in the gut (g) are clearly visualised. b) 3-D horizontal view of 

head, cervix and anterior prothorax showing air in the crop (a) left antenna (b) and right 

maxillary palp (c). The tracheae and air sacs (in yellow) were also well visualised. c) 2-

D transverse view through the abdomen. c) a 2-D transverse section through the 

abdomen showing the tracheal system (yellow) with the visceral tracheal plexus 

surrounding the gut (a) and the fat bodies (b) dispersed throughout the abdomen. 

 

The entire 3-D segmented tracheal system was demonstrated including some of the HAS 

(Fig 10a) and an enlarged 3-D view of the thoracic section to show finer detail of 

tracheoles (Fig 10b).  
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Figure 10: Two 3-D views of the segmented tracheal system. a) a 3-D view of the 

segmented thoracic and abdominal tracheae with the HAS in the proximal metathoracic 

femora (a) and meta and mesothoracic muscles (b). b) an enlarged 3-D section of the 

distal thoracic and proximal abdominal tracheal system to show fine structural details. 

 

Details of legs, HAS and tracheae including the left prothoracic leg tracheal system and 

prothoracic HAS (Fig 11a), the mesothoracic HAS and tracheal system of the 
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corresponding right leg (Fig 11b) and the metathoracic HAS and the tibial spur tracheae 

of the left metathoracic leg (Fig 11c) were shown. 

 

Figure 11: Three MIP volume rendered images of the thorax including details of legs, 

HAS and tracheae. a) the mandibular teeth (a), the left prothoracic leg tracheal system 

(b) and prothoracic HAS (c). b) the mesothoracic HAS (a), the metathoracic leg HAS (b) 

and tracheal system of the corresponding right leg (c). c) the metathoracic HAS and the 

tibial spur tracheae of the left metathoracic leg (a). 
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The left forewing segmented to reveal the left tympanum (a) and 1
st
 abdominal spiracle 

(Fig 12a) and for greater detail, the fine tracheae in the hind wing was masked in yellow 

(Fig 12b). The estimated combined Tracheal volume of the legs, two wings, head, thorax 

and abdomen was 253 µL. 

 

Figure 12: Two 3-D views of the metathorax and anterior abdomen. a) the left forewing 

segmented to reveal the left tympanum (a) and 1
st
 abdominal spiracle (b). b)  for greater 

detail, the fine tracheae in the hind wing has been masked in yellow (a). 
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3.1.3.2 The 3-D printed model  

Examples of the interactive STL files that were reconstructed (Fig 13) can be 

downloaded at 

www.fishersideas.co.uk/Papers/LocustTrachea/LocustTrachea.html.  

 

 

Figure 13: STL file of the segmented tracheal system of the locust’s abdominal tracheal 

system. 

 

An STL file of one and a half abdominal segments of the locust with suitable structural 

support added prior to printing was reconstructed (Fig 14a) and a physical powder 3-D 

model produced using Zp150 powder (Fig 14b). 

http://www.fishersideas.co.uk/Papers/LocustTrachea/LocustTrachea.html
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Figure 14: The STL image of a section of the segmented tracheal system of the locust’s 

abdominal tracheae (a) and a photograph of the physical 3-D model which can be used 

as a teaching aid (b). 
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3.2 CT of the Ladybird 

3.2.1 Introduction 

Wigglesworth (1950) summarised in his excellent monograph of insect physiology that 

the malpighian tubules were the chief excretory organs in insects. The malpighian 

tubules are relatively simple tubular glands which open at the junction of the mid-gut 

and the hind-gut. They are exceedingly variable in form: sometimes being numerous 

(e.g. 100) and short, sometimes few in number (e.g. 2) and long; sometimes simple and 

sometimes branched; occasionally anastamosing to form closed loops; while sometimes 

more than one type may be present. Their histological structure is no less variable. 

For this research, ten over wintering C. septempunctata were scanned using MicroCT 

with particular focus on their malpighian tubules and it includes a dissecting light 

microscopy examination of a further 5five C. Septempunctata to confirm that the 

structures highlighted by microCT were indeed the insects’ malpighian tubules. Also, 

the possible nature of the dense, radio-opaque material found in some of the ladybirds’ 

malpighian tubules is discussed.  

 

3.2.2 Methods 

Ten specimens of overwintering C. septempunctata were euthanised on the 23
rd

 of 

December 2009 by freezing at -20
0
C for 12 hours and then stored in 70% ethanol until 

scanned using the SkyScan 1174 X-ray microCT. The overwintering C. septempunctata 

were collected from a wooden window frame of a house set in a rural village in Suffolk, 

East Anglia, UK surrounded by agricultural land (52
o
N:1

o
35’E).  

An additional five non-overwintering C. septempunctata were collected in September 

2011 in a garden near Bury St Edmunds in Suffolk (52
o
15’N:00

o
43’E) and were 

subjected to dissecting light microscopy examination after euthanising using Ethyl 

Acetate. 
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A SkyScan 1174 bench-top X-ray microCT scanner was used for the scans (Tarplee and 

Corp 2008).  

The ladybird samples were contained in plastic tubes and scanned at several different 

energy levels varying from 30-50 kVp with and without the addition of a topically 

applied iodinated radiographic contrast agent.  

The Malpighian tubules were masked (Bell et al. 2012), segmented and cropped using 

TomoMask software, (www.tomomask.com).  

 

3.2.3 Results 

The first two dissections were female C. septempunctata with their abdomens containing 

eggs. In each case, removal of the abdominal section of the alimentary tract revealed the 

presence of what appeared to be two sets of malpighian tubules with the proximal ends 

of each set attached to the gut. Neither of these two sets of tubules had the form of 

gastric caecae found in some insects (which tend to originate near the distal portion of 

the crop, are relatively short, are of greater diameter than a malpighian tubule and 

essentially resemble a fold in the gut wall (Gullen and Cranston 2000). 

The next dissection was a male specimen. Removal of the elytra, posterior wings and 

abdominal tergites revealed well-developed fat bodies (Fig 15). 
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Figure 15: Photomicrograph of “stage 1” dissection of C. septempunctata with elytra 

and tergites removed which enabled in situ visualization of the dorsal aspect of gross 

internal anatomy. 

 

The intricate separation of the surrounding soft tissue revealed the entire length of two 

of the malpighian tubules (Fig 16).  
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Figure 16: Photomicrograph of “stage 2” dissection of C. septempunctata detailing the 

abdominal portion of the alimentary tract. Two complete malpighian tubules (1) and (2) 

were physically unfolded for improved examination. 

 

It is clear from the two photomicrographs shown in Figures 15 and 16 that each 

malpighian tubule forms a complete loop; attachment at the anterior end is around the 

junction of the mid gut and ileum (i.e. hind gut) whilst the posterior end appears closely 

attached to the lower alimentary tract 

Figures 17 and 18 show a further photomicrograph and diagram of specimen 4 in which 

the thoracic and abdominal section of the alimentary tract have been removed. In total, 

there appear to be six individual malpighian tubules in C. septempunctata. 
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Figure 17: Photomicrograph of the resected thoracic and abdominal sections of the 

alimentary tract of C. septempunctata, with proximal and distal ends of the malpighian 

tubules attached. 
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Figure 18: Schematic diagram of thoracic and abdominal sections of the alimentary 

tract of C. septempunctata. 

 

Figures 19-21 show various views of some of the male and female overwintering C. 

septempunctata specimens scanned. While Figure 22 shows just the malpighian tubules 

after the use of Tomomask to segment out the radio-opaque malpighian tubules. 
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Figure 19: A 3D, volume rendered, micro-CT image of a male C. septempunctata using 

Maximum Intensity Projection (MIP) showing (a) radio opaque malpighian tubules, (b) 

elytra, and (c) folded wings in the air space between elytra and tergites. 
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Figure 20: A 2D micro-CT image showing a transverse section through a C. 

septempunctata abdomen with details of (a) wall of plastic tube-mount, (b) elytra, (c) air 

space containing folded wings between elytra and dorsal tergites, (d) air sacs, and (e) 

malpighian tubules. 
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Figure 21: A 2D micro-CT image showing a transverse section through a C. 

septempunctata abdomen showing (a) non-dense “black” radio-lucent air-sacs and (b) 

dense “white” radio-opaque malpighian tubules. Blue lines indicate the selectable 

cutting planes. 
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Figure 22: A 3D, volume-rendered and segmented image of the radio-opaque 

malpighian tubules in C. septempunctata. 

