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CHAPTER I

THE POLARON-PHONON SYSTEM AND THE
KUBO FORMALISM

Synopsis

Starting from Kubo's expression for the frequency dependent clectrical conductivity,
the low-temperature drift mobility of large polarons 1s evaluated in the intermediate
coupling region

The first part of this study 1s devoted to a detailed discussion of the method, which
1s based on the fact that the Kubo formula can be adapted to the intermed:atle coupling
region by using a umtary transformation and expanding the conductivity 1 a power
serles expansion 1n the polaron-phonon coupling

The unitary transformation which has been used generates a modified LL P.
polaron model, maintaining the many polaron character of the theory An expression
for ihe effective mass of drifting polarons 1s dertved, which 1n general depends on the
temperature, the frequency of the apphed ficld and the couphng constant.

In the second part the effective mass, the d.c drift mobility and the corresponding
correction terms will be calculated explicitly.

1. Introduction. Much work has already been devoted to the mobility
problem of a slow clectron in the conduction band of a polar crystal. The
large number of expressions, derived by various authors, ref. 1 to ref. 9,
differ considerably in the experimentally interesting situation, ref. 10. The
main reason for these large differences is that the interaction between the
electron and the field of longitudinal optical phonons is rather strong. If
one expresses the strength of the electron-phonon interaction by a dimension-
less parameter «, it turns out that for many polar crystals « is about 3. As
the electron moves through the crystal, it distorls the surrounding lattice
and the distortion in turn acts back on the electron. In the language of
ficld theory this means that the electron is dressed with a cloud of virtual
phonons. The quasi-particle consisting of an electron plus a virtual phonon
cloud, is called a polaron. The determination of the properties of the polaron
in the intermediate coupling region, where « is about 3, constitutes the main
problem. Up till now, an exact solution of this problem cannot be obtained,
not even for small polaron velocities. However, the coupling strengths one



is interested in, are too weak for an adiabatic method to be applicable and
too strong to use traditional perturbation theory.

As we are mainly interested in the transport properties of polarons, we
only mention two methods attacking the polaron problem. The first one
is the intermediate coupling theory of Lee, Low and Pines?2), who used
two canonical transformations to convert the electron into a polaron. They
obtained reasonable results in the intermediate coupling region. The second
method is that of Feynman!1), who approximates the effect of the lattice
field by a fictitious particle, bound to the elcctron with a spring. For the
polaron problem the last method is probably the best one, but for the
transport problem this is not so clear (See ref. 10).

Depending on the accuracy of the polaron model, the polaron will emit
and reabsorb virtual phonons more or less intensively. At nonzero temper-
atures, however, when there are real phonons in the field, we have in addition
to consider the cffect of polaron-thermal phonon scattering processes.

These thermal phonons induce transitions between the quasi-particle
states of the polaron. The energy of these quasi-particle states must be
below the phonon emission threshold, that is the energy of the polaron must
be less than the phonon frequency, otherwise the polaron is able to emit a
phonon, a proces that is not described by the quasi-particle states. Then
the polaron concept breaks down. When the temperature is low enough one
expects that this condition is satisfied. At the other hand the temperature
must be sufficiently high to neglect all but the scattering by the longitudinal
optical phonons.

If these conditions are satisfied one may consider the response of the
system to a small external electric field. In principle the philosophy of most
authors, attacking the mobility problem, is simple. The starting point is the
assumption that the polaron-phonon system is governed by the Hamiltonian:

H = E(p) + 3 wblbg + X AqZ}(e"" bg + 7" bY). (1.1)
q q

Here E(p) is the energy of the polaron being a function of the polaron
momentum in the lowest quasi-particle state, b, b, are phonon creation
and destruction operators for a phonon in the mode q, while  is the corre-
sponding phonon frequency, being independent of q. The coupling of the
lattice mode q with the Fourier component of the polaron density, €', is
given by 14Z%-Z4 represents the renormalization of the electron-phonon
coupling 44, due to the fact that the polaron has an internal structure. The
charge of the electron is smeared out over a certain region in a similar way
as is indicated by the adiabatic and Feynman descriptions of the polaron.
Now it is not clear that the actual polaron-phonon system is governed by
the Hamiltonian (1.1). For instance the I..L.P. polaron, a reasonable model
in the intermediate coupling region, has a quite different interaction with
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thermal phonons. But even if we accept (1.1), the question arises how to
choose the polaron cnergy E(p). One often assumes a parabolic approximation
E(p) = Eo + $2/2m", where m” is the effective polaron mass. This means
that in a polaron-phonon scattering process, the polaron, after absorbing
a phonon, is still a simple particle with the same effective mass m*. The next
assumption is the validity of the Boltzmann equation to describe the trans-
port process. For a d.c. field the appropriate Boltzmann equation reads:

eli Valo = <86—{:>eou.' (1.2)

m

Here f, is the occupation probability density for the quasi-particle state
of momentum p. The quantity eE/m* represents the average acceleration
of the quasiparticle between the collisions, due to the applied electric field
E. The use of the equations (1.2) and (1.1) implics a number of assumptions,
which are well discussed in the literature (Schultz, thesis3)). Most important
is the assumption that it is meaningful to speak of a quasi-particle and the
lattice field as if they were physically separable, the former possessing well
defined velocities being characterized by the probability density function
fp» the lattice field as an infinite sea of phonons at constant temperature
that somehow maintains the equilibrium distribution. The interaction
between the two must be weak and is described in the form of collision
processes, occurring independently of each other. At low temperatures,
when 27T < %w, these assumptions may be reasonable. But actually, the
interaction between the polaron and the lattice remains intermediate or
strong. This means that the probability of higher order processes, charac-
terizing the creation and annihilation of virtual phonons during collision
processes, are not a priori negligible.

Another objection against the Boltzmann equation approach must be
raised. Because of the highly inelastic polaron-phonon collisions the solution
of the Boltzmann equation is extremely difficult for all temperatures.

Howarth and Sondheimer$8), using variational methods, obtained
approximate solutions when all polaron effects may be neglected. Up till
now we have mentioned some of the serious drawbacks of the Boltzmann
equation approach. It suggests that one must avoid the use of the Boltzmann
equation as an a priori starting point. We want to do this for coupling
constants in the intermediate region, and in principle for finite frequencies
of the applied clectric field. In fact, we shall use a density matrix approach.
A density matrix approach for the polaron mobility problem has alrcady
been given by Platzmann, Feynman, Hellswarth and Iddings?)
using the Feynman model of the polaron. Bul in the low-temperature region
there are scrious doubts to their results, as has been pointed out by
Kadanoff9). In principle a density matrix approach for the transport
problem of an electron in the conduction band of a polar crystal can be
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formulated without using a polaron model explicitly. Such a procedure
is satisfying because the mobility expression will not depend on the
specific properties of some hypothetical polaron model. But since the exact
density matrix expressions cannot be solved cxactly we have to expand
the expressions in a perturbation scrics that must converge rapidly.

It is for that rcason that we start with an exact canonical transformation
of the Frohlich Hamiltonian much like Lee, Low and Pines?) did in their
polaron model. Since the expression for the frequency dependent electrical
conductivity, as given among others by Bonch-Bruevich19), can exactly
be transformed by the unitary transformation, we only have to fulfil the
demand of rapid convergence of the perturbation expansion without in-
troducing the assumptions of the ordinary Boltzmann equation approach.
We will call the transformed operators of the electrons, polaron operators,
though the polaron will radiate virtual phonons during collision processes
with thermal phonons. In fact the transformation is choosen in such a way
that a part of the lattice deformation is rigidly attached to thc electron
while the interaction that remains is one with thermal phonons only.

It is for that rcason that we shall not find a renormalization of the
coupling constant. The perturbation series of the linear deviation from the
polaron equilibrium distribution has in the limit of zero frequency a certain
class of contributions that are predominant. In summing this class of
contributions we shall show that the result gives the lowest order contri-
bution to the polaron conductivity. The formalism will give us inmediately
an expression for the effective mass of a slow drifting polaron which in
general depends on the temperature, the frequency of the applied field, the
coupling constant and the phonon frequency.

In the sccond part of our investigation we apply the theory to the L.I..P.
polaron model and calculate mobility and cffective mass quantitatively.
Comparing our results with those obtained by others, shows rcasonable
agreement especially with Osaka’s intermediate coupling calculations5).

2. The polaron-phonon system. In general we may write the Hamiltonian
of an electron interacting with longitudinal optical phonons as:

H = o+ YV (2.1)

where in the occupation number representation:

k2
Ho=3- —ala, + I wblb, (2.2)
k 2m q
v =kZ af+qap(Aqbq + leT_q) (2.3)
q
iw I \! [ 4ma \}
== () (%) 24

We take Planck’s constant # = #/2n = 1.



a}, a, are creation and anmhilation operators for an electron in the state
|k>, with encrgy £2/2m. They obcey the anti-commutation relations:

(@, al,]+ = Opys, k> [QRys A, ]+ = O ctc.

b}, bq are the corresponding quantitics for the phonons, obeying the commu-
tation relations:

[bq,, bL]— = 0q,,4,(bq,, bg,]- = O ctc.

