
        

University of Bath

PHD

Active Seat Suspensions for Automotive Applications

Alfadhli, Abdulaziz

Award date:
2018

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019



  

 
 

Active Seat Suspensions for 

Automotive Applications 

 

Abdulaziz Alfadhli 

 

A thesis summited for the degree of Doctor Philosophy  

Department of Mechanical Engineering  

University of Bath 

January 2018  

 

COPYRIGHT 

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy 

of this thesis has been supplied on condition that anyone who consults it is understood 

to recognise that its copyright rests with the author and that they must not copy it or 

use material from it except as permitted by law or with the consent of the author. 

 

This thesis may be made available for consultation within the University Library and 

maybe photocopied or lent to other libraries for the purpose of consultation with effect 

from_______________________________. 

 

Signed on behalf of the Faculty of Engineering & Design. 

 



 

 
 

To 

 

Souls of My Mother and Father, 

 

My Wife, 

 

and 

 

My Children.



 

I 
 

Abstract 

Vehicle drivers are exposed daily to harmful low-frequency vertical vibration over the 

frequency range of 1-20 Hz. This reduces ride comfort and safety as well as possibly causing 

long-term harmful effects on human health in the form of lower back pain and driver fatigue.  

Accordingly, intensive work has been undertaken in this field on active seat suspension 

systems that have superior performance over a wide frequency range compared with passive 

and semi-active systems. One of the main features of these systems is the control strategy that 

is used to generate the demand control force and whilst many control strategies have been 

investigated in this area; their practical implementation is challenging as they require 

unavailable or expensive system states. Hence, in this thesis, a novel and cost-effective strategy 

has been developed that uses measurable and inexpensive displacement and velocity preview 

information from the vehicle suspension. In addition to these practical advantages, employing 

a prior knowledge of the disturbance in the control strategy increases the ability of the active 

seat to react rapidly to disturbances and hence provides a supplementary improvement to the 

vibration attenuation performance. 

The potential application of this strategy for an active seat suspension is investigated through 

both simulation and experimental tests. Firstly, for simplicity, the control force is defined from 

this suspension preview information based upon a linear control approach, with optimum 

gains using an integrated simulation model of a linear quarter vehicle model (QvM) and one 

degree of freedom of seat suspension. These gains are obtained off-line by optimising ride 

comfort in terms of the vertical Seat Effective Amplitude Transmissibility (SEAT) factor using 

a genetic algorithm (GA) and considering the physical constraints on both the limited seat 

suspension travel and actuator force capacity. The experimental tests are performed using a 

prototype active seat suspension installed on a multi-axis simulation table (MAST), which has 

been developed to mimic the dynamic motion of the sprung mass of the (QvM) through the 

principle of hardware-in-loop (HIL) simulation. Moreover, the experimental test rig is used to 

estimate the characteristics of a passive seat suspension as well as the driver’s body model.     

The ‘preview’ control strategy is examined according to the ISO 2631-1 standard, in both the 

frequency and time domains, under a range of operating conditions, including different road 

profiles and vehicle speeds. Both simulation and experimental results reveal that, in 



 

II 
 

comparison with a passive seat suspension, employing this strategy for the active seat system 

significantly improves ride comfort, especially over the HBSF range (4-8 Hz).  Also, 

experimental tests demonstrate that combining both the preview information with the vehicle 

body and seat acceleration feedback states provides further improvement in the vibration 

attenuation level, achieving up to a 19.5 dB reduction over the HBSF range.    

The linear control approach cannot always satisfy the physical constraints over a range of 

operating conditions and thus, to overcome this fault, a fuzzy logic controller (FLC) is selected. 

Accordingly, two novel and cost-effective FLCs are designed and optimised using the Particle 

Swarming Optimisation (PSO) algorithm. The feedforward fuzzy logic controller (FF-FLC) 

uses similar preview information as in the linear control approach, while the 

feedforward/feedback controller (FFFB-FLC) utilises a combination of both the preview 

information with seat suspension deflection and velocity feedback states. Once again, the 

simulation and experimental results confirm the effectiveness of these strategies for 

attenuating the vertical vibration, especially over the HBSF range, in which the FFFB-FLC 

provides the best performance as well as the highest robustness level at a variety of different 

driver weights and vehicle speeds.  

The application of the preview enhanced controller for an active seat suspension in a full 

vehicle model has been investigated in the simulation. Accordingly, three FLCs strategies, 

namely, front-left suspension (FLS-FLC), front-axle (FA-FLC) and four wheels (4W-FLC), have 

been developed based upon which vehicle suspension or/ suspensions are used to acquire the 

preview information. The former involves utilising suspension displacement and velocity 

preview information from the vehicle suspension nearest to the driver’s seat. The FA-FLC uses 

similar preview information, but from the front-left and front-right suspensions, whilst the 

4W-FLC controller employs similar preview information from all the vehicle suspensions. 

Numerical results show that the proposed controllers are very useful in attenuating the 

vertical acceleration at the driver’s seat compared with a passive alternative. The 4W-FLC 

provides the best vibration attenuation performance, independent of the vehicle speed. 

Finally, to reduce the implementation cost of this controller, a practical alternative has been 

developed that requires less measured preview information. In conclusion, using the preview 

information enhanced controller for an active seat suspension provides a practical and cost-

effective system that improves ride comfort and reduces driver fatigue.   
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Chapter 1                               
Introduction  

1.1 Problem definition  

Vehicle drivers are daily exposed to low-frequency vibration transmitted to the driver’s seat 

caused by road roughness, transmitted through the vehicle suspension and body. This type of 

vibration is considered a risk factor for human health as it matches many of the human body 

parts’ natural frequencies. This reduces ride quality and safety as well as possibly yielding 

long-term harmful effects on human health, mainly in the form of lower back pain and driver 

fatigue. Consequently, an intensive amount of work has been carried out to overcome this 

problem, in particular, with regards to vehicle suspensions. Despite the complexity and high 

cost of vehicle suspensions, they generally remain ineffective in attenuating this type of 

vibration, as there is a trade-off between improving ride comfort and road handling. Seat 

suspensions are simple, practical and cost-effective devices that are employed in vehicles to 

improve ride comfort and reduce vibration linked health risks, by directly attenuating the 

transmitted vertical vibration at the seat. Generally, seat suspension systems can be classified 

into: passive, semi-active and active systems. The main elements of the passive system consist 

of a spring and damper with fixed properties. However, despite these systems being simple 

and inexpensive, they have a limited vibration attenuation performance, and there is always a 

compromise between improving ride comfort and retaining satisfactory seat suspension 

travel. Also, they cannot guarantee optimum performance, because they are not robust to 

variations in working conditions, such as the driver’s weight, disturbance type, or vehicle 

speed. Alternatively, semi-active seat suspensions provide better vibration attenuation 

performance compared with passive alternatives, because the suspension characteristics 

(spring and/or damper) can be adjusted using a control strategy with minimal power 

consumption. However, their performance is still compromised, because they can only 

dissipate energy from the system. Moreover, they require special active devices that can 

rapidly modulate rapidly the suspension characteristics [1]. Conversely, active seat 
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suspensions are able to both dissipate and add energy to/from the system by applying an 

external force from an actuator based upon a control strategy. This actuator can be placed in 

parallel with a passive suspension system and may be hydraulic, pneumatic or 

electromagnetic in design. Hence, these systems provide a superior vibration attenuation 

performance over a wide frequency range and can be a potential solution for improving ride 

comfort and protecting the driver from harmful low-frequency vertical vibration.  

Many aspects need to be addressed when designing an active seat suspension, such as the 

selection of sensors and actuators, power supply and control strategy [2]. In addition, to make 

the practical application of these systems feasible the cost of both the instrumentation and 

actuators has to be considered. Moreover, the control strategy employed to produce the 

required control force based upon system states, significantly influences the performance of 

these systems. Many control techniques have been investigated and applied in the literature, 

such as classical, optimal, robust, adaptive, intelligent and preview control as will be discussed 

in detail in chapter 2. Despite the fact that many of these strategies have shown significant 

improvement in the ride comfort through simulation, their practical implementation is 

challenging, because they depend on employing inaccessible or difficult and/or expensive 

system states, such as the absolute velocity of the occupant or the seat. Consequently, this 

significant shortcoming motivates to develop a reliable control strategy for an active seat 

suspension that utilises only the available and inexpensive system states. Moreover, it is 

believed that the application of the ‘preview’ or feed-forward control for an active vehicle 

suspension or active seat suspension is a promising control approach that can provide a 

significant improvement in vibration attenuation [3].  

To deal with the aforementioned limitations as well as gaining the benefits of including 

preview information, a novel control strategy for an active seat suspension, based on the 

preview control concept is developed and investigated in this thesis. Unlike the conventional 

preview control concept applied to a vehicle suspension, this strategy involves employing 

measurable and inexpensive preview information from the vehicle suspension dynamics to 

control the active seat suspension. It should be noted that, to the knowledge of the researcher, 

this approach has not been previously investigated and thus it provides an interesting research 

topic to be explored. It is anticipated that the outcomes of this work will significantly help in 
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the commercial development of actively controlled seat suspension systems for vehicles, 

especially those pertaining to the off-road vehicle industry. 

1.2 Research objectives        

The main aim of this research is to develop a reliable and economic active seat suspension for 

automotive applications that can attenuate the harmful low-frequency vertical vibration in the 

frequency range of 1-20 Hz that is caused by road disturbances transmitted through the vehicle 

suspension and vehicle body. This will be achieved through the development of a reliable and 

cost-effective control strategy that utilises measurable and inexpensive preview information 

from the vehicle suspension as well as taking into account the physical limitations in both the 

seat suspension travel and actuator force. Furthermore, this strategy has to be robust to 

variations in operating conditions such as road disturbance type and frequency content, 

driver’s weight and vehicle speed. The performance of this strategy will be investigated and 

evaluated through both simulation and experimental studies. This will be accomplished 

through the pursuit the following objectives: 

1) To develop a control strategy based on a linear control approach that employs 

measurable and inexpensive preview information from the vehicle suspension of a 

(QvM) and satisfies the necessary physical system constraints. 

2) To develop a test rig for experimental evaluation purposes, involving a hardware-in-

the-loop (HIL) simulation technique.  

3) To evaluate the performance of this strategy through both simulation and experimental 

tests under different operating conditions, including a range of road disturbances types 

and driving characteristics.  

4) To investigate the capability of this strategy to satisfy the necessary physical system 

constraints over different operating conditions and develop the controller accordingly.  

5) To examine the application of the preview information controller concept to a full 

vehicle model.               
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1.3 Thesis structure 

This thesis is organised into nine further chapters, and a brief description of these chapters is 

presented in this section.    

Chapter 2 presents a literature review of whole body vibrations (WBV) and their effects on 

human health, comfort and activities as well as the response of the human body to WBV and 

its measurement techniques. Different vibration attenuation techniques including passive, 

semi-active and active systems are described and compared to highlight their advantages and 

limitations. Finally, a brief literature review of control strategies that have been applied to 

semi-active and active suspension systems is provided.      

Chapter 3 describes assessment and analysis methods for evaluating the performance of a seat 

suspension system regarding improving ride comfort based on the ISO 2631-1 standard. In 

addition, the analytical generation of common road disturbances, namely random and bump 

road profiles, is presented.  

Chapter 4 presents a comparative simulation study of some fundamental control strategies 

that are applied for semi-active and active seat suspensions with a passive seat suspension 

system using a linear quarter vehicle model (QvM) and a single degree of freedom seat 

suspension model.  

Chapter 5 describes the experimental test rig and setup needed to investigate the performance 

of the developed active controlled seat suspension. Also, it provides the development and 

validation of the Multi Axis Simulation Table (MAST) to mimic the sprung mass motion of a 

quarter vehicle model (QvM) using the hardware-in-the-loop (HIL) technique and the inverse 

estimated dynamics of the MAST.  

In Chapter 6, a novel and reliable control strategy for an active seat suspension that attenuates 

the harmful low-frequency vertical vibration at the driver’s seat is developed. This strategy 

employs measurable preview information from the vehicle suspension based upon a linear 

control approach, using an integrated model of a QvM and 1 DOF seat suspension. The 

performance of an active seat suspension utilising this strategy is examined and compared to 

a passive alternative through simulation and experimental tests under different working 

conditions.   
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Chapter 7 investigates the effectiveness of novel control strategies for an active seat suspension 

that applies preview information (feedforward) states from the vehicle suspension together 

with measurable and inexpensive feedback system states. The performance of these strategies 

in improving ride quality is examined through laboratory tests in both the frequency and time 

domains, with a range of different vehicle speeds and road disturbances.   

Chapter 8 presents the design and evaluation of two optimal fuzzy logic (FL) controllers for 

an active seat suspension to ensure that necessary practical constraints on the seat suspension 

travel and the actuator force capacity are met. The developed controllers apply similar preview 

information as in the linear control approach as well as measurable and available feedback 

states from the seat suspension. The knowledge base of the FLC structure, including the rule 

base (RB) and fuzzification process, is sequentially optimised using the Particle Swarm 

Optimisation (PSO) algorithm. The theoretical design and performance assessment of these 

FLCs through simulation studies using different road disturbances are presented, including 

their robustness to changes in both the driver’s weight and vehicle speed. Then, they are 

implemented and examined in real time. 

Chapter 9 investigates the application of the preview control approach for an active seat 

suspension in a full vehicle model using a FLC. Accordingly, three FL control strategies that 

use measurable and low-cost preview information from the vehicle suspension states are 

designed and optimised, namely: front-left (FLS-FLC), front axle (FA-FLC) and four wheel 

(4W-FLC). The performance of these strategies is examined through simulation using different 

road disturbances at a range of forward vehicle speeds. Finally, in chapter 10, conclusions from 

this work are summarised and recommendations for future work are presented.    
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Chapter 2                                                   
Literature Review                            

                                                         

This chapter presents a background and literature review relating to this research. It starts 

with a description of whole body vibration (WBV) and its effects on the human health as well 

as highlighting the associated influencing factors, including vibration direction and vibration 

frequency. Then, the response of the human body to WBV and available measurement 

methods are described. It followed by a description of suspension systems including passive, 

semi-active and active together with a consideration of their main advantages and drawbacks. 

Finally, control strategies found in the literature and their application to semi-active and active 

suspension systems are discussed.   

 

2.1 Whole body vibration and its effects on the human 

body  

Whole body vibration (WBV) is that transmitted to the human body through direct or indirect 

contact with a vibrating surface, commonly when sitting or standing. Generally, WBV is 

considered as an occupational risk factor that affects human health and safety [4–8].  Palmer 

et al. highlighted how approximately 9 million people in the UK are exposed to WBV when 

they use private or public transport (cars, vans, buses, trains, and or motorcycles)  [9].  In terms 

of modes of transport, it has been reported that light cars and vans, as well as heavy forklift 

trucks, lorries, tractors, buses and loaders, are the primary sources of WBV [9]. Drivers of off-

road vehicles, industrial trucks and buses as well as crane-operators, crews on ships and 

helicopters are exposed to particularly high levels of WBV [10–13]. It has been claimed that 

occupational WBV in the UK could be responsible for more than 500,000 lower back pain (LBP) 

cases [14]. In addition, it has been estimated that up to 7% of all workers in Europe, U.S.A. and 

Canada are frequently exposed to unsafe WBV [4]. According to data from national surveys 
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in Germany, Spain, France and Finland, WBV can affect any of the aforementioned mobile 

machine operators [15]. 

Many studies have reported that WBV causes damage to the human spinal system and can 

cause various musculoskeletal diseases, including lower-back pain (LBP) [5,16,17], early 

degeneration of the lumbar spinal system and herniated lumbar discs, all of which are strongly 

related to exposure to WVB for long periods  [18]. Also, a study conducted by Seidel [19] has 

shown that the health of pregnant females is under risk when exposed to WBV. Whilst drivers 

of regular vehicles are exposed to lower levels of WBV compared to those in off-road vehicles 

or operating heavy machinery, several studies have shown that the phenomenon can also 

affect their health [20–22]. 

 Paddan and Griffin [23] estimated the level of WBV for 100 different vehicles based on 

International Standard ISO 2631-1 [24] and British Standard [11] procedures. Figure 2-1 shows 

the median values of root mean square (RMS) acceleration using ISO 2631-1 and RMS 

equivalent acceleration using BS 6841 for the 100 different vehicles utilised in that study. For 

most of the vehicles the estimated vibration magnitude was higher than 0.47 m/s2 RMS, which 

corresponds to the lower boundary of the health guidance caution zone of 8 hours exposure 

within a 24 hour period, according to the standard ISO 2631-1.  
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Figure 2-1: Median values of RMS acceleration using ISO 2631-1 and BS 6841 for different 

vehicles [23] 

The effects of WBV can be classified into three categories [25]:  

1) Interference with comfort;  

2) Interference with activities; 

3) Interference with health; 

According to Smith and Leggat [13], those relating to health can be classified into two main 

groups, severe and continuing health effects, as described in Figure 2-2, depending on the 

degree of physiological changes in the human body that result from exposure to WBV. Acute 

health effects refer to short periods of exposure to WBV, which usually do not lead to 

significant physiological changes in the human body and most of the impact can be eliminated 

by removing the source of the vibration. In contrast, chronic health effects are associated with 

long periods of frequent exposure to WBV and can result in permanent physiological changes 

to the human body [13].  
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Figure 2-2: Effects of WBV on human health: adapted from [13]   

 

Generally, WBV is related to frequencies between 0.5 and 100 Hz, with peak acceleration 

magnitudes of approximately 0.01 and 10 m/s2. Its effects on the human body significantly 

depends on both its characteristics (direction of vibration and frequency level) and body state 

(posture and direction of body) [25]. Despite the fact that a unique human resonance is 

impossible to define owing to the different physical characteristics within the human body 

parts, such as mass and density, WBV mostly affects the human body over a frequency range 

between 0.5 Hz and 80 Hz [13].  

Due to the variation of the human body parts, inaccurate human biomechanical models and 

the difficulty of reaching many parts of the human body  [26], different resonant frequencies 

for the relevant parts have been introduced in the literature, as listed in Table 2-1. Clearly, it 

can be seen that the whole body has different resonant frequencies depending on the posture 

and the direction of vibration. Also, Table 2-1 shows that the resonant frequency range for the 
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majority of the human body parts is between 2 and 20 Hz. The frequency of the WBV excitation 

plays a significant role in determining the effects of WBV on the human body. In addition, 

human responses to WBV are frequency dependent and according to Anna, [27]  the frequency 

ranges can be classified into three main groups: low, medium and high frequency, as presented 

in Table 2-2. Apparently, the highest level of health effects of WBV on the human body relates 

to the medium frequency range (2-20 Hz).   

 

Table 2-1: Resonant frequencies of the human body [26] 

Category Resonant frequency range 

(Hz) Whole body 

Vertical sitting 4-6 

Vertical standing 6-15 

Horizontal on a rigid slab 
1-3.5 

Longitudinal 

Head 8-40 

Eyes 12-17 

Face and Jaws 4-27 

Throat 6-27 

Chest 2-12 

Lumbar portion of the spinal column 4-14 

Shoulders 4-8 

Lungs 4-8 

Abdomen 4-12 

Hands and feet 2-8 

Arms with hands 20-70 
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Table 2-2: Effect of WBV frequency on human response [27] 

Frequency Category Frequency (Hz) Symptoms 

Low (< 2 Hz ) < 0.5 Motion sickness 

Medium (2-20 Hz) 

 

 

4 -10 

Discomfort 

Abdominal pain 

Influence on 

breathing 

Muscle contraction 

5-7 Chest pain 

13-20 

Head symptoms 

Influence on speech 

10-18 Urge to urinate 

High (> 20 Hz) 

20-23 Increased muscle tone 

>= 1000 Damage to tissue 

 

2.2 Response of the human body to WBV 

Understanding the responses of the human body exposed to vibration is a crucial aspect not 

only for optimising the design of a vehicle seat suspension, but also for analysing the effects 

of WBV on the human body. Consequently, many researchers have studied the biodynamic 

responses of the human body exposed to vibration both experimentally and analytically. The 

experimental studies can be categorised into two groups based on the test samples used in the 

experiments [28]. The first group typically used animals, human corpses and dummies to 

avoid damage to humans.  The second worked with live humans in order to measure their 

kinetic responses through assessments [28]. Both methods require much time and effort [29]. 

Not only this, but experiments that expose the human body to vibration are restricted to 
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protect health, as well as being costly [30]. Moreover, the biodynamic responses of the human 

body are different compared to those of animals or dummies and consequently, the accuracy 

of measuring biodynamic responses in this way would be limited [31].      

The biodynamic response of the human body exposed to vibration can be evaluated using 

frequency response transfer functions. There are three main functions: driving-point 

mechanical impedance (DPMI), apparent mass mechanical impedance (APMI) and 

transmissibility of driving-point motion to a segment on the body, such as seat to head 

transmissibility (STHT), as illustrated in Figure 2-3. The first two functions (DPMI and APMI) 

correspond to the relation between the excited forces and the resulting motion of the body in 

terms of displacement, velocity, or acceleration at the driving point. The DPMI represents the 

movement of the body due to a force at a given frequency which is given by the frequency 

response of the ratio between the excitation force to the resulting velocity at the driving point. 

The AMPI is akin to the DPMI; however, it associates the excitation force with the resultant 

acceleration at the driving point.[32], whilst, motion through the body is dealt with by the 

transmissibility [31]. Experimental measurements of these transfer functions have shown that 

for a seated human exposed to vertical vibration, there is a primary resonance frequency in 

the range of 4-6 Hz. Also, a second primary resonance was found in the frequency range of 8-

12 Hz [33]. 

 

 

Figure 2-3 Definition of transmissibility and mechanical impedance [31] 
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2.2.1 Transmissibility  

The transmissibility transfer function is concerned with the amount of vibration energy that is 

transferred from the source of the vibration (seat) to a specific point on the subject (the human 

body) as a function of frequency. Mathematically, it is represented by the magnitude ratio and 

phase angle. Measurements of transmissibility are used to determine the resonant frequencies 

of different human body parts as well as the damping characteristics of each part [31]. Also, 

the value of the phase angle in transmissibility offers valuable information about the relative 

motion between the two points as mentioned earlier. 

Many experiments have been conducted to measure transmissibility through the human body. 

Figures 2.4 and 2.5 show the transmissibility of vertical vibration from a vibration table to 

different parts of seated and standing human subjects, respectively. It is clear from these 

figures that the human body is sensitive to vertical vibrations in a frequency range (HBSF) of 

about 2-8 Hz regardless of the posture situation. However, the resonant frequency of the head 

is somewhat higher in the seated position. Also, a second resonant frequency for the head is 

shown at about 21 Hz in the standing case, which was not found in the seated case.  

 

 

 

Figure 2-4: Variation of vertical vibration transmissibility from a table to different parts of 

a seated human subject with frequency [34] 
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Figure 2-5: Variation of vertical vibration transmissibility from a table to different parts of 

a standing human subject with frequency [34] 

 

Rakheja et al. [35] reviewed and synthesised measured datasets of biodynamic responses of 

the seated and standing human body exposed to whole body vibration. Various datasets were 

used, including driving-point biodynamic responses of a seated person exposed to vertical, 

fore-aft and lateral vibration, with and without back support. The seat-to-head vibration 

transmissibility (STHT) of the seated human in vertical vibration datasets was also included. 

According to the analysis, the STHT datasets show a primary resonant frequency over a 

frequency range of 4-6 Hz, while some others recommend a second resonance frequency above 

8 Hz. Furthermore, several studies were found to have shown, not only that posture affects 

the biodynamic responses of the seated human body, but also backrest support. For example, 

Cho and Yoon [36] measured the acceleration transmissibility of 10 seated human subjects at 

different locations (the floor, hip surface, back surface and head). These measurements were 

collected while the subjects were exposed to random vertical vibration with and without 

backrest support. Figure 2-6 illustrates the measured transmissibilities (magnitude ratio and 

phase) between the hip surface and the floor (H1e) as well as between the head and floor (H3e), 

both with and without a backrest. The influence of backrest support can be seen on both 

transmissibility magnitudes, especially over the resonant frequency range. Specifically, the 
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principle frequency is increased by approximately 20% with backrest support compared to 

without it  [36]. In addition, the magnitude of the head transmissibility with backrest support 

is larger than that without it.                       

 

Figure 2-6: Effects of the backrest on the vibration transmissibility [36]  

In a moving vehicle, the main sources of the vehicle body vibrations are as a result of road 

irregularities, aerodynamics forces and powertrain systems including the engine [37,38]. 

However,  the vertical vibrations induced in the vehicle body whilst passing over uneven road 

surfaces are of a high magnitude and low-frequency range usually less than 12 Hz [39]. Indeed, 

according to Griffin [25], a seated person in a vehicle is typically exposed to vibrations with a 

dominant frequency of less than 20 Hz. Hence, much attention has to be given to isolating the 

driver from this type of vibration as it contains frequencies to which the human body is most 

sensitive (HBSF). 

2.3 Seat Effective Amplitude Transmissibility (SEAT) 

factor 

The vehicle seat dynamics is another factor that contributes to the transmitted vibration to the 

human body [25]. WBV can be amplified or attenuated depending on these dynamics [23] and 
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hence, evaluating the performance of a seat to reduce vibration is a crucial issue. The seat 

effective amplitude transmissibility (SEAT) factor is one of the most widely used methods to 

evaluate the seat vibration attenuation efficiency [40–47]. It is defined as the ratio between the 

measured vertical acceleration at the seat surface and that at the seat base [25]. The measured 

vibration can be expressed by either the frequency-weighted root mean square value (RMS) 

acceleration or the vibration dose value (VDV). The selection of a suitable measurement 

method depends on the nature of the vibration exposure and working conditions. The VDV 

method is mostly used in the case of shock excitation events. However, before calculating 

either the frequency-weighted RMS acceleration or VDV values, the RMS acceleration should 

be weighted according to a frequency weighting function that takes consideration the 

sensitivity of the human body to vibration in exposure direction  [47]. This can be either 𝑊𝑘  

shown in ISO 2631-1 or  𝑊𝑏  provided by BS 6841 standard. The former was originally devised 

as the human tolerance limit regarding whole body vibration by [48], while the involved using 

equivalent comfort contours for its derivation [49]. Despite this, both are very similar, in 

particular, for frequencies between 4 and 20 Hz, as illustrated in Figure 2-7. However, the ISO 

2631-1 was selected in this thesis because it is the most frequently applied standard in this 

field.      

 

Figure 2-7: Comparison between vertical vibration weighting functions 𝑾𝒌  (ISO 2631-1) 

and 𝑾𝒃 (BS 6841)   
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When the SEAT value is equal to unity, this means that the seat has transmitted the whole 

vibration from its base to its surface, whereas when this value is greater than unity, this 

indicates that the seat amplifies the transmitted vibration. Consequently, many studies have 

involved experimentally measuring the SEAT factor of different seats, including using 

different vehicles. Figures 2.7 (a) and (b) show the transmissibilities of six different passive 

truck suspension seats as well as the SEAT values in the vertical and fore-and-aft axis, 

respectively. It is clear that all the tested seats amplify the vibration around the resonant 

frequency and attenuate the vibration for frequencies approximately above 3 Hz. Also, most 

of the suspension seats have a SEAT value less than 100 %. 

 

Figure 2-8: Transmissibilities of six truck suspension seats: a) Vertical axis and b) Fore-

and-aft axis [50] cited in [25] 

The performance of eleven different suspension seats that are widely used in fork-lift trucks, 

agricultural tractors and lorries was investigated by Burdorf and Swuste [51] using a 

laboratory and 24 vehicle-seat field measurement combinations exposed to vertical vibration. 

The field measurements showed that the vertical vibration was reduced in only approximately 

70 % of the 24 vehicle-seat combinations. Moreover, significant variations in the seat 

transmissibility were measured with the same seat and different vehicles. In an extensive 
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study [52],  evaluated the vibration isolation efficiency of 67 conventional and 33 suspension 

seats as found in various working vehicles, using a SEAT factor that was obtained from both 

the RMS and the VDV acceleration, whilst being exposed to vertical vibration. They reported 

that the medium SEAT value of suspension seats was only slightly lower than that of 

conventional non-suspensions seats and that some seats failed to attenuate WBV. The 

effectiveness of air suspension seats in isolating WBV in three different buses commonly used 

on long urban routes was investigated experimentally by [53]. In this study, the SEAT factor 

was used to compare the performance of the air seat suspension WBV isolation of each bus. A 

variation in SEAT value between all types of buses was found in which the air suspension seat 

can attenuate up to 25 % of the WBV. The authors attributed the variation in the SEAT values 

among the different buses as a discrepancy between the seat and bus suspension. 

The vibration attenuation of different cab seats mounted in 22 U.S. locomotives operating on 

normal working conditions was investigated in [54] and it was found that the mean seat 

transmissibility ratios were greater than one for all measured axes x, y and z. However, despite 

the age or the type of the seat (cushion or suspension), none was able to attenuate the vertical 

vibration. Blood et al. [55]  compared the performances of mechanical suspension and air 

suspension seats installed in forklift trucks vehicles in terms of their capacity to reduce vertical 

vibration. They concluded that the WBV was significantly reduced when the suspension air is 

used specifically at low frequency, which contradicts the outcome of the study carried out by 

Burdorf and Swuste [51]. Also, Blood et al. showed that the performance of mechanical 

suspension seats in attenuating WBV is dependent on the load upon the seat, such that the 

performance increases as the driver’s weight is increased. However, this dependency on 

weight was not reported for the air suspension seat type. Blood et al.  [56] compared the WBV 

attenuation of three different seats installed in metropolitan buses and driven over widely 

used roads, using the standard evaluation methods recommended in ISO 2631-1, including 

root mean square average vibration and VDV. It was found that none of the tested seats 

attenuated WBV over all road types. However, it was concluded that the peak vibration 

transmitted to the driver increased as the amount of silicone foam within the seat is increased.   

In a recent study, Blood et al. [57] compared the performance of three different suspension 

seats, namely an air-ride bus seat, an air-ride-truck seat and an electromagnetically active (EM-
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active) seat. They found that the vibration transmissibility was significantly reduced when the 

EM-active seat was used.  

Moreover, they stated that the seat suspension design plays a major role in attenuating WBV 

transmitted to vehicle drivers. Furthermore, [58] evaluated the WBV attenuation performance 

of three air-seat suspensions implemented in trucks when driving over different road types. 

Through his study, it was found that the attenuation performance of all seats is sensitive to 

road surface profile.     

