

University of Bath

PHD

Attribute based authentication schemes

Khader, Dalia

Award date:
2009

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161920117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Attribute Based Authentication

Schemes
submitted by

Dalia Daoud Khader

for the degree of Doctor of Philosophy

of the

University of Bath

2009

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This
copy of the thesis has been supplied on the condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the prior
written consent of the author.

This thesis may be made available for consultation within the University Library and
may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author .

Dalia Daoud Khader

Attribute Based Authentication

Schemes

Dalia Daoud Khader

i

SUMMARY

This thesis’ major contribution is to propose an attribute based authentication scheme
(AAS). An AAS scheme is a new cryptosystem that extends the field of public key
cryptography and more precisely digital signatures. An AAS scheme allows a verifier
to decide on the set of attributes (s)he would like the signer to possess. The verifier
sends the request to a group of possible signers as a monotone boolean expression. Any
member with sufficient attributes can sign. The scheme maintains certain properties
as follows (see scenario in Chapter 1):

• No previous knowledge assumption: The signer and verifier may or may not have
met before; therefore we can not rely on any kind of previous knowledge.

• Unforgeable : It is hard to forge signatures and/or the proof of possession of
attributes.

• Anonymous Identities: Given the signature it is hard to identify the signer.

• Unlinkable: Given two signatures it is hard to know whether the signer is the
same or not.

• Traceable: Each group of potential signers have a group manager and he is the
only one capable of revoking anonymity and discovering the signer’s identity. This
property is meant to ensure signers do not misuse anonymity.

• Anonymous Attributes: The attribute disclosure should be to the minimum.

• Coalition Resistant: If a verifier requires more than one attribute from the signers,
the signers should not be able to get together their individual attributes and sign
as one entity.

• Separability: The tasks of different authorities should be separable and each
entity should be capable of performing its task independently from others.

Different attribute oriented authentication schemes exist in literature, however each of
them is designed to serve a certain application. However the properties we listed above
never co-existed in one scheme. The proposed scheme was constructed in three phases
each covers more properties than the one before as described in details in Chapter 5.
We then propose a general construction that helps creating an AAS scheme using a
group signature (Chapter 4) and attribute tree (Section 5.2) as building blocks. We
prove that the security of the new AAS scheme created by such construction is based
on the security of the group signature scheme.

ii

ACKNOWLEDGMENTS

Thank you God for giving me the opportunity to start my PhD and the capability to
finish it. I shall cherish this gift forever.

Mama and Baba, to whom I dedicate this dissertation, you have been my source of
strength through out the entire stages of my studies. The words “Thank you” are not
enough to express my heart-felt gratitude and appreciation. Love you.

None of this would have been possible without the love and support of all members
of my family in particular my parents, my grandparents, my sister Samah, and my
brother Suleiman. I will always be grateful to you all.

I would like to express my utmost gratitude to all my friends who have helped me
immensely not only to complete this thesis but also amass many unforgettable mem-
ories; the endless coffee breaks, the amazing lunch breaks, the boardgame nights, the
picnics, the long discussions we have enjoyed together, etc.

Thanks for Dr. Russell Bradford for accepting me as one of his students.

Thanks to my examiners Professor James Davenport and Dr. Liqun Chen for their
valuable feedback.

iii

Contents

1 Introduction 1

2 Cryptographic Preliminaries 5

2.1 Introduction . 5
2.1.1 Notations and Conventions . 5

2.2 Complexity Assumptions . 8
2.3 Encryption Schemes . 15

2.3.1 Elgamal Encryption Scheme . 15
2.3.2 A Linear Encryption Scheme . 16

2.4 Digital Signatures . 16
2.4.1 RSA . 17
2.4.2 Schnorr . 17
2.4.3 Camenisch–Lysyanskaya . 18
2.4.4 Boneh–Boyen . 18

2.5 Cryptographic Protocols for Knowledge Proofs 19
2.5.1 Commitment Schemes . 19
2.5.2 Zero Knowledge Protocols (ZKP) 20
2.5.3 Signature of Knowledge of Discrete Logarithmic problems 22

2.6 Chapter Summary . 24

3 Provable Security 25

3.1 Introduction . 25
3.2 Provable Security Examples . 26
3.3 Random Oracle . 28

3.3.1 Hash functions . 28
3.3.2 Random Oracle Paradigm . 29

3.4 Forking Lemma . 29
3.5 Chapter Summary . 30

4 Group Signature Schemes 31

4.1 Introduction . 31

iv

4.1.1 Group Oriented Signatures . 33
4.1.2 Security Notions of Group Signatures 35

4.2 Static Group Signature Schemes . 36
4.2.1 Definition . 37
4.2.2 Security Notions . 38

4.3 Static Group Signatures-Constructions 41
4.3.1 Boneh, Boyen, and Shacham Scheme 41
4.3.2 Boneh and Shacham’s Scheme . 43

4.4 Dynamic Group Signature Schemes . 45
4.4.1 Definition . 46
4.4.2 Security Notions . 47

4.5 Dynamic Group Signatures-Constructions 51
4.5.1 Camenisch and Stadler Scheme 52
4.5.2 ACHM Scheme . 53

4.6 New Features . 55
4.7 Chapter Summary . 57

5 Attribute Authentication Schemes 59

5.1 Introduction . 60
5.1.1 Attribute Oriented Authentication 61

5.2 Attribute Tree . 66
5.3 Attribute Based Group Signature . 72

5.3.1 Definition . 73
5.3.2 Security Notions . 74
5.3.3 Construction . 78
5.3.4 General Discussion of the ABGS Scheme 80
5.3.5 Analysis of the Construction of the ABGS Scheme 5.3.3 81

5.4 Attribute Authentication Scheme . 85
5.4.1 Definition . 86
5.4.2 Security Notions . 88
5.4.3 Construction of our AAS Scheme 92
5.4.4 General Discussion of the AAS Scheme 94
5.4.5 Analysis of the Construction of the AAS Scheme 5.4.3 94
5.4.6 Attribute Exchange Protocols . 98

5.5 Dynamic Attribute Authentication . 100
5.5.1 Definition . 102
5.5.2 Security Notions . 103
5.5.3 Construction of the DAAS . 108
5.5.4 General Discussion of the DAAS scheme 110
5.5.5 Analysis of the Construction of the DAAS Scheme 5.5.3 111

v

5.5.6 Attribute Exchange Protocols . 115
5.6 Chapter Summary . 115

6 General Construction 117

6.1 Introduction . 117
6.2 The General Construction . 117
6.3 General Construction Security Proofs 120
6.4 Example of a General Construction . 123

6.4.1 BMW Group Signature Scheme 123
6.4.2 AAS Scheme Based on BMW Group Signature Scheme 124

6.5 Chapter Summary . 126

7 Concluding Remarks and Future Work 127

7.1 Introduction . 127
7.2 Revocation . 128
7.3 Hierarchal Authorities . 129
7.4 Concealing the Policy of the Verifier . 129
7.5 More on The General Construction . 130
7.6 Attribute Based Cryptography . 131
7.7 Complicated Policies . 132
7.8 Scalability of the AAS Scheme . 133

Bibliography 134

A Chapter 5 Security Proofs 147

A.1 Full Anonymity . 147
A.1.1 Full Anonymity of an ABGS . 147
A.1.2 Full Anonymity of an AAS . 149
A.1.3 Full Anonymity of a DAAS . 151

A.2 Full Traceability . 153
A.2.1 Full Traceability of an ABGS . 153
A.2.2 Full Traceability of an AAS . 156
A.2.3 Traceability of a DAAS Scheme 158

A.3 Attribute Unforgeability . 161
A.3.1 Unforgeability of Attributes in AAS 161
A.3.2 Unforgeability of Attributes in the DAAS scheme 163

vi

List of Figures

2-1 Knowledge of Proof . 21

4-1 Group Signature Scheme . 37
4-2 Dynamic Group Signature Scheme . 45

5-1 Attribute Tree . 66
5-2 Attribute Tree with indexing . 69
5-3 Attribute Based Group Signatures . 73
5-4 Attribute Authentication Scheme . 86
5-5 Dynamic Attribute based Authentication Scheme 101

vii

Chapter 1

Introduction

Everyone has a secret they would like to hide from the rest of the world. The best
way to hide it is to keep it to oneself. However, sometimes it is required to share
the secret with others. In order to transfer confidential information, some form of
protection needs to take place. A protection can take the form of a locked box, where
two communicators Alice and Bob have a copy of the key and no one else does. Alice
writes a secret message, then puts it in the box knowing that no one can open it unless
they own the key. If Alice writes a letter, locks it in the box, hides it somewhere around
London and then challenges others to reveal her secret, she is not proving the box to
be secure. To prove that the box is secure she will have to give the box together with
the design specification and with hundreds of similar boxes plus their keys and then
ask anyone to break into it1.
Confidentiality is the major purpose of the science of cryptography. The science itself
goes way back to the 4000 B.C. to the hieroglyphs carved into monuments from Egypt’s
Old Kingdom [78]. Encryption schemes are a set of algorithms that help in coding a
message to some ciphertext that is unreadable by people who do not own a specific
key. The key is certain information that helps changing plaintext to ciphertext and
vice versa. The process that changes ciphers to understandable text using the key is
called decryption.
In 1976 Diffie and Hellman proposed an idea that changed cryptography drastically [56].
The idea was having cryptosystems that rely on a pair of keys. If you have a locked
box, how would you distribute copies of the key such that it does not get exposed?
Diffie and Hellman suggested having one key to encrypt and a different one to decrypt
data. The decryption key is private whereas the encryption key is public to all. There
is no need to distribute keys in secret in this case since knowing the public key does not
reveal anything in the message. A cryptosystem that uses one key is called symmetric
while the cryptosystem that uses two different keys is called asymmetric.

1Example inspired from Bruce Schneier’s book [121]

1

1. Introduction

The invention of asymmetric cryptosystems was the start of a new field in cryptography,
called authentication. If people can tell who they are dealing with they may not need to
maintain confidentiality. Digital signature schemes are a set of algorithms that simulate
handwritten signatures in an electronic form [56]. They are used for authentication
purposes. They enable signing digital documents, such as emails. A private key owned
by the signer is used in creating signatures and a public key used by any verifier is used
in checking validity of the signature.
In real life we tend to need documents that are signed by someone who has a specific
role. For example, a pharmacy needs a prescription signed by a doctor. In other words,
we need a document to be certified. One way of doing this is to have a document signed
by Dr Smith as an example. That means the pharmacy has to have a list of certified
doctors and every time it wants to verify a prescription it goes through the list one by
one, searching for Dr. Smith.
Another way of doing it is using group signatures [41]. Group signatures are digital
signatures that allow any member of a group to sign anonymously on behalf of the
group and in case of a dispute, a trusted group manager can revoke that anonymity.
Suppose the Ministry of Health is the group manager. Any doctor that is registered
in the group can sign a prescription. The pharmacy does not need to have a list of
doctors anymore because it verifies the signature on a higher level. In other words,
verification is done with the question, “does whoever signed belong to the group of
certified doctors?”
The motivation of this thesis is to have attribute verification within a group. Assume
Bob has a company where he is the most senior employee and is referred to as the group
manager. Alice wants a signature from any employee as long as that employee proves
to be a senior manager in department A or a manager (senior/junior) in department
B. We would refer to such a scheme as the attribute authentication scheme (AAS) and
we would like it to include the following properties:

• No previous knowledge assumption: We can not assume that Alice and the em-
ployee know each other in advance.

• Unforgeable : An employee cannot forge a proof of possession of an attribute. A
non-employee can not pretend to be an employee.

• Anonymity of Identity: Alice cannot tell from the signature which employee
signed.In other words, neither can a verifier nor an eavesdropper derive the iden-
tity of the signer from the signature.

