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Foreword 

 

The structure of this thesis is designed as to strongly reflect the different studies 

carried out during the course of the PhD. As the reader will soon realise, this is the 

most convenient way of rationalise the work, since it gives the proper weight into the 

two main research areas investigated, each of which is given a distinct part: A and B. 

A general, concise, introductory section is given to initiate the reader to the world 

of photovoltaics with an easy and updated literature review of the current scenario of 

this technology in the global context. Section 1.2 of the introduction will give the 

essential information concerning the role of semiconductors in solar cell devices, 

with focus on thin-film PV, while section 1.3 is devoted to the Photoelectrochemistry 

of semiconductors. A brief outline of the work and aims is given in section 1.4, 

which also acts as a junction between parts A and B of the thesis. 

 

1.1 Current scenario of photovoltaics      9 

1.2 Semiconductors as photovoltaic components     13 

1.3 Photoelectrochemistry of semiconductors     21 

1.4 Project outline and aim of this investigation     24 

 

The choice has been made to write an additional introductory chapter for each of 

the two research aspects dealt within this thesis. These chapters have been placed at 

the beginning of the two main parts devoted to the experimental work and discussion 

(A and B). The aim of these two chapters is to give the reader a more detailed 

description of the two distinct but linked research topics. 

 

Introduction to part A: major debates on the absorber layer formation 31 

Introduction to part B: fundamental matters seeking solutions   151 

 

Each part ends with a concluding section where summaries of the lessons learned 

during the PhD, and outlines of recommendation for future work are given. 

 

Concluding remarks for part A       143 

Concluding remarks for part B       225 
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Abstract 
 

The synthesis of morphologically good thin chalcogenide films via the two-stage 

route is a chemical challenge. The reactivity towards the chalcogen-bearing reactants 

of the different metals within the precursor film is a trade-off between 

thermodynamic driving force and kinetics of binary sulfide formation. 

In this work, CuSbS2 and Cu3BiS3 thin films were produced by conversion of 

stacked and co-electroplated metal precursor layers in the presence of elemental 

sulfur vapour. Ex-situ XRD and SEM/EDS analyses of RTP treated samples were 

employed to study the reaction sequence and create ‘‘Time-Temperature-Reaction’’ 

diagrams for the description of the reaction kinetics. Modified Pilling–Bedworth 

coefficients were introduced for the interpretation of the experimental results. 

The chalcogenizing conditions have a strong influence on the following aspects: 

(1) Extent of intermediate phase segregation and/or crystallite size 

(2) Thermodynamic (de)stabilization at low temperature 

(3) Thermodynamic (de)stabilization at high temperature 

The design of a successful synthetic route needs consideration of all these points, so 

that tailored choices of precursor film configuration and profiles of temperature and 

reactant partial pressure are made. 

The synthesis of single crystals of the system Cu-Zn-Sn-S via the Chemical 

Vapour Transport (CVT) with iodine was investigated. Current knowledge of CVT 

in multinary systems is limited. A computation of the thermochemistry of the system 

was performed with the intent to estimate the risk for compositionally incongruent 

mass transport. 

Experimental studies reveal no meaningful effect of the iodine pressure employed 

on the composition of the CZTS products. However, samples obtained under 

different I2 pressure showed different morphology and had slightly different unit cell 

sizes. 

Longitudinally isothermal treatments were carried out with the intent to form large 

size crystals. Under the investigated conditions, the experiments resulted in the 

formation of crystals with 2D predominance. A possible explanation for this 

phenomenon is proposed, based on considerations of the vessel’s thermal 

conductivity and decomposition/crystallization rate at the steady-state equilibrium. 
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1. Introduction 

1.1 Current scenario of photovoltaics 
 

The economic recovery of the OECD countries from the 2008-2010 recession has, so 

far, been slower than from previous global downturns [5]. Nevertheless, for many 

emerging countries such as China, India and Brazil the growth rates are expected to 

remain very high [6]. The U.S. Energy Information Administration has translated 

these figures into an increase of the global primary power demand from the current 

17 to nearly 26 TW by 2035 [7]. Currently, the main part of this energy demand 

~83% is supplied by fossil fuels, with a share of ~34% from oil, ~26% from coal and 

~21% from natural gas, while approximately 6% is provided by nuclear plants [7]. 

The geopolitical and environmental issues associated to such provision in the long 

term are apparent [8-10]. 

Humankind is ethically committed to find sustainable solutions to ensure that 

future growth will occur in equity and wealth. Every sector of society should 

contribute in order to meet this noble objective. The scientific community cannot feel 

exempted from undertaking all the efforts aimed at discovering and understanding 

Nature. The word Physics comes from the Ancient Greek φύσις for Nature. Nature is 

the best place where solutions can be found and the Physical Sciences give us the 

tools to uncover them. Our duty is to use these tools, so that we can make the most 

intelligent use of the resources that Nature has set aside for us. 

Alexandre-Edmond Bequerel is often referred to as the father of solar cells. His 

experiments published in 1839 [11] are the first documented evidence of the 

interaction between semiconductors and solar radiation. Although indirectly, his 

works constitute the basis for the discovery of the photovoltaic (PV) effect, the 

principle upon which the PV technology is based. In a solar cell device, the energy of 

sunlight is directly converted into electricity due to absorption of photons by 

semiconductors. Electrons are excited in the semiconductor and promoted to higher 

energy states. The subsequent charge separation allows the formation of a voltage, 

and a power can be extracted by letting electrical current pass through external 

circuits (ref. section 1.2). 

Solar photovoltaics (PV) is currently the world’s fastest growing power-generation 

technology [12], although it provides the smallest contribution (after biofuels) to the 

primary energy production (0.2%) [13]. 
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From the PhotoVoltaic Geographical Information System database [14] it can be 

estimated that the land area required to satisfy the global primary energy demand 

with hypothetical solar modules of 14% efficiency installed in remote locations, like 

deserts, where the solar irradiance is higher than 2200 kWh/m2y, corresponds to a 

square of ~ 660 km on each side. Fig. 1 shows how the Earth’s surface would look 

with a hypothetical distribution of solar plants. 

 

 

 

Fig. 1.1.1 Hypothetical distribution on the Earth’s surface of 14% efficient solar 
modules that would be required to supply the current global primary energy demand. 
 

Although projects involving huge remote solar power stations are being considered 

seriously [15], the technological and geopolitical issues that they would create are 

remarkable. With the current systems of electricity distribution, a more scattered 

location of the plants seems more plausible. 

It must be highlighted that, in order to ensure continuity of power from an 

irregular source of energy, the given figure is an underestimate, unless storage 

technology makes substantial progress in the future [16]. 
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The general consensus on PV in 2005 can be summarised by this sentence. “The 

major challenge in PV technology is to strongly reduce the cost/watt of delivered 

solar electricity by a factor of 5-10 to compete with fossil electricity and by a factor 

of 25-50 to compete with primary fossil energy” [17, 18]. There are several different 

PV technologies, but for a detailed treatment the interested reader is referred to more 

comprehensive sources [19].Currently, the PV market is dominated by silicon-based 

technologies, but due to their high purification costs and high material utilization, it 

seems likely that alternative technologies based on so-called “thin films” will receive 

increasing attention in the near future. The chief target of this alternative technology, 

often referred to as II generation, is to reduce the costs by replacing the thick silicon 

wafers with thinner inorganic compound semiconductors that can be deposited using 

less energy-intensive techniques. Progress in this field is bringing down the costs 

considerably, with a steady increase of the module efficiency and improvements of 

the fabrication routes. However, due to the scale effect, the generational overtake 

will be possible only if the efforts directed towards the thin film technology will not 

be dwarfed by those absorbed by silicon. 

We can now define a number that estimates the sustainability for any PV system; 

the most important is called energy payback time (EPBT). EPBT is given by the total 

energy required for fabrication, deployment and recycling of a photovoltaic system 

divided by the yearly primary energy that is saved using the system. In some cases 

EPBT is now set below one year [20, 21]. Nevertheless, it soon becomes clear that 

this scenario still presents real challenges for humankind. 

The two main light-harvesting materials currently employed in thin-film solar cells 

are: CuInxGa1-xSe2 and CdTe [22]. Unfortunately there are serious availability and/or 

toxicity issues related to the extensive use of elements such as In, Ga, Se, Cd and Te 

[23-26]. For example, from a quick calculation it can be demonstrated that if the 

whole economically exploitable world reserves of Te were to be employed for the 

fabrication of 20% efficient CdTe modules (to be placed in locations such as the 

south of Spain where the yearly average insolation is about 2000 kWh m-2 y-2), the so 

obtained energy production would be below 1% of the current primary energy 

demand. Furthermore, at the current rate of Te extraction (5·102 t·y-1), it would take 

about 6500 years for this figure to be reached. It must be highlighted that these 

considerations are based on the world resources reported by the U.S. Geological 

Survey [23]. As such, the potential contributions of urban mining (especially for the 
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case of indium) and other sources currently unexplored (for which data are not 

available) are ignored. 

Clearly, the limitations arising from the scarcity of these resources necessitate a 

careful selection of candidate replacement materials. This selection should be based 

on the principle of sustainability [27]. Such aspects constitute the aim of this work 

and are treated in more detail in section 1.3. 
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1.2 Semiconductors as photovoltaic components 
 

Semiconductors suitable for utilisation as absorber layers in inorganic thin-film solar 

cells are the subject of this research project. As mentioned in section 1.1, the main 

advantage of the second generation PV technology is that, compared to silicon, about 

100 times less material is required to completely absorb the sunlight. This is possible 

because of a substantial difference in the electronic structure of silicon and the 

competitor inorganic compounds, that brings about an evolution with light trapping. 

The electronic properties of non-molecular solid materials are well described by the 

band theory. Let us consider the formation of lattices of solids starting from isolated 

atoms in vacuum; when these atoms come close, their atomic orbitals start to interact 

in a similar way as in the Linear Combination of Atomic Orbitals, the model that is 

used explain the formation and stability of molecules. The only difference is in the 

number of these interactions. Due to the formation of a semi-infinite three-

dimensional arrays of atoms, a huge number of interactions take place and 

consequently the electronic states in the new “lattice orbitals” are no longer separated 

by energy gaps, as in the molecular orbitals but form a continuum of energy [28]. 

Filled bonding orbitals form valence bands while empty antibonding orbitals form 

conduction bands. These bands are energetically separated by a region of forbidden 

states called the energy band-gap with magnitude Eg. Silicon is a so-called indirect 

band-gap material; electrons can be excited from its valence band to its conduction 

band only if absorption of a suitable photon is accompanied by the absorption of a 

phonon. In direct band-gap semiconductors there is no such requirement, and 

absorption of photons with energy exceeding the band-gap results in the excitation of 

electrons. In these materials the oscillator strength of the optical transition is much 

higher. For example the absorption coefficients of Si (indirect band-gap) and 

CdTe/CIGS (direct band-gaps) are approximately 102 and 104 cm-1 near the 

respective band edges. This translates into a much different thickness required for 

harvesting e.g. 90% of the radiation in the two cases: ~ 230 µm for Si and 2.3 µm for 

CdTe and CIGS, respectively. 

Electrons in the CB and holes in the VB can also be introduced artificially by 

doping the semiconductor respectively with donors or acceptors. In intrinsic 

semiconductors, like pure silicon, positive-type (p-type) character can be obtained by 

replacing some of the group IV atoms with atoms of the group III, while negative-
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type (n-type) are obtained with atoms of the group V instead. However, compounds 

semiconductors such as CdS, CdTe and CuInxGa1-xSe2 exhibit naturally occurring 

extrinsic properties, i.e. there are defects such as vacancies, interstitials and/or 

antisites that correspond to the formation of donors or acceptors. Acceptors in the 

lattice of an intrinsic semiconductor create isolated empty energy states just above 

the valence band maximum (VBM); electrons from the VB are thermally excited to 

these states and immobilized, leaving behind an equal number of mobile electron 

vacancies (holes) in the VB. In a similar way, donors create isolated filled energy 

states just below the conduction band minimum (CBM); these electrons are thermally 

excited to the CB, leaving behind them an equal number of ionized donors. 

Electrons are fermions, i.e. particles with a non-integral spin quantum number that 

follow the Fermi-Dirac statistics. The occupation of the states satisfies the Pauli 

exclusion principle for which only one particle can occupy the same quantum state. 

The Fermi-Dirac distribution (F(E)) that minimizes the free energy of the system is a 

function of the absolute temperature T and of the band-gap energy (Eq. 1.2.1). 

 

Eq. 1.2.1 fe(εe)= 1/(exp((εe-εf)/kBT)+1) 

 

where kB is the Boltzmann constant, εe is the electron energy and εf is the Fermi 

energy, defined as the energy at which the probability to find an electron is 50%. 

The density of free electrons in n-type, and of free holes in p-type semiconductors 

ne,h is given by Eq. 1.2.2. 

 

Eq. 1.2.2 ne,h = NC,V ·  fe(εe) 

 

where NC,V  are constants called effective densities of states in conduction and 

valence bands. According to Eq. 1.2.2, the electron and hole densities vary 

exponentially with the position of the Fermi level in the band-gap. The position of 

the Fermi level depends on the doping density and for a p-type semiconductor with 

shallow acceptors is given by Eq. 1.2.3. 

 

Eq. 1.2.3 εf  ~ εV – kBT · ln(NV·/nh) 

 

where εV is the energy level of the valence band maximum. 
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Holes in p-type and electrons in n-type semiconductors are called majority 

carriers, because they are free to move due to the fact that they lie in energetic bands 

with continuum of energy, where free energy states are available. 

The energy distribution of electrons and holes in a semiconductor can always be 

expressed by two separate functions. The concept of quasi-Fermi energy is 

particularly convenient for the description of the semiconductors physics under 

illumination. Upon irradiation, carrier densities are greater than in the dark. 

Therefore, the Fermi energies of electrons (εfC) and holes (εfV) diverge and are closer 

respectively to the conduction (εC) and valence band (εV) than in the dark. This 

situation is exemplified considering the electron and hole density functions described 

by Eq. 1.2.4 and 1.2.5. 

 

Eq. 1.2.4 ne = NC ·  exp(-(εC-εfC)/kBT) 

 

Eq. 1.2.5 ne = NV ·  exp(-(εfV-εV)/kBT) 

 

As in any other system, the total energy of electrons (and holes) in a semiconductor 

can be expressed by a sum of terms. As far as we are concerned, this sum for 

electrons corresponds to the expression in Eq. 1.2.6. 

 

Eq. 1.2.6 Ee = TSe – peVe + µeNe + φNe = TSe – peVe + ηeNe 

 

where Ee is the total energy of the electrons, TSe is the entropic energy, peVe is the 

compressional energy, µeNe is the chemical energy and φNe is the electrical energy. 

The term ηe is also known as the electrochemical potential of the electrons. The same 

procedure (Eq. 1.2.6) can be applied to holes, with analogous results. For electrons 

and holes in electrochemical equilibrium, ηe,h is uniform within the device. It can be 

demonstrated [29] that ηe = εfC and ηh = εfV. 

When p and n-type semiconductors are joined together a p-n junction is formed. 

This is the core of solar cells. At the interface between the two solids in the dark, the 

free electrons in the n side are tempted to diffuse towards the p side, in order to fill 

the holes in the VB, and by doing so they leave behind an equal number of fixed 

positive charges. Similarly the holes tend to flow from the p to the n side, leaving an 

equal number of fixed negative charges in the p-type semiconductor. This process 

terminates when equilibrium between the internal electric field and the chemical 
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potential of electrons and holes is reached, i.e. when the electrochemical potential of 

electrons and holes is uniform across the junction. In such conditions the gradient of 

the electrical energy is compensated by the gradient of the chemical energy. 

Therefore, the Fermi energy of electrons and holes is equal in the two sides of the 

junction, electrons and holes do not experience any forces and their random motion 

does not provide any net current flow. The creation of a space charge region results 

in the formation of a band bending, as illustrated by Fig. 1.2.1a. 

Thin-film PV is based on p-n heterojunctions, where the p and the n-type materials 

are not based on the same (differently doped) semiconductor as in the Si based 

devices, but are distinct semiconductors, e.g. p-type CdTe and n-type CdS. 

When light shines on a p-n junction, photons with energy higher than the band-gap 

energy of the semiconductors are absorbed and electron-hole pairs are generated on 

both sides of the junction. This creates a gradient of the quasi-Fermi levels of 

electrons and holes across the junction, as shown in Fig. 1.2.1b. The excited 

electrons from the p side and the holes from the n side diffuse towards the junction 

driven by the gradient of electrochemical potential. Under illumination, carriers with 

opposite charge are separated and a voltage is observed. 

 

 

 
Fig. 1.2.1 p-n junction under dark (a) and under illumination (b) [29]. 
 

If the two sides of the junction are connected with an external circuit, an electrical 

current will flow (conventionally from the n to the p side). This current can deliver a 

free energy equal to the energy difference between the quasi-Fermi levels on the two 

sides of the junction per electron-hole pair. 
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Depending on the load applied to the circuit, the measured current will pass from a 

maximum (in closed circuit conditions) to zero. The so-called JV curve shown in Fig. 

1.2.2, illustrates the electrical behaviour of an ideal p-n junction in the dark and 

under illumination. 

 

 

 

Fig. 1.2.2 J-V characteristics of an ideal p-n junction in the dark and under 
illumination. The dotted line represents the product J·V with its minimum 
corresponding to the maximum power (a). Equivalent electrical circuit (b). 
 

In order to analyse the properties of a solar cell, an equivalent circuit made of 

standard electronic components can be drawn and used as a model (Fig. 1.2.2b) [30]. 

A range of fundamental properties of the solar cell can be obtained from the analysis 

of its JV curve. Let us have a look at the equivalent circuit. A simple current 

generator represents the photoactive material which provides the photocurrent 

density JL, an ideal diode represents the rectifying junction, while an external load is 

added representing a generic power user. The output current density J is given by the 

difference between the photocurrent of the cell under illumination and in the dark, JL 

and JD. The dark current density flowing through a diode is given by Eq. 1.2.1. 

 

Eq. 1.2.7 JD= J0 [e
qV/kT-1] 

 

where V is the voltage, q the electron charge, T the absolute temperature, kB the 

Boltzmann constant and J0 the diode saturation current. Eq. 1.2.7 shows that the 
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current flowing through a p-n junction is rectified on the forward bias direction. The 

photocurrent density JL is given by Eq. 1.2.8. 

 

Eq. 1.2.8 JL= Nq 

 

where N is the number of photogenerated electrons per unit of illuminated area and q 

is the electronic charge. The output current density is given by Eq. 1.2.9. 

 

Eq. 1.2.9 J= Nq -J0 [e
qV/nkT-1] 

 

At short circuit conditions the voltage is zero (VSC= 0) and JSC = JL. The short-circuit 

current density is controlled only by the current generation and it is the highest 

obtainable from the device. At open circuit conditions (i.e. R= ∞) the output current 

density is zero (JOC= 0); we can then calculate the voltage VOC (Eq. 1.2.10). 

 

Eq. 1.2.10 VOC= kT/q ln(JL/J0 + 1) 

 

This is the highest voltage obtainable from the device. J0 is proportional to the 

electron-hole recombination rate, thus VOC is also a measure of the recombination of 

the device. 

The power density produced by the device is given by the product JV. This 

product is zero both in short and open circuits conditions (dotted line in Fig. 1.2.2a). 

The maximum electrical power produced by a solar cell occurs when the absolute 

product J·V is maximised (Fig. 1.2.2a). We can now introduce a parameter called Fill 

Factor, defined as the ratio between the areas depicted in Fig. 1.2.2a (Eq. 1.2.11). 

 

Eq. 1.2.11 ff= JMaxVMax/JSCVOC  

 

where JMax and VMax are the current density and voltage values at the maximum 

power point, so that PMax= ff·JSCVOC. 

The efficiency η of a solar cell is defined as the ratio between the maximum output 

power of the cell (under AM1.5 radiation at 25 °C, see Appendix 1) and the power of 

the incident radiation (Eq. 1.2.12). 

 

Eq. 1.2.12 η%= 100·(PMax/P) = 100·(ff·JSCVOC/P) 
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In single-junction solar cells, electrons excited by photons with energy greater than 

Eg rapidly lose the excess energy by thermalization (phonon emission). Furthermore, 

photons with energy smaller than the band-gap will not be capable of generating any 

photocurrent, due to the absence of energetic states within the band-gap region. The 

balance of these two aspects is included in treatments reported by Loferski [31] and 

Shockley and Queisser [32], and it is shown in Fig. 1.2.3. 

 

 

 

Fig. 1.2.3 Detailed balance efficiency limit for a single-junction solar cell with 
reported band-gaps of c-Si, CdTe, CuInSe2-CuGaSe2, CZTS, CdS and ZnO [27]. 
(N.B. there is no relationship between the y-axis and the band-gap values of the 
semiconductors reported). 
 

The detailed balance limit in Fig. 1.2.3 was calculated for single-junction solar cells 

based on the AM1.5 solar radiation (the solar radiation attenuated by the Earth’s 

atmosphere corresponding to the solar zenith angle of 48.2 °, 1.5 times the thickness 

of the Earth’s atmosphere normally to the Sun). Details on how this calculation is 

performed are given in Appendix 1. 

Multijunction solar cells are able to exceed the limit in Fig. 1.2.3 by converting 

different regions of the solar spectrum with a junction tuned to that region. 
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Fig. 1.2.4 History of the worldwide best research solar cell conversion efficiencies 
for various photovoltaic technologies [18, 33]. 
 

Research is also progressing to overcome the efficiency limits imposed by 

thermalization. The so-called third generation solar cells are based on principles 

such as: intermediate-band structures, thermo-photovoltaic conversion, conversion 

with hot carriers and multiple electron-hole pair generation. The interested reader is 

referred to the extensive literature [16, 29]. 
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1.3 Photoelectrochemistry of semiconductors 
 

Redox couples dissolved in liquid solutions are able to create rectifying junctions 

with semiconductors by creation of semiconductor-electrolyte contacts, similarly to 

solid state p-n junctions. 

The electrochemical reduction potential E of electrons in a redox electrolyte is 

given by the Nernst equation (Eq. 1.3.1). 

 

Eq. 1.3.1 E = E° + RT/nF· ln(aox/ared) 

 

where E° is the standard half-cell reduction potential, n the number of electrons 

exchanged in the redox reaction, F is the Faraday constant (~96485 C·mol-1) and 

aox,red are the activities of oxidised and reduced species of the redox couple in the 

electrolyte solution. 

The standard hydrogen electron scale (SHE) is conventionally employed in 

electrochemistry to measure and compare the relative reduction potentials of redox 

couples in aqueous solutions. In order to relate electron energy levels in solids and 

electrolytes on a common basis, the potential of SHE was estimated on the absolute 

vacuum scale (Fig. 1.3.1c) [34]. This allows the Fermi levels of redox species to be 

defined on the same scale as the Fermi levels in semiconductors. 

 

 
 
Fig. 1.3.1 Energy levels in a semiconductor (a) and a redox electrolyte (b) (modified 
from [35]) shown on a common vacuum / standard reduction potential scale (c) 
(arrows pointing to more positive values) [34]. Ø and χ are the semiconductor work 
function and electron affinity, respectively. 
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When semiconductors are immersed in electrolyte solutions (Fig. 1.3.2a), electron 

transfer takes place at the junction until equilibration of the Fermi levels is achieved. 

Similarly to the p-n junction, band bending occurs within the semiconductor phase 

(Fig. 1.3.2b); while a corresponding Helmholtz layer is produced on the electrolyte 

side of the junction. 

 

 
Fig. 1.3.2 Semiconductor-redox electrolyte energy levels before (a) and after (b) 
formation of the junction by immersion [35]. 
 

Provided that no electrochemical reactions involving the semiconductor occur, the 

extent of the band bending is controlled by the potential applied to the semiconductor 

electrode. When the band bending exceeds kBT, the width W of the space charge 

region is given by Eq. 1.3.2 [36]. 

 

Eq. 1.3.2 W = [2εε0(EFB-E)/(eNa,d)]
1/2 

 

where E is the applied potential, EFB is the flat-band potential (i.e. the potential at 

which the semiconductor energy bands are not bent), ε is the relative permittivity of 

the material, ε0 is the vacuum permittivity, e is the elementary charge and Na,d is the 

acceptor or donor (doping) density for p and n-type semiconductors respectively. 

In the absence of recombination in the space charge region or at the semiconductor 

/ electrolyte interface, the external photocurrent quantum efficiency Φ (EQE), also 

known as the incident photon to current efficiency (IPCE) is given by the Gärtner 

equation (Eq. 1.3.3) [37, 38]. 

 

Eq. 1.3.3 Φ = 1- [exp(-αW) / (1 + αLe,h)] 
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where α is the optical absorption coefficient of the material, W is the width of the 

space charge region and Le,h is the minority carrier diffusion length (electrons for p 

and holes for n-type semiconductors). 

When defects act as recombination centres by trapping minority and majority 

carriers, the EQE is lower than predicted by Eq. 1.3.3. Under such circumstances, the 

minority carrier diffusion length, Le,h, is negligibly small (i.e. αLe,h << 1) and Eq. 

1.3.3 reduces to Eq. 1.3.4 [39]. 

 

Eq. 1.3.4 Φ = 1- exp(-αW) 

 

The dependence of the absorption coefficient of semiconductors on the photon 

energy and band-gap value is given by Eq. 1.3.5 [40]. 

 

Eq. 1.3.5 α·hυ = A(E-Eg)n 

 

where n is an integer number that depends on the nature of band-gap and optical 

transition: respectively 1/2, 3/2, 2 and 3 for direct, direct forbidden, indirect and 

indirect forbidden. 

The band-gap values of semiconductors may be conveniently estimated from the 

EQE data measured near the onset region of absorption [38]. By combination of Eqs. 

1.3.4 and 1.3.5, plots of [hυ·ln(1-Φ)]1/n versus the incident photon energy hυ should 

give straight lines which intercepts on the x-axis are the band-gap values (Eq. 1.3.6). 

 

Eq. 1.3.6 [-hυ·ln(1-Φ)/(WA)]1/n = E-Eg 

 

Similarly to the band-gap, the doping density of semiconductors can be extracted 

from the EQE data. Combination of Eqs. 1.3.2 and 1.3.4 gives Eq. 1.3.7 [41]. 

 

Eq. 1.3.7 [ln(1-Φ)]2 = 2α2 εε0(EFB-E)/(eNa,d) 

 

The acceptor or donor density of the semiconductor can be extracted from the slope 

of the lines if the values of the flat-band potential EFB, the relative permittivity ε and 

the optical absorption coefficient of the semiconductor are known. 
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1.4 Project outline and aim of this work 
 

Section 1.1 showed that the current thin-film solar cells have achieved very good 

results in terms of efficiencies [42], energy pay-back time and cost/watt, such that we 

can expect a market overtake over the silicon technology in the foreseeable future. 

However, it was also highlighted that, due to the scarcity of appropriate minerals, 

these technologies will only give a very limited contribution to the primary energy 

demand. Therefore, the need of finding sustainable candidate materials to replace 

CI(G)S and CdTe is urgent [27]. 

The current availability and cost of some of the elements relevant to this research, 

as reported by the U.S. Geological survey, are shown in Fig. 1.4.1. 

 

 
 

Fig. 1.4.1 Availability on the upper continental Earth’s crust and costs of some 
elements relevant to this research on a double logarithmic scale [23, 27, 43]. 
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An approach that is often followed when it comes to finding alternative materials 

is the principle of isoelectronic or cross substitution [44]. Application of this 

approach to the diamond structure of silicon gives rise to the so-called adamantine 

family of compounds [45]. Let us show an example of genealogy: starting with 

silicon as the “ancestor” (group IV), we pass through GaAs (III-V) and CdTe (II-VI), 

to CuInSe2 (I-III-VI2) up to Cu2ZnSnS4 (I2-II-IV-VI4) with virtually no change in the 

average outer shell electron density. It is not by chance that the first two 

“descendents” of silicon show semiconductor properties that are suitable for 

photovoltaic applications. The hope is that the third “progeny” of silicon, i.e. 

Cu2ZnSnS4 (CZTS) or a sulfoselenide solid solution of it, will also show properties 

that will make it a viable candidate to replace CIGS in thin-film solar cells. In fact, 

CZTS contains mainly Earth-abundant (Fig. 1.4.1) and environmentally benign 

elements, and its potential application in this field would be of great benefit [38]. A 

recent review of the progress on research into CZTS as a PV absorber has been 

reported by Wang [46]. 

The suitable properties of CZTS as a potential absorber material for heterojunction 

thin-film solar cells were first reported by Ito et al. in 1988 [47]. CZTS has p-type 

character, a high absorption coefficient and a band-gap energy of about 1.5 eV that 

fulfils the requirements for the efficient harvesting of solar radiation (Fig. 1.2.3) [32]. 

Ito’s work was continued a decade later by Nakayama et al. [48], Katagiri et al. [49] 

and Friedlmeier et al. [50], when the first devices with a maximum measured 

efficiency of 2.3% were reported. Since then, there has been a steady improvement 

of the cell efficiencies, resulting from research into a wide range of deposition 

techniques and conditions [51-57]. The current world record is 10.1%, for a cell with 

a mixed sulfoselenide obtained via a hydrazine-based solution process [58]. This 

result highlights the great potential of CZTS(Se) as an alternative material for thin-

film technology. 

CZTS occurs in nature as the mineral Kesterite [59]. Although most of the 

research on this material is focused on its thin-film properties, there are fundamental 

aspects that can better be assessed using bulk material or single crystals. These 

fundamental properties include: crystal [59-71], electronic and defect structures [72-

74], phonon frequencies and line widths of Raman active modes [75], extension of 

the compositional homogeneity range [76]. 

Synthesis of single crystalline CZTS samples was one of the aims of this research, 

and the method employed was the Chemical Vapour Transport (CVT) with iodine. 
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Compositional, structural and electronic analyses of the synthesized CZTS samples 

were performed, with the intent to uncovering some of the key fundamental 

properties that still need to be fully understood. Results are reported in part B of this 

thesis. 

There is another class of compounds known as chalcosalts, with general formula 

AxByCz (where A=Cu, Pb, Ag, Fe, Hg, Zn, V; B=As, Sb, Bi, Ge, Sn V; C=S, Se, Te). 

An extensive review by Moëlo et al. [77] of the sulfur members of this complex 

family of inorganic compounds has identified approximately 260 known formulae, 

most of which occur as natural minerals. Among these minerals, in this thesis 

attention was placed on the Cu-Sb-S and Cu-Bi-S systems. Fig. 1.4.2 shows the 

ternary plots of these two systems and the composition of the known binary and 

ternary compounds. 

 

 

 
Fig. 1.4.2 Ternary plots reporting the family of known binary and ternary compounds 
shown by the Cu-Sb-S and Cu-Bi-S systems [78]. 
 

The chalcosalts that were chosen for investigation are: Wittichenite Cu3BiS3 [79], 

Emplectite CuBiS2 [80], Chalcostibite CuSbS2 [81] and the isostructural selenide 

CuSbSe2 [82]. The thin-film literature of these compounds is relatively limited. 

Nonetheless, their reported semiconductivity and suitable band-gaps are evidence of 

their promising properties for PV applications [83, 84]. 
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In this work, thin-film syntheses of these compounds with a range of metal 

precursor deposition techniques followed by chalcogenization were performed, with 

the aim of assessing their properties for potential applications in PV devices. 

Fig. 1.4.1 shows that Sb and Bi, despite having availability similar to In, are 

almost two orders of magnitude more abundant than Te, besides being much cheaper 

than both In and Te. The lower cost of Sb and Bi compared to In is a consequence of 

two different aspects. The world demand for In has risen considerably in the last 

decade, due to its extensive use in the production of indium tin oxide (ITO) 

conductive coatings, that find application in flat screens of many consumer products. 

Secondly, In is obtained mostly as a by-product of Zn refinery in sphalerite ores, and 

according to the U.S. Geological Survey [23], its current production rate is about 10 

and 200 times lower than those of Bi and Sb, respectively. These figures suggest that 

these two elements have at least a 10-fold higher commercially exploitation potential 

than In. Therefore, their successful use in PV devices could become of market-driven 

industrial importance, as it is currently the case for Te in CdTe devices. Considering 

hypothetical modules with equivalent efficiency, the estimated potential contribution 

to the primary energy demand would be about 10 times that of CdTe [26]. Due to the 

availability constraints of Bi and Sb, this would correspond to about 10% of current 

energy requirements. 

Chemical elements of strategic importance have been recently considered by the 

British Geological Survey [24] for the creation of a “risk list” in which, besides 

availability, other factors such as location of current production and reserves, and the 

political stability of those locations, are weighed as to provide an index that 

highlights the potential supply disruption. According to this list, Sb and Bi are 

marked at high risk and considered to be even more critical than In, which could call 

the practical importance of this research into question. Nevertheless, it is hoped that 

the scientific significance and consequences of this work will still find some useful 

applications in the research and development of other material systems. 
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Part A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quelli che s'innamoran di pratica sanza scienzia 

son come 'l nocchier ch'entra in navilio senza timone o bussola, 

che mai ha certezza dove si vada. 

 
 
 
 

Leonardo da Vinci 
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Introduction to part A: major debates on absorber 

layer formation 
 

This section introduces the experimental work carried out on CuSbS(Se)2 and 

Cu3BiS3 and, more generally, it highlights the major challenges associated with the 

thin-film synthesis via the two-step route that has been followed in this research. 

This route dates back to the 1980s [85-87] and is based on the deposition of either a 

homogeneous or a stacked metal thin-film containing the elements of interest, 

followed by a thermal treatment performed in a reactive atmosphere of chalcogen or 

chalcogen precursor. Ideally, the thin-film metal precursor incorporates the 

chalcogen during the thermal treatment, and a uniform crystalline film of the desired 

chalcogenide compound is formed. The annealing temperature employed, typically 

ranging between 400 and 600 °C, plays a crucial role in the process. Due to the 

thermal energy made available, activation barriers to diffusion are overcome, and the 

most stable compounds are likely to emerge from the mixtures of possible products. 

The challenging philosophy of the two-step process is to match the good results 

typical of the vacuum-based processes, with lower production costs. This aspect 

becomes very interesting if the precursor deposition is performed with high 

throughput and highly scalable techniques such as electrodeposition [88] or screen 

printing [89]. Electroplating of metal films is a well established industry, thus 

making this procedure a good candidate for large area mass production, although the 

subsequent annealing step required for the semiconductor formation presents some 

technological challenges. In the recent past, successful electroplating routes have 

been reported for CdTe [90, 91] and CIS thin-film PV devices with efficiencies up to 

13.4% [92, 93]. 

Having seen the high efficiency and reliability of CIGS solar cells [42, 94-96] and 

the structural similarity of this compound to CZTS [67], the general attitude in the 

literature has so far tried to achieve the same results by transferring the expertise 

from the former to the latter. Let us first compare the two cases and see what makes 

CIGS such a good-performing semiconductor for thin-film solar cells. 

The relative success of the two-step route for the synthesis of device quality CIGS 

is demonstrated by literature efficiencies up to 16% [97-101]. 

It is known that the best grain size qualities are attained with Cu-rich precursors 

[102-106], possibly due to a liquid phase assisted growth mechanism, and a similar 



 32 

behaviour was also reported for CZTSe [107]. To date, Cu-poor Cu(In,Ga)Se2 (22-24 

at% Cu) has been the key for high CIGSSe device efficiency [108], while Cu-rich 

precursors are preferred for Cu(In,Ga)S2 [52]. Recent findings [109, 110] indicate 

that, due to a widening of the Fermi level splitting, CIS grown under Cu-rich 

conditions shows promise for higher open circuit voltage, but this potential is 

hindered by increased recombination losses at the CdS/CIS interface. Due to CuxSe 

phase separation [111], it is known that the highest achievable Cu/(III) ratio 

corresponds to the stoichiometric composition (CuInSe2), even under Cu-rich growth 

conditions, while deviation up to a few percent towards the In-rich side is tolerated. 

It is common practice to remove the excess CuxSe and CuxS phases that segregate at 

the surface of the CIGS films via selective KCN etching [112, 113]. Cu-poor 

conditions are also preferred for the growth of CZTS [114]. 

The different behaviour of these compounds as a function of the off-stoichiometry 

can be explained on the basis of the intrinsic defects within the bulk of the materials. 

Computational studies are a valuable tool to investigate the defect physics that is the 

source of p-type conductivity and composition-dependent performance variation. 

Density functional theory calculations by Zhang et al. [115] explained the p-type 

conductivity of CuInSe2 on the basis of a shallow acceptor energy level attributed to 

copper vacancy formation. Furthermore, it was shown that partial passivation of 

defects by the formation of ordered defect clusters (ODC) has a benign effect on the 

electrical properties of CIS, because it results in a surface layer with wider band-gap 

that enhances electron-hole separation [116, 117]. 

Similar DFT calculations have been performed on CZTS by Chen et al. [118]. 

Their work points towards CuZn antisite defects as the source of p-type conductivity, 

while ODCs have less beneficial effects on charge separation than for CIS. However, 

in agreement with experimental evidence [114], the growth from Cu-poor and Zn-

rich compositions give the optimal CZTS device performance. The reasons for the 

better performance of selenides compared to the sulfides [119] may be partially 

attributed to effective charge carrier masses smaller in CZTSe and CISe compared to 

CZTS and CIS, according to Persson [120, 121], and to the resulting higher mobility. 

CIGS presents an exceptional tolerance to defects arising from grain boundaries 

[122], surfaces [123] and impurities [124]. Furthermore, conversely to Cu2S solar 

cells [125], Cu ionic mobility represents an advantage rather than a drawback, due to 

its self-healing quality [126]. 
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The preparation of a compact single-phase thin-film compound containing 

four/five elements (Cu, In, Ga, S and Se or Cu, Zn, Sn and S/Se) is unquestionably a 

chemical challenge [127]. However, the role of secondary phase formation during re-

crystallization of CISe electrodeposited films has been reported to be beneficial for 

the enhancement of the crystalline properties [128]. Conversely, the detrimental 

effect of secondary phases in the formation of a compact single-phase CZTS is a well 

known issue [52, 129-132]. In addition, the homogeneity range of CZTS is narrower 

compared to CIS [133, 134], and therefore secondary phase formation is harder to 

avoid. This problem is exacerbated by the two-stage synthesis route, because the 

fourth/fifth element (S, Se) is introduced at a second stage from the gaseous phase. 

As a consequence, the morphology of the CZTS layer depends strongly on the order 

of deposition of the three metal precursor layers and this, in turn, affects the device 

performance as first reported by Araki et al. [135]. Recent findings suggest that grain 

boundaries have the same enhancing effects on the minority carrier collection in 

CZTS and CIGS [136]. Nevertheless, the record efficiency for a CZTS device 

obtained by the electrodeposition sulfurization route is currently 7.3 % [137], which 

is around half of the best values reported for Cu(In,Ga)(S,Se)2 [113, 138, 139]. 

Given the 30+ years of R&D in CIGS, the “copy and paste” exercise transferred to 

CZTS has been of great help at the early stages of CZTS development. However, it is 

becoming increasingly clear that this approach lacks a thorough chemical basis. 

Indeed, a careful examination of the thermodynamic and kinetic aspects of 

chalcogenization is required to successfully adapt its application to CZTS. 

The potential effects of secondary phases on the properties of solar cells are briefly 

highlighted here. Fig. 1A.1 shows a representation of a thin film device in the so-

called substrate configuration, in which the presence of secondary phases in four 

different locations and their effect on the device performance are illustrated 

schematically. An equivalent electric circuit that models the effects of some defects 

is also shown (cfr. section 1.2). Depending on where the secondary phase segregates 

and on its electrical properties, a range of detrimental effects can be expected. In case 

(a) the phase is located between the columnar grains of the absorber material, and, if 

conductive, it decreases the parallel resistance of the equivalent circuit, leading to 

shunting, i.e. to parasitic current paths. An example of this behaviour is given by 

Cu2-xSe and other nanoscopic phases in CIGS devices [140, 141]. In case (b) the 

phase is located at the back contact. If it is insulating it acts as a series resistance in 

the device, as is probably the case for MoS2 at the CZTS/Mo interface [142]. In case 
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(c) the phase is located between the absorber and the window layer, where the 

heterojunction is formed. This is the heart of the solar cell, and a decrease of the 

open circuit voltage and short circuit current are likely to occur due to formation of 

barriers for the charge carriers, as it was shown for ZnS in CZTS devices [143]. In 

case (d) the phase is located in the bulk of the absorber layer. It is possible that these 

defects could act as recombination centres, leading to a decrease of the short circuit 

current density and open circuit voltage [56]. 

 

 

 
Fig. 1.A.1 Schematic representation of four possible secondary phase segregations 
and their effects on the thin-film device performance. Equivalent electric circuit 
employed to model the defects (cfr. section 1.2). Modified from [144, 145]. 
 

As far as the device efficiency is concerned, the ratio Rs/Rp needs to be minimised. 

This can only be achieved if segregation of the detrimental secondary phases is 

reduced [64-67]. 

Secondary phase formation is often unavoidable even in simpler systems such as 

Cu-Sb-S(Se) and Cu-Bi-S, especially if the chalcogen is introduced at a second stage. 

Issues concerning the formation of compact layer morphologies in these two cases 

have been reported [41, 146-148] and are included in chapter 2 and 3. In general the 

sulfurization conditions need to be carefully designed so as to suit the 
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thermodynamic requirements and the kinetics of the elemental systems that concern 

the compound of interest. This lesson constitutes the basis of section 4.3. 

A detailed investigation of the effects of annealing temperature on the crystalline 

properties of CuIn(S,Se)2 thin-films obtained by an electrodeposition/ sulfurization 

route has been reported by Izquierdo-Roca et al. [149]. With increasing temperature, 

they observed sharpening of the Raman spectra that they attributed to the decreasing 

density of crystalline defects. This behaviour was not detectable with conventional 

XRD structural investigation, because of the superior sensitivity of Raman 

spectroscopy to the local ordering in crystal lattices [150]. The achievement of 

single-phase absorber layers with supposedly good crystalline quality is necessary, 

but it may not be enough for high performance devices. These defects act as 

recombination centres in the space charge region of the devices, and are the cause of 

reported reductions of the open circuit voltage [151]. The effect of the sulfurization 

temperature on CIS device performance relates very well to the microcrystalline 

features assessed through Raman scattering [151]. This highlights the second, very 

important effect of the thermal treatment, besides the chalcogen incorporation. 

Device quality semiconductor properties can only be attained if such Raman-visible 

defects are reduced. 

Thermal energy is required to decrease the level of defects arising from the 

chemistry of growth and improve the bulk properties of the absorber layers obtained 

after cooling. At high temperatures, thermodynamic effects dominate, meaning that 

the most stable phases are likely to form, compositional uniformity is achieved, and 

any structural tensions are relieved. As a rule of thumb, the higher the temperature 

the more effective the annealing treatment is. However, limits are imposed by the 

possible occurrence of decomposition reactions and the potentially irreversible 

formation of defects such as chalcogen vacancies [126, 152, 153]. The first of these 

two aspects is of particular interest, because it relates to the partial or complete 

destruction of the absorber compound involving the formation of secondary phases 

that may remain and harm the device properties. Several examples of chalcogenide 

decomposition during synthetic thermal treatments are reported in the literature. The 

most recent has been for the Sn losses in CZTS [154], but similar issues have been 

reported earlier for Sb and Bi during formation of CuSbS2 and Cu3BiS3 respectively 

[146, 155]. An educational review of the key principles that need to be borne in mind 

when annealing multinary compounds has been reported recently [156]. 
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As we will see in section 4.4, knowledge of the potential decomposition reactions 

via thermochemical assessment is a valuable basis for designing the control of the 

annealing processes [157]. The equilibrium thermochemical approach applicable to 

the bulk studies can only be partially transferred to the thin film scenario, where the 

thickness scale is much smaller. In fact, critical thicknesses of the developing 

precursor phases need to be reached before a fourth phase can start growing [158]. 

Furthermore, it is no surprise to find thin-film compounds that would be unstable in 

the bulk form, simply because of the kinetic stabilization gained by the non-

equilibrium deposition processes employed [159]. Nevertheless, knowledge of the 

thermodynamics of the system is important, because it gives a measure of the 

inherent (in)stability of the compound under study. 
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2. Formation of CuSbS2 and CuSbSe2 thin films 
 

In this research work the potential of CuSbS2 and CuSbSe2 as thin-film alternative 

absorber materials to replace CdTe and CuIn(Ga)(S,Se)2 –based photovoltaic devices 

has been assessed. CuSbS2, also known as the mineral Chalcostibite, and its 

isostructural selenide CuSbSe2 belong to the space group 62 (Pnma) and have 

orthorhombic unit cells containing four formula units [160]. Despite the formula 

analogy, the structural parallelism of Chalcopyrite with Chalcostibite is not as strong 

as with Kesterite. In fact, although it has been highlighted that Sb and In have almost 

the same ionic radius [161], CuSb(S,Se)2 and CuInS2 have markedly different crystal 

structures, as can be seen from a comparison of the coordination polyhedra [67, 162]. 

In CuSb(S,Se)2 antimony is coordinated by 5 chalcogen atoms forming square 

pyramidal Sb(S,Se)5 units, while copper shows a classical tetrahedral coordination 

(Fig. 2.0). 

 

 
 
Fig. 2.0 Representation of the unit cell of CuSbS2 showing the coordination 
polyhedra of Cu and Sb. Drawing produced using VESTA [4]. 
 

CuSbS2 appears to be a direct band-gap semiconductor [161]. The band-gap energy 

of CuSbS2 is reported to be between 1.38 eV [160] and 1.5 eV [83], which is close to 

the optimum value required for terrestrial solar energy conversion (1.4 eV) [29, 32]. 

The defect chemistry of CuSbS2 has been explored theoretically by Perniu et al. 