2.4 Seat end-stop impacts   

The performance of a seat suspension in attenuating vibration is limited by the constraint 

associated with restricted travel suspension, for which it is essential to maintain the driver 

within the control area of vehicle instruments, such as the steering wheel and/or pedal. Most 

suspension seats comprise a low stiffness suspension that increases vibration attenuation but 

results in a large dynamic deflection when exposed to shocks or vibration of high magnitude 

and low frequency [59]. This large dynamic deflection may result in metal to metal contact as 

the seat suspension reaches its maximum travel. Hence, a high impact on the seat will be 

produced, which will result in a high level of vibration being transmitted to the driver. These 

severe impacts may affect the health of the human body more than that of uneven road 

vibration [31]. This type of impact is called ‘end-stop impact’ and to overcome its severe impact 

rubber buffers are often installed within the suspension seats. Despite the rubber buffers 

reducing the hardness of the end-stop impact, the driver is still exposed to a high level of 

acceleration when the end-stop impact arises [60]. High suspension stiffness may be used with 

the suspension seat to prevent considerable suspension travel but this leads to a trade-off in 

the passive suspension seat design, between isolating the driver from high levels of 

acceleration and severe shocks. Studies have been conducted to overcome this trade-off design 

criterion either by optimising the damping material of the rubber buffers or, using semi-active 

or active control technology. For example, Rebelle [61] carried out a study to find the optimum 

characteristics of the bottom end-stop buffers of a compact suspension seat used in fork lift 

trucks. It was shown that the acceleration peaks, resulting from a real field excitation input, 
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were reduced by more than 70 % when the optimised characteristics of the bottom-end stop 

buffers are used instead of the nominal end-stop buffers.  

 

2.5 Classification of vibration isolation methods  

This section presents the classification of different suspension systems and their main features. 

The classifications are based on power consumption, controllability range and the available 

bandwidth of each system. Also, the main advantages and disadvantages of each are 

presented. Specifically, the characteristics of three primary suspension systems, namely 

passive, semi-active and active, are described and compared. The objective is to consider the 

overall performance of each system, thereby identifying an appropriate seat suspension 

system that improves ride comfort.  

2.5.1 Classification of suspension systems 

Suspension systems can be classified according to the amount of energy required to complete 

their function and there are three main types, as described below.  

2.5.1.1 Passive suspension system 

A passive suspension system consists of a spring to store vibration energy and a damper 

(shock absorber) to dissipate the stored energy, as shown in Figure 2-9 (a). The characteristics 

of the passive suspension elements (stiffness and damper) are fixed, and thus it does not 

require energy to complete its function although its vibration attenuation performance is 

limited. In the case of a passive seat suspension, the vertical vibration is amplified at the 

natural frequency of the seat when using low damping. On the other hand, isolation of the 

vertical vibration is degraded at frequencies higher than the natural frequency when 

deploying high damping. 

Reducing the natural frequency of the seat suspension by using a softer spring is not a suitable 

solution, because this will result in a significant suspension deflection and hence, physical 

suspension travel, which leads to severe end-stop impacts. Thu, a trade-off between 

attenuating the vibration around the natural frequency of the seat and at higher frequencies, 

as well as shocks, becomes apparent.  Indeed, the isolation performance is sensitive to changes 
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in the driver’s weight, type of excitation, or the individual characteristics of the suspension 

seat elements. Consequently, it is beneficial to design a seat suspension that can overcome 

these limitations, and actively controlled devices are one option.  

However, during the last two decades, a new concept has been introduced in the literature to 

enhance the isolation performance of passive isolation systems. This system is called ‘’ high-

static-low dynamic-stiffness’’ (HSLDS) or vibration isolation systems with quasi-zero stiffness. 

The systems offer together a high static stiffness to limit a large static displacement but with a 

low dynamic stiffness. The low dynamic stiffness reduces the natural frequency of the isolated 

system which is usually achieved by combining a positive stiffness with a negative stiffness 

[62]. Consequently, the isolation bandwidth of the system is extended which improves the 

vibration attenuation performance without any additional power. Therefore, this topic has 

been attracted by many researchers both theoretically experimentally [63–66]. Although these 

studies prove the effectiveness of HSLDS systems in improving the vibration attenuation 

performance, the stiffness nonlinearity could induce jump phenomenon near the resonant 

frequency which deteriorates system stability as well as it has a relatively large peak amplitude 

near the resonant frequency [65].  Moreover, the design and fabrication process of HSLDS 

systems is complicated, the practical implementation is challenging and the isolation 

performance is sensitive to parameters deviation [67].    

 

2.5.1.2 Semi-active suspension systems 

In a semi-active suspension system, the fixed spring and/or damper are replaced with an 

adjustable spring and/or damper along with a controller, as shown Figure 2-9 (c). The 

modulation of the damping rate is usually used and can be easily applied utilising different 

variable damper devices in which the damping rate is modulated rapidly, based on the 

working conditions of the suspension, through a control algorithm. These dampers can be 

realised using either oil hydraulics and controllable valves or by deploying 

magnetorheological (MR) dampers or electrorheological (ER) ones [68].   

The power consumption of this system is relatively small and serves to modulate the damping 

as well as being safe and cost-effective. However, the main drawback of semi-active 

suspension is that the isolation performance is still limited. This is because the damping force 
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can only be generated in the opposite direction to the suspension motion and thus, it can just 

dissipate energy from the system, as illustrated in Table 2-3.  

In contrast, semi-active suspensions with variable stiffness rate are more challenging [69] and 

have physical limitations, such as changing the natural frequency of the suspension system or 

the static position of the suspended mass. In addition to implementation complications and 

the high cost of these semi-active suspensions, they have a limited control bandwidth and 

require substantial energy to change the stiffness rate [70].  

2.5.1.3  Adaptive suspension systems 

These suspension systems are originally passive, but their suspension parameters (spring and 

damper) can be changed based on the operating conditions, and hence, improves the 

suspension performance. This adaptation can be achieved either manually by the driver or 

automatically via a control system. The characteristics of this system, such as the damper, can 

be adjustable manually by the driver or automatically by a control system. However, manual 

adjustment is inefficient, because of the slow response reaction of the driver compared to the 

rapid changes in operating conditions encountered from road conditions, such as potholes or 

turns (Braun et al., 2002). Moreover, the performance of these systems is less than that of semi-

active systems due to their small control bandwidth range, which is less than 1 Hz [71].          

2.5.1.4 Active suspension systems  

For active suspension systems, the control of the system is achieved by replacing the passive 

elements (spring and damper) wholly or partially by an actuator that generates an external 

force, as shown Figure 2-9 (b). In contrast, to the passive and semi-active suspension systems, 

which are only able to dissipate energy from the system, it can add energy to the suspension 

system or remove it independently of the suspension velocity or displacement direction  [72]. 

Consequently, a greater controllability is possible together with the potential of high 

bandwidth, as given Table 2-3 and shown in Figure 2-10. The disadvantages of this approach 

are that the external force requires a high level of external energy as well as an expensive 

actuator. In addition to these shortcomings, the system is less safe than other control systems, 

because producing external control forces can make it unstable [37,68] and this has to be 

considered during the design process.  Moreover, designing an active suspension system is a 
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complicated process as some important issues need to be considered, such as the choice of 

sensors and actuators, weight constraints, power supplies, closed-loop performance and the 

failure algorithm [2]. 

 

 

Figure 2-9: Schematic diagram of the main suspension systems: (a) passive; (b) active and 

(c) semi-active  [73] 

 

 

Table 2-3: Comparison of different suspension systems [68] 
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Control 
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Figure 2-10: Classification of suspension systems based on control bandwidth range and 

energy required  [68] 

Whatever the type of the suspension system, it can be implemented either for a vehicle 

suspension (primary suspension) or a seat suspension. However, active seat suspensions are 

low-cost, less sophisticated and require less construction effort than vehicle suspensions [74]. 

Thus, the abovementioned drawbacks of active suspension systems are more associated with 

vehicle suspension, especially, the power consumption issue. In the case of a seat suspension, 

the power consumption is much lower when compared to that of a vehicle suspension. This is 

because the overall weight of a seat and a driver is much less than that of the vehicle body and 

consequently, less energy is required to control vibrations. Accordingly, less expensive and 

complicated active system components, including actuators, sensory systems and hardware, 

can be used and this reduces the practical implementation challenges of the active system for 

seat suspensions. Moreover, unlike vehicle suspensions, improving ride comfort using active 

seat suspensions does not influence the vehicle road handling performance and hence this 

reduces the controller complexity and effort. Not only this but in many off-road and heavy-

duty vehicles, seat suspensions are often the only available technique that can be used to 

attenuate vertical vibration [75]. Therefore, an active seat suspension technique is selected in 

this thesis to improve ride comfort.   

Intensive studies have been carried out in this area, as given in a review paper [76]. Indeed, 

active seat suspensions have found commercial applications in the automotive industry, such 
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as the Grammer Maximo Evolution Active seat provided by TEK Seating, as shown Figure 

2-11. Recently, Bose also presented a new active suspension seat for trucks, as shown Figure 

2-12. According to Bose, the system generates the required control forces within milliseconds 

using a linear electromagnetic actuator that is capable of working over a wide range of both 

driver weight and frequency.  

 

Figure 2-11: Grammer Maximo Evolution Active seat [77] 

 

 

 

Figure 2-12: Bose active seat system [78] 
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2.6 Control algorithm methods  

The control strategy is considered as the brain of semi-active or active suspension systems, 

which can be applied into two scenarios. The first approach utilises a control strategy to 

generate the required control force through an actuator device while assuming ideal 

characteristics of the actuator. Whilst the second, uses a control strategy, as an inner control 

loop, to control an actuator device in order to track a required control force. Control strategies 

for the first scenario can be classified by the type of measurements or system states that are 

used to provide the control action namely, feedback, feedforward and feedforward-feedback 

approaches, as illustrated Figure 2-13. Simply, the feedback control uses error states between 

the output of a system and a desired reference to achieve its control function, whereas the 

feedforward approach utilises measurements either from disturbances acting on the system or 

from a desired reference but not error signals. The feedback-feedforward control employs both 

feedback and feedforward signals. The main advantages and limitations of each approach are 

summarised in Table 2-4. In addition to this classification, control strategies can also be 

categorised into five main groups: classical control, optimal control, robust control, adaptive 

control and intelligent control [79]. The following sections provide a brief review of these 

approaches and their application to semi-active and active suspension systems. 
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Figure 2-13: Control strategy classification: (a) Feedback control, (b) Feedforward control 

and (c) Feedforward-feedback control 
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Table 2-4: Comparison between the feedback and feedforward control approaches 

(adapted from   [80]) 

Control 

approach 
Advantages Disadvantages 

Feedback 

 The control action is 

independent of the type 

and source of the 

disturbance. 

 Does not require an 

accurate mathematical 

model of the system. 

 

 A large frequent disturbance may lead 

to an unstable system. 

 Control action of measurable 

disturbances cannot be obtained. 

 Does not provide control action until 

disturbances take action on the system. 

 On-line variable measurements from the 

system may be difficult to obtain. 

Feedforward 

 Provides control action 

before disturbances act 

on the system. 

 Offers control of the 

action of measurable 

and known 

disturbances. 

 Not suitable for unviable on-line 

disturbance measurements (e.g. random 

excitation) 

 Requires an approximated mathematical 

model of the system. 

 

 

2.6.1 Classical control 

2.6.1.1 Proportional-integral-derivative (PID) controller  

The operation of these controllers is based on using a feedback error signal, between the actual 

output and the desired reference, as well as the integration and derivation of this error signal 

with gains designed to minimise this error [79]. Due to its simplicity and effectiveness it is has 

been applied in many industrial applications. However, it is based on the assumption that the 

system is linear and neither its performance nor stability can be guaranteed under parameter 

or model uncertainties.  
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2.6.1.2 Skyhook control  

Skyhook control was first introduced by Karnopp et al. [81]. The basic idea of this algorithm 

is to reduce the vibration of the suspended mass by connecting it to a fictitious sky frame 

through a damper. Figure 2-14 (a) illustrates a single degree of freedom system incorporated 

with a skyhook damper. 

 

Figure 2-14: Skyhook seat suspension configuration: (a) Ideal skyhook and (b) semi-active 

skyhook  

Practically, it is not possible to construct the ideal skyhook. Hence, an equivalent semi-active 

damper system is assumed to emulate the performance, as shown in Figure 2-14 (b), in which 

the skyhook damper is replaced by a semi-active damper connected between the isolated mass 

and the base. Whilst this control law has been quantified in the literature for a semi-active 

suspension system, it can be applied for an active system through an active actuator in which 

the active force is proportional to the absolute velocity of the isolated mass [82,83]. 

Many studies have been conducted to explore the performance of a skyhook in attenuating 

vibration both theoretically and experimentally, such as [84–86].  In [84], three semi-active 

control schemes, including skyhook, groundhook and hybrid, were experimentally studied 

using a quarter-car model that was integrated with an MR damper. It was shown that the 

skyhook scheme efficiently reduces the sprung mass acceleration, which results in improved 

ride comfort.  In contrast, the groundhook scheme significantly reduces the acceleration of the 

unsprung mass. This decreases the fluctuation in the dynamic load of the tire, which leads to 

improved vehicle handling performance and a reduction road damage [74].The hybrid control 
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performance lies somewhere between the performance of a skyhook or groundhook 

depending on the gain value that biases its performance towards one or the other. 

Despite the skyhook algorithm having been proven to isolate the mass system significantly 

from transmitted vibration, it has some drawbacks. Firstly, switching between high and low 

damping levels generates a sharp change in the damping force, and thus discontinuities are 

introduced. Consequently, this will provide a severe change in the suspended mass 

acceleration and jerk leading to compromised vibration isolation. To overcome this problem, 

Ahmadian et al. [87] developed the classical skyhook algorithm through two alternative 

methods. These were theoretically and experimentally analysed, with the results showing that 

they can reduce high jerk levels. In addition, Miller (1990), cited in [88], introduced a strategy 

to minimise jerk based on decreasing the generated damping force.  

Secondly, the implementation of a skyhook in a real seat suspension requires the measurement 

of the absolute velocity of the suspended mass, and this is very difficult and costly to achieve 

for a moving vehicle. Alanoly and Sankar [89] modified the concept of the skyhook algorithm, 

such that it only requires the relative displacement and velocity across the suspension with a 

continuous damping force. However, the necessary damping force could not be provided by 

the damper [88]. Also, Shen et al. [90] modified the switching law of the skyhook algorithm by 

using the jerk measurement of the suspended mass instead of the absolute velocity, while [91]  

proposed a switching control algorithm denoted acceleration-driven damper (ADD) to 

improve ride quality. This ADD algorithm has the same concept as the classical skyhook, but 

the switching law is based on the suspended mass acceleration and hence it can be easily 

applied in practice although the switching law could result in a chattering problem and affect 

the closed-loop performance [92].  

2.6.2 Optimal control  

Optimal control is based on optimising the system state variables to improve a specific 

performance index under some constraints [93].  The most common form of this technique is 

the Linear Quadratic Regulator (LQR), for which it is assumed that all system states are 

measurable and hence, this makes its real application difficult if not impossible. To overcome 

this drawback, an observer, such as a Kalman filter can be used to estimate the unavailable 

states, such as in the Linear Quadratic Gaussian (LGR) approach. Whilst this approach would 
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seem to be more practical than LQR, it increases the complexity of the system and also the state 

estimators require an accurate plant model [94]. Further details about the application of 

optimal control in active suspension systems are given in [95–98]. 

2.6.3 Robust control 

The main purpose of these control strategies is to maintain a good system performance and 

stability over a range of system parameters uncertainties [79]. The most common techniques 

used to design a robust control are H∞ and sliding mode control (SMC), where the latter is 

mainly used for controlling nonlinear systems. Many studies investigating the application of 

these strategies for semi-active suspension systems have been carried out [75,99–101] and 

active suspension systems [102–106].  

However, these strategies have some inherent drawbacks. For instance, the H∞ controller is 

both mathematically complicated and requires an accurate plant model [107]. Moreover, 

Sliding Mode Controllers induce chattering that results from rapid switching in the control 

output to achieve a desired sliding mode and are sensitive to noise within measurements and 

thus practical implementation has been limited [108]. 

2.6.4 Adaptive control 

This type of algorithm is usually employed to control nonlinear systems with unknown or 

time-varying parameters. The controller parameters are attuned automatically over time such 

that they compensate for variations in the system performance associated with changing 

system parameters [109,110]. Generally, adaptive control algorithms can be classified into two 

methods: direct and indirect. In the direct method, also referred to as model-reference 

adaptive, the error between the output of a reference system model and the actual output is 

utilised directly to adjust the controller parameters. By contrast, in the indirect method, also 

referred to as self-tuning, the adaptation consists of two stages. The first estimates the system 

plant parameters based on measurements of the inputs and outputs to the plant. These 

updated plant parameters are used in the second stage to adjust the controller parameters 

[110].                       

Despite, the model-reference adaptive technique requiring less computational time compared 

to self-tuning, the system stability is guaranteed only for small adaptation gains and it is only 
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applicable for systems with minimum phase (all poles and zeros are in the lift side of the s-

plane in the Laplace domain). Also, it requires some knowledge about the plant system, such 

the order of the plant [111].  

Highly nonlinear and complex systems can be controlled using the self-tuning adaptive 

control, but this requires relatively high computational time and system stability cannot be 

guaranteed [112]. Much research has been undertaken on active suspensions with adaptive 

controllers [113–115] and other studies in a review paper conducted by [109]. However, the 

application of such controllers has not been limited to active systems, and it has also been 

extended to semi-active suspensions [116–119]. Yi and Song [120] proposed an adaptive 

skyhook control scheme with a road detection algorithm to select the optimal damping gains 

based on the frequency content of the road input. The adaptive skyhook control law was 

numerically and experimentally compared to the conventional skyhook and passive 

suspension systems using simulation and a quarter-car test rig in both the time and frequency 

domains. It was found that the proposed control scheme improves the ride comfort and road 

holding. However, the road detection algorithm is difficult to apply practically. 

Feedforward has been widely applied to cancel disturbance with narrowband frequency 

ranges. For example, a Least-Mean-Square (LMS) algorithm was utilised as an adaptive 

feedforward control in many active noise and vibration cancelations systems (ANVCs). In a 

recent study, Gan [121] developed an active suspension seat to attenuate periodic disturbances 

using an adaptive filtered-x LMS (FXLMS) algorithm. This algorithm was confirmed 

theoretically and experimentally to attenuate vibration at the seat when excited by periodic 

disturbances. This algorithm has also been applied to control active engine mounts [39]. Wu 

and Chen  [122] experimentally studied a hybrid controller consisting of an adaptive 

feedforward FXLMS with an H∞ feedback controller to reduce vibration at the driver’s seat, 

which was excited by small amplitudes of vibration.  Even though the proposed controller 

succeeds in reducing vibration at specific frequency ranges, it amplifies vibration at other 

frequency ranges, which means it is not applicable for a broadband vibration disturbance and 

is computationally intensive [109]. In addition to this, the control performance depends on the 

algorithm convergence speed, which is affected by the type of vibration and operating 

conditions of the system [122]. Kawana and Shimogo [97] conducted theoretical and 

experimental studies on an active seat suspension for a heavy duty truck seat to reduce the 
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driver vertical acceleration, which included a dummy and a live human. The active seat 

suspension controller was designed using optimum linear theory, based on feedback and 

feedforward state variables, while the active force was obtained using an electric servomotor 

and ballscrew mechanism. Despite the active controller improving the riding quality, it was 

not compared to other passive or semi-active seat suspensions nor was it tested under different 

road conditions. Besides, the experimental results were in disagreement with those obtained 

from simulation. 

2.6.5 Intelligent controllers (ICs) 

These are based on using algorithms that follow the performance of intelligent biological 

systems, such as the human brain [123]. The main algorithms associated with this type of 

controller are fuzzy logic (FLC) and artificial neural network (ANNC) controllers. FLC 

involves attaching an input to an output based on the logical thinking of the human brain 

using a set of logical rules [124], while ANNCs emulate the intelligent learning process of the 

brain using previous information. ICs have been applied widely in active vibration systems as 

witnessed by the references given in the review papers [108,109]. In addition to active systems, 

these methods have also been applied in semi-active suspensions [125–127]. In Avdagic et al.  

[125] a FLC and an ANNC were studied in simulation and experimental environments, with 

the aim being to reduce the vertical vibration of the driver’s seat of an off-road vehicle. The 

first study was conducted using an FLC to modulate the stiffness of the air spring of a seat 

suspension, whilst in the second, ANNC was used to adjust the seat suspension damper. The 

results showed that both FLC and ANNC can reduce the vertical seat acceleration. However, 

the experimental results were not in agreement with simulation. Also, the results were not 

compared with either a passive system or other simple control algorithms. Moreover, the seat 

deflection was not considered for either study, and according to the authors, the spring force 

is limited by the direction of the velocity of the spring bellows.  

Generally speaking, IC controllers are efficient for handling complex and nonlinear plant 

systems and different types of disturbances. Nevertheless, they have some drawbacks, such as 

the control performance using FLC depending on the number of logical rules, which are not 

guaranteed as being coherent, while using ANNCs rely on the accuracy and availability of the 
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training set data. Overall, clear stability analysis of these methods is not feasible, and they 

require relatively intensive computational time [128].   

To overcome the weakness of each IC strategy, many studies have investigated a combination 

of these strategies, as in a comprehensive review paper given by [108]  or with classical and 

modern control laws, such as in  [129,130,130–136].   

2.6.6 Preview control  

Most of the aforementioned control algorithms used in active or semi-active suspension 

systems are based on employing the dynamic response changes of the vehicle that results from 

road disturbances to cancel the effect of these. However, in this approach, the controller is 

activated only after a road disturbance has already acted on the vehicle and thus this increases 

the effort of the controller to attenuate the effects of this disturbance on the system.  

In a preview controller, prior knowledge of the road disturbance is utilised in the control 

strategy as illustrated in Figure 2-15, which prepares it to cancel the effect of this disturbance 

on the vehicle in a more appropriate time. That is, this can compensate for the controller and 

actuator delay times as well as reducing the power consumption, the feedback information 

and the complexity, thus potentially improving the suspension performance [137–139]. 

 

 

Figure 2-15: Preview control configuration   

It was Bender [140], who first presented the concept of preview information in vehicle 

suspensions using a single degree of freedom model, arguing that the employment of such 

information in the control strategy can efficiently improve suspension performance. There are 
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two approaches to preview control based upon the way in which preview information is 

obtained: “look ahead’’ and “wheelbase’’. In the first scenario, the preview information from 

the road profile is sensed and used by the controller of the active suspension.  These sensors 

are mounted at the front of the vehicle body, as illustrated in Figure 2-16 and hence, the 

preview information is available for both the front and rear active suspensions. The types of 

sensors used in this field can be ultrasonic, optical or radar technology [74].  This approach 

has been investigated in many theoretical studies in the literature. For example, Thompson et 

al. [141] researched the application of a preview controller for an active suspension system 

using optimal control theory and a quarter vehicle model. Hac [142]  proposed a linear preview 

controller for an active suspension with minimal preview information, considering 

measurement errors. The simulation results indicated that involving preview information 

offers significant improvements in all features of suspension performance and dramatically 

reduces power consumption.  Soliman and Colar [143] applied look-ahead preview control for 

a semi-active vehicle suspension using a quarter vehicle model. Interestingly, they concluded 

that the performance achieved by a preview semi-active suspension is better than that of a 

fully active suspension without preview.  Kim et al. [144] proposed a preview active 

suspension based on a full vehicle model and real road profiles extracted from a road sensing 

system, whilst El Madany et al. [145] investigated the application of stochastic optimal control 

with preview information for an active suspension using a two-degrees of freedom vehicle 

model, considering integral constraints. Intensive studies have been conducted in this area, 

which can be found in the literature and a review paper presented by Arunachalam et al.  [138]. 

Theoretical studies have indicated the potential benefits of including preview information 

using the look-ahead concept for an active suspension and a few experimental studies have 

also been carried out. For example, Langlois et al. [146] tested a preview control active 

suspension system for an off-road military vehicle using an ultrasonic height sensor and a 

minor improvement in the RMS body acceleration was achieved when compared with a non-

preview alternative.  In another study, Nagiri et al. [147] investigated a hydro-pneumatic 

preview active suspension with a contactless optical sensor for a vehicle using the Skyhook 

approach and a virtual vehicle model to compensate for the actuator and computational time 

delays. The experimental results, when driving over a rough random road, showed that the 
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look-ahead preview active suspension significantly improved the ride comfort, especially over 

the human sensitivity range (1- 8 Hz) when compared to an active system without preview.  

Akbari et al. [148] applied multi-objective look-ahead preview control for an active suspension 

using a quarter vehicle model test rig, whilst the look-ahead preview information was virtually 

generated in simulation at an advanced time including measurement noise. The experimental 

results showed that only minor improvements in the ride comfort could be gained with 

preview information when compared with a non-preview active system.   

The real implementation of a look-ahead preview scenario is challenging, as it requires an 

expensive and accurate sensor system as well as complicated algorithms in order to 

characterise different road profiles accurately, whilst taking into account the amount of 

preview information, vehicle speed, road conditions and measurement noise [137–139,149]. 

Moreover, inaccurate preview information can significantly influence handling and hence 

vehicle stability [137,149]. 

According to [3], Nissan applied look-ahead preview control in their vehicles in 1990, using a 

‘super supersonic’ suspension with ultrasonic sensors to provide preview information. 

Similarly, Mercedes, in their S-Class, in 2013, deployed ‘magic body control’ and a 3-D stereo 

camera for sensing preview information.  

 

Figure 2-16: Look ahead preview control for vehicle suspension  

 

2.6.6.1 Wheel-base preview control 

In wheelbase preview control, the preview information is directly detected from the dynamic 

changes of the front axle and utilised in the control of the rear active suspension, as shown in 

Figure 2-17. This concept is based on the assumption that the road profile at the rear wheels is 

at variance to that at the front wheels by only a time delay, which depends on the vehicle 
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wheelbase and its velocity. Intensive studies have been carried out based on using wheelbase 

preview control. For example, [150] considered an active suspension with wheelbase preview 

control based on LQR, assuming the availability of all state variables. Pilbeam and Sharp [151], 

designed a wheelbase preview controller using the LQR theory for a slow-active suspension, 

based on a half-vehicle model and considered the influence of the preview information weight 

on improving system performance. Roh and Park [152] developed a wheelbase preview for an 

active suspension based on a state feedback controller incorporated with a Kalman-Bucy filter. 

The numerical results, using a half-vehicle model, showed that significant improvement in the 

suspension performance can be achieved with preview information, but that this depends on 

accurate road models. Kitching et al. [153] tested a prototype semi-active suspension for a 

heavy vehicle, incorporating the wheelbase preview principle using two-DOF hardware-in-

the-loop simulation technology. However, the theoretical improvements achieved by the 

preview control were not obtained through experimental tests.  

ElMadany et al. [154]  investigated both the look-ahead and wheelbase preview concepts for a 

slow active suspension based on optimal control theory, using a half-vehicle model. They 

concluded that the wheelbase offers a significant improvement in the rear slow active 

suspension at low vehicle speeds, while combining both preview scenarios offers substantial 

improvements in all features of the slow active suspension. A wheelbase preview controller 

based on optimal control theory and a full vehicle model for a slow active suspension was 

investigated in [155]. The simulation results showed the benefits of including wheelbase 

preview information in slow active suspension performance. Li et al.  [149] studied a wheel-

base preview control for an active vehicle suspension using a multi-objective control strategy 

and a half-vehicle model. The effect of preview information weight on improving the 

suspension performance was also investigated.  

Whilst wheelbase preview control provides an opportunity to improve the suspension 

performance at the rear axle as well as being cost-effective and realisable compared with look 

ahead alternatives [149], it has some drawbacks. The preview information is only accessible to 

control the rear suspension and the road profiles at the front and rear axles cannot always be 

assumed to be identical, especially during cornering [137]. Moreover, the benefits of including 

preview information are diminished when driving at moderate and high vehicle speeds 

[154,156], when the delay time between the front and rear axles becomes shorter.  
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Figure 2-17: Wheelbase preview control for vehicle suspension    

 

2.7 Evolutionary algorithms (EAs) optimisation  

Classical optimisation problems, such as linear programming and dynamic programming 

cannot deal with large-scale optimisation tasks with non-linear objective functions and /or 

constraints. Also, they usually cannot ensure to find a global optimum solution as well as 

requiring gradient information of the objective function, which can be either unavailable or 

needs a considerable processing time to obtain it [157]. To deal with these challenges, 

evolutionary algorithms (EAs) are introduced which are stochastic optimisation techniques 

that work similar to natural biological evolution and/or the social behaviour of species [158]. 

There are many types of EAs such as, genetic algorithms (GAs), particle swarm algorithm 

(PSO), ant-colony algorithm (AN) and shuffled frog leaping. However, in this thesis, only the 

first two algorithms, namely GA and PSO, are considered as they are widely used in this field, 

with the following subsections giving a brief introduction to each technique.                    

 

2.7.1 Genetic Algorithm (GA) 

A genetic algorithm (GA) is a stochastic optimization technique, which was first developed by 

Holland [159] , based on the natural rules of selection and genetics [160].   The concept of a GA 

is based merely on evaluating different sets of solutions (chromosomes) for the desired 

optimisation problem, called population, in the search space using a fitness function (objective 

function) at each iteration (generation). Each chromosome in the population consists of genes 
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which denote the design variables of the desired optimisation problem. These chromosomes 

are modified towards the optimum solution during each iteration (generation), starting from 

randomly generated chromosomes. This modification is based on applying genetic operators 

known as selection, crossover, and mutation, as presented in  The first operator is responsible 

for transferring valuable information from the current generation to the next one through 

selecting the most effective chromosomes that are most improving the desired fitness function, 

while neglecting others without affecting the size of the population [161]. The purpose of the 

crossover operator is to produce new chromosomes (feasible solutions) from the currently 

selected solutions through cutting these solutions at an arbitrary genes position and swapping 

between these genes [162]. After that, to ensure some diversity in the population, the mutation 

operator creates new solutions by changing the value of a gene in a randomly selected 

chromosome based on a mutation rate. Unlike classical optimisation techniques such as linear 

programming, a GA does not depend on gradient information and thus, can deal with complex 

optimisation problems that involve nonlinear objective functions and/or constraints as well as 

being able to handle different types of design variables, both continuous and discrete  [163]. 

This algorithm has been extensively employed in the academic sector in various research 

fields, including different configuration of vehicle and seat suspension systems (passive, semi-

active, and active) [131,133,164]. It can search randomly over a wide range of feasible solutions 

and thus, can offer a near-global optimum solution [131,165–167].  The performance of the GA 

is affected by four parameters: the population size, crossover rate, number of generations and 

mutation rate.  The chance of obtaining a global optimum solution is increased when large 

population size and number of generations are used. However, this raises the computational 

time, especially in the case of large-scale problems.  Usually the value of the crossover rate is 

between 0.6 and 1.0, while the mutation rate is chosen to be less than 0.1 [158]. More detailed 

information about  GAs can be found in many textbooks, such as [168,169].  
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Figure 2-18: Genetic algorithm flowchart 

 

2.7.2 Particle swarm optimisation (PSO)                

PSO, which was first proposed by Kennedy and Eberhard [170], is an evolutionary 

optimisation method that is based on the behaviour of animals, such as birds flocking and fish 

schooling to creating swarms towards food sources [171].  