• Unlinkable: Alice cannot figure out whether or not two signatures are created by
the same signer. If Alice can link signatures, she would be able to analyze the
attributes and possibly break the anonymity.

2

1. Introduction

• Traceable: In case of a dispute Alice contacts the manager (Bob) and asks him
to trace a signature. Bob should be able to revoke the anonymity of the signer
and confirm to Alice that this is a valid signature

• Anonymity of Attributes: If the verifier gives two or more alternatives of sets of
attributes he requires, the signer should be capable of hiding which set he has
chosen to sign with. For instance, if Alice needs the signer to be an employee
from either department A or B. As long as the rest of the policy is met, she
does not need to know how the policy has been satisfied. By policy we mean the
set of attributes the verifier requests and it is represented as monotone boolean
expression.

• Coalition Resistant: Assuming an employee is in department A but he is not a
senior manager and another employee is in department C and is a senior manager.
The two employees cannot sign the message jointly.

• Separability: Each department in the company gives out attributes (such as
manager, senior, junior) under its control independent of other departments.

Many authentication schemes include one or two of the above properties. Our proposed
scheme in this thesis captures all of the properties mentioned.
The outline of the thesis will be as follows:

• Chapter 2 Cryptographic Preliminaries: In this chapter we provide a set
of preliminaries that will make the thesis self contained.

• Chapter 3 Provable Security: Methods and tools used in proving crypto-
graphic schemes secure are given in this chapter.

• Chapter 4 Group Signature Scheme: Group Signature is the main building
block of our construction since it has desirable properties. Therefore we dedicate
a whole chapter to describe two types of group signature schemes (i.e. Static
and Dynamic) in the literature and we support the chapter by giving examples
of such schemes.

• Chapter 5 Attribute Authentication Scheme: This chapter explains our
main contribution to the world of cryptography. We have built an attribute
authentication scheme in three stages. We explain these phases and support
them with an example construction of each.

• Chapter 6 General Construction: In this chapter we propose a general con-
struction that converts group signatures into attribute authentication schemes.
Such a conversion algorithm is needed since group signatures have been stud-
ied extensively. It saves the effort in doing the same research for the attribute
authentication scheme.

3

1. Introduction

• Chapter 7 Concluding Remarks and Future work: We end the thesis with
a summary of the thesis, some remarks and possible future plans.

• Appendix A In the appendix we include detailed proofs for the security of the
constructions in Chapter 5.

Generally, the main contributions of this thesis are creating an attribute based authen-
tication scheme in three phases as explained in Chapter 5 and the general construction
of the attribute authentication schemes of Chapter 6.

4

Chapter 2

Cryptographic Preliminaries

Every cryptosystem needs to be proven secure. The common practice of proving
schemes secure is to show that breaking it implies solving a mathematical problem
that is known or believed to be hard. The mathematical problems are referred to as
complexity assumptions. In Section 2.2 we list down some of the assumptions required
for this thesis. We then explain some cryptosystems that exist in literature such as
encryption schemes (Section 2.3), digital signatures (Section 2.4) and different cryp-
tographic protocols (Section 2.5). Each of these sections includes a general definition
of the scheme and is supported with examples relevant to the thesis. We explain the
procedure of proving a scheme secure in the following chapter.

2.1 Introduction

This chapter makes the thesis self contained by providing the definitions of required
cryptographic preliminaries. It is sensible to start this chapter with some notations
and conventions used throughout the thesis. The definitions in the following section
are taken from [97, 12, 105, 119]

2.1.1 Notations and Conventions

A finite string of bits is notated as {0, 1}∗. If a and b are finite strings of bits then |a| is
the length of a and a||b is their concatenation. Let Z denote integers and gcd represent
the greatest common divisor then:

Definition 2.1.1. The integers modulo n, denoted Zn, is the set of (equivalence classes
of) integers {0, 1, 2, ..., n − 1}. Addition, subtraction, and multiplication in Zn are
performed modulo n.

Definition 2.1.2. (Groups) A group G is a set with an operation (for instance in
multiplicative groups the operation is often written “.”) which [128]

5

2.1. Introduction 2. Cryptographic Preliminaries

• Is closed. ∀a, b ∈ G then a.b ∈ G

• Has an identity I. ∀a ∈ G, a.I = a

• Is associative. ∀a, b, c ∈ G, (a.b).c = a.(b.c)

• Every element has an inverse. ∀a ∈ G, there exist an a−1 where a.a−1 = I.

A group which is commutative is often called abelian. Commutative implies that
∀a, b ∈ G, a.b = b.a. The majority of groups that are cryptographically interesting
are abelian. A finite group is a group which has finite number of elements. Later
chapters, 4, 5 and 6, will use the term group to represent a group of people.

Definition 2.1.3. (Fields) A field is an additive abelian group F with identity 0, such
that F \ {0} also forms an abelian group with respect to another operation (which is
usually written multiplicatively). The two operations, addition and multiplication, are
linked via the distributive law [128]: a.(b+ c) = a.b+ a.c = (b+ c).a

Definition 2.1.4. The multiplicative group of Zn is Z∗
n = {a ∈ Zn| gcd(a, n) = 1}. In

particular if n is a prime, then Z∗
n = {a|1 ≤ a ≤ n− 1}

Definition 2.1.5. The order of Z∗
n is the number of elements in the group, namely

|Z∗
n|

Let G be an arbitrary group. Throughout the thesis we will be making use of multi-
plicative groups (i.e. the binary operation of a group is “.”).

Definition 2.1.6. The order of a finite group G is the number of elements in the group,
namely |G|.

Definition 2.1.7. A group G is cyclic if there is an element g ∈ G such that for each
ḡ ∈ G there is an integer a with ḡ = ga. Such an element g is called a generator of G.

Groups of prime order have useful properties and are widely used in cryptography. All
groups of prime order are cyclic. An element h of a group G is called non-trivial if
it is not equal to the identity element of the group. Suppose G is a group of order p
where p is a prime, and let h be a non-trivial member of G, then h is a generator of G.
There are more properties for such groups; however it is beyond our thesis scope to go
through all of them.
A group isomorphism is a structure preserving map between two groups that sets up a
one-to-one correspondence between the elements of the groups in a way that respects
the given group operations.

Definition 2.1.8. A computable isomorphism ψ from G2 to G1 exists, if given an
element in G2 it is possible to map it to an element in G1. In other words g1 = ψ(g2)
where g1 ∈ G1 and g2 ∈ G2.

6

2.1. Introduction 2. Cryptographic Preliminaries

We should point out that having a computable isomorphism from G1 to G2 does not im-
ply that the inverse isomorphism (i.e. from G2 to G1) is computable. A pair (a, b) ∈ G2

implies that elements a and b in the pair belong to group G. The set {a1, ..., au} ∈ Zu

implies all u elements in the set belong to Z. The notation a ∈R X means choosing
the element a randomly from X where X can be a group G, a set S, a set of integers
Zp etc.
After covering some group theory terminologies we should define different types of
algorithms that are relevant to our thesis and widely used in cryptography and com-
plexity theory. We shall explain the difference between probabilistic and deterministic
algorithms and define the terms “Polynomial Time Algorithms” and “Probabilistic
Polynomial Time”.
Probabilistic algorithms are important in cryptography since it is often that the al-
gorithms of encryption and signature schemes are randomized and furthermore in
studying the security of schemes the adversaries are also modeled as probabilistic (see
Section 3). Therefore we clarify what is meant by probabilistic and deterministic algo-
rithms [53].
The output of a deterministic algorithm, say y, is completely determined by its input,
for example x. In other words, a sequence of predefined steps are used in order to
calculate y from x. A probabilistic algorithm, on the other hand is partly effected by
a random event. The following is a definition of probabilistic algorithm1.

Definition 2.1.9. (Probabilistic Algorithms [53]): Given an input x, a probabilistic
algorithm A may toss a coin a finite number of times during its computation of the
output y. The outcome of tossing the coin affects the next step in the calculation and
affects the number of times the coin is tossed where the maximum bound is determined
from the input x. The coin tosses are independent and fair (i.e. each side appears with
probability of 1/2).

Following the definition of probabilistic algorithms we define a polynomial time algo-
rithm and a probabilistic polynomial time algorithm as follows:

Definition 2.1.10. (Polynomial Time Algorithm) An algorithm is called polynomial
time if its worst-case running time function is polynomial in the input size. Any algo-
rithm whose running time cannot be bounded by a polynomial is called super polynomial
time.

An algorithm is probabilistic polynomial time (PPT) if it uses randomness (e.g. flipping
coins) and its worst case running time is polynomial in input size. The following is a
formal definition2:

1Definition 5.1 page 112 in [53]
2Definition 5.2 page 115 in [53]

7

2.2. Complexity Assumptions 2. Cryptographic Preliminaries

Definition 2.1.11. (Probabilistic Polynomial Time Algorithm) A probabilistic algo-
rithm A is a probabilistic polynomial time algorithm if the running time of A(x) is
bounded by P (|x|) where P is a polynomial. The running time is measured by the num-
ber of steps in the model algorithm (i.e. The number of steps in a probabilistic Turing
machine). Tossing a coin is one step in this model.

In any cryptographic scheme we have some parameters used in the setup of the system
that determines the length of keys, messages and running times of honest parties and
attackers; everything is typically polynomially bounded by such a parameter. Such a
parameter is referred to as the security parameter and can take arbitrary large values.
The notion of negligible functions, as Bellare defines it in his work [8], is used in
theoretical cryptography to formalize the notion of a function asymptotically “Too
Small to Matter”. A formal definition of a negligible function helps in saying that
a cryptographic primitive or scheme have a certain level of security and that is by
providing a robust notion of rareness. A rare event should occur rarely even when
repeating an experiment for feasible number of times. In this case the experiment
involves an adversary trying to break a scheme. A function is called negligible if it
vanishes faster than the reciprocal of any polynomial. A more formal definition is
given below:

Definition 2.1.12. (Negligible Functions) A function f(a) is said to be negligible if
∀c, ∃ac, where f(a) ≤ a−c, for every a ≥ ac.

The advantage of an adversary is the measure of how successful it is in attacking the
scheme. To assume a complexity assumption is hard or a cryptosystem is secure, the
advantage of an attacker succeeding should be Adv(k) ≤ ε where ε is negligible and k
is a security parameter.
In building our scheme we have also used Lagrange Interpolation. Loosely speaking, the
interpolation of Lagrange comes from the fact that given d+ 1 points on a polynomial
of degree d we could uniquely identify that polynomial. The following is the formal
definition:

Definition 2.1.13. (Lagrange Interpolation [129]):
Let the points be (x0, y0), ..., (xd, yd). We define the Lagrange polynomial to be:

q(x) =
d∑

j=0

yjlj(x), where lj(x) =
i=d∏

i=0,i6=j

x− xi

xj − xi
.

The following section explains different complexity assumptions used in this thesis.

2.2 Complexity Assumptions

Loosely speaking, to prove that a scheme is secure one shows that breaking it can be
no easier than solving some mathematical problem that is assumed to be intractable.

8

2.2. Complexity Assumptions 2. Cryptographic Preliminaries

These kind of assumptions are referred to as “Complexity Assumptions”. In Chapter 3
such security proofs are explained in detail. In this section some common “Complexity
Assumptions” are given.
An important class of problems, used massively in cryptography and in this thesis,
are based on the Discrete Logarithm Problem (DLP). Let G be a finite multiplicative
group, we shall define the DLP first and then give some complexity assumptions that
are strongly related to it.

Definition 2.2.1. (Discrete Logarithm Problem (DLP) [128])
Given h, g ∈ G, find an x ∈ Z∗

p if it exists where h = gx.