The wave vectors k and ¢q run over the points of an infinite cubic lattice in
momentum space with a lattice spacing 22Q2-%; £ is the volume of the cube
in which the system is enclosed with the usual periodic boundary con-
ditions. The Hamiltonian (2.1) has been derived by Frohlich13). The
essential assumption is that he replaces the lattice by a dielectric: a macros-
copic continuum, whose propertics are determined by a dielectric constant e.

The dielectric constant enters in (2.4) by means of the coupling constant

.= gz.<L _ L) o
Eeo £ 20

Frohlich supposed that the dependence of £ and the phonon frequency w
on the wave vector ¢ may be ncglected. This assumption is quite good
provided that the wave lengths with which we have to deal are long compared
with the atomic distances. The kinctic encrgy of the electron is %2/2m
where m is determined by the band structure of the crystal, « measures the
strength of the interaction betwcen the electron and the polarization field
and is in the experimental intleresting range about 3.

The most general one-electron state of (2.1) reads:

1 1 »

Wiy — M 5K — ; — kY CM(k:qy...
| Fx> 12:0 N ”!kq1§qn ( i§1 q; ) CiV(R; q1 ... gn) X

X b}, ... b4 at 10>  (2.5)

where |0> means thc unperturbed, normalized vacuum state for clectrons
and phonons, and Zg is the normalizing constant given by:

LAY = k. xa (2.6)

The delta function enters in (2.5) becausc the system (2.1) is invariant for
translation; that is the total momentum operator:

P = 3 kala, + ¥ qblb, (2.7)
k
commutes with 5, K is an eigenvalue of 2:
P ¥> = K|PR.
Because the probability amplitudes C®(k; ¢1... ¢,) cannot be found
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exactly, L.L.P. approximate C{(k; q1 ... ¢») as:

Cik: g, .. qn) = M Flgy (2.8)
or
@ 1
[Py =3 fdr exp{i(K—k) rexp X -Fqexp (—iq-r)bf}al |0> (2 8a)
n=0 \/ZK q

This assumption mcans that all virtual phonons in the polaron cloud are
emitted into the same state, characterized by a momentum distribution Fq.
Thus (2.8) neglects all corrclation effects between the phonons. In fact
(2.8a) is the exact solution of (2.1) if the clectron has infinite mass.

Another aspect of this trial function is that the lattice deformation follows
the electron instantaneously. This can been shown by writing (2.5) and (2.8)
in the coordinate representation of the electron, maintaining the occupation
number representation of the phonons.

Let |¢'> be an eigenvector of the electron position operator r : r |r') =
= r' [r">. Then (2.5) together with (2.8) reads:

1

P =—— 3 | drexp (i(K—k) r + ¥ Fq exp (—ig-r)by}<r’ at] 0>
\/lx k q

(2.9)

Because ¢r’ |a}| 0> is equal to the free electron wave function e*" and r

is the position coordinate of the lattice deformation, the summation over
k gives the delta function: §(r’ — r). This shows the statement above.

This aspect of the Lee, Low and Pines model is responsible for the
fact that it is not easy to renormalize the polaron-phonon coupling as is
done for instance in the Feynman theory of the polaron (see equation (1.1).
The trial function (2.9) can simply be generated by the unitary operator:

U =exp —3 afay+q(F* b—q — Fqb}). (2.10)
kq
Applying a unitary transformation to the clectron operators, we define the
polaron operators:
af = UafU-1, etc. with of |0> = |PD) (2.11)
a} and «, obey of course the same anti-commutation relations as do the

operators af and a,.
The new phonon operators are

By = UbyU-1, ctc. (2.12)
or

ﬁ; = b& — k3 E: “I“H-q while [ﬂql: ﬂL] = dq,,q, ctc.

The vacuum state |0) remains invariant under the transformation.
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Rewriting the Hamiltonian in terms of the new operators we find: # =
= Ho + Vi + Vg, where:

Ho= 3 Byl + T wablfa (2.13)
Vi= k Y afopra(VEg(R) f-q + Va(k + q) BY) (2.14)
q
Vo= 3% O‘I“k+q,+q, q21(I2 ( —-q —q.ﬂ—q ﬁ—qg + CC)
kq1qs m
— T afepiaia, g it 2FaFloflfa, (215)
kqi1qs
Q¥ —qs
and
1 2
By = 5o (b = SaIFG? + 5 (haFa + 57 + S 1Falt (0 + )
(2.16)
Vr k) =2+ F* (Eprq — E, + o) (2.17)
Valk + q) = A3 — Fg(Epyq — E, — ), (2.18)
while
g2
wg = w + — |F4|2-N, (2.19)
m

N is the total number of polarons. In deriving (2.13), (2.14) and (2.15) we
neglected terms of order of the square of the polaron density. One recovers
the results of I.ee, Low and Pines if we minimize E, in (2.16) with respect

to Fg.
Then
* q2 q T 12 ==
da+ Filo +o——= (k= S qu(Fa8) ) =0  (220)
q
and
k2
E,= —aw + —, m' = m(l 4 «/6) (2.21)
2m

The second order correction to E, is then, using ordinary perturbation
theory
AE 592 « #
= —0.0159 — 0.02 : . 2.22
g v (I + o/6)2 2m (222)

Thus for « = 3 the correction to the ground statc energy is 69, while the
effective mass is changed by about 59%,.

This result indicates that the L.L.P. polaron model is good enough to
describe the transport problem of polarons in the experimentally interesting
range of coupling constants.



Note, that the total momentum operator is left invariant. Thus
P = 3 kafo, -+ T qBlpa. (2.23)
k q

We have to remark that in their one-electron description L.L.P. use a
second unitary transformation to transform the centre of the coordinate
system to the actual position of the electron. As a consequence their trans-
formed Hamiltonian does not contain the polaron operators any longer,
but is more complicated. We prefer the description, given above, though
the results are completely the same. Note that the theory can trivially be
extended to the case of high electron density, taking into account the
electron-clectron interaction.

3. The correlation functions. Let the system, described by the Hamiltonian
{(2.1), be initially in thermodynamic equilibrium. At time { = —oo we
adiabatically switch on an electric field of frequency w.

The interaction between the system and the field is given by:

AH = E @ el (3.1
where 2 stands for the total dipole moment of the system:
D = —efdr-rgly,. (3.2)

In this expression i, is the electron density operator, ¢, is related to a,
by:

eikr

thy = % “ e
Following among others Bonch-Bruevich15) we may write the frequency
dependent clectrical conductivity as:

oulz) = i [ €% ATHu(t), Dr(O)]> (3.3)

where z = w + 7e. F4(t) is the Heisenberg operator of the pu-th component
of the current operator:

— L v, T.ala,. (3.4)

= Q =

T, is the kinetic energy of the electron, given by %2/2m.

The expression <([.£(f), 2,]> has the meaning of a grand canonical
ensemble average of the commutator of the operators S,(t) and %, over
systems, described by the Hamiltonian (2.1); Thus

{[4, B)) = Trace {p[4, B]} where the density matrix p is given by

1
—BH —pN)Trfe—FHF —nN) = —
e [Tr{e }, B iT



The definition of the drift mobility follows immediately from ou(z) by
the relation:

Our(2) = efipun(2). (3.5)
7 is the average electron density in the system, N/Q.

From (3.3) we see that we have to evaluate the corrclation function:
&Fu; Dv), defined by:

e ; . )
Fu; Dy, = — o § (Ve Tru fe”’ dic[e*'afa, e ¥, 2,]> (3.6)
0
Then the definition of {a}a,; @), is:
Kata,; DY: = 1 [ e di(e* afa, e ¥, D]>. (3.7)
0

As we will express the correlation functions in terms of polaron operators
we use the unitary transformation (2.10) to obtain:

—e —€
.ﬁ=;’(§§kazak=m%“kU_lazakU:

—_Q {Z (k — Z qiFql?) “I“k Q“I“Hq(Fiq.B—q - FqﬂZ)}
F=J+T (3.8)
where we have neglected terms of order 72. Noting that the total dipole

moment & is invariant under the transformation we may write the electrical
conductivity as:

qu(z) = <<]#; Dy + <<];u Dy, (3-9)
where
Ui @Ys = — —= 3 (bu — T qulFal?) Codans 25):  (3.10)
m k q
and
<<],’,, Dvye = —= Z qﬂ((“z“iﬁq -qﬁ—q - FqﬂZ)I DY (3.11)

As is pointed out by L.L.P., ref. 2, the vector-function Y4 q ;I4i{2 may be
written as 7,k. Using this expression, (3.10) can be simplified in the low-
temperature region. Then the correlation function {aje,; 2,), falls of
rapidly with increasing k and %, can, in a good approximation, be replaced
by its value for k = 0. Thus, for low temperaturcs, we may write instead
of (3.10)

<<]lh Dy, = kﬂ((“lak s Doz (3- loa)

me



where the effective mass m" = m/(1 — 5o) = m(l + «/6) in the case of the
L.L.P. polaron model.

As an illustration of the use of the Kubo formula we shall give a simple
example. The expression for the conductivity, (3.3), takes on a very obvious
form in the special case when the current correlation function is simply
exponentially damped.

