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Summary  

Conservation biology uses various tools including spatial ecology and molecular 

ecology to provide better understanding of species that can be used to support and 

design effective conservation strategies. Many wetland bird species in the Kingdom of 

Saudi Arabia (KSA) are poorly known, and we lack detailed knowledge about their 

breeding ecology,   spatial distribution and genetic differentiation. The first objective 

of my PhD research was to investigate the parental behaviour of an understudied 

endemic shorebird to the Middle East, the Crab Plover Dromas ardeola to record 

parental behaviour at the burrows over a 24-hour period. Since adult males and females 

look identical, I used molecular markers for sex determination. Molecular sexing was 

conducted using two different markers applied for 66 Crab Plover blood samples. I 

demonstrated that both males and females fed chicks, and that females brought food to 

chicks more frequently than did males (Chapter 2). The second objective was to 

investigate the breeding distribution of Crab Plovers along the Red Sea coast of Saudi 

Arabia and to compare the results with the last comprehensive survey conducted in 

1996. I showed that the Red Sea coast of Saudi Arabia has approximately 35% of the 

Arabian breeding population of Crab Plovers. The major threats to this species along the 

Red Sea coast were also discussed (Chapter 3). The third objective was to model the 

spatial distribution of 22 wetland bird species along the Red Sea coast of Saudi Arabia 

using maximum entropy (MaxEnt) based on occurrence data and 10 environmental 

variables and then to determine sites with high species richness. This analysis identified 

17 areas predicted to be suitable for supporting high species richness. I recommended 
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using this model of areas with high wetland bird species richness as a guide for 

monitoring and surveys to inform conservation strategies in the Red Sea region of the 

KSA (Chapter 4). The fourth objective was to use microsatellite markers to investigate 

the genetics and morphometric differentiations of a wide-spread shorebird species, the 

Kentish Plover, between islands and mainland sites. The main result of the latter 

investigation was that breeding populations are genetically and morphometrically 

differentiated between mainland sites and islands, as well as between different 

archipelagos. This finding calls for a reconsideration of the current conservation status 

of this species (Chapter 5). Finally, my PhD research has generated several research 

lines that warrant further investigation (Chapter 6). 
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Behavioural ecology of breeding system 

Behavioural ecology aims to explore the ways in which behavioural and morphological 

characteristics promote the survival and reproductive success of species in different 

ecological environments, extending to the dynamics of populations, including foraging 

behaviour, mate choice, fighting strategies and parental investment (Caro 1998, Davies 

et al. 2012). 

Breeding systems consist of all the kinds of social behaviours demonstrated by males 

and females such as courtship, mating and parental care (Reynolds 1996). 

Understanding drivers of mating systems and parental care is one of the main directions 

in behavioural ecology, and a large amount of research has focused on these behaviours 

since the 1970. Mating systems can be simply described based on the number of mates 

obtained by males and females during the breeding season (Shuster & Wade 2003). For 

many bird species, mating systems have typically been identified based on behavioural 

observations (Wink & Dyrcz 1999), although with the advent of DNA fingerprinting, 

behavioural ecologists are increasingly quantifying genetic mating systems as well 

(Davies et al. 2012). Factors influencing the evolution of mating systems include 

natural selection, sexual conflict, sexual selection, sex ratios, parental care, food 

availability, ecological factors such as the spatial and temporal distribution of males and 

females, and the life histories of each sex (Dias et al. 2008).  

Birds exhibit a broad range of mating systems including monogamy, polygyny and 

polyandry (Wink & Dyrcz 1999, Colwell 2010, Davies et al. 2012). The most common 
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form of mating system among birds is monogamy (more than 92%; Lack 1968, Ford 

1983, Møller 1986). This is an exclusive social pair bond between one male and one 

female. It can last for a single breeding season or for a lifetime, with both sexes sharing 

duties of parental care and offspring defence (Davies et al. 2012). Davies et al. (2012) 

reported that an important factor influencing the occurrence of monogamy in a 

population is decreased opportunities for individuals to find mates. The second most 

common mating system among birds is polygyny (approx. 5% of bird species; 

Hasselquist & Sherman 2001). This occurs when males mate with multiple females 

during a single breeding season (Hasselquist & Sherman 2001). A key factor that may 

influence polygynous mating systems among birds is male territoriality, with males on 

better quality territories attracting a larger number of females (Davies et al. 2012). 

Parental care is any form of rearing provided by parents to enhance the rate of offspring 

survival (Clutton-Brock 1991, Royle et al. 2012). Parental care typically includes 

activities such as preparation of nests or burrows, production of large, heavily-yolked 

eggs, care of eggs or young inside or outside the parent’s body, provisioning the young 

with food before and after birth, caring for the offspring after nutritional independence 

and defence of offspring from predators (Clutton-Brock 1991, Balshine 2012).  

Parental care in birds can be divided into six different forms: use of geothermal heat to 

incubate eggs (found only in Galliformes), brood parasitism, male-only care, 

female-only care, biparental care and cooperative breeding (Cockburn 2006). Cockburn 

(2006) reported that among bird species, 81% of care is provided by both parents 
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(biparental), 9% of care is biparental with input from helpers, and 8% of care is 

provided by the female only. Male-only care occurs in about 1% of bird species.  

Brood parasitism and the use of geothermal heat to incubate eggs, involving no direct 

parental care, are rare, occurring in less than 1% of bird species. 

Biparental care is most likely to occur when it contributes to the survival and 

development of offspring, under extreme or stochastic environmental conditions (Lack 

1968, Clutton-Brock 1991, Brown et al. 2010, AlRashidi et al. 2011), or when adult 

population numbers limit mating opportunities (Martin & Cooke 1987, Balshine-Earn & 

Earn 1998). In biparental care, both males and females share the care of their offspring. 

However, despite cooperation between parents, care duties are often not shared equally 

(Lynn & Wingfield 2003, Schwagmeyer et al. 2002, 2005, McGraw et al. 2010, Barta et 

al. 2014). Both cooperation and conflict are found in species with biparental care 

(Harrison et al. 2009). Care is generally costly to parents in terms of time and energy, 

increasing parent mortality and decreasing potential future reproductive output 

(Clutton-Brock 1991, Székely et al. 2006, McGraw et al. 2010). Thus, sexual conflict 

arises since it is in the interest of each parent for the other to invest more and take 

responsibility for a greater share of the care duties (Arnqvist & Rowe 2005, Székely et 

al. 2006). 

 

The significance of mating system and parental care in biodiversity conservation 
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Conservation biology is a multidisciplinary science that offers supporting evidence for 

protecting managing and restoring biodiversity (Soulé 1985, Soulé & Wilcox 1980, 

Sahney & Benton 2008). The idea of introducing behavioural research into wildlife 

conservation was first applied in 1974 (Geist & Walther 1974).  Many studies since 

then have reported that understanding animal behaviour can play a significant role in 

conservation management (Sutherland 1998, Wallace & Buchholz 2001, Blumstein & 

Fernández-Juricic 2004, Shier 2006) and it is clear that some behavioural activities, 

such as movement, feeding and mating need to be taken into account in the planning 

and execution of many conservation programmes (Knight 2001, Buchholz 2007). 

Social behaviour and conservation are often linked by demography (Székely et al. 

2010). A vital demographic factor for understanding population viability is effective 

population size (Ne) (Anthony & Blumstein 2000). Ne is a fundamental principle in the 

conservation management of threatened species (Rieman & Allendorf 2001). It is 

affected by a variety of factors, for example, the exclusion of mating with 

closely-related individuals, unequal sex ratios, unequal family sizes, unequal generation 

sizes, overlapping generations, and inbreeding (Falconer 1989, Sutherland 1998, 

Székely et al. 2010). Mating systems can influence Ne since they determine which 

gametes are transferred to the next generation (Anthony & Blumstein 2000). 

Determining the factors that limit population growth is vital to wildlife conservation. 

For example, if adult males are removed from a monogamous population, levels of 

population growth are expected to be lower than if the population were polygynous. 



 Chapter 1 

11 

 

Determining the mating system of wild populations is therefore important for 

understanding the effects of biased sex ratios on population size for species that are in 

decline, and this may have implications for conservation management (Hummel & Ray 

2008). 

Predation increases mortality and can ultimately drive populations to extinction 

(Schoener et al. 2001). Understanding the behaviour of predators can play an important 

role in reducing mortality and based on this understanding, conservation measures can 

be taken, for example, manipulating the habitat through creating physical barriers for 

predators (Hinsley et al. 1995) or using high-frequency sounds or distasteful chemicals 

(Sutherland 1998). Additionally, understanding parental responses to predators (e.g. nest 

defence strategies) is important for evaluating the influence of predation and associated 

risks for offspring (Cresswell 1997, King et al. 1999). 

Captive breeding  and the reintroduction of endangered species have become 

important components in the conservation of a diversity of species (Snyder 1996, 

Beissinger 1997, Fraser 2008). In captive breeding situations, understanding 

behavioural mechanisms such as mate choice, social structure, and ecological 

influences on mating, is essential (Grahn et al. 1998). Many reintroduction efforts fail 

due to captive-bred animals lacking the behavioural skills needed to survive in the wild, 

including foraging behaviour, defence from predation and interspecific interactions (van 

Heezik et al. 1999). 
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Conservation biology of wetlands 

Wetlands are among the most diverse and rich ecosystems on earth as they provide an 

essential habitat for many kinds of living creatures, such as birds, mammals, reptiles, 

fish, frogs and insects (Costanza et al. 1997, Buckton 2007, BirdLife International 

2011). They are typically defined as transitional lands between uplands and fully 

aquatic environments on which the water table is either at or near the surface of the soil 

(Wetlands International 2014, Mitsch & Gotteschalk 2008). However, they can include 

many different kinds of habitat, including "marshes, peatlands, floodplains, rivers and 

lakes, and coastal areas such as saltmarshes, mangroves, and seagrass beds, areas of 

marine water the depth of which at low tide does not exceed six metres, also man-made 

wetlands, such as waste-water treatment ponds and reservoirs" according to the Ramsar 

Convention Secretariat (2011). Although wetlands only cover about six per cent of the 

earth’s surface (Ramsar Convention Secretariat 2011), they harbour diverse plant and 

animal communities and provide essential services for humankind. 

However, despite the fact that wetlands support considerable biodiversity, they are 

exposed to anthropogenic alteration (Eldridge 1992) due to their fragility and 

vulnerability (Hollis et al. 1988, Moor 2006). A number of processes have led to 

wetland ecosystem loss throughout the world, for instance, conversion or drainage for 

agricultural use, alterations in water regimes, urbanisation, overharvesting and 

overexploitation of natural resources, pollution, and the introduction of invasive species 

(Moser et al. 1996, Millennium Ecosystem Assessment 2005). As a result, 



 Chapter 1 

13 

 

approximately 50 % of the world's wetlands have been lost in the last century (Shine & 

Klemm 1999), which has given rise to a decline in biodiversity (Polasky et al. 2005). 

The conservation of wetland habitats has therefore become a priority in order to save 

wetland bird populations and other organisms from decline, which in turn may lead to 

the protection of wetland ecosystems around the world. 

Wetland birds are an important indicator of wetland ecosystem health (Nebel et al. 

2008). They are a vital component of the wetland environment (Nebel et al. 2008) and 

an important indicator of wetland ecosystem health as they are large organisms that 

occupy relatively high trophic levels (Furness & Greenwood 1993). Approximately 

12% of bird species that depend on wetlands are classified as threatened (BirdLife 

International 2012).   

Determining priorities for conservation requires accurate and reliable information on 

the distribution of species across wide areas (Hernandez et al. 2006). Species 

distribution models (SDM) provide simple methods for linking species distribution with 

environmental variables (Guisan & Zimmermann 2000, Guisan & Thuiller 2005), 

enabling recognition of the correlations between habitat features and species 

distribution (Guisan & Zimmermann 2000). This ability to model species distributions 

accurately and generate predictions has become a key tool in conservation planning 

(Guisan & Thuiller 2005). Species distribution model (SDM) is increasingly being 

implemented in wildlife management, landscape ecology and conservation biology 

(Akçakaya & Atwood 1997, Dettmers & Bart 1999). A detailed understanding of the 
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ecological factors that determine geographical distribution of a species is essential for 

developing an appropriate conservation strategy (Rushton et al. 2004). Predictive 

habitat models, which are dependent on the species needs over large geographical 

regions, can be applied in variety of ways, for studies of landscape ecology, 

conservation biology and wildlife management (Dettmers & Bart 1999, Akçakaya & 

Atwood 1997). 

The most effective species distribution models require the selection of key 

environmental variables. Remote sensing and spatial tools, such as geographic 

information systems (GIS), can contribute significantly to helping researchers identify 

appropriate conservation strategies for wetland areas (Pacione 1999). Remote sensing 

has been used in a variety of ways, for example, identifying and mapping wetland areas 

(Gluck et al. 1996, Kindscher et al. 1998, Lowry 2006), monitoring wetland changes 

(Haack 1996, Dahl 2006) and predicting sea level changes on coastal wetlands (Jensen 

et al. 1993). GIS tools and software are crucial in species distribution modelling 

(Pearson 2007). The combination of remote sensing data and GIS provides a vital tool 

for wetland conservation and management (Kashaigili et al. 2006). 

My research has focused on The Kingdom of Saudi Arabia that has a hot and arid desert 

climate in most parts of the country but also comprises a variety of wetland types 

(Newton 1995). Tinley (1994) identified eight wetland systems in Saudi Arabia: coastal, 

dune field, salt marsh, karst, mountain, geothermal, valley and man-made. In recent 

years, excessive hunting, irrigation projects, pollution, overgrazing of vegetation and 
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land reclamation have caused major losses and degradation of wetlands in Saudi Arabia 

(Faizi & Al Wetaid 1997). The IUCN (1984) reported that wetlands were exposed to 

deterioration, changing the habitat in Saudi Arabia. Sambas & Symens (1993) 

highlighted decline in wetland habitats in the Gulf area. To protect these important areas, 

more information on wetland bird abundance and distribution is critical for effective 

conservation prioritisation and may be gathered using tools such as remote sensing and 

species distribution modelling. 

 

Molecular ecology and conservation 

In this dissertation I use molecular tools to address behavioural ecology and 

conservation significance of mating systems and parental care. Molecular ecology is the 

application of molecular genetic methods to addressing ecological problems (Beebee & 

Rowe 2004, Andrew et al. 2013). It is often utilised in species identification, studies of 

animal behaviour, population genetics and conservation biology (Beebee & Rowe 2004). 

In recent years, molecular biological techniques have led to great advancements in 

conservation management (Haig 1998), providing researchers with a better 

understanding of how to conserve biological diversity most effectively (Beebee & 

Rowe 2004, Frankham et al. 2009). 

Molecular ecology research has been applied to several conservation issues. Firstly, it 

has enhanced our understanding of the negative effects of inbreeding on reproduction 

and survival, since inbreeding raises extinction risks for a population (Wright et al. 
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2008). Secondly, it provides tools for measuring the loss of genetic diversity. Genetic 

diversity, species diversity and ecosystem diversity are considered the main factors of 

biodiversity (Pojar 2000). Understanding the correlation between genetic diversity and 

population viability is considered one of the fundamental goals of conservation genetics 

(Beebee & Rowe 2004). Thirdly, molecular ecology provides tools for testing levels of 

gene flow between fragmented populations (Frankham et al. 2009), determining levels 

of genetic diversity and genetic similarity between populations that are more or less 

isolated from others (Haig 1998). Identifying patterns of gene flow is considered crucial 

in evaluating conservation strategies. Fourthly, since the resources assigned for 

conserving particular species are often prioritized based on taxonomic status, molecular 

genetic techniques can provide effective tools for defining species and subspecies, and 

this is crucial to targeting endangered and threatened species, subspecies and 

populations for conservation action (Haig 1998). Fifthly, al molecular ecology provides 

tools for determining the nature of genetic differentiation that can advance our 

understanding of the demographic history of species (Willing et al. 2012).  

Species’ extinction risks are increased by a wide range of factors including habitat loss, 

over-exploitation, introduced invasive species, pollution, climate change, demographic 

and ecological variation, genetics and catastrophes (Frankham et al. 2003). A 

combination of multi-disciplinary evaluations that comprise species biology, ecology, 

demographic life-history, and genetic diversity are needed in order to design effective 

conservation plans (Frankham 2009). 
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Thesis objectives 

The overall objective of my PhD dissertation was to learn essential tools in behavioural 

ecology, spatial ecology and molecular ecology to assist conservation of wetland birds 

in the Kingdom of Saudi Arabia. The specific objectives of my PhD dissertation was as 

follows:  

1. To investigate sex-related variation in body size and the breeding ecology of Crab 

Plovers in the KSA. The Crab Plover Dromas aredeola is unique among waders as it 

breeds in colonies and digs burrows more than two metres long for nesting. Males and 

females are monomorphic and not easily distinguished (Hockey & Aspinall 1996, 

Delany et al. 2009). Furthermore, the parental behaviour of Crab Plovers has not been 

previously investigated. My objective was to monitor provisioning behaviour of parents 

to nesting burrows during the breeding season. Additionally, I used discriminant 

function analysis (DFA) to detect differences in the morphological traits between male 

and female Crab Plovers and used molecular markers for sex identification. 

2. To determine the breeding distribution of Crab Plovers across the Red Sea coast of 

the KSA and to compare the results with previous research. The breeding distribution of 

Crab Plovers along the Red Sea of KSA is poorly known and its protection status is 

poorly described. I have carried out extensive field surveys during multiple breeding 

seasons, covering 16 islands across the Red Sea coast of KSA. 

3. To identify potentially suitable habitats for wetland birds along the poorly conserved 

Red Sea coast of the Kingdom of Saudi Arabia (KSA). Information about habitat 
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suitability of wetland birds along the Red Sea coast of KSA is lacking. The most recent 

study by Alrashidi (2011) provided a habitat suitability map for one species, the Kentish 

Plover Charadrius alexandrinus, along the Red Sea coast of Saudi Arabia and the 

Farasan Islands. My objective was to apply species distribution models for 22 wetland 

bird species across the Red Sea coast of KSA to identify the relative importance of key 

sites by determining areas of high species richness as priority areas for future habitat 

protection. Using these results I propose the formation of conservation strategies for the 

Red Sea coastal area of the KSA. 

4. To explore the morphological and genetic differentiation of Kentish Plovers between 

Macaronesian islands, mainland Iberia, and North Africa. To get training in molecular 

ecology I carried out a microsatellite analyses of a widely distributed shorebird, the 

Kentish Plover. Isolation-by-distance and isolation-by-adaptation are factors that may 

play important roles in genetic and phenotypic variation among populations (Orsini et 

al. 2013). I examined the correlation between genetic and phenotypic differences 

among populations using Mantel’s tests. I planned this study as a stepping stone to 

investigate morphological and genetic differentiation of Kentish Plovers in KSA in a 

future study. 

 

Throughout the course of my PhD research, I have enjoyed the opportunity to learn a 

wide range of key skills. For instance, learning field techniques for investigating the 

behavioural ecology of mating systems (Chapters 2 and 3), modelling species 
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distributions and richness using GIS and MaxEnt programs (Chapter 4), and working in 

a molecular ecology laboratory, utilising conservation genetic methods based on 

Kentish Plover models (Chapter 5).  

The Appendices include a research paper I was invited to co-author (submitted to 

Ostrich) and my Field Report.   
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Abstract 

The Crab Plover Dromas ardeola is endemic to the Indian Ocean basin and breeds on 

islands around the Arabian Peninsula. Unique among shorebirds, it nests in an 

underground burrow where it lays a single white egg and feeds one chick. We 

investigated sex-related differences in body size and parental care of this species in 

Saudi Arabia. Molecular sexing of DNA samples of 66 adult Crab Plovers indicated that 

26 were males and 40 were females. Males had significantly longer bill, wing and tarsus 

lengths than females, confirming previously published reports on sexual size 

dimorphism in Eritrea. Observations of molecular-sexed adults at four nests showed that 

both parents fed the chicks; however, females brought food to the nest-burrow more 

often than males (67.6% of all cases). We found that the temperature inside active 

nesting burrows was relatively stable at 35.0 ±SE=0.18°C (n = 11 nests) regardless of 

ambient temperature just outside the burrows. This suggests that burrows serve a 

purpose in incubation as well as in defence from predation. In the colony, adults were 

seen to prevent chicks from multiple burrows from leaving the nest when their own 

parents had left the colony, confirming a helper breeding system. We suggest areas for 

future investigation to further elucidate the breeding behaviour of this enigmatic and 

unique burrowing shorebird. 

Key words: breeding ecology, chick diet, Crab Plover, molecular sexing, nest burrow 

temperature, Saudi Arabia 
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Introduction 

The Crab Plover Dromas ardeola is a distinctive, medium-sized shorebird (weight: 

230–325 g), with black and white plumage, a strong bill and long, black legs (Burton & 

Burton 2002). Sexual dimorphism occurs in size, though not in plumage, and males are 

generally larger than females (De Marchi et al. 2012). Juvenile Crab Plovers lack the 

characteristic adult patterns, instead emerging a uniform grey-brown with a smaller bill 

and shorter legs (Burton & Burton 2002).  

The breeding ecology of Crab Plovers is unique among waders. They breed in colonies 

which are re-established each year on sandbanks (Chiozzi et al. 2011), in which they 

dig nest-burrows more than two metres long (Hockey & Aspinall 1996). The female 

lays a single large, white egg (in rare cases, two eggs) without any pigmentation 

(Hockey & Aspinall 1996, Delany et al. 2009, Tayefeh et al. 2013), a trait typical of 

species that nest in holes or hollow trees (Burton & Burton 2002, Jennings 2010). 

Reports suggest that the average incubation period is 33 days (De Marchi et al. 2008, 

Tayefeh et al. 2013). After hatching, a Crab Plover chick stays inside its burrow for 

several days (del Hoyo et al. 1996, Hockey & Aspinall 1997) and both parents deliver 

food (Burton & Burton 2002, Hockey & Aspinall 1996). Chicks fledge at the age of 

seven weeks (Tayefeh et al. 2013), at which time they leave the colony with their 

parents and migrate together as a family (Delany et al. 2009, Hockey & Aspinall 1997). 

Crab Plovers are partial migrants (Delany et al. 2009, del Hoyo et al. 1996), and are the 

only reported waterbird species in which adults continue to provide food for their chicks 

during post-breeding migration; juveniles remain at least partly dependent on their 

parents to provide food for several months (Delany et al. 2009, De Sanctis et al. 2005, 

Fasola et al. 1996). 
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De Sanctis et al. (2005) suggested that the long duration of parental care may be 

attributed to the low reproductive yield of the parents, which is a consequence of the 

ecological limitations of the breeding areas; namely extremely hot environments. Their 

breeding range spans Kuwait, Iran, the United Arab Emirates, Oman, Yemen, Saudi 

Arabia, Somalia, Eritrea, Sudan and possibly western India, the Lakshadweep and 

Maldives (Almalki et al. 2014, Delany et al. 2009, De Marchi et al. 2006, Javed et al. 

2012, Jennings 2010, Shobrak et al. 2002, Tayefeh et al. 2013) and the breeding season 

takes place during the hottest time of the year, between April and August (Hockey & 

Aspinall 1997, PERSGA/GEF 2003). 

Recent research suggests that the role of nest-burrows is to protect the eggs against high 

ambient temperatures (which can reach up to 45°C in the shade) providing near-optimal 

temperature and humidity for egg development (based on abandoned burrows, a 

temperature of 35.2°C and a humidity of 60.2% have been estimated; Aspinall & 

Hockey 1996, De Marchi et al. 2008). This minimizes the time required for incubating 

the eggs (28.3% of the time of the parents; De Marchi et al. 2008). When the chicks 

begin to leave their burrows, they avoid high temperatures and only come out in the 

early morning or late afternoon (Hockey & Aspinall 1996). 

During the breeding season, Crab Plovers commonly forage singly or in loose groups 

on tidal mudflats or in shallow water (Burton & Burton 2002, Delany et al. 2009, del 

Hoyo et al. 1996). These foraging groups typically contain 20 to 30 individuals (Burton 

& Burton 2002) and foraging takes place during both day and night, in different 

locations in the intertidal zone (Burton & Burton 2002, Fasola et al. 1996). Their diet 

consists largely of crabs, but also includes other marine animals such as crustaceans, 
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small molluscs and marine worms (del Hoyo et al. 1996, Fasola et al. 1996). The heavy 

and powerful bill gives this species the ability to crush larger crabs into pieces to eat, 

though smaller crabs are often swallowed whole (Soni & Bhuva 2007). De Marchi et al. 

(2012) established that bill size differs between males and females, which might be 

related to the prey size caught by each sex (Rands 1996). 

Our study aimed to further our understanding of sex differences and the breeding 

ecology of the Crab Plover with four main objectives. First, we measured the body size 

of males and females on the Farasan Islands in the Red Sea using molecular markers for 

sex determination. De Marchi et al. (2012) applied discriminant function analysis on 

Dahret Island in the Dahlak Archipelago, Eritrea, and we used the same approach to 

investigate whether morphological traits differ between the Dahlak Archipelago and the 

Farasan Archipelago. Second, we assessed the roles of males and females in parental 

care, by monitoring the delivery of food to chicks in nest-burrows according to the sex 

of the adults. Third, we determined the type of food items provided by the parents. 

Fourth, we measured temperatures both inside and outside active nest-burrows during 

the breeding season. We also investigated whether burrow temperatures differ in 

different regions. 

Methods 

Study area 

We investigated a colony of Crab Plovers on Humr Island in the Farasan Archipelago of 

Saudi Arabia (16°47’00”N, 42°00’42” ; Fig. 1) on 47 days between 19May and 15 July 
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2012. Humr Island, 310 ha, is sandy, largely low and approximately flat with several 

reef platforms. Vegetation is sparse and includes salt-tolerant plants such as Halopeplis 

perfoliata, Zygophyllum album, Zygophyllum simplex and Suaeda monoica. Mangroves, 

mainly Avicennia marina, exist along a wide area of the Humr Island coast. The weather 

from May to July is arid and hot with daily temperatures exceeding 50°C in direct 

sunlight. 

 

 

 

 

 

 

 

 

Fig. 1. Map showing location of Crab Plover breeding colony (black dot) on Humr 

Island, Red Sea. 

The Crab Plover colony we studied comprised 265 active nest-burrows. We recorded 

three other bird species breeding on the island: Kentish Plover Charadrius alexandrinus, 

Saunders’s Tern Sterna saundersi and Sooty Gull Larus hemprichii. We also found an 

abandoned Osprey Pandion haliaetus nest. 
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Trapping, morphometric measurements, behavioural observations and breeding 

ecology 

Crab Plovers are easily disturbed by observers and are therefore difficult to capture, 

especially around their breeding sites. We captured Crab Plovers using mist-nets during 

the night. We used torchlight to dazzle the birds and drive them towards the mist nets. 

Captured birds were removed immediately to reduce the possibility of injury.  