For a given optimisation problem with M design variables, suppose that there is a swarm with 

n particles, then, at a given instant of time each particle has a position vector, 𝑋𝑖(𝑡) =

[𝑥𝑖1(𝑡),  𝑥𝑖2(𝑡), …… ,  𝑥𝑖𝑀(𝑡)], of size M [172], which represents a candidate solution to the 

optimisation problem. Initially, the position and velocity vectors of each particle are randomly 

generated in the searching space. Later, the position and velocity vectors of each particle are 

updated based on the best previous position 𝑃𝑏𝑒𝑠𝑡  of this particle, and the global best position 

that corresponds to the best position obtained by all the particles in the swarm, 𝐺𝑏𝑒𝑠𝑡.The 

mathematical equations for updating the velocity and position of the ith element of each 

particle are given as follows [173] and a flowchart of the PSO process is presented in Figure 

2-19: 
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𝒗𝒊
𝒕+𝟏 =  𝒘𝒗𝒊

𝒕 + 𝒄𝟏 𝒓𝟏  (𝑷𝒃𝒆𝒔𝒕𝒊
𝒕 − 𝒙𝒊

𝒕)  + 𝒄𝟐 𝒓𝟐(𝑮𝒃𝒆𝒔𝒕𝒊
𝒕 − 𝒙𝒊

𝒕) (3-1)  

𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝒗𝒊
𝒕+𝟏 (3-2)  

Where, 𝑤 is the inertia weight, as proposed by Shi and Eberhart [174] in order to improve the 

convergence rate of the algorithm and it has a value in the range [0.8 1.2]. The constants 𝑐1 and 

𝑐2 are the cognitive and social factors, respectively while 𝑟1 and 𝑟2 are random numbers 

between 0, and 1).  The values 𝑐1 and 𝑐2 are usually chosen to be less than 2.0. Further details 

about the PSO can be found in  [171,175].   

Similar to the GA the PSO does not require gradient information corresponding to the 

objective function, but the latter technique is simple and can be easily applied. Moreover, its 

convergence characteristics are stable, computationally efficient and it requires less adjusting 

of parameters, compared to other evolutionary optimisation algorithms [171,173,176]. In sum, 

PSO is an effective tool for an optimisation problem with a relatively large number of design 

variables, such as when optimising the structure of an FLC.  

 

 

Figure 2-19: Flowchart of the PSO algorithm adapted from [173] 
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2.8 State Measurement and Estimation    

Despite the fact that many of the aforementioned Active Vibration Control (AVC) strategies 

having shown high performance through simulation, their practical implementation is a 

challenge. For instance, some of the strategies require online measurements of all the state 

variables, which increases the number of sensors and hence, the cost and system complexity 

[177]. Moreover, some states are difficult to obtain, such as the absolute velocity of the seat or 

the driver, as in the case of the well-known classical Skyhook algorithm [178]. Many 

researchers have attempted to solve this problem by assuming that the system states (velocities 

and displacements) can be obtained by numerically integrating the measured acceleration 

signals. In practice, noise and signal offsets can result in inaccurate states and compromised 

controllers [179]. In other studies, it has been argued that the state variables can be estimated 

using an observer, but this increases the complexity of the system, and also the state estimators 

require an accurate plant model [94]. 

Consequently, it is an important issue from both a cost and reliability point of view to develop 

an active seat suspension that utilises a control strategy requiring only accessible and 

inexpensive system states, whilst taking into account the restrictions on both the allowable 

seat suspension travel and actuator force capacity. Moreover, it should be robust to changes 

in operating conditions mainly the driver’s weight and vehicle speed. These issues make the 

design of a reliable and robust active seat suspension a challenging problem, which the current 

research is aimed at solving.   

Based on the above literature review, for this thesis, the benefits of employing preview 

information to control an active seat suspension are investigated. To overcome the drawbacks 

of the aforementioned preview information concepts, a novel preview information scenario 

similar to the wheelbase preview is developed here.  With this approach, the required preview 

information is directly obtained from the vehicle dynamics based upon available states that 

can be measured reliably and cheaply. Moreover, this preview information (feedforward) is 

combined along with available and inexpensive feedback states in the control strategy of the 

active seat suspension, hence improving the ride comfort of the driver.  
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2.9 Conclusions    

Low-frequency vertical vibration, transmitted to the driver’s seat from road roughness 

through the vehicle body is an occupational risk factor that affects human health and safety. 

Different suspension systems can be used to overcome this, including passive, semi-active, 

and active. Among these, active suspensions provide the best performance improvement in 

ride comfort over a wide frequency range. Nevertheless, its practical application to a vehicle 

suspension is limited because of high energy consumption, complexity and cost. Alternatively, 

active seat suspensions are more reliable, practical and less complicated systems that directly 

attenuate this vibration without deteriorating handling performance. However, the control 

strategy used to modulate the control force plays an important role in their performance and 

many strategies found in the literature are challenging to implement in a practical system 

successfully.  

In summary, the main aim of this research is to develop a novel, reliable and cost-effective 

active seat suspension that employs measurable and inexpensive preview information states 

from the vehicle suspension.  Further details of this principle are provided in chapter 6.     
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Chapter 3                                     
Performance Evaluation Methods of 
Seat Suspension Systems 

This chapter presents and explains the available numerical quantities found in the literature 

that are used to evaluate and analyse the performance of a seat suspension system regarding 

improving ride quality and the procedures to obtain them. Also, generation of artificial road 

disturbances including random and bump road profiles are also provided.  

3.1 Introduction  

The main objective of an active seat suspension is to provide a more comfortable environment 

for an occupant (driver) through reducing the transmitted vibration to the driver’s seat from 

the vehicle body and hence, improving ride quality. Accordingly,  performance evaluation 

methods are essential for evaluating and analysing the performance of such a system [180]. 

The effects of WBV on a seated occupant depends on many factors such as vibration 

magnitude and direction, the frequency content and exposure duration [25] and, hence the 

assessment is not straightforward. Moreover, assessing ride comfort of a seated occupant can 

be performed either qualitatively or quantitatively [181]. The first approach is based on using 

the knowledge, skills and experience of expert drivers to evaluate the ride quality, which 

requires a massive effort and much time as well as being expensive. While the second pertains 

to using some ride comfort assessment criteria suggested in the standard ISO 2631-1, such as 

vibration dose value (VDV), frequency-weighted root mean square (RMS) acceleration 𝑎𝑤 and 

the Seat Effective Amplitude Transmissibility (SEAT) factor. In this thesis, the lattermost, 

which correspond to the vibration isolation performance of a seat suspension and the 

frequency-weighted root mean square (RMS) acceleration value 𝑎𝑤 are considered. However, 

the following sections give brief descriptions for each of them.      
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3.2 Methods for evaluating WBV effects 

3.2.1 The frequency-weighted root mean square (RMS) 

acceleration 𝒂𝒘 

While many measures can be used to evaluate ride comfort, such as velocity, acceleration and 

jerk time histories or in terms of their RMS values, the ISO 2631-1, much of the literature has 

suggested acceleration magnitude with appropriate frequency weighting filters to assess ride 

quality [181]. Accordingly, the frequency-weighted RMS acceleration value aw  is deemed here 

as being an essential quantity for the analysing the effects of WBV in terms of comfort, health 

and perception, as suggested by the standard ISO 2631-1 [182]. The frequency-weighted RMS 

acceleration value aw can be expressed mathematically as follows:  

 
𝑎𝑤 = [∑(𝑊𝑖  𝑎𝑖)

2

𝑖

]

1
2

 (3-1)  

 

where 𝑊𝑖  is the frequency-weighting at the centre frequency 𝑓𝑖 of one-third octave frequency 

bands and 𝑎𝑖 is the corresponding RMS acceleration value which can be obtained using the 

following mathematical formula  [181] : 

 
𝑎𝑖 = √∫ 𝑆𝑦(𝑓)𝑑𝑓

𝑓𝑢𝑖

𝑓𝑙𝑖

 (3-2)  

where 𝑆𝑦 is the power spectral density function of the acceleration time data, whilst 𝑓𝑙𝑖 and 𝑓𝑢𝑖 

are the lower and upper limits of i-th one-third octave frequency band, respectively, which can 

be obtained as follows: 

 
𝑓𝑙𝑖 =  0.891 𝑓𝑖 (3-3)  

 
𝑓𝑢𝑖 =  1.21 𝑓𝑖 (3-4)  

 

The total value of the frequency-weighted RMS acceleration value in the three principle 

translation axis (X, Y and Z) coordinates is given by: 
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𝑎𝑣 = √(𝑘𝑥

2𝑎𝑤𝑥
2 + 𝑘𝑦

2𝑎𝑤𝑦
2 + 𝑘𝑧

2𝑎𝑤𝑧
2 ) (3-5)  

where  𝑘𝑥 = 1.4 , 𝑘𝑦 = 1.4 and 𝑘𝑧 = 1.0 are multiplying factors for each axis as suggested by 

the ISO 2631-1 standard. However, in this thesis only the vertical vibration is considered; thus 

the total value of the frequency-weighted RMS acceleration 𝑎𝑣 value is identical to the 

frequency-weighted RMS acceleration in the vertical direction 𝑎𝑤𝑧. Hence Eqn. (3-5) is 

rewritten as follows: 

 
𝑎𝑣 = √𝑘𝑥

2𝑎𝑤𝑧
2 = 𝑎𝑤𝑧 = 𝑎𝑤  (3-6)  

The frequency weighting function (filter) in the vertical direction 𝑊𝑘 considers the human 

body sensitivity frequency range when exposed to the vertical vibration in which the human 

body is most sensitive to vertical vibration energy over a frequency range of 4-8 Hz. The ISO 

2631-1 standard provides mathematical formulae to design the frequency weighting function 

(filter) in the vertical direction 𝑊𝑘  for seated posture, as given in Annex A of the ISO 2631-1 

standard. Figure 3-1 illustrates the magnitude (dB) of the 𝑊𝑘 over a one-third octave frequency 

band in which more weighting values are given over the human body sensitivity frequency 

range. 

 

Figure 3-1: Frequency weighting curve for the vertical direction based on ISO 2631-1 

Also, the ISO 2631-1 standard provides approximated levels of comfort associated with 

vibration environments based on the total value of the frequency-weighted RMS acceleration 
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𝑎𝑣 as listed in Table 3-1, which can also be used to judge the effectiveness of a seat suspension 

system.   

Table 3-1: Uncomfortable reactions level to vibration magnitudes (ISO 2631-1) 

Level of uncomfortable Frequency-weighted RMS acceleration 𝑎𝑣  (m/s2) range 

Extremely uncomfortable > 2.0 

Very uncomfortable 1.25-2.5 

Uncomfortable 0.8-1.6 

Fairly uncomfortable 0.5-1.0 

A little uncomfortable 0.315-0.63 

Not uncomfortable < 0.315 

 

3.2.2 WVB exposure threshold limit values (TLVs) 

The American Conference of Governmental Industrial Hygienists (ACGIH) [183] have 

suggested threshold limit values (TLVs) for exposures based on the ISO 2631-1standard [184], 

which refers to the approximated guidelines for safe zones levels of occupational exposure 

duration to WBV without affecting health [185]. These limit values related the acceleration 

magnitude regarding RMS value to exposure duration and frequency content. Figure 3-2 

shows the suggested TLVs in the vertical direction in which they indicate that the magnitude 

of the acceleration regarding the RMS value is inversely related to the exposure time. Also, it 

shows that the acceleration magnitudes at the human body sensitive frequency range (4-8 Hz) 

are more significant than other frequencies. However, to use this chart for assessing a seat 

suspension system, the individual frequency-weighted RMS seat acceleration value 𝑎𝑤,𝑅𝑀𝑆 at 

each centre frequency of the one-third octave bands has to be determined. The 𝑎𝑤,𝑅𝑀𝑆 can be 

expressed mathematically as follows [186]: 
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𝑎𝑤,𝑅𝑀𝑆(𝑁) =  √∫   𝑊𝑘(𝑓)𝑆𝑦(𝑓) 𝑑𝑓

𝑓𝑢𝑖

𝑓𝑙𝑖

 (3-7)  

where N = 1, 2, 3, ……, 20 is the index for the centre frequency of the one-third octave bands.  

 

 

Figure 3-2: Exposure TLVs in the vertical direction (adapted from Finucane, 2010)       

 

3.2.3 The Seat Effective Amplitude Transmissibility (SEAT) 

factor 

The SEAT factor can be expressed mathematically as follows: 

 
𝑆𝐸𝐴𝑇 =

(�̈�𝑠𝑒,𝑤)𝑟𝑚𝑠
(�̈�𝑠,𝑤)𝑟𝑚𝑠

 (3-8)  

 

Where (�̈�𝑠𝑒,𝑤)𝑟𝑚𝑠 is the frequency-weighted RMS of the seat acceleration in the vertical 

direction and (�̈�𝑠,𝑤)𝑟𝑚𝑠 is the frequency-weighted RMS of the seat’s base (chaises) also in the 

vertical direction. When the SEAT value is equal to one, this means that the seat transmits all 

its vibration from its base to its surface, whereas when this value is greater than unity, this 

indicates that the seat amplifies the transmitted vibration. However, it should be mentioned 

that the poor ride comfort, low back pain or fatigue cannot be directly quantified from the 
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SEAT factor, but it does provide a qualitative indicator of increased or decreased risk 

regarding such adverse effects.       

Figure 3-3 presents the flowchart of the numerical methods used in this thesis to assess the 

ride comfort performance of a seat suspension system in the vertical direction. It starts by 

obtaining the acceleration time response at the seat’s surface and base from either simulation 

or experimental tests. These values are transformed into the frequency domain using the FFT 

technique to obtain the corresponding PSD values. These are used to calculate the RMS and 

the frequency-weighted RMS acceleration values at the centre frequency of the one-third 

octave bands. Finally, these values are used to determine the total weighted-frequency RMS 

and the SEAT factor. 

 

 

Figure 3-3:  Flowchart of quantitative performance evaluation methods of a seat 

suspension system  
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3.3 Road profile generation  

3.3.1 Random road profile 

The main source of transmitted vibrations for vehicle drivers is from road disturbances 

through the vehicle body (chassis) and afterwards the driver’s seat. Hence, to evaluate a seat 

suspension system with suppression those vibrations either in simulation or even in a 

laboratory environment, a technique is required to generate such road disturbances 

analytically. Whilst, harmonic waves or the step function can be easily employed in this case; 

they are inefficient for mimicking actual road conditions [187]. However, a random road 

profile can be a proper selection, as most of road disturbance profiles are random and they 

include the human body sensitive frequency range. To generate a random road profile, the 

road displacement profile can be represented by a power spectral density (PSD) function. This 

depends on the measurements of the surface profile for a reference plane [188]. The ISO 8608 

(ISO 8608:1995) proposes an approximated formula to obtain the PSD function of the road 

roughness as follows: 

 
𝛷(𝛺) =  𝛷(𝛺0) (

𝛺

𝛺0
)
−𝑤

 (3-9)  

where 𝛺 = 
2 𝜋

𝐿
 (rad/m) is the angular spatial frequency, 𝐿 is the wavelength and 𝑤 is the 

waviness, which has a value of 2 for most of the roads. Φ(Ω0) is the reference PSD value for a 

given road class at the reference angular spatial frequency Ω0 = 1 (rand/m). The reference 

values of the PSD at  Ω0 = 1  (rand/m) in the longitudinal direction (vertical direction) for 

different road classes are given by ISO 8608 as presented in Table 3-2 and illustrated in Figure 

3-4, in which the road is categorised by eight classes from A to H. However, in the case of 

using a linear suspension model, only road classes from A to E can be utilised to excite the 

model [187].  However, at low spatial frequency Eqn. (3-9) tends to infinity, so that it is 

modified as follows [188]:    

 
𝛷(𝛺) =

{
 
 

 
 𝛷(𝛺0) 𝛺1

−2           , 𝑓𝑜𝑟  0 ≤  𝛺 ≤   𝛺1

𝛷(𝛺0) (
𝛺

𝛺0
)
−2

  , 𝑓𝑜𝑟  𝛺1 < 𝛺 ≤   𝛺𝑁

0                             , 𝑓𝑜𝑟   𝛺 >   𝛺𝑁

 (3-10)  
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Table 3-2:  Road roughness values for different classes [188] 

Road class 

Degree of roughness 𝚽(𝛀𝟎) (𝟏𝟎
−𝟔 𝒎𝟑) 

for 𝛀𝟎 = 𝟏 𝒓𝒂𝒅/𝒎 

Lower limit Geometric mean Upper limit 

A (very good) --------------- 1 2 

B (good) 2 4 8 

C (average) 8 16 32 

D (poor) 32 64 128 

E (very poor) 128 256 512 

F 512 1,024 2,048 

G 2,048 4,096 8,192 

H 8,192 16,384 32,768 

 

 

Figure 3-4: Road PSD classes (adapted from Tyan et al., 2009) 
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The values of Ω1 and Ω𝑁 are suggested by the ISO 8606 to be 0.02𝜋 (rad/m) and 6𝜋 (rad/m), 

respectively [188] which covers a wavelength band of (0.333-100 m).  When the vehicle is 

traveling over a specified road segment of length 𝐿 and constant velocity 𝑉, then the random 

road profile as a function of a travelled path 𝑠, can be approximated using a superposition of 

𝑁 (→  ∞) sine waves as follows: 

 
𝑥𝑟(𝑠) = ∑𝐴𝑛 𝑠𝑖𝑛(𝛺𝑛𝑠 − 𝜑𝑛)

𝑁

𝑛=1

 (3-11)  

 

where the amplitudes 𝐴𝑛 are given by: 

 
𝐴𝑛 = √𝛷(𝛺𝑛) 

∆𝛺

𝜋
 (3-12)  

 

where ∆Ω = 
Ω𝑁−Ω1

𝑁−1
  and 𝜑𝑛 is a random phase angle between (0, 2 𝜋). The term Ω 𝑠 in Eqn. 

(3-11) is equivalent to: 

 
𝛺 𝑠 =  

2 𝜋

𝜆
 𝑠 =  

2 𝜋

𝜆
 𝑉 𝑡 =   𝜔 𝑡 (3-13)  

 

in which 𝜆 is the wavelength and 𝜔 (rad/sec) is the angular frequency in the time domain.  

From Eqns. (11) and (13) the road profile in the time domain is given as follows:  

 
𝑥𝑟(𝑡) =  ∑𝐴𝑛 𝑠𝑖𝑛(𝑛𝜔𝑜𝑡 − 𝜑𝑛)

𝑁

𝑛=1

 (3-14)  

   

where 𝜔0 = 𝑉 ∆Ω  (rad/sec) is the fundamental temporal frequency in the time domain. Figure 

3-5 shows an example of a generated random road profile of class E (very poor) in the time 

domain and vehicle speed of 40 and 100 km/h using Eqn. (3-14), while the corresponding PSDs 

are presented in Figure 3-6.  
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Figure 3-5: Example of random road profiles of class E at vehicle speeds of (a) 40 km/h and 

(b) 100 km/h 

 

 

Figure 3-6: PSD of generated random road profiles of class E at vehicle speeds of 40 and 

100 km/h  

3.3.2 Bump road profile  

Although the random road described previously being sufficient to cover most road profiles, 

it is not enough to represent shock events, such as a pothole or a bump road profile. These 
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disturbances are characterised as discrete events of relatively high magnitude and short 

duration [189]. Hence, in this thesis, this type of road disturbances is also considered to analyse 

the transient response of a seat suspension as well as generate excitations that are sufficient 

for studying the effect of end-stop impacts. Despite, there being many mathematical formulas 

used to represent this type of road profile, there is no standard one. In this work, two formulae 

have been used to generate such a road profile. The first, which is only depends on the bump 

height, can be expressed mathematically as follows [190]: 

 
𝑥𝑟(𝑡) = {

 𝑎(1 − 𝑐𝑜𝑠 (8 𝜋 𝑡)) 2       ;      0.5 ≤ 𝑡 ≤ 0.75⁄

0                                            ;      𝑡 > 0.75
 (3-15)  

 

where, 𝑎 denotes the bump height. The second one considers the effect of vehicle speed and is 

given mathematically as follows [191]:  

 
𝑥𝑟(𝑡) = {

𝑎

2
(1 − 𝑐𝑜𝑠 (

2𝜋𝑉

𝑙
 𝑡))               , 0 ≤ 𝑡 ≤

𝑙

𝑉

0                                                , 𝑡 >
𝑙

𝑉

 (3-16)  

 

where 𝑙 is the length of the bump. 

3.4 Conclusions  

The weighted-frequency RMS acceleration and SEAT factor are sufficient quantitative 

measures for evaluating and characterising a driver’s seat suspension system performance for 

improving ride quality and reducing WBV when the vehicle is exposed to vertical vibration. 

This is because they consider the acceleration magnitude and frequency content of the 

transmitted vibration as well as the seat vibration isolation efficiency. Hence, they are used to 

evaluate and compare different developed active seat suspension systems in this thesis. In 

addition, a random road profile can be a proper road input, as most of road disturbance 

profiles are random and also they contain the frequencies in which the human body is most 

sensitive to vertical vibration. 
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Chapter 4                                     
Simulation Studies of Seat 
Suspension Systems 

This chapter describes simulating and characterising the performance of different seat 

suspension systems based on the numerical quantities that are explained in the previous 

chapter and studying strengths and weaknesses.  These include passive, semi-active and active 

seat suspension systems that are controlled by classical control algorithms. For simplicity, the 

simulations were performed using a linear quarter vehicle model (QvM) with 2 DOFs and a 1 

DOF lumped-spring-mass seat suspension model, in both frequency and time domains 

including different working conditions and road profiles.      

4.1 Introduction 

To gain sufficient understanding and to explore the weaknesses and strengths of semi-active 

and active seat suspension control algorithms, this chapter presents a simulation analysis and 

performance evaluation of some well-known classical control strategies including: 

 Two versions of skyhook (SH), namely, 2-states and linear. 

 Acceleration Driven Damper (ADD). 

 Linear quadratic regulator (LQR) controller 

 The first two approaches that are found in the literature deployed for a semi-active seat 

suspension while the linear quadratic regulator (LQR) controller is utilised to control the active 

seat suspension. The simulation was accomplished using an integrated linear mathematical 

model of quarter vehicle model (QvM) and seat suspension with a 1DOF in MATLAB and 

Simulink environments. The simulation was performed in both the frequency and time 

domains, with outcomes being compared with a passive seat suspension. The analysis in the 

time domain involves different excitation inputs, including bump and random road profiles 

across different vehicle speeds. Finally, the simulated results are analysed, discussed and 

conclusions are oulined. 
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4.2 Simulation models  

To illustrate the features and evaluate the performance of the passive, semi-active and active 

seat suspension systems, mathematical models for the vehicle and the seat suspension are 

required. The vehicle is represented by a linear quarter vehicle model (QvM) with 2 DOFs. 

This model has been widely used in the literature as it is simple and can capture adequate 

information concerning the vertical motion of the vehicle [131,192]. For simplicity, the seat 

suspension and the human body are assumed to be a 1 DOF linear lumped spring-damper-

mass system Figure 4-1 (a) shows the passive seat suspension configuration integrated with a 

QvM model, in which 𝑚𝑠𝑒, 𝑚𝑠 and 𝑚𝑢𝑠 are the combined seat and driver mass, the sprung 

mass and the unsprung mass, respectively. The displacements of the corresponding masses in 

the vertical direction are 𝑥𝑠𝑒, 𝑥𝑠 and 𝑥𝑢𝑠 , respectively, while 𝑥𝑟 is the road excitation 

displacement. The stiffness and damping of the seat suspension are 𝑘𝑠𝑒 and 𝑐𝑠𝑒, respectively, 

while 𝑘𝑠 and 𝑐𝑠  are those of the vehicle suspension. The tyre dynamics are represented only 

by a stiffness 𝑘𝑡, as the tyre damping can be neglected. Assuming linear characteristics for both 

the seat and vehicle suspensions, the equations of motion of the passive system are derived as: 

 

 
𝑚𝑠𝑒�̈�𝑠𝑒 = − 𝑐𝑠𝑒 (�̇�𝑠𝑒 − �̇�𝑠) − 𝑘𝑠𝑒 (𝑥𝑠𝑒 − 𝑥𝑠) (4-1)  

 

 𝑚𝑠�̈�𝑠 = 𝑐𝑠𝑒 (�̇�𝑠𝑒 − �̇�𝑠) + 𝑘𝑠𝑒 (𝑥𝑠𝑒 − 𝑥𝑠) − 𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠)
− 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) 

(4-2)  

 
𝑚𝑢𝑠�̈�𝑢𝑠 = 𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) − 𝑘𝑡 (𝑥𝑢𝑠 − 𝑥𝑟) (4-3)  

 

In the case of the semi-active seat suspension the fixed damping coefficient 𝒄𝒔𝒆 is replaced with 

an adjustable damping coefficient  𝑐𝑠𝑎 , as shown in Figure 4-1 (b). Whilst in the case of active 

seat suspension, as presented in Figure 4-1 (c), Eqns. (4-1) and (4-2) are rewritten to include 

the actuator control force  𝐹𝑎   , as follows: 

 
𝑚𝑠𝑒�̈�𝑠𝑒 = − 𝑐𝑠𝑒 (�̇�𝑠𝑒 − �̇�𝑠) − 𝑘𝑠𝑒 (𝑥𝑠𝑒 − 𝑥𝑠) + 𝐹𝑎 (4-4)  
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 𝑚𝑠�̈�𝑠 = 𝑐𝑠𝑒 (�̇�𝑠𝑒 − �̇�𝑠) + 𝑘𝑠𝑒 (𝑥𝑠𝑒 − 𝑥𝑠) − 𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠)
− 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) − 𝐹𝑎 (4-5)  

 

Assume the state space variables vector is as follows: 

 𝑥(𝑡) =  [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 𝑥4(𝑡) 𝑥5(𝑡) 𝑥6(𝑡) ]
𝑇 

where 𝑥1(𝑡) =  𝑥𝑠𝑒(𝑡) − 𝑥𝑠(𝑡) represents the seat suspension deflection, 𝑥2(𝑡) =  �̇�𝑠𝑒(𝑡)  

represents the seat velocity, 𝑥3(𝑡) =  𝑥𝑠(𝑡) − 𝑥𝑢𝑠(𝑡) represents the vehicle suspension 

deflection, 𝑥4(𝑡) =  �̇�𝑠(𝑡)  represents the sprung mass (vehicle chaises) velocity, 𝑥5(𝑡) =

 𝑥𝑢𝑠(𝑡) − 𝑥𝑟(𝑡), and  𝑥6(𝑡) =  �̇�𝑢𝑠(𝑡)  represents the unsprung mass velocity. Then, the dynamic 

Eqns. (4-3 to 4-5) can be expressed in a state-space formula as follows: 

 
�̇�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡) + 𝐿 �̇�𝑟(𝑡) (4-6)  

 
𝑦 = 𝐶 𝑥(𝑡) + 𝐷 𝑢(𝑡) (4-7)  

where 𝑢(𝑡) =  𝐹𝑎(𝑡)  and the matrices 𝐴, 𝐵 and L are defined for the passive seat suspension 

case as follows: 

 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
0 1 0 −1 0 0

−𝑘𝑠𝑒
𝑚𝑠𝑒

−𝐶𝑠𝑒
𝑚𝑠𝑒

0
𝐶𝑠𝑒
𝑚𝑠𝑒

0 0

0 0 0 1 0 −1

𝑘𝑠𝑒
𝑚𝑠

𝐶𝑠𝑒
𝑚𝑠

−𝑘𝑠
𝑚𝑠

(𝐶𝑠𝑒 + 𝐶𝑠)

𝑚𝑠
0

𝐶𝑠
𝑚𝑠

0 0 0 0 0 1

0 0
𝑘𝑠
𝑚𝑢𝑠

𝐶𝑠
𝑚𝑢𝑠

𝑘𝑡
𝑚𝑢𝑠

−𝐶𝑠
𝑚𝑢𝑠]

 
 
 
 
 
 
 
 
 
 
 

  ;  

 

𝐿 =  

[
 
 
 
 
 
 
 
 
 
 
0

0

0

0

−1

0 ]
 
 
 
 
 
 
 
 
 
 

  ;   𝐵 =  

[
 
 
 
 
 
 
 
 
 
 
0

0

0

0

0

0]
 
 
 
 
 
 
 
 
 
 

   

(4-8)  
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where for the semi-active system case the matrix 𝐴 becomes: 

 
𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
0 1 0 −1 0 0

−𝑘𝑠𝑒
𝑚𝑠𝑒

−𝐶𝑠𝑎
𝑚𝑠𝑒

0
𝐶𝑠𝑎
𝑚𝑠𝑒

0 0

0 0 0 1 0 −1

𝑘𝑠𝑒
𝑚𝑠

𝐶𝑠𝑎
𝑚𝑠

−𝑘𝑠
𝑚𝑠

(𝐶𝑠𝑎 + 𝐶𝑠)

𝑚𝑠
0

𝐶𝑠
𝑚𝑠

0 0 0 0 0 1

0 0
𝑘𝑠
𝑚𝑢𝑠

𝐶𝑠
𝑚𝑢𝑠

𝑘𝑡
𝑚𝑢𝑠

−𝐶𝑠
𝑚𝑢𝑠]

 
 
 
 
 
 
 
 
 
 
 

 (4-9)  

 

, and for the active system the matrices 𝐴 and 𝐵 become: 

 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
0 1 0 −1 0 0

−𝑘𝑠𝑒
𝑚𝑠𝑒

−𝐶𝑠𝑒
𝑚𝑠𝑒

0
𝐶𝑠𝑒
𝑚𝑠𝑒

0 0

0 0 0 1 0 −1

𝑘𝑠𝑒
𝑚𝑠

𝐶𝑠𝑒
𝑚𝑠

−𝑘𝑠
𝑚𝑠

(𝐶𝑠𝑒 + 𝐶𝑠)

𝑚𝑠
0

𝐶𝑠
𝑚𝑠

0 0 0 0 0 1

0 0
𝑘𝑠
𝑚𝑢𝑠

𝐶𝑠
𝑚𝑢𝑠

𝑘𝑡
𝑚𝑢𝑠

−𝐶𝑠
𝑚𝑢𝑠]

 
 
 
 
 
 
 
 
 
 
 

 ;  

 

𝐵 = 

[
 
 
 
 
 
 
 
 
 
 
0

1

𝑚𝑠𝑒

0

−1

𝑚𝑠

0

0 ]
 
 
 
 
 
 
 
 
 
 

 

(4-10)  

 

The output state variables 𝑦 are the seat acceleration and the seat suspension travel, hence the 

matrices 𝐶 and 𝐷 are given as: 
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𝐶 = [

−𝑘𝑠𝑒
𝑚𝑠𝑒

−𝐶𝑠𝑒
𝑚𝑠𝑒

0
𝐶𝑠𝑒
𝑚𝑠𝑒

0 0

1 0 0 0 0 0

]   

 

𝐷 = [

1

𝑚𝑠𝑒
0 0 0 0 0

0 0 0 0 0 0

]    

 

(4-11)  

 

 

Figure 4-1: QvM and 1 DOF seat suspension model: (a) Passive, (b) semi-active and (c) 

active 

 

4.2.1 Semi-active seat suspension algorithms 

Three semi-active seat suspension systems are used to analysis the characterises of a semi-

active seat suspension system, these being based on using different control approaches in 

which the damping coefficient value is adjustable, namely, two versions of the classical semi-

active controller skyhook (2-states and linear) and acceleration- driven damper (ADD). The 

mathematical formula of the adjustable damper coefficient 𝑐𝑠𝑎 for each of these approaches 

are given in Table 4-1. 
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Table 4-1: Mathematical formula of classical semi-active control algorithms [180] 

Algorithm Mathematical Formula 

2- states 

skyhook 
𝐶𝑠𝑎 = {

𝑐𝑚𝑎𝑥  ;   �̇�𝑠𝑒(�̇�𝑠𝑒 − �̇�𝑠)  > 0 

𝑐𝑚𝑖𝑛  ;   �̇�𝑠𝑒(�̇�𝑠𝑒 − �̇�𝑠)  ≤ 0
        where      𝑐𝑚𝑎𝑥 = 𝑐𝑠𝑘𝑦 

Skyhook-linear 𝐶𝑠𝑎 = {

𝛼𝑐𝑚𝑎𝑥(�̇�𝑠𝑒 − �̇�𝑠) + (1 − 𝛼)𝑐𝑚𝑎𝑥�̇�𝑠𝑒 

(�̇�𝑠𝑒 − �̇�𝑠)
 ;   �̇�𝑠𝑒(�̇�𝑠𝑒 − �̇�𝑠)  > 0 

𝑐𝑚𝑖𝑛                                                           ;   �̇�𝑠𝑒(�̇�𝑠𝑒 − �̇�𝑠)  ≤ 0

 

Acceleration 

driven damper 

(ADD) 

𝐶𝑠𝑎 = {
𝑐𝑚𝑎𝑥           ;    �̈�𝑠𝑒(�̇�𝑠𝑒 − �̇�𝑠)  > 0 

𝑐𝑚𝑖𝑛          ;     �̈�𝑠𝑒(�̇�𝑠𝑒 − �̇�𝑠)  ≤ 0
 

   

where, 𝛼 in the Skyhook-linear is a tuning parameter in the range of (0,1) and when 𝜶 is set to 

unity, the Skyhook-linear will be identical to the 2-states skyhook algorithm. It should be noted 

that for simulation this parameter was selected as 0.70 [180].      