We would like to mention that one of the most widely used groups in cryptography is
the elliptic curve group. The DLP is believed to be hard in such suitably chosen elliptic
curve groups. The best algorithm known to solve the discrete logarithm problem in
literature is Pollard’s rho method [112] which is of order O(

√
|E(Fq)|) where E(Fq)

refers to an elliptic curve over the field of integers modulo q. Smart has showed in his
work in [127] how solving the DLP in elliptic curve groups using Pollard Rho’s method
can take up to 71 years on a single sparc-10 network when q = 219. For more details
about elliptic curves the reader is referred to [15, 16].
Throughout the thesis we refer to complexity assumptions that are hard in a group of
prime order p. When implementing we can use elliptic curve groups for such groups.
Diffie–Hellman problem is one example and it has been shown that it is computationally
equivalent to the DLP in [18, 95]. The following is its definition.

Definition 2.2.2. (Diffie–Hellman Problem (DH) [128])
Given g,A,B ∈ G where A = ga and B = gb for a, b ∈ Z∗

p. Find a C where C = gab.

The DH is a hard problem but no stronger than the DLP. The values a and b are
not given and if the DLP can be solved a and b can be computed, therefore C can be
calculated too.
Another example of a DLP related complexity assumption is the Decisional Diffie Hell-
man (DDH). It was first mentioned in Brands’ work in [29]. Even though at first glance
it appears that DDH assumption is computationally equivalent to DH, it is not the case
as proven in [96]. It has been shown that such an assumption is weaker. Neverthe-
less, it is still a valid assumption underlying the security of many cryptosystems in the
literature.

Definition 2.2.3. (Decisional Diffie –Hellman Problem (DDH) [128])
Given g,A,B and C ∈ G where A = ga, B = gb and C = gc for a, b, c ∈ Z∗

p and
A,B,C ∈ G. Determine whether or not c = ab

Similar to the DH problem the DDH is no stronger than the DLP or the DH. The
values of a, b and c are not given but can be computed if DLP is easy. If the DH is

9

2.2. Complexity Assumptions 2. Cryptographic Preliminaries

easy the value C̄ = gab is computed and compared with C.
In the same work of Brands’ in [29] another complexity assumption was proposed,
based on the Decisional Diffie Hellman, the Representation Problem. In order to state
such complexity assumption we opt to discuss the definition of a representation and
then state the problem itself.
Let k ≥ 2 be a constant, q be a prime number and Gq a group of order q. A generator-
tuple of length k is a k-tuple (g1, ..., gk) with, for all i, j ∈ {1, ..., k}, gi ∈ Gq\{1} and
gi 6= gj , if i 6= j. An index tuple of length k is a k−tuple (a1, ..., ak) with ai ∈ Z∗

q for
all i ∈ {1, ..., k}.

Definition 2.2.4. (Representation [29]):
For any h ∈ Gq, a Representation of h with respect to a generator-tuple (g1, ..., gk) is

an index-tuple (a1, ..., ak) such that h =
k∏

i=1

gai
i

Definition 2.2.5. (The Representation Problem (RP) [29]):
Given a group G with elements g1, ..., gk ∈ G , and given h ∈ G. Find whether there is
a representation of h with respect to (g1, ..., gk).

The hardness of the representation problem relies on the DLP. In 1997, Camenisch and
Stadler were the first to use the Representation Problem. They have used it in their
construction together with two new DLP related complexity assumptions referred to as
“Double Discrete Logarithm Problem” and “e-th Root of Double Discrete Logarithm
Problem”. The following are their definitions:

Definition 2.2.6. (Double Discrete Logarithm Problem (DDLP) [36])
Given h, g ∈ G where G is of prime order p and a ∈ Z∗

p. Find an x ∈ Z∗
p if it exists

where h = gax
.

Definition 2.2.7. (e-th Root of Double Discrete Logarithm Problem (RDDLP) [36])
Given h, g ∈ G where G is of prime order p and e ∈ Z∗

p. Find an x ∈ Z∗
p if it exists

where h = gxe
.

Once again these problems are not stronger than DLP in the group G.
Bilinear Maps have been a tool used in breaking schemes based on Diffie–Hellman
problems. However, they have been used in a constructive manner for the first time
by Joux work in [77]. In this thesis we will be using it to build schemes rather than
break them. The following is a definition of Bilinear Maps, the Bilinear Diffie Hellman
problem and the Decisional Bilinear Diffie Hellman.

Definition 2.2.8. (Bilinear Maps [49]):
Let G1,G2 and G3 be three groups of prime order p. A function e : G1 × G2 → G3 is
said to be bilinear if e(ga

1 , g
b
2) = e(g1, g2)ab for any generators g1 ∈ G1, g2 ∈ G2 and

any a, b ∈ Z∗
p.

10

2.2. Complexity Assumptions 2. Cryptographic Preliminaries

A bilinear map is said to be admissible if it satisfies the following:

• Non-degenerate: The map does not send all pairs in G1 × G2 to the identity in
G3.

• Computable: There is an efficient algorithm to compute e(g1, g2) for any g1 ∈ G1

and g2 ∈ G2.

Definition 2.2.9. (Bilinear Diffie Hellman Problem (BDH) [21]):
Let e : G1 × G2 → G3 be an admissible bilinear map. Given generators g1 ∈ G1,
g2 ∈ G2, A, B and C where A = ga

2 , B = gb
2, C = gc

2 and a, b, c ∈ Z∗
p. Compute

e(g1, g2)abc.

Definition 2.2.10. (Decisional Bilinear Diffie Hellman Problem (DBDH)):
Let e : G1 × G2 → G3 be an admissible bilinear map. Given generators g1 ∈ G1,
g2 ∈ G2, A, B, C and Z where A = ga

2 , B = gb
2, C = gc

2, Z = e(g1, g2)z and
a, b, c, z ∈ Z∗

p. Decide whether z is random or z = abc .

We should point out that in this thesis we refer to a security parameter k that is used
in deciding the prime ordering of the groups in the bilinear map. The way k is used is
beyond the scope of this thesis [63, 60]. However, we need to refer to k rather than p

in order to be more accurate with what determines the security of the scheme when a
bilinear map is used. The reader is referred to papers on implementing bilinear maps
using Weil or Tate pairing [63, 60] for more details. Once again, the pairings we men-
tioned earlier can be implemented in elliptic curve groups. The complexity of BDH
and DBDH have been studied widely [64, 44] and are known to be hard if the right
elliptic curve group is chosen. We treat bilinear maps as black boxes throughout the
thesis [65].
In EuroCrypt’04 Boneh and Boyen used a more advanced complexity assumption re-
ferred to as q-Strong Diffie–Hellman Problem [19], where q is a size of a tuple given as
input to the problem (see Definition 2.2.11). Their work is a major building block used
in schemes constructed in this thesis. Therefore we define the complexity assumption
they have proposed together with the equivalence theorem introduced in their work [19].
Assume e : G1 ×G2 → G3 has been created using parameter k. Let G1, G2 and G3 be
cyclic groups of prime order p, with a computable isomorphism ψ from G2 to G1 or
possibly G1 = G2. Assuming the generators g1 ∈ G1, and g2 ∈ G2.

Definition 2.2.11. (q-Strong Diffie–Hellman Problem (q-SDH) in G1 and G2 [19]):
Given a (q + 2) tuple (g1, g2, g

γ
2 , g

γ2

2 , ..., gγq

2) as an input where γ ∈ Z∗
p, output what is

called a SDH pair (g1/(γ+x)
1 , x) for an x ∈ Z∗

p .

An algorithm A has a negligible advantage in successfully solving q-SDH in (G1, G2) if:

Adv(p) = |Pr[A(g1, g2, g
γ
2 , g

γ2

2 , ..., gγq

2) = (g1/(γ+x)
1 , x)]− 1/|G|| ≤ ε

11

2.2. Complexity Assumptions 2. Cryptographic Preliminaries

where the probability is over a random choice of a generator g2 (with g1 = ψ(g2)), and
of random bits of A.
The advantage Adv(p) is bounded to the prime number p and is equivalent to the
probability of the algorithm A calculating the SDH pair from the (q + 2) tuple. This
problem is believed hard to solve in polynomial time and ε should be negligible [19].
Throughout this thesis we will be using q-SDH where q is roughly an upper bound on
the number of users in our proposed cryptosystem (See Chapter 5).
In [44], Cheon gave an interesting analysis of the q-SDH problem. He investigated
some known elliptic curve parameters and found that either p − 1 or p + 1 has many
small divisors for the largest prime divisor p of its order for each elliptic curve studied.
Cheon gave an example of a broadcast encryption3 [24]. If the elliptic curve E+ was
chosen over GF (3155) in such an encryption, the secret key can be computed in O(259)
exponentiations (resp. O(242)) when number of users is 232 (resp. 264), rather than
O(276) group operations. The scenarios in this thesis (Chapter 5) are similar. The
number of users required whether 232 or 264 is ludicrous. Implications for the security
parameters will exist, but they are relatively modest.
In the same paper [44], Cheon summarized relationships between problems by denoting
A ≥ B when problem B can be solved in polynomial time with polynomially many
queries to the oracle to solve the problem A. The following is part of his summary:
DLP ≥ DH ≥ DDH ≥ q − SDH.

Assumption 2.2.12. For q relatively small (say no more that the number of living
human beings), it is possible to choose reasonable security parameters k such that the
q-SDH problem is unfeasibly hard in appropriate groups of size k.

Theorem 2.2.13. (Boneh–Boyen SDH Equivalence [19])
Given a q-SDH instance (g̃1, g̃2, g̃

γ
2 , g̃

γ2

2 , ..., g̃γq

2), by applying the Boneh and Boyen’s
Lemma found in [19] we obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2 and (q − 1) SDH pairs
(Ai, xi) (such that e(Ai, wg

xi
2) = e(g1, g2)) for each i. Any SDH pair besides these

(q − 1) ones can be transformed into a solution to the original q-SDH instance.

Later the same year in Crypto’04 Boneh, Boyen and Shacham proposed another com-
plexity assumption referred to as the Decision Linear Problem(DeLP) [20]. The DeLP
is considered a hard problem [20] and was used in proving their proposed schemes
secure. Using that assumption they proposed an encryption scheme and a signature
scheme. The definition of that problem is shown below:

Definition 2.2.14. (Decision Linear Problem (DeLP) [20]):
Let G be a group of prime order p and u, v, h ∈ G be generators in that group. Given
ua, vb, hc ∈ G as an input where a, b, c ∈ Z∗

p, decide whether or not a+ b = c.
3An encryption scheme that has one public key for encrypting and n decrypting keys. The system

has n users capable of decrypting the same ciphertext. Each user has a different private key and all n
private keys correspond to the one public key.

12

2.2. Complexity Assumptions 2. Cryptographic Preliminaries

In 2005, Ateniese et al. proposed an interactive version of the q-SDH assumption [4].
By interactive we mean giving an adversary that is trying to solve the complexity
assumption access to some oracle. This new interactive complexity assumption is called
the Extended Diffie Hellman (EDH). Assume A represents an adversary trying to solve
the EDH problem for some x ∈ Z∗

p, A sends ci ∈ Z∗
p to the oracle and receives the

response (g1, g
1/(x+vi)
2 , g

1/(ci+vi)
2), for a vi ∈R Z∗

p. Given access to such an oracle and
given the tuple (g1, gx

1 , g2, g
x
2) the advantage of adversary A in solving the EDH problem

is equivalent to the probability of finding a tuple (c, a, ax, av, g
1/(x+v)
2 , g

1/(v+c)
2) for some

a ∈ G1. A formal definition is shown below:

Definition 2.2.15. (Extended Diffie–Hellman (EDH) [4]): Given a bilinear map e :
G1 × G2 → G3. Let x ∈ Z∗

p. Let oracle Ox(.) take input ci ∈ Z∗
p and produce output

(g1, g
1/(x+vi)
2 , g

1/(ci+vi)
2), for a random vi ∈ Z∗

p. Find a tuple (c, a, ax, av, g
1/(x+v)
2 , g

1/(v+c)
2)

where c has not been queried in Ox(.)