 

An estimation of the relative density of the material in the malpighian tubules when 

compared with the ladybird’s exoskeleton or internal organs can be illustrated by the 

‘Advance’ feature of the ‘window and levelling tool of ‘Disect’. When using the 16 bit 

TIFF data loaded into ‘Disect’, the degree of radio-opacity can be viewed on a histogram 

on a scale of 0-65,536. By making the ‘window size’ just 1 unit wide and ‘levelling up 

and down (i.e. effectively binarising the data) one can see when a particular structure 

either first begins to appear or conversely when it starts to disappear as one levels up 

from 0 upwards: thereby obtaining a range estimate. Using the data illustrated in Figure 

19 the range of values were 6,930-14,000 for the plastic tube, 12,770-21,760 for the 

elytra, 13,860-30,400 for the internal organs and from 34,000 to 44,870 for the radio-

opaque material in the malpighian tubules. These values demonstrate that microCT gray 

scale (density) data can be useful in diagnosing, segmenting and studying insect 

malpighian tubules.  
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In agreement with the dissection and photomicrograph results, the microCT data suggest 

that there are 6 malpighian tubules and that they are of the cryptonephridial in type. 

 

3.3  CT of the Butterfly 

 

3.3.1 Introduction 

All insects in the Pterygota undergo a marked change in form from immature to adult. 

This process is termed metamorphosis. These insects display two types of 

metamorphosis. One group displays hemimetabolous (partial) development, and they 

undergo an incomplete metamorphosis. Development in this group proceeds in repeated 

stages of growth and ecdysis (moulting); these stages are called instars. The different 

immature instar stages resemble small versions of the adult form (nymphs) but without 

fully formed wings or genitalia. The differences between nymphs in different instars are 

small, often just differences in body proportions and the number of segments, although 

external wing buds will form in later instars (Gullan & Cranston 2005). The other group 

displays holometabolous (full) development, whereby they undergo a complete 

metamorphosis, including a pupal or resting stage between the larval and adult forms 

(Gullan & Cranston 2005). Holometabolous insects pass through a larval stage, then 

enter an inactive state called a pupa, or chrysalis, and finally emerge as adults. This 

process is called "complete" metamorphosis. It is theorised that the pupal stage is the 

evolutionary compaction of all the nymphal stages of their hemimetabolous ancestors, 

while the larval stage is an extended, mobile form of the developing embryo (Gullan & 

Cranston 2005).  

There have been many publications on insect metamorphosis however most have 

addressed details of the external anatomy. For the following study, it was hypothesised 

that MicroCT would be useful for visualising internal metamorphic changes from larva 

to adult in the butterfly Morpho menelaus with particular focus on the tracheal system. 
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3.3.2 Methods  

Three individuals of M. menelaus, a late-stage caterpillar (larva), a mid-stage chrysalis 

(pupa) and a late-stage chrysalis (adult) were euthanised by placing them in -20
0
C for 

2hr and then drying at 21
0
C for 24hr prior to scanning. The late stage chrysalis was 

euthanised on the day that it was expected to eclose therefore; although the wings were 

folded, the chrysalis was essentially a fully formed adult (Fig 23). 

 

Figure 23: A late stage M. menelaus caterpillar (a), a late stage M. menelaus 

chrysalis (b) and an adult M. menelaus butterfly (c). Adult butterfly image downloaded 

from: 
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http://www.google.co.uk/imgres?imgurl=http://www.butterflyutopia.com/BIG/137-

blue_morpho_didius.jpg&imgrefurl=http://www.butterflyutopia.com/blue_morpho.html

&h=329&w=404&sz=90&tbnid=C8cnfzmE8MPk_M:&tbnh=90&tbnw=111&zoom=1

&usg=__j4ISo8PZ1PbqnPs37g1LlFbWPwc=&docid=sV8leBcBv-

E9xM&hl=en&sa=X&ei=yZISUZTVFeXb0QX1-

4DYAw&sqi=2&ved=0CEcQ9QEwBA&dur=0 on 29
th

 January 2013. 

The MicroCT scans were performed on a Skyscan 1172. The scanned insects were 

suspended vertically in a 20 mm polystyrene tube that was mounted tightly on the 

micro-CT’s inclination stage. This stage was used to ensure that the rotation axis was at 

90 degrees to the x-ray source. 

Exposure factors for the scans were: 

Caterpillar: 

Source Voltage = 59kV, Source Current = 167µA, Image Pixel Size = 9.83µm; 

Mid Stage Chrysalis:  

Source Voltage = 59 kV, Source Current = 133 µA, Image Pixel Size = 9.83 µm; 

Late Stage Chrysalis:  

Source Voltage = 59 kV, Source Current = 167 µA, Image Pixel Size = 6.93 µm. 

Skyscan NRecon software version 1.5.1.4 was used to reconstruct the projection data 

(Tarplee and Corps 2008).  Having obtained the projection data in the form of an image 

stack of 2-D TIFF files the data were viewed as a 3-D model using disect software, 

DISECT Systems Ltd, www.disectsystems.com (Greco et al. 2012). The TIFF image 

stacks were loaded into the masking and segmenting software “Tomomask” at full 

resolution. The application of the masking features within the software 

(www.tomomask.com) enabled “virtual” filling of the tracheal system and removal of all 

other anatomical features.  

 

http://www.google.co.uk/imgres?imgurl=http://www.butterflyutopia.com/BIG/137-blue_morpho_didius.jpg&imgrefurl=http://www.butterflyutopia.com/blue_morpho.html&h=329&w=404&sz=90&tbnid=C8cnfzmE8MPk_M:&tbnh=90&tbnw=111&zoom=1&usg=__j4ISo8PZ1PbqnPs37g1LlFbWPwc=&docid=sV8leBcBv-E9xM&hl=en&sa=X&ei=yZISUZTVFeXb0QX1-4DYAw&sqi=2&ved=0CEcQ9QEwBA&dur=0
http://www.google.co.uk/imgres?imgurl=http://www.butterflyutopia.com/BIG/137-blue_morpho_didius.jpg&imgrefurl=http://www.butterflyutopia.com/blue_morpho.html&h=329&w=404&sz=90&tbnid=C8cnfzmE8MPk_M:&tbnh=90&tbnw=111&zoom=1&usg=__j4ISo8PZ1PbqnPs37g1LlFbWPwc=&docid=sV8leBcBv-E9xM&hl=en&sa=X&ei=yZISUZTVFeXb0QX1-4DYAw&sqi=2&ved=0CEcQ9QEwBA&dur=0
http://www.google.co.uk/imgres?imgurl=http://www.butterflyutopia.com/BIG/137-blue_morpho_didius.jpg&imgrefurl=http://www.butterflyutopia.com/blue_morpho.html&h=329&w=404&sz=90&tbnid=C8cnfzmE8MPk_M:&tbnh=90&tbnw=111&zoom=1&usg=__j4ISo8PZ1PbqnPs37g1LlFbWPwc=&docid=sV8leBcBv-E9xM&hl=en&sa=X&ei=yZISUZTVFeXb0QX1-4DYAw&sqi=2&ved=0CEcQ9QEwBA&dur=0
http://www.google.co.uk/imgres?imgurl=http://www.butterflyutopia.com/BIG/137-blue_morpho_didius.jpg&imgrefurl=http://www.butterflyutopia.com/blue_morpho.html&h=329&w=404&sz=90&tbnid=C8cnfzmE8MPk_M:&tbnh=90&tbnw=111&zoom=1&usg=__j4ISo8PZ1PbqnPs37g1LlFbWPwc=&docid=sV8leBcBv-E9xM&hl=en&sa=X&ei=yZISUZTVFeXb0QX1-4DYAw&sqi=2&ved=0CEcQ9QEwBA&dur=0
http://www.google.co.uk/imgres?imgurl=http://www.butterflyutopia.com/BIG/137-blue_morpho_didius.jpg&imgrefurl=http://www.butterflyutopia.com/blue_morpho.html&h=329&w=404&sz=90&tbnid=C8cnfzmE8MPk_M:&tbnh=90&tbnw=111&zoom=1&usg=__j4ISo8PZ1PbqnPs37g1LlFbWPwc=&docid=sV8leBcBv-E9xM&hl=en&sa=X&ei=yZISUZTVFeXb0QX1-4DYAw&sqi=2&ved=0CEcQ9QEwBA&dur=0
http://www.google.co.uk/imgres?imgurl=http://www.butterflyutopia.com/BIG/137-blue_morpho_didius.jpg&imgrefurl=http://www.butterflyutopia.com/blue_morpho.html&h=329&w=404&sz=90&tbnid=C8cnfzmE8MPk_M:&tbnh=90&tbnw=111&zoom=1&usg=__j4ISo8PZ1PbqnPs37g1LlFbWPwc=&docid=sV8leBcBv-E9xM&hl=en&sa=X&ei=yZISUZTVFeXb0QX1-4DYAw&sqi=2&ved=0CEcQ9QEwBA&dur=0
http://www.disectsystems.com/
http://www.tomomask.com/
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3.3.3 Results  