[163] using lattice reactions combined with electroneutrality conditions and 

equilibrium constants for each intrinsic defect formation mechanism. Their study 

suggests that, depending on the defect formation mechanism ionic conduction 

dominates in the case of deviation from molecularity (incorporation of Cu2S or 
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Sb2S3), while mixed electronic-ionic conduction is observed if CuSbS2 deviates from 

stoichiometry. CuSb(S,Se)2 compounds have only partially been explored in the 

literature [82, 85]. At the start of this PhD, very limited information was available on 

CuSbSe2. Zhou et al. [160] estimated the band-gap energy of CuSbSe2 crystals 

obtained from a solvothermal route as 1.05 eV from optical absorption 

measurements. This figure is in accordance with the decreasing trend of band-gap 

energy that is generally expected when one or more elements of a compound are 

replaced with heavier ones [164] (e.g. chalcogen in a generic chalcogenide being 

replaced by an atom further down the group VI). Soliman et al. [82] studied the 

temperature dependence of the p-type electrical conductivity for thin films of both 

CuSbS2 and CuSbSe2, but the range investigated (80-500 K) was too low to draw any 

conclusions concerning the band-gap energies. It is only very recently that an optical 

measurement of this parameter has been reported for thin-films of CuSbSe2 [165], 

and the value of 1.10 eV is in agreement with that reported earlier for the bulk [160]. 

In the literature, thin-films of CuSbS2 have been deposited using a range of 

techniques such as spray pyrolysis [166], direct evaporation [82, 167], and chemical 

bath deposition followed by interdiffusion annealing treatment [83, 168]. However, 

formation of CuSb(S,Se)2 via a simple two-stage process [87], as described in the 

introduction to part A, has never been attempted. Conversion of co-deposited and 

stacked electroplated metal precursors followed by conversion into the chalcogenide 

has proved to give promising results on laboratory scale Cu2ZnSnS4 (CZTS)-based 

devices [55, 56]. Therefore, in this work, a similar procedure was tested for the 

synthesis of CuSb(S,Se)2 thin-films. 

Section 2.1 describes the deposition of Sb/Cu metal precursors both as a 

homogeneous electroplated alloy mixture and as a sequence of stacked evaporated 

layers. A different approach also consisted in the conversion of evaporated CuSbS2 

films into the corresponding selenide Section 2.2 deals with the heat treatment 

performed in the presence of the chalcogen vapour, employed to convert the metals 

or sulfide into polycrystalline thin films of CuSb(S,Se)2. The morphological, 

compositional and structural properties of the films have been analysed, and the 

results are reported in sections 2.3 and 2.4. Section 2.5 is dedicated to the 

photoelectrochemical characterization employed to establish the photoactive 

properties of the absorber layer materials. The essential experimental details are 

reported in section 2.6. Part of this chapter is based on published results [146]. 
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2.1 CuSb(S,Se)2 thin film precursor deposition 
 

2.1.1 Evaporation of Sb, Cu, Sb/Cu and CuSbS2 thin films 

 

A conventional evaporator was employed to carry out sequential evaporation of 

metallic Sb and Cu layers in a stacked configuration, as well as films of plain Sb and 

plain Cu. The substrates employed were either transparent electrically conductive 

fluorine-doped SnO2-coated glass (TEC-8 by Libbey Owens Ford) or soda lime glass 

microscope slides. The stoichiometric Cu:Sb thickness ratio in the stacked 

configuration was ensured by loading calibrated amounts of the metals into the 

crucible. The details are reported in section 2.6. 

Films of the plain elements were deposited with the intent to determine the phase 

evolution of the elemental films separately. This was done in order to discriminate 

the effect of the Sb/Cu interface in the formation of the desired compounds in 

precursor films containing both elements. The absolute amount of precursors was 

adjusted to a thickness of about 1 µm as to allow the growth of 2 µm thick 

chalcogenide layers after conversion completion. 

Thin films of amorphous CuSbS2 were also provided by our colleagues Adel 

Rabhi and Mounir Kanzari from the Ecole Nationale d’Ingénieurs de Tunis. The 

deposition procedure consisted of the thermal evaporation of CuSbS2 powder 

synthesized from the elements in a sealed quartz ampoule, as described elsewhere 

[161]. The evaporation was carried out onto Mo-coated soda lime glass substrates 

kept at room temperature. These films served as the precursors for the chalcogen 

substitution treatment, i.e. the formation of CuSbSe2 or sulfoselenide films via 

selenization of the sulfide. Their Cu:Sb compositional ratio was estimated at the 

SEM/EDS as ~ 0.5, in agreement with previous works [167] and with the reported 

separation of Sb2S3 from the films after annealing up to 200 °C [161]. 

 

2.1.2 Sb-Cu co-electrodeposition 

 

Thin-metal films containing both Sb and Cu were obtained by co-electrodeposition 

from aqueous solutions. The substrate employed was radio-frequency (RF) sputtered 

molybdenum coated soda lime glass prepared by our colleague Guillaume Zoppi 
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from Northumbria University [169]. The electrolytic cell was in the typical three 

electrode configuration. The substrate was held as the working electrode (W.E.) in a 

vertical geometry, the reference electrode (R.E.) employed was Hg/HgO/NaOH 1 M, 

and Pt foil was used as the counter electrode (C.E.). 

Appropriate electrochemical conditions for the 1:1 Cu:Sb “alloy” formation were 

obtained by systematically studying the effect of consecutive Cu2+ or Sb3+ salt 

additions on the composition of the electroplated films. The Cu-Sb phase diagram is 

rather complex with up to 8 between known phases and intermetallic compounds. 

Different phase notations can be found in the literature, and their homogeneity 

compositional ranges are still debated [170-175]. Fig. 2.1.1shows the Cu-Sb phase 

diagram, as reported by Massalski et al. [176]. 

 

 

 
Fig. 2.1.1 Cu-Sb phase diagram as reported by Massalski et al. [176]. (η ~Cu2Sb). 
 

It is obvious from Fig. 2.1.1 that the formation of an alloy with composition Cu:Sb = 

1:1 is impossible under equilibrium conditions. However, it is known that 

electrodeposition allows the formation of metastable structures that may be 

considerably different from those obtained by metallurgical processing [177, 178]. 



 41 

Sometimes large deviations from the equilibrium solubility ranges are achievable, 

allowing plating of amorphous films of the desired composition [179]. 

The theory and status of cathodic electrodeposition of binary alloys and 

compounds have been described by Kröger [180] and Lincot [181] to whom we refer 

for accurate treatments. Brenner [182] has reviewed the work of Raub [183] on the 

co-electrodeposition of Cu-Sb alloys from ammoniacal and cyanide baths. It was 

found that with the cyanide, the whole compositional range from 0 to 100% Cu could 

be obtained by variation of the Cu concentration in the bath, while almost no 

variation was observed with the ammoniacal bath (Cu being far nobler than Sb in 

such conditions). 

In order to avoid the use of cyanide salts, electrodeposition from a friendlier 

complexing agent such as D-sorbitol (C6H8(OH)6)  was developed in this work. The 

procedure is based on an adaptation of the alkaline electrolyte reported by Barbosa et 

al. [184], which was successfully employed by Scragg et al. [38] for the Cu 

deposition of CZTS precursors. In strongly alkaline solutions, D-sorbitol loses two 

protons and forms complexes with the Cu2+ cation, stabilising it and preventing the 

precipitation of cupric oxide CuO. Sb3+ is unstable in water, where it forms the 

trioxide Sb2O3 that slowly dissolves in alkaline solutions to form antimonite SbO2
-. 

Figs. 2.1.2 and 2.1.3 show the electrochemical equilibrium diagrams respectively of 

Cu and Sb in water at 25 °C, as taken from Pourbaix [185]. 

Voltammetry was performed using solutions of Cu, Sb salts and mixtures of the 

two, in order to investigate deposition at the surface of a polished Mo wire working 

electrode. 3 M NaOH and 0.2 M D-sorbitol were employed in all cases. Fig. 2.1.4 

shows the linear sweep voltammetry of a 0.1M CuSO4 (a) and cyclic voltammograms 

of a 0.1M SbCl3 solution (b) and of an equimolar solution of Cu and Sb salts (c). 

By comparison of the Pourbaix diagram of Cu in Fig. 2.1.2 with the corresponding 

onset of cathodic deposition (Fig. 2.1.4 (a)), it can be noticed that the reduction of 

Cu2+ is shifted towards more negative potentials (i.e. the metal becomes less noble). 

This is due to the complexation of the Cu2+ by the anions of D-sorbitol. On the other 

hand, the reduction of SbO2
- (b) occurs in accordance to the Pourbaix diagram in Fig. 

2.1.3, and the plating efficiency is very high. Overall, the two reductions occur 

roughly at the same potential. 
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Fig. 2.1.2 Potential-pH equilibrium diagram for the system Cu-H2O [185] 

 

 

Fig. 2.1.3 Potential-pH equilibrium diagram for the system Sb-H2O [185] 
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Fig. 2.1.4 Voltammetric analyses in unstirred solutions of 0.1M Cu2+ (a), 0.1M SbO2
- 

(b) and an equimolar solution of Cu and Sb salts (c) in 3M NaOH and 0.2M D-
sorbitol on a polished Mo wire working electrode (sweep rate 50 mVs-1). The figure 
shows also the corresponding morphologies of the electroplated layers onto Mo-
coated glass obtained at (a) -0.80, (b) -0.95 and (c) -0.95 V vs SHE with a cut-off of -
0.47 Ccm-2 on the stirred solutions. 
 

However, solutions containing both Cu and Sb salts show a cathodic onset at 

significantly more positive potentials compared to the two cations taken separately, 

Fig. 2.1.4 (c). This is a hint that an “alloy” or a disordered structure containing both 

Cu and Sb is being deposited, and the shift of the cathodic process may be associated 

to the free energy gain of “alloy” formation. Integration of the stripping peak in (c) 

up to -0.3 V vs SHE gives about 40% of the charge involved in the cathodic process. 

Sb is oxidised at a potential close to that observed for pure Sb (b). However, it is not 

sure whether the whole Sb is oxidised up to -0.3 V vs SHE or traces are left in the 

Cu-rich matrix. 
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Fig. 2.1.5 shows a series of cyclic voltammograms with different cathodic limits, 

carried out with the intent of deconvoluting the cathodic current. 

 

 

 

Fig. 2.1.5 Voltammetric analysis of an unstirred equimolar solution of Cu2+ and 
SbO2

- with sequential reversing of the potential. The area of investigated co-
deposition is also marked. 
 

Integration of the anodic peaks of Cu and Sb in Fig. 2.1.5 gives a charge ratio of 

~5:1. However, the elemental ratio determined in cyclic voltammetry is generally not 

the same as that of potentiostatic deposition. Furthermore, it must be highlighted that 

the anodic peak of Cu partially overlaps with that of Mo from the electrode [185]. 

With the vertical geometry employed in this study (section 2.6), the mass flux is 

only ensured by stirring (and not artificially induced, e.g. with a Rotating Disc 

Electrode RDE). The optimum conditions for the deposition of a Cu:Sb 1:1 “alloy” 

were found with a trial and error approach, by varying the relative concentration of 

the Cu and Sb salts. The results of EDS elemental analyses performed on 
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electroplated films obtained potentiostatically between -0.8 and -1.0 V vs SHE are 

shown in Fig. 2.1.6. 

 

 
 
Fig. 2.1.6 Molar fraction of Cu in the electrodeposited films as a function of the 
composition of the electrolytic bath. Films were deposited potentiostatically at -0.8 
(a), -0.9 (b) and -1.0 V vs SHE (c). The isopleth line (d) is indicated for reference. 
 

The concentration of Cu in the electrodeposits decreases with the increase of the 

molar fraction of Sb salt in the electrolytic solution. However, in all cases it lies 

above the isopleth line corresponding to the points where the molar fractions of bath 

and plated film are equal. This might suggest that the deposition of Sb is slower than 

that of Cu, possibly due to a limitation imposed by the kinetics of charge transfer. 

Also it is not clear why the concentration of Cu in the electrodeposits decreases 

between -0.8 and -0.9 and then it rises again at -1.0V vs SHE. This phenomenon 

might be associated with the release of SbH3 (g). 

The optimum conditions for the deposition of a Cu:Sb 1:1 “alloy” were as follows. 

The solution composition was: 3 M NaOH, 0.2 M D-sorbitol, 0.10 M CuSO4 and 

0.15 M SbCl3. Potentiostatic depositions were performed at -1.0 V vs SHE with a 

charge cut-off of 0.471 C in the stirred solution. This charge corresponds to the 

amount required for a 2 µm thick film of CuSbS2 to be obtained after complete 

sulfurization of the Sb-Cu alloy deposited onto 0.25 cm2 substrates (i.e. 5 electrons 

per CuSbS2 formula unit), assuming a 100% electroplating efficiency. 
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Nucleation and growth of electrodeposits depend on the charge transfer process 

occurring at the surface of the working electrode. Therefore, it is obvious that the 

nature of the surface has a strong influence on the morphology and adhesion of the 

film being plated. 

The poor properties that Mo offers as a substrate for electroplating are a well 

known issue [186]. The presence of a surface oxide decreases the “wetting” of the 

electrodeposit (i.e. the contact angle) and prevents direct metal-metal interaction. 

MoO3 is soluble in alkaline solutions, and a treatment in concentrated ammonia 

solution has been suggested for its removal from Mo-coated substrates [187]. 

However, in our case, even the deposition in a highly alkaline solution did not ensure 

a perfect coverage of the alloy with possible preferential 3D as opposed to a 2D 

nucleation. This could be caused by an atomic oxide layer that may remain on the 

Mo surface due the high oxygen affinity of Mo [188]. This issue was overcome with 

the deposition of a very thin Cu layer with the method of Barbosa et al. [184] prior to 

the actual alloy electrodeposition, as reported e.g. for CZTS metal precursor 

electrodeposition [130]. 
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2.2 Chalcogenization of CuSb(S,Se)2 precursors 
 

Several different procedures have been followed in this research to convert metal and 

metal sulfide precursors into the chalcogenide film of interest. They can be divided 

into two main categories: based either on a conventional resistive heating or on the 

Rapid Thermal Processing (RTP). 

Only conventional heating was employed for the formation of CuSb(S,Se)2. This 

choice was made in order to avoid potential contamination of the RTP system by Sb, 

as it will be clear in chapter 4. A wire-wound quartz tubular furnace (Thermo 

Scientific), was adapted for this purpose. The procedure for the conversion of the 

CuSb(S,Se)2 precursors consisted of a heat treatment performed in the presence of an 

excess of elemental sulfur vapour (equivalent to 45 mbar in the tube furnace 

assuming S2 at 298 K) or selenium vapour (equivalent to 2.8 mbar in the tube furnace 

assuming Se2 calculated at 298K, similarly to Cummings et al. [189]). 

The precursors - either co-electroplated or evaporated metals or evaporated 

CuSbS2 films - were loaded in a loose-lid graphite box, together with the chalcogen. 

The box was introduced in the quartz tube of the furnace, the ceramic plugs were 

inserted and the whole system was evacuated and purged several times with nitrogen 

(Fig. 2.2.1). 
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Fig. 2.2.1 Representation of the apparatus employed for the chalcogenization with a 
conventional tubular furnace under N2 flux (a) and under vacuum (b). The built-in 
thermocouple is located outside the quartz tube at the centre. 
 

The heating rate employed was 10 °Cmin-1, and the samples were left at the 

maximum temperature for up to 1 hour, after which they were allowed to cool down 

naturally to room temperature (estimated cooling rate 2 °Cmin-1). 

The Cu-Sb metal films were chalcogenized at 200, 250, 300, 350 and 400 °C, 

under a 10 ml·min-1 flux of nitrogen at atmospheric pressure, with the intent to avoid 

oxygen contamination during the process (Fig. 2.2.1 a). However, the consequent 

chalcogen pressure decrease was not taken into account. The same treatments were 

also adopted for the evaporated films of plain Cu and Sb on soda lime glass. 

The substitution of sulfur with selenium from the CuSbS2 evaporated films was 

investigated at 300, 400 and 500 °C (Fig. 2.2.1 b) under moderate static vacuum (10-3 

bar). The films were also annealed at the same set of temperatures under similar 

conditions but in the absence of chalcogen, in order to differentiate the effect of the 

thermal treatment itself from the effect of chalcogen substitution. 
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2.3 Morphology and composition of CuSb(S,Se)2 thin films 
 

The appearance of the samples after the chalcogenization treatments was as follows. 

Both the stacked (on FTO substrates) and the co-electroplated films (on Mo 

substrates) were dark blue if treated between 200 and 300 °C and grey if treated at 

350 and 400 °C. They were smooth and adherent to the Mo and FTO-coated glass 

substrates. The sulfurized films of evaporated plain Cu (on soda-lime glass) were 

blue-green in colour and adhered poorly to SLG substrates. The sulfurized films of 

plain Sb were grey, smooth and adherent; however, the samples treated at 350 °C or 

at higher temperature revealed some losses (i.e. they became semi-transparent). The 

samples of evaporated CuSbS2 after the selenization treatments looked dull and of a 

light grey colour, while those annealed in absence of chalcogen at 400 and 500 °C 

were darker. 

The samples were analysed morphologically and compositionally. This was 

achieved at a microscopic level with a Jeol 6480LV Scanning Electron Microscope 

operated with an accelerating voltage of 20 KV. The same instrument was connected 

to an INCA x-act Energy Dispersive Spectroscopy microprobe that was employed to 

estimate the Cu:Sb ratio of the metallic precursors and annealed films after 

calibration with a Cu-Sb standard of known composition (produced by melting 

together known amounts of solid Cu and Sb). Fig. 2.3.1 shows the secondary electron 

micrographs of the metal precursor and of the chalcogenised films. 

The cracks and pinholes that can be observed on the electroplated precursor film 

(Fig. 2.3.1a,b) reveal that the adhesion to the underlying Mo substrate is not optimal. 

As discussed in section 2.1, improved adhesion was obtained with the deposition of a 

50 nm thin Cu layer prior to the Cu-Sb alloy. 

The Cu:Sb elemental ratio of the precursor film determined by EDS is 1.3 and, 

although slightly high, it is thought to be suitable for the conversion to CuSb(S,Se)2. 

The samples sulfurized below 350 °C (Fig. 2.3.1c) show a characteristic surface 

covered by idiomorphic crystals that the EDS microprobe identified as stoichiometric 

CuS. Only traces of Sb signal were detected in the EDS spectrum (c). This is 

attributed to the characteristic morphology of the films with the voluminous CuS 

crystals on the surface. These may act as a physical hindrance to the electron beam 

that does not penetrate enough to interact with the lower part of the film. 
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Fig. 2.3.1 Secondary electron images of the electrodeposited Sb-Cu alloy precursor 
untreated (a, b) and after sulfurization at 300 (c) and 400 °C (d) and selenization at 
400 °C (e). The corresponding EDS spectra are also shown. 
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The samples sulfurized at 350 and 400 °C (Fig. 2.3.1d) show a nice compact film, 

with grain size of the order of 1 µm, and a Cu:Sb ratio of 2.6 (d), as determined via 

EDS. This ratio decreased substantially to 0.96 after the samples were etched in a 

KCN solution, which is known to selectively remove Cu-S phases (the reason for 

such a treatment is explained in section 2.5). 

Fig. 2.3.1e shows the morphology of a sample selenized at 400 °C and its EDS 

spectrum, from which a composition consistent with CuSbSe2 can be estimated. 

The SEM/EDS analyses of the evaporated CuSbS2 films after either selenization or 

annealing in absence of chalcogen are shown in Figs. 2.3.2a-c and 2.3.2d-f, 

respectively. The grain size of the films increases with the increase of the 

selenization temperature from 300 (a) to 400 °C (b). The EDS spectra of the samples 

selenized at 300 (a) and 400 °C (b) show that the films do not possess a 

stoichiometric composition, i.e. they are most likely formed by mixture of phases. At 

300 °C, CuSe seems to be formed first and segregate at the surface, while at 400 °C 

the films show predominantly Sb2Se3 rich surfaces (Cu is almost not detected). The 

treatment at 500 °C results in a smoother and more compact film (c) with 

composition much poorer in Sb, approximately consistent with a copper antimony 

sulfoselenide of formula CuSbS0.3Se0.7. 

Annealing of the evaporated CuSbS2 precursors in the absence of chalcogen 

causes a detrimental effect on the morphology of the films (Fig. 2.3.2d-f). The 

samples annealed at 300 °C show the appearance of abundant holes (d), but the 

composition is still consistent with that of the amorphous precursor film (i.e. Cu:Sb = 

0.5). In the samples annealed at 400 and 500 °C, the film structure is completely 

destroyed, and only isolated crystals with euhedral shape and average size of 3 (e) 

and 10 µm (f) can be observed. Their Sb concentration is reduced, and for the sample 

annealed at 500 °C the Cu:Sb ratio is consistent with the formula Cu3SbS3, revealing 

Sb losses. 
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Fig. 2.3.2 Secondary electron images of the evaporated CuSbS2 films after 
selenization at 300 (a), 400 (b) and 500 °C (c), and after annealing in absence of 
chalcogen at 300 (d), 400 (e) and 500 °C (f) and corresponding EDS spectra. 
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2.4 Structural characterization of CuSbS2 thin films 
 

The structural characterization of the thin films in this thesis was carried out by 

means of XRD with conventional Bragg-Brentano geometry. More specifically, the 

samples obtained via sulfurization of the evaporated and co-electroplated Cu-Sb 

metal precursors and via the selenization of the evaporated CuSbS2 films were 

analysed with a Panalytical X'pert X-ray powder diffractometer. Films of the 

sulfurized plain elements were also analysed, with the intent to determine the phase 

evolution of the elemental films separately and investigate the effect of the Sb/Cu 

interface in the formation of the desired compounds (see chapter 4). Fig. 2.4.1 shows 

the XRD spectra of the films of plain Cu, plain Sb and Cu-Sb of the two 

configurations (stacked evaporated and co-electroplated) after sulfurization with 

elemental sulfur in the conventional furnace in the temperature range 200-400 °C. 

The phase composition of the films sulfurized between 200 and 400 °C is also 

summarised in Table 2.4.2 where the Powder Diffraction File (PDF) card number for 

each phase is reported. 

 

 Evaporated Cu Evaporated Sb Evaporated Sb/Cu Co-electroplated Sb-Cu 

200 

°C 

CuS, PDF № 65-3561 Sb, PDF № 35-732 CuS, PDF № 65-3561 

Sb, PDF № 35-732 

CuS, PDF № 65-3561 

250 

°C 

CuS, PDF № 65-3561 Sb, PDF № 35-732 

Sb2S3, PDF № 42-1393 

CuS, PDF № 65-3561 

Sb, PDF № 35-732 

CuS, PDF № 65-3561 

300 

°C 

CuS, PDF № 65-3561 Sb, PDF № 35-732 

Sb2S3, PDF № 42-1393 

CuS, PDF № 65-3561 

Sb, PDF № 35-732 

Sb2S3, PDF № 42-

1393 

CuS, PDF № 65-3561 

Sb, PDF № 35-732 

Sb2S3, PDF № 42-1393 

350 

°C 

CuS, PDF № 75-2236 

(unindexed peaks at 

2θ= 28.9° and 33.1°) 

Sb2S3, PDF № 42-1393 CuSbS2, PDF № 65-

2416 

CuSbS2, PDF № 65-2416 

400 

°C 

CuS, PDF № 75-2236 

(unindexed peaks at 

2θ= 28.9° and 33.1°) 

Sb2S3, PDF № 42-1393 CuSbS2, PDF № 65-

2416 

CuSbS2, PDF № 65-2416 

 

Table 2.4.2 Phase composition of evaporated Sb, Cu, Sb/Cu stacked and co-
electroplated Sb-Cu precursor films after sulfurization treatments at 200, 250, 300, 
350 and 400 °C. 
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Fig. 2.4.1 XRD spectra of evaporated Sb, Cu, Sb/Cu stacked and co-electroplated 
Sb-Cu alloy films sulfurized at 200 (a), 300 (b) and 400 °C (c) for 30 minutes. (To 
assist the reader, the XRD spectrum of the TEC8 FTO substrate is also reported; ● 
labels refer to the peaks of the Mo substrate). 
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The phase composition, as obtained from the XRD analysis, points towards 

equivalence between the co-electroplated/sulfurized samples and the 

evaporated/sulfurized ones. This is also consistent with the visual appearance of the 

samples, as discussed in section 2.3. The main appreciable difference is due to the 

metal precursor employed. The co-electroplated Cu-Sb precursor does not show any 

peak corresponding to antimony below 300 °C, as opposed to the evaporated stacked 

Cu/Sb precursor that shows this phase even at lower temperature, this might be due 

to the presence of a Cu-Sb alloy with poor scattering properties. 

The diffractogram of the evaporated Cu films is a good match to the pattern of 

hexagonal CuS (Covellite), even at sulfurization temperatures as low as 200 °C. This 

suggests that the formation of such a phase is highly favoured under the conditions 

investigated. For treatments at 350 °C or higher temperature, other diffraction peaks 

emerge, revealing some thermally-induced modification (attribution to CuS PDF no. 

75-2236 is an option for a close match, but additional Cu1.8S as low and high 

Digenite may be present [190, 191]). It is worth noticing that no Cu2S was detected. 

The evaporated Sb film sulfurized at 200 °C does not show the presence of the 

corresponding sulfide peaks within the detection limit of the instrument, and it 

possesses highly (00l) preferred orientation, similar to the as-deposited Sb. A 

systematic shift of the diffraction maxima towards higher 2θ relative to the literature 

pattern of Sb is observed. This indicates the presence of uniform compression strains 

of the unit cell along [00l]. Such distortion becomes less significant at higher 

temperatures as the lattice relaxes and leads to a pattern which is close to the 

standard powder pattern of Sb, for thermal treatment of 300 °C. The conversion of 

Sb to Sb2S3 is incomplete below 350 °C (mixtures of the two phases are detected), 

indicating that this element has apparently a lower tendency to form its sulfide, 

compared to Cu. However, the diffraction peaks of the sulfide phase are a good 

match to orthorhombic Sb2S3 (Stibnite). 

Between 200 and 300 °C the X-ray patterns of the Sb/Cu stacked samples are the 

superimposition of the elemental Sb and Cu diffractograms. The ternary phase, 

orthorhombic CuSbS2 (Chalcostibite), starts to appear at 350 °C, and at 400 °C the 

conversion into this stoichiometry is fully attained. A sharp variation of the colour of 

the films was observed from the blue films up to 300 °C to the grey films at 350 and 

400 °C. This observation is consistent with the structural findings. 

No traces of MoS2 were detected by XRD. 



 56 

2.5 Photoelectrochemistry of CuSb(S,Se)2 thin films 
 

The conductivity type and photoactivity of the converted samples were assessed with 

photoelectrochemical techniques using an electrolyte contact. For this purpose, a 

standard three electrode cell was employed with Ag/AgCl reference and a Pt wire 

counter electrodes, as described by Scragg et al. [39]. The electrolyte solution 

contained 0.2 M Eu3+ (pH ~ 3) which acts as a scavenger of photogenerated 

electrons. Photovoltammograms and chronoamperometric measurements were 

carried out under the pulsed illumination from a white LED, while the potential was 

applied and the current recorded by a µ Autolab type III potentiostat. 

External quantum efficiency (EQE) spectra were acquired by illuminating the 

samples with monochromatic light of variable wavelength optically chopped at 27 

Hz. The photocurrent was measured with a lock-in amplifier (Stanford Research 

Systems). The system was calibrated using a calibrated silicon photodiode traceable 

to NBS standards. The EQE setup is schematically depicted in Fig. 2.5.1. 

 

 
 
Fig. 2.5.1 Representation of the electrochemical photocurrent spectroscopy setup 
employed for the estimation of the EQE spectra of the converted films. 
 

Cu-Sb samples that were chalcogenized up to 300 °C did not show any 

photoresponse. Those annealed at 350 °C and 400 °C were slightly photoactive 

showing p-type conductivity, as noticeable from the negative photocurrent response. 

The photoactive samples were then etched in a 5 % weight KCN aqueous solution in 

order to remove the presence on the surface of Cu-S and Cu-Se phases. This is a 
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generally accepted practice for removal of those phases from CIGSSe [112, 113] and 

CZTSSe materials [55, 192, 193]. Chronoamperometric analyses under pulsed white 

light performed on samples etched for increasing time periods revealed that the 

treatment increased considerably the magnitude of the photocurrent. The results are 

shown in Fig. 2.5.2 for measurements performed at -0.5 V vs Ag/AgCl, where the 

photocurrent was maximum. 

If the photoactive samples were left in the KCN solution for 60 seconds or more, 

the improvement of the photoresponse allowed the External Quantum Efficiency 

(EQE) spectra to be acquired. Fig. 2.5.3 shows the EQE of the chalcogenide films 

obtained from co-electroplated and evaporated metal precursors. 

The EQE of the films is low, reaching maxima of just ~8 % and ~20 % at 3 eV for 

the evaporated and for the electroplated sulfurized samples respectively. The unusual 

shape of the IPCE spectrum of the evaporated/sulfurized sample, with the presence 

of a maximum at the photon energy of ~1.65 eV, is likely caused by the presence of 

other phases at the surface of the film. Such phases may absorb the incident light 

with energy higher than ~1.65 eV without contributing to the photocurrent , as was 

also observed by Bryant et al. [194]. Possible secondary phases are Sb2S3 (Stibnite) 

[117, 118] and Cu31S16 (Djurleite) [194], which have band-gaps of about 1.6 and 1.8 

eV respectively. 

The EQE of the selenized sample is very low, with maxima of just 2.5 %, 

consistent with the high recombination rate seen in the photocurrent transients (Fig. 

2.5.2). Fig. 2.5.4 shows the plots generated to estimate the direct band-gap energy 

values for both the evaporated and the electroplated samples chalcogenized at 400 °C 

(see section 1.4 for derivation of such plots). 

Reasonably sharp edges in the range 1.47-1.53 eV are observed for the sulfurized 

samples, while broad edges in the range 1.2-1.3 eV are seen for the selenized ones. 

The result for the sulfide is in good agreement with Rodríguez-Lazcano et al. [83] 

who reported a band-gap energy of 1.52 eV for the CuSbS2 film. Both these values 

fulfil the Shockley-Queisser requirements for efficient harvesting of the solar 

radiation [32]. 

Due to the relatively poor quantum efficiencies it was decided not to incorporate 

these absorber layers into complete devices, because the process of device 

completion required substantial efforts. Efforts were directed to address more 

fundamental questions concerning the chalcogenization process, aimed at 

understanding how to improve the absorber film morphology and performance. 
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Fig. 2.5.2 Chronoamperometric tests in a 0.2 M Eu3+ solution at -0.5 V vs Ag/AgCl 
after KCN etch of increasing time periods under pulsed illumination of a white LED 
of electroplated samples after (a) sulfurization and (b) selenization at 400 °C. The 
negative sign of the photocurrent shows p-type conductivity. The plots are shifted on 
the y axis for graphical purposes. 
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Fig. 2.5.3 EQE spectra of the evaporated Sb/Cu stacked and of the Sb-Cu “alloy” 
electroplated precursors sulfurized (the electroplated/annealed sample was analysed 
after 360 s of KCN etching) (a), and selenized (b) at 400 °C. The spectra were 
acquired in a 0.2 M Eu3+ solution with the samples held at -0.5 V vs Ag/AgCl and a 
light chopping frequency of 27 Hz. 
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Fig. 2.5.4 Plots of [hυ·ln(1-EQE)]2 generated to estimate the band-gap energies for 
stacked evaporated Sb/Cu and alloy electroplated Sb-Cu precursors sulfurized (a) 
and selenized (b) at 400 °C. The analysis assumes that the electronic structure of 
both compounds have direct band-gaps. 
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2.6 Experimental details 

 

The co-electrodeposition of Cu-Sb thin film metal precursors was carried out in an 

electrolytic cell with the capacity of 150 ml with a vertical geometry and a three 

electrodes configuration, as shown in Fig. 2.6.1a. The Mo coated substrate held as 

the working electrode (W.E.) was provided by Northumbria University [169] (RF 

sputtered on microscope slides glass). The reference electrode (R.E.) employed was 

Hg/HgO/NaOH 1 M (Radiometer Analytical). The counter electrode (C.E.) was a 

house-built Pt foil (1 cm2). 

 

 
 
Fig. 2.6.1 Electrolytic cell with vertical geometry and three electrodes configuration 
employed for the co-electrodeposition of Cu-Sb thin film metal precursors (a). µ 
Autolab type III potentiostat employed for the electrodepositions (b). 
 

The solution composition was: 3 M NaOH, 0.2 M D-sorbitol, 0.10 M CuSO4 and 

0.15 M SbCl3 (Sigma Aldrich). Potentiostatic depositions were performed at -1.0 V 

vs SHE with a charge cut-off of 0.471 C in the stirred solution (400 rpm). The Mo 

coated substrates were connected to the W.E. with a crocodile clip and the deposition 

area (0.25 cm2) was delimited using PTFE tape. The potential was applied with a µ 

Autolab type III potentiostat (Fig. 2.6.1b). The substrates were ultrasonically cleaned 

in 5% Decon 90 solution (Decon Laboratories Ltd.) for 15 minutes followed by the 

same treatments first with deionised water and finally with ethanol. 
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The evaporation of Cu and Sb to produce stacked and plain thin metal precursor 

films was carried out with a conventional Edwards evaporator. The substrates 

employed were either transparent electrically conductive fluorine-doped SnO2-coated 

glass (TEC-8 by Libbey Owens Ford) or soda lime glass microscope slides, cleaned 

as described earlier. The stoichiometric Cu:Sb thickness ratio in the stacked 

configuration was ensured by loading calibrated amounts of the metals into the 

crucible, as per Fig. 2.6.2. 

 

 

 

Fig. 2.6.2 Calibration of the Cu and Sb films thickness as functions of the respective 
loads in the tungsten crucible of the evaporator employed in this work. The thickness 
was measured with a Dektak 6M stylus surface profilometer. 
 

Details of the heat treatment experiments performed to study the reaction 

conversions of the Cu-Sb-S-Se precursor films into the chalcogenide layers of 

interest are found in Table 2.6.1. For all experiments in chapter 2 the treatments were 

performed in a wire-wound quartz tubular surface (Thermo Scientific) employing a 

heating rate of 10 °C·min-1 and an uncontrolled cooling step (approximately 2 

°C·min-1). 
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Precursor type(s) Max. temperature Dwell time Chalcogen pressure N2 flux 

evaporated Cu, Sb, Cu-Sb and co-

electroplated Cu-Sb 

200 °C 30 min 45 mbar S2 calculated at 

298K 

10 °C·min-1 

evaporated Cu, Sb, Cu-Sb and co-

electroplated Cu-Sb 

250 °C 30 min 45 mbar S2 calculated at 

298K 

10 °C·min-1 

evaporated Cu, Sb, Cu-Sb and co-

electroplated Cu-Sb 

300 °C 30 min 45 mbar S2 calculated at 

298K 

10 °C·min-1 

evaporated Cu, Sb, Cu-Sb and co-

electroplated Cu-Sb 

350 °C 30 min 45 mbar S2 calculated at 

298K 

10 °C·min-1 

evaporated Cu, Sb, Cu-Sb and co-

electroplated Cu-Sb 

400 °C 30 min 45 mbar S2 calculated at 

298K 

10 °C·min-1 

co-electroplated Cu-Sb 200 °C 30 min 2.8 mbar Se2 calculated at 

298K 

10 °C·min-1 

co-electroplated Cu-Sb 300 °C 30 min 2.8 mbar Se2 calculated at 

298K 

10 °C·min-1 

co-electroplated Cu-Sb 400 °C 30 min 2.8 mbar Se2 calculated at 

298K 

10 °C·min-1 

evaporated CuSbS2 300 °C 60 min 2.8 mbar Se2 calculated at 

298K 

no flux 

evaporated CuSbS2 400 °C 60 min 2.8 mbar Se2 calculated at 

298K 

no flux 

evaporated CuSbS2 500 °C 60 min 2.8 mbar Se2 calculated at 

298K 

no flux 

evaporated CuSbS2 300 °C 60 min 10-3 mbar vacuum (no 

chalcogen) 

no flux 

evaporated CuSbS2 400 °C 60 min 10-3 mbar vacuum (no 

chalcogen) 

no flux 

evaporated CuSbS2 500 °C 60 min 10-3 mbar vacuum (no 

chalcogen) 

no flux 

 

Table 2.6.1 Details of the heating treatments employed for the study of the Cu-Sb-S-
Se chalcogenide layers in chapter 2. 
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3. Formation of Cu3BiS3 and CuBiS2 thin films 
 

As indicated in section 1.3, the Earth’s crust contains much more economically 

exploitable bismuth than indium. The U.S. Geological Survey assessed the 2010 

annual world mine production of Bi as 7600 t, with estimated world reserves of 

320000 t. As a comparison, the annual world production of In relies almost entirely 

on zinc refining and amounts to 574 t, while no estimation of the world reserves is 

yet reported [23]. During 2010, the price for Bi was below 20 U.S. $ kg-1, while In 

had an average price over 500 U.S. $ kg-1. Owing to its low toxicity [195] as well as 

relatively low cost, Bi has been considered in the framework of the COST Action 

531 as a potential candidate for the development of lead-free soldering alloys [196-

199], and some of its compounds are employed in a range of pharmaceutical and 

cosmetic products. 

Similarly to CuSb(S,Se)2, deposition of Cu3BiS3 and CuBiS2 thin films has been 

investigated with the intent to test if their properties make them suitable to replace 

CdTe and CuIn(Ga)(S,Se)2 in photovoltaic devices. As for the Cu-Sb case, the films 

were obtained by sulfurization of the metal precursor. Comparison of the 

sulfurization reactions in the two cases allowed us to draw some important 

conclusions that are presented in chapter 4. 

CuBiS2, also known as the mineral Emplectite, is isostructural with CuSbS2. 

Formation of a complete solid solution between Emplectite and Chalcostibite has 

been reported [200]. Therefore, the same structural considerations presented in 

section 2 apply also for CuBiS2 [80, 162]. To the best of our knowledge, CuBiS2 thin 

films have only been deposited via spray pyrolysis [201] and chemical bath 

deposition [121, 122]. Potential application of this compound in PV devices was 

suggested by Sonawane et al. [202], although the semiconductor was reported to 

possess n-type conductivity. When compared to CuSbS2 and other related ternary 

chalcogenides, this latter feature is thought to be peculiar enough to deserve further 

attention from a computational perspective [203], although no indication of intrinsic 

ionic defects has been reported to date. 

Cu3BiS3 is a naturally occurring sulfosalt named Wittichenite. It crystallises in a 

orthorhombic unit cell (a = 7.723 Å, b = 10.395 Å, c = 6.715 Å) [79, 204] containing 

4 formula units (Fig. 3(I)). Its low temperature polymorph belongs to a low 

symmetry space group (19, P212121). This makes its structure even more different 
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than those of Chalcostibite and Emplectite from the adamantine family of 

compounds that form the basis of most current solar cell technologies. The 

coordination of the Cu atoms is nearly trigonal planar (Fig. 3(II)), while Bi shows a 

particularly unusual trigonal pyramidal geometry with the three closest sulfur atoms, 

as shown in Fig. 3.0(III). 

 

 

 
Fig. 3.0 (I) Orthorombic unit cell of Cu3BiS3, with highlighted coordinations of Cu 
forming trigonal planar CuS3 (II) and distorted square pyramidal BiS5 units (III) by 
the S atoms (yellow). These structures were reproduced using VESTA software [4]. 
 

Makovicky et al. [205] found that Cu3BiS3 undergoes a series of phase transitions, 

starting from 118.5°C, that involve reorganization of the Cu distribution with their 

conversion from a stationary to a mobile state, turning the compound into a solid 

electrolyte at relatively low temperatures. This may be a problem for application in 

pure photovoltaic devices. Application in combined PV-thermal solar devices may be 

necessary to keep the operating temperature low [206]. Its p-type conductivity was 

first considered by Nair et al. [84] as a quality for potential applications in single 

heterojunction thin film solar cells. The optical and electrical properties recently 

reported by Mesa et al. [207] seem to confirm this potential. The material has a direct 

forbidden band gap of 1.4 eV [208] that matches the Shockley-Queisser requirements 

[32]. Nevertheless, the structural peculiarity of Cu3BiS3 makes its adaptation to well-

established solar cell technologies a scientific challenge. 
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Thin films of crystallographically pure Cu3BiS3 have been synthesized by 

annealing diffusion couples of chemical bath deposited Bi2S3 and CuS layers [84] as 

well as chemical bath deposited CuS and thermally evaporated Bi layers [209]. A 

one-step reactive sputter deposition route was developed by Haber et al. [208] for the 

production of Cu3BiS3 films with optical, electrical and morphological properties that 

are ideal for incorporation into devices. A combinatorial strategy for rapid device 

screening was reported to be in progress [76, 136], but no results have been 

published yet. Previous work by the same group [147] on a two-step synthesis 

process using metal and metal sulfide precursors demonstrated complete conversion 

into the phase pure ternary chalcogenide under H2S, but the morphology of the films 

was found to be unsuitable for use in photovoltaics. Best results were achieved with 

co-sputtered precursors at processing temperatures as low as 270 °C, but with very 

long heating times (> 16 h). According to this [147] and to a previous report [155], 

the useful range of processing conditions for the formation of the ternary 

chalcogenide is limited by the volatility of Bi above 300 °C, since treatments at 

higher temperatures resulted in Bi depletetion. 

Following the approach taken previously on the study of the CuSb(S,Se)2 system 

(chapter 2), the present chapter describes the deposition of Cu-Bi metal precursors 

(section 3.1) and their subsequent conversion into Cu3BiS3 (section 3.2.1) and 

CuBiS2 (section 3.2.2) thin films. The morphological, compositional (section 3.3), 

structural (section 3.4) and photoelectrochemical (section 3.5) assessments are also 

reported. The essential experimental details are reported in section 3.6. 

Part of this chapter is based on published results [41]. 

 



 68 

3.1 Cu3BiS3 and CuBiS2 thin film precursor deposition 
 

3.1.1 Evaporation and RF co-sputtering of Bi and Cu-Bi thin films 

 

Films of metallic Bi were vacuum-evaporated onto soda lime glass substrates, 

similarly to the Sb case (section 2.1.1), in order to study the kinetics of phase 

formation during sulfurization. Thin film metal precursors with Cu:Bi elemental ratio 

1:1 were provided by our colleagues Ian Forbes and Pietro Maiello from 

Northumbria University. They were deposited on Mo-coated glass substrates at room 

temperature by RF magnetron sputtering with 5N purity Cu and Bi targets in the 

presence of high purity Ar plasma. Cu and Bi were co-sputtered with the intent to 

produce a thin film precursor for the conversion to a 2 µm thick CuBiS2. 

 

 

3.1.2 Sequential electrodeposition of Cu/Bi/Cu thin films 

 

Sequential electrodeposition of Cu/Bi/Cu layers with an overall Cu:Bi ratio of 3:1 

was carried out by Stefan Schäfer from Enthone GmbH R&D laboratories. The 

commercially available electroplating solutions employed were Cupralyte 1525 and 

adapted Stannostar® SnBi for Cu and Bi respectively. The charge cut-off was 

adjusted as to obtain a precursor thickness of about 1 µm (0.13 µm Cu / 0.26 µm Bi / 

0.13 µm Cu), which after conversion to Cu3BiS3 should correspond to 2 µm. 

 

 

3.1.3 Co-electrodeposition of Cu-Bi thin films 

 

Thin films containing both elemental Cu and Bi were also produced via co-

electrodeposition from aqueous solutions, similarly to the Cu-Sb case (section 2.1). 

The substrate employed was RF-sputtered molybdenum-coated soda lime glass 

provided by Stefan Schäfer from Enthone GmbH R&D laboratories. As for the Cu-

Sb co-electrodeposition, a three electrode configuration was employed, but the 

substrate was held at a rotating disc working electrode (RDE) in order to induce a 

more uniform mass flux (section 3.6). The reference electrode employed was a 
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saturated calomel electrode (SCE), while a large Pt foil facing the rotating substrate 

was used as the counter electrode. 

As seen in Fig. 3.1.1, the Cu-Bi phase diagram shows almost complete 

immiscibility of the two elements in the whole compositional range. 

 

 
 
Fig. 3.1.1 Adapted Bi-Cu equilibrium phase diagram calculated using MTDATA, 
software from the National Physical Laboratory for the calculation of phase 
equilibria from thermodynamic data [2] (original data taken from [3]). 
 

Nevertheless, co-deposition of these two elements in a disordered or highly 

intermixed eutectic-like structure is possible in principle [177]. 

An alkaline electrolytic solution based on the same procedure employed for the Cu-

Sb films [184] was employed. Like Sb3+, Bi3+ is unstable in water, where it forms the 

hydroxide Bi(OH)3. However, this white precipitate was found to slowly dissolve in 

the alkaline solution. 

Figs. 3.1.2 shows the electrochemical equilibrium diagram of Bi in water at 25 °C, 

as taken from Pourbaix [185]. 



 70 

 

 
 
Fig. 3.1.2 Potential-pH equilibrium diagram for the system Bi-H2O [185] 

 

The composition of the solution employed was: 0.030 M CuSO4, 0.010 M Bi(NO3)3, 

2 M NaOH and 0.1 M D-sorbitol. The electrochemistry of the system was 

investigated with voltammetric measurements performed using the 4 cm2 Mo coated 

glass substrates (Fig. 3.1.3). The substrates were connected to the head of the RDE 

through Cu wires and masked off with polyimide tape. 