The EDH problem is hard if for all probabilistic polynomial-time adversaries A, all
v, c ∈ Z∗

p and all a ∈ G1 such that a 6= 1,
Adv(p) = Pr[x ∈R Z∗

p : AOx(g1, gx
1 , g2, g

x
2) = (c, a, ax, av, g

1/(x+v)
2 , g

1/(v+c)
2)∧c 6∈ Q] < ε.

where Q is the set of queries A makes to oracle Ox(.), and ε is negligible.
The EDH is not the only interactive complexity assumption proposed in Ateniese et al.’s
paper. They had two other complexity assumptions that are interactive and they are
based on the Symmetric External Diffie–Hellman (SXDH) and the LRSW complexity
assumption4. We shall define the SXDH then define the interactive versions (Referred
to as Strong LRSW and Strong SXDH). These complexity assumptions will be used in
the group signature in Section 4.5.2 which is an example of dynamic group signatures
and was proposed by Ateniese et al.’s [4]. To define the SXDH assume a bilinear map
e : G1 × G2 → G3 where G1, G2 and G3 are of prime order and k is the security
parameter that determines the order of such groups.

Assumption 2.2.16. (Symmetric External Diffie–Hellman (SXDH) [4]):
The Decisional Diffie–Hellman problem DDH is hard in both G1 and G2. Assume that
there do not exist efficiently computable isomorphisms ψ : G1 → G2 or ψ̄ : G2 → G1.

The SXDH assumption has been used in this thesis to explain the security of a particular
group signature scheme that we have chosen from literature as an example of dynamic
groups (See Section 4.5.2). We do not use this assumption in any of our main results
in Chapters 5 and 6.
In the Strong SXDH an adversary is given access to two oracles. Let x, y ∈ Z∗

p. Both
oracles take an input of form m ∈ Z∗

p however the response is different. The first oracle
outputs (g1, g

1/(x+v)
2 , g

1/(v+m)
2) for a random v ∈ Z∗

p while the second oracle outputs (gr
1,

4Complexity assumption proposed by Lysyanskaya, Rivest, Sahai,and Wolf in [91] and therefore the
abbreviation.

13

2.2. Complexity Assumptions 2. Cryptographic Preliminaries

gry
1 , grv

1 , g1/(y+v)
2 , g1/(v+m)

2) for a random r, v ∈ Z∗
p. The adversary A has an advantage

in breaking the complexity assumption, Strong SXDH, if and only if given the triple
(g1, gx

1 , g2) it can not distinguish whether the second oracle’s responses where based on
x or y the main reason for not being able to differentiate is because v changes every
time the oracles are queried. A formal definition is given below:

Definition 2.2.17. (Strong Symmetric External Diffie Hellman (sSXDH) [4]): Let
g1 ∈ G1, g2 ∈ G2 and x, y ∈ Z∗

p. Let Ox(.) be an oracle that takes as input m ∈ Z∗
p and

outputs g1, g
1/(x+v)
2 , g

1/(v+m)
2 for a random v ∈ Z∗

p. Let Qy(.) be an oracle that takes
the same input type and outputs (gr

1, g
ry
1 , g

rv
1 , g

1/(y+v)
2 , g

1/(v+m)
2) for a random r, v ∈ Z∗

p.
Decide using a given triple (g1, gx

1 , g2) whether the second oracle responses are based on
x or y.

The sSXDH is considered hard if for all probabilistic polynomial-time adversaries A(.),
and for randomly chosen g1 ∈ G1, g2 ∈ G2, and x, y ∈ Z∗

p,

Adv(k) = |Pr[AOx,Qx(g1, gx
1 , g2) = 1]− Pr[AOx,Qy(g1, gx

1 , g2) = 1]| < ε,

where k is a security parameter and ε is negligible.
The last interactive complexity assumption we will be using in this thesis is the Strong
LRSW. An adversary is given X, Y , g1, and g2 where X = gx

2 and Y = gy
2 for x, y ∈ Z∗

p.
It is also given access to an oracle that outputs the tuple (a, ax, ay+yxm, am, amx) for
a random a ∈ G1 when queried for value m ∈ Z∗

p. The adversary has a negligible
advantage in finding a tuple (a, ax, ay+yxm, am, amx) for an m that has never been
queried before. The formal definition follows:

Definition 2.2.18. (Strong LRSW [4]):
Let X,Y ∈ G2, X = gx

2 , Y = gy
2 . Let OX,Y (.) be an oracle that takes as an input a

value m ∈ Z∗
p and outputs what is called a LRSW-tuple (a, ax, ay+yxm, am, amx) for a

random a ∈ G1. Find a tuple (a, ax, ay+yxm, am, amx) for an m that has never been
queried before.

The Strong LRSW is a hard problem if for all probabilistic polynomial-time adversaries
A(.) and all m ∈ Z∗

p.

Adv(k) = Pr[x ∈R Z∗
p, y ∈R Z∗

p, X = gx
2 , Y = gy

2 , (a1, a2, a3, a4, a5)←
AOX,Y (g1, g2, X, Y) : m 6∈ Q∧a1 ∈ G1∧a2 = ax

1∧a3 = ay+yxm
1 ∧a4 = am

1 ∧a5 = amx
1] < ε,

where Q is the set of queries A makes to OX,Y , k is a security parameter and ε is
negligible.
Note that while querying the oracles the last two elements am and amx are computable
from the first two elements a and ax, therefore no need to have them as part of the
output. We have included them in order to be consistent with the challenge.

14

2.3. Encryption Schemes 2. Cryptographic Preliminaries

2.3 Encryption Schemes

Alice wants to send a confidential message to Bob. She converts the message to an
unreadable text and sends it to Bob. The conversion is referred to as encryption. The
message is called plaintext and the encrypted message is named ciphertext. Bob needs
to derive the plaintext from the ciphertext. To do so he will have extra secret informa-
tion referred to as the key. The procedure of changing a ciphertext back to a plaintext
is referred to as decryption. Only people with the key can perform the encryption and
decryption. If the key for encrypting is the same as the key for decrypting then the
scheme is said to be symmetric otherwise the encryption scheme is said to be asym-
metric. In this thesis the latter is more relevant to the constructions contributed in
Chapter 5.
In this section a formal definition of an encryption scheme based on asymmetric cryp-
tography is given together with two examples of constructions. Examples are chosen
depending on relevance to the thesis.

Encryption Scheme: An asymmetric encryption scheme is a set of algorithms. To
define the scheme we explain the algorithms.

• KeyGen(k) : This algorithm creates two keys a public key, pk, known to all and
a secret key, sk, given to the decryptor only. The input is a security parameter
k.

• Encrypt(M,pk) : This algorithm is run by the sender (Alice). She encrypts the
message M using the public key pk and outputs a ciphertext C.

• Decrypt(C, sk) : This algorithm is run by the receiver (Bob). He decrypts the
ciphertext C using the secret key sk and derives the message M .

Sometimes for the encryption algorithm an extra input which is referred to as the
randomizing coin is added to make the encryption more secure. In literature most
definitions of encryption do not have that element as an explicit input. Many encryption
schemes are in literature and it is hard to cover them all. We picked two which are
used in the construction of the attribute based authentication scheme in Chapter 5.

2.3.1 Elgamal Encryption Scheme

In 1984, Elgamal [61] came up with a public key encryption scheme that is still used
today. The security of Elgamal is dependent on the “Decisional Diffie Hellman”. The
prefix EG is used to differentiate between the algorithms in this section and other
algorithms. The algorithms of Elgamal are defined below:

• EG.KeyGen(p) : A public key is h, g ∈ G for G is a multiplicative cyclic group
of order p. The private key is the exponent x ∈ Z∗

p such that h = gx.

15

2.4. Digital Signatures 2. Cryptographic Preliminaries

• EG.Encrypt(M, sk) : To encrypt a message M choose a random element α ∈ Z∗
p

and output the pair C = 〈C1, C2〉 where C1 = gα and C2 = M.hα.

• EG.Decrypt(C, pk) : To decrypt compute M = C2/C
x
1 .

The next encryption scheme defined is the Linear Encryption Scheme.

2.3.2 A Linear Encryption Scheme

In [20] the authors proposed an encryption scheme named the “Linear Encryption
Scheme” since its security depends on the difficulty of the “Decision Linear Diffie–Hellman
Assumption”. The scheme was a building block in their cryptosystem. The notation
LE is used to distinguish its algorithms from others in this thesis. The algorithms are
described below:

• LE.KeyGen(p) : In a linear encryption scheme a user’s public key is u, v, h ∈ G1.
The private key is the exponents ξ1, ξ2 ∈ Z∗

p such that uξ1 = vξ2 = h. Note that
p is a prime number, G1 is a group of prime order p.

• LE.Encrypt(M, sk) : To encrypt a message M choose random elements ζ, β ∈ Z∗
p

and output the triple 〈C1, C2, C3〉 = 〈uζ , vβ,Mhζ+β〉.

• LE.Decrypt(C, pk) : To decrypt compute C3/(C
ξ1
1 C

ξ2
2).

The following section introduces digital signature schemes as a concept with examples
of constructions that are relevant to the constructions in Chapter 5.

2.4 Digital Signatures

Alice wants to send a signed document to Bob. Alice has a public key that identifies
her and is known to everyone and she has a secret key that no one knows but her. Using
the secret key and a message Alice can create a signature and send it to Bob. Bob can
verify the signature using the message and the public key. The signature contains sev-
eral elements that look random to Bob. Among these elements is one which is referred
to as a “Fingerprint”. Bob knows the verifying procedure which will enable him to
make use of the public key and the signature in order to recalculate the “Fingerprint”.
If what he calculated is equivalent to what he got from Alice then accept signature
otherwise reject it.

Digital Signature Scheme: A Digital Signature Scheme is a set of algorithms. To
define the scheme we explain the algorithms.

• Setup(k) : This algorithm creates two keys using a security parameter k. The
first is the public key pk known to all and the second is a secret key sk given to
the signer only.

16

2.4. Digital Signatures 2. Cryptographic Preliminaries

• Sign(M, sk) : This algorithm is run by the signer (Alice). She signs the message
M using a secret key sk and outputs a signature σ.

• V erify(σ, pk,M) : This algorithm is run by the verifier (Bob). He uses σ and
the public key pk to run the verification algorithm that will output either accept
or reject.

2.4.1 RSA

Rivest, Shamir, and Adleman came up with a signature scheme that is still used to-
day [118]. Factoring is the underlying, presumably hard problem which the security of
RSA is based on. The algorithms of the signature scheme are described below:

• RSA.Setup(k): Two distinct large random prime numbers are chosen p, and
q. The size of them is represented by the security parameter k. Let n = pq.
φ(n) = (p − 1)(q − 1). e is chosen such that 1 < e < φ(n) and e and φ(n) are
coprime. d is computed to satisfy e.d ≡ 1(modφ(n)). The public key is pk = (n, e)
and the private key is sk = (d, p, q).

• RSA.Sign(M, sk): The signer represents the message M as a number between
0 < M < n. Signer calculates c = Md(modn) and sends c along with the message
as their signature.

• RSA.V erify(σ, pk,M): Verifier calculates ce(modn) and compares it to the mes-
sage. If they are equal then accept the signature otherwise reject it.

2.4.2 Schnorr

Schnorr came up with a signature that has been proven secure under the discrete
logarithmic problem assumption5 [122]. The algorithms are as follows:

• Sc.Setup(k): Given the security parameter k, choose a random secret key sk

where 0 < sk < k. The public key will be pk = gsk, where g ∈ G and G

is a group such that DLP is hard. Finally, a hash function H is chosen (See
Section 3.3.1). So (g, pk,H) are public and sk is private.

