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ABSTRACT 

 
There are clear recommendations regarding the amount of physical activity 

necessary for achieving health benefits and reducing the risk of chronic disease in able-

bodied humans. However, there is a paucity of empirical evidence to inform the 

development of equivalent guidelines for various disabled populations. In order to better 

understand the role of physical activity in the health and wellbeing of wheelchair users, 

the logical foundation was to develop valid and reliable methods to accurately quantify 

physical activity. Therefore, the initial aim of this thesis was to assess the validity of 

objective wearable technologies in the prediction of physical activity energy expenditure 

(PAEE). Chapter 3 identified the wrist as the most appropriate anatomical location to 

wear a tri-axial accelerometer during outdoor wheelchair propulsion. In Chapter 4, a 

device comparison study was conducted in a controlled laboratory environment, using 

bespoke PAEE prediction equations, developed for this population. Mean absolute error 

for devices worn on the wrist were lower for the GENEActiv (21%) device compared to 

GT3X+ (33%), across all activities. Using a multi-sensor Actiheart device, the absolute 

prediction error was further reduced when an individual heart rate calibration was applied 

(16.8%), compared to a generic system calibration (51.4%) (Chapter 6). Incorporating 

accelerometry and physiological signals with individual calibration seemingly offered an 

improvement in the prediction of PAEE in wheelchair users.  

 

This rigorous method development process permitted the habitual monitoring of 

free-living physical activity behaviour, during a home-based moderate-intensity exercise 

intervention in persons with chronic paraplegia. In comparison to a lifestyle maintenance 

control group, the intervention group completed a 6-week arm crank ergometry 

intervention, exercising 4 times per week for 45 minutes at 60 – 65% V̇O2 peak. The 

intervention improved fasting markers of insulin resistance, increased fasting fatty acid 

oxidation, and cardiorespiratory fitness. There were also positive changes in health and 

wellbeing constructs and an excellent compliance rate. Hence, home-based upper body 

exercise may have the potential to be used as a long-term behavioural strategy to improve 

the health and wellbeing of persons with chronic paraplegia.  
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CHAPTER 1: INTRODUCTION 
 

Our understanding of the mechanisms whereby physical activity (PA) exerts beneficial 

effects on human health has seen major advances over the past twenty five years (Hawley 

et al., 2015). Regular PA and/or structured exercise is now widely established as an 

important strategy in preventing obesity and chronic diseases such as Type-2 Diabetes 

Mellitus (T2DM) and Cardiovascular disease (CVD) in the general population (Booth et 

al., 2000; Kesaniemi et al., 2001; Haskell et al., 2007). However, for the last ten years at 

least, the UK Chief Medical Officer’s Report has made the same statements regarding the 

lack of evidence to inform policy on the recommended levels of PA for people with 

disabilities: 

 

“A good understanding of the health and functional benefits derived from physical 

activity by persons with disabilities is still limited due to a lack of research.” 

 

This is despite the fact that we now have over 11 million people (750 million worldwide) 

living in the UK with long-term illness or disability. It has been suggested that individuals 

with disabilities should strive to meet the American College of Sports Medicine PA 

guidelines of 150 minutes of moderate-intensity PA per week (World Health 

Organisation, 2004; Nash et al., 2012). Yet there is a degree of uncertainty as to whether 

these able-bodied guidelines are realistically achievable for people with disabilities, due 

to altered physical functioning and numerous personal and environmental barriers that 

they face when trying to become more physically active (Figure 1.1). There is also 

conflicting evidence as to whether people with a disability even accrue the same health 

benefits from meeting these guidelines.  

 

Human metabolic control is determined by complex interactions between our behaviours, 

our environment and our genes. From an evolutionary standpoint, the human genome was 

selected in an environment where high PA was the norm (Late-Palaeolithic era), to ensure 

the procurement of food through hunting and foraging (Booth et al., 2002). At the same 

time, we must consider that there were likely periods of restricted energy intake for our 



Chapter 1  Introduction 

16 
 

prehistoric ancestors, whereby cyclical periods of feast were interspersed with famine 

(Chakravarthy & Booth, 2004). Consequently, metabolic pathways which prioritise 

storing energy for future famine were favoured. It has been suggested that the human 

genome is therefore programmed to expect regular PA (Booth et al., 2002; Chakravarthy 

& Booth, 2004). Disability can negatively impact PA behaviour, as described by the 

Conceptual model of Disability-Associated Low Energy Expenditure Deconditioning 

Syndrome (DALEEDS) (Rimmer et al., 2012; Figure 1.1). Forty seven percent of adults 

with disabilities who are able to do aerobic PA do not get any at all, and an additional 

twenty two percent are considered not active enough (Centers for Disease Control, 2014). 

This creates a dramatic change to the environment where these genes were naturally 

selected. For the vast majority of individuals with a disability the feast/famine cycle is no 

longer applicable; due to inactivity combined with the broad availability of relatively 

inexpensive, highly palatable food (Schrauwen, 2007). As it is unlikely that humans 

genetic make-up has changed over the last 40,000 years (Eaton & Konner, 1985), 

metabolic genes selected to expect a high level of PA are now maladapted (Booth et al., 

2002; Chakravarthy & Booth, 2004).  

 

As a result of the reduction in fuel utilization/turnover excess energy is stored as 

triglycerides (TAG) in adipose tissue. Obesity is rapidly becoming a serious problem in 

disabled populations, with a 1.2 to 3.9-fold increase in prevalence (Liou et al., 2005). The 

accumulation of excess adiposity (along with increased ectopic fat in various tissues) 

leads to the induction of local and systemic inflammation, and eventually insulin 

resistance and T2DM (Lebovitz & Banerji, 2005). As such, obesity has been implicated 

as one of the key drivers in the development of T2DM and CVD (Bastard et al., 2006; 

Waki & Tontonoz, 2007). Whilst the impact of obesity on metabolic health is currently 

receiving a lot of attention, there is a growing appreciation that a greater emphasis should 

be placed upon physical inactivity (Blair, 2009; Weiler, 2010; Kohl et al., 2012). 

Particularly with reference to recent findings from the multi-centre European Prospective 

Investigation into Cancer and Nutrition (EPIC) study, which suggest that inactivity is a 

larger contributor to all-cause mortality than obesity (Ekelund et al., 2015). Laboratory 

experiments have implicated reduced PA with impaired metabolic function (Thyfault & 

Krogh-Madsen, 2011). Even as little as three days of reduced PA can negatively affect 

the body’s ability to regulate plasma glucose concentrations (Mikus et al., 2012). Whilst 
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there is evidence for the independent effects of PA on metabolic health (Walhin et al., 

2013), it also plays an important (and possibly primary) role in the prevention of obesity, 

helping contribute to the maintenance of energy balance through increasing energy 

expenditure.  

 

 

 

Figure 1.1: Conceptual model of Disability-Associated Low Energy Expenditure 

Deconditioning Syndrome (DALEEDS). This model provides an overview of the barriers 

that contribute to physical inactivity in disabled populations, and the subsequent knock 

on effects on health. Taken from (Rimmer et al., 2012). IDALs; instrumental activities of 

daily living. 
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The World Health Organisation (WHO) has addressed physical inactivity as a global 

public health concern. However, a recent survey conducted by the English Federation of 

Disability Sport concluded that only two in ten disabled people in England are currently 

active (Slater, 2013). This is particularly concerning as figures from the Centers for 

Disease Control and Prevention in the USA suggest that adults with a disability who do 

not perform any PA are 50% more likely than their active peers to report at least one 

chronic disease (cancer, diabetes, stroke or heart disease). This thesis will focus on PA 

and health in wheelchair users, specifically individuals with spinal cord injury (SCI). SCI 

creates a complex pathology whereby level and completeness of injury, plus other 

lifestyle factors can lead to increased sedentary behaviours and alterations in body 

composition. The reasons for the adoption of a more sedentary lifestyle are of course 

multifactorial in many populations, but perceived psychosocial and environmental 

barriers to engage in PA are numerous for individuals that use wheelchairs. These include 

reduced self-esteem, a lack of accessible facilities, unaffordable equipment, fear of injury 

and parental or medical over protection (Kehn & Kroll, 2009; Gorgey, 2014).  

 

Compared to matched able-bodied counterparts, adults with SCI are 4 times more likely 

to develop T2DM (Bauman & Spungen, 1994) and twice as likely to develop CVD 

(Garshick et al., 2005). Furthermore, Spungen et al., (2003) demonstrated persons with 

SCI had significantly more adipose tissue accumulation for any given body mass index 

compared to controls. Nevertheless, it is unclear whether the increased risk of chronic 

disease and/or obesity is a result of pathophysiological consequences of the disability per 

se, such as changes in body composition and energy metabolism, atrophy of lean mass 

(LM) or the impact of inactivity itself. 
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Hence the overarching research question of this thesis is to address the role of PA on the 

health and wellbeing of persons with SCI. The necessary starting point was to develop 

methods capable of accurately measuring free-living physical activity energy expenditure 

in wheelchair users. These methods, incorporating validated wearable technology, were 

then utilised in a randomised controlled trial to ascertain the impact of increased PA on 

functional health, wellbeing and metabolic health in individuals with SCI (Figure 1.2). 

 

 

 

Figure 1.2: Schematic of the research questions and layout of this thesis. 
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“Lack of activity destroys the good 

condition of every human being, while 

movement and methodical physical 

exercise save it and preserve it” 

 

 
Plato (427-327 B.C.). 
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CHAPTER 2: REVIEW OF THE LITERATURE 
 

The purpose of this literature review is to: i) describe the physiological changes 

which occur following spinal cord injury (SCI) and their role in the development of 

chronic disease, with a particular focus on T2DM and CVD, ii) critique the methods 

available to researchers to measure PA in wheelchair users, and, iii) review the evidence 

pertaining to the role of PA in alleviating risk factors for T2DM and CVD in individuals 

with a SCI. 

 

2.1. SPINAL CORD INJURY 
 

The spinal cord is a cylindrical bundle of nerve fibres, connecting the brain and the 

peripheral nervous system. It is encased within 31 vertebrae; eight cervical, 12 thoracic, 

5 lumbar, 5 sacral and 1 coccygeal (Figure 2.1). A spinal cord injury is a significant life 

changing event which has wide ranging implications for multiple body systems.  SCI 

invariably leads to a loss of sensory and motor control beneath the lesion level, 

irrespective of its pathophysiology, be it direct trauma (e.g. a car crash) or from disease 

or degeneration (e.g. cancer). Injuries can be classified as i) complete - an absence of 

sensory and motor functions in the lowest sacral segments or; ii) incomplete - preservation 

of some sensory or motor function below the level of the injury. The axons in different 

regions of the spinal cord correspond to different information being relayed between the 

brain and the peripheral tissues. For example, information regarding proprioception is 

transported via the dorsal column at the back of the cord, whereas pain and temperature 

information is carried in the spinothalamic tract located more laterally (Webborn, 2008). 

As such, when different areas of the cord are damaged this can have different 

physiological consequences. The exact level of the injury sustained also dictates the 

degree of impairment, i) tetraplegia - injury to the cervical region of the spinal cord with 

associated loss of muscle strength in all four extremities, ii) paraplegia - injury sustained 

to the spinal cord in either the thoracic, lumber or sacral segments with strength loss in 

the legs.  
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Figure 2.1: Spinal cord showing the various segments and the degree of motor function 

associated with lesions occurring at specific levels. Sympathetic nervous function is 

disrupted with injuries occurring above T6. Adapted from Spinal Cord Injury Treatment 

Center Society online (SCITCS.org) (http://scitcs.org/about-us/spinal-cord-injury/) 

 

2.2. EPIDEMIOLOGY OF SPINAL CORD INJURY 
 

2.2.1. Incidence and Prevalence  
 

There are no reliable estimates of the global prevalence of SCI, perhaps reflecting the 

need for improvements in international standards and guidelines for reporting SCI. A 

systematic review of the literature published between 1950 and 2012 suggested that 

global prevalence varied from 236 to 1,298 per million inhabitants (Furlan et al., 2013), 

implying a broad variation of prevalence rates between geographical locations. The 

estimated annual global incidence of SCI is between 40 to 80 cases per million (World 

Health Organization, 2013). Recent figures would suggest that in the UK around 1,200 

people become paralysed every year, with a new person sustaining an injury roughly 

every 8 hours (Apparelyzed, 2014).   
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A report from the National Spinal Cord Injury Statistics Centre (2011) conveys various 

demographic trends with regards to an increased likelihood of sustaining a SCI. SCI 

primarily affects young adults, approximately 50% of cases occur between the ages of 16 

– 30 years.  Males are also approximately 4 times more likely than females to have a SCI 

(80.7% reported on the USA national database). Since 2005, the most frequent neurologic 

category at discharge of persons reported to the USA national database was incomplete 

tetraplegia (39.5%), followed by complete paraplegia (22.1%), incomplete paraplegia 

(21.7%) and complete tetraplegia (16.3%). Unfortunately these statistics are not easily 

available for the UK and hence the USA has been used as a reference.  The most common 

causes for traumatic SCI in the USA since 2000 were road traffic accidents (48.3 %), falls 

(21.8 %), acts of violence (12.0 %) and sport (10.0 %) according to a systematic review 

of outcomes (DeVivo, 2012). 

 

Over the past 60 years there has been a worldwide improvement in the acute survival of 

patients with a traumatic SCI through rapid transportation to a specialised unit, medical 

treatment advancements and improved rehabilitation. As a consequence there has been a 

shift in focus from acute life support medicine to addressing other secondary health 

complications associated with aging in a wheelchair. Consequently the long-term 

demands on medical and support resources are high. Approximately 21% of people 

discharged from SCI Centres go into nursing homes, hospitals or other institutionalised 

settings rather than back to their own homes. In the UK, it is conservatively estimated 

that the current annual cost of caring for people paralysed by SCI is more than £500 

million (Apparelyzed, 2014). Besides the decreased functional ability and independence, 

secondary medical complications and common co-morbidities also add to treatment costs 

for individuals with SCI. 

 

2.2.2. Incidence of Chronic Disease and Mortality  
 

The medical history of SCI dates back to ancient Egyptian documents written around 

2500 years BC, which describes “crushed vertebra in his neck” with accompanying 

neurological symptoms (Anderberg et al., 2007). The message portrayed was that this 

was an ailment which was not to be treated. Widely this belief was maintained until the 
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end of the Second World War when the Stoke-Mandeville National Spinal Centre was 

opened by Sir Ludwig Guttmann, kick-starting the modern era of rehabilitation. At 

present, due to improved healthcare and medical innovations, people with SCI can expect 

to live almost as long as those without (Yeo et al., 1998). That said, a recent systematic 

review looking at survival worldwide after SCI concluded that overall mortality in SCI is 

up to three times higher than in the general population (van den Berg et al., 2010). 

Historically, renal and respiratory conditions were the most prevalent comorbidities 

(Frankel et al., 1998). Whilst they remain common causes of mortality, evidence now 

suggests that CVD is the leading cause of mortality in individuals with chronic SCI 

(Garshick et al., 2005). An invited review on CVD in SCI (Myers et al., 2007) suggested 

the rate of symptomatic CVD is between 30 – 50% compared to 5 – 10% in the general 

able-bodied population. Morbidity from CVD causes, primarily coronary artery disease 

(CAD), also tends to occur earlier in the lifespan in individuals with SCI compared to the 

general population (Devivo et al., 1992; Garshick et al., 2005). This was summarised as 

a nearly 4-fold higher rate of cardiac death prior to turning the age of 45 years, in 

comparison to the general population (Yekutiel et al., 1989).  

 

Perhaps equally as worrying as their risk of developing CVD, persons with SCI have 

decreased awareness of the presence of CAD due to a lack of moderate-vigorous PA 

which may precipitate angina. Consequently there is an increased incidence of 

asymptomatic disease (Bauman et al., 1994; Groah et al., 2001). SCI, dependent on the 

exact level of injury, is characterised by a disruption of normal autonomic cardiovascular 

control mechanisms (Krassioukov & Claydon, 2006; Wecht & Bauman, 2013). These 

physiological changes lead to; i) a loss of normal regulation of the peripheral vasculature, 

ii) autonomic dysreflexia, iii) abnormal heart rate variability (HRV) and, iiii) a higher 

prevalence of cardiac rhythm disturbances (Myers et al., 2007). There is now growing 

recognition that these factors could be contributing to the increased risk of CVD (Bauman 

et al., 1999; Villareal et al., 2002; Jacob et al., 2005).  

 

Besides CVD, population based studies have also revealed the incidence of T2DM to be 

high in individuals with SCI (LaVela et al., 2006; Cragg et al., 2013; Lai et al., 2014). 

Indeed, it has been suggested that adults with SCI are 4 times more likely to develop 
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T2DM than able-bodied controls (Bauman & Spungen, 1994). Metabolic abnormalities 

caused by T2DM are associated with endothelial dysfunction that predisposes individuals 

to the development of atherosclerosis and subsequent cardiovascular events (Beckman et 

al., 2002). As such, individuals with T2DM are 2-5 times more likely to develop CVD 

than individuals without T2DM (Garcia et al., 1974). Other secondary health 

complications associated with SCI, such as pressure ulcers and urinary tract infections, 

contribute to sedentary behaviours and are a substantial expense to health services. 

Annual prevalence rate for pressure ulcers has been reported around one third (Kruger et 

al., 2013) and they have been implicated as the second leading cause of rehospitalisation 

after SCI (Cardenas et al., 2004).  

 

Although pioneering research and significant advances are being made in finding a cure 

for SCI in order to reverse paralysis, it is important that we develop treatments to reduce 

secondary complications associated with aging with the disability. Thankfully the 

aforementioned excess mortality through chronic diseases is related to potentially 

treatable factors such as obesity and PA. This will be discussed in more detail later on in 

this review. It is important to understand why individuals with SCI are at an increased 

risk of developing chronic diseases. To facilitate this, it is necessary to appreciate the 

physiological and behavioural changes that occur after sustaining a SCI. 

 

 

2.3. PATHOPHYSIOLOGY OF SPINAL CORD INJURY  
 

2.3.1. Inactivity and Functional Capacity  
 

Sedentary lifestyles and reduced physical function contribute to the increased morbidity 

and mortality observed in this population. Both PA and physical work capacity are 

influenced by the type and level of SCI. The higher the level of lesion, the greater the 

impairment of muscle function and therefore the greater the decline in functional capacity 

(Jacobs & Nash, 2004). Individuals with higher level injuries (≥ T6) also exhibit a blunted 

cardiovascular response to exercise, as a result of autonomic dysregulation, and they can 

also lack the adequate sympathetic drive to increase heart rate above 120 – 125 b·min-1 

(Myers et al., 2007). This is a consequence of the loss of supraspinal control of the 
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sympathetic nervous system (Furlan & Fehlings, 2008) and a reduced catecholamine 

response to exercise (Steinberg et al., 2000). However even in lower level injuries, the 

action of the skeletal muscle pump (intermittent contraction and relaxation) to assist in 

the redistribution of blood flow during exercise can be compromised, leading to 

inadequate venous return and blunting of cardiac output (Myers et al., 2007). 

Consequently these factors reduce the capability of the human body to adapt appropriately 

to a bout of exercise, which can lead to early fatigue. Combined with numerous 

psychosocial and environmental barriers to engage in PA for persons with SCI, this can 

lead to avoidance of physical exertion. Fatigue, reduced self-esteem, lack of accessible 

facilities, unaffordable equipment, fear of injury and parental or medical over protection 

have all been cited as barriers preventing engagement in PA (Rimmer et al., 2004; Kehn 

& Kroll, 2009; Craig et al., 2012; Gorgey, 2014).  

 

Due to lower limb paralysis, exercise options are also often limited to the upper 

extremities. Subsequently, overuse injuries and shoulder pain are common (Dyson-

Hudson & Kirshblum, 2004; Samuelsson et al., 2004), further contributing to physical 

inactivity. With the development of a compendium, describing energy expenditure for 

physical activities specific to the everyday lives of wheelchair users, it is clear that the 

energy cost of most exercise and recreation activities are considerably lower (- 27%) than 

those reported in the general population (Collins et al., 2010; Conger & Bassett, 2011). 

The most likely explanation for this is that these activities involve a smaller skeletal 

muscle mass, predominantly restricted to the upper body, instead of recruiting larger 

muscle groups in the legs. Therefore, it is not possible to achieve the same whole-body 

oxygen uptake.  

 

Van den Berg-Emons et al., (2008) assessed the change in PA over time after a SCI, using 

an accelerometer capable of detecting the duration of dynamic activities and the intensity 

of everyday activities. Whilst physical activity levels increased during inpatient 

rehabilitation, this increase did not persist after discharge. At 1 year after discharge (n = 

16) physical activity levels were significantly lower, measured as the mean duration of 

dynamic activities, compared to matched, able-bodied subjects (49 vs. 143 min·day-1). 

However, physical activity level was only monitored during 2 consecutive weekdays. 
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Persons with chronic (time since injury: 13 ± 10 years) paraplegia also exhibit low 

physical activity level (PAL; daily total energy expenditure/ resting metabolic rate) (mean 

1.56 ± 0.34), measured using the flex heart rate (HR) method (Buchholz et al., 2003b). 

Self-report questionnaire data also supports the notion that individuals with SCI engage 

in little to no PA (Washburn et al., 2002; Ginis et al., 2010b). The current available 

evidence on PA levels in persons with SCI, albeit some of which is limited by the 

measurement tools adopted (discussed in detail in section 2.7), suggests that the majority 

of this population are inactive.  

 

Cardiorespiratory fitness  

 

Common measures of cardiorespiratory fitness are the peak attainable rate of oxygen 

uptake (V̇O2 peak) or peak workload achieved during an incremental test to volitional 

exhaustion. In wheelchair users these variables can be assessed using continuous or 

discontinuous protocols using wheelchair propulsion (treadmill or wheelchair ergometer) 

or arm crank ergometry. Poor cardiorespiratory fitness has been widely reported in 

individuals with SCI (Janssen et al., 2002; Haisma et al., 2006). This is concerning as 

there is a wealth of evidence identifying cardiorespiratory fitness as an important 

determinant of all-cause morbidity and mortality in the able-bodied population (Blair et 

al., 1996; Lee et al., 1999; Myers et al., 2002; Kaminsky et al., 2013). The variance 

between individuals in cardiorespiratory fitness can be attributed to both hereditary (~ 

50%) and environmental (~ 50%) factors (Bouchard et al., 1999). Additional variance in 

the SCI population can be attributed the exact level and type of neurological injury 

sustained, and the degree of functional impairment. It is important to distinguish that the 

only environmental factor known, with any relevance, to influence V̇O2 peak is PA 

(Church, 2009). Perhaps unsurprisingly, physical activity level has been correlated to 

cardiorespiratory fitness in persons with SCI (Muraki et al., 2000; de Groot et al., 2010; 

Nooijen et al., 2012). Thus as it is widely believed cardiorespiratory fitness is an outcome 

of habitual PA, epidemiological data linking cardiorespiratory fitness with long term 

health, at least indirectly, implies that PA has a key role to play in the prevention of 

chronic disease.  
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In a large-scale epidemiological study assessing the relationship between 

cardiorespiratory fitness and functional limitations in able-bodied men (n = 3495) and 

women (n = 1175) over the age of 40, Huang et al., (1998) showed a strong relationship 

between low levels of cardiorespiratory fitness and functional limitations. These findings 

also translate to individuals with SCI; Noreau and Shephard (1995) concluded that only 

1 in 4 young people with paraplegia were able to achieve peak functional capacity 

necessary to maintain independent living. More recently, Hetz et al., (2009b) 

demonstrated participants with higher levels of cardiorespiratory fitness spent more time 

participating in activities of daily living and leisure time physical activity. The intricate 

link between PA and cardiorespiratory fitness means a debilitating cycle exists whereby 

even less activity leads to further deconditioning and therefore more problems engaging 

in PA and activities of daily living (ADL) (Nash, 2005; Fernhall et al., 2008). This process 

is also exacerbated by the aging process.  

 

2.3.2. Impact on Body Composition 
 

Obesity 

 

The first law of thermodynamics states; ‘energy cannot be destroyed but can only be 

transformed from one form to another’. Simplistically, human energy balance can be 

expressed as: 

Energy Balance = Energy Intake – Energy Expenditure 

 

The components of energy expenditure will be explained later on (Section 2.5). In the 

context of SCI, besides a reduction in physical activity energy expenditure, energy 

balance is influenced by changes in dietary habits and a loss of metabolically active tissue. 

Feasel & Groah, (2009) suggested physical barriers (e.g. transport to shops and 

supermarket store shelving), environment (e.g. hospital food), functional challenges (e.g. 

problems encountered when preparing food) and social factors (comfort food provided 

by family/friends) contribute to an ‘obesogenic environment’. Yet data reported since 

2008 revealed individuals with SCI consume fewer kilocalories (males; ~500 – 600 
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kcal∙day-1, females; ~100 kcal∙day-1) than the general population (Groah et al., 2009: 

Walters et al., 2009). At present there is a lack of information on energy balance in this 

population, due to the lack of accurate methods to measure habitual energy expenditure 

(discussed in Section 2.7). Furthermore, there are several limitations with self-report diet 

data (Livingstone & Black, 2003: Dhurandhar et al., 2014), and it is perhaps advisable at 

this moment in time not to equate these two methods to derive energy balance. 

Nevertheless, data comparing resting metabolic rate and energy intake in individuals with 

SCI indicate a surplus of ~ 300 – 500 kcal∙day-1 (Lee et al., 1985:Aquilani et al., 2001: 

Perret & Stoffel-Kurt, 2011). Whilst this difference might appear trivial, even a small yet 

sustained energy surplus will eventually lead to an increase in body mass.  

 

Regardless of the macronutrient composition of ingested food, when there is a sustained 

energy surplus, excess energy is ultimately stored as TAG within adipose tissue. This is 

not simply restricted to the processing of dietary fats. As the capacity of the human body 

to store glucose as glycogen is limited, biological pathways such as de novo lipogenesis 

(DNL) exist. Surplus dietary carbohydrate is converted to fatty acids in the liver and, to 

a lesser extent in adipocytes (Hellerstein et al., 1996). This takes full advantage of the 

impressive capacity for adipose tissue to store excess energy. Adipose tissue is capable 

of expanding to more than 80% of body weight in obese individuals (Thompson et al., 

2012). Yet this capacity for storing energy becomes problematic when in a chronic state 

of energy surplus, i.e. as a result of reduced PA following SCI. De Groot et al., (2014) 

recently monitored changes in BMI following a SCI; 29% of participants were obese 

(BMI ≥ 25 kg/m2) at baseline (n = 195), 34% at discharge (n = 185) and 54% at the 5 year 

follow-up (n = 126). However, BMI has limited applicability to estimate obesity as it does 

not differentiate between fat mass (FM) or LM, this is a considerable limitation for its use 

in individuals with SCI. For example, (Clasey & Gater, 2005) reported that 10 out of 13 

persons (77%) who had paraplegia, had body fat percentages in the obese range, despite 

a mean BMI ≤ 25 kg/m2. This study is the only one, to our knowledge, to report body 

composition by four-compartment modelling (utilising estimates of body density, total 

body water (TBW) and total body bone mineral). Incorporating these estimates has been 

recommended as the most appropriate method to determine body composition in this 

population (Clasey & Gater, 2007). Furthermore, Spungen et al., (2003), demonstrated 

using dual-energy X-ray absorptiometry (DEXA) that 133 men with chronic SCI were on 
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average 13% fatter per unit of BMI compared to age, height-, and ethnicity- matched able-

bodied controls.  

 

Consequently, the true prevalence of obesity in this population might be higher than the 

53% (BMIs ≥ 25 kg/m2) reported in a large scale epidemiological study (n = 7959) 

managed in Veterans Affairs hospitals in the USA (Weaver et al., 2007). In a detailed 

review on obesity after SCI, Gater (2007) suggested when considering the best data 

available that two in every three persons with SCI are likely to be obese. Besides an 

increased prevalence of obesity, the location of adipose tissue is also different. Edwards 

et al., (2008) found that persons with SCI had 58% more visceral adipose tissue (VAT; 

quantified by computed tomography) than waist circumference matched able-bodied 

controls once differences in weight were accounted for. Worryingly this was in a 

relatively young cohort (age: 39 ± 8 years), who also considered themselves active and 

healthy. The increase in central obesity, particularly the accumulation of VAT, has been 

identified as an independent risk factor for T2DM and CVD in the able-bodied population 

(Nakamura et al., 1994; Boyko et al., 2000; Shah et al., 2014), and for impaired 

carbohydrate and lipid metabolism in SCI (Gorgey et al., 2011). This might be due to 

elevated levels of inflammation from VAT and fatty acid output directly to the liver via 

the hepatic portal vein (Jensen, 2008). The role of obesity on insulin resistance and 

chronic inflammation will be discussed in more detail later on (Section 2.4.3 and 2.4.5, 

respectively).  

 

Muscular atrophy  

The lack of stimulation and disuse as a result of paralysis can have a profound impact on 

skeletal muscle below the level of injury. The atrophy of LM has been widely documented 

(Nuhlicek et al., 1988; Kocina, 1997; Dionyssiotis et al., 2008; Biering-Sorensen et al., 

2009), which facilitates a reduction in substrate storage capacity. After as little as 24 

weeks, Castro et al., (1999) noticed that the cross-sectional area of paralysed muscle is 

between 45 - 80% of that in age and weight matched controls. Besides the loss of LM, 

the quality of skeletal muscle that remains also deteriorates. Adipose tissue accumulates 

within and between muscle groups in the legs of individuals with SCI (Gorgey & Dudley, 
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2007; Shah et al., 2008). Gorgey & Dudley (2007) demonstrated using magnetic 

resonance imaging (MRI), that relative intramuscular fat (IMF) in both thighs was three 

times higher in persons with incomplete SCI 6 weeks after injury compared to age and 

weight matched able-bodied controls. The accumulation of IMF has been linked with 

impaired glucose tolerance in persons with SCI (Elder et al., 2004; Ryan et al., 2012) and 

skeletal muscle insulin resistance in inactive able-bodied individuals (Eckardt et al., 

2011). 

 

There is less available research commenting on the effects of chronic (> 1 year) SCI on 

lower-extremity muscle size and quality, with most small-scale studies reporting changes 

after acute SCI. Spungen et al., (2000) assessed body composition via DEXA in eight 

pairs of monozygotic twins, one twin in each pair had paraplegia (time since injury; 3 – 

26 years). The authors found trunk and leg LM was significantly lower in the paralysed 

twin. The continuous lean tissue loss represents accelerated and progressive sarcopenia 

(age-induced skeletal muscle atrophy) in the SCI population. Using peripheral 

quantitative computed tomography (PQCT) scans of the calf, Moore et al., (2015) has 

recently shown that participants with motor complete SCI (mean duration of injury 16 ± 

10 years) had ≈ 32% lower muscle area, and ≈ 43% lower muscle density values compared 

to controls. These changes are perhaps best visualised in Figure 2.2.  
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Figure 2.2: Whole body Dual-energy X-ray absorptiometry (DEXA) scan of a female 

participant in Chapter 6. This participant sustained a neurological complete T7 injury 6 

years ago. Whilst total percentage body fat was high (58%), percentage body fat 

specifically in the legs was 69%. This figure visually highlights the drastic atrophy of LM 

in the lower extremities of individuals with SCI. Colour scheme- amber; adipose tissue, 

red; LM, blue; skeleton 

 

Besides the loss in LM, immobilisation of the lower-extremity muscles can also facilitate 

dramatic morphological and contractile changes. Following SCI there is a muscle fibre 

type transformation; with a shift from type I fibres (occurring around 4 – 7 months post 

SCI) to predominantly fast glycolytic IIb fibres years after the injury (Biering-Sorensen 

et al., 2009; Pelletier et al., 2014). The oxidative enzyme activity begins to decline after 

the first few moths post SCI, and > 1 year post injury has been shown to be well below 

the level seen in able-bodied individuals (Rochester et al., 1995; Gerrits et al., 2003). This 

may reflect the concurrent transformation of muscle fibres from slow to fast twitch. 

Furthermore, below the neurological level of SCI, remodelling of the peripheral 

vasculature occurs (Olive et al., 2003). These changes, along with reduced PA, have 

profound implications in the progression of chronic diseases in this population and will 

be discussed in more detail in future sections.  
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2.4. BIOMARKERS OF CHRONIC DISEASE 
 

Various biological mechanisms, integral in the maintenance of metabolic control, are 

influenced by physical inactivity and have been implicated in the progression of certain 

chronic diseases. These mechanisms ensure cellular energy balance is achieved, through 

regulating the distribution and storage of nutrients and their release from stores and 

delivery to individual tissues as required. The aforementioned processes are intricately 

controlled via complex cross-talk between tissues (adipose tissue & skeletal muscle) and 

organs (liver, endocrine pancreas & brain). Energy homeostasis is achieved through 

feedback signalling of peripheral tissues to the central nervous system (Jordan et al., 

2010), which is the focus of this next section. 

 

2.4.1. Overview of Metabolic Control in Humans 
 

The human body is well adapted to cope with rapid changes in metabolic flux, brought 

about through ingesting a meal or a bout of PA. In response to major disturbances in the 

supply and demand for energy, human cells are readily able to switch between glucose 

and fatty acid oxidation to meet their ATP requirements (Kelley & Mandarino, 2000). 

This ability is a characteristic of healthy humans and can be termed ‘metabolic flexibility’. 

Growing evidence (Kelley et al., 2002; Storlien et al., 2004) has implicated metabolic 

inflexibility as a key dysfunction in metabolic syndrome (Section 2.4.3). 

 

Metabolic flux between tissues is largely regulated by insulin and reflects the body’s 

current nutritional state. Carbohydrates are absorbed via the small intestine, after being 

hydrolysed into monosaccharides, such as glucose and/or fructose, prior to absorption. 

Dietary fats are also absorbed in the small intestine and enter the circulation as TAG-rich 

chylomicrons via the lymphatic system. Consequently there is a rise in plasma glucose 

and lipid availability following a mixed meal or oral glucose challenge. As such, there is 

the drive for nutrient uptake and storage, whereby the human body switches from a 

predominantly catabolic state to an anabolic state. TAG is hydrolysed from plasma 

chylomicrons by the action of endothelial lipoprotein lipase (LPL). Most of the released 

fatty acids then enter adipocytes (and other cells including myocytes and hepatocytes), 
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where they become esterified with α-glycerol-phosphate (synthesised in the adipocytes 

from glucose metabolites) and stored as TAG. Glucose is stored as glycogen within 

skeletal muscle (~500g) and the liver (~100g), and becomes the primary substrate for 

oxidation during the postprandial state. These storage processes are achieved through the 

release of insulin into the circulation in combination with reduced glucagon secretion 

(Wasserman, 2009). Insulin acts to supress adipose tissue lipolysis and hepatic glucose 

production (discussed below) and is the main driver of glucose removal from the blood 

stream via peripheral tissues.  

 

In contrast, in the fasted state, non-esterified free-fatty acids (NEFA) are preferentially 

oxidised in tissues such as skeletal muscle (Frayn & Karpe, 2014). NEFA are liberated 

by the hydrolysis of stored TAG within adipocytes, by the enzyme hormone-sensitive 

lipase (HSL). Consequently in the fasted state adipose tissue receives a greater blood flow 

than resting skeletal muscle, and this adipose tissue blood flow is capable of increasing ~ 

8-fold in the postprandial state (Bickerton et al., 2007). Plasma glucose concentrations 

are primarily maintained through the coordination of hepatic glycogenolysis and 

gluconeogenesis for subsequent hepatic glucose output (Wasserman, 2009). These 

processes protect the brain from a dramatic fall in plasma glucose. Under normal 

circumstances the brain uses solely glucose; plasma glucose concentrations are therefore 

tightly regulated (> 2 mmol∙l-1) to maintain cognitive processes. The endogenous glucose 

production from the liver and adipose tissue lipolysis is stimulated by glucagon and low 

levels of plasma insulin (Abdul-Ghani & DeFronzo, 2010). Catecholamines, namely 

adrenaline, act in conjunction with the low insulin/glucagon ratio in the circulation to 

activate hepatic glucose output and adipose tissue lipolysis in the fasted state and during 

exercise.  

 

2.4.2. The Role of Insulin 
 

Insulin is a peptide hormone, synthesised and released from pancreatic β-cells. As 

touched upon above, its rate of secretion is in response to the metabolic or nutritional 

state; the most important regulator being an increase in plasma glucose concentration. 

Insulin exerts a myriad of cellular effects on various tissues to in order to exert metabolic 
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control. In the liver insulin acts as a potent inhibitor of endogenous glucose production 

(through glycogenolysis and gluconeogenesis), which attenuates the postprandial rise in 

blood glucose concentrations following a meal. It is worth pointing out that the 

suppression of hepatic glucose output is achieved via relatively low insulin 

concentrations, although actions in peripheral tissues require a higher insulin 

concentration (Prager et al., 1986). In adipocytes, insulin stimulates the uptake of glucose 

and lipids (triglyceride synthesis) and the suppression of NEFA release. In skeletal 

muscle, insulin also stimulates glucose uptake, oxidation and glycogen synthesis. The 

transport of glucose into muscle is achieved via the glucose transporter protein 4 (GLUT-

4). Insulin stimulates the translocation of GLUT-4, sequestered in membrane vesicles 

within the cell, to the plasma membrane thereby increasing glucose transport into the cell 

and an effective clearance of glucose from the blood. Insulin also acts as a vasoactive 

hormone. It induces vasodilation by stimulating the release of nitric oxide from the 

endothelium (Steinberg et al., 1994), whereas vasoconstriction is primarily dependent on 

endothelin-1 (Eringa et al., 2002). These actions alter blood flow dynamics in skeletal 

muscle and adipose tissue (Baron et al., 1995), influencing the uptake of glucose by 

peripheral tissues.  

 

2.4.3. Insulin Resistance  
 

Insulin resistance is a pre-requisite to T2DM. It is characterised by the failure of insulin 

to exert the normal cellular effects on various tissues, leading to the impairment of insulin 

mediated glucose disposal described above. Fasting hyperglycaemia can persist due to 

the insensitivity of the liver to the suppressive effects of insulin on gluconeogenesis and 

reduced glycogenolysis (Lee et al., 2009). Consequently this can lead to impaired glucose 

tolerance, which is clinically diagnosed as a fasting plasma glucose concentration 

between 5.6 – 6.9 mmol·l-1 (Amer Diabet, 2014). Persistently elevated blood glucose 

concentrations can have significant macro-vascular complications - coronary artery 

disease, peripheral artery disease and stroke (King et al., 2005).  

 

In the presence of peripheral insulin resistance, the normal homeostatic response to 

elevated plasma glucose is for an increased pancreatic β-cell secretion of insulin, leading 
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to hyperinsulinemia (Bauman et al., 1999).  Since fasting plasma glucose concentrations 

have been shown to correlate with basal rates of hepatic glucose output (Campbell et al., 

1988), and fasting plasma glucose concentrations are only mildly elevated in subjects 

with SCI (Bauman et al., 1999); it is most likely that peripheral insulin resistance is the 

major driver responsible for impaired glucose tolerance in this population. Skeletal 

muscle plays a huge role in insulin mediated glucose disposal. For example following a 

high carbohydrate mixed meal (75 g carbohydrates, 37 g protein, and 17 g fat), skeletal 

muscle glucose uptake accounted for ~ 50% of the absorbed glucose (Capaldo et al., 

1999). However, lower extremity paralysis results in a decrease in the quantity and quality 

of muscle mass as well as morphological, physiological and biomechanical changes 

(Section 2.3.2). Type IIb muscle fibres are less sensitive to the action of insulin (Lillioja 

et al., 1987), and these fibres also have a reduced capillary density. Furthermore, Long et 

al., (2011) demonstrated that mRNA and protein expression of skeletal muscle genes 

essential for glucose storage are reduced in persons with SCI, along with mitochondrial 

proteins that are essential for oxidative phosphorylation. 

 

The vasodilatory actions of insulin are also blunted in individuals with insulin resistance 

(Tousoulis et al., 2008). These haemodynamic actions are substantially blunted in the 

microvasculature below the level of SCI lesion (La Fountaine et al., 2013). Karlsson, 

(1999) implicated sublesion sympathetic nervous system (SNS) dysfunction in the 

decreased systemic insulin sensitivity observed in individuals with high SCI (C6 – T4). 

Therefore, impaired microcirculation below the lesion level might also be contributing to 

the increased risk of CVD related mortality, as well as further accentuating the insulin 

resistant state in persons with SCI. Plus there is the potential for impaired insulin-

mediated vasodilation to be a primary factor in the aetiology and persistence of pressure 

sores (La Fountaine et al., 2013).  

 

Able-bodied PA restriction studies have implicated physical inactivity as the primary 

pathological driver of insulin sensitivity. For example, Krogh-Madsen et al., (2010) 

showed, using a two-week step reduction model (transition from ~10,000 to 1,500 

steps·day-1), a 17% reduction in insulin sensitivity in healthy men. During this period 

there was also an accumulation of visceral fat. It is generally recognised that obesity is 
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associated with insulin resistance. One of the key factors linking the expansion of adipose 

tissue with the development of insulin resistance is chronic low grade inflammation 

(Hotamisligil et al., 1993; Weisberg et al., 2003). This is because adipose tissue, or more 

likely immune cells (macrophages and T lymphocytes) contained within the stromal 

vascular fraction (SVF), are a source of inflammatory cytokines such as TNFα and IL-6 

(Fain, 2010; Thompson et al., 2012) which can interfere with skeletal muscle insulin 

signalling (Plomgaard et al., 2005). Insulin resistance can also result in a decreased 

suppression of lipolysis in adipose tissue.  Elevated levels of NEFA in the circulation 

further exacerbates insulin resistance in the liver and skeletal muscle (Abel et al., 2001), 

thus creating a vicious cycle. Specifically, in individuals with SCI researchers have 

started to establish clear associations with obesity (total and regional) and insulin 

resistance (Bauman & Spungen, 1994; Bauman & Spungen, 2001).  

 

But this brings into question whether the reduction in insulin sensitivity is a result of 

inactivity per se or a consequence of positive energy balance. This question was partly 

addressed using a short term (7-day) reduced PA and over-feeding model (Walhin et al., 

2013). Healthy young men were randomly assigned, either to i) increase their energy 

intake by 50% and reduced their PA (<4,000 steps·day-1) to induce an energy surplus 

(SUR) or ii) to the same regime but with 45 minutes of running per day (SUR + EX). 

Importantly, energy surplus was maintained in the SUR + EX group by providing them 

with additional calories to account for the energy expended during exercise. Despite an 

increase in body weight, and in the face of a standardised energy surplus, negative 

changes observed in insulin action in the SUR group were prevented by the addition of 

daily vigorous-intensity exercise. Furthermore, Stephens et al., (2011) recently reported 

the deleterious effects of 1-day of sitting upon insulin sensitivity persisted both with and 

without an energy surplus. These studies suggest that inactivity, at least in the short-term 

in able-bodied humans, causes a reduction in peripheral insulin sensitivity. In a subgroup 

of untrained paraplegic participants, the strongest determinant of insulin sensitivity was 

cardiovascular fitness (Bauman & Spungen, 1994). It is noteworthy that the only 

environmental factor known, with any relevance, to alter cardiovascular fitness is PA 

(Church, 2009). Therefore, it seems reasonable to assume that physical inactivity plays a 

considerable role in the development of insulin resistance, and in the long term the 

progression to T2DM in individuals with SCI. This is in conjunction with the 
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pathophysiology of lower extremity skeletal muscle atrophy and increased relative 

adiposity observed in this population (Section 2.3.2).  

 

Measurement Techniques 

There are a number of different methods available to assess insulin sensitivity/resistance. 

The hyperinsulinemic euglycemic clamp, originally developed by Defronzo et al., (1979), 

is widely considered the gold standard measure (Muniyappa et al., 2008). Exogenous 

insulin is infused at a constant rate to produce a steady state plasma insulin concentration 

above fasting levels (hence, hyperinsulinemic). Plasma glucose concentrations are 

frequently monitored every 5 – 10 minutes, and kept constant by the manipulation of the 

exogenous glucose infusion rate. The theory behind this technique is that the rate of 

glucose infusion required to maintain constant plasma glucose concentrations can be 

equated to the rate of glucose disposal into all tissues in the body. This is based on the 

assumption that endogenous hepatic glucose output is completely supressed by the 

maintenance of hyperinsulinemic conditions. When combined with isotopic glucose 

tracers this technique can provide information on tissue specific insulin sensitivity.  This 

technique was deemed unsuitable for Chapter 6 of this thesis, based on numerous practical 

limitations; i) it is time consuming, ii) requires experienced clinical staff to manage any 

technical difficulties, and iii) is expensive to perform. Furthermore, the clamp utilises 

supraphysiological steady state insulin concentrations and ignores absorption from the 

gastrointestinal tract so does not adequately reflect the normal physiological conditions 

that a dynamic test such as mixed meal or an oral glucose tolerance test (OGTT) might 

provide. 

 

The OGTT is a cost-effective and a simple to perform test widely used in clinical practice 

to detect patients with impaired glucose tolerance and T2DM (Amer Diabet, 2014). 

Following a 10 – 12 hour overnight fast, blood samples are drawn before and then at 

various time points for 120 minutes following the ingestion of a standard oral glucose 

load (75 g). Blood samples are analysed for glucose and insulin concentrations. Whilst 

the OGTT provides useful information regarding glucose tolerance, the test itself does 

not provide information on insulin sensitivity/resistance per se (Muniyappa et al., 2008). 
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However, a number of surrogate indices of insulin sensitivity/resistance can be 

incorporated into results of an OGTT. For example whole body insulin sensitivity can be 

measured using the Matsuda Index (ISIMatsuda), which can be calculated from the ratio of 

plasma glucose to insulin concentration over the course of the 120 min. This method is 

highly correlated (r = 0.73, P < 0.0001) to the rate of whole-body glucose disposal during 

the gold standard euglycemic insulin clamp (Matsuda & DeFronzo, 1999). Simple 

surrogate indices can also be derived from fasting samples, such as the Homeostasis 

Model Assessment (HOMA) model that can be used for the prediction of insulin 

resistance (HOMA-IR; Turner et al., 1979) and β-cell function (HOMA-β; Matthews et 

al., 1985). 

 

2.4.4. Metabolic Syndrome  

 

Metabolic syndrome (or syndrome X) is a clinical diagnosis characterised by the 

clustering (≥ 3) of the following CVD risk factors; abdominal obesity, elevated fasting 

concentrations of glucose and TAG, depressed high density lipoprotein (HDL) 

cholesterol and raised blood pressure (Grundy et al., 2002; Grundy et al., 2006). Patients 

diagnosed with metabolic syndrome confer the same clinical threat as those with T2DM 

(Ford, 2005) and are twice as likely to develop CVD between the next 5 -10 years 

compared to controls (Alberti et al., 2009). There is convincing evidence to suggest these 

component risks occur at a heightened frequency in individuals with SCI; specifically 

increased central obesity (Gater, 2007), impaired fasting glucose/T2DM (Duckworth et 

al., 1980; Bauman & Spungen, 2008) and dyslipidaemia (Bauman et al., 1992), 

accelerating the trajectory to metabolic syndrome.  

 

Whilst these criterion cut-points (Table 2.1) have been well established for the general 

population it is worth pointing out that a recent meta-analysis (Gilbert et al., 2014) 

highlighted a unique lipid profile for individuals with SCI, primarily characterised by 

depressed HDL cholesterol. Compared with able-bodied controls no significant 

differences were found for TAG concentrations across fifty studies. A suggestion from 

this work was that more-specific CVD risk stratification guidelines are established for 

this population. However, in the absence of these SCI specific recommendations, general 
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targets for lipid and glycaemic markers are at present adequate (Kressler et al., 2014). 

This is not the case for the standard categories used as surrogate measures of obesity. For 

example waist circumference (Ravensbergen et al., 2014) and BMI (Laughton et al., 

2009) are not applicable for SCI, as such WC has been adjusted accordingly in Table 2.1. 

Furthermore, blood-pressure can pose a two-pronged problem in the SCI population 

dependent on the level of lesion. Individuals with a lesion ≥ T6 (where sympathetic 

nervous system is compromised; explained in section 2.3.1) often suffer from 

hypotension (Wecht et al., 2015). Whereas, individuals with lower-level lesions 

experience similar hypertension issues as the general population (Bristow, 2013).  

 

Table 2.1: Component risks for metabolic syndrome (Adapted from Kressler et al., 

2014). 