[Lut), D5 = <[ SFu, D5 et (3.12)
Since
e2 1e257
<|:flh gl’]) = <[Z kﬂaIak, @,J) = — 6‘”
m i m
we find
e T .
ouw(z) = ” O @ r ) (1 + 721) (3.13)

This frequency dependence is well known from the usual transport theory.
As we have pointed out, the situation is more complicated in the case of
polarons. The assumption (3.12) is identical with the usec of a simplified
Boltzmann equation but the introduction of a relaxation time 7, at least
in this simple form, seems to be unlikely. But, as we shall show, the ex-
pression (3.13) is justified provided that we replace m by an effective mass
m* keeping the temperature low enough.

Before going into a detailed investigation we discuss some useful con-
servation laws. The conserved quantities are: The polaron number operator;
N = 3, afo,. The total momentum # = ¥, kaja, + 3 qB§Bq, the energy
H and the total dipole moment 2. From the conservation of total number
of polarons follows

(N, @) =0 or 3 afoy; Dyys=0 . (3.14)
k

The conservation of total momentum leads to

Py, Dy)> = —ieNbuy
or
1eN
z

%‘4 kuafey; Dvdz + X qulBlBa; Do)z = Sus- (3.15)
q
As Michel and Van Leeuwenl?) showed, the correlation functions
afoy; ZvYy: and BiBq; vy, may be interpreted as the linear deviation
from the polaron equilibrium distribution, #,, and the linear deviation from
the phonon cquilibrium distribution, »4, respectively. Equation (3.15)
expresses that in the limit z — + ¢0, either the polaron current or the
phonon current or both must tend to infinity. To avoid such a physically
uninteresting situation we make use of the fact that the polaron density is
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vanishingly small with respect to the phonon density. The consequence is
then that the polarons in the system cannot change the distribution of the
infinite number of phonons. Because the phonon distribution is in equilibrium
at £ = —oo, it will remain so and »q4 is always equal to

vg = (e — 1)L, (3.16)

In order to evaluate the polaron current correlation function, ¢ Ju; ).,
we use the well-known series expansion of the time evolution operator:

it — {1 4+ E »L'nftdtn ...}zdththtz th} gtHot (317)

and e 0
e~ — e—illol] 4 E (—i)"ftdtn .__fhdtht.. LV Vet (3.18)
where - 0 0

Ve, =ch el and V="V;4 Vs
Inserting (3.17) and (3.18) into (3.10) yields

oo t
KJus Dvdz = iofe”‘z‘ dt-<[Ju,¢ 4 i({dtl[th Jut] +

[] 2
to b A SV Ve o Vi Tud 1D (3119)

We rewrite this expression by using the convolution integral theorem. Then
(3.19) becomes

Jus Dy = T in [ diy ... [ diy,
n=1 0 0

<[CiHnt1[V, e’iHotz[V. . e’illntn—l[V. e‘iHotn]'” e—’il{otn] e—‘i[lntn-l . ] ei[[ntz] e—iIIotl’ ‘@r]>

(3.20)
This may be expressed in the more condensed form:
J; Dy, = mgo {Inlz), 27>, (3.20a)
where Jp(2) is defined by
Jm(z) =1 Ofwe"z‘ dt[V, Jm—1(2)]: (3.21)
and [A, B); stands for ' [4, B] e~ while Jy(z) is given by
Jo(z) = ife"z‘ d¢(J)e = — % J. (3.22)
0
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Notice that the series expansion (3.20) is valid for any arbitrary operator
instead of J. For instance,
v, Jﬂ(z)] DY, = Y <[Jm(z), ).

m=n+1

This equation combined with (3.20) yields:

KI; DY = X Inl2), 2D + K[V, Ju(2)]; D). (3.23)
m-—=0
In the case n = O expression (3.23) can easily be recognized as the fourier
transform of the equation of motion. Then

1 1
KI; DY = — - W, 2> — — (L8, J1; D). (3.24)

As it stands, (3.24) is not uscful, because we are not able to express the
correlation function {[s#, J]; 2, as a known function of {J; 2),. This,
however, is approximately possible for correlation functions of the type
LH#, afay); @Y, For that reason we shall evaluate the series expansion
(3.20) directly, instead of looking for an integral equation of {J; @),.

As it stands (3.20) is not a convergent series expansion. We will meet
terms that are of order z—* and thus highly singular in the limit z — £0.
Besides this aspect, the interaction part of the Hamiltonian, V, possesses
the delta singularity property, introduced by Van Hovel8). Due to this
fact only a certain class of contributions are of importance in the limit of an
infinite volume. In the present situation this means that some terms will
possess an extra summation over the internal states, which, in the limit of
an infinite volume, gives an extra factor of order of the volume. Taking these
features into account we first perform a partial summation in expression
(3.20) in order to assure a rapid convergence of the series expansion in the
polaron-phonon interaction.

We separate from (3.20) the terms

KJ; 20 = 3 IR o(2), Do (3.25)

n=0
JO  (2) = 42 me"z‘l dt mem" dto[V, [V, JO (2 3.26
2n+2,d() 6/ 10./ 2[ '[ ’ 2n,d( )]t,]t,d ( )

The grand canonical ensemble average has to be taken over systems,
described by the unperturbed Hamiltonian Hy.

The subscript 4 means the diagonal part of the corresponding operator
in the «, 8 representation. We have to evaluate (3.25) explicitly. One may
call (3.25) the lowest order contribution to the conductivity, because, for
small coupling constants «, it is of order «~1.
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For n = 1 J{), reads

I (z) = 42 [ e dty e dto{V - {VIo(2) — Jo(z) Ve, —
0 0
—{V-Jo(z) — Jo(2) -V}, -V}, a
Or

JO2) = i [ e dty [ eioh Ato{(V - (V) ado()}e, +
0 0
+ {Jo(z) . (V}gz'V)d}gl — iz_;oeiz“ dtl_/?e"z"’ dfz{(V'{Jo(Z) 'V}tz)d +
0 0

+ (V- To(@)e, V)ahe, = AP4(z) — BEA(). (3.27)

Evaluating A$")(z) explicitly yields:

AP =
=172 J‘ei”t‘ di feizl’ dtz{(V{V)d.Io(Z)}m + {Jo(z) . (V}gz . V)d}tl ==
0 0

=——J Y ofoy: { Valk + q)12 88pq-A(E, — Eprq + @;2) +

22 qulqa

+ |V—g(k)|2 B-g BLq-A(E) — Epqg — @ 2) +

+ (qlq; "|F—q,2"|F—q,|?* (B"q,f-q, + f-q,BLa, +BLq, f-a, + B-a,BLa,) X

X A(E —Ek+q1+q8—2w;z)+

2
+ % 5 e F, 28 e, + |Fal? Fa Bl fa) X
(2m)2

X AME, — Epiq,+q, Z)} =

1 -
=— I Salu (S WPk E+ @ + S WRo, (3 k+ g1+ g2} (3.28)
) q aq:
We introduced the definition:
1 1

Ale:2) = x—2 x+z

This expression reduces to 27x¢d(x) in the limit z = 0.

Since we are only interested in the low-temperature and low electron
density behaviour we neglect contributions of order »2 with respect to »q
and =, with respect to »g4.

The evaluation of ([A{)(z), 2]>o will give no difficulties at this stage.
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Keeping the low electron density approximation there is only one possible
way to decouple the correlation functions:

(edanflBa, @10 and <[ofarfafl, Do
That is replacing these expressions by
vgllafay, Do and (1 + vq)<{[afey, 2o

respectively.
Then the operator cxpressions

WPk; k+ q) and WE.(k; &+ g1 + q2)
go over into the transition probabilities
Wk k +q) and Wi (ki k+ 1 + ¢2)

where we have substituted g§8q by vq and 48§ by (1 + »4), respectively.
Taking this into account we write <[A)(z), Z]>0 as

(ALUE), Do = ——— S k- {(WP(k; k + q) +

+3 W2k k+ q + q)afae, Do =
'_sz EW‘I(k k 1+ q) <[efoer, PDo (3.29)

We can use the same argument for the terms accounting for <[B{)(z), Z]>0.
The result is

(BP4(z), P]>o = ,Q z I Wa(k + q; k) (af+qup+a- ZDo. (3.30)
q

Since <[afay,, @]>o is given by —ieV,n,, the tensor <[JP)(z), Z]>o reads
finally

<[J(2?2t(z)' Do = (W —n(l; k1) Vin, — Wy, (k1; B)V 1.}

’Q 2 kR,
(3.31)
The detailed calculation of <[J$"}(z), Z]>0 together with
—1e? 1e2
olz), Do = — it =~ il (3.32)

gives us in fact all the information we need to evaluate the lowest order
contribution to the conductivity.