Morphometric measurements were taken from 66 adult Crab Plovers captured between 

6 June and 15 July. Three measurements (all in mm) were taken from each adult: (1) bill 

length (the exposed culmen) was measured with calipers from the edge of the feathers 

on the top of the bill to the bill tip; (2) the flattened and straightened length of the right 

wing was measured using a ruler from the carpal joint to the tip of the longest primary; 

and (3) the length of the right tarsus was measured with calipers from the notch on the 

knee to the distal end of the tarsometatarsus. Weight (in grams) was also measured, 

using a 600 g Pesola spring balance. However, we excluded weight measurements from 

morphometric analyses to determine differences between the sexes since weight may 

vary considerably between individuals and over time (even within days) and therefore 

they may not be good predictors of body size (van de Pol et al. 2009). All birds were 

ringed on the tibia with single metal rings provided by the Saudi Wildlife Authority and 

one–three coloured plastic rings for individual identification. Blood samples (25–50 μl) 

were taken from the brachial vein of adults and stored in Queen’s lysis buffer (Székely 

et al. 2006) for molecular sex-typing. 

To mark nest-burrows, we used numbered plastic spoons placed near the burrow 

entrances. We used the presence of fresh tracks at a nest-burrow entrance to distinguish 

inhabited burrows from uninhabited ones (De Marchi et al. 2006). To extract the eggs 
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from the burrows for brief examination, we used a tool constructed by attaching a spoon 

to the end of a 1.5 m stick. The eggs were extracted from burrows at the beginning of 

the breeding season and were accessible at this stage since they were not positioned at 

the far end of the curved burrows. We collected and measured four eggs; two in June 

2011 from the Albatain Islands, which are located about 10 km northwest of Al 

Qunfudhah city, and two from Humr Island in 2012. As the breeding area was very 

fragile, we used sand-shoes – analogous to snow-shoes – for walking around the colony 

in order to avoid destroying burrows (Fig. 2). 

 

 

 

 

 

Fig. 2. Sand-shoes, analogous to snow-shoes, designed for walking around the colony 

in order to prevent damage to burrows. 

A mobile hide was used for making behavioural observations to avoid disturbing the 

Crab Plovers. The hide was located about 30 m from the colony. Observations of bird 

behaviour were made during the day, and activities at the nest-burrows were also 

recorded using Bushnell Trophy Cam 270p HD (model119466 IR) and Reconyx 

(SC950 HyperFire Security IR) cameras. It was difficult to determine by direct 

observation which nest-burrows belonged to the individually-marked birds as the 

burrows were close to one another and the birds were highly mobile within the colony. 
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Therefore, the Bushnell camera was set up to record an image every minute to 

determine which nest-burrows the ringed birds were using. In this way, six burrows 

were identified as being inhabited by one ringed and one unringed parent (two 

contained eggs and four contained chicks). To determine the behaviour of parents at the 

nest-burrows, the Reconyx camera was positioned about 1 m from a nest-burrow 

entrance and set to record one image every five seconds for 24 hours and in several 

cases for 48 hours. The cameras were operated from the beginning of June until mid- 

July 2012. 

Ground temperatures and temperatures inside active nest burrows were recorded using 

iButtons (model no. DS1922LF50), with an accuracy of ±0.5°C between -10°C and 

+65°C, as tested by the manufacturer. Ground temperatures were measured using 

iButtons placed on the surface of the ground in the colony. We recorded nest-burrow 

temperatures using iButtons placed approximately 100 cm inside 11 active nest burrows 

for 24 hours at 30-second intervals from late June to mid-July 2012. The devices were 

glued to a small wooden stick and inserted through the wall of the burrow to keep the 

iButton data logger inside the nest-burrow. The birds did not appear to be disturbed by 

them. 

The types of food provided for chicks and the feeding frequency throughout the day 

were determined by deploying the Reconyx camera for 24 hours at each of four nest 

burrows. We also collected some items discarded by the Crab Plovers from around the 

nest-burrow entrances. Prey size was estimated in two ways. First, based on the 

photographs, we evaluated prey size by comparison with the size of Crab Plover bills 

(approx. 5.5 cm ±SE=0.05; n = 42). Second, we directly measured discarded food items 

that we found in the colony around the nest-burrows. 
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DNA extraction and sex determination 

DNA extraction from 66 blood samples was carried out using an ammonium acetate 

method (Nicholls et al. 2000, protocol online at 

http://www.shef.ac.uk/nbaf-s/protocols_list). DNA concentration was evaluated using a 

Nanodrop ND8000 spectrophotometer. Sex determination in birds is usually based on 

amplification (through polymerase chain reaction - PCR) of fragments of a Z and W 

gene that differ in size, such that males (ZZ) and females (ZW) are easily 

distinguishable by the observation of the differently sized amplicons. For each sample, 

PCR amplification was conducted using two primer pairs, P2/P8 (Griffiths et al. 1998) 

and Z-002A F/Z-002A R (Dawson 2007) in a single duplex reaction with fluorescent 

dye labelled forward primers (HEX and 6FAM respectively). Using two different 

markers prevents errors resulting from the misinterpretation of sex-typing data due to 

allelic dropout or Z polymorphism (Dawson et al. 2001, dos Remedios et al. 2010, 

Toouli et al. 2000). 

PCRs were performed in 2-μl reactions including 10-15 ng dry DNA, 0.2 μM of each 

primer (combined in 1 ul of low T  buffer) and 1 μl QIAG N Multiplex PCR 

MasterMix, with a layer of mineral oil to prevent evaporation. PCR amplification was 

conducted on a DNA Engine Tetrad 2 Peltier Thermal Cycler using the following 

conditions: 15 min at 95ºC, followed by 35 cycles of 30 s at 94 ºC, 90 s at 52 ºC, 60 s at 

72 ºC, and a final cycle of 30 min at 60 ºC. Amplicons were visualized on an ABI 3730 

48-well capillary Sequencer, with GeneScan 500 ROX size standard. Alleles were 

scored using GeneMapper software version 3.7 (Applied Biosystems). 

Statistical analyses  



 Chapter 2  

40 

 

To test whether there is a significant difference in the amount of food delivered by 

males and females we used  ilcoxon’s test. 

Discriminant function analysis (DFA) was used to evaluate sexual size dimorphism. In 

this, outliers were checked using box plots. Missing values (22.1% of the total data set) 

were evaluated using the Expectation Maximization (EM) method (Strauss et al. 2003) 

since DFA cannot be applied to samples containing missing values. We applied EM for 

males and females whose sex was identified via molecular sexing. The Shapiro-Wilk 

test was applied to detect the normality of each variable, and all variables were 

normally distributed (P>0.05). In order to test for differences in body size between 

males and females, MANOVA was applied using bill length, wing length and tarsus 

length as dependent variables and sex as an independent variable. In order to identify 

the significance of sex differences for each dependent variable, t-tests were applied. 

Correlation tests (Pearson correlation) were applied to examine correlations between 

each two variable combinations since DFA supposes predictors should not be highly 

correlated with each other. We found that none of the three variables were highly 

correlated with each other (Pearson r<0.5). A leave-one-out cross validation test was 

applied to check the accuracy of prediction. To identify the variable that differed most 

between males and females, DFA was performed on the three morphological 

characteristics using the package MASS, implemented in R (version 2.15.1) based on 

molecularly sexed individuals for which all three measurements were available (26 

males and 40 females). The three morphological measurements from these birds were 

grouped together using DFA to generate a predictive function formula that can be 

applied to discriminate the sexes. Finally, a cut-off value was identified, with 

individuals with a higher value being classified as male, and individuals with a lesser 

value being classified as female. 
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Results 

Timing of breeding and egg laying 

Crab Plovers started to dig their nest-burrows in mid-May 2012 and egg-laying was 

initiated at the end of May. The average egg length and width measurements were 64.3 

±SE=0.80 mm and 45.1 ±SE=0.47 mm respectively. Egg hatching appears to be 

synchronized, and the eggs started to hatch at the end of June. When the eggs hatched, 

the parents would throw the eggshell fragments outside the nest-burrow. From the 

eggshell fragments recorded at the end of June, we estimated that at least 64 eggs laid in 

the colony had hatched. At the beginning of July, new eggshell fragments were found 

outside the nest-burrows, but due to strong winds, we could not estimate the numbers 

accurately. The parents started to bring food to their chicks at the beginning of July.  

Incubation temperature 

The lowest and highest ground temperatures in the colony were recorded as 28.15°C 

and 55.56°C, respectively. The average temperature inside 11 active nest-burrows was 

35.0 ±SE=0.18 °C (n = 11 nest-burrows). The temperature inside the nest-burrows was 

almost constant from midnight to midnight but the outside temperature varied from 

around 30°C at night to 50°C in the middle of the day (Fig. 3). 
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Fig. 3. Ambient temperature (±SE) outside seven Crab Plover nestburrows on Humr 

Island, Saudi Arabia, and temperature at about one metre inside 11 active nest-burrows 

from midnight to midnight in two-hour periods during June 2012. 

 

Molecular sexing and sexual size dimorphism 

Sixty-six adult Crab Plovers captured on Humr Island were sexed using molecular 

techniques and found to comprise 26 males and 40 females (Table 1). Although no 

samples were available from individuals of previously known sex, all samples were 

amplified with both molecular markers and the results based on P2/P8 and Z-002A 

markers were consistent for all 66 samples. 
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Table 1: Data collected on Crab Plovers caught on Humr Island, Saudi Arabia, during 

May–July 2012 and sexed using molecular techniques. 

 

Number of sexed  
Bill 

measured 

Wing 

measured 

Tarsus 

measured 

Weight 

measured 

Male 26 15 25 19 22 

Female 40 27 38 33 39 

Total 66 42 63 52 61 

 

MANOVA of the birds’ bill, wing and tarsus lengths indicated significant morphological 

differences between males and females (F1, 64 = 10.5, P<0.0005; Table 2). T-tests 

revealed that the bill, wing and tarsus lengths of males significantly exceeded those of 

females, bill lengths being the most significantly different and tarsus lengths the least 

(Table 2). The results of direct DFA also showed that bill length is the most reliable 

single predictor of sex, whereas wing length and tarsus length are not so effective 

(Table 3). The coefficients of the three linear discriminant models were: (bill length x 

0.480237862) + (wing length x 0.02213118) + (tarsus length x 0.028304745). The 

overall discriminatory power of the model was high (83.3% of individuals were 

correctly classified). Using this discriminant model to classify the 66 individuals 

resulted in misclassification of 7 of 36 females (19%) and 4 of 19 males (21%).
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Table 2: Body size parameters of adult Crab Plovers caught on Humr Island, Saudi 

Arabia, during May–July 2012, after estimating missing values using the expectation 

maximization (EM) method (SE = Standard Error). Note that as all these parameters 

are measures of size, it is appropriate to apply the Bonferroni correction. Therefore the 

null hypothesis should only be rejected if p <0.05/3 = 0.0166. 

 

Male Female 

p value, t test 

 

Mean ±SE (N) Mean ±SE (N)  

Bill length (mm) 58.10 ±0.47 (26) 54.07 ±0.27 (40) <0.0005  

Wing length (mm) 213.51 ±0.75 (26) 209.72 ±0.82 (40) 0.001  

Tarsus length (mm) 98.06 ±0.58 (26) 96.04 ±0.54 (40) 0.0139  
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Table 3: Classification accuracy using discriminant function analysis (number/total 

(and %) correctly assigned) based on measurements of single morphological 

characteristics in males, females and in all birds from a sample of 66 Crab Plovers (26 

males and 40 females) caught on Humr island, Saudi Arabia, during May–July 2012 

and sexed using molecular techniques. 

Predictor of sex Males Females All birds 

Bill Length 23/26 (88.5%) 34/40 (85.0%) 58/66 (87.9%) 

Wing Length 19/26 (73.1%) 21/40 (52.5%) 42/66 (63.6%) 

Tarsus Length 17/26 (65.4%) 27/40 (67.5%) 45/66 (68.2%) 

 

Brood care 

At the beginning of the breeding season, we observed several juvenile Crab Plovers at 

the colony on Humr Island, but we found no evidence that they took part in nesting 

activities as helpers or otherwise. 

During chick-rearing, only one parent usually attended the nest-burrow entrance to 

provide food, although in a small number of cases both parents were present at the same 

time. In addition, there were many occasions when both parents were away from the 

nest-burrow and most adults left the colony at midday when ambient temperatures were 

highest. 
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Based on observations of individuals of known sex at four nests, the number of visits by 

the female and by the male were respectively 12 and 8 (60% by the female), 15 and 7 

(68.2%), 15 and 6 (71.4%) and 17 and 7 (70.8%). This difference is not statistically 

significantly different from equal feeding rates ( ilcoxon’s test, p = 0.25), probably due 

to the small sample size. After hatching, the parents usually remained outside the 

nest-burrows and fed their chicks from the nest-burrow entrances.  We also observed 

cases when one adult guarded several nest burrows and the single adult prevented 

chicks to come out from the burrows. 

Composition of food fed to chicks 

Altogether 86 prey items were identified from Reconyx Camera photos while being fed 

to chicks by adults at four nests; these included crabs, fishes, prawns and worms (Table 

4, Fig. 4). The remains of 23 other food items discarded around the nest-burrow 

entrances were also collected and measured the majority (17/23, 74%) of these were 

fish (Table 4). The photos showed that the parents brought only one prey item per 

feeding visit. On average each chick was fed 21.5 (±SE=0.96) times per day. Food was 

delivered during the day and night, but based on four nests, provisioning was higher by 

day than at night (Fig. 5). 

Nest-burrow structure 

At the end of the breeding season we dug up three used nest burrows and found that the 

burrows extended 70 to 90 cm below ground level, were about 2 m long, and included a 

bend so that in some cases the direction of the end of the burrow was opposite to that of 

the entrance. The nest chamber was at the end of the burrow (Fig. 6).
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Table 4: Type and size of food items delivered to Crab Plover chicks on Humr Island, 

Saudi Arabia, during June–July 2012 identified using camera-trap photos at four nests. 

In addition, measurements are given of the remains of some prey items that were 

collected from around the nest burrow entrances. 

 Prey identified from photos Prey remains collected 

from burrow entrances 

Prey type % of prey items 
Prey sizes (cm 

± SE) 

Number Prey sizes (cm 

±SE) 

Number 

Crab 53.5 3.8 ± 0.13 46 3.25 ± 0.25 2 

Fish 23.3 5.7 ± 0.20 20 6.1 ± 0.33 17 

Prawn 3.5 5.5 ± 1.3 3 5.1 ± 1.6 4 

Worm 2.3 Not measured 2  0 

Unknown 17.4 4.1 ± 0.28 15  0 

Total 100  86  23 

 



 Chapter 2  

48 

 

 

 

 

 

 

 

 

Fig. 5: Provisioning frequency (number of feeding visits by adults per nest per two-hour 

period ±SE) from midnight to midnight at four Crab Plover nest-burrows on Humr 

Island, Saudi Arabia, during June-July 2012. 

 

 

 

 

 

 

 

Fig. 6.  Excavation revealed that from the entrance, the burrow sloped downwards and 

turned 180° before coming to the nest chamber. 
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Discussion  

Our study yielded several important results. To our knowledge, this is the first study to 

identify differences in food provisioning by male and female Crab Plovers identified by 

molecular sex-typing. Using the data gathered from four nests we found females 

brought food to their chicks more frequently than males. In about 81% of bird species, 

both males and females contribute to the care of offspring; however, parental 

investment is often not shared equally between the parents (Cockburn 2006, Olson et al. 

2008). 

We also found, through analyses of sexual size dimorphism in molecularly sexed Crab 

Plovers, that males are larger than females in bill length, wing length and tarsus length 

and that bill length is the best predictor of sex. This finding is consistent with that of De 

Marchi et al. (2012) who found that males are larger than females for all morphological 

measurements they studied. However, they found that the best characters for 

distinguishing male and female Crab Plovers were head-bill length, bill length, bill 

depth, wing chord and weight, whereas tarsus length was a poor predictor. 

Our results indicate that the main primary items fed of Crab Plover chick are (in 

descending order of importance) crabs, fishes, prawns and worms. This is consistent 

with the results of Aspinall (2010) who reported that about 95% of full-grown Crab 

Plovers depend on crabs, but chicks are occasionally fed fish and molluscs. Morris 

(1992) found that in Abu Dhabi, parent Crab Plovers mainly fed their young with crabs, 

and in some cases fish, but very rarely molluscs. Therefore, we can conclude that the 

Crab Plover’s main prey is crabs. Indeed Aspinall & Hockey (1996) suggested that the 

distribution of Crab Plovers is restricted to tropical and subtropical areas due to the 
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abundance of crabs. However, the tidal hypothesis cannot be tested in Farasan Islands 

because no publicly available tidal table seem to exist. 

Based on four nests, we found that the rate of delivery of prey to the chick was roughly 

twice as high by day than at night (Fig. 5). De Marchi et al. (2015) suggested that the 

foraging times of Crab Plovers are related to the tidal rhythm; similarly Geering et al. 

(2007) found that feeding activities by the majority of shorebird species are driven by 

tidal rhythm. However, the tidal range in the Red Sea is extremely small (Edwards 

1987), so we were unable to evaluate the effect of tide on the provisioning of chicks in 

our study population. 

On several occasions we observed Crab Plover adults guarded several nest burrows and 

single adult prevented chicks to go out from nest-burrows while their parents were away 

from the colony. These findings suggest that there may be a cooperative care system 

operating among Crab Plovers. The present findings seem to be consistent with other 

research which suggested the existence of helpers at Crab Plover colonies. Helpers may 

increase vigilance and thus protect the Crab Plover chicks from potential risks (Hockey 

& Aspinall 1997, Aspinall 2010). Covas et al. (2008) indicated that helpers can 

positively influence reproductive performance in many ways; for example, food 

provisioning or parental care can enhance the condition and survival of chicks. We 

identified several juvenile birds at the Crab Plover colony on Humr Island at the 

beginning of the breeding season. However, we have no evidence that these juveniles 

shared the care of chicks with the adults. 

One possible benefit of colonial breeding in birds is enhancing their defence against 

predators, yet conversely, breeding in a colony also raises the visibility of the group to 

predators (Ashbrook et al. 2008, Urfi 2003). Nest defence can be considered a parental 
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strategy to increase fitness by decreasing the probability that a predator will target their 

offspring (Redmond et al. 2009). However, the Crab Plovers we observed did not 

defend their colony against the attendance or attacks of Sooty Gulls. Furthermore, when 

we visited the colony, we noticed that all the Crab Plovers would leave the colony and 

move to neighbouring sites. Therefore, nesting in burrows may help the parents to 

protect their young without the need to interact with predators, thus avoiding any 

physical risk associated with an active defence. If offspring are well-protected 

underground, Sooty Gulls might not depredate the Crab Plover chicks but instead 

collect their discarded food. 

The average temperature inside 11 active Crab Plover nest-burrows was relatively 

stable at around 35.0°C regardless of the ambient temperature outside. This finding is 

consistent with that of De Marchi et al. (2008), who found the average temperature 

inside nest-burrows at 100–200 cm from the entrance to be 35.2°C. Conway & Martin 

(2000) reported that the optimal temperature for egg development for the majority of 

bird species is between 36 and 40.5ºC. De Marchi et al. (2008) suggested that the most 

obvious purpose of nesting in burrows is to protect the eggs from high temperatures. As 

a consequence, parents have to spend very little time incubating their eggs (De Marchi 

et al. 2008, De Marchi et al. 2014). 

Conclusions 

The demographic and behavioural data collected on Crab Plovers breeding on Humr 

Island, Saudi Arabia, in this study revealed several key findings: (1) the most reliable 

morphological trait indicating the sex of Crab Plovers in our study population was bill 

length; (2) both males and females provided food to the chicks but provisioning was 

carried out more often by females than males; (3) this study has gone some way towards 
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enhancing our understanding of daynight cycles in chick feeding routines, with higher 

provisioning rates during the daytime than at night; and (4) the temperature inside 

active nest-burrows was rather stable and did not change significantly with 

above-ground temperature. 

In future, cannon-netting could be used to catch a larger number of birds in the colony 

or at their feeding sites. While this study has provided valuable insights into the 

breeding ecology of a highly specialised, unique shorebird, several questions still 

remain. In particular, we suggest future studies should concentrate on: (1) investigating 

whether the Crab Plover can incubate and rear two eggs and chicks at the same time; (2) 

studying mate fidelity in Crab Plovers; (3) studying the nest architecture of the Crab 

Plover; and (4) investigating the identity and function of the helpers at Crab Plover 

colonies. 
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Abstract 

We surveyed Crab Plovers, a species which is endemic to the Arabian Peninsula, in 

2011, 2012 and 2013 in coastal and off shore areas of Red Sea in Saudi Arabia, and 

compared the data with the survey carried out in 1996. We found two new colonies 

which comprise together about 539 pairs. Altogether 1380 pairs of Crab Plover breed in 

the Red Sea of Saudi Arabia in five colonies, representing approximately 35% of the 

Arabian breeding population. Major threats to the Crab Plover are human disturbance, 

egg collection and introduced animals (e.g. cats, rats and snakes) that may feed upon 

eggs and chicks.  

Keywords: Crab Plover, conservation status, threats, human disturbance, Saudi Arabia. 
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Introduction 

Crab Plover breeding sites are restricted to islands around the Arabian Peninsula, 

although they probably also breeds in Western India, in the Laccadive Islands and the 

Maldives (Delany et al. 2009). Jennings (2010) reported about 4000 pairs of Crab Plover 

breeding in approximately 20 colonies around the Arabian Peninsula, mostly in Kuwait, 

the United Arab Emirates, Oman, Yemen and Saudi Arabia. In recent years, 30 Crab 

Plover colonies have been discovered in Eritrea, comprising an estimated 5000–6000 

pairs in total (De Marchi et al. 2006). In addition, four colonies of Crab Plover were 

reported from Iran in 2011, the largest of which, on Dara Island, had 3527 nests (Tayefeh 

et al. 2011). Breeding has also been recorded in Sudan and on islets off Northern Somalia 

(Shobrak et al. 2002; Delany et al. 2009). 

We surveyed Crab Plovers in the Red Sea region of Saudi Arabia for two reasons. First, 

the latest comprehensive survey was in 1996, and these data required updating. Second, 

there is a gap between the estimated number of breeding pairs (14,000 – 15,000, 

Aspinall 1996, as cited in Javed et al. 2012), and the estimated number of non- breeding 

birds 60,000–80,000 individuals (De Marchi et al. 2006), and thus former surveys may 

have overlooked some of the breeding sites in the Red Sea region. 

 

Methods 

The surveys were carried out between May and June 2011, in May and July 2012, and 

in May and June 2013, and covered 16 islands. Five of these islands belong to the 

Farasan Islands, two to the Albatain Islands, seven are situated in Umluj and two in the 
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Al Wajh Archipelago. The total length of the Red Sea coastline of Saudi Arabia is 

approximately 1840 km, of which our survey covered about 1300 km (PERSGA/GEF 

2003). The climate is arid and hot, particularly during summer. Average rainfall is less 

than 70 mm per year (PERSGA/GEF 2003). Boats were used to visit the islands, and 

the location of each colony was recorded using a handheld Global Positioning System 

(GPS) device. In each colony, Crab Plover population was estimated from the number 

of active burrows. The presence or absence of fresh tracks at a burrow entrance was 

used to determine whether it was active (De Marchi et al. 2006). We also recorded the 

number of Crab Plover present in or around each colony (Table 1). 

During the surveys we recorded evidences of predation, including egg harvesting by 

fishermen, broken eggs and dead chicks. To identify potential predators, a Bushnell 

Trophy Cam 270p HD (model 119466) camera was set up at 40 nests for 12 days on the 

Humr Island, Farasan Islands (Table 1). The camera recorded one image every minute 

for 24 hours per day. The nest cameras recorded evidence of Sooty Gulls inside the 

colony. We also recorded tracks of animals such as snakes and rats. 

  

Results 

Breeding population 

We found Crab Plover colonies on four islands (Figure 1, Table 1). In addition, fishermen 

told us of a colony on Abu Tok Island (Farasan Islands) although we were unable to 

verify this. Crab Plovers usually establish new colonies around old colonies. However, in 
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small islands with insufficient area for new colonies, such as the Albatain Islands, new 

colonies may be established on nearby islands. Based on the number of active burrows, 

we estimate the total number of Crab Plovers in the Red Sea of Saudi Arabia as 1380 

pairs (Table 1).  

Population development 

Table 2 compares results of the current surveys with those of previous surveys. The 

comparison reveals that the numbers of Crab Plover has tended to increase at each 

breeding site, including Al Sheick Marbat (2011: 46 burrows; 2013: 79 burrows), Umm 

Ar Rak (2007: 140-150 burrows; 2011: 624 burrows) and Mandhar Island (2007: 50 

burrows; 2012: 138 burrows). However, Al Sheick Marbat and Umm Ar Rak were 

surveyed in early of the breeding season, thus may be the number of burrows is 

substantially higher than 46 and 150.  

Threats 

Sooty Gulls Larus hemprichii, large omnivorous gulls from the region, visit Crab Plover 

colonies, although we did not record them predating eggs, chicks or adults. Using nest 

cameras, we noticed that Sooty Gulls visit Crab Plover colonies in the early morning and 

in the evening, although surprisingly, Crab Plovers did not defend their colony from the 

gulls. In several cases when Sooty Gulls arrived at a colony, Crab Plovers left the colony 

and watched the gulls from a nearby location.  

Snake tracks were seen on Mandhar and Humr Islands, and snakes may feed on Crab 

Plover eggs. Fishermen reported that they have found snakes inside Crab Plover burrows. 
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Two broken eggs were found on Humr Island, and rat tracks were observed around one 

colony suggesting that suggest that rats may impact on breeding success. We found six 

dead chicks, although none of these chicks showed visible signs of predation. 

Local fishermen collect eggs, although there has been no attempt to quantify the 

magnitude of this threat. We found a tool that was used to gather eggs of Crab Plover at 

the colony on Mandhar Island. According to the fishermen, at full moon the eggs are at 

the entrance of the burrows and thus easy to collect.  

 

Discussion 

Data on breeding Crab Plovers have been collected inconsistently (Jennings 2010). In the 

Red Sea of Saudi Arabia, a few surveys have been carried out to study distribution and 

abundance of summer breeding seabirds and discovered a number of Crab Plover 

colonies. For instance, Newton & Al Suhaibany (1996) found only two colonies of Crab 

Plovers along the Red Sea coast of Saudi Arabia, Gregory & Goldspink (1996) 

documented two active colonies, AlRashidi (2007) reported three colonies, and Shobrak 

& Aloufi (2013) found two colonies. AlRashidi (2007) documented a colony of Crab 

Plover on Dushik Island (Farasan), but the current study did not find any colony on this 

island. Here we report colonies from five islands with the 1,380 pairs in the area our 

surveys covered, representing about 35% of the known Arabian breeding population. 
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Table 1. The number of individuals and active burrows of Crab Plover on the Red Sea 

coastline of Saudi Arabia. No. (bur.) = number of burrows. 0 = site visited, but no Crab 

Plover or burrows was found. 