Risk Criterion  

Increased (abdominal) obesitya  WC > 37 inches (94 cm)  

Hypertriglyceridemia ≥ 1.7 mmol·L-1 

Hyperglycaemia  FPG ≥ 5.6 mmol·L-1 

Hypertension Systolic ≥ 130 mm Hg 

 and/ or diastolic ≥ 85 mm Hg 

Reduced HDL-cholesterol  < 1.03 mmol·L-1 for men 

 < 1.29 mmol·L-1 for women 

WC waist circumference, FPG fasting plasma glucose 

a Adjusted for SCI based on (Ravensbergen et al., 2014) 

 

 

2.4.5. Chronic Inflammation  
 

There is a 2 to 3 fold increase in levels of circulating inflammatory markers, indicative of 

systemic low-grade inflammation, in persons with SCI compared to those without (Frost 

et al., 2005: Davies et al., 2007; Gibson et al., 2008). Of these circulating inflammatory 

markers, interleukin-6 (IL-6) and C-reactive protein (CRP) are measured in Chapter 6 of 

this thesis. 
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Interleukin-6 

 

IL-6 is a polypeptide messenger substance involved in the cytokine cascade, which assists 

in the regulation of immune function, primarily activating leukocytes and is secreted 

locally by white adipose tissue, skeletal muscle and the liver. Mohamed-Ali et al., (1997) 

suggested that in healthy human’s adipose tissue contributes to approximately one third 

of circulating IL-6. It is perhaps pertinent to address that adipose tissue, besides its 

traditional role in energy storage, is composed of distinct cell types: mature adipocytes 

which represent 60-70 % of the total cell population, with the remainder being attributed 

to the stromal vascular fraction (SVF). The SVF contains immune cells such as 

macrophages and T lymphocytes (Thompson et al., 2012). Obesity, whilst characterised 

by a higher adipocyte number (Spalding et al., 2008), is also associated with increased 

macrophage infiltration (Weisberg et al., 2003). It is plausible that these immune cells 

could be responsible for the majority of inflammatory cytokine secretions from adipose 

tissue (Fain, 2010). Furthermore, visceral adipose tissue exhibits a more pro-

inflammatory state (Bouloumie et al., 2005), as greater macrophage accumulation has 

been found in visceral adipose tissue (Cancello et al., 2006). The increased likelihood of 

obesity, coupled with increases in the visceral adipose tissue depot following SCI, may 

explain the increase in chronic systemic inflammation reported in this population.   

 

 

C-reactive protein 

 

An elevated level of IL-6 in the systemic circulation also leads to an acute phase response 

whereby proteins, such as CRP are released from the liver (Moshage, 1997). CRP 

functions as a pro-inflammatory mediator, assisting in complement binding to damaged 

and foreign cells, along with stimulating macrophage phagocytosis. Evidence would 

suggest that CRP is the most accurate inflammatory marker to predict future risk of 

cardiovascular events (Schillinger et al., 2003; Rutter et al., 2004). This is most likely a 

result of its relatively long half-life compared to other inflammatory markers (Vigushin 

et al., 1993). 
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Link to Atherosclerosis and Metabolic Syndrome 

 

Although elevated chronic inflammation is not formally included among evidence-based 

metabolic syndrome components, its role in the development of atherosclerosis has been 

extensively characterised (Libby, 2002: Hansson, 2005: Libby, 2012). Historically, 

atherosclerosis was considered a cholesterol storage disease, as lipids are a main feature 

of atherosclerotic lesions (Hansson, 2005). A detailed discussion concerning the 

development of atherosclerotic lesions is outside the scope of this review. Simplistically 

when endothelial tissue becomes inflamed, due to infiltration and retention of low-density 

lipoprotein (LDL) cholesterol in the arterial intima (Skalen et al., 2002; Leitinger, 2003), 

leukocytes are recruited to the area by the expression of adhesion molecules. Once the 

leukocytes become attached to the endothelium, pro-inflammatory cytokines provide a 

chemotactic stimulus, whereby T-lymphocytes join lipid-laden macrophages in the intima 

of evolving atherosclerotic lesions (Libby, 2002). As a result, elevated levels of 

inflammatory markers are detected in the systemic circulation and further contribute to 

the progression of atherosclerotic lesions. 

 

 

A study of 129 men with SCI, free from infection and abstaining from use of anti-

inflammatory drugs, found that CRP was associated with depressed HDL cholesterol 

(Liang et al., 2008). It is possible that the aetiology of depressed HDL cholesterol in 

individuals with SCI is a result of the direct relationship between endothelial lipase (EL) 

and inflammatory markers (TNFα, IL-6 and CRP) (Hirata et al., 2000; Paradis et al., 

2006). EL plays a role in the clearance of HDL cholesterol from the circulation, by 

catalysing the hydrolysis of HDL cholesterol phospholipids (Gilbert et al., 2014). 

Furthermore, LPL and hepatic lipase have been shown to be down-regulated by TNFα 

and IL-6 (Hardardottir et al., 1992; Mead et al., 2002). Therefore, besides its direct role 

in the progression of atherosclerotic lesions, chronic inflammation has been linked with 

the metabolic syndrome (Yudkin et al., 1999) and insulin resistance (Festa et al., 2000; 

Huang et al., 2008). Worryingly even modest subclinical elevations in IL-6 and CRP 

increase the risk of developing heart disease (Ridker et al., 1997; Koenig et al., 1999). In 

conjunction with adipose tissue expansion, other secondary complications following SCI 

such as pressure sores and acute symptomatic infections may explain elevated systemic 

concentrations of inflammatory cytokines compared to able-bodied controls. 



Chapter 2                                                                                            Review of Literature     

43 
 

Furthermore, it is likely that bladder management techniques (e.g. intermittent 

catheterization, indwelling catheter) contribute to increased UTI infections, further 

exacerbating the problem.  

 

2.4.6. Dysregulated Secretion/ Action of Adipokines 

 

In the mid -1990s, adipose tissue was recognised as an endocrine organ (Hotamisligil et 

al., 1993; Zhang et al., 1994), which significantly progressed researchers understanding 

of obesity. Adipose tissue secretes a number of hormones, collectively termed 

‘adipokines’, which play a key role in regulating glucose metabolism and insulin 

sensitivity, as well as immunity and a variety of other physiological processes.  Whilst 

they can act locally in an autocrine and paracrine manner, they’re also capable of acting 

in an endocrine manner, eliciting effects on the rest of body (Balistreri et al., 2010). The 

expression of a number of adipokines are markedly dysregulated with excess adiposity 

(Maury & Brichard, 2010), thereby contributing to metabolic complications. Considering 

the above body composition changes following SCI (section 2.3.2) it is perhaps 

unsurprising that various cross-sectional evidence has suggested altered levels of these 

adipokines in this population (Huang et al., 2000; Maruyama et al., 2008). Adipokines 

that will be measured in Chapter 6 will be described briefly below. 

 

Leptin 

 

Leptin (from the Greek leptos; thin) is a protein encoded for by the ob gene and was one 

of the first identified to be secreted by adipose tissue (Zhang et al., 1994). Consequently, 

circulating leptin concentrations directly correlate with adipose tissue mass (Maffei et al., 

1995; Das, 2001). The primary role of leptin is to suppress food intake by inhibiting 

appetite and to stimulate increased energy expenditure by driving SNS activity (Scarpace 

et al., 1997; Tang-Christensen et al., 1999). It has actions centrally in the brain (e.g. 

hypothalamus) but also in a number of peripheral tissues (e.g. pancreas, liver and immune 

system). It could be argued that leptin secretion from adipocytes is a mechanism to 

prevent obesity. However, this notion has been challenged, as obesity is typically 

associated with high leptin levels (Ahima, 2008). As such a state of leptin resistance 

prevails whereby the neurons of obese patients develop a relative resistance to the effect 
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of leptin (Sahu, 2003).  There are complex interactions between leptin and insulin (Ceddia 

et al., 2002); they compete for the same signalling molecules (Baranova, 2008) and leptin 

impacts on insulin action in skeletal muscle (Rabe et al., 2008), pancreatic β-cells and 

blood vessels (Seufert, 2004; Ronti et al., 2006). Therefore increased leptin 

concentrations impair insulin sensitivity (Benomar et al., 2005).  

 

Wang et al., (2005) suggested that the findings of increased serum leptin levels in 

individuals with SCI are irrespective of increased adiposity. The authors found men with 

SCI have significantly higher serum leptin concentrations compared to age and BMI-

matched able-bodied controls. However, due to lower extremity muscular atrophy, BMI 

is not a sensitive measure to identify obesity in individuals with SCI (Laughton et al., 

2009). It is likely that the SCI group had a greater amount of FM for a relative BMI, 

which might have explained these findings. That said, Bigford et al., (2012) demonstrated 

alterations in mouse hypothalamic adipokine gene expression and leptin signalling 

following chronic SCI. Leptin produces widespread sympathetic activation in various 

tissues (Haynes et al., 1997) and activation of the SNS modulates leptin expression and 

secretion. Individuals with SCI ≥ T6 show decentralisation of the SNS (Section 2.3.1). 

Therefore with high level injuries, this interruption blocks any inhibitory effect of the 

SNS on leptin expression and secretion (Rayner & Trayhurn, 2001). Furthermore, Jeon, 

(2003) found that an intact SNS was required for the stimulatory effect of leptin on resting 

energy expenditure in persons with SCI. It is possible that SCI itself plays a role in 

disrupted adipokine secretion independent of increased adiposity. 

 

Adiponectin  

 

Adiponectin is a protein also primarily produced by adipocytes (Scherer et al., 1995; 

Maeda et al., 1996). In contrast to leptin, circulating adiponectin is decreased in obesity 

(Arita et al., 1999) and patients with T2DM or CVD (Ouchi & Walsh, 2007). The 

mechanisms underpinning downregulated adiponectin production may involve the pro-

inflammatory state (Bruun et al., 2003) and abnormal hormonal milieu (Halleux et al., 

2001) associated with obesity. Adiponectin is best known as an important regulator of 
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insulin sensitivity. A review by Kadowaki et al., (2006) stated adiponectin improves 

insulin sensitivity by i) AMP Activated Protein Kinase (AMPK) mediated reduction of 

hepatic gluconeogenesis, ii) increased skeletal muscle glucose transport and, iii) enhanced 

fatty acid oxidation in the liver and skeletal muscle, thereby reducing tissue TAG content. 

As such adiponectin has been implicated to an improvement in both hepatic and 

peripheral insulin sensitivity (Fasshauer & Paschke, 2003). This adipokine also has direct 

anti-inflammatory effects, such as inhibition of IL-6 and pro-inflammatory cytokines 

(TNFα and IFNɣ), while increasing production of anti-inflammatory cytokines, IL-10 and 

IL-1 receptor antagonist (Rajala & Scherer, 2003; Tilg & Moschen, 2006). 

 

2.4.7. Summary 
 

The pathophysiology of SCI, primarily inactivity and alterations in body composition, 

predisposes individuals to an increased likelihood of chronic disease and impaired 

metabolic control compared to able-bodied individuals. Various psychosocial and 

environmental barriers mean that it is difficult for individuals with SCI to engage in PA. 

Moreover, due to functional limitations as a result of the injury, exercise options are 

limited to the upper extremities. The exercise itself might also be less effective, as the 

smaller muscle mass engaged leads to reduced absolute oxygen flux and total fuel 

requirements. The current available evidence on PA levels in persons with SCI, albeit 

limited to a few studies, shows that most of this population is sedentary. Considering the 

independent role that PA has on metabolic health and inflammation, plus the modulation 

of energy balance and subsequently body composition, it is important to understand how 

it is quantified. This review will now focus on the components of energy expenditure, and 

the measurement of these in individuals with SCI. 
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2.5. COMPONENTS OF ENERGY EXPENDITURE  
 

It is essential for the purpose of this review to first distinguish between PA and energy 

expenditure (EE). Total energy expenditure (TEE) can be partitioned into basal metabolic 

rate (BMR), Diet-induced thermogenesis (DIT) and physical activity energy expenditure 

(PAEE). Basal metabolic rate represents the energy required to maintain homeostasis and 

sustain the metabolic activities of cells and tissues. It is also the largest component of 

TEE, 80 to 56% for sedentary or very active persons, respectively (Landsberg et al., 

2009). An accurate estimate of BMR is not always possible as participants are required 

to sleep in a specifically designed respiration chamber (a calorimeter), where oxygen (O2) 

uptake and carbon dioxide (CO2) production can be measured. The literature tends to use 

BMR and resting metabolic rate (RMR) terminology interchangeably. Although, in 

reality, most studies have not measured BMR overnight in a respiration chamber due to 

equipment limitations. Therefore, the resting component of TEE will be referred to as 

RMR from here forward. RMR is influenced by body mass, specifically fat-free mass 

(Schofield, 1985), which, as eluded to earlier (Section 2.3.2) is reduced in persons with 

SCI. RMR is also regulated by thyroid hormones, with a minor contribution from the 

sympathetic nervous system which can also be disrupted in high level SCI. As such, it 

has been suggested that RMR is reduced by 14 – 27% in individuals with SCI compared 

to able-bodied controls (Buchholz et al., 2003a). 

 

 

Diet-induced thermogenesis (DIT) or thermic effect of food (TEF), reflects the energy 

expenditure associated with digestion and assimilation of food. This represents roughly 

10% of TEE based on a standardised western diet of mixed macro-nutrients (Westerterp-

Plantenga, 1999). Despite only representing a relatively small portion of TEE, DIT can 

vary according to the type of macronutrient consumed, Lipids: 0 – 3%, Carbohydrates: 5 

– 10%, Proteins: 20 – 30%, (Tappy, 1996). Other factors may influence DIT, such as 

stimulation of the autonomic nervous system, hormones, PA and body composition (Volp 

et al., 2011). We have previously mentioned how these factors can be modulated 

following SCI, which might explain why DIT was 3% less of total daily energy 

expenditure for males with SCI compared to non-injured controls when assessed in a 

respiratory chamber (Monroe et al., 1998). It is generally accepted that central activation 

of the sympathoadrenal system is an essential component in stimulating nutrient-induced 
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thermogenesis. However, this might be altered in conditions such as SCI, whereby neural 

pathways between the central nervous system and peripheral sympathetic nerves are 

disrupted.  

 

 

Physical activity energy expenditure (PAEE) represents the thermic effect of any 

movement produced by a skeletal muscle contraction which exceeds RMR (Westerterp, 

2009). It could be suggested that PAEE is the most important component of TEE due to 

its high variability amongst free-living individuals and potential malleability. Currently, 

it is problematic to accurately translate human movement into units of PAEE owing to its 

complex and varied nature. This task is even more challenging in wheelchair users during 

free-living, attributable to atypical movement patterns and a lack of an appropriate 

criterion measure. 

 

 
 

2.6. CRITERION MEASURES OF ENERGY EXPENDITURE 
 
 

2.6.1. Direct Calorimetry  
 

Directly measuring EE involves quantifying heat exchange between the human body and 

the environment. This represents the combustion of energy in the form of carbohydrate, 

protein or fat, through measuring heat released by the body as well as the water vapour 

released through respiration and from the skin (Schutz, 1995). Whilst highly accurate, it 

requires a participant to remain unaccompanied in a hermetically sealed, room-sized 

isolation chamber for 24 hours or more. Total energy expenditure over 24 hours was 

significantly lower in male SCI participants compared to age-matched non-injured 

controls (1870 ± 73 vs. 2376 ± 45 kcal·min-1) (Monroe et al., 1998). Ideally the chamber 

should be large enough to allow some degree of activity, but in reality this confinement 

will influence PAEE. Despite being considered a gold standard method, it is not widely 

used due to its large cost and high complexity. Therefore, this review will focus on more 

applicable measures.  
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2.6.2. Indirect Calorimetry  
 

Indirect calorimetry measures the type and rate of substrate utilisation (Ferrannini, 1988), 

whereby energy metabolism is estimated from respiratory gas exchange measurements 

(oxygen consumption [VO2] and carbon dioxide production [VCO2]). Whilst an indirect 

measure, Seale et al., (1990) observed that direct and indirect calorimetry were equivalent 

when using a whole room calorimeter. The indirect calorimetry method provides unique 

information, is non-invasive and more adaptable than direct calorimetry. Despite being 

over 100 years old, one of the most common indirect calorimetry methods, the Douglas 

bag technique (Douglas, 1911) is still referred to as the gold standard for measuring 

oxygen uptake in the laboratory (Gladden et al., 2012). When best practice is adhered to 

this method has high reliability, CVs of 0.5% for both CO2 and O2 (Hopker et al., 2012).  

 

Technological advances, from the Douglas bag method to online systems, have enabled 

valid and reliable instantaneous breath-by-breath pulmonary gas exchange measurements 

(Carter & Jeukendrup, 2002). Whilst the Douglas bag technique is mainly confined to the 

laboratory, light-weight (600g) fully-portable equipment is now available that can 

continually measure gas exchange variables between 1-5 hours (Ainslie et al., 2003). This 

equipment can be worn using a back-pack style harness and face mask. Although these 

portable systems have been shown to be reliable instruments for measuring respiratory 

gas exchange (Meyer et al., 2001) and can be used outside of the laboratory, their short 

memory capacity and battery life make them impractical to use for an extended period. 

Furthermore, portable units may also acutely interfere with everyday habitual activities 

during free-living assessment.  

 

 

2.6.3. Doubly Labelled Water  
 

First reported for use in humans by Schoeller and Vansanten, (1982), the Doubly labelled 

water (DLW) technique is a method of measuring TEE in free-living humans. The DLW 

method is based on the principle of isotope dilution, and TEE is measured via estimating 

whole-body CO2 production (Speakman, 1998). Participants orally ingest a dose of water 

enriched with stable isotopes of hydrogen (H2) and oxygen (O18), which diffuses 
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throughout the body over 2 – 6 hours and mixes with the more abundant forms of 

hydrogen (H1) and oxygen (O16) found in the endogenous body water pool. As energy is 

expended by the body, CO2 and water are produced. Hydrogen is removed from the body 

via urination and sweating. O18 is also removed from the body via these routes, and is lost 

as CO2 which is expelled via the lungs during exhalation. Consequently, with both 

isotopes being ingested simultaneously, their rate of elimination will differ as O18 will be 

eliminated at a faster rate than H2 (Speakman, 2005). The disappearance rate of both 

isotopes is determined by measuring their concentrations in urine samples collected over 

a period of time (typically 7 – 14 days). The difference in the elimination rate of H2 and 

O18 reflects the rate at which CO2 is produced. EE can then be estimated using the Weir 

equation, assuming a mean respiratory quotient value of 0.85, indicative of a standard 

westernised diet (Bray, 1997; Speakman, 1998).  

 

The DLW technique is considered the ‘gold standard’ in measuring TEE during free-

living and has been used previously in persons with SCI (Tanhoffer et al., 2012; 

Tanhoffer et al., 2015). EE can be accurately reported during habitual daily routines over 

extended periods (7 – 14 days) without the interference of equipment attached to a 

participant. However, this method is not without its limitations. Minimal information 

regarding frequency, duration or intensity of activity can be obtained (Plasqui & 

Westerterp, 2007). This technique is also considerably expensive given the high cost of 

the stable isotopes and associated analyses which requires sophisticated equipment and 

trained personnel. It remains to be seen whether DLW can be classified as a criterion 

measurement for various clinical populations with abnormal fluid distributions, including 

adults with SCI. The DLW technique remains to be validated in wheelchair users. It is 

unclear whether the various assumptions for the prediction of EE hold true for clinical 

populations that use wheelchairs and/or might be suffering from secondary health 

complications. Researchers have shown that TBW and its distribution within the body is 

different for individuals with SCI compared to able-bodied controls (Cardus & 

McTaggart, 1984; Nuhlicek et al., 1988). Inter-compartmental body-fluid distribution is 

also dependent upon posture (Maw et al., 1995), which, in wheelchair users, is 

predominantly restricted to sitting and lying. Moreover, Frisbie (2004) noticed altered 

salt and water balance, along with retention of sodium in the sitting position amongst 

tetraplegic participants, which might have implications for osmotic gradients within the 
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body. As both O2 and H2 turnover is determined by water flow through the body, this 

might be altered for wheelchair users which could impact on the accurate prediction of 

EE using the DLW technique.  

 

Fuel selection during upper body exercise is also different when compared to leg exercise 

at similar percentages of the mode-specific V̇O2 max. The energy yield from carbohydrate 

oxidation has been shown to be higher during arm than leg exercise (Tremblay et al., 

2009). Furthermore, Jacobs et al., (2013) demonstrated a heavy reliance on carbohydrate 

across a wide range of intensities during arm crank ergometry (ACE) for individuals with 

paraplegia compared to able-bodied controls. These factors would increase the respiratory 

quotient and violate the assumption 0.85 used in the prediction of EE via the DLW 

technique. The practicality of this technique, which requires collection of repeated urine 

samples, might be limited in individuals who require catheters as a result of paralysis  

 

 

2.7. PREDICTION OF ENERGY EXPENDITURE IN 

WHEELCHAIR USERS 
 

As alluded to earlier it is not always feasible to use criterion methods to measure free-

living EE. Researchers have endeavoured to develop user-friendly, unobtrusive and 

accurate methods to predict EE during free-living. The development of these methods 

usually involves a validation study using one of the criterion measures above. This section 

will provide a detailed review of the available prediction tools for wheelchair users and 

introduce the more recent advancements in wearable technologies in the field. As 

population-based studies vary substantially in their measurement objectives, we first 

outline common indicators of PA behaviour obtained using various prediction tools.  
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2.7.1. Common Measurable Physical Activity Outcomes 
 

Whilst the quantitative assessment of PA using wearable monitors is predominantly 

focused on the measurement of energy expenditure (Butte et al., 2012), it is important to 

refer to other common outcome measures obtained during the prediction of PA. 

Simplistically, PA monitors attached to the wheelchair can provide direct measurers of 

specific behaviours (e.g. distance travelled), similar to pedometers that capture steps per 

day in ambulatory cohorts. It is clear that PA is highly heterogeneous and there is no 

single outcome measure that captures all the relevant information about a given individual 

(Thompson & Batterham, 2013). Physical activity is a multidimensional construct 

comprised of four dimensions (a) duration, (b) frequency, (c) type, and (d) intensity. 

Activity counts from wearable devices capture raw movement signals and can be used to 

characterise both the duration and intensity of movement (Matthews et al., 2012). 

Increasingly, more contextual information (e.g. location, type of behaviour) is being 

collected from logs or Global Positioning Systems (GPS). Common outcomes from 

methods used to predict PA are listed in Table 2.2. 

 

The intensity dimension is an important determinant of the metabolic health benefits 

derived from PA in able-bodied populations (Haskell et al., 2007). This can be captured 

by metabolic equivalents (METs) which are often used to express the energy cost of a 

physical activity as multiples of RMR. One MET is taken to be an oxygen uptake of 3.5 

mL.kg-1.min-1, yet this is only applicable to able bodied individuals. This conventional 

MET value is not applicable to individuals with SCI due to the reduced RMR alluded to 

previously. To account for this Collins et al., (2010) suggested that one MET for a person 

with SCI should be adjusted to 2.7 mL.kg-1.min-1. Throughout this thesis we have 

expressed MET values relative to each participant’s RMR, measured in the laboratory via 

indirect calorimetry.  

 

Physical activity level (PAL) is often used to quantify an individual’s daily PA, which is 

calculated as TEE/RMR, the variability is reflected in values ranging from 1.2 to 2.5 

(Food and Agricultural Organization., 2004). Extremely low PAL (mean: 1.23) have been 

reported in non-ambulatory adolescents with cerebral palsy (Bandini et al., 1991). 
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Buchholz et al., (2003b) found relatively low PAL (1.46) in individuals with complete 

paraplegia, which was only slightly higher than the 1.40 suggested as the lower limit of 

the sedentary lifestyle range during an expert consultation on human energy requirements 

(Food and Agricultural Organization., 2004).  

 

 

Table 2.2: Common estimates of behaviour obtained from physical activity monitors or 

questionnaires (Adapted from Matthews et al., 2012). 

Types of Estimates 
Types of Summary Values 

Absolute Relative 

Activity count-based measures 
Total counts 

(counts per day) 

Average counts (counts per 

minute per day) 

   

Energy expenditure-based 

measures  
  

Total energy expenditure  
Kilocalories/ 

kilojoules per day 

Kilocalories/ kilojoules per 

min/hour monitored  

Physical activity energy    

expenditure 

Kilocalories/ 

kilojoules per day 

Kilocalories/ kilojoules per hour 

monitored  

   

Intensity-based measures    

Sedentary (<1.5 METs) Hours per day Percent wear/monitored time  

Light (1.5 -2.9 METs) Hours per day Percent wear/monitored time  

Moderate (3.0-5.9 METs) Hours per day Percent wear/monitored time  

Vigorous (> 6.0 METs) Hours per day Percent wear/monitored time  

Distance travelled  Metres per day  Metres per hour monitored  

 

 

2.7.2. Self-report Measures  
 

There are currently three predominant self-reported questionnaires that have been 

employed to measure the PA behaviour of people with a disability. However, as will be 

seen not all were developed and/or validated for use in manual wheelchair users. Below 

we describe each questionnaire before considering their strengths and limitations in 

respect to this population.  

 
 
 

2.7.2.1. The Physical Activity and Disability Survey (PADS) 

 

 

The PADS (Rimmer et al., 2001) was one of the first questionnaires developed to measure 

the PA behaviour of people with a disability. The PADS was developed and validated for 
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a group with disabilities ranging from strokes to T2DM. The questionnaire contains four 

subscales that measure Exercise, Leisure time physical activity (LTPA), Household 

activity and Time indoors. For each subscale, the tool requests information regarding the 

activity type (e.g. aerobic, strength or flexibility), how many days a week the activity has 

been conducted and how many minutes per day. The PADS employs a semi-structured 

interview technique but has also been used as a questionnaire (Rimmer et al., 2001). 

Subsequently the PADS was revised to contain six subscales; 1. Exercise, 2. LTPA, 3. 

General activity, 4. Therapy, 5. Employment/school, and 6. Wheelchair use. The score 

for the revised version of the PADS is calculated based on the time respondents spend 

doing the activities multiplied by an intensity rating of that activity. Each activity type 

has an assigned weighting (e.g. Aerobic = .3, strength = .2 and flexibility = .1). Higher 

scores represent more activity and negative scores can be achieved through sedentary 

behaviour.  

 

 
 

2.7.2.2. The Physical Activity Scale for Individuals with Physical Disabilities 

(PASIPD) 

 

 

The PASIPD (Washburn et al., 2002) was adapted from the Physical Activity Scale for 

the Elderly (PASE) which was developed and validated by the same research group 

(Washburn et al., 1993; Washburn et al., 1999).  

 

The final version of the PASIPD contains 13 questions and follows a similar format to 

that of the International Physical Activity Questionnaire (IPAQ) (Craig et al., 2003). 

Respondents are requested to provide information about their leisure time activities 

(including walking and wheeling), household activity and work related activity conducted 

over the past 7 days. Categories available to respondents are never, seldom (1-2days/wk), 

sometimes (3-4 days/wk), or often (5-7days/wk). In addition, participants are asked to 

indicate the average amount of time in hours that they participated in each of the activities 

(<1hr, >1-2hr, 2-4hr, <4hr). The intensity of activity conducted is established by 

multiplying the average hours per day for each item by a standard MET value developed 

for healthy people. Scores are calculated by multiplying the average number of hours per 

day by the number of days per week.  A single total score represents mean MET hr/day. 
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Alternatively, scores can be generated for five dimensions (Home repair/gardening, 

Housework, Vigorous Sport, Moderate Sport and Occupation).   

 

 

2.7.2.3. The Physical Activity Recall Assessment for People with Spinal Cord 

Injury (PARA-SCI) 

 

 

The PARA-SCI was specifically developed by Ginis and colleagues (2005) as a tool for 

people with SCI. The tool employs a similar format to that of the 7-day Physical Activity 

Recall (Sallis et al., 1985). However, instead of recalling the activity conducted over the 

previous 7 days, participants are asked to recall the previous 3 days. The PARA-SCI 

measures the type, frequency, duration and intensity of PA. Specifically, the instrument 

is designed to capture LTPA (i.e. activity during free time) and lifestyle activity (i.e. daily 

activity that are routine such as household chores, hygiene and work). These two 

categories can also be combined to form a third cumulative activity score. Employing an 

interview technique, participants begin by recalling the activity conducted during the 

previous day, and an interviewer guides the participant through eight periods of the day 

(Morning routine, Breakfast, Morning, Lunch, Afternoon, Dinner, Evening and Evening 

Routine). A series of flow charts help the interviewer guide the participant through the 

periods of day with questions such as “What did you do after breakfast?”. When an 

activity is identified, the number of minutes spent in that activity and whether it is LTPA 

or lifestyle activity is recorded. The participant also indicates the intensity of each activity 

as mild, moderate, heavy or nothing at all based on definitions provided. Once 

participants complete the first day, the interview continues to the preceding day. Scores 

are generated by calculating the mean number of minutes per day spent in mild, moderate, 

and heavy intensity LTPA and activities of daily living. Scores may be summed to 

generate total minutes of activity. 

 

2.7.2.4. Physical Activity Log  

 

Physical activity logs have also been used to measure activities of daily living and leisure 

time PA in wheelchair users (Warms et al., 2008). Participants are asked to write down 

activities as they are performed or recall them at the end of a day. It is possible for these 

activities to be coded with EE values using the adapted PA compendium for wheelchair 
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users (Conger & Bassett, 2011) to estimate daily TEE. The compendium describes the 

energy cost of 63 wheelchair activities. However, this resource offers considerably less 

variety to code activities than the 821 specific activities included in the updated version 

of the compendium of physical activities for able-bodied individuals (Ainsworth et al., 

2011). The studies used to develop the compendium of wheelchair-related PA included 

subjects with diverse injury characteristics and, in some cases, had small sample sizes. 

Also, accurately recording PA behaviours using an activity log can be quite burdensome 

and the quality of information provided is perhaps compromised over prolonged periods 

(> 24 hours). There may be merit in using this approach as a reference value over short 

periods, but its use is perhaps limited as a self-report measure during free-living EE 

assessment and will not be discussed further.  

 
 

2.7.2.5. Strengths and Limitations of Self-report Measures 

 

 

Self-report PA questionnaires are cheap and easy to administer. Until recently the 

quantification of free-living PA in wheelchair users was reliant on outputs from self-

report measures (Martin Ginis et al., 2007; Buchholz et al., 2009). However, the results, 

like other self-report measures, depend on the accuracy of the participants’ memory and 

recall. It has been suggested that self-report measures are unable to adequately quantify 

the lower end of the PA continuum (Tudor-Locke & Myers, 2001; Shephard, 2003) and 

often lend themselves to recall bias, floor-effects (lowest score is too high for inactive 

respondents)  and participant over-reporting (Sallis & Saelens, 2000). Besides these 

general limitations, specific issues pertaining to the administration of the three 

predominant questionnaires used to predict EE in this population are discussed below.   

 

 

Questionnaire Administration 

 

 

All three questionnaires were developed for disabled populations. However only the 

PARA-SCI was specifically developed and subsequently evaluated for people with SCI. 

The PASIPD was developed in people with both visual/auditory disabilities and people 

with locomotor/SCI while the PADS was developed for a group of T2DM and stroke 

patients. Therefore, one could argue that the content of questionnaires adopted previously 

fail to capture activities specific to the lifestyle of manual wheelchair users. 
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A distinguishing feature between the three questionnaires is the resource demand to 

complete each tool. The PASIPD was developed and designed to be completed 

independently as a questionnaire. In contrast, the PADS was designed as a semi-

structured interview, although the tool has been used as a questionnaire (Rimmer et al., 

2001). Finally, the PARA-SCI was also designed as an interview based questionnaire that 

collects rich behavioural data. Thus the PARA-SCI is resource intensive because it was 

developed to be used in epidemiologic studies. For example, it can take between 20-45 

minutes to complete, the cost of the interviewer needs to be considered and there is high 

participant demand. Ullrich et al., (2012) also suggested that the use of the PARA-SCI 

might have limited application for other investigators, besides the developers, due to the 

exclusion of subjective appraisals and the technical complexity of interview 

administration. These limitations were acknowledged by the authors who subsequently 

developed a new questionnaire to address these limitations. The Leisure Time Physical 

Activity Questionnaire for People with Spinal Cord Injury (LTPAQ-SCI) (Martin Ginis 

et al., 2012) is a brief (5 minutes) self-report questionnaire specifically designed for 

people with SCI that measures minutes of mild, moderate and heavy intensity LTPA 

performed over the previous 7 days. Therefore, the LTPAQ-SCI is not capable of 

measuring activity of daily living. 

 

 

Reliability and Validity  

 

 

The test-retest reliability of the three questionnaires has been tested, however, the PADS 

has had no reliability studies conducted in wheelchairs users or people with SCI. 

Therefore, it remains unclear whether the PADS can be reliably used as a measure of PA 

behaviour in this population. The test-retest reliability of the PASIPD was established in 

a study of 45 adult patients with a range of disabilities but it is noteworthy that only one 

participant had SCI (van der Ploeg et al., 2007). Results revealed a test-retest reliability 

correlation of .77. Further, the internal consistency of the PASIPD has been shown to be 

moderate in a sample of people with SCI (Cronbach α = .63) (de Groot et al., 2010). The 

PARA-SCI is the only instrument to have tested its reliability in a sample solely 

consisting of people with SCI. To establish the test-retest reliability of the PARA-SCI, 

102 people with SCI completed the instrument on two separate occasions a week apart 
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(Ginis et al., 2005). Intra-class correlations revealed adequate to good test-retest 

reliability for the different activity intensities. However, moderate-intensity LTPA and 

heavy intensity lifestyle activity demonstrated poor levels of reliability (ICC = .45 and 

.56 respectively).  

 

Establishing the validity of questionnaires is important in order to be sure that the tool 

effectively measures what it intends to (i.e. the activity of people using a manual wheel 

chair). In a study of 139 people with SCI, de Groot et al., (2010) investigated the 

relationship between PASIPD scores and measures of wheelchair user skills and fitness. 

Results revealed that scores on the PASIPD distinguished between persons with 

tetraplegia and paraplegia as well as between those with long and short time since injury. 

However, scores on the PASIPD did not reveal differences in expected and hypothesized 

factors such as age, BMI and gender. In terms of comparing scores from the PASIPD with 

indicators of physical capacity, results revealed weak to moderate relationships. For 

example, PASIPD scores were positively related to scores on the manual muscle test 

(0.35), and V̇O2 max (0.25). De Groot et al., (2010) suggested that the homogeneity of 

the sample (i.e. low scores on PASIPD) may provide some explanation for the low 

correlations. Manns and colleagues (2005) conducted a rare example of the PADS being 

employed to measure the PA behaviour of individuals with paraplegia. The aim of the 

study was to determine relationships between lifestyle factors including PA behaviour 

and components of metabolic syndrome in people with paraplegia. Results revealed a 

significant moderate relationship between scores on the PADS and, V̇O2 max (r = 0.45). 

However, equating self-report PA to fitness, rather than a criterion measurement 

(described above) may not be the most appropriate way to ascertain concurrent validity.  

 

Results from validity studies indicate that of the three questionnaires, the PARA-SCI has 

the strongest relationships with criterion measures. During the development and 

evaluation of the PARA-SCI (Ginis et al., 2005), criterion (V̇O2 reserve) values displayed 

a very large correlation with cumulative (LTPA plus lifestyle) activity data for total 

activity (r = 0.79). When data was coded for intensity of activity, large to very large 

positive correlations were seen for moderate-intensity (r = 0.63) and heavy-intensity (r = 

0.88) activity. However, this relationship was weak and non-significant for low intensity 
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activities (r = 0.27) and consequently the PARA-SCI scores under-reported the amount 

of time spent doing activities of low intensity by 10%. Therefore, although these findings 

indicate some evidence of convergent validity, the results also point to the limitations of 

self-report measures. 

 

Measuring Intensity  

A distinguishing feature between the three disability questionnaires is how they gather 

information pertaining to the intensity of activity conducted. Failure to consider 

individual differences in PA intensity makes it difficult to detect relationships between 

lifestyle activities and health outcomes (Ginis et al., 2005). The PADS employs a single 

item to examine the overall intensity of structured activity but doesn’t assess the intensity 

of leisure time activities. One of the fundamental limitations of the PASIPD is the use of 

standard MET values as a measure of activity intensity regardless of the participant’s 

level or type of disability. Further, the standard MET values employed were developed 

for healthy individuals. If MET values are to be used, it will be necessary to develop a 

new empirically based supplement to the compendium of PA appropriate for people with 

SCI (Lee et al., 2010). The inability of the PASIPD and PADS to effectively measure 

intensity of activity prompted the development of the PARA-SCI. Subsequently, the 

authors of the PARA-SCI conducted a systematic and empirical process to develop 

definitions of three different exercise intensities (i.e. mild, moderate and heavy) 

specifically for people with SCI (Ginis et al., 2005). The empirical development of 

intensity definitions suggest the PARA-SCI may be the most effective self-report 

questionnaire at measuring the intensity of PA in people with SCI. However, it should be 

noted that even with such a rigorous development of intensity definitions, the PARA-SCI 

is still dependent upon the accurate recall of behaviour. Research has also challenged the 

use of RPE as a valid psychophysiological index of perceived exertion in persons with 

SCI (Lewis et al., 2007). This could have implications with the prediction of activity 

intensity using self-report measures in persons with disabilities, which could be 

influenced by secondary conditions such as chronic pain.  

Objective sensors overcome these shortcomings of self-report by removing the subjective 

recall element. The next section of this review will now discuss the use of these objective 

sensors in wheelchair users. 
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2.7.3. Accelerometry  
 

Accelerometer-based devices have commonly been used to quantify habitual free-living 

PA in able bodied cohorts (Plasqui et al., 2005). Various studies have supported the utility 

of accelerometers to detect variability in activity levels in ambulatory populations with 

disabling conditions such as multiple sclerosis and rheumatoid arthritis (Khemthong et 

al., 2006; Cervantes & Porretta, 2010). However, at present there is a lack of research 

focussing on the accurate prediction of physical activity levels using commercial 

movement sensors in manual wheelchair users. Accelerometers are capable of providing 

temporal information about the specific variables mentioned previously, such as the total 

amount, frequency, intensity and duration of PA (Westerterp, 2009). Two main varieties 

of accelerometers are used widely in PA research - uniaxial and increasingly tri-axial. 

Uniaxial accelerometers register movement in the vertical axis only, whereas tri-axial 

accelerometers register movement in the anteroposterior (X), mediolateral (Y) and 

vertical (Z) axes. During laboratory and free-living validation studies in able-bodied 

cohorts, it appears that the greater sensitivity of the tri-axial accelerometer to movement 

in three different planes leads to a better prediction of PAEE than uniaxial accelerometers. 

In a recent systematic review, (Van Remoortel et al., 2012) reported a pooled r (95% CI) 

of 0.39 (0.16, 0.58) and 0.59 (0.45, 0.70) between PAEE estimates from uniaxial and tri-

axial accelerometers, respectively, compared to PAEE measured from DLW.  

 

Whilst a comprehensive description of the internal components of movement sensors is 

not within the scope of this review but excellently described elsewhere (Chen et al., 

2012), it is perhaps important to address how a physical measure is converted by a device 

into a signal/quantifiable value. Simply speaking, accelerometers contain transducers 

which convert one type of energy, e.g. movement (raw acceleration) which is difficult to 

quantify, to another (voltages). The secondary on-board processing step is data 

acquisition where the converted energy is transformed to a signal and processed in order 

to retain desirable parameters while discarding noise or movement artefacts.    

 

Almost all commercially available movement sensors report their outcomes in counts per 

unit time or epoch. Counts derived from movement sensors are arbitrary units which are 
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commonly derived in three ways. First, summing the integral of the modulus of 

acceleration from each axis (Horner et al., 2011), second, summing the integral of the 

route mean squared acceleration from each axis (Cook et al., 2011) and third, summing 

the vector magnitude of acceleration from each axis. Band-pass filtering frequencies, 

utilised during the data acquisition stage to ‘filter out’ signals which are not likely to be 

representative of ‘human movement’, often differ between devices. Knowledge regarding 

digital signal processing filters has only recently become more available, as an obligation 

has been placed on device manufacturers to be more transparent in regards to their 

specific properties and functions. For example, the upper and lower bandwidth filters of 

0.25 and 2.5 Hz of the GT3X+ (Actigraph, Fort Walton Beach, FL; used in Chapter 3 & 

4) were designed for ambulation, based on the premise that acceleration frequencies 

arising from most human activities at the hip usually fall within this range. There is 

considerable variation in filter width amongst commercially available monitors on the 

market, the RT3 (Stayhealthy Inc., Monrovia, CA) and 3DNX (BioTel Ltd, Bristol, UK) 

have upper cut-off frequencies of 10 and 20Hz, respectively. Researchers have suggested 

it is advisable that accelerometer-based PA monitors should be able to measure 

accelerations with frequencies up to 20 Hz (Bouten et al., 1997). It is clear that the band-

pass filter plays a crucial role in determining the quality of the output from movement 

sensors (Chen et al., 2012) and should be selected carefully dependent on anatomical 

wear location and the types of movements to be considered.  

 

Despite enormous differences in signal processing and internal components, all 

accelerometers have similar fundamental properties defined by accuracy, precision, range 

and sensitivity and must be compared against criterion measurements (Chen et al., 2012). 

These properties are particularly important in objective PA monitoring. Manufacturers 

have managed to ensure that the end user requirement for higher-resolution signals does 

not interfere with other practical issues such as size or functionality of the accelerometer. 

This has mainly been achieved through the introduction of microelectromechanical 

system (MEMS) transducers, currently the principle class of motion-detecting 

accelerometer due to their good sensitivity, small size, affordability and low power 

consumption (Chen et al., 2012). Hence, these days, commercially available movement 

sensors are more compact, in that they are relatively unobtrusive and overall compliance 

in large population based studies has been shown to be high (Matthews et al., 2012). 
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Other improvements such as an increased on-board memory capacity and extended 

battery life of newer generations of accelerometers permits extended monitoring periods 

of habitual PA with higher time resolutions.  

 

2.7.3.1. Accelerometer Devices Attached to the Wheelchair  

 

 

Researchers have tried attaching a custom data logger onto the wheel (Tolerico et al., 

2007) or a tri-axial accelerometer (Coulter et al., 2011) to the frame of the wheelchair in 

order to capture certain mobility characteristics such as average speed and distance 

travelled. Whilst this approach is relatively unobtrusive, these devices offer limited 

information on the intensity of the activities performed. Conger et al., (2014) tried to 

address this limitation by using hand rim propulsion power, and concluded that it can 

accurately and precisely measure EE based on the two variables being significantly 

correlated (r = 0.69). However, we contend that any device attached to the wheelchair 

cannot distinguish between self or assisted propulsion and cannot quantify activity out of 

the wheelchair. It is common for wheelchair users to have different chairs to participate 

in various sports, therefore a device attached to a single chair will fail to capture the 

moderate-vigorous-intensity activity of training or competitive match play situations. Due 

to these limitations we will primarily focus on body born movement sensors in this 

literature review. Recently the feasibility of using Global Positioning Systems (GPS) to 

measure PA has been explored (Duncan et al., 2009). The major limitation of GPS is that 

units require a clear line of sight to four or more satellites, and hence can only measure 

outdoor PA, but even this becomes difficult when the line of sight is obstructed by heavy 

foliage or tall buildings (Stopher et al., 2008). 

 
 

2.7.3.2. Body-borne Accelerometers  

 
 

Waist-mounted single-sensor devices, positioned within close proximity to an 

individual’s centre of mass, have been the mainstay of activity monitoring in able-bodied 

cohorts, but instruments have also been placed on the upper arm (Welk et al., 2007) and 

wrist (Reiterer et al., 2008). The accuracy and precision (two fundamental properties of 

movement sensors) of single units worn on the waist can be limited for certain types of 

upright behaviours that have a low ambulatory component and may involve upper body 

work (Matthews et al., 2012). The measurement error of waist mounted devices is 
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generally related to the inability to detect arm movements as well as static work (lifting, 

pushing, carrying loads). However, movement of wheelchair users is predominantly 

restricted to the upper body. Therefore, ambiguity remains as to the most appropriate 

anatomical location to offer improved sensitivity in order to estimate PAEE in this 

population. We attempt to address this issue in Chapters 3 and 4. 

 

A summary of validation studies assessing the most appropriate anatomical wear location 

of accelerometers for wheelchair users is shown in Table 2.3. Previous studies have used 

different dependent variables (V̇O2 and EE), accelerometer devices (CSA, GT3X and 

RT3) and activity protocols (propulsion: wheelchair treadmill, ergometer, over ground, 

ACE and activities of daily living). The magnitude of correlations between accelerometer 

outputs and criterion measurements at the waist were large, r = 0.66 (Hiremath & Ding, 

2011b) and r = 0.67 (Garcia-Masso et al., 2014). Yet correlations were stronger for 

devices worn on the upper arm and wrist, ranging from r = 0.83 – 0.93   and r = 0.52 – 

0.93, respectively (Table 2.3). The smaller correlation reported in the Washburn & Copay, 

(1999) study might be a result of the CSA uniaxial accelerometer offering reduced 

sensitivity.  
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     Table 2.3: Summary of body-borne accelerometer validation studies in wheelchair users 

Study Samplea 
Criterion 

measure 
Activity protocol Device/ outputs  

Anatomical 

location 
Results 

(Washburn 

& Copay, 

1999) 

21 (9F). 

SCI 

(n=11), SB 

(n=7), 

other 

(n=3). 

V̇O2 

(Aerosport 

TEEM 1000) 

Three timed pushes 

(slower than normal, 

normal, and faster than 

normal) over a 

rectangular indoor course 

PAC from a CSA uniaxial 

ACC  

Left wrist r = 0.67, SEE = 4.99 ml.kg-1.min-1 

Right wrist r = 0.52, SEE = 5.71 ml.kg-1.min-1 

(Postma et 

al., 2005) 

10 SCI 

(3F) 

(Cervical 

to 

Lumbar) 

video records 

analysed 

separately 

Several ADL (propulsion, 

chores, sedentary 

activities) according to a 

standard protocol, in a 

semi-natural setting 

Acceleration signals from 

an ULAM (6 ADXL202 

biaxial ACC) 

One sensor attached 

at each thigh and at 

each wrist, a two 

sensor attached 

over the sternum 

Agreement for the detection of self-

propelled propulsion was 92%; sensitivity 

87% & specificity 92%. Mean 

overestimation in duration of propulsion 

by the ULAM was 3.9% 

(Hiremath 

& Ding, 

2011b) 

24 SCI 

(5F) (T3-

L4) 

IC EE 

(COSMED 

K4b2) 

Resting and three activity 

routines; propulsion 

(performed on a WERG 

and flat tiled surface), 

ACE (20-40) and 

deskwork. 

PAC from a RT3 tri-axial 

ACC and participant 

demographics  

Two prediction equations 

were developed (general 

equation and activity-

specific) for the upper arm 

 

Waist r = 0.66, SEE = 1.38 kcal.min-1 

Upper left arm 

r = 0.83, SEE = 1.02 kcal·min-1. Error was 

reduced to between 12.2 - 38.1% for the 

RT3 arm using activity-specific equations 

from 14.1 - 113.7% using the general 

equation. 

Combined r = 0.84, SEE = 1.00 kcal.min-1 

(Kiuchi et 

al., 2014) 

6 SCI (C6 

– T9) 

IC EE 

(AR-1 Type-

4) 

Propulsion at 3 

continuous speeds on a 

WT that elicited an RPE 

of 9 (2.5-3 km/hr), 11 

(3.5-4.0 km/hr) & 13 

(4.5-5.0km/hr) for 2 min 

Tri-axial ACC with gyro 

sensor. Predicted EE was 

calculated by incorporating 

acceleration, angular 

velocity and participant 

demographics 

Left wrist R2 
= 0.86  

Right wrist R2 = 0.68 

Left upper arm R2 = 0.75 

Right upper arm R2 = 0.87 



 

 
 

6
4
 

(Garcia-

Masso et 

al., 2014) 

20 SCI 

(T4-S1) 

V̇O2 

(COSMED 

K4b2) 

10 activities which 

included ADL, transfers, 

ACE and propulsion that 

covered a wide range of 

exercise intensities. 