Looking at the equations (3.32) and (3.31) shows that simply replacing
Venyg in ([Jo(2), Z2]>0 by

—1
= Z Wamelks k) Vi — Wiy (k1 K) Ve,
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will give us <[J{)(z), D1do. It suggests that this rule will hold in general.
To show that this is indeed the case we consider the operator expression

Jinta,a(z) = 12 fetn dby [e0 AV, [V, T3 4]0 a (3.26)
0 0

and remember that J§) ;(z) contains a product of phonon operators of the
type
(ﬂxlﬂqz)d (ﬁqsﬂzq)d s (ﬂ;an—lﬂqnn)d

where all interchanges of the phonon operators between the brackets are
allowed. Then J§), , ,(z) must contain at least two phonon operators more,
for instance in the form:

(BgunBLBa)a (Bafl)a .. (Bl Bod)a BL,..)a (3.33)

Now in order to calculate <[J$)), , ;(2), 2]>0, we have to contract (3.33) and
find that the contraction:

(3.34)

(1 + qunn) 6q1n+x,qan+avqlaql,¢h v vlhn—l. .(sqzn-x, qzn

yields one summation over the wave vectors ¢ more than all other possible
contractions. Thus in the limit of an infinite volume, only the contributions
to ([JE), 5 4(2), 2]>0 might be considered that contain contractions like
(3.34). But the contractions of the type of (3.34) can be obtained by con-
tracting the phonon operators before commuting J{) ,(z) with the interac-
tion V. Hence, in the recursion formula (3.26), we may replace the operator
afx,, appearing in J§);(2), by —1/z Xp Wy, -4(k; k1) ofoy, — Wy, (Ra;
k1) of @} in order to find J{) , ;(2). This is just the simple rule given
above.

As an illustration we evaluate the contributions of <[J®)(z), 21>0.

Using (3.26) one finds:

JO(z) = 32 0f°° et 4t 6/°°eizta dtolV, [V, IO4)e ], (3.35)
Or
JOhz) = 02 fm e’ dtlfm e dbof{JPN(2) - (V- ), V)a —
0 0
— (VI Vie)a — (VI V)a £+ (V-{V)aILu2) e},

where
IQu(z) = APy(2) — BRi(z).

To prevent lengthly formulas we combine a contribution from the first

15



and last term in expression (3.35) and find:

o oo

i [ aty [ et GADUD) - (M Ve + (V- (9)ar ALY Zo =
0 0
4

1
=+-3 0 S k(Wq,(k; k + q1) Wo ks k + q2)-afoy, Do

m'Q kq1qs
Besides the contraction

1 e

— —— T kW (k; k + q1) Waalk; k + q2) <[oefa,, @0

z3 m'.Q kq:qs

there is the possibility to contract the operator product f§ fq4,-8%,84, as

BY, Ba, BY, Ba,, leading to vq, (1 + vq,).
AN S S

In the limit of an infinite volume, the last contribution will be vanishly
small with respect to the first one because it contains one summation over
the wave vectors q less.

Calculating the other terms in (3.35) we finally arrive at

IOYz) @]>0=_:ici 3 k-
4,d ’ m;gza Khoks

AW p—n(l; R1) - (W ok ko) Vit — Wy g (ke B) Vi) —
- Wk—kx(kl; k) ) (sz"kl(kl; kz) kankx - ka_kz(kz; kl) V’lznke)}'

Knowing the effect of the recursion formula (3.26) we can represent the
diffcrent terms in the series expansion (3.25) by diagrams. The contribution
of (3.32) is represented by fig. 1.

We read the diagram from the left to the right. The solid lines are polaron
creation and annjhilation lines:

& k k -k k b
© @®
A N K
. Sk : i -
3 t 2 b
Fig. 1 Fig. 2.
The contribution of <[Fo(2), 210 The contribution of The contribution of

We—r(k; k1) Ving  Wy_p,(k1; B) Vi,

The contributions of (3.31) is then represented by fig. 2. The dotted line
represents the connection of the transition probability W, —.(k; k1)

We note that connecting the dotted line to different polaron lines gives
a plus sign, otherwise we have a minus sign. The contributions of
[IPY(2), @0 consist of all possible combinations of two diagrams of the
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type of fig. 2a or fig. 2b. The correlation effect contained in fig. 26 will
bring us into trouble if we want to sum

J; 2y = 2. <ISN=), ZDo (3.25)

explicitly. This 1is just the source of the difficultics one encounters if one
wants to solve the Boltzmann equation. Happily in the case of polarons
the temperature must be much smaller than the Debye temperature in
order to make the polaron concept mecaningful. Then only diagrams of the
type of fig. 2a are of importance, as we shall show.

Besides the contributions of (3.25) we have to consider the lowest order
contributions of (3.11). Thus

<<],In 97»;0) = _m_ 2 <°‘I‘1k+4( —qﬂ— - Fq}%) 91'>>(0) (3-36)

I 2y = > T, Do (3.37)

n—0
where J'{)(2) is defined by the recursion relations (3.26) but Jy(z) is given
by
J'(z) = 42 feiz“ dty feiz” AoV, e )s,a0 =
0 0

| F*gV-_q(k)

= m!)z % q l (ed+qaprq — afay): (”—q (E ~ Eoiq —_Cl_)TZ)_ -

FqI_/q(k + q) )_ ot ( F:qV—q(k)
(Ex — Epta + o + 2) E,—Epiqg—w+2z
F,vak
(Ex — Eprq + 0 + 2) I
Together with ¢J; 2, expression (3.37) yields for the electrical conducti-
vity:

o) = %k~ S qiFal? + T qrV(k; Q) Codow; D) (3:39)

&

(1 + vq)

+ -

where
F* V_qk)
O — 1 . ( q’ 1
qu (k; q) %:q{( + v-q) E, —FEpiq— @+ 7
F_qV* (k) >_
E, —E,iq—w—2

_v_( FqVa(k + q) " FaVq(k + q)
“\E,—Epqftw+z  E,—Epqg+o—2

_|_ .

)} (3.40)
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Because afa,; )L is proportional to n, = exp.{—pBE,} the main contri-
bution in (3.39) arises from small values of k, if the temperature islow enough.

This means that we may linearize (3.40) in k and interprete ¥4 qx"(k; q)
as a contribution to the effective mass of the polaron. Thus in the case of
low temperatures (3.39) may be approximated by

o) = o T ko DO =

I

m m =
J; 2 ) _ J0 N7 .
o T =i T e, Do (341
where the effective mass, m*(z) depends on the temperature, the frequency
of the applied field and the coupling constant.

The summation of the terms in (3.41) can be done following the procedure
of fig. 3:

]

bt ey b ey
+ +
B D RO b i -k,
] b e

Fig. 3. Representation of the first three terms in 0,,(0)(z).

The first term (fig. 3a) then reads:

(00) __ —1e? _ I'u(2) (Z) l—_—
e B
—162 k'ank
= , (3.42
m*(z) Q >E' 24 I'y(2) ( )
where we defined
Ty(e) = —— = X Wamull; k) (3.49)
Tk(z) L3

Thus (3.41) goes over into
—1el [ 1 0

(0) —
0, (2) = m(z) @ % kl‘l (z + Te(z)) oky ne +
1 ! ?
I R R e ey T
1 1
A ne et e

1 0

Waonlbeib) TR

Ny, + } = o0"(2)+6U1(z). (3.44)
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The convergence of the series expansion (3.44) is not a priori obvious. It
depends strongly on the specific behaviour of the functions W,_, (ki1; k)
and [,. In the case of polarons, however, a rapid convergence can be
obtained in the low temperature region. To show this, it is necessary to
perform the integrations in (3.44) explicitly.

Because we devote the second part of this investigation to numerical
results we delay this question to the sccond part where we shall calculate
the correction term, o0M(z), and

—1e2 1 o

00) — —_
G;‘v (Z) - m*(z) Q %k/-‘ z + .[1,:(2) 3/% n‘! (3’45)

explicitly.

Only under the condition that ¢{J"’(z) may be neglected it is possible to
calculate the first order contribution to the conductivity, o!1?(z). This first
order contribution, ¢}?(2), results by considering the terms in the series
expansion (3.20), that arc of order «? in the weak coupling limit.

As will be clear from the foregoing, the neglection of o{0!)(z) is identical
with neglecting contributions of the type of fig. 25. This kind of contri-
butions complicates the alrcady rather involved expressions for o(1%(2)
extremely and makes the evaluation of o{1”(2) rather hopeless. But the
explicit evaluation of ¢{1)(z) is necessary in order to conclude if the present
treatment is really an intermediate coupling theory. As we shall see in the

second part we solve this problem under the condition that fw > 1.

4. Conclusion. The cffects of the electron-phonon interaction on the
system are twofold. In the first place we have to take into account the cloud
effccts of the interaction. We did this by using a canonical transformation.
As a result we found that the effective mass of a drifting polaron in general
depends on the frequency of the applied field, the temperature and the
coupling constant. Further it turned out that the concept of cffective mass
is only useful in the low temperature region, when fw > 1. This is in agree-
ment with the results obtained by LLangreth and Kadanoff18),

In the second place we have to deal with the dissipative cffects of the
interaction. Using Kubo’s formula we develop a method to calculate the
lowest order contribution to the conductivity and the several correction
terms, 0@V(z) and ¢{,?, directly, passing by the special assumptions needed

uv »
in the Boltzmann equation approach.
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CHAPTER II

APPLICATION OF THE KUBO FORMULA TO THE
MODIFIED L.L.P. POLARON MODEL

Synopsis
An intermediate coupling calculation of the drift mobility of polarons has been
carried out, using Kubo’s formula for the linear response coefficient, together with
a modified L . P polaron model At low temperatures the drift mobility turns out
to be
e
b= T T RA
m” 2aw¥(1 + 0 06z)
where « 18 the clectron-phonon coupling constant and m* the effective mass of the
polaron, given by
. (1 + o/6)
m m———
(1 + 0 2av)
A comparison, made with other intermediate coupling theories, shows that the ob-

tained mobilily expression agrees closely with Osaka’s formula in the coupling range
a < 3 The calculated correction term being

006«
(14006a)’

ustifies the validity of th e obtained results in the intermediate coupling range

"

1. Introduction. In a previous paper, hercafter to be referred to as I,
we developed a method to evaluate the dnift mobility of polarons avoiding
the special assumptions needed in a Boltzmann equation approach. Starting
from Kubo’s formula for the frequency dependent electrical conductivity
and using the Frohlich Hamiltonian to describe the -electron-phonon
system, we showed that the low-temperature electrical conductivity could
be written as a power series expansion in the polaron-phonon coupling.
The essential assumption, entering 1n the treatment, was the requirement of
convergence of the perturbation series in the intermediate coupling region.