The scans showed marked metamorphic changes between the caterpillar and chrysalis 

stages however, there were only moderate changes between the mid and late stage 

chrysalis’ (Fig. 24). The images showed ten spiracles on either lateral side of the 

caterpillar and only seven on either side of the chrysalis. The teeth clearly evident on the 

caterpillar were completely gone in the chrysalis. The extensive tracheal system in the 

caterpillar was replaced by a less elaborate tracheal system including large abdominal 

air-sacs in the mid and late stage chrysalis.   

 

 

Figure 24: Four 3-D images of M. menelaus. The late stage caterpillar showing the 

absence of air-sacs and presence of teeth (a & b) and the mid and late stages of the 

chrysalis showing large air-sacs and absence of teeth (c & d). 
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3.4 Discussion 

3.4.1 The locust 

To my knowledge, at time of printing this thesis these methods show the first account of 

non-invasive measurements of insect tracheal volumes and detailed, physical 3-D 

models of the anatomy of an individual insect’s respiratory system. All previous 

attempts have been produced with prior knowledge gained from physical dissections or 

other destructive methods. Thus by definition, those approaches are estimations and 

prone to large errors. The results show that using a microCT with appropriate software 

researchers can study tracheal anatomy in insects. Also, the conversion of the image 

stack data to STL format allows the complex 3-D anatomy of the respiratory system in 

locusts to be visualised non-invasively. 

The Tracheal volume of 253µL is in accordance with published methods such as a) 

water displacement (Wigglesworth, 1950) b) inert gases (Bridges et al. 1980; Lease et al. 

2006) c) Stereology   (Schmitz and Perry 1999; Hartung et al. 2004) and d) Stereology in 

combination with Synchrotron X-ray imaging (Kaiser et al. 2007, Greenlee et al. 2009, 

Socha et al. 2010 and Kirton et al. 2012). 

Also, when segmenting out the air-filled tracheal system there was no filling of other air 

filled spaces within the locust such as air in the crop or the extra oral space. Thus, 

removing the potential errors involved. However, there were some ‘leaks’ from inside 

out at a few predictable places due to the ‘partial volume’ effect (Tarplee and Corps 

2008). These occur where the membranous non-sclerotized exoskeleton of the insect is 

extremely thin e.g. at the tympanum and the membranous periarticular regions of several 

of the smaller joints of the legs. This problem was easily solved by using the ‘paint’ 

function within Tomomask set at an attenuation of 8,000 to ‘patch over’ any such 

potential defects and thus rendering the insect ‘leak-proof’.   

When 3-D voxels are located between regions of different x-ray attenuation they 

inherently contain partial volume errors. Since the voxel size for this study was 10 µm 

the method described above of total respiratory system volume determination would 

underestimate the volume because the voxels were bigger than some of the tracheoles 
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and therefore would be located between different x-ray attenuation regions (e.g. 

air/muscle). However, using this total respiratory system volume determination method 

for time series studies in the same live anaesthetised insect (Al-Harbi et al. 2008) or 

killed groups of insects (e.g. fed versus unfed), then the theoretical underestimation of 

total respiratory system would be the same in all groups.  

Synchrotron micro-CT (Greco et al. 2012; Kirton et al. 2012) inherently provides the 

highest resolution however; a limiting factor for synchrotron imaging is that there are 

few available for usage. In the United Kingdom there is currently only one Synchrotron 

scanner and so UK based research might typically have to wait several months for an 

opportunity to use it. The nature of the high attenuation areas (HAS) described in this 

experiment is at this stage unclear however it is feasible that they are: desiccated cells 

accumulated in sections of the tracheae; Calcium deposits/scarring after localised 

infections; aggregations of the locust tracheal mite e.g. Locustacarus locustae or 

Locustacarus buchneri); infected glandular tissue; accumulated debris from external 

airborne impurities. They may also be effete tracheal structures as described by Miller et 

al. (1960c).  

 

3.4.2 The ladybird 

The results in the over wintering seven spotted ladybird, C. septempunctata clearly 

showed that the malpighian tubules contain an unknown extremely radio-opaque 

material. The fact that there were six such structures with the distal ends in close contact 

with the rectum is in agreement a) with our findings with dissecting light microscopy 

and b) the literature which suggests that most polyphagic coleopterans such as ladybirds 

have cryptonephridial malpighian tubules (Marcus 1930; Wigglesworth 1950; Maddrell 

1971; Imms 1977; Bell 1977; Bell & Anstee 1977; Gullen and Cranston 2000; Klowden 

2007; Nation 2008).  

More detailed studies are required to elucidate a) the nature of the radio-opaque material 

demonstrated in the overwintering C. septempunctata malpighian tubules and  b) discern 

whether this phenomenon is confined just to this species of ladybird or whether it is a 
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common phenomenon in other beetle species. The material in the tubules is so radio-

opaque that it must contain a significant amount of some metal compound such as 

Calcium, Magnesium or as in the case of the locusts’ mandibles Zinc (Al-Harbi et al. 

2008).  

 

3.4.3 The butterfly 

The scans showed marked metamorphic changes between the caterpillar and chrysalis 

stages however, there were only moderate changes between the mid and late stage 

chrysalis’. The images showed ten spiracles on either lateral side of the caterpillar and 

only seven on either side of the chrysalis. The teeth clearly evident on the caterpillar 

were completely gone in the chrysalis. The extensive tracheal system in the caterpillar 

was replaced by a less elaborate tracheal system including large abdominal air-sacs in 

the mid and late stage chrysalis. Future studies will include microCT scans conducted at 

more frequent intervals e.g. daily to better demonstrate the tracheal system changes from 

caterpillar to adult during metamorphosis. 

  

3.5 Future Directions 

The methods described in this chapter have provided new ways for observing internal 

morphology of insects non-invasively. The tracheal system was explored in the locust 

and butterfly with both volume estimations and metamorphic changes described and the 

malpighian tubes in the ladybird were segmented and imaged in 3-D without physical 

dissection. These techniques have opened up new areas of research such as live scanning 

of “internal” metamorphic changes and organ characterisation in live insects. It is 

envisaged that these methods will be used in developmental experiments where 

individual insects can be scanned daily over several weeks to observe metamorphic 

changes. Other experiments will involve treating individuals with pathogens or 

nutritional variations in diets to observe insect development. In particular, the 

malpighian tubules of ladybird beetles can now be examined in live insects to describe 
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their physiological function over time while being exposed to different diet regimes. 