4.2.2 LQR (Linear quadratic regulator)  

Whilst there are many control approaches that can be applied to study active seat suspension, 

the linear quadratic regulator (LQR) has been selected here as it is considered one of the 

classical control approaches [123] for linear multiinput-multioutput (MIMO) time-invariant 

systems and it is easy to design . The main idea of LQR, is to obtain an optimal solution that 

minimises a quadratic continuous-time cost function that satisfies the system specifications. In 

the case of seat suspension, the two important design criteria are minimising the seat 

acceleration, while keeping the seat suspension travel and actuator force capacity within their 

limits. Consequently, the cost function can be written as: 

 
𝐽 =  ∫ [𝜌1 �̈�𝑠𝑒

2 + 𝜌2(𝑥𝑠𝑒 − 𝑥𝑠)
2 + 𝜌3𝑢

2 ]𝑑𝑡
∞

0

 (4-12)  

 

where, 𝜌1, 𝜌2 and 𝜌3 represent weighting coefficients of the seat acceleration, seat travel 

suspension and the control force, respectively, with these weights being selected based on the 
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design specification of the system. Recalling the state variables 𝑥1 to 𝑥6 defined in section 2.4, 

this gives: 

𝑥𝑠𝑒 − 𝑥𝑠 = 𝑥1  and  𝑥2 = �̇�𝑠𝑒,   therefore:  

�̇�2 = �̈�𝑠𝑒    

Using equation (4-4), it gives: 

�̈�𝑠𝑒 = −
1

𝑚𝑠𝑒

[𝑐𝑠𝑒(�̇�𝑠𝑒 − �̇�𝑠) + 𝑘𝑠𝑒(𝑥𝑠𝑒 − 𝑥𝑠)] +
1

𝑚𝑠𝑒
𝐹𝑎 

Therefore,  

 
�̇�2 = −

1

𝑚𝑠𝑒

[𝑐𝑠𝑒(𝑥2 − 𝑥4) + 𝑘𝑠𝑒𝑥1] +
1

𝑚𝑠𝑒
𝐹𝑎 (4-13)  

 

Equation (4-12), can be rewritten as follows: 

 

 
𝐽 =  ∫ [𝜌1 [−

1

𝑚𝑠𝑒

[𝑐𝑠𝑒(𝑥2 − 𝑥4) + 𝑘𝑠𝑒𝑥1] +
1

𝑚𝑠𝑒
𝐹𝑎]

2

 + 𝜌2𝑥1
2 + 𝜌3𝑢

2 ] 𝑑𝑡
∞

0

 (4-14)  

Eqn. (4-14) can be rewritten in a more general form as follows: 

 
𝐽 =  ∫ [𝑥𝑇𝑄𝑥 + 2 𝑥𝑇𝑁𝑢 + 𝑢𝑇𝑅𝑢]𝑑𝑡

∞

0

 (4-15)  

 

where,  

𝑄 =

[
 
 
 
 
 
 
 
 
 
 
 𝜌1 (

𝑘𝑠𝑒

𝑚𝑠𝑒
)
2

+ 𝜌2 𝜌1
𝑘𝑠𝑒𝐶𝑠𝑒

𝑚𝑠𝑒
2 0 −𝜌1

𝑘𝑠𝑒𝐶𝑠𝑒

𝑚𝑠𝑒
2 0 0

𝜌1
𝑘𝑠𝑒𝐶𝑠𝑒

𝑚𝑠𝑒
2 𝜌1 (

𝐶𝑠𝑒

𝑚𝑠𝑒
)
2

0 −𝜌1 (
𝐶𝑠𝑒

𝑚𝑠𝑒
)
2

0 0

0 0 0 0 0 0

−𝜌1
𝑘𝑠𝑒𝐶𝑠𝑒

𝑚𝑠𝑒
2 −𝜌1 (

𝐶𝑠𝑒

𝑚𝑠𝑒
)
2

0 𝜌1 (
𝐶𝑠𝑒

𝑚𝑠𝑒
)
2

0 0

0 0 0 0 0 0

0 0 0 0 0 0]
 
 
 
 
 
 
 
 
 
 
 

 ; 𝑁 = 

[
 
 
 
 
 
 
 
 
 
 𝜌1

𝑘𝑠𝑒

𝑚𝑠𝑒
2

−𝜌1
𝐶𝑠𝑒

𝑚𝑠𝑒
2

0

−𝜌1
𝐶𝑠𝑒

𝑚𝑠𝑒
2

0

0 ]
 
 
 
 
 
 
 
 
 
 

 

; 𝑅 = (
𝜌1

𝑚𝑠𝑒
2 + 𝜌3) 

And the active control force is given by:  

 
𝐹𝑎(𝑡) =  −𝐾 𝑥(𝑡) (4-16)  
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where 𝐾 is a gain matrix  given by [123] : 

 
𝐾 = 𝑅−1 𝐵𝑇𝑆 (4-17)  

In which 𝑆 is a symmetric positive semidefinite matrix that represents the solution of the 

following Riccati equation: 

 
𝑆𝐴 + 𝐴𝑇𝑆 + 𝐶𝑇𝐶 − 𝑆𝐵 𝑅−1 𝐵𝑇𝑆 = 0 (4-18)  

4.3 Simulation results  

The numerical values used to simulate the passive system are listed in Table 4-2. The 

maximum and minimum damping coefficients (𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛)  were assumed as being 50% 

and 200%  of the nominal damping coefficient 𝐶𝑠𝑒, respectively. Also, the weighting 

coefficients 𝜌1, 𝜌2 and 𝜌3 for the LQR controller were assumed as being 1, 0.5 and 1𝑥10−5, 

respectively. The integrated model was modelled in Simulink -MATLAB and the optimum 

feedback gain 𝐾 was obtained using the LQR MATLAB code as: 

𝐾 = [−2.43 × 104 −54.71 1.55 × 103 336.032 4.076 × 103 −2.89] 

The following subsections provide a comparison between the performances of passive, semi-

active and active seat suspensions in attenuating the seat vertical acceleration in both the 

frequency and time domains, under different road excitations, including bump and random 

road profiles. 

Table 4-2:  QvM and passive seat suspension simulation parameters 

Parameter Value unit 

𝑚𝑠 250 kg 

𝑚𝑢𝑠 20 kg 

𝐶𝑠 1500 kN.s/m 

𝑘𝑠 10.0 kN/m 

𝑘𝑡 180.0 kN/m 

𝑚𝑠𝑒 70.0 kg 

𝐶𝑠𝑒 830.0 kN/m 

𝑘𝑠𝑒 31.0 kN/m 
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4.3.1 Frequency response analysis  

Figure 4-2 compares the simulated frequency response of the seat acceleration transmissibility 

of the semi-active and active controlled seat suspensions, with respect to the sprung mass of 

the QvM (chassis),  with a passive system using soft (𝑐𝑚𝑖𝑛) and hard (𝑐𝑚𝑎𝑥) damping values, 

over low-frequency range (1-20 Hz). It can be clearly observed that the passive seat suspension 

with the hard damping is efficient in reducing the seat acceleration over low-frequency range, 

partially around the seat resonant frequency as well as the seat suspension travel as shown in 

Figure 4-2. However, at higher frequencies its performance in attenuating vibration is 

deteriorating and soft damping is preferable, but this is at the cost of providing a large seat 

suspension travel, as presented Figure 4-3. Hence, a trade-off arises between isolating 

vibration at low frequency and high frequency simultaneously, while not deteriorating the 

seat suspension deflection. Semi-active and active controlled seat suspensions perform better 

than the passive system in attenuating the seat acceleration, especially over the human body 

sensitive frequency (HBSF) range (4-8 Hz), where both ADD semi-active and LQR active seat 

suspensions show the best levels of vibration reduction.  However, the SH 2-states and SH 

linear provides almost identical results, while the ADD is very similar to the passive system 

over a frequency range of less than 4 Hz.  

In general, the LQR active seat suspension delivers the best performance in vibration 

attenuation over a wide frequency range, especially over the human body sensitivity 

frequency range. However, this is at the cost of deteriorating the seat suspension travel 

compared to the passive system, as illustrated in Figure 4-2 where the ADD semi-active seat 

suspension shows the worst deterioration level.     
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Figure 4-2: Frequency response of the seat acceleration using different seat suspension 

configurations 

 

 

 

Figure 4-3: Frequency response of the seat suspension travel using different seat 

suspension configurations 
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4.3.2 Time response analysis                         

4.3.2.1 Random road input 

In this section, the aforementioned controlled and passive seat suspensions are analysed and 

evaluated in the time domain when the QvM model is excited by two types of road profiles, 

namely, bump and random profiles. For the case of the random road profile, a random road 

profile of PSD roughness of class E (very poor road), as described previously in chapter 3, with 

a vehicle speed of 60 km/h, as shown in  Figure 4-3 was used to excite the QvM. However, the 

simulation was carried out under different vehicle speeds (20, 40, 60, 80 and 100 km/h).  

 

Figure 4-4: Random road profile at a vehicle speed of 60 km/h 

 

For the sake of brevity, the time responses in terms of the seat acceleration and seat suspension 

travel are shown only for the vehicle speed of 60 km/h, as illustrated in Figures 4.5 and 4.6. 

It is clear from Figure 4-5 that both skyhook semi-active seat strategies slightly reduce both the 

seat acceleration and seat suspension travel when compared to the passive system. This is due 

to the passivity constraint regarding the semi-active suspension configuration where the 

controller can only dissipate energy from the system. However, the SH 2-states produces sharp 

acceleration due to rapid switching between the high and low damping coefficient values as 

illustrated in Figures 4.7 (a) and (b).   
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Figure 4-5: Time responses of the seat suspension displacement for the passive and semi-

active seat suspensions under random road excitation 

 

 

 

Figure 4-6: Time responses of the seat acceleration for the passive, ADD semi-active and 

LQR active seat suspensions under random road excitation 
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Figure 4-7:  Time responses of the demand force for the semi-active and active seat 

suspensions 

Moreover, the attenuation level of these strategies is limited to narrowband frequency range 

less than 5 Hz, as shown in Figures 4.8 (a) and (b), where the PSD of these systems becomes 

worse than the passive system in the higher frequency range. 

The semi-active seat suspension using the ADD strategy shows a little improvement in 

reducing the seat acceleration compared to the passive system as shown in Figure 4.8 (c), 

however, this improvement is at the cost of increasing the seat suspension travel as illustrated 

in Figure 6. Not only this, but also, the seat acceleration attenuation performance is limited to 

a narrowband frequency range, as shown in Figure 4.8 (c), in which the PSD of the ADD semi-

active suspension is higher than that of the passive system at low (< 3 Hz) and high frequency 

(> 9 Hz). This is due to the switching law that utilises the seat acceleration, which results in a 

chattering problem [180]. On the other hand, the LQR active seat suspension provides superior 

vibration attenuation when compared to the passive system with reasonable seat suspension 

travel and actuator force as shown in Figure 4.6 (b) and Figure 4.7 (b) Figure, respectively. 

Moreover, the PSD of the LQR active suspension is lower than that of the passive system over 

the whole frequency range of interest, as presented in Figure 4.8 (d).  
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Figure 4-8: PSDs of the seat acceleration for the semi-active and active seat suspensions 

under random road excitation 

Furthermore, the SEAT factor values of the semi-active and active seat suspension systems 

under different vehicle speeds are compared to the passive seat suspension, as presented in 

Figure 4-9. It can be seen that the semi-active seat suspensions slightly reduce the SEAT factor 

compared to the passive one, while it is significantly reduced with the LQR active seat 

suspension, regardless of the vehicle speed, where the percentage improvements are almost 

50 %.  

Figure 4-9 also shows the frequency-weighted RMS seat acceleration. Once again, the LQR 

active seat suspension has much lower frequency-weighted RMS seat acceleration compared 

to that of the passive system, with ≥ 50 % improvement across the range of vehicle speeds. 

However, the semi-active seat suspensions have somewhat lower frequency-weighted RMS 

seat acceleration compared to the passive system. Moreover, at intermediate and high vehicle 

speeds the passive and semi-active seat suspension systems, often provide ‘’very 

uncomfortable’’ ride quality level according to the ISO 2631-1 standard.  
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Figure 4-9: Performance assessment of semi-active and active seat suspension 

configurations under different vehicle speeds 

Adaptation of a seat suspension system to the uncertainties in the system parameters and 

working conditions plays a vital role in performance evaluation of such a system. However, 

the driver’s weight and the vehicle speed corresponding to the most system parameters and 

working conditions variations. Consequently, the sensitivity of passive, semi-active and active 

seat suspensions to these factors is evaluated in terms of the SEAT factor. Because the driver’s 

weight is assumed to be implicitly included within the seat mass 𝒎𝒔𝒆, then the variation in 

his/her weight is obtained by changing the value of the seat mass. Moreover, due to the nature 

of the random road profile, the simulations were repeated five times for 20 seconds, and the 

mean values were then taken.  Figure 4-10 presents the sensitivity maps of the SEAT factor for 

the different seat suspension configurations regarding the variation of the driver’s weight and 

vehicle speeds. It is notable that the isolation of the transmitted vibration achieved by the 

passive system is highly sensitive to both changes in the driver’s weight and vehicle speed. 

Moreover, light drivers are exposed to more vibration energy than heavy ones, regardless of 

the vehicle speed. Comparable results are shown within the semi-active seat suspensions, but 

with less transmitted vibration energy, while conversely, the LQR active seat suspension is 

slightly sensitive to variation in both the driver’s weight and vehicle speed.       
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Figure 4-10: Sensitivity of the SEAT factor to seat mass and vehicle speed variations for 

passive, semi-active and active seat suspension systems 

   

4.3.2.2 Bump road input 

In addition to the random road, a bump road profile is also used to excite the QvM, as 

presented in Figure 4-11. The time responses of the semi-active and active seat suspensions are 

compared with those of the passive system in terms of the seat acceleration and seat 

suspension travel, as shown in Figure 4-12, while a comparison regarding the RMS values of 

both seat acceleration and seat suspension travel is presented in Table 4-3. It can be observed 

that the semi-active skyhook approaches provide a good vibration reduction while decreasing 

the seat suspension travel, but, the SH 2-states generates sharp seat acceleration. Moreover, 

due to the chattering problem within the ADD approach its performance in reducing the seat 

acceleration is deteriorated and become worse than that of the passive system. In contrast, the 

LQR active seat suspension provides the best vibration attenuation level when compared with 

both the passive and semi-active seat suspension systems with a reasonable increase in the 

seat suspension travel. Figure 4-13 compares the PSD of the semi-active and active seat 

suspension systems with that of the passive system. It reveals, once again, the greater 

effectiveness of the LQR active seat suspension in improving the vibration attenuation level 

over a wide frequency range when compared to both passive and semi-active systems. 
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Figure 4-11: Bump road profile 

 

 

Figure 4-12: Time responses of the passive, semi-active and active seat suspensions under 

bump road excitation: (a) seat acceleration and (b) seat suspension travel  
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Figure 4-13:  PSDs of the seat acceleration for passive, semi-active and active seat 

suspensions under bump road excitation 

 

Table 4-3: Time responses of passive, semi-active and active seat suspensions under a 

bump road profile 

Control 

strategy 

Seat acceleration Seat suspension travel 

RMS (m/s2) 
% 

improvements 
RMS (mm) % increase 

Passive 0.329 ------------------ 0.652 --------------- 

SH 2-states 0.273 16.90 0.527 -19.20 

SH linear 0.271 17.51 0.536 -17.71 

ADD 0.327 0.54 0.884 35.71 

LQR 0.172 47.62 0.875 34.30 
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4.4 Conclusions  

In this chapter, comparative studies of some basic semi-active and active control strategies 

used to attenuate the vertical vibration of the driver’s seat have been presented through 

simulation and compared to a passive seat suspension system. It can be concluded from the 

above analysis, that the performance of the passive seat suspension is limited to a narrowband 

frequency range and there is a trade-off between reducing the seat acceleration at the resonant 

frequency and higher frequencies as well as the performance is neither robust to the driver’s 

weight nor vehicle speed. Moreover, the performance of semi-active seat suspensions in 

reducing the seat acceleration is limited due to the passivity constraint, where they can only 

dissipate energy from the system. Conversely, active seat suspension with an LQR controller 

shows superior performance in attenuating vibrations over a broadband frequency range and 

different road conditions with reasonable seat suspension travel and actuator force. This 

significantly improves ride quality and therefore, in this thesis the active seat suspension type 

will be the main focus.  

In addition to the low improvement in ride quality that accomplished by semi-active seat 

suspensions, the real implementation of both the SH 2-states and SH linear semi-active system 

is either very difficult or expensive as they require the measurement of the seat’s absolute 

velocity. On the other hand, the ADD semi-active seat suspension can be easily applied in real-

time as it acquires accessible and low-cost measurements. Nonetheless, it produces significant 

seat suspension travel and a chattering problem which deteriorates its performance. 

Moreover, the real application of the LQR active seat suspension is impractical as it requires 

full system state measurements in which some of these states are difficult to be measured, such 

as the absolute velocity states. Hence, this increases the sensor numbers and the 

implementation cost. 
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Chapter 5                                 
Experimental Rig Development 

 

5.1 Introduction  

Validation and evaluation of control strategies for an active seat suspension through 

experimental tests are essential issues, for which a test rig is required. This rig consists of three 

main parts: a physical active seat suspension, a multi-axis simulation table (MAST) to excite 

this seat and a dummy representing a seated occupant. This chapter presents and describes 

the experimental components and setup that are required to investigate the performance of 

the developed active seat suspension. Also, the development and validation of the Multi- axis 

simulation Table (MAST) to emulate the sprung mass motion of a Quarter Vehicle Model 

(QvM) using the hardware-in-the-loop (HIL) approach is outlined.  

5.2 Experimental setup 

5.2.1 Multi-axis simulation table (MAST)  

Figure 5-1 presents the MAST which was produced by Instron Structural Testing Systems. It 

is a six-degree-of-freedom platform table, which can be moved according to Cartesian co-

ordinates with three translation motions in the longitudinal (X), lateral (Y) and vertical (Z) 

directions as well as the pitch, yaw and roll directions. Also, it can provide any combination 

of these motions simultaneously in terms of position command signals, such as random and 

harmonic inputs. The specifications of the MAST are listed in Table 5-1.  
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Table 5-1: MAST specifications [193]  

Parameter  Value Unit 

Actuator stroke  ±75 mm 

Longitudina1 actuator load rating  33 kN 

Maximum working frequency   50 Hz 

Oil supply flow  1651 l/min 

Oil supply pressure  280 bar 

Other actuators load rating  25 kN 

Peak acceleration (max payload 450 kg) – (vertical, 

lateral,  

longitudinal)  

(8, 5, 3) m/s 

Peak velocity (no payload) – (vertical, lateral, 

longitudinal)  
(1.5, 1.25, 1) m/s 

Servo-valve rated flow Qrated (70 bar pressure drop 

∆Prated)  
65 l/min 

 

5.2.2 Accelerometers and the data acquisition system   

Single-axis piezoresistive accelerometers of type Entran, EGGS-D1CM-25 were used to 

measure the required acceleration at different locations including the MAST platform and the 

active seat’s pan in the vertical direction. The measured acceleration signals were sampled and 

acquired with an xPC Target system using an NI PCI-6229 data acquisition card. This card was 

also used to command external signals to the MAST rig from a Simulink model. During all the 

tests conducted in this thesis, the measured acceleration data were sampled using a sampling 

frequency of 10 kHz. In addition, to eliminate measurement noise and remove high-frequency 

content they were filtered using a low-pass filter with a cut-off frequency of 250 Hz which is 

more than ten times the maximum frequency of interest (20 Hz).  

Also, power spectral density (PSD) was used to perform spectral analysis of the measured 

acceleration time data in the frequency domain. However, to estimate the PSD from the 

acceleration time data, a window of the “Hanning” type with an overlap of 50 % is used, as 
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this provides a reasonable frequency resolution and an acceptable amplitude accuracy [74] 

[74].   

5.2.3 Excitation signal types  

To examine the performance of an active seat suspension system, it should be evaluated in 

both frequency and time domains using different types of excitations. In addition to the two 

broadband random and single bump road profiles that have been described previously in 

chapter 3, a sinusoidal excitation signal is also considered in order to obtain the frequency 

response. The excitations signal types and their specifications are summarised in Table 5-2. 

 

Table 5-2: Excitation signal types specifications  

Criterion 

Signal type 

Sinusoidal Broadband  random Single bump 

Purpose 
Frequency response 

Time response, SEAT 

factor and PSDs 

Analysis of the transient time 

response and shock events 

Specification 

Frequency range 

from 0.5 Hz up to 20 

Hz with a step of 0.5 

Hz 

A wavelength band of  

(0.333-100 m) 

Equations (3-17) and (3-18) 

 

Method 

A sinusoidal wave 

with- a fixed 

amplitude -in the 

range from 1 mm 

to 5 mm. 

Using equation (3-16). 

For experimental 

tests, the road 

roughness (Φ(Ω0)) 

was limited to 40 ×

10−6 𝑚3. 

Using equations (3-17) and 

(3-18) 

 

Measurement 

duration 

10 seconds 20 seconds 10 seconds 
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5.2.4 Test dummy 

The dynamic response of the human body is best described by a complex nonlinear system 

that significantly changes from one person to another [25]. To avoid health and safety 

problems, a test dummy was used to emulate the dynamic response of a seated human. This 

dummy, developed by Gan [121] consisted of three main parts, namely, the head, upper torso 

and lower torso, including the pelvis and thighs and has a total weight of 542 N. It was 

previously proven by Gan [121] through experimental tests, that it can reasonably characterise 

the behaviour of a seated occupant. This dummy was sat on the active seat suspension 

regarding which neither the influence of contact between the hands and steering wheel or the 

feet and the platform was considered. Also, to ensure that it did not move away during the 

tests, it was secured using a standard car seatbelt.  

5.2.5 Active seat suspension prototype  

Figure 5-2 shows a schematic diagram of an active vibration seat suspension developed by 

Gan [121] at the University of Bath, which consists of two main parts: a passive suspension 

and an active actuation system. An Elka-stage-5 bicycle shock absorber was used as a passive 

suspension system, which consists of an adaptable damper and a coil spring. The passive 

suspension unit is linked to the seat pan through a two-bar lever mechanism, which works 

together with the passive suspension unit to hold the static load of the seat pan and an 

occupant. The rear of the seat’s pan is connected on both sides to linear rails through linear 

carriages to permit heave motion of the seat pan relative to the seat’s frame. Two end stops, 

upper and lower, were used to limit the vertical stroke of the seat pan relative to the seat’s 

frame to be within a range of ± 22.5 mm. In addition, to provide some rotation motion of the 

seat pan relative to the seat’s frame, the linear carriages were linked to the seat pan through 

ball bearings.  

The active actuating system consists of two identical XTA-3806 electromagnetic linear 

actuators. These are mounted at the front and rear of the seat pan with an individual peak 

force of 1,120 N. The detailed specifications of these actuators are presented in Table 5-3.  Also, 

these actuators are provided with a linear encoder of a resolution of 558 counts/mm, which 

can be used to measure the seat suspension stroke. The linear actuators are controlled using a 
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Xenus XTL amplifier provided by Copley Controls, from which three digital signals A, B and 

Z are acquired, where signals A and B are used to indicate the position and direction of motion, 

respectively, while signal Z denotes the reference signal. These signals are connected to the NI 

PCI-6229 data acquisition card, as shown in Figure 5-3 and the incremental encoder block PCI-

6229 in Simulink is used to convert them into analogue signals. 

 

Table 5-3: XTA-3806 electromagnetic linear actuator specifications [121] 

Parameter  Value Unit 

Allowable stroke ±30 mm 

Continuous stall force 1.68 kN 

Force constant 78.9 N/Arms 

Forcer mass (excluding thrust and cables) 3.75 kg 

Maximum speed 3.8 m/s 

Peak acceleration 313 m/s2 

Peak force 1.116 kN 

Thrust rod mass/metre 8.3 kg/m 

 

The test dummy is mounted onto the active seat suspension by a regular seat belt, while the 

active seat is rigidly fixed on the MAST platform. It should be noted that whilst the seat can 

move in heave and pitch, in this work, the focus is only on the vertical motion of the seat and 

the pitch axis was locked. Figure 5-4 provides an outline of the experimental apparatus and 

setup, while further details about the seat structure and design can be found in the thesis of 

Gan [121].  
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Figure 5-1: A schematic view of the MAST  [194] 

 

 

 

 

Figure 5-2: Schematic diagram of the active seat suspension [121] 
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Figure 5-3: Linear actuator controller and an NI PCI-6229 data acquisition card    

 

 

 

 

Figure 5-4: Experimental apparatus and setup 
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5.2.6 Modification of the current active seat suspension 

The vertical translation of the seat pan was achieved through a linear bearing mounted on the 

support structure. Previous, significant use of the rig had resulted in wear and increased 

friction, so a redesign was undertaken for this project. To provide more robustness and less 

friction of the translation motion of the seat pan the previous linear slider mechanism was 

replaced by GV3 linear guidance purchased from HepcoMotion as illustrated in Figure 5-5. 

Moreover, a slider connection mechanism was built to assemble the GV3 with the active seat 

suspension, as shown in Figure 5-6, in which plates 1 and 2 are rigidly connected to the GV3 

slider and the rear of the seat pan, respectively. Plate 2 is connected to plate 1 through a ball 

bearing to provide the kinematic pitch motion of the seat pan associated with the passive 

suspension linkage. Excessive rotation of plate 2 is limited by the stop pin when it moves 

through the controlled slot of plate 1, thereby limiting the pitch motion of the seat pan.   

 

 

Figure 5-5: A picture of the linear slider mechanism diagram ([195])  
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Figure 5-6:  Assembly of the slider connection mechanism   

 

5.3 Hardware-in-the-loop (HIL) simulation  

To assess the efficiency and the performance of the developed active seat suspension, reliable 

and repeatable experimental tests in a real vehicle over distinct and extremes road conditions 

are essential. However, this is challenging, expensive and time-consuming. As an alternative, 

hardware-in-the-loop (HIL) can be used as a comparable efficient technical approach for field 

tests [196]. This consists of two systems, a hardware system, such as a component under 

development and control units as well as software systems, such as simulation models [197]. 

In the literature, this technology has been extensively utilised in the evaluation and 

modification of vehicle suspension systems, including semi-active and active devices 

[136,197]. Commonly, the simulation model corresponding to the vehicle motion has been a 

quarter vehicle model (QvM), because it is simple and provides sufficient information to 

analyse the vertical motion of a vehicle. The modified vehicle suspension is physically 

characterised and is excited using virtual road profile signals from the simulated model, which 

can be easily and accurately obtained. Moreover, HIL has also been used in the modification 

of semi-active or active seat suspensions [59,85,97]. 



Chapter 5 Experimental Rig Development  
 

83 
 

The application of HIL technology for a modified seat suspension is more complicated than 

with a modified vehicle suspension, as it has to be excited by the resulting motion of the vehicle 

body (chassis or sprung mass) and hence, the motion of platform, on which the modified seat 

is mounted, has to mimic the simulated motion of the vehicle chassis over the various 

frequency ranges of interest and different road conditions. Many experimental studies found 

in the literature have involved hypothesising that the dynamic response of the vibration 

platform used to drive the modified seat suspension accurately mimics the resulting dynamic 

response from the simulated model. However, this is an incorrect assumption as the actual 

dynamic response of the platform and the resulting output from a simulated model are 

different owing to system friction, bandwidth limitations and time delays relating to the 

computation of the controlled signals. Hence, the accuracy of the experimental validation tests 

will be affected particularly when the control scheme of the modified seat suspension employs 

the dynamic response of the platform or in the case of analysing the parameter uncertainties 

of the vehicle suspension. Consequently, to have reliable and accurate experimental tests, this 

issue has to be taken into account and accordingly, in the following sections the MAST is 

developed to mimic the dynamic response of the vehicle chassis (sprung mass) using the 

principle of HIL simulation and the well-known QvM.  