 Coordinates Date No. 
(ind.) 

No. 
(bur.) Remarks 

Al Sheick 
Marbat 

25°52’N 
36°36’  18.v.2013 119 79 2 colony sites near the 

new colony 

Birrim 25°39’N 
36°30’  18.v.2013 0 0  

Umm Sahar 24°56’N 
37°10’  14.v.2013 0 0  

Mulayhah 24°59’N 
37°08’  14.v.2013 0 0  

Al Munqalib 25°09’N 
37°08’  14.v.2013 0 0  

Attaweel  
(Al Fawaida) 

25°11’N 
37°10’  14.v.2013 0 0  

Jizayah 25°12’N 
37°10’  14.v.2013 0 0  

Umm Al Malik 25°14’N 
37°08’  14.v.2013 0 0  

Umm Juluf 25°09’N 
37°09’  14.v.2013 0 0  

Albatain Islands: 
Umm Ar Rak 

19°16’N 
40°59’  11.vii.2011 480 624 

Colony on small island; 
new colony next to the 

old one. 

Albatain Islands: 
Umm Al 

Quronatayn 

19°15’N 
40°58’  21.v.2012 23 28  

Farasan Islands / 
Dushik 

16° 39’N 
41°52’  14.v.2011 0 0  

Farasan Islands / 
Mandhar  

(2 colonies) 

16°57’N 
41°48’  15.v.2011 14 10 Colony next to an 

abandoned colony site 

16°57’N 
41°48’  24.v.2012 198 138 Two abandoned colonies 

near the new colony 

Farasan Islands / 
Abu Shawk 

17°00’N 
41°46’  25.v.2012 0 0  

Farasan Islands / 
Ar Rasib 

17°00’N 
41°47’  25.v.2012 0 0  

Farasan Islands / 
Humr: Colony 1 

16°47’N 
42°00’  26.v.2012 174 265 Five abandoned colonies 

Farasan Islands / 
Humr: Colony 2 

16°46’N 
42°00’  26.v.2012 0 13 Abandoned 

Farasan Islands / 
Humr: Colony 3 

16°47’N 
42°00’  31.v.2012 166 274 One abandoned colony 

Total 1174 1431  
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Fig 1. Breeding colonies of Crab Plover in the Red Sea region of Saudi Arabia. 

Our population estimates are based on the numbers of active nests. Nest cameras noted 

that the male and female rarely remain inside the nest at the same time. Therefore, the 

number of birds observed in and around the colony may not reflect real population size. 

This finding is supported by the conclusion of De Marchi et al. (2006), who suggest that 

population estimates based on active nests provides a more reliable number than counting 

the Crab Plovers around the colony. 



Chapter 3 

 
67 

Table 2. Population assessment of the Crab Plover in Saudi Arabia: Comparison between the current study and previous 

surveys. Sources: 1995: Gregory & Goldspink (1996), 1996: Newton & al Suhaibany (1996), 2007: AlRashidi (2007), 

2010-2011: Shobrak & Aloufi (2013), 2011-2013: this study. (0) = not visited or no birds/colonies found; (?) = visited in 

May1996, but no indication of breeding activity. NoC = number of colonies, NoN = number of nests. * = deserted. 

 

  

1995 1996 2007 2010-2011 2011– 2013 

Sites Coordinates NoC NoN NoC NoN NoC NoN NoC NoN NoC NoN 

AlSheick 

Marbat 

25°52’N 36 36’  0 0 0 0 0 0 1 46 1 79 

Madarah 25°36’N 36°55’  0 0 1 100 0 0 0 0 0 0 

Attaweel 25°11’N 37°10’  0 0 0 0 0 0 1 26 0 0 

Umm Ar Rak 19°16’N 40°59’  0 0 0 0 1 140-150 0 0 1 624 

Dushik 16°39’N 41°52’  0 0 0 0 1 40 0 0 0 0 
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Mandhar 16°57’N 41°48’  1 ? 0 0 1 50 0 0 1 138 

Murain 16°22’N 42°17’  1 180 1 0* 0 0 0 0 0 0 

Humr 16°47’N 42°00’  0 0 0 0 0 0 0 0 3 552 
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Principal requirements for a successful establishment of colonies are sandy islands 

suitable for burrowing, a predator-free nesting area and abundant food (Aspinall & 

Hockey 1997). Newton & Al Suhaibany (1996) reported colony extinctions on some 

Farasan Islands thought to be driven by human disturbance and/or predators. The survey 

of Dushik Island in 2011 found snake and cat tracks, and one proposition is that Crab 

Plovers have deserted this island as a consequence of snake and cat presence. Newton & 

Al Suhaibany (1996) reported that cats caused Crab Plover colony desertion on Murain 

Island. 

Implications for conservation 

Although the distribution of the Crab Plover is restricted to islands around the Arabian 

Peninsula, it is currently not listed as threatened (IUCN 2013). However, potential threats 

include predation, human exploitation, egg collection, tourism activities, and oil 

pollution and habitat loss (Del Hoyo et al. 1996, Hockey & Aspinall 1996, De Marchi et 

al. 2006). Further field assessments are urgently needed on other islands in the Red Sea 

region which we were not able to survey. Detailed monitoring of several islands are also 

needed to provide vital data whether predation and disturbance reduce reproductive 

success. Presumably, Crab Plovers are long-living birds, and thus demographic 

consequences of breeding failures would go unnoticed for several years. Therefore, 

establishing key aspects of their demography (e.g., reproductive success, maturation, 

juvenile and adult survival) and the causes of these demographic components are long 

overdue.  

Introduced mammals are one of the most serious problems threatening bird populations 

on islands (Courchamp et al. 2003, Russell & Le Corre 2009). In Abu Tok Island the 

fisherman do not collect Crab Plover eggs because they fear snakes that live in Crab 
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Plover burrows. We were unable to identify the snake species, but it should be either 

Farasan Island Racer Coluber insulanus, Burton’s Carpet Viper Echis coloratus or the 

Arabian Horned Viper Cerastes gasperettii. White-tailed Mongooses Ichneumia 

albicauda are native mammalian predators in the Farasan Islands; although no mongoose 

tracks were recorded at Crab Plover colonies. Mongoose can swim and if they reach 

islands a short distance from mainland, e.g. Humr Island, they could quickly wipe out full 

colonies. Therefore, there is an urgent need to monitor mongoose, rats and snakes on 

islands that are important breeding sites for Crab Plover and other waterbirds, seabirds 

and shorebirds. 

Egg collection is a traditional activity in the Red Sea region, and is still practiced despite 

its known negative impact on the bird populations (PERSGA/GEF 2003). Egg collection 

is illegal according to Saudi legislation. The effect of egg collections on Crab Plovers and 

other islands nesting birds (e.g. White-cheeked Tern Sterna repressa, Saunders’s Tern 

Sterna saundersi, and White-eyed Gull Larus leucophthalmus) warrants attention. The 

fishermen interviewed were knowledgeable about the location of colonies and the laying 

period of the Crab Plover. They collect fresh eggs early in the breeding season, which are 

boiled. Whilst checking the burrows and collecting eggs, many burrows are destroyed 

potentially smashing eggs. Egg collection appears to be common in Farasan Islands, but 

not so much in Albatian Islands and Al Wajh Archipelago. The impact of egg collection 

on population trend has not been assessed.  

Recently, tourism and recreational activities are becoming increasingly widespread along 

the Red Sea coast of Saudi Arabia. Crab Plovers are easily disturbed; the birds depart the 

colony when people walk near the colony, and the birds only come back after the people 

leave the vicinity of the colony. Therefore, regular visits, whether by fishermen or 

passers-by during the breeding season may lead to colony desertion, and immense loss of 
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reproductive effort. Therefore, with increasing tourism in Saudi Arabia, disturbance may 

pose a serious threat to shy birds such as the Crab Plover.  
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Abstract 

Species distribution modelling is useful for addressing knowledge gaps for poorly 

studied geographical areas by identifying potentially suitable habitats for species across 

landscapes. This study was undertaken to identify areas containing wetland habitats to 

support actions aimed at the conservation of wetland bird species on the Red Sea coast 

of the Kingdom of Saudi Arabia (KSA). We used a maximum entropy approach to build 

habitat suitability models for 22 wetland bird species (gulls, shorebirds, and terns). Ten 

variables relating to topography, habitat, latitude, coast complexity, man-made 

structures, and human settlements were used to produce individual habitat suitability 

models for each of the bird species. The areas under the curve (AUC) for the final 

model were 0.9013 and 0.879 for the training and testing data, respectively, and the 

jackknife analyses suggested that the models generally performed well. Using the 

modelled distributions of the 22 species along the Red Sea coast, the analysis suggested 

17 core areas where the habitat and landscape configuration were suitable for 

supporting high species richness. Of these 17 sites, one is already protected, and there is 

a need to protect the remaining sites. The use of these models to inform conservation 

strategies in the Red Sea region of the KSA is discussed. 

Keywords: wetland birds, Red Sea coast, species distribution model, MaxEnt. 
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Introduction 

The Red Sea region has diverse coastal and marine habitats. These include mangroves, 

mudflats, marshes, sand dunes, sand plains, rocky shores, coastal reefs, and marine 

islands (PERSGA/GEF 2003). The region is particularly important for corals, marine 

invertebrates, and turtles (AbuZinada et al. 2002). 

However, the size of the region and limited opportunities for survey and census 

fieldwork, mean that the fauna of the Red Sea coast remains relatively poorly studied. 

Previous surveys have suggested that the region is important for a variety of bird taxa, 

including Palaearctic migrants and winter residents (PERSGA/GEF 2004). On the Red 

Sea coast and the Gulf of Aden, 17 seabird species have been recorded as breeding, 

including endemic species such as White-eyed Gull (Larus leucophthalmus), a 

subspecies of the Red-billed Tropicbird (Phaeton aethereus indicus) and the Brown 

Noddy (Anous stolidus plumbeigularus). Furthermore, some species endemic to the 

northwest Indian Ocean and important sub-populations breed in the region such as 

Jouanin’s Petrel (Bulweria fallax), Sooty Gull (Larus hemprichii), Swift Tern (Sterna 

bergii velox), and White-cheeked Tern (Sterna repressa)  (PERSGA/GEF 2004). This 

region includes Socotra Cormorant (Phalacrocorax nigrogularis) that is classified as 

‘threatened’, with three further species classified as ‘near threatened’ on the IUCN Red 

List (IUCN 2012): Jouanin’s Petrel, Persian Shearwater (Puffinus persicus), and 

White-eyed Gull that are classified as being ‘near threatened’ on the IUCN Red List 

(PERSGA/GEF 2004). Furthermore, AlRashidi et al. (2011) found that some sites of the 

Red Sea coast are highly suitable for breeding and wintering Kentish Plover 

(Charadrius alexandrinus).  
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Despite its relative isolation, the Red Sea coast is subject to growing human pressures. In 

particular there has been an issue with coastal development and pollution (PERSGA/GEF 

2004).  Moreover, the taking of seabird eggs is a potential problem in the region and 

needs regulation and/or sustainable take agreements (Newton 2006). 

 ithin the Red Sea area, research and monitoring was one of seven priority ‘enabling’ 

actions identified in the 2004 PERSGA report (PERSGA/GEF 2004). Understanding the 

complex ecological relationships between species distribution, environmental structure 

and human pressure is of high utility for the development of: (i) Integrated Coastal 

Zone Management (ICZM) frameworks, (ii) the identification of protected sites and 

networks, and (iii) effective evaluation of conservation activities. The present project is 

one of only a small number of research initiatives that have so far been undertaken in 

the region. 

Despite the need for greater understanding species-habitat relationships, modelling 

wetland birds in the Red Sea region can be problematic because of the lack of range and 

gradients of the landscape’s physical features AlRashidi et al. (2011).  

Recent field monitoring efforts at key seabird sites and greater availability of high 

resolution data from the region now make it possible to develop species distribution 

models (SDMs). Recent testing of  SDMs using biological data (including birds) has 

shown that robust biologically relevant models can be developed from the integration of 

‘presence only’ observations of species occurrence with measurements of 

environmental characteristics. These models predict the actual or potential distribution 

of a species (Elith & Leathwick 2009), and provide an understanding of the underlying 

species-habitat relationships (Guisan & Zimmermann, 2000, Franklin, 2009). SDMs 

have also been used for estimating the effects of climate change (Buckland et al. 1996, 

Austin et al. 1996, Thomas et al. 2004), estimating population size (Long et al. 2008), 
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understanding the correlation between distribution and abundance (Milsom et al. 2000, 

Ledee et al. 2008), conservation planning and forecasting (Rushton et al. 2004, Phillips 

& Dudík 2008), and species distribution monitoring (Rodriguez et al. 2007). 

Species distribution models require detailed information about the environment of the 

study area, and species occurrence data. This can be either presence-only data or 

presence- absence data (Graham et al. 2008). In practice, ‘true’ absence data are rarely 

available,  because they require a considerable amount of time and effort to collect and 

it can be difficult to ensure that there are no false-negatives in the data. The vast 

majority of datasets for species distribution modelling are therefore presence-only 

datasets (Phillips et al. 2006), and this is the case for the present study.  

To address the current lack of understanding about factors driving the abundance and 

distribution of shorebirds along the Red Sea coast of the Kingdom of Saudi Arabia 

(KSA), we have utilised available data from an extensive coastal bird survey (AlRashidi 

et al. 2011), to attempt the first species distribution modelling in the region. The core aim 

of this research was therefore to give guidance for the development of conservation 

strategies for the Red Sea coastal area of the KSA by providing a better understanding of 

the distribution of 22 wetland bird species along the Red Sea coast. Therefore, this will 

help guide future surveys and monitoring of wetland bird species in this region. We also 

targeted to quantify the relative importance of key sites by determining areas of high 

species richness. 

 

Methods 

Environmental variables for the model 
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The Red Sea coastline of the KSA extends 1,840 kilometres from the border with Jordan 

in the northern Gulf of Aqaba region (29° 30’ N) to the border with Yemen in the 

southern Red Sea region (16° 22’ N) (P RSGA/G F 2003). This coastline has an arid 

climate with temperatures reaching up to 50 °C in summer. The average rainfall is less 

than 70 mm per year (PERSGA/GEF 2003). 

We utilised the wetland bird species data collected by AlRashidi et al. (2011) between 2 

July and 10 August 2008 (Fig. 1). The data were gathered from 98 randomly selected 

sites located within 1 km of the sea along the west coast of Saudi Arabia including the 

Farasan Islands. 35 bird species have been recorded along the Red Sea coast, and here 

we focus on 22 of these species, for which more than 14 records were available (Table 

1). 

Ten environmental variables were selected for the species distribution modelling: 

vegetation cover, soil moisture, distance to main cities (big cities (these cities were 

Jeddah, Jazan, Yanbu and Rabigh)), distance to cities (small cities (these small cities 

were like Al Wajh, Umluj, Al Lith, and Al Qunfudhah)), distance to roads, brightness, 

latitude, coast complexity, elevation, and slope. Information about vegetation cover, soil 

moisture, brightness, and elevation was derived from 21 Landsat 7 satellite images and 

rendered into GIS format (below) by online tools associated with the Global Land 

Cover Facility (AlRashidi et al. 2011). 

The tasseled cap transformation was introduced by Kauth & Thomas (1976). It is an 

appropriate tool for improving spectral data and deriving important environmental 

information (Crist & Cicone 1984). A tasselled cap transformation with coefficients for 

the Landsat ETM+ sensor was used (Huang et al. 1998) to produce three rasters: 

tasselled cap greenness shows the existence and density of green vegetation; tasselled 

cap moistness, which describes the amount of soil moisture; and tasseled cap brightness, 
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shows variations in soil structures. Finally, all transformed images were rescaled such 

that pixels took digital number values from 0 to 255 (see AlRashidi et al. 2011, Long et 

al. 2008). 

Elevation data were derived from the Shuttle Radar Topography Mission (SRTM). Tiles 

of SRTM data corresponding to the 21 WRS-2 scenes of Landsat data used were 

downloaded from the Global Landcover Facility (http://www.landcover.org). These were 

then mosaiced and clipped in the same way as the satellite images were. The resolution of 

this dataset was 90 m, but in order to overlay all layers of environmental data exactly, we 

resampled the SRTM to 30 m pixel size to produce the final elevation map (see AlRashidi 

et al. 2011, Long et al. 2008). 
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Fig 1. Map showing the study area on the west coast of Saudi Arabia (shaded dark 

grey); black dots represent starting points of 98 randomly selected sites (AlRashidi et 

al., 2011) 
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Table 1.  The 22 wetland bird species included in distribution modelling. Note:’LC’ is 

Least Concern;’NT’ is Near Threatened. 

No Species Scientific name Threat 

status 

(IUCN 

2012) 

Population 

trend 

(IUCN 

2012) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Eurasian Spoonbill 

Intermediate Egret 

Western Reef Heron 

Pink-backed Pelican 

Eurasian Oystercatcher 

Crab Plover 

Kentish Plover 

Lesser Sand Plover 

Greater Sand Plover 

Whimbrel 

Eurasian Curlew 

Redshank 

Marsh Sandpiper 

Platalea leucorodia 

Mesophoyx intermedia 

Egretta gularis 

Pelecanus rufescens 

Haematopus ostralegus 

Dromas ardeola 

Charadrius alexandrinus 

Charadrius mongolus 

Charadrius leschenaultii 

Numenius phaeopus 

Numenius arquata 

Tringa totanus 

Tringa stagnatilis 

LC 

LC 

LC 

LC 

LC 

LC 

LC 

LC 

LC 

LC 

NT 

LC 

LC 

unknown 

decreasing 

stable 

stable 

decreasing 

stable 

decreasing 

unknown 

Unknown 

decreasing 

decreasing 

unknown 

decreasing 
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14 

15 

16 

17 

18 

19 

20 

21 

22 

Terek Sandpiper 

Ruddy Turnstone 

White-eyed Gull 

Sooty Gull 

Caspian Tern 

Swift Tern 

Lesser Crested Tern 

Saunders's Tern 

White-cheeked Tern 

Xenus cinereus 

Arenaria interpres 

Larus leucophthalmus 

Larus hemprichii 

Sterna caspia 

Sterna bergii 

Sterna bengalensis 

Sterna saundersi 

Sterna repressa 

LC 

LC 

NT 

LC 

LC 

LC 

LC 

LC 

LC 

stable 

decreasing 

stable 

decreasing 

increasing 

stable 

stable 

decreasing 

decreasing 

    

As a proxy measure of human impact, we made a data layer showing the distance to the 

nearest main cities, cities and roads. A point shapefile containing all buildings on the west 

coast of Saudi Arabia was projected to UTM 37N and clipped to the study area. The 

source of these data was http://www.gospatial.com. Three distance-to-feature rasters 

were created to measure the euclidean distance between all cells within the study area to 

the nearest main cities, cities and roads. We then converted the data to raster format in 

which each cell took as its value the distance (km) to the nearest main cities, cities and 

roads (see AlRashidi et al. 2011).  

To investigate the effect of latitude, we added latitude coordinate data in ArcGIS as a 

layer with decimal degrees format. We then converted the data to raster format. After 

that, raster was clipped to the study area to generate the latitude layer that matches all 

layers of environmental data exactly. We then converted raster to ASCII. 
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To investigate the effect of coastal complexity (the physical shape attributes of each 

coastal pixel), a fishnet layer was created to split the coastline into 1 km
2
. Next, we 

calculated the geometric intersection of the feature classes and feature layers. We then 

converted the data to raster format. Finally, this raster was clipped to the study area to 

generate the coast complexity map that matches all layers of environmental data 

exactly. We then converted raster to ASCII. 

Species data 

The species occurrence data were entered into ArcGIS version 10, re-projected to UTM 

in the same coordinate system, and then rasterised. All environmental variables 

(described above) were converted to raster layers within ArcGIS, and modified to fit the 

same geographical boundary and cell size. Finally, we converted the environmental 

layers from raster format to ASCII and exported them to the modelling program. 

Species distribution modelling  

All analyses were implemented using MaxEnt software version 3.3.3e (Phillips et al. 

2006). MaxEnt uses presence-only data to predict the likelihood distributions of 

maximum entropy as the basis for forecasts of potential distributions of species (Young 

et al. 2009).  

The models were estimates of the maximum and the most uniform spread of a species 

across a study area, based on environmental constraints. An internal regularisation 

technique is used to control overfitting data (Phillips et al. 2006). The output of MaxEnt 

was a raster map of the same resolution as the input data; each cell represented the 

relative suitability of an area for a species to reside there. The value of each cell is 

re-scaled from 0 to 1, with zero being the lowest and 1 being the highest probability of 

suitability (Phillips et al. 2006). 
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Max nt’s jackknife options were used to investigate the relative importance of the 

environmental variables. The gain is a measure of the probability of the samples; which 

specifically maximizes the likelihood of the presence samples with reference to the 

background data. Thus, the higher gain value denoting a better fit of model (Phillips et 

al. 2006). For each candidate model set/species, ten replicate models were run and 

model averages were taken across the set in order to display the distribution of wetland 

birds as a species group. Sufficient data were available to allow replicate models to be 

run with a split 50% training data and 50% test data. This permits an evaluation of the 

model’s performance. 

To produce an indication of the distribution of wetland birds as an assemblage of 

wetland bird species and to estimate the proportion of suitable habitats along the Red 

Sea coast, Maxent was run with a single model based on all of the 22 bird species to 

give “All birds” model, where presence equal the presence of any species. After that, the 

Maxent map of “All birds”, was imported into Arc GIS and cells with a habitat 

suitability probability of <0.7 were given the value 0 (not suitable) and those with a 

probability <1 given a value of 1 (likely to be suitable habitat). The proportions of 

suitable and unsuitable habitat cells were then calculated. 

Evaluation of the models 

The predictive performance of the models was tested using receiver-operating 

characteristics (ROC). The area under the curve (AUC) was then used as a measure of 

model performance; the value of AUC was scaled from 0 to 1, where 1 is optimal 

performance, 0.5 is no better than random, and less than 0.5 is worse than random (Elith 

et al. 2006, Pearce & Ferrier 2000).  



 Chapter 4 

 
86 

22 species models were used to build the species richness map. Maximum training 

sensitivity plus specificity was used to determine the threshold value necessary to 

predict unsuitable and suitable habitats for each species model. According to 

Jiménez-Valverde & Lobo (2007), the resulting threshold generally achieves high 

prediction accuracy. In order to apply the maximum training sensitivity plus the 

specificity threshold to each species, the MaxEnt average ASCIIs were converted to 

rasters in ArcGIS. Then the threshold value was assigned to each model by reclassifying 

raster values to 0 for unsuitable habitat (< threshold) and 1 for potentially suitable 

habitat (≥ threshold). Then, the threshold-validated distribution models of each species 

were combined in one model using raster calculator in ArcGIS. After that, raster 

appeared in the display looking with a different colour scheme allow us to determine the 

areas of high species richness across Saudi Arabia’s Red Sea coast. 

 

Results 

Individual species models 

The performance was generally high for all individual species models. The mean AUC 

ranged from 0.532 and 0.990. The key significant variables for the 22 wetland-bird 

species distribution models are summarised in Table 2.
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Table 2.  Summary statistics of the 22 wetland bird species on the Red Sea coast of Saudi Arabia including species occurrence data,  variable 

with highest gain (from jackknife test of variable importance), percent contribution of top two contributors to each model (from the table of relative 

contributions of the environmental variables), and the mean test AUC for each model 

Species Occurrence 

records 

Variable with highest 

gain 

The first important 

variable 

Percent 

contribution 

The second important 

variable 

Percent 

contribution 

Mean test 

AUC 

Eurasian Spoonbill 

Intermediate Egret 

Western Reef Heron 

Pink-backed Pelican 

Eurasian Oystercatcher 

Crab Plover 

Kentish Plover 

Lesser Sand Plover 

Greater sand plover 

Whimbrel 

Eurasian Curlew 

Redshank 

Marsh Sandpiper 

17 

30 

47 

14 

14 

190 

766 

210 

139 

50 

51 

119 

33 

Distance to cities 

Distance to main cities 

Coast complexity 

Distance to cities 

Distance to cities 

Coast complexity 

Distance to main cities 

Coast complexity 

Coast complexity 

Distance to road 

Distance to road 

Coast complexity 

Distance to road 

Distance to cities 

Distance to main cities 

Latitude 

Coast complexity 

soil moisture 

Coast complexity 

Distance to main cities 

Coast complexity 

Coast complexity 

Distance to road 

soil moisture 

Coast complexity 

Distance to road 

53.6 

32 

31.7 

36.6 

38.5 

28.4 

27.3 

31.8 

29.9 

54.2 

25.1 

30.2 

30 

Latitude 

Elevation 

Distance to road 

Distance to cities 

Distance to cities 

Distance to main cities 

Coast complexity 

Distance to main cities 

Distance to road 

Distance to cities 

Coast complexity 

Distance to road 

Latitude 

23.1 

23.4 

25.7 

36.1 

35.8 

23.7 

26.5 

30.2 

23.5 

18.5 

19.8 

23 

29.6 

0.895 

0.774 

0.853 

0.900 

0.619 

0.914 

0.896 

0.906 

0.914 

0.820 

0.881 

0.890 

0.836 
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Terek Sandpiper 

Ruddy Turnstone 

White-eyed Gull 

Sooty Gull 

Caspian Tern 

Swift Tern 

Lesser Crested Tern 

Saunders's Tern 

White-cheeked Tern 

21 

59 

20 

73 

26 

15 

25 

19 

16 

Distance to road 

Coast complexity 

Latitude 

Coast complexity 

Distance to road 

Distance to cities 

Slope 

Distance to road 

vegetation cover 

Distance to road 

Coast complexity 

latitude  

Distance to main cities 

Distance to road 

Distance to cities 

Slope 

Distance to road 

vegetation cover 

70.1 

30.9 

33.1 

24.8 

49.3 

37.2 

29.3 

24.5 

33.1 

soil moisture 

Distance to cities 

Distance to cities 

Distance to cities 

Coast complexity 

Distance to road 

Latitude 

Distance to cities 

soil moisture 

9.5 

24.4 

21.6 

18.9 

13.1 

34 

25.2 

22.3 

21.6 

0.729 

0.791 

0.990 

0.819 

0.853 

0.723 

0.532 

0.878 

0.612 
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All birds 

The species distribution model generated when using all bird species occurrence data 

showed that the most suitable habitats for wetland birds were predicted to be in the 

middle and southern parts of the Red Sea coast (Fig. 2). The results of the jackknife test 

(Fig. 3) revealed that coast complexity is the key variable in explaining the distribution 

of all birds. This variable introduced a higher gain compared to the other variables and 

would likely be highly influential if withdrawn from the model. Models using slope 

alone do not perform well and thus would be the least transferable. The next two 

variables that contributed the most to the model are distance to main cities and distance 

to roads. 