Fig. 3.1.3 shows the analyses of 0.010 M Bi(NO3)3 (a), 0.030 M CuSO4 (b) and of 

both salts (c) in 2 M NaOH and 0.1 M D-sorbitol aqueous solutions. In agreement 

with the Pourbaix diagram (Fig. 3.1.2), the reduction of BiO2
- alone (Fig. 3.1.3a) 

occurs at about -0.5 V vs SHE, a nobler potential compared to SbO2
-. The reduction 
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of the solution containing both Bi and Cu salts (Fig. 3.1.3c) starts at about -0.3 V vs 

SHE, and saturates roughly at about -0.6 V vs SHE. 

 

 
 
Fig. 3.1.3 Voltammetric measurements at the Mo working electrode of the RDE of 
0.010 M Bi(NO3)3 (a), 0.030 M CuSO4 (b) and both salts (c) in 2 M NaOH and 0.1 
M D-sorbitol aqueous solutions. The measurements were performed with a rotation 
speed of 300 rpm. 
 

The cathodic onset in Fig. 3.1.3c suggests that some uncomplexed Cu2+ is being 

electrodeposited, consistently with the Pourbaix diagram in Fig.2.1.2. Indeed, the 

potential for Cu2+ electrodeposition in the absence of D-sorbitol is very close to the 

electrodeposition potential of BiO2
-. No under potential deposition (UPD) is 

observed. This suggests that Cu and Bi co-deposit without releasing free energy. 

The conditions for the formation of a 3:1 Cu:Bi “alloy” film with suitable 

morphology were found by adjusting the deposition potential maintaining the RDE at 

300 rotations per minute. Fig. 3.1.4 shows composition and morphology of Cu-Bi 

films electrodeposited potentiostatically in the range -0.4 to -0.7 V vs SHE. 
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Fig. 3.1.4 Composition dependence of co-electroplated Cu-Bi films obtained 
potentiostatically in the range -0.4 to -0.7 V vs SHE with corresponding SEM 
morphologies. 
 

Plating at -0.57 V vs SHE gave films with suitable composition and morphology. 

The charge cut-off was set to 2.1 Ccm-2 in order to attain precursors that can be 

converted – after complete sulfurization – into 2 µm thick films of Cu3BiS3 (i.e. 9 

electrons per Cu3BiS3 formula unit). Measurement of the thickness of the converted 

films revealed that this assumption is reasonable (section 3.3). 
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3.2 Sulfurization of Cu-Bi metal precursors 
 

The conversion of the Cu-Bi metal precursors into Cu3BiS3 and CuBiS2 thin films 

has been performed with two distinct approaches. 

 

3.2.1 Sulfurization via Rapid Thermal Processing 

 

An AS-Micro Rapid Thermal Processor (AnnealSys) (RTP) furnace was employed to 

study the sulfurization reaction of the Cu-Bi precursors for the synthesis of Cu3BiS3, 

in the presence of elemental sulfur vapour. The system is depicted in Fig. 3.2.1. 

 

 
 
Fig. 3.2.1 Representation of the RTP apparatus employed for the study of Cu3BiS3 
formation via sulfurization of Cu-Bi metal precursor films. Sample loading (a) and 
processing (b). (N.B. the exhaust valve is kept closed during processing). 
 

The furnace is composed of a quartz cylindrical chamber (capacity of 1500 cm3) that 

can be opened at one end, allowing the loading of sample and chalcogen into a 

graphite box held on a quartz holder. The heating is performed with powerful 

halogen lamps that surround the quartz chamber. A thermocouple connected to the 
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graphite box records the temperature and, according to the latter, the PC-run software 

adjusts automatically the power of the halogen lamps. The high power infrared 

source allows to achieve extremely high heating rates (up to 1200 °C·min-1). A 

forced liquid cooling makes it possible to “quench” the samples with rates up to 600 

°C·min-1 at the first cooling stages [210]. These are the key features of the RTP 

system. As we see in chapter 4, such features enable the investigation of the 

sulfurization kinetics if we assume that samples being quenched at a given 

temperature after a given dwell time are “frozen”, i.e. they preserve the phase 

composition shown at the quenching temperature. 

The system is attached to an Edwards XDS5 oil-free dry scroll pump designed to 

isolate the vacuum environment from all forms of lubricant and to a N2 cylinder, so 

that consecutive vacuum and purge steps can be performed before the treatment in 

order to minimise the presence of oxygen. This makes it possible to perform the 

treatments under vacuum (up to 10-2 mbar) or in the presence of a N2 background 

pressure (up to 1 atm). A detailed modelling of the effect of background pressure on 

the partial pressure of sulfur within the graphite box has been performed by Scragg 

[130]. 

The sulfur partial pressure within the box is not constant during the treatment. This 

is due to the fact that solid sulfur is loaded in the graphite box with a loose lid (along 

with the thin film precursors). Upon heating, the sulfur evaporates and, if its quantity 

is such that the pressure inside the box exceeds the pressure exerted by the lid and by 

the surrounding atmosphere, the lid lifts and pressure equilibration occurs. 

The fraction (Feqm) of sulfur molecules that remains inside the box after equilibration 

is given by equation 3.2.1 [130]. 

 

Eq. 3.2.1 Feqm = [p(N2) + p(S2)·Vb/Vt] / [p(N2) + p(S2)] 

 

where p(S2) is the pressure of S2 (g) that would be reached within the susceptor if this 

was kept sealed, p(N2) is the initial background pressure of nitrogen, Vb is the volume 

of the susceptor and Vt is the total volume of the system. It is clear that in such 

conditions the sulfur partial pressure inside the box in lower than it might be 

expected based solely on the amount of loaded sulfur [211]. More precisely, the 

pressure is a function of the background pressure inside the chamber. 

The modelled partial pressure of sulfur within the graphite susceptor after pressure 

equilibration reported by Scragg [130] is given by Eq. 3.2.2, Fig. 3.2.2. 
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Eq. 3.2.2 p(S2)eqm = p(S2) · Feqm = p(S2) · [p(N2) + p(S2)·Vb/Vt] / [p(N2) + p(S2)] 

 

Two limiting cases were identified. 

When p(N2) << p(S2), the partial pressure of S2(g) is given by Eq. 3.2.3. 

 

Eq. 3.2.3 p(S2)eqm = p(S2)·Vb/Vt = nSRT/Vt 

 

where nS is the number of moles of sulfur loaded in the susceptor, R is the ideal gas 

constant and T is the absolute temperature. 

Figs. 3.2.2a,b show the effect of the background pressure of nitrogen introduced at 

the beginning of the treatment on the percentage of sulfur that remains in the box 

(Eq. 3.2.2) after equilibration and on its partial pressure (Eq. 3.2.3), calculated for a 

typical processing temperature of 500 °C. 

Contrary to the conclusions of Scragg [130], in such conditions the pressure of 

sulfur within the susceptor after equilibration is independent of the susceptor size and 

depends solely on the initial sulfur load, although it is apparent that the sulfur 

pressure gets smaller as the volume of the reactor chamber gets larger. However, as 

the background pressure of inert gas is increased, the smaller the susceptor, the 

higher the inner S2 (g) partial pressure after equilibration (Fig. 3.2.2). 

The other limit case is when p(N2) >> p(S2) (Eq. 3.2.4). 

 

Eq. 3.2.4 p(S2) eqm = p(S2) = nSRT/Vb 

 

In such conditions the fraction of moles escaping from the box tends to zero, so that 

the partial pressure of S2 (g) within the susceptor after equilibration tends to p(S2) 

(equivalent to the sulfur pressure that would be reached if the box was kept sealed). 

This case can be achieved realistically only if the RTP setup is designed to operate at 

high pressure. Since the maximum operating pressure of the RTP chamber is 

approximately 1 bar, this limiting case is not relevant. In fact, with a susceptor size 

of 20 cm3, p(S2) would exceed 2.6 bar with just 0.05 g of sulfur load. 
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Fig. 3.2.2 Effect of the initial background pressure of nitrogen (p(N2)) on the fraction 
of S2 (g) molecules remaining inside the graphite box (a) and on the sulfur pressure 
(p(S2)eqm) (b) after pressure equilibration, calculated for different susceptor sizes 
(expressed as Vb/Vt ratoios) at 500 °C. 
 

The variation of the partial pressure of S2 (g) within the susceptor as a function of 

the initial N2 background pressure for a sulfur load of 0.050 g is shown in Fig. 3.2.3 

for the susceptor geometry employed in this work. 
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Fig. 3.2.3 p(S2)eqm as a function of the p(N2) for a susceptor of 20 cm

3 capacity and 
with an initial load of 0.050 g of sulfur at 500 °C, as per the experimental conditions 
employed. The total pressure and a 10-fold sulfur excess pressure are also indicated. 
 

The dashed line in Fig. 3.2.3 represents the S2 (g) pressure corresponding to a 10-fold 

sulfur excess per cm2 of Cu-Bi metal precursor for the production of 2µm thick 

Cu3BiS3 films. Fig. 3.2.3 highlights that the practical range of the starting 

background pressure of N2 is ~70÷970 mbar. Sulfurization treatments performed 

with pressures lower than ~70 mbar might produce sulfur-poor films, while initial 

pressures higher than ~970 mbar will cause the pressure inside the reactor chamber 

to exceed 1 bar. Therefore, the investigation of the sulfur pressure effect on the 

synthesis of the chalcogenide is inherently limited to the range ~100÷690 mbar of 

S2(g). Wider ranges can only be investigated with RTP systems that support higher 

pressures. 

The treatments were performed in the range 270 to 550 °C with dwell periods in 

the range 5 - 960 minutes and heating rates between 5 and 600 °C·min-1. A static 

background pressure of 700 mbar of nitrogen was maintained during annealing, 

accounting for a nominal pressure of 500 mbar of S2 (g) within the susceptor at the 

early stages of sulfurization (Fig. 3.2.3), slowly decreasing to 33 mbar, once the 

diffusion outside the box is complete. The treatments were adopted also for the 

evaporated films of plain Bi on soda lime glass, similarly to the Sb case (section 2.1). 
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3.2.2 Sulfurization with H2S and S in a conventional tube furnace 

 

Conventional resistive heating with the same wire-wound quartz tubular furnace 

employed for the synthesis of the Cu-Sb chalcogenides, was adapted to produce 

CuBiS2 in the presence of either elemental sulfur vapour or H2S. The treatment was 

performed in a different graphite box, in order to prevent potential Sb contamination 

from the previous experiments. The procedure employed is very similar to the one 

described in section 2.2, but the treatments were performed in moderate vacuum (10-

3 bar), and no nitrogen flux was used. Fig. 3.2.4 shows a schematic representation of 

the sulfurization procedure. 

 

 
 
Fig. 3.2.4 Representation of the setup for H2S sampling (a) and for the sulfurization 
with H2S in the tubular furnace under moderate vacuum (b). The built-in 
thermocouple is located outside the quartz tube at the centre. 
 

H2S was sampled from a lecture bottle into vials of various capacities, allowing a 

minimum overflow through a gas scrubber immersed into a 1:4 solution of NaOH 

plus NaClO (pH > 12) to ensure complete reaction avoiding any hazardous release 

(Fig. 3.2.4a) [212]. The H2S sample was then transferred into the quartz tubular 

furnace where a vacuum of about 10-3 mbar was previously established (after several 

vacuum / N2 purge steps and after insertion of the precursor film) (Fig. 3.2.4b). After 

closing the valve, the system was ready for the H2S treatment. 
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A heating rate of 10 °Cmin-1 was employed for these treatments, and samples were 

left at the maximum temperature between 5 and 180 minutes, after which they were 

allowed to cool down naturally to room temperature (with no control). The effect of 

the partial pressure of H2S on the phase evolution was examined by sampling the gas 

with vials of either 94 or 9.8 cm3 capacity. These correspond to partial pressures of 

116 or 13.5 mbar respectively within the tube furnace (calculated at 298 K). 

The same treatments were also performed with elemental sulfur under virtually the 

same conditions (Fig. 3.2.4b), in order to compare the different behaviour of these 

two sulfurizing reagents for the conversion of the precursor films. The sulfurization 

temperatures investigated were: 300, 400 and 500 °C. 
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3.3 Morphology and composition of Cu-Bi-S thin films 
 

The morphological and compositional analyses of the Cu-Bi-S films were performed 

with a Jeol 6480LV SEM connected to an INCA x-act EDS microprobe. The Cu:Bi 

elemental ratios of the metallic precursors and sulfurized samples were estimated 

with acquisition of the X-Ray spectra obtained with an accelerating voltage of 20 kV. 

The Mα line of Bi and Lα line of Mo are just 0.13 keV apart, but the resolution of the 

microprobe is enough for the two contributions to be discerned quite well with the 

software deconvolutions. Localised EDS analyses averaged over several points 

across the film surface were found to be reasonably consistent (± 2% at. for Bi) with 

those obtained by Flame atomization Atomic Absorption Spectroscopy (FAAS 

AAnalyst 100 – Perkin Elmer) on samples dissolved in concentrated HNO3:HCl 1:1 

solution. Therefore, the EDS method was mainly employed for practical reasons. It 

was not possible to discriminate the contributions of Mo and S from the EDS spectra 

obtained from plane view interrogation, because the energy difference between the 

Mα line of Mo and the Kα line of S is too small (0.015 keV). Discrimination was only 

possible by matching the compositional line scan performed on the cross section of 

the films and the micrograph. The cross sectional preparation was performed 

embedding the samples in carbon-loaded resin with a Bühler moulding unit and 

polishing up to a 0.1 µm alumina finish (Streuers) with a Metaserv rotary polishing 

machine. 

 

3.3.1 Co-electroplated Cu-Bi films 

 

Cu-Bi co-electroplated metal precursor layers with a thickness up to 2 µm could be 

easily deposited, as shown in Fig. 3.3.1. The grains have an even size distribution 

and show a reasonably uniform composition which is slightly Cu poor (Cu:Bi molar 

ratio 2.6±0.2). From the charge cut-off and the thickness of the films, it was inferred 

that the co-deposited films are around 60% less dense than bulk Cu and Bi, 

suggesting the presence of porosity at a nanoscale level that is not detectable with the 

SEM. Such a porosity may arise from H2 evolution during the electroplating step. 

Morphological and compositional uniformity are suitable for the subsequent 

sulfurization treatments. 
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Fig. 3.3.1 SEM cross section (a) and top view (b) of a (Cu3Bi) precursor as-deposited 
at -0.57 V vs SHE with a charge cut-off of -2.1 Ccm-2. The inset shows the EDS 
compositional profile corresponding to Cu Kα (red), Bi Mα (black) and Mo Lα 
(dotted), performed on the same sample embedded in carbon loaded resin [41]. 
 

3.3.2 Cu-Bi films sulfurized with elemental sulfur (RTP) 

 

The co-electroplated and stacked films of Cu-Bi had the same colour after 

sulfurization for 5 minutes with elemental sulfur vapour. The specimens were dark 

blue up to 450 °C and dark/light grey after treatments at 500 and 550 °C respectively. 

However, it was noticed that if the heating rate employed was high (600 °Cmin-1), 

the films obtained from the co-electroplated precursors suffered from poor 

uniformity and adhesion. 

Fig. 3.3.2 shows the SEM/EDS analyses of the Cu-Bi precursor films sulfurized 

with the RTP. Fig 3.3.2a-d and 3.3.2e-h correspond to stacked and co-electroplated 
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precursors respectively. These samples were sulfurized with a heating rate of 600 

°Cmin-1 at 270 (a,e), 350 (b,f), 450 (c,g) and 500 °C (d,h) for 5 minutes (except 

sample f, that was sulfurized for 30 minutes). 

Regardless of the precursor type, samples sulfurized at 270 °C (a,e) show a very 

similar surface morphology comprised evenly of crystals with euhedral features 

identified by the EDS microprobe as CuS (Fig. 3.3.2). This situation resembles 

closely what was found in the Cu-Sb system (section 2.3). 

The morphology of the stacked Cu-Bi precursors sulfurized between 270 and 500 

°C (Fig. 3.3.2b-d) changes gradually, the surface crystals get slightly smaller and 

they assume a rounder shape. The EDS spectrum of sample (d) sulfurized at 500 °C 

shows the presence of Cu and Bi in the ratio 3:1. On the other hand, the co-

electroplated Cu-Bi films sulfurized with high heating rate at temperature higher than 

270 °C (Fig. 3.3.2f-h) show a sharp variation of the morphology. The films are no 

longer microscopically uniform, and the underlying substrate is uncovered over a 

large fraction of the sample area (Fig. 3.3.3). Nevertheless, the average EDS 

spectrum of the grains of sample (h) sulfurized at 500 °C is consistent with the 

composition of the analogous sample obtained from the stacked precursor film (d), 

i.e. Cu:Bi = 2.6±0.2. 

By lowering the heating rate to 5 °Cmin-1 and extending the dwell time to 30 

minutes the morphology of the resulting films was greatly improved (Fig. 3.3.2i,l), 

and also the co-electroplated precursors were converted into uniform sulfide films 

with average grain size of ~1 µm. The composition of such films is very similar to 

that of other films sulfurized at the same temperature but with high heating rate. 

Fig. 3.3.4 shows the cross sectional SEM views of a stacked Cu:Bi 3:1 precursor 

sulfurized at 270 °C (a) and of the co-electroplated film after sulfurization at 500 °C 

with 600 °Cmin-1 (b) and 5 °Cmin-1 heating rates (c). 
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Fig. 3.3.2 SEM analyses of the Cu-Bi stacked (a-d) and co-electroplated (-0.57 V vs 
SHE with a charge cut-off of -2.1 Ccm-2) (e-h) precursor films sulfurized with 
heating rate of 600 °Cmin-1 at 270 (a,e), 350 (b,f), 450 (c,g) and 500 °C (d,h) for 5 
minutes (30 minutes for sample f). Morphology of the stacked (i) and co-
electroplated films (l) sulfurized at 500 °C at a rate of 5 °Cmin-1 with 30 minutes 
plateau. The EDS spectra of samples (a,e), (d,h) and (i,l) are also shown. 
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Fig. 3.3.3 (a) Secondary electron micrograph of a co-electroplated Cu:Bi 3:1 
precursor sample (plated at -0.57 V vs SHE with a charge cut-off of -2.1 Ccm-2) 
sulfurized at 500 °C for 5 minutes (heating rate: 600 °Cmin-1); (b) overlaying of (a) 
with X-ray signals chromatically depicted in the range 2.2÷3.0 keV including Lα, Kα 
and Mα lines of Mo, S and Bi respectively. EDS maps of (a) relative to: Kα line of Cu 
(c), Mα line of Bi (d), Kα line of S (e) and Lα line of Mo (f) [157]. 
 

As seen from the top view images, cross sections of the films sulfurized up to 270 °C 

reveal a relatively homogeneous structure, while the co-electroplated films sulfurized 

rapidly at 500 °C have a very uneven morphology, with thickness ranging from ~ 5 

to 0 µm. However, Fig. 3.3.4c shows that the sulfurization at 500 °C with heating 

rate of 5 °Cmin-1 lead to compact films with homogeneous lateral compositional 

profiles (as assessed with EDS line scan). 
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Fig. 3.3.4 Cross sectional views of the Cu/Bi/Cu stacked precursor sulfurized at 270 
°C for 5 minutes with heating rate of 600 °Cmin-1 (a) and of the co-electroplated film 
(at -0.57 V vs SHE with a charge cut-off of -2.1 Ccm-2) sulfurized at 500 °C for 5 
minutes with heating rate of 600 °Cmin-1 (b) and for 30 minutes with heating rate of 
5 °Cmin-1 (c). The EDS compositional profile in (c) shows the signals of Cu Kα (red), 
Bi Mα (black) and Mo Lα + S Kα (dotted) [41]. 
 

The thickness of the film in Fig. 3.3.4c is ~1.8 µm, revealing that the precursor did 

not undergo appreciable volume expansion during the slow conversion to the 

chalcogenide. A volume expansion of ~94% would be expected, based on the density 

difference between the bulk metals and the ternary chalcogenide. Nevertheless the 

thickness of the converted film is in agreement with the charge cut-off that was set 

during the electrodeposition of the metal precursor. Most probably, this discrepancy 

arises from the low density of the co-electrodeposited film employed as the precursor 

(which was found to be about 60% less dense than a stoichiometric mixture of bulk 

Cu and Bi metals, Fig. 3.3.1). 
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The preparation of nanoporous metal films can follow different routes, such as 

template-assisted [213] and dealloying methods [214-216]. In the present work a 

porous film was obtained serendipitly by co-electrodeposition of Cu and Bi. 

At the time when this work was conducted, the use of porous metal precursor for 

conversion into sulfide films was a novel approach. At the time of writing this thesis, 

the relevant work by Ribeaucourt et al. [217] on the use of dendritic Cu-In-Ga metal 

precursors for the formation of CIGSe solar cells was available in the literature. 

The fact that limited or no apparent volume expansion occurs during the process of 

porous precursors seems to present some morphological advantages. Furthermore, 

the high surface area may have a positive impact on both the gas-solid and solid-

solid state reactions involved in the formation of a multinary sulfide. Such aspects 

are worth of notice and they clearly deserve further studies. 

 

 

3.3.3 Cu-Bi films sulfurized with hydrogen sulfide or sulfur 

 

Morphological and compositional analyses of the thin film samples obtained via 

sulfurization of the Cu:Bi 1:1 sputtered metal precursors with either elemental sulfur 

vapour or hydrogen sulfide are reported in Fig. 3.3.5. Figs. 3.3.5a-c show the 

morphology of the films sulfurized at 400 °C. Sulfurization with elemental sulfur 

vapour gave rise to a film with moderate uniformity and prominent roughness (a), 

while hydrogen sulfide at the same pressure produced films with reduced grain size 

but improved morphology (b). The treatment with reduced pressure of H2S lead to a 

discontinuous film with islands of good morphology and uncovered areas where the 

Mo substrate can be seen (c). The EDS analysis shows a CuS rich surface for (a), 

while the compositions of (b) and (c) are very similar and consistent with a Cu:Bi 

ratio of approximately 1:1, after deconvolution of the Mo and S contriburions. Figs. 

3.3.5d-f correspond to the equivalent treatments at 500 °C. The morphology is worse 

for all cases, compared to the 400 °C treatments, as one may foresee from phase 

separation subsequent to the eutectoid decomposition of CuBiS2 into Cu3BiS3 + 

Cu3Bi5S9 occurring at 475 °C [218]. No phase separation was detected on the cooled 

samples, but the poor morphology may be a consequence of the eutectoid reaction. 



 87 

 

Fig. 3.3.5 Secondary electron images of the sputtered Cu:Bi 1:1 metal precursors 
after sulfurization at 400 (a,b,c) and 500 °C (d,e,f) with 120 mbar S2 (a,d) and with 
120 mbar (b,e) and 14 mbar H2S (c,f) for 30 minutes. The corresponding EDS 
spectra are included. 
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3.4 Structural characterization of Cu-Bi(S) thin films 
 

A Panalytical X'pert X-ray powder diffractometer was employed for the structural 

characterization of the as-deposited and annealed electroplated Cu-Bi films (section 

3.4.1) and of the samples sulfurized with the RTP furnace (section 3.4.2 and 3.4.3). 

 

3.4.1 Structural properties of annealed electroplated Cu-Bi films 

 

The Cu/Bi/Cu precursor shows the presence of elemental Cu and Bi only, with the 

XRD spectrum matching the powder patterns of the elements. 

XRD spectra of the co-electroplated Cu-Bi films as-deposited and annealed (without 

sulfur) at 250 and 500 °C for 5 minutes are shown in Fig. 3.4.1. 

 

 
 
Fig. 3.4.1 XRD spectra of the co-electroplated Cu-Bi precursors as-deposited (at -
0.57 V vs SHE with a charge cut-off of -2.1 Ccm-2) (a) and after thermal treatment at 
250 (b) and 500 °C (c) for 5 minutes (heating rate: 600 °Cmin-1). Standard powder 
patterns for Bi PDF no 44-1246 (black) and Cu PDF no 70-3038 (red) are included 
(● labels refer to the Mo substrate) [41]. 
 

The as-deposited co-electroplated Cu-Bi precursor shows an XRD spectrum typical 

of an amorphous material; very broad peaks are seen at ~ 18, 27, 31, 44 and 59 ° 
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(Fig. 3.4.1a), among which only those at 27 and 44 ° are centred in correspondence 

to Bi and Cu diffractions, while the others do not match the elements’ patterns. Such 

curves might arise from short-range ordered domains [219], whose size and quantity 

are such that only broad and low diffraction peaks are detectable. On a larger scale, 

the Cu and Bi atoms within the film are likely to be randomly distributed. Heat 

treatment at 250 °C for 5 minutes causes the elements in the co-deposit to separate, 

forming distinct Bi and Cu aggregates which give XRD spectra that match 

reasonably well with the corresponding powder patterns (Fig. 3.4.1b). Annealing at 

500 °C for 5 minutes causes the Bi and Cu aggregates to enlarge, as it is shown by 

the sharper XRD peaks (Fig. 3.4.1c). The Bi aggregates exhibit strong (104) 

texturing that may arise from directional crystallisation of Bi caused by the strong 

cooling rate employed. 

 

 

3.4.2 Structural properties of sulfurized evaporated Bi films 

 

In order to relate the formation of the ternary chalcogenide to initial conversion of 

the precursor metals into the corresponding binary sulfides, ex-situ XRD analyses 

were performed on a series of evaporated bismuth films sulfurized for 5 minutes at 

different temperatures between 350 and 550 °C (heating rate: 600 °Cmin-1). The 

analogous treatment on the films of evaporated copper has been discussed for the Cu-

Sb system in section 2.4. The previous work showed that Cu can be fully converted 

to CuS in the presence of elemental sulfur vapour even at temperatures as low as 200 

°C, and it was found that its diffraction pattern was consistent with hexagonal CuS 

(Covellite) [146]. The evaporated Bi samples showed a gradual greyscale variation 

from dark to light as the temperature of the sulfurization treatment was increased. 

The corresponding series of XRD spectra is shown in Fig. 3.4.2. 

The evaporated film of Bi exhibits (00l) preferred orientation (fig. 3.4.2a). This is 

similar to what it was found for the Sb case (Fig. 2.4.1). Sulfurization for 5 minutes 

up to 350 °C causes the Bi to react partially with sulfur, leading to a mixture of 

unreacted Bi and Bi2S3. 
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Fig. 3.4.2 Series of XRD spectra of the evaporated as-deposited films of Bi (a) and 
after sulfurization at 350 (b), 400 (c) and 450 °C (d) for 5 minutes with fast heating 
rate (600 °C·min-1) (initial sulfur pressure 500 mbar). Standard powder patterns for 
Bi PDF no 44-1246 (black) and Bi2S3 PDF no 6-333 (grey) are included [41]. The 
substrate employed is soda-lime glass. 
 

It can be observed from Fig. 3.4.2b that the remaining Bi shows a strong (012) 

preferred orientation as opposed to (001) for the as-deposited Bi, suggesting that the 

element has undergone melting and subsequent directional crystallization. It is 

interesting to note the effect of the different substrate, bare glass or Mo coated glass 

on the directionality of Bi crystallization, (cf. Fig. 3.4.1). 

The sulfurization treatments result in a bismuth sulfide with an XRD spectrum 

matching that of orthorhombic Bi2S3 (Bismuthinite), apart from a systematic peak 

shift towards lower diffraction angles indicative of the presence of expansion strains 

affecting its lattice. This strain does not seem to be appreciably relieved even if the 

film is sulfurized up to 550 °C in the time frame of 5 minutes. Since liquid Bi is 

denser than the solid (in proximity of the melting point) it is probable that Bi2S3 

formed on the surface of liquid Bi is subject to expansion strains when the substrate 

of unreacted Bi expands during solidification. Within the 5 minutes period 

investigated, complete conversion of Bi to Bi2S3 occurs at the temperature of 400 °C 
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(Fig. 2c), when the strong peak at 2θ = 26.9 ° corresponding to the (012) planes of 

rhombohedral Bi is no longer detectable. 

 

3.4.3 Structural properties of sulfurized electroplated Cu-Bi films 

 

Fig. 3.4.3a,b shows the series of XRD spectra of the sulfurized films obtained from 

the stacked (a) and from the co-electroplated (b) ternary compound precursors. The 

standard powder patterns of CuS (Covellite), Bi2S3 (Bismuthinite) and Cu3BiS3 

(Wittichenite) are also shown. 

The structural analysis reveals that sulfurization below 400 °C leads only to the 

binary sulfides, leaving traces of unreacted Bi. For sulfurization at 450 °C, some of 

the peaks related to the ternary chalcogenide start to appear, but the sample still 

shows the coexistence of the binary sulfides. At 500 °C, the conversion of the 

precursors to Cu3BiS3 is complete and the treatment at 550 °C does not seem to alter 

appreciably the structural properties attained at 500 °C. 

Comparison of Fig.3.4.3a and Fig.3.4.3b reveals very little dependence of the 

phase composition of the converted film on the starting precursor configuration. 

Regardless of whether the stacked or homogenous electroplated films are used as 

precursor, the formation of the binary sulfides is observed to occur prior to the 

development of the ternary compound. 5 minute treatments at temperatures above 

450 °C resulted in the formation of single-phase films with XRD pattern matching 

that of Cu3BiS3 (Wittichenite). Our results are remarkably different from those 

reported elsewhere on films sulfurized with hydrogen sulfide. In fact, Haber et al. 

reported that, in order to minimise losses of Bi [155], Cu3BiS3 had to be formed at 

relatively low temperature (270 °C) with a long reaction time (16 hours) in the 

presence of 6.7 mbar of H2S [147]. With the sulfurization conditions used in the 

present work, consisting of an initial sulfur pressure of 500 mbar, up to 16 hours of 

treatment at the same temperature employed by Haber (270 °C) was insufficient to 

form the ternary chalcogenide. Furthermore, no appreciable Bi depletion was 

detected in the films. Even if the treatment was performed at 550 °C for 16 hours, the 

resulting films were still Cu3BiS3 with unaltered lattice parameters. These apparent 

contradictions between Haber’s and our work are discussed in chapter 4. 
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Fig. 3.4.3 Series of XRD spectra of typical Cu/Bi/Cu electroplated stacked (a) and 
Cu3Bi co-electroplated (at -0.57 V vs SHE with a charge cut-off of -2.1 Ccm

-2) (b) 
precursors after sulfurization at temperatures between 350 and 550 °C for 5 minutes 
(heating rate: 600 °C·min-1, initial sulfur pressure 500 mbar). Standard powder 
patterns of the relevant phases: CuS PDF no 65-3561 (red), Bi2S3 PDF no 6-333 
(grey) and Cu3BiS3 PDF no 9-488 (black) (● labels refer to the Mo substrate) [41]. 
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3.5 Photoelectrochemistry of sulfurized Cu:Bi 3:1 films 
 

The samples obtained by sulfurization of the Cu:Bi 3:1 metal precursor films of the 

two configurations were characterised photoelectrochemically in order to ascertain 

their minority carrier type. For this purpose, the same procedures described in section 

2.5 were employed. The samples were immersed in a 0.2 M aqueous solution of 

Eu(NO3)3 and illuminated with a pulsed white LED while running a cyclic 

voltammogram. A cathodic photocurrent response was observed that corresponds to 

the reduction of Eu3+ at the surface of the working electrode, showing that the 

samples are p-type. 

Similarly to the Cu-Sb case (section 2.5 [146]), the effect of etching by immersion 

in a 5% wt. KCN solution was tested, to see if improvement of the photoactive 

properties could be achieved by removal of residual Cu1-xS surface phases. The 

treatment improved the photoactive properties of the films obtained by sulfurization 

of the stacked precursors. However, in contrast to the behaviour seen with CuSbS2, 

etching periods longer than 60 seconds resulted in the sudden and complete 

suppression of photoactivity. The samples obtained by sulfurization of the co-

electroplated precursors were photoactive “as-grown”, and etching even with a more 

dilute solution (0.5% wt. KCN) and even for shorter periods (5 seconds) suppressed 

their photoresponse. 

External Quantum Efficiency (EQE) spectra of the films are illustrated in Fig. 

3.5.1. The photoelectrochemical properties of the films are rather poor, with external 

quantum efficiencies below 12%. Nevertheless, an estimation of the band-gap energy 

of the compound gives approximately ~1.3 - 1.4 eV, which is consistent with the 

values reported in the literature [207, 208]. 

It can be noticed that the onset of the EQE spectra of the samples obtained by 

sulfurization at low heating rate of the co-electroplated precursor (Fig. 3.5.1b) is 

sharper than the one of the stacked precursor (Fig. 3.5.1c). The latter was measured 

after 60 seconds etching, because the photoactive signal of the as-grown film was not 

detectable. The shape of the EQE spectra of the sulfurized co-electroplated films is 

similar, although the data corresponding to the sample heated with a rate of 600 °C 

min-1 has been multiplied by a factor of 5 for sake of comparison (note the lower 

signal to noise ratio). This difference in the magnitude is attributed to the poor 
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morphology of the co-electroplated films sulfurized with heating rate of 600 °Cmin-1, 

as it is apparent from Figs. 3.3.2 and 3.3.3. 

 

 

 

Fig. 3.5.1 EQE spectra of Cu3BiS3 films obtained by sulfurization of the Bi-Cu metal 
precursors at 500 °C for 30 minutes. Co-electroplated precursor (plated at -0.57 V vs 
SHE with a charge cut-off of -2.1 Ccm-2) sulfurized with heating rate of 600 °C min-1 
(x5) (a) and 5 °C min-1 (b); stacked Cu/Bi/Cu precursor with 60 seconds etching in 
KCN 5% wt. (c) [41]. Acquisition conditions: 0.2 M Eu3+ solution, - 0.5 V vs. 
Ag/AgCl, chopping frequency 27 Hz. 
 

An order of magnitude estimate for the naturally occurring acceptor density of the 

Cu3BiS3 films produced by sulfurization of the co-electroplated precursors was 

obtained by analysing the dependence of EQE - measured near the onset region of 

absorption (photon energy 1.7 eV) - on applied potential. 

Fig. 3.5.2 shows a plot of [ln(1-Φ)]2 versus E for a typical Cu3BiS3 film. The 

linear section in the onset region has a gradient equal to 2α2 εε0/(eNa), from which Na 

can be extracted (see section 1.3 for derivation of such plots). 
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Fig. 3.5.2 Plot of [ln (1-Φ)]2 vs applied potential of a typical Cu3BiS3 film obtained 
by sulfurization of a co-electroplated precursor at 500 °C for 30 minutes [41]. 
Acquisition conditions: 0.2 M Eu3+ solution, hν = 1.7 eV, chopping frequency 27 Hz. 
 

Taking the value of α (at 1.7 eV) reported by Haber et al. [208] (~6·104 cm-1), and a 

value of ε typical of an inorganic sulfide like CuInS2 (10) [220], gives an acceptor 

density of ~ 3·1017 cm-3. This is about one order of magnitude higher than that 

reported by Mesa et al. [221] for Cu3BiS3 films obtained by co-evaporation of the 

elements. For comparison, it is known that typical carrier concentrations of device 

quality chalcogenide absorbers such as CIGSSe and CZTSSe [222, 223] lie in the 

region of 1016 cm-3. 
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3.6 Experimental details 

 

The co-electrodeposition of Cu-Bi thin film metal precursors was carried out in an 

electrolytic cell with the capacity of 150 ml with a rotating disc working electrode 

(RDE) geometry and a three electrodes configuration, as shown in Fig. 3.6.1a. The 

Mo coated substrate held as the RDE (house-built) was provided by Stefan Schäfer 

from Enthone GmbH (RF sputtered on 4 mm thick soda lime glass sheets). The 

reference electrode (R.E.) employed was saturated calomel electrode (Radiometer 

Analytical). The counter electrode (C.E.) was a house-built Pt foil (4 cm2). 

 

 
 
Fig. 3.6.1 Electrolytic cell with RDE geometry and three electrodes configuration 
employed for the co-electrodeposition of Cu-Bi thin film metal precursors (a). 
System employed for mounting the Mo coated substrates allowing electrical contacts 
with the brass core of the RDE head (b-d) [130]. Cu wires are taped onto the brass 
core of the RDE head (b), the Mo coated substrate is placed into the recess and the 
ends of the Cu wires are placed in contact with the front surface of the substrate (c), 
the edges of the substrates are masked with polyimide tape (RS) (d). 
 

The cell was maintained tilted in order to avoid the presence of air bubbles between 

substrates and the plating bath, as described by Scragg [130]. The Mo coated 

substrates (4 cm2) were connected to the RDE head as described in Fig. 3.6.1b-d. The 

solution composition was: 0.030 M CuSO4, 0.010 M Bi(NO3)3, 2 M NaOH and 0.1 M 

D-sorbitol. (Sigma Aldrich). Potentiostatic depositions were performed at -0.57 V vs 

SHE with a charge cut-off of 2.1 Ccm-2 and a rotation speed of 300 rpm. The 

potential was applied with a µ Autolab type III potentiostat (Fig. 2.6.1b). 
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The study of the conversion reaction of the Cu-Bi precursors into the sulfide layers 

of interest was performed with either an AS-Micro Rapid Thermal Processor 

(AnnealSys) (RTP) furnace or with a wire-wound quartz tubular furnace (Thermo 

Scientific). 

 

Precursor type(s) 
Furnace – heating 

rate 

Max. 

temperature 
Dwell time Sulfur source pressure 

Cu/Bi/Cu electroplated Tub. – 5 °Cmin-1 300°C 30 min 45 mbar S2 calculated at 

298K 

Cu/Bi/Cu electroplated Tub. – 5 °Cmin-1 350°C 30 min 45 mbar S2 calculated at 

298K 

Cu/Bi/Cu electroplated Tub. – 5 °Cmin-1 400 °C 30 min 45 mbar S2 calculated at 

298K 

Cu/Bi/Cu electroplated Tub. – 5 °Cmin-1 450 °C 30 min 45 mbar S2 calculated at 

298K 

Cu/Bi/Cu electroplated Tub. – 5 °Cmin-1 500 °C 30 min 45 mbar S2 calculated at 

298K 

evaporated Bi, Cu/Bi/Cu 

electroplated, Cu-Bi co-

electroplated 3:1 

RTP – 600 °Cmin-1 350°C 5 min 500 mbar S2 calculated at 

298K 

evaporated Bi, Cu/Bi/Cu 

electroplated, Cu-Bi co-

electroplated 3:1 

RTP – 600 °min-1 400 °C 5 min 500 mbar S2 calculated at 

298K 

evaporated Bi, Cu/Bi/Cu 

electroplated, Cu-Bi co-

electroplated 3:1 

RTP – 600 °min-1 450 °C 5 min 500 mbar S2 calculated at 

298K 

evaporated Bi, Cu/Bi/Cu 

electroplated, Cu-Bi co-

electroplated 3:1 

RTP – 600 °min-1 500 °C 5 min 500 mbar S2 calculated at 

298K 

evaporated Bi, Cu/Bi/Cu 

electroplated, Cu-Bi co-

electroplated 3:1 

RTP – 600 °min-1 550 °C 5 min 500 mbar S2 calculated at 

298K 

Cu/Bi/Cu electroplated, Cu-Bi 

co-electroplated 3:1 

RTP – 5 °min-1 500 °C 30 min 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 5 °min-1 500 °C 5 min 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 270 °C 300 sec 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 270 °C 1800 sec 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 270 °C 7200 sec 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 270 °C 57600 sec 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 350 °C 300 sec 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 350 °C 1800 sec 500 mbar S2 calculated at 

298K 
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Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 350 °C 7200 sec 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 350 °C 50000 sec 500 mbar S2 calculated at 

298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 400 °C 300 sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 400 °C 1800 sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 400 °C 7200 sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 450 °C 300 sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 450 °C 1500 sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 450 °C 1800  sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 500 °C 30 sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 500 °C 100 sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 550 °C 57600 sec 500 mbar S2 calculated at 
298K 

Cu-Bi co-electroplated 3:1 RTP – 600 °min-1 550 °C 57600 sec 700 mbar N2 (no sulfur 
added) 

Cu-Bi sputtered 1:1 Tub. – 5 °Cmin-1 400 °C 30 min 120 mbar S2 calculated at 

298K 

Cu-Bi sputtered 1:1 Tub. – 5 °Cmin-1 500 °C 30 min 120 mbar S2 calculated at 

298K 

Cu-Bi sputtered 1:1 Tub. – 5 °Cmin-1 400 °C 30 min 120 mbar H2S calculated 

at 298K 

Cu-Bi sputtered 1:1 Tub. – 5 °Cmin-1 500 °C 30 min 120 mbar H2S calculated 

at 298K 

Cu-Bi sputtered 1:1 Tub. – 5 °Cmin-1 400 °C 30 min 14 mbar H2S calculated at 

298K 

Cu-Bi sputtered 1:1 Tub. – 5 °Cmin-1 500 °C 30 min 14 mbar H2S calculated at 

298K 

 

Table 2.6.1 Details of the heating treatments employed for the study of the Cu-Bi-S 
chalcogenide layers in chapters 3 and 4. 
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4. Study of the chalcogenization reaction 
 

The reaction chemistries involved in the formation of thin compound films may be 

complex, but in most cases there appears to be a competition between the rates of 

reaction and mass transfer [224]. It is known that ternary or multinary sulfide films 

of good morphological quality can be obtained by heat treatment of stacked layers of 

the binaries with no additional chalcogen required [82, 90, 132]. Other methods such 

as co-evaporation [225], reactive magnetron sputtering [128, 143], solution 

processing [54, 139, 226] and even co-electrodeposition [8, 55], where all the 

elements are introduced at the same stage, have shown to give very good film 

properties. In all these methods, suitably designed heat treatments are employed to 

ensure a high degree of homogenization. Such annealing stages resemble often 

simple diffusion couple experiments, where entropic gain is the main driving force 

for compound synthesis. However, the situation becomes more complicated when the 

formation of a ternary or multinary chalcogenide is achieved through incorporation 

of the chalcogen into a film of metal precursors. In such cases the chalcogen or 

chalcogen-bearing molecule needs to react with the elemental or alloyed film and 

oxidise it to its corresponding sulfides; i.e. enthalpy becomes the dominant term of 

the free energy of reaction. The reaction of the chalcogen with the elements may lead 

to the formation of secondary phases that grow and separate, causing a degradation 

of the original film morphology. As a consequence, it may be difficult to achieve the 

desired film composition (e.g. a phase-pure ternary sulfide) and morphology (e.g. a 

defect-free compact layer); simply because phases are inconveniently segregated and 

the contact area between them is reduced. Furthermore, in the case of 

chalcogenization of metal binary or ternary precursors, a large number of 

intermetallic alloys may form over the processing timescale, with further 

complication of the reaction pathway. In fact, each intermetallic phase may show a 

different reactivity towards the chalcogen-bearing reactant, with a multiplication of 

the possibilities for segregation over different timescales, e.g. see von Klopmann 

[227]. Although the products obtained at the end of the process can be reasonably 

deduced from the equilibrium phase diagrams (if these are available), the 

morphology of the resulting film is often driven by the reaction trajectory and 

associated phase development [147]. As a consequence, aspects related to the 

preparation via the two-step approach of thin chalcogenide films with suitable 
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compositional and morphological properties require optimisation. A deeper 

understanding of the thermodynamics and kinetics of chalcogenization reactions is of 

crucial importance to solve issues of secondary phase segregation, compositional 

stability and film morphology. 

In this chapter, the phase evolution of stacked and homogeneous Cu-Sb and Cu-Bi 

metal precursor films during sulfurization with either elemental sulfur vapour or 

hydrogen sulfide is analyzed critically. The aim is to elucidate the roles of diffusion 

and phase equilibria in the kinetics of compound formation, film morphology and 

potential elemental losses due to compound decomposition during the thermal 

treatments. Section 4.1 outlines the phase evolution study by interpretation of the ex-

situ XRD analyses of the “quenched” chalcogenide films reported in chapters 2 and 

3. A new “Time-Temperature-Reaction” (TTR) diagram is introduced for the 

description of the reaction kinetics. The effect of the heating rate of sulfurization on 

the compositional and morphological properties of the processed Cu-Bi precursor 

films is considered in section 4.2 through SEM/EDS analyses. Section 4.3 deals with 

the thermodynamics of chalcogenization and highlights the role of the 

chalcogenizing conditions on the reaction sequence. Furthermore, modified Pilling-

Bedworth coefficients [228] are introduced to provide a plausible interpretation of 

the kinetic observations. In section 4.4, equilibrium pressure diagrams suggest the 

possible compound decomposition routes accounting for the elemental losses 

observed during the thermal processes (section 2.3) [146, 155]. The utility of 

thermochemistry for computation and prediction of such phenomena is highlighted. 

The discussion given here is expected to give a meaningful contribution towards 

the understanding of several issues associated to the mechanism of reaction/diffusion 

of the chalcogen from the vapour phase into metallic precursors. Applications of 

such findings to the synthesis and decomposition prevention of other thin-film PV 

absorber sulfides obtained through routes equivalent to electroplating/annealing 

should be possible [55, 154, 229-233]. The approach developed here may also be 

relevant to other fields of materials science, where the compound of interest is often 

formed via reaction of a solid precursor with gaseous or liquid species. Examples 

could be the preparation of LiCo(Ni)O2 cathodes for molten carbonate fuel cells and 

lithium-ion batteries [234, 235] and the formation of protective barriers by 

passivation treatments of precursor coatings [236]. Part of this chapter is based on 

published material [157]. 
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4.1 Following compound formation via structural analysis 
 

The sulfurization reactions of the Cu-Sb and Cu-Bi films can be studied by 

evaluation of the phase evolution as a function of sulfurization temperature and time. 

In the absence of in-situ techniques such as Energy Dispersive X-Ray Diffraction 

(EDXRD)[227, 237], angle dispersive XRD [238] or Raman spectroscopy [239] this 

evaluation can be attained by ex-situ structural analysis of the films sulfurized at 

various temperatures for different periods and then cooled down to room temperature 

[130, 240]. If the cooling employed is sufficiently fast (quenching), it is reasonable 

to assume that the film phase composition attained at the end of the treatment is 

preserved, since diffusion mechanisms are extremely hindered at low temperature. 