It 1s the aim of this paper to calculate explicitly the first two terms of the
series expansion in order to show that this assumption is reasonable.
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The properties of polarons are taken into account by describing the polaron-
phonon system with the Hamiltonian.

H =Ho+V, V=Vi+ Vo, (1.1)
where
Ho= EEk“I“k‘f‘ ZwﬂZﬂq (1.2)
q
Vi= ?aiak+q{V’lq(k)ﬂ—q + Va(k + q) B3} (1.3)
q
V2 = Z d;dk+q‘+ql %2_ {F:qu*—qaﬂ—lhﬂ—qz + C‘C‘} -
kqi1qa m
— 3 almraia o 2Fg,Fr o fhfua, (14
kq1q2 m
qQi 7 —qa

and

1 2
E,= ™ (k — X q|Fql?) + X (4gFq + 23F3) + Z |Fql? ((D +q—) (1.5)
" 7 7 p 2m

qz
wg = o + L |Fyl2N. (1.6)
m
V2 olk) = 2 — F*o(Ey — Era — o) (12)
Valk + q) = A3+ Fq(Ep — Epsq + o) (1.8)
1= —iw( 1 )*(47:0()* (1.9)
T g \2me/ \ Q) )

The Hamiltonian (1.1) is generated by applying a unitary transformation
to the Frohlich Hamiltonian and neglecting terms of second and higher order
in the polaron density. The meaning of the symbols is the same as used in I.
The transformed current operator has been given as

JS=J4+ 7T,
where
—e
= _ 2
J o Zk:(k §Q|Fq| ) afoy (1.10)
e
J = mo E; qazawq(Fiqﬂ—q — Fgpl) (1.11)

Using the Kubo formula, the clectrical conductivity could be written as

oulz) = §0<[fu,n(z>, 2] (1.12)
with
FIalz) = i [ €H AV, Fnaa(2)]s (1.13)

0
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while

Fo(z) = 1 et dt etHot J e, (1.14)
0

The lowest order contribution to the conductivity is defined by

‘7;(3)(2) = ‘7_;!;‘ % (ks — T qulFql2 — X QMX;O)(ki q)}Kafoc; 97));‘” (1.15)
q

where 34 qx9(k; q) is given by
F* (k)
SOk q) =2 {1+v— ( :
qlt;uc( q) qq( a) T A ——
F_gV* (k) ) _ ( FqValk + q)
E, —Eprg—wg—2 "\E,—Epiqg+wg+z

FaVqe(k + q) >}
. 1.16
+Ek——Ek+q+(l)q—Z ( )

+

+

The terms between brackets in (1.15) constitute in fact the effective mass
of the polaron, being frequency and temperature dependent.
The function F4, defining the average number of phonons in the polaron
cloud, was obtained by minimizing E, with respect to Fg.
Hence
Fy= —% : (1.17)

2
o+ — L (k- 5 quiFe?
m m

This choice of Fg leads immediately to the polaron results of Lee, Low and
Pines?). They showed that it is convenient to put Y4 q |Fg4|2 equal to 5,k.
Then in the limit k& — 0 we may write

/6

T+—a/6—- (1-18)

no =

2. The effective mass of the polaron. In order to evaluate, in a lowest
order approximation, the effective mass of a drifting polaron we return to
expression (1.15)

—e
00(z) = —— N {k — T q|1Fq2 — 3 qxV(k; @}afoy; 290  (1.15)
mQ g q q
and introduce
—1q
F, — 1.17
T .
2m m kL

into the term between brackets.
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The result is

0 —¢ — q2 I;'QIZ
0O = =X [kl —m)+7Eq-, - 5 %
ms g a  2m q2 qk 2
ot — Ly
m m
x 1 + 1
' qk q° qk
-1 21— — 32" 0 —p) =
<w om T Wmm F 2 e—— e — (1) — 2
Lofoy; DY (2.1)
We note that this expression is only useful, if the denominator:
¢ gk
27—
w + om " ( k)

cannot vanish. This means that # < V2mw (1 -} «/6), a condition which
restricts us to low temperatures. This restriction is inherent to the L.L.P.
polaron model and can only be avoided with another choice of Fq. The
a priori choice of Fg as in (1.17) is in fact the reason that we restrict the
theory from the beginning to low temperatures, which simplifies the calcu-
lations considerably. For example it enables one to ecxpand the terms
between brackets in (2.1) in a power series in k. Then the first contribution
comes from terms linear in k. These terms will give us the effective mass of
the polaron. The contribution of the next term is of order ¥(1'/6) provided
we take a Maxwell-Boltzmann distribution for the polaron equilibrium
density #,. When T <€ 0, we may neglect this kind of contributions. Hence,
changing the summation into an integration and performing the integrals,
we arrive, in the limit 2 = ¢0 at

a®(0) = — 0 5 {k(1 — o) -+ 0.207k(1 — o)}ty DY =

—e o GO
i DRI DP (22

where the cffective mass #} in a lowest order approximation, reads

1
my = m i“/i_ (2.3)
(1 + 0.2a9)
In terms of the infinite series (see I equation (3.41) we find
a@(0) = ¥ I al2), ZDo, (2.4)
n—0
where
€
JBO)(Z) = m*_Q_z % kdldk. (2.5)
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The expression for the effective mass, (2.3), agrees fairly well with the results
obtained by Yokota?)

. /6
=il g .
But the temperature dependence of (2.3) and (2.6) is in contradiction with
Fulton’s expression for the effective mass3)

my = m{l + (1 + V) «/6}. (2.7)

In fig. 4, we compare our results with those of Yokota, Fulton and
Osakald), in the special case of @ = 3

1.7[-

. Fulton
' \< prazent theory
I , , . \__Vokota
o1 0z 03 0% 05

b

1 W Csaka

—_—

Fig. 4. Low-temperature effective mass for « = 3.

We note that the temperature dependence of Osaka’s effective mass
cxpression agrees qualitatively with ours. The constant dillerence of about
0.4 is due to the use of different polaron models. Osaka’s calculation is
based on the Feynman polaron theory while Fulton and Yokota uses the
L.L.P. polaron model. As we have seen the temperature dependent effective
mass, my, follows straightforward from Kubo’s formula in the intermediate
coupling region. This in contrast with the mcthod followed by the other
authors. Yokota calculated the free energy of the polaron state using the
Hartree approximation. Variational parameters, appearing in his treatment,
were determined in such a way that the free encrgy is minimum. Osaka
followed in fact the same way, but he made use of Feynman’s variational
principle to calculate the free energy. We remember that an extension of
the theory to the intermediate temperature region (I comparable with )
is, from a practical point of view, a rathcer difficult problem. For that
rcason one often uses the low-temperature mobility results in a temperature
region, where it is, strictly speaking, not allowed. FFor instance, Van Hey-
ningenlf) obtained experimentally the drift mobility of polarons between
70°K and 350°K in AgCl (8 = 280°K). Following Brown?3) a considerable
improvement of the (it between these experimental data and the calculated
values is obtained, provided that one introduces a temperature dependent
effective mass in the low-temperature mobility expression.