GT3X (36 features 

extracted from the second-

by-second acceleration 

signals were used as 

independent variables) 

Non-dominant 

wrist. 
r =0.86, MSE = 4.98 ml.kg-1.min-1 

Dominant wrist r =0.86, MSE = 5.16 ml.kg-1.min-1 

Chest r = 0.68, MSE = 10.41 ml.kg-1.min-1 

Waist r = 0.67, MSE = 10.61 ml.kg-1.min-1 

(Kooijmans 

et al., 

2014) 

10 SCI 

(C4 – T12) 

video records 

analysed 

separately by 

2 independent 

reviewers 

Comprehensive protocol 

representative of ADL in 

people with SCI 

(propulsion & ACE) and 

other activities that could 

be falsely detected, i.e. 

being pushed 

Second-by-second vector 

counts from an ActiGraph 

GT3X+ 

Combination 

between one ACC 

attached to the wrist 

and another on the 

spokes of the 

wheelchair 

Agreement for the detection of self-

propelled propulsion was 85%; sensitivity 

88% & specificity 83%. Disagreement 

between ACC output and video was largest 

for propulsion on a slope and very low 

speed on a WT, and being pushed whilst 

making excessive arm movements 

 

ACC accelerometers, ACE arm crank ergometry, ADL activities of daily living, EE energy expenditure, IC indirect calorimetry, SB Spina Bifida, 

SCI spinal cord injury, ULAM upper limb activity monitor, V̇O2 oxygen uptake, WERG wheelchair ergometer, WT wheelchair treadmill. 

a All-male participants unless stated otherwise 
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The message with regards to limb dominance is somewhat unclear. Washburn & Copay, 

(1999) found differences in the magnitude of correlations between the left and right wrist 

(r = 0.67 and r = 0.52, respectively). This discrepancy could be due to handedness (n = 

20 right handed), but is most likely due to an increase in right wrist movement to negotiate 

four left-hand turns of a rectangular course. Kiuchi et al., (2014) also found considerable 

variation during propulsion on a wheelchair treadmill, where the right upper arm and left 

wrist offered the strongest correlations (r = 0.93). However, this study had a relatively 

small sample size n = 6. In contrast, Garcia-Masso et al., (2014) noticed no negligible 

difference in relationships between the dominant and non-dominant wrist (r = 0.86 vs r = 

0.86) during a comprehensive activity protocol. 

 

Considering the validity of a movement sensor based solely on the strength of its 

relationship to a criterion measure should be avoided as it does not indicate the agreement 

between the two variables (Bland & Altman, 2010). Correlations are also dependent on 

the range of the true quantity in the sample, if this is narrow then the correlation will be 

weaker than if it is wide. As the best practice guidelines for validating activity monitors 

(Bassett et al., 2012) suggest evaluating devices over a wide range of activities of various 

intensities it is therefore likely that a high correlation will be observed. Staudenmayer et 

al., (2012) recommended in a recent review on statistical considerations in the analysis 

of accelerometer data, that it is useful for researchers to report measurement error.  

 

To date relatively few studies have attempted to develop and then cross validate 

regression equations specific to manual wheelchair users that are capable of accurately 

predicting EE/PAEE. Strath et al., (2012) stated that additional monitor calibration 

studies are necessary to provide population specific algorithms for individuals with 

functional limitations. Hiremath & Ding, (2011b) attached an RT3 to the upper arm and 

waist, whilst attempting to develop and then evaluate two new EE prediction algorithms, 

one general and one activity specific, through the use of a k-fold cross validation 

technique. Absolute EE estimation errors for the RT3 worn at the arm ranged from 14.1% 

– 113.7% for the general equation. However, whilst EE estimation accuracy improved 

using the activity-specific algorithm, ranging from 12.2% to 38.1% these were drastically 

higher than those previously reported in ambulatory populations (Rothney et al., 2008). 



Chapter 2                                                                                            Review of Literature 

66 
 

Estimation errors were highest for sedentary activities using the developed general 

equation, 114% and 52% for resting and deskwork, respectively. This may be explained 

by the outcome variable being total EE, which comprises RMR, DIT and PAEE. During 

sedentary activities, RMR represents the largest fraction of TDEE, as PAEE is negligible. 

Fundamentally, accelerometers measure movement and should therefore only be 

associated with the component of energy expenditure arising from skeletal muscle 

contraction-induced movements (PAEE). Furthermore, as previously discussed, common 

equations to predict RMR in the general population are inappropriate for individuals with 

SCI and have been shown to over-predict measured requirements by 5-32% (Buchholz & 

Pencharz, 2004). It is not surprising that body mass was a significant predictor in the 

general, and more specifically, resting and desk work activity specific equations 

developed by Hiremath & Ding (2011b). However, as body mass does not differentiate 

between metabolically active tissue (LM), which is reduced in the lower extremities of 

individuals with SCI, it is possible the high EE estimation error observed during sedentary 

activities may be a result of error in the calculation of the RMR component. 

Accelerometer variables such as activity counts in the X and Y axis were significant 

predictors of EE during propulsion and arm-ergometry, which suggests activity monitors 

worn on the arm may be sensitive to upper body movements and therefore the detection 

of PAEE during these tasks.  

 

Realizing the limitations associated with waist mounted PA monitors in able-bodied 

populations, researchers have utilized multi-sensor arrays applied to different body 

segments. Swartz et al., (2000) combined two Actigraph accelerometers (CSA) worn at 

the wrist and hip in order to determine whether EE prediction could be improved using a 

bivariate regression equation incorporating data from both sites. This resulted in a 

significant but yet minor improvement compared with a univariate regression equation 

using the hip alone, R2 = 0.34 and R2 = 0.32, respectively. However, in research conducted 

specifically on wheelchair users, combining data from these two sites did not yield a more 

accurate estimation of EE (Hiremath & Ding, 2011b). In some research and development 

labs, such as the Department of Rehabilitation Medicine and Physical Therapy in the 

Netherlands, accelerometers have been arranged in parallel arrays and positioned at 

various anatomical locations to monitor the types of activity being performed by postural 

identification. Such prototype PA monitors were developed to primarily target specific 
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population groups during rehabilitation, including amputees (Bussmann et al., 1998) or 

inpatients with SCI (van den Berg-Emons et al., 2008).  

 

The upper limb activity monitor (ULAM) consists of six ADXL202 biaxial 

accelerometers attached at each thigh, and at each wrist and two sensors attached to the 

skin using medical tape at the sternum. Specificity, agreement and sensitivity for the 

detection of wheelchair propulsion were high, 92 (range, 85 – 98) %, 92 (87 – 96) % and 

87 (76 – 99) %, across a standardized activity protocol consisting of several activities 

representative of daily living. Despite the relatively small sample size (n=10), the 

diversity of physical functioning within the SCI population appeared well represented. 

Hence the authors concluded that the results were externally valid for the majority of 

patients with SCI. The ULAM contains several wires which connect to a data recorder 

carried in a belt around the waist. The device has previously been used to assess PA during 

rehabilitation (van den Berg-Emons et al., 2008), although the monitoring period was 

restricted to a relatively short duration (< 48 hours) as a result of a reduced memory 

capacity and battery life required to power the six accelerometers. This is not in keeping 

with advancements in the area of PA monitoring, where end user requirements for higher-

resolution signals have led to the development of newer generations of activity monitors 

with greater storage capacity and battery life. Where possible monitoring of habitual PA 

during free-living should be of a longer duration. One week monitoring periods have 

routinely been used in previous research to provide a sufficiently large number of days to 

achieve intraclass correlations > 80%, whilst also providing the opportunity to sample 

behaviour on both week and week-end days (Matthews et al., 2012). Bussmann et al., 

(2009) found that wearing the ULAM does not systematically influence the amount of 

daily manual wheelchair propulsion assessed using a rotation counter attached to the 

wheel. However, the activity monitor was only worn for one day over the 7-day period, 

and even in this short duration, participants reported moderate burden measured via a 

questionnaire. Moreover, multiple-site monitors such as the ULAM are often not 

available outside the developing labs, and are expensive, making it difficult for 

researchers to cross validate devices or compare results between prototype designs. 

Kooijmans et al., (2014) combined outputs from a GT3X+ accelerometer worn on the 

wrist and on the spokes of the wheelchair and found strong agreement for the detection 

of self-propelled propulsion being 85%, sensitivity 88% and specificity 83%. Whilst less 
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burdensome, disagreement between GT3X+ outputs and video was largest for propulsion 

on a slope and very low speed on a wheelchair treadmill, and being pushed whilst making 

excessive arm movements. It may be that physiological signals should be incorporated 

into the prediction of EE to improve accuracy.  

 

2.7.4. Heart Rate 
 

Heart rate (HR) has an advantage as a physiological variable as it increases linearly and 

proportionately with exercise intensity and thus oxygen uptake (Chen et al., 2012). Keytel 

et al., (2005) concluded that PAEE can be accurately predicted from HR with a great deal 

of accuracy after adjusting for age, gender, body mass and fitness. However, during lower 

intensity PA there is a weak relationship between HR and EE (Luke et al., 1997). This is 

most likely due to small postural changes causing alterations in stroke volume, or that HR 

during low intensity PA is affected by external factors such as psychological stress, 

stimulants, ambient temperature, dehydration and illness (Achten & Jeukendrup, 2003).    

There are a number of ways to use HR data to predict EE, one of the most promising 

being the flex-HR method (Ainslie et al., 2003), which has previously been used in 

individuals with SCI (Hayes et al., 2005; Tanhoffer et al., 2012). This method involves 

monitoring HR at rest and during an incremental exercise test which permits the 

development of an individual HR-V̇O2 calibration curve. The flex-HR is determined as 

the mean of the highest HR at rest and the lowest HR observed during light intensity 

activity. In order to calculate EE during the monitoring period, HR values recorded below 

the flex-HR assume that the participant is at rest and RMR is used to estimate EE. For 

values above the flex-HR the individual HR-V̇O2 curve is used to predict EE. Despite 

recent research into the use of various HR indexes (Coutinho et al., 2014) and artificial 

neural networks (Garcia-Masso et al., 2014) in the prediction of V̇O2 in individuals with 

SCI, it is clear that the accurate prediction of EE using HR is heavily reliant on individual 

calibration. This consideration is perhaps even more important in this population, taking 

into account the aforementioned cardiovascular changes post SCI. Hayes et al., (2005) 

found that the variance in measured EE was considerably improved using an individual 

calibration (55%) compared to HR alone (8.5%).  
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2.7.5. Multi-sensor Devices; the Incorporation of Acceleration and Physiological 

Signals  
 

 

New multi-sensor technologies, which include the combination of physiological 

parameters and accelerometry, have great potential for increased accuracy in assessing 

PAEE as they incorporate and minimize the strengths and weaknesses of HR and 

accelerometry alone. The Actiheart (Cambridge Neurotechnology Ltd, Papworth, UK) 

integrates an accelerometer and heart rate monitor into a single-piece movement monitor. 

The Actiheart (AHR) unit has been described in detail previously (Brage et al., 2005), 

along with the detailed branched modelling technique it utilizes to estimate PAEE through 

the combination of heart rate and accelerometer counts (Brage et al., 2004). Studies have 

supported the utility of combined HR and accelerometer devices to accurately estimate 

PAEE during treadmill walking and running in adults (Brage et al., 2005), and in activities 

of low-to-moderate-intensity in a laboratory setting (Thompson et al., 2006). However, 

the validity of the Actiheart in estimating PAEE remains to be established in wheelchair 

users, and this will be determined in Chapter 5. 

 

 

The use of multi-sensor devices has mostly been limited to laboratory based validation of 

the SenseWear ® Armband (SWA), a commercially available monitor that is designed to 

be worn on the upper arm, a preferential anatomical location for the prediction of 

PAEE/EE in wheelchair users. This device incorporates dual-axis accelerometry and 

physiological measures such as heat flux, galvanic skin response and temperature to 

predict EE. More detailed components and specifications of this activity monitor have 

been described elsewhere (Chen et al., 2012). Researchers from the department of 

Rehabilitation Science and Technology at the University of Pittsburgh, through various 

conference proceedings (Hiremath & Ding, 2009) and journal publications (Hiremath & 

Ding, 2011a; Hiremath et al., 2012), have described the reduction in prediction error from 

this device for predicting EE in this population (Table 2.4). It is clear that the general 

manufacturer’s model utilised by the SWA device, is unable to accurately estimate EE as 

it does not typically consider the types of physical movements performed by manual 

wheelchair users. It is possible that as wheelchair propulsion and arm-ergometry were not 

included in the predefined activity categories of the SWA device, that these activities 
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were misclassified into a more strenuous type of PA, leading to the observed 

overestimation of EE. 

 

With the development of specific EE prediction equations, based on activities common 

in the lives of wheelchair users, the SWA’s accuracy has been improved (Hiremath et al., 

2012). Activity specific models encompassed sensor data, demographic data and 

customized data derived from the sensor. Using the same activity protocol as their 

previous studies, the authors developed prediction models using a training group of 36 

participants and evaluated these on a validation group (n = 9). Both developed prediction 

models performed significantly better than the proprietary algorithms of the 

manufacturer’s model. Generalized and activity specific models underestimated EE with 

relatively small biases -2.3 ± 31.7% and -4.9 ± 20.7%, respectively, whereas the general 

manufacturer equation over predicted by 55.3 ± 56.1%. Looking solely at mean 

percentage difference can be misleading. It would appear that the general model has a 

smaller overall bias, but this is likely a product of under and overestimations from 

different activities cancelling each other out. This is evident when looking at the larger 

SD associated with the general compared to the activity specific model. Another 

alternative is to look at mean absolute percentage differences, which were 59.2%, 24.7% 

and 16.8% for the manufacturer’s model, general model and activity-specific model, 

respectively (Hiremath et al., 2012). These findings provide encouragement for the use 

of multi-sensor activity monitors with new prediction models developed specifically for 

individuals with SCI.  
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   Table 2.4: Summary of multi-sensor device validation studies in wheelchair users 

ACC accelerometers, ACE arm crank ergometry, EE energy expenditure, IC indirect calorimetry, SB Spina Bifida, SCI spinal cord injury, WERG 

wheelchair ergometer. a All-male participants unless stated otherwise.

Study Samplea 
Criterion 

measure 
Activity protocol Device and location Results 

(Hiremath 

& Ding, 

2011a) 

24 SCI (5F) 

(T3-L4) 

IC EE 

(COSMED 

K4b2) 

Resting and three activity 

routines; propulsion (performed 

on a WERG and flat tiled 

surface), ACE (20-40) and 

deskwork. 

Estimated EE from RT3 tri-axial 

ACC worn on the waist 

RS=0.72 for all activities (lowest for propulsion; 

RS=0.44, highest for deskwork; RS=0.66). EE 

estimation errors ranged from 22.0 to 52.8%. Poor 

ICCs 0.64 (<0.75) 

Estimated EE from Sensewear worn 

on the upper arm (manufacturer’s 

model) 

RS=0.84 for all activities (lowest for deskwork; RS 

0.65, highest for propulsion; RS=0.76). EE estimation 

errors ranged from 24.4 to 125.8%. Poor ICCs 0.62. 

Neither device is an appropriate tool for quantifying 

EE 

(Hiremath 

et al., 

2012) 

45 (8F) (C4–

L4) 

IC EE 

(COSMED 

K4b2) 

Estimated EE from Sensewear worn 

on the upper arm (manufacturer’s 

model) 

r = 0.75 (P < 0.001). ICCs 0.64 (P < 0.001).  

MAE = 2.0 kcal·min-1 (59.2%) 

Estimated EE from Sensewear worn 

on the upper arm (SCI general 

model for all activities) 

r = 0.74 (P < 0.001). ICCs 0.72 (P < 0.001).  

MAE = 0.9 kcal·min-1 (24.7%) 

Estimated EE from Sensewear worn 

on the upper arm (activity-specific 

model) 

r = 0.88 (P < 0.001). ICCs 0.86 (P < 0.001).  

MAE = 0.6 kcal·min-1 (16.8%) 

(Conger, 

2012) 

14 (3F). SCI 

(n=7) SB 

(n=4) AMP 

(n=2) 

Charcot-

Marie-Tooth 

(n=1) 

IC EE 

(Oxycon 

Mobile) 

5 different wheeling activities 

preformed for 8 min 

interspersed with at least 3 min 

rest. Level surface (4.5, 5.5 & 

6.5 km/h), wheeling on a 

rubberised 400 m track (5.5 

km/hr) & wheeling on a 

sidewalk course at a S-S speed 

Actical on right wrist 
No sig. differences between criterion method and 

Actical EE (± 9 – 25%) 

Sensewear on right upper arm 
The SenseWear sig. overestimated EE during 

wheelchair propulsion (+ 30 - 80%) 

Sensewear using wheelchair 

specific equation (Hiremath and 

Ding, 2012) 

The wheelchair specific equation improved EE 

prediction error, but this was still elevated during 

higher intensity activities (+27-43%) 
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Furthermore, even when using the generalised SCI specific prediction equation, the SWA 

tended to overestimate EE (27 to 43%), whereas a wrist-mounted accelerometer 

accurately predicted EE (9 to 25%) during wheelchair propulsion (Conger, 2012). Also, 

a recent free-living study using DLW demonstrated that the SWA was unable to detect 

variation within-individual EE during voluntary increases in PA in individuals with SCI 

(Tanhoffer et al., 2014). The advantage of incorporating physiological variables in EE 

estimation is that they address the shortcomings of accelerometry alone, and capture 

physiological strain associated with behaviours that produce similar acceleration profiles 

but have a different energy cost, such as changing gradient or load carriage (Lamonte & 

Ainsworth, 2001). To date there is limited available data on the validity of activity 

monitors in quantifying EE during wheelchair propulsion over differing gradients. It is 

clear that proprietary algorithms used by the SWA overestimate metabolic rate, but 

interestingly, previous research noted an increase in this overestimation and variability 

when gradient was elevated rather than when speed was increased (Davis et al., 2010). 

During a treadmill protocol that included variable speeds over a flat gradient, coefficients 

of determination between indirect calorimetry and SWA EE ranged from 0.65 – 0.82. In 

contrast, when a constant treadmill velocity (2km.hr-1) was employed with variable 

gradients the coefficients of determination were much lower, in the range of 0.34 – 0.58. 

It would appear that even additional physiological variables are unable to assist with a 

more accurate prediction of EE during propulsion over differing gradients.  

 

Ultimately, the calculation of EE by the SWA device is determined by proprietary 

algorithms which utilizes upwards of twenty possible output parameters including heat 

flux, galvanic skin response and temperature. Researchers should have access to these 

underlying equations. At present it is unclear how each parameter contributes to the 

prediction of EE in this device. Research has demonstrated disturbances in 

thermoregulatory responses that are proportional to the level and completeness of SCI 

lesion, reflecting the amount of sympathetic nervous system available for sweating and 

blood redistribution (Petrofsky, 1992). Tetraplegics display considerable thermal 

dysregulation due to the complete absence of sweating capacity. Price & Campbell (2003) 

also demonstrated that upper arm skin temperature was significantly higher for 

tetraplegics when compared to paraplegics over 60 minutes of prolonged wheelchair 

exercise in warm conditions. These issues could have profound implications for using this 
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technology in the prediction of EE in individuals with SCI, especially those with higher 

level lesions. 

 

2.7.6. Summary  

There is no shortage of research aiming to improve the prediction of PA in able-bodied 

individuals. Whilst this area has seen a great deal of progress over recent years, due to 

technological advancements and new data processing strategies, the use of movement 

sensors in diverse populations is lagging behind. The development of tools specific to 

wheelchair users would help researchers better understand the link between PA and 

metabolic health in this population. This is of primary importance in individuals with SCI, 

who exhibit lower levels of self-reported PA and an increased risk of chronic disease. As 

such there is now a renewed impetus to translate progress in measuring PA in able-bodied 

populations to wheelchair users, with the aforementioned techniques (self-report, 

physiological signals, accelerometry and multi-sensor devices) displaying varying 

degrees of success.  

Due to the limitations with self-report measures (Section 2.4.1.5) and 

accelerometers attached to the wheelchair (Section 2.4.3.1), this thesis aims to focus on 

the development of new wearable technologies. Most of the previous studies have 

assessed predicted EE against a criterion rather than PAEE. In some cases it is plausible 

that the use of prediction equations for RMR, which are not suitable for individuals with 

disabilities, introduce error in the estimation of EE, particularly during sedentary and low-

intensity activities. Despite the generation of various prediction models there is a lack of 

research in the area where these equations have been cross-validated. Some of the 

laboratory protocols adopted previously, lack a sufficient range of activities, and certain 

wheelchair propulsion tasks such as additional weight and changes in gradient have also 

been over looked. It is hoped that this thesis will address some of these limitations. The 

potential of using raw acceleration signals from devices (pre-processing) has recently 

been advocated by subject matter experts (Bassett et al., 2012) but is yet to be assessed 

in wheelchair users. Also, the AHR device which is widely used to measure free-living 

PAEE in able-bodied individuals (Turner et al., 2010; Betts et al., 2014), could offer 

promise in the prediction of PAEE in wheelchair users, as it minimises the limitations of 

using HR or accelerometry alone.   
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2.10. THE IMPACT OF PHYSICAL ACTIVITY ON METABOLIC 

CONTROL, INFLAMMATION AND FITNESS 
 

More often than not SCI leaves muscles completely paralysed below the level of injury, 

or with insufficient strength, resistance to fatigue, or motor control to support safe and 

effective training. Consequently, the modes of exercise available to individuals with SCI 

are limited to the upper extremity, such as arm crank ergometry or wheelchair propulsion. 

We have limited our discussion of the potential benefits of PA to studies examining upper 

body exercise, although research has also assessed the impact of lower extremity 

functional electrical stimulation (FES) (Hjeltnes et al., 1998; Mohr et al., 2001; Jeon et 

al., 2002; Griffin et al., 2009) and body weight supported treadmill training (Phillips et 

al., 2004). These exercise modalities were deemed unsuitable for Chapter 6 of this thesis, 

based on numerous practical limitations: i) significant resources required; expensive 

equipment, lift apparatus and manpower ii) limited applications for use in the home due 

to cost and space. Furthermore, FES or neuromuscular electrical stimulation (NMES) is 

not possible for all individuals with SCI (Deley et al., 2015; Gorgey et al., 2015). For 

example, persons with preserved lower extremity sensations, since higher intensities 

required to produce movements might be painful, or persons with lower extremity 

osteoporosis, who may be susceptible to fractures as a result of strong/prolonged muscle 

spasms (Hartkopp et al., 1998). 

 

The focus of this section is to discuss findings in the context of chronic paraplegia, in 

keeping with the study population of Chapter 6. One of the criticisms of previous training 

studies conducted in this population has been the heterogeneity of participants, making it 

difficult to tease out responses to exercise. As such, exercise interventions using solely 

tetraplegic participants have not been cited in this section.  
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2.10.1. Epidemiological Studies 
 

There is strong evidence from large scale epidemiological studies in able-bodied 

populations that increased levels of PA, assessed using objective measurement devices, 

are associated with reduced metabolic risk (Healy et al., 2008; O'Donovan et al., 2013;  

Loprinzi & Ramulu, 2013; Barreira et al., 2014; Philipsen et al., 2015). Despite the 

comparatively small sample sizes, the available cross-sectional evidence for these 

associations in persons with SCI has been summarised in Table 2.5. Out of these seven 

studies, one objectively measured PA (Nooijen et al., 2012). However, the data collection 

period only consisted of two consecutive weekdays. Matthews et al., (2002) suggested 

that ≥ 4 days of monitoring should be encouraged, along with the inclusion of weekend 

days to take into account potential differences in weekday to weekend activity patterns. 

One of these seven studies also used an unspecified questionnaire, which had not 

previously been validated for use in this population (Jones et al., 2004). Nevertheless, 

whilst conflicting for certain outcomes and predominantly relying on self-report 

measures, the available evidence seems to suggest that PA is beneficial in improving 

metabolic control (Table 2.5).  

 

 



 

 

 

7
6
 

Table 2.5: Description of cross-sectional studies evaluating the association between various PA outcomes and biomarkers of CVD risk 

Author Participants 
Method of PA 

assessment 
Statistical analysis 

Outcome measures 

Sig. Association Trenda No Association 

(Jones et 

al., 2004) 

20, 9 PARA, 11 

TETRA, 

TSI; 10.3 ± 1.8 yr 

Age; 16 – 52 yr 

Unspecified 

questionnaire, 

not validated for 

SCI (PA min/wk) 

Pearson correlation 

coefficients 

- 2 hr post OGTT glucose (r = -0.59; P < 

0.01), 

- 2 hr post OGTT insulin (r = -0.79; P < 

0.01), 

- HDL-C (r = 0.46; P < 0.05), 

- TC/HDL (r = -0.49; P < 0.05), 

- body fat % (r = -0.60; P < 0.01), 

- Trunk FM (r = -0.58; P < 0.01) 

- Fasting glucose (r = -0.40) Fasting insulin 

(Manns et 

al., 2005) 

22 PARA, 

TSI; 17 ± 9 yr 

Age; 39 ± 9 yr 

PADS (arbitrary 

units of PA) 

Partial correlation 

coefficients 

- FG (r = -0.525; P < 0.05), 

- HDL-C (r = 0.625; P < 0.01), 

- V̇O2 peak (r= 0.636; P < 0.01) 

- 2 hr post OGTT glucose (r = -

0.344), 

- Fasting insulin (r = -0.397), 

- HOMA-IR (r = -0.429), 

- Total body fat (r = -0.365) 

2 hr post OGTT 

insulin, 

TAG, 

IL-6, CRP, 

function 

(Hetz et 

al., 2009a) 

75 (14F), 38 

PARA, 37 TETRA 

TSI; 14.9 ± 10.6 yr 

Age; 42.4 ± 11.8 yr 

PARA-SCI 
(participation in 

ADL) 

GLM; controlled for 

LTPA and covariates 

↑ time spend engaged in mobility ADLs 

was associated with; 

- ↓ LDL-C (P = 0.001) 

- ↓ TC (P = 0.005) 

 
HDL-C, 

TAG or WC 

(Buchholz 

et al., 

2009)b 

28 (6F) Inactive 

SCI, 11 PARA, 17 

TETRA 

TSI; 16.5 ± 10.0 yr 

Age; 41.1 ± 11.4 yr 
PARA-SCI 
(participation in 

LTPA) 

Participants were 

dichotomized into 2 

groups; performing ≥ 

25 or 0 min·day-1 

LTPA. Diff. between 

groups were 

evaluated using 1-

tailed t-tests 

Active compared to Inactive group; 

-  ↓ BMI (22.4 ± 4.8 vs. 29.0 ± 4.4, P = 

0.002), 

- ↓ WC (83.5 ± 13.0 vs. 98.2 ± 11.9 cm), 

- ↓ SYS BP (117.6 ± 18.2 vs. 135.6 ± 

29.8 mm Hg) 

Active compared to inactive 

group: 

- ↓HDL (1.15 ± 0.20 vs. 1.31 ± 

0.34 mmol·L-1, P = 0.14, d = -

0.57), 

- ↓ CRP (0.12 ± 0.50 vs 0.50 ± 

0.46 mg·L-1, P = 0.07, d = 

0.79), 

- ↓ % FM (25.5 ± 10.6 vs. 31.4 

± 8.4, P = 0.14, d = 0.62) 

 

Fasting glucose, 

Fasting insulin, 

HOMA-IR, 

TC, 

LDL-C, 

TAG, 

DIA BP 

28 (6F) Active SCI, 

19 PARA, 9 

TETRA 

TSI; 12.6 ± 10.0 yr 

Age; 42.6 ± 13.0 yr 
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(Matos-

Souza et 

al., 2013) 

30 Sedentary SCI, 

15 PARA, 15 

TETRA 

TSI; 7.7 ± 0.9 yr 

Age; 31.7 ± 1.3 yr 

Self-report; 

Sedentary 

participant 

enrolled from 

outpatient clinic. 

Active 

participants were 

competitive 

athletes. Training 

load 11.2 ± 1.3 

hr/wk for 4.3 ± 

0.5 yr 

Diff. between 

sedentary and active 

groups were 

evaluated by one-way 

ANOVA, kruskal-

Wallis and GLM; 

adjusted for relevant 

covariates 

↓TAG in physically active compared to 

sedentary group (75 ± 44 vs 89 ± 68 

mg/dL, P < 0.05) 

 

BMI, 

Fasting glucose, 

LDL-C, 

HDL-C, 

CRP, BP 
30 Active SCI, 13 

PARA, 11 TETRA 

TSI; 9.4 ± 1.1 yr 

Age; 29.1 ± 1.2 yr 

(Nooijen et 

al., 2012) 

30, 14 PARA, 16 

TETRA 

TSI; recently 

injured, rehab 

setting 

Age; 42 ± 15 yr 

Objectively 

assessed using the 

ULAM over 48 hr 

period (% 

dynamic activities 

per day) 

Multilevel regression 

analysis to determine 

longitudinal 

relationship between 

PAL and outcome 

measures 

↑ activity associated with; 

- ↑ V̇O2 peak and PO peak (P < 0.01), 

- ↓ TAG (P < 0.01) 

- TC/HDL ratio (P < 0.05) 

 

TC, 

HDL-C, 

LDL-C 

(Flank et 

al., 2014) 

134 (31F), All 

PARA 

TSI; 18.5 ± 12.3 yr 

Age; 47.8 ± 13.8 yr 

Questionnaire 

adapted from 

PADS and 

PASIPD, content 

validity and 

reliability was 

deemed good 

prior to use (PA 

min per day) 

Participants were 

dichotomized into 2 

groups, performing ≥ 

mod/vig. PA per day, 

or not. Diff. between 

groups were 

evaluated by Mann-

Whitney U tests 

DIA BP was lower (P < 0.007) with ≥ 30 

min·day-1, and this difference persisted 

even after adjusting for age. 

PA ≥ 30 min·day-1 had a 

tendency to positively influence 

BMI (P = 0.053). 

Fasting glucose, 

TC, 

HDL-C, LDL-C  

TAG, 

LDL-C/HDL-C 

ratio 

BP; blood pressure, DIA; diastolic, FM; fat mass, GLM; general linear model, OGTT; oral glucose tolerance test, PARA; paraplegic, PO; power 

output, SYS; systolic, TAG; triglyceride, TC; total cholesterol, TETRA; tetraplegic, TSI; time since injury, WC; waist circumference. 

a Non-significant but moderate association (r > 0.30) or medium effect size (d > 0.50) 

b Outcome data displayed is only for PARA participants
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2.10.2. Physical Activity Intervention Studies on Persons with a Spinal Cord Injury 
 

These cross-sectional studies do not indicate cause and effect. For example, it is possible 

that increased PA is an indication that a person is in good health, rather than PA itself 

actually causing good health. Moreover, these studies are also susceptible to systematic 

bias and confounding variables. As such we will now discuss the role of PA in the context 

of exercise interventions with pre-post study designs.  

 

2.10.2.1. Effect of Exercise on Functional Capacity 

 

From the selection of upper body exercise studies presented in Table 2.6, mean V̇O2 peak 

increased by 18% and maximal workload increased by 23%. Studies where TSI was not 

reported were excluded from this average, as well as participants with acute SCI, as it is 

likely functional capacity would have increased due to the upper extremities not being 

accustomed to upper body exercise. Improvements due to training can be classified as 

central (or systemic) and peripheral (or local) adaptations. Devillard et al., (2007) 

speculated that central adaptations to upper body exercise in individuals with SCI might 

be limited due to the smaller muscle mass used, being insufficient to elicit ‘volume 

loading’ of the heart in order to maximally stress central haemodynamic mechanisms. 

Volume loading is potentially reduced as a result of i) impaired sympathetic outflow, ii) 

reduced ability for peripheral vasoconstriction of non-exercising tissues, and iii) 

increased potential for blood pooling (Davis et al., 1987). Peripheral adaptations to 

training, such as vascular remodelling in order to minimise disruptions in whole-body 

homeostasis during exercise, lead to increased V̇O2 peak and mechanical efficiency. The 

skeletal muscles subjected to training become more vascularised, with an increase in the 

number of arterioles and capillary density improving the delivery of O2 to the working 

muscles. Other adaptations to endurance training include an increase in the oxidative 

capacity of the skeletal muscle through mitochondrial biogenesis and altered substrate 

metabolism (Hawley et al., 2015). These changes increase the efficiency of energy 

utilization and functional capacity. Over time, such adaptations may also contribute to 

improved human health.  
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Table 2.6: Review of upper extremity training interventions on functional capacity (V̇O2 Peak and power) in persons with SCI 

Author 

Participant Characteristics Exercise Intervention Characteristics Outcome 

n = 
Lesion 

level 
Age (yr) TSI (yr) Intensity 

Time 

(min) 

Frequency 

(times per 

wk) 

Type of Exercise 
Duration 

(wk) 

V̇O2 

Peak 
Power 

(Knutsson et al., 

1973) 
10 C5-L1 N/A N/A HR = 140 – 180 b·min-1 ≈ 25 4 - 5 Int. ACE 6  ↑ 41% 

(Nilsson et al., 

1975) 
12 C6-T12 23-46 N/A HRmax 18 3 Int. ACE 7 ↑ 12% ↑ 31% 

(Miles et al., 

1982) 
 Mult. 18-33 N/A 80-95% HRR 30 3 Int. WERG 6 ↑ 26% ↑ 31% 

(Taylor et al., 

1986) 
10 PARA 16 - 55 1 - 32 80% HRmax 30 5 Cont. 8 ↑ 12%  

(Yim et al., 

1993) 
11 T8-T12 24-49 

6 – 48 

mo 

3 × 10 min + 5 min rest 

> 3km.hr 
30 3 Int. WERG 5 ↑ 19%  

(Hooker & 

Wells, 1989) 

6 C5 – T7 26 – 36 4 mo - 19 50 - 60% HRR 

20 3 Cont. WERG 8 

↑ 10% ↑ 24% 

5 C5 – T9 23 - 36 2 - 19 70 - 80% HRR ↑12% ↑ 13% 

(Midha et al., 

1999) 
12 Mult. 22 - 58 4 -29 

177W. Target HR; 90% 

age predicted max 
20 - 30 2 – 3 Cont. WERG 10 ↑26%  

(Duran et al., 

2001) 
13 PARA 15 - 38 

2 – 120 

mo 
40 - 80% HRmax 120 3 

Combination of 

strength, mobility 

and aerobic training 

16  
↑ 22% 

MTP 

(Nash et al., 

2001) 
5 PARA 34 - 43 4.8 ± 1.4 

Power: 400 kpm every 3 

min until V̇O2 peak 
45 3 

Combination of 

resistance and Int. 

ACE 

3 mo ↑ 30% 
↑ 30% 

MTP 

(Tordi et al., 

2001) 
5 PARA 18 - 40 ~ 2 1 min 80% MTP 30 3 Int. WERG 4 ↑ 19% 

↑ 28% 

MTP 
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(Bougenot et 

al., 2003) 
10 T6 – L5 21 - 55 

1 - 30 

 

1 min at 100% MTP, 

4 min at VT 
45 3 Int. WERG 6 ↑ 16% 

↑ 20% 

MTP 

(de Groot et al., 

2003) 

3 T3 - L1 50 - 54 
61 – 225 

days 
40 - 50% HRR 

60 3 Int. ACE 8 

↑17% 
↑ 24% 

MTP 

3 C5 - L1 20 - 38 
43 – 175 

days 
70 - 80% HRR ↑ 50% 

↑ 59% 

MTP 

(Hicks et al., 

2003) 
34 C4 – L1 19 - 65 1 - 24 70% HR max 15 - 30 2 Cont. ACE 36  

↑ 81% 

Submax. 

PO 

(El-Sayed & 

Younesian, 

2005) 

5 PARA 31 ± 3 N/A 60 - 65% V̇O2 peak 30 3 Cont. ACE 12 ↑ 9% ↑ 10% 

(Rosety-

Rodriguez et al., 

2014) 

9 ≤ T5 20 - 35 4 - 5 50 - 65% HRR 20 - 30 3 Cont. ACE 12 ↑10%  

ACE; arm crank ergometry, Con; continuous training, HR; heart rate, HRR; heart rate reserve, Int; interval training, MTP; maximal tolerated power, PARA; 

paraplegic, VT; ventilator threshold, WERG; wheelchair ergometry.  
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2.10.2.2. Effect of Exercise on Metabolic Health and Inflammation 

 

Although physical inactivity is common among individuals with SCI, it has been 

established that PA has beneficial effects on physical capacity and cardiovascular fitness 

(Table 2.6). A growing, but low quality, body of evidence is beginning to emerge that PA 

improves metabolic health, primarily fasting lipid profiles (Table 2.7). However, there is 

a paucity of research to address the impact of exercise/PA on body composition, systemic 

inflammation, adipokines and insulin resistance/sensitivity. Currently this evidence 

remains insufficient to provide unified PA recommendations specific to the SCI 

population (Carlson et al., 2009). Inconsistencies could be caused by the considerable 

variation in participant populations, the techniques used to assess outcome measures and 

the training programs themselves. Most studies had small sample sizes (n = 3 – 34) and 

used a heterogeneous sample of participants. For example, SCI level (C4 – L5, other 

conditions responsible for wheelchair use), severity (complete, incomplete) and TSI (43 

days – 32 years) all varied considerably. It is highly likely, based on functional 

differences, that training adaptations will vary between acute/chronic and 

tetraplegic/paraplegic SCI. Although men are more likely to sustain SCI, studies showed 

a considerable selection bias, reflected by more male participants. Where female 

participants were included, no reference was made to stage of menstrual cycle, which can 

have profound implications on insulin sensitivity and fat oxidation (Pulido & Salazar, 

1999; Lundsgaard & Kiens, 2014). 

 

Exercise interventions varied substantially, with little consistency with regards to 

frequency (2 – 3 times per week), intensity (40 – 80% HRR), or duration of sessions (18 

– 120 min). Whilst the selection of intervention studies presented here is limited to upper 

body exercise, the mode of exercise (ACE, WERG) and type (interval, continuous) is also 

different. Furthermore, the duration of training programs were relatively short (8 – 16 

weeks). It is possible that interventions of this length are not long enough to impart 

consistent and measurable impacts to metabolic health. Particularly if participants were 

healthy at baseline. For example, exercise may have greater potential for therapeutic 

benefits among individuals with a higher risk for metabolic disorders at baseline than 

those with a normal risk profile. Little credence has been given to this, except for Bakkum 
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et al., (2015) who quoted the amount of participants with metabolic syndrome at baseline 

and follow-up. Also, participants were only eligible for this study if classified as inactive 

via the PASIPD at baseline. Most exercise intervention studies were pre-post, lacking a 

control group. Only Rosety-Rodriguez et al., (2014) used a true control group to compare 

the effects of the intervention.  

 

Whilst OGTTs were used in two out of the seven cross-sectional studies (Table 2.6), 

fasting measures were primarily used to assess glucose tolerance and insulin sensitivity 

in upper extremity exercise interventions (besides the HOMA-CIGMA test used by de 

Groot et al., 2003). It has been suggested 87% of patients with classifiable T2DM would 

have been missed if diagnosis relied solely on the fasting plasma glucose concentration, 

rather than 2-hr OGTT time-point (Bauman & Spungen, 2008). Thus, it is important to 

perform provocative dynamic testing. A review on the effect of exercise on metabolic 

disorders requested by the Consortium for Spinal Cord Medicine recommended that 

higher-quality RCTs with well-defined cohorts would offer the most reliable knowledge 

to the current evidence base for PA and metabolic health in this population (Carlson et 

al., 2009). They also suggested that baseline PA behaviour and other important 

psychosocial/quality of life measures be addressed. Hence Chapter 6 was proposed, in 

keeping with these recommendations, to better understand the benefits of upper body 

exercise in persons with chronic SCI.  
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Table 2.7: Description of upper limb exercise studies with carbohydrate, lipid, adipokine and inflammatory- related outcomes in persons with 

SCI. 

Author Study Design 
Participant 

Characteristics 
Intervention 

Outcome Measures 

Change No Change 

(Hooker & 

Wells, 

1989) 

Pre-post 

parallel group 

ACE INT 

6 (3F), 5 PARA, 1 

TETRA, 

TSI; 4 mo - 19 yr 

Age; 26 - 36 yr Frequency: 3 x wk 

Time: 20 min 

Duration: 8 wks 

Low-intensity 

(50 - 60% HRR) 
 

TC, TAG, LDL-C, 

HDL-C 

5 (2F), 3 PARA, 2 

TETRA, 

TSI; 2 - 19 yr 

Age; 23 – 36 yr 

Moderate-

intensity (70 - 

80% HRR) 

↓ TAG (96 ± 28 to 78 ± 18 mg/dL; P ≤ 0.10),  

↑ HDL-C (39 ± 11 to 47 ± 8 mg/dL;  

P ≤ 0.10),  ↓ LDL-C (137 ± 26 to 116 ± 5 

mg/dL; P ≤ 0.10) 

TC 

 

(Midha et 

al., 1999) 

Pre-post 

WAFT 

training 

program 

12 (1F), 7 PARA, 

3 TETRA, 1 

stroke, 1 Amp. 

TSI; 4 - 29 yr 

Age; 22 -58 yr 

Frequency: 2 - 3 x wk, 

Time: sessions ceased at target HR of 

90% age predicted max (20 - 30 min) 

Intensity: 177W 

Duration: 10 wks 

↓ TC (185 ± 42 to 170 ± 32 mg/dL; P = 0.04) 
Fasting glucose, TAG, 

HDL-C, body mass, WC 

(Duran et 

al., 2001) 

Pre-post; 

mobility, 

strength and 

aerobic Ex. 

13 (1F), All PARA 

TSI; 2 - 120 mo  

Age; 15 - 38 yr 

Frequency: 3 x wk  

Time: 120 min 

Intensity: 40 - 80% HRmax  

Duration: 16 wks 

 

HDL-C, LDL-C, 

body mass, % body fat 

(Nash et 

al., 2001) 

Pre-post ACE 

INT (with a 

focus on 

resistance) 

5 PARA  

TSI; 4.8 ± 1.4 yr  

Age; 34 - 43 yr 

Frequency: 3 x wk,  

Time: 45 min  

Intensity: Power output 400 kpm every 

3 min until V̇O2 peak 

Duration: 3 mo 

↓ LDL-C (118 ± 22 to 88 ± 30 mg/dL; 

 P = 0.05) 

Non-significant ↓TC 

and TAG. Non-

significant ↑ HDL-C 
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(de Groot 

et al., 

2003) 

Pre-post 

parallel group 

ACE INT 

3 (2F), All PARA 

TSI; 61 - 225 days  

Age; 50 - 54 yr 
Frequency: 3 x wk, 

Time: 60 min, 

Duration: 8 wks 

Light-intensity 

(40 - 50% HRR) 

 TC, HDL-C, LDL-C, 

TAG. Non-significant 

improvement in IS (56%, 

measured via HOMA-

CIGMA) 

3, 2 PARA, 1 

TETRA  

TSI; 43 - 175 days 

Age; 20 - 38 yrs 

High-intensity 

(70 - 80 % 

HRR) 

↓TAG (-31%), ↓ IS (-33%, measured via 

HOMA-CIGMA) 
TC, HDL-C, LDL-C 

(El-Sayed 

& 

Younesian, 

2005) 

Pre-post, 

ACE INT 

5 PARA  

TSI; N/A  

Age; 31 ± 3 yr 

Frequency: 3 x wk  

Time: 30 min  

Intensity: 60-65% VO2 peak 

Duration: 12 wks 

↑ HDL-C  (P < 0.05) TC, TAG 

(Rosety-

Rodriguez 

et al., 

2014) 

RCT, ACE 

INT (mod. 

INT and 

CON) 

17 (9 INT, 8 CON) 

≤ T5  

TSI; 4 - 5 yr  

Age; 20 - 35 yr 

Frequency: 2 x wk  

Time: 20 - 30 min (+10-15 min warm 

up) 

Intensity: 50 - 65% HRR 

Duration: 12 wks 

↓WC (98.1 ± 6.6 to 94.4 ± 6.3 cm; P = 

0.046), ↓ Leptin (9.6 ± 2.7 to 7.5 ± 2.4 

ng/mL; P < 0.05), ↓ TNFα (23.3 ± 5.6 to 

20.6 ± 5.2 pg/mL; P < 0.05),  ↓ IL-6 (6.7 ± 

2.2 to 4.1 ± 1.9 pg/mL; P < 0.05) 

Adiponectin 

(Bakkum 

et al., 

2015) 

Parallel group 

RCT, ACE 

INT (hybrid 

Ex group not 

displayed) 

10 (1F), 7 PARA, 

3 TETRA 

TSI; 9 - 30 yr 

Age; 30 - 63 yr 

Frequency: 2 x wk  

Time: 18 - 32 min 

Intensity: 65 - 75% HRR 

Duration: 16 wks 

↓ WC (Δ -2.5 ± 1.0 cm; P = 0.03);  

↓ Fasting insulin (Δ -14.3 ± 4.0 pmol·L-1;  

P = 0.01);  

↓ HOMA-IR (Δ -0.5 ± 0.2; P = 0.02) 

Fasting glucose, TAG, 

HDL-C, Visceral 

adiposity, CRP, IL-6, 

BP. 

ACE; arm crank intervention, BP; blood pressure, CON; control group, INT; intervention group, HRR; heart rate reserve IS; insulin sensitivity, 

PARA; paraplegic, RCT; randomised controlled trial, TAG; triglyceride, TC; total cholesterol, TETRA; tetraplegic, TSI; time since injury, WC; 

waist circumference.
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Upper Body Exercise Training and Insulin Sensitivity: Potential Mechanisms 

 

To our knowledge the potential mechanisms underpinning these improvements in 

metabolic health have not been directly assessed in upper body skeletal muscle. However, 

for insulin sensitivity (our primary outcome measure in Chapter 6) it is likely these 

improvements are congruent with those reported in the able-bodied population or during 

lower extremity FES training studies in persons with SCI. Acute exercise presents a major 

challenge to whole-body homeostasis; prolonged training therefore results in cellular and 

systemic adaptations that function to minimize further widespread disruptions (Hawley 

et al., 2014). An acute bout of exercise increases glucose uptake into skeletal muscle, via 

an insulin-independent increase in GLUT-4 translocation to the plasma membrane, 

mediated in part by AMPK (Zierath, 2002; Hawley & Lessard, 2008). AMPK is a fuel-

sensing enzyme, activated in response to the increased cellular AMP: ATP ratio during 

acute exercise (Frosig et al., 2004)  

 

Repeated PA results in prolonged ‘insulin sensitizing’ effects due to increased expression 

and/or activity of key signalling proteins, such as AMPK, involved in the regulation of 

glucose uptake and fatty acid oxidation (Fujii et al., 2000; Richter & Ruderman, 2009; 

Hawley et al., 2014). AMPK itself plays a key role in the adaptive response of skeletal 

muscle to moderate-intensity exercise training by the regulation of key genes associated 

with metabolic flux and its ability to alter muscle fuel reserves (Winder et al., 2006; 

McGee & Hargreaves, 2010). Furthermore, expression and activity of GLUT-4 is 

increased in skeletal muscle in response to FES training in individuals with SCI (Hjeltnes 

et al., 1998), and regular aerobic exercise training in able-bodied individuals (Ivy, 1997; 

Short et al., 2003). As such, these adaptations could explain improvements in insulin 

sensitivity reported in previous studies in persons with SCI (Table 2.7).  

 

 

 

 



Chapter 2                                                                                            Review of Literature 
 

86 
 

2.11. OVERVIEW OF EXPERIMENTAL WORK 
 

The aim of this thesis was to address the impact of PA on the metabolic health and 

wellbeing of persons with SCI. A rigorous approach was taken to develop a method 

capable of accurately predicting PAEE in wheelchair users. This involved ascertaining 

the mechanical reliability of a widely used tri-axial accelerometer (GT3X+) and 

investigating its human validity during an outdoor wheelchair propulsion protocol 

(Chapter 3). The next step was to compare outputs (physical activity counts vs. raw 

acceleration) from wearable devices (GT3X+ vs. GENEActiv) during a robust and 

controlled treadmill protocol (Chapter 4). Considering the widespread use of multi-sensor 

devices in the able-bodied population, a subsequent study was conducted to determine 

whether the combination of acceleration and physiological signals offered an 

improvement in the prediction of PAEE in wheelchair users (Chapter 5). On completion 

of this method development, a randomised controlled trial was conducted to assess the 

impact of home-based moderate-intensity exercise on human metabolic health, body 

composition, inflammation and functional capacity in individuals with SCI (Chapter 6). 