An examination of the model response curves to key environmental variables indicated 

that the greater the value of the distance to main cities and soil moisture, the greater the 

value of the potential habitat suitability, while the greater the value of the coast 

complexity, distance to roads, distance to cities and elevation variables, the smaller the 

value of the potential habitat suitability. 

The “All birds” model suggested that approximately 17% of the Red Sea coastal habitat 

is suitable for wetland bird species. 

Model validation 

The “All birds” model performed well in predicting the presence of all birds when 

evaluated using a ROC plot (AUC mean = 0.901 and 0.879 for the training and testing 

data, respectively). This result indicated that in the final model, a cell predicted as 

suitable habitat at any threshold of suitability would be more suitable than a randomly 

selected cell in the study area at least 87% of the time. 
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Fig 2. Maps showing the predicted potential suitable habitats for “All birds” (50% 

training data and 50% test data); using Maximum training sensitivity plus specificity 

threshold; red line represent potential habitat suitability for “All birds”. The square 

black dots represent the main cities and circle black dots represent the cities. 
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Fig 3. Results of jackknife evaluations of relative importance of predictor variables and 

table gives estimates of relative contributions of the environmental variables for “All 

birds” using Maxent model. Note: ‘bright’ is brightness; ‘cities_dis’ is distance to cities;  

‘green’ is vegetation cover, ‘length’ is coast complexity, ‘maincities_dis’ is distance to 

main cities, ‘moist’ is soil moisture, ‘road_dis’ is distance to road. 

 

Species richness areas 

The areas of high species richness for wetland birds in the Red Sea coastal area are 

illustrated in the map shown in Figure 4, which reveals that 17 areas may represent 

Variable Percent 

contribution 

Permutation 

importance 

maincities_dis 23 17.3 

length 22.3 31.3 

road_dis 19.9 21 

cities_dis 11.8 6.9 

elevation 7.6 9.5 

moist 5.6 1.4 

bright 4.8 0.9 

latitude 3 8.8 

green 1.7 2.7 

slope1 0.2 0.2 
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potentially suitable habitats for a large number of wetland bird species. Furthermore, the 

map illustrates that areas of the Red Sea coast were predicted as suitable habitat for up 

to 19 species, particularly in the middle and southern parts of the Red Sea coast. In 

contrast, the northern part of the Red Sea coast contains only two areas of high species 

richness. The areas of high species richness appear fragmented in places and cover 

broad distances along the study area. The majority of endemic and near-threatened 

species occurs in all 17 areas, except the White-eyed Gull, which occurs only in two 

areas located in the northern part of the Red Sea coast (Table 3). 
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Fig 4. Maps showing the 17 final predicted areas of high species richness for wetland 

birds in the Red Sea coast of Saudi Arabia. The red triangles indicate the potential 

areas of high species richness. The square black dots represent the main cities and 

circle black dots represent the cities. 
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Table 3.  Showing all 17 locations that are considered potentially suitable habitats for 

wetland birds along the Red Sea coast of Saudi Arabia, the locations of the endemic and 

near-threatened species that occurs in all 17 sites and the total species numbers that 

occur in each potential suitable habitat 

 

 

No. 

 

 

Sites 

 

Species Number of 

species 

occur in 

potential 

suitable 

habitats 

Crab 

Plover 

Eurasian 

Curlew 

White-eyed 

Gull 

Sooty Gull Saunders’s 

Tern 

White-cheeked 

Tern 

Endemic 

LC 

NT Endemic 

NT 

Endemic 

LC 

Endemic 

LC 

Endemic 

LC 

 

1 

Hanak and the 

islands around 

it 

 

√ 

 

√ 

 

√ 

 

√ 

 

X 

 

√ 

 

18 

 

2 

From Noth 

Umm Lujj to 

Shaban 

 

√ 

 

√ 

 

√ 

 

√ 

 

X 

 

√ 

 

16 

3 Rayyis √ √ √ √ √ √ 16 

4 Thuwwal X √ X √ √ √ 18 

5 Mastabah  √ X √ √ √ 17 

6 Usharah X √ X √ √ √ 18 

 

7 

From Alith to 

Hamdanah 

 

√ 

 

√ 

 

X 

 

√ 

 

√ 

 

X 

 

19 

 

8 

Ash Shaqqah 

Ash 

Shammiyah 

 

√ 

 

√ 

 

X 

 

√ 

 

√ 

 

 

X 

 

19 

 

9 

Ash Shaqqah 

Al Yamaniya 

 

√ 

 

√ 

 

X 

 

√ 

 

√ 

 

X 

 

19 

 

10 

East Ad 

Duqah 7km  

to Makasir 

 

√ 

 

√ 

 

X 

 

√ 

 

√ 

 

X 

 

19 
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Discussion 

This study provides the first predicted potential habitat suitability maps for 22 wetland 

bird species along the Red Sea coast in the KSA. Although we built some models with 

occurrences data less than 20 locations, MaxEnt proved to give a robust performance in 

practice compared to other methods and remains effective despite a small sample size 

(Elith et al. 2006, Baldwin 2009). The results demonstrated distance to cities, distance 

to roads and coast complexity variables influence negatively quite a few wetland bird 

species. These effects may be mediated through human activities (e.g. disturbance, 

hunting and pollution), and the risk of predation by introduced cats, dogs and crows in 

the vicinity of settlements (AlRashidi et al. 2011). Furthermore, Findlay & Houlahan 

11 Hubaris √ √ X √ √ X 18 

 

12 

From Markaz 

Ash Shurtah 

to Al Birk 

 

√ 

 

√ 

 

X 

 

√ 

 

√ 

 

√ 

 

17 

13 Al Qahmah √ √ X √ √ X 17 

 

14 

West 

Hajambar 3 

km 

 

√ 

 

√ 

 

X 

 

√ 

 

√ 

 

X 

 

17 

15 Qawz Al 

Jaafirah 

√ √ X √ √ X 16 

16 From Jazan to 

At Tahiriyah 

 

√ 

 

√ 

 

 

X 

 

√ 

 

√ 

 

X 

 

15 

 

17 

The East 

shoreline of Al 

Segied Island 

in Farasan 

Islands 

 

 

√ 

 

 

X 

 

 

X 

 

 

X 

 

 

X 

 

 

√ 

 

 

11 
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(1997) found that there is highly negative correlation between bird species richness and 

road within around 1 km of a wetland. Many studies have indicated that some bird 

species avoid selecting habitats near to roads (Bollinger & Gavin 2004, Carrascal et al. 

2006, Gavashelishil & McGrady 2006). Roads have highly influence on birds in 

different directions such as, direct mortality, indirect mortality, habitat fragmentation, 

isolation and disturbance (Jacobson 2005, Findlay & Bourdages 2000). 

Several wetland bird species that have particular importance in terms of conservation 

status are present on the Red Sea coast. These species include Crab Plovers (Dromas 

ardeola), White-eyed Gulls, Sooty Gulls, and White-cheeked Terns (PERSGA/GEF 

2003). Due to their importance in regional conservation strategies, these specific species 

will be discussed below in light of the potential species distribution models. 

Crab Plover. Crab Plovers are known to utilise areas of sandy and muddy coastline on 

islands, intertidal sandflats and mudflats, estuaries, lagoons, and bare coral reefs 

(Burton & Burton 2002), and breed on sandy islands or extensive coastal sandy banks 

(BirdLife International 2013). Examining the habitat suitability model the distance to 

main cities and soil moisture have a positive influence on the distribution of Crab 

Plovers, whereas, coast complexity, distance to cities and distance to roads have a 

negative influence on their distribution.  

White-eyed Gull. White-eyed Gulls are known to utilise coastal areas and breed on 

island shorelines on exposed rock and sand flats (del Hoyo et al. 1996). Although some 

populations in Egypt have been shown to get their food from drifting litter and harbours 

(Baha El Din 1999), the species mostly feeds at sea (PERSGA/GEF 2003). Examining 

the habitat suitability model the latitude has a positive influence on the distribution of 
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White-eyed Gulls, whereas the distance to cities, vegetation cover and slope have a 

negative influence on their distribution. 

Sooty Gulls.  Sooty Gulls which are known to utilise areas of along coast and at islands 

and breed on coastal and inshore islands near sea level which are sparsely vegetated, 

rocky and sandy (Cramp & Simmons 1983, PERSGA/GEF 2004). Furthermore, 

sometimes they feed in mudflats and rest in harbours and unusually seen inland (del 

Hoyo et al. 1996). Examining the habitat suitability model the distance to main cities, 

distance to roads and latitude have a positive influence on the distribution of Sooty 

Gulls, whereas the coast complexity and distance to cities have a negative influence on 

their distribution. 

White-cheeked Tern.  White-cheeked Terns are known to utilise coastal areas and along 

inshore bodies of water. They nest on rock, sand, gravel, and coral islands (del Hoyo et 

al. 1996), as well as on the exposed sandflats and sparsely vegetated open ground of 

sand dunes and above shorelines’ high-water marks (Snow & Perrins 1998). Examining 

the habitat suitability model the soil moisture and latitude have a positive influence on 

the distribution of White-cheeked Terns, whereas the vegetation cover and distance to 

main cities have a negative influence on their distribution. Saudi Arabia is generally an 

arid country with very high temperatures in summer. It receives about 70 mm of 

precipitation annually. Therefore, these factors led to decreased vegetation cover 

(Darfaoui & Al Assiri 2011).  

Kentish Plover.  It is encouraging to compare our model results for the Kentish Plover 

with those reported by AlRashidi et al. (2011). He used a Generalised Linear Model 

(GLM) with four habitat variables elevation, distance to settlements, vegetation cover 
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and soil moisture for predicting potential suitable habitat for Kentish Plover. In 

particular, AlRashidi et al. (2011) reported that the most suitable habitat for Kentish 

Plovers on the Farasan Islands is located on the northern and eastern shores; this result 

is consistent with the findings of the present study. Furthermore, AlRashidi et al. (2011) 

found the most suitable continental habitat for the Kentish Plover species to be located 

in two concentrated areas along the Red Sea coast. The first area is located between 

Yanbu Al Bahr and Jiddah, and lies approximately 100 km south of Jiddah. The second 

area is located near the city of Jazan. However, our study predicted the most suitable 

continental habitat patches for the Kentish Plover to be located along the Red Sea coast 

south of the cities Hanak and Jazan.  

Mapping areas of high species richness 

This study provided the first predicted potential habitat richness map for wetland bird 

species along the Red Sea coast of Saudi Arabia. Mapping species richness and 

distributions has become a key strategy in conservation planning (Cardillo 1999, 

Graham & Hijmans 2006). Identifying species richness areas that include endemic 

species will provide conservation agencies and practitioners with the information 

needed to develop and optimise conservation strategies and actions (Bojórquez-Tapia et 

al. 1995). 

Each of the 17 areas of high wetland bird species richness that were identified in this 

study contains different levels of endemic species. We already know that wetland birds 

and their habitats along the Red Sea coast face many threats. Therefore, a survey of 

these 17 areas should be undertaken in the future in order to investigate the actual 
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presence of wetland birds in these areas and thereby to determine the most significant of 

these 17 areas for conservation purposes. 

Potential Sources of error 

Several studies have indicated that environmental variables, such as habitat structure 

and composition, play important roles in improving the accuracy of bird habitat 

descriptions (Dettmers & Bart 1999). The advantage of species modelling techniques is 

that they can be used to estimate the potential conservation value of both surveyed and 

under-surveyed areas (Maddock & Du Plessis 1999). However, Osborne et al. (2001) 

pointed out two potential issues when building predictive models for species 

distribution over large regions. First, there may be problems related to the consistency 

of predictor variables over large geographic spaces, which is particularly apparent in 

variables derived from remote sensing because of the inherent variability of angular 

surface reflectance (Stoms 1992). The second issue concerns the variations in habitat 

selection among individual birds. 

Implications for conservation 

The conservation of wetland bird habitats has become a global conservation priority 

(BirdLife International 2011). The species distribution model presented in this study can 

be used to underpin future conservation planning in the Red Sea region (Guisan & 

Thuiller 2005). The “All birds” model in this study indicated that approximately 17% of 

the Red Sea coastal habitat is suitable for wetland bird species.  

In Saudi Arabia, there are 15 protected areas; only two of these (the Farasan Islands and 

the Umm Al Qamarie Islands) are located along the shores of the Red Sea (Saudi 

Wildlife Commission 2011). Thus, we recommend that future monitoring and surveys 
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should be carried out to cover all 17 areas of high wetland bird species richness along 

the Red Sea coast in order to determine the most significant coastal areas for wetland 

bird species and therefore, incorporate them into the protected areas system in the future. 

These areas should include both nesting and foraging sites for wetland bird species. 

Furthermore, we strongly recommend that establishing new protected areas along the 

Red Sea coast line are becoming priority to protect in particular the remain suitable 

habitat areas for threatened and endemic wetland birds. 

Conclusions 

This study has produced the first predicted potential habitat distribution maps for 

wetland bird species along the Red Sea coast of the Kingdom of Saudi Arabia. It has 

revealed that there are 17 important areas of species richness for wetland birds along the 

Red Sea coast of the KSA. Understanding the correlation between species occurrence 

and environmental variables will help both researchers and policy makers to implement 

appropriate conservation plans in terms of wetland bird species. The modelling 

presented here has the potential to form the basis for conservation strategy of wetland 

birds in the Red Sea coastal region of Saudi Arabia, and it is hoped that this study will 

guide future field surveys and conservation programs in the Red Sea coast areas of 

Saudi Arabia. 
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Abstract 

Macaronesia, a group of archipelagos (Azores, Madeira, Canary Island and Cape Verde) 

in the Atlantic Ocean, is one of the global biodiversity hot-spots although for species 

that occur throughout these archipelagos the extent of genetic and morphological 

differentiation between the archipelagos and mainland Iberia and Africa is often 

unknown. Here we investigate phenotypic and genetic differentiation of Kentish Plovers 

Charadrius alexandrinus, the most common breeding shorebird of Macaronesia. We 

show that different archipelagos harbour genetically and morphologically different 

breeding populations. Our results suggest that although these populations are far from 

being a species-level endemism, they deserve conservation attention given their 

uniqueness in terms of genetic variation and morphology. Recent loss in suitable 

breeding sites in Canary Islands and Azores put substantial pressure on the existing 

plover populations. Further studies of the conservation status and threat to these 

populations are needed along with a comprehensive conservation action plan to halt 

population decline and facilitate recovery. 

 

Keywords: Kentish Plover, phenotypic divergence, gene flow, Macaronesian Islands. 
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Introduction 

Divergence of populations may arise by limited dispersal and gradual genetic drift 

across populations (isolation by distance), adaptation to local environments preventing 

gene flow between populations (isolation by adaptation), or colonization history and 

founder effects (isolation by colonization, reviewed by Orsini et al. 2013). Given the 

geographic isolation that may reduce exchange of migrants, island populations are more 

prone to speciation than mainland populations (Adler 1992), and have therefore been 

important study systems in which to investigate fundamental ecological and 

evolutionary processes such as population divergence, adaptive radiation and speciation 

(Schluter 2000, Whittaker et al. 2006, Grant & Grant 2014). 

Macaronesia is a collection of archipelagos in the North Atlantic Ocean off the coast of 

Europe and Africa. It includes Azores, Madeira, Selvagens, Canary Islands and Cape 

Verde. The Macaronesian Islands are an excellent study system to investigate the 

evolution and radiation of various taxa including plants, reptiles and birds given their 

substantial variation in distances from mainland and between members of the various 

archipelagos, and the variations in geological age of different islands Geldmacher et al. 

2001, (Illera et al. 2007, Whittaker & Fernandez-Palacios 2007). The islands of 

Macaronesia have a unique biogeography and given their high habitat diversity they are 

home to a rich endemic biota (Illera et al, 2012, Vasconcelos et al. 2013), and are 

considered one of the global Endemic Bird Areas (Stattersfield et al. 1998). Much of the 

avifauna of  the Macaronesian Islands exhibits genetic differentiation between islands 

or archipelagos, suggesting that there is limited gene flow between islands providing the 

opportunity for population differentiation and eventually new species to arise (Pestano 

et al. 2000, Dietzen et al. 2003, Kvist et al. 2005, Päckert et al. 2006, Illera et al. 2007). 
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The unique flora and fauna of these islands, however, are threatened by various 

processes. Logging of forests for timber and firewood, clearing vegetation for grazing 

and agriculture, and the introduced exotic plants and animals by humans threaten the 

endemic plants and animals (Martín et al. 2010, Vasconcelos et al. 2013). Poaching and 

illegal killing of marine turtles, and bycatch of dolphins and sharks put additional 

threats on coastal and marine species (Dutra & Koenen 2014). Additionally, the 

conversion of coastal dunes into settlements, hotels and holiday resorts has displaced 

much of the native vegetation, and all-year disturbance by humans and their pets on the 

beaches disrupt normal behaviour of birds including breeding. As a result, many of the 

endemic species of the islands are seriously endangered or extinct (Hazevoet 1995, 

Martín et al. 2010). 

The Kentish Plover Charadrius alexandrinus is a wide-spread Eurasian shorebird 

species (Amat 2003) that inhabits North Africa, Europe and Central and Eastern Asia 

(del Hoyo et al. 1996). A previous study of genetic differentiation between different 

Kentish Plover populations (Küpper et al. 2012) showed that although mainland 

breeders were not differentiated over a large area spanning from Morocco to Eastern 

China, relatively modest distances over sea between mainland and island breeding sites 

(e.g., 40 km) produce detectable genetic differentiation. Here we extend this study by 

focusing on genetic and morphological differentiation between Kentish Plovers that 

breed on Macaronesian Islands and the ones that breed on mainland North Africa and 

Iberia.  

The objectives of this study were therefore to (i) test for morphological differentiation 

among Kentish Plover populations across Macaronesia region, (ii) test for genetic 

differentiation among Kentish Plover populations across Macaronesia region, and (iii) 

investigate whether morphological and genetic differentiation correlate to each other as 
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well as to geographic distance. Clarifying the morphological and genetic differentiation 

between these populations is warranted for two reasons. First, morphological and 

genetic differentiation between different archipelagos and mainland would imply that 

conservation and management of their breeding site and protection of the remaining 

habitats are important given the uniqueness of these populations. Second, the breeding 

Kentish Plover populations in some of these archipelagos (e.g., Canary Islands) are 

rapidly declining (Lorenzo & Barone 2013), and it is not yet clear whether gene flow 

between different archipelagos would be able to replenish these declines. 

 

Methods 

Sample collection 

Morphometric measurements and blood samples were collected between 1994 and 2013 

during the breeding season. Birds were caught at four archipelagos: i) Cape Verde (Boa 

Vista and Maio), ii) Azores (Santa Maria), iii) Canary Islands (Fuerteventura), and iv) 

Madeira (Porto Santo). In addition, we collected samples using consistent 

methodologies from mainland populations that included Portugal (Samouco, Fuseta, 

Atalaia Salt Pans, and Brito Salt Pans), and Morocco (Oued Gharifa Salt Pans, Table 1, 

Figure 1). In Fuseta, Atalaia Salt Pans, and Brito Salt Pans only morphological data 

were collected. Adult plovers were caught using mist-nets or funnel traps whilst they 

incubated the nest or attended the chicks (Székely et al. 2008). All birds were ringed 

with uniquely numbered metal rings, and three traits were measured for each adult: 1) 

body mass (to the nearest 0.1 gram); 2) right wing length (to the nearest mm), flattened 

and straightened from the carpal joint to the tip of the longest primary feather; 3) right 

tarsus (to the nearest 0.1 mm), from the notch of the knee to the tarsus bone ends. 
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Approximately 25 to 50 µl of blood were taken from the brachial vein. From broods of 

which the parents were not caught we also sampled single chicks usually caught shortly 

after hatching and took 25 µl from the tarsal vein for DNA analyses (Székely et al. 

2008). The blood samples were stored in Queen’s Lysis Buffer (Seutin et al. 1991) or 

95% ethanol until DNA extraction in the laboratory. 
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Table 1. Sampling details of Kentish Plovers used in genetic and morphometric analyses. Note: NA = no data available. 

Site 

Population Latitude Longitude Morphometric analyses Genetic analyses 

 Male Female 

Islands Cape Verde 

Cape Verde 

Boa Vista 16°04.98'N 022°54.00'W 4 7 11 

 Maio 15°09.00'N 023°13.02'W 305 381 25 

 Azores Santa Maria 36°58.02'N 025°09.00'W 43 51 25 

 Canary Fuerteventura 28°43.98'N 013°55.98'W 12 14 11 

 Madeira Porto Santo 33°01.002'N 016°22.02'W NA NA 2 

Mainland Portugal Samouco 38°43.98'N 008°58.98'W NA 3 25 

 Fuseta 37° 2.00'N 7° 44.00'W 34 38 NA 

 Atalaia Salt pans 38°44.00'N 8°58.00'W 21 21 NA 

 Brito Salt pans 38°44.00'N 8°58.00'W 14 14 NA 

 Morocco Oued Gharifa salt pans 35°30.00'N 006°24.00'W 69 76 25 
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Fig 1. a Geographic locations of seven Kentish Plover breeding populations. b Bar plot 

displaying the genetic identity of individual samples produced by applying  

STRUCTURE 2.3.4 without location prior (K = 4). c Bar plot displaying the genetic 

identity of individual samples produced by applying  STRUCTURE 2.3.4 with location 

prior (K = 5). Note: ‘Boa is Boa Vista; ‘Mai is Maio; ‘San is Santa Maria; ‘Fue is 

Fuerteventura; ‘Por is Porto Santo; ‘Sam is Samouco; ‘Gha is Oued Gharifa.
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Morphological differences between populations 

Body mass, wing length and tarsus length between sex and populations were 

analysed using two-way ANOVAs and Tukey HSD tests. The homogeneity of 

variance for the morphometric data for each sex was tested with Bartlett’s test 

(Snedecor & Cochran 1989), and normality was assessed with a Shapiro-Wilk test 

(Shapiro & Wilk 1965). Both tests suggested that the morphometric data had 

homogeneous variances and were not different from normal distribution (all P > 

0.05). Since adult Kentish Plovers are sexually dimorphic (Küpper et al. 2009), we 

also compared morphological measurements of males and females separately. 

To assess morphological differentiation we calculated pairwise phenotypic 

distances (PST) between breeding locations for males and females separately. The 

PST index can be interpreted similarly to the commonly used FST index obtained 

from neutral genetic markers (Saint-Laurent et al. 2003; Raeymaekers et al. 2007). 

PST values of each trait were calculated separately for males and females between 

all population pairs using one-way ANOVA. The degree of phenotypic difference 

between populations was assessed as PST = σ
2

GB/(σ
2

GB + 2σ
2

GW), where σ
2

GB is the 

variance of intra-populations and σ
2

GW is the variance within populations for a 

phenotype character. Phenotypic variance components were computed following 

Sokal & Rohlf (1995). 

 

DNA extraction and microsatellite amplification 

Laboratory work was carried out at National Environment Research Council 

Biomolecular Analysis Facility Sheffield (NBAF-S). DNA was extracted from 124 

blood samples using an ammonium acetate method (Nicholls et al. 2000, see the 
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protocol at http://www.shef.ac.uk/nbaf-s/protocols_list). DNA quantity and purity 

was assessed using a Nanodrop ND 8000 spectrophotometer. For all samples, PCR 

amplification was carried out using 20 microsatellite primers grouped into four 

multiplex reactions based on non-overlapping fluorescent dyes for different 

fragments (for full details see Küpper et al. 2012, excluding marker C204 which 

amplified the same locus as Calex-14). Automated fragment analyses was 

performed using an ABI 3730 capillary sequencer, and genotypes were scored 

using GeneMapper software version 3.7 (Applied Biosystems, Foster City, CA, 

USA).  

  

Microsatellite analyses  

We used ARLEQUIN version 3.01 (Excoffier et al. 2005) to compute indices of 

genetic variation both within and among populations including mean number of 

alleles (NA), observed heterozygosity (HO), and expected heterozygosity (HE). 

Pairwise FST values between population were used to quantify the degree of 

population genetic differentiation, and to estimate the inbreeding coefficient value 

(FIS). The Bayesian clustering software STRUCTURE, version 2.3.4 (Pritchard et 

al. 2000), was used to determine population structure. We run two sets of models: i) 

without location prior as in Küpper et al. (2012) and ii) with location prior 

grouping samples according to archipelago or country. Using the location prior has 

been shown to identify meaningful genetic structure when the amount of available 

genetic data (samples or markers) is low (Hubisz et al. 2009). The analyses aimed 

to assign an individual’s likelihood of belonging to a certain genetic cluster (K) 

based on the admixture model with correlated allele frequencies (Falush et al. 

2003). For each approach, 15 independent simulations with K values ranging from 

http://www.shef.ac.uk/nbaf-s/protocols_list
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1 to 7 were performed for 500,000 generations with a burn in of 50,000 generations 

and the five runs with the lowest Ln probability were discarded. We then assessed 

the assignment probabilities, logged likelihoods and, delta K (Evanno et al. 2005) 

using STRUCTURE HARVESTER (Earl & Von Holdt 2012) to identify the most 

appropriate value of K. Results of the retained ten runs for each K were 

summarised using CLUMPP (Jakobsson & Rosenberg 2007) and visualised with 

DISTRUCT  (Rosenberg 2004). 

Non-parametric Spearman’s correlation was conducted to examine the degree of 

correlation between the sample size and number of alleles. 

 

Relationships between genetic, phenotypic and geographical distances 

To test for the relationship between genetic, phenotypic and geographic distances, 

we performed Mantel tests (Mantel 1967) using matrices of pairwise FST, PST, and 

geographical distances (log km). Mantel test to compare geographic and genetic 

distances was conducted in ARLEQUIN (n = 10,000 permutations) to test for 

isolation-by-distance patterns of the genetic data using a matrix of FST values and 

the log geographic distance matrix between breeding sites. All other Mantel tests 

were performed using the package ade4 in R (version 2.15.1). We used Bonferroni 

correction to calculate P value thresholds to account for multiple testing with the 

three pairwise comparisons involved (corrected P value of 0.05/3 = 0.017, Table 6). 

Morphological differentiation between male and female was tested using 

Mann-Whitney U test. 

 

Results 
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Morphological differentiation 

Body mass, wing length and tarsus length were significantly different between 

populations (Table 2, Figure 2). Male plovers had longer tarsi than females (males: 

29.99 ± 0.07 mm [SE], females: 29.29 ± 0.06), although body mass and wing 

length did not differ between sexes (Table 2). Sex differences were consistent 

between populations as indicated by the non-significant interaction term between 

sex and population (Table 2).  

 

Table 2. Comparison of body mass, wing length and tarsus length of male and 

female Kentish Plovers in different populations (two-way ANOVAs). 