3. The drift mobility at low temperatures. As we have shown in I, the lowest
order contribution to the conductivity follows from a partial summation
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of the infinite series expansion (see I eq. (3.41). Introducing the expression
for the effective mass, the result has been given by equation I (3.44)

V) = ok { 1 et
w mQ ¥ 24 Toz) ok *
e W ) —— O e +
A T RN TR ok,

1 1
—_— W, (k1 B) —.
M A e UGl ey oy
1 0

n
2+ Ty (z) ke ™

W i, (k2 B1) + .. 3.1)

where the reciprocal relaxation time I',(z) is defined by

i = Waall ) 62)

and
Walk; B+ q) = |V_q(k)|2(1 + V) AH(E, — Eprq — w;2) +
+ Vol + q)I2V-AE, — Epsq + »; 2) +

2,2
+ 3 LI AP 2 |Foof2 (1 + 29) A(Ex — Envagea — 20;9) +
q1
+ 9 2 (|F—q|? |Fq,2 + [F-q,|? [Fql?) A(Ex — Egiastq; 2) (3.3)
q
with the definitions
A(x; 2) : : d 7 : 34
%;3) = — n = :

’ x—z x+z OV (e’ — 1) (3-4)

Note that A(x; z) reduces to 27¢d(x) in the limit z = 40.
Let us further put

al(z) = e0(z) + aSV(2) 3.5)
where
00y, _ —1e2 1 2 3
ayv (z) m*g kE (1 Z+ Fk(z) 8k,. ng ( 6)
and

o9(z) stands for the second and following terms in the series expansion
(3.1). We want to show that ¢{3"(z) will give us the low-temperaturc contri-

bution to the mobility, while 6{3"(z) is at least of order (7/6)(f = w/k) and
hence may be neglected.
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Introducing (3.3) into (3.2) we find in the limit z = 0
T(0) = 271 3 [A4)2{(1 + V) 6(Ey, — Epyq — ) +
q

2 2
9192
m2

+VHE, — Epiq + w)} + X

q1qa

{(1 + 29) 6(Ey — Eptq,4q, — 20) + VO(E, — Egig,4a,)}- (3.6)

|F-q1|2 IF—qJZ'

Then, using (1.17), changing the summation into an integration and per-
forming the integrals we arrive, in the limit £ — 0O, at

I'y = i2a00¥(1 4 0.06a). (3.7
Hence ¢$%(0) becomes
00) e27
00(0) = S, (3.8)

m§2owV(1 4 0.06«)

To estimate the order of magnitude of 6{J"(z), it is convenient to introduce
some simplifying assumptions, which avoid unneccessary involved integral
expressions. Because our system is isotropic o(z) reduces to a scalar
(z = ») and we may replace k2 by 4k2. Further we put z = 70 and fw > 1,
orv £ 1. FFor the polaron distribution, #,, we take the Maxwecll-Boltzmann
distribution. Furthermore we restrict ourselves to small coupling constants
o only assuming that the result is valid in the intermediate coupling region
if we replace the band mass of the electron, m, by the effective mass of the
polaron m*. Because we are mainly intercsted in the temperature dependence
of 6{V(z) these assumptions are reasonable.

Using these simplifications, and cxpressing I'y in terms of dimensionless
variables, we obtain

Ty = 2iaw % {(1 + ) cosh-1% + ¥ sinh=14} 4- O(a2) (3.10)

while the transition probability is

tocew 1

Wi, (k1; k) = — T kT {(14+7)6(A7—k2—1) + 7 o(k] — k2 + 1)}

(3.11)

Note that the function cosh=1 £ = sinh-1v/42 — 1 is only defined for £ > 1
because of the delta function entering in (3.11).
Then introducing the normalized Maxwell distribution
t
ng =N (ﬂ—“’> e—fult (3.12)
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into (3.1) and changing the summation into an integration we arrive at

_ k . k — fwka?
5O — 1627 <£w_) 20 lff (k2 k1) ¢ ok, +

m Iy,

ky ky

+ ffJ. e h (k2 k1) szjk.(ka; ky) e Puket
I’k! Fk.

by fes, + } (3.13)

k1 ky ks

From (3.13) it is clear that we have to estimate the order of magnitude of

Wkl_kz(kz ; _k—ll

kyi; ko) = .
A(ky; k2) T, (3.14)
Written out explicitly it is
1 1 1+ 7) 8(k3 — kI — 1) -+ vo(kE — A2 4 1
Alky; by) — — By (1+7) ("z_ 1 ) *"_V‘s.( s — R+ 1)
2n |ky — ko2 ((1 + ») cosh—1%; + v sinh~1k,)

(3.15)

We shall investigate in detail the behaviour of 4 (ky; k2) for different values
of k]_ and kg.

If &9 < 1, the first term in (3.15) is zero because of the delta function.
Then A(ky; k2) can be approximated as

1 ky Vo — k2 + 1)

A(ky; ko) ~ — ,
( b 2) 2n Ikl —_ k2|2 COSh_lkl

1 <khi<2 (3.16)

which is of order ¥. In general A (ky; k2) is equal to (3.16) if
m—1<ks<m and m<Ek<m-+1

where m is a positive integer.
In order to illustrate what happens, we picture this behaviour in fig. 5.

.jz
3
/ F
? 5
E L]
1‘\ — —.‘ /
\2 v
NG
1 2 3 ) 5
—
Fig. 5.

As abscissa we choose the number of variables in a certain term in (3.13).
As ordinate we take the possible values of k7. Then (3.16) is represented by
the arrow AB, the order of magnitude is 7. The integration variable k2
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moves between the values 1 and 2 if the integration variable &} moves
between the values 0 and 1.

It is then immediately clear that all arrows pointing downwards are of
order . But if we assume that 22 < 1and 1 < k% < 2 the order of magnitude
of A(ky; ks) is
1 k4 o(k: — k2 — 1)

Alks; bs) ~ — :
(eas kes) ~ =2 ks — k5|2 7 sinh-1k,

: (3.17)

which is of order v—1,

We represent this by the arrow CD. All arrows pointing upwards, crossing
the horizontal line 42 = 1, are ol order ¥—1. This is not the case for instance
with the arrow EF. Because 1 < k% < 2 and 2 < k% < 3, the order of
magnitude of A(ks; k4) is

1 k3 k2 — Kk — 1)
2n |k — kg2 cosh—1kg

Al(ks; k1) ~ (3.18)
which is of order v0.
This means that all arrows pointing upwards above the line 42 = 1 are of
order 0. With these illustrations it is not difficult to estimate the order of
magnitude of the #th term in the expansion (3.13). But let us first discuss
the first term. Here we have only two integration variables ki and ks.
Because of the exponential dependence on %z in ¢ P°%*, small values of k3
contribute most to the integral, leading to a Iy, of order ¥. Hence A(ky;
ky) may be represented by the arrow AB in fig. 5, which is of order v. As
a result the first term in the expansion (3.13) is of order ¥° and may be
neglected.

The second term contains three integration variables, ki, k2 and k.
The possible contributions are represented in {ig. 6 by the possible paths
AEB, AEC, DEB and DEC

"':

N
N

Fig. 6

The paths AEC and ALB arc of order #! and 79, respectively. Multiplying
both contributions by the factor e=#%*/I' yields for the order of magnitude
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of the contribution AEC »?, while for the contribution along AEB we get
7~1. Hence the contribution along the path AEB reads explicitly

e fo )i f ”1 1 ky
2 — o(k2 — k2 — |
m <.n po 2n  |ky — ko|2 ¥sinh-1k, (ky — by — 1) X

ki ke By

1 1 ko

k3

— TO(RE —RE 4 1) —— “""’“kk
X 2n |ky — k3|2 cosh—1lkg (ks 2+ 1) 2tewv sinh— 1k3 Lu
(3.19)
which is equal to
27 k2 1
i (ﬁw ) Zﬁw— [_ _v +
m2awy \ = l sinh—1 &,
0
+1
d 2 k 27
: f R A } ek T (329
(k2 + 1 — 2kixV'k 24 1)) sinh™ k1 m 2007 - o
-1

It is now straightforward to make an estimation of the general term in
(3.13). The nth term reads

(2 o . [Frfhst

ky kny1

Wkn—kn+l(kn 1, kn) e_ﬁWkg””

o ‘kikni. (321)

Ens1

There are 27 possible contributions that may be represented by 27 possible
paths in a graph. Drawing these it is clear that only the broken line of {ig. 7
gives a contribution of order »1.

T <
AN A

CARVARVZARY

Fig. 7

We can see this by noting that only below the line 42 = 1 arrows, pointing
upwards, will be of order -1, while as soon as we are beyond the line 22 = 2
a factor v-1 is lost. (See for instance the dotted line in fig. 7).

Hence we may approximate (3.21) by the contribution of fig. 7 or ex-
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plicitly

27 $ 1 k O(RE — k2 — 1
Zﬁ(ﬂ_‘”)zﬁwf...f— ! e — i — 1)
m 7 2 |ky — kgi2 sinh~1k,
kL kn
o 1 ko Ok — B2+ 1) 1 ka SR, — R+ 1)
2 |ke — k32 cosh—lky T 2n |ky — Buq|? cosh~1%,

i L

1 (3.22)
2tewy — - - sinh—1k,41
n+l
if » is even, thus an even number of factors 4 (k;; kir1).
If » is odd, or if we have an odd numbecr of 4 (k;; ki41), the contribution
is always of order V9, as in the first term of (3.13).
The expression (3.22) can be written as

25 3 4
S "—(ﬂ"_) 2w - ;’-fk; dky x
0

m 2awb \ 7
. +1
1 kAVEE + 1 dx n ok \
AL VAT J " — } _1_ efekt (323)
12 " sinh=ikr J 282 11 2kavRE 4 1)) sinhlk

-1

which is at least of order (w)~™? in the case that » is even.