5.3.1 QvM Quarter vehicle model    

For simplicity, a QvM was used to simulate the dynamic response of the vehicle motion in the 

vertical direction as shown in Figure 5-7 (a), in which 𝑚𝑠 and 𝑚𝑢𝑠 denote the unsprung (tyre 

axle assembly) and sprung masses (vehicle chassis), respectively while 𝑥𝑠 and 𝑥𝑢𝑠 are the 

corresponding displacements in the vertical direction and 𝑥𝑟is the road input displacement. 

The vehicle suspension is represented by the linear elements of a damper 𝑐𝑠 and a spring 

stiffness 𝑘𝑠 while the tyre is represented by only a stiffness 𝑘𝑡 and its damping is neglected 

[198]. The equations of motion of the QvM in the vertical direction are given as follows: 

 𝑚𝑠�̈�𝑠 = −𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠) − 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) (5-1)  

 𝑚𝑢𝑠�̈�𝑢𝑠 = 𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) − 𝑘𝑡  (𝑥𝑢𝑠 − 𝑥𝑟) (5-2)  
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Using a Laplace transform and assuming zero initial conditions, the continuous transfer 

function from the road excitation displacement to the vehicle chassis (sprung mass) 

displacement, in terms of the system parameters is expressed mathematically as follows:  

𝐺𝑠(𝑠) =
𝑋𝑠(𝑠)

𝑋𝑟(𝑠)
=

𝑘𝑡(𝑐𝑠𝑠 + 𝑘𝑠)

 𝑚𝑠𝑚𝑢𝑠𝑠
4 + 𝑐𝑠(𝑚𝑠 +𝑚𝑢𝑠)𝑠

3 + (𝑘𝑠𝑚𝑠+𝑘𝑠𝑚𝑢𝑠+𝑘𝑡𝑚𝑠)𝑠
2 + 𝑘𝑡𝑐𝑠𝑠 + 𝑘𝑡𝑘𝑠 

 (5-3)  

 

 

 

Figure 5-7: A QvM and schematic diagram of the HIL principle    

  

5.3.2 Effect of passive seat-suspension dynamics on the 

sprung mass response  

The sprung mass in the QvM model is influenced by the reaction force between the seat and 

the sprung masses, and therefore the suspension seat dynamics must be considered. An 

integrated model of a passive seat suspension and driver model, each with a single DOF 

together with the QvM is established to study this effect, as shown in Figure 5-8. The Laplace 

transform of sprung mass displacement is given as: 
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 𝑋𝑠(𝑠) = 𝐺𝑠(𝑠)𝑋𝑟(𝑠) − 𝐹𝑠𝑒(𝑠) (5-4)  

 

 

Figure 5-8: A QvM with a 1 DOF passive seat suspension and 1 DOF driver model 

where  𝐹𝑠𝑒 is the resulting seat suspension force given as:   

 𝐹𝑠𝑒(𝑠) =  𝐵1(𝑋𝑠(𝑠) − 𝑋𝑠𝑒(𝑠)) (5-5)  

 𝐵1 = 𝑐𝑠𝑒𝑠 + 𝑘𝑠𝑒  (5-6)  

 

After some manipulation, the transfer function from the road displacement to the sprung mass 

displacement is given as: 

𝐺𝑠1(𝑠) =
𝑋𝑠(𝑠)

𝑋𝑟(𝑠)
=

𝑎1𝑠
5 + 𝑎2𝑠

4  +  𝑎3𝑠
3 + 𝑎4𝑠

2 + 𝑎5𝑠

 𝑏1𝑠
8  +  𝑏2𝑠

7 + 𝑏3𝑠
6 + 𝑏4𝑠

5  +  𝑏5𝑠
4 + 𝑏6𝑠

3 + 𝑏7𝑠
2 + 𝑏8𝑠 + 𝑏9

 (5-7)  

 

Where the coefficients a’s and b’s in terms of the system parameters are as follows: 

𝑎1 =  𝑐𝑠𝑘𝑡𝑚𝑏𝑚𝑠𝑒 
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𝑎2 = (𝑐𝑠𝑐𝑏𝑘𝑡 + 𝑐𝑠𝑐𝑠𝑒𝑘𝑡 + 𝑘𝑠𝑘𝑡𝑚𝑠𝑒)𝑚𝑏 + 𝑐𝑏𝑐𝑠𝑘𝑡𝑚𝑠𝑒 

   

𝑎3 = (𝑘𝑠𝑐𝑏𝑘𝑡 + 𝑐𝑠𝑘𝑏𝑘𝑡 + 𝑐𝑠𝑘𝑠𝑒𝑘𝑡 + 𝑐𝑠𝑒𝑘𝑠𝑘𝑡)𝑚𝑏 + 𝑐𝑏𝑐𝑠𝑐𝑠𝑒𝑘𝑡 + 𝑐𝑏𝑘𝑠𝑘𝑡𝑚𝑠𝑒 + 𝑐𝑠𝑘𝑏𝑘𝑡𝑚𝑠𝑒 

𝑎4 = (𝑐𝑠𝑘𝑠𝑒𝑘𝑡 + 𝑐𝑠𝑒𝑘𝑠𝑘𝑡)𝑘𝑏 + 𝑐𝑏𝑘𝑠𝑘𝑠𝑒𝑘𝑡 

𝑎5 = 𝑘𝑏𝑘𝑠𝑘𝑠𝑒𝑘𝑡 

𝑏1 = 𝑚𝑏𝑚𝑠𝑚𝑠𝑒𝑚𝑢𝑠 

𝑏2 = (𝑐𝑏𝑚𝑠𝑚𝑢𝑠 + 𝑐𝑠𝑚𝑠𝑚𝑠𝑒 + 𝑐𝑠𝑚𝑠𝑒𝑚𝑢𝑠 + 𝑐𝑠𝑒𝑚𝑠𝑚𝑢𝑠 + 𝑐𝑠𝑒𝑚𝑠𝑒𝑚𝑢𝑠)𝑚𝑏 + 𝑐𝑏𝑚𝑠𝑚𝑠𝑒𝑚𝑢𝑠 

𝑏3 = (𝑐𝑏𝑐𝑠𝑚𝑠 + 𝑐𝑏𝑐𝑠𝑚𝑢𝑠 + 𝑐𝑏𝑐𝑠𝑒𝑚𝑢𝑠 + 𝑐𝑠𝑐𝑠𝑒𝑚𝑠 + 𝑐𝑠𝑐𝑠𝑒𝑚𝑠𝑒 + 𝑐𝑠𝑐𝑠𝑒𝑚𝑢𝑠 + 𝑘𝑏𝑚𝑠𝑚𝑢𝑠 + 𝑘𝑠𝑚𝑠𝑚𝑠𝑒

+ 𝑘𝑡𝑚𝑠𝑚𝑠𝑒 + 𝑘𝑠𝑚𝑠𝑒𝑚𝑢𝑠 + 𝑘𝑠𝑒𝑚𝑠𝑚𝑢𝑠 + 𝑘𝑠𝑒𝑚𝑠𝑒𝑚𝑢𝑠)𝑚𝑏 + 𝑐𝑏𝑐𝑠𝑚𝑠𝑚𝑠𝑒

+ 𝑐𝑏𝑐𝑠𝑚𝑠𝑒𝑚𝑢𝑠 + 𝑐𝑏𝑐𝑠𝑒𝑚𝑠𝑚𝑢𝑠 + 𝑐𝑏𝑐𝑠𝑒𝑚𝑠𝑒𝑚𝑢𝑠 + 𝑘𝑏𝑚𝑠𝑚𝑠𝑒𝑚𝑢𝑠 

𝑏4 = (𝑐𝑏𝑐𝑠𝑐𝑠𝑒 + 𝑐𝑏𝑘𝑠𝑚𝑠 + 𝑐𝑠𝑘𝑏𝑚𝑠 + 𝑐𝑏𝑘𝑡𝑚𝑠 + 𝑐𝑏𝑘𝑠𝑚𝑢𝑠 + 𝑐𝑠𝑘𝑏𝑚𝑢𝑠 + 𝑐𝑏𝑘𝑠𝑒𝑚𝑢𝑠 + 𝑐𝑠𝑒𝑘𝑏𝑚𝑢𝑠

+ 𝑐𝑠𝑘𝑠𝑒𝑚𝑠 + 𝑐𝑠𝑒𝑘𝑠𝑚𝑠 + 𝑐𝑠𝑘𝑠𝑒𝑚𝑠𝑒 + 𝑐𝑠𝑒𝑘𝑠𝑚𝑠𝑒 + 𝑐𝑠𝑘𝑡𝑚𝑠𝑒 + 𝑐𝑠𝑒𝑘𝑡𝑚𝑠 + 𝑐𝑠𝑒𝑘𝑡𝑚𝑠𝑒

+ 𝑐𝑠𝑘𝑠𝑒𝑚𝑢𝑠 + 𝑐𝑠𝑒𝑘𝑠𝑚𝑢𝑠)𝑚𝑏 + 𝑐𝑠𝑐𝑏𝑐𝑠𝑒(𝑚𝑠 +𝑚𝑠𝑒 +𝑚𝑢𝑠) + 𝑚𝑠𝑚𝑠𝑒(𝑐𝑏𝑘𝑠 + 𝑐𝑠𝑘𝑏)

+ 𝑐𝑏𝑘𝑠𝑚𝑠𝑒𝑚𝑢𝑠 + 𝑐𝑏𝑘𝑠𝑒𝑚𝑠𝑚𝑢𝑠 + 𝑐𝑠𝑘𝑏𝑚𝑠𝑒𝑚𝑢𝑠 + 𝑐𝑠𝑒𝑘𝑏𝑚𝑠𝑚𝑢𝑠 + 𝑐𝑏𝑘𝑠𝑒𝑚𝑠𝑒𝑚𝑢𝑠

+ 𝑐𝑠𝑒𝑘𝑏𝑚𝑠𝑒𝑚𝑢𝑠 

𝑏5 = (𝑐𝑏𝑐𝑠𝑘𝑠𝑒 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑠 + 𝑐𝑠𝑐𝑠𝑒𝑘𝑏 + 𝑐𝑏𝑐𝑠𝑘𝑡 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑡 + 𝑐𝑠𝑐𝑠𝑒𝑘𝑡 + 𝑘𝑏𝑘𝑠𝑚𝑠 + 𝑘𝑏𝑘𝑡𝑚𝑠

+ 𝑘𝑏𝑘𝑠𝑚𝑢𝑠 + 𝑘𝑏𝑘𝑠𝑒𝑚𝑢𝑠 + 𝑘𝑠𝑘𝑠𝑒𝑚𝑠 + 𝑘𝑠𝑘𝑠𝑒𝑚𝑠𝑒 + 𝑘𝑠𝑘𝑡𝑚𝑠𝑒 + 𝑘𝑠𝑒𝑘𝑡𝑚𝑠

+ 𝑘𝑠𝑒𝑘𝑡𝑚𝑠𝑒 + 𝑘𝑠𝑘𝑠𝑒𝑚𝑢𝑠)𝑚𝑏 + (𝑐𝑏𝑐𝑠𝑘𝑠𝑒 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑠 + 𝑐𝑠𝑐𝑠𝑒𝑘𝑏 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑡)𝑚𝑠

+ (𝑐𝑏𝑐𝑠𝑘𝑠𝑒 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑠 + 𝑐𝑠𝑐𝑠𝑒𝑘𝑏 + 𝑐𝑏𝑐𝑠𝑘𝑡 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑡)𝑚𝑠𝑒

+ (𝑐𝑏𝑐𝑠𝑘𝑠𝑒 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑠 + 𝑐𝑠𝑐𝑠𝑒𝑘𝑏 + 𝑐𝑏𝑐𝑠𝑘𝑡 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑡)𝑚𝑢𝑠 +𝑚𝑠𝑚𝑠𝑒(𝑘𝑏𝑘𝑠 + 𝑘𝑏𝑘𝑡)

+ 𝑚𝑠𝑒𝑚𝑢𝑠(𝑘𝑏𝑘𝑠 + 𝑘𝑏𝑘𝑠𝑒) + 𝑘𝑏𝑘𝑠𝑒𝑚𝑠𝑚𝑢𝑠 

𝑏6 = (𝑐𝑏𝑘𝑠𝑘𝑠𝑒 + 𝑐𝑠𝑘𝑏𝑘𝑠𝑒 + 𝑐𝑠𝑒𝑘𝑏𝑘𝑠 + 𝑐𝑏𝑘𝑠𝑘𝑡 + 𝑐𝑠𝑘𝑏𝑘𝑡 + 𝑐𝑏𝑘𝑠𝑒𝑘𝑡 + 𝑐𝑠𝑒𝑘𝑏𝑘𝑡 + 𝑐𝑠𝑘𝑠𝑒𝑘𝑡
+ 𝑐𝑠𝑒𝑘𝑠𝑘𝑡)𝑚𝑏 + 𝑐𝑏𝑐𝑠𝑐𝑠𝑒𝑘𝑡
+ (𝑐𝑏𝑘𝑠𝑘𝑠𝑒 + 𝑐𝑠𝑘𝑏𝑘𝑠𝑒 + 𝑐𝑠𝑒𝑘𝑏𝑘𝑠 + 𝑐𝑏𝑘𝑠𝑘𝑡 + 𝑐𝑠𝑒𝑘𝑏𝑘𝑡)(𝑚𝑠 +𝑚𝑠𝑒)

+ (𝑐𝑏𝑘𝑠𝑘𝑡 + 𝑐𝑠𝑘𝑏𝑘𝑡)𝑚𝑠𝑒 + (𝑐𝑏𝑘𝑠𝑘𝑠𝑒 + 𝑐𝑠𝑘𝑏𝑘𝑠𝑒 + 𝑐𝑠𝑒𝑘𝑏𝑘𝑠)𝑚𝑢𝑠 

𝑏7 = (𝑘𝑏𝑘𝑠𝑘𝑠𝑒 + 𝑘𝑏𝑘𝑠𝑘𝑡 + 𝑘𝑏𝑘𝑠𝑒𝑘𝑡 + 𝑘𝑠𝑘𝑠𝑒𝑘𝑡)𝑚𝑏 + (𝑐𝑏𝑐𝑠𝑘𝑠𝑒 + 𝑐𝑏𝑐𝑠𝑒𝑘𝑠 + 𝑐𝑠𝑐𝑠𝑒𝑘𝑏)𝑘𝑡
+ (𝑘𝑏𝑘𝑠𝑘𝑠𝑒 + 𝑘𝑏𝑘𝑠𝑒𝑘𝑡)𝑚𝑠 + (𝑘𝑏𝑘𝑠𝑘𝑠𝑒 + 𝑘𝑏𝑘𝑠𝑘𝑡 + 𝑘𝑏𝑘𝑠𝑒𝑘𝑡)𝑚𝑠𝑒 +𝑚𝑢𝑠𝑘𝑏𝑘𝑠𝑘𝑠𝑒 

𝑏8 = (𝑐𝑠𝑘𝑠𝑒𝑘𝑡 + 𝑐𝑠𝑒𝑘𝑠𝑘𝑡)𝑘𝑏 + 𝑐𝑏𝑘𝑠𝑘𝑠𝑒𝑘𝑡 

𝑏9 = 𝑎5  

To show the effect of the passive seat suspension on the dynamic response of the sprung mass, 

the frequency response of the sprung mass (vehicle body) subject to road displacement inputs 
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are compared for different body masses (driver’s weight), as shown in Figure 5-9. This figure 

illustrates that the vehicle body frequency response, with and without the suspension seat 

dynamics are very similar over the frequency of interest regardless of changes in the driver’s 

weight. This indicates the very small insignificant effects of the passive seat suspension 

reaction force (𝐹𝑠𝑒) on the dynamic response of the sprung mass (vehicle body). Thus, for 

simulation purpose in the HIL model, the QvM that neglect the passive seat suspension is 

sufficient. In the case of an active seat suspension, the demand active force required to 

attenuate vibration at the seat is also acts on the sprung mass (vehicle body). In practice, this 

force is significantly less than the passive seat suspension force, will have an insignificant effect 

on the sprung mass motion and therefore can also be excluded from the simulation model. 

Due to this fact, the terminology of HIL used in this research is inaccurate.   

 

 

Figure 5-9: Sprung mass frequency responses of the QvM with and without including the 

seat suspension dynamic force   

5.3.3 MAST dynamic response    

As stated previously, it is essential to compensate for the limited bandwidth dynamics of the 

MAST platform. Accordingly, as a first step, the frequency response of the MAST in the 

vertical direction over a low-frequency range has to be defined experimentally. Hence, the 

MAST was excited by sinusoidal displacements over a frequency range of 0.5-30 Hz and 
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different amplitudes. Figure 5-10 (a) shows the magnitude and phase frequency responses of 

the measured displacement of the MAST and the demand using different excitation 

amplitudes. It can be seen that the MAST displacement response is linear over the test 

frequency range. However, the MAST displacement follows the command signal only over a 

narrow band frequency range of less than 2 Hz. In fact, the dynamic displacement response of 

the MAST is clearly compromised at higher frequencies, specifically, around the wheel-hoop 

frequency of the QvM (15 Hz). This is mainly due to the hydraulic system dynamics, friction 

and time delays with the hydraulic controller. The dynamic displacement response of the 

MAST over the tested frequency range can be mathematically estimated over the frequency 

range of interest using the System Identification Toolbox in MATLAB, as given by the 

continuous transfer function G�̂�(s)  in Eqn. (5-8). The order of this G�̂�(s) is selected based on 

that of the transfer function (𝑠), as is explained in the following section. The measured 

displacement frequency responses of the MAST presented Figure 5-10 (a) are averaged, and 

the result is compared to the simulated one, as shown in Figure 5-10 (b). This figure 

demonstrates that there is a respectable agreement between the measured displacement of the 

MAST and the estimated one over the desired frequency range.   

 

 

Figure 5-10: Displacement frequency responses of the MAST: (a) MAST frequency 

response using different excitation amplitudes; and (b) comparison between the measured 

and simulated displacement frequency responses of the MAST  
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 G�̂�(s) =
12700𝑠 + 4.109 × 107

 𝑠4 + 215.9𝑠3 + 32270𝑠2 + 1.962 × 106𝑠 + 4.109 × 107 
 (5-8)  

 

5.3.4 Inverse dynamic response of the MAST   

In order for the dynamic response of the MAST to mimic that of the sprung mass in the 

simulated QvM, the inverse transfer function of its estimated dynamic response has to be 

included in the HIL simulation, as illustrated in Figure 7-b. However, this inverse transfer 

function cannot be obtained mathematically as the order of the poles will be lower than the 

zeros. Alternatively, this can be overcome by multiplying the sprung mass transfer (𝐺𝑠) by the 

inverse transfer function of the estimated dynamic response of the MAST (
1

G�̂�(s)
), and this 

explains the reason behind the selection of the poles order in the estimated transfer function 

of the of the MAST G�̂�(s) dynamics. 

5.4 Results & Discussion  

5.4.1 Frequency analysis   

This subsection presents the outcomes of experimental investigation studies regarding the 

simulated QvM parameter uncertainties associated with the damping coefficient 𝑐𝑠, stiffness 

rate 𝑘𝑠 and sprung mass 𝑚𝑠 with the nominal values of these parameters presented in Table 

5-4. Accordingly, three main tests were performed in which, one of the QvM parameters was 

changed with assumed minimum and maximum values while the other two parameters were 

fixed. In each test, the experimental displacement frequency responses of the MAST when it is 

excited from the simulated QvM with and without inverse dynamics compensation are 

compared with that of the sprung mass (vehicle chassis) from the simulated QvM, as shown 

in Figures 5.11 to 5.13. These figures reveal that including the inverse dynamics of the MAST 

into the simulated QvM is essential for ensuring acceptable and accurate simulation of the 

MAST as a QvM (sprung mass motion) over the frequency range of interest.  
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Table 5-4: QvM parameters 

Parameter Value Unit 

𝑚𝑠 250.0 kg 

𝑚𝑢𝑠 20.0 kg 

𝑐𝑠 1500.0 N.s/m 

𝑘𝑠 10.0 kN/m 

𝑘𝑡 180.0 kN/m 

 

 

 

Figure 5-11:  Comparison between displacement frequency responses of the MAST for 

various damping coefficients of the QvM with and without including the inverse 

dynamics of the MAST    
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Figure 5-12: Comparison between the displacement frequency responses of the MAST for 

uncertainties in the suspension stiffness of the QvM with and without including the 

inverse dynamics of the MAST      

 

 

Figure 5-13: Comparison between the displacement frequency responses of the MAST for 

uncertainties in the sprung mass of the QvM with and without including the inverse 

dynamics of the MAST  

 

5.4.2 Time response 

The MAST time response was also measured experimentally with and without inverse 

dynamics compensation when subject to random road and bump profiles. Figure 5-14 shows 
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a comparison between the time responses of the simulated sprung mass (vehicle chassis) and 

the measured responses of the MAST, in terms of its displacement and acceleration. The results 

prove once more that the MAST time responses are highly comparable with the responses of 

the sprung mass in the simulated QvM.   

 

 

Figure 5-14:  Comparison between the simulated time responses of the sprung mass of the 

QvM with inverse dynamics of the MAST and measured time responses of the MAST 

under road disturbance profiles of a) bump and b) random; (1) displacement and (2) 

acceleration  

5.5 Conclusions  

In this chapter, the experimental apparatus and setup required to investigate the performance 

of an active seat suspension were introduced and explained. Moreover, the modifications of 

an existing active seat suspension were highlighted. Further, the dynamic response, of the 

MAST rig, in the vertical direction over a low-frequency range was characterised and 

estimated through experimental tests. Also, the MAST was developed and validated to mimic 

the sprung mass motion of the QvM using the principle of HIL simulation, and the inverse 

estimated dynamics of the MAST. The experimental results reveal that the MAST is suitable 

for use as a vibration platform to examine the performance of an active seat suspension and 

its control algorithm experimentally.  
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Chapter 6                                                 
An Active Seat Suspension with 
Preview Control 

This chapter presents the development of a control strategy that utilises preview information 

from the vehicle suspension. The aim is to employ this on an active seat suspension to improve 

the ride comfort of the driver’s seat when the vehicle is exposed to vertical vibration from road 

irregularities. The control force is assumed to be a linear function of this preview information 

with optimum gains that are obtained by minimising the SEAT factor using a genetic 

algorithm (GA) and considering the physical limitations of the seat suspension travel and 

actuator saturation. The proposed controller is evaluated and compared to a passive system 

using both simulation and experimental tests in both the frequency and time domains 

including different working conditions and road profiles.        

6.1 Introduction  

Based on the literature reviewed in Chapter 2, most of active vibration control strategies, even 

those utilising preview information, assessed gained their potential for improving the 

suspension’s performance through theoretical investigations alone. However, their practical 

implementation is challenging as some are based on using states that are difficult or costly to 

obtain. Whilst some have argued that these states could be estimated using an observer, this 

requires an accurate plant model. To the best of this researcher’s knowledge, the concept of 

using preview information from a vehicle suspension to control an active seat suspension has 

not been previously investigated. Accordingly, these issues motivate to develop a control 

strategy for an active seat suspension that employing inexpensive and accessible preview 

information from the vehicle suspension.  
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6.2 Control strategy  

In order to address the concept of the proposed control strategy for an active seat suspension, 

an integrated mathematical model is required. Because the seat suspension is secondarily 

influenced by road irregularities after these have been filtered by the vehicle suspension 

system [191], this model should include both the vehicle and seat suspension systems. For 

simplicity, the vehicle is represented by the well-known 2 DOF quarter vehicle model (QvM), 

which is able to provide satisfactory information regarding the heave motion of the vehicle. 

The seat suspension system is characterised by a 1DOF lumped mass-spring-damper system. 

However, to retain the simplicity of the model, the driver body model is ignored in this 

analysis, while its weight is basically included within the seat’s mass. Figure 6-1 shows the 

integrated model including an active actuator fixed in parallel with the passive seat suspension 

in which, 𝑥𝑠𝑒, 𝑥𝑠 and 𝑥𝑢𝑠 denote the vertical motion of the combined seat and driver mass (𝑚𝑠𝑒), 

the sprung mass (𝑚𝑠) and the unsprung mass (𝑚𝑠𝑒), respectively, while 𝑥𝑟 refers to the road 

excitation displacement. The stiffness and damping of the passive seat suspension are 𝑘𝑠𝑒 and 

𝑐𝑠𝑒, respectively, while 𝑘𝑠 and 𝑐𝑠  are those of the vehicle suspension. The tyre dynamics are 

characterised only by a stiffness 𝑘𝑡, as the tyre damping is much smaller compared to that of 

the suspension and hence, can be neglected [149]. Assuming linear characteristics for both the 

seat and vehicle suspension elements, the equations of motion in the vertical direction are 

derived as: 

 𝑚𝑠𝑒�̈�𝑠𝑒 = − 𝑐𝑠𝑒 (�̇�𝑠𝑒 − �̇�𝑠) − 𝑘𝑠𝑒 (𝑥𝑠𝑒 − 𝑥𝑠) + 𝐹𝑎 (6-1)  

 

 

 
𝑚𝑠�̈�𝑠 = 𝑐𝑠𝑒 (�̇�𝑠𝑒 − �̇�𝑠) + 𝑘𝑠𝑒 (𝑥𝑠𝑒 − 𝑥𝑠) − 𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠)

− 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) − 𝐹𝑎   
(6-2)  

 

 𝑚𝑢𝑠�̈�𝑢𝑠 = 𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) − 𝑘𝑡 (𝑥𝑢𝑠 − 𝑥𝑟) (6-3)  

 

where, 𝐹𝑎   denotes the actuator control force. 
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Figure 6-1: A QvM with a 1 DOF active seat suspension system 

6.2.1 Control Force  

The control strategy for the active seat suspension is used to generate the desired control force 

based on the system’s states. This plays an important role in the performance of active seat 

suspension in attenuating vibration and hence, improving ride comfort. Thus, intensive 

attention should be paid to the selection of such a control strategy, especially regarding the 

practical implementation and cost issues. That is, with the development of any control strategy 

the number of sensors and their cost need to be taken into consideration as well as the 

accessibility of the system’s states that are employed in the control scheme. In this case, the 

developed control strategy is based on using available and cost-effective preview information 

from the vehicle suspension. The control force is assumed to be a linear combination of the 

displacement and velocity states of the vehicle suspension as given by the following equation:    

 𝐹𝑎 = 𝑞1 �̇�𝑟𝑒𝑙   +  𝑞2 𝑥𝑟𝑒𝑙 (6-4)  

 �̇�𝑟𝑒𝑙 = (�̇�𝑠 − �̇�𝑢𝑠)      and   𝑥𝑟𝑒𝑙 = (𝑥𝑠 − 𝑥𝑢𝑠)  (6-5)  

 

where 𝑥𝑟𝑒𝑙  and  �̇�𝑟𝑒𝑙 denote the relative displacement and velocity between the sprung and 

unsprung masses in the QvM.  



Chapter 6 An Active Seat Suspension with Preview Control 

96 
 

The gains 𝑞1 and 𝑞2 , values in Eqn. (6-4), can be obtained by minimising an objective function 

that is associated with improving the vibration attenuation level of the seat suspension. This 

can be achieved by reducing the seat vertical acceleration and thus improving ride comfort. 

Based on the discussion given in chapter 3, this can be assessed using the SEAT factor.  

Commonly, reducing the seat vertical acceleration produces a large seat stroke (seat 

suspension travel) which is physically limited [149,199,200]. Moreover, in practical terms the 

actuator force capacity is also limited, and consequently, these aspects should be considered 

in the optimisation problem as hard constraints. Referring to the available test rig which has 

been described in the previous chapter, the maximum allowable seat stroke (𝑥𝑠𝑒,𝑚𝑎𝑥) and the 

actuator force are set to be 45 mm and 1500.0 N, respectively. Thus, the resulting optimisation 

problem is formulated as follows: 

Given: A QvM with a 1 DOF passive seat suspension. 

(6-6)  

Find: 𝑞1      and   𝑞2 

To 

minimise: 
𝑓 =   𝑆𝐸𝐴𝑇 𝑓𝑎𝑐𝑡𝑜𝑟 

Subject to:  𝑔(1) =  (𝑥𝑠𝑒 − 𝑥𝑠)𝑚𝑎𝑥 − (𝑥𝑠𝑒 − 𝑥𝑠)𝑚𝑖𝑛  ≤  𝑥𝑠𝑒,𝑚𝑎𝑥 

𝑔(2) =  |𝐹𝑎|  ≤ 1500 (𝑁) 

where, 𝑔(1) and 𝑔(2) denote the constraints of the seat stroke and actuator force, respectively. 

To solve the above constrained optimisation problem in a more convenient way, it is modified 

to an unconstrained one using a penalty function [201], as well as the original objective 

function given in Eqn. (6-6) being squared and weighted by an arbitrary number (1,000) so that 

small changes in the design variables values (optimum gains) can be captured. Thus, the 

fitness function of the unconstrained optimisation problem is expressed by: 

 

  𝐽 = 1000 ∗ 𝑓2 + 𝑃𝐺 (6-7)  

where, 𝑃𝐺 is a penalty function  given by: 

 𝑃𝐺 =   {
0   ;   𝑔(1) 𝑎𝑛𝑑 𝑔(2) ≤ 0

1 × 1012  ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (6-8)  
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Because the size of the above optimisation problem is small (only two design variables), the 

GA technique that has been previously discussed in chapter 2 is used here to solve for the 

optimum gains 𝑞1 and 𝑞2  of the preview information control.  

 

6.2.2 Identifying the passive seat characteristics  

In order to obtain some realistic dynamic responses from the simulation model, the passive 

seat suspension elements including the damping coefficient 𝑐𝑠𝑒 and stiffness rate 𝑘𝑠𝑒 were 

experimentally determined using the experimental rig test and the HIL simulation of the QvM, 

as explained in chapter 5. The MAST was excited using a swept sinusoidal displacement signal 

over a frequency range of 1-20 Hz with a step frequency of 0.5 Hz and an amplitude of 10.0 

mm. The resulting seat pan and MAST accelerations were measured using a sampling 

frequency of 10 kHz and filtered using a low-pass filter with a cut-off frequency of 250 Hz, 

hence, obtaining the measured acceleration transmissibility acceleration of the passive seat 

suspension, as presented in Figure 6-2. As shown in this figure, the seat and dummy were 

approximated by a second order continuous function system with a reasonable agreement 

over the frequency range of interest (< 10Hz). Also, a dominant natural frequency of the (seat 

and dummy) system was observed around 4 Hz, from which the estimated stiffness and 

damping of the passive seat were determined as 48.75 kN/m and 1847.0 N.s/m, respectively. 