Their HU can now be determined to estimate the types of solid materials that accumulate 

in them. The non-invasive aspects of the new methods will now enable these 

experiments to be conducted on the same individuals over time thus reducing bias errors 

that occur when observing different individuals.  
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CHAPTER 4 

A specific case for CT “Plasticity in the live honeybee brain” 

_______________________________________________________________________ 

4.1 Introduction 

The European honey bee A. mellifera, worker brain weighs approximately 0.001 g, has a 

volume of approximately 1 mm
3
, and has approximately one million neurons (Ribi et al. 

2008). The main parts of the brain are the optic lobes, the antennal lobes, the mushroom 

bodies, and the central complex. The optic and antennal lobes are responsible for 

processing vision and olfaction, respectively. The mushroom bodies and the central 

complex constitute the most important centres for behaviour, instinct, and memory 

(Hourcade et al. 2010). Other known parts of the brain include the sub-oesophageal 

ganglion, tritocerebrum, and ventral cord and it is thought that complex behaviour is 

based on overarching brain networks superimposed on smaller local networks 

controlling individual responses. Since simple environmental manipulations can both 

accelerate and delay brain growth in young bees, and since brain volume is sensitive to 

behaviour throughout life, the honey bee has great potential as a model for exploring the 

interactions between environment, behaviour, and brain structure. Experience related 

changes in brain structure are believed to be an important part of the memory engram 

(Kolb and Whishaw 1998; Kim and Diamond 2002; Mohammed et al. 2002; Gerber et 

al. 2004; Kim et al. 2006; Liston et al. 2006), and understanding the relationships 

between experience and brain structure is key to understanding the relationships between 

brain and behaviour (Kolb and Whishaw 1998). A worker honey bee’s natural 

behavioural change is associated with conspicuous growth of the mushroom bodies in 

the brain (Withers et al. 1993; Farris et al. 2001; Ismail et al. 2006). The mushroom 

body calyx is larger in forager bees than same-aged nurse bees that have not left the hive 

(Withers et al. 1993; Farris et al. 2001). This structural change may be part of the 

memory engram for the many foraging-related and navigational tasks learned by a 

forager bee (Farris et al. 2001; Fahrbach et al. 2003). 
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Phenotypic plasticity in the adult bee brain has been demonstrated in previous 

experiments using various techniques, such as the Cavalieri or computer volume 

segmentation methods (Gunderssen & Jenson 1987; Michel & Cruz-Orive 1988; 

Withers et al. 1993; Brown et al. 2000; Ribi et al. 2008; Maleszka et al. 2009). In all 

cases, dead bees were used to collect data, which invariably led to inherent differences 

among individuals. 

This research was conducted to identify limitations and potentials for MicroCT scanning 

of live bees to be used as a comprehensive, non-invasive method for studying brain 

plasticity. 

 

4.2 Methods 

The SYRMEP beamline facilities at the ELETTRA synchrotron in Trieste, and a 

SCANCO µCT40 bench-top scanner at the University of Bern, were used to scan the 

bees. At the beamline, newly emerged, adult bees were scanned once daily over five 

days to observe differential brain plasticity produced by asymmetric environmental 

stimuli. Scans on live bees at the beamline facility were performed using phase contrast 

with the following parameters: 15keV X-ray energy, 20 cm sample to detector distance, 

a number of projections (over 180°) of 1800, 9 µm isotropic voxel size, 0.9 seconds 

exposure time, 1 hour 48 minutes measurement time.  

To enhance tissue differentiation, bolus injections of radiographic contrast medium were 

delivered directly into the haemolymph, between the dorsal abdominal terga, via a 30G 

needle (Fig. 25). 
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Figure 25: To enhance brain tissue differentiation, bolus injections of radiographic 

contrast media were delivered via a 30G needle (a) directly into the haemolymph, 

between the dorsal abdominal terga, of live bees that were previously secured for 

scanning (b and c). The 3D rendered brain (d) showed that contrast had perfused into 

tissue to enable improved structural differentiation. 

 

For visual comparisons of gross anatomical features of the brain, MicroCT scans of an 

ancient bee trapped in amber were also performed on the bench-top scanner, using 

absorption techniques. The tube operating conditions were set at 45kV, and 177µA. The 

other parameters were: high resolution mode (1000 Projections/180°), 2048 × 2048 

pixels image matrix, 10µm size isotropic voxel, 3 seconds integration time, 610 total 

slices, 2 hours and 30 minutes measurement time. 

Images and brain volume data (Fig. 26) were measured using BeeView volume 

rendering software (DISECT Systems Ltd). 
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Figure 26: A 3D volume rendered image of a live honey bee’s head capsule showing 

gross morphological structures such as the optic lobes (OL), antennal lobes (AL), aorta 

(AO), mushroom body calyces (MBc), and median ocellus (MO). The compound eyes 

(CE) are visualised immediately adjacent and lateral to the optic lobes. 
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4.3 Results 

Gross brain morphology, such as the optic lobes, antennal lobes, aorta, mushroom body 

calyces, and median ocellus, were visualised in 2D and 3D projections. Brain volume 

measurements (Fig. 26) enabled estimates of plasticity. Scanning of live bees enabled 

minimally-invasive imaging of physiological processes (for the first time), such as 

passage of contrast from gut to haemolymph (Fig. 27), as well as preliminary brain 

perfusion and plasticity studies (Fig 27a). 

 

Figure 27: A 3D volume rendered image with BeeView software of a live honey bee 

showing the three body segments (a) and orthogonal, 2D images (b, c, and d) showing 

the passage of radiographic contrast from the ventriculus (true stomach) to the 

haemolymph in the coelom. Images were rendered 1.5 hours after ingestion of contrast. 

 

The image in Figure 28a shows comparisons of brain images from live extant bees and 

the 20 million year old bee Proplebeia abdita showed little variation in gross 

morphological features (Fig. 28b). 
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Figure 28: (a) A 2D axial view of a live honey bee brain showing perfusion of contrast 

medium (C) into peripheral regions. Arrows indicate areas of higher concentration. At 

30 minutes post bolus injection into the haemolymph, the lateral ocelli (LO) and aorta 

(AO) contained more contrast than the sub oesophageal ganglion (SOG). (b) An axial 

view of the head capsule of an ancient stingless bee Proplebeia abdita (Greco et al. 

2011) trapped in amber.  The brain of this 20 million years old bee was particularly well 

preserved, as evidenced by the optic lobes including the medullae (Me) and lobulae 

(Lo), antennal lobes (AL), protocerebral lobes (P), and the mushroom bodies (MB). The 

retinal zone (RT) was also well preserved. 

 

4.4 Discussion   

Results from this study indicate that it is feasible to observe plasticity of the honey bee 

brain ‘in vivo’ using DR, and that progressive, real-time observations of these changes 

can be followed in individual live bees in association with environmental stimuli. 

Plasticity in the adult bee brain has been demonstrated in previous experiments using 

various techniques, such as the Cavalieri or computer volume segmentation methods. In 

all cases previous to this study, dead bees were used. However, the use of ex-vivo 

samples increases the chances of fundamental errors in correlation data analyses due to 

inherent differences among individuals. Movement errors were not a major limitation of 

this study, because it was possible to completely immobilize the bees, heads. However, 

haemolymph flow within the head capsule continued and this caused exposure variations 

between data capture events and thus also between tomographic slices on the resultant 
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image. The exposure variations were easily corrected by using the intensity averaging 

function during image reconstruction. The greatest challenge for this study was 

achieving adequate brain tissue differentiation, and it was clear that although 

radiographic contrast showed promise for improving tissue visualisation, further 

improvements on reconstruction algorithms are required to better separate brain 

structures. It is clear that bee brain imaging studies from Ribi et al. (2008) and Rybak et 

al. (2010) are still of superior quality; however, the results in this experiment 

demonstrate great potential for in-vivo, non-invasive DR imaging of the honey bee for 

future research in brain plasticity. 