• Sc.Sign(M, sk): The signer chooses a random 0 < x < k. Calculate r = gx and
e = H(M ||r), where M is the message to be signed. Let s = (x − e.sk)modk.
Note that both e, s ∈ [0, k[. They are sent to the verifier as the signature (i.e
σ = (e, s)).

• Sc.V erify(σ, pk,M): Verifier calculates r̄ = gspke. Then he calculates ē =
H(M ||r̄). If ē = e then accept the signature otherwise reject it.

5Secure under the Random Oracle assumption 3.3

17

2.4. Digital Signatures 2. Cryptographic Preliminaries

2.4.3 Camenisch–Lysyanskaya

Camenisch–Lysyanskaya is a signature scheme secure under the LRSW assumption6 [35].
In [4] they extended the scheme to be secure under the SXDH and the Strong LRSW.
Note that in this scheme the message signed is unknown to verifier.

• CL.Setup(k): Given a security parameter k, create a bilinear map e : G1×G2 →
G3 where G1, G2, and G3 are of prime order p (chosen according to k). That is
SCL

pub = (p,G1, G2, G3, g1, g2), where g1 ∈ G1, and g2 ∈ G2. Let s, t ∈R Z∗
p. The

public key is pk = (gt
2, g

s
2) and the private key sk = (s, t)

• CL.Sign(M, sk) : Inputs to the sign algorithm are a message and the secret key.
Choose a random a ∈ G1. Output σ=(a,at,as+stM ,aM ,aMt) as a signature .

• CL.V erify(σ, pk) : To accept a signature σ = (A,B,C,D,E) verify the equali-
ties: (1) e(B, g2) = e(A, gt

2). (2) e(D, gt
2) = e(E, g2). (3) e(C, g2) = e(A, gs

2).e(E, g
s
2)

2.4.4 Boneh–Boyen

In [4] a modified version of Boneh and Boyen weak signature scheme [19] was used.
The security of the BB+ scheme relies on the EDH assumption7. Algorithms of the
scheme are described as follows:

• BB.Setup(k) : Given a security parameter k, the public system parameters are
created by setting up a bilinear map e : G1 × G2 → G3, such that G1, G2, and
G3 are of prime order p (chosen according to k). The system parameters are
SBB

pub = (p,G1, G2, G3, g1, g2), where g1 ∈ G1, g2 ∈ G2. A random private key sk
is chosen from Z∗

p. The public key is pk = (g1, gsk
1 , g2).

• BB.Sign(sk,M) : On input of a message M and the secret key select a random
r ∈ Z∗

p and output σ = (gr
1, g

1/(sk+r)
2 , g

1/(r+M)
2).

• BB.V erify(pk,M, σ) : Input is the public key, a message and a signature of
the form (A,B,C). Accept signature if (1) e(gsk

1 A,B) = e(g1, g2), and (2)
e(AgM

1 , C) = e(g1, g2).

All four signatures introduced in this section have been used in constructing either
group signatures in Chapter 4 or attribute authentication schemes in Chapter 5. Dif-
ferent protocols will also be used and are described in the next section.

6Secure without the Random Oracles 3.3.
7This Signature scheme is existentially unforgeable under adaptive chosen message attack

18

2.5. Cryptographic Protocols for Knowledge Proofs 2. Cryptographic Preliminaries

2.5 Cryptographic Protocols for Knowledge Proofs

Identification is the process of verifying that a person is who they claim they are.
Let’s assume that Alice wants to prove to Bob that she is Alice. They engage in some
form of communication, at the end of which Bob should be convinced about Alice’s
identity. This implies that Alice will be giving some sort of information to Bob during
the communication. However she is cautious about what information she gives because
Bob or an eavesdropper can use it in impersonating Alice in other communications
Goldwasser, Micali and Rackoff proposed interactive proofs as a solution [68]. Their
system is an abstract machine that models computation as the exchange of messages
between two parties. Messages are sent between Alice and Bob until he is convinced
it is Alice who he is dealing with. In their work they were looking for a system that
guarantees no important information is leaked. This led to the discovery of Interactive
Zero Knowledge proofs (IZK).
Blum, Feldman, and Micali showed that with an existence of a common random string
shared between the prover and the verifier a computational zero-knowledge can be built
without requiring interaction [17].
Extractable Zero Knowledge proofs are protocols followed to prove knowledge without
leak of information, until in a later stage the prover publishes a piece of data that can
extract the information from the elements of the zero knowledge.
In the following sections we give more definitions and examples of such proofs. The
examples we give are used as building blocks in different cryptosystems including the
ones proposed in this thesis.

2.5.1 Commitment Schemes

Making a commitment means that a player in a protocol is able to choose a value from
some (finite) set and commit to his choice such that he can no longer change his mind.
He does not have to reveal his choice - although he may choose to do so at some later
time. It is the digital analogue for a locked box, that is sent by committer to a verifier.
The key can be sent later to the verifier to reveal the committed value.
A commitment scheme is usually used in the construction of zero knowledge proofs,
authentication schemes and in other cryptographic systems. An example of such a
scheme is the one proposed by Pedersen in [109]. The scheme is defined as follows:

Definition 2.5.1. (Pedersen Commitment Scheme (PCOM) [109]):
Let generators h, g ∈ G where G is of prime order p and logg h is unknown to the
committer. The committer commits to s ∈ Z∗

p by choosing t ∈ Z∗
p randomly and sending

PCOM(s) = gsht. The commitment is revealed by publishing s and t.

A Commitment Scheme is said to be:

19

2.5. Cryptographic Protocols for Knowledge Proofs 2. Cryptographic Preliminaries

• Information Theoretically Binding if the sender can not change the value he
committed to no matter how much computing power is available.

• Computationally Binding if the sender needs a huge amount of computation to
change the value committed too.

• Information Theoretically Concealing if the receiver or an eavesdropper are unable
to determine the value being committed until the revealing stage occurs and that
is no matter what computational powers they have.

• Computationally Concealing if the receiver needs a huge amount of computation
to retrieve the value committed before the revealing stage occurs.

In [109] Pedersen proved the commitment scheme to be computationally binding and
concealing by comparing it to hardness of the DLP (Definition 2.2.1). The next section
discusses zero knowledge proofs in more detail.

2.5.2 Zero Knowledge Protocols (ZKP)

There are two types of zero knowledge proofs: interactive and non-interactive.

Interactive Zero Knowledge Protocols (IZKP)

Alice and Bob (referred to as Peggy and Victor in lots of papers) run an interactive
protocol between themselves. Bob has a polynomially bounded computational power.
Alice proves to Bob that she knows an answer to an NP problem without disclosing
that answer. Consider the following scenario [114]:

Scenario 2.5.2. Alice wants to prove to Bob that she knows the password to a barrier
in a cave as shown in Figure 2-1. She goes in the cave where Bob can not see her.
He shouts out the direction he wants her to come out from. If she does not know the
password she has a 50% chance that she is in the side that Bob requested and therefore
she will come out from the right direction. To reduce the 50% chance of Alice being
lucky the protocol is done n times making the probability of Alice being lucky be 1/2n

Knowledge of proofs should be:

• Complete: The ability of the prover (Alice) to convince the verifier (Bob) of the
validity of any true assertion. In other words if the assertion is true Alice should
be able to prove that with probability 1.

• Sound: No prover strategy can trick the verifier (Bob) to accept a false assertion.
In other words if Alice does not know the thing she is proving then the probability
of Bob accepting her proof is small.

20

2.5. Cryptographic Protocols for Knowledge Proofs 2. Cryptographic Preliminaries

Figure 2-1: Knowledge of Proof

Assume Bob wants to prove to others that Alice knows the secret of the barrier in
the cave. He can video tape the procedure and send it to anyone. The video tape is
considered a view or transcript of the proof. Bob shows the video to a third person,
Carol, to convince her that Alice knows the secret. Carol will not accept such a proof
because the video can be faked, if Alice did not know the secret, by editing out the
times Alice got it wrong. A simulator is a procedure that generates fake views of the
proof (generated without the prover) that are indistinguishable from a genuine view
(generated by the prover) of the proof [98]. So now we can formally define the ZKP as
follows:

Definition 2.5.3. (Zero Knowledge Proof): A proof of knowledge is considered to be
zero knowledge if it has a simulator for the proof.

We shall give an example of an IZKP for the Discrete Logarithm Problem. Alice knows
the discrete logarithm of A to the base g. Assume A = ga then Alice knows a and
wants to follow a IZKP with Bob to prove so. The protocol runs as follows:

• Alice chooses a random r and sends Bob R = gr.

• Bob chooses a random bit b and sends it to Alice.

• Alice computes s = r + ab and sends s to Bob.

• Bob checks that gs = RAb,

The previous IZKP is sound, complete and maintains the zero knowledge property as
Schnorr has proven in [122].
In the schemes in Chapters 5 and 4 different protocols are proposed to achieve the
objectives of our thesis and these protocols use concepts from zero knowledge. The
schemes do not just use interactive zero knowledge, they use the non interactive notion
too.

21

2.5. Cryptographic Protocols for Knowledge Proofs 2. Cryptographic Preliminaries

Non-Interactive Zero Knowledge (NIZK)

A NIZK proof consist of three entities prover, verifier and a uniformly selected reference
string R (which can be selected by a trusted third party). The verifier and prover can
access that string and each tosses additional coins. Several properties of non interactive
zero knowledge proofs were proposed in literature for example:

• Non-Malleability is a security notion in NIZK. If whatever one can prove after
seeing an NIZK proof, one can prove before seeing it (except for the ability to
duplicate the proof), then the NIZK is said to be non-malleable. An adversary
can not prove assertions it did not previously know using a NIZK proof.

• Adaptive NIZK is a security notion that is equivalent to proving the NIZK Non-
Malleable even after giving the adversary access to an oracle that enables it to
request proofs of theorems of its choice.

• The simulation-soundness requirement is a notion first proposed by Sahia in [120].
It says that a polynomially-bounded prover can not prove false theorems even
after seeing simulated proofs of any statements (including false statements) of its
choosing.

In the next section the term signature of knowledge is explained which is closely related
to zero knowledge proofs.

2.5.3 Signature of Knowledge of Discrete Logarithmic problems

Signatures of knowledge as Camenish and Stadler named it in [36] is a method to prove
the knowledge of a signature. Informally, it means the prover knows the secret used
in signing a message. The interactive version of these proofs is a ZKP. The following
signature of knowledge is inspired by Schnorr signature scheme (See Section 2.4.2).
It also relies on the complexity assumption the Representation Problem defined in
Definition 2.2.5.

Definition 2.5.4. (Signature of Knowledge of the Discrete Logarithm:)
Given a group G of prime order and y, g ∈ G. A pair (c, s) ∈ {0, 1}k × Z∗

n satisfying
c = H(m||y||g||gsyc) is a Signature of Knowledge of the discrete logarithm of y to base
g on message m.

This signature can be computed if the secret x is known and it is done by choosing a
random r ∈ Z∗

n and computing: c = H(m||y||g||gr) and s = r − cx(modn). This could
be extended to include knowledge of a representation (See Section 2.2.4) as follows:

Definition 2.5.5. (Signature of Knowledge of Representation):
A signature of the knowledge of representation of y1, ..., yw with respect to bases g1, ..., gv

22

2.5. Cryptographic Protocols for Knowledge Proofs 2. Cryptographic Preliminaries

on message m is denoted as follows:

SKREP [(α1, ..., αu) : (y1 =
l1∏

j=1

g
αe1,j

b1,j
) ∧ ... ∧ yw =

lw∏
j=1

g
αew,j

bw,j
)],

where indexes ei,j ∈ {1, ..., u} refer to α1, ..., αu and indexes bi,j ∈ {1, ..., v} refer to
g1, ..., gv. The signature refers to (c, s1, ..., su) ∈ {0, 1}k × Zu

n satisfying

c = H(m||y1||...||yw||g1||...||gv||{{ei,j , bi,j}lij=1}wi=1||yc
1

l1∏
j=1

g
se1,j

b1,j
, ..., yc

w

lw∏
j=1

g
sew,j

bw,j
) .