Compliance to the intervention was monitored using the PA monitoring devices validated 

in preceding Chapters.   
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CHAPTER 3: INFLUENCE OF ANATOMICAL 

PLACEMENT AND MECHANICAL RELIABILITY OF 

THE GT3X+ ACCELEROMETER IN THE 

PREDICTION OF PHYSICAL ACTIVITY ENERGY 

EXPENDITURE IN MANUAL WHEELCHAIR USERS 
 

 

3.1. INTRODUCTION 

 

The effects of regular PA on the health and wellbeing of persons with a SCI remains 

poorly characterised. This is despite CVD now being the leading cause of mortality in 

individuals with SCI and occurring earlier in the lifespan in comparison to able-bodied 

controls (Garshick et al., 2005). Individuals with SCI show an abundance of elevated 

CVD risk factors in comparison to matched able-bodied counterparts (Bauman & 

Spungen, 1994; Lavis et al., 2007). The positive contribution of regular PA on these CVD 

risk factors and the maintenance of weight balance is well documented and broadly 

accepted in ambulatory individuals (Kesaniemi et al., 2001). Results of self-reported PA 

monitoring in individuals with SCI (Ginis et al., 2010a) suggest that reduced PA may 

play a role in the progression of these risk factors. However, little is known regarding 

specific components or patterns of PA that are required to derive protection from chronic 

diseases and improve metabolic health in manual wheelchair users. Therefore, objective 

measures of PA are required to inform future research efforts and this broader health 

agenda. 

 

Free-living PA is inherently difficult to measure with precision. This becomes even more 

problematic within a heterogeneous group such as manual wheelchair users where, 

despite movement being restricted to the upper body, differential levels/completeness of 

SCI lesions result in highly variable movement patterns. Improved assessment of habitual 

PA would permit: appropriate cross-sectional comparisons, allow researchers to comment 

on the efficacy of behaviour change interventions and potentially inform PA guidelines 

(Brage et al., 2005). The limitations of self-report measures have been outlined in Chapter 

2. Considering these limitations and the impracticality of direct observations and indirect 

calorimetry during free-living assessment, other unobtrusive objective measurement tools 
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are needed that can be used to characterise the association with PA and metabolic health, 

particularly among cohorts where these conditions are more prevalent. 

 

Accelerometers are commonly used to quantify free-living PA (Plasqui et al., 2005). Over 

the past decade Actigraph has released several models, including the most recent GT3X+, 

with higher-resolution signals, greater data storage capacity and increased battery life 

(John & Freedson, 2012). This model remains to be validated in specific cohorts with 

differing movement patterns, such as manual wheelchair users. The logical first step in 

the development of an objective accelerometer based tool to assess PAEE is to assess its 

basic mechanical reliability. Various mechanical apparatus have been used to assess the 

reliability of previous generations of the Actigraph, such as turntables (Metcalf et al., 

2002) and rotating wheel setups (Brage et al., 2003) for the initial CSA model and 

hydraulic shaker tables for newer generations (Esliger & Tremblay, 2006; Silva et al., 

2010; Santos-Lozano et al., 2012). These are advantageous as investigators can maintain 

precise control over experimental conditions and simultaneously expose multiple 

monitors to a wide range of accelerations. Therefore any variability is exclusively 

intrinsic to the accelerometer (Esliger & Tremblay, 2006), and researchers can shift their 

attention to identifying and minimizing biological variation such as anatomical 

positioning. 

 

Waist mounted monitors have been shown to under-estimate energy expenditure by 24% 

in manual wheelchair users with SCI (Hiremath & Ding, 2009). It is not surprising that 

manufacturers energy expenditure prediction algorithms developed based upon activity 

counts generated at the waist during ambulation are unsuitable to derive PAEE of manual 

wheelchair users. When Hiremath & Ding, 2011b, examined the correlations between raw 

activity counts from a RT3 tri-axial accelerometer and criterion energy expenditure 

measured by a portable metabolic cart, the counts on the upper arm demonstrated a better 

correlation (R2
 = 0.70 vs. 0.44) with the criterion energy expenditure compared to the 

waist. This observation identifies the arm as a potential location to yield better prediction 

accuracy and reduced error and also highlights the need for the development of specific 

algorithms to predict PAEE in manual wheelchair users.  

 

To our knowledge, there are no published studies on the influence of anatomical 

placement on the validity of a GT3X+ accelerometer to determine PAEE in manual 
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wheelchair users. The aims of this study were twofold. Firstly, to assess the validity and 

reliability of the GT3X+ accelerometer during mechanical testing along each orthogonal 

axis within the physiological range of human movement. Secondly, to evaluate the effect 

of anatomical positioning of the GT3X+ accelerometer on the relationship between 

physical activity counts (PAC) and criterion PAEE during a range of representative 

activities in manual wheelchair users. We hypothesise that due to considerable 

improvements in manufacturing and design that the GT3X+ would display large intra and 

inter-unit reliability when subjected to a robust acceleration protocol on a multi-axis 

shaker table (MAST rig). We also hypothesise that due to altered movement patterns in 

wheelchair users, wearing a GT3X+ on the waist will result in a weaker relationship 

between PAC and criterion PAEE compared to devices attached on the upper arm and 

wrist. 

 

3.2. METHODS 

 

3.2.1. Accelerometer 

 

The GT3X+ activity monitor (Actigraph, Pensacola, FL, USA) records time-varying 

accelerations within the dynamic range of ± 6 g, and contains a solid state tri-axial 

accelerometer sensitive to movement along three axes: anteroposterior (X), mediolateral 

(Y) and vertical (Z).  The GT3X+ activity monitor is compact (dimensions: 4.6 cm x 3.3 

cm x 1.9 cm), lightweight (19 grams), and can easily be worn at multiple locations on the 

body. Each unit is powered by a rechargeable lithium ion battery and has a memory of 

512 MB. Approximately forty days of PA data can be recorded when sampling at a 

frequency of 30 Hz; although the battery would need recharging after thirty days. To 

quantify the amount and frequency of human movement, accelerometer outputs are 

digitized via a twelve-bit-analogue to digital converter (A/DC) and passed through 

Actigraph’s proprietary digital filtering algorithms. In order to eliminate any acceleration 

noise outside of the normal human activity frequency, digitized signals pass through low 

(0.25 Hz) and high (2.5 Hz) band width filters (John & Freedson, 2012). The GT3X+ 

records time-varying accelerations at a user-defined sampling frequency ranging from 30 

Hz to 100 Hz, these are then converted to arbitrary units called ‘physical activity counts’ 

(PAC). These are calculated through summing the change in raw acceleration values 

measured during a specific interval of time, or ‘epoch’. Unlike previous models such as 
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the GT1M, the desired epoch length can be selected by the end user (1-s to 240-s) 

following rather than prior to data collection.  

 

3.2.2. Multi-axis Shaker Table  
 

All reliability testing was conducted using a Multi-axis shaker table (MAST-9720, Instron 

Structural Testing Systems Ltd, High Wycombe, UK). The MAST-9720 is powered via 

three vertical, one horizontal and two lateral hydraulic actuators and is calibrated 

regularly to an accuracy of 0.1 g (Figure 3.1). 

 

Figure 3.1: Schematic of the MAST 9720 (Taken with permission from Horner, 2012) 

 

3.2.3. Experiment 1- Mechanical Testing 
 

The MAST testing conditions were restricted by the maximum displacement amplitude 

of the horizontal actuator (approx. 62.5 mm), which limited maximum acceleration to 1.5 

g. With the limitations of the MAST rig, a similar testing schedule to that used by Horner 

et al., (2011) was developed that comprised various acceleration conditions (Table 3.1) 

to replicate a range of physiological movements. These were applied to the units by 

manipulating the frequency of oscillation and displacement amplitudes. The majority of 

humans movements tend to fall between 0.3 and 3.5 Hz (Sun & Hill, 1993), and maximum 

angular velocities of the forearm during the drive phase in elite wheelchair racers has a 

frequency component of 3.6 Hz (Wang et al., 2008). The conditions selected produced 

similar PAC to those recorded by a GT3X+ device worn on the wrist during wheelchair 
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propulsion ranging from light to moderate-intensity PA based on metabolic equivalent 

values. In a number of conditions acceleration was kept constant, allowing for an 

independent assessment of the effect of frequency on count magnitude. Conversely, 

frequency was also kept constant whilst acceleration of the aluminium mounting plate 

was manipulated to independently assess the effect of acceleration on accelerometer 

output. The units were subjected to these testing conditions using a sinusoidal oscillation 

procedure which was pre-programmed using the MASTs dedicated software (RS Replay, 

Instron Structural Testing Systems Ltd).  

 

All ten GT3X+ units to be used in subsequent human testing were initialized at a sampling 

frequency of 30 Hz via a computer interface.  Prior to testing, a trial run was conducted 

without the accelerometers, to ensure the hydraulics were functioning at an optimum 

operating temperature. Then each GT3X+ unit was attached to a piece of angle iron 2 cm 

apart using double-sided floor tape (DS Scrim 306/250, Tape Range distributors Ltd, 

UK). Each GT3X+ unit was mounted firmly and securely to prevent accelerometer 

misalignment. The angle iron was then attached to the aluminium alloy mounting plate 

of the MAST. As only the horizontal actuator was used during this protocol the angle iron 

was rotated after each test schedule so that the horizontal motion of the MAST 

corresponded to displacement along the x, y and z axes of the GT3X+ (Figure 3.2). The 

testing schedule was repeated in all three axes. Each individual condition was maintained 

for seventy seconds. After completion of the testing schedule and when the MAST rig 

was safely parked the accelerometers were removed and downloaded using dedicated 

software (Actilife 6, Pensacola, FL, USA) and exported to Microsoft Excel in a comma-

separated value (c.s.v.) file format for further analysis. The activity counts were 

summated into 5-s epochs. The first and last 10-s were excluded to ensure only steady 

state values were included in the analysis. Each condition was reduced to 50-s long, with 

the mean of the 10 remaining values expressed as counts per 5-s (Counts 5·s -1).  
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Figure 3.2: Multi-axis shaker table set up along the Z (A), Y (B) and X (C) axis. The 

arrow represents the direction of oscillation by the horizontal actuator 

 

3.2.4. Experiment 2- Human Validity 
 

Ethics approval was granted by the University of Bath Research Ethics Approval 

Committee for Health (REACH) and informed consent was obtained from each 

participant. Fifteen manual wheelchair users (mean ± SD, age: 36 ± 11 years, time since 

injury: 15 ± 17 years, body mass: 70 ± 12 kg,) visited the Centre for DisAbility Sport and 

Health (DASH) human physiology laboratory on one morning following an overnight fast 

(> 10 hrs). Participants were asked to refrain from performing any strenuous PA 24 hrs 

prior to trials. The medical condition responsible for regular use of a wheelchair was nine 

SCI (paraplegic), one fibromyalgia, one complex regional pain syndrome and two 

participants with Spina Bifida. Two able-bodied participants were included in the 

analysis; both were familiar with wheelchair propulsion having played wheelchair 

basketball >1 year. Time since injury (TSI) was self-reported based on when the medical 

condition was first diagnosed by a clinician.  

 

Mass of the wheelchair and participants was recorded to the nearest decimal place using 

platform wheelchair scales (Detecto ® BRW1000, Missouri, USA). The wheelchair, 

along with participants shoes were weighed separately and subtracted from the total mass 

of the participant plus wheelchair to derive an accurate body mass as recommended 

(Clasey & Gater, 2007). Participants transferred from their wheelchair into a supine 

position on a physiotherapy bed with their feet placed in dorsal flexion and head 

positioned in the Frankfurt plane. Length was measured with the participant barefoot in 

centimetres to the nearest decimal place, along the left side of the body using a non-elastic 

 

A B C 
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tape measure (Lufkin, US). If spasticity occurred then participants were segmented by 

joint and limb length measured accordingly. 

 

Resting metabolic rate (RMR) was estimated by indirect calorimetry from four 5-min 

expired air samples collected in Douglas Bags (Hans Rudolph, MO, USA) in accordance 

with best practice (Compher et al., 2006). Each Douglas bag was fully evacuated prior to 

gas collection. The obtained samples were passed through tubing containing anhydrous 

calcium sulphate (Drierite, Cole-Parmer Instrument Co. Ltd, London, UK) to remove 

water vapour from the samples. Respiratory gases were measured using a paramagnetic 

oxygen (O2) and an infrared carbon dioxide (CO2) gas analyser (Series 1400, Servomex 

Ltd., Sussex, UK). The analyser was calibrated within less than one hour of each test with 

references gases of known composition within the physiological range (British Oxygen 

Company, UK). The volume of expired air was determined using a dry gas meter 

(Harvard Apparatus, Kent, UK) and temperature was measured using a digital 

thermometer (model C, Edale Instruments, Cambridge, UK). All values were corrected 

to reflect standard temperature and pressure. These processes allowed the volume of 

inspired air and subsequent V̇O2 to be calculated using the Haldane transformation 

(Haldane, 1912). An average of three stable values (within 100 kcal·day-1) was accepted 

as RMR. 

 

Activity Protocol 

 

The activity protocol consisted of wheelchair propulsion at varying velocities anti-

clockwise around an outdoor athletics track and simulated deskwork. This created a 

controlled research environment but, importantly, outside of the laboratory, where energy 

expenditure is more likely to reflect that of daily wheelchair propulsion. Each activity 

lasted for 6-min, interspersed with 5-min recovery periods. Throughout the activity 

protocol three GT3X+ units were worn, one on the right wrist (using a Velcro wrist strap 

positioned over the dorsal aspect of the wrist midway between the radial and ulnar styloid 

processes), one on the upper arm (using a small elastic belt positioned on the lateral 

surface of the arm midway between the acromion process and lateral epicondyle of the 

humerus) and one on the waist (positioned above the right hip along the anterior axillary 

line). The devices were initialised with a sampling frequency of 30 Hz.  
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In addition participants also wore a portable metabolic system (COSMED K4b2, Rome, 

Italy) and a Polar T31 heart rate monitor (Polar Electro Inc., Lake Success, NY, USA). 

The K4b2 analyser unit was placed on the chest in a harness with battery pack on the 

participants back (Total weight ~ 1.5 kg). A rubber face mask (Hans Rudolf, Shawnee, 

USA) of appropriate size was fitted carefully to the face and checked for leaks prior to 

each test. Expired gases pass through a flow meter and are channelled down a permapure 

sampling line into the analyser unit where the fractions of O2 and CO2 in expired air are 

measured. Metabolic data was retrieved and analysed using associated software (Cosmed 

9.0, Rome, Italy). Oxygen uptake (V̇O2) and carbon dioxide production (V̇CO2) were 

used to estimate energy expenditure (kcal.min-1) of each activity, using indirect 

calorimetry (Weir, 1949). Prior to use the K4b2 was calibrated according to 

manufacturer’s instructions. The K4b2 has been shown to be both reliable and valid 

(Duffield et al., 2004; McLaughlin, 2001), and has also been used previously to measure 

criterion EE in persons with SCI (Hiremath & Ding, 2011a; Garcia-Masso et al., 2013). 

The Polar T31 heart rate monitor was firmly secured on the chest using an elastic strap 

and ultrasound gel was applied to the electrodes to improve the connection. The heart rate 

transmitted by the polar T31 was captured by a wireless receiver module connected to the 

K4b2. 

 

The wheelchair propulsion activities included four conditions 2, 4, 6 and 8 km·hr-1, which 

were counterbalanced to prevent order and carryover effects using a Latin Square design. 

During deskwork participants were asked to type out a script. Participants only completed 

trials that they felt comfortable/competent with. Real time speed feedback was provided 

via a GPS cycle computer (Garmin ® EDGE 500, Garmin Ltd, Southampton, UK) placed 

where visible in the participants lap. After direct correspondence with the manufacturer 

this GPS device is accurate to within 15 metres 95% of the time. However, under normal 

conditions accuracy improves to within 5 – 10 metres. No attempt was made to 

standardise wheelchair variables, although tire pressure and chair characteristics were 

recorded, participants used their everyday wheelchair. As alluded to elsewhere 

(Washburn & Copay, 1999), differences in these variables, such as chair weight, would 

be reflected in oxygen uptake values.  
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3.2.5. Statistical Analyses 
 

Experiment 1- Mechanical Testing 

 

The mean ± SD activity PAC output was calculated for each unit in each condition and 

each axis (330 in total). The coefficient of variation (CVintra) was calculated from the 

replicate 5-s epochs within each condition to assess intra-unit reliability. This is a 

noteworthy distinction of our design compared to previous research in the field of intra-

unit reliability analyses, which tends to focuses on within-unit between trial variability 

(Horner et al., 2011). However, we adopted an approach similar to that of Esliger & 

Tremblay, (2006) in order to remove any trial effects which may increase variability (i.e. 

more technological error). Secondly, coefficients of variation (CVinter) for each axis 

during each condition were determined. Additionally, intra-class correlation coefficients 

(ICCs) with a two-way random-effects model for absolute agreement were calculated. 

 

A Spearman’s rank correlation coefficient (Rs) was used to determine the criterion-related 

validity between PAC from the GT3X+ and the MAST acceleration. Paired t-tests were 

conducted to assess the independent effect of acceleration when frequency was held 

constant at 2 Hz on PAC output across units. A Repeated-measures ANOVA was 

conducted to assess the independent effect of frequency on PAC output across units when 

acceleration was held constant at 9.81 m·s-2. Where significance was found (P < 0.05), 

bonferroni corrections were applied to post hoc tests where multiple comparisons were 

considered.  

 

Experiment 2- Human Validity  

 

A priori power calculation revealed a sample size of 15 was necessary in order to detect 

an r of 0.67 using a one-tailed test with an α = 0.05 and power = 0.95. This calculation 

was based on data from (Washburn & Copay, 1999). The K4b2 and activity monitors were 

synchronised prior to use. Breath-by-breath K4b2 data was interpolated into 1-s intervals 

for all tests. Individual V̇O2 and V̇CO2 breath values that were > 3 SDs from the mean 

were removed (Lamarra et al., 1987). Final data sets were then averaged over a 2-min 
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period. Physical activity counts from the GT3X+ were summated into 60-s epochs. 

Assuming that Dietary-induced thermogenesis was negligible (i.e. participants were 

fasted) resting metabolic rate (kcal·min-1) was subtracted from total energy expenditure 

measured by the K4b2 to generate PAEE for each activity. Comparisons between the 

‘criterion’ measurement of PAEE [Total energy expenditure (TEE) – RMR] and activity 

monitors were made between 03:30 and 05:30 (mm:ss) of each activity.  

 

Pearson product moment correlation coefficients (r), coefficients of determination (R2) 

and linear regressions were conducted to assess the association between the criterion and 

PAC from the GT3X+ accelerometers at each anatomical position during wheelchair 

propulsion. Using the generated regression equations an analysis of agreement was 

conducted for each anatomical location using Bland and Altman plots to calculate 

absolute bias and 95% limits of agreement (LoA). Standard Error of the Estimate (SEE) 

was also calculated for each correlation. Statistical significance was set at a priori of α < 

0.05. All analyses were performed using IBM® SPSS® Statistics 20 for Windows (IBM, 

Armonk, NY, USA). 

 

3.3. RESULTS 

 

3.3.1. Experiment 1- Mechanical Testing 

 

Overall mean ± S.D activity counts across all eleven testing conditions for all devices was 

497 ± 2.4, 497 ± 2.0 and 496 ± 2.4 counts 5·s-1 for the z, y and x axes respectively. Intra-

unit reliability (CVintra) values, displayed as mean and 95% confidence intervals (lower – 

upper), were 0.9% (0.7 – 1.2), 0.7% (0.5 – 0.9) and 1.0% (0.7 – 1.2) for the z, y, and x 

axes, respectively (Table 3.1). Irrespective of the axis, the highest and lowest CVintra 

values corresponded to condition one (0.06 g; 0.5 Hz) and five (1.0 g; 2.0 Hz), 

respectively. We also considered the between trial intra-unit reliability, which were 

higher than within-trial results, these were 1.5% (0.8 – 2.2), 1.5% (0.7 – 3.1) and 1.7% 

(0.8 – 2.5) for the z, y and x axes, respectively (mean, 95% upper and lower confidence 

intervals). 
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Table 3.1: Description of the acceleration and frequency conditions used during the mechanical testing schedule and within-trial intra- and inter-unit 

CV values 

                   

Condition 
Amplitude Frequency  Acceleration 

Intra-unit CV Inter-unit CV 

Axis Axis 

(m) (Hz) (g) Z Y X Z Y X 

1 0.063 0.5 0.06 4.4% (3.4 - 5.4) 2.5% (2.1 - 3.0) 4.7% (3.5 - 5.9) 5.2% (4.4 - 6.0) 4.7% (4.1 - 5.4) 5.0% (4.0 - 6.0) 

2 0.063 1.0 0.25 0.9% (0.7 - 1.1) 0.5% (0.3 - 0.7) 0.8% (0.7 - 1.0) 1.6% (1.3 - 1.9) 0.9% (0.8 - 1.0) 1.1% (0.9 - 1.3) 

3 0.055 1.5 0.50 0.4% (0.3 - 0.4) 0.3% (0.3 - 0.4) 0.5% (0.3 - 0.7) 1.8% (1.7 - 2.0) 1.9% (1.7 - 2.0) 3.3% (3.0 - 3.5) 

4 0.031 2.0 0.50 0.5% (0.3 - 0.6) 0.6% (0.3 - 0.8) 0.4% (0.4 - 0.5) 1.4% (1.3 - 1.5) 1.2% (1.0 - 1.4) 1.8% (1.7 - 1.9) 

5 0.062 2.0 1.00 0.2% (0.2 - 0.3) 0.2% (0.1 - 0.3) 0.2% (0.2 - 0.3) 1.1% (1.0 - 1.1) 1.4% (1.3 - 1.5) 1.0% (1.0 - 1.1) 

6 0.040 2.5 1.00 0.3% (0.2 - 0.4) 0.3% (0.1 - 0.5) 0.4% (0.2 - 0.5) 2.5% (2.3 - 2.6) 2.7% (2.6 - 2.8) 4.1% (3.9 - 4.2) 

7 0.016 4.0 1.00 1.6% (1.2 - 2.1) 1.5% (1.1 - 1.8) 1.5% (1.1 - 2.0) 2.9% (2.6 - 3.2) 5.3% (5.0 - 5.6) 3.6% (3.2 - 4.0) 

8 0.035 3.0 1.25 0.5% (0.4 - 0.7) 0.3% (0.2 - 0.5) 0.3% (0.2 - 0.5) 3.9% (3.7 - 4.1) 3.5% (3.5 - 3.6) 3.4% (3.2 - 3.5) 

9 0.025 3.5 1.25 0.7% (0.6 - 0.8) 0.6% (0.4 - 0.8) 0.6% (0.5 - 0.7) 1.0% (0.8 - 1.2) 1.7% (1.7 - 1.8) 1.4% (1.3 - 1.6) 

10 0.060 2.5 1.50 0.2% (0.2 - 0.3) 0.3% (0.2 - 0.3) 0.3% (0.2 - 0.3) 1.7% (1.7 - 1.8) 0.9% (0.8 - 0.9) 1.8% (1.7 - 1.8) 

11 0.023 4.0 1.50 0.7% (0.5 - 0.9) 0.7% (0.6 - 0.8) 0.8% (0.6 - 1.0) 2.0% (1.9 - 2.2) 2.3% (2.2 - 2.5) 2.8% (2.6 - 2.9) 

Overall mean 0.9% (0.7 - 1.2) 0.7% (0.5 - 0.9) 1.0% (0.7 - 1.2) 2.3% (2.1 - 2.5) 2.4% (2.2 - 2.6) 2.7% (2.4 - 2.9) 

 

Data is displayed as mean and 95% confidence intervals (lower - upper) 
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The ICCs for activity counts across all conditions were 1.0 for each axis (all P < 0.001). 

The mean variability between units was 2.5% (CVinter) across all conditions for all units 

in each axis and ranged from 1.0 – 5.2%, 0.9 – 5.3% and 1.0 – 5.0% for z, y and x axes, 

respectively (Table 3.1).  

 

 

Figure 3.3: Relationship between count magnitude and MAST rig acceleration (n = 660) 

 

Figure 3.3 demonstrates a significant weak positive linear relationship (Rs = 0.25, P < 

0.01) when PAC output across all eleven conditions from each axis for all units are 

displayed together (n = 660). Holding the frequency of oscillation of the mounting plate 

of the MAST constant at 2 Hz and increasing acceleration lead to a significant increase 

in PAC (0.5 g = 462 ± 2 counts 5·s-1, 1.0 g = 977 ± 2 counts 5·s-1, P < 0.01) (Figure 3.4). 

However, holding acceleration constant at 9.81 m·s-2 and manipulating the frequency of 

movement had counter-intuitive results; interestingly increasing movement frequency 

resulted in a significant decrease in PAC (2 Hz = 977 ± 2 counts 5·s-1, 2.5 Hz = 644 ± 2 

counts 5·s-1, 4 Hz = 147 ± 2 counts 5·s-1, P < 0.01) (Figure 3.5). 
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Figure 3.4: Effects of acceleration on count magnitude (Frequency held constant at 2 

Hz). † Significant difference (P < 0.01) 
 

 

 

Figure 3.5: Effects of frequency on count magnitude (acceleration held constant at 9.81 

m·s-2) 

a significantly different to 2 Hz 

b significantly different to 2.5 Hz 

c significantly different to 4 Hz
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3.3.2. Experiment 2- Human Validity 

 

Criterion PAEE (kcal·min-1), heart rate and GT3X+ count output data at each anatomical 

location all increased from the deskwork task to higher propulsion velocities (Table 3.2). 

Calculated metabolic equivalents (METs) from dividing V̇O2 for each activity by 

individuals V̇O2 determined at rest, suggests that deskwork and 2 km·hr-1 were on average 

light intensity activities, 4 - 6 km·hr-1 were moderate-intensity activities, whereas 

propulsion at 8 km·hr-1 was considered vigorous.  

 

The relationships between criterion PAEE estimated by the K4b2 and predicted PAEE 

derived from activity counts from each device are presented as scatter plots in Figure 3.6 

(a-c). Physical activity counts from each anatomical location were significantly (P < 0.01) 

associated with PAEE (waist; r = 0.73, upper arm; r = 0.87, wrist; r = 0.93). This 

relationship remains linear when assessing wheelchair propulsion separately (wrist; r = 

0.90). The SEE for each correlation was 1.45, 1.05, and 0.80 kcal·min-1 for the waist, 

upper arm and wrist respectively. The linear regression equations for devices worn at each 

anatomical location are shown in equations 1–3. 

 

 

PAEEwaist = (0.001151 * Physical activity counts.min-1) + 1.265318                       (Eq. 1) 

PAEEupperarm = (0.000392 * Physical activity counts.min-1) + 0.048896                  (Eq. 2) 

PAEEwrist = (0.000222 * Physical activity counts.min-1) – 0.068073                        (Eq. 3) 

 

 

Figure 3.7 (a–c) further illustrates the difference between the criterion PAEE and the 

predicted PAEE through the use of Bland and Altman plots displaying the mean 

difference and 95% limits of agreement (LoA). Using the generated regression equations 

the absolute bias ± 95% LoA values were 0.0 ± 2.82 kcal·min-1, 0.0 ± 2.03 kcal·min-1 and 

0.0 ± 1.55 kcal·min-1 for the waist, upper arm and wrist, respectively. 
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 Table 3.2: GPS velocity, criterion PAEE, PAC at each anatomical location, calculated METs, HR, and number of 

participants per trial for each activity (mean ± SD) 

 

 
Activity 

Garmin 

velocity 

(km·hr-1) 

K4b2 PAEE 

(kcal·min-1) 

Physical activity counts (counts·min-1) MET 

K4b2 

Heart 

rate 

(b·min-1) 

n 
Upper arm Waist  Wrist  

Desk  - 0.26 ± 0.25 30 ± 38 1 ± 3 362 ± 182 1.3 ± 0.3 73 ± 14 15 

2 km.hr-1 2.6 ± 0.4 1.26 ± 0.41  5748 ± 1399 644 ± 757 8192 ± 2209 2.3 ± 0.4 96 ± 19 12 

4 km.hr-1 4.0 ± 0.3 2.41 ± 0.94  7098 ± 2168 841 ± 643 11712 ± 3313 3.5 ± 1.1 105 ± 17 15 

6 km.hr-1 5.6 ± 0.6 3.74 ± 1.00 8477 ± 2054 1803 ± 1347 17105 ± 4271 4.7 ± 1.2 125 ± 23 13 

8 km.hr-1 7.1 ± 0.7 5.92 ± 1.89 12459 ± 5042 2880 ± 1421 25599 ± 4522 6.4 ± 2.1 149 ± 22 9 
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Figure 3.6: Scatterplots showing the relationship between predicted PAEE from the waist (a), upper arm (b) and wrist (c) against criterion PAEE. 

The Straight line represents the models best fit, and the dotted line indicates the line of identity.
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Figure 3.7: Bland- Altman plots for the criterion and estimated PAEE using regression equations developed at the waist (A), upper arm (B), and 

wrist (C).
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3.4. DISCUSSION  

 

Of the three anatomical locations considered in this study the results indicate that the wrist 

provides the most valid prediction of PAEE in manual wheelchair users. The 

accelerometer worn on the wrist explained the highest amount of variance and displayed 

the lowest random error. Using a schedule that comprised eleven test conditions of 

various frequencies and accelerations the GT3X+ demonstrated excellent reliability, with 

mean intra and inter-unit coefficients of variation of 0.9% and 2.5% respectively. To our 

knowledge this is the first study to assess the mechanical reliability and validity of the 

newest generation Actigraph GT3X+ accelerometer and assess the validity of its use in 

manual wheelchair users.  

 

3.4.1. Experiment 1- Mechanical Testing  

 

The majority of previous mechanical reliability studies have focused on older generations 

of the Actigraph accelerometer, of which the GT1M displays the next best reliability 

compared to the GT3X+ (CVintra = 2.9% and CVinter = 3.5%) (Silva et al., 2010). 

Considering the aforementioned software and component improvements, such as 

switching to micro-electro-mechanical system (MEMS) transducers which have greater 

sensitivity, it is not surprising that newer generations display improved intra and inter-

unit reliability. The older generations of the Actigraph accelerometers contained 

piezoelectric transducers, which were typically fitted manually during manufacturing by 

experienced technicians (Chen & Bassett, 2005). Intuitively this might explain the 

increased inter-unit variability with older models. Older generations (7164 model) have 

also demonstrated large inter-unit variation (> 100%) at lower accelerations (< 1 m·s-2) 

(Brage et al., 2003). Although not of the same magnitude, our results also indicate poorer 

inter-unit reliability during the lowest frequency and acceleration condition (5%). 

However, a recent study assessing the inter-unit reliability of the GT3X model reported a 

mean CVinter of 60.2% across a range of accelerations, and was > 149.4% when units were 

oscillated at 1.1 Hz (Santos-Lozano et al., 2012). This is disconcerting especially 

considering the improvements with the newer generation GT3X+ are mostly cosmetic 

and we have displayed acceptable inter-unit reliability, only three out of the 33 conditions 

tested displayed CVinter ≥ 5 %. These variances could be explained via differences in the 
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protocol, whereby Santos-Lozano et al., (2012) included a condition outside the range of 

human motion (10 Hz) contributing to the higher overall mean CVinter. The authors also 

used a smaller scale vibration table as opposed to a MAST rig, it is unclear whether the 

vibration table was separate to the electric motor in order to minimise the mechanical 

vibration as advocated previously (Esliger et al., 2011). Moreover, we believe there is an 

error in the calculation of accelerations used in the Santos-Lozano et al., (2012) study. 

They cite a 1.1 Hz cite of orbit, a 0.04 m radius of orbit and claim this yields an 

acceleration of 1.087 g’s. Using the standard equation for tangential acceleration (Eq. 4) 

we calculate the acceleration for this condition as 0.194 g’s.  

 

𝑎 = 4𝜋2𝑓2𝑟                                     (Eq. 4) 

 

In our study the ICC observed across testing conditions were high and concurred with 

those reported for other available accelerometers (Powell et al., 2003; Horner et al., 2011) 

and previous generations of Actigraph (Brage et al., 2003). If inter-unit reliability is poor 

then it becomes difficult to distinguish whether the variability in PA during free-living 

monitoring between participants is solely attributed to variations in behaviour or inherent 

to the accelerometer. The GT3X+ demonstrated poor validity when compared to criterion 

acceleration of the MAST rig (Figure 3.3). The weak relationship of Rs= 0.25 between 

0.06 and 1.5 g is well below that of most industry standard PA monitoring accelerometers. 

The GENEA and 3DNX PAC outputs are both strongly related to acceleration during a 

mechanical set up with correlations of r = 0.97 and r = 0.99, respectively (Esliger et al., 

2011; Horner et al., 2011). In the older 7164 model Actigraph, Brage et al., (2003) 

unequivocally stated that count output is only proportional to acceleration if frequency is 

held constant, implying that some form of frequency-dependent filter exists. This would 

also appear to hold true for the newest generation GT3X+, supported by our counter-

intuitive findings of decreased PAC as frequency of oscillation is increased whilst 

acceleration was held constant. Brage et al., (2003) developed and then employed a 

frequency based correction factor which when applied to Actigraph counts restores 

linearity improving the relationship from r = 0.69 to r = 0.94. Most of the current 

accelerometers on the market use band-pass filters to extract acceleration signals within 

certain frequency ranges while discarding those that are not likely to be representative of 

‘human movement’. Outputs from other accelerometers including the Actical (Esliger & 
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Tremblay, 2006) and RT3 (Powell et al., 2003) have also been shown to be dependent on 

movement frequency in a mechanical setup.  

 

3.4.2. Experiment 2- Human Validity 

 

Hiremath & Ding, (2011a) advocated the importance of keeping the accelerometer device 

constant but manipulating its anatomical positioning to determine the most appropriate 

placement of an accelerometer to capture PAEE in manual wheelchair users. Our results 

indicate that of the three anatomical locations considered, a wrist-mounted accelerometer 

provides the most valid prediction of PAEE during outdoor wheelchair propulsion. This 

is the first study to assess the validity of the GT3X+ accelerometer in this population and 

to evaluate the accuracy of specifically developed algorithms capable of predicting 

PAEE. 

 

Accurate measurement of habitual PAEE is a prerequisite to determine the link and 

establish dose-response relationships between PA and health (Strath et al., 2005). 

Surprisingly, relatively few studies have tried to evaluate monitoring tools among 

wheelchair users (Washburn & Copay, 1999; Warms & Belza, 2004). Washburn & 

Copay, (1999) found PAC from the older generation uniaxial CSA accelerometer worn 

on the wrist had a moderate relationship (left wrist, r = 0.66, right wrist r = 0.52, P < 

0.01) with oxygen uptake during wheelchair propulsion at three velocities. Warms & 

Belza, (2004) observed low to moderate relationships (r = 0.30 – 0.77, P < 0.01) between 

activity counts from an Actiwatch containing an omnidirectional accelerometer and self-

reported PA. Whilst these results suggests than an accelerometer located on the wrist is a 

suitable measure of PAEE for individuals with SCI, the Warms & Belza, (2004) study is 

only able to confer the concurrent validity of wrist Actigraphy against a self-report 

measure of activity intensity and frequency. The higher correlation (r = 0.93) observed 

between activity counts at the wrist and PAEE in this current study might be due to the 

direct comparison against a criterion measurement of PAEE rather than a self-report 

measurement; or the inclusion of more than three propulsion velocities and an activity of 

daily living of low intensity, combined with using a tri-axial accelerometer offering 

greater sensitivity.  
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A similar relationship was observed at the upper arm (r = 0.87) compared to previous 

research using a RT3 tri-axial accelerometer (r = 0.83) (Hiremath & Ding, 2011b). It is 

perhaps pertinent to address some methodological differences here, as the authors 

compared activity counts against total energy expenditure (including RMR and Dietary 

Induced Thermogenesis), not PAEE as measured in the present study. Total energy 

expenditure (TEE) and PAEE should not be equated (Tudor-Locke & Myers, 2001). It is 

a noteworthy distinction that accelerometers are only capable of detecting movement and 

should therefore only be associated with the component of energy expenditure arising 

from skeletal muscle contraction-induced movements. 

 

Furthermore, PA monitoring devices (e.g. Actiheart) use demographic characteristics 

such as body mass to predict RMR and determine TEE. Common equations to predict 

RMR in the general population are inappropriate to use for individuals with SCI and have 

been shown to over-predict measured requirements by 5-32% (Buchholz & Pencharz, 

2004). Considering RMR is the largest component of TEE, particularly in sedentary 

individuals (Volp et al., 2011), it is possible that error observed with the prediction of 

TEE by these devices in manual wheelchair users maybe a result of the algorithms used 

to determine RMR not being suitable for individuals with SCI.  

 

Moreover, whilst the previous studies made no attempt to control for individual variations 

in RMR, they also only reported correlations and made no attempt to develop regression 

equations capable of accurately predicting PAEE. This study attempted to build on this 

by assessing the degree of error associated with the generated equations for PAC at each 

anatomical location. The mean bias for each location was negligible. However, these 

findings should be viewed with caution. As the development of the regression equations 

to predict PAEE and subsequent evaluation was carried out on the same sample of 

participants, there is a tendency for the evaluation statistics to be biased and can often be 

overly optimistic (Staudenmayer et al., 2012). Therefore, we appreciate that further work 
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is required to cross-validate these equations on an independent sample of wheelchair 

users. 

 

Although, considering the primary aim of this study was to identify the best anatomical 

location to capture PAEE, analysing our results this way can offer an insight into the 

spread of random error. For example, visual inspection of Figure 3.7a indicates a 

considerable degree of heteroscedasticity using the prediction equation at the waist. Thus 

this anatomical location displayed increased random error as the intensity of activity 

increased. Despite the wrist displaying the narrowest 95% LoA (Figure 3.7c: ± 1.55 

kcal·min-1), it is advisable, when more studies have been published in the area, that the 

academic community produce a consensus statement addressing the clinical limits of PA 

assessment in this population. However, in combination with the highest association to 

the criterion measurement and lowest SEE reported, these data suggests that the wrist is 

the most appropriate anatomical location to quantify PAEE in manual wheelchair users. 

With movement restricted to the upper limbs in manual wheelchair users, the most distal 

anatomical location seemingly offers improved sensitivity to the detection of PAEE 

during wheelchair propulsion.   

 

Actigraph PAC have been shown to peak at approximately 10 to 12 km·hr-1 when running 

and plateau thereafter when worn at the hip in ambulatory subjects (John et al., 2012). 

Knowledge regarding digital signal processing filters has only recently become more 

available, as an obligation has been placed on device manufacturers to be more 

transparent with regards to their specific properties and functions. The GT3X+ has half 

power frequencies of 0.5 Hz and 2.5 Hz, taken from the device manual it could be 

misleading that movements within these limits are measured full scale while those outside 

of it are not registered at all. Larger bandwidth filters could allow physiologically 

unrelated vibrations or noise to be included in the signal. Conversely overly aggressive 

frequency dependent filtering can lead to erroneous measurements of human movements, 

and cause the previously observed plateau effect (Ried-Larsen et al., 2012).  However, a 

plateau effect was not observed when worn at the wrist for speeds up to 8km·hr-1, yet the 

study cannot conclude whether a plateau phenomenon exists above this propulsion speed. 
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Only nine out of fifteen (two of which were able-bodied) participants were able to 

complete the 8km·hr-1 propulsion speed. Considering wheelchairs user have been shown 

to achieve minimal amounts of strenuous activity during free-living (Warms & Belza, 

2004), if a plateau effect does exist it may negligibly affect the accuracy of monitoring 

PAEE in this population. 

 

A limitation of this study is the relatively small sample size and considerable variation 

within subjects based on the diversity of disabilities included. However, this diversity 

may be considered beneficial, as the assortment of propulsion techniques captured 

improves the external validity of the regression equations, making them more suitable for 

the wider wheelchair user population. Once we removed the two occasional wheelchair 

users from the analysis this had a negligible effect on the relationships observed between 

PAEE and PAC at the wrist (All data: r = 0.93, regular wheelchair users only: r = 0.92), 

consequently, we see value in taking a more generic approach. Also, despite the diversity 

of the population, the amount of unexplained random error is relatively small. The 

inclusion of a diverse range of subjects is in accordance with best practice 

recommendations for PA validation studies (Bassett et al., 2012). Future studies should 

assess the validity of the GT3X+ for predicting PAEE during more complex 

representative daily activities performed by manual wheelchair user to determine whether 

band-pass filtering processes may affect the sensitivity of the GT3X+ to quantify 

sedentary behaviours or detect vigorous intensity activities above a certain threshold. The 

devices’ utility to accurately assess PAEE during free living also needs to be explored. 

The associated equations, which are generated, require cross-validation using an 

independent sample of representative participants. Furthermore, mechanical testing was 

conducted over a limited range of accelerations (0.06 – 1.5 g), using simple single axis 

movements, which do not cover the entire dynamic range of the GT3X+ device (± 6 g) or 

the complete range within which physiologically relevant movements can occur 

(Bhattacharya et al., 1980). Actigraph have assured us that, based on comprehensive 

testing during manufacturing, their GT3X+ devices are stable over time. Future studies 

should undertake a more comprehensive testing schedule across the devices entire 

dynamic range, for longer durations (e.g. > 6h) and potentially during more complex 3-

dimensional movements, to determine simulated performance over longer durations.  
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In conclusion, we have shown excellent intra-and inter-unit reliability of the GT3X+. 

Whilst the uni-dimensional mechanical test data are useful in evaluating the devices 

mechanical reliability, it is important to remember that the GT3X+ is an accelerometry-

based PA monitor. Our applied data from human testing suggests that the GT3X+ is a 

valid tool for predicting PAEE. Of the three anatomical locations considered, a wrist-

mounted accelerometer provides the most accurate prediction of PAEE in manual 

wheelchair users during outdoor propulsion. However the poor validity when compared 

to criterion acceleration during mechanical testing and counter-intuitive findings of 

decreased PAC with increased frequency of oscillation could be an issue with monitoring 

PAEE in wheelchair users. Therefore, we recommend that the human validity of the 

GT3X+ device be compared to another tri-axial accelerometer device, which is not 

subjected to on-board bandwidth filtering processes, during a comprehensive laboratory 

activity protocol.  
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CHAPTER 4: DEVICE COMPARISON AND 

DEVELOPMENT/ VALIDATION OF SPECIFIC 

ALGORITHMS FOR THE PREDICTION OF 

PHYSICAL ACTIVITY ENERGY EXPENDITURE IN 

MANUAL WHEELCHAIR USERS 
 

4.1. INTRODUCTION 

 

The positive contribution of regular physical activity (PA) to weight balance, metabolic 

regulation and cardiovascular fitness is well documented and broadly accepted in the 

able-bodied population (Haskell et al., 2007). Epidemiological studies concerning the 

impact of PA on health in wheelchair users with SCI have been limited to assessing 

associations between subjective reports of activities of daily living (ADL) (Hetz et al., 

2009a) or leisure time physical activity (LTPA) (Buchholz et al., 2009) and chronic 

disease risk factors. To date, despite the aforementioned limitations, quantifying free 

living PA among wheelchair users has mostly been restricted to self-report measurements.  

 

The PA monitoring literature has evolved rapidly, particularly in able-bodied populations, 

yet there is a paucity of research focussing on the use of activity monitors to predict 

physical activity energy expenditure (PAEE) in certain populations, including manual 

wheelchair users. Broadly speaking, various devices used previously to determine PA in 

persons that use wheelchairs have distinct limitations, which have been eluded to in 

chapter 2. For example despite being unobtrusive, a tri-axial accelerometer attached to a 

wheelchair (Coulter et al., 2011) is unable to distinguish between self or assisted 

propulsion and is also unable to quantify any activity out of the wheelchair, or during 

stationary arm crank ergometry exercise. Monitors attached on the waist near the 

participants’ centre of mass, as advised by manufacturers for use in able-bodied cohorts, 

have been shown to under-estimate energy expenditure by 24% in wheelchair users 

(Hiremath & Ding, 2009). Chapter 3 indicated that the anatomical placement location is 

critical to accurately estimate PAEE. It is perhaps not surprising due to restricted patterns 
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of movement that a tri-axial accelerometer worn on the wrist explains more of the 

variance in PAEE, resulting in the lowest random error compared to the waist.  

 

The technological advancements in the field of PAEE assessment have stimulated the 

development of sensitive tri-axial accelerometers, capable of storing higher resolution 

raw, unfiltered acceleration signals, with increased memory capacity for capturing data 

over prolonged periods of time (Intille et al., 2012). Previous work validating objective 

PA monitoring tools in wheelchair users have only reported accelerometer outputs as 

arbitrary count values. The GENEActiv device gives raw acceleration values, reporting 

signal vector magnitude (SVM) in g-seconds (g·s-1). This device is not subject to on-

board manufacturer-defined band pass filters and hence does not demonstrate the plateau 

phenomenon of the GT3X+ observed previously during mechanical testing (Chapter 3). 

Furthermore, it remains to be established whether fluctuations in criterion PAEE during 

wheelchair propulsion over differing gradients or during load carriage can be detected by 

accelerometer outputs at the wrist. Therefore, the aim of the present study was to assess 

the validity of two commonly used accelerometer devices, at two different anatomical 

locations, for the prediction of PAEE in wheelchair users in a controlled laboratory 

environment. It was hypothesised that the use of raw acceleration signals might lead to 

an improved prediction of PAEE in wheelchair users.  

 

4.2. METHODS 

 

Ethics approval was granted by the University of Bath Research Ethics Approval 

Committee for Health (REACH) and written informed consent was obtained from each 

participant. Seventeen (n = 17) male manual wheelchair users visited the Centre for 

DisAbility Sport and Health (DASH) human physiology laboratory on one morning 

following an overnight fast. As in Chapter 3 participants were asked to refrain from 

vigorous exercise for 24 h. Ten of the participants had complete paraplegia with lesion 

levels ranging from T1 to L4. Other conditions responsible for use of a wheelchair 

included Spina Bifida (n = 3), Cerebral Palsy (n = 1) and Scoliosis (n = 1).  A bilateral 

lower limb amputee (n= 1), who was considered a regular wheelchair user (>70% of 
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locomotion manual wheelchair propulsion) and an able-bodied wheelchair basketball 

player (n = 1) who was also familiar with wheelchair propulsion (> two years) were also 

included in the analysis. Chapter 3 demonstrated that the inclusion of numerous 

disabilities had no measurable impact on the prediction of PAEE in wheelchair users.  

Other research has also included participants with various aetiologies responsible for 

wheelchair use when assessing methods to predict EE in this population (Conger et al., 

2014). If anything, this approach provides a robust model for the assessment of PAEE in 

the broader wheelchair user population and the inclusion of a diverse range of participants 

is in accordance with best practice recommendations for PA validation studies (Bassett et 

al., 2012).  

 

Time since injury (TSI) was self-reported based on when the medical condition was first 

diagnosed by a clinician. Height and body mass were measured using the same methods 

described in chapter 3. Resting metabolic rate (RMR; kcal·day-1) was measured in a semi-

recumbent position in accordance with best practice (Compher et al., 2006) using a 

TrueOne® 2400 computerized metabolic system (ParvoMedics, Salt Lake City, UT). 

Blood pressure (mmHg) was also measured using an automated blood pressure monitor 

(Boso Medicus Prestige, Bosch + Sohn, Germany) following RMR. Three readings were 

taken, with a minutes rest between each measurement, and the mean value was calculated. 

 

Waist and hip circumference (cm) were measured in duplicate to the nearest 0.1cm, with 

participants lying flat on a hard physiotherapy bed, using a metallic tape measure (Lufkin, 

US). Waist circumference was measured at the midway point between the lowest rib and 

the iliac crest. The tape was passed underneath the small of the participants back and 

positioned horizontally across the waist, with the reading made at the end of gentle 

expiration. Hip circumference was measured horizontally around the widest portion of 

the buttocks. For both circumference measurements, the participants were lying with feet 

close together and arms at sides with the tape snug around the body. Skinfold thickness 

(mm) at 4 upper body sites (biceps, triceps, subscapular, suprailiac) were also measured 

in duplicate using a set of skinfold calipers (Holtain Ltd, Crymych, UK); with the mean 

value calculated. Where duplicate measurements differed by more than 5% at each site a 

third measurement was taken and the median value was calculated.  
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4.2.1. Activity Protocol 

Following the measurement of RMR and anthropometric assessment, participants 

performed an activity protocol, which consisted of wheelchair propulsion and a folding 

clothes task, representative of an activity of daily living. Participants continuously 

untangled t-shirts placed on a desk, then neatly folded and stacked them. Wheelchair 

propulsion took place on a wheelchair adapted treadmill with necessary safety features 

and stabilising arm (HP Cosmos Saturn 250/100r, HaB International Ltd, UK).  A 

counterbalanced approach for randomly assigning the order of activities was not utilised 

in this study based on observations from Chapter 3. Even with five minutes of recovery 

in between activities, a considerable carryover effect in oxygen uptake (V̇O2) and heart 

rate (HR) was observed. Therefore, each activity was assigned in order of intensity and 

lasted for six minutes interspersed with four minute recovery periods. Wheelchair 

propulsion on the adapted treadmill included eight trials 3 km·hr-1, 4 km·hr-1, 5 km·hr-1, 

6 km·hr-1 & 7 km·hr-1 on a 1% gradient. Following a ten minute rest, participants 

propelled at 4 km·hr-1 on a 1% gradient with 8% of body mass added to the chair in a 

rucksack and 4 km·hr-1 on a 2% and 3% gradient.  