Of course, this approximation is as good as the cooling rate employed is high. In this 

sense, RTP is a valuable tool for investigation of the mechanism of phase formation. 

Fig. 4.1.1a-b are plots of the integrated intensity of the main XRD reflections of 

the relevant phases for samples of Cu-Sb and Cu-Bi precursor films sulfurized with 

elemental sulfur vapour at given temperatures for 5 and 30 minutes respectively. 

The intensity of the scattered X-rays in XRD is a function of several variables. 

Among these are: incident intensity, texture and scattering factors of the phases 

under study and their relative volume fraction. Due to samples spinning during 

acquisition of the diffractograms in Fig. 4.1.1, the effect of texturing can be partially 

neglected. However, the plots are not intended as quantitative compositional 

estimations, since the absolute magnitudes of intensity are not normalised to the 

scattering factors of the different phases. Nevertheless, the changes in relative 

intensities for each phase provide a valid estimate of the evolution of the different 

species. 

The bright blue colour of the Covellite CuS phase provided a clear indication 

when the sulfurized samples were not completely converted into the grey CuSbS2 or 

Cu3BiS3 compounds. A good correlation between the visual appearance of the films 

and their phase composition, as detected by qualitative phase analysis, was always 

observed. No colour difference was perceived between the samples of the two 

precursor configurations (stacked and co-electroplated) sulfurized at the same 

temperature. 
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Fig. 4.1.1 Ex-situ XRD integrated peak intensities for Cu:Sb = 1:1 stacked (a) and 
Cu:Bi = 3:1 co-electroplated (b) precursor films after sulfurization treatments with 
elemental sulfur vapour lasting 30 and 5 minutes respectively [157]. 
The contribution of each phase and reflections are considered as follows: 
(a): Sb PDF no 35-732 [(003)+(006)+(009)], CuS PDF no 65-3561 [(006)], Sb2S3 
PDF no 42-1393 [(200)+(020)+(120)+(412)+(214)+(502)+(205)], CuSbS2 PDF no 
65-2416 [(102)+(015)+(213)+(017)+(018)]. 
(b): Bi (black) PDF no 44-1246 [(012)+(104)], CuS PDF no 65-3561 [(101)+(102)], 
Bi2S3 PDF no 6-333 [(121)+(230)+(130)+(310)], Cu3BiS3 PDF no 9-488 
[(111)+(200)+(012)+(220)+(112)+(130)+(040)]. 
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Considering the minor structural differences between stacked and co-electroplated 

precursors seen in chapters 2 and 3, there appears to be no obvious effect of the two 

precursor types on the phase composition, but no further efforts were made to 

demonstrate this. 

The results in Fig. 4.1.1 suggest that the systems follow a sequential 

reaction/diffusion mechanism, where the metals react selectively with sulfur to form 

the corresponding binary sulfides. The subsequent emergence of the ternary phases is 

the result of interdiffusion of the binaries when the temperature and time of the 

sulfurization treatments are suitable. According to these results, two reaction 

sequences can be written (Reactions 4.1.1-4.1.5). 

 

Reac. 4.1.1 2Cu (s) + S2 (g) → 2CuS (s) 

Reac. 4.1.2 4Sb (s) + 3S2 (g) → 2Sb2S3 (s) 

Reac. 4.1.3 4CuS (s) + 2Sb2S3 (s) → 4CuSbS2 (s) + S2 (g) 

 

Reac. 4.1.1 2Cu (s) + S2 (g) → 2CuS (s) 

Reac. 4.1.4 4Bi (g) + 3S2 (g) → 2Bi2S3 (s) 

Reac. 4.1.5 12CuS (s) + 2Bi2S3 (s) → 4Cu3BiS3 (s) + 3S2 (g) 

 

No traces of unreacted Cu were observable at any of the investigated sulfurization 

temperatures. CuS is formed very quickly at the expenses of Cu, and its integrated 

XRD peaks remain rather constant until the sulfurization temperature is sufficiently 

high to allow the formation of the ternary sulfides. At about 300 °C for Cu-Sb and 

450 °C for Cu-Bi the CuS peak counts start to decrease and the patterns of CuSbS2 

and Cu3BiS3 appear thereafter. 

Contrary to Cu, the XRD peaks corresponding to elemental Sb and Bi (M) remain 

clearly visible respectively up to 350 and 450 °C, suggesting that sulfur uptake by 

these elements is more sluggish. Over the range of dwell times considered, M2S3 

coexists with M and CuS until the conversion to the ternary sulfide comes to an end. 

The trend of the corresponding XRD peak counts versus temperature exhibits a 

maximum corresponding to the temperature at which the rate of M2S3 formation 

equals its rate of consumption in the reactions forming CuSbS2 and Cu3BiS3. These 

phase evolution profiles are consistent with a reaction mechanism in which the rate is 

determined by the solid state diffusion of the elements across the binary sulfide 

interfaces. In fact, the binary sulfides build up and decay subsequently. If this were 
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not the case, the binary phases would react promptly to form the ternaries, and they 

would not be detected along with the ternaries (Fig. 4.1.1). 

The formation of intermediate sulfide phases in the solid state has been studied by 

Ross [241], who observed the phase evolution in bulk diffusion couples of the 

binaries. For the Cu2S-Sb2S3 experiment, the rates of intermediate phase formation 

were reported to obey a parabolic rate diffusion rule that was first described by 

Tammann [242, 243], Eq. 4.1.1. 

 

Eq. 4.1.1 2/1])(2[ tTkx ⋅=  

 

where x is the thickness of the developing intermediate phase, k(T) is the rate 

constant and t is the time. 

The temperature dependence of the reaction rate constant is given by the 

Arrhenius equation, Eq. 4.1.2. 

 

Eq. 4.1.2 
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where A is a pre-exponential factor, Ea is the activation energy of the reaction, R is 

the universal gas constant and T is the absolute temperature. By substituting Eq. 4.1.2 

in Eq. 4.1.1, an expression is obtained that can be used to analyse the kinetics of 

ternary sulfide formation in thin films (Eq. 4.1.3). This can be achieved through 

estimation of the temperature dependence of the times required for the ternary phase 

to appear ts and form completely tf . 

 

Eq. 4.1.3 RTEAxt afs += )2ln(]ln[ 2
,  

 

In Ross’ investigation, samples obtained compressing powder pellets of the pure 

sulfides were placed face to face and annealed at different temperatures for different 

durations. The pellets were then cut-polished lengthwise normal to the interface and 

analysed visually, i.e. the lengths of the intermediate phases were measured with a 

caliper. The thin film geometry of our system is very different. In our case, a direct 

measurement of the thickness of the developing phases would be difficult to achieve, 

requiring for example EDS elemental linescan with TEM [223]. Alternatively, 

accurate estimations of the critical times ts and tf in thin films would be possible by a 
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temperature-resolved in-situ isothermal examination. Nevertheless, extensive 

individual XRD analyses of RTP processed films can provide enough information for 

approximate studies. 

Based on the same principle of the time-temperature transformation (TTT) 

diagrams, we can introduce a time-temperature reaction (TTR) diagram for the 

representation of the kinetics of thin film ternary sulfide formation. TTT diagrams 

have wide application in metallurgy and other fields and are successfully employed 

to describe the transformation kinetics under different annealing conditions [244]. 

Similarly, TTR diagrams can be created for the description of the phase composition 

of samples during sulfurization. Of course, there are obvious differences between 

TTT and TTR. In TTR there is the introduction of an additional component into the 

system during the treatment, and the description is valid only for ideally fixed 

precursor film configuration and chalcogenizing conditions (chalcogen source and its 

partial pressure). As a consequence, the morphology of the phases will, in principle, 

depend on the reaction pathway followed during the treatment. 

Fig. 4.1.2 shows a hypothetical TTR diagram showing the temperature dependence 

of the time required for a ternary sulfide phase to form via sulfurization of thin film 

metal precursor (a). 

The ts and tf lines (ternary sulfide formation started and finished, respectively) may 

well be represented by curves (a) and (b) in Fig. 4.1.2. For exact analyses of the 

kinetics of ternary sulfide formation, these critical times should be ideally plotted 

after subtraction of the corresponding times required for the binary sulfides to form. 

The effect of a film thickness increase and of a pre-exponential factor decrease on 

the positions respectively of the start and finish curves in the TTR diagram is shown 

by (Fig. 4.1.2a-c). The Arrhenius equation describing the kinetics of our system 

predicts for both cases a shift of the lines towards longer times. Let us discuss first 

the effect of a pre-exponential factor decrease on the position of the Arrhenius line 

corresponding to ts and tf. According to Eq. 4.1.3, the intercept of the line is equal to 

ln(x2/2A). Therefore a decrease of A brings about a shift of the lines towards more 

positive values on the y axis of the Arrhenius plot. A shift in the same direction is 

expected if the film thickness (x) is increased, but in this case it is reasonable to 

suppose that only the line describing the end of the conversion ln(tf ) is affected. 
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Fig. 4.1.2  Hypothetical TTR diagram showing the temperature dependence of the 
time required for the ternary sulfide to form via sulfurization of thin film metal 
precursor (a). Theoretical effects of a film thickness increase or a pre-exponential 
factor decrease (b,c) and of an activation energy increase (d) on the shape of the 
reaction curves. Inset (1): corresponding Arrhenius plot. Inset (2): energy profile 
showing an increase of the activation energy due to either a variation of the reaction 
mechanism (I) or as a consequence of a variation of the relative thermodynamic 
stability of the reaction components (II). 
 

In fact, from Eq. 4.1.3 the intercept of the line describing the beginning of the 

ternary sulfide formation ln(ts), can be assumed to depend on a critical thickness (xc). 

In principle, the minimum thickness that can be considered as evidence for a phase 

formation is given by the unit cell parameter of the phase under study. However, in 

practical terms xc can be thought as the minimum thickness required for the phase to 

be detected with the technique employed. Therefore, it is reasonable to assume that 

the intercept of ln(ts) in the Arrhenius plot is independent of the total thickness of the 

film and depends only on the detection limit for the specific phase and on A. 

The ts and tf curves divide the time-temperature area into three regions 

characterised by three different phase compositions. Before (a), the phases observed 

are the binary sulfides and, in some cases the unreacted metal precursors. At the 

times indicated by curve (a), the ternary sulfide starts to appear and after (b) its 

formation is complete and the solid system is monophasic, unless excess binary 

phases are remain due to non stoichiometry of the precursors employed initially. 
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As illustrated in the modified Arrhenius plot depicted in Fig. 4.1.2(1), ln[ts,f] 

versus 1/T yields a straight line, with a slope corresponding to Ea/R, according to 

Eq.4.1.3. Therefore, Ea can be extracted to give useful information on the system 

under investigation. Ea may vary when nucleation and/or growth mechanisms of the 

ternary phase are altered. This behaviour is reflected in the modified Arrhenius plot 

by a variation of the slope. It is generally recognised that at low temperature, the 

reaction kinetics may become slower. In such cases a limiting situation may occur 

where the reaction curve in the TTR diagram lies parallel to the abscissa, 

representing processing times approaching infinity at a critical temperature (Fig. 

4.1.2d). This corresponds to a situation in which the growth of the ternary phase 

ceases, below a certain temperature. If the activation energy of ternary sulfide 

formation varies due to a variation of the reaction mechanism, the energetic profile is 

illustrated in Fig. 4.1.2(2I). 

In the reacting solid state, interdiffusion of ions such as Cu, Sb Bi and S (of 

considerably larger size than H, C and N) is likely to be based mainly on a vacancy 

rather than an interstitial exchange mechanism. The vacancy-assisted diffusion 

mechanism is ultimately dependent on the concentration of vacancy defects within 

the crystal structures involved in the reaction, which in turn is known to be an 

Arrhenius-like thermally activated function (of the type of Eq. 4.1.2) [245, 246]. In 

this context, the activation energy for vacancy formation can be thought as the 

energy required to break inter-atomic bonds and let the ions “jump” into the newly 

formed vacancy. Different types of exchange jumps are theoretically possible. For 

example, Monte Carlo simulations of the cations diffusion via vacancies in simple 

spinels have shown that the contributions of the different possible jumps to the 

overall cation diffusion are a function of the vacancy concentration [247, 248]. Each 

jump has different activation energy. Therefore, it is possible that the activation 

energy of ternary sulfide formation, which is ultimately dependent on the activation 

energy of the different possible vacancy exchange mechanisms, varies as a function 

of the temperature. 

It has also been shown that the temperature dependence of the self-diffusion 

coefficients of cations in metal sulfides M2Sn can be expressed empirically by 

Arrhenius-like functions of the type of Eq. 4.1.4 [249]. 

 

Eq. 4.1.4 
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where DM
n+(T) is the self-diffusion coefficient of the cation Mn+ in the sulfide M2Sn, 

B is a pre-exponential factor, pS2 is the pressure of sulfur in the system, m is an 

empirical exponent, Ed is the activation energy of self-diffusion (which has also been 

shown to vary slightly as a function of pS2 in some cases [249]). 

Although Eq. 4.1.4 refers to self-diffusion, it is reasonable to assume that a similar 

relationship may still be valid for interdiffusion. Eq. 4.1.4 suggests that the presence 

of a gaseous sulfur pressure in equilibrium with the solid reacting sulfides may affect 

the kinetics of ternary sulfide formation. This can be due to variation of both the pre-

exponential factor and of the activation energy of interdiffusion. 

However, Ea may also change linearly as a consequence of the changes in the 

relative thermodynamic stability of the reaction components, as per Fig. 4.1.2(2II). 

Examples of this kind, where sulfur pressure influences the relative stability of 

sulfide phases, are discussed in section 4.3. 

In order to study the kinetics of ternary sulfide formation in a real system, an 

approximate TTR diagram for the formation of Cu3BiS3 from the co-electroplated 

Cu:Bi 3:1 metal precursors and elemental sulfur vapour has been created. For this 

purpose, the sulfurization treatments were quenched at logarithmically staggered 

times up to 16 hours in the range 270-500 °C in order to ascertain the minimum 

dwell times required for the Cu3BiS3 phase to appear and form completely. The 

results are shown in Fig. 4.1.3. As anticipated, ts and tf curves in Fig. 4.1.3(I) are 

reasonably parallel, and their corresponding Arrhenius plot in Fig. 4.1.3(II) gives 

lines that are shifted on the y-axis but with a similar slope. Before ts (region a) Bi(s), 

Bi2S3(s) and CuS(s) are the phases present. In region (b), the ternary sulfide starts to 

appear and in (c) Cu3BiS3 is fully formed. 

The kinetic model developed by Ross [241] is based on the simultaneous and 

chemically-equivalent interchange of the two kinds of metal ions, migrating in 

opposite direction through the sulfur network of the emerging phase. If we assume 

that the CuS-Bi2S3 system follows a similar behaviour, information on the kinetics of 

Cu3BiS3 phase formation can be extracted from the data in the TTR diagram of Fig. 

4.1.3. This can be done by analysing the temperature dependence of the time 

required for the ternary phase to appear and form completely. 
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Fig. 4.1.3 (I) Time Temperature Reaction (TTR) diagram for the sulfurization 
conversion of co-electroplated Cu:Bi 3:1 metal precursor into 2 µm thick Cu3BiS3 
layers in the presence of elemental sulfur vapour at a partial pressure of 500 mbar. 
The plot was created from data obtained by ex-situ XRD analysis of rapid thermal 
processed samples (600 °C·min-1) after quenching. The dashed line represents the 
emergence of the ternary sulfide (ts) and the solid line the reaction completion (tf). 
The corresponding Arrhenius plot for the estimation of the activation energy of 
Cu3BiS3 formation is shown in (II) [157]. The least squares fitting equations 
corresponding to the ts and tf curves are shown. 



 110 

To assist the reader, the Arrhenius plot is shown in Fig. 4.1.3(II), with indication 

of the least squares fitting equations for the lines corresponding to the ts and tf curves. 

Estimation of the activation energy of Cu3BiS3 formation in thin films from CuS 

and Bi2S3 is possible from Fig. 4.1.3(II), according to Eq. 4.1.3. This gives an 

average value of ~ 180 kJmol-1. By comparison, the reported activation energy for 

the formation of bulk CuSbS2 from Cu2S and Sb2S3 is much lower, ~ 33 kJmol
-1 

[241]. A more sluggish reaction of Bi with elemental sulfur vapour compared to Sb 

was already deduced from comparison of the series of XRD analyses of sulfurized 

evaporated films of Sb (section 2.4) and Bi (section 3.4). An explanation for this 

different behaviour can be found from the comparison of the two binary sulfides 

Bi2S3 (Bismuthinite) and Sb2S3 (Stibnite). These are isostructural compounds [250] 

with the group-five element in the trivalent state and a structure characterised by 

tightly-bonded M4S6 rods displaced in a herring bone arrangement [251], with 

pronounced steric requirements of the lone electron pairs accommodated between the 

rods [252]. It is known that the effective ionic radii [253] of Bi in trivalent form are 

on average about 36% larger than those of Sb [254]. This is likely to lead to more 

sluggish diffusion of Bi through the M2S3/CuS crystallite interface, and to a higher 

value of the activation energy for the corresponding ternary sulfide formation. 

Although a direct comparison is not strictly legitimate due to the different thermal 

mass of the furnaces employed, a higher activation energy for the formation of 

Cu3BiS3 compared to CuSbS2 is consistent with the times required for the phases to 

appear at 350 °C, which were respectively 16 hours and 30 minutes (section 2.4). 

Analysis of the thermodynamics and kinetics of sulfide formation under different 

sulfurizing or annealing conditions allows comparison between the synthesis 

procedure utilised in this work and those employed by Haber et al. [147, 208] and 

Nair et al. [84]. This comparison involves a discussion of the morphological (section 

4.2) and thermochemical/kinetic (section 4.3 and 4.4) consequences on the shape of 

the TTR curves. 
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4.2 Morphological implications of the reaction sequence 
 

The results of the morphological and compositional analyses of the sulfurized 

samples of Cu-Sb and Cu-Bi thin films are consistent with the reaction sequences 

drawn from the structural investigations and reported in section 4.1. As seen by the 

SEM/EDS analyses in sections 2.3 and 3.3, most of the Cu contained in the metal 

precursors reacts selectively with sulfur at temperatures ranging between 200 and 

300 °C, leading to the “bloom” of abundant CuS crystals that tend to segregate on 

top of the former precursor surface. To some degree, this was also observed for CuSe 

during the selenization conversion of the amorphous CuSbS2 films at 300 °C (section 

2.3). By contrast, the conversion of Sb and Bi into the corresponding sulfides is 

slower (section 4.1), reducing their segregation substantially compared to CuS. 

As reported in section 2.3, in the time frame of 30 minutes the Cu-Sb precursors 

with both configurations are converted into CuSbS2 at 350 °C. The EDS analyses of 

these films gave a Cu:Sb ratio that approached 2.6. The penetration depth of the 

electron beam was evidently lower than the thickness of the absorber layer, as no 

signal from the Mo substrate was detected. This gives further support to the proposed 

reaction sequence that implies the formation of the ternary sulfide by interdiffusion 

of the two metal cations in opposite directions, which for the case of Cu means a 

concentration decrease from the surface to the bottom of the films. A similar 

situation is observed for Cu-Bi, where the cross-section compositional profile of the 

Cu3BiS3 films shows a slight elemental gradient (Fig. 3.3.4) that is consistent with 

the supposed mechanism. 

Fig. 4.2.1 illustrates the top and cross sectional morphologies of the Cu:Bi 3:1 

stacked and co-electroplated metal precursors before (a,h,o) and after sulfurization 

treatments with heating rates of 600 (f-g,m-n) and 5 °Cmin-1 (t-u). From the 

morphological standpoint, there appear to be meaningful differences between the 

behaviours of the stacked (a-g) and co-electroplated precursors (h-n) during 

sulfurization at a fast heating rate as well as between the co-electroplated precursor 

under fast (h-n) and slow heating rates (o-u). The same figure proposes a phase 

evolution model consistent with the structural findings of section 4.1 designed to be 

consistent with these different morphological behaviours. 
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Fig. 4.2.1 Phase evolution model for the interpretation of the structural and 
morphological results of the sulfurization of stacked (a) and co-electroplated (h,o) 
Cu:Bi 3:1 metal precursor films in the presence of elemental sulfur vapour at 500 °C 
with heating rates of 600 °Cmin-1 (b-e,i-l) and 5 °Cmin-1 (p-s); the corresponding 
SEM cross sectional (f,m,t) and top views (g,n,u) are included [157]. 
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Initially, crystallites of CuS segregate at the surface of the former precursor film 

leaving the unreacted Bi underneath (Fig. 4.2.1c) or dispersed amongst the CuS 

crystals (Fig. 4.2.1j-q). A similar behaviour was shown by the Cu-Sb films at this 

early stage. If the heating rate employed is such that the conversion of Bi into Bi2S3 

is not complete when the sample reaches ~270 °C, the unreacted Bi undergoes 

melting. If Bi in the film precursor is segregated in a morphologically ordered 

manner (e.g. if it forms a compact metal layer, as in the stacked Cu-Bi 

configuration), melting does not lead to a degradation of the film morphology (Fig. 

4.2.1d). On the other hand, if the Bi contained in the precursor film is 

homogeneously dispersed (e.g. within the Cu-Bi co-electrodeposit, as suggested by 

Fig. 3.3.4), there is a driving force for it to coalesce in order to minimise the surface 

energy. This was observed to occur in the form of “dewdrops” that segregate at the 

bottom of the film (Fig. 4.2.1k). This coalescence process exposes the underlying Mo 

substrate layer, as shown by the EDS mapping and elemental analysis (Fig. 3.3.3). If 

the heating rate employed is low enough to allow a substantial conversion of Bi into 

Bi2S3 (5 ºCmin
-1), melting is not observed. In the case of the co-electroplated 

precursor this means that morphological degradation is minimised (Fig. 4.2.1q). 

Bi2S3 is formed slowly by reaction of the remaining Bi with sulfur, and a reasonable 

preservation of the Bi morphology is observed in all cases (Fig. 4.2.1d,k,r). 

Eventually, the ternary sulfide appears at the interface between the binary crystallites 

and grows with a morphology that again depends largely on that of the film attained 

up to that stage (Fig. 4.2.1e-f,l-m,s-t). 

It follows from the preceding discussion that the key for obtaining 

morphologically good films of Cu3BiS3 by sulfurization of co-electroplated 

precursors with elemental sulfur vapour (under 500 mbar S2 (g) at the early stages of 

treatment) is to employ a low heating rate. Under these conditions, the conversion of 

Bi into Bi2S3 occurs before the temperature reaches the melting point of the element, 

which causes the formation of the liquid framework responsible for the poor film 

morphology and adhesion (Fig. 4.2.1k,n). The morphological issue linked to high 

heating rates during sulfurization has not been observed for the Cu-Sb precursor 

films, although RTP treatments have not been performed and a maximum heating 

rate of 15 ºCmin-1 was used. This difference can be ascribed to the particular 

dissimilarity between Cu-Bi (Fig. 3.1.1) and Cu-Sb equilibria (Fig. 2.1.1). In fact, 

negligible mutual solubility of Cu and Bi is shown in the solid state, with no other 

intermediate compounds, and only a eutectic transformation at 270.6 °C (just below 
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the melting temperature of pure Bi, 271.4 °C) of composition 99.5% molar Bi [255]. 

With an initial molar composition of ~25% Bi and ~75% Cu, it can be estimated that 

~25% at. of the film precursor forms a liquid (with composition ~98.5% molar Bi) at 

the eutectic temperature. The steepness of the liquidus boundary will cause only a 

limited additional part (~1.3% at.) of the precursor to melt and form a liquid of 

slightly increased Cu concentration (~95% molar Bi) if the temperature is increased 

up to 500 °C. Considering that most of the Cu has already reacted with sulfur at the 

eutectic temperature, it is apparent that the large majority of the Bi originally 

dispersed in the deposit undergoes melting and causes the observed morphological 

issues. 

It was reported in section 3.4.3 that in the present work for processing time up to 

16 hours at 270 °C with 500 mbar of sulfur vapour, the ternary sulfide Cu3BiS3 was 

not detected at all, and even at 350 °C the reaction was largely incomplete. This 

behaviour was shown in Fig. 4.1.3, where the TTR diagram is clearly incomplete in 

the low temperature range. Dwell periods longer than 16 hours may be necessary in 

order to identify the critical times in such cases. This behaviour contrasts with the 

observations of Haber et al. [147] who obtained a phase pure film at 270 °C within 

16 hours of treatment, using 7 mbar of hydrogen sulfide instead of sulfur (Fig. 

4.2.2a). Furthermore, with a different synthesis route consisting of the thermal 

annealing of multilayered metal sulfide precursor films, Haber et al. reported on the 

same article the formation of a phase-pure Cu3BiS3 film at 300 °C in 2 hours (Fig. 

4.2.2b) [147]. 

In order to facilitate comparison between the three synthesis routes, the two 

experimental points obtainable from Haber’s works (a,b) have been included in the 

TTR diagram of Fig. 4.2.2, with the addition of a hypothetical tf curve. This tf curve 

describes the end of ternary sulfide formation in Haber’s works. Its position lies at 

shorter times than the ts curve corresponding to the beginning of the conversion in 

the present investigation. 
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Fig. 4.2.2 TTR diagram of Cu3BiS3 formation showing the comparison between the 
experimentally observed ts line (solid) (sulfurization with 500 mbar sulfur vapour) 
and a hypothetical tf line extrapolated from the data points reported by Haber et al. 
[147] (dashed). (a) heat treatment of multilayered metal sulfides precursors, (b) 
sulfurization with 7 mbar H2S. Inset: corresponding Arrhenius plot. 
 

If the assumptions regarding diffusion made in section 4.1 are valid, the slope of the 

ln(tf) line in the Arrhenius plot depends on the activation energy of the reaction and, 

therefore, on the species involved in the rate limiting step of the reaction. If the 

ternary sulfide formation in the two Haber’s works follows the same reaction 

observed in the present investigation, the two corresponding ln(tf) lines should be 

parallel. Let us consider the three cases in order to make an appropriate comparison. 

To assist the discussion, the Arrhenius plot in the inset of Fig. 4.2.2 is shown in Fig. 

4.2.3 enlarged and enriched with hypothetical cases. 

The thickness of the converted films in Haber’s work was reported to be 1 µm, which 

is less than the 2 µm obtained in the present work. However, it is obvious that the ts 

points of Haber’s experiments must lie at shorter times than the tf ones reported in 

Fig. 4.2.2. As discussed in section 4.1, the effect of film thickness on the position of 

the ln(ts) lines in the Arrhenius plot should be negligible. Therefore, comparing the 

three experiments using the ln(ts) line of the current study and extrapolated Haber’s 

ln(tf) lines with appropriate slopes should be legitimate. 
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Fig. 4.2.3 Arrhenius plot showing the comparison between the experimentally 
observed ln(tf) and ln(ts) lines of the present work (solid lines) (sulfurization with 500 
mbar sulfur vapour) and hypothetical ln(tf) lines for heat treatment of multilayered 
metal sulfides precursors (a) and sulfurization of co-sputtered metal precursors with 
7 mbar H2S (b) extrapolated from the data points reported by Haber et al. [147] 
(dashed lines). In (a) the line slope assumes that the formation of the ternary sulfide 
follows the same reaction reported in the present work, while in (b) a different 
activation energy is assumed, accounting for the fact that in process (b) the rate 
determining step seems to be the sulfur uptake by Bi. 
 

The comparison of the present work with the case (a) reported in Fig. 4.2.3 is 

interesting. In case (a) Haber et al. employed a multilayered precursor film 

containing CuS and Bi2S3 [147]. The binary phases involved are the same as those 

observed in the present study; therefore we can assume that the reactions are 

governed by the same activation energy. This situation is depicted in Fig. 4.2.3 with 

the ln(tf) (a) line extrapolated at higher temperature using the same slope as the ln(ts,f) 

lines reported in the present study. As a consequence, ln(tf) (a) is shifted on the y-

axis towards lower values compared to the ln(ts,f) lines of the present study, and its 

intercept is consistently more negative. If we rule out the effect of the film thickness 

as discussed earlier, according to Eq. 4.1.3, this situation is the symptom of a higher 

pre-exponential factor, A. 
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The pre-exponential factor is a characteristic of the thin-film synthesis. A higher 

value of A may be correlated with a higher contact area between the intermediate 

phases, which could be associated with a lower degree of phase segregation and/or to 

smaller crystallite size. As indicated by the XRD analyses, the multilayered 

precursors employed by Haber in case (a) contained CuS and Bi2S3 but were largely 

amorphous [147]. It is reasonable to believe that the contact area between the 

reactants was much higher in case (a) than in the present study. In this context, the 

reduced time required for the formation of Cu3BiS3 at 300 °C may be explained. 

Similar considerations may apply to the synthesis routes undertaken by Nair et al. 

[84] and Estrella et al. [209]. In these two cases the formation of Cu3BiS3 thin-films 

was achieved with chemical bath deposited precursor with grain size lower than 5 nm 

annealed in air at 300°C for 1 hour. 

The comparison of the present study with the results of Haber et al. [147] 

illustrated by case (b) in Figs. 4.2.2-4.2.3 is less obvious. In fact, Cu1.8S and Bi were 

detected as secondary phases in the films sulfurized with 7 mbar H2S at 270 °C when 

the reaction was incomplete [147, 155]. In case (b), the absence of Bi2S3 as 

intermediate phase suggests that the rate limiting step for the ternary sulfide 

formation may be the sulfur uptake by Bi. In such a scenario, the supply of Bi2S3 is 

promptly converted into the ternary sulfide and is hardly detected in the films. Due to 

the different activation energy for the rate limiting step, the slope of line (b) in Fig. 

4.2.3 may be different from the one observed in the present investigation. However, 

without further information it is not possible to know whether the sulfurization of Bi 

is limited by a high value of Ea or by a too low value of A (e.g. by a too low H2S 

concentration). That is why a direct comparison of this case with the present study is 

not straightforward. It would be interesting to investigate the effects of temperature 

and H2S concentration on the ln(tf) line (b), which would help clarifying if the rate of 

ternary sulfide formation is really governed by the reaction of Bi and H2S to form 

Bi2S3 (although it may be difficult to discriminate the direct kinetic influence of these 

parameters from the indirect kinetic consequences caused by the morphology of the 

intermediate phases formed). A discussion on this aspect is given in section 4.3. 

It is clear that the different reactivity of the metallic elements towards the sulfur 

source has a strong role on the phase/morphology evolution within the systems, 

which in turns affects the kinetics of ternary sulfide formation. An investigation of 

such aspects is given in section 4.3. We believe that morphology and crystallite size 

of the binary sulfides formed at the early stages of the sulfurization treatments 
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influence the position of the reaction curve in the TTR diagram. As discussed in 

section 4.3, phase segregation and crystallite size may be the cause for the delayed 

ternary sulfide formation observed in our experiments, compared to the sulfurization 

with H2S performed by Haber et al. [147]. Some evidence of reduced secondary 

phase segregation, resulting in an improvement of the film morphology can also be 

perceived in Fig. 3.3.5, where sulfurization of the Cu:Bi 1:1 sputtered metal 

precursors with either elemental sulfur vapour or hydrogen sulfide under virtually the 

same conditions was investigated. 

Apart from increasing the contact area (resulting in higher pre-exponential factor 

in the Arrhenius equation), smaller crystallite sizes of reagents in solid state reactions 

may be a source of higher reactivity due also to the role of surface energy. In fact, as 

the particle size decreases, the surface-to-volume ratio increases and this can lead to 

a sharp alteration of the thermodynamic properties of materials. An example is given 

by the melting point depression that is known to occur in nanometer-sized metal 

powders [256, 257]. Although analogous effects on compounds are very little studied 

[258], they may have a crucial importance in the synthesis of thin films via the two-

stage route. The possibility to engineer precursor films with very small particle size 

may present considerable advantages. Such an approach deserves appropriate 

attention for further expansion. 
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4.3 The role of the sulfurizing conditions in phase evolution 
 

Section 4.2 explored the implications of the pressure and type of sulfurizing agents 

on the kinetics of ternary compound formation. A comparison was made between 

sulfurization of Cu-Bi thin film metal precursors with sulfur vapour at 500 mbar and 

hydrogen sulfide at 7 mbar [147]. It was found that the treatment with pure 

chalcogen required higher temperatures and longer times for Cu3BiS3 to appear. If 

we consider thickness-equivalent converted films, it can be concluded that the 

reacting species employed in the sulfurizing atmosphere play a major role in 

determining the kinetics of ternary sulfide formation. In this section, thermodynamic 

and kinetic assessments of the reactions of elemental Cu, Bi and Sb with either S2(g) 

or H2S(g) are given. 

The thermodynamics of the relevant sulfurization reactions (4.3.1-4.3.4) is 

investigated by comparing the temperature dependence of the Gibbs free energies 

changes. 

 

Reac. 4.3.1a 2Cu (s) + S2 (g) → 2CuS (s) 

Reac. 4.3.1b 2Cu (s) + 2H2S (g) → 2CuS (s) + 2H2 (g) 

 

Reac. 4.3.2a 4Cu (s) + S2 (g) → 2Cu2S (s) 

Reac. 4.3.2b 2Cu (s) + H2S (g) → Cu2S (s) + H2 (g) 

 

Reac. 4.3.3a 4Sb (s,l) + 3S2 (g) → 2Sb2S3 (s) 

Reac. 4.3.3b 4Sb (s,l) + 6H2S (g) → 2Sb2S3 (s) + 6H2 (g) 

 

Reac. 4.3.4a 4Bi (s,l) + 3S2 (g) → 2Bi2S3 (s) 

Reac. 4.3.4b 4Bi (s,l) + 6H2S (g) → 2Bi2S3 (s) + 6H2 (g) 

 

Fig. 4.3.1 shows the standard Gibbs free energies of reactions 4.3.1-4.3.4 normalised 

per one mole of metal for the sake of comparison. The calculations are based on the 

thermochemical parameters reported by Knacke et al. [259], and the procedure is 

described briefly in section 5.1 (see also Appendix 3). 
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Fig. 4.3.1 Standard Gibbs free energies of the sulfurization reactions of Cu, Bi and 
Sb with S2(g) (solid lines) and H2S(g) (dashed lines), as functions of temperature [157]. 
 

It is known that up ~620 °C, sulfur vapour is mostly composed of S8(g) – S6(g) ring 

molecules, whereas the S2(g) species becomes predominant at higher temperatures 

[260]. Therefore the thermodynamic calculations were based on the data for the most 

stable molecular sulfur species at each temperature, although little effect of the 

specific sulfur species considered is expected on the conclusions that can be drawn 

by comparison of the reactions. 

The trends in Fig. 4.3.1 reveal that the sulfurizations via H2S(g) (dashed lines) are 

associated with a smaller free energy gain than the corresponding reactions involving 

Sn(g) (solid lines). This behaviour is analogous in any other metal system and is a 

consequence of the Gibbs free energy of formation of H2S from elemental H2 + S2 

(reaction 4.3.5). 

 

Reac. 4.3.5 H2 (g) + S2 (g) → H2S (g) 

 

As calculated in Fig. 4.3.2, ∆G° for reaction 4.3.5 (curve b) is lower than about -40 

kJ·mol-1 from 0 up to 700 °C, even if the calculation is based on the thermochemical 

data of the most stable molecular species of sulfur (c). ∆G° is even more negative if 

the reaction involves atomic sulfur (a). 
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Fig. 4.3.2 Temperature dependence of the Gibbs free energy changes for the 
decomposition reactions of gaseous hydrogen sulfide into gaseous atomic (a), 
diatomic (b) and polyatomic (most stable) sulfur species (c) plus hydrogen. The 
reactions have a ∆G° higher than +40 kJmol-1 between 0 and 700 °C. This figure 
translates into a lower exoergonicity for the sulfurization reactions of metals carried 
out with hydrogen sulfide rather than elemental sulfur vapour. 
 

A schematic diagram of the relative free energy levels between a metal plus either 

elemental sulfur vapour or hydrogen sulfide and the metal sulfide is depicted in Fig. 

4.3.3, with indication of the free energy changes. This diagram applies to any metals 

at least in the temperature range of interest for thin-film sulfide formation 

(considered in Fig. 4.3.3 between 0 and 700 °C). 

As shown in Fig. 4.3.1, the ∆G° plots for the sulfurizations of Sb and Bi (with 

either H2S(g) or S2(g)) are very similar, with the exoergonicity for Bi sulfurizations 

being slightly lower than those for Sb (∆∆G° ~2 kJmol-1 at 298 K). On the other 

hand, the free energy changes for the corresponding sulfurizations of Cu are 

significantly lower than those of Sb and Bi (∆∆G° >30 kJmol-1 at 298 K). 

In section 4.2 it was emphasised how Cu reacts with 500 mbar of S2(g) (to form 

CuS) much more rapidly than Bi and Sb. Furthermore, it was reported that the 

intermediate phases found by Haber et al. [147, 155] in the Cu-Bi precursor films 

during incomplete sulfurization with 7 mbar H2S were Cu1.8S and Bi. It was deduced  
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Fig. 4.3.3 Schematic diagram showing the relative free energy levels of a metal plus 
either S2 (g) or H2S (g) and the metal sulfide. ∆G°(a) corresponds to the free energy 
change of reaction 4.3.5 and is lower than -40 kJmol-1 from 0 up to 700 °C. As a 
consequence ∆G°(c), corresponding to the sulfurization reaction with elemental 
sulfur vapour, is always more negative than ∆G°(b), corresponding to the analogous 
reaction with H2S (g). 
 

that in Haber’s work the rate limiting step for the formation of Cu3BiS3 is the 

sulfurization of Bi. 

The existence of correlations between thermodynamic properties and reactivity of 

substances is important for prediction and interpretation of the kinetics in a variety of 

systems. The first linear free energy relationship was reported by Hammett in organic 

chemistry [261], and further extension was made to inorganic crystalline solids by 

Sverjensky and Molling [262, 263]. Estimations of the relative rates for reactions 

4.3.1-4.3.4 are plotted as functions of the corresponding calculated thermodynamic 

equilibrium constants in Fig. 4.3.4. This figure is a semi-quantitative plot, where 

correctly determined x-values are associated with y-values that are arbitrarily chosen 

to be consistent with the qualitative kinetic information extracted from the present 

and from Haber’s works [147, 155]. As such, there is no intention to ascertain any 

quantitative free energy relationship between the sulfurization reactions considered. 

The intent of Fig. 4.3.4 is to give the reader a picture of the relative elemental 

reactivity towards sulfur vapour and hydrogen sulfide, and to serve as basis for 

further discussion. 
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Fig. 4.3.4 Semi-quantitative plot showing the relative sulfurization rates for Cu into 
Cu2S (a) and CuS (b) and for Bi and Sb into Bi2S3 (c) and Sb2S3 (d) with either 
elemental sulfur vapour (solid) or hydrogen sulfide (dashed), as functions of the 
corresponding calculated equilibrium thermodynamic constants. The y-values are 
arbitrarily chosen in order to fit the qualitative kinetic information obtainable from 
the present and from Haber’s works [147, 155]. The proposed relative y-values with 
no experimental evidence are depicted by bars starting from the abscissa. 
 

The solid lines in Fig. 4.3.4 correspond to the sulfurizations with 500 mbar S2(g) in 

the present study. The reactivity of Cu to form CuS is represented by point (b) in the 

solid line. For comparison, (c) and (d) are the relative reactivities of Bi and Sb 

forming Bi2S3 and Sb2S3, as extracted from the qualitative information of Fig. 4.1.1. 

The dashed lines in Fig. 4.3.4 correspond to the sulfurizations with 7 mbar H2S(g) in 

the work by Haber at al. [147, 155]. In this case, the formation of Cu1.8S from 

elemental Cu is represented by point (a), and the corresponding thermodynamic 

equilibrium constant was calculated using the data of the compositionally similar 

Cu2S. As inferred from Haber’s work, the lower sulfurization rate of Bi with H2S 

compared to Cu is represented by point (c) in the dashed line. In the diagram of Fig. 

4.3.4, the linear relationship between the observed sulfurization rates of Bi and Sb 

with elemental sulfur vapour and the corresponding thermodynamic equilibrium 

constants is represented by the solid line that joins points (c) and (d). Such linear 
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relationships may be due to a similar mechanism of sulfide formation. In this respect, 

it is relevant to highlight that Bi2S3 (Bismuthinite) and Sb2S3 (Stibnite) are 

isostructural [250]. By extrapolation of this free energy relationship to lower values 

of the thermodynamic equilibrium constant, it is possible to estimate the relative 

reactivity that Cu would show if the structures of its sulfides were similar to that of 

Bi2S3 and Sb2S3 and if their growth would also occur in a comparable way. 

Although no data about the sulfurization of Sb with hydrogen sulfide were found, 

Fig. 4.3.4 assumes that a free energy relationship similar to the one seen for S2(g) may 

exist between the sulfurization of Bi and Sb with H2S(g) (dashed line). Analogous 

considerations apply to the extrapolation of this line towards lower values of the 

equilibrium thermodynamic constant. 

Based on the assumption of linear free energy relationships, the sulfurization rates 

of Cu with both S2(g) and H2S(g) are expected to be lower than the corresponding 

reaction rates of Bi and Sb. The experimental evidence from the present and Haber’s 

works [147, 155] contradicts this expectation. In both cases, Cu seems to react more 

quickly with the sulfur-bearing molecule compared to Bi and Sb. Discussion of the 

possible causes for this disagreement follows. 

It is clear that the rates of formation of binary sulfides are affected by the 

morphology of the sulfide crystals that nucleate and grow on the surface of the base 

metal, since these interpose physically between the two reactants. For example, 

experiments on the electrochemical anodisation of Sb and Bi have shown that the 

nucleation and growth of the sulfides give rise to adherent films that envelop the 

unreacted metal [169, 170], so that one or both the reaction components need time to 

diffuse through the newly formed phase. 

For a qualitative indication of the structural compatibility between a metal and its 

own sulfide growing onto its surface, we can adapt the concept of the Pilling-

Bedworth ratio (RPB), originally developed by corrosion scientists for the 

investigation of metal oxide formation [228]. For a generic metal sulfide of formula 

MxSy, the adapted Pilling-Bedworth ratio RPB is given by Eq. 4.3.1. 

 

Eq. 4.3.1 MSMSMMMSMPB WxWxVVR
yxyxyx

ρρ==  

 

where V, ρ and W are the molar volume (mol·cm-3), the density (g·cm-3) and the 

molar mass (g·mol-1) of the metal (M) and its sulfide (MxSy), respectively. Fig. 4.3.5 

is a qualitative representation of the effects of the Pilling-Bedworth ratio on the 
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morphology of the growing sulfide layer. If this ratio is less than 1, the volume of the 

grown sulfide is smaller than that of the metal which it replaces, so that the sulfide 

film will be under expansion strain and will ultimately crack to form a cellular, 

porous structure (Fig. 4.3.5a). In such a case, the reaction rate may initially decrease, 

but it rises as soon as a critical sulfide thickness is attained and cracking occurs. If 

the RPB exceeds unity, a continuous enveloping film of sulfide should form which is 

free to expand outwards. This isolates the surface of the underlying metal from free 

contact with the sulfur atmosphere, hindering completion of the conversion (Fig. 

4.3.5b). However, if RPB is too high, the sulfide layer may flake off due to excess 

compression strains (Fig. 4.3.5c) [157]. 

 

 

 

Fig. 4.3.5 Schematic depiction of the effects of mutual density compatibility between 
a metal and its own sulfide growing onto the metal’s surface. Three cases are shown 
where the Pilling-Bedworth ratio is lower than (a), approximately (b) or exceeding 
one (c). 
 

The modified Pilling-Bedworth ratio provides a real estimate of the volume 

compatibility between metals and their sulfides. However, its consequences may 

vary depending on other anisotropic properties of both phases such as hardness, 

resilience and surface tension that are all complex functions of the crystallographic 

direction. Clearly, the processing conditions, as well as the sulfurizing agent 

employed and its pressure will have an effect on the formation of nuclei and on 

possible preferential directions of growth [264, 265]. In any case, the following 

qualitative results are obtained from computation of the Pilling-Bedworth ratios of 

the interfaces relevant to our study: 2.87 for Cu/CuS, 1.93 for Cu/Cu2S, 2.00 for 

Cu/Cu1.8S, 2.02 for Sb/Sb2S3 and 1.77 for Bi/Bi2S3. Among these cases, Cu/CuS has 

by far the highest RPB. Conversely, Bi/Bi2S3 has a particularly low value of RPB (>1) 

that could make Bi2S3 a physical barrier for the conversion reaction. Cu/Cu2S, 

Cu/Cu1.8S and Sb/Sb2S3 have very similar RPB. 

Overall, this simple approach seems to agree with the relative reactivity of Cu, Bi 

and Sb towards elemental sulfur vapour observed in this work, but fails in explaining 
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the relatively higher reactivity of Cu compared to Bi in the presence of hydrogen 

sulfide, as found by Haber [147, 155]. We now consider why the Pilling-Bedworth 

principle is not enough to explain the relative reactivity of Cu, Sb and Bi with H2S. 