 

 

Factor ( df) Body mass 

F(P) 

Wing length 

F(P) 

Tarsus length 

F(P) 

Sex (1) 0.05 (0.83) 2.8 (0.09) 89.24 (< 0.0001) 

Population (7) 19.64 (< 0.0001) 44.44 (< 0.0001) 58.99 (< 0.0001) 

Sex x population (7) 1.34 (0.23) 0.35 (0.93) 1.04 (0.40) 

No. of individuals 964 709 945 
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(c)  

 

 

 

 

 

 

 

 

 

Fig 2. Sample boxplots display the variations in body mass, wing length and tarsus 

length of male (M) and female (F) Kentish Plovers in Macaronesia. (a) body mass, 

(b) wing length, (c) tarsus length. 

 

Male wing length, tarsus length and body mass were most similar between Boa 

Vista, Morocco and Fuseta as indicated by the low PST values (Table 3), whereas 

the least similar ones were between Fuerteventura and Oued Gharifa. Female wing 

length, tarsus length and body mass were most similar between Fuerteventura, 

Fuseta and Oued Gharifa, whereas the least similar ones were between Brito and 

Morocco (Table 3). 
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Table 3. Pairwise morphological differentiation (PST) for male and female Kentish 

Plovers. Males are above the diagonal, females below (NS = not significant, 
* 

 P < 

0.05, 
**

 < 0.01, 
***

 < 0.001). All significant values were derived from one-way 

ANOVA. Note: ‘Mai’ is Maio; ‘Boa’ is Boa Vista; ‘San’ is Santa Maria; ‘Fue’ is 

Fuerteventura; ‘Gha’ is Gharifa; ‘Ata’ is Atalaia; ‘Fus’ is Fuseta; ‘Bri’ is Brito. 

a) Body mass 

Population Mai Boa  San Fue Gha Ata Fus Bri 

Mai  -0.07
 NS 

-0.001
NS 

-0.02
NS 

-0.04
 NS 

-0.01
 NS 

0.12
 *** 

-0.01
 NS

 

Boa -0.02
 NS

  -0.01
NS 

-0.08
NS 

-0.12
 NS

 -0.08
 NS

 -0.01
 NS

 0.12
 NS

 

San -0.005
 NS

 0.08
 NS

  -0.02
NS 

-0.02
NS 

0.04
NS 

-0.003
NS 

-0.01
 NS 

Fue 0.006
 NS

 0.09
 NS

 0.09
* 

 0.58
**

 0.0002
 NS 

-0.02
 NS 

-0.02
 NS 

Gha -0.04
 NS

 0.13
 NS

 0.19
*
 0.07

 NS
  -0.03

 NS
 -0.04

 NS
 0.0005

 NS
 

Ata -0.004
 NS

 -0.05
 NS

 0.0006
 NS

 -0.03
 NS

 -0.05
 NS

  -0.007
 NS

 -0.03
 NS

 

Fus -0.004
 NS

 0.05
 NS

 0.04
 *
 -0.06

 NS
 0.03

 NS
 -0.01

 NS
  -0.03

 NS
 

Bri -0.007
 NS

 0.04
 NS

 0.07
 NS

 0.10
 NS

 0.41
 *
 -0.02

 NS
 -0.02

 NS
  

 

a) Wing length 

Population Mai Boa  San Fue Gha Ata Fus Bri 

Mai  -0.06
 NS

 -0.001
 NS

 0.01
 NS

 -0.02
 NS

 0.002
 NS

 0.03
* 

-0.02
 NS

 

Boa 0.01
 NS

  0.38
 NS

 0.09
 NS

 -0.03
 NS

 0.20
 NS

 -0.07
 NS

 -0.06
 NS

 

San -0.01 NS -0.03
 NS

  -0.02
NS 

0.01 NS 0.005
 NS

 0.002
 NS

 0.04
 NS

 

Fue -0.02
 NS

 -0.03
 NS

 -0.02
 NS

  0.01 NS -0.03
 NS

 0.01
 NS

 0.06
 NS

 

Gha 0.05
 NS

 -0.02
 NS

 0.01
 NS

 -0.04
 NS

  -0.03
 NS

 0.03
 NS

 0.10
 NS

 

Ata 0.001
 NS

 0.31
*
 -0.02

 NS
 -0.03

 NS
 -0.04

 NS
  0.01

 NS
 -0.02

 NS
 

Fus -0.003
 NS 

 0.04
 NS

 -0.01
 NS

 -0.02
 NS

 -0.02
 NS

 -0.02
 NS

  -0.01
 NS

 

Bri 0.12
* 

 0.06
 NS

 -0.003
 NS

 -0.02
 NS

 0.07
 NS

 -0.03
 NS

 -0.02
 NS
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a) Tarsus length 

Population Mai Boa  San Fue Gha Ata Fus Bri 

Mai  0.04
 NS

 0.03
 *
 -0.02

 NS
 0.05

 NS
 -0.01

 NS
 -0.01

 NS
 -0.01

 NS
 

Boa 0.05
 NS

  -0.07
 NS

 -0.04
 NS

 -0.08
 NS

 -0.08
 NS

 -0.04
 NS

 -0.08
 NS

 

San 0.004
 NS

 -0.02
 NS

  0.07
 NS

 0.02
 NS

 0.11
* 

0.003
 NS

 -0.02
 NS

 

Fue -0.01
 NS 

 -0.05
 NS

 -0.02
 NS

  0.002
 NS

 0.03
 NS

 -0.03
 NS

 0.002
 NS

 

Gha 0.04
 NS

 -0.06
 NS

 -0.01
 NS

 -0.04
 NS

  -0.04
 NS

 -0.001
 NS

 -0.04
 NS

 

Ata 0.03
 NS

 -0.05
 NS

 -0.01
 NS

 0.001
 NS 

 -0.02
 NS

  -0.005
 NS

 -0.02
 NS

 

Fus 0.01
 NS

 0.07
 NS

 -0.01
 NS

 -0.02
 NS

 0.02
 NS

 -0.02
 NS

  -0.02
 NS

 

Bri 0.01
 NS

 -0.05
 NS

 0.06
 NS

 0.007
 NS

 0.002
 NS

 -0.03
 NS

 0.002
 NS

  

 

Genetic diversity and population differentiation 

The lowest number of alleles were found in Madeira (2.31 ± 0.60, Porto Santo) 

whereas the highest were found in mainland Portugal (9.45 ± 3.85, Samouco, Table 

4).  Using Spearman correlation, we detected a none significant correlation 

between sample size and number of alleles (Spearman’s rho correlation  rs = 0.60, 

P = 0.15). No evidence of inbreeding was found in any of these populations as 

indicated by non-significant FIS values (Table 4).  
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Table 4. Genetic diversity of Kentish Plovers in Macaronesia (mean ± SE). Note: 

‘Boa, CV’ is Boa Vista, Cape Verde;  ‘Mai, CV’ is Maio, Cpe Verde; ‘San, Az’ is 

Santa Maria, Azores; ‘Fue, CIs’ is Fuerteventura, Canary Islands; ‘Por, Mad’ is 

Porto Santo, Madeira; ‘Sam, Por’ is Samouco, Portugal; ‘Gha, Mor’ is Oued 

Gharifa, Morocco. 

Population Sample 

size 

Number of 

alleles (NA) 

Observed 

heterozygosity (HO) 

Expected 

heterozygosity (HE) 

FIS (P) 

Boa, 

CV 

11 4.75 ± 1.68 0.61 ± 0.23 0.68 ± 0.12 0.10 (0.05) 

Mai, 

CV 

25 5.80 ± 2.37 0.65 ± 0.16 0.66 ± 0.14 0.03 (0.31) 

San , 

Az 

25 8.00 ± 2.75 0.76 ± 0.16 0.77 ±  0.12 0.011 (0.33) 

Fue, 

CIs 

11 6.35 ± 2.23 0.72 ± 0.16 0.74  ± 0.14 -0.002 (0.57) 

Por, 

Mad 

2 2.31 ± 0.60 0.75  ± 0.26 0.66 ± 0.15 -0.31 (1.00) 

Sam, 

Por 

25 9.45 ± 3.85 0.75 ± 0.15 0.78 ± 0.12 0.03 (0.11) 

Gha, 

Mor 

25 4.75 ± 1.62 0.65 ±  0.19 0.65 ± 0.17 -0.02 (0.73) 

 

Pairwise FST comparisons between archipelagos (mean FST between archipelagos) 

showed high genetic differentiation, and low between island differentiations within 

the same archipelago (Table 5, Boa Vista and Maio, FST = 0.015, P = 0.05). 
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Table 5. Pairwise FST values (above diagonal) and P values for genetic 

differentiation (below diagonal) between Kentish Plover populations. Note: ‘Boa’ 

is Boa Vista; ‘Mai’ is Maio; ‘San’ is Santa Maria; ‘Fue’ is Fuerteventura; ‘Por’ is 

Porto Santo; ‘Sam’ is Samouco; ‘Gha’ is Oued Gharifa. 

Population Boa Mai San Fue Por Sam Gha 

Boa  0.0153 0.09 0.11 0.24 0.07 0.17 

Mai 0.053  0.09 0.11 0.25 0.08 0.18 

San <0.00001 <0.00001  0.05 0.14 0.02 0.09 

Fue <0.00001 <0.00001 <0.00001  0.16 0.02 0.10 

Por 0.01 <0.00001 0.003 0.02  0.09 0.18 

Sam <0.00001 <0.00001 <0.00001 <0.00001 0.002  0.07 

Gha <0.00001 <0.00001 <0.00001 <0.00001 0.002 <0.00001  

 

Results from STRUCTURE suggested that each archipelago is genetically 

differentiated from all other (Figure 1); without a location prior the most likely K 

value was four splitting all archipelagos populations except Madeira from the 

mainland population whereas when using the more sensitive method with location 

prior the most likely K value was five assigning also Madeira samples into a 

separate cluster. The archipelago populations were genetically distinct from 

mainland population, there was only a single cluster for the two mainland 

populations (Iberia and North Africa), and the samples from the two Cape Verdean 

Islands were grouped together (Figure 1b). 
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Genetic and morphological differentiation in relation to geographic distance 

Genetic distance and the extent of neutral genetic variation estimated from 

microsatellites tended to correlate positively (Mantel test: r = 0.365, P = 0.078). 

However, once Bonferroni correction was taken into account for multiple testing, 

the relationships between geographic distance and morphological differentiation or 

neutral genetic distance were all far from significant (Table 6).  

We also compared the extent of morphological differentiation over distance 

between males and females, although none of these differences was statistically 

significant (Mann-Whitney U test: U = 4, N1 = N2 = 3, P = 0.83) suggesting that 

morphological differentiation over geographic distance is comparable between 

male and female plovers. The low statistical power perhaps due to the small sample 

size. 
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             Table 6. Partial correlations between geographic, phenotypic (PST) and genetic (FST) distance matrices. Pairwise differences between  

   populations in regards to genetic differentiation (FST) and geographic distance (log km, Mantel test: r = 0.365, P = 0.078).  

 

 

 

 

Variables Male Female 

Body mass 

 

Wing Tarsus Body mass 

 

Wing Tarsus 

r (P) r (P) r (P) r (P) r (P) r (P) 

PST vs FST -0.03 (0.58) 0.05 (0.39) -0.36 (0.86) 0.30 (0.19) 0.012 (0.48) -0.27 (0.79) 

PST vs 

geographic  

distance 

0.07 (0.44) 0.20 (0.14) -0.22 (0.88) 0.08 (0.39) 0.28 (0.02) -0.27 (0.89) 
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Discussion 

Our study found three major patterns. First, we show that body sizes differ between 

Kentish Plover populations that breed on different Macaronesian Islands. Kentish 

Plovers use fairly similar habitats across their vast geographic range that includes 

saltpans, sand dunes, and lake shores and the breeding habitats in several 

Macaronesian archipelagos are consistent with their habitat preference elsewhere. 

Therefore, local adaptation to different ecology does not seem to explain the body 

size variations between islands. We offer three potential explanations. Firstly, in 

spite of overall difference in ecology between the islands, there might be 

differences in microhabitats that can select for smaller or larger sizes. Foraging 

habitats may differ between sites, vegetation cover and thus the easy to catch 

insects and invertebrates in the mud, or the consistency of mud may make running 

and catching mobile prey more difficult in some locations than in others leading to 

differences in tarsus length. Secondly, the different wing length between 

archipelagos suggests that the overall mobility to move between islands may vary. 

A common sign of losing mobility and migratory behaviour is reduced flight 

musculature and wing length, and the differences we observed may reflect these 

tendencies. Thirdly, founder effects and genetic drift may create the different 

morphologies across islands. Spurgin et al. (2014) suggested that founder effects 

contributes significantly to the genetic and morphological differentiation between 

bird populations. The results of this study indicate that most pairwise tests of the 

morphological differentiation were not significant. A possible explanation for this 

might be that unequal sample sizes limited the power of the statistical analysis. 

Shaw & Mitchell-Olds (1993) reported that unequal sample sizes may raise the 

chance of type II error. Tamhane (2008) mentioned that P values are highly 

influenced by sample sizes.   
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Our second major result that each archipelago is genetically differentiated is in line 

with previous studies using native bird populations in Macaronesia  (Pestano et al. 

2000, Dietzen et al. 2003, Kvist et al. 2005, Päckert et al. 2006, Illera et al. 2007). 

Using a superior clustering algorithm that can deal better with low sample sizes 

(Hubisz et al. 2009) we also found significant and meaningful genetic differences 

between Madeira Kentish Plovers and the mainland population despite having only 

sampled two unrelated birds in this archipelago.  

We suspect that a major reason for the genetic difference we observed between 

archipelagos is change in life style. Once the ancestor population settled in an 

island, it became sedentary due to the all year round food availability. We also 

noted during extensive fieldwork on Cape Verde, that in contrast to mainland 

Kentish Plover that are highly polygamous the island plovers are more 

monogamous and highly site faithful and tend to return year after year to breed in 

the vicinity of their former territory. This limited dispersal over large numbers of 

generations may have produced the genetic difference we observed between 

different islands.  

Finally, genetic differentiation is not linked to morphological differentiation. 

Genetic differentiation but not morphological differentiation follows isolation by 

distance pattern. We propose that island (or archipelago) specific selection 

pressures shape phenotypes. These are different from simple macroecological 

processes such as isolation by distance and need to be investigated further. 

In conclusion, using a wide-spread shorebirds species, the Kentish Plover, as a 

model organism we show that Macaronesian archipelagos harbour genetically and 

morphologically unique populations. The differences could be the beginning of 

speciation after isolation by distance and gene flow seems to be reduced because of 
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behaviour and/or distance.  In one of these archipelagos (Canary Islands) the 

breeding population is rapidly declining, although the trends from other 

populations have not been reported. Since Macaronesia, similar to many oceanic 

archipelagos, are rapidly developing largely due to beach tourism, we are 

concerned that all of these populations may be declining. This requires actions to 

establish the proximate causes of population declines, and develop an action plan to 

safeguard the remaining breeding populations.  
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Main Conclusions 

My PhD provided novel insights in three important fields of biology: breeding 

ecology, conservation genetic and population genetics, and these results have 

further implications of conserving and managing wetland bird species. Specifically, 

 I investigated the sex-related variations in body size, breeding behaviour 

and parental care of the Crab Plover in Saudi Arabia. This endemic bird has 

a peculiar and rarely investigated breeding system. Using molecular sexing, 

I demonstrated that the most reliable morphometric trait to distinguish 

between male and female Crab Plovers is bill length. I also demonstrated 

that Crab Plover nesting burrows provide thermal stability in a harsh, hot 

environment. To our knowledge, this is the first study that has used 

molecular sex-typing to distinguish sexual differences in the daily rhythms 

of food provisioning and chick feeding in the Crab Plover. Overall, my 

work provided new insights into the breeding ecology of an enigmatic and 

unique burrowing shorebird, and suggest areas for future investigation to 

further elucidate the breeding behaviour of this species (Chapter 2). 

 

 I reviewed the status of breeding Crab Plover populations along the Red 

Sea coast of Saudi Arabia. Comparing these new data to previous studies, 

we discovered two new colonies. Therefore, this update will contribute to 

filling the gap between the known number of breeding pairs and the global 

population that was estimated from censusing wintering birds. The breeding 

of crab plovers is restricted to the remote islands around the Arabian 

Peninsula. Therefore, we provided implications for conservation that 
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summarise some potential threats that may face the Crab Plover during the 

breeding season (Chapter 3). 

 

 I modelled suitable habitat and areas of high species richness using 22 

wetland bird species along the Red Sea coast of Saudi Arabia. To date, this 

study has produced the first predicted potential habitat richness model for 

wetland bird species along the poorly conserved Red Sea coast of Saudi 

Arabia. I highlighted 17 potential richness areas; each area combines 

different numbers of endemic species. I argue that this model can contribute 

effectively in helping researchers and ecologists in identifying important 

areas to survey. I recommend establishing new protected wetland areas 

along the Red Sea coast in order to conserve the threatened and endemic 

wetland bird species (Chapter 4). 

 

 Finally, using microsatellite markers, I investigated the genetic and 

morphometric differentiation in the Macaronesia region. The main objective 

of this paper was to provide training in microsatellite analyses that I am 

planning to use for genetic differentiation of waterbirds in Saudi Arabia. 

The main conclusion is that each archipelago population is genetically and 

morphologically differentiated. Therefore, this result improves our 

understanding and should help establish a strategy to conserve this species 

in the Macaronesia region. Additionally, further studies are required to 

identify the risks that may face Kentish Plover populations in this region 

and to set up an effective conservation strategy (Chapter 5). Since Saudi 
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Arabia has various islands in the Red Sea region, a study using an 

archipelago (Macaronesia) provided a useful baseline comparison. 

 

Future directions 

In course of this PhD, I obtained valuable skills in field biology and molecular 

ecology, and became familiar with scientific concepts in behavioural ecology and 

conservation biology. In future, I wish to use these skills and knowledge to 

follow-up the results in this dissertation. 

Four research lines appear extremely promising to follow-up the research in this 

dissertation: 

1. The Arabian Peninsula and the surrounding seas have numerous endemic species, 

although many of these endemic species have not been investigated in detail. I 

propose to investigate the mating systems and parental care strategies of three 

endemic waterbirds: Crab Plover, White-eyed Gull and Saunders’s Tern. The 

White-eyed Gull is an endemic species to the Red Sea and the Gulf of Aden 

(PERSGA/GEF 2003) and is considered Near Threatened (IUCN 2014). It is 

observed to breed in some islands along the Red Sea coast of Saudi Arabia 

(Shobrak & Aloufi 2007, Jennings 2010). The breeding and non-breeding areas are 

restricted to the Gulf of Aden and the Red Sea in Egypt, Sudan, Eritrea, Djibouti, 

Saudi Arabia, Yemen and Somalia (BirdLife International 2014). The local 

movements of the White-eyed Gull is poorly studied (Jennings 2010). Saunders’s 

Tern is also a poorly studied species; it is restricted to the north Indian Ocean and 

has a massive breeding range, extending from the Red Sea coast and Arabian Gulf 

to northwest India, Sri Lanka and the Maldives (BirdLife International 2013, del 
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Hoyo et al. 1996). It is recognised that it breeds in the Red Sea and the Arabian 

Gulf coast and the islands of Saudi Arabia (Bundy et al. 1989, Shobrak & Aloufi 

2007, Jennings 2010). It is currently classified as a Least Concern by the IUCN 

Red List (IUCN 2014). However, the population is expected to decrease due to 

predation by rats and cats (in some areas), human disturbance and habitat loss due 

to development (del Hoyo et al. 1996).  

Studying these three species is appropriate not only because of their importance in 

the ecosystems in which they occur and potentially declines in their populations, 

but also because they are little-known species, with baseline ecological data on 

their ecology, demography and behaviour largely missing. We know very little with 

regarding to the mating systems and parental care strategies of these species. 

Studying the mating system and parental care aspects of these species has become 

an urgent necessity, since these influence productivity and thus long-term 

population strategies. This research will ultimately help to understand and conserve 

these species.  

Future studies must aim to a) gather baseline details on the behaviour and breeding 

ecology of the Crab Plover, White-eyed Gull and Saunders’s Tern; b) describe the 

mating systems and parental care of these three species; c) identify factors that 

affect breeding success, distribution of care types, mate fidelity and nest-site 

fidelity, and nest attendance on these three species; d) investigate nest architecture 

of the crab plover. The latter seems especially important, because I believe that 

breeding burrows may be connected and there is a possibility that several adults 

may share breeding. 

 

http://www.iucn.iucn/
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2. Investigate the post-breeding migratory behaviour of Crab Plover, White-eyed 

Gull, and Saunders's Tern 

Little information exists on the movements of Crab Plover.  De Marchi et al. 

(2006) indicated that the breeding areas of Crab Plover do not correspond entirely 

with those used in the non-breeding season. They leave their breeding sites rapidly 

when faced with extreme environmental conditions, thermal stress or limited food 

availability (De Sanctis et al. 2005). The wintering and breeding populations of 

Crab Plover were estimated in different countries. However, there is a lack 

information available about how the breeders migrate, that is, what routes they take 

and where the stop-over sites are.  

Overall, understanding the movement of these species and the habitats they use is 

important for establishing the appropriate conservation planning. 

3. Studying the genetic structure of the Crab Plover, White-eyed Gull and Kentish 

plover. 

The genetic structure of a population can play a significant role in the description 

and comparison of the level of within-deme and between-deme genetic variations. 

It is useful to identify gene flow, natural selection, age structure and mating 

systems. The molecular differentiation in birds is less pronounced than in other 

vertebrates at both the population as well as species levels (Avise & Aquadro 1982). 

This might be because of the greater mobility of birds, higher levels of gene flow 

and larger effective population sizes (Barrowclough 1983). Only a few studies of 

genetic diversity have been conducted on some species of shorebirds, (Küpper et al. 

2008, Miller et al. 2009); the latter observed differences in genetic structure 

between the interior and Atlantic piping plovers in North America. Küpper et al. 

(2012) mentioned that there are genetic differences between mainland and island 
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populations of Kentish plover. Moreover, the remote island populations of Kentish 

Plover have lower levels of genetic diversity (Küpper et al. 2012). Several lines of 

independent research have indicated that the vast majority of extinctions have been 

in island species (Frankham et al. 2009) because they are unable to cope with 

diseases (Penn et al. 2002) and environmental changes (Bijlsma & Loeschcke 

2005).  

Following the same methods as those used in Chapter 5 of my thesis, I am 

currently analyzing the Kentish Plover microsatellite and morphological data from 

the Arabian Peninsula. This work can be followed up by microsatellite analyses of 

other shorebirds in Saudi Arabia including Crab Plover and White-eyed Gull. The 

former species would be particularly rewarding, since breeding colonies tend to be 

stable over long time period on a given island suggesting that neighbours (possibly 

offspring as well) create kin-related colonies over time. This could potentially 

enhance cooperation and may lead to shared parenting of young and/or cooperative 

breeding. 

 

Concluding remarks 

I believe that understanding bird ecology and behaviour in the Arabian Peninsula is 

important for 2 main reasons. First, there are very few bird studies in the region 

apart from raptors and falcons, although these desert-dwelling birds may show 

specific adaptations such as burrowing in the sand. Second, understanding 

evolutionary ecology of these species is important for predicting chances in future. 

Animals that live in the desert may be already at their edge of their tolerance in 

regards to heat physiology, and thus further changes in global climate may tip them 

over their physiological carrying capacity. Threats, primarily from habitat loss and 
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pollution, likely to make an additional pressure on wild bird populations, with as 

yet unknown consequences.  
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The timing of the breeding in birds is a life-history trait that generally depends on 

food availability, but other factors may play a role, particularly in tropical areas 

where food availability is less seasonal than in temperate or arctic areas. We 

studied the factors affecting the breeding season of the Crab Plover Dromas 

ardeola, a burrow nesting colonial shorebird endemic of the north-western Indian 

Ocean. A reduced risk of burrow flooding, high temperatures suitable for exploiting 

solar incubation, a reduced interference by Palaearctic shorebirds during foraging 

and a reduced risk of predation by Palaearctic raptors are all associated with the 

summer breeding season of the Crab Plovers, but none of these factors can explain 

the difference, up to one month, in the breeding schedule throughout their breeding 

range. On the contrary, we found not only a clear peak of food abundance during 

the breeding season but also a significant correlation between the start of the 

breeding season and the average annual chlorophyll-a concentration around the 

colonies, a proxy for marine productivity. We conclude that food abundance, 

together with the likely high intraspecific competition due to coloniality, is strongly 

supported as the critical factor determining the nesting phenology of this tropical 

species.  

 

Key words: breeding season, burrow temperature, chlorophyll, competitors, Crab 

Plover, Dromas ardeola, food abundance, Indian Ocean, predators, rainfall. 



Appendix 1 

 
152 

INTRODUCTION 

The timing of breeding has important fitness consequences for birds because 

reproductive success varies seasonally, and frequently declines with advancing 

dates (Verboven and Visser 1998, Williams 2012). A recent review (Verhulst and 

Nilsson 2008) pointed out that an effect of laying date explains the low fitness of 

late breeders, that there are costs for laying early, and that early breeders are 

individuals of higher quality, better able to cope with the costs of early laying (e.g. 

when food availability is still low). Late low reproductive effort is caused by a 

general decrease in habitat quality, in particular for species that lay a single clutch. 

Food abundance is the crucial factor most frequently suggested for such timing. 

This idea was championed by Davis Lack (1968), who suggested that the breeding 

phenology is ultimately determined by the food availability necessary in particular 

during the chick-rearing phase. While there is an overall accordance between 

breeding season and food abundance at least at the population level, Perrins (1970) 

pointed out that most females lay eggs too late for the offspring to fully exploit the 

seasonal peak in food abundance, and suggested that the proximate cause might be 

food shortage for egg production. Other researchers suggested that other factors 

might be important and that the laying date is a life-history trait that results from a 

trade-off between the interest of parents and the interest of offspring (Martin 1987, 

Drent 2006). 

Climatic conditions, competition with other species and the risk of predations have 

been suggested to influence the laying date of some species in alternative to food 

abundance. In Arctic breeding species, like the Snow Geese Chen caerulescens 

atlantica, breeding phenology strictly depends on snow cover in spring (Dickey et 

al. 2008). Schreiber (1980) suggested that timing of the nesting season of the 
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Brown Pelicans Pelecanus occidentalis has evolved so as to avoid the hurricane 

season, which could put eggs and chicks at great risk. Species nesting on low 

islands in rivers, like some terns and pratincoles, are forced to breed at low water 

levels, during the dry season (Brosset 1979). The White Tern Gygis alba breeds 

when food availability is reduced but when interference competition by other 

species is lower (Catry et al. 2009). Clay-coloured Robins Turdus grayi and 

Bananaquits Coereba flaveola breed at a time when food availability is low but 

when nest predation is less prominent (Morton 1971, Wunderle 1982). The 

Moluccan Megapode Megapodius wallacei, a species that uses the heat generated 

by the sun to incubate its eggs, exhibits lunar synchrony in the timing of egg-laying, 

likely explained by the increased risk of predation during the dark nights (Baker 

and Dekker 2000). 