Hence the low-temperature mobility is given by the first term in the
scries expansion (3.1) and turned out to be

(2
mg20wv(l + 0.06a)

u00 — (3.24)
At this stage, it is instructive to compare the result (3.24) with other
mobility theories. Howarth and Sondheimer$) investigated the mobility
problem with the aid of the Boltzmann equation approach neglecting the
polaron properties of the electrons. Their result is exact in the limit « — 0
and fw — co. They obtained

L a<l, Po> 1. (3.25)

o= m22owv
Low and Pines7) used Low’s scattering formula together with the L.L.P.
wave functions for the polaron low energy states. Their basic approxi-
mation is a one phonon cut-off procedure.
The result is
m

ULP = yo(m, )3 fl«) where wm' = m(l 4 «/6), fo > 1. (3.26)

31


file://-/k/dhx

The function f(«) is a slowly varying quantity of order 5/4 for 3 < « < 6.
Using the optical theorem, Langreth13) modified the L.P. mobility result
by

m
H = o — (o) (3.27)

Perhaps the best results in the intermediate coupling region are found by
OsakaB8). He evaluated a mobility expression, using the Feynman polaron
model and Feynman’s path integral method. We represent his results in
fig. 8, where the mobility as a function of the coupling constant has been
plotted. For small coupling constants one finds

tos = po(l — 0,173 4 ...) a L1, o> 1 (3.28)

Besides these formulas the Feynman model calculations of Schultz and
Morital4) are plotted in fig. 8 in order to show that widely different values of
the polaron mobility are obtained by using different theories.

e —

’
L7 Sz
-~

Fig. 8. Comparison of various mobility theories

Therefore, it is remarkable that the present results (3.24), are in complete
accordance with Osaka’s results up till « about 3, though the methods used
in both cases are completely different. Beyond « about 3 the difference
between Osaka’s results and ours increases but for « > 7 the Osaka
mobility rises steeply. This increase of the mobility at large coupling
constant cannot be expected in the present treatment.

The close correspondence between Osaka mobility and (3.24) suggests
that in the intermediate coupling region the Osaka formula or (3.24) should
be used in preference to the other ones. It is also noted that the obtained
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mobility expression seems to be rcasonably insensitive to a special polaron
model in the intermediate coupling region. Besides the argument just
mentioned, we can justify this by calculating the first order correction term
to the mobility. It will be done in the next paragraph. A next argument has
been given by Langreth and Kadanoff.

In their paper?®) these authors stated that a possible criterion for reliability
of a weak and intermediate coupling theory is, that its expansion in powers
of a corresponds quite closcly with the exact power series expansion. They
calculated the first two terms of the exact serics expansion and found

u=uo(l —af6+ ..) (3.29)

Now the first nontrivial term in Osaka’s expansion is —0.173uee. It is
easy to sce that such a lowest term in our mobility expression (3.24)
gives —0.227uoa, which is too small. But we shall show in § 4 that there
are more contribuiions to the mobility of order yoa by inspecting the higher
order correction terms. It will been shown that the first order correction
will exhaust together with (3.24), all possible contributions to the mobility
of order ug and poa. These contributions will rectify the value —0.227 poa.

§ 4. The correction terms. Besides the correction ¢’", which is at least
of order (T/6) we have to evaluate the correction term ¢§'®, which docs not
vanish in the limit (T'/8) — 0. In the weak coupling limit its contributions
are of order «?. The power series expansion of the conductivity then becomes

(1 4 et e ) )
oo = — —— ¢ ¢ .
0 m2awV 1 2
c1, ¢ etc. are numerical constants, independent of « and 77/6.

The explicit value of ¢, as calculated by Langreth and Kadanoff,
turned out to be —1/6, indicating that the series expansion (4.1) converges
rather badly in the intermediate coupling region.

In our treatment we obtain a series expansion analogous to (4.1). The first
term has been given as

e2i

o0 = _ — (4.2)
m(1 + «/6) 2xw¥(1 + 0.06a)

The next term, of'”, may be calculated by considering the first order con-
tributions to

ou(?) = §0<[Jf,m(z), 2,]>. (1.12)

Three classes of first order contributions must be distinguished. The first
one, H(z), consists of correction terms of pure statistical nature. The

Hny

second class, H{?)(z), contains statistical as well as dynamical effects, while
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the last one, H®)(z), is a pure dynamical correction. H{})(z) is obtained by
considering again the contribution

4
_ Dy]>. 4.
m*QFO % k#<[°‘z°‘k' ‘9 ]> ( 3)

The lowest order contribution was obtained by replacing in (4.3) the full
statistical operator by the unperturbed one.

Hence a correction term of statistical character is obtained by expanding
the statistical operator as

e Ao+ V) — o= FHVY) _'_;dﬁl ePHY | = AHY 4
0
8 Bz , , o -
+0fdﬂ20/dﬂl Pl 7 o= Plle’ ghHY 7 o=l 3 (4.4)

We define H; as Hy — uN. Taking into account the third term in (4.4)
together with (4.3) we have to evaluate

H)(0) =
[ Bs
=t Sk [ a8 [ apicenm Y o P 0B [, 9150 =
0k
0

o ’ 9 B Ba
—1e
= waT, = Hdﬂzfdﬂl'
0 0
(|V-q(R)|2(1 + V) exp {f2(Ex — Epiqg — @) + P1(Epsq — Ep + 0)} +
+ |Va(k + q)'*V exp {fa(Ex — Eprq + @) + f1(Epiq — Ep — w)})<°‘I°‘k>0 +

+ terms of order az}. (4.5)

which in the low-temperature limit may be written as

1e21 1 1
HOO) — -~ 22 (7)) — -. 4.6
0) =" o HO0) 7, (46)
Note that M (p) is proportional to zw?, and independent of «. The class of
contributions of the mixed type, H2)(z), arises by considering.

HPE) = T Ubhne le), 22D (47)
Here we define
I a(2) = iof e= [V, JR) 4(2)]e, (4.8)
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where

T oe) = i2 [ dty [ et AV, [V IE_y(@eea (1,3.26)
0 0

and
€
JM(z) = 2.5
0 () 0 (2.5)
Written out explicitly we arrive at
o (T n ;
e = 5 (T e arary, s0en, 9> =
n=0 .
—1 3
=—————1 | AV, JOUD D> (4.9)
1‘0(2) ’
L=
z
Or
V2 o(k) B—q
o [ain( %
@) @+m *QKEMM%MIQ—hﬂ—m+z
CETIRE
+ N -+ terms of order «2;. (4.10
wk—Emr+w+@ v> (419
Because
. . 0
[afayiqf-qa, Zv)> is equal to —7e P Cafopraf-ad>
14
and
(afop+afl, Do) =
we find
—1e2 [ Vi (k) 2
H®(2) —=  vwt
W = e T Tow) E”hz—EHr—m+z%f“@”J“*+
Valk + q)
4.11
+ E, —Eprq + o -z Bk,. <°‘I°‘k+qﬂa>} ( )

Correlating this expression with the second term of (4.4) the second class
of contributions is

B
HP() = o dp1 3 gu X
" m*Q(z + To(2)) L& du
0
V' (k) d
8 {E E.+ o+ 2z ok MV e P afaysqB-gd0 +
— Loptq — y
(k + q) 8 N
+ E — Eq+ + w + - ak <eﬂ1H0 Ve PrIlo aIak+qﬂ$>0 ] (412)
k kt+4q »
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Taking the low-temperature limit and putting z equal to 4-40, the result may
be expressed by
ie2n 1 1

H®O) = — - - —— 2@ (F) — 4.13
(0) = == ) 4 (419

Note that $®(¥) is proportional to fw¥ and independent of e.
The last class of contributions is purely dynamical in character and may be
written as (4.6) or (4.13) by summing all possible diagrams of the type of fig. 9.

...........

Fig. 9. Contribution to H,(3)(z)

The cross-hatched circle represents a contribution of order «2. We indicate
it by «24(®)(), where the function ¢{*(¥) is independent of a.
The simplest example of this kind of contributions arises from the contri-
butions of

1:3_f eizt1 dtlfeid’ dlz/em’ dt3<[{[V2,[V11 [V]-’ JO(Z)]ta]t:,nd I1,a +
0 0 0
+ [Vlr[VZr [Vl; JO(Z)]t.]l:,na]tl_a + [Vl,[Vl,[Vz, "o(z)]t.]h,na]h,a}’
+ i4fciz“ dtlfeizta dtzfei"’ dt;;fei"“ dt4-
1] 0 0 0

V1, (V1 [V, V1, Jo(2)]i ]t st e @10 (4.14)

where [4, B], ., means the non-diagonal part of the operator {4, B] at
time ¢s.
(4.14) is of order «2. Again, in the low-temperature limit we may replace
(4.14) by

2D (F)<IP(2), D10 (4.15)

which defines the function ¢ (v).
Summing all possible contributions of this type (sce fig.9), we finally
obtain in the limit z = 40

e2n 1 1
HO@O) = 35— a2y®(F) ——. (4.16)
Iy Iy
Putting:
o) = YOE) + $OF) + O ) (4.17)
the first order contribution to the conductivity turned out to be of the form
(10)=ﬁ32ﬁ ! 2 —_1_ 4.18
00 m* _I‘() a l/;(V) 110 ( * )
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Hence
€27 1 1

(10) _ A . 20y — o
= ) S ei(i T 0.06m)

0 m(l + «/6) 2xwv(l 4 0,060)

(4.19)

which is of order «f in the weak coupling limit. It is clear that in order to
find the correct result, (v) must be proportional to Zew¥.