 

4.5 Future Directions 

The non-invasive aspects of the methods described in this chapter will now enable live 

bee brain experiments to be conducted on the same individuals over time thus reducing 

bias errors that occur when observing different individuals. It is also worth mentioning 

that there are no restrictions from animal ethics committees on using insects for 

scientific research purposes and that once the sensitivity of determining the different 

brain neuropils is increased to that similar to MRI, it will be feasible to conduct live 

brain plasticity volume measurements on individual bees. Although insects are not 

vertebrates, the bee brain contains all the rudimentary functional portions of the 

vertebrate brain which enables comparisons to the corresponding portions of the 

vertebrate brain possible. Therefore, these new methods will enable a whole new area of 

research to into brain function and animal behaviour to develop. The methods also 

described, for the first time, the passage of food from the insect gut to the haemolymph 

in a live insect. Nutritional and pathogen treatments can now observed in live 

individuals on a temporal scale. These experiments will shed light on areas such as how 

nutrition or pathogens affect the immune response in insects.  

  



63 

 

CHAPTER 5 

Application of CT to Insect Behaviour  

_______________________________________________________________________ 

5.1 Introduction 

Many factors influence the evolutionary fitness of honeybees Apis mellifera 

(Hymenoptera: Apidae). Factors like foraging strategies are mediated by natural 

selection (Emlen 1966; MacArthur and Pianka 1966; Waddington and Holden 1979; 

Charlton and Houston 2010) and, as a consequence of net energy efficiencies, decision 

making strategies in individual bees which better exploit optimum food Vs. energy 

expenditure ratios, such as floral constancy, develop over time and impact on the long 

term survival of colonies (Betts 1935; Wells & Wells 1983; Slaa et al. 1997; Hassell and 

Southwood 1978; Kobayashi-Kidokoro and Higashi 2010). Bees gain most of their 

energy from simple carbohydrates when ingesting nectar or honeydew. Honeydew is a 

sweet exudate produced by various sap-sucking insects, mainly in the order Hemiptera, 

such as scale insects (Coccoidea) and aphids (Aphidoidea) (Eickwort and Ginsberg 

1980). The carbohydrates serve for metabolic processes, flight and normal activity and 

are converted to glycogen or fat for storage in repositories called fat bodies during times 

of excess energy intake and honey storage (Gmeinbauer and Crailsheim 1993; 

Panzenböck and Crailsheim 1997; Romoser and Stoffolano 1998; Suarez et al. 2005; 

Standifer 2007). The predominant constituents of nectars, produced by floral and extra-

floral nectaries on plants, are the sugars sucrose, glucose and fructose (Roubik 1995; 

Somerville 2005; Standifer 2007; Brodschneider and Crailsheim 2010).  On occasions 

when nectar or honeydew are not available, bees collect sweet juices from mature fruit 

that is open or weeping and from other natural plant exudates (Roubik 1995; Michener 

2000; O'Toole and Raw 2004; Standifer 2007). Nectar, honeydew, juices and exudates 

vary in the amount and type of sugars (and therefore energy) they contain, depending on 

the plant and insect species from which they are derived (Percival 1961) and the amount 

of water present in them differs with temperature and time of day (Bartareau 1996; de 

Bruijn and Sommeijer 1997). Bees can detect various food constituents such as amino 
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acids and cations (Waller 1972; Dress et al. 1997; Inouye and Waller 1984; Alm et al. 

1990) and will avoid foraging on unsuitable nectar such as from onions, which contain 

high concentrations of potassium ions (Waller 1972; Williams and Free 1974; Gary et 

al., 1977; Kumar and Gupta 1993).  

Bees expend energy when foraging for food and like many other organisms, follow 

optimal foraging strategies (Emlen 1966; MacArthur and Pianka 1966; Waddington and 

Holden 1979) to conserve energy. Optimal foraging strategies such as floral constancy 

(Grant 1950; Waser 1986; Slaa et al., 2003) improve a colony's chances of survival 

however, although there has been significant research on nectar processing and 

trophallaxis (Free 1957 & 1959; Ribbands 1953; Crailsheim 1998) there has been only 

limited research on nectar storage (Park 1925; Seeley 1992; Grueter and Farina 2007; 

Johnson and Baker 2007) and to our knowledge, none on decision making for optimal 

storage strategies. The benefits for optimisation strategies such as efficient honeybee 

foraging behaviour has been demonstrated by mathematical modelling and computer 

simulations (Schmickl and Crailsheim 2008; Thenius et al. 2008; Schmickl et al. 2010). 

If optimal storage strategies exist, decision making would be performed by storage bees 

that take food from incoming foragers, honey processing bees and from storage sources 

inside the hive (Nunez 1966; Farina 1996; De Marco & Farina 2001; Pirez & Farina 

2004; Grueter & Farina 2007). Natural selection would favour bees with more 

efficient/optimal honey storage behaviour therefore colonies whose individuals exhibit 

efficient honey storage behaviour will have better chances of survival. For example, if 

bees were to store nectar of similar sugar concentrations in cells that were close to each 

other the dehydration phase of the ripening process would be more efficient than for that 

in groups of cells that contained nectar of varying concentrations (Pers comm. Tom 

Seeley 2010). Thus, colonies which exhibit optimal storage behaviour would conserve 

energy and have an evolutionary advantage and improved colony survival expectations 

over less efficient colonies.  

For a detailed description of how honey is processed prior to final storage refer to 

(Nunez 1966; Farina 1996; De Marco & Farina 2001; Pirez & Farina 2004; Grueter & 

Farina 2007) and see (Fig. 29) for a description of the pathways involved. 
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Figure 29: A schematic diagram of the three possible pathways as evidenced by the 

empirical data. There are only two pathways possible for either labelled (green) or 

unlabelled (blue) nectar to enter a cell unmixed (a) and sixty pathways possible for a 

mixture of labelled and unlabelled nectar to enter a cell (b). The random theoretical 

multinomial probabilities distribution of these pathways gives a cell ratio of 1:30:1 for 

the three categories of stored nectar.  
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Therefore more efficient honey storage behaviour has the potential to reduce energy 

expenditure, improve the honey ripening process and ultimately impact on a colony’s 

chances of long term survival. In this study, the honey storage behaviour of bees from 

nine A. mellifera colonies that were fed solutions with three different sugar 

concentrations was explored using CT. 

 

5.2 Methods 

5.2.1 Hive preparation 

Nine colonies containing one mated/physogastric, actively laying queen and 

approximately 1000 workers aged between 1 and 28 days in Apidea hives 

(Transidea AG, Dentenbergstrasse 50, 3076, Worb, Switzerland) were prepared by 

removing brood and honey combs and then adding only foundation combs and labelled 

and unlabelled food inside the hives.  The hives were closed during daylight hours, to 

prevent bees foraging on external food sources, and opened for one hour after sunset for 

hive hygiene. The food was liquid sucrose solutions in feeders that had a separator to 

prevent labelled and unlabelled food from mixing (Fig. 30). Solutions were labelled with 

Visipaque 320 radiographic contrast agent (GE Healthcare Inc, 3135 Easton Turnpike 

Fairfield, CT 06828-0001 United States). 
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Figure 30: A 3D CT scan of an Apidae hive as prepared for mapping the in-hive honey 

distribution patterns. This scan was performed at the start of the experiment, just before 

the bees commenced building cells. 

 

The internal feeders in hives 1, 2 & 3 contained solutions with Treatment-1 (T1): 30% 

sucrose solution-10% Visipaque 320 and Control: 50% sucrose, hives 4, 5 & 6 contained 

solutions with Treatment-2 (T2): 50% sucrose solution-10% Visipaque 320 and Control: 

50% sucrose and hives 7, 8 & 9 contained solutions with Treatment-3 (T3): 70% sucrose 

solution-10% Visipaque 320 and Control: 50% sucrose. Workers tested for food 

acceptance showed no preference between 50% sucrose solution-10% Visipaque 320 or 

50% sucrose solution and there was no toxic effect of Visipaque 320 for concentrations 

of up to 20% on adult worker bees (unpublished data). 
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5.2.2 Diagnostic Radioentomology (CT) 

The labelled food enabled the bees’ honey storage behaviour to be traced and mapped 

using CT on a Philips Brilliance CT 16-slice scanner (Philips Healthcare, 5680 DA Best, 

The Netherlands). Each cell containing honey was allocated vector co-ordinates (υ1, υ2 

and υ3) using BeeView 3D visualisation software (Disect Systems Ltd, Suffolk, United 

Kingdom) and the Hounsfield Units (HU) for the honey in the cell was recorded using 

eFilmLite version 1.5.0.0-DICOM (Digital Imaging and Communications in Medicine 

NEMA). Scans were performed at 48 hours after introduction of bees, combs and food. 