This could only be calculated by knowing (α1, ..., αu) and that is done by choosing u
random elements ri ∈ Zn. Then calculating :

c = H(m||y1||...||yw||g1||...||gv||{{ei,j , bi,j}lij=1}wi=1||
l1∏

j=1

g
re1,j

b1,j
, ...,

lw∏
j=1

g
rew,j

bw,j
)

Finally, calculate si = ri − cαi(modn).

Note that
li∏

j=1

g
rei,j

bi,j
=

li∏
j=1

g
sei,j +cαew,j

bi,j
= yc

i

li∏
j=1

g
sei,j

bi,j

The distribution and creation of elements li were not discussed in [36]. In this thesis
we can assume that li ∈ Z are chosen randomly by the creator of the signature and
sent as part of the proof of knowledge.

Definition 2.5.6. (Signature of Knowledge of the Double Discrete Logarithm)
Let l ≤ k where l and k are security parameters. An (l + 1) tuple (c, s1, ..., sl) ∈
{0, 1}k × Zl satisfying the equation:
c = H(m||y||g||a||b1||...||bl) with

bi =

{
If c[i] = 0; return g(asi)

Otherwise return y(asi)

is a signature of the knowledge of a double discrete logarithm of y to the bases g and a,
and is denoted SKLOGLOG[α : y = gaα

](m)

SKLOGLOG[α : y = gaα
](m) can be computed only if the double discrete logarithm

x of the group element y to the bases g and a is known (i.e. y = gax
). Assume there

is an upper bound λ on the length of x. Let ε > 1 be a constant. Compute the values
b∗i = gari , for i = 1, ...l and ri ∈R {0, ..., 2ελ − 1}. c = H(m||y||g||a||b∗1||...||b∗l). Finally,

si =

{
If c[i] = 0; return ri
Otherwise return ri − x

Note that if c[i] = 0 then ri = si therefore b∗i = gari = gasi = bi; Otherwise ri − x
implies b∗i = gari = gasi+x

= gasiax
= yasi = bi

23

2.6. Chapter Summary 2. Cryptographic Preliminaries

Definition 2.5.7. (Signature of Knowledge of the e-th Root of Double Discrete Log-
arithm):
Let (l + 1) tuple (c, s1, ..., sl) ∈ {0, 1}k × Z∗l

n satisfy the equation:
c = H(m||y||g||e||b1||...||bl) with

bi =

{
If c[i] = 0; return g(si

e)

Otherwise return y(si
e)

is a signature of the knowledge of an e-th root of the discrete logarithm of y to the base
g, and is denoted SKROOTLOG[α : y = gαe

](m)

SKROOTLOG[α : y = gαe
](m) can be computed only if the e-th root x of the discrete

logarithm y to the base g is known (i.e. y = gxe
). Compute the values b∗i = gri

e
, for

i = 1, ...l and ri chosen randomly from Z∗
n. Let c = H(m||y||g||e||b∗1||...||b∗l). Finally,

si =

{
If c[i] = 0; return ri
Otherwise return ri/x(modn)

Note that if c[i] = 0 then ri = si therefore b∗i = gri
e

= gsi
e

= bi; Otherwise ri/x implies
b∗i = gri

e
= g(six)e

= gse
i xe

= yse
i = bi

The definitions of this section are used in the construction of dynamic group signature
in Section 4.5.1.

2.6 Chapter Summary

Complexity assumptions are mathematical problems that are believed to be intractable
and are used in cryptography as building blocks for constructing different schemes. In
Section 2.3 we discussed asymmetric encryption. Examples of such encryption schemes
are Elgamal and Linear Encryption schemes. In Section 2.4 digital signature is de-
fined. Examples of digital signature are RSA, Schnorr, Camenisch–Lysyanskaya and
Boneh–Boyen. All these examples will be used in Chapters 4 and 5 to construct more
advanced cryptosystems. Finally, we discussed protocols such as zero-knowledge, sig-
nature of knowledge and commitment schemes in Section 2.5.1 which are used in the
protocols of the constructions in Chapters 4 and 5.

24

Chapter 3

Provable Security

In this chapter we give two examples of game models, one for encryption and the other
for digital signatures. We define the term “Random Oracle” used in provable security
often and used in our proofs in later chapters of this thesis. We then define the term
“Forking Lemma” a method used in proving security notions of digital signatures and
which will be used in proving some of our proposed schemes secure.

3.1 Introduction

Previously, cryptosystems offered very little security guarantees. They were designed,
in an ad hoc fashion where the system is proposed, attacked, broken, and repaired [54].
Cryptographers were not satisfied with such an approach. They needed the scheme to
be proved mathematically secure before being used. In 1949 Shannon came up with
the first significant attempt to prove a scheme secure [124]. He came up with the term
“perfectly” secure cipher. Informally, we can say an encryption scheme is perfectly
secure if a ciphertext does not reveal anything about the plaintext without the key.
The modern approach to proving schemes secure is referred to as “Provable Security”.
The basis of such a method is to prove that if there were an adversary capable of break-
ing a certain security concept then that adversary is able to solve a computationally
intractable problem. By that we imply that such an adversary solves a complexity
assumption that is believed to be hard (See Section 2.2).
Usually the cryptographic system has an adversarial model represented as some game
with an adversarial goal. The goal should capture what it means to break a scheme
and the game itself represents what capabilities are given to the adversary in order to
achieve such a goal.
In such game models the assumption is there exist an adversary that can break the
security condition of a scheme. The adversary in this case is a “black box simulation”
where assuming that black box is given certain inputs, the output is returned and that
output is the result of achieving the adversarial goal. The same simulation is then used

25

3.2. Provable Security Examples 3. Provable Security

to refute the complexity assumption.
Due to the fact that we are designing new cryptographic paradigms, we need to design
such security models that capture security notions in which the new systems require.

3.2 Provable Security Examples

In this section we will give examples of designing game models for security proofs.
There are a lot of examples in literature. Game models consist of an adversary and
the challenger. The adversary, referred to as Adam throughout this thesis, is the bad
entity in the game model that is trying to break the security condition. The challenger
is the good entity in the model who runs certain queries and challenges the adversary
to break the condition. We will refer to the challenger as Charles.

Provable Security in Encryption Schemes: An example of a game model for
proving encryption schemes secure is IND-CPA [94] security. IND-CPA stands for IN-
Distinguishable Chosen Plaintext Attack. Adam and Charles agree on the encryption
scheme, the plaintext message space M and ciphertext message space C they want
to challenge. We say that encryption scheme is IND-CPA secure if and only if there
exist no polynomial time adversary that can win the IND-CPA game. By polyno-
mial time adversary we mean that Adam must complete the game and output a guess
within a polynomial number of time steps. Assume the encryption algorithm is E. The
IND-CPA game is described as follows:

• Charles sets up the system by creating a public key pk, and a secret key sk .
Charles gives pk to Adam and retains sk.

• Adam chooses two messages M0 and M1. They should be the same size or the
shorter message should be padded to equalize the size. Adam sends the two
messages to Charles.

• Charles randomly chooses b ∈ {0, 1} and encrypts a message Cb = E(Mb). In
other words one of the messages is chosen randomly and encrypted. Cb is sent to
Adam as the challenge.

• Adam uses the ciphertext Cb and all his computational ability to choose a b̄ ∈
{0, 1} that matches b. If b̄ = b then Adam wins the game else Adam loses the
game.

The advantage of winning the game is defined by how much better Adam can do than
a simple random guess (which has a probability 1/2 of being right). In other words,
AdvCPA(k) = |Pr[b = b̄] − 1/2| where k is the security parameter used in setting up
the encryption scheme .

26

3.2. Provable Security Examples 3. Provable Security

Definition 3.2.1. (Indistinguishable Chosen Plaintext Attack) An encryption scheme
is IND-CPA secure if and only if AdvCPA(k) < ε where ε is negligible and k is the
security parameter used in setting up the system.

In literature there are more powerful security notions for encryption schemes other
than IND-CPA1. For example, we can give the adversary access to a decryption oracle
that he queries a number of times before and after the challenge, as long as he does
not use the challenge ciphertext for issuing a query. If Adam is given access to such
an oracle then the encryption scheme is said to be IND-CCA secure. However we have
chosen to explain the CPA scheme instead since it will be used as a building block for
our provable security proofs in later chapters of this thesis. We have not used CCA
since it was hard to integrate the oracles of IND-CCA model with the oracles required
in our game models.

Provable Security in Digital Signature Schemes: We will give an example of
unforgeability of signature schemes security proofs [94]. As in encryption many models
exist. In this section we have chosen one example of such security models. We say
a digital signature scheme is secure under an adaptive chosen message attack if there
exist no polynomial time adversary Adam capable of winning the following game:

• Charles sets up the system by creating a public key pk, and a secret key sk .
Charles gives pk to Adam and retains sk.

• Adam can query a signature oracle that Charles controls. To query such an
oracle Adam sends a message M and Charles replies with a signature σ.

• Adam outputs a pair (M, σ̄) of message and signature as his forgery, if the message
has not been queried before.

• Charles verifies the signature σ̄. If it is valid Adam wins and outputs 1 to indicate
a successful experiment. Otherwise 0 is the output of the experiment implying
Adam has failed.

If we refer to the game model as experiment Exp then the advantage of winning the
game is represented as AdvCMA(k) = Pr[Exp = 1] where k is the security parameter
used in setting up the system.

Definition 3.2.2. (Chosen Message Attack) A digital signature is secure against the
chosen message attack if and only if AdvCMA(k) < ε where ε is negligible and k is the
security parameter used in setting up the system.

1IND-CCA and IND-CCA2 are two other examples [128]

27

3.3. Random Oracle 3. Provable Security

A large amount of research has been done on different game models for the various
cryptosystems. In this thesis we will be using similar provable security techniques to
prove our schemes secure. However, the two examples given in this section are sufficient
to demonstrate the use of such techniques in our proposed proofs.

3.3 Random Oracle

Random Oracles are a cryptographic theoretic tool used in proving the security of a
scheme. They are frequently used with provable security models. In this section we
will be defining the term in more detail. Before we start we need to go through a
prerequisite term and that is “Hash Function”.

3.3.1 Hash functions

Hash functions are deterministic functions which map a bit-string of an arbitrary length
to a hashed value which is another bit-strings of a fixed size. The following is a definition
of hash functions:

Definition 3.3.1. (Hash Functions [128]):
A hash function H is a function with the following properties below:

• The function H takes a message M of finite length represented as a bit-string and
maps it to a bit-strings of fixed length. The result is the hash-value or simply the
hash of M .

• Given H and M ∈ {0, 1}∗, it is easy to compute H(M).

The properties we require in the hash functions used are defined below:

Definition 3.3.2. Let H be a hash function [128].

• Given y is from the range of H, the hash function is preimage resistant if it is
hard to calculate any M such that H(M) = y.

• Given M0, the hash function is second-preimage resistant if it is hard to find any
M1 6= M0 such that H(M0) = H(M1).

• The hash function is collision resistant if it is hard to find a pair M0 and M1

such that H(M0) = H(M1) and M0 6= M1.

Hash functions are used frequently as one of the building blocks of cryptosystems and
they affect highly the security of the scheme. For example, in digital signatures, they
are used to create “message fingerprints” (See Section 2.4). We will be seeing general
usage of hash functions in Chapters 4 and 5. The security of these schemes depend
crucially on the hash function.