Most researches on timing of reproduction involved well studied northern 

temperate species while tropical birds have been much less studied (Stutchbury and 

Morton 2001). In general, as a result of a less seasonal climate, many tropical areas 

have a much more extended breeding season, lasting between 6.6 and 9.8 months 

compared to 3.1 to 4.2 months of temperate areas (Ricklefs 1966, Stutchbury and 

Morton 2001). Few species, like the Sooty Tern Sterna fuscata and the Bridled Tern 

Sterna anaethethus, experience constant conditions and breed with subannual 

periodicity (Ashmole 1963, Diamond 1976, Jaquemet et al. 2007), even if they 

breed annually when marine productivity is more seasonal (Jaquemet et al. 2007). 

However, the seasonal breeding schedule is less clear than in temperate climates, 

even in a quite seasonal tropical region like the north-western Indian Ocean. There, 

the winter and spring breeding season of landbirds is clearly dependent on winter 

rainfall, even if it is a scarce rainfall (Jennings 2010), but the determinants of the 

breeding season of the sea dependent species are less clear (Jennings 2010). Some 
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species like the Brown Booby Sula leucogaster and the Socotra Cormorant 

Phalacrocorax nigrogularis breed almost throughout the year, the Osprey Pandion 

haliaetus and Caspian Tern Sterna caspia breed during the winter, while many 

species of terns, two species of gulls and the Crab Plover Dromas ardeola breed 

during the summer (Semere et al. 2008, De Marchi et al. 2009, Jennings 2010). The 

summer breeding season of many species might be coincident with the period of 

fish abundance, but there is little research to date (Jennings 2010, Vosoughi et al. 

2010, Shobrak and Aloufi 2013).  

We studied the nesting phenology of the Crab Plover, whose food availability, 

coastal invertebrates (Rands 1996), can be more easily assessed than for seabirds. 

The Crab Plover is a shorebird that breeds endemically in north-western Indian 

Ocean, while it disperse more widely during the non-breeding season (Rands 1996). 

Crab Plovers breed colonially in burrows on islands devoid of terrestrial predators 

and lay a single egg (Rands 1996), which is huge for the female size, at about 23% 

of the female mass (De Marchi et al. 2012, Tayefeh. et al. 2013). The habit of 

breeding in burrows is unique among the shorebirds. The thermal properties of the 

burrows are almost optimal for solar incubation, which results in a low parental 

effort during incubation (De Marchi et al. 2008, De Marchi et al. In press). The 

single chick is provisioned by the both parents at the burrow until it fledges (Rands 

1996) and even later on for some months on the wintering grounds (De Sanctis et al. 

2005). 

Their breeding season, (from April to September) was considered a puzzle by 

Hockey and Aspinall (1997). In their study area, in Abu Dhabi, shade temperature 

(but there was no shade in their breeding sand-banks) reached 48°C, was regularly 

over 40°C and was rarely below 28°C, and humidity was frequently above 90%. 
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Possibly as a consequence of thermal stress, the peak of foraging activity occurred 

early in the morning and late in the afternoon independently of the tide level (but 

see De Marchi et al. In press). We envisage five possible selective factors that can 

be responsible for the breeding phenology of this species. 1) A higher food 

availability as suggested by Hockey and Aspinall (1997). They hypothesized, but 

could not endorse, that reproduction was timed with maximal availability of 

invertebrate prey, mostly crabs, for feeding the nidicolous chicks in July-August. 

The importance of crab abundance might be increased by the high intraspecific 

competition for food due to the highly colonial breeding habits, with hundreds or 

even thousands pairs nesting on the same islet. A circumstantial evidence that the 

food-linked window for breeding is narrow was that birds were present at the 

colony for a short period only, arriving just before egg-laying and leaving just after 

chicks fledged (Hockey and Aspinall 1997). 2) A reduced risk of predation by 

Palaearctic raptors, in particular Circus harriers, that are common at the Crab 

Plover breeding sites during winter but much rarer during the breeding season of 

Crab Plovers (De Marchi et al. 2009, Aspinall 2010). 3) A reduced interference on 

the foraging grounds by the hordes of Palaearctic shorebirds that leave the 

mud-flats almost free for the Crab Plovers while breeding further north during the 

summer. The idea stems from the depression of food-intake rate, recorded in some 

other shorebirds, caused by large numbers of shorebirds through interference 

competition (Sutherland and Koene, 1982; Ens and Goss-Custard 1984). 

Interference could affect Crab Plovers because preys, as Uca crabs, hide in burrows 

at the approach of shorebirds, thus creating a halo devoid of prey around each birds 

(Van der Kam et al. 2004). 4) A reduced risk for the burrows to be flooded by rain, 

a well known cause of breeding failure in some burrowing species like penguins 

and shearwaters (Stokes and Boersma 1991, Thompson and Furness 1991). 5) The 
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opportunity to exploit high soil temperatures during the early summer months, 

which reduced incubation costs through the adoption of partial solar incubation (De 

Marchi et al. 2006, De Marchi et al. In press), while avoiding higher temperatures 

that could be dangerous for the embryo later during the breeding season. 

During several field campaigns in Eritrea, we collected data for checking the 

association between the breeding season and some environmental factors (food 

availability, presence of Palaearctic shorebirds and raptors, risk of flooding, and 

temperature of the burrows). Moreover, we investigated the correlation between the 

start of the breeding season and some environmental factors (latitude, marine 

productivity, air temperature and rainfall) that are correlated to the likely important 

environmental factors.  

 

METHODS 

 

Study area 

Field data were collected in the Dahlak archipelago and on the nearby mainland of 

Eritrea. The area has a high coastal productivity (Sheppard et al. 1992, Butler et al. 

2001) with great concentrations of migrating, wintering and nesting coastal and 

marine birds (Semere et al. 2008, De Marchi et al. 2009). The Dahlak archipelago 

alone hosts about 15 Crab Plover colonies, that with other colonies in the Howakil, 

Anfile and Assab Bays, make Eritrea a stronghold for this species (De Marchi et al. 

2006, Semere et al. 2008). Data were variously collected in the period 2002-2013 

on five islands with Crab Plover colonies (Dahret, Baradu, Kad Norah, Sarad and 

NN086), three islands without colonies (Durgham, Durghella, and Sheikh Said) 
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and 2 coastal sites just north of Massawa (near Gurgussum and Hamasien hotels, 

Fig. 1).  

 

Nesting phenology 

Due to the difficulty of checking the content of many burrows without creating 

excessive disturbance to the colony, we used indirect ways to calculate the timing 

of breeding at Dahret island. In particular, we recorded the number of burrows and 

of hatched eggs. The colonies were searched for eggshells outside nests, and all 

newly found eggshells were crashed in order to avoid double counts. The number 

of hatched eggs could be calculated as number of eggshells found on the colony 

surface, since eggshells are ejected from the burrows by the parents soon after 

hatching (Tayefeh et al. 2013, personal observations). The timing of egg laying is 

back-calculated from the date of hatching, on the basis of an incubation period of 

about 33 days, observed both on Dahret island (De Marchi et al. 2008) and in the 

Persian Gulf (Tayefeh et al. 2013). The timing of the chick rearing phase is 

calculated using the 7 week long chick rearing phase recorded in a study in Iran 

(Tayefeh et al. 2013). We divided each phase (egg laying, incubation, hatching and 

chick rearing) in early (the first 25% of pairs), peak (the middle 50% of pairs) and 

late phase (the last 25% of pairs). Unfortunately, fishermen collected Crab Plovers 

eggs at Dahret island during the second half of May and beginning of June in all 

study years apart from 2005, a disturbance that might result in a significant bias in 

the calculation of the different phases of reproduction. Therefore, only the data of 

2005 were used to calculate the breeding phenology at Dahret Island. 

Data on timing of breeding by Crab Plovers were obtained for other regions from 

the literature, particularly about the start of nest digging, the breeding phase that 
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had been recorded most easily. The period April-May was divided in 5-day periods, 

and each colony was assigned to a period (Table 1) depending on the start of the 

digging phase (e.g. : 1 for start on 1-5 April, 2 for 6-10 April and so on). 

Prey abundance. 

We selected three different habitats used for foraging by Crab Plovers and censused 

the density of burrows built by different species: 1) burrows of ghost crabs 

Ocypode saratan on sandy beaches; 2) all burrows, mainly of Dotilla crabs, on 

shallow intertidal sandy beaches; 3) all burrows, mainly of Uca crabs and 

callianassid mud-shrimps, on mud flats. All these dominant species are part of the 

diet of Crab Plovers in the study areas as a result of direct observation or by the 

analysis of food remains (data not shown). In the last two habitats the owner of the 

single burrows could not be identified with certainty, so the total number of 

burrows was recorded. On the contrary on sandy beaches the only vertical burrows 

are built by the ghost crabs. Therefore, we could calculate also the mass of ghost 

crabs from the size of their burrows, and estimate the density of their biomass. To 

this goal, we measured the relationships between burrow diameter and the carapax 

width at the anterior margin (diameter = 1.0372 width – 1.7811, R
2 

= 0.95, n = 11), 

and the relationship between the mass and the carapax width (mass = 0.0003 

(carapax width)
3.1716

, R
2
 = 0.99, n = 40) for a sample of captured crabs. The 

diameter of 100-400 burrows was measured together with the length of the 

surveyed beach in order to compare the seasonal density (gr/meter of beach) of 

ghost crabs on 8 beaches (Dahret, Baradu, Sarad, Durgham, Durghella, Sheikh Said, 

Gurgussum and Hamasien (Fig.1) both in June-July and in December-January. On 

Dahret and Sheikh Said islands, we were able to collect more data, albeit more than 

in one year, and to obtain a profile of crab abundance throughout the seasons. The 
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abundance of intertidal invertebrates in the Dotilla zone (Fishelson 1971) on the 

mud-flat of Gurgussum beach (15°39’29”N, 39°28’06” ) was measured monthly 

between January and September 2013 in 30 quadrats with the side of 1 m. The 

quadrats were placed approximately in the same area every month in five rows 

separated by 10 m. Each row was composed by the six quadrats separated by 5 m. 

The data of the 30 quadrats were averaged for each month. The seasonal abundance 

of intertidal invertebrates was measured on the mud-flat of Sheikh Said island 

(15°35’31”N, 39°28’45” ) monthly between April and September 2004. Twenty 

quadrats with the side of 1 m were positioned always in the same places thanks to 

metal sticks as signposts. The quadrats were in three rows at 5 m from the closest 

quadrats (one area could not be used for the presence of a mangrove tree). In each 

quadrat the burrows were divided into 3 size categories (less than 0.8 cm in 

diameter, between 0.8 cm and 2 cm in diameter, larger than 2 cm in diameter). The 

data of the 20 quadrats were averaged for each month. 

As comparable data of seasonal food abundance were not known for other areas of 

the breeding range, we used chlorophyll-a concentration around colonies and 

measured correlation with the start of the breeding season. The use of chlorophyll-a 

concentration measured by remote sensing has already been used as a proximate of 

marine productivity in studies of the breeding phenology of a tropical seabird 

(Monticelli et al. 2007, 2014). For coastal species, the use of chlorophyll-a 

concentration is supported by its high correlation with the biomass for both grazers 

and filter feeder intertidal invertebrates (Bustamante et al. 1995). We obtained the 

average annual chlorophyll-a concentrations for the period January 2003-December 

2013 from the 4 km resolution data collected by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) aboard NASA’s Aqua satellite 

(http://disc.sci.gsfc.nasa.gov/giovanni). For each colony we selected the pixel 
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containing the colony and the 24 surrounding pixels (a squared area of 20*20 km) 

corresponding to an average radius of approximately 11 km, the main foraging area 

recorded for the colony of Dahret as only 4 birds out of 17 partially used also area 

further away during the incubation phase (De Marchi et al. In press). We than 

excluded the pixels with no data, which correspond to landmasses, and averaged 

the chlorophyll-a concentration on the remaining pixels. Similar chlorophyll 

concentrations were obtained using the pixels containing the colony and the 8 

closest pixels, corresponding to a radius of approximately 6 km. The data of 

colonies that are less than 100 km away were pooled in order to avoid spatial 

correlation. 

Risk of predation 

In order to measure the risk of predation, we recorded the number of Crab Plovers 

found partially eaten by raptors and the number of raptors dangerous for the Crab 

Plovers seen during more than 90 visits to Dahret island and occasionally on the 

nearby Baradu island. Accurate data on the presence of avian predators throughout 

the breeding season are not available on a geographical scale. The Palaearctic avian 

predators, the most common in the breeding range of Crab Plovers (Eriksen et al. 

2003, Gregory 2005, De Marchi et al. 2009), are largely absent during the Crab 

Plover breeding season, when they are breeding in their Palaearctic range, but they 

can be dangerous at the start (April-May) and at the end  of the Crab Plover 

breeding season . The timing of the risk posed by Palaearctic raptors likely varies 

depending on the latitude, as their migration is roughly in a north-south direction. If 

predators are important in determining the breeding season of Crab Plovers, we 

expect a positive correlation between the start of the breeding season and the 

latitude during spring in the nine areas (Table 1) as a result of the northward 
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migration of dangerous raptors, or a negative correlation if the southward migration 

in autumn is more important. 

 

Abundance of Palaearctic shorebirds 

We carried out 20 censuses of shorebirds (all species excluding Crab Plovers) at 

Sheikh Said island, just offshore of Massawa in the period 2002 to 2005 in order to 

measure the seasonal trend of their presence in the study area. Censuses were 

carried out on an area of approximately 0.15 km
2 

always at low tide using a 20X 

spotting scope placed on an elevated point, a ruined building (15°35’32”N, 

39°28’44” ). In order to get a measure of the possible interference of Palaearctic 

shorebirds on foraging Crab Plovers, we measured by sight the proportion of Crab 

Plovers that had a shorebird within a distance of 5 m and correlated it with the 

abundance of shorebirds in the surveyed area. If interference with Palaearctic 

shorebirds is critical for the breeding phenology, we expect a correlation between 

the start of the breeding season and the latitude, as for Palaearctic raptors. 

 

Risk of flooding. 

If the risk of flooding could be considered a factor determining the different 

breeding seasons in different parts of the breeding range, we would expect to find a 

higher rainfall in April in the areas where Crab Plovers starts breeding in May and 

a lower rainfall where Crab Plovers starts breeding earlier, in April. Data on 

average April rainfall at the closest meteorological stations (see Table 1) were 

downloaded from the web site www.climatemps.com.  

 

http://www.climatemps.com/
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Risk of overheating 

While a high nest temperature has been shown to be useful for partial solar 

incubation (De Marchi et al. 2008), the increasing temperature during the breeding 

season might reach values so high that embryo development might be at risk. 

Therefore, we reanalyzed the original data collected by De Marchi et al. (2006), 

who measured burrow temperatures for 4 years, 2003 to 2006, by placing two 

dataloggers (one at 100 cm and one at 200 cm from the burrow entrance) each year 

in an abandoned burrow and recording temperatures 6 times a day. These distances 

from the burrow entrances were chosen as eggs were located at 60-290 cm from the 

burrow entrance (De Marchi et al. 2008). In particular, we checked whether 

maximum burrow temperature could have ever been dangerous for embryo 

development during the incubation phase. In addition, we downloaded the 

maximum air temperature recorded in June from the web site 

www.climatemps.com in the nine breeding areas in order to check for correlations 

with the breeding season, as high temperature in June might force Crab Plovers to 

start nesting early, in April instead of May. The meteorological stations are the 

same as for the risk of flooding (Table 1). 

 

Statistics 

All statistical tests were two-tailed and were run using the software SPSS 18.0 

(SPSS Inc., Chicago). All dispersion measures are Standard Deviations. Non 

parametric test were used when assumptions for the use of parametric test were not 

met (Zar 1999). 

RESULTS 

http://www.climatemps.com/
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Nesting season. 

The construction of nest borrows started at Dahret island with a similar timing in 6 

study years, on the second week of May, with only two nests (30 and 60 cm long 

but without eggs) discovered as early as on 30 April 2007 (Fig. 2). Egg hatching 

followed by about 40 days the start of burrowing. The breeding phases for the 

central 50% of the breeders were: egg laying from 19 to 22 May, incubation from 

19 May to 23 June, hatching from 21 June to 24 June and chick growth likely from 

22 June to 11 August (Fig.3). 

Food abundance. 

On the mud-flat of Sheikh Said island there was no significant change in the 

density of medium (Pearson r = 0.013, n = 6, P = 0.981) and large burrows 

(Pearson r = 0.365, n = 6, P = 0.476) throughout the 2004 breeding season but 

there was a significant increase of small burrows (Pearson r = 0.948, n = 5, P = 

0.014) of various species with high densities also in September, after the end of the 

breeding season (Fig.4).  

The abundance of invertebrates on the mud-flat of Gurgussum beach in the Dotilla 

zone in 2012 was higher (Mann-Whitney test, U4,7 = 2, P = 0.023) during the main 

breeding season, May-August, than during the non breeding season, 

September-April (Fig.4). 

The abundance of ghost crabs followed a similar seasonal trend with a peak in 

spring-early summer in two different beaches (Fig. 4), on Dahret island, where 

Crab Plovers were present only during the breeding season (several hundred 

compared to 0-2), and on Sheikh Said island, where there were more Crab Plovers 
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(t-test, t18 = 3.059, P = 0.007), during the non-breeding season, September-April 

(24.5 ± 7.6, n = 11 censuses), than during the breeding season, May-August (13.8 

± 8.0, n = 9 censuses). The seasonal decline was apparently delayed by about one 

month on Sheikh Said island (Fig. 4) compared to Dahret island. More generally, 

the abundance of ghost crabs was constantly lower (Wilcoxon exact test, Z = 

-2.521, n = 8, P = 0.008) in December-January than in June-July in 2011-2013 in 

eight well separated beaches (Dahret, Baradu, Gurgussum, Hamasien, Sheikh Said, 

Sarad, Durgham and Durghella, Fig.1). The ratio between the summer and the 

winter abundance was 4.1 ± 4.4 with an absolute range between 1 and 19 g/m of 

beach. Recruitment of ghost crabs took place mainly in June on Dahret island as 

there were more burrows (Mann-Whitney test, U3,13 = 0, P = 0.004) of the smallest 

size (5-10 mm) in June (1.50 ± 0.56 burrows/m, n = 3) compared to the rest of the 

year (0.23 ± 0.25, n = 13). 

Abundance of Palearctic shorebirds  

The abundance of wintering Palaearctic shorebirds was minimal in May-June and 

reached its maximum in autumn-winter on Sheikh Said island (Fig. 9). 

There was a significant correlation (test t15 = 3.910, P = 0.0014, R
2
 = 0.505) 

between the proportion of Crab Plovers that had a shorebird within 5 m and the 

logarithm of the number of shorebirds in the mud flat of Sheikh Said island (Fig. 

6) 

Risk of predation 

The most frequently observed dangerous raptors were Circus harriers (Marsh 

Harrier Circus aeruginosus, Montagu's Harrier Circus pygargus and Pallid Harrier 

Circus macrourus) and the Lanner Falcon Falco biarmicus while Black Kites 

Milvus migrans were observed only once. During 90 surveys on Dahret island, 
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many more Circus harriers (Mann-Whitney test, U29,61 = -7.477, P < 0.001) were 

observed on Dahret island during September-April (1.03 ± 0.73 Circus per visit, n 

= 29 visits) than during May-August (0.03 ± 0.18 Circus per visit, n = 61 visits). At 

least one Circus harrier was observed in 79.3% of the visits during 

September-April and only in 3.3% of the visits during May-August. Circus harriers 

are probably responsible for the killing of two of the last 3 chicks seen on the 

colony on 9 September 2006 and found dead, partially eaten, on 23 September 

2006 (3 harriers were on Dahret on the second date). 

Lanner Falcons were observed 4 times on Dahret island during the breeding season 

of Crab Plovers and they have been observed to prey once on an adult 

White-cheeked Tern Sterna repressa and once on an adult Crab Plover. Lanner 

Falcons were observed at all seasons on a larger neighbouring island (Baradu 

island, 5 km north east of Dahret island) throughout the study years, which 

suggests that the species was resident. Altogether, we found 6 adult Crab Plovers 

killed on the surface of the colony of Dahret island: five during the breeding season, 

between 2003 and 2009; one was found during the winter, but could have been 

killed during the breeding season as we were absent from the islands from before 

the end of the breeding season up to the visit when it was found. 

  

Nest thermal conditions 

The incubation of the 50% central breeding Crab Plovers took place when 

maximum burrow temperatures rarely exceeded 36 °C even at only 100 cm, a 

relative short distance, from the burrow entrance (Fig. 7). 

Risk of flooding. 
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Nesting burrows of Crab Plovers were usually heavily damaged by the winter rains 

at Dahret island, but we never observed rainfall during 90 two or more day long 

visits during 11 breeding seasons (2003-2013). Fig. 8 shows that throughout the 

breeding range of Crab Plovers rainfall mostly decreases from April to May. It is 

higher in April in the northern Persian Gulf than in the south where breeding starts 

later. Rainfall is almost absent from the breeding area of Crab Plovers during the 

rest of the breeding season apart from the colony on Masirah island.  

 

Geographical correlations 

The start of the breeding season varies throughout the breeding range up to one 

month (Table 1). In the northern part of the Persian Gulf (Bubiyan island in Kuwait, 

Dara island and Mond islands in Iran), burrow digging starts in April, at least 3-4 

weeks in advance of the other places. Burrow digging likely starts in April also on 

Shagaf island, off Masirah island, in Oman, as young were seen in May (Table 1).  

There is no significant correlation between the start of the breeding season and 

either the maximum temperature in June (Spearman r = -0.169, n = 9, P = 0.664) 

or the rainfall in April (Spearman r = -0.231, n = 9, P = 0.549) or the latitude 

(Spearman r = -0.459, n = 9, P = 0.214), while there is a highly significant 

negative correlation with chlorophyll-a concentration in a radius of 11 km around 

the colonies (Spearman r = -0.853, n = 9, P = 0.003). 

 

DISCUSSION  

This is the first study that tries to correlate environmental factors with timing of 

breeding of the Crab Plover.  
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Our field data for Eritrea show that the summer breeding season offers a full set of 

advantageous environmental conditions: higher food abundance, lower risk of 

foraging interference by Palaearctic shorebirds, lower risk of predation by 

Palaearctic raptors, almost perfect thermal conditions for solar incubation, very 

low rainfall with minimal risk of flooding of the burrows. All these factors seem to 

largely overcome the risk of overheating due to the need to commute between the 

colony and the foraging areas when air temperature and humidity can be physically 

stressing (Hockey and Aspinall 1997). However, our study suggests that only food 

abundance is critical. This result stems from the following considerations based on 

field data from Eritrea and on correlation between with the start of the breeding 

season and some environmental factors on a geographical scale. 

 

Solar incubation 

Data shown in Fig. 7 are partly at odd with the hypothesis that the breeding season 

is timed in order to better exploit solar incubation. Indeed, maximum burrow 

temperatures for peak breeding Crab Plovers were well below the temperatures 

that may endanger avian egg development (Webb 1987), suggesting that Crab 

Plovers could have exploited even more favourable burrow temperatures for solar 

incubation if they had delayed incubation by one month (Fig. 7). A proof that the 

burrow temperatures were slightly suboptimal for solar incubation comes from the 

observation that Crab Plover eggs were incubated about 54% of the time and 

warmed on average about 1.7 °C, with incubation taking place also during the 

afternoon, the hottest hours for the burrows (De Marchi et al. In press). These 

observations show that eggs never faced dangerous temperatures, contrary to what 

happens to the eggs of various species of terns and plovers that breed on the 
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ground in exposed places and whose parents are forced to wet their bellies in order 

to cool down the eggs during the hottest hours (Grant 1982, Amat and Masero 

2007, personal observations). The lower burrow temperature experienced by early 

breeders may be a disadvantage as longer incubation spells are needed in order to 

reach the same average egg temperature, a pattern supported by a previous study  

that showed a higher incubation constancy in early breeders (De Marchi et al. 

2008). 

 

Rainfall 

The hypothesis that the breeding season is timed so as to avoid flooding risk is not 

supported by the lack of any significant correlation between the rainfall in April 

and the start of the breeding season. In particular, the data in Table 1 show that 

rainfall is higher in northern Persian Gulf in April than in the south, where there is 

a delay of the breeding season. Altogether, rainfall is generally minimal along the 

breeding season and throughout the breeding range. Only the coast of Oman can be 

at risk as it can be battered by tropical cyclones that form in the Arabian sea. These 

cyclones are more frequent in May and June, a third of them occurring between 18 

May and 14 June, while there are almost no cyclones in July, August and 

September (Membery 2012). Not much is unfortunately known on the breeding 

season on Shagaf island, off Masirah island, the only known colony of Crab 

Plovers in the Arabian sea, but the observations of young there in May (Rogers 

1988) counter the hypothesis of a big delay in the breeding season, which could be 

useful in order to avoid the cyclone season. On the opposite, Crab Plovers of 

Shagaf island appear to start breeding earlier than in most of the breeding range 

(Table 1). 
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Predators and competitors 

Dangerous resident raptors, like Lanner Falcons, are present on some of the 

Dahlak islands (De Marchi et al. 2009) but their year-round presence rules out their 

possible role as critical for constraining the breeding season of Crab Plovers. The 

breeding area of Crab Plovers is flooded by Sooty Falcons Falco concolor as 

summer breeding visitors, but these falcons prey on smaller species than Crab 

Plovers, up to the size of Bridled Terns (Jennings 2010). The lack of response of 

Crab Plovers to the presence of Sooty Falcons (personal observation) is an 

additional hint that they do not influence the breeding biology of the Crab Plovers. 

Circus harriers are likely the most dangerous Palaearctic raptors in the breeding 

range of Crab Plovers as they are frequently present during winter on Dahret island 

(see Results) and at other breeding colonies (Aspinall 2010). However, most of 

them disappear at the start of the breeding season of Crab Plovers at Dahret island, 

where we observed only two harriers in more than 60 visits during the breeding 

season. Their disappearance at the Dahlak islands during the breeding season of 

Crab Plovers is largely in accordance with observations for other parts of the Crab 

Plover breeding range (Eriksen et al. 2003, Gregory 2005, Ash and Atkins 2009). 