This enabled time for the bees to construct cells and commence honey storage. Scans 

performed after three days showed that, although there was still space available on the 

combs the bees stopped storing honey, probably because the food was readily available 

from the feeders inside the hive. Workers in small colonies have been observed 

behaving similarly with 50% sugar solutions placed inside apidea hives (pers comm. 

Laurent Gautier 2010).  

 

5.2.3 Statistics  

In utilizing the standard curve which was generated for this and future experiments (Fig. 

31), each honey storage cell was allocated one of the three HU categories: Category-1 

(C1) = 0-400HU, category-2 (C2) = 401-700HU and category-3 (C3) = 701- 1500. 
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Figure 31: The standard curve produced for this experiment plotting Hounsfield Units 

(HU) according to sugar concentrations, without 10% Visipaque contrast agent (red) and 

with 10% Visipaque contrast agent (green). 
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Therefore, C1 cells contained honey without contrast, C2 cells contained honey with a 

combination of non-contrast and contrast honey and C3 cells contained only honey with 

contrast. The frequencies of cells for C1, C2 and C3 to the theoretical random honey 

storage frequency ratio (1:30:1) for the nine hives were compared.  

 

5.2.4 Distribution of storage cells on combs 

The distribution of labelled and unlabelled honey containing radiographic contrast (as 

measured by the HU’s) on combs from the nine hives (within treatment groups) was also 

tested for uniformity. The “uniformity” here was not the statistical uniform distribution 

HU ~ U(min, max). The uniformity tested was given by the null hypotheses that the HU 

of the honey is the same in each cell (plus a random fluctuation). This in fact is the case 

for a normal distribution with constant mean µ and variance σ
2
. Therefore the null 

hypothesis reads H0: HU ~ N(µ, σ
2
) and the tests performed  were tests on normal 

distribution of HU (Shapiro-Wilk, Anderson-Darling and Kolmogorov-Smirnov-

Lilliefors). 

 

5.2.5 Sugar concentration versus distance from brood centre 

Correlations between sugar concentrations (HU) within the honey containing cells and 

their Euclidean vector distances (
2 2 2

1 2 3u u u u  
) from the brood centre were then 

tested. Brood centre was established by locating the centre of the three dimensional 

brood (on-screen) and allocating 0,0,0 values for the x, y and z brood centre co-ordinates 

respectively. The brood centre co-ordinates and u1, u2 and u3 were acquired with 

BeeView’s on screen linear callipers. Spearman correlations and Kruskal-Wallis tests for 

T1, T2, T3 and pooled results were performed to compare the honey sugar 

concentrations in cells with Euclidean vector distances and their components u1, u2 and 

u3 from brood centre. 
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5.3 Results 

5.3.1 Honey storage frequency ratios 

The theoretical polynomial distribution of honey storage frequency ratio for this 

experiment was (1:30:1) for (C1:C2:C3). The honey storage frequency ratios recorded 

from the empirical data for T1, T2 and T3 were statistically different from (1:30:1) at, 

1:2:1, 3:1:3 and 1:2:4 respectively (Table 2). This was confirmed by Chi-square tests for 

T1, T2 and T3 being, χ
2
: 128.8, 226.3, and 9358.9 respectively, with 2 df and p values of 

< 0.001 for all three treatments (Table 2). Thus, the null hypothesis that the honey 

storage distribution ratio of the three treatments follows the polynomial (1:30:1) 

distribution was rejected.  Therefore, the honey storage frequency for all three 

treatments was not random. 

 

5.3.2 Distribution of storage cells on combs 

The null hypothesis, H0: HU ~ N(µ, σ
2
),  that the sugar concentration of the honey was 

the same in each cell (plus a random fluctuation) was not rejected for T1, which could be 

related to smaller sample size leading to low power for the test for T1, however the null 

hypothesis was rejected for T2 and T3. Therefore, at least for T2 and T3 the labelled 

food was not deposited randomly by the bees. In addition, Figure 4 shows the 

distribution of cells containing honey of differing concentrations to have localized, 

patchy spatial distributions. The patchy cell distribution was not evidenced for T2 (50% 

labelled - 50% unlabelled) indicating, as expected, that the bees could not detect 

differences in sugar concentrations in T2 and also that they did not show preferences for 

labelled or unlabelled food.  

 

5.3.3 Sugar concentration versus distance from brood centre 

The honey sugar concentrations in cells for T2 and T3 were statistically different and 

there were cells grouped together that contained honey with similar sugar concentrations 
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for all three treatments (Fig. 32). There were some significant correlations between 

honey sugar concentrations within cells and their Euclidian distances from the brood 

centre for the three treatments (Table 3) however the correlations were very weak. 

  

Figure 32: A 2D CT scan showing patchy distribution of cells containing honey with 

differing sugar concentrations (T1 & T2) and uniform distribution of cells containing 

honey with similar sugar concentrations (T2). The sugar concentration of Treatment 1 

(T1) food was 30% labelled (green) and 50% unlabelled (blue), Treatment 2 (T2) food 

was 50% labelled (green) and 50% unlabelled (blue) and Treatment 3 (T3) food was 

70% labelled (green) and 50% unlabelled (blue). 
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These results indicate that, at least for this experiment, there were no significant 

relationships between honey sugar concentrations and a cell’s distance from the brood 

centre. 

 

5.4 Discussion 

The results suggest that decision making in storer bees is influenced by nectar sugar 

concentrations and that the bees store carbohydrates in groups of cells with similar sugar 

concentrations in a non-random way. This behaviour, as evidenced by the patchy spatial 

cell distributions, might help to hasten the ripening process (Pers comm. Tom Seeley 

2010) by reducing the distance between cells of similar sugar concentrations. Indeed, 

storing  nectar of similar sugar concentrations (and therefore water content) in cells that 

are close to each other would make the dehydration phase of the honey ripening process 

more efficient for those cell groups (Pers comm., Tom Seeley 2010). Thus, colonies 

which exhibit optimal storage behaviours such as these would have an evolutionary 

advantage and improved colony survival expectations over less efficient colonies.     

When storing honey from the internal feeders, the bees in our experiment had three 

foraging-storage pathways to follow (Fig. 28). Therefore, assuming that there were no 

behavioural influences acting on these pathways, the random theoretical multinomial 

probabilities distribution for C1:C2:C3 would follow a honey storage frequency ratio of 

1:30:1 for the three categories. However, the honey storage frequency ratios for 

C1:C2:C3, as calculated from the empirical data in this experiment, were significantly 

different from this random theoretical multinomial probabilities distribution as follows: 

T1 (30% - 50%) had a honey storage frequency ratio for C1:C2:C3 of 1:2:1 (p < 0.001) 

T2 (50% - 50%) had a honey storage frequency ratio for C1:C2:C3 of 3:1:3 (p < 0.001) 

T3 (70% - 50%) had a honey storage frequency ratio for C1:C2:C3 of 1:2:4 (p < 0.001). 

The significant differences in these ratios suggest that there were behavioural influences, 

such as decisions on where to place honey of similar concentrations, occurring. It is 
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therefore likely that the bees were depositing nectar according to contextual information 

(Seeley 1998), such as the location of other cells in the hive containing honey of similar 

sugar concentrations. Therefore, behaviours influencing the honey storage frequency 

ratios are most probably based on decisions for achieving optimal storage strategies. 

Camazine (1991) suggested that the honey storage pattern in honeybees was random. 

Although there were no significant relationships between honey sugar concentrations 

and a cell’s distance from the brood centre in this experiment our data indicate, as do 

those of Free & Williams (1974) and Johnson and Baker (2007), that honeybees show a 

preference for storing honey according to sugar concentrations in the nectar. In another 

study, De Grandi-Hoffman and Hagler (2000) found that, up to 24 hours after 

introduction of labelled nectar, honeybees stored at least 20% of unlabelled nectar 

separately. In addition, although Seeley  and Tovey  (1994) discussed  search time for 

foragers unloading to receivers, the principle follows that when using sugar 

concentration as a cue, search time for nectar deposition would be a consequence of 

storing bees returning to a cell patch containing nectar of similar sugar concentrations. 