 

4.2.2. Instrumentation and Assessment of Energy Expenditure 

 

The GT3X+ activity monitor (Actigraph, Pensacola, FL, USA) has been described in 

chapter 3. The technical specifications of the GENEActiv tri-axial device (GENEActiv, 

Activinsights, Cambridge, UK) are described beneath (Table 4.1) and has been explained 

in more detail elsewhere (Esliger et al., 2011). The original prototype GENEA (not the 

commercially available, developed GENEActiv device) has displayed excellent technical 

reliability (CVintra = 1.4%, CVinter = 2.1%) and validity compared to criterion MAST 

acceleration (r = 0.98, P < 0.001) (Esliger et al., 2011). The technical reliability is 

comparable to that observed for the GT3X+ during mechanical testing in chapter 3. 

Furthermore, outputs from the GENEActiv are non-proprietary SI units (raw 

acceleration) as opposed to arbitrary physical activity counts. 
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Table 4.1: Comparison of the technical specifications for the GT3X+ and GENEActiv 

devices  

Device 

Dimensions: 

Length x Width 

x Height (mm) 

Weight 

(g) 

Pieziosensor 

Orientation 

Dynamic 

Range (g) 

Frequency 

Range (Hz) 

Actigraph 

GT3X+ 
46 x 33 x 19 19 Tri-axial ± 6 g 0.25 – 2.5 

GENEActiv 43 x 40 x 13 16 Tri-axial ± 8 g - 

 

 

Throughout the activity protocol two GT3X+ units were worn, one on the right wrist (W, 

using a Velcro wrist strap positioned over the dorsal aspect of the wrist midway between 

the radial and ulnar Styloid processes) and one on the right upper arm (UA, using a small 

elastic belt positioned on the lateral surface of the arm midway between the acromion 

process and lateral epicondyle of the humerus). Two GENEActiv accelerometers were 

also worn; one distal to the GT3X+ on the right W and one on the posterior aspect of the 

midpoint on the right UA, securely fixed to the skin over the triceps brachii using a 10 

cm2 patch of tape (Hyperfix self-adhesive dressing retention tape, Smith & Nephew 

Healthcare Ltd., UK). The GENEActiv and GT3X+ devices were both initialised with a 

sampling frequency of 30Hz. 

 

Continuous gas exchange measurements were collected during each activity, using a 

TrueOne® 2400 computerized metabolic system, calibrated according to manufacturer’s 

instructions prior to use. Fractions of oxygen and carbon dioxide were measured via a 

paramagnetic oxygen analyser and an infrared, single beam, single wave-length carbon 

dioxide analyser, respectively. Metabolic data was retrieved and analysed using 

associated software (TrueOne® metabolic software, Salt Lake City, UT). V̇O2 and carbon 

dioxide production (V̇CO2) were used to estimate EE (kcal.min-1) of each activity, using 

indirect calorimetry. The TrueOne® provides accurate, precise and reliable results for the 

measurement of gas exchange variables (Bassett et al., 2001; Crouter et al., 2006). A 

Polar T31 HR monitor (Polar Electro Inc., Lake Success, NY, USA) was also worn during 

each activity as described in chapter 3. Peak oxygen uptake (V̇O2 peak) was determined 

at the end of the activity protocol using a continuous, progressive intensity test on an 
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electrically braked arm crank ergometer (Lode Angio, Groningen, Netherlands). A 

cadence of 75 rpm was encouraged throughout and a starting intensity of 35 W was 

typically chosen, although this was based on the participants training history. The 

resistance was increased by 14 W every three minutes until the point of volitional 

exhaustion (~ 9 – 12 min). The criteria for the attainment of a true V̇O2 peak measurement 

was; (1) a peak RER value ≥ 1.1, (2) a peak heart rate ≥ 95 % of age-predicted maximum 

(200 b.min-1 minus chronological age) (Goosey-Tolfrey, 2007) and an RPE = 20.  Each 

participant met at least two of these criteria. 

 

4.2.3. Statistical Analyses 

 

An a priori power calculation revealed a sample size of fifteen was necessary, using the 

same study as in chapter 3. Activity monitors were synchronised prior to use. Breath-by-

breath data was exported into Microsoft Excel from the TrueOne® metabolic software 

and averaged over the final two minutes of each activity. Assuming that dietary-induced 

thermogenesis was negligible (participants came into the laboratory following a 10-hr 

overnight fast) resting metabolic rate (kcal·min-1) was subtracted from total energy 

expenditure (TEE) measured by the TrueOne® 2400 computerized metabolic system to 

generate PAEE for each activity. Comparisons between the ‘criterion’ measurement of 

PAEE [TEE – RMR] and activity monitors were made between the final two minutes of 

each activity. 

 

Data Modelling 

 

GT3X+ and GENEActiv units were downloaded using ActiLife software (Actigraph, 

Pensacola, FL, USA) and GENEActiv PC software (version 1.2.1, Activinsights, 

Cambridge, UK), respectively. Data was exported to Microsoft Excel in a time and date 

stamped comma-separated value (c.s.v.) file format. Physical activity counts (counts·min-

1) from the GT3X+ and Signal vector magnitude (SVMgs) data from the GENEActiv were 

summated into 60-s epochs. Activity counts (counts·min-1) from the GT3X+ and raw 

acceleration values (g·min-1) from the GENEActiv were then averaged over the final two 

minutes of each activity. Physical activity energy expenditure prediction models were 
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developed using corresponding data from each task for each device at each location, using 

linear regression analysis. The dependent variable was PAEE (kcal·min-1) during the final 

two minutes of each task (that is, 171 values in total). The independent variables included 

accelerometer outputs, i.e. counts·min-1 and SVMg.min-1 for the GT3X+ and GENEActiv, 

respectively. Pearson product moment correlation coefficients (r) and coefficients of 

determination (R2) statistics were conducted to assess the association between the 

criterion PAEE and outputs from each device at each location. Standard Error of the 

Estimate (SEE) was also calculated for each correlation. 

 

Error Statistics 

 

When the development and evaluation of predictive models are conducted on the same 

participants, subsequent evaluation statistics tend to be biased and are often overly 

optimistic (Staudenmayer et al., 2012). Hence, there is a need to cross-validate generated 

prediction equations using an independent sample; this can be achieved by using a ‘split 

sample’ approach whereby half of the participants are used for developing the models and 

half for cross-validation. However, it is not always feasible to utilise this ‘split sample’ 

approach when sample sizes are small, a common occurrence when working with disabled 

populations due to challenges with participant identification and recruitment (Yilmaz, 

2006).  This problem was overcome by developing the estimation algorithm on all but 

one of the participants and then evaluating it on the ‘held-out’ participant by calculating 

the PAEE prediction error. This process was repeated where each participant acted as the 

held-out participant and the mean of all the error evaluations were calculated.  This 

procedure is a ‘leave-one-out cross validation’ described in more detail elsewhere (Hastie, 

2009).  

 

The comparison statistics involved calculating the mean absolute error (MAE) and mean 

signed error (MSE) for each activity, the later will be displayed graphically using 

modified Bland and Altman plots. Considering it is likely the absolute error of estimation 

will increase with exercise intensity (Staudenmayer et al., 2012), error of estimate data 

will also be presented as a percentage. A two-way mixed model ANOVA was performed 

on the raw data to determine differences between criterion PAEE and predicted PAEE. 

Where a significant interaction effect was observed, a Ryan-Holm-Bonferroni Stepwise 

Adjustment was applied to post hoc tests where multiple comparisons were considered. 
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This was to identify the specific activities in which there were significant differences 

between the criterion and predicted PAEE. Statistical significance was set at a priori of 

α < 0.05. All analyses were performed using IBM® SPSS® Statistics 20 for Windows 

(IBM, Armonk, NY, USA). 

 

 

4.3. RESULTS 
 

Demographic and anthropometric characteristics of the participants are described in Table 

4.2. Criterion PAEE (kcal·min-1) and accelerometer outputs at each anatomical location 

are displayed in Table 4.3. Four [SCI (T1 and T2); n=2 Cerebral Palsy; n=1 and Scoliosis; 

n=1] and two participants (T1 and Cerebral Palsy) were unable to complete the 7km·hr-1 

propulsion speed and 4km·hr-1 (3% gradient) tasks, respectively. PAEE, HR and rating 

of perceived exertion (RPE) increased with increasing velocity of wheelchair propulsion 

and during steeper gradients. Calculated metabolic equivalents (METs) from dividing 

V̇O2 for each activity by individual V̇O2 determined at rest, suggests that all the propulsion 

trials besides 3km·hr-1were on average considered as moderate-intensity activities, 

whereas folding clothes and propulsion at 3km·hr-1 were light-intensity activities.  

 

Table 4.2: Demographic and anthropometric characteristics of the participants 

 

Variable  Mean ± SD Range (lowest – highest) 

Age (years) 36 ± 10 19 - 50 

Body mass (kg) 71.6 ± 10.6 53.4 – 87.5 

Time since injury (years) 15 ± 14 2- 50 

Total skinfold from 4 sites (mm) 48.5 ± 20.3 24.6 – 110.9 

Waist-hip ratio 1.0 ± 0.1 0.8 – 1.1 

Blood pressure (mmHg)   

Systolic  133 ± 18 108 - 174 

Diastolic  84 ± 16 62 - 116 

RMR (kcal·day-1) 1571 ± 254 1201 - 2152 

V̇O2 peak (ml·kg-1·min-1) 27.0 ± 8.0 16.7 – 41.1 

Note: Able-bodied participant was not included in Time since injury 

 



 

 
 

1
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Table 4.3: Measured PAEE, accelerometer outputs at each anatomical location, calculated METs, heart rate, RPE and number of participants per trial 

for each activity (mean ± SD) 

Activity  

Measured 

PAEE 

(Kcal·min-1) 

Physical activity counts·min-1 SVM (g·min-1) 

MET 

(calculated) 

Heart rate 

(b·min-1) 
RPE n 

GT3X+-UA GT3X+-W 
GENEActiv-

UA 
GENEActiv-W 

Resting 0.0 ± 0.0 46 ± 57 119 ± 151 30 ± 16 46 ± 24 1.0 ± 0.0 65 ± 12 - 17 

Folding clothes 1.1 ± 0.2 3843 ± 1235 8905 ± 1885 121 ± 22 296 ± 66 2.0 ± 0.3 85 ± 15 8 ± 2 17 

          

3 km·hr-1 1.9 ± 0.4 7008 ± 1751 8806 ± 1973 330 ± 78 529 ± 125 2.7 ± 0.4 90 ± 13 9 ± 2 17 

4 km·hr-1 2.4 ± 0.6 7056 ± 1761 10283 ± 2569 421 ± 110 708 ± 220 3.2 ± 0.6 97 ± 20 10 ± 3 17 

5 km·hr-1 3.1 ± 1.0 7100 ± 1405 12066 ± 4382 492 ± 127 898 ± 353 3.8 ± 0.8 114 ± 23 12 ± 3 17 

6 km·hr-1 4.2 ± 1.7 7615 ± 1422 14918 ± 5500 618 ± 154 1170 ± 491 4.7 ± 1.2 130 ± 33 14 ± 3 17 

7 km·hr-1 4.7 ± 0.9 8602 ± 1898 16367 ± 5492 701 ± 151 1244 ± 355 5.1 ± 0.8 136 ± 26 14 ± 3 13 

          

4 km·hr-1 (+ 8% of body mass) 2.5 ± 0.7 7151 ± 2091 10193 ± 2718 397 ± 106 667 ± 240 3.4 ± 0.6 111 ± 20 10 ± 3 17 

4 km·hr-1 (2% gradient) 3.2 ± 0.8 7477 ± 1891 10934 ± 3503 455 ± 109 760 ± 276 3.9 ± 0.7 119 ± 24 12 ± 3 17 

4 km·hr-1 (3% gradient) 4.0 ± 0.9 7852 ± 1785 11439 ± 2686 512 ± 121 830 ± 223 4.6 ± 0.9 128 ± 22 13 ± 4 15 

 

 

 

 

  

 



Chapter 4                                                         Method Development: Device Comparison 

 

120 
 

 

4.3.1. Data Modelling 
 

The associations between criterion PAEE measured by the TrueOne® 2400 computerized 

metabolic system and predicted PAEE derived from accelerometer outputs from each 

device are presented as scatter plots in Figure 4.1. Physical activity counts from the 

GT3X+ were significantly (P < 0.01) associated with PAEE (UA; r = 0.68, W; r = 0.82), 

as were raw acceleration outputs from the GENEActiv (UA; r = 0.87, W; r = 0.88). The 

SEE for the correlations were 1.16 and 0.91 kcal·min-1 for the GT3X+ worn at the UA 

and W, 0.77 and 0.75 kcal·min-1 for the GENEActiv worn at the UA and W. The linear 

regression equations using activity counts from the GT3X+ (Eq. 1 & 2) and raw 

acceleration outputs from the GENEActiv (Eq. 3 & 4) for each location are shown 

beneath.  

 

PAEEUA = (0.000372 * Physical activity counts·min-1) + 0.291708              Eq. 1 

PAEEW = (0.000245 * Physical activity counts·min-1) + 0.132379   Eq. 2 

 

PAEEUA = (0.006260 * SVM g·min-1) + 0.139778                Eq. 3 

PAEEW = (0.003210 * SVM g·min-1) + 0.392209     Eq. 4 
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Figure 4.1: Scatterplots showing the relationship between criterion and predicted PAEE for the GT3X+-UA (a), GT3X+-W (b), GENEActiv-UA (c) 

and GENEActiv-W (d). The straight line represents the models best fit, and the dotted line indicates the line of identity
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4.3.2. Error Statistics 
 

Modified Bland and Altman plots illustrate overall percentage error of estimate [± 95 % 

limits of agreement (LoA)] between criterion PAEE and predicted PAEE derived from 

the developed linear regressions; 15 ± 87%, 14 ± 97%, 3 ± 49% and 4 ± 50% for the 

GT3X+-UA, GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively (Figure 4.2). 

The GT3X+-W significantly (P < 0.05) over-predicted propulsion at 3km·hr-1 (mean ± 

SD; 25 ± 27%), as does the GT3X+-UA (62 ± 48%) and GENEActiv-UA (20 ± 22%). 

Both the GT3X+-W (-23 ± 24%) and GENEActiv-W (-20 ± 24%) significantly under-

predicted PAEE during propulsion at 4km·hr-1 on a 3% gradient.  The GT3X+-UA, 

GT3X+-W and GENEActiv-W over-predicted PAEE during a simulated folding clothes 

task by 64 ± 50%, 122 ± 51% and 29 ± 26%, respectively, whereas the GENEActiv-UA 

significantly under-predicted PAEE (-14 ± 18%). All monitors significantly over-

predicted PAEE during rest by 0.31, 0.16, 0.32 and 0.54 kcal·min-1 for the GT3X+-UA, 

GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively.  

 

Table 4.4 shows the MAE and mean absolute percentage difference between the criterion 

and estimated PAEE. Absolute PAEE estimation errors varied from 19 to 66% for the 

GT3X+-UA, 17 to 122% for the GT3X+-W, 15 to 26% for the GENEActiv-UA and 17 

to 32% for the GENEActiv-W. The aetiology responsible for wheelchair use was 

evaluated to see if it impacted on the fit of the model during our leave-one-out analysis. 

No trend with regards to increased mean absolute error for various aetiologies was 

observed. There was no relationship between wheelchair experience, TSI was used as a 

surrogate for this, and error. Furthermore, looking specifically at participants with 

paraplegia, there was no relationship between level of SCI lesion (indicative of function) 

and magnitude of error.   
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Figure 4.2: Modified Bland and Altman plots displaying error of estimated PAEE expressed as a percentage for GT3X+-UA (a), GT3X+-W (b), 

GENEA-UA (c) and GENEA-W (d) for each activity. The solid line indicates overall percentage error of estimate. The dotted lines indicate the upper 

and lower 95% LoA. † Indicates significant difference (P ≤ 0.05) from the criterion PAEE 
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Table 4.4: Mean absolute error (MAE; kcal·min
-1

) and Mean absolute percentage error of predicted PAEE using generated linear regression equations 

for each monitor at each location 

 

Activity  

MAE (kcal·min-1)  Mean absolute percentage error (%) 

GT3X+-UA GT3X+-W 
GENEActiv-

UA 
GENEAcitv-W  GT3X+-UA GT3X+-W GENEActiv-UA GENEAcitv-W 

Resting 0.31 ± 0.05 0.16 ± 0.07 0.32 ± 0.11 0.54 ± 0.08  - - - - 

Folding clothes 
0.66 ± 0.41 1.24 ± 0.46 0.21 ± 0.17 0.32 ± 0.19  63.7 ± 41.0 122.0 ± 51.3 18.9 ± 12.2 32.1 ± 22.0 

          

3 km·hr-1 1.15 ± 0.65 0.48 ± 0.33 0.46 ± 0.27 0.34 ± 0.22  66.1 ± 41.6 28.0 ± 23.7 25.8 ± 14.7 19.1 ± 14.2 

4 km·hr-1 0.86 ± 0.57 0.42 ± 0.24 0.52 ± 0.45 0.42 ± 0.29  35.9 ± 24.7 18.4 ± 12.3 21.9 ± 18.3 17.9 ± 13.5 

5 km·hr-1 0.67 ± 0.84 0.54 ± 0.43 0.61 ± 0.42 0.60 ± 0.42  19.3 ± 16.6 17.1 ± 12.9 18.9 ± 11.3 18.8 ± 12.2 

6 km·hr-1 1.14 ± 1.53 0.90 ± 0.81 0.87 ± 1.02 0.74 ± 0.75  21.7 ± 18.1 19.7 ± 14.1 17.3 ± 15.0 17.5 ± 14.4 

7 km·hr-1 1.13 ± 0.72 0.92 ± 0.84 0.73 ± 0.51 0.79 ± 0.67  23.6 ± 13.0 18.7 ± 16.0 15.2 ± 9.7 16.5 ± 12.8 

          

4 km·hr-1 (+ 8% of body mass) 0.96 ± 0.61 0.52 ± 0.31 0.59 ± 0.33 0.55 ± 0.31  38.0 ± 22.9 21.5 ± 14.5 24.1 ± 14.0 22.6 ± 12.9 

4 km·hr-1 (2% gradient) 0.81 ± 0.83 0.64 ± 0.51 0.56 ± 0.56 0.54 ± 0.46  22.9 ± 17.7 19.9 ± 13.1 16.6 ± 15.4 16.7 ± 12.2 

4 km·hr-1 (3% gradient) 0.95 ± 0.96 1.19 ± 0.95 1.01 ± 0.80 1.16 ± 0.81  21.4 ± 16.5 28.0 ± 18.0 24.3 ± 14.8 27.6 ± 14.5 

          

All activities  0.86 ± 0.82 0.69 ± 0.63 0.58 ± 0.56 0.59 ± 0.51  35.3 ± 30.8 33.0 ± 39.5 20.4 ± 14.3 21.0 ± 15.1 
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4.4. DISCUSSION  
 

Of the two accelerometers considered in this study, these data indicate that the 

GENEActiv device worn on either the upper arm or wrist provided the most valid (mean 

percentage error 3 & 4% for the upper arm and wrist, respectively) prediction of PAEE. 

For the GT3X+, as alluded to in Chapter 3, the most appropriate anatomical location was 

on the wrist. There was a negligible difference in the strength of associations and error 

statistics for the GENEActiv device worn on the upper arm or wrist. Seemingly, 

incorporating raw acceleration signals as opposed to ‘arbitrary’ physical activity counts 

into linear regression models for the prediction of PAEE offered an improvement in the 

error of estimation for PAEE in wheelchair users (Figure 4.2; Table 4.3). 

 

Considering physical inactivity has been associated with a cluster of metabolic 

abnormalities (Biolo et al., 2005), it is surprising that relatively few studies have 

attempted to investigate the use of movement sensors in a population where self-report 

measures suggest that PA is substantially reduced. Despite employing some complex 

statistical modelling methods, previous studies have tended to use arbitrary ‘count’ values 

in the prediction of EE (Washburn & Copay, 1999; Garcia-Masso et al., 2013) and also 

adopted a small selection of activities in their validation protocol (Hiremath & Ding, 

2009; Hiremath & Ding, 2011a; Hiremath & Ding, 2011b). The current study aimed to 

improve our understanding of accelerometer outputs and the prediction of PAEE in 

wheelchair users by incorporating raw acceleration values into linear regression models. 

Furthermore, participants performed a comprehensive wheelchair propulsion protocol 

which consisted of various velocities and gradients whereby the validity of these devices 

were assessed.   

 

Previous research has provided encouragement for the wrist as the preferred anatomical 

location for previous generations of Actigraph accelerometers to predict V̇O2, explaining 

44% (Washburn & Copay, 1999) and 74% (Garcia-Masso et al., 2013) of the variability 

in V̇O2, respectively. Off-the-shelf activity monitors incorporating manufacturer’s 

proprietary equations are unable to accurately predict EE in wheelchair users (Hiremath 
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& Ding, 2011b; Hiremath & Ding, 2011a). As such, validation studies in this area have 

attempted to develop new predictive models. Washburn & Copay, (1999) generated a 

simple linear equation using counts·min-1 from the uniaxial CSA accelerometer over three 

propulsion velocities. Improvements in this prediction can be seen in the Garcia-Masso 

et al., (2013) study, which used the GT3X tri-axial device and the acquisition of 1-s 

epochs to permit a feature extraction process which was incorporated into more complex 

multiple linear modelling (MLM). Chapter 3 demonstrated associations of r = 0.93 and r 

= 0.87 between counts·min-1 from the newest generation GT3X+ worn at the wrist and 

upper arm and PAEE during outdoor wheelchair propulsion. One of the strengths of the 

present study was the controlled laboratory protocol adopted, being more comprehensive, 

including five extra activities, smaller increments in velocity (1km·hr-1 compared to 

2km·hr-1) and various treadmill gradients. Consequently, weaker associations were 

observed between GT3X+ physical activity counts with criterion PAEE at the wrist and 

upper arm of r = 0.82 vs. r = 0.68. However, correlations between raw acceleration values 

expressed as SVM in g·minute-1 from the GENEActiv and criterion PAEE were similar 

to our previous field-based observations, at r = 0.88 and r = 0.87 for the wrist and upper 

arm, respectively. The GENEActiv-W has previously demonstrated excellent validity in 

able-bodied populations, displaying similar correlations to ours during a series of semi-

structured laboratory and free living activities (left wrist vs. V̇O2, r = 0.86) (Esliger et al., 

2011). 

 

Another strength of this present study was the comparison of two widely used 

accelerometry-based technologies to quantify PAEE. Specifically, by holding the 

anatomical location constant, variations in the strength of the relationships and error of 

estimate are inherent to the differences in the internal components, on-board filtering 

processes and outputs of each device (Chen & Bassett, 2005). To discard noise or 

movement artefacts unlikely to be representative of ‘human movement’, the GT3X+ has 

upper and lower bandwidth filters of 0.25 and 2.5Hz. These filters were designed for 

ambulation, based on the premise that acceleration frequencies arising from most human 

activities at the hip usually fall between this range. Bailey et al., (2014) demonstrated that 

processed activity counts from a GT3X+ worn on the wrist are capable of distinguishing 

between tasks where upper extremities were used more intensively (e.g folding towels) 

than less intensively (e.g. writing). Whilst this protocol consisted of a comprehensive 
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selection of upper extremity ADLs, no comparison was made to a PAEE criterion 

measurement, preventing the assessment of PAEE error. It is possible that these 

aforementioned filters are not suitable to capture movements at the wrist of wheelchair 

users. As mentioned in chapter 3, the GT3X+ has half power frequencies of 0.5 Hz and 

2.5 Hz. This doesn’t mean that movements within these limits are measured full scale 

while those outside of it are not registered at all, but in fact a scaling filter is applied. 

Therefore, certain movements which have frequency components that are measured full 

scale, might register greater PACs, which could explain the sizeable over-estimation of 

122% during the folding clothes task. This brings doubt into whether the GT3X+ is a 

suitable device to be worn at the wrist to measure PAEE associated with ADLs during 

free-living in wheelchair users.  

 

However, excluding the folding clothes task from the analysis reduced the mean 

percentage error of estimate for the GT3X+-W to 0.4% during wheelchair propulsion at 

various speeds and gradients. Outputs from the GENEActiv are raw acceleration signals 

per unit time or epoch and are not subject to a tight bandwidth filter which may influence 

the prediction of PAEE at the wrist during certain activities. Whilst the GT3X+, and other 

commercially available monitors have the capability to report raw acceleration, the most 

common and easily accessible outputs from these devices are counts, which are 

influenced by the amplitude and frequency of acceleration. Physical activity counts have 

been shown to vary across devices and even within generations of the same type of device 

(Ried-Larsen et al., 2012). It is possible that the band-pass filtering and reporting of 

accelerometer outputs using ‘arbitrary’ units, which lack physical meaning, may be 

responsible for the differences in the error of estimation between the two devices (Figure 

4.2; Table 4.4). As processing of raw data from the GT3X+ and other devices becomes 

available as standard then researchers can start to adopt an end-user practitioner approach 

to assessing the application and efficacy of these devices in the future. 

 

Another explanation for the differences in associations for the two devices at the upper 

arm could be due to slight variations in their anatomical positioning and method of 

affixation. The GT3X+-UA worked loose during two trials, although these data were 

removed from subsequent analyses. It is possible that the secure attachment of the 
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GENEActiv-UA provided by the medical tape minimised any movement inherent with 

the elastic belt of the GT3X+-UA. Whilst predictive models for the GENEActiv at the 

upper arm and wrist offer negligible bias in error prediction statistics and both under/over-

predicted PAEE during three activities, the feasibility of attaching the GENEActiv to the 

upper arm during free living might be limited. Whereas the device worn on the wrist has 

a constant position, securely attached over the styloid processes of the radius and ulna 

(worn like a watch). From a practical perspective, the GENEActiv worn on the wrist 

would be the preferred device/location for the accurate prediction of PAEE in wheelchair 

users. Accelerometers worn on the wrist are well tolerated and unobtrusive in this 

population and intuitively should not interfere with regular PA levels during free-living 

monitoring.  

 

Considering the validity of an accelerometer based solely on the strength of its association 

to a criterion measure should be avoided as it does not indicate the agreement between 

the two variables (Bland & Altman, 2010). Correlations are also dependent on the range 

of true quantity in the sample, seeing as our protocol had a wide selection of wheelchair 

propulsion velocities and gradients it is perhaps not surprising that this current study 

reported strong associations. A recent review on statistical considerations in the analysis 

of accelerometer data (Staudenmayer et al., 2012) advocated that it is useful for 

researchers to report measurement error. Mean percentage error of estimate (±SD)  for 

the GT3X+-UA and GT3X+-W was 15 ± 45%  and 14 ± 50%, compared to 3 ± 25% and 

4 ± 26% for GENEActiv-UA and GENEActiv-W, respectively. Whilst our generated 

linear regression models for the GENEActiv demonstrated a relatively small bias, looking 

at MSE can be misleading as it is likely that under and over-estimations from different 

tasks cancel each other out.  

 

An alternative is to look at mean absolute percentage error. Mean absolute percentage 

error ranged from 19 – 66%, 17 – 122%, 15 – 26% and 17 – 32% for the GT3X+-UA, 

GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively. Previous research 

(Hiremath & Ding, 2011b) attempted to develop new prediction models, using general 

and activity specific equations for an RT3 tri-axial accelerometer worn on the arm. The 

authors generated MLM’s using a training group of 19 participants and evaluated their 
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performance on a smaller validation group (n = 4). The range of mean absolute percentage 

error using the general equation was 14 – 114% during an activity protocol that involved 

propulsion on a dynamometer, tiled floor and arm-ergometer exercise. This was similar 

to that of the GT3X+-W (17 – 122%). When looking solely at wheelchair propulsion, 

resting and deskwork using the activity specific equations, the mean absolute percentage 

error was reduced to 26% (Hiremath & Ding, 2011b), which is slightly larger than the 

20% and 21% for the GENEActiv upper arm and wrist for all activities included in our 

protocol.  

 

The GT3X+-UA, GT3X+-W, GENEActiv-UA and GENEA-W monitors significantly 

over-predicted PAEE during rest by 0.31, 0.16, 0.32 and 0.54 kcal·min-1, respectively. 

This might have implications with the accurate prediction of PAEE during free-living. 

Garcia-Masso et al., (2013) observed a significant over-prediction of estimated V̇O2 using 

a MLM from a device worn at the wrist during a lying down activity. Both monitors at 

the wrist also significantly over-estimate PAEE for the folding clothes activity. 

Nevertheless over-estimation of PAEE for light-intensity activities (Atkin et al., 2012) or 

the inability to accurately describe the association between activity counts and the 

metabolic cost of certain lifestyle related activities (Bassett et al., 2000) is a common 

observation when using accelerometers in the able-bodied PA monitoring literature. Even 

considering these limitations accelerometers are still widely used during cross-sectional 

and epidemiological PA research in ambulatory populations, observing similar issues in 

predicting PAEE when worn at the wrist in wheelchair users should not discourage their 

use. Especially if their accuracy is better than methods currently used to quantify PA in 

this population. The relationships between raw acceleration at the upper arm and wrist (r 

= 0.87, r = 0.88) and criterion PAEE is better than the correlation between PARA-SCI 

scores and indirect calorimetry (r = 0.79) (Ginis et al., 2005). The authors found that this 

relationship was reduced and non-significant for low intensity activities (r = 0.27) and 

consequently the PARA-SCI scores under-reported the amount of time spent doing 

activities of low intensity by 10%.  This self-report measure was instrumental in 

informing the most recent PA guidelines for adults with a chronic SCI (Ginis et al., 2011). 

The conversion of these scores using METS to predict EE would lead to a slight under-

estimation. This is in contrast to our results and others (Garcia-Masso et al., 2013), that 

accelerometers over-estimate PAEE for light intensity activities. It is of concern that error 
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with monitoring sedentary behaviours may be exacerbated in a population whereby 

sedentary time may be elevated. One limitation of this study is that only one ADL was 

incorporated into the protocol whereby PAEE could be misclassified by the devices. 

Considering that 6-8 hrs of the day is spent in occupational tasks future work should 

incorporate more of these work-day tasks into laboratory validation protocols.  

 

Limitations of accelerometers in the able-bodied literature are that outputs do not always 

reflect PAEE during walking on a slope (Bouten et al., 1997) or during load carriage 

(Willems et al., 2009). To the best of our knowledge, there is only one previous study 

looking at the validity of an activity monitor (SWA) in quantifying EE during wheelchair 

propulsion over differing gradients (Davis et al., 2010). It is clear that proprietary 

algorithms used by the SWA over-estimate metabolic rate (MAE range; 24 – 126%) 

(Hiremath & Ding, 2011a), but this overestimation and variability increased more when 

gradient was elevated, than when speed was increased (Davis et al., 2010). This present 

study is the first to assess whether similar acceleration profiles with differing energy 

costs, such as changing gradient or load carriage, can be captured by new prediction 

models for tri-axial accelerometers in wheelchair users. There is a trend for all monitors 

to under-predict PAEE during propulsion on increasing gradients, and the GT3X+-W and 

GENEA-W significantly underestimated (-23 and -20%) PAEE during propulsion at 

4km·hr-1 on a 3% gradient. Devices worn on the upper arm did not underestimate by the 

same magnitude as devices worn on the wrist during propulsion on differing gradients. It 

is possible that propulsion technique was modified, perhaps via an increase in flexion and 

extension of the shoulder to cope with the demands of uphill propulsion. Changes in 

propulsion patterns between conditions could be monitored using expensive motion 

analysis systems in future research studies.  

 

Physical activity energy expenditure was not significantly different when an additional 

8% of participant body mass was added to the chair during wheelchair propulsion at 

4km·hr-1 (2.5 ± 0.7 vs. 2.4 ± 0.6 kcal·min-1). Sagawa et al., (2010) noticed no significant 

effect of a 5 kg additional mass on EE or HR. It is plausible that a load attached to the 

wheelchair has a minimal impact on EE during propulsion on the flat unlike load carriage 

during ambulation. This may be because an 8% load is spread evenly across the axial and 
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weight is supported in the vertical axis unlike walking. Importantly the MAE (table 4.4) 

is not significantly different between propulsion at 4km·hr-1 and when an additional 8% 

of body mass is added for all monitors. Furthermore, each device displays relatively 

negligible biases during propulsion with additional weight.  

 

The strengths of the present study are that RMR was accounted for and a comprehensive 

evaluation of two commonly used accelerometers, using a robust treadmill protocol with 

a variety of velocities and gradients was conducted. Previous studies have not controlled 

for RMR, which varies substantially between individuals with SCI, depending on level 

and completeness of lesion (Buchholz & Pencharz, 2004). Previous validation work has 

often randomised the task order. With limited recovery time in between tasks it is 

therefore not always possible to exclude a carryover effect as a confounding variable, 

particularly when lower intensity activities follow higher intensity tasks, similar to 

Chapter 3. To avoid this, tasks were assigned in order of intensity as a method to prevent 

a carryover effect between trials. Fatigue seemingly had a minimal impact on our findings 

as we observed a strong linear relationship in physiological variables and accelerometer 

outputs across all tasks. These data would also suggest that assessing wheelchair 

propulsion using a controlled treadmill method is reflective of ‘real world’ propulsion. 

Despite using an independent group of participants and a portable metabolic analyser, 

PAEE during propulsion on the treadmill at 4km·hr-1 is identical to PAEE recorded during 

propulsion on an athletics track at 4km·hr-1 (2.4 ± 0.6 vs. 2.4 ± 0.9 kcal·min-1) (Chapter 

3). This is encouraging considering it has previously been recognized that treadmill 

walking/ running can affect gait mechanics and therefore may not reflect true metabolic 

costs of ambulation at a given speed over the ground (Parvataneni et al., 2009). Another 

considerable strength is that a ‘leave-one-out’ cross validation analysis of our generated 

prediction equations was conducted, an approach strongly advocated for future research 

whereby recruitment of participants with specific injury characteristics might be 

problematic.  Reporting raw acceleration data in SI units (g·min-1) is a significant 

advantage as it allows easier comparison between devices and subsequently future 

research studies (Intille et al., 2012). The developed linear regression model for the 

GENEActiv device could be utilised by other activity monitors that have the function or 

are capable of reporting raw acceleration values. However, the equivalency of raw outputs 

between monitors needs to be assessed in the future with regards to differences in 
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dynamic sensing capacities (i.e. GENEActiv ± 8 g compared to ± 6 g for the GT3X+) or 

type of microelectromechanical systems (MES) sensor used. 

 

This study demonstrated, for the first time, that the measurement of raw acceleration 

signals using the GENEActiv offered an improvement in the prediction of PAEE in 

wheelchair users. Specific on-board by-pass filtering methods intrinsic to the GT3X+ 

when reporting accelerometer data as activity counts appear to impact on the devices 

measurement sensitivity, particularly during low frequency movements (e.g. folding 

clothes). In keeping with the rapid development of activity monitoring over the past six 

years in ambulatory populations we expect the acquisition of raw data to become more 

prevalent in the prediction of PAEE during free-living. However, even raw signals tended 

to under-estimate PAEE during propulsion on various gradients, whereby acceleration 

profiles are similar but ultimate energy costs are different. Therefore, we recommend that 

the validity of multi-sensor devices, which incorporate accelerometry and physiological 

signals, to predict PAEE in wheelchair users be rigorously assessed.  
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CHAPTER 5: PREDICTING PHYSICAL ACTIVITY 

ENERGY EXPENDITURE IN WHEELCHAIR USERS 

WITH A MULTI-SENSOR DEVICE 
 

5.1. INTRODUCTION 
 

Despite an elevated risk of metabolic disease in disabled groups, there is a paucity of 

research focussing on the impact of PA on their health, particularly in wheelchair users. 

There are an estimated 750,000 wheelchair users in the United Kingdom. Locomotion 

and movement patterns in wheelchair users are very different to ambulatory individuals 

and, as such, further studies are required to develop tools to quantify physical activity 

levels.  

 

Previous research has assessed the validity of a number of objective methods to predict 

physical activity levels of wheelchair users. These include attaching a custom data logger 

onto the wheel (Tolerico et al., 2007) or a tri-axial accelerometer (Coulter et al., 2011) to 

the frame of the wheelchair to capture certain mobility characteristics such as average 

speed and distance travelled. Whilst unobtrusive, these devices offer limited information 

on the intensity of activities performed and offer somewhat modest associations with 

energy expenditure. Recently hand rim propulsion power (Conger et al., 2014) was 

evaluated to address this limitation. However, any device on the wheelchair cannot 

distinguish between self or assisted propulsion and cannot quantify non-wheelchair 

activity. An alternative approach has been the use of body-borne movement sensors. 

Chapters 3 & 4 identified that the wrist is the most appropriate anatomical location to 

accurately predict PA in wheelchair users during a range of outdoor propulsion speeds 

and in a laboratory environment. Whilst this is encouraging, accelerometry alone doesn’t 

capture the physiological strain associated with movement behaviours that produce 

similar acceleration profiles but have a different energy cost, such as changing gradient 

or load carriage (Lamonte & Ainsworth, 2001). This was observed in Chapter 4, as the 

preferred device (GENEActiv-W) significantly under predicted PAEE by - 20% during 

propulsion at 4km·hr-1 on a 3% gradient. With this in mind we wanted to see whether 
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incorporating physiological signals into the prediction of PAEE might improve the 

accuracy of objective monitoring tools. 

 

Multi-sensor devices, which integrate accelerometry and physiological signals to predict 

PAEE, are commonly used in studies of able-bodied participants. Previous validation 

work in wheelchair users has focussed on the integration of dual-axis accelerometry and 

physiological measures (e.g. heat flux, galvanic skin response & temperature) to predict 

energy expenditure (EE) using the Sensewear device (Chen et al., 2012). This device and 

the development of specific algorithms for wheelchair users has been described in chapter 

2. Whilst the development of specific algorithms (Hiremath et al., 2012)  has led to 

substantial improvements in the accuracy of predicting EE in wheelchair users (16.8% 

error), thermoregulatory responses have been shown to be disrupted in persons with SCI 

(Petrofsky, 1992) which may limit the applicability of these physiological signals for this 

population. Ultimately, the calculation of EE by the Sensewear device is determined by 

proprietary algorithms which utilizes upwards of twenty possible output parameters. 

Researchers should have open access to these underlying equations. Currently it is not 

clear how each parameter contributes to the prediction of EE in this device.  

 

Previous studies in able-bodied participants have supported the utility of combined heart 

rate (HR) and accelerometer devices to estimate EE (Brage et al., 2005: Thompson et al., 

2006). The Actiheart (AHR) is a commercially available multi-sensor device which 

incorporates HR monitoring and accelerometry into a single unit. It is widely used to 

measure free-living PA in able-bodied individuals (Turner et al., 2010; Betts et al., 2014) 

and further research, in diverse populations, has been recommended (Atkin et al., 2012). 

The validity of combined heart rate and movement sensor PAEE prediction in wheelchair 

users remains to be established. Its utility may also be heavily reliant on individual 

calibration, as a result of the high variability in cardiovascular responses to exercise in 

individuals with differing levels/completeness of SCI (Furlan & Fehlings, 2008). 

Therefore, the aim of this study was to assess the error of the AHR device in predicting 

PAEE in wheelchair users and to assess the efficacy of an individual HR calibration. It is 

hypothesised that applying an individual heart rate calibration will improve the prediction 

of PAEE compared to the proprietary algorithms in the AHR. 
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5.2. METHODS 

 

5.2.1. Participants 

 

The same seventeen male manual wheelchair users as in chapter 4 participated in this 

study. However due to two AHR malfunctions during testing only data from fifteen (n = 

15) participants will be presented. All participants provided written, informed consent. 

Demographic characteristics of the participants are presented in Table 5.1.  

 

5.2.2. Study Protocol 

 

Resting metabolic rate and anthropometric variables were collected as described in 

Chapter 4. All data were collected at the Centre for DisAbility Sport and Health (DASH), 

following an overnight fast. Participants completed a wheelchair propulsion protocol on 

an adapted treadmill (HP Cosmos Saturn 250/100r, HaB International Ltd, UK) and a 

folding clothes task. This activity protocol is identical to that described in chapter 4. 

 

5.2.3. Assessment of Energy Expenditure  

 

Expired gases were analysed continuously during each activity using the same methods 

as described in chapter 4. Participants also wore a Polar T31 HR monitor (Polar Electro 

Inc., NY, USA), which transmitted HR to a wireless receiver module connected to the 

TrueOne® 2400 computerized metabolic system. 

 

Participants wore an AHR (ActiheartTM, Cambridge Neurotechnology Ltd, Papworth, 

UK), which integrates accelerometer and HR signals. The AHR unit has been described 

in detail previously (Brage et al., 2005). The main body of the device contains an omni-

directional accelerometer with a sampling rate of 32 Hz and a dynamic range of ± 2.5 g. 

When exposed to time-varying acceleration the voltage signal generated by the piezo-

electric element is converted into a binary signal by an eight-bit analogue to digital 

converter. The accelerometer in this device has a linear (R2 = 0.999) response to 
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acceleration (Brage et al, 2005). The AHR frequency range is 1 Hz to 7 Hz with a memory 

capacity capable of storing 21 days of data when recording at 60 s epochs. The AHR 

consists of two clips which were attached to standard adhesive ECG electrodes 

(Telectrode T815, Bio-Protech Inc., Exeter, UK), which were then fitted to the participant 

according to manufacturer’s instructions. HR (bpm) is generated from an ECG signal. 

The device is worn in the upper position (Figure 5.1) so that the Polar T31 HR monitor 

could be worn underneath to simultaneously measure HR. AHR’s were initialised to long-

term recording with 30 s epochs.  

 

 

 

Figure 5.1: AHR wear locations 

 

 

The branched equation model used by the AHR software (Actiheart version 4.0.23, 

Cambridge Neurotechnology Ltd, Papworth, UK) to predict PAEE using the group 

calibration (Brage et al., 2007) is shown in the diagram below (Figure 5.2). The chosen 

‘activity value’ (25 counts·min-1) was the lowest value recorded during cycling, this 

prevents cycling from taking the low intensity route in the branched model.  
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Figure 5.2: AHR branched equation model (Taken with permission from Horner, 2012) 

HRas: Heart rate above sleep 

Heart rate energy expenditure (HREE) is determined by: HREE = 5.5 * HRas + (1.6 * 

HRas * gender) – (7.8 * SHR * gender) + (338 * gender) – (4.7 * SHR + 207) 

 

 

5.2.4. Resting Measures 

 

Following a 10-min rest in a semi-recumbent position, resting HR and metabolic rate 

(RMR) were measured (Chapter 4; Compher et al., 2006). Breath-by-breath data were 

averaged into four 5-min samples, with additional samples collected if values varied by 

>100 kcal·day-1. The mean of these samples was accepted as RMR.   

 

5.2.5. Incremental Arm Crank Ergometry Test 

 

Participants underwent a 9-12 minute peak oxygen uptake (V̇O2 peak) test using an 

electrically braked arm crank ergometer (Lode Angio, Groningen, Netherlands). This was 

conducted at the end of the activity protocol, using a continuous, incremental test until 

volitional exhaustion. A cadence of 75 rpm was required throughout and a starting 

intensity of 35 W was typically chosen, although this was based on participants training 
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history. The resistance was increased by 14 W every three minutes. EE and HR were 

averaged over the final min of each stage. The same V̇O2 peak endpoint criteria were used 

as in Chapter 4. 

 

5.2.6. Twenty-Four-Hour Record 

 

Participants were asked to carry out their normal daily activities for 24 h while being 

monitored using AHR to determine sleeping HR (Brage et al., 2005). This provided a 24 

h ‘snapshot’ of habitual PA. Furthermore, permanent wheelchair users (n = 13) were 

asked to log their PA as accurately as possible to estimate PAEE using the adapted PA 

compendium (Conger & Bassett, 2011). Twenty-four-hour PAEE was estimated from 

self-reported PA and AHR. These data are only available for 8 participants.  

 

5.2.7. Statistical Analyses 
 

Assuming that dietary-induced thermogenesis was negligible (i.e. participants were 

fasted), RMR (kcal·min-1) was subtracted from total energy expenditure, to generate 

PAEE for each activity. Comparisons between the ‘criterion’ measurement of PAEE and 

AHR were made between the final 2-min of each activity. 

 

Data from the AHR unit were downloaded and participant’s descriptive characteristics 

(i.e. gender, age, mass and height) entered retrospectively.  Common equations to predict 

RMR in the general population are inappropriate to use for individuals with SCI and have 

been shown to over-predict by 5-32% (Buchholz & Pencharz, 2004). Measured RMR was 

entered, as the Schofield equation over-predicted by 12% (range -6 to 27%). This 

difference can be explained by a 14 – 27% reduction in basal metabolic rate (BMR) in 

individuals with SCI (Buchholz & Pencharz, 2004). Sleeping HR, measured during the 

24 hr record, and max HR measured during the V̇O2 peak test, were also entered into the 

AHR software.  
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The AHR software has a function whereby individual HR calibration data can be used in 

the calculation of PAEE instead of a group calibration. This is accessed by clicking on 

the ‘view/edit’ button in the Advanced Energy Expenditure screen. We selected the other 

HR calibration tab and entered criterion measured PAEE (J . min-1 . kg-1) for a selection 

of corresponding HRs determined at rest and during the incremental arm ergometry test. 

As advised by the manufacturer, the Fill function was used which extrapolated any 

missing data in a linear manner between entered values. These individual calibration data 

were stored and later used to predict PAEE.  This function allows us to retrospectively 

compare the validity of using generic group calibration (GC) and individual HR 

calibration (IC) models.   

 

Predicted PAEE data were copied into a spreadsheet (MS Excel) and compared to 

corresponding criterion measures of PAEE. Pearson product moment correlation 

coefficients (r) and coefficients of determination (R2) statistics were conducted to assess 

the association between criterion PAEE and predicted PAEE (GC and IC). Standard Error 

of the Estimate (SEE) was calculated for each correlation. Error statistics, including mean 

absolute error (MAE) and mean signed error (MSE) were calculated. As absolute error is 

likely to increase with exercise intensity (Staudenmayer et al., 2012), percentage error of 

estimate was also calculated. R2, r and SEE statistics were determined to assess the 

relationship between twenty-four-hour self-reported PAEE and predicted PAEE (GC and 

IC). Independent t-tests were performed to assess differences between predicted PAEE 

(GC and IC) and the PA log during the twenty-four-hour follow-up. Statistical 

significance was set at a priori of α < 0.05. 
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5.3. RESULTS 

 

5.3.1. Laboratory Validation 
 

Accelerometer counts, HR and RPE all increased linearly with increasing exercise 

intensity (Table 5.2). Absolute HR on its own explained 57% of the overall variance in 

PAEE (r = 0.76, SEE = 1.07 kcal·min-1). Acceleration along the longitudinal axis of the 

trunk explained 65% of the variance in the prediction of PAEE (r = 0.81, SEE = 0.96 

kcal·min-1). Three and two participants were unable to complete the 7km·hr-1 propulsion 

speed and 4km·hr-1 (3% gradient) tasks, respectively. Unusable HR traces were recorded 

for one participant in the folding clothes and 4km·hr-1 (3% gradient) trials, and for 

separate participants in the 3 and 5 km·hr-1 propulsion trials. These data points were 

therefore excluded from the analyses. 
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Table 5.1: Participant Characteristics 

Variable Mean ± SD Range (lowest – highest) 

Age (years) 36 ± 11 19 - 50 

Body mass (kg) 72.7 ± 10.2 54.2 - 87.5 

Height (m) 1.70 ± 0.13 1.40 - 1.88 

Time since injury (years) 16 ± 15 2 - 50 

Sleep HR (b·min
-1

) 56 ± 11 42 – 74 

Rest HR (b·min
-1

) 65 ± 12 50 – 88 

RMR (kcal·day
-1

) 1621 ± 248 1201 – 2152 

V̇O
2
 peak (ml·kg

-1·min
-1

) 28.3 ± 6.9 16.7 – 41.1 

 

Reason for WC use 

SCI1 (T1 – L4) (n = 8), Spina bifida (n = 3), Scoliosis 

(n = 1), Cerebral Palsy (n = 1), Amputation2 (n = 1), 

AB3 (n = 1) 
 

1 All SCI volunteers indicated that they had complete lesions. 

2 Regular wheelchair user (>70% of locomotion) 

3 AB wheelchair basketball player (> two years) 

AB: Able-bodied, SCI: Spinal Cord injury, WC: Wheelchair 

 

Criterion PAEE was very strongly and near perfectly associated with GC (r = 0.76, P < 

0.01) and IC (r = 0.95, P < 0.01), respectively. The GC explained 57% of variance in the 

prediction of PAEE with a SEE of 1.07 kcal·min-1, compared to the IC which explained 

91% of variance in PAEE with a SEE of 0.49 kcal·min-1 (Figure 5.3).  