When Circus harriers are back at the beginning of September, they can prey on late 

chicks (we recorded two chicks being killed at Dahret island likely by Circus 

harriers at the beginning of September 2006). Chicks risk to be captured 

particularly during the fresher daylight hours, when they regularly stay at the 

burrow entrance or outside the burrows waiting for the parents to return from the 

foraging ground and exercising their flight muscles (personal observations). The 

presence of helpers at the nests that work as lookouts (Aspinall 2010, personal 
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observations) might help to counter predation, but chicks are sometimes 

completely alone (personal observations). The risk increases at the end of the 

breeding season, because of the reduced number of occupied nests and 

consequently of adults visiting the colony. Palaearctic shorebirds as well are nearly 

absent from the southern Red Sea at the beginning of the Crab Plover breeding 

season, while they steadily increase in number already in July-August (Fig.5). In 

other areas within the Crab Plover breeding range, the number of Palaearctic 

shorebirds starts to rise significantly only from August (Safriel 1968, Eriksen et al. 

2003). 

Considering the risk for late chicks to be captured by Circus harriers and the 

schedule of presence of shorebirds, it looks like that the southward migration can 

be more important than the northward migration. However, if either the northward 

or the southward migration could be considered critical for the breeding phenology 

of the Crab Plovers, we should find a negative correlation between the latitude and 

the breeding season, considering that the migration throughout the latitudinal range 

of the breeding area may take weeks. For example, the average speed of spring 

migration of Marsh Harriers was measured at 161 km/day (Strandberg et al. 2008), 

which means that these raptors need almost two weeks to surpass the full length of 

the Red Sea. The correlation between the start of the breeding season and the 

latitude is negative suggesting that the influential migration could be the autumn 

southward migration. However, the correlation is not significant (P = 0.358). 

 

Food abundance 

We found that various preys exploited by breeding Crab Plovers had slightly 

different seasonal peaks, which however were all largely coincident with the 
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breeding season of Crab Plovers (Fig. 4). On sandy beaches, the biomass of ghost 

crabs was everywhere lower in winter than in summer. The spring increase, well 

recorded at Dahret and Sheikh Said islands, was likely favoured by the stranding of 

large brown macroalgae, mainly Sargassum and Turbinaria (Ateweberhan et al. 

2009) which provide large amounts of additional food as detritus to the otherwise 

poor supra- and sub-littoral zone (Sheppard et al. 1992). These macroalgae are 

almost absent in the northern Red Sea, while they become abundant in the southern 

part (Sheppard et al. 1992), a difference that may explain the higher density of 

ghost crabs observed in the south (Fishelson 1971). The sharp increase of the 

smallest holes (up to 10 mm) of ghost crabs in June, probably marking the peak of 

recruitment, accords with the April to August recruitment recorded for the same 

species in the central Red Sea (Al-Solamy and Hussein 2012). Food was more 

abundant during summer also in intertidal areas. In a mud-flat dominated by Uca 

crabs and callianassid mud-shrimps the density of small burrows (less than 0.8 mm) 

increased from April to July-September (Fig. 4). Similarly, the density of burrows 

of invertebrates in an intertidal area dominated by the small Dotilla crabs increased 

sharply during spring, and remained high throughout the Crab Plover breeding 

season. Altogether, the food abundance increased during summer to 3-4 times the 

level in winter on all the three surveyed habitats (Fig. 4). Zwarts (1990) similarly 

reported an increase in availability of crabs during spring in another tropical area of 

Africa at roughly the same latitude, the Banc d’Arguin in Mauritania, an 

availability that allowed premigration hyperphagia in Whimbrels Numenius 

phaeopus. 

We compensated the lack of field data on food availability throughout the breeding 

range of Crab Plovers by relying on an indirect measures, the concentration of 

chlorophyll-a in the sea surrounding the colonies. We found a strong negative 
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correlation between the average chlorophyll-a concentration during 11 years and 

the start of the breeding season in nine well separated areas. The three areas where 

Crab Plovers bred earlier (the extreme north-west of Persian Gulf, the Mond 

islands and Shagaf island) are surrounded by seas with high or very high average 

annual chlorophyll-a concentration. The first two areas are close to the estuaries of 

the two major rivers discharging into the Persian Gulf, the Shatt Al-Arab and the 

Mond Rivers (Abaychi et al. 1988, Nezlin et al. 2007, Al-Yamani 2008). The third 

area where Crab Plovers likely start breeding early, Shagaf Island, off Masirah 

Island in the Arabian Sea of Oman, lays in a hotspot of chlorophyll-a concentration, 

particularly in summer, due to wind driven upwelling of deep, cold, nutrient rich 

water (Sheppard 1992). 

In summary, it looks likely that the summer breeding season has been selected in 

order to exploit the availability of food, as hypothesized for this species by Hockey 

and Aspinall (1997). The observation that the peak phase of burrow starting, and of 

egg hatching, last only four days for the 50% peak breeders, suggests that the best 

time span for nesting season is short. Our data on food availability do not allow to 

distinguish whether the stage of egg formation or that of chick feeding is more 

critical for the timing of the breeding season. At first sight, judging from the 

density of burrows in the mudflats, late nesters do not seem to be at a disadvantage 

in comparison to early and to peak nesters (Fig. 4). The quite long peaks of food 

abundance might even offer a chance to Crab Plovers to renest if eggs are lost to 

human predators, a possibility suspected in two recent studies (De Marchi et al. 

2006, Tayefeh et al. 2013). However, late nesters and renesters could suffer from 

several disadvantages: 1) they may face interference from a growing number of 

returning Palaearctic shorebirds (Fig. 5) so that their foraging efficiency may be 

decreased (Sutherland and Koene, 1982; Ens and Goss-Custard 1984); 2) they may 
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face an increased risk of predation by Circus harriers (see Results); 3) they might 

have to forage on areas close to the colonies that have already been exploited by a 

large number of conspecifics due to coloniality. We underline that our data on food 

abundance in intertidal areas are for two areas, Sheikh Said island and Gurgussum 

beach, that are too far from any colony to be regularly used by breeding Crab 

Plovers (De Marchi et al. 2006, De Marchi et al. In press), so these areas are likely 

not overexploited during the summer. On the contrary, the foraging areas close to 

the colonies might undergo a decreasing food abundance during the breeding 

season, forming the so called Ashmole’s halo (Gaston et al. 2007) as suggested for 

the Crab Plovers by Hockey and Aspinall (1997). This phenomenon can force late 

breeders to spend more energy in longer commuting flights between the foraging 

areas and the colony. This interpretation is in accordance with our observation of an 

earlier decrease in abundance of ghost crabs on Dahret island, which holds a 

colony of Crab Plovers, compared to Sheikh Said island. The formation of an 

Ashmole's halo is also in accordance with the unusually low body mass of the Crab 

Plover fledglings compared to the adults (only 55% on average of the adult mass) 

measured at a colony in the northern Persian Gulf (Tayefeh et al. 2013). The most 

likely explanation of the low mass of the fledglings is that they have to leave the 

colony as soon as possible in order to reduce the energy spent in flight energy by 

their parents (Tayefeh et al. 2013) that can only bring a single food item in their 

beak back to the colony.  

The expected advantage of early breeding leaves open the question of why not all 

pairs start breeding at the same, optimal time. The likely explanation, generally 

assumed for other avian species, is that females vary individually and differ in their 

ability to find enough food to produce their eggs when food availability starts 

improving in spring but it is not yet at its highest (Verhulst and Nilsson 2008).  
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Conclusions 

Lower rainfall, lower concentration of raptors and shorebirds and suitable nest 

temperature certainly favour Crab Plovers during their summer breeding season, 

but cannot specifically explain the variability of their breeding phenology. The 

presence of Palaearctic raptors and shorebirds at the end of the breeding season 

certainly favours an early as possible start of the breeding but only food abundance, 

under the constraints imposed by colonial life, resulted critical to explain the 

breeding season of Crab Plovers. As a result, the following scenario can be 

proposed, largely in support of the hypotheses of Hockey and Aspinall (1997). 

Crab Plovers cannot breed during the winter when food is less abundant and colder 

water temperature, higher rainfall and locally cold winds (Sheppard 1992) would 

reduce the availability of crabs that would tend to hide inside their burrows 

(personal observations). When foraging conditions improve in spring, females that 

either wintered in the area or arrived from the wintering grounds start producing 

their eggs as soon as possible, because late nesters would face a food depletion due 

to intraspecific competition during chick-rearing. However, females manage to lay 

their single but huge egg in April only in regions where marine productivity is very 

high, while in the less productive areas they need to wait until May. This 

conclusion supports the idea that food availability is the main determinant of the 

bird breeding season of many birds not only in temperate areas, but also in tropical 

areas (Poulin et al. 1992, Jaquemet et al. 2007). 

Future studies should try to substantiate the food depletion that occurs around 

colonies along the breeding season, to test the importance of food abundance on a 

larger sample of colonies (including for example data from Sudan and Yemen), and 
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to distinguish whether food abundance is more critical during the egg-laying or 

during the chick rearing phase. 
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Table 1. The start of the burrowing activity and environmental variables, in different parts of the 

Crab Plover breeding range 

ISLAND   COORD IN. START OF DIGGING, CHLOROPH.  RAINFALL  MAX. AIR  

ARCHIPELAGO    PERIOD STARTING  (mg/m3)  APRIL (mm)  TEMP. (°C)  

COUNTRY     FROM 1 APRIL.      (meteor. station)  IN JUNE 

       REFERENCE          (meteor. stat.) 

________________________________________________________________________________________________________ 

 

Marbat   25.88N, ,  Middle of May?   0.664   5    41 

Al Wajh Bank  36.603E   9     (Jeddah)  (Jeddah) 

North Red Sea     (Almalki et al. 2014) 

Saudi Arabia   

 

Dahret and Sarad  15.904N  Second week of May  2.518   4    40 

Dahlak Islands  39,578E and 8        (Massawa)   Massawa) 

South Red Sea  15.82N  (This paper) 

Eritrea   39.907E 

 

Saacada Diin  11.433N  Middle of May   1.446   29    38 

Gulf of Aden  43.466E  9        (Djibouti)   (Djibouti) 

Somalia     (Archer, Godman 1937) 

 

Bubiyan and Dara 29.935N  Middle of April?   3.817   15    44 

Northern Persian Gulf 48.685E and 4        (Kuwait City)  (Kuwait City) 

Kuwait and Iran  30.101N  (Al-Nashrallah, Gregory          49.109E 

 2003,      

       Tayefeh, pers. observ.) 

      

Nakhilu and Omol-Karam 27.821N  About 20 April  2.672   9    37 

Mond Islands  51.473E  and 5        (Boushehr)   (Boushehr) 

Northern Persian Gulf 27.834N   (Tayefeh et al. 2013)    

Iran    51.564E   

 

Abu el Abyad  24.211N  From 10 May   2.665   9    41 

Southern Persian Gulf 53.807E  9        (Doha)   (Doha) 

Abu Dhabi      (Aspinall 2010) 

 

Shaghaf   20.453N  April?    6.674   10    35 

Arabian Sea  58.746E  young in May      (Masirah)   (Masirah) 

Oman      4 

       (Rogers 1988) 

 

Mandhar and Humr 16.962N  Middle of May   2.303   18    38 

Farasan islands  41.802E and 9        (Jizan)   (Jizan) 

Southern Red Sea 16.781N  (Almalki et al. 2014)  

Saudi Arabia  42.011E 

 

Umm al Quronatain 19.266N  Middle of May   1.063   18    38 

Al Batain   40.977E  9        (Jizan)   (Jizan) 

Central Red Sea     (Almalki et al. 2014) 

Saudi Arabia 

___________________________________________________________________________________________________________ 
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Fig. 1. The study sites around the coastal town of Massawa and in the Dahlak 

archipelago, central Eritrea. 

 

Fig. 2. Number of nests at the beginning of the breeding season (Late 

April-early May) on Dahret island in 7 different years. 

 

Fig 3. Cumulative proportion of started nests and of hatched eggs measured at 

Dahret island in 2005.  

 

Fig. 4. Seasonal abundance of invertebrates in central Eritrean coastal 

habitats. Top = density of burrows of various species (mainly Uca crabs and 

Callianassa mud-shrimps) at Sheikh Said island in 2004. Center = density of 

burrows of various species (mainly Dotilla crabs) at Gurgussum in 2013. 

Bottom = density of ghost crabs Ocypode saratan on Dahret island and Sheikh 

Said island in various years. The lines are 3
rd

 order polynomial interpolations.  

 

Fig. 5. Abundance of Palaearctic shorebirds at low tide on a mudflat of 

approximately 0.15 km
2
 around Sheikh Said island in the period 2002-2005.  

 

Fig. 6. Correlation between the proportion of Crab Plovers that had a 

shorebird within 5 m and the abundance of shorebirds on Sheikh Said island.  

 

Fig. 7. Temperatures (maximum, average, and minimum with SD) measured 

by 8 dataloggers inside the 4 nest burrows at 100-200 cm, averaged for each 

10-11 day span, 2003 to 2006. Shading marks the incubation period (19 May-23 

June) for the central 50% of the nests . 
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Fig. 8. Average monthly rainfall during the breeding season throughout the 

Crab Plover breeding range downloaded from www.climatemps.org for Jeddah 

(Northern Red Sea), Jizan and Massawa (Southern Red Sea), Djibouti (Gulf of 

Aden), Masirah (Arabian Sea), Dubai (Southern Persian Gulf), Kuwait City 

and Bushehr (Northern Persian Gulf). 

Fig. 9. The 2003-2013 surface chlorophyll-a concentration in the breeding 

range of Crab Plovers and location of 10 Crab Plover colonies or group of 

colonies, whose breeding phenology is known (Downloaded at 

http://disc.sci.gsfc.nasa.gov/giovanni). 

http://disc.sci.gsfc.nasa.gov/giovanni
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Fig. 4.  
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Fig. 7. 
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Summary 

Waterbirds are an important indicator of ecosystem health in many natural systems 

in the world. I investigated the Saunders’s terns and Kentish plovers in the Farasan 

Islands from the 5th of March to the 4th of June 2013. I used the funnel traps on 

the nests to capture both species, and I measured and marked the captured birds 

with individually coloured rings.  I recorded the incubation rate of the ringed 

Saunders’s Tern for an uncompleted 24 hours at 10 nests using automatic 

cameras. In addition, iButton dataloggers were planted inside and outside preyed 

upon nests to measure the temperatures inside and outside the nests. I found that 

the temperature inside the nests during the hottest time in the day was higher than 

the temperature outside the nests of Saunders’s tern. 

The Saunders’s tern faces serious threats from predation and human disturbance in 

Farasan Islands. Nest predation of the Saunders's tern in Farasan Islands occurred 

at a high rate of 64.9%, whereas only 14.8% of clutches produced chicks. In 

addition, the two main predators of the Saunders’s tern eggs were the Mongoose 

and the Egyptian vulture. 

Kentish plover blood samples were calculated from six sites along the Red Sea 

coast of Saudi Arabia. 

 

Introduction 

Saunders’s tern is a seabird that belongs to the Sternidae family. It has a massive 

breeding range, extending from the Red Sea coast and Arabian Gulf to northwest 

India, Sri Lanka, and the Maldives (BirdLife International 2013). This species 

inhabits an array of coastal regions, including shallow tropical and subtropical 
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inshore waters, estuaries, tidal lagoons, and harbours (Del Hoyo et al. 1996, Snow 

& Perrins 1998). It nests on the ground up to 2 km inland in exposed sand, shingle, 

or dried mud, and it nests in individual pairs or small colonies of 5-30 pairs (Del 

Hoyo et al. 1996, Snow & Perrins 1998). The Saunders’s tern’s breeding season 

occurs between February and late April (Newton 2006). The female of this species 

lays two pale eggs (Del Hoyo et al. 1996). This tern is currently classified as a 

Least Concern by the IUCN Red List (www.iucn.org, accessed in June 2013). 

However, the population trend is declining (Wetlands International 2006) due to 

predation by rats and cats in some areas, human disturbance, and habitat loss due 

to development (del Hoyo et al. 1996). 

The Kentish Plover Charadrius alexandrinus is a wader that belongs to the 

Charadriidae family. It is has a massive geographic distribution through Europe, 

Asia and Northern Africa (del Hoyo et al. 1996; Wetlands International 2006; 

Delany et al. 2009). The populations of Kentish Plover are suffering from a decline 

in their range. There are several factors leading to the decrease of Kentish plover 

populations, for instance, degradation and loss of coastal habitats, environmental 

pollution, land reclamation and human activities (del Hoyo et al. 1996; Barter 

2006; Kelin & Qiang 2006). The breeding system of Kentish plovers is 

distinguishing (Székely et al. 2006). Several patterns of breeding systems occur in 

within a single population: polygyny, polyandry and monogamy (Lessells 1984; 

Székely et al. 2006). The eggs are incubated by both males and females (Fraga & 

Amat 1996). Furthermore, after the egg hatches, one parent—usually the 

male—provides the care for the chicks whereas the female may desert the 

offspring (Amat et al. 2008). 

Objectives 

http://www.iucn.org/
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The objectives of this study were to: 

1. collect data on the basic demography and behaviour of the Saunders’s tern; 

2. quantify the incubation rate of Saunders’s Tern; 

3. determine the predation rate and the main predators of the Saunders’ tern eggs; 

4. collect data on mate and site fidelity of the Kentish plovers in Farasan Islands; 

5. collect some blood samples from the Kentish plovers and Saunders’s tern in 

many sites along the Red Sea coast of the Saudi Arabia. 

Finding colonies, ringing adults and collecting blood samples from the Saunders’s 

tern and the Kentish plover are required to achieve these goals. 

 

Methods 

Study Area 

Fieldwork was carried out between the 5th of March 2013 and 4th of June. I 

visited many sites along the Red Sea coast such as Al Sarum south of Jeddah city, 

Al Qunfudah city, Jazan city and Farasan Islands, and several sites along the 

Arabian Gulf of Saudi Arabia such as Sabkhat Al Fasl and Ras Abu-Ali Island in 

Al Jubail city. The aim of these visits was to find colonies of the Saunders's tern 

Sterna saundersi (Table 1). After finding these colonies, the Farasan Islands were 

chosen as a suitable study area for collecting detailed data, because it contains 

more Saunders’s tern nests than the other sites. 

I visited several sites along the Red Sea coast of Saudi Arabia between the 16th of 

April and the 26th of May 2013 to collect data on the Kentish plovers. These sites 
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included Al Sarum south of Jeddah city, Al Qunfudah city, Jazan city, Farasan 

Islands, Umlug city and Alwajh city. In addition, I visited several islands in Umlug 

and Al wajh archipelago using boats to catch and collect some blood samples from 

the Kentish plovers Charadrius alexandrines (Fig. 1). 

Fieldwork Methods 

The Saunders's tern build nests sparsely up to 1 km away from the coast in 

exposed sites, whereas, the Kentish plover build nests sparsely up to 1 km away 

from the coast in either exposed or unexposed under bush sites. Two methods 

were used to discover nests: 1) by driving a car at slow speed and flushing the 

incubating birds; or 2) by following parents when they came back from the 

shoreline to their nests. For each nest, I recorded the time, the date, the clutch size, 

and the measurements of the eggs as well as the geographic coordinates using a 

GPS device. To identify a nesting site, I used a straw, placed 10 m from the nest. 

The majority of nests were visited every 2-5 days. Therefore, the fates of the nests 

were recorded using following of these criteria: (1) “hatched” when one or more 

eggs hatched; (2) “predated” when the eggs were eaten; (3) “abandoned” when no 

adults were observed at the nest, or there were no Saunders’s Tern footprints 

around the nest; or (4) “unknown” when the fate of the nest was not followed or 

the eggs disappeared and neither predation nor hatching was confirmed (Alrashidi 

et al. 2011). 

Parents were captured by funnel traps on the nest or funnel traps fitted to the 

chicks (Székely et al. 2008). The chicks were covered with a suitable sieve that 

accommodated all the young, and the funnel trap was put around the sieve. All 

captured adults of the Saunders's Tern were ringed with one metal ring provided 

by the Saudi Wildlife Authority (SWA), and two coloured rings because their legs 
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are very short, whereas, chicks were ringed with one metal ring and one coloured 

ring. On the other hand, all of the Kentish Plover that were only captured for their 

blood samples were ringed with only metal rings. However, all of the captured 

adults or families of the Kentish plover in Farasan Islands that I was attempting to 

follow using a spotting scope were ringed with metal rings and 1-3 coloured rings. 

I also recorded the number of chicks and the number of attending parents. All the 

families with coloured rings were visited every 2-5 days. 

For both species, I measured the body mass with a spring balance, the right tarsi 

and the length of bill only Saunders’s tern with sliding calipers, and the length of 

the right wing with a ruler. In addition, I took pictures of each nest I found. Blood 

samples were taken from the brachial vein of the Saunders's Tern and the Kentish 

plover adults, and the tarsal vein of their chicks for DNA analyses. 

 

Recording Incubation Behaviour of Saunders’s tern 

The Reconyx (SC950 HyperFire Security IR) cameras were used to record the nest 

attendance behaviour at 10 nests (I could not record more nests because the 

predation risk was high, and because this bird nests in exposed areas which 

increases their sensitivity to any thing around their nests). The camera was 

positioned about 1 m from the nest. The Reconyx camera was set up to record an 

image every five seconds for an uncompleted 24 hours. Because the Saunders's 

terns nests in exposed areas, they are easily disturbed by anything around their 

nests; therefore, it is difficult to set up the camera around their nests. So, to solve 

this problem, I painted the cameras with a sandy colour. In addition, because the 

camera was noticeable for the Egyptian vultures, I placed the camera inside a 
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woody box (Fig. 2). 

Ambient temperatures of the area around the nests were recorded by iButton 

dataloggers every minute. Furthermore, iButtons were placed inside ten predated 

nests to measure the nests temperature. 

 

Results 

Saunders’s tern 

Breeding dynamics 

In total 49 nests were found: 40 in the Farasan Islands and nine in Al Sarum south 

of Jeddah city (Appendix 1). The nest is a hollow in exposed sand; some of these 

nests are surrounded by marine shells, and the material inside the nest contains 

small marine shells. Some species place the nest on the flat sandy area while 

others nest above small mounds surrounded by some coral (Fig. 3). Egg laying 

season of the Saunders's tern began in March 2013. The eggs had started to hatch 

by the end March 2013. We did not follow any eggs from laying to hatching 

because the predation risk was very high. 

Each female lays one or two eggs. The eggs are usually a pale cream with brown 

and grey markings. Considering the Saunders’s tern nest in exposed areas, the 

parents built the nests close to car tracks. I made new car tracks around one nest and 

I noticed that the parents took around 15 min to find their nest (during this period 

one bird went to the shoreline and brought their mate back to find the nest 

location). Usually both parents came to their nest and flew around when I tried to 

place the funnel trap or set the camera on the nest. 
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Based on the date that the eggs hatched, the breeding season may start as early as 

March and the breeding peak between March and April. Furthermore, based on the 

nesting date records, I think the breeding season may continue into late June. 

On the Farasan Islands, the distance between the water and nests was between 50 

and about 500 m. Furthermore, the nest is usually placed between 20 and about 

100 m apart from the other nests. I noticed that there was fighting between 

neighbours when the distance between their nests was around 20 m. The older 

neighbours, which have two eggs, tried to exposed their neighbour’s nest by 

standing and/or flying above their neighbour’s nest. 

In Al Sarum, I found a small colony that included around 15 nests located around 

Al Sarum Lake (Fig. 4). I could not get to this island because the area between the 

island and the mainland is a risky area. The water was not deep at about half a 

metre and its ground was very muddy. It will pull anything down. On this island, 

I estimated the distance between the nests and the distance between the water and 

nests to be around 5 m. On the mainland, the distance between the nests was 

between 30 and about 100 m apart. In addition, the distance between the nests and 

water were between 5 and 100 m. 

Clutch Size and Hatching 

A total of 40 breeding pairs of Saunders’s tern was recorded on the Farasan 

Islands; 24 had two eggs (60%) and 16 had only one egg (40%). An overall, 

average clutch size of 1.6 (± SD 0.5) eggs per clutch was evaluated. 

A total of 18 breeding pairs were recorded in Al Sarum; 17 had one egg (94.4%) 

and only one had two eggs (5.6%). An overall, average clutch size of 1.1 (± SD 

0.33) eggs per clutch was evaluated. 
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Capture and Measurements 

I captured 33 Saunders’s tern on the Farasan Islands (28 adults and 5 chicks), and 

seven Saunders’s tern adults in Al Sarum south of Jeddah city. Thirty-nine blood 

samples were collected (32 from the Farasan Islands and seven from Al Sarum). 

The average weight, wing length, tarsus length and bill length of captured adults in 

Farasan Islands 45.58 grams ± SD 4.97, 167.95 mm ± SD 2.72, 17.51 mm ± SD 

1.53 and 28.62 mm ± SD 1.3 respectively. The average weight and wing length of 

captured adults in Al Sarum were 47 grams ± SD 3.87 and 164.3 mm ± SD 11.3 

respectively. All data were recorded (Appendix 2). 

Parental Behaviour 

I setup the cameras in front of 15 nests: 10 in the Farasan Islands and five in Al 

Sarum, but cameras could not take photos of nest attendance for a completed 24 

hours for several reasons. The first reason is that the camera sometimes snapped 

pictures intermittently not every five seconds, as it was set up; in some cases, the 

camera failed to take a picture for several hours. The second reason is that several 

nests were exposed to the predation by mongooses or Egyptian vultures. The third 

reason is that some nests were abandoned because of the cameras. 

Nevertheless, the cameras photos show us some incubation behaviour such as, 

both parents sharing the incubation duties approximately equal numbers of both 

parents attended to the nest to incubate the eggs or chicks. In addition, they attend 

to the nest consecutively. One partner would bring some food to their mate who 

was incubating the offspring. I recorded adults bringing only one kind of food 

(small fish) to their chicks or partners (Fig. 5) (Fig. 6). When the chicks hatched, 

they usually stayed around the nest and their parents incubated them around the 
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nest area. In three families, both parents were captured with their chicks. I did not 

notice any attempt at nesting again by any ringed bird whose nest was predated in 

the study area. 

Nest Temperature 

I measured the temperatures inside and outside ten nests of Saunders’s tern. I 

found that there were some differences between the temperatures inside and 

outside the nests. The temperatures inside the nests during the hottest time in the 

day are higher than the temperatures outside the nests. The maximum temperature 

inside the nests recorded was 61.02 °C whereas the temperature outside the nest 

was 58 °C. Furthermore, the minimum temperature inside the nests recorded was 

24.06 °C whereas the temperature outside the nest was 25.13 °C. Figure 7 plots of 

how the ambient temperature and the temperature inside nest of Saunders's tern 

change throughout the day. 

Predation 

In regards to the Farasan Islands, the fate was known for 59 eggs laid in 37 nests 

studied, five failed to hatch (Appendix 1). The predation on the Farasan Islands 

population appears to be high and occurs at a high rate of up to 64.9 % (n=24 nests) 

whereas the hatching rate was 20% (n=8 nests). Mongoose and Egyptian vultures 

are the main predators for the Saunders tern clutches and chicks in Farasan Islands. 