Moreover, it reveals that the seat and dummy system has additional higher modes above 10 

Hz due to the multi-body nature of the dummy being excited.      
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Figure 6-2:  Comparison between the measured and simulated frequency responses of the 

seat acceleration using a 1 DOF passive seat suspension model  

Once the characteristics of the passive seat suspension have been identified, the integrated 

model was modelled using Simulink and the MATLAB GA optimisation toolbox was used to 

solve the optimisation problem off-line with a random road of class E (very poor) road 

roughness, as given in Chapter 3, and a vehicle forward speed of 60 km/h. The simulated 

vehicle suspension parameters, GA parameters and the obtained optimum gains are listed in 

Table 6-1. 

After obtaining the optimum gains, the proposed control strategy was investigated 

experimentally. As mentioned previously, the preview information used in the control 

strategy are both the displacement and velocity of the vehicle suspension from the QvM. This 

is based on the fact that the MAST was able to mimic the motion of the sprung mass of the 

QvM using the HIL technique as explained in the previous chapter. The measured states of 

the MAST and the simulated states of the unsprung mass (wheel), together with the optimum 

gains, were used to generate the demand control force through the two linear actuators 

mounted on the active seat. Figure 6-3 shows a block diagram of the MAST HIL and the 

proposed controlled active seat suspension in which the control force requires two states from 

the vehicle suspension. These states are the sprung and unsprung mass relative displacement 

(𝑥𝑟𝑒𝑙) and velocity (�̇�𝑟𝑒𝑙). The vertical motion of the MAST which represents the sprung mass 
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motion in the QvM, was measured using a position transducer (LVDT) within the MAST 

hydraulic actuators. The unsprung mass motion was estimated ‘virtually’ from the simulated 

QvM and the suspension displacement is obtained by subtracting these two states while the 

suspension displacement is differentiated to determine the suspension velocity. Subsequently, 

the suspension displacement and velocity are fed to the control algorithm model in Simulink 

to generate the demand control force. In practice, these two states can be easily acquired using 

inexpensive commercial position transducers.    

 

 

Figure 6-3: Block diagram of the HIL and the preview information control 
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Table 6-1: QvM and GA simulation parameters and optimum gains values  

 

6.3 Performance validation  

6.3.1 Frequency domain testing 

To validate the performance of the proposed control strategy, the acceleration transmissibility 

of the active seat was measured and compared to the passive seat, as shown in Figure 6-4. This 

figure reveals that the active seat suspension significantly attenuates the transmitted vibration 

at the seat when compared with the passive suspension, with a maximum reduction level of 

10 dB, achieved at around 10 Hz. In addition, the acceleration transmissibilities of the passive 

and active systems obtained from the numerical simulation, using the integrated QvM and 

seat models, are shown Figure 6-5. These results prove once again the effectiveness of the 

developed control strategy in suppressing the seat vibration both in simulation and 

QvM parameters 

Parameter Value Unit 

𝑴𝒔 (Sprung mass) 250 Kg 

𝑴𝒖𝒔 (Unsprung mass) 20 Kg 

𝑪𝒔 (Suspension damper coefficient) 1500 N.s/m 

𝒌𝒔 (Suspension stiffness) 10 kN/m 

𝒌𝒕 (Tyre stiffness) 180 kN/m 

Optimum gains 

𝒒𝟏 -64.1 N.s/m 

𝒒𝟐 5.35 kN/m 

GA parameters 

No. of population 40 

No. of generation 6000 

Crossover probability 0.4 

Mutation probability 0.001 
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experimental tests. Whilst the experimental and numerical results for both the passive and 

active systems have very comparable behaviours, there are differences between simulation 

and experiment, mainly due to the system non-linearities and a multi-body experimental 

dummy that is not considered in the simulated model.   

 

Figure 6-4:  Seat acceleration transmissibility for the passive and active seat suspension 

using preview information control in experimental test  

 

 

Figure 6-5:  Seat acceleration transmissibility for the passive and active seat suspension 

using preview information control in the simulation test 
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6.3.2 Time domain 

The aim of this section is to evaluate the active seat suspension under different road 

excitations, including bump and random road profiles, at a range of forward vehicle speeds. 

For the random road excitation case, the assessment was carried out by comparing the 

measured and simulated results of the passive and active SEAT factors as well as the frequency 

weighted RMS acceleration values. In addition, a health risk assessment based on ISO 2631-1, 

is also presented. In the case of the bump excitation, the evaluation was performed through 

simulation of the seat acceleration and seat suspension displacements. 

6.3.2.1 Random response  

Based on the fact that the vehicle forward speed influences the energy content of the 

transmitted vibration to the vehicle body in the case of a random road disturbance, three 

vehicle speeds were examined (40, 60 and 100 km/h). In addition, due to the random nature of 

the road profile the simulation was carried out 100 times for each vehicle speed, each with a 

time duration of 10 seconds. The experimental tests were repeated three times and an average 

is taken. To avoid excessive MAST accelerations at high frequency, the reference road 

roughness Φ(Ω0)  used in both the simulation and experiments was set as 16 × 10−6 𝑚3.  

Figure 6-6 shows the measured passive and active time responses in terms of the seat 

acceleration and seat suspension displacement as well as the road profiles.  It is clear that the 

seat vibration attenuation achieved by the active seat is superior to the passive system. 

However, this improvement in the seat vibration isolation performance is achieved at the cost 

of increasing seat suspension displacements. Nonetheless, this increase is within the allowable 

seat suspension stroke. 

The power spectrum densities (PSD) of the passive and active acceleration time responses are 

presented in Figure 6-7. At low frequencies (< 3 Hz), the active and passive seat suspensions 

show very similar behaviour for low and medium vehicle speeds. At higher frequencies above 

3 Hz, the active seat delivers a substantial reduction in the transmitted vibration PSD, thus 

demonstrating the effectiveness of both the controller and active system.  
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Figure 6-6: Measured time responses for the passive and active seat suspension with 

preview information control under random road excitation and different vehicle speeds 

 

 

Figure 6-7: PSDs of the seat acceleration for the passive and active seat suspensions with 

preview information control in the experimental test   

Figure 6-8 presents the measured and simulated SEAT factors for both the passive and active 

seat suspensions at different vehicle speeds. It is notable that the measured and simulated 

SEAT factors of the active seat are lower than those of the passive system at all the tested 
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vehicle speeds. Moreover, the maximum percentage improvements when compared with the 

passive system were 37.5 % and 30.2 % for the simulated and measured systems, respectively.  

The measured and predicted frequency weighted RMS seat acceleration values of the active 

and passive seat suspensions are shown in Figure 6-9. It can be seen that for both sets of results 

the active system has lower weighted RMS seat acceleration values than that of the passive 

system regardless of the vehicle speed.  The proposed active system delivers improvements of 

more than 30 % and 20 % for the simulated and measured systems respectively, in the 

weighted RMS seat acceleration when compared with the passive system.   

 

 

 

Figure 6-8: Measured and simulated SEAT factor values for the passive and active seat 

suspension with preview information control and percentage improvements at different 

vehicle speeds 
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Figure 6-9: Measured and simulated weighted RMS seat acceleration (𝒂𝒗) for the passive 

and active seat suspension with preview information control and percentage 

improvements at different vehicle speeds 

 

Figure 6-10 shows the frequency-weighted RMS acceleration of the active and passive seat 

suspensions regarding the TLVs, as suggested by the standard ISO 2631-1 at different vehicle 

speeds. Clearly the proposed active seat suspension operates better than the passive 

alternative in reducing the weighted RMS seat acceleration over a broadband frequency range 

especially over the human body sensitive frequency (HBSF) range (4-8 Hz), in which the 

passive system exceeds the 8h working daily exposure limit. In summary, the active system 

offers a more comfortable and safer working environment than the passive system.    
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Figure 6-10: Health risk assessment, according to ISO 2631-1, for the passive and active 

seat suspension with preview information control at different vehicle speeds in the 

experimental test   

  

6.3.2.2 Bump response 

 Figure 6-11 shows the simulated time responses of the passive and active seat suspensions 

under a bump road profile as given by Eqn. (3-17) at different vehicle forward speeds. The 

RMS values of both the seat acceleration and the seat suspension displacement are listed in 

Table 6-2.  These results reveal that the active seat decreases the seat acceleration more 

effectively than the passive suspension irrespective of the vehicle forward speed. 

Nevertheless, this is at the expense of increasing the seat suspension displacement. Moreover, 

the attenuation performance of the active seat suspension at higher forward vehicle forward 

speeds is also improved, whereas the seat suspension displacement is decreased compared 

with that at lower vehicle speeds. These results prove once again that the controller is able to 

improve the ride quality of the seat without exceeding the allowable limit of the seat 

suspension travel.            



Chapter 6 An Active Seat Suspension with Preview Control 

107 
 

 

Figure 6-11: Time responses for the passive and active seat suspension with preview 

information control under a bump road excitation and different vehicle speeds in the 

simulation test  

 

Table 6-2: Comparison between the performance of the passive and the active seat 

suspension with preview information control under a bump road profile 

Vehicle 

speed 

(Km/h) 

Bump road profile (Simulated) 

Seat acceleration 

RMS (m/s2) 
% 

Improvement 

Seat suspension 

displacement 

RMS (mm) 

% 

Increase 

Passive Active Passive Active 

40 1.34 1.02 31.40 1.37 1.92 40.20 

60 1.37 0.92 32.90 1.22 1.53 25.40 

100 1.24 0.75 39.50 0.96 1.06 10.40 

 

6.4 Conclusions  

This chapter has presented the development of a novel, simple and inexpensive control 

strategy for an active seat suspension system based on using measurable and available 

preview information from the vehicle suspension to attenuate the harmful vertical vibration 
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over low-frequency range (1-20 Hz) transmitted to a driver as a result of road excitation. The 

effectiveness of this control strategy has been validated through numerical simulation 

involving a quarter vehicle model (QvM) and experimental laboratory tests in both the 

frequency and time domains including different working conditions and road profiles. Both 

sets of results have demonstrated the effectiveness of the active controller in attenuating the 

transmitted vibration at the seat. Based on the experimental measurements, an attenuation of 

more than 10 dB in the frequency domain and a 20 % improvement in the SEAT factor have 

been achieved with this active seat suspension when compared with the passive alternative 

regardless of the vehicle speed. In general, this approach offers a viable, practical and cost-

effective active seat controller that reduces driver fatigue and provides a safer and comfortable 

working environment. Further modifications of the developed control approach will be 

presented in the next chapter.   
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Chapter 7                                                 
An Experimental Study of Active Seat 
Suspension Controllers with Vehicle 
Suspension Feedforward and 
Feedback States  

In the previous chapter, the concept of using measurable preview information from the vehicle 

suspension for controlling an active suspension was presented and its effectiveness in 

suppressing vertical vibration at the seat was confirmed through both simulation and 

experimental tests. This chapter involves the development and testing of simple and practical 

control strategies for the active seat suspension, which employ such preview information 

together with measurable feedback system states, whilst at the same time satisfying the 

physical limitations associated with both the seat suspension stroke and control force capacity. 

Initially, the integrated mathematical model used previously is modified to include the effects 

of driver body dynamics. Then, the characteristics of the passive seat suspension and the 

driver body models are estimated through experimental tests. The control force of each control 

strategy is derived using the same linear approach presented in the previous chapter, and then, 

the strategies are implemented in real time using the experimental test rig described in chapter 

5. Laboratory experimental tests are carried out to evaluate the effectiveness of these strategies 

in improving ride comfort, according to the ISO 2631-1 standard, in both the frequency and 

time domains, with a range of different vehicle speeds and two road profiles: random and 

bump.   

7.1 Modification of the integrated model   

The integrated model used in chapter 6 was simple and neglected the driver body dynamics.  

Hence, to make the application more realistic and retain the simplicity, this model has been 

modified by including the driver body dynamics as a 1 DOF linear lumped spring-damper-

mass system as shown in Figure 7-1. The displacement of the driver body mass 𝑚𝑏 in the 
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vertical direction is 𝑥𝑏, whilst  𝑘𝑏 and 𝑐𝑏 denote the spring stiffness and damper coefficient of 

the driver body model. Thus, the governing equations of motion in the vertical direction are 

given as follows: 

 
𝑚𝑏�̈�𝑏 = − 𝑐𝑏 (�̇�𝑏 − �̇�𝑠𝑒) − 𝑘𝑏 (𝑥𝑏 − 𝑥𝑠𝑒) 

(7-1)  

 
𝑚𝑠𝑒�̈�𝑠𝑒 = 𝑐𝑏 (�̇�𝑏 − �̇�𝑠𝑒) + 𝑘𝑏 (𝑥𝑏 − 𝑥𝑠𝑒) − 𝑐𝑠𝑒 (�̇�𝑠𝑒 − �̇�𝑠) − 𝑘𝑠𝑒 (𝑥𝑠𝑒 − 𝑥𝑠)

+ 𝐹𝑎    
(7-2)  

 
𝑚𝑠�̈�𝑠 = 𝑐𝑠𝑒 (�̇�𝑠𝑒 − �̇�𝑠) + 𝑘𝑠𝑒 (𝑥𝑠𝑒 − 𝑥𝑠) − 𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠) − 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) − 𝐹𝑎    

(7-3)  

 𝑚𝑢𝑠�̈�𝑢𝑠 = 𝑐𝑠 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑘𝑠 (𝑥𝑠 − 𝑥𝑢𝑠) − 𝑘𝑡 (𝑥𝑢𝑠 − 𝑥𝑟) 
(7-4)  

 

 

 

Figure 7-1: QvM, a 1 DOF active seat suspension and 1 DOF driver model 
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7.2 Active seat suspension control strategies  

As mentioned in the previous chapters, the availability and cost of the required states to 

control an active seat suspension significantly affect the practical implementation of such a 

system. Not only this, but it also impacts on the complexity of the control strategy itself. Based 

on these facts, five simple control strategies are designed to attenuate the vertical vibration at 

the driver’s seat. The control force is expressed as a linear function of the preview information 

from the vehicle suspension combined with the feedback system states with optimum gains, 

as presented in Table 7-1.   

          Table 7-1: Actuator force controller algorithms 

Control 

strategy 
Control force (Fa) 

A1 𝐹𝑎 = 𝑞1 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑞2 (𝑥𝑠 − 𝑥𝑢𝑠) 

A2 𝐹𝑎 = 𝑞3 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑞4 (𝑥𝑠 − 𝑥𝑢𝑠) + 𝑟1 �̈�𝑠 

A3 𝐹𝑎 = 𝑞5 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑞6 (𝑥𝑠 − 𝑥𝑢𝑠) + 𝑟2 �̈�𝑠𝑒 

A4 𝐹𝑎 = 𝑞7 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑞8 (𝑥𝑠 − 𝑥𝑢𝑠) + 𝑟3 �̈�𝑠 + 𝑟4 �̈�𝑠𝑒 

A5 𝐹𝑎 = 𝑞9 (�̇�𝑠 − �̇�𝑢𝑠) + 𝑞10 (𝑥𝑠 − 𝑥𝑢𝑠) + 𝑟5 (�̇�𝑠𝑒 − �̇�𝑠) + 𝑟6 (𝑥𝑠𝑒 − 𝑥𝑠) 

 

All of the controllers, A1 to A5, use preview information from the vehicle suspension in terms 

of the displacement (𝑥𝑠 − 𝑥𝑢𝑠) and velocity (�̇�𝑠 − �̇�𝑢𝑠) of the vehicle suspension. Controller A1 

requires preview information alone while A2 employs the preview information and the 

acceleration of the vehicle body (the sprung mass in the QvM). A3 utilises the preview 

information together with the acceleration of the seat, whereas both the seat and the sprung 

mass acceleration states are used in the controller A4. The last controller, A5, uses the preview 

information as well as the feedback states of the seat suspension’s displacement and velocity, 

(𝑥𝑠𝑒 − 𝑥𝑠) and (�̇�𝑠𝑒 − �̇�𝑠), respectively.  

The parameters gains (q’s) and (r’s) in Table 7-1, refer to the gains of the feed-forward (preview 

information) and feedback states for each control strategy, respectively. These are determined 
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using the same optimisation process given previously in chapter 6 as well as the same 

constraints regarding the seat suspension stroke and actuator force saturation. 

7.3 Identifying the passive seat characteristics  

The integrated model shown in Figure 7-1 was modelled using Simulink and the MATLAB 

GA optimisation toolbox was utilised to solve the optimisation problem. To make the 

application more realistic, the characteristics of the passive seat suspension (𝑚𝑠𝑒, 𝑘𝑠𝑒 and 𝑐𝑠𝑒) 

, as well as the driver (𝑘𝑏 and 𝑐𝑏), were estimated based on laboratory tests using the 

experimental rig, including the passive seat suspension and the dummy, as presented in 

chapter 5. The MAST was excited by a swept sinusoidal displacement signal with an 

amplitude of 10.0 mm and a frequency range of 1-20 Hz. The resulting vertical seat pan and 

MAST accelerations were measured using a sampling frequency of 10 kHz and filtered using 

a low pass filter with a cut-off frequency of 250 Hz. Hence, the measured vertical acceleration 

transmissibility from the MAST to the passive seat suspension was obtained and subsequently, 

the simulated values of the passive seat suspension, as well as the driver’s body model, were 

acquired by fitting this transmissibility with that obtained from the simulated model, as 

depicted in Figure 7-2. It can be seen that there is a reasonable match between the measured 

and the simulated seat acceleration transmissibilities over the frequency range of interest (<12 

Hz).  However, it was found that there was a compromise between fitting either the magnitude 

or the phase frequency responses. A fundamental natural frequency of the passive seat 

suspension and the dummy was observed at a frequency of 3.5 Hz, together with additional 

passive seat suspension and dummy higher order dynamics above 12 Hz, which were not 

predicted by the simplified model.  

The estimated parameters of the passive seat suspension and the dummy are listed in Table 

7-2 while the GA parameters are given in Table 7-3, and the calculated optimum controller 

gains for each controller strategy are listed in Table 7-4. 
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Figure 7-2:  Comparison between the measured and simulated seat acceleration 

transmissibility for the passive seat suspension with a 1 DOF driver model   

 

Table 7-2: QvM and estimated parameters of the passive seat suspension and the dummy   

Parameter Value Unit 

𝑚𝑠𝑒 5.0 Kg 

𝑚𝑏 55.25 Kg 

𝑐𝑠𝑒 2.10 kN.s/m 

𝑘𝑠𝑒 42.0 kN/m 

𝑐𝑏 0.90 kN.s/m 

𝑘𝑏 280.0 kN 

 

Table 7-3: GA parameters  

No. of population 40 

No. of generation 1000 

Crossover probability 0.2 

Mutation probability 0.01 
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Table 7-4 : Optimum gains of the active seat suspension controller strategies 

Gain Value Unit 

𝑞1 -93.0 N.s/m 

𝑞2 20.512 kN/m 

𝑞3 -40.0 N.s/m 

𝑞4 21.0 kN/m 

𝑞5 -10.0 N.s/m 

𝑞6 21.0 kN/m 

𝑞7 -50.0 N.s/m 

𝑞8 19.5 kN/m 

𝑞9 -55.0 N.s/m 

𝑞10 24.0 kN/m 

𝑟1 1.0 N.s2/m 

𝑟2 1.0 N.s2/m 

𝑟3 0.3 N.s2/m 

𝑟4 0.8 N.s2/m 

𝑟5 -4.0 N.s/m 

𝑟6 20.0 kN/m 

 

7.4 Experimental tests 

Once the optimum gains of each active controlled seat suspension strategy had been obtained, 

these strategies were then implemented in real time using the experimental test rig and the 

principle of the HIL approach defined in chapter 5, in both the frequency and time domains. 
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Figure 7-3 shows a block diagram of the MAST HIL and the control strategies as well as the 

experimental setup for testing the active seat suspension. The following sections present the 

assessment of these strategies through experimental laboratory tests, in both the frequency 

and time domains with different road disturbances.  

 

Figure 7-3: General experimental setup and HIL simulation for the active seat suspensions 

using the preview information- feedback controllers: A1, A2, A3, A4 and A5   

7.4.1 Frequency domain testing 

The performance of the proposed control strategies (A1-A5) was estimated from the 

acceleration transmissibility of the active seat with respect to the MAST using both 

experimental tests and simulation, as shown in Figure 7-4. It can be observed from both the 

experimental and simulation results that for all five controllers the vibration attenuation of the 

active seat suspension is superior to the passive seat, all be it with different reduction levels 

depending on the frequency range. Interestingly, the simplest controller A1 demonstrates the 

best performance over the low-frequency range (3.5-4.5 Hz), although its performance 

deteriorates at higher frequencies, where the dummy dynamics are more dominant. This may 

be due to the open loop nature of this controller that uses only feedforward signals, which do 

not respond to the dummy and the seat dynamics. This phenomenon is also observed in the 

experimental performance of the feedforward controller A2, although it is not shown in the 
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simulation as the linear and lumped mass nature of the dynamic system neglects this 

behaviour. 

Controller A3 combines the feedforward vehicle suspension states with the vertical 

acceleration of the seat in order to generate the control force. This provides superior vibration 

attenuation when compared with the A1 and A2 controllers, especially over the HBSF range 

(4-8 Hz). This indicates the importance of feedback states in the suppression of vibration over 

a broadband frequency range. 

The controller A4 performs less well over a low-frequency range less than 5 Hz, whilst its 

performance is superior above 5 Hz. Likewise, in simulation, the controller A5 shows the best 

performance across a wide frequency range, but this was not backed up by the experimental 

results, especially at a low-frequency range (4-5.8 Hz). Moreover, it amplifies the vibration 

around the fundamental natural frequency of the seat (𝑓𝑛= 3.33 Hz). This is mainly due to 

system non-linearities as well as friction and noise, which in real life compromise the feedback 

signals and result in an incorrect control force that introduces a disturbance to the seat instead 

of attenuating the vibration. In conclusion, the controller A4 delivers the best performance in 

vibration attenuation over the whole frequency range of interest, with a minimum and 

maximum reduction level of 10 and 19.5 dB over the HBSF.  

 

 

Figure 7-4:  Measured and simulated seat acceleration transmissibility for the passive and 

active seat suspensions using preview information –feedback control approaches  
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7.4.2 Time domain testing  

To investigate the effectiveness of the proposed strategies in the time domain, two common 

road disturbances were used to excite the QvM including random and bump road profiles. 

Subsection 2.2.1 presents the experimental evaluation of controlled active seat suspensions 

when subject to a random road profile at different vehicle speeds. The assessment was carried 

out by comparing the passive and active SEAT factors and the weighted-frequency RMS seat 

acceleration in terms of their percentage improvements, according to ISO 2631-1.  

Furthermore, a health risk assessment, based on the daily working TLVs, is presented. In 

subsection 2.2.2, the performance is investigated when the QvM was excited by a single bump 

road input and compared to the passive system.  

7.4.2.1 Random road profile 

A random road profile was generated according to the ISO 8608 presented in chapter 3, with 

five different vehicle speeds (20, 40, 60, 80 and 100 km/h) over a period of 12 seconds as shown 

in Figure 7-5. To avoid extremely large MAST acceleration inputs at high frequencies that 

could damage the active seat suspension, the road roughness was set as Φ(Ω0) = 40 ×

10−6 𝑚3. 

The measured seat acceleration and seat suspension travel time responses of the active seat 

suspension with the controllers (A1 to A5) as well as the demand control force are shown in 

Figures 7.6 to 7.10 parts (a), (b) and (d). It can be observed that all the proposed controllers 

perform better than the passive suspension in reducing the seat vertical acceleration while 

maintaining a reasonable seat suspension travel and the demand control force. 

The power spectrum densities (PSD) of the active seat suspension using the different proposed 

controllers (A1 to A5) were compared with the passive seat suspension in Figures 7.6 to 7.10 

part (c). Generally, the active seat suspension utilising any of these proposed controllers has 

lower PSDs, when compared with the passive system over a wide frequency range, especially 

in the range of 4-8Hz where humans are most sensitive. However, at a low frequency below 4 

Hz, the active seat suspension performs less well, especially controllers A1 and A2 that only 

use the vehicle suspension feedforward signals.  
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The SEAT factors of the passive and active seat suspensions at a range of vehicle speeds are 

shown in Figure 7-11. It can be seen that all the proposed active controllers have SEAT factor 

values less than the passive system, regardless of the vehicle speed. Specifically, the active 

seat, when using controller A4, provides the best improvement in the SEAT factor reduction, 

followed by the controller A3, with a percentage improvement of at least 25 % at all vehicle 

speeds, when compared with the passive system. 

The frequency-weighted RMS seat acceleration is also presented Figure 7-11. It is notable that 

all the active seat suspension controllers provide superior lower frequency-weighted RMS seat 

acceleration, when compared with the passive seat suspension, across the range vehicle 

speeds. Also, at intermediate and high vehicle speeds the passive seat system exceeds the “not 

uncomfortable’’ range in terms of ride comfort level, according to the ISO 2631-1 standard. In 

summary, these results prove the capability and the robustness of the active seat suspensions 

using the controllers A3 and A4.     

Figure 7-12 presents the frequency-weighted RMS acceleration of the active and passive seat 

suspensions with respect to the TLVs, as suggested by the ISO 2631-1, over the range of vehicle 

speeds. It can be seen that the active seat suspension, employing any of the proposed 

controllers, performs better than the passive system, especially over the HBSF range in which 

the passive system exceeds the 16 h working daily exposure limit. This indicates that, in a 

practical application, the active seat suspensions provide a less tiring and potentially safer 

working environment for drivers working long hours.  

 

Figure 7-5: Random road profile at a vehicle speed of 60 km/h 
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Figure 7-6: Time responses and PSD of the seat acceleration for the passive system and 

active seat suspension with controller A1  

 

 

Figure 7-7: Time responses and PSD of the seat acceleration for the passive system and 

active seat suspension with controller A2 
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Figure 7-8: Time responses and PSD of the seat acceleration for the passive system and 

active seat suspension with controller A3 

 

 

 

Figure 7-9: Time responses and PSD of the seat acceleration for the passive system and 

active seat suspension with controller A4 
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Figure 7-10: Time responses and PSD of the seat acceleration for the passive system and 

active seat suspension with controller A5 

 

 

 

Figure 7-11: Performance assessment for the active seat suspensions using preview 

information –feedback control approaches under different vehicle speeds 
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Figure 7-12: Health risk assessment, according to ISO 2631-1, for the passive and active 

seat suspensions using preview information –feedback control approaches under 

different vehicle speeds 

 

7.4.3 Bump road profile   

In addition to the random road, the performance of the controllers was also examined when 

subject to a single bump road input at a vehicle speed of 25 km/h, as shown Figure 7-13 (a). 

This was generated using the formula (Eqn. 3-17) where the values of 𝑎 and 𝑙  are 30.0 mm and 

2.0 m, respectively.  

The measured time responses of the controlled active suspensions in terms of the seat 

acceleration and seat suspension stroke are compared with those of the passive system in 

Figure 7-13(b) and Figure 7-14. It can be seen that all the proposed active controllers efficiently 

reduce the seat acceleration when compared with the passive system. In addition, it was 

observed that the controllers as well as the passive system change the static position, especially 

controller A1 as shown in Figure 22b. This is due to the presence of coulomb friction and 

results in a small random offset following each test. In summary, the controller A1 delivers the 

best reduction in seat acceleration followed by the controller A2 when compared with the 

other controllers as presented in Table 7-5. Although the controllers (A3 to A5) show the best 

performance in simulation tests, this was not backed up by the experimental results. Again, 

this is attributed to the effects of unmodelled higher-order system dynamics and nonlinearties. 
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Figure 7-13: Bump road profile and the measured seat acceleration for the passive and 

active seat suspensions using preview-feedback control approaches: (a) Road profile and 

(b) Seat acceleration. 

 

 

 

Figure 7-14: Passive and active seat suspension performance when subject to a bump road 

input: (a) A1, (b) A2, (c) A3, (d) A4 and (e) A5  
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Table 7-5: Time response characteristics of the active seat suspensions under a bump road 

profile 

Seat system 
Seat acceleration 

RMS (m/s2) 

Maximum seat suspension travel 

(mm) 

Passive 0.866 9.302 

A1 0.461 24.472 

A2 0.566 11.170 

A3 0.630 14.038 

A4 0.658 12.132 

A5 0.593 10.993 

 

 

7.5  Conclusions  

This chapter has presented the development of simple and cost-effective control strategies for 

an active seat suspension system that to reduce the vertical broadband vibration (1-20 Hz) 

transmitted to a driver as a result of road excitation. These control strategies employ 

feedforward preview information from the vehicle suspension as well as inexpensive and 

measurable feedback states. The performance of these controllers in attenuating the vertical 

seat vibration has been confirmed through experimental laboratory tests using the principle 

of HIL technology, QvM and an active seat suspension. The experimental results reveal that 

the proposed controllers are effective in reducing the vertical seat acceleration over the HBSF 

range by up to 19.5 dB, when compared with a passive seat suspension. In addition, an 

improvement in both the SEAT factor and the weighted RMS seat acceleration of at least 25 % 

was accomplished by the controllers A3 and A4 at the full range of vehicle speeds. In 

conclusion, the controller A4 that employs both feedforward suspension states and easily 

measured feedback seat and vehicle chassis states has the best performance and provides a 
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practical system. This improves ride comfort and reduces the potential danger of long-term 

health damage for vehicle drivers.  

Despite the superior performance demonstrated by the preview controller, there is an inherent 

drawback involved within the linear controller approach. That is, since the demand control 

force is linearly dependent on the system states, the physical constraints of limited seat 

suspension travel and actuator force cannot always be satisfied. This issue will be addressed 

in detail in the next chapter.  

 

 

 

 



Chapter 8 Active Seat Suspension Using Preview Vehicle Information and An 

Optimised Fuzzy Logic Controller                                                                         

 

126 
 

Chapter 8                                                 
An Active Seat Suspension with 
Optimum Fuzzy Logic Control Using 
Preview Information  

In the previous chapters, it was shown that the application of preview information from the 

vehicle suspension states in linear controller for an active seat suspension is effective in 

attenuating low-frequency vertical vibration. However, the linear control approach is unable 

always to guarantee satisfactory performance in terms of seat suspension stroke and actuator 

force demand. To overcome this shortcoming, this chapter presents the design of two novel 

fuzzy logic (FL) controllers that can ensure the satisfaction of these constraints independent of 

the operating conditions. The first FL controller applies similar preview information as in the 

linear control approach, whilst the second uses the same preview information together with 

measurable and inexpensive feedback states from the seat suspension.  

This chapter is divided into two main parts. The first deals with the theoretical design and 

performance evaluation of the proposed FLCs through numerical simulations in the frequency 

and time domains. The second part outlines the experimental implementation and 

performance assessment of these controllers using the prototype active seat suspension as 

described in chapter 5.     