Therefore, one optimal storage strategy would be for storer bees to return to cell patches 

containing cells with similar sugar concentrations until all the cells in those patches were 

full. This strategy would reduce search time and thus increase storing behaviour 

efficiency. The CT images in this study clearly show that honeybees are producing such 

cell patches with similar sugar concentrations (Fig 32).     

It is feasible that storing honey in cell patches has benefits other than for those of 

ripening honey. Nectars collected by honeybees from different foraging patches (either 

natural or agricultural patches) can have differing sugar concentrations simply because 

the plants in these patches are growing under different local ambient conditions. In light 

of the current trend in global colony losses, it is crucial to mention here that the nectar 

from these plants might also contain other differences in constituents such as lethal or 

sub-lethal levels of toxins from agrochemicals  and other sources (Sur and Stork 2003; 

Rogers et al.. 2007; Cloyd and Bethke 2010). Decision making in honeybees is based on 

information which is acquired and processed in order to make choices between two or 

more alternatives (Seeley 2010). Honey storage strategies, like those shown in this 

experiment, would be based on information such as sensing sugar concentrations in 
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incoming nectar and in ripening honey. Although it is not clear whether honeybees can 

detect agrochemicals in nectar or honey, as was shown in this experiment, honeybees 

might store toxin-containing nectars separately from toxin-free nectars indirectly by way 

of sensing the nectars’ differing sugar concentrations. This would be an effective way to 

prevent all the honey from being contaminated and it would reduce widespread toxin 

contamination in the hive and help prevent bee losses. vanEngelsdorp et al. (2009), also 

suggest that honeybees store pollen with high levels of chlorothalonil separately in 

entombed cells which might be a phenomenon similar to the honey storage pattern 

behaviour shown in this experiment. In addition, there are plants in several genera from 

at least 11 families (Adler 2001; Robertson et al., 2010) that naturally produce nectars 

which contain constituents that have varying degrees of toxicity to bees (and humans) 

and there are plants that produce toxic pollen (Kevan and Ebert, 2005; Mesquita et al., 

2010). Foragers bring these naturally occurring nectars and pollens back to the hive. It is 

feasible that the naturally occurring toxins in pollen and nectar have provided the 

selective pressure for honeybees to improve their food storage strategies. Thus colonies 

that exhibit storage strategies which separate toxic from non-toxic food would have an 

evolutionary advantage over colonies whose bees store food indiscriminately. 

CT was used to acquire data and analyse results from this study and it is important to 

note that statistics were applied (2790 data points) to verify results. These results were 

however immediately visible and obvious prior to applying the statistical tests because 

the CT images highlighted the behavioural patterns as soon as the data were 

reconstructed. It is also important to note that although bees were marked with 

Visipaque 320, it was not possible to accurately establish the number of marked and 

unmarked bees because of bee movement errors. Nevertheless, research on overcoming 

these CT limitations to enable fast (full hive scans that take less than 20sec) and accurate 

results for future entomological experiments continues. For example, as with medical 

radiology where specialists use human visual pattern recognition techniques to diagnose 

pathology such as tumours or calculi, radio-entomology will be able to diagnose 

pathology (AFB, EFB, Nosema etc.) or behavioural patterns (Fig. 32) by visual 

diagnosis. Similarly, as with medical radiologists, radio-entomologists will able to view 
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the results instantaneously and perform diagnoses without the need to run extensive 

statistics on each case. 

5.5 Future Directions 

The methods described in this chapter have shown features of honeybee behaviour that 

were not possible to observe by any other method to date. The discovery of the non-

random honey distribution has led us to re-examine how worker bees interact with each 

other within the hive. Future experiments will test for decision making between different 

patriline groups within the same colony and the effects of nectar sugar concentrations on 

honey distribution behaviour in storer bees. The non-invasive aspects of the methods 

will now enable experiments to be conducted on live colonies over time thus observing 

their behaviour in a quasi-natural setting. This will enable the most “real to life” scenario 

for full colony observations ever. It will be feasible to observe honey distribution 

behaviour for the first time, trophallaxis behaviour and nursing behaviour. We will be 

able to track individuals and groups of bees simultaneously and measure hive 

component changes over time. It also envisaged that whole hive treatments such as 

treating the hive with oxalic acid to remove parasitic mites will be monitored by 

MacroCT scanning to observe the distribution of the treatment over time. 
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CHAPTER 6 

Conclusion and Future Research 

_______________________________________________________________________ 

Given the need to develop new methods for the study of insects, the overall aim of my 

thesis was to test the hypotheses that:  

1. MacroCT can be used to non-destructively image behaviour in insect 

colonies; 

2. MicroCT can be used to image the anatomical features of insects; 

3. CT facilitates the study of insect physiology 

The research described in this study was conducted as proof of concept for testing the 

three hypotheses above. 

Thus, the overall objective that X-ray CT would be useful for non-invasive studies in 

entomology was achieved. The research has also advanced our knowledge of bee 

morphology and honeybee behaviour and has provided new research leads. These 

include the possibility of discovering new species, studying physiology in live insects 

non-invasively and developing better management regimes for honeybees. The research 

has also highlighted that it is necessary to explore insect behaviour such as honey 

storage patterns and determine if the honey storage frequency ratios shown have 

significant efficiencies of scale as do other honeybee behaviour optimisation strategies 

such as floral constancy. If they do, then these efficiencies will have important 

evolutionary implications for the long term survival of honeybee colonies and 

beekeepers will be able to select colonies that exhibit these preferred traits. 

This research has shown that X-ray CT has great potential in entomology for studying 

insects (collectively termed: Diagnostic Radioentomology).  It is envisaged that research 

will continue to improve the methods described in this thesis. Discussions with senior 

researchers from the Department of Mathematics at the University of Bath have led to 
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two MSc project proposals on developing sophisticated component differentiation 

algorithms and one PhD project proposal to develop algorithms to compensate for 

motion artefacts in tomography. The MSc projects will apply to real life data sets on live 

beehives and will be beneficial for differentiating and quantifying the various 

components within a beehive e.g. honey, wax, larvae or pollen. The need for greater 

accuracy in measuring these components is increasing (Sur and Stork 2003; Rogers et 

al,. 2007; Cloyd and Bethke 2010) and the MSc projects following on from the work 

carried out in this thesis will help to provide these accuracies. The PhD project will 

apply sophisticated motion correction algorithms to real life beehive tomography 

datasets. It is envisaged that these algorithms will, for the first time, enable bees within a 

live colony to be accurately counted. Although the methods described in Chapter 2 of 

this thesis have already been described as the “GOLD STANDARD” for estimating 

strength parameters of A. mellifera colonies (Delaplane et al. 2013) the improvements 

produced during the proposed PhD project will have the potential to supersede current 

manual estimations. 

The methods described in this chapter have also provided new ways for observing 

internal morphology of insects non-invasively. The tracheal system was explored in the 

locust and butterfly with both volume estimations and metamorphic changes described 

and the malpighian tubes in the ladybird were segmented and imaged in 3-D without 

physical dissection. These techniques have opened up new areas of research such as live 

scanning of “internal” metamorphic changes and organ characterisation in live insects. It 

is envisaged that these methods will be used in developmental experiments where 

individual insects can be scanned daily over several weeks to observe metamorphic 

changes. Other experiments will involve treating individuals with pathogens or 

nutritional variations in diets to observe insect development. In particular, the 

malpighian tubules of ladybird beetles can now be examined in live insects to describe 

their physiological function over time while being exposed to different diet regimes. 