Sulfurization of homogenous bulk brass with both sulfur and hydrogen sulfide has 

been shown to occur with selective reaction of Cu, forming a Cu2S layer that grows 

via outward cation migration accompanied by the appearance of pores localised at 

the alloy/Cu2S interface [266]. Similar kinetics of sulfide growth has been reported to 

occur under conditions where covellite (CuS) forms on the surface of bulk Cu [267] 

and, given the morphological and compositional analyses reported in sections 2.3 and 

3.3, it is likely to be the case also for the present study. It is known that the non 

stoichiometric phases Cu2-xS with x up to 0.066 show exceptionally high copper 

mobility, due to a mechanism based on cation vacancy exchange [268, 269]. During 

electrochemical anodisation of Cu electrodes, thin films of Cu2S are formed first, 

followed by CuS growth with anodic charge/time profile typical for control of the 

process via diffusion of Cu ions through the growing film [270, 271]. It has been 

suggested that if the grown sulfide phase shows defects only in the cation sublattice, 

the outward diffusion of metal is the main process occurring during the sulfurization 

(in terms of transport numbers, this corresponds to: t+ > t-) [272]. In such cases, the 

oxidation occurs at the metal sulfide/sulfur-source interface and voids are formed at 

the metal/metal sulfide interface, with degradation of the morphology and breakage 

of the film. 

On the other hand, the reported n-type conductivity of both Bi2S3 [273] and Sb2S3 

[274] may suggest that in both cases the defects involve mainly the anion skeleton so 

that the inward diffusion of the oxidizer is energetically more favourable than 

outward diffusion of Bi and Sb cations (in terms of transport numbers, this 

corresponds to: t- > t+). Indeed, a recent electrochemical impedance spectroscopy 

model is based on the assumption that anodic Bi2S3 grows via transport of sulfide 

vacancies [275]. 

It has been proposed that the sulfurization of metals by H2S involves a dissociative 

adsorption on the metal surface via reaction 4.3.6 [276]. 

 

Reac. 4.3.6 H2S (g) → H2 (g) + S
2- + 2(+) 

 

where (+) represents a positive elementary charge shared by the whole metal lattice. 

This process can also be seen as a reduction of the protons of H2S by free electrons 
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of the metal film. The sulfurization of Cu by H2S has been shown to initiate by 

germination [277]. This process is likely to occur at a surface defect, where the 

normal bonding in the metal lattice is unsatisfied [278]. The islands of the new phase 

grow laterally until they coalesce into a continuous film. At this point the growth is 

limited by the supply of metal cations towards the metal sulfide/gas interface [279], 

with the electroneutrality ensured by electron tunnelling [280]. As discussed earlier, 

the vacancy of the cation sublattices of Cu2S and Cu1.8S are responsible for the high 

mobility of Cu in these solids. Therefore, the reduction of the hydrogen atoms at the 

surface of the sulfide film is limited by Cu out-diffusion. On the other hand, Bi2S3 is 

likely to grow by S anions diffusion from the surface towards the inner part of the 

film. The average radius of the S2- anion (1.7 Å) is larger than the radii of Bi3+ (1.2 

Å) and Cu+ (0.9 Å) cations [254]. In the presence of H2S, Cu2S is likely to grow 

more rapidly than Bi2S3 because of the mechanism involving diffusion of the smaller 

Cu+ cations rather than the larger S2- anion. 

If we compare our sulfurization experiment with Haber’s based on H2S [147], it is 

possible to make some interpretations. The ∆G° of Cu sulfurization with elemental 

sulfur vapour is almost 3 times the one for sulfurization with hydrogen sulfide. 

Furthermore, the initial S2(g) pressure employed in our experiments is about 70 times 

the H2S pressure utilised in Haber’s work, which translates into a further 

enhancement of the thermodynamic driving force for formation of the binary 

sulfides. Due to the different mechanisms of sulfide growth, Bi and Sb are less 

affected than Cu by the concentration of the oxidizing agent. Therefore, due to the 

high sulfur partial pressure employed in the present work, Cu tends to react more 

quickly than Sb and Bi, forming segregated CuS crystals at the surface of the former 

precursor film. If the sulfur vapour is replaced by hydrogen sulfide at much lower 

pressure [147], the sulfurization reaction of Cu is slower (possibly also for kinetic 

reasons), and it occurs on a time scale that is more similar to the sulfurization of Bi 

and Sb. 

Gerein et al. [155] have shown that sulfur incorporation into co-sputtered Cu-Bi 

films from H2S at lower temperatures (300 °C) leads to amorphous copper sulfide 

with reduced lateral segregation of the binary phases and facilitated interdiffusion of 

Cu and Bi. The kinetic considerations of binary sulfide formation also serve as an 

explanation for the observed differences in the kinetics of ternary sulfide formation 

under different sulfurization conditions, as highlighted in Fig. 4.2.2. These 

differences are due to the consequences of the morphologies of the binary sulfides 
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grown. For example, CuS segregation at the film surface and the larger crystallite 

size observed in the present work translate into longer times and/or higher 

temperatures required for Cu3BiS3 to emerge and form completely, compared to the 

work by Haber et al. [147]. This phenomenon is probably due to compensation of the 

reduced CuS/Bi2S3 contact area that decreases the pre-exponential factor in the 

Arrhenius equation. 

Further support for the proposed explanation is also found in work by Binsma et 

al. [85], where sulfurization of stacked and co-deposited Cu-In films with either 

elemental sulfur vapour or hydrogen sulfide was investigated. The critical 

temperature for the formation of the ternary sulfide CuInS2 was more than 100 °C 

higher if elemental sulfur was employed in lieu of hydrogen sulfide. Furthermore, if 

sulfur was used as the sulfurizing agent, the stacked configuration with In on the top 

showed that CuInS2 can form at lower temperature, compared to the homogeneous 

configuration. The computed Pilling-Bedworth ratio for In/In2S3 is 2.03, which is 

very close to the corresponding value for Sb. In fact, this behaviour was originally 

attributed to the protection of the Cu layer by In. The resulting prevention of surface 

segregation of CuS ensures the preservation of the contact area between the phases 

and may be responsible for the reported improved kinetics of ternary sulfide 

formation. 

We have seen in section 4.2 the effects of increasing film thickness and decreasing 

pre-exponential factor on the kinetics of ternary sulfide formation. We can now 

investigate the effect on the TTR diagram of an increase of the activation energy for 

the ternary sulfide formation. An increase of the slopes for the lines corresponding to 

ts and tf in the modified Arrhenius plot is an indication of higher activation energy for 

nucleation and growth of the ternary sulfide. This may be caused by either a different 

(slower) diffusion mechanism, or by a change of the sign of the Gibbs free energy of 

reaction 4.1.5 in the low temperature regime. As is emphasized in section 4.4, sulfur 

pressure has an important thermodynamic (de)stabilization effect on sulfide phases. 

For example, Nair et al. demonstrated that it is possible to obtain Cu3BiS3 by 

interfacial diffusion of metal atoms in CuS-Bi2S3 films annealed in air at 

temperatures as low as 250 °C for 1 hour [84]. These results suggest that under the 

conditions employed by Nair, the ternary sulfide formation is thermodynamically 

favourable and occurs at a much higher rate than in the present and Haber’s works 

where sulfur is introduced by reaction between a sulfur-bearing gas phase and the 
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metal films. As already mentioned in section 4.1, reaction 4.3.7 requires some sulfur 

to be released from the solid chalcogenide film. 

 

Reac. 4.3.7 12CuS (s) + 2Bi2S3 (s) → 4Cu3BiS3 (s) + 3S2 (g) 

 

At temperatures where sulfur vapour is stable, annealing in air provides no 

thermodynamic constraint on its release, as is apparent from the results of Nair et al. 

[84]. However, this may not be the case if the thermal treatment is performed in the 

presence of an excess sulfur vapour, e.g. in the present work. 

It is reasonable to believe that in our case the stabilization of CuS offered by the 

excess sulfur vapour may also be the cause for the delayed or even unobserved 

Cu3BiS3 formation in the time frame up to 16 hours at 350 and 270 °C, respectively 

(Fig. 4.1.3). In Haber’s work, where hydrogen sulfide is employed, the Cu 

intermediate phase is Cu2-xS [147]. The reaction of Cu2-xS with Bi2S3 occurs with a 

reduced amount of evolving sulfur (cf. reaction 4.1.5). The critical times ts and tf 

should be determined in order to estimate the rate of ternary sulfide formation at low 

temperature, and investigate if the completion delay observed in the present work is 

simply due to reduced contact area or it is also affected by the residual sulfur 

pressure inside the vessel. In fact, different sulfurizing conditions such as a different 

sulfur source and/or its pressure are expected to affect the shape of the TTR diagram, 

not just because of kinetic factors (e.g. due to different morphology of the grown 

binary sulfides), but also for thermodynamic reasons (e.g. mass action in reaction 

4.1.5). Fig. 4.3.6 shows the theoretical effect on a hypothetical TTR diagram of an 

increase of the activation energy for ternary sulfide formation at low temperature, 

due to the presence of elemental sulfur vapour at different pressures. 

A similar explanation can be given for the interesting kinetic observations reported 

by Binsma et al. on CuInS2 [85]. At 375 °C they observed the formation of a single-

phase CuInS2 film via sulfurization of co-deposited Cu-In metal precursors with 

elemental sulfur vapour within 2 hours. However, a similar process carried out at 325 

°C resulted in the presence of additional binary sulfides, even after 100 hours of 

treatment. No explanation for this phenomenon was provided by Binsma et al. [85], 

but it seems reasonable to think that thermodynamic stabilization of CuS by the high 

sulfur pressure (liquid sulfur in equilibrium in a sealed glass ampoule) may be the 

cause for the failure of the interdiffusion reaction to reach completion. 
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Fig. 4.3.6  Theoretical effect (drawn) of an activation energy increase (b,c,d), on the 
shape of the reaction curve (a) of a TTR diagram at low temperature. Inset (1): 
corresponding Arrhenius plot. Inset (2): example of sulfur chemical potential profile 
at T = T1 for increased sulfur partial pressure (b,c,d) for CuS+Bi2S3 vs Cu3BiS3+S2. 
 

 

Section 4.4 analyses potential compound decomposition during thermal treatments, 

with emphasis on the thermodynamic and kinetic aspects. 
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4.4 Elemental losses during the thermal treatments of 

chalcogenide layers 
 

The formation of a functional film, such as the absorber layer in a solar cell device, 

must be performed under conditions where decomposition of the compound of 

interest is prevented as far as possible. For example, the loss of Sn from CZTS thin 

films is a well known issue [154], and it has attracted recent attention in several 

important fundamental studies [143, 281]. 

In our specific case, the losses of Sb and Bi are also a matter of concern for the 

achievement of good quality single-phase CuSbS2 and Cu3BiS3 films. In fact, we 

have seen in section 2.3 that evaporated Sb films treated at 350 and 400 °C in excess 

sulfur vapour under a N2 flux of about 10 ml·min
-1 became semi-transparent, 

showing evidence of elemental depletion [146], while evaporated films of CuSbS2 

underwent substantial morphology degradation and Sb depletion to the composition 

Cu3SbS3, when annealed in the absence of chalcogen up to 500 °C. 

An overview of the tabulated vapour pressures above solid Sb2S3 and Bi2S3 is 

provided in Fig. 4.4.1 [282-284]. 

 

 
 
Fig. 4.4.1 Overview of the tabulated vapour pressures of Sb2S3 according to (a) 
Veselovskii [285], (b) Gospodinov et al. [286], (c) Ustyogov et al. [287], (d) 
Ryazantsev et al. [288], (e) Jones [289], (f) Matei et al. [282], (g) Piacente et al. 
[284], and of Bi2S3 (h) according to Piacente et al. [283]. (The data were taken from 
[282-284]). 
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The phenomenon of Sb depletion is attributed to a chemical vapour transport process 

caused by the excess sulfur with the formation of an Sb-bearing volatile compound 

such as Sb2S4, as discussed later. Yang et al. were the first to report on this transport 

behaviour, and they made use of it for the synthesis of hollow Sb2S3 nanotubes, 

although no explanation was offered [290]. The method consisted of a treatment of 

Sb2S3 powder at 500 °C in excess sulfur and under a flux of 10 ml·min
-1 of Ar. These 

conditions resemble closely our sulfurization treatments of the Cu-Sb metal 

precursor films reported in section 2.2, therefore it is reasonable to expect an analogy 

between the two cases. 

Gerein et al. [155] first reported the issues concerning the synthesis of 

morphologically good single phase Cu3BiS3 films by sulfurization of metal 

precursors with hydrogen sulfide over a reasonably short time. In fact, they reported 

that heat treatment in vacuum at 600 °C resulted in the decomposition of Cu3BiS3 

from the films, with losses of Bi2S3 and the sole preservation of crystalline Cu2S 

(Chalcocite). Similarly, any treatment performed at temperature higher than 300 °C 

caused some Bi losses, restricting the upper temperature limit of the process, which 

in turn imposed long times (>16 hours) to accomplish the full metal conversion 

[147]. Piacente et al. have shown that solid Bi2S3 decomposes into liquid Bi and 

gaseous S2 in the temperature range 341-422 °C (Fig. 4.4.0h) [283]. However, due to 

the extremely low vapour pressure of elemental Bi [291] (~10-9 bar at 400 °C), such 

a reaction does not explain the Bi losses reported by Gerein et al. [155]. A one-step 

method for the synthesis of Cu3BiS3 thin films with good compositional and 

morphological properties was designed by the same group, with the intent to 

overcome these restrictions. This process is based on reactive RF and DC sputter 

deposition of CuS and Bi on substrates held at 250-300 °C [208]. Although this 

approach is appealing for its simplicity on a laboratory scale, the combined use of 

DC and RF sputtering might pose technical and economical issues for potential 

scale-up. Therefore, the development of a two-stage process may be desirable. 

As reported in section 3.4.3, no appreciable Bi depletion was found in the present 

work for converted films of Cu3BiS3 even at 550 °C in the time frame up to 16 hours 

under an estimated S2(g) pressure of 23 mbar. The comparison with Haber’s work 

[147] (where sulfurization in H2S at 7 mbar at temperatures higher than 300 °C 

resulted in Bi depletion), suggests that the presence of a background pressure of 

sulfur vapour has a critical effect on the decomposition equilibria of Cu3BiS3, which 

seem to involve molecular sulfur. 
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If effective routes for the synthesis of CuSbS2 and Cu3BiS3 thin films are to be 

designed, the chemical equilibria that hide behind these reported elemental losses 

deserve further attention. This is the intent of the present section. A thermochemical 

approach is introduced here, in order to investigate the plausible decomposition 

reactions of the Sb and Bi sulfides in more detail. Hua et al. [292] reported an 

extensive review of the complex chemistry of the gaseous Sb-S system for their work 

on the volatilisation kinetics of Sb2S3 in steam atmosphere. More than 22 species 

seem to be involved. In our treatment, the Sb-bearing decomposing species 

considered is Sb2S3, because no experimental thermochemical data are available for 

CuSbS2. We now demonstrate with Hess’ law that the figures resulting from this 

approximation can only overestimate the losses. Indeed CuSbS2 is more stable than 

Sb2S3 and Cu2S up to 551 °C, where it melts congruently [293]. Therefore, reaction 

4.4.1 can be assumed to have a positive free energy change up to 551 °C. 

 

Reac. 4.4.1 2CuSbS2 (s) → Cu2S (s) + Sb2S3 (s) 

 

A similar consideration applies to Cu3BiS3, with Bi2S3 being the solid Bi-bearing 

decomposing species considered, since the binary sulfide (as for CuSbS2) would 

ultimately be the result of the solid state decomposition [218] (reaction 4.4.2). 

 

Reac. 4.4.2 2Cu3BiS3 (s) → 3Cu2S (s) + Bi2S3 (s) 

 

Fig. 4.4.2 shows the Cu2S-Sb2S3 and the Cu2S-Bi2S3 pseudo-binary equilibrium 

phase diagrams, as reported by Sugaki et al. [218, 293]. From such diagrams is 

apparent that the free energy changes of reactions 4.4.1 and 4.4.2 are positive 

respectively up to 551 °and 527 °C. 

Fig. 4.4.3 is a graphical representation of the energetic diagrams of the binary 

sulfides (Cu2S + Sb2S3 and Cu2S + Bi2S3), ternary sulfides (CuSbS2 and Cu3BiS3) 

and of generic Sb- and Bi-bearing gaseous compounds. Since ∆G°(a) < 0, it follows 

that ∆G°(c) > ∆G°(b) > 0. By substitution in Eqs. 4.4.1 and 4.4.2 it follows that the 

equilibrium pressure of the Sb- and Bi-bearing gaseous compounds above solid 

Sb2S3 and Bi2S3 are higher than respectively above solid CuSbS2 and Cu3BiS3. 
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Fig. 4.4.2 Cu2S-Sb2S3 (a) and Cu2S-Bi2S3 (b) equilibrium pseudo-binary phase 
diagrams, as reported by Sugaki et al. [218, 293]. The CuSbS2 phase (Chalcostibite) 
melts congruently at 551 °C (a), while Cu3BiS3 (Wittichenite) decomposes 
peritectically at 527 °C (b). 
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As a consequence, the computation performed in the present study is an 

overestimation of the Sb and Bi losses that would occur at equilibrium. 

 

 
 
Fig. 4.4.3 Graphical representation of the energetic diagram of condensed Cu2S + 
Sb2S3, CuSbS2 and of a generic gaseous Sb-bearing compound. Since ∆G°(a) < 0, 
∆G°(c) > ∆G°(b) > 0, meaning that the pressure of the Sb-bearing gaseous 
compound in equilibrium with solid Sb2S3 is higher than with solid CuSbS2 (see Eqs. 
4.4.1 and 4.4.2). Therefore, the computation performed in the present study gives an 
overestimation of the Sb losses that would occur at the equilibrium. 
 

Many Sb- and Bi-bearing species could potentially be involved, but the following are 

those for which thermochemical data in the temperature range of interest are 

available: Sb (g), Sb2 (g), Sb4 (g), SbS (g), and BiS (g), Bi2 (g) and Bi (g) [259, 294]. These 

product species have a high free energy content, and they have only been reported in 

the gaseous form (with the exception of condensed Sb and Bi). Consequently, the 

scenario is slightly different from CISSe [295, 296] and CZTSSe [156], because the 

corresponding decompositions cannot occur in multiple steps, as proposed by Scragg 

et al. for CZTS [281]. 

The decomposition reactions investigated are as follows (4.4.3-4.4.9) [157]. 

 

Reac. 4.4.3 Sb2S3 (s) → 2Sb (g) + 3/2S2 (g) 

 

Reac. 4.4.4 Sb2S3 (s) → Sb2 (g) + 3/2S2 (g) 

 

Reac. 4.4.5 Sb2S3 (s) → 1/2Sb4 (g) + 3/2S2 (g) 
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Reac. 4.4.6 Sb2S3 (s) → 2SbS (g) + 1/2S2 (g) 

 

Reac. 4.4.7 Bi2S3 (s) → 2BiS (g) + 1/2S2 (g) 

 

Reac. 4.4.8 Bi2S3 (s) → 2Bi (g) + 3/2S2 (g) 

 

Reac. 4.4.9 Bi2S3 (s) → Bi2 (g) + 3/2S2 (g) 

 

For each of the above reactions, the equilibrium pressure constant can be calculated 

according to equation 4.4.1. 

 

Eq. 4.4.1 ∏=
i

iP PK
j

ν
 

 

where j is the reaction number, i is the chemical species in each reaction and ν is the 

corresponding stoichiometric coefficient (N.B. that the convention employed for the 

sign of ν is minus for the reagents and plus for the products). 

The relationship between equilibrium constant and standard Gibbs free energy 

change (∆G°) of a reaction is known (Eq. 4.4.2). 

 

Eq. 4.4.2 )ln( PKRTG −=°∆  

 

where R is the universal ideal gas constant and T is the absolute temperature. 

The pressures of the Sb- or Bi-bearing molecules of interest can be obtained 

combining Eqs. 4.4.1 and 4.4.2 (Eqs. 4.4.3-4.4.9) [157]. 

 

Eq. 4.4.3 4/32

)(2)( gg S

RTG

Sb PeP °∆−=  

 

Eq. 4.4.4 2/3

)(2)(2 gg S
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Sb PeP °∆−=  

 

Eq. 4.4.5 32
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Eq. 4.4.6 4/12

)(2)( gg S

RTG

SbS PeP °∆−=  

 

Eq. 4.4.7 4/12
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RTG

BiS PeP °∆−=  

 

Eq. 4.4.8 4/32

)(2)( gg S

RTG

Bi PeP °∆−=  

 

Eq. 4.4.9 2/3

)(2)(2 gg S

RTG

Bi PeP °∆−=  

 

An estimation of the tendency for the Sb- and Bi-containing gaseous species to 

evolve from solid Sb2S3 and Bi2S3 can be obtained if the temperature dependence of 

the standard Gibbs free energy changes for reactions 4.4.3-4.4.9 is known. Equations 

4.4.3-4.4.9 are computed as functions of both the temperature and the S2 (g) partial 

pressure within the chamber. Figs. 4.4.4-4.4.5 are the graphical representations of 

these pressure equilibria for the Sb-S and Bi-S systems respectively. 

In principle, all these processes can occur simultaneously, and their relative 

importance can be understood if a 2D projection of the 3D intersections among all 

the surfaces is plotted (Figs. 4.4.4d and 4.4.5d). 

Figs. 4.4.4d and 4.4.5d give only the relative importance of each process, but they 

do not help to identify the actual equilibrium extent of the corresponding processes. 

On the other hand, 3D plots like Figs. 4.4.4a-b and 4.4.5a-b are often not easy to 

understand. Therefore, the 2D projections in Figs. 4.4.4c and 4.4.5c are shown, in an 

attempt to quantify the magnitude of each process. As indicated in the 3D plots, a 

linear plane is added representing a “threshold pressure” that is identified by Eq. 

4.4.10. 

 

Eq. 4.4.10 P* = 10-8 bar K-1·T 
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Fig. 4.4.4 3D plot showing the pressures of Sb (g), Sb2 (g), Sb4 (g) and SbS (g) 
(Eqs.4.4.3-4.4.6) as functions of temperature and partial pressure of S2 (g) in 
equilibrium with Sb2S3 (s), as per reactions (4.4.3-4.4.6) with the addition of the 
threshold pressure plane (Eq. 4.4.10) (a-b). 
Intersection among the pressure equilibria functions of the Sb-bearing gaseous 
species (d) and of the latter with the threshold pressure plane (c) plotted as 2D 
projections of the 3D plot on the x-y plane. 
Fig. 4.4.4c can be divided into four regions. In region 1 the pressure of the Sb-
bearing gaseous species is below the threshold pressure value. In region 2, Sb4 (g) is 
the only species that shows a pressure exceeding the threshold value, while in region 
3 and 4, Sb2 (g) and SbS(g) also contribute progressively to the Sb depletion process. 
Careful inspection of Fig. 4.4.4b, also reveals that Sb(g)  satisfies the threshold 
conditions at the very corner of minimum sulfur pressure and maximum temperature 
considered. Fig. 4.4.4d shows the regions of the sulfur pressure/temperature diagram 
with different relative magnitude of the pressure for each volatile species, which is as 
follows [157]. 
 
Region 1: SbS (g) > Sb4 (g) > Sb (g) > Sb2 (g) 
Region 2: Sb4 (g) > SbS (g) > Sb (g) > Sb2 (g) 
Region 3: Sb4 (g) > SbS (g) > Sb2 (g) > Sb (g) 
Region 4: Sb4 (g) > Sb2 (g) > SbS (g) > Sb (g) 
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Fig. 4.4.5 3D plot showing the pressures of Bi (g), Bi2 (g), and BiS (g) (Eqs.4.4.7-4.4.9) 
as functions of temperature and partial pressure of S2 (g) in equilibrium with Bi2S3 (s), 
as per reactions (4.4.7-4.4.9) with the addition of the threshold pressure plane (Eq. 
4.4.10) (a-b). 
Intersection among the pressure equilibria functions of the Sb-bearing gaseous 
species (d) and of the latter with the threshold pressure plane (c) plotted as 2D 
projections of the 3D plot on the x-y plane. 
Fig. 4.4.5c can be divided into four regions. In region 1 the pressure of the Bi-
bearing gaseous species is below the threshold pressure value. In region 2, Bi2 (g) is 
the only species that shows a pressure exceeding the threshold value, while in region 
3 and 4, Bi (g) and BiS(g) contribute progressively to the Bi depletion process, as can 
be also inferred from Fig. 4.4.5b. 
Fig. 4.4.5d shows the regions of the sulfur pressure/temperature diagram with 
different relative magnitude of the pressures for each volatile species, which are as 
follows [157]. 
 
Region 1: BiS (g) > Bi (g) > Bi2 (g) 
Region 2: Bi (g) > BiS (g) > Bi2 (g) 
Region 3: Bi (g) > Bi2 (g) > BiS (g) 
Region 4: Bi2 (g) > BiS (g) > Bi (g) 
Region 5: Bi2 (g) > Bi (g) > BiS (g) 
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The choice for the temperature coefficient in Eq. 4.4.10 that defines the plane is 

arbitrary. In Figs. 4.4.4-4.4.5 the value 10-8 bar K-1 has been chosen, as to delineate 

the pressure limit above which the loss of Sb and Bi from films of CuSbS2 and 

Cu3BiS3 1 µm thick exceeds 10% of the original content per cm
2 area of film and 

dm3 capacity of sulfurization furnace (calculated from P = nRT/V, based on the 

difference between the number of moles of Sb per cm2 of film and the number of 

moles of Sb-bearing gas at the equilibrium per dm3 of furnace under static 

atmosphere conditions). The P* plane cuts the pressure equilibria functions of the Sb- 

and Bi-bearing gaseous species in Figs. 4.4.4a-c and 4.4.5a-c respectively. By doing 

so it identifies the species that have the potential to contribute most to the loss 

mechanisms. The 2D projections obtained from these intersections (Figs. 4.4.4c and 

4.4.5c) define the sulfur pressure / temperature conditions under which these 

processes occur and exceed the chosen extent. 

Among the decomposition routes computed in Fig. 4.4.4, the evolution of Sb4(g) 

and S2(g) through reaction 4.4.5 should be the major contributor to Sb depletion in the 

ranges of S2 (g) pressure and temperature of our interest. At 400 °C and 10
-10 mbar of 

S2 (g), an equilibrium partial pressure of ~ 10
-1 mbar can be estimated for the Sb4 (g) 

species in equilibrium with solid Sb2S3. In these conditions it is very likely that the 

use of a gas flux and/or a large volume of the furnace would determine Sb losses. 

This may occur via mass transport and/or saturation of the vessel, especially with 

prolonged dwell times that would allow the equilibrium to be reached. From Fig. 

4.4.4c it is apparent that a S2 (g) partial pressure of 0.1 mbar is sufficient to bring 

down the equilibrium pressures of the Sb-bearing gas species to negligible values. 

However, mass spectrometric studies of the vapour phase above solid Sb2S3 indicate 

SbS(g) as the dominant component. As a consequence, some thermodynamic models 

developed to describe the composition of epithermal ore fluids (volcanic eruptive 

gases) are based on the assumption that Sb is transported primarily through this 

diatomic molecule (Spycher et al. [297] in Zakaznova-Iakovleva et al. [298]). As 

reported in section 2.2, this may be the case for the evaporated CuSbS2 samples 

annealed in absence of chalcogen, but for the Cu-Sb metal precursor films, a large 

excess of elemental sulfur vapour was employed during the sulfurization treatment. 

Therefore, the Sb losses observed in that case cannot be attributed to reactions 4.4.3-

4.4.6, because they would be all effectively suppressed by Le Chatelier effect. It 

follows that a different process must have occurred: one in which sulfur molecules 

take part on the left hand side of the chemical equation. A possibility might be given 
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by the molecule Sb2S4, which was suggested from mass spectrometric studies by 

Steblevskii et al. [299] to compose part of the vapour above Sb2S3 in the temperature 

range 377-467 °C. Antimony thioantimonate (Sb2S4) is also known as an amorphous 

solid. This suggests it may not be an incommensurate species resulting from 

elemental sulfur intercalation into the lattice of Sb2S3 [300], but it may rather exists 

as a molecular solid. Its decomposition into solid Sb2S3 and sulfur in the temperature 

range 200-400 °C is a process exploited in rheology, because the formation of 

gaseous sulfur decreases friction between gears [301]. The reverse reaction may 

occur (reac. 4.4.10). 

 

Reac. 4.4.10 Sb2S3 (s) + 1/2S2 (g) → Sb2S4 (g) 

 

Steblevskii et al. [302] suggest that reaction 4.4.10 occurs between S2 (g) and either 

gaseous or molecular Sb2S3. Such a scenario would open the possibility for Sb to be 

transported in excess sulfur and would explain the Sb2S3 transport in excess sulfur 

reported by Yang et al. [290]. Depending on the sign of the reaction enthalpy, 

gaseous Sb2S4 will then incur decomposition back to Sb2S3 (s) + S2 (g) in the hot or 

cold parts of the furnace. 

As in the Sb-S case, Fig. 4.4.5 can help identify the processes that are most likely 

to be responsible for the depletion of Bi from Bi2S3, and so from Cu3BiS3 too. At 

high temperature, according to the thermochemical computation, the species mostly 

contributing to the Bi losses is Bi2 (g) through reaction 4.4.9. This reaction could be 

responsible for the Cu3BiS3 decomposition from the films annealed in vacuum at 600 

°C, as reported by Gerein et al. [155] and for any Bi losses reported for treatments at 

temperatures higher than 300 °C [147]. Furthermore, it would explain why Bi 

depletion was not observed in the present work. Indeed an atmosphere containing 23 

mbar of sulfur vapour (at equilibrium) is more than capable of suppressing the 

compound decomposition by exerting mass action. 

It must be highlighted that this is a purely thermodynamic treatment and, 

therefore, it only gives the conditions of surface instability. Information on the actual 

decomposition rates can only be attained with kinetic investigations. It is reasonable 

to think that the reactions involving the least number of metal-S bond breakages are 

those showing the lowest activation energy and may dominate for kinetic reasons. 

As seen in section 4.3 for the low temperature region of the TTR diagram, due to 

the equilibria of reactions 4.4.3-4.4.9 the pressure of sulfur within the system also 
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affects the shape of the reaction curves in the upper region of temperatures. Fig. 4.4.6 

is a schematic representation of the effect of sulfur pressure on the upper limit of the 

curves for ternary sulfide formation. 

 

 

 

Fig. 4.4.6 Schematic representation of the effect of decreasing sulfur pressure (b,c,d) 
on the ternary sulfide formation curve (a) in the high temperature range due to 
compound decomposition. Inset (1): corresponding Arrhenius plot. Inset (2): 
example of sulfur chemical potential profile at T = T2 for decreasing sulfur pressure 
(b,c,d) for a potential decomposition route. 
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Concluding remarks for part A 
 

In chapters 2 and 3 experimental details concerning the formation of CuSb(S,Se)2 

and Cu3BiS3 thin films have been outlined, along with the morphological, 

compositional, structural and photoelectrochemical results. The synthesis followed a 

two-stage route consisting of the formation of metal or chalcogenide precursor films 

and subsequent conversion into the desired compound by reaction with 

chalcogenizing atmospheres. Conditions were identified for the formation of 

semiconductor thin films with band-gap energies suitable for photovoltaic 

applications, ranging from ~1.2 to ~1.5 eV. However, the measured photocurrent 

conversion efficiencies of these films were too poor to deserve device completion 

tests. 

Based on the conclusion that good semiconductor properties can only be attained 

if suitably compact single-phase layers are synthesised, efforts were directed to the 

study of the reaction chemistry of ternary sulfide formation (chapter 4). This study 

was made possible by the combined structural and morphological characterization of 

Cu-Bi-S films obtained with an RTP furnace. Such an approach allowed 

determination of the phase evolution of the system as a function of sulfurization time 

and temperature. It became clear that the conversion of the metal precursor films into 

ternary sulfides in the presence of elemental sulfur vapour occurs via prior separation 

of the binary sulfides and their subsequent solid state reaction. The analysis of these 

results allowed the construction of Time-Temperature-Reaction diagrams for the 

description of the sulfurization reaction under different conditions. Important kinetic 

information was extracted from the TTR diagram. Particularly, it was found that the 

activation energy for the formation of Cu3BiS3 thin films by diffusion across the 

CuS-Bi2S3 interface is considerably higher than the corresponding energy for CuSbS2 

reported in the literature for bulk diffusion couple experiments. This result seems 

consistent with the comparative atomic radii of Bi and Sb in similar sulfides. 

The thermodynamics of sulfurization reactions were assessed via computation of 

the free energy changes as a function of the temperature. A linear relationship was 

found between the free energy changes and the relative reaction rates for the 

reactions of Sb and Bi. By contrast, the sulfurization reactions of Cu with both 

elemental sulfur vapour and hydrogen sulfide do not fit in the linear free energy 

relationship found for Sb and Bi. This is explained by the fact that, despite the lower 
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exoergonicity, Cu is much more reactive than Sb and Bi with both elemental sulfur 

vapour and hydrogen sulfide. A plausible explanation for this phenomenon was 

given. This takes inspiration from Corrosion Science and considers the role of 

density compatibility between metals and corresponding binary sulfides growing 

onto their surface. Modified Pilling-Bedworth coefficients were calculated for the 

interfaces relevant to our experimental work: Cu/CuS, Sb/Sb2S3, Bi/Bi2S3, as well as 

Cu/Cu2S, Cu/Cu1.8S and In/In2S3 for comparison with key articles from the literature. 

The coefficients seem to be in qualitative agreement with the proposed different 

mechanisms of binary sulfide growth, which in turn are the cause for prominent 

phase segregation of CuS in the presence of elemental sulfur vapour observed for 

both Cu-Sb and Cu-Bi systems. These considerations allowed a sound interpretation 

of the results obtained in this work and made possible a critical comparison with 

those reported in other literature resources. Particular attention was given to the 

different sulfurizing conditions and their effects on the structural and morphological 

properties of the films produced. For example, it was found that the Pilling-Bedworth 

argument fails to explain the higher reactivity of Cu towards hydrogen sulfide, 

compared to Bi. In such case the different reactivity may be attributed to the different 

radii of the ions involved in the growth of the binary sulfide (either Cu+ or S2-). In 

fact, diffusion of Cu cations is expected for Cu-S phases, where the cation sublattice 

is generally defective, while sulfide anions are likely responsible for the growth of 

Sb2S3 and Bi2S3. 

Our findings indicate that the early stages of the processing have a strong effect on 

the growth of the intermediate phases, which were shown to influence the kinetics of 

ternary sulfide formation and the morphological quality of the layers. Furthermore, 

the composition of the atmosphere during the process determines if the ternary 

sulfide can grow or is subject to decomposition or incomplete formation. 

In summary, the following aspects and their impact on the kinetics of ternary 

sulfide formation have been identified (Fig.CA1), with the objective of formulating 

some general rules for the design of effective synthetic routes. 

(1) Extent of intermediate phase segregation and/or crystallite size (section 4.2) 

(2) Thermodynamic (de)stabilization at low temperature (section 4.3) 

(3) Thermodynamic (de)stabilization at high temperature (section 4.4) 

All these points are related to the chalcogenizing conditions employed during the 

synthesis, either directly, as per (2) and (3) or indirectly (1). 
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Fig. CA1 Schematic summary of the effects of secondary phase segregation and/or 
crystallite size (1) and phase (de)stabilization due to an increase of sulfur partial 
pressure (2,3) on the shape and position of the ternary sulfide formation curves in a 
TTR diagram. Inset: corresponding Arrhenius plot. 
 

Other parameters can affect point (1). One example can be the configuration of the 

metal precursor film. Although this aspect has not been thoroughly investigated, it 

can be concluded that the sulfurization of homogeneous Cu-Bi metal precursors did 

not seem to involve a simpler reaction pathway compared to the stacked 

configuration. This was attributed to both the particularly low temperature of the 

eutectic reaction in the Cu-Bi phase equilibria and to the strongly different reactivity 

of Cu and Bi towards sulfur. As discussed in section 4.2, the combination of these 

two aspects was believed to be the cause of the more pronounced detrimental phase 

segregations observed with the co-electroplated metal precursors compared to the 

stacked films. 

Phase segregation is inherently expected with any two-stage process consisting of 

precursor film conversion by mass transfer from a gas or liquid phase followed by 

solid state reaction. It is obvious that this intrinsic process flaw becomes more 

important as the complexity of the system considered increases [56]. On the other 

hand, since the simplicity of such a process makes it a route with great industrial 
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appeal, endeavouring to find possible ways to minimise intermediate phase 

segregations is worthwhile. In fact, it seems clear that the promising results recently 

reported on thin CIGSSe and CZTSSe films obtained with a solution-particle 

approach (e.g. where the binary sulfides are dissolved in hydrazine and spin-coated) 

have to do with the fact that the chalcogen in already present in the precursor film 

and does not have to be introduced at a second stage [54, 58, 303]. Therefore, the 

design of the conditions for successful thin-film formation with the two-stage process 

requires the choice of an appropriate precursor film configuration as well as fine-

tuning of the reactive atmosphere composition. This may involve variation of 

temperature, pressure and kind of chalcogenizing species during the conversion 

treatment, in order to suit the metal precursor chemistries. For example, a less 

reactive chalcogenizing atmosphere may be chosen at the early stages of the 

treatment in order to reduce detrimental phase segregations of the more reactive 

components of the system. The conditions can then be made more reactive to 

accommodate the lower reactivity of the other components. In this context, Merdes et 

al. have reported excellent improvements of CIGS reaction progress using an RTP 

procedure with careful adjustment of temperature profile and sulfur partial pressure 

[304]. Enhancement of morphological and photoactive properties of CZTS thin-films 

have been reported by Maeda et al. with a sulfurization method employing hydrogen 

sulfide at low concentration (3%) and CZTS metal precursors with presumably high 

(although not reported) surface area obtained with a sol-gel method [305]. The 

nucleation rate of the binary chalcogenides is likely to be reduced by less reactive 

chalcogenizing atmospheres. This should lead to a reduction of the extent of 

secondary phase segregation and, in some cases, to the formation of amorphous 

intermediate films [155]. Unfortunately if the surface area of the metal precursor is 

low, this procedure may have the side effect of reducing the overall reaction rate, 

with the result that longer times may be required for the chalcogen uptake to 

complete [147]. The use of porous metal precursor films may help to compensate for 

the reduced driving force. High surface areas should also contribute to compensate 

for the differing levels of reactivity of the precursor metals (e.g. Cu and Bi or Sb), 

with potential morphological benefits. In the present work, porous Cu-Bi metal 

precursors were serendipitly produced via co-electrodeposition from an alkaline 

aqueous solution. Unfortunately, the novelty of these precursors and their potential 

value for conversion into Cu3BiS3 with a reduced reactivity of the sulfurizing 

atmosphere were not appreciated sufficiently. The Cu-Bi porous precursors were 
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sulfurized under highly reactive conditions (500 mbar S2). Despite this high 

reactivity, the low melting temperature of Bi (270 °C) made difficult to prevent Bi 

melting and segregation from the homogeneous matrix of the precursor film if the 

heating rate employed during the sulfurization treatment was 600 °C·min-1. 

Nevertheless, heating rate of 5 °C·min-1 resulted in the formation of films with 

compact morphology and virtually no volume change from the precursor. Small 

grain size may be expected if a high surface area metal precursor is sulfurized at low 

temperature. Consequently, a subsequent annealing stage at higher temperature may 

be necessary to ensure complete diffusion of the binary sulfides and enhancement of 

the crystalline properties of the films. In the present work, sulfurization of Cu-Bi 

porous precursors at 500 °C (with 500 mbar S2 and at a rate of 5 °C·min
-1) produced 

phase pure Cu3BiS3 films with average grain size of 1 µm. 

As highlighted by points (2) and (3), there are upper and lower limits to the 

temperatures that can be employed during the treatment if single-phase ternary 

sulfide films are to be obtained. These limits depend on the partial pressure of 

chalcogen within the system, and attention should be given to them at the stage of 

conversion treatment design. The lower temperature limit is set by the equilibrium 

between the ternary (multinary) chalcogenide and any binary (lower order) 

chalcogenide in which the metal shows a higher oxidation state. Such equilibria are 

governed by the partial pressure of chalcogen in the system in such a way that an 

increase of sulfur pressure destabilises the ternary sulfide and favours the formation 

of sulfides with higher oxidation state of the metal cation. A typical example of 

equilibrium governed by the sulfur partial pressure is given by Cu, which is often 

present as Cu(I) in the compounds of interest, but can be oxidised to Cu(II) by a 

sulfur excess. Conversely, the upper temperature limit is set by the potential 

compound decompositions with formation of gaseous phases, subject to depletion. In 

such cases, the effect of the chalcogen pressure is opposite. An extension of the time-

temperature stability range can often be achieved with an increase of the chalcogen 

partial pressure. The stoichiometry of the process will determine the effect of the 

chalcogen excess on the reaction suppression. 

When designing the annealing treatment of a new compound, care should be taken 

to identify any possible volatile species and quantify the extent of the decomposition 

reaction at the temperature of interest in a closed system. This information will allow 

the determination of the appropriate atmosphere composition for a process that will 

preserve the stability of the compound. Due to their relatively low decomposition 
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temperatures, CuSb(S,Se)2, CuBiS2 and Cu3BiS3 may present intrinsic limitations to 

the achievement of device-quality semiconductor properties. Indeed, we have seen in 

section 1A that for CI(G)S these properties are only attained if the level of crystalline 

defects detectable with Raman spectroscopy is strongly reduced [149]. 

In our experiments we investigated the conditions for the formation of single-

phase films, and XRD was employed to estimate their quality. The poor 

photoelectrochemical properties observed may arise from a high level of XRD-

invisible defects, whose concentration may not be reduced any further due to the 

temperature limitations imposed by the decomposition equilibria. The conditions for 

the formation of device-quality absorber films should be obtained with the addition 

to the TTR diagram of isopleths curves representing the points where the defect 

concentration, as obtained e.g. from Raman spectroscopy [306], is below a suitably 

defined level. 
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Introduction to part B: fundamental debates on CZTS 
 

Cu2ZnSnS4-xSex (CZTS) is currently attracting a great deal of attention for 

application as absorber material in thin film solar cells due to its low cost, low 

toxicity and suitable optoelectronic properties [47]. To date, the record efficiency for 

photovoltaic devices based on this sulfoselenide is about 10%, with cells containing a 

liquid-processed layer [54, 58]. Although many studies are being performed on thin 

films of this material, some key information may better be obtained by studying it in 

a single crystalline or bulk form: crystal and electronic structures [72], phonon 

frequencies and line widths of Raman active modes, extension of the compositional 

homogeneity range [76]. 

We reported in section 1.4 on the structural derivation of CZTS from the 

crystalline lattice of diamond [45], described as two interpenetrated face centred 

cubic sub-lattices. Each atom in the “adamantine” structures is tetrahedrally 

coordinated. Following the principle of isoelectronic substitution [44], atoms of the 

group IV are substituted by an equal number of cations and anions of valence III and 

V or II and VI respectively, to form binary compounds such as GaAs or ZnS. The 

structure of these compounds consists of cations and anions ordered in the two sub-

lattices. The substitution can proceed involving the cation sub-lattice. For example an 

equal number of cations of valence I and III can replace the cations of valence II, 

with the formation of ternary chalcogenides (e.g. CuInS2). Similarly, a third level of 

substitution of the valence III atoms on the cation sub-lattice brings about I2-II-IV-

VI4 compounds, like the quaternary chalcogenides Cu2FeSnS4 and Cu2ZnSnSe4 

known as the minerals Stannite and Kesterite. At each level of substitution, the 

symmetry of the structure decreases from the space group no. 227 of the diamond 

(Fd-3m) down to the group no. 121 of the Stannite-type structure of Cu2FeSnS4 (I-

42m). Mineralogically, Stannite may occur in nature as Cu2Fe(Zn)SnS4 with Fe 

partially substituted by Zn, and vice-versa Kesterite can show some substitution of 

Zn by Fe, leading to Cu2Zn(Fe)SnS4. Due to the formula similarity and the reported 

natural intergrowth between these two minerals, the pseudo-binary system 

Cu2FeSnS4-Cu2ZnSnS4 has been investigated synthetically by Springer [59]. His 

results, based on combined ex-situ XRD powder analysis, differential thermal 

analysis (DTA) and reflected light microscopy, are summarised by Fig. 1.B.1. 
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Fig. 1.B.1 Pseudo-binary phase diagram of the Cu2FeSnS4- Cu2ZnSnS4 system, as 
determined by Springer via DTA and ex-situ XRD analyses, modified from [59], 
where α and β represent two distinct phase homogeneity regions. (N.B. a more recent 
investigation of this pseudo-binary phase diagram has been reported by Kissin [63], 
but the considerations that follow in the text are still valid). 
 

The samples were synthesised by Springer within sealed silica tubes by heating 

either the elements or stoichiometric amounts of pre-synthesised end-members. 

Samples quenched at different temperatures were analysed, and a salt flux (eutectic 

mixture of 44 % wt. NH4Cl 56 % wt. LiCl) was added to the charges tested at 

temperature lower than 300 °C to accelerate the kinetics of phase transformation. The 

diagram in Fig. 1.B.1 shows the existence of a homogeneity range labelled β, where 

a single phase was found. At temperature lower than ~680 °C, the Fe-rich member 

shows the separation of another phase labelled α, as observed from the disappearance 

of several lines in the X-ray powder pattern. The occurrence of missing reflections 

may be attributed to a cation reordering responsible for the transition from a lower to 

a higher symmetry unit cell. Therefore, at room temperature the pseudo-binary 

system is biphasic. The variations of lattice parameters with composition reported by 

Kissin et al. [62] confirm the miscibility gap at low temperature, while continuity of 

the cell parameters for samples quenched at 750 and 550 °C reported by Bernardini 
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et al. [64] indicates the presence of a solid solution at higher temperature. Bonazzi et 

al. [65] have found that the unit cell volume increases with increasing the Zn content 

in the pseudo-binary system, despite the ionic radius of Zn2+ being smaller than that 

of Fe2+. This suggests that the character of the chemical bonds in Kesterite is more 

covalent than in the Stannite. The structural distinction between Stannite and 

Kesterite was further questioned by Hall et al [60, 61]. Based on the relative 

magnitudes of the refined thermal parameters of Cu and Zn, they provided support 

for two different space groups: I-42m for Cu2Fe(Zn)SnS4 and I-4 for Cu2Zn(Fe)SnS4 

[61]. The structural diversity between these two compounds is given by the different 

ordering in the cation sub-lattice. The sequence of cation planes in pure Stannite is 

Fe-Sn/Cu-Cu, while in pure Kesterite is Cu-Sn/Cu-Zn. The two mirror planes at 

(110) and (-110) present in the structure of Stannite are removed from the unit cell of 

Kesterite (as well as the the 2-fold rotation axes, the double-glide planes and the 

screw axes), lowering the symmetry of Kesterite further down to the space group no. 