 

The degree of agreement between estimated and criterion PAEE is displayed graphically 

through the use of Bland and Altman plots (Figure 5.4 a-b). The mean bias ± 95% Limits 

of Agreement (LoA) was 0.51 ± 3.75 kcal·min-1 and -0.22 ± 0.96 kcal·min-1 for the GC 

and IC, respectively. Error statistics between the criterion and estimated PAEE for each 

activity are shown in Table 3. Removal of these data for the able-bodied basketball player 

did not impact the nature of the regression relationships or error statistics in any 

meaningful way. 
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Table 5.2: Measured PAEE, Predicted GC and IC PAEE, heart rate, accelerometer counts, RPE and number of participants per trial 

for each activity (mean ± SD) 

 

Activity 

Measured 

PAEE 

(kcal·min
-1

) 

Predicted PAEE (kcal·min
-1

) Heart rate 

(b·min
-1

) 

Acceleration 

(counts·min
-1

) 
RPE n 

GC IC 

Resting 0.0 ± 0.0 0.1 ± 0.2 0.1 ± 0.1 65 ± 12 0 ± 0 - 15 

Folding clothes 1.1 ± 0.2 0.8 ± 0.6 0.6 ± 0.2 85 ± 15 6 ± 5 8 ± 2 14 

        

3km·hr
-1

 1.9 ± 0.4 1.8 ± 1.0 1.7 ± 0.6 90 ± 13 70 ± 50 9 ± 2 14 

4km·hr
-1

 2.4 ± 0.6 2.7 ± 1.7 2.3 ± 0.7 97 ± 20 127 ± 100 10 ± 3 15 

5km·hr
-1

 3.2 ± 1.0 4.0 ± 2.9 3.0 ± 1.1 114 ± 23 160 ± 95 11 ± 3 14 

6km·hr
-1

 4.3 ± 1.7 5.5 ± 3.7 3.9 ± 1.6 130 ± 33 229 ± 116 13 ± 3 15 

7km·hr
-1

 4.7 ± 0.9 5.4 ± 2.7 4.1 ± 1.0 136 ± 26 282 ± 137 14 ± 3 12 

        

4km·hr
-1

 (+ 8% of body mass) 2.6 ± 0.7 3.4 ± 2.3 2.6 ± 0.8 111 ± 20 112 ± 80 10 ± 3 15 

4km·hr
-1

 (2% gradient) 3.2 ± 0.9 4.2 ± 2.8 3.2 ± 1.2 119 ± 24 156 ± 110 12 ± 3 15 

4km·hr
-1 

(3% gradient) 4.0 ± 1.0 4.6 ± 2.3 3.5 ± 0.9 128 ± 22 162 ± 86 13 ± 4 12 
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Figure 5.3: Scatterplots showing the relationship between criterion PAEE and predicted PAEE using GC (a) and IC (b). The straight line represents the 

best fit, and the dashed line indicates the line of identity 
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Figure 5.4: Bland and Altman plots for the criterion and estimated PAEE, using GC (a) and IC (b). Bold line represents the mean difference and 

dashed lines represent the upper and lower 95% LoA 
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Table 5.3: Mean Signed Error (MSE) and Mean Absolute Error (MAE) expressed as kcal·min
-1 

and a percentage of predicted PAEE 

for the GC and IC 

Activity 
MSE (kcal·min

-1
) Mean percentage error (%) MAE (kcal·min

-1
) 

Mean absolute percentage 

error (%) 

GC IC GC IC GC IC GC IC 

Resting 0.08 ± 0.18 0.05 ± 0.10 - - 0.08 ± 0.18 0.05 ± 0.10 - - 

Folding clothes -0.30 ± 0.75 -0.46 ± 0.17 -19.1 ± 78.9 -43.1 ± 16.2 0.68 ± 0.39 0.46 ± 0.17 66.3 ± 43.5 43.1 ± 16.2 

         

3km·hr
-1

 -0.08 ± 0.98 -0.16 ± 0.41 -4.3 ± 52.6 -8.5 ± 21.5 0.80 ± 0.52 0.30 ± 0.31 43.1 ± 28.0 16.2 ± 16.0 

4km·hr
-1

 0.34 ± 1.43 -0.10 ± 0.49 12.9 ± 53.8 - 3.8 ± 20.7 1.07 ± 0.97 0.32 ± 0.37 42.4 ± 33.9 13.4 ± 15.8 

5km·hr
-1

 0.83 ± 2.37 -0.14 ± 0.41 24.1 ± 65.6 -4.4 ± 12.7 1.83 ± 1.66 0.34 ± 0.25 56.5 ± 38.6 10.4 ± 8.1 

6km·hr
-1

 1.18 ± 2.65 -0.43 ± 0.45 26.8 ± 62.0 -9.5 ± 12.0 2.23 ± 1.79 0.50 ± 0.37 54.7 ± 37.5 12.0 ± 9.3 

7km·hr
-1

 0.77 ± 2.68 -0.55 ± 0.71 19.1 ± 59.3 -11.0 ± 15.3 2.15 ± 1.68 0.68 ± 0.57 48.6 ± 36.6 14.2 ± 12.0 

         

4km·hr
-1

 (+ 8% of body mass) 0.80 ± 1.89 0.04 ± 0.52 28.4 ± 63.4 3.1 ± 21.6 1.50 ± 1.36 0.37 ± 0.36 56.8 ± 37.7 15.6 ± 14.7 

4km·hr
-1

 (2% gradient) 0.93 ± 2.27 -0.08 ± 0.52 23.3 ± 60.1 -4.1 ± 16.3 1.62 ± 1.81 0.40 ± 0.32 47.5 ± 42.2 12.5 ± 10.8 

4km·hr
-1

 (3% gradient) 0.58 ± 2.34 -0.50 ± 0.51 19.7 ± 72.6 11.9 ± 12.7 1.74 ± 1.60 0.56 ± 0.44 50.4 ± 54.1 13.6 ± 10.6 

         

All Activities 0.51 ± 1.90 -0.22 ± 0.49 14.6 ± 63.2 -10.1 ± 20.7 1.35 ± 1.44 0.39 ± 0.37 51.4 ± 38.9 16.8 ± 15.8 
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5.3.2. Twenty-Four-Hour Record 

 

The mean ± SD reference method-derived PAEE (self-reported PA log) was 662 ± 353 

kcal·day-1, but predicted to be 631 ± 428 kcal·day-1 by GC, and 588 ± 500 kcal·day-1 by 

IC. There were no significant differences in predicted PAEE between the reference 

standard and both AHR methods. PAEE, quantified by the reference method, was very 

strongly associated with IC (R2 = 0.50, P = 0.03) but only moderately associated with GC 

(R2 = 0.16, P = 0.24) (Figure 5.5). The SEE were 269 and 365 kcal·day-1 for the IC and 

GC, respectively.  

 

 

Figure 5.5: The relationship between predicted PAEE GC (white open triangle: dash/ 

dot line) and IC (black diamond: solid line) against the reference physical activity log 

method 
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5.4. DISCUSSION 

 

This study aimed to assess the validity of using a multi-sensor (AHR) device to predict 

PAEE in a heterogeneous sample of wheelchair users. These results show that, accounting 

for inter-individual variance by conducting individual HR calibration, can improve the 

accuracy of predicting PAEE. IC better estimated PAEE than GC and explained an 

additional 34 percent of the variance in PAEE (91% vs 57%), measured across a range of 

activities conducted in a controlled laboratory environment. The findings seem intuitive 

given the large inter-individual variance in cardiovascular function and response to 

exercise in wheelchair users. These findings highlight the importance of using individual 

heart rate calibration when practitioners and researchers use multi-sensor devices, 

incorporating physiological signals, to predict PAEE in wheelchair users. 

 

Initial research into the validity of using another multi-sensor activity monitor 

(Sensewear) in wheelchair users revealed sizeable EE estimation errors ranging from 24.4 

to 125.8% during activities from resting and deskwork to wheelchair propulsion and arm 

crank ergometry (Hiremath & Ding, 2011a). This error was likely a result of the 

manufacturer’s prediction model not being able to classify the types of upper body 

physical movements commonly performed by wheelchair users. More recent work 

(Hiremath et al., 2012), using new prediction models to track these upper body 

movements, has reported reduced mean absolute estimation errors of 16.8%. This is 

identical to that reported for IC in this present study. Even tri-axial accelerometers worn 

on the wrist have been found to predict 86 and 74% of the variance in predicting PAEE 

and V̇O2, respectively,  in wheelchair users across a range of propulsion speeds (Chapter 

3) and in a laboratory environment (Garcia-Masso et al., 2013). However, these previous 

studies did not include gradients or additional mass on the chair. 

 

Chapter 4 found that raw acceleration outputs from a GENEActiv device worn on the 

wrist explained 77% of the variance in predicting PAEE. However, this device using 

developed regression equations, under-predicted PAEE by 10.6 and 20.3% during the 2 

and 3% gradients, respectively. Mean absolute error was also 22.6% for the eight percent 
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of body mass task (Chapter 4). In the present study, IC under-predicted by 4.1% and over 

predicted by 11.9% during the 2 and 3% gradients, respectively. Furthermore, MAE was 

not noticeably elevated for the gradient and load carriage tasks compared to 4km·hr-1 trial. 

This supports the fact that, integrating individually calibrated HR and acceleration data, 

captures the differing energy cost of activities despite similar acceleration profiles. 

 

Heart rate is advantageous as a physiological variable as it increases linearly and 

proportionately with exercise intensity and thus oxygen uptake (Chen et al., 2012). Heart 

rate alone in this study explains 57% of the variance in the prediction of PAEE. Garcia-

Masso et al., (2014) found when extracting 7 features from HR signals that a complex 

artificial neural network model provided a better estimation of oxygen uptake (r= 0.88, 

MSE= 4.4ml·kg-1·min-1) than a multiple linear model (r= 0.78; MSE= 7.63 ml·kg-1·min-

1), during simulated laboratory activities. Whilst new mathematical models may offer an 

improvement, extracting data to provide rich information is currently difficult for 

practitioners. Simply using raw HR data may not be useful to predict PAEE due to a large 

degree of inter-individual variance in the HR-PAEE relationship (Brage et al., 2007). 

Some of the inter-individual variance can be accounted for by using HR above resting 

level and adjusting for gender (Brage et al., 2004; Brage et al., 2005). These variables are 

factored into the AHR proprietary algorithms (GC), which might help capture generic 

differences in cardiovascular function. 

 

As HR at lower exercise intensities is affected by other factors, such as psychological or 

thermal stress, integration of acceleration values may offer a more reliable prediction of 

PAEE. This is an issue when monitoring a population who predominantly perform 

sedentary and light intensity activities in a free-living environment (Ginis et al., 2010a). 

To counteract this issue with HR, during low intensity activities the branched model 

equation (Brage et al., 2004), intrinsic to the AHR software, gives a relatively low 

weighting to HR in the prediction of PAEE. For higher intensity activities, where HR has 

been shown to be more accurate in predicting PAEE for individuals with SCI (Hayes et 

al., 2005), the AHR utilises the branch which favours HR over acceleration in the 

prediction of PAEE (Figure 5.2).  Even with these processing features our results suggest 
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that combining HR and acceleration along the longitudinal axis of the trunk explains no 

more of the variance in the prediction of PAEE than HR alone (57%), when using GC. 

 

Whilst multi-sensor technologies have potential for increasing the accuracy of assessing 

PAEE in various populations, it could be that another processing step is necessary in a 

heterogeneous population of wheelchair users that display substantial HR variability as a 

result of differing disabilities and resulting cardiovascular function. Hayes et al., (2005) 

found that HR alone only explained 8.5% of the variance in measured EE, but this 

improved to 55% when an individual calibration was performed. This individual 

calibration was similar to that performed in this current study whereby an individualised 

relationship between HR and V̇O2 was established and applied. Likewise these results 

indicate an improvement in the accuracy of AHR predicted PAEE when an individual HR 

calibration option was utilised.  

 

The movement patterns of wheelchair users are primarily restricted to the upper limbs 

and such exercise appears to elicit a somewhat different V̇O2-HR relationship. Raymond 

et al., (1997) showed that V̇O2 was 25 % higher (1.58 L·min-1 vs. 1.26 L·min-1), but HR 

was 13 % lower (132 b·min-1 vs. 149 b·min-1) during combined arm & electrical 

stimulation-induced leg cycling exercise compared to arm cranking exercise alone at the 

same power output in individuals with SCI. The lack of lower limb muscle innervation 

and absence of the skeletal muscle pump leads to a reduction in venous return and a 

compensatory increase in HR to maintain cardiac output. As such, the gradient of the 

V̇O2-HR relationship for upper body exercise may be shallower than for lower body 

exercise. The GC model derived from Brage et al., (2007) and utilised here was designed 

to predict energy expenditure during ambulation. Therefore, a given HR could be 

misinterpreted as corresponding to a higher V̇O2 resulting in an elevated PAEE estimate. 

This attenuated HR response to upper body exercise could account for the 14.6% mean 

over-prediction across all activities for the GC. 
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Visual inspection of Figure 5.4a indicates a considerable degree of heteroscedasticity, and 

the sizeable 95% LoA (± 3.75 kcal·min-1) shows a large degree of inter-individual 

variance for the GC, potentially linked to disability aetiology. For individuals with higher 

level lesions (≥ T6: n = 8) normal cardiovascular homeostasis can be disrupted (Bauman 

et al., 1999). Autonomic nervous system disruption can result in a blunted CV response 

to exercise and, in some instances, an absence of sympathetic drive to increase HR above 

130 b·min-1 (Jacobs & Nash, 2004). Our results reflect the variability in HR responses to 

exercise in this population, with peak HR responses ranging from 130 to 200 b·min-1. 

Another factor known to have an impact on the HR-PAEE relationship is the variance in 

fitness (Keytel et al., 2005). Our sample had a wide spread of aerobic capacities, with 

peak oxygen uptake ranging from 16.7 to 41.1 ml·kg-1·min-1. The range in aerobic 

capacity in wheelchair users is large and reflects the degree of functional impairment and 

autonomic nervous system disruption in certain conditions (Janssen et al., 2002). 

Considering the type of exercise performed, the attenuated CV responses to exercise and 

large variation in fitness we advocate that an individual HR calibration is of upmost 

importance when assessing PAEE in wheelchair users.  

 

The majority of PA validation research in this population has mostly been performed in 

a controlled-laboratory environment. In this study free-living 24 hr PAEE was compared 

to a self-reported PA log to confer concurrent validity. This reference method has been 

used previously in wheelchair users (Warms et al., 2008). Our analysis was conducted 

using a relatively small subsample of participants, as PA logs from five of the full-time 

wheelchair users lacked detailed information to derive an accurate estimation of PAEE. 

This is perhaps unsurprising considering that the PA compendium for individuals with 

disabilities (Conger & Bassett, 2011) only describes the energy cost of 63 wheelchair 

activities. Consequently, this offers considerably less variety to code activities than the 

821 specific activities included in the updated version of the compendium of physical 

activities for able-bodied individuals (Ainsworth et al., 2011). In summary, this highlights 

a significant limitation with using self-report PA methods in this population. However, 

daily PAEE determined from the reference method and AHR were similar to that reported 

using doubly-labelled water in a small cohort of individuals with SCI 680 ± 389 kcal·day-

1 (Tanhoffer et al., 2012). Considering the difficulties with criterion PAEE monitoring 
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during free-living for individuals who use a wheelchair, other researchers have 

encouraged simply evaluating the agreement and disagreement between measures 

(Tudor-Locke & Myers, 2001). In this study, IC 24-hr free-living predicted PAEE was 

significantly associated with the reference method (r = 0.72) whereas GC was not (r = 

0.41).  

 

While only one activity of daily living was included, this allowed us identify the relatively 

large error estimate, even with the individual calibration (IC error 43.1%). This reflects 

the somewhat atypical movement patterns associated with such tasks. More activities of 

daily living and those of moderate-vigorous intensity should be included in future studies. 

There was a diverse range of disabilities within our participant sample, yet this is in 

keeping with previous research (Conger et al., 2014) and in accordance with best practice 

recommendations for PA validation studies (Bassett et al., 2012). Many previous studies 

have focussed solely on individuals with SCI (Hiremath et al., 2012; Tanhoffer et al., 

2012) but, compared to the present study, these previous results are limited in their 

generalisability to other individuals who use wheelchairs.  

 

In conclusion, this study demonstrated for the first time that PAEE can be accurately 

predicted using a multi-sensor device, which incorporates acceleration and individual HR 

calibration, in wheelchair users. The error associated with predicting PAEE in manual 

wheelchair users, is improved approximately threefold by using individual heart rate 

calibration. Considering the inter-individual variance in cardiovascular response to 

exercise is high among individuals who use wheelchairs we advocate the importance of 

using an individual HR calibration. Through the meticulous method development 

conducted in chapters 3, 4 & 5 we believe that we have validated tools capable of 

accurately predicting PAEE in wheelchair users during habitual free-living. As such we 

plan to utilise the GENEA-W (Chapter 4) and AHR with individual calibration (Chapter 

5) to monitor behavioural changes during a RCT to assess the link between PA and 

metabolic health in individuals with SCI (Chapter 6). 
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CHAPTER 6: THE IMPACT OF A HOME-BASED 

EXERCISE INTERVENTION ON MARKERS OF 

METABOLIC AND CARDIOVASCULAR HEALTH IN 

INDIVIDUALS WITH CHRONIC PARAPLEGIA 
 

6.1. INTRODUCTION 
 

Those with SCI and paralysis (~35,000 individuals in the UK) are at increased risk of 

chronic disease. In comparison to age and sex matched able-bodied counterparts, adults 

with SCI are four-times more likely to develop type-2 diabetes (Bauman & Spungen, 

1994) and three times more likely to have circulating high-density lipoprotein (HDL) 

concentrations < 1.94 mmol·L-1 (Lavis et al., 2007). Such metabolic abnormalities are 

also associated with endothelial dysfunction that, when combined, predisposes 

individuals to the development of atherosclerosis and associated cardiovascular events 

(Beckman et al., 2002). Consequently, CVD is the leading cause of mortality in 

individuals with SCI, also occurring earlier in the lifespan than able-bodied controls 

(Garshick et al., 2005). 

 

SCI creates a complex pathology whereby level and completeness of injury, plus other 

lifestyle factors, can lead to increased sedentary behaviours and alterations in body 

composition. Simplistically, overweight and obesity are caused by an energy imbalance, 

be it through increased energy intake and/or reduced physical activity levels. It was 

previously thought that adipose tissue was just a store for energy in the form of TAG, 

which are a combination of fatty acids and glycerol.  However, adipose tissue is more 

complex, secreting and responding to various hormones that are involved in the regulation 

of appetite, energy expenditure, insulin sensitivity, inflammation, immunity, endocrine 

and reproductive systems as well as bone metabolism (Fantuzzi, 2005). The hormones 

produced by the adipose tissue are termed 'adipokines’. These impact on metabolic 

control, via adipocyte insulin resistance, and consequently increase concentrations of 

blood lipids (Kahn et al., 2006). Increased visceral and subcutaneous adipose tissue, 

common in individuals with SCI (Edwards et al., 2008), has been associated with a whole 

array of chronic disease indicators, including hyperlipidaemia, hypertension, insulin 
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resistance, increased pro-inflammatory mediators and prothrombotic agents (Grundy, 

2004; Hutley & Prins, 2005; Ritchie & Connell, 2007). 

 

The contribution of regular PA to achieve weight balance, metabolic control and 

cardiovascular fitness is well documented and broadly accepted in the able-bodied 

population (Kesaniemi et al., 2001; Haskell et al., 2007). In an able-bodied experimental 

model, short-term (i.e. one week) overfeeding and reduced PA resulted in impaired 

metabolic function (Walhin et al., 2013). However, these changes were mostly 

counteracted by vigorous-intensity exercise, even in the face of an additional energy 

surplus and subsequent weight gain. Therefore, it is possible that exercise has independent 

effects on health besides its role in contributing to energy balance and body composition.  

 

Involvement in sports and recreation is often restricted by loss of voluntary motor control, 

as well as autonomic dysfunction and early onset of muscle fatigue (Nash, 2005). There 

are also numerous psychosocial and environmental barriers to exercise for individuals 

with SCI such as reduced self-esteem, lack of accessible facilities, unaffordable 

equipment, fear of injury and parental or medical over protection (Kehn & Kroll, 2009). 

Therefore a convenient and accessible form of exercise is necessary to maximise exercise 

compliance in certain disabled populations. A recent 16-week randomised controlled trial 

(RCT) (Bakkum et al., 2015), advocated that researchers should consider how to make 

exercise interventions more feasible to individuals with SCI in order to avoid large drop-

out rates. Home-based arm ergometer exercise has previously been utilised in polio 

patients (Murray et al., 2012) and would overcome transportation barriers and the lack of 

accessible exercise equipment.    

 

The current literature on PA research for individuals with SCI has recently been 

systematically classified (Nery et al., 2013). Most studies between 2000 and 2012 have 

been categorised as either: Phase 1 (linking PA and health outcomes); Phase 2 (validating 

or developing PA monitors) or; Phase 3 (identifying factors influencing behaviour or 

examining theories of behaviour change). This correctly implies that this field is still in 
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the early stages of development and research should focus on Phase 4 (evaluating 

interventions) and Phase 5 (disseminating health promotion policies and translating 

research into practice). Based on the inconsistent findings across studies, concluded via a 

systematic review requested by the Consortium for Spinal Cord Medicine (Carlson et al., 

2009),  it would appear that current evidence is insufficient to determine whether exercise 

improves carbohydrate and lipid metabolism disorders among adults with SCI. These 

inconsistencies may well be caused by considerable heterogeneity in study participants, 

the type of exercise programme and/or the outcome measures adopted. Researchers have 

been encouraged to employ more rigorous methodological designs to reduce bias and 

confounding variables, and include a variety of outcome measures to reflect the potential 

benefits of exercise on health and function in this cohort (Silverman et al., 2012). 

 

Thus, in accordance with the above recommendations, whereby confounding variables 

are controlled, we proposed a rigorous trial design (randomised controlled trial) and 

associated methodology focussing on a well-defined study population (individuals with 

chronic paraplegia). We hypothesised that moderate-intensity upper body exercise would 

improve biomarkers of cardiovascular and metabolic health. Secondary hypotheses 

related to upper body exercise improving body composition, cardiorespiratory fitness and 

perceptions of wellbeing. Poor physical function can compromise independence and 

quality of life in individuals with SCI and, as such, an emphasis will also be placed on 

quantifying these parameters. In order to overcome some of the methodological problems 

in previous studies, we have adopted a contrived study design where exercise equipment 

is given to the participant, thus removing a psychosocial barrier to performing PA. 

However, we will also quantify compliance with the intervention periodically, monitoring 

PA using validated monitors (Chapters 4 & 5).  

 

6.2. METHODS 
 

6.2.1. Trial Design 

A pre-post randomised parallel group design was used for this study (registration number: 

ISRCTN57096451), with participants assigned to a 6-week exercise intervention (INT) 
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or control period (CON). There is limited and conflicting data on the effect of various 

exercise interventions on carbohydrate metabolism and insulin sensitivity in individuals 

with SCI. Using a similar arm crank exercise protocol (Time; 18 to 32 min, Frequency; 2 

x wk, Intensity; 65 – 75% heart rate reserve (HRR), Duration; 16 wks) to that in the 

present study, Bakkum et al., (2015) reported an improvement in insulin sensitivity 

(assessed via HOMA-IR) of -0.5 ± 0.2. Based upon these data (Cohens d = - 2.5) it was 

estimated that 6 participants are required to detect a statistically significant change in 

insulin sensitivity in the exercise intervention group.  The power was 0.95 and the alpha 

was set at 0.05. Participants performed 32 individual training sessions compared to the 

24 proposed in this current study. With this in mind, plus a 20% withdrawal rate 

associated with longitudinal testing in the INT group for this population, twenty (INT; 

12, CON; 8) participants with chronic paraplegia were recruited to participate in this 

study.  

 

The first nine participants were randomly allocated by a third party to a 6-week exercise 

intervention (INT) or control period (CON).  Within a highly heterogeneous population 

(individuals with SCI), we decided to use minimisation (Altman & Bland, 2005) to ensure 

balance between the two groups for several baseline characteristics (age, body mass, FM, 

level of injury, physical activity level). Subsequent participants (n = 11) that enrolled on 

the trial were therefore allocated to either the INT or CON group in order to balance the 

groups in the above variables of interest. The INT group completed 6 weeks of arm crank 

ergometry in a home-based environment, following an individualised exercise 

prescription. The CON group were asked to maintain their normal habitual lifestyle for a 

6-week period.  

 

The duration and the dose of the intervention were selected on the balance of available 

literature regarding exercise in this population. Various exercise intervention protocols 

have been employed in studies of participants with SCI, including arm crank ergometry 

(ACE; de Groot et al., 2003), functional electrical stimulation (FES; Jeon et al., 2002) or 

wheelchair propulsion (Bougenot et al., 2003). Previous interventions have been 5 to 57 

weeks in duration, incorporating 2 to 3 exercise sessions per week, lasting 30 to 60 
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minutes per session. Therefore a 6-week ACE intervention was designed, comprising 4 x 

30- 45 min sessions per week, in order to provide a considerable exercise stimulus. It is 

evident that moderate ACE at an intensity between 60 – 80% of max heart rate (HR) or 

60 – 65% V̇O2peak, seems sufficient to improve aerobic capacity (Hicks et al., 2011). 

However, little is known regarding the impact of this intensity of exercise on biomarkers 

of metabolic and cardiovascular health in individuals with SCI. 

 

The primary outcome measures were changes in insulin sensitivity and glycaemic control, 

reflected by fasting values and incremental Area Under the Curve (iAUC), measured at 

baseline and follow-up. Other blood markers relating to metabolic control and 

inflammation were secondary outcome measures, along with fitness and body 

composition.  

 

6.2.2. Recruitment 

It was previously stated that RCT participant recruitment, especially in the absence of 

direct access to a clinical population, requires considerably more resources and time than 

initially anticipated in order to achieve adequate enrolment (Nary et al., 2011). In a 

systematic review, Ross et al., (1999) described patient barriers to recruitment for RCTs. 

These included: (a) additional demands of the trial increasing participant burden and (b) 

patient preferences for or against a particular treatment. Barriers to research participation 

are perhaps even more exaggerated for people with disabilities due to complex health 

problems (Kosma et al., 2004), lack of transportation (Yilmaz, 2006), cognitive 

impairments and financial stress (Bell et al., 2008). With this in mind, we set up arm 

crank ergometers in participants’ own homes, thereby minimising any potential 

accessibility/transport barriers to participants becoming more active. Transportation 

needs is a major participation barrier for individuals with disabilities, and so travel 

expenses to the University for laboratory testing were reimbursed. Whilst participants 

may have had a strong preference to receive the intervention and not be in the control 

group, we tried to overcome this by offering a waiting-list control. Participants in the 

control group were offered the opportunity to participate in the intervention once they had 

completed the control period.  
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We expected recruiting individuals with SCI to be more complex than recruiting non-

disabled populations and carefully considered the recruitment challenges proposed by 

Nary et al., (2011). Without direct access to clinical populations it was essential that we 

nurtured relationships with key gatekeepers. The University’s press release for this RCT 

was endorsed by the English Federation for Disability Sport and various recruitment 

material was promoted by nationwide charities such as Spinal Injuries Association (SIA), 

ASPIRE, Back-up Trust and Wheelpower. Posters and flyers were displayed in the 

waiting areas of a SCI rehabilitation centre (The London Spinal Cord Injury Centre 

(LSCIC), Stanmore). Initial recruitment strategies had focussed on working with NHS 

SCI specialists across the South of England. One of the lessons learned for Nary et al., 

(2011) was ‘don’t assume health care agencies will value research activities and welcome 

and facilitate study recruitment’. Unfortunately, for reasons unknown, with the exception 

of LSCIC, other SCI rehabilitation centres were reluctant to allow study information to 

be disseminated to their patients, which made study recruitment even more difficult.  

Other media outlets (television- BBC Points West and radio- BBC Radio Bristol and 

Wiltshire), as well as internet forums and social networking sites were used to facilitate 

ongoing recruitment. Our group was also actively involved with public engagement 

activities to create a visible public profile for the Centre for DisAbility Sport and Health. 

Previous participants (Chapter 3 & 4) who agreed to be contacted and met the inclusion 

criteria of the trial were notified directly about the study via email. Unfortunately, a 

detailed log of how interested individuals learned about the study was not maintained. 

Anecdotally most of the exposure was generated through television and an advertisement 

in FORWARD magazine (SIA bi-monthly publication).  

 

Over the 11 months of recruitment, seventy-four persons with SCI expressed an interest 

in participating in this study. Thirty-six percent (n = 27) were deemed ineligible during 

an initial telephone consultation and the reasons described in Figure 6.1. Fliers and posters 

were produced, providing a phone number and email address for interested individuals to 

contact the PI. Upon initial contact (be it email or telephone), the study was briefly 

described and those interested in enrolling were asked to read a detailed Participant 

Information Sheet and complete a health screen questionnaire. Interested individuals were 
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given 48 hours before they were screened via a telephone conversation to ascertain 

eligibility. There was a focus on establishing a good rapport at this initial contact and also 

as individuals progressed through the enrolment process. Reaching potential participants 

is a crucial first step, although retaining eligible participants is equally important. Of the 

47 eligible participants, 21 (45%) attended baseline assessments and 26 ultimately opted 

not to participate, 22 (85%) of whom could not be contacted or did not provide a reason 

why. This is considerably better than the 11.2% of participants who received an invitation 

letter and eventually participated in a 16-week hybrid and hand-cycle RCT (Bakkum et 

al., 2015). 

 

 

Figure 6.1: Flow of participants through the study 
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6.2.3. Participants 

 

Twenty one inactive individuals with a chronic (>1 year), spinal cord lesion between T3 

to L3 attended baseline assessments. Participants were recruited based on the following 

inclusion criteria: aged 18 – 65 years; classified as inactive (physical activity level (PAL) 

< 1.60); weight stable (± 3 kg) for at least 6 months and no conscious plans to change diet 

or exercise behaviours. Participants completed a health-screen questionnaire (Appendix) 

to determine eligibility and also provided written and verbal consent consistent with the 

requirements of the South West (Exeter) National Research Ethics Service Committee, 

who approved this study (REC reference number 14/SW/0106). Volunteers with 

neurological incomplete injuries were considered eligible if they were wheelchair users 

for >75% of their waking day. Individuals with active medical issues including pressure 

sores, urinary tract infections, heart disorders, cardiovascular contra-indications for 

testing (Goosey-Tolfrey, 2007) or musculoskeletal complaints of the upper extremities 

were excluded. One participant was excluded for having a PAL ≥ 1.6; thus, twenty 

participants (INT, n = 12: CON, n = 8) completed the full experimental procedures and 

are included in this data analysis (Table 6.1).  

 

Habitual PA was estimated over a representative 7-day period at baseline using the AHR-

IC (Chapter 5) and the GENEActiv-W using developed and cross-validated algorithms 

(Chapter 4). Participants wore these monitors continuously (24 hrs a day) and were 

instructed only to remove them when showering or bathing.  
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Table 6.1: Participant Characteristics  

Variable  

INT (n = 12) (9M/3F) 

(10A/2C†) 

CON (n = 8) (6M/2F) 

(7A/1C†) 
P 

value 
Mean ± SD Range Mean ± SD Range 

Age (y) 46 ± 6 32 - 58 48 ± 10 36 - 61 0.68 

Height (m) 1.73 ± 8.40 1.60 – 1.85 1.73 ± 7.48 1.61 – 1.81 0.98 

Body Mass (kg) 76.9 ± 13.7 54.4 – 99.6 76.8 ± 11.3 59.6 – 92.4 0.98 

Fat Mass (kg) 28.2 ± 10.4 14.4 – 56.8 26.0 ± 6.8 17.0 – 36.7 0.57 

Waist circumference (cm) 91.4 ± 6.3 76.6 – 98.8 93.3 ± 6.8 80.1 – 101.2 0.53 

TSI (y) 15 ± 11 3 - 32 20 ± 10 4 - 39 0.35 

Lesion level*  16 ± 4 11 - 21 16 ± 4 12 - 22 0.98 

RMR (kcal·day-1) 1475 ± 199 1096 - 1753 1474 ± 232 1152 - 1899 0.81 

V̇O2 peak (l·min-1) 1.41 ± 0.51 0.84 – 2.35 1.47 ± 0.59 0.88 – 2.21 0.89 

V̇O2 peak (ml·kg-1·min-1) 18.0 ± 5.0 12.6 – 29.4 18.8 ± 6.21 11.6 – 27.3 0.76 

Maximal workload (W) 77 ± 29 42 - 126 75 ± 39 35 - 147 0.90 

PAL 1.37 ± 0.11 1.20 – 1.51 1.38 ± 0.12 1.23 – 1.59 0.87 

Sedentary (min·day-1)a 1220 ± 125 1039 - 1413 1226 ± 105 1117 - 1366 0.90 

Light (min·day-1)a 205 ± 116 28 - 390 191 ± 95 52 - 303 0.77 

Moderate (min·day-1)a 15 ± 15 0 - 45 21 ± 25  0 - 78 0.57 

Vigorous (min·day-1)a 0 ± 0 0 - 0 1 ± 3 0 - 8 0.29 

 

† The American Spinal Injury Association (ASIA) impairment scale.  

A = complete, C = incomplete 

* Lesion level was converted to a continuous variable for each vertebrae (C1 = 1; C8 = 8, 

T1 = 10; T12 = 20, L1 = 21; L5 = 25) 

a Sedentary = < 1.5 METs; Light = < 3 METs; Moderate = ≥ 3 METs; Vigorous = ≥ 6 

METs  
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6.2.4. Design Summary  

 

The first nine participants were randomly allocated using a block randomisation plan 

(fixed block size of 9; allocation ratio of 2:1; no stratification) selected by a third party to 

either the experimental group (exercise intervention) or control group.  

 

1) 4 x 45 minutes per week moderate-intensity (60-65% V̇O2 peak) arm crank 

exercise (INT) n = 12. This equated to an additional 799 Kcal·week-1 energy 

expended above rest through increased PA. 

2) Control group, maintenance of normal lifestyle (CON) n = 8 

 

The experimental design is summarised below (Figure 6.2). Participants in the INT group 

completed a 6-week individually prescribed and progressive arm crank ergometry 

exercise programme, whereas participants in the CON group were asked to maintain their 

existing lifestyle.  

 

 

Figure 6.2: Schematic of study design 
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All participants underwent pre- and post- intervention testing for fasting lipid profile, 

markers of inflammation, insulin sensitivity, body composition and peak aerobic 

capacity. Insulin sensitivity was assessed during an oral glucose tolerance test (OGTT) 

and peak aerobic capacity was assessed during an incremental arm crank ergometer test 

to volitional fatigue. Baseline testing was performed approximately two weeks before 

training/control period commenced. Importantly, this allowed exactly 8 weeks between 

baseline and follow-up testing which ensured that female participants were at the same 

stage of their menstrual cycle. Pulido & Salazar, (1999) found considerable variation in 

insulin sensitivity during different phases of the menstrual cycle. Therefore, testing for 

the two eumenorrheic women in this study was conducted during the follicular phase of 

the menstrual cycle (3 – 10d after onset of menses). Of the other three female participants 

two were postmenopausal, and one had been amenorrheic since sustaining her SCI. 

Participants abstained from strenuous exercise, caffeine (tea/coffee) and alcohol intake 

the day before each trial. The final exercise bout prescribed in the INT group was > 36 

hrs before follow-up testing in order to reduce acute effects from the previous bout of 

exercise. Participants were also asked to drink one pint of water on the morning of testing 

to ensure adequate hydration.  

 

6.2.5. Main Trial Days 

 

The same experimental procedures were completed on both baseline and follow-up trial 

days. On arrival at the centre for DisAbility Sport and Health laboratory at 08.30 ± 1 h, 

following an overnight fast (≥10 h), participants voided and had body mass measured in 

light clothing using platform wheelchair scales (Detecto ® BRW1000, Missouri, USA) 

as described in Chapter 3. Participants transferred onto the Dual-energy X-ray 

absorptiometry (DEXA) scanning table (Discovery, Hologic, Bedford, UK). Supine 

length was measured in centimetres to the nearest tenth, along the left hand side of the 

body using a non-elastic tape measure (Lufkin, US). Body composition was estimated 

using a whole-body DEXA scan. After descriptive characteristics were entered into the 

QDR for Windows software (Hologic, Bedford, UK), participants were positioned 

centrally on the scanning table with feet spaced evenly either side of the mid-point of the 

body, with arms placed mid-prone with an equal gap to the trunk on both sides. For 
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participants who experienced leg spasms, knees were flexed at a 45º angle supported by 

a pillow. An individual trained in ionising radiation (medical exposure) regulations 

performed the scan, whilst participants were instructed to remain as still as possible. Scans 

were analysed for total and regional (trunk, legs, arms) FM, LM, bone mineral content 

and fat percentage, following the guidelines described in the QDR for Windows manual 

(Hologic, Bedford, UK). All scans were conducted following a daily QC scan of a Spine 

Phantom as per the manufacturer’s instructions.  

 

RMR was estimated by indirect calorimetry from expired air samples collected into 200 

L Douglas Bags (Hans Rudolph, MO, USA) via falconia tubing (Baxter, Woodhouse and 

Taylor Ltd, Macclesfield, UK) with concurrent measurement of inspired air composition; 

a reliance of standard atmospheric concentrations was recently discouraged (Betts & 

Thompson, 2012). The process of indirect calorimetry has been described in detail in 

Chapter 3. In this instance, expired concentrations of O2 and CO2 were measured, in a 

known volume of the sample using paramagnetic and infrared analysers, respectively 

(MiniMP 5200, Servomex Ltd., Sussex, UK). Samples for RMR were collected in 

accordance with best practice guidelines (Compher et al., 2006). Participants also wore a 

Polar T31 heart rate monitor (Polar Electro Inc., Lake Success, NY, USA) during RMR 

measurement; resting heart rate values were averaged over the 20 minute collection 

period. 

 

6.2.5.1. Oral Glucose Tolerance Test (OGTT) 

 

A cannula (BD Venflon Pro, BD, Helsingborg, Sweden) was inserted into an antecubital 

vein and, a 25 ml fasting sample drawn. Participants then consumed 113ml of Polycal 

(Polycal, Nutricia Advanced Medical Nutrition, Trowbridge, UK) and 87 ml of water, 

equivalent to 75g of anhydrous glucose. Further 5 ml blood samples were drawn at 15 

min intervals for the next 2 hours. The intravenous cannula was kept patent through 

periodic flushing with 0.9% NaCl (B.Braun, UK) infusion, with the first 5 ml of each 

blood draw discarded. Serum was obtained by dispensing whole blood from the syringe 
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into a serum separation tube, which was left to stand at room temperature for 15 min 

before centrifugation. Plasma was obtained by dispensing whole blood into tubes coated 

with ethylenediaminetetraacetic acid (EDTA) and immediately centrifuged. Samples 

were centrifuged (Heraeus Biofuge Primo R, Kendro Laboratory Products Plc., UK) at 

5000 rpm for 10 min at 4ºC, with serum/plasma subsequently dispensed into 0.5 ml 

aliquots and immediately cooled on dry ice and then stored at -80ºC. Blood pressure 

(mmHg) was also measured during the final 15 minutes of the OGTT using an automated 

blood pressure monitor (Boso Medicus Prestige, Bosch + Sohn, Germany) as described 

in Chapter 4. 

 

6.2.5.2. Submaximal and Peak Oxygen Uptake Exercise Testing 

 

Approximately forty-five minutes after a standardised snack (556.8 kcal, 74.2g 

Carbohydrate, 26.7g Fat, 7.2 g Protein) participants performed an incremental 

submaximal arm crank ergometry test using a portable desktop ergometer (Monark 

compact rehab 871E, Dalarna, Sweden). This test lasted three 3-min stages, separated by 

a one min rest period during which the resistance was increased. Participants were 

instructed to maintain a cadence of 75 rpm throughout. A variety of power outputs was 

chosen that were sufficient to cover the relative exercise intensities (60 – 65% of V̇O2 

peak) employed during training sessions in the INT group. During the final minute of 

each stage V̇O2 (measured using the online gas analysis system described in Chapter 4) 

and HR were averaged. This was to determine the relationships between V̇O2, exercise 

intensity (work rate) and HR in order to calculate the correct power output to obtain 60% 

and 65% of V̇O2 peak. Submaximal exercise testing was conducted on the same portable 

desktop ergometer that participants were assigned in their own home.  

 

Approximately 15 min following the submaximal exercise test, participants completed a 

V̇O2 peak test on an electrically braked arm crank ergometer (Lode Angio, Groningen, 

Netherlands). This test has been described in Chapter 4. The power output to start the test 

was dictated by the data recorded during the submaximal test, with an initial power 
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eliciting approximately 65 – 75% of age-estimated maximum HR. This test usually lasted 

between 9 – 12 min, until the point of volitional exhaustion. A number of criteria were 

applied to determine whether this endpoint was reflective of a valid V̇O2 peak value. 

These were; (1) a peak RER value ≥ 1.1, (2) a peak heart rate ≥ 95 % of age-predicted 

maximum (200 b.min-1 minus chronological age) and an increase in V̇O2 ≤ 2 ml·kg-1·min-

1 in response to an increase workload (Goosey-Tolfrey, 2007). Each participant met at 

least two of these criteria. The EE and HR data from the final minute of each stage of 

both exercise tests was used to inform the individual calibration of the Actiheart as 

described in Chapter 5. Following approximately a 15 minute rest, work rate and HR 

necessary to elicit 60% of V̇O2 peak, determined through linear regressions, were checked 

using a 5 minute arm crank test on the portable desktop ergometer. Oxygen uptake was 

measured during the final 2 min of the test and compared to the value calculated to be 

representative of 60% of V̇O2 peak. If these values differed by more than 5% (n = 3), 

initial work rate for the first exercise session of the INT was adjusted accordingly.  

 

6.2.6. Measures of Health and Wellbeing 

 

Various questionnaires were administered during baseline and follow-up testing. Quality 

of Life and health status were measured using the SF-36 (Ware & Sherbourne, 1992) and 

EQ-5D-5L (Herdman et al., 2011), with certain questions adapted for wheelchair 

propulsion instead of ambulation. The use of the SF-36 in individuals with SCI has 

previously been summarised in a review article (Ku, 2007). Compared with four other 

instruments used to measure health-related quality of life in persons with SCI, Leduc & 

Lepage, (2002) reported better validity of the SF-36 with regard to quantifying the health 

status of participants. Original responses were transformed into recorded values (taking 

into account items which were negatively scored) and specific questions were averaged 

to return a value for general health using the RAND 36-Item Health Survey 1.0 scoring 

method. This value will range from 0 to 100, with 100 representing the best health 

possible. The EQ-5D-5L was developed by the EuroQol group and is applicable to a wide 

range of health conditions, including individuals with SCI (Whitehurst et al., 2014). It 

consists of two pages; the EQ-5D-5L descriptive system (page 2), which comprises 5 

dimensions (mobility, self-care, usual activities, pain/discomfort and anxiety/depression) 
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and the EQ visual analogue scale (EQ VAS: page 3). Participants are asked to rate each 

dimension of the EQ-5D-5L, no problems (value code: 1), slight problems (2), moderate 

problems (3), severe problems (4), and extreme problems (5). Values for each dimension 

and the EQ VAS were compared pre- post.  

 

Shoulder pain was assessed using the Wheelchair User’s Shoulder Pain Index (WUSPI: 

Curtis et al., 1995). This consists of 15 questions, whereby participants indicate their 

response on a visual analogue scale ranging from no pain to worst pain ever experienced. 

The performance corrected WUSPI score (PC-WUSPI) was used; it accommodates 

participants who do not perform certain functions (i.e. item 13: driving?). This involves 

multiplying the average response for all items by the number of questions attempted, with 

higher values indicating a greater degree of perceived shoulder pain. The fatigue severity 

scale (FSS) was administered to measure the severity of fatigue and its effects on certain 

behaviours. The FSS was initially developed to be used in multiple sclerosis patients 

(Krupp et al., 1989), but has also been shown to have acceptable test-retest reliability and 

validity in 48 community living individuals with SCI (Anton et al., 2008). The 9-item 

questionnaire is scored on a 7 point scale (1= strongly disagree; 7= strongly agree). As 

such the minimum total score = 9 and maximum score possible = 63. The higher the score 

the greater the fatigue severity. Self-efficacy was assessed using the SCI Exercise Self-

Efficacy Scale (ESES; Kroll et al., 2007), which was developed specifically to cover 

issues associated with this unique population. The ESES consists of 10 items and requires 

participants to respond on a 4-point Likert scale (1- not at all true; 4- always true). A total 

score (range from 10 – 40) is derived from summing together scores from the individual 

items, with a higher score indicating greater perceived self-efficacy 

 

6.2.7. Assessment of Physical Activity Energy Expenditure 

 

The number of days required to assess habitual PA using wearable devices has been 

discussed at length (Matthews et al., 2002). The consensus was that monitoring for 3 – 4 

days is required to achieve 80% reliability in activity counts. In our work we decided to 

use an inclusion criteria of ≥ 4 days (providing one of these days was a weekend day). 
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This also ensures that we capture more PA behavioural information than the PARA-SCI 

(3-day recall telephone interview) which has been widely used to quantify free-living 

PAEE in wheelchair users (Martin Ginis et al., 2007: Buchholz et al., 2009). A valid day 

will require at least 80% of data for that 24-hr period. SVM data from the GENEA (y 

axis) was plotted against the corresponding 24-hr timestamp (x axis) and visually 

inspected. Non-wear time was defined by an interval of at least 60 consecutive minutes 

whereby SVM values remained constant. This was cross referenced with lux and 

temperature data from the GENEA device to confirm non-wear time. Non-wear time 

SVM data was then excluded from the daily average (g·min-1).  

 

6.2.8. Assessment of Dietary Intake 

 

Participants were asked to keep a detailed record of their food and fluid intake for a 

“typical” 7 days after their baseline visit, and again during the week leading up to their 

follow-up testing. Previous work has demonstrated variation between weekday and 

weekend energy intake (Whybrow et al., 2008), therefore 7 days is a suitable period to 

allow accurate representation of habitual energy intake. Each participant received a set of 

weighing scales (PL11B Digital Scale, Smart Weigh, NY, US) to accurately weigh and 

record foodstuffs, which negates any potential errors in estimation of food weight 

(Gittelsohn et al., 1994). Martin et al., (2002), has shown that weighed food records are 

a more valid measure of energy intake than dietary recall methods. Diets were 

subsequently analysed using Nutritics software (Nutritics Ltd., Dublin, Ireland), to 

estimate energy intake.  

 

It has been well established that food records are liable to error, principally underreporting 

(Livingstone & Black, 2003; Poslusna et al., 2009). Cut off limits have previously been 

proposed to improve the feasibility of food records and identify underreporting (Black, 

2000b; Goldberg et al., 1991), although these limits are realistically only applicable when 

individuals are maintaining energy balance. As weight stability might change over the 

course of the 6 weeks through exercise creating an energy deficit, we decided not to utilise 

previously proposed cut offs. Whilst this might introduce some error as a result of 
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unidentified underreporting, it has been suggested cut offs have limited application on an 

individual basis when identifying changes pre-post (Black, 2000a).  

6.2.9. Home-Based Exercise Intervention 

 

The exercise intervention consisted of moderate intensity (60 – 65% V̇O2 peak) home-

based exercise 4 times/wk on the same portable desktop ergometer used during 

submaximal testing. The intervention progressed in duration by 5 minutes during each 

session in the first week, from 30 to 45 min. The intensity was increased from ≈ 60% V̇O2 

peak for the first 3 weeks to ≈ 65% V̇O2 peak for the second 3-week period. Participants 

were expected to cycle at a cadence of 75 rpm. The first training session was supervised 

by a member of the research team who ensured that the arm crank ergometer was set up 

appropriately and that the correct duration and intensity of exercise was adhered to. 