28

3.4. Forking Lemma 3. Provable Security

3.3.2 Random Oracle Paradigm

In 1993, Bellare and Rogaway proposed the random oracle model that is used frequently
with provable security models [11]. A random oracle is an oracle that when queried
responds with a random reply, subject to the condition that the reply is different for
various queries but the same when the same input is queried again. Such an oracle has
the desired properties such as preimage resistance and collision resistance.
Cryptographers assume that all entities in the game model have access to the random
oracle. Then the scheme is proved secure under that random oracle assumption. Fi-
nally when it comes to actually implementing the scheme the random oracle is replaced
with a strong hash function. Researchers believe that proving a cryptosystem secure
under the random oracle is equivalent to proving the security of the scheme dependent
on exploiting the hash function used. Even though, Canetti et al. [37] proved that
this is not necessarily true, cryptographers still consider such an artificial construction
acceptable but not preferable.
Any security proof that does not rely on the random oracle model is referred to as a
proof under the standard model. Proofs under standard models are considered stronger
since no assumption is made. However, the random oracle paradigm yields cryptosys-
tems much more efficient than standard ones while retaining many of the advantages
of provable security methods. Therefore random oracle proofs are still acceptable. In
order to guarantee efficiency and to be capable of using hash functions, our proposed
schemes in Chapter 5 rely on the random oracle assumption.

3.4 Forking Lemma

Pointcheval and Stern [111] developed the Forking Lemma as a technique to prove cer-
tain security notions of a digital signature scheme under the random oracle assumption.
Assume a signature scheme produces the triple 〈σ0, c, σ1〉 where σ0 takes its values ran-
domly from a set, c is the result of hashing the message M with σ0, and σ1 depends
only on (σ0, c,M). The Forking Lemma is as follows [111]:

Theorem 3.4.1. (The Forking Lemma)
Let A be a Probabilistic Polynomial Time Turing machine, given only public data as

input. If A can find, with non-negligible probability, a valid signature (M,σ0, c, σ1)
then, with non-negligible probability, a replay of this machine, with the same random
tape but a different oracle, outputs new valid signatures (M,σ0, c, σ1) and (M,σ0, c̃, σ̃1)
such that c 6= c̃.

In later chapters we will be using the Forking Lemma in proving some of our schemes
secure.

29

3.5. Chapter Summary 3. Provable Security

3.5 Chapter Summary

In this chapter the tools used for proving cryptosystems secure were explained. The
modern way of such proofs is referred to as “Provable Security”. Examples of proving
an encryption scheme secure and proving a digital signature scheme secure were given.
Later in the chapter we gave the definition of random oracles, hash functions, and
forking lemma. These are some primitives used frequently in the “Provable Security”
methods.

30

Chapter 4

Group Signature Schemes

In this chapter we will describe two types of group signature schemes that exist in
the literature: static and dynamic. We will go through detailed descriptions of the
schemes’ algorithms, define the major security notions they require and give examples
of constructions of such schemes.

4.1 Introduction

A group signature scheme is a cryptosystem that is used as a major building block in our
proposed scheme (Chapter 5 and 6). The word “group” in the term “group signature”
refers to the number of users involved in the system rather than the mathematical
group defined in 2.1.2. The following scenario defines the system and its properties
informally:

Scenario 4.1.1. Bob manages a company with many employees all of whom form the
group of trusted employees. He wants any of the employees to be able to sign on behalf of
the group. Bob wants to set up a cryptosystem that enables that. Bob gives each member
a private key and announces one public key that represents the group. Any employee
can sign a message with the private key they have. Anyone can verify the message with
the public key announced. Suppose Alice wants her document signed by the company.
She sends it to the group of employees. Any member can sign anonymously on behalf
of the group such that Alice can not identify the signer. In case of a dispute, Alice
contacts a group manager in Bob’s company (usually the role of the group manager
is played by either Bob or one of the employees assigned by Bob) and gives him the
signature. The group manager has the capability of tracing the signature to a signer
and informing Alice that it is not a fraud.

In 1991, Chaum and Heyst proposed the first group signature scheme in [41]. The
scheme had interesting new features. They proposed a scheme that satisfies the follow-
ing:

31

4.1. Introduction 4. Group Signature Schemes

1. Only members of the group can sign a message.

2. The verifier can check that the signature is valid and belongs to the group yet she
can not tell which member of the group is the signer. Anonymity is important in
order to preserve privacy of the signer. For instance, group signatures are used
in traffic control systems, where a car sends a message out to other cars saying
there is a traffic jam in a specific location. The message is signed and sent out.
However, to preserve the location privacy of the car no one can tell the signer
other than the group manager yet messages being sent are definitely valid and
can not be frauds.

3. In case of dispute the signature can be opened with or without the help of the
members of the group and that reveals the identity of the signer. The schemes
proposed at that time had a group manager who was responsible for revoking
anonymity of signers when needed.

The Chaum–Heyst scheme lacked efficiency since the signature size and the public key
size were linearly dependent on the number of members in the group. The consequence
of that is the scheme was not suitable for large groups of signers where more memory
space is needed to save the key and signature and more bandwidth capacity is required
to send them out. Another drawback of Chaum–Heyst scheme is the need to decide the
maximum number of members in the group in advance when setting up the system.
Research was done to try improve the scheme [42, 31, 110]. In 1997, Camenisch and
Stadler introduced the first efficient scheme [36]. Their scheme had the public key and
the signature independent of the number of members. This allowed large groups. They
also managed to enable members to join a group after setting up the scheme. In other
words, they did not need to recalculate the public key every time a member joins and
they did not have to decide a maximum size for the group. Camenisch and Stadler
were the first to introduce group signatures (see Section 4.4). The first time the terms
“static” and “dynamic” appeared in the literature of group signature [36], the main
difference between them was the ability to add members to the dynamic group at any
point. Group signatures can be divided according to how a member is added to the
group :

• The number of members in the group is pre-decided by an authority and all
signing keys are calculated in the set-up stage.

• The authority setting up the system can add a member to the group at any point.

• A member joins the group through engaging in a protocol with the authority
responsible for setting up the system.

The literature has always referred to the first type of group signatures as static group
signatures and the last type as dynamic. The early literature would have considered the

32

4.1. Introduction 4. Group Signature Schemes

second type to be dynamic too [36], however more recent papers [9, 13] have confused
the definition of dynamic group signatures. They defined dynamic group signatures to
be group signatures that allow users to join a group by engaging in a protocol with
an authority and choosing part of their signing key and that definition excludes the
second type of group signature.
The idea of enabling the user to engage in a protocol in order to join a group was
proposed in order for the user to create part of his private key to prevent key escrow.
This thesis divides the group signatures into static and dynamic to be consistent with
the most recent literature, even though what we actually mean is issued-key rather
than static and owned-key rather than dynamic. It is a consequence of a static scheme
that the authority knows the keys of everyone and can therefore impersonate anyone
in the group.

Definition 4.1.2. Static Group Signatures: are group signatures that do not have a
join protocol, therefore a user can not choose part of his private key and instead an
authority dictates the whole signing key to the new members of the group.

Definition 4.1.3. Dynamic Group Signatures: are group signatures that allows a user
to engage in a join protocol with the authority to become a member of the group. The
join protocol must allow the user to choose part of his signing key, in secret, and
prevents key escrow.

Group signatures should not be confused with other group oriented signatures such as
multi-signature schemes, aggregate signatures, threshold signatures...etc. The following
subsection provides a short definition of each and a simple scenario to help visualize
the difference.

4.1.1 Group Oriented Signatures

In this section we will briefly describe other group oriented signatures in the literature
and compare each one of them with group signatures.

• Multi-Signature Schemes: A multi-signature scheme allows any subgroup
within a group of signers to jointly sign a document. A verifier should be con-
vinced that each member of the subgroup participated in signing. Comparing it
to the scenario 4.1.1, a set of employees in Bob’s company sign a document and
send it to Alice rather than one employee. Alice knows the set of employees so
they are not anonymous. Each member has their pair of private and public keys.
The employees involved in creating a signature use interactive protocols amongst
themselves to create a pair of a message and a signature. Alice can verify that
the specific set of employees have signed the document using the public key of
each employee in the set. Multi-signatures were introduced in [76] and have been
the topic of much work [26, 104, 103, 10, 38].

33

4.1. Introduction 4. Group Signature Schemes

• Aggregate Signatures: An aggregate signature scheme is a digital signature
that supports aggregation: Given n signatures on n distinct messages from n

distinct users, it is possible to aggregate all these signatures into a single short
signature. This single signature (and the n original messages) will convince the
verifier that the n users did indeed sign the n original messages. In aggregate
signatures, Alice would want, for example, three documents to be signed by
employees A, B and C in Bob’s company. Unlike group signatures, each employee
has a pair of a private and a public key. Each employee signs one of the documents.
They aggregate all three signatures into one and send it to Alice. To verify, Alice
uses all the public keys and messages. The verification should convince Alice
that employee A signed the first message, employee B signed the second one and
employee C signed the third message. Aggregate signatures is relatively a new
concept introduced by Boneh et al. in [23]. Note that signers are not anonymous
in aggregate signatures.

• Threshold Signatures: A threshold signature is a protocol that allows a subset
n of m users to generate a signature but disallows any less than n users to produce
a valid signature. The verification key and signing key are obtained by running
certain protocols between the members. Each player gets a private key and one
public key is generated. At least n private keys are needed to calculate a secret
key. The secret key is used in signing and corresponds to the public key used in
verifying.
Alice wants a signature on a document from at least n employees. Alice gets a
signature that proves that some subgroup of sufficient size signed the document,
and the minimal size is a parameter of the scheme and should be known in
advance. Employees signing are anonymous.
Threshold Cryptosystems were proposed by Desmedt and Frankel in [55] and
since then threshold signatures have been of an interest to cryptographers [108,
87, 115, 85, 126, 1, 3].

• Ring Signatures: A ring signature is similar in concept with group signatures
but differs in three key ways; First of all, there is no way to revoke the anonymity
of an individual signature (i.e. no one can tell the signer of a message not even
the group manager). The second difference is any group of users can be used as
a group without additional setup. The third difference is that every user has a
public and private key.
The way ring signatures work is by having a member choose any set of possible
signers that includes himself, and he signs a message by using his secret key and
the others’ public keys, without getting their approval or assistance. It is used as
a building block of many cryptosystems.

34

4.1. Introduction 4. Group Signature Schemes

Ring signatures were invented by Rivest, Shamir, and Tauman who presented
their work in [117]. Cryptographers have tried improving the scheme since
then [30, 102, 130, 14].

After having described group signatures, and comparing it to other group oriented
signatures, we ought to discuss the security notions of group signatures. The following
subsection explains security requirements for a group signature scheme.

4.1.2 Security Notions of Group Signatures

Group Signature schemes have seen several improvements and diversifications in their
features. In this section we shall give informal definitions of such security notions, we
shall not go into details on how to prove the schemes to be secure under such notions
until later on in this chapter (Section 4.2.2 and Section 4.4.2). The main notions are:

• Unforgeability: Only group members are allowed to sign messages on behalf
of the group. Otherwise the signature should not verify correctly [41, 9]. Un-
forgeability is one of the notions that was inherited from digital signatures. It is
computationally hard to forge a pair of message and signature.

• Anonymity: Anonymity is integrated with the aim of protecting the privacy of
signers especially when their identity has no direct effect on the communication
of data [41, 9]. Given a signature, it is computationally hard to identify the signer
unless you are the group manager.

• Unlinkability: Unlinkability is established when it is computationally hard to
decide if two different valid signatures were generated by the same signer [6].
Conversely, indistinguishablity occurs if it is computationally infeasible to deduce
whether the signatures are from different signers [59]. In group signature schemes,
the group manager and he alone should be able to tell if the same member signed
two different signatures.