82 (I-4). This difference is highlighted in Fig. 1.B.2, where the unit cells of Stannite 

and Kesterite and the corresponding space group diagrams are shown (see also 

Appendix 2). 

The attribution of the space groups of Stannite and Kesterite given by Hall et al. 

[61] was recently confirmed by Schorr et al. [68] with combined X-ray and neutron 

diffraction analysis of powder samples. Due to the same number of electrons, Cu+ 

and Zn2+ ions have virtually equal atomic form factors [307]. For this reason these 

two cations are not easily distinguished by conventional X-ray diffraction. However, 

they do show different neutron scattering cross sections [67], allowing the Cu-Zn 

cation ordering in the Kesterite structure of CZTS to be solved. Schorr’s findings 

indicate that the occupancy of Cu and Zn on the (001) planes of CZTS samples 

quenched at 750 ºC is completely random (raising objection on the formal attribution 

of the I-4 space group), while a 60 % ordering was found for the same samples 

cooled down to room temperature with a rate of 1 ºC h-1 [71]. These results are 

consistent with DFT calculations showing that CuZn and ZnCu antisite defects are 

energetically less expensive to form compared to ZnSn, SnZn, CuSn and SnCu [118]. 
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Fig. 1.B.2 Representation of the unit cell and cation ordering in Stannite (a) and 
Kesterite (b) [61] and corresponding I-42m and I-4 space group diagrams [308]. 
 

The Kesterite structure of CZTS is consistent with the relative configuration 

stabilities of Kesterite and Stannite calculated by DFT [309, 310]. The same 

computations predict an energetic difference of ~3-50 meV/formula unit between the 

two structures, corresponding to ~0.3-5 kJmol-1. Thermal energy at ~330 °C is 
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enough to exceed the upper limit of this range; therefore formation of Stannite may 

occur during the synthesis of CZTS in either bulk or thin-films. Clearly, both the 

nature and concentration of defects and the possible presence of solid solutions or 

domains of Kesterite-Stannite in thin CZTS absorber layers have an effect on its 

optoelectronic properties. For example, it has been shown by Scragg that a smooth 

bowing variation of the band-gap energies from ~1.45 to ~1.55 eV is achieved for 

thin CZTS films as a function of the sulfurization time, as shown in Fig. 1.B.3 [130]. 

 

 
 
Fig. 1.B.3 Bowing variation of the band-gap of CZTS thin films as a function of the 
sulfurization time at 560 °C, as reported by Scragg [130]. The variation may be due 
to the transition from a Stannite to a Kesterite crystalline structure. 
 

An interesting hypothesis was proposed by Scragg for the behaviour shown in Fig. 

1.B.3. It is based on the possibility that Stannite may form at the early stages of 

CZTS synthesis and that a slow conversion into the thermodynamically more stable 

Kesterite is achieved in the time frame of 2 hours at 560 °C. This hypothesis is 

supported by the calculated band-gap energies of Stannite (~1.3-1.4 eV), Kesterite 

(~1.4-1.6 eV) [121, 311] and of an intermediate solid solution (~1.1 eV)[309]. 

Determination of the space group of CZTS from single-crystal neutron diffraction 

has never been performed. Section 7.1 shows the results of the space group 

refinement from X-ray and neutron diffraction of single crystals synthesised in the 

present study via the CVT with I2. 
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The electronic structure of semiconductors can be assessed with 

photoluminescence spectroscopy (PL). With this technique, transitions between 

electronic energetic levels of the material are induced with a light beam, and the 

emission spectrum is recorded. Analysis of the emission spectrum may be very 

complex, but it can provide information on the value of the band-gap energy and on 

the presence of energetic levels associated with the defect structure of the material. 

The formation energy of the possible defects in CZTS have been computed with DFT 

by Chen et al. [153], and the positions of the corresponding energy levels relative to 

VBM and CBM of CZTS are shown in Fig. 1.B.4. 

 

 
 
Fig. 1.B.4 Diagram of the electronic transition-energy levels of intrinsic defects in 
CZTS relative to the VBM and CBM, as reported by Chen et al. [153]. 
 

The type and concentration of defects present in CZTS affect its electronic 

properties. Experimental corroborations of the CZTS defect electronic structure 

obtained by computation are still limited, and only a preliminary study was 

undertaken in this work. The results of the PL analyses of CZTS single crystals are 

reported in section 7.3. 

Clearly, if the concentration of some intrinsic defects in CZTS exceeds a critical 

value, phase separation is likely to occur [118]. The current knowledge of the 

equilibrium phase relations in the Cu2S-ZnS-SnS2 system is limited to the work 

reported by Olekseyuk et al. [133]. The isothermal section at ~400 °C that they 

constructed is reproduced in Fig. 1.B.5. 
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Fig. 1.B.5 Isothermal section at 670 K of the Cu2S-ZnS-SnS2, as reported by 
Olekseyuk et al. [133]. 
 

Fig. 1.B.5 shows the existence of another quaternary phase with stoichiometry 

Cu2ZnSn3S8, which can be regarded as Cu2ZnSnS4 ·2 SnS2. This sulfide has been 

indexed with tetragonal structure, but no space group determination was reported. 

Fig. 1.B.5 shows also that the homogeneity range of the phase Cu2ZnSnS4 at ~400 °C 

is limited approximately by a circle with a diameter of about 4 atomic percent. This 

information is very important for the prediction of secondary phase segregation 

during the synthesis of CZTS. However, the diagram in Fig. 1.B.5 illustrates the 

phase relations as determined at ~400 °C. No information on the phase homogeneity 

range at other temperatures can be extrapolated. Furthermore, it must be borne in 

mind that the Cu2S-ZnS-SnS2 is a pseudo-ternary system. Therefore, due to the 

stoichiometric constraints, it does not show the equilibrium relations with other 

potential intermediate phases that may form during the processing of the quaternary 

Cu-Zn-Sn-S system. Such other phases may be: CuS, Cu1-xS, Sn2S3, Sn3S4, SnS. If 

the CZTS synthetic procedure employs Cu-Zn-Sn metal precursors and a sulfur-

bearing reactant, the phase relations in the cation ternary system would be 

appropriately described only by a 5-axis graph. Indeed, a 3D plot (e.g. as described 

by Kartzmark [312]) would only suffice in describing the phase relations of the 
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quaternary system at fixed temperature and reactant partial pressure. In fact, such 3D 

plots would be nothing but 3D isothermal and isobaric sections of the much more 

complex 5D phase diagram. 

ZnS and Cu2SnS3 (CTS) may be encountered as secondary phases in CZTS films 

if the samples are not fully converted and/or non-equilibrium growth conditions are 

employed. Due to the similar lattice parameters of ZnS, Cu2SnS3 and Cu2ZnSnS4, 

these three phases display very similar XRD patterns. Both CZTS and CTS (the latter 

can be tetragonal, monoclinic or triclinic) have lower symmetry than cubic ZnS. 

Therefore the XRD patterns of CZTS and CTS show some characteristic low 

intensity peaks that can help in detecting their presence. Nevertheless, the absence of 

these unique peaks is not conclusive for identification of the phase composition, as 

has been highlighted by several authors [130, 132, 154, 313, 314]. Raman 

spectroscopy has been suggested as a viable alternative to XRD for the 

discrimination of such phases [314, 315]. However, high quality crystalline reference 

samples are required for the accurate determination of the line widths of the Raman 

active modes. Ideally, single crystals of CZTS in the two structures Kesterite and 

Stannite are needed. Raman spectroscopy analyses of CZTS crystals produced in this 

work are shown in sect. 7.2. 

In the present study, the synthesis of CZTS single crystals was carried out with the 

technique of chemical vapour transport (CVT) using iodine as the transporting agent. 

The thermochemistry of the pentenary system Cu-Zn-Sn-S-I was assessed 

computationally to assist design of the crystal growth experiments. In particular, the 

thermochemistry of CVT in the Cu-Zn-Sn-S system by the action of I2 was assessed 

by computation of the Gibbs free energies of the independent chemical reactions. 

The relative stability of the unary volatile components with respect to the 

corresponding binary sulfides and the quaternary compound Cu2ZnSnS4 were 

computed as functions of the temperature. With the aim of assessing the risk of 

compositionally incongruent mass transport, the effects of I2 and S2 partial pressures 

on the phase stabilities were estimated. The results of the thermochemical analysis 

were helpful for the design of single crystal growth experiments and gave valuable 

insights for the formulation of a hypothetic nucleation mechanism. These results are 

reported in chapter 5. 

Experiments of CVT growth of CZTS were performed, and the effects of 

temperature gradient and iodine pressure on composition, morphology and crystal 

structure were investigated. The results are presented in chapter 6. 
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5. Thermodynamics of the Cu-Zn-Sn-S-I system 
 

The first attempt to produce single crystals of CZTS was made by Nitsche et al. 

[316] who employed the Chemical Vapour Transport (CVT) technique using I2 as the 

transporting agent. This technique is based on the principle that a transport of matter 

may take place when a solid reacts reversibly with a transport gas, forming volatile 

compounds that can be decomposed as to yield the original solid. A net transport of 

mass is observed if the system is set up to provide a concentration gradient. If the 

equilibrium constant of the reaction varies with temperature, a convenient procedure 

to create such gradient is by applying a gradient of temperature. The direction of 

transport depends on the sign of the enthalpy of the solid-gas reaction (∆H), 

according to the Van t’Hoff equation (Eq. 5.1). 

 

Eq. 5.1  2)](ln[ RTHTTK °∆=∂∂  

 

If the reaction is exothermic (∆H < 0) the transport occurs from the cold to the hot 

zones of the system. Vice-versa, with endothermic reactions (∆H > 0) the transport 

occurs from hotter to colder zones. 

It is known that the successful growth of single crystalline compounds via CVT is 

a trade-off between duration of the experiment and size/quality of the products (see 

e.g. Schäfer [317] and Faktor et al. [318]). These two characteristics are a 

consequence of the material flux typical for the system investigated and of the 

specific experimental conditions employed. Eq. 5.2 is a function that describes the 

dependence of the transport rate through a unit cross-sectional area (Fs) on various 

parameters [319]. 

 

Eq. 5.2  

1

32

−



























⋅

⋅−⋅
⋅

⋅⋅

∆⋅∆
= ∑∑

j ij

jiij

i i

i
s

DP

pqpq

p

q

LTR

TH
F  

 

where ∆T is the temperature gradient, T  is the average absolute temperature, ip  and 

jp  are the average partial pressures of the components i and j, P is the total pressure, 

Dij are the diffusion coefficients for the binary mixture of components i and j, and q 

are the stoichiometric coefficients of the reaction. Eq. 5.2 shows that the transport 
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rate increases with an increase of the temperature gradient and decreases with an 

increase of the total pressure in the ampoule; the right balance between these 

parameters must be found so that the crystal nucleation is minimised without slowing 

too much down the growth stage. The best experimental conditions are those for 

which, once a small number of seeds are formed at the growth end, the transport rate 

does not exceed the velocity of growth of the seeds [320]. Expedients based on the 

gradual rising of the source temperature were proposed by Paorici et al. [321], to 

allow for reduced primary nucleation and avoidance of constitutional undercooling 

during the first stages of the transport experiments. Iterative swaps of the temperature 

gradient can also be thought as a viable means of increasing the average size of the 

growing crystals. 

Despite the fact that concentrations of transporting agents far below stoichiometry 

are usually recommended for balancing the supersaturation conditions [317], recent 

findings by Senthil Kumar et al. [322] suggest that iodine concentrations above a 

certain level may, in fact, have little influence on the nucleation and growth of 

crystals. As shown by Schäfer et al. [323], at low pressure of the transporting agent, 

the heterogeneous reactions occurring at the source end become the rate limiting step 

for the transport process. Under these conditions an increase of the transporting agent 

concentration leads to an increase of the transport rate until a maximum is reached 

due to diffusion control. These two situations can be depicted geometrically as two 

vessels with different shape: a beaker and a bottle. While the neck of a bottle 

(diffusion rate control) acts as an obstruction for mass transport allowing enough 

time for the reagents to equilibrate, in a beaker (heterogeneous reaction rate control) 

there are no such barriers, thus it may happen that a sample of transported gas does 

not reflect the composition that would be achieved at equilibrium. 

The experimental studies described in chapter 6 deal with the effects of 

temperature gradient and I2 load on the mechanism of mass transport and their 

consequences on composition and habit of the resulting crystals. Higher crystal 

perfection was obtained in the case of lower concentration of the transporting agent. 

It was deduced that a further decrease of the I2 concentration might be necessary to 

allow the formation of bigger crystals. Therefore, our concern is about the potential 

selective leaching of the source material by the action of the transporting agent in the 

low pressure regime. Such a matter may well become significant in multinary 

systems, where the relative stabilities of the unary transported species can lie over a 

wide thermodynamic range. 
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It is only with the recent studies of Richter et al. [324] that a more systematic 

analysis of the chemical vapour transport in a multi-component system has been 

attempted. Particularly, their work highlights the importance of incongruent transport 

as the main issue for the formation of compositionally well defined sinks. An 

assessment of the competing chemical reactions potentially occurring under different 

I2 and S2 partial pressures is a compulsory requirement for deeper understanding and 

description of the phenomenon. This is addressed in the present study, where the 

constraints for CZTS crystallization are defined with the aim of tailoring the design 

of successful growth experiments. Our aim is to qualitatively assess whether the 

transport of the unary volatile components (CuI)3, ZnI2 and SnI2(w+1) occurs evenly or 

if preferential leaching of the source material is such that formation of compounds 

with fixed stoichiometry is unlikely to be merely controlled by the initial load 

composition. 

The review paper by Lenz et al. [325] provides a remarkable overview of the state-

of-the-art on the large number of models developed for the interpretation and 

thermochemical treatment of CVT phenomena. The thermochemical computation 

that follows is based on simplistic assumptions and therefore it is not intended as an 

exhaustive treatment. 

 



 162 

5.1 Computational procedure 
 

The approach undertaken for the thermochemical assessment of the reactions 

occurring in the Cu-Zn-Sn-S-I system involves only the minimisation of the Gibbs 

free energy for each process taken separately and it is not intended as a thorough 

equilibrium computation. The reader is referred to the works by Zeleznik et al. [326], 

Vonka et al. [327] and Noläng et al [328, 329] for more advanced, rigorous 

computational approaches that may be applied to our system. Unfortunately such 

models would require a much deeper knowledge of computational science that is not 

within our expertise. 

The temperature dependence of the Gibbs free energy of reaction for several 

possible equilibria in the system Cu-Zn-Sn-S by the action of I2 as the transporting 

agent were considered, following the approach of Mariolacos [1] and Jeffes [330]. 

All the calculations reported in this section are based on the thermochemical data by 

Knacke et al. [259]. The interpolating thermochemical functions employed and the 

values of the coefficients for each of the 46 compounds considered in this work are 

reported in Appendix 3. More specifically, for each of the investigated reactions the 

most stable forms of the involved reagent and product species (of which 

thermochemical data are available) were considered, so that the equilibrium 

thermodynamic parameters ∆G° and KP could be determined as functions of the 

temperature, regardless of their actual kinetic significance. 

It is known (see e.g. [318]) that systems at equilibrium containing reactive 

components obey the Gibbs phase rule of variance f if N chemical species, P phases 

and R independent reactions are defined. 

 

Eq. 5.1.1 f = N – R – P + 2 

 

In systems of restricted chemical stoichiometry (i.e. when fixed stoichiometric ratios 

apply to the chemical reactions taking place) the number of linearly dependent 

equations R equals the number of chemical species N minus the chemical 

components C according to the Jouguet’s definition [331]. 

 

Eq. 5.1.2 R = N – C 
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However, if the stoichiometric ratios are unknown, it is still possible to estimate the 

number of components C’ according to Blinkey’s definition [332]. Simply, in that 

case R’ will not account for the degrees of freedom subtracted by the experimental 

chemical information (the stoichiometric relationship). 

 

Eq. 5.1.3 f < f’ = N – R’ – P + 2 = C’ – P + 2 

 

The mathematical procedure for determination of C’ and R’ was described by 

Samuels [333] by extension of the method of White et al. [334] to mixtures involving 

condensed phases, and it is thoroughly explained by Smith and Missen [335, 336]. 

The rank of matrixes M of the atomic coefficients mi j was shown to be equal to the 

number of components C’; therefore the number of linearly dependent reactions R’ is 

equal to the difference between the total number of chemical species present N and 

the rank of the matrix. 

 

Eq.5.1.4 rank (M) = C’ R’ = N – rank (M) 

 

The linearly independent columns of the matrix M* resulting from the Gauss Jordan 

reduction of matrix M [337] represent the components C’ of the system. The solution 

matrix X obtained by appending the identity matrix of dimension R’×R’ below the 

linearly dependent vectors of matrix –M* gives the stoichiometric coefficients of the 

reactions R’. Such treatment may be performed separately for each subgroups of 

unary (S,I), binary (Cu,Zn,Sn-S and Cu,Zn,Sn-I) and ternary/quaternary 

(Cu2ZnSnS4,Cu2ZnSn3S8,Cu2SnS3) components. The relevant reactions arising from 

this procedure are computed thermochemically. 
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5.2 Unary components: S and I 
 

Table 5.2.1 shows the matrix A of the atomic coefficients ai j for the system of unary 

components, where ai j is the number of atoms of element i in the chemical species j. 

 

 j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

i  I2 

(s) 

I2 

(l) 

I2 

(g) 

I  

(g) 

S8 

R 

S8 

M 

S8 

(l) 

S8 

(g) 

S7 

(g) 

S6 

(g) 

S5 

(g) 

S4 

(g) 

S3 

(g) 

S2 

(g) 

S 

(g) 

1 I 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 

2 S 0 0 0 0 8 8 8 8 7 6 5 4 3 2 1 

 

Table 5.2.1 Matrix A of the atomic coefficients ai j for the possible compounds 
shown by the unary components S and I. 
 

The number of chemical species in our system is 15 and the rank of matrix A (Table 

5.2.1) is 2. Table 5.2.2 shows the matrix A* resulting from the Gauss Jordan 

reduction of matrix A, where the 2 linearly independent columns represent the 

components C’(A) of the system: I2 (s) (3) and S8 (g) (8). 

 

 j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

i  I2 

(s) 

I2 

(l) 

I2 

(g) 

I  

(g) 

S8 

R 

S8 

M 

S8 

(l) 

S8 

(g) 

S7 

(g) 

S6 

(g) 

S5 

(g) 

S4 

(g) 

S3 

(g) 

S2 

(g) 

S 

(g) 

1 I 1 1 1 1/

2 

0 0 0 0 0 0 0 0 0 0 0 

2 S 0 0 0 0 1 1 1 1 7/

8 

3/

4 

5/

8 

1/

2 

3/

8 

1/

4 

1/

8 

 

Table 5.2.2 Matrix A* obtained by Gauss-Jordan reduction of matrix A for the unary 
components S and I. 
 

The remaining 13 linearly dependent columns of matrix A* represent the number of 

reactions R’(A). Table 5.2.3 shows the solution matrix X(A) (note the rearrangement 

of the rows indexes). 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1 -1 -1 -

1/2 

0 0 0 0 0 0 0 0 0 0 

8 0 0 0 -1 -1 -1 -

7/8 

-

3/4 

-

5/8 

-1/2 -3/8 -1/4 -1/8 

2 1 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 1 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 1 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 1 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 1 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 1 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 1 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 1 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Table 5.2.3 Solution matrix X(A) containing the stoichiometric coefficients of the 13 
linearly dependent reactions R’(A) for the unary components S and I. 
 

Each column in Table 5.2.3 gives the stoichiometric coefficient for the corresponding 

reaction. By linear combination of R’(A), the two (obvious) reaction sequences for I 

and S are as follows. 

 

Reac. 5.2.1 I2 (s) → I2 (l) → I2 (g) → 2 I (g) 

 

Reac. 5.2.2 S8 R → S8 M → S8 (l) → S8 (g) → 8/7 S7 (g) → 4/3 S6 (g) → 8/5 S5 (g) → 2 

S4 (g) → 8/3 S3 (g) → 4 S2 (g) → 8 S (g) 

 

The standard chemical potential of the unary species is plotted in Fig. 5.2.1 as a 

function of the absolute temperature. 
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Fig. 5.2.1 Standard chemical potential of the iodine (dashed lines) and sulfur species 
considered in the present study as a function of the temperature normalised per 
number of atoms for sake of comparison (i.e.: µ°(I2 (g))/2, µ°(I (g)), µ°(S (s)), µ°(S (g)), 
µ°(S2 (g))/2, µ°(S3 (g))/3, µ°(S4 (g))/4, µ°(S5 (g))/5, µ°(S6 (g))/6, µ°(S7 (g))/7, µ°(S8 (g))/8). 
The inset is a zoom of the plot to clarify the complexity of the polyatomic molecular 
sulfur thermochemistry. 
 

From Fig. 5.2.1 it is possible to extract information on the temperature stability 

regions for each iodine and sulfur species and on the series of their decomposition 

temperatures. I2 (g) decomposes at ~ 1470 K to monoatomic I (g), while for S8 (s) the 

subsequent decomposition reactions up to the monoatomic S (g) occur in the 

temperature range 800-900 K. Since these data have first been determined 

experimentally, one might think that the computational procedure employed to 

extract them is a purely speculative exercise and the results produced are trivial. 

However, these thermochemical functions are needed for the computation of the 

possible reactions occurring in the system Cu-Zn-Sn-S-I, for which experimental 

data are limited. For this purpose, they will be used in linear combination with the 

other relevant functions obtainable from Knacke’s work [259]. 

Because of the variety of species shown by sulfur and iodine, the functions 

corresponding to the minimum of the chemical potential as attained in Fig. 5.2.1 are 

employed in the subsequent computations. This requires the formal consideration of 

Ix and Sy in lieu of the simpler I2 and S2 molecules. 
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The following treatments take into account the chemical potential variation due to 

phase transition of the species, but the corresponding discussion is omitted. Instead, 

emphasis is given to the chemical reactions, including the decomposition of the 

binary sulfides and the tentative estimation of ternary and quaternary sulfides 

formation from the gaseous iodides. 
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5.3 Binary components: Cu-S, Cu-I, Sn-S, Sn-I, Zn-S, Zn-I 
 

Similarly to the unary components considered in section 5.2, the stability region for 

each compound involved in a chemical process is found by minimizing the sum of 

the chemical potentials of reagents and products respectively, as a function of the 

temperature. 

A review of Cu-S phase equilibria is provided in Appendix 4. This system was 

studied only through the phases CuS and Cu2S, correlated by the equilibrium reaction 

5.3.1 with Sy (g) evolution (Fig. 5.3.1). 

 

Reac. 5.3.1 2 CuS (s) → Cu2S (s) + 1/y Sy (g) 

 

Fig. 5.3.1 is computed under standard conditions, i.e. 1 bar Sy partial pressure. Under 

these conditions, the gaseous molecular species CuS (g) has a higher chemical 

potential than solid CuS (Covellite) and solid Cu2S (Chalcocite) plus gaseous Sy 

throughout the temperature range considered. Therefore, the presence of CuS (g) in 

our study can be neglected. Fig. 5.3.1 also predicts the decomposition temperature of 

Covellite into Chalcocite to be ~800 K (under 1 bar Sy (g)). 

According to reaction 5.3.1, the partial pressure of sulfur in the system has an 

effect on the relative stabilities of CuS and Cu2S. In order to investigate this effect, 

the Gibbs free energy of reaction 5.3.1 as a function of both temperature and sulfur 

pressure was computed with Eq. 5.3.1. The results are shown in Fig. 5.3.2. 

 

Eq. 5.3.1 ∆G = ∆G° + RT/y ln(P(Sy)) 

 

The Cu-I system shows the existence of two gaseous species besides the condensed 

CuI that is stable up to 1680 K: the monomeric CuI (g) and the trimeric (CuI)3 (g). The 

most stable of these two gaseous forms is the trimeric molecule up to ~1560 K (Fig. 

5.3.1), which is far above the temperature range considered for the growth of crystals 

by the CVT technique. 

The complexity of the Sn-S and Sn-I equilibria are likewise assessed. Up to six 

species are potentially formed: SnI4, SnI2, SnS2, Sn2S3, Sn3S4 and SnS. A review of 

the Sn-S phase equilibria is provided in Appendix 5. The results computed under 

standard conditions are shown in Fig. 5.3.3. 
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Fig. 5.3.1 Standard chemical potential of the copper sulfide (dashed lines) and 
copper iodide species considered in the present study as a function of the temperature 
normalised per number of atoms for sake of comparison (i.e.: µ°(Cu2S (s) + 1/y Sy (g)), 
µ°(2 CuS (s)), µ°(2 CuS (g)), µ°(CuI (g)), µ°((CuI)3 (g))/3, µ°(CuI (s,l))). 
 

 
 
Fig. 5.3.2 2D plot showing the stability regions of CuS (shaded grey) and Cu2S 
(black) in the P(Sy(g))-T plane. 
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Fig. 5.3.3 Standard chemical potential of the tin sulfide and tin iodide species 
considered in the present study as a function of the temperature normalised per 
number of atoms for sake of comparison (i.e.: µ°(6 SnS2 (s)), µ°(3 Sn2S3 (s) + 3/y Sy 
(g)), µ°(2 Sn3S4 (s) + 4/y Sy (g)), µ°(6 SnS (s) + 3/y Sy (g)), µ°(2 CuS (g)), 2.5x µ°(SnI4 (g)), 
2.5x µ°(SnI2 (g) + I2 (g))). (The chemical potentials of the tin iodide species were 
multiplied by a factor of 2.5 for graphical purposes). 
 

The decomposition temperatures predicted for the Sn-S and Sn-I species under 

standard conditions are as follows (reactions 5.3.2-5.3.5). 

 

Reac. 5.3.2 SnI4 (g) → SnI2 (g) + I2 (g)     (1188 K) 

Reac. 5.3.3 6 SnS2 (s) → 3 Sn2S3 (s) + 3/y Sy (g)    (1049 K) 

Reac. 5.3.4 3 Sn2S3 (s) + 3/y Sy (g) → 2 Sn3S4 (s) + 4/y Sy (g)  (1096 K) 

Reac. 5.3.5 2 Sn3S4 (s) + 4/y Sy (g) → 6 SnS (s) + 6/y Sy (g)   (1200 K) 

 

Similarly to the Cu-S system, the equilibria of reactions 5.3.3-5.3.5 are influenced by 

the pressure of Sy (g). Particularly, the dependence of the chemical potentials of Sn2S3, 

Sn3S4 and SnS as functions of T and P(Sy) are given by Eqs, 5.3.2-5.3.4. 

 

Eq. 5.3.2 G (Sn2S3) = G° (Sn2S3)+ 3RT/y ln(P(Sy)) 

 

Eq. 5.3.3 G (Sn3S4) = G° (Sn3S4)+ 4RT/y ln(P(Sy)) 



 171 

Eq. 5.3.4 G (SnS) = G° (SnS)+ 6RT/y ln(P(Sy)) 

 

The intersections among the surfaces given by Eqs. 5.3.2-5.3.4 and the standard 

chemical potential of SnS2 delimit the boundaries between the relative stability 

regions of the tin sulfide phases. The results are shown in Fig. 5.3.4. 

 

 

 

Fig. 5.3.4 (a) 3D plot showing the intersection framework among the surfaces 
representing the chemical potentials of SnS2, Sn2S3, Sn3S4 and SnS as functions of 
the absolute temperature and of the sulfur partial pressure. Corresponding 2D plots 
showing the maximization (b) and minimization (c) of the chemical potential in the 
system. The regions in (c) can be regarded as the T-p(Sy (g)) stability regions of the 
tin sulfide phases in the system. 
 

The Zn-S system is less complicated, because ZnS is the only allowed binary 

component, either in its cubic (Sphalerite) or in its hexagonal (Wurtzite) forms (see 

Appendix 6). The Zn-I system presents only ZnI2 in both condensed and gaseous 

forms. 
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5.4 Ternary systems: Cu-S-I, Sn-S-I, Zn-S-I 
 

As seen in Fig. 5.3.1, the trimeric form of copper iodide is the most stable gas 

species in the Cu-I system. Therefore, the transport of Cu was computed considering 

the action of Ix (g) on CuS (s) or Cu2S (s) depending on the temperature range. 

 

Reac. 5.4.1 (v+1)Cu2-vS (s)+(v+1)(2-v)/x Ix (g)→(v+1)(2-v)/3(CuI)3 (g)+(v+1)/y Sy (g) 

 
Reac. 5.4.2 (v = 1) 

2 CuS (s) + 2/x Ix (g) → 2/3 (CuI)3 (g) + 2/y Sy (g) 

 

Reac. 5.4.3 (v = 0) 

Cu2S (s) + 2/x Ix (g) 1/y Sy (g) → 2/3 (CuI)3 (g) + 2/y Sy (g) 

 

Now, an equilibrium cycle involving three processes can be considered, as shown in 

Fig. 5.4.1: 2CuS (s) + 2/x Ix (g)  2/3 (CuI)3 (g) + 2/y Sy (g)  Cu2S (s) + 2/x Ix (s) 1/y Sy 

(g). This can be depicted by an energy diagram with three relative minima and three 

relative maxima (the energy level attributed to the transition-state has no actual 

meaning). The diagram of chemical potential vs temperature for the Cu-S-I system 

(Fig. 5.4.1) for the three members of the process can be divided into three 

temperature ranges: 

 

(1) T < 800 K: 

µ°[2CuS (s) + 2/x Ix (g)] < µ°[Cu2S (s) + 2/x Ix (s) 1/y Sy (g)] < µ°[2/3(CuI)3 (g) + 2/y Sy (g)] 

 
(2) 800 K < T < 1223 K: 

µ°[Cu2S (s) + 2/x Ix (s) 1/y Sy (g)] < µ°[2/3(CuI)3 (g) + 2/y Sy (g)] < µ°[2CuS (s) + 2/x Ix (g)] 

 
(3) T > 1233 K: 

µ°[Cu2S (s) + 2/x Ix (s) 1/y Sy (g)] < µ°[2CuS (s) + 2/x Ix (g)] < µ°[2/3(CuI)3 (g) + 2/y Sy (g)] 

 

The Gibbs free energies of reaction 5.4.1 as a function of the temperature are shown 

in Fig. 5.4.2, where the formation of CuI is computed for both the condensed (solid 

or liquid) and gaseous forms. The Gibbs free energy of the conversion of CuS (s) to 

Cu2S (s) and Sy (g) (reaction 5.3.1) is also reported (N.B. the negative slope and the 

intercept with ∆G° = 0 at T = 800 K). 
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Fig. 5.4.1 Standard chemical potential of the Cu-S-I equilibria (reactions 5.4.1-5.4.3) 
as a function of the temperature. Inset: schematic representation of the relative 
stabilities for the three-reaction process (the transition states are a guide to the eye). 
 

 

 
 
Fig. 5.4.2 Standard Gibbs free energy changes of reactions 5.4.2-5.4.3 as a function 
of the temperature. Reaction 5.4.1 is plotted for v = 0 and 1 and for the species (CuI)3 
(g) and CuI (s,l). 
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The equilibria in Fig. 5.4.2 show that there is a strong driving force for crystallization 

of solid CuI. This suggests that CuI segregation along the length of the ampoule 

could be an issue for both the effectiveness of the overall transport process and the 

purity of the resulting crystals. 

The equilibria of the Sn-S-I system are expressed by reactions 5.4.4-5.4.5, where 

the formation of the most stable gaseous form of SnI2(w+1) (w = 0 and 1) is computed 

from the most stable Sn-S phases. 

 

Reac. 5.4.4 SnS (s) + (4/x – 2(1-w)/x) Ix (g) + 1/y Sy (g) → SnI2(w+1) (g) +2/y Sy (g) 

 

Reac. 5.4.5 SnzSz+1 (s) + (4z/x – 2z(1-w)/x) Ix (g) → z SnI2(w+1) (g) + (z+1)/y Sy (g) 

 

The computation is performed analysing the specific reactions separately (5.4.6-

5.4.8) each with its corresponding tin sulfide (z = 1, 2 and 3): 

 

Reac. 5.4.6 (z = 1) 

SnS2 (s) + 24/xIx (g) → 6SnI2(w+1) (g) + 12/ySy + 6(2+2w)/xIx (g) 

 

Reac. 5.4.7 (z = 2) 

3Sn2S3 (s) + 24/xIx (g) + 3/ySy (g) → 6SnI2(w+1) (g) +12/ySy + 6(2+2w)/xIx (g) 

 

Reac. 5.4.8 (z = 3) 

2 Sn3S4 (s) + 24/x Ix (g) + 4/y Sy (g) → 6 SnI2(w+1) (g) +12/y Sy + 6(2+2w)/x Ix (g) 

 

The Gibbs free energies of reactions 5.4.4-5.4.5 as a function of the temperature are 

reported in Fig. 5.4.3. 

The transport of Zn by Ix (g) can be studied by considering the simple formation of 

ZnI2 (g) from ZnS (s) (reaction 5.4.9). 

 

Reac. 5.4.9 ZnS (s) + 2/x Ix (g) → ZnI2 (g) + 1/y Sy (g) 

 

The computation of reaction 5.4.9 predicts a negative slope of ∆G vs. temperature for 

T < 1470 K (x = 2), while for T > 1470 K (x = 1) the slope becomes positive, in 

agreement with the positive and negative variation of the number of moles of the 

gaseous species in those temperature ranges. The reaction is exoergonic up to ~ 1232 

K, where the curve intersects the abscissa axis. 
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Fig. 5.4.3 Standard Gibbs free energies of reactions 5.4.4-5.4.5 as a function of the 
temperature. Reaction 5.4.5 is plotted for z = 1, 2 and 3 respectively for the species 
SnS2 (s), Sn2S3 (s) and Sn3S4 (s) (reactions 5.4.6-5.4.8). 
 

If we assume that the species in reactions 5.4.1, 5.4.5, 5.4.6, 5.4.9 are in 

equilibrium with each other, i.e. the activation energies of the corresponding 

processes are negligible, the following statement is valid. Having considered the 

most stable among the possible products at each temperature, the process that 

maximizes the algebraic magnitude of ∆G° of reaction is the one that also minimizes 

the chemical potential of the reagents, and therefore it is the most favourable process. 

From the relationship between the standard Gibbs free energy of a reaction and its 

thermodynamic equilibrium constant (Eq. 4.4.2), it is possible to compare the 

spontaneity of the formation of the gaseous iodide compounds of Cu, Zn and Sn from 

their sulfides (taken separately). 

 

Eq. 5.4.1 KP = e
-∆G°/RT 

 

Fig. 5.4.4 shows the temperature dependence of the thermodynamic equilibrium 

constants (KP) for the formation of the gaseous binary iodides of Cu, Zn and Sn by 

the action of Ix (g) on the corresponding most stable sulfides, as resulting from the 

computation. 
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Fig. 5.4.4 Thermodynamic equilibrium constants for the formation of the iodide 
gaseous compounds of Cu, Zn and Sn from the corresponding most stable sulfides as 
a function of the temperature (from reactions 5.4.1, 5.4.4, 5.4.5, 5.4.9). 
 

It must be highlighted that in the low temperature regime (500-700K) the 

equilibrium constants for the formation of the iodides of Cu, Zn and Sn from the 

corresponding sulfides span from 11 to 7 orders of magnitude difference, with the Sn 

being the easiest and Zn the most difficult to transport. The difference is reduced to 

only 4 orders of magnitude in the range 900-1100K, with Cu becoming the least 

transportable among the metals. From this thermochemical basis, Fig. 5.4.4 shows 

that the sulfides of Cu, Zn and Sn are likely to behave very differently with regard to 

transport with iodine. The risk of compositionally incongruent vapour transport of 

the unary iodides of Cu, Zn and Sn is highlighted. 
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5.5 Quaternary system: Cu-Sn-S-I 
 

The Cu-Sn-S system has been recently re-investigated by Fiechter et al. [338]. 

Among the 17 known phases, an attempt was made to estimate the free energy of 

reaction between Cu2SnS3 (s) and iodine to form the Cu and Sn iodides as a function 

of the temperature (5.5.1). 

 

Reac. 5.5.1 Cu2SnS3 (s) + 2(2+w)/x Ix (g) → 2/3(CuI)3 (g) + SnI2(w+1) (g) + 3/ySy (g) 

 

The compound Cu2SnS3 (CTS) has been reported to melt congruently at 1129 K and 

to exist in the liquid form at least up to 1373 K [338], although subject to the risk of 

SnS (g) and Sy (g) losses, as reported by Weber et al. [154]. As illustrated by the 

pseudo-binary join Cu2S-SnS2 reproduced in Fig. 5.5.1 from Olekseyuk et al. [133], 

Cu2SnS3 can be thought as the equimolar reaction product between the end members 

(reaction 5.5.2). 

 

Reac. 5.5.2 Cu2S (s) + SnS2 (s) → Cu2SnS3 (s) 

 

Unfortunately no experimental indication of the standard Gibbs free energy of 

formation of CTS from the elements has been reported in the literature. As a first 

approximation for the estimation of the free energy change of reaction 5.5.2 it would 

be possible to employ the “sulfide sum” procedure described by Craig et al. [339] 

and Vaughan et al. [340]. With their approach, complex sulfides are assumed to 

behave as if they consist of non-ideal mixtures of their simple end-members. 

According to this procedure, the enthalpy change of reaction 5.5.2 would be zero and 

the free energy change would be equal to the entropy gain of the reaction. However, 

Walsh [341] has estimated the enthalpy of formation of CTS from Cu2S and SnS2 

from DFT studies as ~-70.4 kJmol-1 (reaction 5.5.2), raising doubts on the 

applicability of the procedure reported by Craig et al. [339] and Vaughan et al. [340] 

to our system. Another DFT estimation is available from the work of Chen et al. 

[153], who computed the formation enthalpy of Cu2SnS3 from its total energy and its 

elemental standard states, similarly to the work done by Zhang et al. [115] on 

CuInSe2. This has been reported to be -2.36 eV/f.u., which corresponds to                 

~ – 228 kJmol-1. 
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Fig. 5.5.1 Pseudo-binary phase diagram of the Cu2S-SnS2 system, as reported by 
Olekseyuk et al. [133]. 
 

In order to understand the chemical vapour transport phenomena in the present 

work, it is important to estimate the chemical potential of CTS as a function of 

temperature, i.e. the entropic term of µ°Cu2SnS3. DFT calculations of the chemical 

potentials of condensed phases are usually performed at T = 0 K, at which 

temperature µ approaches h. The reasons for performing calculations at this 

temperature have been explained by Qian et al. [342]. 

In the present work, estimation of the chemical potential of CTS and CZTS as a 

function of the temperature was performed in the following way. The principle of 

“sulfide sum” was applied to the chemical potential functions of the compounds 

involved in the reaction for which ∆H° is known by DFT work, with the addition of 



 179 

the reported enthalpy change. This procedure is certainly an approximation. In order 

to minimise the error associated to it, the reactions considered for the data extraction 

are those involving the binary sulfides rather than elements plus sulfur, given the 

lower free energy change associated to the reaction between the binaries. 

Furthermore, the low temperature forms of the binary phases were considered for the 

computation, without taking into account their solid state transitions. 

Following these considerations, Chen’s results [153] on the elemental reaction 

were discarded and Walsh’ [341] on the binary sulfides were used for the calculation 

of the chemical potential of CTS as a function of temperature. The procedure is 

summarised by Eqs. 5.5.1-5.5.3. The free energy change of reaction 5.5.2 is 

expressed by Eq. 5.5.1. 

 

Eq. 5.5.1 ∆G° = µ°Cu2SnS3 – (µ°Cu2S + µ°SnS2) 

 

According to Qian et al. [342] the free energy change of reaction 5.5.2 computed by 

DFT is related to the chemical potentials of CTS, Cu2S and SnS2 through Eq. 5.5.2, 

which is formally correct only at T = 0 K. 

 

Eq. 5.5.2 h°(0)Cu2SnS3 ~ µ°(0)Cu2SnS3 = ∆G°(0)+µ°(0)Cu2S+µ°(0)SnS2 

 

In the present investigation, Eq. 5.5.2 is assumed to be valid over the whole 

temperature range considered. In other words, it is assumed that the free energy 

change of reaction 5.5.2 is equal to the enthalpy change and that the enthalpy change 

does not vary with temperature. Following the estimation of the chemical potential of 

CTS, the computation of the free energy of reaction 5.5.1 was performed and the 

results are shown in section 5.6. 
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5.6 Pentenary system: Cu-Zn-Sn-S-I 
 

Similarly to Cu2SnS3-I2 the estimation of the free energy of reaction between 

Cu2ZnSnS4 (s) and iodine to form the unary iodides, as a function of the temperature 

was computed (5.6.1). 

 

Reac. 5.6.1 Cu2ZnSnS4(s)+2(3+w)/xIx(g)→2/3(CuI)3(g)+ZnI2(g)+SnI2(w+1) (g)+4/ySy(g) 

 

The pseudo-binary phase diagram of the system Cu2SnS3-ZnS reported by Olekseyuk 

et al. [133] is shown in Fig. 5.6.1. According to their work, Cu2ZnSnS4 is formed by 

peritectic reaction at 1253 K between ZnS and a Zn-poor liquid phase. 

 

 
 
Fig. 5.6.1 Pseudo-binary phase diagram of the Cu2SnS3-ZnS system, as reported by 
Olekseyuk et al. [133]. 
 

As for Cu2SnS3, no experimental indication of the standard Gibbs free energy of 

formation of CZTS has been reported. According to the “sulfide sum” procedure 
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described by Craig et al. [339] and Vaughan et al. [340], the enthalpy change of 

reaction 5.6.2 is zero and the free energy change is equal to the entropy gain deriving 

from the non-ideal mixing of the binary sulfides. 

 

Reac. 5.6.2 Cu2S (s) + ZnS (s) + SnS2 (s) → Cu2ZnSnS4 (s) 

 

Such an approximation is as good as the structures of the end-members are similar. 

In particular, the cation polyhedra of the binaries should resemble that of the 

complex sulfide [340]. The coordination polyhedra of the metals in the crystal 

structures of Cu2S, ZnS and SnS2 are quite dissimilar [343-346], ranging from two to 

six-fold. In fact, the Gibbs free energy of reaction 5.6.2, computed with DFT at T = 0 

K by Chen et al [153] is -0.81 eV/f.u. ~ -78.15 kJmol-1. A free energy gain for 

reaction 5.6.2 has been experimentally proven up to the peritectic temperature (1253 

K) at which CZTS decomposes [133]. Therefore, it is possible that the free energy 

gain of reaction 5.6.2 decreases with increasing temperature, until it becomes 

positive at the peritectic temperature of CZTS. 

Complementary information on the energy content of CZTS can be extracted from 

experimental investigations reported by Scragg et al. [281], who estimated the free 

energy change of reaction 5.6.2 as -22±6 kJmol-1 at 550 °C from the measured 

pressure of S2 (g) at the equilibrium with CZTS thin films. A less negative value of 

the free energy change of reaction 5.6.2 at higher temperature seems consistent with 

the fact that CZTS decomposes into ZnS and Zn-poor liquid at 1253 K. 

In this work, similarly to the CTS case, the estimation of the chemical potential of 

CZTS was derived by summing the chemical potential functions of the binary 

sulfides on the left hand side of reaction 5.6.2 and the enthalpy change of reaction 

5.6.2. However, as a value for the enthalpy change we employed a linear 

combination between the DFT-computed ∆H° by Chen et al [153] at 0 K and the 

experimentally derived ∆H° by Scragg et al at 550 °C. As per Cu2SnS3, the 

estimation is performed with the thermochemical functions of the low temperature 

forms of binary sulfides, excluding their solid state transitions from computation. 

Zhai et al. [347] have estimated the enthalpy of reaction 5.6.3 from DFT studies at 

0 K as + 0.1 eV/f.u., corresponding to ~+9.65 kJmol-1 [347].  

 

Reac. 5.6.3 Cu2ZnSnS4 (s) → Cu2SnS3 (s) + ZnS(s) 
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Zhai’s estimation [347] is consistent with Walsh’s [341] and Chen’s [153] results 

and add little information to the definition of the chemical potential of CZTS. 

Fig. 5.6.2 shows the estimated Gibbs free energy of reaction 5.6.2 as a function of 

the temperature, based on the estimation of the chemical potential of CZTS outlined 

above. 

 

 
 
Fig. 5.6.2 Gibbs free energy of reaction 5.6.2, as obtained from estimation of the 
chemical potential of CZTS based on the linear extrapolation between the theoretical 
DFT calculations of Chen et al. at T = 0 K [153] and the experimental findings of 
Scragg et al. at T + 823 K [281]. Estimated decomposition temperature of CZTS into 
the solid binaries by consideration of the lower (a) and upper (b) error limits 
indicated by Scragg et al. [281] (∆G° = -22±6 kJmol-1). The peritectic temperature of 
CZTS is represented by (c), as reported by Olekseyuk et al. [133]. 
 