Subsequent home-based exercise sessions were performed under the supervision of a 

carer or spouse as agreed on the informed consent document. To attain the desired 

intensity in each session, participants wore a Polar T31 heart rate monitor and were 

instructed to adjust the resistance in order to achieve the target HR. Each exercise session 

was monitored (GENEActiv-W) to ascertain compliance, and was checked against an 

activity diary where participants recorded the date, time, duration, difficulty and total 

revolutions. Sampling at 30 Hz the GENEA is capable of recording PA for up to three 

weeks. At the midway point a newly initialised and charged GENEA device was posted 

to the participant. Adherence to the intervention was maintained with regular weekly 

telephone calls and emails. No dietary constraints were imposed, and participants in both 

groups were free to consume food and fluid ad libitum.  

 

6.2.10. Analytical Methods 

 

Differential leukocyte counts were obtained from 2 ml of whole blood collected at 

baseline using an automated haematology system (SF-300, Sysmex Ltd., Milton Keynes, 

UK). Analysis of serum samples for high-density lipoprotein (HDL) cholesterol, total 

cholesterol, triglycerides (TAG), non-esterified fatty acids (NEFA), C-Reactive Protein 

(CRP) and plasma glucose was determined using an automated analyser (Randox RX 
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Daytona, Co. Antrim, UK), in accordance with manufacturer’s instructions using 

commercially available immunoassays (Randox Laboratories, Co. Antrim, UK). 

 

Commercially available enzyme-linked immunosorbent assays (ELISA) were used 

according to manufacturer’s instructions to measure serum adiponectin, leptin 

(Quantikine, R&D Systems Inc., Abingdon, UK), interleukin 6 (IL-6; Quantikine HS, 

R&D systems Inc., Abingdon, UK) and insulin (Mercodia AB, Uppsala, Sweden). All 

ELISA blood samples were performed in duplicate in a batch analyse after the conclusion 

of the study, and samples from each participant were included on the same plate. 

Absorption was determined using a microplate reader (SPECTROstar Nano, BMG 

LabTech, Ortenberg, Germany) at the wavelengths specified by the kit manufacturer. 

Intra and inter-assay coefficients of variation (CV) and sensitivity provided by the 

manufacturer for each ELISA/automated immunoassay are shown below (Table 6.2). 

 

Table 6.2: Reported sensitivity, intra and inter-assay precision for all analytical methods 

used 

Parameter Sensitivity 
Intra-assay 

precision (CV) 

Inter-assay 

precision (CV)a 

    

Automated     

CRP 0.3 mg·l-1 1.9 % 4.0 % 

Glucose 0.060 mg·l-1 2.9 % 4.4 % 

HDL 0.189 mmol·l-1 2.5 % 2.8 % 

NEFA 0.04 mmol·l-1 4.8 % 4.4 % 

TAG 0.134 mmol·l-1 2.5 % 2.4 % 

Total cholesterol 0.865 mmol·l-1 3.8 % 1.4 % 

    

Manual ELISAs    

Adiponectin  0.25 ng·ml-1 4.2 % 6.8 % 

hs IL-6 0.04 pg·ml-1 7.4 % 7.8 % 

Insulin 1 mU·l-1 1.9 % 3.1 % 

Leptin 7.8 pg·ml-1 3.9 % 4.4 % 

 

a Where only one ELISA plate was analysed (Adiponectin, hs IL-6 and leptin) values from 

the manufacturers data sheet were quoted for inter-assay CV. Insulin inter-assay CV was 

calculated from the standards from ten plates. 
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Low-density lipoprotein (LDL) cholesterol was calculated using the Friedewald equation 

(Friedewald. W.T et al., 1972); 

 

𝐿𝐷𝐿 = 𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 − 𝐻𝐷𝐿 − ( 
𝑇𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒𝑠 

2.2
) 

 

Incremental area under the curve (iAUC) was calculated for the plasma glucose and serum 

insulin responses during the OGTT using the trapezoid rule (Wolever, 2004).  

Homeostasis model assessment for insulin resistance (HOMA-IR; Turner et al., 1979) 

was calculated as:  

 

𝐻𝑂𝑀𝐴-𝐼𝑅 =  
𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (𝑚𝑚𝑜𝑙·𝑙−1) × 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 (𝑚𝑈·𝑙−1)

22.5
  

 

Homeostasis model assessment for β-cell function (HOMA-β; Matthews et al., 1985) was 

calculated as; 

𝐻𝑂𝑀𝐴-β = 
𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 (𝑚𝑈·𝑙−1) × 20

𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (𝑚𝑚𝑜𝑙·𝑙−1) − 3.5
 

 

The Insulin Sensitivity Index (ISIMatsuda: Matsuda & DeFronzo, 1999), which has been 

shown to strongly correlate with the gold standard hyperinsulinemic-euglycemic clamp, 

was calculated as; 

 

ISIMatsuda =
10,000

√
[𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (𝑚𝑔·𝑑𝑙−1

) × 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 (µ𝑈·𝑚𝑙−1
)] ×

[𝑚𝑒𝑎𝑛 𝑂𝐺𝑇𝑇 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑣𝑎𝑙𝑢𝑒(𝑚𝑔·𝑑𝑙−1
)  × 𝑚𝑒𝑎𝑛 𝑂𝐺𝑇𝑇 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 (µ𝑈·𝑚𝑙−1)]
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6.2.11. Statistical Analysis 

 

In order to simplify data analysis and facilitate the interpretation of a complex data set 

(Hopkins et al., 2009; Matthews et al., 1990), serial measurements of glucose and insulin 

responses to the OGTT at baseline and follow-up were converted into simple summary 

statistics (i.e. within-subject fasting and peak concentrations, time to peak, iAUC and 

estimates of insulin sensitivity and resistance; Wolever & Jenkins, 1986). Responses 

within and between trials were analysed by two-way (group [INT, CON] x day [baseline, 

follow-up]) and three-way (group [INT, CON] x day [baseline, follow-up x time] x OGTT 

time point [0, 15, 30, 45, 60, 75, 90, 105, 120]) mixed-model analysis of variance 

(ANOVA). ANOVA were performed irrespective of any minor deviations from a normal 

distribution (Maxwell, 2004), but with Greenhouse-Geisser corrections applied to intra-

individual contrasts where ɛ < 0.75 and the Huynh-Feldt corrections applied for less 

severe asphericity (Atkinson, 2002). Where significant interactions were observed, 

multiple t-tests were applied to determine the location of variance both between 

treatments at each time point and between time points within each treatment relative to 

baseline. Both methods were subjected to a Holm-Bonferroni stepwise adjustment 

(Atkinson, 2002). Data are presented in text as means and standard deviations (SDs), 

whereas figures display means with variance bars representing normalised confidence 

intervals (CIs). The CIs have been corrected to remove inter-individual variation (Masson 

& Loftus, 2003). Pearson product-moment correlation coefficients were used to 

determine correlations between variables. For CRP and IL-6, the mean and SD of the 

change (Δ) were calculated using all data points. When the Δ was over 3 SD away from 

the mean these data were excluded, as this would most likely have been due to an acute 

inflammatory response or undiagnosed urinary tract infection, common in this population. 

Statistical significance was set at a priori of α < 0.05. All analyses were performed using 

IBM® SPSS® Statistics 20 for Windows (IBM, Armonk, NY, USA). Standardised effect 

sizes (Cohens d) were also calculated for all variables, but only reported in the results for 

all significant effects and those approaching significance (P ≤ 0.10). Based upon the 

magnitude of correlation between trials, thresholds of > 0.2 (small), > 0.5 (moderate) and 

> 0.8 (large) have been suggested (Cohen, 1988). This provides an interpretation of the 

size of the effects in our outcome measures when using a parallel-group’s study design.  
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6.3. RESULTS 
 

In the INT group, eleven out of twelve participants completed all 24 training sessions, 

i.e., 100% compliance. One participant missed two non-consecutive sessions over the 

course of the 6 weeks (92% compliance). All participants have been retained in the final 

analysis.  

 

The mean subjective ratings of difficulty for the INT group over all exercise sessions over 

the 6 weeks ranged from 6 – 8 (1: easy, 10: hard). The mean exercise duration for the 

group over the 6 weeks was 44 ± 1 min and power output was 45 ± 19 W. Measured heart 

rate was 144 ± 12 b·min-1. On average, nine participants achieved the heart rate prescribed 

at baseline to elicit 60 – 65% of V̇O2 peak (difference from target 9 ± 6 b·min-1). Three 

participants were unable to achieve the heart rate prescribed at baseline (difference from 

target – 9 ± 4 b·min-1).  

 

No significant baseline differences were present for personal and injury characteristics 

between the two groups (Table 6.1; all p values > 0.35). Baseline Homeostasis Model 

Assessment of β cell function (HOMA-β) was significantly (P = 0.047) higher in the INT 

group compared to the CON group (Table 6.6).  No significant baseline differences were 

present for any of the other outcome measures (all p values > 0.11). Metabolic syndrome 

(defined in Section 2.4.4) was observed in 8 of the 20 participants (INT = 4; CON = 4) 

and 5 of the 20 participants (INT = 2; CON = 3) at baseline and follow-up, respectively.  

 

6.3.1. Physical Activity Outcomes 

 

Physical activity characteristics pre and post-intervention/control are summarised in 

Table 6.3. Significant day × group interaction effects were noted for PAEE measured by 

the AHR-IC (P = 0.049) and GENEActiv (P = 0.001). There was also a main effect of 

day across both groups for PAEE measured by the GENEActiv (P = 0.001). PAEE 

significantly (P < 0.05) increased at follow-up in the INT group from 349 ± 186 to 431 ± 
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205 kcal·day-1 (d = 0.46) (Figure 6.3) and 892 ± 69 to 993 ± 60 kcal·day-1 (d = 1.08); 

measured by the AHR-IC and GENEActiv, respectively. Consequently, there was a 

significant day × group interaction effect (P = 0.036; d = 0.52) for PAL (TEE/RMR), 

which significantly (P = 0.021) increased from 1.37 ± 0.12 to 1.43 ± 0.13 in the INT 

group, yet remained unchanged in the CON group 1.38 ± 0.12 to 1.38 ± 0.13. There was 

a main effect of day (P= 0.001) across both groups for max HR; this was primarily 

explained by an 18 (9 to 28) b·min-1 increase in the INT group, and a considerable effect 

size when comparing between groups (d = 1.92). There was a significant day × group 

interaction (P = 0.015; d = 0.54) for time spent performing moderate-intensity activities. 

Minutes spent performing moderate-intensity activity significantly (P = 0.015) increased 

in the INT group from 16 ± 16 to 25 ± 15 min·day-1, yet remained the same for the CON 

group; 21 ± 27 to 18 ± 23. Time spent performing vigorous-intensity activities also 

significantly (P = 0.045) increased by 5 (0 to 10) min·day-1 in the INT group, with a large 

effect size observed between groups (d = 2.20). Physical activity monitoring devices were 

worn for 6 ± 1 days, with a daily wear time percentage of 97 ± 4% across both groups at 

each time point. 

 

 

Figure 6.3: PAEE at baseline and follow-up measured by the AHR-IC for the INT (n = 

11) and CON (n = 7) group. Values are means ± CI. * denotes a day × group interaction 

(P = 0.049). # denotes values different pre-post within INT group (P = 0.023)
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Table 6.3: Physical activity outcomes at baseline and follow-up for both groups measured by GENEActiv and AHR-IC. Mean ± SD. Mean change scores 

(Δ) shown with 95% confidence intervals. One AHR device malfunction and < 4 days wear time at follow-up for the INT (n = 11) and CON group (n = 

7), respectively.  Three GENEActiv devices were not worn continuously in the INT group at baseline, as such (n = 9). † denotes a main effect of day (i.e. 

Baseline vs. Follow-up for both groups; P < 0.05). * denotes a day × group interaction (P < 0.05). # denotes values are different pre-post within INT 

group (P < 0.05) 

 

 

 

 

 INT CON 

Baseline Follow-up Δ (95% CI) Baseline Follow-up Δ (95% CI) 

GENEActiv      

PAEE (kcal·day-1) 892 ± 69 993 ± 60 101 (61 to 142) *†# 948 ± 90 956 ± 134 8 (-37 to 53) *† 

SVM (g·min-1) 70.9 ± 14.9 92.6 ± 13.0 21.7 (12.9 to 30.4) *†# 83.1 ± 19.3 84.6 ± 29.1 1.5 (-8.4 to 11.4) *† 

AHR-IC outputs     

Sedentary (min·day-1) 1223 ± 130 1192 ± 120 -31 (-77 to 16) 1219 ± 115 1199 ± 129 -21 (-53 to 12) 

Light (min·day-1) 201 ± 120 218 ± 106 17 (-26 to 61) 198 ± 100 224 ± 116 26 (-11 to 63) 

Moderate (min·day-1) 16 ± 16 25 ± 15 9 (2 to 15) *# 21 ± 27 18 ± 23 -3 (-9 to 3) * 

Vigorous (min·day-1) 0 ± 0 5 ± 7 5 (0 to 10) # 1 ± 3 2 ± 4 1 (-1 to 2) 

PAL  1.37 ± 0.12 1.43 ± 0.13 0.06 (0.01 to 0.10) *# 1.38 ± 0.12 1.38 ± 0.13 -0.01 (-0.03 to 0.02) * 

Max HR (b·min-1) 105 ± 6 123 ± 15 18 (9 to 28) *†# 112 ± 15 108 ± 12 -4 (-10 to 2) *† 
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6.3.2. Diet Composition 

 

Caloric intake and diet composition at baseline and follow-up are summarised in Table 

6.4. No significant changes were observed between groups or over time for total energy 

intake or macronutrient composition (P > 0.225). 

 

 

6.3.3. Body Composition and Physiological Measures 

 

Body composition and physiological characteristics pre and post intervention/control are 

summarised in Table 6.5. There was a trend for total body mass to be reduced at follow-

up across both groups (day effect; P = 0.088), with a change of - 0.9 (-2.1 to 0.3) kg and 

-0.7 (-2.2 to 1.0) kg, in the INT and CON group, respectively. LM measured in the legs 

was significantly reduced at follow-up in both groups; there was a main effect of day (P 

= 0.025). There were trends for day × group interaction effects for LM in the arms (P = 

0.063) and FM in the trunk (P = 0.063). However, effect sizes between groups were 

smaller than the cut off considered trivial (d < 0.2), d = 0.11 and -0.11 for LM in the arms 

and FM in the trunk, respectively. Blood pressure: both systolic and diastolic remained 

unchanged in both groups.  
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Table 6.4: Total energy intake and diet composition at baseline and follow-up for both groups. Mean ± SD. Mean change scores (Δ) 

shown with 95% confidence intervals 

 

 

 

 

 

 

 

 

 

 INT CON 

Baseline Follow-up Δ (95% CI) Baseline Follow-up Δ (95% CI) 

Energy intake 

(kcal·day-1) 
1695 ± 500 1666 ± 498 -28 (-258 to 201) 1658 ± 299 1508 ± 213 -151 (-509 to 208) 

Protein intake 

(kcal·day-1) 
299 ± 76 297 ± 103 -1 (-55 to 52) 334 ± 75 283 ± 123 -50 (-138 to 38) 

Carbohydrate intake 

(kcal·day-1) 
730 ± 248 727 ± 286 - 3 (-112 to 106) 737 ± 197 650 ± 76 -87 (-242 to 68) 

Fat intake (kcal·day-1) 629 ± 227 602 ± 210 -27 (-163 to 109) 572 ± 109 541 ± 126 -30 (-183 to 122) 

Alcohol intake 

(kcal·day-1) 
39 ± 48 32 ± 37 -7 (-36 to 22) 14 ± 26 32 ± 49 18 (-14 to 50) 
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Table 6.5: Body composition and physiological characteristics measured at baseline and follow-up for the INT and CON groups. Mean ± 

SD. Mean change scores (Δ) shown with 95% confidence intervals. † denotes a main effect of day (i.e. Baseline vs. Follow-up for both 

groups; P = 0.025) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 INT CON 

Baseline Follow-up Δ (95% CI) Baseline Follow-up Δ (95% CI) 

Body Mass (kg) 76.9 ± 13.7 76.0 ± 14.3 - 0.9 (-2.1 to 0.3) 76.8 ± 11.3 76.1 ± 10.6 - 0.7 (-2.2 to 1.0) 

Fat Mass (kg; DEXA)       

Total 28.2 ± 10.4 27.6 ± 10.4 - 0.6 (-1.5 to 0.2) 26.0 ± 6.8 26.0 ± 7.0 0.0 (-0.5 to 0.5) 

Arms 1.4 ± 0.5 1.4 ± 0.5 0.0 (-0.1 to 0.1) 1.4 ± 0.5 1.3 ± 0.5 - 0.1 (-0.2 to 0.1) 

Legs 4.9 ± 2.5 4.7 ± 2.5 - 0.2 (-0.3 to 0.0) 4.3 ± 1.5 4.3 ± 1.6 0.0 (-0.2 to 0.1) 

Trunk 14.9 ± 5.1 14.4 ± 5.0 - 0.5 (-0.9 to 0.0) 13.8 ± 3.8 13.9 ± 3.9 0.1 (-0.2 to 0.4) 

Lean Mass (kg; DEXA)       

Total 47.8 ± 7.9 47.5 ± 7.6 - 0.3 (-0.9 to 0.4) 49.8 ± 11.3 49.1 ± 11.3 - 0.7 (-1.8 to 0.4) 

Arms 3.6 ± 0.8 3.7 ± 0.9 0.1 (-0.0 to 1.7) 3.8 ± 1.4 3.8 ± 1.4 0.0 (-0.2 to 0.1) 

Legs 5.8 ± 1.3 5.6 ± 1.2 - 0.2 (-0.3 to 0.0)† 6.1 ± 1.6 5.9 ± 1.6 - 0.2 (-0.4 to 0.1)† 

Trunk 25.1 ± 4.1 24.9 ± 3.8 - 0.2 (-0.6 to 0.3) 25.9 ± 5.6 25.6 ± 5.4 - 0.3 (-0.9 to 0.4) 

Systolic BP (mmHg) 130 ± 22 125 ± 20 -5 (-11 to 2) 128 ± 15 126 ± 12 -3 (-7 to 2) 

Diastolic BP (mmHg) 79 ± 14 76 ± 11 -3 (-9 to 3) 81 ± 13 77 ± 10 -4 (-9 to 2) 
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6.3.4. Resting Metabolic Rate & Respiratory Exchange Ratio 

 

There was a trend for a day × group interaction (P = 0.08) in RMR and a trivial effect size 

between groups (d = 0.37). Whilst non-significant, there was an increase of 3% (1450 ± 

199 to 1499 ± 186 kcal·day-1) and a decrease of 2% (1483 ± 224 to 1453 ± 170 kcal·day-

1) in resting metabolic rate for the INT and CON group, respectively. There was a 

significant day × group interaction (P = 0.03) as shown in Figure 6.4 for fasting RER, 

with values decreasing by 1% (0.81 ± 0.04 to 0.80 ± 0.03) and increasing by 3% (0.82 ± 

0.04 to 0.85 ± 0.05) for the INT and CON group, respectively. This was considered a 

large effect (d = -1.04).  

 

 

 

 

 

 

Figure 6.4: Respiratory Exchange Ratio at baseline and follow-up for the INT group and 

CON group. Values are means ± CI. * denotes a day × group interaction (P = 0.03). Dotted 

lines represent the expected RER range based on carbohydrate (1.00) and lipid oxidation 

(0.70) only 
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6.3.5. Functional Capacity 

 

There was a main effect of day (P = 0.001) and a day × group interaction (P < 0.001) for 

peak oxygen uptake (V̇O2 peak), as shown by Figure 6.5. V̇O2 peak) significantly (P < 

0.001) increased at follow-up in the INT group from 18.0 ± 5.0 to 21.2 ± 5.3 ml·kg-1·min-

1 (19%), whereas it remained unchanged in the CON group from 18.8 ± 6.2 to 18.3 ± 6.3 

ml·kg-1·min-1  (-3%). These responses were supported by maximal workload data. Again, 

there was a main effect of day (P < 0.001) and a day × group interaction (P < 0.001) 

(Figure 6.6). Maximal workload increased significantly at follow-up in the INT group 

from 77 ± 29 to 95 ± 32 W (25%) and remained similar in the CON group 75 ± 39 to 73 

± 36 W (-2%). There were moderate effect sizes between groups of d = 0.66 and 0.58 for 

V̇O2 peak and maximal workload, respectively.  
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Figure 6.5: Peak oxygen uptake at baseline and follow-up for the INT group and the 

CON group. Values are means ± CI. † denotes a main effect of day (i.e. Baseline vs. 

Follow-up for both groups; P = 0.001). * denotes a day × group interaction (P < 0.001). 

# denotes values are different pre-post within INT group (P < 0.001) 

 

 

Figure 6.6: Maximal workload at baseline and follow-up for the INT group and the CON 

group. Values are mean ± CI. † denotes a main effect of day (i.e. Baseline vs. Follow-up 

for both groups; P < 0.001). * denotes a day × group interaction (P < 0.001). # denotes 

values are different pre-post within INT group (P < 0.001) 
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6.3.6. Insulin and Glucose Responses to OGTT 

 

Serum Insulin  

The serum insulinaemic response (iAUC) during the OGTT was unchanged in both 

groups (Figure 6.8). There was a significant day × group interaction (P = 0.047) as shown 

by Figure 6.9 for serum fasting insulin and a moderate effect size (d = -0.54) between 

groups. Serum fasting insulin was significantly (P = 0.04) reduced (-14%) at follow-up 

in the INT group from 52.3 ± 28.3 to 41.7 ± 19.3 pmol·l-1, but remained unchanged in the 

CON group, 35.7 ± 15.7 to 38.3 ± 17.8 pmol·l-1. There was no change pre-post in serum 

insulin peak concentration over the course of the OGTT. Furthermore, the individual peak 

serum insulin time was unaffected in both groups.  

 

Plasma Glucose 

Plasma glucose responses at each 15 minute time point during the 2 hr OGTT were 

unaffected in both groups shown by Figure 6.10. The plasma glycaemic response (iAUC) 

was unchanged (INT; 294 ± 281 to 316 ± 269 mmol·120 min·l-1, CON; 293 ± 252 to 268 

± 228 mmol·120 min·l-1). There was no change pre-post in plasma glucose fasting and 

peak concentrations. Moreover, the individual peak plasma glucose time was unaffected 

in both groups.  

 

Indices of Insulin Sensitivity/Resistance  

There was a tendency for a difference in the change in insulin resistance (predicted by the 

Homeostasis Model of Assessment of Insulin Resistance; HOMA-IR) pre- post between 

the two groups (P = 0.079; day × group interaction). There was also a trend for a day × 

group interaction effect (P = 0.052) for Homeostasis Model Assessment of β cell function 

(HOMA-β). HOMA-β significantly decreased at follow-up in the INT group, from 89 ± 

48 to 65 ± 26% (P = 0.024). There was a trivial effect size for HOMA-IR; d = -0.49, yet 

a moderate effect size for HOMA-β (d = -0.58). Insulin sensitivity, predicted using the 

ISIMatsuda, remained unchanged in both groups (Table 6.6).  
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Figure 6.7: Serum insulin concentrations in response to the OGTT at baseline and follow-

up (Panel a: INT group, n =11; Panel b: CON group, n = 8). Values are means ± CI  
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Figure 6.8: Serum insulinaemic responses during 2 hr OGTT at baseline and follow-up 

for the INT and CON group. Please note; iAUC was calculated for one participant in the 

INT group using finger prick capillary samples, taken pre-post at the following time 

points 0, 30, 60, 90 and 120, due to problems with cannulation 

 

 

 

Figure 6.9: Serum fasting insulin concentrations at baseline and follow-up for the INT 

group and CON group. Values are means ± CI. * denotes a day × group interaction (P = 

0.047). # denotes values are different pre-post with INT group (P = 0.040) 
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Figure 6.10: Plasma glucose concentrations in response to the OGTT at baseline and 

follow-up (Panel a: INT group, n =11; Panel b: CON group, n = 8). Values are means ± 

CI 
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Table 6.6: HOMA-IR, HOMA-β and ISIMatsuda values at baseline and follow-up. Mean ± SD. Mean change scores (Δ) shown with 95% 

confidence intervals. # denotes values are different pre-post within INT group (P = 0.024). Please note: Matsuda Index was calculated for 

one participant in the INT group using finger prick capillary samples, taken pre-post at the following time points 0, 30, 60, 90 and 120, due 

to problems with cannulation 

 

 

 

 INT CON 

Baseline Follow-up Δ (95% CI) Baseline Follow-up Δ (95% CI) 

HOMA-IR 1.84 ± 1.10 1.46 ± 0.78 -0.37 (-0.81 to 0.06) 1.30 ± 0.62 1.42 ± 0.74 0.12 (-0.16 to 0.39) 

HOMA-β (%) 89 ± 48 65 ± 26 -24 (-45 to -4) # 54 ± 24 56 ± 22 2 (-13 to 16) 

ISIMatsuda 5.0 ± 2.6 5.6 ± 2.4 0.6 (-0.2 to 1.4) 6.9 ± 3.3 6.1 ± 2.4 -0.7 (-2.8 to 1.3) 
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6.3.7. Fasted Blood Measurements 

 

Adipokines 

Serum adiponectin concentrations significantly decreased at follow-up in both groups; 

there was a main effect of day (P = 0.014) as shown by Figure 6.11. This was primarily 

explained by a significant reduction in the INT group (8.31 ± 3.94 to 7.14 ± 4.32 ug·ml-

1, P = 0.017). Although non-significant, leptin was reduced (-12%) at follow-up in the 

INT group from 18,177 ± 20,619 to 14,035 ± 13,994 pg·ml-1 and remained unchanged 

in the CON group 13,895 ± 14,764 to 13,986 ± 15,828 pg·ml-1.  

 

 

 

 

Figure 6.11: Serum adiponectin concentrations at baseline and follow-up for the INT 

and CON groups. Values are means ± CI. † denotes a main effect of day (i.e. Baseline 

vs. Follow-up for both groups; P = 0.014). # denotes values are different pre-post 

within INT group (P = 0.017)
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Lipid Profiles  

Serum cholesterol, HDL-C and LDL-C were unaffected in both groups (Table 6.7). 

There was a trend for a day × group interaction effect (P = 0.060) for serum TAG 

concentrations. There were trivial (d = 0.40) and large (d = -1.02) effect sizes for serum 

NEFA and TAG, respectively when comparing between groups. 

 

 

Inflammation 

Three participants (INT; n = 1, CON; n = 2) were removed from the inflammatory 

marker analysis as Δ >3 S.D, potentially due to the presence of underlying urinary tract 

infection or acute infection. The group mean difference from pre to post intervention 

for IL-6 approached significance (P = 0.104; day × group interaction), with a reduction 

in the INT group (0.85 ± 0.64 to 0.62 ± 0.31 pg·ml-1) and increase in the CON group 

(1.07 ± 0.88 to 1.34 ± 1.11 pg·ml-1). There was a moderate effect size (d = -0.67). 

Furthermore, when looking at the participants in the INT group with serum IL-6 

concentrations ≥ 0.8 pg·ml-1 (n = 5) there is a 40% decrease at follow-up. The 

differences in these individuals compared to the CON group was considered a large 

effect size (d = -0.97). The group means are unchanged for CRP (INT; 3.94 ± 4.11 to 

3.07 ± 4.44 mg·l-1, CON; 5.33 ± 4.67 to 5.39 ± 5.74 mg·l-1). 
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Table 6.7: Lipid profiles measured at baseline and follow-up for the INT and CON groups. Mean ± SD. Mean change scores (Δ) shown 

with 95% confidence intervals 

 INT CON Interaction 

(day × group) 

P value 

Cohen d 
Baseline Follow-up Δ (95% CI) Baseline Follow-up Δ (95% CI) 

TC  

(mmol·l-1) 
5.09 ± 1.14 4.95 ± 1.39 - 0.14 (-0.59 to 0.32) 5.14 ± 0.89 5.18 ± 1.13 0.04 (-0.46 to 0.54) 0.57 -0.17 

HDL-C 

(mmol·l-1) 
1.12 ± 0.29 1.14 ± 0.32 0.02 (-0.08 to 0.12) 1.03 ± 0.19 1.03 ± 0.27 0.00 (-0.09 to 0.09) 0.79 0.07 

LDL-C 

(mmol·l-1) 
3.39 ± 0.95 3.26 ± 1.12 -0.13 (- 0.50 to 0.24) 3.52 ± 0.77 3.35 ± 0.76 -0.17 (-0.55 to 0.21) 0.86 0.05 

TAG  

(mmol·l-1) 
1.27 ± 0.50 1.22 ± 0.58 -0.05 (-0.25 to 0.14) 1.29 ± 0.52 1.76 ± 1.10 0.47 (-0.23 to 1.18) 0.06 -1.02 

NEFA  

(mmol·l-1) 
0.56 ± 0.29 0.91 ± 0.55 0.35 (-0.10 to 0.80) 0.74 ± 0.58 0.69 ± 0.62 -0.06 (-0.87 to 0.75) 0.29 0.40 
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6.3.8. Health and Wellbeing Outcomes 

 

Of the subjective constructs investigated, ratings of fatigue symptoms, general health and 

self-efficacy all displayed a significant day × group interaction (P < 0.05) (Figure 6.12). 

Total scores on the fatigue severity scale (FSS) significantly decreased at follow-up in 

the INT group from 35 ± 11 to 27 ± 10 (P < 0.01), yet remained unchanged in the CON 

group (33 ± 8 to 35 ± 11). Participants’ perceptions of their general health significantly 

increased at follow-up in the INT group from 51 ± 21 to 65 ± 15 (P < 0.05) according to 

items on the SF-36. There was no change between time points in the CON group (54 ± 

13 to 52 ± 18). Self-efficacy significantly increased at follow-up in the INT group from 

31 ± 5 to 36 ± 2 (P < 0.01) but remained the same in the CON group (33 ± 5.0 to 29 ± 

8.5). There were no significant differences in symptoms of shoulder pain between or 

within the two groups (INT; 10 ± 11 to 13 ± 15, CON; 19 ± 21 to 14 ± 15). 
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Figure 6.12: Fatigue Severity Scale (FSS) (a), SF-36 General Health (b) and Exercise 

Self-Efficacy Scale (ESES) (c) scores at baseline and follow-up for the INT (Solid black 

line and open diamond) and CON (Dashed line and black triangle) group. Values are 

means ± CI. * denotes a significant day × group interaction (P < 0.05). # denotes values 

are different pre-post within INT group (P < 0.05) 
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6.4. DISCUSSION  
 

This current study assessed the impact of a moderate-intensity (60 – 65% V̇O2 peak) 6-

week exercise intervention on markers of metabolic and cardiovascular health, functional 

capacity, body composition and wellbeing in individuals with chronic paraplegia. With 

regard to our primary hypothesis, these results demonstrate that 6 weeks of arm crank 

exercise improved fasting measures of insulin sensitivity (HOMA-β and HOMA-IR) and 

serum insulin concentrations. Functional capacity, quantified by peak oxygen uptake and 

workload, increased in the INT group yet remained unchanged in the CON group. There 

was a tendency for improved body composition; evident by increased LM in the arms and 

reduced FM in the trunk in the INT group. With respect to systemic inflammation, there 

was a moderate effect size (d = -0.67) for reduced IL-6 in the INT group. There were no 

significant differences in the responses pre-post between groups for lipid profiles, despite 

a trend for reduced and elevated serum TAG in the INT and CON groups, respectively. 

Importantly as exercise sessions were not supervised in the laboratory, PA behaviour was 

significantly different between groups, confirming a high level of compliance in the INT 

group. Furthermore, we noticed positive changes for health and wellbeing outcomes, with 

significant differences in symptoms of fatigue, perceptions of general health and self-

efficacy in the INT compared to the CON group. With respect to the CON group, no 

significant changes were observed in any of the tested parameters.  

 

6.4.1. Metabolic and Cardiovascular Health 

 

Insulin Resistance/ Sensitivity 

These results demonstrate that fasting plasma glucose levels are maintained with reduced 

circulating insulin concentrations with 6 weeks of moderate-intensity arm crank exercise. 

Also, estimation of β-cell function by HOMA-β suggests that there is a reduced pancreatic 

β-cell secretion of insulin in the INT group. However, assessing insulin secretion directly 

from systemic concentrations of insulin is a challenge, due to its complex interplay with 

insulin resistance and hepatic insulin clearance (Cobelli et al., 2007). Manns et al., (2005) 

suggested that PA was moderately associated with HOMA-IR (r = -0.429) and fasting 

insulin (r = -0.397), although these relationships were not-significant. Other cross-

sectional research found no associations between LTPA and HOMA-IR or fasting insulin 
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(Buchholz et al., 2009), or between time spent performing PA (min/week) and fasting 

insulin (Jones et al., 2004). In a recent 16-week hand cycle training study, Bakkum et al., 

(2015) observed similar improvements (mean Δ ± standard error) in HOMA-IR (- 0.5 ± 

0.2 vs - 0.4 ± 0.2) and fasting insulin  (-14.3 ± 4.0 vs. – 10.7 ± 5.0 pmol·L-1) in comparison 

to the INT group in this present study. Whilst we only observed a trend for a day × group 

interaction effect between the two groups (P = 0.079) in HOMA-IR, that we can 

demonstrate a similar magnitude of change to previous research despite a considerably 

shorter protocol duration (6 weeks vs 16 weeks), is encouraging.  

 

There is a distinct lack of research looking at the effect of upper body exercise on the 

response to a standardised glucose load in individuals with SCI. These studies have 

primarily been limited to FES of the lower extremities, with some finding positive effects 

on insulin sensitivity (Mohr et al., 2001; Jeon et al., 2002), whereas another study did not 

(Ryan et al., 2013). Although our differences were not statistically-significant, insulin 

sensitivity (ISIMatsuda) assessed over 2- hours during the OGTT, improved in the INT 

group (16%) and remained the same in the CON group (-3%) (d = 0.44). No changes 

were observed for plasma glycaemic or serum insulinaemic responses. Eight weeks of 

high-intensity (70 – 80% HRR) and low-intensity (40 – 50% HRR) arm crank training 

showed a reduction (-33%) and a non-significant improvement (56%), respectively, in 

insulin sensitivity assessed using the HOMA-CIGMA test (de Groot et al., 2003). 

Different responses with high and low-intensity exercise in the de Groot and colleagues 

(2003) study may be explained by the groups not being matched (differences in age and 

sex at baseline); and the small sample size (n = 3 in each group). In contrast to this present 

study, participants had acute instead of chronic SCI and a different technique was used to 

assess insulin sensitivity.  

 

Potentially, the reason why we did not see significant differences in plasma glycaemic or 

serum insulinaemic responses, might be due to the fact that between-test reliability of the 

response to an OGTT can be poor (CV; 8 – 15%) for repeated tests (Libman et al., 2008; 

Jimenez-Navarro et al., 2010). We observed considerable variability in insulin sensitivity 

assessed during the OGTT in the CON group pre-post (CV; 35%, 26% and 21% for 

glucose iAUC, insulin iAUC and ISIMatsuda, respectively). This variability may have 

impacted on our ability to detect significant differences between the two groups.  It has 
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been suggested that HOMA-IR (fasting) compared to the ISIMatsuda (postprandial), 

represents a different balance of sensitivity (hepatic vs. peripheral) (Matsuda & 

DeFronzo, 1999; Radziuk, 2014). The trend for a reduction in HOMA-IR and reduced 

fasting serum insulin in this current study, when viewed in light with the lack of change 

in ISIMatsuda, suggests 6 weeks of moderate-intensity arm crank exercise improved hepatic 

(but not peripheral) insulin sensitivity. 

 

Metabolic Regulation 

A significant interaction effect was observed for fasting RER, with a large effect size (d 

= -1.04) between groups for reduced and increased values pre-post in the INT and CON 

group, respectively. Lower RER represents a greater reliance on fat oxidation in the fasted 

state. However, limitations have been proposed with using fasting RER to make 

assumptions regarding substrate oxidation; it can be sensitive to differences in energy 

balance and diet macronutrient composition in the days preceding the measurement 

(McNeill et al., 1988; Schutz, 1993). Yet these changes in RER are supported by the trend 

(P = 0.118) for increased serum NEFA concentrations (Δ 0.35 ± 0.71 mmol·L-1) in the 

INT group. Taken together these data could suggest increased mobilisation and 

preferential oxidation of fatty acids. Increased reliance on fat oxidation in the fasted state 

has been associated with improved insulin sensitivity (Goodpaster et al., 2003; Kelley, 

2005), metabolic flexibility (Galgani et al., 2008) and increase fat loss with exercise 

(Barwell et al., 2009). Nevertheless, whole body RER and serum NEFA concentrations 

do not provide a direct measure of skeletal muscle metabolism.  

 

Cross-sectional evidence has suggested TAG concentrations are reduced in active 

compared to inactive individuals with SCI (Nooijen et al., 2012; Matos-Souza et al., 

2013), whereas other studies have found no association (Manns et al., 2005; Hetz et al., 

2009a; Buchholz et al., 2009; Flank et al., 2014). Arm crank exercise at 70 – 80% HRR 

for 8 weeks - a similar intensity and duration to this present study, has shown a trend for 

(P ≤ 0.10; Hooker & Wells, 1989) and significant (de Groot et al., 2003) decreases in 

serum TAG. However, other research has revealed no change in TAG in response to 12 

and 16 weeks of exercise training (El-Sayed & Younesian, 2005; Bakkum et al., 2015). 

Whilst we also noticed no significant differences pre-post in the INT group with regards 
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to serum TAG, there was a trend for an interaction effect (P = 0.060) and a large effect 

size (d = -1.02) when compared to changes in the CON group. This could point to the 

maintenance of TAG turnover. Improvements in mitochondrial fatty acid oxidation and 

altered lipid content in skeletal muscle has been observed with exercise training (Holloszy 

& Coyle, 1984; Martin, 1996; Bruce et al., 2006). Increased mobilisation of serum NEFA 

and differences in responses between groups in serum TAG concentrations could suggest 

the maintenance/increase tissue TAG turnover, which has been implicated with 

improvements in insulin resistance (Moro et al., 2008; Stinkens et al., 2015). 

 

Blood Lipids 

Dyslipidaemia was common in our participants, 50% had total cholesterol values ≥ 5 

mmol·L-1 and 65% had elevated LDL-C (≥ 3 mmol·L-1) and depressed HDL-C (≤ 1.03 

mmol·L-1 for males and ≤ 1.29 mmol·L-1 for females). Despite this no significant 

differences were observed for total cholesterol, HDL-C or LDL-C. In support of our 

findings, a systematic review by Carlson and colleagues (2009) concluded there was 

insufficient evidence to suggest that exercise alone improves dyslipidaemia in people 

with SCI. In able-bodied individuals, greater improvements in lipid profiles have been 

observed following high-intensity exercise (O'Donovan et al., 2005) or with higher 

amounts of weekly exercise (Kraus et al., 2002). The variation in exercise intensities and 

time/duration of interventions reported previously in persons with SCI (Table 2.7), makes 

it difficult to tease out the effect of upper body exercise on lipid profiles. Even a short 

intervention (2 weeks) consisting of a high fibre, low fat diet plus 45 – 60 minutes of 

daily exercise (70 – 85% V̇O2 max) has shown significant (20 – 30%) reductions in total 

cholesterol and LDL-C in able-bodied participants (Izadpanah et al., 2011). Therefore, it 

remains to be seen whether the combination of exercise and dietary restrictions are the 

most effective way of improving lipid profiles in persons with SCI. 
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Markers of Inflammation 

Measured concentrations of CRP for our participants (mean ± SD; 4.43 ± 4.22 mg·L-1) 

were consistent with that typical of untrained chronic SCI (Wang et al., 2007), with 40% 

of the participants showing an increased risk of CVD (CRP > 3 mg·L-1). However, IL-6 

concentrations were somewhat lower than those commonly reported in persons with 

chronic SCI (Manns et al., 2005; Bakkum et al., 2015). A recent systematic review 

Neefkes-Zonneveld et al., (2015), evaluated the effect of long-term PA on markers of 

systemic inflammation in persons with SCI. Following the assessment of titles and 

abstracts of 1825 papers, only 11 were included in the review after the authors read the 

full text. Of these papers 5 were cross sectional with subjective measurement of PAEE 

and there were no RCT’s. The authors noted that these included studies had a high risk of 

bias and ‘very low’ levels of evidence; this reflects the dearth of quality research looking 

at the impact of exercise on markers of inflammation in persons with SCI. There were no 

significant differences in serum CRP measured in the present study. Adipose tissue is a 

source of inflammatory cytokines (Fain, 2010; Thompson et al., 2012), which trigger the 

acute phase response, whereby proteins, such as CRP, are released from the liver 

(Moshage, 1997). Weight loss is therefore associated with a decline in CRP (Selvin et al., 

2007). Considering we observed only modest reductions in FM, with a trend at the trunk, 

it is perhaps not surprising there are no changes in serum CRP. 

 

The interaction effect for IL-6 was approaching significance (P = 0.104), with a tendency 

for reduced and increased concentrations in the INT and CON group, respectively. There 

was a moderate effect size (d = -0.67), which became large (d = -0.97) after comparing 

the participants with serum IL-6 concentrations ≥ 0.8 pg·ml-1 (n = 5) in the INT group to 

the CON group. This finding is supported by the significant (P < 0.05) negative 

association (Rs = -0.61) between baseline IL-6 concentrations and Δ in IL-6 over the 

course of the 6 weeks in the INT group. Therefore, the largest reductions in IL-6 were 

observed in those with higher serum concentrations at baseline. Rosety-Rodriguez et al., 

(2014) found a significant reduction in IL-6 concentrations with 12 weeks of ACE twice 

a week. However, their participants had substantially elevated serum IL-6 concentrations 

compared to our study cohort. They also observed a significant decrease in waist 

circumference (Δ 3.7 cm), which was used as a surrogate measure of central obesity. 
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These factors may explain the greater magnitude of change in serum IL-6 compared to 

this present study.  

 

Adipokines 

There was a day effect for adiponectin, with significantly (P = 0.014) reduced serum 

concentrations at follow-up across both groups. This was mainly driven by a significant 

(P = 0.017) decrease in the INT group (Δ mean ± SD, -1.17 ± 1.44 ng·ml-1). This is in 

contrast to findings by Rosety-Rodriguez et al., (2014) who observed a non-significant 

increase in the exercise compared to control group. Adiponectin is said to be both ‘insulin 

sensitising’, inhibiting hepatic glucose production and increasing substrate metabolism 

(Yamauchi et al., 2002; Kadowaki et al., 2006), and is anti-inflammatory (Ouchi & 

Walsh, 2007). However, as levels have decreased with exercise this seems counter-

intuitive. A systematic review, looking at the utility of exercise as a potential modifier of 

adiponectin levels in able-bodied persons, found the evidence from RCTs to be 

inconclusive (Simpson & Singh, 2008). Other factors are known to modulate insulin 

sensitivity besides adiponectin. As we have seen favourable changes in fasting indices of 

insulin resistance and there is conflicting evidence in able-bodied cohorts, more evidence 

is necessary to understand the role of exercise per se on adiponectin and the interplay 

with insulin sensitivity.  

 

Unlike Rosety-Rodriguez et al., (2014) there were no significant effects of moderate-

intensity ACE exercise on serum leptin concentrations. These findings are of interest 

considering leptin and insulin compete for the same signalling molecules (Baranova, 

2008). Consequently decreased leptin has been shown to improve insulin efficiency 

(Benomar et al., 2005). As it is secreted from adipose tissue, circulating serum leptin 

concentrations directly correlate with FM (Maffei et al., 1995; Das, 2001). Across our 

sample of individuals with chronic paraplegia, serum leptin concentration are 

significantly associated with whole-body FM measured via DEXA at baseline (r = 0.909, 

P < 0.001). 
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Functional Capacity 

Based on physical capacity norms for men with paraplegia (Janssen et al., 2002), only 

20% of our cohort had average V̇O2 peak values at baseline (22.71 – 29.20 ml·kg-1·min-

1), the rest were either considered fair (45%; 16.51 – 22.70 ml·kg-1·min-1) or poor (35%; 

< 16.50 ml·kg-1·min-1). No significant changes in V̇O2 peak or maximal workload were 

observed for the CON group. V̇O2 peak and maximal workload were significantly 

elevated in the INT group, by 19 and 25% respectively. This is similar to the group means 

of 18 and 23% found when summarising the effects of 4 – 32 weeks of upper body 

exercise on person with chronic paraplegia (Section 2.10.2.1). We noticed that PAL was 

positively associated with cardiorespiratory fitness at baseline (r = 0.651, P = 0.002), a 

finding which has also been observed previously (Muraki et al., 2000; de Groot et al., 

2010; Nooijen et al., 2012). No relationship was observed between changes in PAL and 

changes in cardiorespiratory fitness over the course of the 6 weeks in the INT group. 

Nevertheless, we strongly believe cardiorespiratory fitness is an outcome of habitual PA. 

 

6.4.2. Body Composition 
 

Both groups reduced body mass over the 6 weeks, -0.92 ±1.86 kg and -0.61 ± 1.87 kg for 

the INT and CON group, respectively. In overweight/obese individuals with chronic SCI, 

Chen et al., (2006), showed significant weight loss (-3.5 ± 3.1 kg) with a 12-week weight 

management program (covering nutrition, exercise and behaviour modification). Previous 

exercise intervention studies have found no considerable changes in body mass (Midha 

et al., 1999; Duran et al., 2001). This is perhaps not surprising without controlling energy 

intake to create a significant energy deficit. It is also possible that changes in body mass 

with exercise alone are diminished as a result of compensatory behaviours, such as 

increased energy intake (King et al., 2008; Melanson et al., 2013; Blundell et al., 2015). 

Although not our primary outcome measure, this study is the first to assess the impact of 

exercise on body composition in individuals with SCI whilst monitoring energy intake. 

There were no significant changes (P > 0.225) in total energy intake or macronutrient 

composition between groups. However, looking solely at body mass does not provide an 

indication of changes in body composition. 

There was a day effect for decreased LM in the legs, with mean change values of -0.2 kg 

for both groups. Yet there was a tendency for day × group interaction effects for increased 
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LM in the arms (P = 0.051) and reduced FM in the trunk (P = 0.063) after 6 weeks of 

moderate-intensity exercise. However, the very modest increase in LM in the arms (0.1 

kg) is only half of what was lost in the legs. There is potentially a loss of sensitivity with 

DEXA measurements when looking at smaller body compartments. A 3-day high 

carbohydrate diet, leading to increased glycogen storage alongside water in skeletal 

muscle, resulted in increased total and appendicular LM measured by DEXA (Rouillier 

et al., 2015). Whilst it is possible that diet can influence DEXA measurements, there were 

no significant differences in carbohydrate intake between groups pre-post, and both 

groups lost the same amount of LM in the legs. This is disconcerting, as it would appear 

even participants with chronic paraplegia (TSI; 16.9 ± 10.3 years) continue to show LM 

atrophy in paralysed muscles over 6 weeks. Considering the importance of the quantity 

and quality of muscle mass with regards to insulin sensitivity (Section 2.4.3), training 

adaptations in response to upper body exercise may always be in the face of negative 

changes in paralysed muscle. Few studies have analysed changes in body composition 

following upper body exercise in different body compartments using DEXA. Although 

not significant, Bakkum et al., (2015) observed an identical reduction in FM at the trunk 

(-0.5 kg) compared to this present study. The tendency for reduced FM in the trunk is of 

importance when you consider the adverse metabolic profile associated with increased 

central obesity in individuals with SCI (Gorgey et al., 2011).  