The cameras nest identified a mongoose and an Egyptian vulture (Fig. 8). Their 

footprints were all around the predated nests. Thirteen nests were predated by 

Mongooses whereas eight were predated by Egyptian vultures. At the end of the 

peak of the Saunders’s tern breeding season, the numbers of Sooty gulls began to 

increase. Therefore, I think the Sooty gulls Larus hemprichii represent a potential 
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predator of the Saunders’s tern eggs and chicks. Although I have no evidence that 

they predated any chick or egg, I show some Sooty gulls flying around the Saunders 

tern nests, and standing on the shoreline in groups. 

In Al Sarum, only two nests were predated. One predated by a cat as evidenced by 

their footprints nearby the predated nest. The other nest was predated by an 

unknown predator that opened the egg and threw it along with its liquids out of the 

nest (Fig. 9). No footprints were found close to the nest. 

 

Kentish plover 

Capture and Parental Behaviour 

I captured 55 Kentish Plover on the Farasan Islands, 12 in Jazan, 31 in Al Sarum, 

14 in Umluj and 8 in Alwajh city (Appendix 3). On the Farasan Islands, I followed 

six colour-ringed families (Appendix 4). I noticed both parents with the chicks 

except in one family where the male was not observed (I saw a Kentish plover male 

dead on the road having been run over by a car not far from the location of this 

family, so maybe this male belongs to this family). 

For the site and mate fidelity, I caught 11 coloured-rings birds in their nests whereas 

I caught one of these birds on the shoreline with its family. All of these birds were 

ringed in the last years (Appendix 3). 

Bird Distribution 

While visiting some islands in Umluj city and Al Wajh archipelago, I observed 

some bird species during their breeding seasons (Table 2). For examples, I recorded 

two colonies of Brown booby Sula leucogaster on Bareem Island in Al wajh 
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archipelago. In addition, I recorded one colony of Crab plover on Al Shack Marbat 

Island. Furthermore, I recorded a number of bird species such as White-eyed gull 

Larus leucophthalmus, Sooty gull and Osprey Pandion haliaetus. 

 

Conclusion 

The 2013 fieldwork has given some important results. First, the numbers of 

Saunders’s tern that breeds in the mainland is low. Second, the Saunders's tern 

population on Farasan Islands suffers from high predation pressure. Third, 

Mongoose and Egyptian vultures are the main predators for the Saunders tern eggs 

and chicks in Farasan Islands. Fourth, the temperatures inside the nests of 

Saunders’s terns during the hottest time in the day are bigger than the temperatures 

outside the nests. Fifth, in regard to Kentish plover I found that both male and 

female of Kentish plovers in Farasan Islands care for the chicks. Finally, I 

recommend that the population of Mongoose on Farasan Islands should be 

controlled to enhance nest success of ground nesting birds. 
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Table 1. The number of individuals and nests of Saunders’s tern on the visited 

sites. 

Site Date of visit Individual bird 

numbers 
Nest numbers 

Al Sarum South of Jeddah city 06-03-2013 33 24 
Al Qunfudah city 08-03 & 16-04 

2013 
407 No nests observed 

Jazan city 26-05-201 4 2 
Farasan Islands 21-03 & 24-04 

2013 
123 40 

Umlug city 13-05-2013 No birds observed No nests observed 
Al Wajh city 18-05-2013 No birds observed No nests observed 

Sabkhat Al-Fasl Lagoons in Al 

Jubail city 
11-05-2013 No birds observed No nests observed 

Ras Abu Ali Island in Al Jubail 13-05-2013 No birds observed No nests observed 

Table 2. The bird species that observed on the visited Islands in Umluj 

city and Al Wajh archipelago. 

city Site Date of visit Bird species Individual bird 

numbers 
Comments 

 

 

 
 

Umluj 

Umm Sahar 

Island 
13-05-2013 White-eyed gull 147  

Sooty gull 85  
Maliha Island 13-05-2013 White-eyed gull 18  

Sooty gull 5  
Ataweel Island 13-05-2013 White-eyed gull 41  

Sooty gull 19  
Caspian Tern 3  

Umm Al Malik 

Island 
13-05-2013 Sooty gull 2  

 

 

 

 

 

 

 

 
 

Al Wajh 

 

 

 
 

Barreem Island 

 

 

 
 

18-05-2013 

Sooty falcon 4  
Osprey 2  

Grey heron 3  
Brown booby 39 Two colonies 

Ruddy Turnstone 1  
Crab Plover 5  

Kentish Plover 2  
Sooty gull 11  

Caspian Tern 12  
 

 

 

 
 

Al Shack Marbat 

Island 

 

 

 

 
 

18-05-2013 

Osprey 4  
Crab plover 119 Colony (79 

burrows) 
Sooty gull 27  
Little tern 34  

Caspian tern 7  
Greater crested 

tern 
8  

Sooty tern 30  
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White-cheeked 

Tern 
36  
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Figure 1: Map showing the visited area on the Red Sea coast of Saudi Arabia. 
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Figure 2: Painted camera with wooden box. 

 

 

 

 

 

 

 

 

 

 

Figure 3: The nest site selection and the nest material of the Saunders’s tern. 
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Figure 4: Map showing Al Sarum Lake and the location of the Saunders’s tern 

colony.  

 

 

 

 

 

Figure 5: Saunders's terns bring food (small fish) to his partner. 
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Figure 6: A small fish collected from the nest of Saunders’s tern. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Showing how the ambient temperature and the temperature inside 

nest of Saunders's tern change throughout the day. 
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Figure 8: Saunders's tern nests predated by Egyptian vulture and Mongoose. 

 

 

 

 

Figure 9: Nest predated by an unknown predator that opened the egg and 

threw it along with its liquids out of the nest. 
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Appendix 1. Nest records of Saunders’s tern nests in Farasan Islands and Al Sarum. 

PRED: Predated HAT: Hatched 

Year Site Nest ID 

Latitude 
Longitude Found 

date 
Laying 

date 
End 

date 

Fate 

Fat No. 

chicks 
Clutch 

size 
L1 B1 L2 B2 Comments 

2013 Farasan Islands 99796 36894 322  401 PRED 0 2 32 23 31.5 23 Mongoose 

2013 Farasan Islands 95949 37930 321  402 PRED 0 2 30.5 22 30 22.5 Mongoose 

2013 Farasan Islands 95856 38333 321  402 PRED 0 1 33 24   Egyptian vulture 

2013 Farasan Islands 95486 38475 323  329 HAT 2 2 30.5 23 29.5 23  

2013 Farasan Islands 95491 38919 321  425 HAT 2 2 31.25 23 30 23  

2013 Farasan Islands 95490 38972 320  425 PRED 0 2 30 23 31 23.1 Mongoose 

2013 Farasan Islands 95461 38371 323  425 HAT 2 2 31.5 24 31.5 24  

2013 Farasan Islands 97780 35848 323  402 HAT 1 1 31 24    

2013 Farasan Islands 99917 37132 323  404 PRED 0 2 29 23 29.5 23 Mongoose 

2013 Farasan Islands 97971 36166 323  425 UNKOWN 0 1 30 23    

2013 Farasan Islands 98337 35817 324 325 424 PRED 0 2 32 23.25 30 23  

2013 Farasan Islands 99208 36135 324  401 PRED 0 2 33 23 32 22.5 Mongoose 

2013 Farasan Islands 99487 36183 324  329 PRED 0 2 31.5 23 32 23 Mongoose 

2013 Farasan Islands 99549 36482 324  330 PRED 0 2 31 23 29 23 Mongoose 

2013 Farasan Islands 99110 36083 325  328 PRED 0 1 32.5 22.25   Mongoose 

2013 Farasan Islands 99112 36109 325  330 PRED 0 2 30.75 23.1 30.25 23 Egyptian vulture 

2013 Farasan Islands 95776 37300 326  330 PRED 0 2 30 23 29.5 22.25 Mongoose 

2013 Farasan Islands 99009 35832 326  401 PRED 0 1 32 23.5   Egyptian vulture 

2013 Farasan Islands 97585 35975 326  402 HAT 0 2 30 23 30.5 23.25  

2013 Farasan Islands 95387 38435 327  328 HAT 2 2 32 24 29.75 23  

2013 Farasan Islands 95559 38262 327  425 ABANDONED 0 1 31 23    

2013 Farasan Islands 95626 38804 328  425 PRED 0 2 30.5 23.25 31 24 Mongoose 

2013 Farasan Islands 95689 38161 330  425 ABAND 0 2 33 23.5 34 23  

2013 Farasan Islands 98900 41262 331  401 ABANDONED 0 2 30 23 29.75 23.25 Nest Camera 
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2013 Farasan Islands 99976 37195 331  404 PRED 0 2 30.5 22.5 30 22.5 Mongoose 

2013 Farasan Islands 99238 36193 401  401 PRED 0 2 32 24.5 30.5 24 Egyptian vulture 

2013 Farasan Islands 99788 36826 401 401 403 PRED 0 1 32 23.5   Egyptian vulture 

2013 Farasan Islands 98335 35888 402  424 UNKOWN 0 1 30.75 24    

2013 Farasan Islands 98295 43749 403  424 PRED 0 2 32 23.5 29.75 23.25 Mongoose 

2013 Farasan Islands 99807 36936 403  404 PRED 0 1 31 23.5    

2013 Farasan Islands 98397 44078 403  404 PRED 0 1 33.5 24   Egyptian vulture 

2013 Farasan Islands 98494 35796 405  428 HAT 2 2 31.75 24 30.75 23  

2013 Farasan Islands 97664 36240 424  424 PRED 1 0     Egyptian vulture 

2013 Farasan Islands 96599 36353 424  503 HAT 1 1 31.25 23.5    

2013 Farasan Islands 97381 35785 424  425 PRED 0 1 31.5 23   Egyptian vulture 

2013 Farasan Islands 97492 36141 425  502 PRED 0 2 29 23 29.5 23.25 Mongoose 

2013 Farasan Islands 97491 36203 425  501 PRED 0 1 35 23.25   Egyptian vulture 

2013 Farasan Islands 97852 36174 428  501 PRED 0 1 32 22    

2013 Farasan Islands 98329 44202 527   UNKOWN 0 1 32.25 22    

2013 Farasan Islands 98257 44075 602   UNKOWN 0 2 30.5 22.5 30.75 23  

2013 Al Sarum 519010 2336191 416   UNKOWN 0 1 29.75 23.25    

2013 Al Sarum 518363 2336383 416   UNKOWN 0 2 34.25 23.25 32.1 23  

2013 Al Sarum 518764 2337169 416   UNKOWN 0 1 32.5 23.5    

2013 Al Sarum 518261 2340214 416   UNKOWN 0 1 33 23    

2013 Al Sarum 517927 2340279 417   UNKOWN 0 1 32.25 23    

2013 Al Sarum 518254 2341362 417   PRED 0 1 31.75 23.25    

2013 Al Sarum 518670 2340683 417   PRED 0 1 31 23.75    

2013 Al Sarum 517884 2340340 418   UNKOWN 0 1 34 23.5    

2013 Al Sarum 518310 2341406 417   UNKOWN 0 1 32.5 23    
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Appendix 2. Morphometric data of Saunders’s tern on Farasan Islands and Al Sarum. 

Date: given as MDD (M = month, D = day), Sex: M = male, F = female, J= juvenile 

Colour code: Metal=metal ring, W=white ring, O=orang ring, R=Red ring, D=black ring, Y=yellow ring, G=green ring, B= Blue 
 

Rings Year Site Nest ID Bill Date Time Weight Wing 

length 
Right 

Tarsus 
Sex Code Blood 

samples 
Coo3951 2013 Farasan Islands 1 30 321 08:45 38.5 170.1 17  Metal 2 

Coo3952 2013 Farasan Islands 1 29 323 09:32 44 167 17  Metal 1 

Coo3953 2013 Farasan Islands 4 28.5 324 09:30 43 167 12  Metal 2 

Coo3954 2013 Farasan Islands 4  325 06:45 5 11 7 J Metal 0 

Coo3955 2013 Farasan Islands 11 29.5 325 10:50 46 167 17.5  Metal 2 

Coo3956 2013 Farasan Islands 17 28 326 09:55 45 168 18  Metal 2 

Coo3957 2013 Farasan Islands 13 28.25 326 02:30 48 175 22  Metal 2 

Coo3958 2013 Farasan Islands 12 29 326 03:38 46 174 19  Metal 2 

Coo3959 2013 Farasan Islands 3 30.25 327 10:15 44 169 17  Metal 2 

Coo3960 2013 Farasan Islands 20 28 328 01:50 46 168 18  Metal 2 

Coo3961 2013 Farasan Islands 21 27 330 02:15 47.5 167 18.25  M/YG 2 

Boo4249 2013 Farasan Islands 24 27 331 11:00 48.5 167 18.25  MY/R 2 

B004248 2013 Farasan Islands 24 29.25 331 12:00 45 162.5 18  M/G 2 

B004247 2013 Farasan Islands 25 27.25 401 01:50 41.5 165 17.25  M/Y 2 

B004250 2013 Farasan Islands 16 29.25 401 03:44 45 170 18  M/R 2 

B004201 2013 Farasan Islands SHORELINE 30.5 402 02:00 48 170 18  M/G 1 

B004202 2013 Farasan Islands SHORELINE 31 402 02:00 54 168.5 18  M/R 2 

B004203 2013 Farasan Islands SHORELINE  042 02:00 9   J M 1 

B004204 2013 Farasan Islands SHORELINE  402 02:00 12   J M 1 

B004205 2013 Farasan Islands 29 26 403 05:30 47 165 17  M/Y 2 

B004206 2013 Farasan Islands 31 30 404 09:30 44 170 17  M/R 2 

B004207 2013 Farasan Islands 7 29 406 11:00 59.50 169 17.5  M/G 2 

B004208 2013 Farasan Islands 7 28.25 406 11:00 58 167.5 18  M/R 2 

C007233 2013 Farasan Islands 33 30 424 12:00 42.5 168.5 18  M/YG 1 

C007234 2013 Farasan Islands 33  424 12:15 9   J M 1 
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C003962 2013 Farasan Islands 34 28 424 03:00 43 169 17  M/YO 1 

C003963 2013 Farasan Islands 35 28 424 04:30 43.50 166 18  M/YR 2 

B004001 2013 Farasan Islands 36 25.25 425 12:15 38 162 16.5  M/YB 1 

B004002 2013 Farasan Islands 32 29 427 10:15 45 168 18.25  M/YW 1 

B004003 2013 Farasan Islands 32  427 10:30 6 11 12 J M 1 

B004004 2013 Farasan Islands 32  428 11:50 6 9 12 J M 1 

B004068 2013 Farasan Islands 39 28.75 527 04:36 39.25 167.5 16.25  M/W 2 

B004086 2013 Farasan Islands 40 28.75 402 05:30 41 167 16  M/O 2 

B004209 2013 Al Sarum 1  416 08:15 51 163   M/OY 2 

B004210 2013 Al Sarum 1  416 10:20 44 136   M/By 2 

B004211 2013 Al Sarum 2  416 12:05 53 165.2  F M/GY 2 

B004221 2013 Al Sarum 8  418 10:50 43.5 162.5   M/WY 2 

B004222 2013 Al Sarum 6  418 12:03 43.5 163.5   M/RY 2 

B004223 2013 Al Sarum 6  418 12:30 48.5 162.5   M/YY 2 

B004235 2013 Al Sarum 4  419 08:30 45.5 171.5   M/OW 2 
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Appendix 3. Morphometric data of Kentish plover on Farasan Islands, Jazan, Al Sarum, Umluj and Al Wajh. 

Date: given as MDD (M = month, D = day), Sex: M = male, F = female, J= juvenile 

Colour code: Metal=metal ring, W=white ring, O=orang ring, R=Red ring, D=black ring, Y=yellow ring, G=green ring, B= Blue 
 

Rings Year Site Nest ID Bill Date Time Weight Wing 

length 
Right 

Tarsus 
Sex Code Blood samples 

B004005 2013 Farasan Islands SHORELINE F 428 1440 34 106 28 Metal 1  

B004006 2013 Farasan Islands SHORELINE J 428 1450 8 9 22 Metal 1  

B004007 2013 Farasan Islands SHORELINE J 428 1459 8.5 12 22 Metal 1  

B004008 2013 Farasan Islands 1 F 428 1740 38.5 103 28.25 Metal 1  

B004009 2013 Farasan Islands 2 M 429 1015 37 105 28.25 Metal 1  

B003713 2013 Farasan Islands 3 M 429 1600 36 107 28.25 Metal 1 Ringed previously 

B004010 2013 Farasan Islands 4 M 429 1755 33 102 29.25 Metal 1  

B004011 2013 Farasan Islands 5 F 430 0910 37 102 27.25 Metal 1  

B004012 2013 Farasan Islands 5 M 430 0920 39 109 29.25 Metal 1  

B004013 2013 Farasan Islands SHORELINE M 430 0950 33 106 28.25 Metal 1  

B004014 2013 Farasan Islands 6 M 430 1030 34 105 28.75 Metal 1  

B004015 2013 Farasan Islands 4 F 430 1100 39 105 29 Metal 1  

B004016 2013 Farasan Islands 7 M 430 1155 36 109 29 Metal 1  

B004017 2013 Farasan Islands 7 F 430 1210 38 110 28.25 Metal 1  

B004018 2013 Farasan Islands 8 F 430 1650 36 103 28.75 Metal 1  

B004019 2013 Farasan Islands 9 J 430 1700 6   Metal 1  

B004020 2013 Farasan Islands 9 J 430 1710 7   Metal 1  

B004021 2013 Farasan Islands 9 M 430 1749 36 105.5 29 Metal 1  

B004022 2013 Farasan Islands 9 F 430 1820 37 105 29 Metal 1  

B004023 2013 Farasan Islands 3 F 501 1830 36 99 27 Metal 2  

B007023 2013 Farasan Islands 6 F 501 1010 38 98 27 MO/GR 1 Ringed previously 

B004024 2013 Farasan Islands 10 M 501 1315 37.5 110 31 Metal 1  

B004025 2013 Farasan Islands 11 M 501 1345 55.5 102.5 28.25 Metal 1  

B004026 2013 Farasan Islands 10 F 501 1415 42 102 28 Metal 1  

B004027 2013 Farasan Islands 11 M 501 1505 32.5 105 29 MW/GR 1  
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B004028 2013 Farasan Islands 5 J 502 0958   6 Metal 1  

B004029 2013 Farasan Islands 5 J 502 1007   5.75 Metal 1  

B004030 2013 Farasan Islands 8 M 502 1019  105 36.5 Metal 2  

B004075 2013 Farasan Islands 16 M 530 1111 36 105 27.25 MW/OW 2  

B004076 2013 Farasan Islands 16 F 530 1124 36.5 104 26.25 MW/BW 2  

B004077 2013 Farasan Islands 17 M 530 1250 32.5 104 27.5 MW/OY 2  

B004078 2013 Farasan Islands 17 F 530 1305 37 105.5 27.5 MW/YW 2  

B004079 2013 Farasan Islands 18 F 530 1417 36.5 106 27.5 MW/YY 0  

B004080 2013 Farasan Islands 18 M 530 1430 36.25 106 30 MW/RY 0  

B007100 2013 Farasan Islands 13 F 527 12:00 38.5 106 29 MO/GY 3 Ringed previously 

B007099 2013 Farasan Islands 13 M 527 1300 35 106  MO/GB 2 Ringed previously 

B008610 2013 Farasan Islands 14 F 528 1428 33 100  ..Y/MR 0 Ringed previously 

B008612 2013 Farasan Islands 14 M 528 1527 37.5 109  MO/.. .. 0 Ringed previously 

B004073 2013 Farasan Islands 11 F 529 0830 36.75 101.5  MW/GB 0  

B007080 2013 Farasan Islands 15 F 529 1015 48 109  MO/GLO 0 Ringed previously 

B007079 2013 Farasan Islands 15 M 529 1100 36 107  MO/GLY 0 Ringed previously 
B004085 2013 Farasan Islands 20 F 530 1200 40.25 109 28.5 OY/MR 2 Ringed previously I 

put only metal ring 

B004069 2013 Farasan Islands SHORELINE J 528 1745 12 11.5 24.25 MW/RY 0  

B004070 2013 Farasan Islands SHORELINE J 528 1820 7.75  22.25 MO/RY 0  

B004071 2013 Farasan Islands SHORELINE J 528 1830 7  21.75 MO/RO 0  

B004072 2013 Farasan Islands SHORELINE J 528 1844 7.25  22 MO/RW 0  

B003760 2013 Farasan Islands SHORELINE M 529 1700 34.75 106 29 MG/-R  Ringed previously 

B004074 2013 Farasan Islands SHORELINE J 529 1800 4.50 10 20.50 MW/OY   

B004081 2013 Farasan Islands SHORELINE J 529 1720 6 12 20.50 MW/RG   

B004010 2013 Farasan Islands SHORELINE J 529 1730 4.50 10 20.50 MW/RO   

B004082 2013 Farasan Islands SHORELINE J 601 1705 9.50 13 22 MY/GW   

B003802  Farasan Islands 20 M 530 1414 34.5 109 28 OB/MR 2 Ringed previously 

B004056 2013 Jazan 1 F 526 1130 43 107 27.75 metal 2  
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B004057 2013 Jazan 1 M 526 1139 35 106.5 27.25 metal 2  

B004058 2013 Jazan 2 M 526 1225 33 102 26.25 metal 3  

B004059 2013 Jazan 2 F 526 1400 30 99 27.25 metal 3  

B004060 2013 Jazan 3 M 526 0700 34.5 104 28 metal 3  

B004061 2013 Jazan 6 F 526 0600 38 109 28.25 metal 3  

B004062 2013 Jazan 4 F 526 0715 36.5 107.5 28.75 metal 2  

B004063 2013 Jazan 4 M 526 0815 36.25 105 29 metal   

B004064 2013 Jazan 7 M 526 0840 38.5 108.5 30.25 metal 2  

B004065 2013 Jazan 5 F 526 0956 42 108 28 metal 2  

B004066 2013 Jazan 5 M 526 1015 39 109.5 28.75 metal 2  

B004067 2013 Jazan 7 F 526 1100 45.5 109.5 28 metal 2  

B004212 2013 Al Sarum 1 F 416 1415    Metal 2  

B004213 2013 Al Sarum 2 F 416 1515 36.5   Metal 2  

B004214 2013 Al Sarum 3 M 417 1045 35   Metal 2  

B004215 2013 Al Sarum 2 M 417 1115 34   Metal 2  

B004216 2013 Al Sarum 4 F 417 1155 34   Metal 2  

B004217 2013 Al Sarum 4 M 417 1208 33   Metal 2  

B004218 2013 Al Sarum 5 F 417 1420 50   Metal 2  

B004219 2013 Al Sarum 6 F 417 1458 37   Metal 2  

B004220 2013 Al Sarum 7 F 417 1540 36   Metal 2  

B004024 2013 Al Sarum 8 M 418 1320 37.5   Metal 2  

B004025 2013 Al Sarum 9 M 418 1445 38   Metal 2  

B004026 2013 Al Sarum 9 J 418 1445 6   Metal 1  

B004027 2013 Al Sarum 9 J 418 1445 6.5   Metal 1  

B004028 2013 Al Sarum 9 J 418 1500 6   Metal 1  

B004029 2013 Al Sarum 9 F 418 1500 41   Metal 2  

B004030 2013 Al Sarum SITE 10 J 418 1700 6.25   Metal 1  

B004031 2013 Al Sarum SITE 10 J 418 1700 6   Metal 1  

B004032 2013 Al Sarum SITE 10 J 418 1710 5   Metal 1  

B004033 2013 Al Sarum SITE 10 M 418 1720 34   Metal 2  



212 

Appendix 2 

 

 
B004034 2013 Al Sarum SITE 10 F 418 1730 37   Metal 2  

B004036 2013 Al Sarum SITE1 J 419 1120 9   Metal 1  

B004037 2013 Al Sarum 1 J 420 1128 5   Metal 1  

B004038 2013 Al Sarum 1 J 420 1226 13.5   Metal 1  

B004039 2013 Al Sarum BIG LAKE J 420 1540 20.5   Metal 1  

B004040 2013 Al Sarum  J 420 1515    Metal 1  

B004041 2013 Al Sarum  J 421 1138    Metal 1  

B004042 2013 Al Sarum  J 421 1200    Metal 1  

B004043 2013 Al Sarum  J 421 1420    Metal 1  

B004044 2013 Al Sarum  J 421 1445    Metal 1  

B004045 2013 Al Sarum  J 421 1540    Metal 1  

B004046 2013 Al Sarum  M 421 1650    Metal 1  

B004038 2013 Umluj  J 514 1655 21 29 26.5 Metal 2  

B004039 2013 Umluj  J 514 1715 8  20  1  

B004040 2013 Umluj  J 514 1729 7.5  21.25  1  

B004041 2013 Umluj  J 514 1800 6  20.25  1  

B004042 2013 Umluj  J 515 0942 31.5 43 26  2  

B004031 2013 Umluj  J 513 1402 22.5 41 27  2  

B004032 2013 Umluj  J 513 1419 19 16 26.25  1  

B004033 2013 Umluj  J 513 1500 8 16 26  1  

B004034 2013 Umluj  M 513 1530 39 110 29.25  2  

B004035 2013 Umluj  J 513 1600 12.5 18 23  2  

B004036 2013 Umluj  F 513 1630 39 111 28  2  

B004037 2013 Umluj  F 513 1729 39.5 118 29  2  

B004044 2013 Umluj  F 515 1345 36.5 112.5 29.25  2  

B004045 2013 Umluj  J 515 1455 6  18.25  1  

B004046 2013 Al wajh 1 F 516 1031 42 107.5 27  2  

B004047 2013 Al wajh 1 M 516 1043 40 109 28.25  3  

B004048 2013 Al wajh 2 F 516 1415 40.5 113 29  3  

B004049 2013 Al wajh 2 M 516 1445 35.75 113 29  2  
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B004050 2013 Al wajh  M 517 1000 43 108 26.75  2  

B004051 2013 Al wajh  F 517 1350 46.5 106 27  2  

B004052 2013 Al wajh  J 517 1615 14 21 25.25  2  

B004053 2013 Al wajh  F 517 1900 40.25 110.5 28.5  2  
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Appendix 4. Variables recorded for brood encounters of Kentish plover in Farasan Islands. 

Note: 

Brood ID: negative signs indicate that the brood hatched from a nest we did not find 

Parent : number and sex of parents (4 – both parents, 3 – only male, 2 – only female) 

 

Year Site Brood ID Date Time Parent Chicks Latitude Longitude Habitat Comments 

2013 A -1 528 1500 4 2 96683 35901 shoreline  

2013 A -1 528 1435 4 1 96209 37187 100 far 

from the 

shoreline 

 

2013 A -1 528 1820 4 3 95860 37197 Shoreline  

2013 F -1 529 1700 4 1 99517 39290 shoreline  

2013 B 4 530 1721 4 3 96824 35832 Shoreline  

2013 A 5 601 1705 2 1 95399 37754 shoreline The nest was contains 3 eggs 

 