Taking this into account the first correction term to the mobility may °
be written as

e ca
2m*aw?v(l + 0.060) 2(1 4 0.06«)

The cvaluation of the numerical constant ¢ might be done directly, using
the formula (4.5), (4.12) and (4.14).
On the other hand it is easier to obtain the explicit value of ¢ by using the
fact that the mobility does not depend on the special form of the function
Fg4. 1lence, using different functions Fgq, two different power series ex-
pansions of the mobility in a coupling parameter are obtained, leading to
exactly the same power serics expansion, provided that one expands both
series expansions in the coupling constant «. Using this fact we compare the
serics expansion

€27

c
N = ol -+ af6) awi(l T 006a) (‘ 0 Fooe T ) (*:21)

with the scries cxpansion obtained by taking IFg — 0. It will be clear that
the last one is much easier to evaluate.
Using to above developed method we arrive, in the case I'g =0, at

e2n

oo = (1 —af6...). (4.22)

2mawy
which is just the result of L.angreth and Kadanolf.
Hence expanding (4.21) up till terms of order «® and comparing the
coefficients with (4.22) we obtain ¢ = 0.12.
As a result the first correction term to the low-temperature mobility is
0.06a

10y __ @0y __ TFP% 4.23
o = R T 0.06a) 4.23)

This correction term changes the mobility u’® by some 15% when « is 3

and by 269, when « is 6. This is in accordance with our assertion that the
present treatment leads to a satisfactory convergence of (4.21) in the
intermediate coupling region.

5. Concluding Remarks. As we have shown the introduction of a unitary
transformation into the Kubo formalism acts to increase the convergence
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of the power serics expansion in the coupling constant of the low-temperature
mobility of polarons.

The first term in this series expansion is sufficient if we choose for the
unitary transformation the L.L.P. transformation and if we restrict ourselves
to the intermediate coupling region. The close correspondence with the
mobility expression of Osaka shows in addition, that the obtained results
are rcasonably insensitive to the properties of the used polaron model.

The L.L.P. polaron model as well as the Feynman description will lead
to essentially the same mobility bechaviour in the experimentally interesting
range of coupling constants.

Nevertheless, the fit of the theoretical formula with the experimental
results, though slightly improved, remains rather unsatisfactory. The
reason for this is not obvious. Of course other than polaron-phonon scattering
processes might be important. But besides these questions it is worth-while
to note that most experiments are performed in a temperature region where
the requirement 7 <€ 0 is not very well satisfied. As a conscquence the
correction term (!, starting with a contribution of order 7'/6 u{’®, may
not be neglected any longer.

At the other hand higher temperatures reduce the cffective mass of the
polaron, tending to increase the fit between theory and experiment. In
principle, the analysis given hcre can be extended to the case of inter-
mediate temperatures. Calculations of the drift mobility at intermeditate
temperatures are in progress.
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MOTIVERING EN SAMENVATTING

Het polaronprobleem, waarin de cigenschappen van elcktronen in de
geleidingsband van polaire kristallen onderzocht worden, is sinds dec jaren
30 om verschillende redenen actueel gebleven.

In de eerste plaats wegens de toepassingsmogelijkheden in de halfgeleider-
fysica. Een {weede belangrijke reden is de fundamentele rol die het problcem
in de ontwikkeling van de vaste stof fysica heeft gespecld. Het heeft deze
rol te danken aan het feit dat het polaron in principe een eenvoudig model
voorstelt van een deeltje in wisselwerking mel een gekwantiseerd veld,
cchter zonder dat hierbij de divergenties optreden die b.v. in de kwantum
elektrodynamica zo'n belangrijke rol spelen.

Dit leidde ertoe dat het polaronprobleem als testobject werd gebruikt om
nieuwe methoden en conceptics te toetsen. Al in 1933 voerde Landau, in
ecen poging de eigenschappen van F-centra te verklaren, het polaron in als
quasi-deeltje. Een elektron, aangebracht in de gelcidingsband van een
ionenkristal, produceert, door zijn Coulomb-interactie met de ionen, een
roosterdeformatic en bijgevolg cen polarisatieveld. Landau vermocdde
dat wverschillende eigenschappen van ionenkristallen verklaard konden
worden door het elektron plus de roosterdeformatie als eenheid op te vatten
en zijn beweging door het kristal te bestuderen.

Naast het werk van Landau gaf Frohlich in 1937 een kwantitatieve
behandeling van elektronenverstrooiing in ionenkristallen. Door de
wissclwerking van de elektronen met de roostertrillingen in de behandeling
te betrekken, voerde hij voor het eerst het veld van de roostertrillingen in
als nicuw begrip. 11 Jaar later paste IF'réhlich de kwantum veldentheorie
op het probleem toe, in, zoals hij zelf zegt: “A preliminary investigation to
approach the problem of superconductivity”.

Het belang dat Landauen Frohlich, opgrond van het polaron probleem,
aan de elektron-phonon wisselwerking toekende, is de basis geweest van de
snelle ontwikkeling in de vaste stof fysica in de jaren 50. Recds in 1950 kon
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Frohlich de elektron-phonon wisselwerking aanwijzen als oorzaak van het
bestaan van supergeleiding en in 1953 konden Bohm en Pines het collectief
gedrag van clektronen in metalen (plasmonen) als fysische oorzaak noemen
van de divergenties die bij de mathematische problemen optraden. Bohm
en Pines konden dit uitvoeren dank zij een unitaire transformatie techniek
die Pines, in samenwerking met Lee en Low, juist te voren met zoveel
succes op het polaron probleem had toegepast.

Hiermee is aan enkele voorbeelden geillustreerd hoe het polaron probleem
als testobject voor verschillende technicken en concepties heeft gediend.

Dit alles leidde echter tot de ontwikkeling van vele polaronmodellen, die
allen verschillende resultaten opleverden, zowel wat betreft de zelfenergie
en effective massa als wat betreft de mobiliteit (Zie fig. 8, hoofdstuk II).
Uit de verschillende resultaten cen juiste keuze te doen scheen een probleem.

Eenoplossing leverde het Kubo formalisme, dat KadanoffenLangreth
in 1964 de mogelijkheid gaf het mobiliteitsprobleem op exacte wijze te
formuleren. D.w.z. zij gaven een formele reeks ontwikkeling aan van de
mobiliteit in machten van de elektron-phonon koppelingsconstante en
berekenden de eerste twee termen expliciet.

Iedere mobiliteitstheorie moet nu tot deze reeksontwikkeling herleidbaar
zijn, onafhankelijk van het toegepaste polaron model. Aangezien deze reeks
ontwikkeling slechts voor kleine waarden van dec koppelingsconstante
voldoende snel convergeert, kan deze theorie alleen een criterium vastleggen
waaraan andere theorieén moeten voldoen zonder zelf een uitspraak te
kunnen geven omtrent de waarde van de mobiliteit in het intermediaire
koppelingsgebied.

Daar cchter de koppelingsconstante van de meeste polaire kristallen
in het intermediaire gebied liggen, is dit een belangrijke tckortkoming van
deze theorie.

In dit proefschrift wordt een exacte reeksontwikkeling van de mobiliteit
in machten van de polaron-phonon wisselwerking voorgesteld, die voldoende
snel convergeert in het intermediaire gebied om mct de cerste term van de
reeks genocgen te kunnen nemen.

In het eerste hoofdstuk worden de zelfenergie en effectieve massa be-
studeerd van een polaronmodel dat als een vereenvoudiging van het L.L.P.
model opgevat kan worden. Er wordt aangetoond dat de eigenschappen van
dit model, voor intermediaire koppelingssterkten, dezelfde zijn als die van
het L.L.P. model. Verder wordt met behulp van de Kubo formule het
elektrisch geleidingsvermogen en dus de¢ driftmobiliteit uitgedrukt in de
eigenschappen van het vereenvoudigd L.L.P. model. Deze methode levert
behalve een uitdrukking voor de mobiliteit tevens een uitdrukking op voor
de effectieve massa, die nu, in het algemeen, afhangt van de temperatuur,
de frequentie van het aangclegde veld en de koppelingsconstante.

In het tweede hoofdstuk worden de effectieve massa en de mobiliteit, in
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een lage temperatuur benadering, expliciet berekend. Twee typen correctie
termen worden bestudeerd. De eerste is een temperatuurcorrectie terwijl
de tweede bepaald wordt door de waarde van de koppelingsparameter.

De temperatuurcorrectie blijkt, in eerste instantie, van de orde 77/ te zijn,
waarbij 7' de absolute temperatuur en 6 de Debye-temperatuur van de
optische phononen voorstclt. De tweede correctie wordt pas van belang
wanneer de koppelingsconstante groter is dan 3. De exacte formulering
van het probleem heeft nu de eigenschap dat, in de lage temperatuur limiet
en in het intermediaire koppelingsgebied, de resultaten voor de mobiliteit
onafhankelijk moeten zijn van het toegepaste polaronmodel. Een vergelijking
van de in hoofdstuk II verkregen resultaten met die van andere mobiliteits-
theoricén leert dan dat er in het intermediaire koppelingsgebied een nauw-
keurige overeenstemming bestaat met de resultaten van Osaka. Opgemerkt
dient te worden dat Osaka gebruik maakte van het Feynman polaron-
model.
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