 

6.4.3. Energy Expenditure  

 

Mean RMR across both groups was very similar to that reported in a sample of 

participants with chronic (TSI; 11.4 ± 9.5 years) paraplegia (1464 ± 199 vs 1472 ± 228 

kcal·day-1) (Buchholz et al., 2003a). To our knowledge no studies have previously looked 

at the effect of moderate-intensity exercise on RMR in this population. As RMR 

represents the largest component of TEE, any increase in response to exercise are 

potentially of great importance, particularly in persons with SCI who have a reduced 

RMR as a result of LM atrophy. We observed a trend (P = 0.08) for an increase (3%) in 

RMR in the INT group and decrease (-2%) in the CON group. Considering both groups 

lost total LM, the increase in the INT group maybe a response to biological adaptations 

to exercise training (Speakman & Selman, 2003). 
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PAL and PAEE measured at baseline by the AHR were lower than values reported 

previously for individuals with SCI using the Flex-HR method (1.37 ± 0.11 vs. 1.46 ± 

0.25; Buchholz et al., 2003b) or DLW (347 ± 166 vs. 679 ± 280 kcal·day-1; Tanhoffer et 

al., 2012), respectively. Whilst these differences could be attributed to bias inherent to 

the measurement technique, and variance in study populations (our cohort were older and 

had a greater TSI), it suggests our participants were by definition more inactive. In the 

INT group, where complete sets of pre-post AHR-IC and GENEActiv data are available 

(n = 8), the measured increase in PAEE over the 7-day monitoring period was 65 ± 104 

and 102 ± 56 kcal·day-1 for the AHR and GENEActiv, respectively. This is compared to 

the estimated average daily increase in PAEE of 109 ± 41 kcal·day-1 as a result of the 

intervention, predicted during the test of the work rate to elicit 60% V̇O2 peak in the 

laboratory at baseline. As previous work suggested, there was more random error when 

predicting PAEE with the GENEActiv device, compared to the AHR-IC (Chapters 4 & 

5); the AHR-IC was used as the most appropriate measure of PAEE in this study. As 

demonstrated by the large SD, there was noticeable variation in responses in the INT 

group measured by the AHR-IC, range -85 to 219 kcal·day-1, with two participants 

showing a decrease in PAEE. It is conceivable that the prescribed ACE (60 – 65% V̇O2 

peak) replaced non-prescribed (existing) PA of a similar intensity (wheelchair 

propulsion), explaining some of the variation in measured PAEE responses. This concept 

has been referred to as ‘substitution’ (Thompson et al., 2014), and may explain the erosion 

of increased PAEE observed in certain participants. However, during the follow-up 

monitoring period participants in the INT group reduced time spent performing sedentary 

behaviours (-31 min·day-1). In contrast, over a 7-day period the 4 x 45 minute training 

sessions would reduce sedentary time by 26 min·day-1. Whilst there is a degree of inter-

individual variability, this observation suggests substitution of physical activity 

behaviours had a minimal impact on the overall INT group’s response, as there was a 

greater mean change than predicted. The ability to accurately quantify such concepts is a 

clear advantage of using validated wearable devices to measures free-living PAEE in this 

study. 

 

Both PA monitoring devices were well tolerated, being worn for 6 ± 1 days, with a daily 

wear time percentage of 97 ± 4% across both groups at each time point. This is a longer 

duration than that used previously, to objectively quantify free-living PAEE in individuals 
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with SCI  (2 days; Nooijen et al., 2012) and the most accurate self-report method (PARA-

SCI, 3 day PA recall questionnaire; Ginis et al., 2005). The GENEActiv was primarily 

used to monitor compliance, utilising its 3 week battery life with a sampling frequency of 

30 Hz. Compliance was excellent, with 92% of the cohort completing all 24 training 

sessions. Previous research in this population has reported high (46%) drop-out rates 

(Bakkum et al., 2015), bringing into question the feasibility of long term exercise 

interventions in persons with SCI. Consequently, these results suggest that exercise in the 

home, may make exercise interventions more attractive for this population, overcoming 

transportation barriers alluded to previously (Section 6.2.2). 

 

6.4.4. Health and Wellbeing Outcomes 

 

Positive changes were observed for various psychological outcomes in this present study, 

with significant day × group interaction effects for ratings of fatigue, general health and 

exercise self-efficacy. In comparison to controls the INT group showed decreased 

symptoms of fatigue and increased perceptions of general health and self-efficacy. 

Quality of life and self-efficacy have previously been shown to increase in persons with 

SCI in conjunction with increased PA (Manns & Chad, 1999; Zemper et al., 2003; Warms 

et al., 2004). Furthermore, Tawashy et al., (2009) suggested that greater levels of PA are 

associated with less secondary complications (pain, fatigue and depression) in individuals 

with SCI. These positive changes might have implications for the maintenance of 

behaviour change, and support the efficacy of the intervention from a psychological 

perspective. No significant differences in shoulder pain were observed with exercise, 

which is in conjunction with Dyson-Hudson et al., (2007) who found using the WUSPI 

that 12 weeks of arm crank training does not increase shoulder pain in persons with SCI. 

This is of importance as concerns have previously been raised about the suitability of 

ACE as a training mode, as it may contribute to shoulder overuse and trigger the onset of 

pain and injury (Jacobs et al., 2001; Nash et al., 2002).  
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6.4.5. Inter-individual Variability  

 

Recommendations for presenting continuous data in studies with a small sample sizes 

were recently published (Weissgerber et al., 2015). The authors encouraged a more 

complete presentation of data. As such our figures have displayed individual responses 

as well as summary statistics, allowing for a more transparent and meaningful 

interpretation of results. This also allowed us to identify individuals in the INT group who 

responded differently to hypothesised in a number of metabolic control and inflammation 

outcome measures. It has been suggested that ~ 7% of participants experience adverse 

adaptations in two or more risk factors for CVD and T2DM in response to regular exercise 

(Bouchard et al., 2012).  The majority of participants in the INT group showed evidence 

of some ‘improvement’ post training in fasting outcomes of metabolic control (92%, 75% 

and 75% of participants for fasting insulin, HOMA-β and HOMA-IR, respectively) and 

inflammation (82% and 73% of participants for IL-6 and CRP, respectively). An 

alternative approach to the ‘non-responders’ hypothesis is to take a closer look at exercise 

compliance. Interestingly, the two participants who showed a decline in PAEE pre-post 

(-85 and -60 kcal·min-1) in the INT group displayed increased insulin resistance (HOMA-

β; 3% and 14%. HOMA-IR; 9% and 20%) and decreased insulin sensitivity (ISIMatsuda;-

27% and -15%). Questions could be raised about the compliance of one of these 

participants; they were -13 b·min-1 from the prescribed exercise heart rate and lacked 

progression in workload to maintain heart rate across the 6 weeks (Weeks 1 – 3: 155 

b·min-1 and 39 W; Weeks 3 – 6: 151 b·min-1 and 38 W). This participant also increased 

FM (0.66 kg), and markers of inflammation (IL-6; 108% and, CRP; 130%). Another 

participant who did not attain the prescribed heart rate and only completed 22 exercise 

sessions out of 24, also displayed adverse adaptations to exercise ( ↑ FM; 0.34 kg, ↑ IL-

6: 27% and, ↑ CRP: 51%).  

 

6.4.6. Strengths and Limitations 

 

Strengths of the current study include the well-defined (chronic Paraplegia) and relatively 

homogenous sample, compared with previous studies conducted in this population 

(mixture of acute/chronic and tetraplegic/paraplegic). Most studies have been conducted 

using only male participants. Therefore, very few findings to date can be generalised to 

females. The prevalence of females with SCI is 19.3% reported on the USA national 
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database, 25% of our cohort were females. Thus a similar ratio of males to females is 

represented in our sample. Unlike this present study, previous research which has sampled 

eumenorrheic females have not mentioned controlling for the phase of menstrual cycle, 

which has been shown to have profound effects on insulin sensitivity and fat oxidation 

(Pulido & Salazar, 1999; Lundsgaard & Kiens, 2014). Although we have included both 

complete and incomplete injuries, Bauman et al., (1999) found no significant difference 

in the incidence of disorders of carbohydrate metabolism between the two neurological 

subgroups of patients with paraplegia (complete: 24% and incomplete: 31%). There was 

also an extra inclusion criteria for participants with neurological incomplete injuries; they 

needed to be regular wheelchair users (self-reported as > 75% of a waking day).  

 

By allocating the last 11 participants to various treatment groups using the minimisation 

approach advocated by Altman & Bland, (2005), the two groups were well matched for 

various injury characteristic (Table 6.1). Consequently, there were no significant 

differences (P > 0.29) between groups with regards to injury or participant characteristics. 

Unfortunately, there was a significant difference between groups at baseline with regards 

to one of the outcome measures, HOMA-β (P = 0.047). Considering the huge variation 

with SCI injury characteristics, even within a well-defined group, and that differences 

were observed in only one of the many outcome measures included in this study, using 

the minimisation approach to match groups for confounding variables could be 

considered a strength. To our knowledge, only one previous study (Rosety-Rodriguez et 

al., 2014) also used a ‘true’ control group to compare the impact of upper body exercise. 

Almost all of the exercise studies in individuals with SCI have been conducted in a 

laboratory setting or rehabilitation centre. By facilitating training in the home, we have 

observed elevated levels of compliance with no drop outs; perhaps a direct result of 

minimising additional time demands and/or removing transportation issues.  

 

The use of validated devices to measure compliance and PA is another significant 

strength, as it allows us to tease out novel concepts from able-bodied research, such as 

‘substitution’ which may diminish the impact of an exercise intervention. Moreover, 

using a validated PA monitoring device, specific for this population, allowed us to screen 

for inactive participants at baseline. Besides Bakuum et al., (2015) this is only the second 

study that we are aware of to employ inclusion criteria based on PA. Consequently, our 
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cohort had low PAL (1.37 ± 0.11) and cardiorespiratory fitness (18.47 ± 5.28 ml·kg-1·min-

1), with 40% of participants displaying metabolic syndrome or an increased risk of CVD 

based on serum CRP concentrations. This is similar to the prevalence of metabolic 

syndrome reported in a cross-sectional study on persons with SCI (Nelson et al., 2007). 

This approach meant our cohort was a fairly representative sample of the wider population 

of individuals with chronic paraplegia. Moreover, previous research has mostly relied on 

fasting indices of insulin resistance. Yet this current study also utilised a dynamic test 

(OGTT) to assess changes in insulin sensitivity, which to our knowledge, has not 

previously been used in upper body exercise interventions in this population before.  

 

In the context of other upper body training studies conducted in persons with SCI (Table 

2.7) our sample size (n = 20) is one of the largest reported. However, in some of the 

secondary outcome measures, where trends and moderate effect sizes have been 

observed, our ability to detect significant effects is probably limited by the small sample 

size. Furthermore, the duration of the intervention was relatively short, and no follow-up 

was included to determine whether positive effects on PA behaviour, psychological 

outcomes and health induced by exercise were maintained. Although we included a ‘true’ 

control group there was considerable variation in their response in a number of outcome 

measures. While follow-up measurements suggest no change in PA behaviour, the fact 

that there was a reduction in body mass might indicate changes in dietary habits. Although 

non-significant, the weighted food records showed the CON group to consume fewer 

calories at follow-up compared to the INT group (-151 vs -28 kcal·day-1). The limitations 

with self-reported energy intake have been widely acknowledged (Livingstone & Black, 

2003; Poslusna et al., 2009), but a recent publication suggests they are inaccurate and 

unacceptable for use in scientific research (Dhurandhar et al., 2014). Considering this, 

and that the change in body mass in the CON group is primarily explained by a loss of 

LM in the trunk and legs, this change in body mass is most likely a result of muscle fibre 

atrophy of paralysed muscles over the 6-week period.  
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6.4.7. Conclusion  

 

A 6-week moderate-intensity home-based ACE intervention improved insulin resistance 

in males and females with chronic paraplegia. Our findings would also suggest that 

fasting fatty acid oxidation was increased, with a reduction in serum TAG concentrations. 

Peak oxygen uptake and workload were also improved with 6 weeks of exercise at 60 – 

65% V̇O2 peak. Objectively measuring baseline PA behaviour, taking a holistic approach 

addressing numerous outcome measures in one study, including various health and 

wellbeing constructs and using a rigorous research design (RCT with true control group), 

this study is in accordance with recent recommendations (Carlson et al., 2009; Silverman 

et al., 2012). Positive changes in health and wellbeing constructs, coupled with excellent 

compliance, suggests home-based ACE has the potential to be used as a long-term 

behavioural strategy to improve clinical outcomes in persons with SCI. 
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CHAPTER 7: GENERAL DISCUSSION 
 

7.1. OVERVIEW 
 

The first three experimental chapters of this thesis were designed to assess the accuracy 

of various commercially available tri-axial accelerometers and a multi-sensor device in 

the prediction of PAEE in wheelchair users. Specifically, Chapter 3 analysed the 

mechanical reliability of the GT3X+ device, using a robust multi-axis shaker table 

protocol, comprised of various acceleration conditions to replicate a range of 

physiological movements. This study also sought to identify the most appropriate 

anatomical location to wear the GT3X+ device, in order to minimise measurement error 

in the prediction of PAEE in wheelchair users. Human validity was determined using an 

activity protocol which consisted of outdoor wheelchair propulsion velocities and 

simulated deskwork. A device comparison study was conducted in Chapter 4, where 

outputs from the GT3X+ were compared to raw acceleration signals from the 

GENEActiv. Both devices were worn on the upper arm and wrist. The performance of 

these devices was assessed across a wide range of wheelchair propulsion velocities, and 

differing gradients, along with an activity which could be misclassified as wheelchair 

propulsion in a controlled laboratory setting. Physical activity energy expenditure 

prediction models were developed using corresponding criterion data and outputs from 

each device from each task, using linear regression analysis. Error statistics were then 

determined using a leave-one-out cross validation analysis.  

 

Chapter 5 aimed to determine the validity of using a multi-sensor device, which 

incorporated heart rate and acceleration signals (Actiheart), to predict PAEE in 

wheelchair users, using the same laboratory protocol as Chapter 4. Considering the inter-

individual variance in cardiovascular responses to exercise is high among this population, 

the benefit of conducting an individual heart rate calibration from data collected during a 

maximal ACE test to exhaustion was also explored. Furthermore, concurrent validity was 

assessed over a twenty-four hour free-living period by comparing the Actiheart to a self-

reported PA log. Chapter 6 aimed to assess the impact of a six week home-based 

moderate-intensity ACE exercise intervention on insulin resistance in persons with 

chronic paraplegia. Secondary outcome measures included changes in functional 
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capacity, body composition, markers of inflammation, serum adipokine concentrations 

and various health and wellbeing outcomes. A RCT using minimisation to control for 

confounding variables was adopted as the study design, recruiting inactive male and 

female participants at baseline (PAL ≤ 1.60). Changes in outcome measures were 

compared to a lifestyle maintenance control group. 

 

A summary of the results of all four experimental chapters is outlined below: 

 

Physical Activity Monitor Method Development 

 

Chapter 3: Influence of anatomical placement and mechanical reliability of the 

GT3X+ accelerometer in the prediction of physical activity energy expenditure in 

manual wheelchair users 

 

 The commercially available GT3X+ device demonstrated excellent intra- (range; 

0.2 to 4.7%) and inter-unit (0.9 to 5.2%) reliability across all axes during 

mechanical testing. 

 Of the three anatomical locations considered, a wrist mounted GT3X+ provide the 

most accurate prediction of PAEE in manual wheelchair users during outdoor 

propulsion.  

 The GT3X+ showed poor validity (Rs = 0.25, P < 0.01) when compared to 

criterion acceleration during mechanical testing, an artefact of tight frequency-

dependent bandwidth filters influencing physical activity count outputs. 
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Chapter 4: Device comparison and development/validation of specific algorithms for 

the prediction of physical activity energy expenditure in manual wheelchair users 

 

 Raw acceleration signals from the GENEActiv device, worn on either the upper 

arm or wrist, provided the most valid prediction of PAEE in wheelchair users 

during a laboratory protocol. 

 Error statistics, calculated using a leave-one-out cross-validation analysis, varied 

between the GENEActiv and GT3X+ as a result of inherent differences in internal 

components, on-board filtering processes and outputs of each device. 

 There were considerable errors (+ 122%) in the prediction of PAEE using the 

GT3X+ during the folding clothes task, suggesting poor measurement sensitivity 

for light intensity activities. 

 Raw acceleration signals tended to under-estimate PAEE during propulsion on 

various gradients, suggesting that physiological outputs might be necessary to 

predict PAEE during tasks with similar acceleration profiles but different energy 

costs. 

 

Chapter 5: Predicting physical activity energy expenditure in wheelchair users with 

a multi-sensor device 

 

 PAEE can be accurately and precisely estimated using a combined accelerometer 

and heart rate monitor device (Actiheart). 

 Mean absolute errors across a laboratory activity protocol were substantially 

reduced with individual heart rate calibration, derived during a maximal ACE 

exercise test, compared to the manufacturer’s proprietary algorithms (mean 

absolute percentage error; 16.8 ± 15.8% vs. 51.4 ± 38.9%). 

 Seemingly, the inclusion of HR with acceleration can better capture the 

physiological strain associated with propulsion up a gradient or load carriage. 
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 Twenty-four hour free-living predicted PAEE by the Actiheart with individual 

heart rate calibration was significantly associated with the reference method (self-

reported PA log) (r = 0.72), whereas the Actiheart with manufacturer’s proprietary 

algorithms were not (r = 0.41). 

 

RCT: Home-based Exercise Intervention  

 

Chapter 6: The impact of a home-based exercise intervention on markers of 

metabolic and cardiovascular health in individuals with chronic paraplegia  

 

 We found improvements in fasting serum insulin and estimations of β-cell 

function, a trend for improved insulin resistance (HOMA-IR) in the INT group, 

but not for insulin sensitivity assessed using plasma glucose and serum insulin 

responses (ISIMatsuda) during an OGTT. These data perhaps reflect an improvement 

in hepatic but not peripheral (skeletal muscle) insulin sensitivity.  

 Our findings would suggest fasting fatty acid oxidation was increased/maintained, 

with a reduction in serum TAG concentrations, in response to 6 weeks of 

moderate-intensity upper body exercise. In the face of stable whole-body 

adiposity, these data suggest an increased TAG turnover. 

 Peak oxygen uptake and workload were significantly increased by 19 and 25%, 

respectively. 

 Whilst there was a tendency for reduced FM in the trunk and increased LM in the 

arms in the INT group, these differences were minimal, - 0.5 kg and 0.1 kg, 

respectively. 

 No differences were observed between groups with regards to lipid profiles or 

serum adipokine concentrations. 

 There was a tendency for reduced IL-6 concentrations, which was more 

pronounced for participants with higher serum IL-6 levels at baseline, reflected 

by a moderate effect size between groups (d = -0.67). No changes in CRP 

concentrations were found. 
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 Positive changes were observed compared to the CON group for ratings of fatigue, 

general health and exercise self-efficacy. In conjunction with the excellent 

compliance, home-based exercise may have the potential to be used as a long-

term strategy to improve clinical outcomes in persons with SCI. 

 

7.2. GENERAL DISCUSSION POINTS 
 

7.2.1. The Accurate Measurement of Physical Activity in Wheelchair Users 

 

There is strong evidence from large scale epidemiological studies in the able-bodied 

population that increased levels of PA, assessed using objective measurement devices, 

are associated with reduced metabolic risk (Healy et al., 2008; O'Donovan et al., 2013; 

Loprinzi & Ramulu, 2013; Barreira et al., 2014; Philipsen et al., 2015). However, the 

quality of comparative evidence in individuals with SCI is reduced, partly due to smaller 

sample sizes, but also the lack of accurate and validated objective measurement tools to 

quantify upper body PA commonly performed by this population. Persons with SCI 

experience an increased incidence of chronic diseases, CVD (Garshick et al., 2005) and 

T2DM (LaVela et al., 2006; Cragg et al., 2013), plus a heightened frequency of specific 

component risk factors for CVD (Duckworth et al., 1980; Bauman et al., 1992; Gater, 

2007;  Bauman & Spungen, 2008) compared to able-bodied counterparts. Therefore, it is 

of upmost importance to develop methods capable of accurately and reliably quantifying 

PA in this population, in order to better understand the role that physical inactivity may 

play in the development of chronic diseases. Improved assessment of habitual PA would 

permit; appropriate cross-sectional comparisons, allow researchers to comment on the 

efficacy of behaviour change interventions and potentially inform PA guidelines (Brage 

et al., 2005). 

 

In agreement with research published whilst this PhD was being written (Garcia-Masso 

et al., 2014), it is clear that the wrist is the most appropriate anatomical location to wear 

tri-axial accelerometers in order to predict PAEE in wheelchair users. The GT3X+ worn 

on the wrist in Chapter 3 explained the highest amount of variance and displayed the 

lowest random error when predicting criterion PAEE during outdoor wheelchair 

propulsion. With movement restricted to the upper limbs in manual wheelchair users, the 
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most distal anatomical location seemingly offers improved sensitivity to the detection of 

PAEE during wheelchair propulsion.  Previous human testing in able-bodied participants 

observed a ‘plateau/ inverted- U phenomenon’ for physical activity count outputs from 

the GT3X during more vigorous-intensity exercise at higher running speeds (John et al., 

2012). Human testing in Chapter 3 did not reveal this effect during wheelchair 

propulsion up to speeds of 8 km·hr-1. However, counter-intuitive findings of decreased 

physical activity counts were observed during mechanical testing, when acceleration was 

held constant but frequency increased. This is a consequence of the on board bandwidth 

filtering process (0.25 – 2.5 Hz), used by the GT3X+ to discard what it believes to be 

physiologically unrelated vibrations or noise. Although in reality the majority of humans 

movements tend to fall between 0.3 and 3.5 Hz (Sun & Hill, 1993), and maximum angular 

velocities of the forearm during the drive phase in elite wheelchair racers has a frequency 

component of 3.6 Hz (Wang et al., 2008). As a result, Chapter 4 was carried out to 

determine whether these filters had any impact on the prediction of PAEE in comparison 

to another commercially available tri-axial accelerometer (GENEActiv). 

 

The main output from the GENEActiv is raw acceleration signals, reported as signal 

vector magnitude (SVM) in g-seconds (g·s-1). Using SI units has been widely encouraged 

by subject matter experts in the accelerometry field (Freedson et al., 2012) as it improves 

accuracy, utility and facilitates easier comparison between devices (Heil et al., 2012; 

Intille et al., 2012). Results from Chapter 4 indicate that derived regression equations, 

using raw acceleration signals from the GENEActiv, better predicted criterion PAEE than 

physical activity counts from the GT3X+ worn either on the upper arm or wrist. A light-

intensity activity of daily living (folding clothes) was chosen whereby activity monitors 

worn on the upper extremity might over-predict PAEE. The leave-one-out cross 

validation analysis revealed a sizeable overestimation of PAEE (+122%) using the 

algorithm developed for the GT3X+ worn on the wrist. This is most likely a result of the 

GT3X+ having half power frequencies of 0.5 and 2.5Hz. This does not mean that 

movements within these limits are measured full scale while those outside are not 

registered at all, but that a scaling filter is applied. Consequently, movements with certain 

frequency components that are measured full scale, such as folding clothes, would register 

greater physical activity counts and lead to the over-estimation of PAEE during light 

intensity activities in free-living. Whilst the raw acceleration signals from the GENEActiv 
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more accurately predicted criterion PAEE than the GT3X+ device across the laboratory 

protocol, they tended to under-predict PAEE during propulsion on various gradients. 

Consequently, the use of a multi-sensor device (Actiheart) was assessed (Chapter 5), to 

see if the addition of a physiological variable was able to distinguish between activities, 

whereby acceleration profiles were similar but energy costs are different.  

 

To our knowledge, this is the first time the Actiheart device, which incorporates dual-axis 

accelerometry and heart rate into a single unit worn on the chest, has been assessed in 

persons with SCI. Findings demonstrated that using proprietary algorithms intrinsic to the 

device had sizeable PAEE absolute estimation errors (51.4%), which were substantially 

improved with the use of an individual heart rate calibration (16.8%). Through the use of 

activity specific algorithms, researchers in the Department of Rehabilitation Science and 

Technology at the University of Pittsburgh have detailed similar improvements in 

absolute EE estimation error from 66.1% (Hiremath & Ding, 2011a) to 16.8% (Hiremath 

et al., 2012) for the multi-sensor SenseWear device in persons with SCI. These findings 

provide encouragement for the use of multi-sensor devices in this population. The 

Actiheart, with individual calibration, may be used in future research to give clinicians 

and researcher a better indication of the volume and intensity of PA necessary to achieve 

optimal health in wheelchair users. However, associated EE measurement error is still 

comparatively low compared to that reported for the SenseWear in the able-bodied 

individuals (Berntsen et al., 2010). Despite improvements in estimation error throughout 

the method development process in this thesis, it is advisable, when more studies have 

been published in the area, that the academic community produce a consensus statement 

addressing the clinical limits of PA assessment in this population.  

 

7.2.2. The Impact of Physical Activity on the Health of Persons with Spinal Cord 

Injury 

 

Our findings in Chapter 6 suggest that six weeks of moderate-intensity ACE, four times 

per week for 45 minutes, improves fasting insulin sensitivity and aerobic fitness in 

inactive persons with chronic paraplegia. However, no significant improvements were 

seen with regards to other CVD risk factors. The frequency and duration of exercise 

sessions in this intervention were considerably greater than the SCI specific PA guidelines 
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of at least 20 minutes moderate to vigorous-intensity aerobic activity two times per week 

as proposed by Ginis and colleagues (2011). Furthermore, the 180 minutes of moderate-

intensity exercise was also greater than the PA guidelines of 150 minutes suggested by 

the American College of Sports Medicine required to improve metabolic health (Haskell 

et al., 2007). Consequently, in agreement with Cowan & Nash, (2010), there are certainly 

no indications that the minimum dose of PA for persons with SCI are less than the 

minimum dosing for able-bodied individuals. Especially when you consider voluntary 

exercise is restricted to the arms, making it difficult to achieve the same whole-body 

oxygen uptake and energy expenditure associated with exercising the larger muscle 

groups in the legs. Whilst trends for improved body composition in various body 

segments were observed, non-significant differences in whole-body FM may explain why 

no reduction in inflammatory markers were found. Church et al., (2010), demonstrated in 

162 sedentary men and women with elevated CRP (≥ 2.0 mg·L-1) that exercise training 

without weight loss is not associated with a reduction in CRP.  

 

There was also a day effect across the groups for reduced LM (-0.2 kg) in the legs over 

the 6 weeks. Whilst a trivial amount over such a short period, extrapolated over the year 

this equates to 1.7 kg. Interestingly this was in persons with chronic paraplegia (TSI 17 ± 

10 years). Potentially, the inactivity of paralysed skeletal muscle in the legs leads to a 

reduced muscle protein synthesis (MPS), accounting for much of the induced muscle 

atrophy (Glover et al., 2008). Two study designs have been proposed in the future 

directions (Section 7.4) of this thesis which addresses the reduction in whole-body FM 

and maintenance/increase in LM in the legs. Overall, Chapter 6 demonstrated that 

improvements in hepatic insulin sensitivity can be accomplished without favourable 

changes in body composition. 
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7.3. CONSIDERATIONS  
 

Specific considerations for each study are discussed in each representative experimental 

chapter.  

 

7.3.1. Limitations of Method Development Studies (Chapter 3, 4 and 5) 

 

Perhaps the principal limitation of the method development experimental chapters, and 

other validation research in this population, was the small sample size used. Furthermore, 

each sample consisted of various aetiologies responsible for wheelchair use. This 

approach has been taken before (Conger et al., 2014) and provides a robust model for the 

assessment of PAEE in the broader wheelchair user population. Yun & Ulrich, (2002) 

suggested that obtaining a representative sample of the entire population of interest is 

necessary, rather than using only a subgroup of that population. The inclusion of a diverse 

range of participants is also in accordance with best practice recommendations for PA 

validation studies (Bassett et al., 2012), and we showed no differences in prediction error 

when various aetiologies responsible for wheelchair use were analysed separately 

(Chapter 4). The requirements for large and representative samples present unique 

challenges, focusing around cost or time involvement, and this is even more problematic 

when considering the difficulties associated with recruiting from various disabled 

populations (Yilmaz, 2006). Yet it remains to be seen whether certain algorithms 

developed specifically for individuals with paraplegia, tetraplegia, or other disabling 

conditions that require the use of a wheelchair, will offer improvements in the prediction 

of PAEE. In order to achieve this we strongly encourage research groups to work in 

unison rather than isolation to foster progress in the development of objective monitoring 

tools to be used in this population.  

 

The ability to capture raw acceleration data now permits more sophisticated methods of 

predicting PAEE and allows researchers to detect the types of activity a person is 

performing (Bonomi et al., 2009a). This might be highly relevant to populations that 

perform atypical movement patterns, such as wheelchair users. It is possible that 

predicting PAEE from linear regression equations, as in Chapter 4, may be too simple 
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an approach to examine complex movements or behaviours (Strath et al., 2012). Whilst 

linear regression models performed well enough to quantify PAEE across various 

wheelchair propulsion speeds, it cannot be concluded whether this is the case for other 

activities. A diverse range of activities of daily living were not included in our validation 

protocols. Furthermore, the one light-intensity activity of daily living (folding clothes) 

which we incorporated into Chapter 4, resulted in considerable over-estimated PAEE 

values of 122% and 29% for the GT3X+ and GENEActiv both worn on the wrist, 

respectively. Heil et al., (2012) advised that the shortest possible epoch (1 second) should 

be selected for activity monitor data collection, to ensure that as much information as 

possible regarding the original PA related biosignal is retained. This then permits the use 

of new data analysis methodologies, including hidden Markov models (Pober et al., 

2006), artificial neural networks (Staudenmayer et al., 2009; Trost et al., 2012) and 

classification trees (Bonomi et al., 2009b), which use the rich information to classify 

certain activities and derive a more accurate estimate of PAEE (Bassett et al., 2012). 

Future research should take a closer look at these techniques across diverse activity 

protocols, which include light-intensity ADLs and vigorous-intensity wheelchair 

propulsion.  

 

7.3.2. Limitations of Randomised Controlled Trial, Home-based Exercise 

Intervention Study (Chapter 6) 

 

Whilst we objectively confirmed that the CON group did not make any conscious changes 

to their PA behaviour, we cannot conclude that diet remained the same due to limitations 

and poor validity associated with self-reported energy intake (Livingstone & Black, 2003; 

Poslusna et al., 2009). Moreover, this technique would have lacked the sensitivity to 

quantify the degree of compensation (potential for increased energy intake, Melanson et 

al., 2013) as a result of additional energy expenditure in the INT group. Whilst objective 

measures of energy intake are not as advanced or accurate as those used currently to 

predict free-living energy expenditure, emerging alternatives such as digital photography 

and, chewing and swallowing monitors are beginning to emerge (Martin et al., 2009; 

Sazonov et al., 2010; Martin et al., 2012). Although in the early stages of development, 

and future work is required to develop these tools, they may offer promising alternatives 

for the accurate measurement of energy intake. Furthermore, these techniques could be 

used with self-report visual analogue scales to provide free-living subjective ratings of 
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appetite and satiety. Using overlapping techniques would hopefully minimise limitations 

inherent to each method of assessment, allowing a more complete understanding of real-

life eating behaviours and responses to exercise in the SCI population. 

 

We implemented a rigorous standardisation procedure for the 24 hours preceding each 

laboratory visit (participants abstained from strenuous exercise, caffeine and alcohol 

intake) and participants confirmed on arrival at the University that they had fasted 

overnight (≥ 10 hours). Yet we did not consider controlling for nutritional intake, which 

may explain some of the variation in responses observed in the lifestyle maintenance 

CON group. In future research, in order to better isolate the effects of exercise training, it 

would be beneficial (but potentially costly and impractical with participants staying in 

overnight accommodation) to standardise meals over the day/s prior to testing.  

 

Carbohydrate ingestion prior to an acute bout of exercise has been shown to suppress the 

subsequent activation of skeletal muscle AMPK (Guerra et al., 2010), whereas 

carbohydrate restriction post exercise can elevate the increase in GLUT mRNA levels 

during recovery (Holloszy, 2005). Training in the fasted state compared to the fed is more 

effective in increasing skeletal muscle oxidative capacity and enhances intramyocellular 

lipid breakdown (Van Proeyen et al., 2011), along with improving whole-body glucose 

tolerance and insulin sensitivity (Van Proeyen et al., 2010). In light of these findings, it 

is worth pointing out that we did not control the timing or macronutrient composition of 

food in the hours preceding or following each ACE exercise session. Moreover, to 

facilitate autonomy and ensure compliance with the busy lifestyle of our participants, we 

did not control for sessions to be completed at a set time of day or control recovery periods 

between sessions. Recent evidence would suggest changes in performance outcomes with 

respect to circadian rhythms (Hill, 2014), and diurnal fluctuations in circulating hormone 

concentrations may influence skeletal muscle training adaptations (Teo et al., 2011). 

Therefore, it is entirely plausible to speculate that differences between feeding strategies 

and time of day when exercise sessions were completed, might be responsible for the 

variability in responses of the outcome measures in the INT group. 

 



Chapter 7                                                                                              General Discussion 

 

216 
 

OGTTs were performed following an overnight fast, potentially liver glycogen levels 

could be depleted. The liver gets first refusal of any glucose absorbed from the gut. 

Therfore the liver, not adaptations in skeletal muscle in response to the INT, will play a 

major role in the systemic concentrations of glucose and insulin measured in response to 

an oral glucose load on the fasted state. Thus, it is possible changes in peripheral (skeletal 

muscle) insulin sensitivity may have been underestimated using this approach. This is 

elequantly supported by findings from a year long FES training study (Mohr et al., 2001), 

which found impovements in whole-body insulin sensitivity using the euglycemic, 

hyperinsulinemic clamp technique but showed no improvement in glucose tolerance nor 

the insulin response to an OGTT. However, Bonuccelli et al., (2009) demonstrated that 

glucose appearance from the gut is almost identical when an OGTT is perfomed in the 

fasted or fed state. Presumably an intravenous glucose tolerance test (IVGTT), which 

measures the response to a glucose load injected directly into the blood (Hovorka et al., 

2002), would offer improved measurement of skeletal muscle insulin sensitivity as the 

infused glucose misses the liver at first passing. Therefore, future work should investigate 

the impact of upper body exercise on insulin sensitivity using either the IVGTT or gold 

standard euglycemic insulin clamp method. These techniques, with the combination of 

dual-tracer dilution methodology, would offer more information regarding the effects of 

insulin on glucose distribution/transport, uptake and endogenous production as a result of 

exercise training.  

 

Perhaps the most notable consideration for Chapter 6 is the relatively short nature of the 

intervention, meaning careful interpretation of the findings are required when drawing 

conclusions regarding long term adaptations.  
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7.4. RECOMMENDATIONS FOR FUTURE RESEARCH  
 

The data presented in this thesis highlights potential areas for future research in persons 

with SCI. These include but are not limited to;  

i) Incorporating the use of validated wearable PA monitoring devices and the provision 

of feedback to facilitate behaviour change and longer term benefits to metabolic 

health. 

ii) The impact of manipulating functional electronic stimulation (FES) frequency on 

skeletal muscle adaptations to training. 

iii) The potential additive effect of combining FES with moderate-intensity upper body 

exercise on whole-body insulin sensitivity. 

iv) The effect of an energy deficit, created through exercise, diet or both, on metabolic 

flexibility, body composition and markers of systemic inflammation in persons with 

chronic SCI. 

 

This section will briefly explore these issues, and where appropriate, propose 

experimental designs to answer these specific questions. Ambiguity also remains 

regarding the most appropriate exercise intensity to reduce the clustering of various CVD 

risk factors in this population. For example, high intensity interval training (HIIT) has 

been proposed in the able-bodied population as a potent time-efficient strategy to induce 

metabolic adaptations (Gibala & McGee, 2008; Babraj et al., 2009; Gibala et al., 2012). 

However, it is unlikely the smaller muscle groups of the arm would trigger the same 

disturbances to whole-body homeostasis as high intensity leg cycle ergometer exercise. 

Therefore, the appropriate dose would need to be considered and whether this is a feasible 

exercise modality for persons with SCI who experience increased shoulder pain and 

functional limitations. Furthermore a longer, more ‘real world’, PA intervention would 

be useful to examine (i) the adherence to certain behaviours, and (ii) whether certain 

metabolic health and CVD risk factors change after a period of several months rather than 

weeks.  
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7.4.1. The use of Wearable Physical Activity Monitoring Technology in Wheelchair 

Users 

 

Besides providing accurate feedback on habitual PA, wearable devices could also be used 

to set and monitor various lifestyle goals. It has recently been suggested (Thompson & 

Batterham, 2013) that PA is highly heterogeneous and as such, there is no single outcome 

measure (Table 2.2) which captures all the relevant information about a given person. 

There are multiple ways of harnessing the protective properties of PA, because there are 

numerous dimensions to this behaviour that are all independently important. With 

technological advancements it is now possible to portray simple and/or sophisticated PA 

profiles to research participants, promoting a smorgasbord of personalised PA choices 

with options tailored to the individual’s needs and preferences. This approach of 

maximising feedback to participants and the use of online platforms has been adopted in 

a recent study recruiting participants (aged between 40 – 70 years) who are at risk of CVD 

and T2DM (Peacock et al., 2015). Potentially a similar approach could be taken with 

wheelchair users, using the accurate feedback from the Actiheart, validated and used in 

Chapters 5 and 6, respectively. Ding et al., (2012), developed a physical activity 

monitoring and sharing platform (PAMS) especially designed to capture PA that is part 

of the everyday lives of wheelchair users. This information can be shared on social media 

and can motivate wheelchair users to become more physically active. These methods 

could be incorporated to promote long term adherence to health promoting behaviours by 

facilitating autonomy and choice in persons with SCI. 

 

The feasibility of combining sensors should be explored. For example the combination of 

GPS and accelerometer outputs could provide more detailed information on where a 

specific behaviour has been performed and its context. Information about the location and 

purpose of activity behaviours is desirable in surveillance because public health 

objectives frequently focus on specific types of activity. This is even more pertinent to 

wheelchair users in order to understand specific barriers to exercise; information 

regarding these features could provide extremely useful recommendations. Future 

research could assess whether the incorporation of a tri-axial accelerometer worn on the 

most sensitive anatomical location (wrist) and individually calibrated heart rate would 

further improve the PAEE estimation error in wheelchair users. It would be advisable to 
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develop branched model equations, similar to those used by the Actiheart, to minimise 

the strengths and weaknesses of these two techniques when used independently. 

 

7.4.2. Neuromuscular Electrical Stimulation or Functional Electronic Stimulation  

 

Surface neuromuscular electrical stimulation (NMES) can be used to stimulate single or 

multiple muscle groups, with no intention of producing a functional or coordinated 

movement. Whereas functional electronic stimulation (FES) is a form of NMES that 

provides stimulation of selected muscles in a coordinated manner resulting in functional 

movement patterns, such as cycling or rowing. Researchers have advocated SCI specific 

PA guidelines (Ginis et al., 2011), or encouraged persons with SCI to meet able-bodied 

guidelines (Cowan & Nash, 2010) when it comes to voluntary upper extremity exercise. 

However, at present there is no consensus regarding stimulation parameters (amplitude 

of current, frequency and pulse durations) or the training duration and frequency of 

NMES or FES in order to exercise paralysed muscles. When summarising the literature 

to date with regards to the impact of NMES and FES on body composition, Gorgey et al., 

(2015) suggested LM or FFM of the legs is likely to increase by 10%. The duration of 

these summarised studies ranged from 6 weeks to 2 years. This increase is likely to off-

set the loss in LM (-0.2 kg) in the legs observed in Chapter 6 over a six week period. 

Reversing or preventing the process of skeletal muscle atrophy is a desirable outcome, 

considering that skeletal muscle accounts for approximately 85% of glucose disposal 

during euglycemic clamp studies (Defronzo et al., 1981). FES leg cycle exercise three 

time per week for 8 weeks, has been shown to increase GLUT-4 protein levels in 

paralysed skeletal muscle (+ 72%) (Chilibeck et al., 1999) and improve whole-body 

glucose utilisation and insulin sensitivity (Jeon et al., 2002).  

 

A recent acute electrical stimulation study (Petrie et al., 2015), found no differences in 

key metabolic transcription factors or induced fatigue between a 5- or 20- Hz electrical 

stimulation protocol. A logical extension of this would be to assess the ‘Impact of the 

frequency of electrical stimulation on whole-body glucose utilisation and insulin 

sensitivity with training in persons with chronic SCI’. Skeletal muscle in persons with 

chronic SCI is highly fatigable due to a shift in muscle fibre types and high susceptibility 

to muscle damage below the level of injury. Consequently this may result in a decline in 
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evoked torque 48 – 72 hours following an acute NMES bout (Mahoney et al., 2007). As 

such, there may not be an additional benefit of frequent exercise sessions. Several 

previous studies have encouraged the feasibility of home-based NMES or FES to 

overcome transportation barriers (Dolbow et al., 2012a; Dolbow et al., 2012b; Dolbow et 

al., 2013). Therefore, an 8-week home-based electrical stimulation RCT (frequency of 

exercise session 3 time per week) with two groups, using different stimulation frequencies 

(5 and 20 Hz) would be a suitable study design. It would be optimal to use the gold 

standard hyprerinsulinemic euglycemic clamp or IVGTT to assess insulin sensitivity pre-

post intervention. The application of tracer technologies during the hyperinsulinemic 

clamp to track the uptake/utilisation of glucose would provide extremely useful 

mechanistic data. Furthermore, peripheral quantitative computed tomography (PQCT) 

could be used to quantify lower extremity skeletal muscle density and cross-sectional 

area. The low-force training frequency might hold the potential to improve metabolic 

health without increasing the risk of bone injuries using NMES or FES in persons with 

chronic SCI.  

 

Acute exercise studies demonstrate an increased physiological demand during FES hybrid 

exercise compared to upper body exercise only (Bakkum et al., 2013; Deley et al., 2015). 

Upper body exercise targets a smaller muscle mass, which is already relatively well 

adapted to exercise, potentially reducing the potency of a therapeutic stimulus. 

Comparatively FES-cycling stimulates paralysed and larger muscle groups of the lower 

extremity. Yet, Bakkum et al., (2015) noticed no additional benefits of performing hybrid 

exercise (FES-induced leg and handcycling) compared to handcycling in reducing CVD 

risk factors over 16 weeks of training. The authors concluded that the relatively small 

muscle mass available during handcycling is not a limiting factor for the improvement of 

CVD risk factors. However, the relatively untrained lower extremity skeletal muscle of 

participants in the hybrid group may have been a limiting factor. It is possible that during 

hybrid cycling, as skeletal muscle became fatigued, the legs were passive in the 

movement with propulsion being driven solely by the arms. This may explain why there 

were no noticeable differences between groups. To investigate the independent effects of 

FES and upper body exercise on metabolic health and body compositions the research 

design shown in Figure 7.1 has been proposed.  
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Figure 7.1: Schematic of a possible study design to assess chronic adaptations to upper 

body exercise, FES and combined 

 

Briefly, participants will be eligible for this study if they are classified as inactive at 

baseline (PAL ≤ 1.60) using the Actiheart validated in Chapter 5. Fasting measurements, 

insulin sensitivity (assessed via clamp method), body composition and aerobic capacity 

will be assessed pre-post an initial 8-week lifestyle maintenance control period. Diet and 

activity levels will be assessed in the final week to ensure PA behaviours and nutritional 

status have not changed. Then participants will be randomly assigned to one of three 

groups; ACE exercise (65% V̇O2 peak), FES leg exercise (chosen frequency dependent 

on findings from previous study) and FES leg exercise plus ACE. It would be interesting 

to see if the combination of upper body moderate-intensity exercise and FES, maintaining 

or potentially increasing LM in the leg, might lead to greater improvements in insulin 

sensitivity. Due to the potential limitation with hybrid cycling (skeletal muscle in the legs 

being highly fatigable and an increase reliance on the arms) the FES and upper body 

exercise will be performed separately. There are of course practical limitations to such a 

design; it is relatively resource/time heavy which would place a considerable burden on 

the participants. If it was home-based, the study would require considerable financial 

support to purchase exercise equipment. Furthermore, matching the energy expenditure 

in each group could be problematic. Overall, the potential to quantify the independent 

therapeutic effects of FES and upper body exercise, and the combination of the two, 

means it could be worth the associated time and resources.  
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7.4.3. The Effect of Diet and Upper Body Exercise 

 

It is well established that combining diet with regular PA is the most effective treatment 

of obesity (Brochu et al., 2000; Poirier & Despres, 2001). Despite the increased likelihood 

of obesity following SCI (Weaver et al., 2007; Gater, 2007), it is surprising that there is 

such a paucity of research looking at the combination of PA and calorie restriction on 

body composition and metabolic health in persons with SCI. A large scale study (n = 316) 

in older (≥ 60 years) overweight or obese men and women lasting 18 months showed that 

diet-induced weight-loss resulted in greater reductions in inflammatory biomarkers 

compared to exercise alone or exercise plus diet (Nicklas et al., 2004). This was perhaps 

explained by the much greater weight loss experienced in the diet group. Potentially the 

6 weeks of moderate-intensity upper body exercise (Chapter 6) did not lead to significant 

reductions in inflammatory biomarkers as there were no significant changes in body mass, 

or more importantly FM. Achieving weight loss via upper body exercise alone is difficult, 

as the contracting skeletal muscle mass involved is smaller, resulting in a reduced whole-

body oxygen uptake/PAEE. Donnelly et al., (2009) suggested that body mass reduction 

requires an exercise energy expenditure in excess of 2000 kcal·week-1. Extrapolated from 

our sample of inactive participants in Chapter 6 this would equate to ~ 64 minutes of 

moderate-intensity arm crank per day (assuming there are no compensatory behaviours 

or substitution of PA). One option to reduce exercise time would be to increase the 

intensity of exercise to achieve the required energy expenditure. However, achieving 

significant weight loss via exercise interventions absent of calorie restriction for persons 

with SCI might be difficult.  

 

Irrespective of how negative energy balance is achieved, be it through calorie restriction 

or increased exercise, Fontana et al., (2007) noticed substantial and similar improvements 

in CVD risk factors in able-bodied overweight adults. It would be interesting to see if 

similar findings are observed in persons with chronic SCI. Hence, the schematic of energy 

deficit is proposed in Figure 7.2. The aim of this study would be: ‘To assess the impact 

of an energy deficit, through exercise, diet or both, on metabolic flexibility, body 

composition and markers of systemic inflammation in persons with chronic SCI’. It has 

been stated that total exercise duration (irrespective of relative exercise intensity) was the 

key factor in improving insulin sensitivity (Houmard et al., 2004). Therefore, to ensure 
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participants performed the same total amount of training sessions in both exercise groups, 

exercise intensity would need to be manipulated accordingly to guarantee the same energy 

deficit is created. Furthermore, in order to promote weight loss through exercise alone, 

this would need to be of a vigorous intensity for it to be realistically achievable within the 

everyday lifestyle of previously inactive research participants.  

 

Changes in fasting RER in Chapter 6 was significantly different between groups, with a 

reduction and increase in the INT and CON group, respectively. This finding, would 

suggest a greater reliance on fat oxidation in the fasted state with exercise. However, to 

determine metabolic flexibility measurements of both fasting and postprandial RER are 

required, as metabolic flexibility is defined by the degree to which you can switch 

between the two. In our participants we noticed unremarkable levels of fasting TAG, only 

20% were > 1.7 mmol·L-1. Considering humans now spend most of their lives in the 

postprandial, not fasted, state, it would make sense to measure postprandial lipaemia 

(PPL) in response to a mixed meal. Particularly as researchers have shown exaggerated 

PPL in individuals with chronic paraplegia, despite also observing unremarkable 

concentrations of fasting TAG (Nash et al., 2005; Emmons, 2009). This exaggerated PPL 

is an important stimulus for the development of atherosclerosis (Zilversmit, 1979), and 

non-fasting TAG has revealed a stronger association with CVD than fasting (Bansal et 

al., 2007). It is possible that as a result of a more sedentary lifestyle, reduced skeletal 

muscle LPL slows postprandial TAG extraction from the circulation. Furthermore, the 

loss of sublesional muscle mass limits the ability to metabolise postprandial TAG as a 

fuel source (Cowan & Nash, 2010). To our knowledge, no studies have been conducted 

looking at impact of upper body exercise on the responses of metabolic flexibility and 

PPL to a mixed meal tolerance test in persons with chronic paraplegia. Therefore, we 

propose the use of a mixed meal tolerance test and these measures in this study design.  
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Figure 7.2: Schematic representation of the energy deficit, induced by vigorous ACE 

exercise alone, combination of moderate ACE and diet, or diet alone 

 

 

 

7.5. CONCLUSIONS   
 

In short, this thesis systematically developed and evaluated wearable PA monitoring 

devices to predict PAEE during free-living in wheelchair users. Our findings suggest the 

use of a multi-sensor device with individual heart rate calibration offers the most accurate 

prediction of PAEE in wheelchair users. There are relatively few examples in the 

literature where these tools and technologies have been incorporated into a controlled 

RCT. A prescribed moderate-intensity arm crank exercise intervention showed 

improvements in measures of metabolic health, but not other traditional CVD risk factors 

(lipid profiles and markers of inflammation). This was potentially because upper body 

exercise alone was not sufficient to promote substantial reductions in FM in persons with 

chronic paraplegia.  
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