Part I- Theoretical study  

8.1 Introduction   

In the previous two chapters, the concept of applying available and inexpensive preview 

information from the vehicle suspension using a linear based controller for an active seat 

suspension was intensively investigated through both numerical simulations and 

experimental tests. Both sets of results demonstrated that this approach can significantly 

improve the ride comfort quality over the frequency range of interest (1-20 Hz). 
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For the sake of simplicity, the demand control force was assumed to be a linear function of the 

measurable preview information with optimum gains based on ride quality and taking into 

account the physical constraints of the seat suspension travel and the actuator force capacity.  

In this controller, the force is linearly dependent on the system states and thus, the satisfaction 

of the physical constraints cannot always be ensured over a range of road surfaces and vehicle 

speeds. That is, the system is not entirely sufficient in terms of stability, reliability and practical 

implementation. To deal with these practical challenges, a fuzzy logic controller (FLC) can be 

a viable alternative through which these hard constraints can be handled [202].  

Two optimal FLCs for an active seat suspension, namely feedforward (FF-FLC) and 

feedforward-feedback (FFFB-FLC), are developed here. These controllers employ similar 

preview information (feedforward) that was used for the linear control approach as well as 

measurable and low-cost system feedback states from the seat suspension. The physical 

constraints related to both the limited seat suspension travel and actuator force capacity are 

also considered in the design process. The FF-FLC utilises preview information from the 

vehicle suspension in terms of the displacement and velocity of the vehicle suspension as input 

variables. The FFFB-FLC uses the same preview information together with available and 

inexpensive feedback measurements from the seat suspension, namely the seat suspension’s 

travel and velocity. To design an FLC some fundamental aspects of its structure are explained.  

8.2 Fuzzy logic controller                

Fuzzy logic control (FLC) is based on the theory of ‘Fuzzy logic’, which was first proposed by 

Lotfy Zadeh [203]. It involves assigning an input to an output based on the operation of the 

human brain using a set of logical rules [124]. Due to the simplicity and flexibility in the design 

of an FLC they have been widely applied in many fields, such as aircraft, automated highway 

systems and automobiles, including engine transmissions, active steering and suspension etc.  

[202].  

Generally, an FLC is composed of four parts, as presented in Figure 8-1: 

1) A fuzzification interface, which converts the controller inputs (crisp values) to linguistic 

variables (fuzzy sets) that can be used in the inference mechanism. The linguistic variables 

are represented by membership functions (MF) in the universal discourse;  
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2) A rule-base (RB), which is a set of linguistic (IF-Then) rules that store the knowledge of 

how to control the process;     

3) An inference mechanism or inference engine, which utilises the linguistic inputs and the 

rule base to produce the control decision (linguistic outputs);     

4) A defuzzification interface that converts the linguistic outputs from the inference engine 

into crisp outputs.  

 

Figure 8-1: FLC structure adapted from [202,204] 

Many studies have been conducted in controlling active suspension systems using FLCs. For 

example, Guclu [205] simulated three active suspension systems using FLCs and a nonlinear 

full vehicle model. The input variables were the error in the suspension travel and its time 

change, while the output was the actuator force. Gaussian MFs were used and their parameters 

were tuned by trial and error, while the rule base (RB) was heuristically established.  A similar 

FLC study was conducted by Sharkawy [206] where the input variables were the suspension 

travel and suspension velocity. Rao and Prahlad [207] developed an FLC for active vehicle 

suspensions using the suspension deflection and suspension velocity as the input variables, 

whilst the rate of change of the control force was the output.  The type of the MFs used was 

bell-shaped and their parameters were altered by trial and error. The rule base was developed 

based on the Macvicar-Whelan lookup-table.  

Moon and Kwon [208] designed a three input, two output FLC for an active vehicle suspension 

based on a half-vehicle model. The input variables were the sprung mass acceleration and the 

front and rear suspension displacements, whilst the outputs were the desired control force at 

the front and rear suspensions. The RB comprised three sub-rule bases that were individually 
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developed for each input. The MFs for both the input and output variables were triangular 

and their parameters were tuned using a genetic algorithm (GA). Hurel et al.  [209] proposed 

an FLC controller with two-inputs and one output for a vehicle active suspension using a linear 

QvM. The scaling factors for both the input and output variables were adjusted, under fixed 

triangular MFs, while a heuristic fuzzy RB was constructed using Particle Swarming 

Optimisation (PSO). Taskin et al. [210] proposed an FLC controller for active vehicle 

suspensions that improved ride comfort without degrading the suspension deflection using a 

QvM simulation model. The FLC was composed of three inputs and one output with 

triangular MFs. The inputs were the suspension deflection, the vertical velocity of the sprung 

mass and a combination of these two inputs. The 27 rules were able to be reduced by 

eliminating some that were not physically viable, hence, improving the computational time.  

The output results of that study showed that this FLC active suspension improved the ride 

comfort without degrading the suspension travel limits compared with a passive system. 

Subsequently, this FLC was experimentally examined on a quarter vehicle test rig [211]. It was 

found to perform well in reducing vertical acceleration, while maintaining the suspension 

travel and actuator force within their available limits. Montazeri-Gh and Soleymani [181] 

developed an optimised FLC for an active vehicle suspension that employs measurable 

feedback signals using a mutli-objective optimisation with GA, based on human sensitivity to 

vertical vibration. However, only the parameters of the MFs were optimised while the RB was 

hypothetical. Kaldas et al. [212] proposed a semi-active suspension system with an FLC to 

improve ride comfort considering road holding using a full vehicle model. The inputs of the 

FLC were the vertical velocity and acceleration of the vehicle, while the output was the 

controller force. Triangular MFs were used for both the inputs and output of the FLC. Their 

numbers and parameters, as well as the scaling factors and the RB, were obtained using a 

discrete optimisation approach with a GA.  The simulation results, using a real road profile, 

showed that the semi-active FLC improves ride comfort and vehicle stability better than both 

optimum passive and LQR semi-active systems. Kaldas et al. [213] modified that particular 

FLC by utilising the preview information from the road profile. The FLC consisted of two sub-

FLCs, the first of which was similar to that in  [212], whilst the second sub-FLC used a look-

ahead preview at each wheel as inputs. Overall, the structure of each sub-FLC, including the 
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RB, MFs and scaling factors, was constructed using a discrete optimisation approach with a 

GA. 

Despite the aforementioned benefits of FLC, the structural design process is not systematic, 

particularly about the construction of the knowledge base that corresponds to the fuzzification 

and RB formulations. Moreover, there is no a standard approach to select the number and type 

of inputs as well as their MFs, including the type and number. Also, the RB depends on 

experts’ knowledge about the system behaviour, which is influenced by the type and number 

of both the input and output variables as well as their corresponding scaling factors. It is 

challenging and expensive to hypotheses the RB  for a complicated system such as for an active 

seat suspension [172,214]. A trial and error approach has been widely used to tune either the 

parameters of the MFs or the scaling factors, but this is time consuming as well as being an 

inefficient way of finding a global optimum solution [215]. 

To address this, further research led to the application of evolutionary optimisation algorithms 

such as (GA) [133,212,216,217] and PSO [172,209,218]. Rajeswari and Lakshmi [219] employed 

both GA and PSO techniques to optimise the scaling factors, MFs and RB of an FLC for an 

active suspension system. The simulation results showed that PSO is more effective in 

obtaining the optimum FLC structure when compared with the GA. Moreover, as explained 

previously in section 2.7.2 the PSO requires fewer functions evaluations compared with GA 

and hence, this make it more efficient to deal with large-scale problems, such as the 

construction of the FLC structure. Hence, the PSO technique is used in this chapter to optimise 

the structure of an FLC, as explained in the following subsections.        

To the knowledge of the author, FLC has not been previously applied to an active seat system 

in which preview information from the vehicle suspension is used to control an actuator force. 

Hence, it is difficult and time consuming to construct these rules based on experts’ knowledge 

about the system behaviour, and consequently, an optimisation approach is required. As long 

as the RB, MFs, and scaling factors are the most essential components of an FLC, the 

optimisation process of an FLC can be mainly classified into three groups [216]: 

1) Adjusting only the parameters of the membership functions and/or scaling factors under a 

hypothesised RB [220] and the references in [216]. 

2) Constructing the RB under assumed MFs;  
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3) Constructing both the MFs and the RB. This can be separated into two sub groups, i.e. 

constructing the MFs and RB simultaneously [216,221]  or sequentially. However, the 

sequential optimisation approach is more efficient at tuning the structure of an FCL as well as 

reducing the size of the optimisation problem when compared with the simultaneous 

alternative [204].  Thus, in this thesis, the structure of the FLC is sequentially optimised as will 

be explained in more details in the following sections.  

8.3 Control strategies 

The mathematical model used in the design and evaluation process of each FLC is the same as 

the integrated model that was presented in the previous chapter. As stated earlier, the FF-FLC 

is based on employing only preview information from the vehicle suspension. It consists of 

two inputs, namely the relative displacement and velocity across the vehicle suspension, while 

the output is the control force, as shown in Figure 8-2. In addition to the feedforward (preview 

information) states, the FFFB-FLC also uses the feedback states of the seat suspension’s travel 

and velocity. Thus, the overall number of inputs is four, while the output is the control force. 

The required number of rules of the FLC depends on the number of input and output variables 

as well as the number of their MFs. For example, suppose that each input variable of the FFFB-

FLC consists of five MFs, then a total of (5^4 = 625) rules are necessary to establish its RB and 

hence, this increases not only the optimisation process time, but also the computational time 

and controller complexity. Instead, the FFFB-FLC is assumed to be composed of two sub-FLCs 

[213], as illustrated in Figure 8-3. The first sub-FLC, namely PFF-FLC, uses the preview 

feedforward signals from the vehicle suspension (preview information), namely the relative 

displacement and velocity of the vehicle suspension, as the two input variables and generates 

the sub-control force 𝐹𝑎2  as an output. The second sub-FLC, namely FB-FLC, utilises feedback 

signals from the seat suspension states, the relative displacement and relative velocity of the 

seat suspension as the input variables, while the output is the sub-control force 𝐹𝑎1. The overall 

control force is the sum of these two forces. In this way, each sub-FLC has its own RB 

comprising just 25 rules and the total number of the logic rules is reduced by more than 90 % 

(50 rules) compared with the conventional method. In sum, using the sub-FLCs approach 
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decreases the computational time and reduces the RB size without reducing the overall 

number of input variables.  

 

Figure 8-2:  Architecture of the FF-FLC 

 

 

Figure 8-3: Architecture of the FFFB-FLC 

 

8.4 Optimisation process 

In this section, the process of optimising the FLC structure is explained in detail. As described 

briefly, the optimisation process is sequentially performed, whereby the RB and the scaling 

factors of the input and output variables of each proposed controller are firstly optimised 
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under assumed MFs. The optimum FLC knowledge base is accomplished through two stages, 

as shown in Figure 8-4 (a). In the first stage, the optimum RB and scaling factors of the input 

and output variables are obtained using assumed MFs. These are used in stage 2 to tune the 

parameters of the assumed MFs for both the input and output variables. Because the output 

of the FLC corresponds to the actuator force, the output scaling factor is limited, based on the 

assumed saturated limit of this force, which in this case is 1,500 N. This guarantees that the 

required control force will always be within the limit of the actuator force, which is essential 

from a stability point of view as well as ensuring the practical implementation of the controller. 

The FFFB-FLC controller, which is composed of two sub-FLCs where each output scaling 

factor has its own value is designed such that the sum of the two output scaling factors is set 

so that the maximum allowable force is not exceeded. 

Moreover, to emulate the dynamics of the active force actuator and also reduce the effect of 

road induced high frequency content in the preview signal, the output force of each FLC is 

filtered by a low-pass filter with a cut-off frequency of 𝑓𝑐 = 100 Hz. 

Whilst there are different types of MFs that can be used, triangular ones are selected in this 

study for both the input and output variables, as they are simple, their parameters can be easily 

adjusted and they provide the best output results compared to other MF types [222]. It is 

assumed that each input variable consists of five linguistic degrees (NB: negative big, NS: 

negative small, ZE: zero, PS: positive small and PB: positive big), whilst the output fuzzy 

function has seven (NB: negative big, NM: negative medium, NS: negative small, ZE: zero, PS: 

positive small, PM: positive medium and PB big), as shown in Figure 8-4 (b). Consequently, a 

total of 25 rules are required to establish the RB.  When the crisp values of inputs are both 

zeros, there is no actuator force and hence this rule was excluded from the optimisation 

process, which reduces the total rules number to 24. The rules and the scaling factors are 

encoded using the PSO technique. For example, in the case of FF-FLC, the number of the 

design variables in stage 1 is equal to 27 and consequently, each particle in the PSO algorithm 

has a position vector of size 27. The first 24 positions are assigned integers from 1 to the number 

of the linguistic degrees of the output variable (in this study it is 7). That is, these numbers 

represent the linguistic degrees of the output variable, for example, a particle with a position 

vector of [351657535415 455252622622] has the RB given in Table 8-1. The remaining three 

particles’ positions represent the two input and output scaling factors, respectively.  
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Table 8-1: Example of the RB encoding method 

 
 

(�̇�𝒔 − �̇�𝒖𝒔) 

 

(𝒙𝒔 − 𝒙𝒖𝒔) 

NB NS ZE PS PB 

NB NS PS NB PM PS 

NS PB PS NS PS PS 

ZE NB PS 
ZE 

(fixed) 
ZE PS 

PS PS NM PS NM PM 

PB NM NM PM NM NM 

 

 

 

Figure 8-4: (a) Optimisation process of the FLC structure and (b) Input and output MF 

adjusting parameters  

 

After constructing the scaling factors and the optimum RB in stage 1 using the assumed MFs 

that are shown in Figure 8-4 (b), the parameters of these MFs are adjusted in stage 2 using the 

optimum scaling factors and RB. However, to tune these parameters, the following 

assumptions have been applied [213]:  
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(1) The MF’s are symmetrical about the zero value and the apex of the ZE membership 

function is fixed at zero to make sure that the resulting output is always zero when the 

inputs are zeros; 

(2) The apexes of the first and last membership functions are fixed at -1 and 1, respectively; 

(3) In order to represent any input variable with no more than two fuzzy sets, the base 

vertices of a membership function are identical to the apexes of its neighbourhood 

membership functions. This also ensures that the input value of unity has only one fuzzy 

set; 

(4) The input and output universes of discourse are normalised to be within the range of [-

1 and 1], while the optimum scaling factors are utilised to provide proper values for the 

variables.         

Based on the above assumptions, the MFs of each input variable have six parameters, while 

the output has eight, as illustrated in Figure 8-4  (b). Thus, the total number of design variables 

for the FF-FLC and FFFB-FLC in stage 2 are 20 and 40, respectively. For example, the 

optimisation problem for the FF-FLC in stage 2 can be summarised as follows: 

 

Find: 𝑥𝑖    𝑖 = 1,… . ,20 

(3-17)  

To 

minimise: 𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑆𝐸𝐴𝑇 𝑓𝑎𝑐𝑡𝑜𝑟 

Subject 

to: 
{

      𝑥𝑖+1 > 𝑥𝑖       ;  𝑖 = [ 1 2 4 5 7 8 10 11 13 14 15 17 18 19] 

−1 ≤  𝑥𝑗  ≤ 0      ;  𝑗 = [ 1 2 3 7 8 9 13 14 15 16]

0 ≤  𝑥𝑗  ≤ 1      ;  𝑗 = [4 5 6 10 11 12 17 18 19 20]

 

The optimisation problem, including the fitness function, constraints, simulated model 

parameters and road disturbance, are the same as those used in Chapter 7. Thus, the two stages 

of the optimisation problem can be written in the standard form, as presented in Table 8-2. 
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Table 8-2: Summary of the optimisation process 

Given 

Stage 1 Stage 2 

Simulation model 

Assumed input and output 

MFs (Figure 8-4 (b)) 

Random road profile class E 

and a vehicle speed of 60 

km/h 

 

Simulation model 

Assumed input and output MFs 

(Figure 8-4 (b)) 

Random road profile class E 

and a vehicle speed of 60 km/h 

Optimum RB and scaling factors 

(from stage 1) 

Find 
Optimum RB and scaling 

factors 

Optimum parameters of  input 

and output MFs 

To 

minimise 
SEAT factor (Chapter 3) 

Subject to 

 

𝑔(1) =  (𝑥𝑠𝑒 − 𝑥𝑠)𝑚𝑎𝑥 − (𝑥𝑠𝑒 − 𝑥𝑠)𝑚𝑖𝑛  ≤  𝑥𝑠𝑒,𝑚𝑎𝑥 

 

𝑔(2) =  |𝐹𝑎|  ≤ 1500 (𝑁) 

 

 

The system was modelled using Simulink and the optimisation problem for each case was 

coded in MATLAB, being solved off-line using the PSO and Fuzzy Logic toolboxes. The 

inference method used was a Mamdani-type, because it provided a natural and interpretable 

RB with a simple structure [223]. Whilst the centre of gravity (COG) method was utilised in 

the defuzzification process due to it being consistent as well providing a continuous and 

smooth output response [224]. The detailed structure specification of each FLC used in the 

optimisation process is presented in Table 8-3. In the optimisation process, the default 

MATLAB setting parameters of the PSO algorithm were used as listed in Table 8-4, with a 

swarm size of 14. These are in line with the recommendations described in section 2.7.2.  
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Table 8-3:  Structure specification of optimised FLCs  

Parameter 

FLC type 

FF-FLC 
FFFB-FLC 

FB-FLC PFF-FLC 

No. of scaling factors 

Input 2 2 2 

Output 1 1 1 

Type of MFs fuzzy 

sets 

Input Triangle Triangle Triangle 

Output Triangle Triangle Triangle 

No. of MFs fuzzy sets 

Input 5 5 5 

Output 7 7 7 

RB size 24 rules 24 rules 24 rules 

Inference mechanism Mamdani Mamdani Mamdani 

Defuzzification method COG COG COG 

Having solved the aforementioned optimisation problems for each FLC, the resulting 

optimum controller map is presented in Figures 8.6 and 8.7, respectively, while the optimum 

input and output scaling factors of each FLC are listed in Table 8-5.  
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Table 8-4: Parameters of the PSO algorithm 

Parameter Description Value 

𝑤 Inertia weight [0.1- 1.1] 

𝑐1 Cognitive factor 1.49 

𝑐2 Social factor 1.49 

 

 

Table 8-5: Optimum parameters of the proposed FLCs 

Parameter Value unit 

𝑆1 0.0213 s/m 

𝑆2 0.255 1/m 

𝑆3 1500 N 

𝑆11 0.8681 s/m 

𝑆12 0.5714 1/m 

𝑆13 750.0 N 

𝑆21 0.050 m/s 

𝑆22 14.925 1/m 

𝑆23 750.0 N 
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Figure 8-5: Optimised control force map of the FF-FLC 

 

 

Figure 8-6: Optimised control force map of the FFFB-FLC  

 

8.5 Simulation analysis  

In this section, the effectiveness of the proposed controllers to improve the ride comfort is 

assessed in both the frequency and time domains. In the frequency domain, evaluation was 

established in terms of the acceleration transmissibility of the active seat suspensions with 

respect to the vehicle sprung mass over the frequency range (1-20 Hz).  



Chapter 8 Active Seat Suspension Using Preview Vehicle Information and An 

Optimised Fuzzy Logic Controller                                                                         

 

140 
 

In the time domain, two typical road profiles were used to excite the QvM, namely random 

and single bump profiles. For both road inputs, the assessment was performed by comparing 

the time responses of the active seat controllers against the passive system in terms of seat 

acceleration and seat suspension travel.  

For the random road input, further comparisons in terms of the actuator force and power 

spectrum densities (PSDs) of the seat acceleration are performed. In addition, the percentage 

improvements in the SEAT and weighted-frequency RMS seat acceleration over a range of 

vehicle speeds as well as a health risk assessment, according to the daily working TLVs, are 

also presented. Moreover, the robustness of the proposed controllers to a change in the driver’s 

weight as well as vehicle speed is also considered.             

8.5.1 Frequency domain testing 

To show the performance of the control strategies in attenuating transmitted energy at the 

vehicle’s seat, the simulated acceleration transmissibilities of the active seat controllers are 

compared with the passive system over a low-frequency range, as illustrated in Figure 8-7. 

These results reveal that all of the proposed controllers significantly reduce the transmitted 

vertical vibration to the driver compared with the passive system, in particular, over the HBSF 

range (4-8 Hz). However, the FF-FLC and FFFB-FLC amplify the seat acceleration 

transmissibility around the sprung mass resonance frequency (1 Hz). Overall, the FFFB linear 

and FFFB-FL controllers show similar behaviours and they provide superior performance 

compared with the FF-FLC and passive systems over a broadband frequency range, especially 

over the HBSF range (4-8 Hz). However, the linear controller FFFB performs better than the 

FLC especially over low-frequency range, less than 6 Hz. These results show the benefit of 

combining both feedback states with preview information from the vehicle suspension, in 

attenuating vibration.  
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Figure 8-7: Comparison between the simulated seat acceleration transmissibility for the 

passive and active seat suspensions using the FLC and linear control approaches  

 

8.5.2 Time domain 

8.5.2.1 Random road 

In this subsection, the analysis is carried out by exciting the vehicle QvM with a random road 

profile that has a road roughness of class E (very poor), according to ISO 8608, under different 

vehicle speeds. Figure 8-8 shows an example of the road profile at a vehicle speed of 100 km/h. 

The simulated time responses of the active and passive seat suspensions over a range of vehicle 

speeds, in terms of seat acceleration and seat suspension travel are presented Figures 8.10 and 

8.11 in, respectively. It can be seen that all of the controllers efficiently suppress seat 

acceleration compared with the passive system notwithstanding the vehicle speed. Moreover, 

the FFFB-Linear shows the best performance followed by the FFFB-FLC and FF-FLC at all 

vehicle speeds. Nevertheless, this enhancement in reducing the seat acceleration results in 

increasing seat suspension stroke compared with the passive system. Whilst, the resulting seat 

stroke and demand control force when employing the FFFB-Linear controller are within their 

allowable limits at vehicle speeds of 40 and 60 km/h, they exceed these limits at vehicle speeds 

of 80 and 100 km/h, as illustrated in Figures 8.11 and 8.12. This indicates that this type of 

controller cannot always ensure the satisfaction of system constraints over different driving 
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conditions and thus, it is inadequate for practical implementation. Conversely, both FL 

controllers guarantee that the resulting seat suspension travel and the demand control force 

are within their permissible limits regardless of the vehicle speed, which clearly shows the 

advantage of using an FLC. 

Figure 8-12 shows the PSDs of the seat acceleration of the active and passive seat suspensions 

at a range of vehicle speeds. It can be seen that the active seat controllers have lower PSDs 

when compared with the passive suspension over a broadband frequency range, particularly 

over the HBSF range (4-8Hz), irrespective of the vehicle speed. However, their performance 

deteriorates at lower frequencies, especially around the sprung mass mode (𝑓𝑛 = 1 Hz). 

Overall, the FFFB-FLC demonstrates the best performance over a broadband frequency range.          

Figure 8-13 presents the SEAT factor and the weighted RMS seat acceleration of the active 

system using the proposed controllers and the passive system at different vehicle speeds. 

Notably, the SEAT factor and weighted RMS seat acceleration values for the active seat 

suspensions are lower than those for the passive seat suspension, regardless of the vehicle 

speed and hence, this improves the ride comfort of the driver. In general, the FF-FLC and 

FFFB-FLC active suspension attenuate at least 30 % and 45 % of the transmitted vibration at 

the seat when compared with the passive system, regardless of the vehicle speed. Also, the FF-

FLC and FFFB-FLC improve the weighted RMS acceleration by approximately 30% and 40% 

more than the passive system over the tested vehicle speeds. Moreover, over the full range of 

vehicle speeds, the proposed active seat controllers maintain the comfort level, according to 

the vibration environments proposed by ISO 2631-1 provided in Chapter 3, within the ‘a little 

uncomfortable’ range, while the passive seat suspension often strays into the ‘uncomfortable’ 

range.   

Figure 8-14 shows the frequency-weighted RMS acceleration of the active and passive seat 

suspensions with respect to the TLVs given in Chapter 3, across the range of vehicle speeds. It 

is observed that both of the proposed controllers perform better than the passive system which 

in most cases exceeds the 8 hour working daily exposure limit, especially over the HBSF range 

and the FFFB-FLC provides the best performance. This indicates that employing any of the 

proposed controllers in a vehicle active seat suspension delivers a potentially safer and more 

comfortable working environment for drivers working long hours. 
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Figure 8-8: Random road profile at a vehicle speed of 100 km/h 

 

 

 

Figure 8-9: Time responses for the passive and active seat suspensions using FLC and 

linear control approaches under random road input at vehicle speeds of 40 and 60 km/h 
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Figure 8-10: Time responses for the passive and active seat suspensions using FLC and 

linear control approaches under random road input at vehicle speeds of 80 and 100 km/h 

 

 

Figure 8-11: Time responses of the control force for the passive and active seat 

suspensions using FLC and linear control approaches under random road input at  

different vehicle speeds  
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Figure 8-12: PSDs of the seat acceleration for the passive and active seat suspensions with 

FLC approaches in simulation test at different vehicle speeds 

 

 

Figure 8-13: SEAT factor and weighted RMS seat acceleration of the proposed controllers 

and percentage improvements at different vehicle speeds 
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Figure 8-14: Health risk assessment, according to ISO 2631-1, for the passive and active 

seat suspension with FLC approaches at different vehicle speeds 

 

8.5.2.2 Parameter Uncertainties  

One critical feature of an active seat suspension is its robustness to uncertainties in the system 

parameters and working conditions [225]. The driver’s weight and the vehicle speed are very 

common system parameters that vary with use. Consequently, the sensitivity of the proposed 

active controlled seat suspensions to these factors was evaluated in terms of the SEAT factor 

and the weighted RMS seat acceleration. Taking into account the nature of a random road 

profile, the simulations were repeated ten times for 15 seconds and the average values were 

taken. Figure 8-15 (a) shows the sensitivity maps of the SEAT factor for the passive and the 

proposed active controlled seat suspensions subject to changes in the driver’s weight and the 

vehicle speed. It is notable that the isolation of the transmitted vibration of the passive seat 

suspension is sensitive to both parameter variations. Not surprisingly, light drivers are 

exposed to more vibration energy than heavy ones, regardless of the vehicle speed. 

Conversely, both of the proposed controllers are less sensitive to a variation in the either the 

driver’s weight or vehicle speed. The robustness of the active seat controlled by the FFFB-FLC 

is significantly better than with the FF-FLC. 
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Figure 8-15: Simulated SEAT factor and weighted RMS seat acceleration sensitivity maps 

for the passive and active seat suspensions with FLC approaches for different driver 

weights and vehicle speeds   

 

The sensitivity maps of the weighted RMS seat acceleration are presented in Figure 8-15 (b). 

Once again, the passive seat suspension ride comfort level is significantly more sensitive to 

parameter changes and light drivers are subject to the most discomfort when driving at high 

speeds. Conversely, the comfort levels of the proposed active controlled seat suspensions were 

only slightly affected by these variations and overall, the robustness of the FFFB-FLC is better 

than that of the FF-FLC.  

 

8.5.2.3 Bump road input 

The performance of the controllers has also been assessed in simulation using a single bump 

road input represented by Eqn. (3-15), as described in chapter 3. Figure 8-16 shows the bump 

road profile used in this study where the bump height 𝑎 was assumed as to be 3 𝑐𝑚. The 

simulated time responses of the passive and active controlled seat suspensions in terms of the 

seat acceleration and seat travel are presented in Figure 8-17. It can be clearly observed that 

the controllers perform better than the passive system in reducing the seat acceleration with a 

reasonable increase in the seat travel. Moreover, the FFFB-FLC active seat suspension 

demonstrated the best reduction in both the RMS and maximum seat acceleration, when 
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compared with the passive system and FF-FLC, for which the peak and the RMS value of the 

seat acceleration are reduced by more than 45 %, as presented in Table 8-6. These results reveal 

once again that using feedforward preview information together with the feedback seat’s 

states provides the best improvement in the ride quality. 

 

Figure 8-16: Bump road profile 

 

 

Figure 8-17: Simulated time responses for the passive and active seat suspensions using 

FLC approaches under a bump road profile 
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Table 8-6:  Simulated time response characteristics of the proposed controllers under a 

bump road profile 

Seat acceleration Seat suspension deflection 

Index Passive FF-FLC 
FFFB-

FLC 
Index Passive FF-FLC 

FFFB-

FLC 

RMS 

(m/s2) 
0.2716 0.2265 0.1487 

RMS 

(mm) 
0.305 1.23 2.02 

Peak 

(m/s2) 
2.630 2.033 1.285 

Peak 

(mm) 
2.74 8.43 11.53 

 

Part II- Experimental Validation  

This part focuses on validating and examining the performance of the FLCs for an active seat 

suspension in real time through experimental tests using the experimental QvM rig and the 

HIL approach described in chapter 5. These strategies are modelled in Simulink/MATLAB and 

their assessment is carried out in the same manner as presented previously in chapter 7, in 

both the frequency and time domains with different road disturbances and at a range of 

vehicle speeds.   

8.6 Frequency domain 

To obtain the frequency responses of the proposed controller experimentally, a sinewave 

excitation signal as explained previously in chapter 5, was used to excite the MAST. Figure 

8-18 compares the measured seat acceleration transmissibility of the active seat suspension 

using the proposed FLCs with that of the passive seat suspension over the frequency range of 

interest. It can be seen that the controllers significantly attenuate the transmitted vertical 

vibration to the driver when compared with the passive system, especially over the HBSF 

range. In agreement with the simulation results, the FFFB-FLC demonstrates the best 

performance compared with the FF-FLC and passive system over a wide frequency range, in 

particular, over the HBSF range. However, at a higher frequency range greater than 14 Hz it 
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performs less well than that of the FF-FLC and this might be related to the effect of the dummy 

dynamics, which are more dominant over this frequency range and have not been considered 

in the simulation model.  

 

Figure 8-18: Comparison between the seat acceleration transmissibility for the passive and 

active seat suspensions with FLC approaches in experimental test  

 

8.7 Time domain  

8.7.1 Random input 

In this subsection, a random road profile similar to that used in chapter 7 at a range of different 

vehicle speeds is used to excite the QvM. Figures 8.20 and 8.21 show the measured time 

responses of the active and passive seat suspensions in terms of the seat acceleration and seat 

suspension travel. It can be observed that the seat acceleration of both the FF-FLC and FFFB-

FLC are lower than that of the passive system, especially at a low vehicle speed, whilst the 

FFFB-FLC shows the best performance.  As expected, this reduction in the seat acceleration 

level is matched by an increase in the seat suspension travel, but this does not exceed the 

allowable limit.  
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Figure 8-21 demonstrates that the controllers result in a lower seat acceleration PSD when 

compared with the passive system, especially over the HBSF range (4-8 Hz) and at low vehicle 

speed. However, at a frequency range below 4 Hz, their performance deteriorates, especially 

the FF-FLC at high vehicle speed. These results are in agreement with those previously 

obtained using the linear control approach, as presented in Chapter 7.       