From Fig. 5.6.2a-b, it is possible to extrapolate the temperature at which CZTS 

would decompose into the solid binary sulfides, considering the CZTS chemical 

potential extrapolated from Chen’s [153] and Scragg’s data [281]. In reality, it is 

known from Olekseyuk et al. (Fig. 5.6.1) [133] that CZTS decomposes at 1253 K 

(Fig. 5.6.2c) into solid ZnS(s) plus a liquid phase rich in Cu2SnS3. For the 

computation of Fig. 5.6.2 the thermochemical data of the low temperature solid 

binary sulfides were employed. Given the higher stability of the liquid phase forming 

at 1253 K (for which no thermochemical data is available) compared to the solid 

binary sulfides, an overestimation of the absolute free energy change of reaction 

5.6.2 plotted in Fig. 5.6.2 is expected at high temperature. Nevertheless, the 

approximate estimation of the chemical potential of CZTS as a function of the 
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temperature obtained in this work is considered to be good enough to allow a coarse 

thermochemical prediction of reaction 5.6.1. The results of such a prediction are 

shown in Fig. 5.6.3, together with the computed free energies for the reactions 

corresponding to iodide formation from the binary sulfides (5.4.1-5.4.4-5.4.5-5.4.9) 

and Cu2SnS3 (5.5.1). 

According to Fig. 5.6.3(a), the formation of gaseous iodides of Cu, Zn and Sn 

from solid CZTS (reaction 5.6.1) has a positive standard Gibbs free energy. 

Therefore, such a process is expected to be endoergonic up to about the peritectic 

temperature of CZTS (p4: 1253 K). The direction of transport in the CVT reaction is 

given by the sign of the reaction enthalpy ∆H°, as inferred from Van’t Hoff’s 

equation (Eq. 5.1). 

 
Eq. 5.1  2)](ln[ RTHTTK P °∆=∂∂  

 
Fig. 5.6.3(b) shows that reaction 5.6.1 has a positive value of ∆H°, i.e. the reaction is 

endothermic. The system is expected to respond to a temperature increase with an 

increase of the thermodynamic equilibrium constant KP(T). Therefore, the direction 

of transport for the reverse reaction corresponding to the crystallization of CZTS 

from the unary iodides of Cu, Zn and Sn is from high to low temperatures. 

The curve in Fig. 5.6.3(a) corresponding to CZTS (reaction 5.6.1) can be divided 

into three temperature regions with different slopes. Each slope variation is 

associated to the different species involved in the reaction and to their different 

entropic contributions. In particular, the change of the number of gaseous species as 

reaction 5.6.1 proceeds (∆n) is expressed by Eq. 5.6.1. 

 
Eq. 5.6.1 ∆n = (2/3 + 1 + 1 + 4/y) – 2·(3+w)/x 

 
Table 5.6.1 is a summary of the three different ∆n of reaction 5.6.1 for the three 

temperature ranges characterised by discontinuity of the first derivative of ∆G° 

( °∆−=∂°∆∂ STG ), as shown in Fig. 5.6.3(a). 

For reaction 5.6.1, the transition to a more positive change of the number of 

gaseous species with an increase of the temperature is consistent with the increase of 

the ∆S° of reaction, as observed in Fig. 5.6.3(a). 

 

Table 5.6.1 Summary of the change of the number of gaseous species for reaction 
5.6.1 for the different temperature ranges (ref. to Fig. 5.6.3a). 
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Fig. 5.6.3 (a) Standard Gibbs free energies for the formation of the iodide gaseous 
compounds of Cu, Zn and Sn from the corresponding sulfides and from Cu2SnS3 and 
Cu2ZnSnS4 as a function of the temperature. (b) Corresponding ∆G°/RT plots. 
 
 
Reac. 5.6.1   Cu2ZnSnS4(s)+2(3+w)/xIx(g)→2/3(CuI)3(g)+ZnI2(g)+SnI2(w+1) (g)+4/ySy(g) 

T range / K x y w Reaction ∆n 

300<T<900 2 6<y<8 1 Cu2ZnSnS4 (s) + 4I2 (g) → 2/3(CuI)3 (g) 

+ ZnI2 (g) + SnI4 (g) + 4/ySy (g) 

-5/6 < ∆n < -4/6 

900<T<1188 2 2 1 Cu2ZnSnS4 (s) + 4I2 (g) → 2/3 (CuI)3 (g) 

+ ZnI2 (g) + SnI4 (g) + 2S2 (g) 

+2/3 

1188<T<1253 2 2 0 Cu2ZnSnS4 (s) + 3I2 (g) → 2/3 (CuI)3 (g) 

+ ZnI2 (g) + SnI2 (g) + 2S2 (g) 

+5/3 
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6. Chemical vapour transport growth of CZTS with I2 
 

As shown in Fig. 5.6.1, Olekseyuk et al. [133] have found that Cu2ZnSnS4 melts 

incongruently at 1253 K, crystallizing by the peritectic reaction p4: L + β’(ZnS) → δ 

with a composition of the liquid phase far poor in ZnS. It is known that the formation 

of a phase-pure substance that crystallizes via a peritectic reaction may be difficult to 

achieve [348]. In such reactions a liquid needs to react with a solid and diffusion of 

material through the newly formed phase at the interface between the reactants is 

needed for the reaction to proceed. Therefore, the cooled system has the tendency to 

display phase segregation, especially if the cooling rate employed is high. 

In the case of Cu2ZnSnS4, Shimada et al. have shown that its growth from the melt 

results in the presence of impurity phases such as Cu2SnS3, ZnS and SnS [349]. The 

solidification of a single-phase CZTS from the stoichiometric melt might be 

improved to some extent by the presence of a suitable seed or the action of a 

directional cooling, like in the Czochralski, the Bridgman-Stockbarger [350] or the 

gradient freezing techniques [351]. It is only very recently that Nagaoka et al. have 

shown the possibility of precipitating primary crystals of CZTS from molten hyper-

eutectic solutions in the pseudo-binary system CZTS-Sn [352, 353]. 

Single crystals of the Cu2FeSnS4-Cu2ZnSnS4 pseudobinary series were 

synthesized by Bernardini et al. [64] for structural investigations using the salt-flux 

technique reported by Moh et al. [354]. This technique is based on the solvent 

properties of molten salts, where the reaction between the elements or precursors is 

carried out. A similar approach was also employed by Altosaar et al. [355] and 

Timmo et al. [356] who successfully crystallized Cu2Zn1-xCdx Sn(Se1-ySy)4 and 

Cu2ZnSnSe4-xSx powders from molten KI with the intent of fabricating mono-grain 

layer devices [357]. The difficulty of producing the sulfur end member in a pure 

form was highlighted, since the X-ray EDS analysis of the polished crystals pointed 

to the presence of the secondary phases alongside the dominating CZTS phase.  

CZTS single crystals of reasonable dimensions were first produced by Nitsche et 

al. [316] with the chemical vapour transport (CVT) technique employing I2 as the 

transporting agent; the crystals were reported to be black needles with dimensions of 

up to 20 mm x 0.2 mm x 0.2 mm. Compositional analysis was not reported, but 

structure refinement from XRD revealed that the compound is tetragonal with lattice 

parameters: a = b = 5.427 Å and c = 10.848 Å [358].  



 186 

Among the techniques used for the growth of single crystals, the CVT has 

generally the advantage of employing lower operational temperatures and static 

configurations of the growing ampoule, the main drawbacks being the incorporation 

of the gaseous solvent species to some extent and the sensitivity of the technique to 

subtle variations of the growing conditions [318]. For example, CVT was 

successfully employed for the synthesis of single crystals of CuInS2, for which 

crystallization from the melt is made difficult by the high temperature phase 

transitions [359]. 

It is known that for simple systems [360] crystallographic perfection in CVT 

growths is favoured under diffusion-limited transport rate, when nucleation density is 

minimized. However, due to the pentenary nature of our system, the formation of 

compositionally well defined sinks is subject to the risk of incongruent transport 

[324]. In fact, as discussed in section 5.4, the thermochemistries of the iodides of Cu, 

Zn and Sn are very different. Therefore the transport induced by the thermal gradient 

may be accompanied by preferential formation of the competing secondary phases of 

the Cu-Zn-Sn-S system, as it was shown for CuInS2 [361]. 

In the present work single crystals of Cu2ZnSnS4 were grown within sealed quartz 

ampoules under two different I2 loads. The effects of the temperature gradient on 

their habit, structure and composition were considered. Microscopic and nanoscopic 

uniformities of the crystals have been assessed with Scanning Electron Microscopy 

(SEM)/X-ray EDS and Transmission Electron Microscopy / Selected Area Electron 

Diffraction / Electron Energy Loss Spectroscopy (TEM/SAED/EELS), in order to 

ascertain whether the samples are suitable for more advanced structural and physical 

characterizations. These results are discussed in this chapter. 
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6.1 Experimental details of crystal growth 
 

The equipment employed for the crystal growth experiments consists of a custom-

made horizontal tubular furnace (Elite Thermal Systems Ltd.) with four independent 

controllers, each of which allows the configuration of individual setpoints and ramp 

rates. In the standard experimental configuration the system is intended to provide 

two zones of different temperatures, with as short a transition zone as possible 

between them. In order to ensure the most uniform temperature within each zone, the 

settings of the independent controllers were chosen after careful calibration with a 

test thermocouple placed along the tube inside a “dummy” quartz ampoule, thus 

emulating the desired experimental conditions as close as possible. 

The experiments were run within sealed quartz ampoules of 23 mm internal 

diameter about 160 mm long. During the experiments the ampoule was touching the 

alumina work tube of 30 mm internal diameter that constitutes the walls of the 

furnace as shown in Fig. 6.1.1. 

 

 
 
Fig. 6.1.1 Schematic representation of the four-zone furnace with the ideal (810-880 
°C), and experimental temperature profiles obtained with typical settings (a,b). 
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In the present work, the optimization of the temperature profiles within the furnace 

required considerable efforts through adjustment of the four temperature settings and 

of the end plugs made of ceramic fibre. 

Fig. 6.1.1 shows also the temperature profile along the ampoule, as measured with 

the thermocouple, at an unrefined (a) and a refined stage (b) of adjustment, compared 

to an “ideal” condition. In order to achieve a sharp temperature variation along the 

furnace, the unheated central part of the furnace required the controllers of zones 2 

and 3 to operate at higher temperatures than expected from the ideal profile. As a 

consequence, in order to avoid overheating of the ends of the ampoule, zones 1 and 4 

were operated at lower temperatures acting as radiation wells. The optimized profiles 

showed temperature uniformity on the order of ± 5 °C over 50-60 mm long plateaus. 

Thermal gradients are among the most crucial aspects for the crystal growth 

experiments. 

The synthesis procedure started with the preparation of the precursor material by 

finely grinding together stoichiometric amounts of 5N purity Cu, Zn, Sn and an 

excess (1.5x) of sulfur in an agate mortar. The mixture was then transferred into an 

IR pellet press to form a green pellet (Fig. 6.1.2a). Similarly to Prabukanthan et al. 

[362], excess sulfur was employed with the intent of preventing any deviation from 

stoichiometry in the early stages of thermal treatment. 

A quartz ampoule with a glass joint and a tight-seal valve was thoroughly washed 

with a 5% Decon 90 solution (Decon Laboratories Ltd.), rinsed with deionised water 

and left soaking overnight inside the fume hood in a 1:1 HNO3:HCl solution, to 

allow dissolution of any impurities. The ampoule was then rinsed thoroughly with 

deionised water several times, connected to a Schlenk line under vacuum, and its 

external surfaces were heated with the oxidising flame of a Bunsen burner to ensure 

desorption of any gaseous components from the internal walls.. 

The pellet was then loaded into the ampoule connected to the Schlenk line, and 

several vacuum and inert gas (N2, Ar or He) purge steps were performed up to the 

final background pressure of 5·10-4 bar (Fig. 6.1.2b). 

In some cases the green pellet was loaded into the ampoule together with the I2 

load, while in other cases an annealing pre-treatment on the green pellet was 

performed to form a sintered precursor to be used as source materials in the 

subsequent crystal growth experiment. This pre-treatment was run in the tubular 

furnace gradually heated up to 700°C and left for about 48 hours, similarly to 

Bernardini et al. [64] and Schorr et al. [68]. 
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The ampoules containing the precursor material and the transporting agent were 

first subjected to a strong temperature gradient in order to allow the complete 

reaction of the precursor material with the I2, as reported by Hönes et al. [73]. During 

this step, the material migrates towards the cold end of the ampoule where it forms a 

cluster homogenized on the atomic scale (Fig. 6.1.3a). Secondly, a reversed 

temperature gradient of appropriate magnitude was applied. The material migrates at 

the opposite end of the ampoule, where it should form single crystals (Fig. 6.1.3b). 

The effects of temperature gradient and two different I2 loads on the crystal habit 

and composition were explored. Table 6.1.1 summarizes the investigated growth 

parameters together with some results for each run. 

 
 

 
 

Fig. 6.1.2 Summary of the procedure employed for the crystal growth experiments. 
Mixing of the elemental precursors by grinding in agate mortar and formation of a 
green pellet with the aid of an IR pellet press (a). Loading of the precursor plus I2 
into the quartz ampoule attached to a Schlenk line to allow any suitable vacuum/gas 
purge cycles up to a final background pressure of 5·10-4 bar. 
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Fig. 6.1.3 Representation of the CVT process sequence with application of a strong 
temperature gradient for the formation of a homogeneous cluster (a), and actual 
crystal growth with application of a refined, reversed temperature gradient (b). 
 

 

Test Time/h T1 

/°C 

T2 

/°C 

∆T/°C I2 load 

 /gcm
-3
 

Gas Notes, habit and average size 

1 168 880 810 70±5 5·10-3 N2 (c) Edge-defined grains (2 mm); 
amorphous or microcristalline 

2 48 880 810 70±5 5·10-3 N2 (c) Edge-defined grains (1-2 mm); 
amorphous or microcristalline 

3 48 850 810 40±5 5·10-3 N2 (c) Edge-defined grains (2-3 mm); 
dendritic and elongated crystals (up to 
10 mm); amorphous or microcristalline 

4 24 880 750 130±5 5·10-3 N2 (i) Dendritic crystals (1-2 mm) 
5 72 840 840 0±5 5·10-3 N2 Residues of test 3 employed. Lustrous 

wafer-thin ( 1-2mm) 
6 96 820 750 70±5 5·10-3 N2 (c) Amorphous or microcrystalline 
7 72 820 760 60±5 5·10-3 N2 (c) Amorphous or microcrystalline 
8 48 820 770 50±5 5·10-3 N2 (c) Amorphous or microcrystalline 
9 72 880 750 130±5 9·10-4 N2 (i) Thin needles (4 mm) 
10 72 850 810 40±5 9·10-4 N2 (i) Prisms (2 mm) formed at 840°C 
11 72 870 820 30±5 9·10-4 N2 (i) Microcrystalline mass 
12 72 880 750 130±5 9·10-4 Ar (i) Amorphous or microcrystalline 
13 168 880 750 130±5 5·10-3 He (c) Cluster of polycristals 
14 24 790 740 50±5 5·10-3 He (i) Cluster of polycristals 

 
Table 6.1.1 Summary of the synthesis trials with parameters considered: duration, 
temperature of source and growth ends, temperature gradient, I2 load, inert gas 
employed. Details on the completeness (c) or incompleteness (i) of the transport and 
on the resulting habit and average crystal size for each run are also included. 
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6.2 Compositional and structural characterization 
 

The materials resulting from growth tests No. 3 and 9 were fully analyzed 

compositionally and morphologically either with an INCA XACT X-ray EDS system 

connected to a Jeol 6480LV SEM or with an INCA 300 Electron Probe Micro-

Analysis (EPMA) connected to a Zeiss EVO 40 SEM (Carl Zeiss SMT Ltd., 

Cambridge). EDS was conducted using a 1nA probe at 25 keV, and all optimizations 

were performed against a pure cobalt standard used for further standardization of the 

collection conditions. 

Sufficiently large samples were embedded in Taab Hard LV resin and polished up 

to a 0.1 µm alumina finish (Streuers) with a Metaserv rotary polishing machine for 

more accurate estimation of the bulk composition via SEM-X-ray EDS. The same 

samples were also loaded on a Reichert-Jung ultramicrotome for production of thin 

sections (< 90 nm). The blocks and ultramicrotome were cooled using liquid nitrogen 

to minimise local heating of the samples. The slices were analysed with a JEOL 

JEM1200EXII TEM for Selected Area Electron Diffraction (SAED) and further X-

ray EDS analyses using an Oxford Instruments INCA Energy 350 system. Images 

were acquired using a Gatan Dual View Camera. Featured diffraction measurements 

were confirmed using a Jeol 2100F at 200 keV. 

Other crystals were either Ar ion-milled in a Gatan precision ion-polishing system 

(PIPS) using a 3-5 kV beam and 6-8 degree gun angle, or crushed between mica foils 

and the fine resulting powder analysed at the TEM (JEOL 2100F FEG) for 

information on the compositional and structural homogeneity. Due to beam 

instability, the diffraction and elemental analyses were performed using a Gatan 

double tilt cryoholder cooled to 77 K and the current density was kept below 15 

pA·cm-1. Analysis of the diffraction patterns was conducted using Gatan Digital 

Micrograph and Image J. 

Determination of the lattice parameters of the single crystals was performed with a 

Bruker Nonius Kappa CCD diffractometer. Some samples were also analysed with a 

Gemini A Ultra (Oxford Instruments) in order to establish the crystal facets 

associated with the most convenient growth mechanisms under the different 

experimental conditions. 
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6.3 Results of Chemical Vapour Transport Experiments 
 

6.3.1 Summary of experimental results 

 

The thermochemistry of possible chemical vapour transport phenomena in the Cu-

Zn-Sn-S-I system was analysed in chapter 5. It was proposed that the volatile 

components taking part to the CVT are the iodides of Cu, Zn and Sn, and elemental 

sulfur vapour. In such circumstances, the crystallization of Cu2ZnSnS4 may take 

place through reaction 6.3.1 (the reverse of reaction 5.6.1). 

 

Reac. 6.3.1 2/3(CuI)3(g)+ZnI2(g)+SnI2(w+1) (g)+4/ySy(g)→Cu2ZnSnS4(s)+2(3+w)/xIx(g) 

 

Such an overall reaction may well occur in a series of more complicated reaction 

steps. Nonetheless, under the conditions investigated, a net mass transport was 

observed from high to low temperature zones of the quartz ampoule, suggesting a 

negative enthalpy associated with reaction 6.3.1, consistent with the thermochemical 

computation reported in section 5.6. 

Among the empirical growth conditions investigated and summarised in Table 

6.1.1, the runs that resulted in the synthesis of single crystalline material of 

reasonable size (major axis > 2 mm) are experiments No. 9 and 3, on which the 

characterizations were focused (Figs. 6.3.2 and 6.3.3 respectively). These are 

reviewed in detail in Table 6.3.1, together with experiment No. 5, 12 and the 

examination of the transport residues of experiment No. 9, which deserved further 

attention. Fig. 6.3.1 shows the photographs of the materials obtained in the 

experiments listed in Table 6.3.1. 

 

 
 
Fig. 6.3.1 Materials resulting from the growth tests as listed in Table 6.3.1. 
Experiment No. 3 (a), 5 (b), 9 at T2 (c), 9 at T1 (d) and 12 (e). 
 



 193 

 

Test No. 3 (growth) T2 5 (isothermal) 9 (growth) T2 9 (source) T1 12 (growth) T2 

Background gas N2 N2 N2 N2 Ar 
Ampoule i. d. / mm 23 23 23 23 23 
Ampoule length / 

mm 

160 160 160 160 160 

Duration / days 48 72 72 72 72 
T1 /°C 850 840 - 880 880 
T2 /°C 810 840 750 - 750 
∆T /°C 40±5 0±5 130±5 130±5 130±5 
I2 load / gcm

-3 5·10-3 5·10-3 9·10-4 9·10-4 9·10-4 
I2 load / precursor 

load  (molar ratio) 

2.48 2.48 0.44 0.44 0.44 

Grashof number 4.8·104 0 5.0·103 n/a 5.0·103 
Schmidt number 1.82 1.82 1.79 n/a 1.79 
Rayleigh number 8.7·104 0 9.0·103 n/a 9.0·103 
Longitudinal 

diffusive share of 

transport [363] 

0.19 ∞ 0.59 n/a 0.59 

Source material 

employed 

Green pellet Result of 
experiment 3 

Pre-treated pellet Pre-treated 
pellet 

Pre-treated pellet 

Habit Elongated 
crystals free 
from the 
ampoule’s walls 
and edge-defined 
crystals 

Wafer-thin 
lustrous crystals 
attached to the 
ampoule’s walls 

Thin needles free 
from the 
ampoule’s walls 

Hemispherical 
lump attached 
to the 
ampoule’s 
walls 

Amorphous or 
microcrystalline 
mass 

Mean size / mm 2-3 1-2 4 3 < 0.5 
Composition (SEM-

EDS) 

Cu2.0±0.1Zn1.0±0.1S
n1.0±0.0S4.0±0.1 
Cu2.2±0.0Zn1.0±0.0S
n2.4±0.1S10.4±0.1 
CuI, ZnS 

n/a Cu1.9±0.1Zn0.9±0.0Sn
1.0±0.0S4.1±0.1 
CuI 

Cu2.0±0.0Sn1.0±0.0
S3.0±0.0(Zn 
traces) 
CuS 
CuI 

n/a 

Lattice parameters 

(XRD) 

a = b = 5.421(1) 
Å 
c = 10.819(3) Å 
volume = 318 Å3 

α = β = γ = 90 ° 
c/(2a) = 0.998 

n/a a = b = 5.4290(2) 
Å 
c = 10.8340(4) Å 
volume = 319 Å3 
α = β = γ = 90 ° 
c/(2a) = 0.998 

n/a n/a 

Lattice parameters 

(SAED) 

a = b= 5.55 Å  
c = 10.52 Å 
volume = 324 Å3 
α = β = γ = 90 ° 
c/(2a) = 0.948 
(at 77 K) 

n/a a = b = 5.67 Å 
c = 11.48 Å 
volume = 369 Å3 
α = β = γ = 90 ° 
c/(2a) = 1.012 
(at 298 K) 

n/a n/a 

Relevant figures 3a, 4a-i 3b 3c, 5a-c,h-i 3d, 5d-g 3e 
CVT single crystal: a=b= 5.427, c=10.848, volume= 319 Å3 Schäfer et al. [358] (1974) 

CVT single crystal: a=b= 5.435, c=10.843, volume= 320 Å3 Guen et al. [364] (1979) 

Salt flux single crystal: a=b= 5.434(1), c=10.856(1), volume= 320 Å3 Bonazzi et al. [65] (2003) 

Relevant literature 

of CZTS lattice 

parameters from 

different synthesis 

routes (XRD) Powder sol. st. reaction: a=b= 5.428(2), c=10.864(4), volume= 320 Å3 Schorr et al. [68] (2007) 

 

Table 6.3.1 Summary of transport conditions for the most significant growth 
experiments (No. 3, 5, 9 and 12) and compositional/structural properties of the 
relevant materials obtained (n/a= not applicable/analysed). The CZTS lattice 
parameters from relevant XRD literature are also reported for comparison. 
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6.3.2 Experiment No. 9: growth with iodine load of 9·10
-4
 gcm

-3 

 

Fig. 6.3.2 shows collections of images for growth experiment No. 9. This test was 

run with a load of iodine corresponding to 9·10-3 grams per cm3 of the internal 

ampoule volume. A temperature gradient of 130 °C was employed in this experiment 

(T1 = 880 °C, T1 = 750 °C). Fig. 6.3.2a shows the visual appearance of the ampoule 

at the end of the growth test lasting 72 hours. 

Despite the larger gradient and the longer duration of the experiment, the transport 

of material was incomplete. Needle-shaped crystals were formed at the cold end, as 

shown in Fig. 6.3.2b-c, while lumps of nutrient material were left at the source end of 

the ampoule (Fig. 6.3.1d). The needle-shaped crystals display very neat edges and 

elongated shape (1D predominance). 

Similarly to growth test No. 3, traces of CuI crystals could be detected on the 

samples surface, although in smaller amount. 

Fig. 6.3.2i is the SAED pattern of the ion-milled crystal on the [-110] zone axis. 

The lattice parameters obtained from SAED are reported in Table 6.3.1. The 

diffraction is consistent with previously reported tetragonal forms of CZTS. The 

Kikuchi lines were highly visible during tilting from one zone axis to another, 

revealing that the sample was thick enough to be unaffected by the electron beam in 

such conditions. 

Figs. 6.3.2d-f are SEM-BSE micrographs of the hemispherical residue left at the 

source side of the quartz ampoule at the end of the transport experiment. It is 

possible to distinguish clearly four areas with different signal intensity. The black 

areas are voids and Fig. 6.3.2d shows that such porosity is concentrated in the inner 

part of the lump, with pores that extend radially towards the surface, delimiting 

grains with elongated shape. The EDS spectra of the three remaining areas are 

reported in Fig. 6.3.2g. The highly scattering brittle phase (white) has composition 

consistent with the formula CuI (with ~ 10 at. % O contaminations), the dominant 

grey phase has formula Cu2SnS3 (with residues of I < 1 at. %) and the low scattering 

phase (dark grey) is consistent with CuS (with Al and I contaminations < 2 at. %). 

The outer surface of the lump is surrounded by a 40 µm thick crust of CuI, which is 

also present in the bulk of the lump filling the spaces left by the dominant Cu2SnS3 

phase. The CuS phase shows a high degree of porosity and is segregated over a band 

area in the middle of the dominant Cu2SnS3 phase between the voids in the centre of 
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the lump and the outer surface. A gradient of Zn concentration was found in the 

Cu2SnS3 phase from the inner to the outer part of the hemispheric lump, with a 

remarkable Zn concentration up to 6 at. % in the area between the CuI outer crust 

and the CuS-rich band, as shown in Fig. 6.3.2e. 

Despite the low heating rate employed, the pre-treatment of the source material 

caused the Zn to be partially lost, owing probably to the large volume of the ampoule 

employed (same dimensions as for the crystal growth) [365]. Interestingly, under the 

growth conditions of experiment No. 9, in spite of the off-stoichiometry of the source 

material, the crystals grown at the cold end of the ampoule have composition 

consistent with the formula Cu2ZnSnS4, and no traces of the ternary Cu2SnS3 were 

found. 

 

 

 

Fig. 6.3.2 Collection of images relative to the growing test No. 9 (cfr. Table 6.3.1, 
Figs. 6.3.1c-d). View of the quartz ampoule at the end of the experiment (a). SEM 
micrographs of typical needle shaped crystals (b-c). Cross sectional BSE 
micrographs of the hemispherical residue left at the hot end (d-f) with pronounced 
compositional contrast between the three phases present for which EDS spectrum 
with a 20 keV electron beam is reported (g). TEM bright field image of the edge of 
an ion-milled crystal (h) and its SAED pattern on the [-110] zone axis nominally at 
room temperature (i). 
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6.3.3 Experiment No. 3: growth with iodine load of 5·10
-3
 gcm

-3 

 

Fig. 6.3.3 shows a collection of images for growth experiment No. 3. This test was 

run with a load of iodine corresponding to 5·10-3 grams per cm3 of the internal 

ampoule volume (more than 5 times the amount employed for test No. 3). A 

temperature gradient of 40 °C was employed in this experiment (T1 = 850 °C, T1 = 

810 °C). Fig. 6.3.3a shows the visual appearance of the ampoule at the end of the 48 

hours of treatment. Fig. 6.3.3b shows the morphology of a typical edge-defined grain 

crystal, a reasonably even 3D growth was obtained. Part of the crystal surface is 

depicted in Fig. 6.3.3c, where the compositional variation is highlighted by the EDS 

mapping of the emission lines of the relevant elements under a 20 keV electron beam 

(Kα1(Cu), Kα1(Zn), Lα1(Sn), Kα1(S), Lα1(I)). The resulting picture shows the presence of 

three phases: a substrate phase consistent with the composition Cu2ZnSnS4 (green), 

covered by crystals of ZnS (orange) and CuI (blue). 

In order to get insights into the growth sequence, some of the crystals were 

embedded in hard resin and polished on random orientations as to examine the core 

morphology and composition. The cross sectional morphology of the crystals shows 

that the bulk structure is rather defective with abundant voids of size up to 20 µm 

(Fig. 6.3.3e). 

The micro-scale compositional uniformity was assessed on the carbon-coated 

specimens via backscatter electron composition imaging and EDS point analyses at 

the SEM. Evidence of the high compositional uniformity is given by the BSE 

micrograph shown in Fig. 6.3.3g which was taken deliberately at very high contrast 

in order to enhance the compositional variation. The comparison with the secondary 

electron image in Fig. 6.3.3f shows contrast attributable to polishing artefacts rather 

than elemental inhomogeneity. 

A CASINO V2.42 [366] simulation of the 20 keV electron beam trajectories in 

bulk Cu2ZnSnS4 was run in order to estimate the interaction volume that defines the 

spatial resolution of the point EDS analyses (Fig. 6.3.3d). The microprobe analyses 

performed this way on numerous points randomly distributed reveal a standard 

deviation lower than 1 at. % for each element present. 

The nano-scale compositional uniformity was estimated via TEM-EDS on 90 nm 

thin slices of crystals cleaved from the embedded samples. Morphological analysis at 

the TEM shows the presence of domains with different contrast on the order of 20 
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nm; however, no appreciable compositional and structural differences were revealed 

either by EDS or SAED. TEM-EDS analyses performed at room temperature under 

beam currents higher than 25 pAcm-1 revealed compositions that were consistently 

poorer of Sn and S in the ratio 1:2 compared to the SEM-EDS analyses. This is 

consistent with the evolution of SnS(g) and S2(g) from Cu2ZnSnS4(s) in high vacuum 

[154] due to local heating by overexposure to the high energy electron beam (120 

keV). Due to this unavoidable reaction, only the Cu:Zn compositional ratio can be 

considered as a reliable figure. Such ratio was found to be roughly 2:1. If the 

specimens were kept cool in a double-tilt filter at 77 K, no change in composition 

was observed even after prolonged beam exposure and the SAED interrogation 

revealed a consistent tetragonal structure throughout the samples (Fig. 6.3.3i). The 

lattice parameters as obtained from SAED are reported in Table 6.3.1. 

 

 

 

Fig. 6.3.3 Collection of images relative to the growing test No. 3 (cfr. Table 6.3.1, 
Fig. 6.3.1a). View of the quartz ampoule at the end of experiment (a). SEM 
micrograph of a typical edge-defined crystal (b) and EDS compositional map of its 
surface (c) (blue: CuI; orange: ZnS; brown: Cu2ZnSnS4). CASINO V2.42 [366] 
simulation of interaction volume for 20 keV electrons with bulk Cu2ZnSnS4 (d). 
SEM micrograph of a polished crystal as seen from secondary electron (e-f) and BSE 
(g) detectors. TEM bright field micrograph of 90 nm thin slices of a crystal (h) with 
its SAED pattern at 77 K (i). 
 



 199 

 



 200 

6.4 Discussion of preferential crystallization 
 

In all experiments the crystallization of CZTS material (reaction 6.3.1) occurred at 

the position of the ampoule corresponding to the minimum of the longitudinal 

temperature profile for each run as assessed with the quartz dummy reactor. It was 

observed that even a well of just 5 °C was enough to induce preferential 

crystallization. Therefore, it was concluded that the enthalpy change associated to 

reaction 6.3.1 is negative, i.e. heat is released when Cu2ZnSnS4 crystallizes from the 

gaseous iodides of Cu, Zn and Sn under the experimental conditions tested. 

Furthermore, it was observed that the crystallization occurred preferentially on the 

walls of the ampoule for test No. 3 (Figs. 6.3.1a, 6.3.3a) and free from them if the 

iodine load was reduced, as for test No. 9 (Figs. 6.3.1c, 6.3.2a). Quenching of these 

two growth tests at regular time intervals followed by observation of the ampoules 

revealed two different means of transport. For test No. 3 a series of 

decomposition/crystallization steps took place throughout the length of the ampoule, 

while test No. 9 showed a direct transport from the hottest to the coldest end of the 

ampoule. From a rough estimation of the ampoule pressure for the two cases (~1.8 

vs. ~0.32 bar for experiments No. 3 and 9 respectively, calculated based on PV=nRT 

with T=mean absolute temperature within the ampoule for each experiment), this 

behaviour is qualitatively consistent with the predictions of Zuo et al. [367] on the 

transition between a diffusion-dominated to a convection-dominated regime of mass 

transport in the system ZnS-I2. The computed Grashof Gr. (Eq. 6.4.1), Schmidt Sc. 

(Eq. 6.4.2) and Rayleigh Ra. (Eq. 6.4.3) fluid numbers (Table 6.3.1) suggest that the 

longitudinal convective share of transport (that we name after Klosse et al. [363]) Kl. 

(Eq. 6.4.4) for test No. 3 is about three times higher than for test No. 9. 

 

Eq. 6.4.1 223 /. ηβρ TgdGr ∆=  

 

Eq. 6.4.2 )(. DSc ρη=  

 

Eq. 6.4.3 )10()(. 3 klTCgRa p ηβ ⋅∆=  

 

Eq. 6.4.4 ].).(/[1. 2 bGrScaKl +⋅= −  
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where d and l are the ampoule diameter and length expressed in cm, g is the 

acceleration due to gravity (9.81·102 cm·s-2 on the Earth’s surface), β is the 

volumetric thermal expansion coefficient expressed in K-1, ρ is the density expressed 

in g·cm-3, ∆T is the temperature difference between source and growth ends of the 

ampoule expressed in K, η is the absolute viscosity (a.k.a. dynamic viscosity) 

expressed in g·cm-1·s-1, D is the diffusion coefficient expressed in cm2·s-1, Cp is the 

specific heat capacity expressed in J·kg-1·K-1 and k is the thermal conductivity 

expressed in W·m-1·K-1. The dimensionless quantities a and b are functions of the 

ampoule aspect ratio l/d. The magnitudes of a and b can be obtained from the graph 

in Appendix 7 taken from Klosse et al. [363]. 

The Kl. number introduced by Klosse et al. [363] and computed by Eq.6.4.4 

reflects the competitive behaviour between diffusion and thermal convection in CVT 

crystal growth experiments [363]. Eq. 6.4.4 can be divided in two terms: a·(Sc.Gr.)-2 

and b. The first term is a measure of the diffusion contribution and the second term 

of the convection contribution to the overall mass transport in the CVT experiment. 

In the present work, both experiments No. 3 and 9 show a·(Sc.Gr.)-2 << b. 

Therefore, according to the analytical model of Klosse et al. [363], both experiments 

should be considered under convection-dominated regimes of mass transport. 

Furthermore, in the present study the Rayleigh numbers exceed 4·103, a value above 

which a strong deterioration of the crystal quality has been reported by Böttcher et al. 

[368] in CVT of the system ZnSe-I2. 

The fact that the crystals obtained from experiment No. 9 had very well defined 

morphology seems in contradiction with Klosse’s suggestions [363] and Böttcher’s 

findings [368]. However, this can be explained on the basis of the applicability range 

of Klosse’s model [363]. As already pointed out in section 5 [360], with iodine 

concentrations below certain values, the transport rate is likely to be governed by the 

rate of heterogeneous reaction of source vaporisation, rather than by diffusion, 

regardless of the temperature gradient applied. We believe that this is most probably 

the case for test No. 9. Indeed, at the end of experiment No. 9, the mass transport 

from the hot to the cold end of the ampoule was incomplete. EDS microstructure 

analysis was performed on the residues of the source material (Figs. 6.3.1d and 

6.3.2d-f) in order to gain information on the mechanism of CVT. The interpretation 

that can be drawn is as follows. Under the experimental conditions of experiment No. 

9, at the source end (T1 = 880 °C) the Zn poor CZTS precursor is mainly liquid (m.p. 
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Cu2SnS3 ~ 837 °C [369]). This allows the Zn atoms (limiting reagent) to diffuse 

easily through the droplet towards the surface where they are captured by the I2 (g) to 

form ZnI2 (g). The other metals also react with iodine and the formation of nearly 

stoichiometric CZTS at the cold end withdraws the mixture of gaseous iodides until 

there is enough Zn to be extracted from the source. The CuI formed by reaction of 

the CZTS precursor with I2 is also present as a liquid phase at the test temperature 

(m.p. = 605 °C [369]). During cooling, the matrix of Cu2SnS3 at the source end 

crystallizes in elongated grains, the molten CuI remains trapped at the grain 

boundaries and the shrinkage due to its solidification causes this phase to be 

surrounded by voids. The Zn concentration gradient left in the source material is 

opposite to what it would be expected if Zn were to be selectively leached at the 

surface of the droplet. The heterogeneous reaction occurring at the interface between 

gaseous I2 and condensed source material, should lead to a Zn-poor surface and a Zn-

rich core. There appears to be no obvious explanations for such observation. No 

traces of ZnI2 (b.p = 726 °C), SnI4 (b.p = 353 °C) and SnI2 (b.p = 717 °C) were found 

in the solid residue of the source material, as their boiling points are lower than the 

solidification temperature of Cu2SnS3. The fact that these iodides are not detected at 

the cold end too, is consistent with their lower thermodynamic stability compared to 

CuI, as resulting from the computation in chapter 5. 

Comparison of the EDS analyses of the main (CZTS) sinks for experiments No. 3 

and 9 reveal that the composition is nearly unaffected by the I2 pressure within the 

ampoules (cfr. Table 2), although increased amounts of secondary phases were 

detected when the larger I2 load was employed. Despite the lower iodine load and the 

Zn deficiency of the source material of test No. 9, no Cu2SnS3 was detected by EDS 

at the cold end of the ampoule. This suggests that, to a reasonable extent, the system 

shows the tendency to self-adjust the crystal growth as to produce the most stable 

phase (in this case Cu2ZnSnS4) so long as sufficient amounts of each component (e.g. 

Zn) are available at the source end. This self-regulatory behaviour occurs despite the 

fact that the reactions between the binary sulfides and iodine to form the unary 

iodides of Cu, Zn and Sn have very different thermodynamic equilibrium constants, 

as it is shown in Fig. 5.4.4. 

With the intent to ascertain whether it is possible to enlarge the bigger crystals at 

the expenses of the smaller ones on the same principle of the Ostwald ripening [370], 

an isothermal treatment at 840 °C was conducted on the resulting mass of experiment 

No. 3 (test No. 5, cfr. Table 6.3.1). If the “ideal equilibrium” were to be reached, the 
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(few) well formed crystals should grow further until a single - nearly perfect - crystal 

is formed. The treatment was prolonged up to 72 hours and lead to the formation of 

highly lustrous wafer-thin edge-defined crystals with average size 1-2 mm, which 

adhered strongly to the ampoule’s walls, as shown in Fig. 6.3.1b (2D predominance). 

During this experiment, relatively large crystals with pronounced development in the 

three dimensions (experiment No. 3, cfr. Fig. 6.3.1a) were slowly eroded and 

converted into crystals where the third dimension is strongly reduced (Fig. 6.3.1b). It 

is apparent that the dynamic decomposition/crystallization equilibrium that took 

place during test No. 5 resulted in the transport of mass towards the walls of the 

ampoule, rather than contributing to the growth of bulk crystals (free from the walls). 

This behaviour is opposite to that described by Szczerbakow et al. [371] in the self-

selective vapour growth (SSVG) of bulk crystals. The key principle of the SSVG is 

shown in Fig. 6.4.1 [371]. 

 

 

 
Fig. 6.4.1 Schematic representation of the principle governing the self-selective 
vapour growth of bulk crystals, modified from Szczerbakow et al. [371]. 
 

The SSVG experiment is a sealed tube technique suitable for materials with 

appreciable vapour pressure, where the source of polycrystalline material acts as the 

self-seed for further growth. The growth ampoule is statically inserted into a furnace 

where small but carefully adjusted temperature gradients are set (Fig. 6.4.1a). As 

shown in Fig. 6.4.1b, growth of single crystals with this technique is based on the 

active cooling by thermal radiation of the growth front respectively via application 

and natural occurrence of longitudinal and transversal temperature fields [372]. 
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In the present work, the radial temperature profile is expected to be similar to the 

one shown in Fig. 6.4.1b, i.e. higher on the ampoule’s walls (in direct contact with 

the heated furnace) and lower at the centre of the ampoule (away from the source of 

heat). Similarly to the condensation taking place in the SSVG that involves the latent 

heat of phase change, in the present work it is inferred that reaction 6.3.1 releases 

heat (this can be deduced from the observed direction of transport). In both cases this 

heat needs to be released and dissipated in the vicinity of the process for the 

crystallization to take place. Therefore, in both cases (SSVG and our CVT) the lower 

the temperature the higher is the thermodynamic driving force for crystallization. In 

CVT experiments with negative enthalpy of crystallization, a well formed crystal 

pointing towards the inner part of the ampoule (where the temperature is lower) 

should act as a good self-seed, as in the case of SSVG (Fig. 6.4.1a). Further growth 

should take place on its surface, until all the smaller, more defective crystals on the 

ampoule’s wall are thoroughly consumed. However, SSVG and CVT differ in terms 

of the rate of mass transport. For experiment No. 3 (I2 load of 5·10
-3 gcm-3) the rate 

of transport was found to be considerably higher than in a typical SSVG experiment 

[371] (≥ 0.17 gh-1 vs.0.02 mmh-1). This is not surprising, since CVT is based on 

active mass transport ensured by the formation of volatile components, while in 

SSVG it depends solely on the (generally low) vapour pressure of the compound 

being grown [371]. 

Under isothermal conditions at high temperature (e.g. during experiment No. 5), a 

dynamic equilibrium is expected to take place, in which an equal number of moles of 

CZTS crystallize than they react to form the elemental iodides. The 

decomposition/crystallization rate under steady state conditions is ultimately 

dependent upon the concentration of free I2 and S2 in the system, as per reaction 

6.4.1. 

 

Reac. 6.4.1 2/3(CuI)3(g)+ZnI2(g)+SnI2(w+1) (g)+4/ySy(g)→Cu2ZnSnS4(s)+2(3+w)/xIx(g) 

 

From the kinetic standpoint under steady state conditions, higher I2 concentrations 

correspond to higher decomposition/crystallization rates of CZTS, meaning that 

more heat needs to be absorbed and released per time unit. 

It is known that heat transfer by thermal conduction through the volume of 

growing crystals can lead to a reduction of the crystal growth rate as growth proceeds 

[371]. For example, conventional vapour growth methods like the Piper-Polich [373] 
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and the Markov-Davydov [374] are self-limiting in this sense, because the growth 

front is located at the hottest part of the crystal. Nevertheless, the inversion of the 

sign of the growth rate observed in experiment No. 5 (namely, crystal consumption) 

deserves some attention. 

The transversal profile of thermal conductivity in our experimental setup is such 

that a more effective heat extraction can be attained by the ampoule’s walls rather 

than by large crystals surrounded by the complex mixture of reacting gases (Fig. 

6.4.2). It is reasonable to assume that under the conditions investigated in experiment 

No. 5, the position on the system’s surface corresponding to the most effective path 

for heat extraction is the one showing preferential crystallization of CZTS. On the 

other hand, due to the lower I2 pressure employed, experiment No. 9 is likely to 

display a lower decomposition/crystallization rate than experiments No. 3 and 5. A 

lower reaction rate at the steady-state equilibrium means that a reduced amount of 

heat needs to be exchanged per time unit. If the reaction rate at the steady state 

equilibrium is low enough for the heat to be effectively dissipated in the vicinity of 

the process, reaction 6.4.1 has the tendency to occur preferentially on the crystal’s 

surface that remains cooler than the ampoule’s walls. In such circumstances, crystal 

growth prevails on nucleation (experiment No. 9) or the bigger pre-existing crystals 

are stable against the action of I2 and will further grow self-selectively at the expense 

of the smaller ones. If the opposite is true (under high rates of 

decomposition/crystallization), crystals free from the walls may have the tendency to 

be dissolved and a net mass transport may occur towards the ampoule’s walls, where 

heat can be readily dissipated (experiment No. 5). These two different cases are 

shown schematically in Fig. 6.4.2, where the transversal profiles of temperature and 

thermal conductivity in the ampoule system are depicted. 

Fig. 6.4.2 shows a schematic representation of the consequences of CVT under 

steady state equilibrium in longitudinally isothermal conditions (cfr. experiment No. 

5, Table 6.3.1). The two scenarios with different directions of transport are depicted 

in proximity of the ampoule’s walls respectively towards (a) and from (b) a well 

developed 3D crystal. The transversal profiles of temperature and thermal 

conductivity across the media in the closed ampoule are such that a more effective 

heat exchange is shown by the ampoule’s walls in contact with the furnace’s wall. 
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Fig. 6.4.2 Proposed chemical vapour transport scenarios under low (a) and high (b) 
rates of decomposition/crystallization during longitudinal isothermal treatment (a 
negative enthalpy change during crystallization is assumed, as in the present work). 
Transversal profiles of temperature and thermal conductivity (rough guides) of the 
experiment in proximity of the ampoule’s and furnace’s walls are superimposed. 
 

As long as the rate of decomposition/crystallization is relatively small (under 

relatively low iodine and sulfur pressures) crystal growth occurs at the surface of 

bigger crystals at the expense of the smaller ones (Fig. 6.4.2a). If the 

decomposition/crystallization rate is comparatively higher (under higher iodine and 

sulfur partial pressures) the material is preferably transported towards the ampoule’s 

walls, with the consumption of the 3D crystals and formation of 2D crystals that 

strongly adhere to the foreign surface (Fig. 6.4.2b). 