Their HU can now be determined to estimate the types of solid materials that accumulate 

in them. The non-invasive aspects of the new methods will now enable these 

experiments to be conducted on the same individuals over time thus reducing bias errors 

that occur when observing different individuals. 
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The non-invasive aspects of the methods described in this chapter will now enable live 

bee brain experiments to be conducted on the same individuals over time thus reducing 

bias errors that occur when observing different individuals. It is also worth mentioning 

that there are no restrictions from animal ethics committees on using insects for 

scientific research purposes and that once the sensitivity of determining the different 

brain neuropils is increased to that similar to MRI, it will be feasible to conduct live 

brain plasticity volume measurements on individual bees. Although insects are not 

vertebrates, the bee brain contains all the rudimentary functional portions of the 

vertebrate brain which enables comparisons to the corresponding portions of the 

vertebrate brain possible. Therefore, these new methods will enable a whole new area of 

research to into brain function and animal behaviour to develop. The methods also 

described, for the first time, the passage of food from the insect gut to the haemolymph 

in a live insect. Nutritional and pathogen treatments can now observed in live 

individuals on a temporal scale. These experiments will shed light on areas such as how 

nutrition or pathogens affect the immune response in insects.  

The methods described in this chapter have shown features of honeybee behaviour that 

were not possible to observe by any other method to date. The discovery of the non-

random honey distribution has led us to re-examine how worker bees interact with each 

other within the hive. Future experiments will test for decision making between different 

patriline groups within the same colony and the effects of nectar sugar concentrations on 

honey distribution behaviour in storer bees. The non-invasive aspects of the methods 

will now enable experiments to be conducted on live colonies over time thus observing 

their behaviour in a quasi-natural setting. This will enable the most “real to life” scenario 

for full colony observations ever. It will be feasible to observe honey distribution 

behaviour for the first time, trophallaxis behaviour and nursing behaviour. We will be 

able to track individuals and groups of bees simultaneously and measure hive 

component changes over time. It also envisaged that whole hive treatments such as 

treating the hive with oxalic acid to remove parasitic mites will be monitored by 

MacroCT scanning to observe the distribution of the treatment over time. 
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The recent acquisition of a MicroCT scanner in the Department of Mechanical 

Engineering has provided opportunities to further extend the research in this thesis. 

Discussions with research engineers have led to projects to improve tissue differentiation 

in live insect brains. Tomography at the micrometre level on live insect brains requires 

30min to2hours. The long scan time increases the motion artefacts in live specimens. 

Future research will attempt to compensate for these errors. It is also worth mentioning 

that the developments from this research will apply to other fields such as medical and 

veterinary X-ray tomography. Radiologists are continually faced with motion artefacts 

and tissue differentiation limitations while reading patient tomographic images.   

The research described in this thesis has also determined that the sensitivity of the data 

produced from the new imaging techniques requires further engineering developments to 

produce more useful results. The sensitivity of tissue differentiation needs to improve so 

that it becomes comparable to MRI methods. Thus because of the faster speed and 

higher resolution of CT to MRI, it will be a much more powerful tool for entomologists. 

Further developments to make scanners more portable will also enable them to be taken 

to hive sites rather than taking hives to the scanner. Some hospital scanners are already 

portable within ward units however mechanical modifications to wheels and gantries 

would need to be made to enable them to be taken out into the field. Taking scanners 

into the field will provide more flexibility for experimental procedures and also provide 

a more “natural” setting for the observations. This new field of Diagnostic 

Radioentomology brings with it improvements in image quality, image manipulations, 

reduction of potential errors, flexibility in experimental protocols and new methods for 

observing live insects. The benefits this research brings to apicultural practices to 

increase the health and long-term survival of bees plus the benefits to the scientific 

process of observing insects justify continuation of this line of research for the 

development of improved methods for agriculturalists and imaging scientists. 
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SCIENTIFIC 

INVESTIGATION 

SCANNING 

OPTIONS 

EXPECTED IMPLICATIONS MOST APPROPRIATE 

METHOD 

Social Insect Colony 

Behaviour  

Non-invasive Visual 

Inspection 

Good surface and external observations   

 Invasive Visual 

Inspection 

Good external  and internal observations 

however colonies are damaged or 

destroyed during the process 

 

 MRI Good external  and internal resolution 

however scanning times (3hrs) produces 

blurred images 

 

 MacroCT Good external  and internal observations 

and short scanning times (20-30sec) 

produce sharp images 

 

X 

    

Insect Morphology Light Microscopy Good surface resolution however sample 

require dissection for internal observations 

 

 SEM Best surface resolution however the 

sample is destroyed in the process 

 

X 

 MicroMRI Good tissue differentiation however 

resolution is not as fine as MicroCT 

 

 MicroCT High resolution however tissue 

differentiation is not a sensitive as 

MicroMRI 

 

X 

    

Insect Physiology on Live 

Insects 

Light Microscopy Not possible  

 SEM Not possible  

 MicroMRI Not possible  

 MicroCT Can be performed on live insects with 

good image resolution. 

X 

 

Table 1: Options for scanning insects and their colonies, their implications and which 

method is the most appropriate for the scientific investigation being considered.  
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T1 

(30%) 
HU_CAT Counts Ratio Percent 

Expected 

probability 

expected 

counts 
Chi

2
 p 

 C1 10  1 27.027 0.03125 1.156 

128.881 0.0000  C2 18 2 48.649 0.93750 34.688 

 C3 9 1 24.324 0.03125 1.156 

T1 

(50%) 
HU_CAT Counts Ratio Percent 

Expected 

probability 

expected 

counts 
Chi

2
 p 

 C1 9 3 42.857 0.03125 0.656 

226.314 0.0000  C2 3 1 14.286 0.93750 19.688 

 C3 9 3 42.857 0.03125 0.656 

T3 

(70%) 
HU_CAT Counts Ratio Percent 

Expected 

probability 

expected 

counts 
Chi

2
 p 

 C1 130 1 14.908 0.03125 27.250 

9358.977 0.0000  C2 232 2 26.606 0.93750 817.500 

 C3 510 4 58.486 0.03125 27.250 

 

Table 2: Honey storage frequency ratios and χ
2
 test statistic for Treatment 1 (T1), 

Treatment 2 (T2) and Treatment 3 (T3) were (1:2:1), (3:1:3) (1:2:4), and 128.881, 

226.314, 9358.977 respectively. The random theoretical (expected) honey storage 

frequency ratio was (1:30:1). Therefore the storage bees did not distribute honey at 

random. 
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T1 (30%)  Spearman Correlation  HU p KW Statistic p 

  DIST_ υ1 0.1650 0.329 0.321 0.852 

  DIST_ υ2  0.0799 0.638 0.138 0.933  

  DIST_  υ3 -0.1287 0.448 1.291 0.524 

  EUCL_DIST -0.0062 0.971 1.056 0.590 

T2 (50%)  Spearman Correlation  HU p KW Statistic p 

  DIST_ υ1 -0.0494 0.831 1.913 0.384 

  DIST_ υ2  -0.2000 0.385 1.154 0.561 

  DIST_  υ3 -0.1844 0.424 4.502 0.105 

  EUCL_DIST -0.4623 0.035 9.945 0.007 

T3 (70%)  Spearman Correlation  HU p KW Statistic p 

  DIST_ υ1 -0.0611 0.071  4.928 0.085 

  DIST_ υ2  -0.0065 0.848  23.281 0.000 

  DIST_  υ3 -0.0879 0.009  1.148 0.563 

  EUCL_DIST -0.114 0.736  15.958 0.000 

POOLED  Spearman Correlation  HU p KW Statistic p 

  DIST_ υ1 -0.0257 0.434 1.533 0.465 

  DIST_ υ2  0.0052 0.874 20.903 0.000 

  DIST_  υ3 -0.0914 0.0053 3.681 0.159 

  EUCL_DIST -0.0114 0.7284 13.311 0.001 

 

Table 3: Spearman correlations of Hounsfield Units (HU) vs. distance measures 

and Kruskal-Wallis tests on C1, C2, and C3 for T1, T2, T3 and pooled results to 

compare the honey sugar concentrations, as measured in HU from standard curve (Fig. 

3), in cells with distance from brood centre. There were some significant, but very weak, 

correlations between honey sugar concentrations in cells and their distances from the 

brood centre.  
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Appendix 1 

 

 