The SEAT factor and the frequency-weighted RMS seat acceleration of passive and active seat 

suspensions are presented in Figure 8-22. The FLCs provide lower SEAT factor and frequency-

weighted RMS seat acceleration than the passive system over the whole vehicle speed range, 

particularly at low and intermediate vehicle speeds. Once again, the FFBL-FLC shows the best 

performance compared with the FF-FLC, with almost a 30 % improvement in both the SEAT 

factor and the frequency-weighted RMS seat acceleration at a vehicle speed of 40 km/h.  

This performance is reduced at higher vehicle speeds and becomes similar to that of the FF-

FLC. This is may be caused by the dummy dynamics, which are more dominant at these 

vehicle speeds, and hence, influence the quality of the feedback signals. In addition, this may 

be related to the fact that the seated dummy is not sufficiently secured to the seat and at high 

vehicle speeds, there are more possibilities for the dummy to leave the seat, which 

consequently leads to deteriorating the accuracy of the feedback states from the seat 

suspension.  

Figure 8-23 demonstrates the frequency-weighted RMS acceleration of the active and passive 

seat suspensions with respect to the TLVs, as suggested by the ISO 2631-1, over the whole 

range of vehicle speeds. It can be seen that the active seat suspension, employing any of the 

developed FLCs, performs better than the passive system, especially over the HBSF range in 

which the lattermost system exceeds the 16 hour working daily exposure limit. However, their 

performance deteriorates over a low-frequency range below 4 Hz, especially at higher vehicle 

speeds. In general, the FFFB-FLC delivers the best performance when compared to that of the 

FF-FLC.  
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Figure 8-19:  Time responses for the passive and active seat suspensions with FLC 

approaches in the experimental test at vehicle speeds of 40 and 60 km/h  

 

 

Figure 8-20: Time responses for the passive and active seat suspensions with FLC 

approaches in the experimental test at vehicle speeds of 80 and 100 km/h 

 



Chapter 8 Active Seat Suspension Using Preview Vehicle Information and An 

Optimised Fuzzy Logic Controller                                                                         

 

153 
 

 

 

Figure 8-21: PSDs of the seat acceleration for the passive and active seat suspensions with 

FLC approaches in the experimental test at different vehicle speeds 

 

 

 

Figure 8-22:  Experimental SEAT factor and weighted RMS seat acceleration values for the 

passive and active seat suspensions with FLC approaches at different vehicle speeds 
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Figure 8-23: Health risk assessment, according to ISO 2631-1, for the passive and active 

seat suspensions with FLC approaches in experimental test at different vehicle speed and 

FLC active  

 

8.7.2 Bump road profile  

The performance of the controllers was also experimentally evaluated when the QvM was 

subject to the same single bump road that was previously presented in Chapter 7. Figure 8-24 

shows the time responses of the FLC active suspensions and the passive system in terms of the 

seat acceleration and seat suspension travel. It can be seen that the FLC active seat suspensions 

perform better than the passive system, particularly with the FF-FLC, which is in agreement 

with the results obtained in the previous chapter when using the linear control approach. Also, 

the passive system as well as the FL controllers, change the static position, especially the FF-

FLC. However, the measured performance of the FFFB-FLC is less good than the previously 

presented simulation results as a result of the friction effects and nonlinearities present within 

the experimental prototype system as well as the dummy dynamics. This indicates the 

importance of considering these aspects in order to compensate for their effects and thus, 

accurately validate the effectiveness of the controllers.   

 



Chapter 8 Active Seat Suspension Using Preview Vehicle Information and An 

Optimised Fuzzy Logic Controller                                                                         

 

155 
 

 

Figure 8-24: Measured time responses for the passive and active seat suspensions with 

FLC approaches under a bump road profile  

8.8 Conclusions   

This chapter has demonstrated the design of two novel, simple, practical and cost-effective 

optimal FLCs for an active seat suspension system. These controllers utilise the preview 

information from the vehicle suspension as well as inexpensive and measurable feedback seat 

states. In addition, they ensure that the seat suspension travel as well as the demand control 

force are within their allowable limits over a variety of operating conditions, which cannot be 

guaranteed with a linear controller approach. The simulation results have shown that the 

proposed FLCs significantly attenuate the vertical seat acceleration over the HBSF range and 

hence, improve the ride quality. Moreover, they are more robust to both the driver’s weight 

and vehicle speed, when compared with a passive system. In addition, the performance of 

these controllers was confirmed experimentally when subjected to random road disturbances. 

In conclusion, the controller FFFB-FLC, which employs both feedforward preview information 

of the vehicle’s suspension and feedback seat states, has the best performance, providing a 

robust, practical and cost-effective system that improves ride quality as well as reducing the 

potential danger of vehicle driver fatigue. 

In the next chapter, the principle of a feedforward controller (preview information) is applied 

to a full, four wheel vehicle model.  



Chapter 9 The Application of Preview Control within a Full Vehicle Model  

 

156 
 

Chapter 9                                               
The Application of Preview Control 
within a Full Vehicle Model 

9.1 Introduction  

The effectiveness of applying the suspension preview information from the QvM to control an 

active seat suspension to attenuate low-frequency vertical vibration has been confirmed 

through both experimental and simulation tests in the preceding chapters. However, in reality, 

a road vehicle will be subjected to disturbances from all four wheels, and therefore the concept 

of preview enhanced control should be applied to a full vehicle model. Different preview 

scenarios can be established depending on which suspension or suspensions are used to 

acquire this preview information. Accordingly, three preview control strategies are 

hypothesised namely: front-left suspension (FLS), front axle (FA) and four wheels (4W). The 

foremost utilises suspension displacement and velocity preview information from the vehicle 

suspension nearest to the driver’s seat whilst the FA uses similar preview information, but 

from both the front-left and front-right suspensions. The 4W controller employs similar 

preview information from all the vehicle suspensions.  

To cope with the friction non-linearities involved within the dampers of the vehicle 

suspensions as well as the constraints of the active actuator displacement and force 

capabilities, an FLC is selected. This chapter presents the development of three optimal FLCs 

namely, front-left suspension (FLS-FLC), front axle (FA-FLC) and four wheels (4W-FLC). The 

optimal structure of each (FLC) including the MFs, scaling factors and RB is sequentially 

optimised in the same manner as previously described in chapter 8, using the PSO algorithm. 

These strategies are evaluated through simulation according to the ISO 2631-1 standard, using 

different road disturbances across a range of forward vehicle speeds. Finally, to reduce the 

implementation cost of the 4W-FLC, a practical alternative is developed that requires less 

measured preview information.   
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9.2 Integrated model 

The vehicle and seat simulation model used in this chapter consists of a full linear vehicle 

model, a passive seat suspension and a driver’s body model, as shown in Figure 9-1. The full 

vehicle model is the seven degrees of freedom model presented in [226]. The vehicle body 

mass 𝑀𝑠 (sprung mass) is assumed to be a rigid body with bounce, pitch and roll motions, 

denoted by 𝑥𝑠, 𝜃 and 𝜙, respectively. Each wheel of the front and rear axles, represented by 

the unsprung masses 𝑚11, 𝑚12, 𝑚21 and  𝑚22, has a single degree of freedom in the vertical 

direction, denoted by 𝑥11, 𝑥12, 𝑥21 and  𝑥22, respectively, while  the road disturbances at these 

wheels are represented by 𝑥𝑟11, 𝑥𝑟12, 𝑥𝑟21 and  𝑥𝑟22. For simplicity, this model involves only 

the driver’s seat, with a linear lumped mass-spring-damper of one degree of freedom in the 

vertical direction, denoted by 𝑥𝑠𝑒. Moreover, the driver’s body is represented by one DOF in 

the vertical direction, denoted by 𝑥𝑏.  The tyre springs and suspension spring elements of the 

front and rear axles are presumed to be linear. Assuming small pitch and roll angles, the 

dynamic equations of the integrated model are given as follows:  

1) Vehicle body motion: 

a) Bounce  

 𝑀𝑠�̈�s = − [ ∑ 𝐹𝑠𝑖𝑗 + 𝑓(𝑉𝑠𝑖𝑗)

𝑖,𝑗=1,2

] + 𝐹𝑠𝑒 − 𝐹𝑎 (9-1)  

where, 𝐹𝑠𝑖𝑗 is the suspension dynamic force at each vehicle suspension, given by: 

 𝐹𝑠𝑖𝑗 = 𝑘𝑠𝑖𝑗(𝑥𝑠𝑖𝑗 − 𝑥𝑖𝑗) + 𝑐𝑠𝑖𝑗(�̇�𝑠𝑖𝑗 − �̇�𝑖𝑗)  ,      𝑖 = 1, 2 & 𝑗 = 1,2 
(9-2)  

while  𝑓(𝑉𝑠𝑖𝑗) is the dry friction force of the suspension damper at each wheel, 𝐹𝑠𝑒 is the seat 

suspension force and 𝐹𝑎 is the controller force. 

 

b) Pitch  

 

𝐼𝑠𝑦�̈� =   𝐿𝑓(𝐹𝑠11 + 𝐹𝑠12 + 𝑓(𝑉𝑠11) + 𝑓(𝑉𝑠12))

− 𝐿𝑟(𝐹𝑠21 + 𝐹𝑠22 + 𝑓(𝑉𝑠21) + 𝑓(𝑉𝑠22))  

− 𝑅𝑥(𝐹𝑠𝑒 − 𝐹𝑎) 

(9-3)  
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c) Roll 

 

𝐼𝑠𝑥�̈� =   𝑏(𝐹𝑠12 + 𝐹𝑠22 + 𝑓(𝑉𝑠12) + 𝑓(𝑉𝑠22))

− 𝑎(𝐹𝑠11 + 𝐹𝑠21 + 𝑓(𝑉𝑠11) + 𝑓(𝑉𝑠21)) + 𝑅𝑦(𝐹𝑠𝑒 − 𝐹𝑎) 

(9-4)  

2) Unsprung masses 

 𝑚𝑖𝑗�̈�𝑖𝑗 = 𝐹𝑠𝑖𝑗 + 𝑓(𝑉𝑠𝑖𝑗) − 𝑘𝑡𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑟𝑖𝑗)                 𝑖, 𝑗 = 1 & 2 
(9-5)  

3) Seat suspension  

 𝐹𝑠𝑒 = 𝑘𝑠𝑒(𝑥𝑠𝑒 − 𝑥𝑠) + 𝑐𝑠𝑒(�̇�𝑠𝑒 − �̇�𝑠) (9-6)  

 𝑚𝑠𝑒�̈�𝑠𝑒 = −𝐹𝑠𝑒 + 𝐹𝑎 − 𝑘𝑏(𝑥𝑠𝑒 − 𝑥𝑏) + 𝑐𝑏(�̇�𝑠𝑒 − �̇�𝑏) (9-7)  

4) Driver’s body  

 𝑚𝑏�̈�𝑏 = 𝑘𝑏(𝑥𝑠𝑒 − 𝑥𝑏) + 𝑐𝑏(�̇�𝑠𝑒 − �̇�𝑏) (9-8)  

Each of the vehicle suspension dampers includes a non-linear dry friction force 𝑓(𝑉𝑠) that 

depends on the velocity across the suspension 𝑉𝑠 and a viscous band 𝜀  (Guclu, 2005), as 

presented in Figure 9-2. 

 

Figure 9-1: Full vehicle model with a 1 DOF active seat suspension and  1 DOF driver 

model (adapted from [226]) 
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Figure 9-2: Dry friction model of the vehicle suspension damper [226] 

 

9.3 Control strategies   

The proposed FLCs are designed in the same manner as previously described in chapter 8, 

with the QvM.  Put simply, the output of each proposed FLC is the control force and the total 

number of inputs for each is different. For instance, the FLS-FLC has only two inputs as 

presented in Figure 9-3 whilst the FA-FLC requires four inputs, namely the displacements and 

velocities of the front left and right suspensions. Conversely, the number of inputs to the 4W-

FLC is eight. 

Recalling the sub-FLCs approach described in chapter 8, the FA-FLC is assumed to consist of 

two sub-FLCs, namely, FA1-FLC and FA2-FLC. The former using the preview information 

from the front-left vehicle suspension, in terms of the displacement and velocity across the 

suspension, as the two input variables, generating the sub-control force 𝐹𝑎1. Whilst the latter 

utilises similar preview information, but from the front-right suspension and produces the 

sub-control force 𝐹𝑎2 as an output, with the resultant control force being the sum of these 

forces, as shown in Figure 9-4. Similarly, the 4W-FLC has four sub-FLCs, each corresponding 

to a vehicle suspension, as illustrated in Figure 9-5. Moreover, each sub-FLC has its own RB, 

thereby decreasing the computational time and reducing the overall RB size.  
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Figure 9-3:  Architecture of the FLS–FLC 

 

 

 

 

Figure 9-4: Architecture of the FA–FLC 
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Figure 9-5: Architecture of the 4W-FLC 

 

9.4 Optimisation process 

Recalling the optimisation process of the FF-FLC defined in the chapter 8, the structure for 

each FLC is optimised here also through two stages, using the same fitness function and 

constraints, except that the simulated model used here is for the full vehicle model. In addition, 

the type and the number of MFs for both the input and output variables of the FLS-FLC or any 

sub-FLCs are the same as those used previously in chapter 8 with the QvM. Hence, the RB in 

each of these FLCs is composed of 25 rules. Moreover, in the same manner as was described 

in the previous chapter the output force of each FLC is filtered by a low-pass filter with a cut-

off frequency of 𝑓𝑐 = 100 Hz. This simulates the force actuator dynamics and also helps to 

reduce high frequency excitation of the active seat. 

The integrated model was modelled in Simulink and the optimisation problem for each stage 

was formulated in MATLAB, being solved off-line. Also, the road used in the optimisation 

process is of class E (very poor) according to the ISO 8606 standard with a forward vehicle 

speed of 60 km/h. To make the study more realistic the full vehicle model was assumed to be 

excited at the left and right front wheels with different random disturbances. Moreover, the 
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coherence characteristics between the left and right front wheels were used, which indicated 

a low correlation in the amplitude and phase as the spatial frequency increases [227]. The 

disturbances at the rear wheels were similar to those at the front, with a time delay dependent 

upon the vehicle wheelbase and the forward vehicle speed.  

The parameters of the full vehicle model are listed in Table 9-1 whilst the characteristics of the 

passive seat suspension as well as the driver’s body are those used in the previous chapter. 

After solving the optimisation problem, the optimised scaling factors for each FLC is presented 

in Table 9-2 while the resulting optimum demand control force maps are presented in Figures 

9.6 to 9.8.  

Table 9-1: Parameters of the full vehicle model [191] 

Parameter Value Unit 

𝑀𝑠 1200.0 Kg 

𝑚𝑖𝑗    𝑖, 𝑗 = 1 𝑎𝑛𝑑 2 20.0 Kg 

𝐼𝑠𝑦 2100.0 Kg.m2 

𝐼𝑠𝑥 460.0 Kg.m2 

𝐾𝑠𝑖𝑗    (𝑖, 𝑗 = 1 𝑎𝑛𝑑 2) 10.0 kN/m 

𝑐𝑠𝑖𝑗    (𝑖, 𝑗 = 1 𝑎𝑛𝑑 2) 2000.0 N.s/m 

𝐾𝑡𝑖𝑗   (𝑖, 𝑗 = 1 𝑎𝑛𝑑 2) 180.0 kN/m 

𝐿𝑓 1.011 m 

𝐿𝑟 1.803 m 

𝑎 0.761 kN.s/m 

𝑏 0.761 kN/m 

𝑅𝑥 0.3 m 

𝑅𝑦 0.25 m 

𝑅 22.0 N 

𝜀 0.0012 m/s 
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Table 9-2  Optimised input and output scaling factors 

Control strategy Parameter Value Unit 

FLS-FLC 

𝑆1 1.362 s/m 

𝑆2 0.024 m-1 

𝑆3 1349.600 N 

FA-FLC 

𝑆4 2.857 s/m 

𝑆5 0.010 m-1 

𝑆6 1265.400 N 

𝑆7 2.141 s/m 

𝑆8 0.010 m-1 

𝑆9 191.250 N 

4W-FLC 

𝑆10 12.407 s/m 

𝑆11 0.042 m-1 

𝑆12 461.386 N 

𝑆13 13.210 s/m 

𝑆14 0.125 m-1 

𝑆15 118.149 N 

𝑆16 34.014 s/m 

𝑆17 0.003 m-1 

𝑆18 1.000 N 

𝑆19 2.669 s/m 

𝑆20 0.018 m-1 

𝑆21 919.455 N 
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Figure 9-6: Optimised demand control force map of the FLS –FLC 

 

 

 

Figure 9-7: Optimised demand control force map of the FA –FLC 

 



Chapter 9 The Application of Preview Control within a Full Vehicle Model  

 

165 
 

 

Figure 9-8: Optimised demand control force map of the 4W–FLC 

9.5 Simulation analysis 

In this section, the effectiveness of the proposed active controlled seat suspensions in 

improving the ride comfort is evaluated using two typical road disturbances, i.e., random and 

bump profiles.      

9.5.1 Random road 

In this analysis, the full vehicle model was excited with a random road profile of class E (very 

poor), according to the ISO 8608 standard, at a range of forward vehicle speeds. Figure 9-9 

shows an example of this road profile at the front left and right wheels, with a vehicle speed 

of 60 km/h.  The resulting time responses of the active and passive seat suspensions, in terms 

of the seat acceleration, seat suspension travel and the demand control force, are shown in 

Figures 9.10 to 9.12. It can be seen that the controllers more effectively reduce the seat 

acceleration when compared with the passive system, with the 4W-FLC delivering the best 

performance followed by the FA-FLC and the FLS-FLC, respectively. However, this 

improvement in the ride quality comes at the expense of increased the seat suspension travel, 

although this and the actuator force constraints are satisfied.  

It can be observed from Figures 9.13 and 9.14 that the active seat suspensions provide lower 

PSD acceleration, when compared with the passive system over a broadband frequency range, 

especially over the HBSF range (4-8 Hz). However, this performance deteriorates at lower 
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frequencies during high forward vehicle speeds. In general, the 4W-FLC demonstrates the best 

performance over a broadband frequency range, irrespective of the vehicle speed followed by 

the FA-FLC and the FLS-FLC.  

Due to the random nature of the road surface the simulations for obtaining the SEAT factor 

and the weighted RMS seat acceleration were performed 10 times for each vehicle speed over 

a time period of 20 seconds.  Figures 9.15 (a) and (b) show that the proposed active seat 

suspensions significantly attenuate the vibration at the seat as well as reducing the weighted 

RMS seat acceleration when compared with the passive seat suspension. At high speed the 

active systems perform less well, although they are as good as the passive system throughout 

the speed range. Moreover, at low speed the performance of the FA-FLC is better than that of 

the FLS-FLC whilst at high speed they perform similarly. The reduction in the performance at 

high vehicle speeds, especially of the FLS-FLC and FA-FLC, indicates that the preview 

information obtained from the front suspensions becomes insignificant because the delay time 

between front suspensions and the seat becomes shorter. This phenomenon has also been 

observed in studies that applied a wheelbase preview controller to a vehicle active suspension 

[154,156]. This can be overcome by using a high bandwidth actuator but this at the expense of 

increasing system cost. However, the attenuation performance of the passive system at high 

speeds could be sufficient without additional active control.     

Nevertheless, this is at the expense of increasing the seat suspension displacement 

 In general, the 4W-FLC provides the best vibration isolation performance in which the 

transmitted vibration and the weighted RMS seat acceleration is reduced by at least 15 % with 

respect to the passive seat suspension regardless of the vehicle speed, as shown in Figures 9.15 

(c) and (d).  

Figures 9.16 and 9.17 present the frequency-weighted RMS acceleration of the active and 

passive seat suspensions with respect to the threshold limit values (TLVs), as suggested by the 

American Conference of Governmental Industrial Hygienists (ACGIH), over a whole range of 

vehicle speeds. It can be seen that the active seat suspension, using any of the developed 

controllers, delivers a lower frequency-weighted RMS seat acceleration over the HBSF range, 

whereas the passive system often exceeds the 16 hour working daily exposure limit. Once 

again, the 4W-FLC provides the best performance regardless of the vehicle speeds.  
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Figure 9-9: An example of random road profiles at the front left and right wheels with a 

vehicle speed of 60 km/h 

 

 

 

Figure 9-10: Time responses of the passive and active seat suspensions at vehicle speeds of 

20 and 40 km/h 
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Figure 9-11: Time responses for the passive and active seat suspensions with preview 

information control at vehicle speeds of 60 and 80 km/h 

 

 

 

Figure 9-12: Time responses for the passive and active seat suspensions with preview 

information control at a vehicle speed of 100 km/h 
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Figure 9-13: PSDs of the seat acceleration for the passive and active seat suspensions with 

preview information control at different vehicle speeds 

 

 

 

Figure 9-14: PSDs of the seat acceleration for the passive and active seat suspensions with 

preview information control at a vehicle speed of 100 km/h 
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Figure 9-15: SEAT factor and weighted RMS seat acceleration of the proposed controllers   

and percentage improvements at different vehicle speeds 

 

 

 

Figure 9-16: Health risk assessment, according to the ISO 2631-1 standard, for the passive 

and active seat suspensions with preview information control over different vehicle 

speeds 
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Figure 9-17: Health risk assessment, according to the ISO 2631-1 standard, for the passive 

and active seat suspensions with preview information control at a vehicle speed of 100 

km/h 

Whilst the 4W-FLC is shown to be the best preview based controller for use in an active seat 

suspension, its real implementation is somewhat costly, as it requires instrumentation at each 

corner of the car.  This can be partially overcome in a new controller, denoted as the ‘practical 

four wheel’ (P4W) FLC, which is similar to the 4W-FLC, but uses fewer states. Specifically, this 

controller employs the same optimum sub-fuzzy logic controllers as the 4W-FLC. However, it 

requires only the states from the front suspensions, as the required states from rear 

suspensions are hypothesised as a time delayed version of the measured states at the front, as 

illustrated in Figure 9-18. 
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Figure 9-18: Architecture of the P4W–FLC 

 

Figures 9.19 and 9.20 compare the seat acceleration PSD of the P4W-FLC and 4W-FLC active 

seats to those of the passive system at a range of vehicle speeds. Clearly, the P4W-FLC is almost 

identical to the 4W-FLC regardless of the vehicle speed. Moreover, as shown in Figure 9-21 the 

P4W-FLC provides very similar vibration attenuation performance and weighted RMS seat 

acceleration to the 4W-FLC at the full range of vehicle speeds. Moreover, the P4W-FLC delivers 

very similar frequency-weighted RMS seat acceleration values to the 4W-FLC irrespective to 

the vehicle speed, as illustrated, in Figure 9-22.      
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Figure 9-19:  PSDs of the seat acceleration for the passive and active seat suspensions 

using the 4W-FLC and P4W-FLC approaches at different vehicle speeds 

   

 

 

Figure 9-20: PSDs of the seat acceleration for the passive and active seat suspensions using 

the 4W-FLC and P4W-FLC approaches at a vehicle speed of 100 km/h 
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Figure 9-21:  Performance evaluation in terms of the SEAT factor and weighted RMS seat 

acceleration values and percentage improvements for the active seat suspensions with 

preview information control using at different vehicle speeds 

 

 

Figure 9-22: Health risk assessment, according to the ISO 2631-1 standard, of the passive 

and proposed active seat suspensions over different vehicle speeds 
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9.5.2 Bump road input 

Figure 9-23 shows the bump road profile used to excite the full vehicle model.  Figures 9.24 (a) 

and (b) show the superior ability of the proposed controllers in reducing the seat acceleration 

when compared with the passive system, without exceeding the seat suspension travel limit. 

Once again, the 4W-FLC and P4W-FLC show very similar results, reducing the RMS value of 

seat acceleration from 1.15 m/s2 with the passive system to 0.91 m/s2 and 0.88 m/s2, respectively, 

as presented in Table 9-3.  

 

Figure 9-23: Bump road profile for a full vehicle model  

 

 

Figure 9-24: Time responses for the passive and active seat suspensions with preview 

information control under a bump road profile: (a) Seat acceleration and (b) seat 

suspension travel 
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      Table 9-3: Time response characteristics of the proposed controllers under a bump road 

profile 

System 

Seat acceleration Seat suspension travel 

RMS 

(m/s2) 

Peak 

(m/s2) 
RMS (mm) Peak (mm) 

Passive 1.15 3.23 1.38 3.75 

FLS-FLC 1.00 2.64 2.02 4.64 

FA-FLC 0.99 2.44 2.52 6.04 

4W-FLC 0.91 2.56 3.84 9.43 

P4W-FLC 0.88 2.53 3.71 9.49 

 

9.6  Conclusions   

 This chapter has presented the application of the preview information enhanced controller for 

an active seat suspension in a full vehicle model. Three novel and cost-effective FL controllers 

have been developed that employ inexpensive and available preview information from the 

vehicle suspensions, while satisfying the physical system constraints at a range of different 

operational conditions. The simulation results indicate that the controllers significantly 

improve ride comfort compared with the passive system and the 4W-FLC shows the best 

performance regardless of the vehicle speed. Interestingly, the P4W-FLC performs very 

similarly to the 4W-FLC and requires fewer measured system states, thus being a practical and 

cost-effective system that improves ride comfort and reduces driver fatigue.   
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Chapter 10                               
Conclusions and Future Work 

10.1 Conclusions  

1) This thesis was aimed at improving the ride comfort of vehicle drivers through the 

application of an active seat suspension system that attenuates harmful low frequency vertical 

vibration at the driver’s seat over the frequency range of 1-20 Hz. One main feature of this 

system is the novel control strategy that utilises preview information from the vehicle 

suspension in terms of the suspension displacement and velocity and which takes into account 

the practical limitations associated with both the seat suspension travel and actuator force. 

For simplicity, the demand control force was derived firstly based upon a linear control 

approach using a linear QvM and was then practically examined using a prototype active seat 

suspension and the HIL simulation technique. The results of the experimental and simulation 

studies over different operating conditions have shown that this strategy significantly 

improves the ride comfort compared with a passive alternative, specifically, over the HBSF 

range 4-8 Hz. Moreover, laboratory results verify that the vibration attenuation performance 

over a whole range of vehicle speeds can be further improved by combining both the preview 

information (feedforward) states with the acceleration states (feedback) of both the vehicle 

and seat. 

2) Despite the complexity involved in the design of a Fuzzy Logic Controller (FLC), it shows 

some advantages over the linear control approach. Its capability to satisfy ensure the physical 

constraints of the seat suspension stroke and actuator force independent of the operating 
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conditions as well as handling nonlinearities involved in the suspension system make 

superior to a traditional PID controller.   

3) Once again, the simulation and experimental results reveal that the application of the 

vehicle suspension preview information with FLCs provides a significant improvement in the 

ride quality. Moreover, the FFFB-FLC that uses the preview information together with the 

displacement and velocity of the seat suspension feedback states provides the best 

performance and most robust control strategy when compared with the passive system. 

Whilst it requires four input variables its rule base (RB) size was reduced using the sub-FLCs 

technique, thereby limiting the controller complexity and computational time. 

4) In general, there was a good agreement between the simulation and experimental results 

in the case of random road profiles. However, this was not achieved with a bump road profile 

mainly due to the presence of friction within the experimental prototype system which 

dominates at the low frequency range. Also, the dummy dynamics and system nonlinearities, 

which have not been included in the simulation model, influence these results. Moreover, this 

has a significant impact on the accuracy of the feedback states from the seat suspension.  

5) To apply the preview enhanced controller for an active seat suspension in a full vehicle 

model, three FLCs which employ preview information from either the front-left suspension 

(FLS-FLC), the front-left and front-right suspensions (FA-FLC) or all the vehicle suspensions 

(4W-FLC) were developed and examined. The simulation results have demonstrated that the 

performance of these strategies surpasses that of the passive system, although their 

performance is not so good at high vehicle speeds. The preview controller that uses 

information from all suspensions provides the best performance regardless of the vehicle 

speed. In conclusion, this novel controller for an active seat suspension provides an efficient, 

robust and cost-effective control strategy for road going or off-road vehicles.                   
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10.2 Recommendations for future work 

Based on the work that has been undertaken for this thesis the following topics are 

recommended for future work. 

 The application of the preview information for the active seat suspension amplifies 

vibration at the low frequency range, below the vehicle bounce natural frequency. 

Hence this issue needs to be investigated and overcome. It could be achieved by using 

a high-pass filter of the suspension preview information at this frequency range taking 

into account the effect of this filter on the controller dynamics.  

 The linear simulation models can be further modified by considering nonlinearities 

associated with the vehicle suspension components (spring and/or damper), seat 

suspension and actuator. Besides, the driver’s body model could be replaced with a 

higher DOF model.  

 The presence of friction in the prototype active seat suspension has a significant impact 

on the accuracy of the experimental results, especially at the low frequency range or 

when using a bump road profile. This effect could be reduced by replacing the 

prototype active seat suspension with a commercial active seat with low friction.   

 The preview controller could be extended to attenuate the pitch vibration which is 

known to contribute to discomfort.  

 It is worth investigating the benefits of applying this concept to compensate for the 

time delay associated with the actuator or measurements as well as the effects of 

measurement noise which is important to assess if low-cost components would be 

acceptable.        
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 The fuzzy type of the FLC used in this work was the Mamdani fuzzy system with a 

triangle MFs type. Other fuzzy systems, such as a Takgai-Sugeno (T-S) or Interval Type 

2-Fuzzy logic controller with different MFs type, such as trapezoid or Gaussian could 

be investigated in order to further improve the performance and robustness of the 

active seat suspension. Moreover, adaptive FLC strategies that consider parameter 

uncertainties could be researched.     

 The effectiveness of applying the preview information to a full vehicle model has been 

confirmed through numerical simulation, but this still needs to be validated by 

experimental as well as real field tests. This could be performed primarily through 

laboratory tests by modifying a HIL simulation to mimic the vehicle body dynamics 

of the full vehicle model. Later, it could be implemented for an active seat suspension 

in a real vehicle.    

 The concept of preview information has been applied to an active seat suspension. It 

would be worthwhile investigating the application of this strategy to a semi-active seat 

suspension or adaptive seat suspension which reduces cost and power consumption.  

 It may be useful to investigate the application of the developed preview information 

control for a cab suspension system or  seat suspension, practically for heavy or off-

road vehicle.
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