The proposed explanation is consistent with the fact that bulk 3D CZTS crystals 

free from the walls were obtained during test No. 3 (Fig. 6.4.2a), despite the iodine 

and sulfur partial pressures employed were the same as for experiment No. 5 (where 

2D crystal formation prevailed, as depicted by Fig. 6.4.2b). It is likely that the 3D 

crystals resulting by quenching of test No. 3 were formed before (or just after) the 

steady state equilibrium was reached, i.e. when part of the I2 was sequestered (or just 

released) by the material to be transported from the higher temperature side. In such 

conditions (test No. 3), the effective I2 pressure experienced by the material at the 

growth end is lower than it would be under steady state conditions (test No. 5). This 

translates into a lower decomposition/crystallization rate at the growth end during the 

early stages of chemical vapour transport (test No. 3), a conditions where the 

scenario in Fig. 6.4.2a is more favourable. Vice-versa, the very same ampoule left 

under prolonged isothermal conditions (test No. 5) allows the growing material to 
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experience the full iodine pressure, resulting in the opposite scenario being more 

favourable (Fig. 6.4.2b). 

A 2D crystallization behaviour similar to the one observed for test No. 5 has been 

reported by Ciszek [375] for the synthesis of CuInSe2 via I2 vapour transport. During 

his experiments, typically lasting 120 hours, he failed to induce preferential 

crystallization using the cold finger seeding technique. On the contrary, the mass 

transport resulted in the formation of several morphologies, with the most favourable 

being in the form of (112) surface platelets. No explanation for the preferential 

crystallization of CuInSe2 on the surface of the ampoule’s walls rather than on the 

seed was provided by Ciszek [375]. The similarity between Ciszek’s experiment and 

test No. 5 of the present investigation suggests that the proposed explanation (based 

on the high rate of decomposition/crystallization at the steady state equilibrium and 

on the most effective path for heat dissipation) could apply to both cases. 

Similarly, it is explained why with lower I2 loads (test No. 9, cfr. Table 6.3.1, Figs. 

6.3.1c, 6.3.2a) the crystallization occurred preferentially free from the ampoule’s 

walls rather than at their surface. Furthermore, test No. 12 (cfr. Table 6.3.1) was run 

under the same conditions of test No. 9 but using Ar instead of N2 as the background 

gas. This choice lead to the formation of an amorphous or microcrystalline mass, as 

shown in Fig. 6.3.1e. This behaviour seems consistent with the lower thermal 

conductivity of the atmosphere inside the ampoule. 

An investigation of the possible mechanisms followed by reaction 6.4.1 may help 

to understand further the different preferential crystallizations observed in Ciszek’s 

and the present study (tests No. 3, 5, 9 and 12). Reaction 6.4.1 involves 4 and 2 

reactant molecular species in the forward and reverse direction respectively. 

Reactions with molecularity higher than 2 are quite rare [376], therefore it is 

reasonable to suppose that the forward reaction may proceed via adsorption of one 

sulfur molecule or one unary iodide onto a solid surface (either an already formed 

crystal or the ampoule’s walls), followed by collision respectively with either a unary 

iodide or a sulfur molecule, release of iodine and formation of a binary sulfide 

nucleus. The reaction can proceed via adsorption of iodide molecules of different 

type, resulting in the formation of different binary sulfide nuclei. Surface diffusion of 

such nuclei may be high enough to allow their ordered aggregation into a larger 

quaternary sulfide nucleus, a process that should be associated with a negative free 

energy change. In such a mechanism, the first step is the surface adsorption of unary 

iodides. Chemisorption is known to have a negative enthalpy change and a positive 
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entropy change [376], therefore colder surfaces are thermodynamically more 

convenient than hotter ones for this first step to take place. The considerations made 

earlier about the effective path for heat dissipation apply also to this reaction step. 

The second step in the proposed mechanism is the collision of a sulfur molecule with 

the adsorbed unary iodide (or vive versa). The result of an effective collision 

between these two molecules would be the release of a molecule of I2 and the 

creation of a surface binary sulfide nucleus. According to the transition-state theory 

developed by Eyring [377], this second step requires the formation of an activated 

transition-state complex with enthalpy greater than the sum of the enthalpy of the 

reagents or the sum of the enthalpy of the products. Let us concentrate on the crystal 

growth once nucleation on a foreign surface (e.g. the ampoule’s walls) has been 

already initiated (which is always necessary, unless a self-seeding technique is 

employed). Depending on the chemical nature of the adsorbent surface (e.g. number 

and kind of missing coordination) and on the local temperature, the transition-state 

complex may be more or less stabilised. Every family of crystallographic planes of 

the growing phase is characterised by a different sequence of atomic population with 

different surface unfilled bonds, and different thermal conductivities. From the 

thermodynamic point of view, breaking a bulk crystal to create two new surfaces 

requires some energy. The free energy change involved depends on the 

crystallographic direction of the surfaces being created. Therefore, it is clear that 

when the reverse process takes place (crystal growth) some crystallographic 

directions of growth are thermodynamically favoured over some others. 

Nevertheless, depending on the growth conditions during the CVT experiments and 

especially on the rate of decomposition/crystallization (dependent on the partial 

pressures of iodine and sulfur), prevalence of crystal facets other than the most 

thermodynamically stable may be possible. 

In the present study, macroscopic indexing of the preferential crystallographic 

directions of growth for the CZTS samples CVT-grown under different I2 pressures 

(experiments No. 3 and 9) was performed. Fig. 6.4.3 shows the results of the 

indexing analysis performed on a needle-shaped CZTS sample grown under low 

iodine pressure (experiment No. 9). The very well defined edges shown by this 

specimen made the assignment procedure straightforward. Unfortunately, this was 

not the case for the CZTS samples grown under higher I2 pressure. Due to their less 

regular shape, assignment of the facets did not provide sensibly low Miller indexes 

(not shown). 
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Fig. 6.4.3 Indexing analysis of the very top of a needle-shaped CZTS crystal CVT-
grown under 9·10-4 g·cm-3 I2 (test No. 9). 
 

Fig. 6.4.3 shows that the needle-shaped CZTS crystals obtained during experiment 

No. 9 grow along the (001) crystallographic direction, corresponding to the c axis of 

the Kesterite unit cell. Under the conditions investigated with test No. 9. the favoured 

CZTS facets are: (010), (100) and (0-51). Without a comparison with computational 

work it is difficult to know if these findings are consistent with a growth mechanism 

leading to the exposure of the most thermodynamically stable crystal surfaces, or if 

the crystal shape is the result of a kinetic trade-off. 
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7. Cu2ZnSnS4: Kesterite or Stannite? 
 

In the present chapter, the results of a collection of analyses performed on the single 

crystals of CZTS obtained via the chemical vapour transport with I2 are reported. A 

range of techniques has been employed to study the structural and electronic 

properties of the materials. 

Section 7.1 presents the results of the powder and single crystal X-ray diffraction 

performed on CZTS samples CVT-grown under different pressures of iodine 

(experiments No. 3 and 9, see table 6.3.1). The result of the structural refinement for 

the assignment of the space group is also shown. Single crystal neutron diffraction 

analysis of a CZTS sample resulting from experiment No. 3 was also performed with 

the instrument VIVALDI (very intense vertical-axis Laue diffractometer) at the 

Institut Laue-Langevin in Grenoble (France) [378]. As for the X-ray diffraction 

analysis, the result of the structure refinement for the assignment of the space group 

is shown. 

Section 7.2 presents the result of the Raman characterization of the CZTS crystals 

from experiments No. 3 and 9. 

Section 7.3 presents the analyses of photoluminescence spectroscopy carried out to 

study the electronic properties of the CZTS materials synthesized by CVT. 
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7.1 X-ray and neutron scattering analyses of CZTS crystals 
 

Table 7.1.1 summarises the structural characterizations with electron and X-ray 

diffraction of CZTS crystals grown via CVT under different loads of I2. 

 

Test No.  3 9 

I2 load / g·cm
-3
 5·10-3 9·10-4 

Lattice parameters 

obtained from SAED 

a = b= 5.55 Å  
c = 10.52 Å 
volume = 324 Å3 
α = β = γ = 90 ° 
c/(2a) = 0.948 
(at 77 K) 

a = b = 5.67 Å 
c = 11.48 Å 
volume = 369 Å3 
α = β = γ = 90 ° 
c/(2a) = 1.012 
(at 298 K) 

Lattice parameters 

obtained from XRD 

a = b = 5.421(1) Å 
c = 10.819(3) Å 
volume = 318 Å3 

α = β = γ = 90 ° 
c/(2a) = 0.998 
(at 298 K) 

a = b = 5.4290(2) Å 
c = 10.8340(4) Å 
volume = 319 Å3 
α = β = γ = 90 ° 
c/(2a) = 0.998 
(at 298 K) 

I-4m2 (No. 119)  R = 8.07%  

I-42m (No. 121)  R = 2.63% I-42m (No. 121) 
Space group (XRD) 

I-4      (No. 82  )  R = 3.14%  
a=b= 5.427 Å, c=10.848 Å, volume= 319 Å3 
CVT single crystal – Schäfer et al. [358] (1974) 
a=b= 5.435 Å, c=10.843 Å, volume= 320 Å3 
CVT single crystal – Guen et al. [364] (1979) 
a=b= 5.434(1) Å, c=10.856(1) Å, volume= 320 Å3 
Salt flux single crystal – Bonazzi et al. [65] (2003) 

Literature values of 

CZTS lattice 

parameters from 

different synthesis 

routes (XRD) a=b= 5.428(2) Å, c=10.864(4) Å, volume= 320 Å3 
Powder, solid state reaction – Schorr et al. [68] (2007) 

 

Table 7.1.1 Summary of the SAED and XRD single crystal analyses for the 
determination of the unit cell parameters and of the space group of the CVT-grown 
CZTS samples obtained respectively with 5·10-3 (experiment No. 3) and with 9·10-4 
g·cm-3 of I2 (experiments No. 9). A review of the literature CZTS lattice parameters 
obtained by XRD is also given for comparison. 
 

Table 7.1.1 shows that the crystals have tetragonal unit cells, consistently with the 

reported literature of CZTS. The differences between the lattice parameters estimated 

with X-ray diffraction and selected area electron diffraction (SAED) for both 

samples are significant, but it must be highlighted that the error uncertainty generally 

associated with the electron diffraction technique is larger than for XRD if 

aberrations of the TEM column are not taken into account [379]. 
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The tetragonality factors c/(2a) obtained from the X-ray diffraction analyses point 

to unit cells that are slightly compressed along the [001] crystallographic direction if 

compared to the literature values where this factor exceeds unity [68], but they are 

substantially in agreement with the more recently reported figure of 0.997 [69, 71]. 

The CZTS samples grown with a higher I2 pressure (test No. 3) possess a smaller 

unit cell than those grown under lower I2 pressure (test No. 9). Such a difference is 

only 1Å3, but the accuracy of the XRD measurement suggests that it is meaningful. 

Fig. 7.1.1 shows the experimental X-ray powder patterns of the two ground CZTS 

samples (tests No. 3 and 9). The results are compared to the calculated database X-

ray powder pattern of CZTS reported by Bonazzi et al. [65]. The radiation employed 

for both experimental acquisitions and database pattern generation was CuKα (λ = 

1.5418 Å). 

 

 

 

Fig. 7.1.1 Comparison between experimental X-ray powder patterns of ground CZTS 
crystals of experiments No. 9 (a) and 3 (b) with CZTS X-ray powder pattern 
calculated from the CZTS database structural data reported by Bonazzi et al. [65] (c). 
(CuKα radiation was employed in both sets of data, λ = 1.5418 Å). 
 

A close-up view of the major diffraction peaks from the XRD patterns in Fig. 7.1.1 is 

shown in Fig. 7.1.2, where the acquisition was performed with a higher 2θ resolution 
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and a longer collection time, with the intent to detect any structural differences 

between the crystals obtained with different I2 loads (experiments No. 3 and 9). 

 

 

Fig. 7.1.2 Major peaks of the experimental X-ray powder patterns of the ground 
CZTS crystals of experiments No. 9 (a) and 3 (b) and of calculated X-ray powder 
patterns of CZTS [65] (c), Cu2SnS3 [380] (d) and ZnS [381] (e). The 2θ resolution 
and collection time employed were 0.01° and 30 s respectively. (The CuKα, λ = 
1.5418 Å radiation employed is consistent for all patterns). 
 

Fig. 7.1.2 shows that the relative intensities of the diffraction peaks of the two 

crystals synthesized with different I2 loads are different. The position of only the 

(112) peak of both samples is shifted towards lower 2θ compared to the database 

spectrum of CZTS by Bonazzi et al. [65]. Furthermore, in both samples the peaks 

(024) and (116) seem absent, and the relative intensity of the pair (332)(136) is 

opposite to what was reported by Bonazzi et al. [65]. 

I-42m (No. 121) is the space group that provides the best match of the X-ray 

diffraction data refinement from single crystal. This space group is the same 

expected for the Stannite unit cell represented in Fig. 1.B.2a. However, as reported in 

the introduction to part B, the virtually equal atomic form factors of Cu+ and Zn2+ 

ions [307], make impossible to solve the Cu-Zn cation ordering in the structure of the 

CZTS samples solely by XRD. Therefore, as indicated by Schorr et al., neutron 

scattering is required to ultimately rule out the space group I-4 (No. 82) [67]. 
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A single crystal neutron diffraction analysis was performed on one CZTS crystal 

grown under the conditions of experiment No. 3 (i.e. with I2 load of 5·10
-3 g·cm-3). 

The tool employed for this study is a unique instrument called VIVALDI (very 

intense vertical-axis Laue diffractometer) located at the Institut Laue-Langevin in 

Grenoble (France). VIVALDI allows large volumes of reciprocal lattice to be 

surveyed rapidly using an image-plate photographic Laue technique with a white 

neutron beam. The higher intensity offered by the use of a polychromatic radiation 

source allows detailed atomic structural information to be obtained from crystals of 

reduced size in a reasonable time. The CZTS sample analysed had a volume of 

roughly 4×1×0.5 mm3. Seven frames were acquired at different φ angles between the 

beam and the crystal (-15, 0, 15, 30, 45, 60, 75 °), and each frame required about 10 

hours of acquisition for the low intensity spots to be detected appropriately. An 

example of neutron Laue pattern recorded with VIVALDI from the CZTS sample is 

shown in Fig. 7.1.3. Examination of the Laue patterns revealed that the crystal 

analysed was twinned (i.e. it was composed of two single crystals). However, this did 

not prevent the structure refinement, from which the space group I-4 was assigned, 

but with some Cu deficiency in the structure, leading to the formula Cu1.8Zn1.2SnS4. 

This space group is different from the one obtained by refinement of the X-ray data, 

and describes the symmetry of the Kesterite unit cell represented in Fig. 1.B.2b. 

Ichimura et al. [382] have computed by DFT the energetic stability of five possible 

CZTS structures with different cation ordering. All the proposed structures obey the 

constraint for which every S atom needs to be bonded to two Cu, one Zn and one Sn 

atoms. Ichimura et al. estimated that the energy difference per atom of the five 

structures is smaller than the thermal energy at room temperature. The X-ray and 

neutron powder diffraction patterns of these five structures have also been simulated, 

and shown to be slightly different for the structures [382]. 

Based on Ichimura’s results and on the structural characterizations carried out in 

the present study, it cannot be excluded that the crystals synthesized via the CVT at 

temperatures ranging between 750 and 810 °C are composed of domains of the five 

possible CZTS structures, with stacking faults accommodating the domain 

boundaries. 
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Fig. 7.1.3 Example of Laue pattern obtained by interaction of the polychromatic 
neutron beam (λ = 0.7-5.4 Å) and a CZTS crystal obtained from experiment No. 3 
(CVT under I2 load of 5·10

-3 g·cm-3), as recorder by the VIVALDI instrument over 
an acquisition time of 9.7 hours. 
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7.2 Raman spectroscopy analysis of CZTS crystals 
 

The crystals of CZTS formed by CVT with different I2 loads were analyzed by 

Raman spectroscopy on a T64000 Jobin Yvon (Horiba Scientific) at the Institut de 

Recerca en Energia de Catalunya (IREC) located in Barceona (Spain). 

 

 

 

Fig. 7.2.1 Raman spectra of CZTS samples obtained via CVT experiments No. 3 
(5·10-3 g·cm-3 I2) (a-d) and 9 (9·10

-4 g·cm-3 I2) (e). Crystals from exp. No. 3 before 
(a,c) and after (b,d) mechanical removal of surface phases (see text). Ground CZTS 
crystals from exp. No. 9 (e) and air blank (f). The excitation wavelength employed 
was λ = 514 nm, the spot size was 5-10 µm and the integration time was 1.5 hours. 



 218 

Raman measurements were carried out with an excitation wavelength of 514 nm, a 

spot size of 5-10 µm and an integration time of 1.5 hours. It should be pointed out 

that ZnS may not be visible in the Raman spectrum for this excitation wavelength, 

due to the absence of the resonance Raman effect (see Fig. 7.2.2). The results are 

shown in Fig. 7.2.1. Fig. 7.2.1a-d shows the Raman spectra performed on two 

different areas of a CZTS crystal obtained from experiment No. 3 (I2 load = 5·10
-3 

g·cm-3), where the peak at 337 cm-1 is attributed to CZTS [75, 314, 355]. Fig. 

7.2.1a,c shows the spectra of the as-grown CZTS crystals from experiment No. 3, 

while spectra in Fig. 7.2.1b,d have been acquired after a mechanical treatment aimed 

at removing the secondary phases that were detected by EDS on the surface (section 

6.3.3). Such a mechanical treatment was made by placing the samples in a closed 

rocking vessel containing high purity SiO2 (1 µm size, Sigma Aldrich). This 

apparatus was assembled by modifying a system originally designed by Cummings et 

al. [383] for the electrodeposition of Cu films on Mo/MoSe2 substrates. The vessel 

was rocked at a frequency of 100 Hz for 10 hours. Consistently with the EDS 

analyses (Fig. 6.3.3), Fig. 7.2.1a shows that the as-grown sample from experiment 

No. 3 contains secondary phases such as CuI (87 and 121 cm-1 [384]) and CuS (473 

cm-1 [385-387]) that are absent on the mechanically treated ones (Fig. 7.2.1b,d). 

However, it was also found that the spectra of the mechanically treated crystals 

(experiment No. 3) show peak shoulders at 311 and 348 cm-1 that may be due to 

traces of Cu3SnS4 [388] and ZnS [389-391] respectively. Fig. 7.2.1e shows the 

spectrum of ground CZTS crystals from experiment No. 9 (I2 load = 9·10
-4 g·cm-3), 

with a peak at 329 cm-1. It is interesting to notice a red-shift of 8 cm-1 from the 

literature value of the corresponding peak of CZTS [75, 314, 355]. Such a shift may 

be attributed to the strain possibly induced in the material by the grinding procedure 

[392], although it could also arise from a different cation ordering. 

As described by Fontané et al. [132], in order to enhance detection sensibility to 

the potential presence of ZnS, the Raman spectroscopy analyses can be performed 

with an excitation wavelength closer to the band-gap of ZnS, which is known to be 

around 3.8 eV [393]. Under such conditions, resonant excitation occurs leading to a 

sharp increase in the efficiency of the main vibrational mode of ZnS, and even traces 

of this phase are detected [394]. This analysis was performed on the crystals as taken 

from the ampoules after the CVT experiments No. 3 and 9 (rinsed only with acetone) 

and after the mechanical treatment aimed at removing the secondary phases from the 
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surface of the crystals of test No. 3. The results of the Raman spectroscopy analyses 

with UV excitation conditions (λ = 325 nm) are shown in Fig. 7.2.2. 

 
 
Fig. 7.2.2 Raman spectra of CZTS samples obtained via CVT experiments No. 3 
(5·10-3 g·cm-4 I2) (a-b) and 9 (9·10

-4 g·cm-4 I2) (c) under UV excitation conditions. 
Crystals from experiment No. 3 before (a) and after (b) mechanical removal of 
surface phases (see text) (analysis performed on three different points on the sample). 
Ground CZTS crystals from experiment No. 9 (c). The excitation wavelength was λ 
= 325 nm, the spot size was 5-10 µm and the integration time was 1.5 hours. 
Figs. 7.2.2a-b show the Raman spectra of CZTS crystals from experiment No. 3, 

while Fig. 7.2.2c corresponds to the ground CZTS crystals from experiment No. 9. 
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The Raman analysis under UV excitation conditions (Fig. 7.2.2) confirms that the as-

grown CZTS crystals from experiment No. 3 contain secondary phases: ZnS and CuS 

are clearly identified in Fig. 7.2.2a. The peak at 345 cm-1 attributed to ZnS is also 

detected on the Raman spectrum under UV excitation of the ground crystals from 

experiment No. 9 (Fig. 7.2.2c). For this sample, the second and third order bands of 

ZnS are also detected, giving a quite clear evidence of ZnS presence. 

The presence of secondary phases on the surface of the as-grown crystals obtained 

from experiment No. 3 (Fig. 7.2.1a,c and Fig. 7.2.2a) is consistent with the EDS 

analyses and with the fact that the synthesis was carried out under a strong 

convective-dominated regime of transport (i.e. far from equilibrium). 

Experiment No. 9 was run with a lower pressure of I2 compared to experiment No. 

3. The Raman spectrum shows that these crystals contain less secondary phases (Fig. 

7.2.1e) than crystals from experiment No. 3 (Fig. 7.2.1a,c). However, the Raman 

analysis performed under resonant excitation conditions gives strong evidence that 

these crystals contain also ZnS (Fig. 7.2.2c). Interestingly, the main CZTS peak 

observed for the crystals synthesized with experiment No. 9 display a red-shift of 8 

cm-1 compared to the literature value. It is not certain whether this shift is chemically 

meaningful or it is simply due to mechanical lattice strain. 

For the crystals obtained from both experiments No. 3 and 9, the Raman peaks at 

337 and 329 cm-1 attributed to CZTS have a comparatively larger width at half 

maximum than the corresponding of CZTS samples obtained by e.g. the salt flux 

method [355]. It may be that the synthetic route employed in the present work (based 

on the CVT with I2) leads to crystals with a higher concentration of structural defects 

that could be responsible for the broadening of the Raman peak [151]. 
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7.3 Photoluminescence spectroscopy analyses 
 

The crystals of CZTS formed by CVT experiment No. 9 (I2 load = 9·10
-4 g·cm-3) 

were analyzed with photo-induced luminescence spectroscopy (PL), in order to study 

their electronic structure. The measurements were carried out at the Université du 

Luxembourg with a home-built micro PL spectroscopy system at T = 8 K using an 

excitation laser with wavelength λ = 514 nm and a spot size of 1 µm. Micro-resolved 

PL spectra were measured on one as-grown CZTS needle. A similar broad peak was 

recorded on three spots along the sample, with maxima at 1.35, 1.37 and 1.32 eV, as 

shown in Fig. 7.3.1a. 

 

 

 

Fig. 7.3.1 Micro-resolved PL spectra of a CZTS crystal synthesized by CVT with an 
I2 load of 9·10

-4 g·cm-3 (exp. No. 9) performed on three different points along the 
sample. The PL finger prints show maxima at 1.35, 1.37 and 1.32 eV (a). Intensity 
dependent PL measurements from 10 µW to 1 mW indicated by the arrow (b). All 
the analyses were performed at T = 8 K using an excitation wavelength of 514 nm 
(Ar ion laser) and a spot size of 1 µm. 
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The broad asymmetric shape and approximate energy of the emission peaks resemble 

closely the CZTS PL spectra reported by Altosaar et al. [355], Hönes et al. [73] and 

Tanaka et al. [72] on samples obtained via the salt flux method and the CVT with I2. 

The shift of the position of the PL peaks recorded at different positions on the surface 

of the needle-shaped crystal suggests that the sample displays inhomogeneities of the 

electronic structure (Fig. 7.3.1a). 

Intensity dependent micro-resolved photoluminescence measurements (Fig. 

7.3.1b) were performed at T = 8 K on the same needle-shaped crystal (experiment 

No. 9). This analysis was performed with the aim of understanding the nature of the 

associated transition (excitonic or defect related), as described by Hönes et al. [73]. 

Fig. 7.3.1b shows the results of the intensity dependence of the broad PL emission 

peak of the needle-shaped CZTS crystal (exp. No. 9, I2 load 9·10
-4 g·cm-3) on the 

intensity of the excitation source. The power of the beam on the sample was varied 

between 10 µW to 1 mW, and the corresponding emission line response is indicated 

by the arrow in Fig. 7.3.1b. The peaks are centered at 1.32 eV and deviation from 

this value is less than 0.2 % with the beam power investigated (varied in a range of 2 

orders of magnitude). 

 

 

 
Fig. 7.3.2 Double-logarithmic plot of the CZTS (experiment No. 9) PL peak intensity 
dependence as a function of the intensity of the excitation source. From the slope of 
the line, a value of k of about 1 is estimated. 
 

The intensity of the emission peak in a PL spectrum (IPL) is related to the 

excitation intensity (IEx) by a power law expressed by Eq. 7.3.1 [395]. 
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Eq. 7.3.1 IPL α (IEx)
K 

 

From the intensity dependence measurement, a value of the exponent k around 1 is 

estimated for the PL peak of the CZTS crystal obtained from experiment No. 9 (Fig. 

7.3.2). A k value of approximately 1 could be due to either an excitonic or a defect 

related transition, and is not sufficient to discriminate between the two cases [73]. 

The interpretation of the broad asymmetric peak reported for CZTS samples in the 

region 1.3-1.4 eV is still debated in the literature. According to the DFT computation 

by Chen et al. [153] the peak might arise from a transition between the conduction 

band minimum and the energy level of the Cu/Zn antisite defects (that lie 0.12 eV 

above the valence band maximum). 

Tanaka et al. [72] have reported a sharp dependence of the peak intensity with the 

sulfur deficiency on their CZTS crystals obtained by CVT with I2, and have ascribed 

the PL broad peak to a donor-acceptor pair (DAP) recombination associated to the 

presence of sulfur vacancies. However, based on the DFT calculations of Chen et al. 

[153] (Fig. 1.B.4), such a transition should occur at ~0.65 eV. 

For the CZTS samples produced by Altosaar et al. [355] with the salt flux 

technique, a blue-shift was observed with the intensity dependence of the PL peak. 

They proposed a band-to-tail recombination mechanism, since the blue-shift was 

believed to be too large to be associated with a DAP recombination. This band-to-tail 

transition occurs from the conduction band minimum to a broad tail of states located 

within the band-gap. Such tails are often found in highly compensated 

semiconductors, where there are comparable and high concentrations of donors and 

acceptors. In such conditions, most of the defects are charged, and a heterogeneous 

distribution of positive and negative charge densities is observed [396]. This uneven 

distribution of charges within the material brings about a spatially fluctuating 

electrostatic potential [397]. A similar phenomenon was previously reported for 

CuIn0.5Ga0.5Se2 by Krustok et al. [398], who explained on such a basis the 

disappearance of the main excitonic transition at low temperature. 
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Concluding remarks for part B 
 

The main objective of the work illustrated in part B of this thesis was the synthesis of 

high quality Cu2ZnSnS4 single crystals via the chemical vapour transport (CVT) in 

closed ampoules using iodine as the transporting agent. 

In order to obtain preferential crystallization of single-phase CZTS material at the 

cold end of the ampoule, a meaningful pressure of the iodides of Cu, Zn and Sn must 

be ensured along the ampoule’s length. In chapter 5 the thermochemistry of the Cu-

Zn-Sn-S-I system was investigated from a computational perspective, with the intent 

to identify the temperature dependence of the free energy changes for the possible 

reactions involved. It was found that the formation of the volatile unary components 

(CuI)3, ZnI2 and SnI2(w+1) by the action of iodine on the corresponding sulfides is 

dependent on very different pressure of the components at equilibrium (Fig. 5.4.4). 

The CVT experiments (chapter 6) were performed after formation of a 

polycrystalline CZTS source by application of a strong temperature gradient. 

Nevertheless, the equilibria computed in Fig. 5.6.3 reveal the different 

thermodynamic tendency of the gaseous iodide species to form. The following 

sequence of volatility was deduced: SnI2(w+1) > (CuI)3 > ZnI2 for T < 900 K and 

SnI2(w+1) > ZnI2 > (CuI)3 for T > 900 K. The computation of the free energy changes 

for the reactions in the Cu-Zn-Sn-S-I system was based on the assumption that only 

the most stable reagents were present at each temperature. Deviations from the 

standard conditions (1bar I2 and 1 bar S2) were computed for the phase equilibria in 

the Cu-S and Sn-S systems. As expected from Le Chatelier’s principle, a shift 

towards higher temperatures for the reactions CuS  Cu2S and SnS2  Sn2S3  Sn3S4 

 SnS with increasing sulfur pressure was obtained from the computation (Figs. 

5.3.2-5.3.4). However, the analogous effect of iodine pressure would be needed in 

order to compute the best conditions for the desired phase formation. The ultimate 

ambition was to compute the effects of two temperatures (source and growth ends), 

and two pressures (I2 and S2) on the phase equilibria within the Cu-Zn-Sn-S-I 

system. This would correspond to a significant expansion of the approach done by 

Zavrazhnov et al. [399], who computed the phase equilibria of the Ga-Se-I system as 

functions of the two temperatures only. Unfortunately such a work would require a 

deep knowledge of computational science (besides knowledge of thermodynamic 

functions for all the phases involved) which prevented the study to be undertaken 



 226 

within the time frame of this PhD. An estimation of the chemical potential of CZTS 

as a function of the temperature is proposed, based on a linear interpolation between 

published DFT-computed and experimental values at T = 0 K [153] and T = 823 K 

[281] respectively. Extrapolation of the proposed trend to higher temperatures 

provides an estimate of the decomposition temperature of CZTS into the binary 

sulfides that is consistent with the known peritectic decomposition temperature of 

CZTS [133], but with a ~ ± 100 °C range of uncertainty. Based on the estimated 

chemical potential of CZTS, a negative enthalpy change for the crystallization of 

CZTS from the iodides is proposed (Fig. 5.6.3). Figs. 5.6.2 and 5.6.3, as well as 

section 4.4 in part A of this thesis stress on the importance to identify reliable 

thermochemical functions for multinary sulfides. 

Chapter 6 illustrates the experimental results of the synthesis of Cu2ZnSnS4 single 

crystals via the chemical vapour transport from the elements in the presence of I2. 

From the direction of transport (from high to low temperatures), a negative enthalpy 

change for the crystallization reaction of CZTS from the iodides is estimated. This 

result is consistent with the computational work in Fig. 5.6.3. In agreement with 

simpler systems, it was found that an increase of the iodine load inside the ampoule 

has a strong effect on the transport mechanism, with a transition from a diffusion 

(reaction-limited) to a convection-dominated regime [368]. In turn, this was found to 

affect significantly the shape and quality of the crystals. Highly crystalline CZTS 

with needle-shape (1D predominance) was obtained with 9·10-4 gcm-3 of I2 (exp. No. 

9), while more defective but larger crystals (3D predominance) were obtained with a 

nearly five-fold load (exp. No. 3). In the case with lower I2 pressure a gradient of 130 

°C was employed to speed up the process and achieve well formed crystals, while 

with higher I2 pressure a gradient of 40 °C was necessary as larger gradients lead to 

the formation of polycrystalline material. There appears to be no meaningful effect of 

the iodine pressure employed on the composition of the CZTS samples. The samples 

showed high compositional uniformity at the SEM/EDS/BSE level. Nevertheless, it 

was found that the CZTS crystals obtained with higher I2 load coexisted with surface 

binary phases such as ZnS and CuS (Figs. 7.2.1a and 7.2.2a). Interestingly, under a 

lower I2 load (exp. No. 9) where the transport rate is limited by the heterogeneous 

reaction rate between source material and iodine, despite the very different 

thermodynamic equilibrium constants of the reactions between the binary sulfides 

and iodine to form the unary iodides of Cu, Zn and Sn (cfr. Fig. 5.4.4), the Cu-Zn-

Sn-S-I system seems to be self-regulatory, i.e. there is a stronger tendency for the 
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crystallization of CZTS over the competing secondary phases compared to the case 

where the I2 load was larger (exp. No 3), although some ZnS was detected by Raman 

under UV excitation conditions (Fig. 7.2.2c). In both experiments No. 3 and 9, CuI 

was detected as a secondary phase on the surface of the crystals. The strong driving 

force for crystallization of CuI expected from the computation (Fig. 5.4.2) is 

consistent with the obderved CuI segregation. CVT treatments in the absence of 

longitudinal temperature gradients were carried out with the aim of increasing the 

size of already formed crystals. Under the investigated conditions, the nucleation and 

growth of CZTS on the ampoule’s walls (2D predominance) was found to be more 

convenient than the enlargement of pre-existing CZTS crystals pointing towards the 

interior of the ampoule. This behaviour is opposite to that described by Szczerbakow 

et al. [371] for the self-selective vapour growth of bulk crystals. In the present work, 

the thermal conductivity profile of the synthetic vessel and surrounding is thought to 

be the possible cause for this phenomenon. A more effective heat exchange is shown 

by the ampoule’s walls in contact with the furnace’s wall rather than by the 

atmosphere inside the ampoule. The decomposition/crystallization rate has a key role 

on the preferential crystallization under longitudinally isothermal conditions. At 

constant temperature, this rate is ultimately dependent upon the concentration of I2 

and S2 in the system. Therefore, with higher I2 loads the higher rate of heat exchange 

can be attained more effectively by the ampoule’s walls and 2D crystallization is 

favoured. The opposite occurs with lower I2 pressures, where 3D crystallization is 

comparatively more favourable. More studies are required in order to confirm or 

disregard the proposed explanation. This would help identifying the conditions for 

CZTS crystal enlargement/improvement under longitudinally isothermal CVT 

conditions. The influence of ampoules made of more insulating materials or, vice 

versa, the increase of the thermal conductivity of the atmosphere within the ampoule, 

might help making this process more favourable. An estimation of the temperature at 

which the crystallization reaction of CZTS becomes thermodynamically spontaneous 

would be beneficial for the design of such growth experiments. As pointed out 

earlier, thermochemical and computational investigations could give important 

information in this direction. 

In chapter 7 the results of a collection of characterizations performed on the CZTS 

crystals produced in the present work is reported. Section 7.1 shows the X-ray and 

neutron diffraction analyses. XRD analysis shows that samples obtained under lower 

I2 pressure (exp. No. 9) have slightly larger unit cells (Table 7.1.1), and the shape 
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and relative intensities of the X-ray reflections are different from those of the sample 

grown under higher I2 pressure (exp. No. 3). Under both pressures, the CZTS crystal 

have slightly different XRD spectra compared to the database spectrum by Bonazzi 

et al. [65]. Refinement of the X-ray diffraction data suggests that I-42m is the space 

group that best matches the structure of the CZTS synthesized in the present work, 

while neutron data point to the space group I-4. Section 7.2 shows the Raman 

scattering analyses. An 8 cm-1 red-shift of the main CZTS mode is observed for the 

ground CZTS crystals synthesized with lower I2 pressure (exp. No. 9), while the 

corresponding peak position for the sample obtained with higher I2 pressure (exp. 

No. 3) is consistent with the values reported in the literature [75, 314, 355]. Section 

7.3 shows the results of the photo-induced luminescence spectroscopy performed 

only on the CZTS samples from exp. No 9. A broad PL peak is detected at ~ 1.3 eV, 

consistent with previously reported spectra of CZTS obtained from a range of 

different synthetic routes [72, 73, 355, 400]. The nature of such an electronic 

transition is still debated, and no attempt to explain it was undertaken in the present 

work. However, a short discussion is given based on the current knowledge. If the 

transition is due to a band-to-tail recombination, as indicated by Altosaar et al. [355], 

a blue shift of the PL peak with increasing temperature may be expected, as it was 

reported for CuIn0.5Ga0.5Se2 [398]. Tailing may be due to a heterogeneous 

distribution of charge densities within the semiconductor, causing the energetic 

levels of valence band maximum and conduction band minimum to fluctuate 

spatially [396, 397]. Kauk et al. [401] have shown that a change in the electronic 

properties of CZTSSe monograins after annealing in the presence of S2 and/or SnS2 

is due to ‘healing’ of S- and/or Sn-deficient surfaces. The decrease of the broad PL 

peak intensity after sulfur annealing reported by Tanaka et al. [72] for CZTS crystals 

obtained by CVT, seems also associated to a sulfur-poor material. However, the 

direct relationship between the observed PL peak at ~ 1.3 eV and the sulfur 

vacancies in CZTS seems inconsistent with the energy difference between the level 

of the sulfur vacancies and the valence band maximum in CZTS. Based on the DFT 

calculations of Chen et al. [153] (Fig. 1.B.4), such a transition should occur at ~0.65 

eV. [157] 
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Appendices 

(1) Derivation of detailed balance efficiency limit 
 

Sunlight is a spectrum of photons distributed over a wide range of energy (Fig. 1). 

 

 

Fig. 1 AM0, AM1.5 solar spectra and 5762K black body radiation [402]. 

 

Except for some absorption phenomena, the Air Mass 0 (AM0), the extraterrestrial 

radiation of the Sun, is close to the black-body radiation of 5762K, from which an 

approximate value of the surface temperature of the Sun can be estimated. Emission 

of radiation from the Sun is roughly isotropic. However, given the great distance 

between the Earth and the Sun (approximately ~1.5·1011 m), the radiation reaching 

the Earth’s surface can be approximated as composed of parallel streams of photons. 

The Air Mass is a measure of how absorption in the atmosphere affects the spectral 

features and intensity of the solar radiation reaching the Earth’s surface. The Air 

Mass number is given by Air Mass = 1/cos(θ), where θ is the angle of incidence or 

zenith (θ = 0 when the Sun is directly overhead). The Air Mass number is always 
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greater than or equal to one at the Earth’s surface. The AM1.5 spectrum, 

corresponding to the solar irradiance taken on the Earth’s surface after passing 

through the atmosphere 1.5 times, is the reference spectrum of the Sun for 

photovoltaic performance evaluations. The AM1.5 solar irradiance certified by the 

American Society for Testing and Materials (ASTM) can be freely downloaded here 

[33]. These data are plot in terms of number of incident photons per cm2 as a 

function of the photon energy in Fig. 2. 
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Fig. 2 AM1.5 spectrum showing the intensity of photons versus their energy 
 

The efficiency limit of a single-junction photovoltaic device is due to several 

aspects. The most important was originally considered by Loferski [31] and 

Shockley and Queisser [32]. This aspect is based on the fact that in a semiconductor 

with Eg band-gap, electrons excited by photons with energy exceeding Eg are 

promptly thermalized to the energy Eg, while photons of energy lower than Eg are 

not able to generate electron-hole pairs. From the data in Fig. 2, and based on these 

considerations, it is possible to calculate a detailed balance limit of a solar cell with a 

single band-gap as a function of the band-gap energy (Fig. 3). 

For each infinitesimal value of the spectrum photon energy, the following calculation 

is performed (Eq. 1). 
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where η(hν1) is the efficiency of a single band-gap solar cell with hν1 as band-gap 

energy and S is the mathematical function describing the AM1.5 spectrum in terms 

of intensity of photons versus photon energy (Fig. 2). The term 
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⋅∫  is the power of the incident radiation. 

Since the AM1.5 data available are a series of discrete values, the discrete version 

of Eq. 1 was employed for the computation (Eq. 2). 
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where si is the value of the intensity of the photon with energy hνi. 

Fig. 3 shows the results of the computation. The maximum of the graph 

corresponds to a ~51% efficiency, and is predicted for a band-gap energy of ~1.1eV. 

Such a plot is an overestimation of the real efficiency limit of a single-junction solar 

cell, because only the thermalization losses are taken into account. If also 

recombination and other losses are considered in the computation, the resulting graph 

is lower in efficiency. Fig. 4 shows the detailed balance efficiency limit that takes 

into account these phenomena, taken from Würfel [29]. 
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Fig. 3 Calculated detailed balance efficiency limit of a single band-gap photovoltaic 
device as a function of the value of its band-gap energy, based only on the 
thermalization losses. 
 

 

Fig. 4 Detailed balance efficiency limit of a single band-gap photovoltaic device as a 
function of the value of its band-gap energy, as reported by Würfel [29]. 
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(2) Diagrams of I-42m and I-4 space groups 
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Symmetry tables of space groups I-42m (No. 121) and I-4 (No. 82) [308]. 
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(3) Thermochemical functions 
 

Interpolating thermochemical functions (Eqs. 1-5) and values of the coefficients for the 46 compounds 

of the Cu-Zn-Sn-S-I system (Table 1) employed in the computational work reported in chapter 5. 

 

Eq. 1 t = 10-3·T/K 

Eq. 2 c° = a + b·t + c·t-2 + d·t2            Heat capacity / Jmol-1K-1 

Eq. 3 h° = 103·(H+ + a·t + b/2·t2 – c·t-1 + d/3·t3)          Enthalpy / Jmol-1 

Eq. 4 s° = S+ + a·ln(103 t) + b·t – c/2·t-2 + d/2·t2          Entropy / Jmol-1K-1 

Eq. 5 µ° = 103·[H+ - S+·t - a·t·[ln(103·t)-1] – b/2·t2 – c/2·t-1 – d/6·t3]        Gibbs free energy / Jmol-1 

 

Formula ∆T / K  a b c d H
+
 S

+
 

        

CuS (s) 298-774 44.35 11.046   -67.432 -189.458 

CuS (g) 298-2000 37.271 0.075 -0.192  308.733 39.044 

        

Cu2S (s1) 298-376 52.844 78.743   -98.751 -203.643 

Cu2S (s2) 376-717 112.048 -30.752   -109.423 -503.288 

Cu2S (s3) 717-1402 84.642    -96.477 -343.472 

Cu2S (l) 1402-2000 89.119    -93.13 -369.046 

        

CuI (s1) 298-642 62.634 -6.443 -0.577  -88.357 -261.597 

CuI (s2) 642-680 58.576    -79.067 -227.717 

CuI (s3) 680-868 59.413    -76.414 -228.437 

CuI (l) 868-1675 64.852    -71.513 -254.153 

CuI (g) 298-2000 37.405 0.502 -0.1  130.745 41.868 

(CuI)3 (g) 298-2000 133.177 -0.084 -0.36  -57.646 -296.253 

        

ZnS (Sph.) 298-1293 49.246 5.272 -0.485  -221.561 -227.145 

ZnS (Wur.) 1293-2000 49.455 4.435 -0.135  -207.746 -217.224 

ZnS (g) 298-2000 37.279 0.071 -0.268  190.071 23.595 

        

ZnI2 (s) 298-719 85.144 11.461 -1.255  -238.259 -334.094 

ZnI2 (l) 719-999 121.336    -240.744 -536.514 

ZnI2 (g) 298-2000 58.158    -80.694 -3.128 

        

SnS2 (s) 298-1138 64.894 17.573   -173.682 -287.533 

        

Sn2S3 (s) 298-1033 107.027 43.932   -297.455 -458.462 
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Sn3S4 (s) 298-983 150.959 62.342   -418.063 -635.18 

        

SnS (s1) 298-875 35.69 31.296 -0.377  -121.242 -137.808 

SnS (s2) 875-1153 40.92 15.648 -0.377  -118.728 -158.534 

SnS  (l) 1153-1477 74.894    -115.91 -352.616 

SnS (g) 298-2000 36.945 0.335 -0.23  97.206 30.473 

        

SnI4 (g) 298-418 140.93 3.908 -0.9  -256.083 -535.133 

SnI4 (l) 418-626 167.762    -245.559 -646.826 

SnI4 (g) 298-2000 108.194 -0.159 -0.251 -2.636 -151.054 -171.307 

        

SnI2 (s) 298-593 70.291 29.288   -171 -241.026 

SnI2 (l) 593-990 94.558    -161.413 -346.859 

SnI2 (g) 298-2000 61.923  -0.46  -20.885 -12.205 

        

S8 R 298-368 14.795 24.075 0.071  -5.242 -59.014 

S8 M 368-388 17.552 19.606   -5.746 -72.831 

S8 (l) 388-717 45.032 -16.636   -11.957 -218.137 

S8 (g) 298-2000 180.318 1.7424 -2.243  36.884 -610.195 

S7 (g) 298-2000 155.122 2.448 -2.034  58.332 -488.315 

S6 (g) 298-2000 132.131 0.502 -1.841  54.138 -409.232 

S5 (g) 298-2000 106.935 1.059 -1.577  72.179 -309.859 

S4 (g) 298-2000 79.881 3.276 -1.18  117.88 -153.143 

S3 (g) 298-2000 53.781 4.531 -0.649  120.459 -41.868 

S2 (g) 298-2000 35.062 2.582 -0.293  117.049 25.98 

S (g) 298-2000 24.234 -4.109 0.059 1.343 270.119 31.249 

        

I2 (s) 298-387 30.125 81.63   -12.61 -79.842 

I2 (l) 298-458 82.006    -10.927 -316.949 

I2 (g) 298-2000 37.254 0.778 -0.05  50.881 47.387 

I (g) 298-2000 20.393 0.402 0.029  100.776 64.637 

 

Table 1 Coefficients of the chemical species investigated in the present study as per Eqs 1-4 (data 
taken from Knacke et al. [259]). 
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(4) Cu-S phase equilibria 
 
 

 

 

Fig. 5 Cu-S binary phase diagram as reported by Massalski et al. [176]. 



 239 

(5) Sn-S phase equilibria 
 

 

 

 

Fig. 6 Sn-S binary phase diagram as reported by Massalski et al. [176]. 
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(6) Zn-S phase equilibria 
 

 

 

 

Fig. 7 Zn-S binary phase diagram as reported by Massalski et al. [176]. 
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(7) Convective share of transport 
 

 

 

Fig. 8 Graph for the determination of the dimensionless quantities a and b as 
functions of the ampoule aspect ratio (l/d) employed for the computation of the 
longitudinal convective share of transport Kl. (Eq. 6.4.3), modified from Klosse et al. 
[363]. 
 

Eq. 6.4.3 ].).(/[1. 2 bGrScaKl +⋅= −  

 

where Sc. is the Schmidt fluid number, Gr. is the Grashof fluid number. 
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