• Exculpability: This notion is mostly a measure against adversaries who reside as
members of the group. Exculpability is enforced if no group member, not even the
manager, can sign on behalf of any other member. This feature reduces the risks of
framing attacks and repudiation because no true signature can be mis-attributed
to an honest member, even if every member other than the innocent target have
colluded [9, 36]. Related notions have also been called Non-Frameability.

• Traceability: In case of a dispute, a trusted party should be able to trace a
signature to a signer [9, 36]. The group manager is given that privilege. Given a
pair of message and signature, the group manager revokes the anonymity of the
signer.

35

4.2. Static Group Signature Schemes 4. Group Signature Schemes

• Coalition-Resistance: Some members of the group may consider forming a
coalition to penetrate the foundations of the otherwise secure scheme. A group
signature scheme can be considered coalition resistant if no colluding set can
produce signatures which fail to open or cannot be traced back to a member
belonging to the set [9].

In Eurocrypt 2003, Bellare, Micciancio and Warinschi presented a paper that provides
theoretical foundations for the group signature primitive [9]. They introduced strong
definitions for the core requirements of anonymity and traceability. They proved their
definitions imply all the rest of the security notions in the literature. What the au-
thors did not do, is consider dynamic group schemes. Their proofs and definitions are
suitable for static groups only. Two years later, Bellare, Shi, and Zhang introduced
strong definitions of non-frameability, traceability and anonymity that include all other
security notions [13]. Their definitions provided the foundation for dynamic group sig-
natures.
In the following sections we will explain static and dynamic signatures. We define their
algorithms and security notions.

4.2 Static Group Signature Schemes

In static group signatures we have four main class of entities, the key generator, a
group manager, a signer and a verifier. In the literature the key generator and the
group manager may be combined into one authority. The signer is a member of a
group that is capable of signing on behalf of the group. The verifier is anyone who
wants to check the validity of the signature. The group manager is an authority who
is capable of breaking the anonymity of the signer when given a signature. The group
manager plays that role to solve disputes and ensures anonymity is not misused by
members of the group. The key generator sets up the system and issues the keys
needed.
The key generator starts with setting up the system. It creates one public key, one
tracing key and many private keys. It publishes the public key so anyone can use it. It
gives every member of the group a unique private key (See Figure 4-1 1, step 1b) and
it sends the tracing key to the group manager (See Figure 4-1, step 1c). Any signer
of the group can use the private key he obtained to sign a message and send it to the
verifier (See Figure 4-1, step 2). The verifier can check the validity of the signature
using the public key she has (See Figure 4-1, step 3). Finally, if the verifier is in doubt
of the signature she sends it to the group manager (See Figure 4-1, step 4). The group

1Numbering of the image steps are done according to the algorithms. If an algorithm needs to be
run before the other then a sequence is used 1,2,..etc. The letters are just to indicate different steps
may occur at the same time.

36

4.2. Static Group Signature Schemes 4. Group Signature Schemes

manager breaks the anonymity of the member who signed it (See Figure 4-1, step 5)
by using the tracing key and the signature. In the following section we describe the

Figure 4-1: Group Signature Scheme

algorithm of the scheme in more details.

4.2.1 Definition

In this section we will define a static group signature scheme by describing its algo-
rithms. To distinguish between the algorithms here and in other sections we will use
the prefix SGS in front of each algorithm. A static group signature scheme is defined
with five algorithms: SGS.Setup, SGS.KeyGen, SGS.Sign, SGS.V erify and finally
SGS.Open. The algorithms perform the following operations:

• SGS.Setup(k) This algorithm is run by the authority. It takes a security pa-
rameter k to generate two types of system parameters: private Spri and public
Spub.

• SGS.KeyGen(Spub,Spri) : This algorithm is run by the authority to generate
one public key gpk for the group, a tracing key tk, and a private key bsk[i] for
each member i in the group.

• SGS.Sign(M,bsk[i],Spub) : Generate a signature σ for message M using the
user’s private key bsk[i].

• SGS.Verify(M,gpk, σ,Spub) : Verifies whether σ is a valid signature on M us-
ing the public key gpk and public parameter Spub.

• SGS.Open(M, σ, tk) : Traces a signature σ to the signer i using the tracing key
tk.

37

4.2. Static Group Signature Schemes 4. Group Signature Schemes

We need to point out that the setup and key generation are usually represented as one
algorithm. We separate them here since that will help us in explaining some issues in
later chapters of this thesis.

4.2.2 Security Notions

Previously, in Section 4.1.2, we mentioned how various security notions were studied in
the literature and how substantial effort was made to come up with formal definitions
that include them all. In this section we go through the main definitions of full trace-
ability and full anonymity as proposed by Bellare, Micciancio and Warinschi in [9].
Provable security (See Section 3) was used in defining these notions.
Two adversarial models are presented. The adversary attacks are modeled by provid-
ing it access to certain oracles. We start with explaining the oracles, then a model
representing full anonymity attack is defined and a model representing full traceability
is defined.
The oracles are listed below:

• PriKey Oracle: The Private-Key oracle allows an adversary to obtain a private
key for a specific user. The adversary queries the oracle by sending it an index i.
The oracle responds by sending the private key bsk[i].

• Signature Oracle: This oracle allows the adversary to obtain a signature σ
on a message M from user i. The adversary sends the pair (M, i) as its query,
implying that it requires a signature of user i on message M . The oracle responds
with σ.

• Open Oracle: This oracle is meant for tracing a particular signature to a signer.
The adversary queries it by sending (σ,M), requesting the user i that signed M
and generated σ. The oracle sends back i.

Full Anonymity We say that a group signature scheme is anonymous if no polyno-
mially bounded adversary Adam has a non-negligible advantage against the challenger
Charles in the following Group Signature Anonymity GSA game:

• GSA.Setup: Charles plays the role of the authority. He runs the algorithms
GS.Setup, GS.KeyGen. He produces the system’s parameters Spub, and Spri.
Charles also generates n private keys bsk[i], a public key gpk and a tracing key
tk. The Spub and gpk are sent to Adam.

• GSA.Phase (1): Charles runs three oracles in this phase: PriKey, Signature,
and Open. He queries them as described earlier until he decides to start the
challenge.

38

4.2. Static Group Signature Schemes 4. Group Signature Schemes

• GSA.Challenge: Adam asks to be challenged on a message M , and two indexes
i0,i1. Charles responds with a signature σb, where b ∈ {0, 1}. The signer can be
either i0 or i1.

• GSA.Phase (2): Phase (2) is similar to Phase (1). However, Adam should not
query the Open oracle with what he has as a challenge.

• GSA.Output: Adam outputs a guess b̄ ∈ {0, 1}. If b̄ = b, Adam wins the game.

Adam is given the ability to corrupt users by querying the PriKey oracle. He can also
obtain a number of signatures and trace them to signers using the Signature oracle and
Open oracle. Access to such oracles have one condition only and that is in Phase 2 the
user should not be able to query the signature σb in the Open oracle. Such restriction
is reasonable because if Adam does query it, he is told who the signer of the message
is and therefore the challenge of guessing the signer is meaningless.
The idea behind this adversarial model is that even with all the privileges Adam has,
and even with choosing two users in the challenge phase and the message, he can not
distinguish whether the signature σb is created by i0 or i1. Of course he can have a
random guess and the possibility of getting it right is fifty percent but Adam should
not have any advantage on guessing the right answer.
We represent the advantage of the adversary in winning the attack as AdvGSA(n, k) =
Pr[b = b̄] − 1/2 where n is the number of users, and k is security parameter used in
setting up the system.

Definition 4.2.1. Full Anonymity:
A static group signature scheme is fully anonymous if for any polynomial time adver-
sary, Adam, the advantage of winning the game is negligible. That is AdvGSA(n, k) < ε

where ε is negligible.

Full Traceability We say that a group signature scheme is traceable if no polyno-
mially bounded adversary Adam has a non-negligible advantage against the challenger
Charles in the Group Signature Traceability GST game:

• GST.Setup: Charles plays the role of the authority. He runs the algorithms
GS.Setup, and GS.KeyGen. He produces the systems Spub, and Spri. Charles
also generates n private keys bsk[i], a public key gpk and a tracing key tk. Spub,
gpk and tk are sent to the adversary.

• GST.Oracles: Charles runs the PriKey oracle and the Signature oracle. He
queries them as shown before in the GSA game until he decides to challenge.
Unlike the GSA game there is no need to run the Open oracle since Adam has
the tracing key tk and can run the algorithm himself.

39

4.2. Static Group Signature Schemes 4. Group Signature Schemes

• GST.Challenge: Adam asks to be challenged on a message M . That means
Adam thinks he can forge a signature on a message M . Adam sends a forged
signature σ to Charles. Charles verifies the signature. If it turns out to be
valid, he tries tracing it to a signer. If it traces to a signer in which Adam did
not query before or if it traces to a nonmember then Adam wins the game and 1
is returned otherwise 0 is returned.

In this case Adam is given access to the oracles and is given the tracing key tk. He can
corrupt users by querying the PriKey and ask for signatures by querying the Signature
oracle. Giving Adam the tracing key tk strengthens his attack capabilities since it
proves that even though Adam can know every signer of every signature, he should not
be able to forge signatures. There is no need for the Open oracle since Adam has tk.
If the signature he creates in the Challenge is not valid then he obviously lost. If he
claims to have created a signature and gives one that he has queried before then again it
is not a successful forgery because the challenger gave him that information. Anything
else would be a successful forgery and the scheme is said to be untraceable.
We represent the advantage of the adversary in winning the attack as AdvGST (n, k) =
Pr[Exp = 1] where n is the number of users, k is security parameter used in setting
up the system and Exp = 1 refers to the game returning 1.

Definition 4.2.2. Full Traceability:
A static group signature scheme is fully traceable if for any polynomial time adversary,
Adam, the advantage of winning the game is negligible. That is AdvGST (n, k) < ε

where ε is negligible.

Full traceability and full anonymity cover all notions in section 4.1.2 as proved in [9].
The following is a brief explanation on why:

• Unforgeability is covered through the full traceability game. One can restrict the
adversary so that he is not capable of querying private keys in PriKey Oracle
and there is no need to give him the tracing key tk and that would represent the
unforgeability game model. Therefore we can conclude that if the scheme was
forgeable then there must exist an adversary who can break the full traceability
game.

• Unlinkability is covered through full anonymity. If the scheme was linkable the
adversary of the full anonymity game can query a signature of a user i and later
in the challenge stage include i among the users he wants to be challenged upon.
There is no condition on the signature oracle in both phase 1 and 2 in the full
anonymity game. The adversary does not to guess the signer of the signature he
obtains in the challenge because he can just link it thus breaking full anonymity.

40

4.3. Static Group Signatures-Constructions 4. Group Signature Schemes

• Exculpability is covered through full traceability. If the group manager or the
user2 defeats exculpability then there exist an adversary that can break full trace-
ability. In the former case the adversary simply produces a signature that is a
forgery and can not be traced to the person who actually created it. In the latter
case the adversary can ask for the private key for user i, assuming user i is the
one who defeats exculpability, and creates a signature that is not traced to the
member i thus breaking full traceability.

• Coalition Resistance is covered through full traceability. If the scheme was not
coalition resistant the adversary can query the oracle PriKey to obtain a number
of private keys that are enough to create a coalition. The coalition can create a
signature that fails to open or does not trace to a member in the group and that
also implies breaking full traceability.

In the next section we will give some examples of constructions of different group
signatures.

4.3 Static Group Signatures-Constructions

In this section we give explicitly two constructions of group signature schemes; The
first was proposed by Boneh, Boyen and Shacham (Section 4.3.1) and the other was
proposed by Boneh and Shacham (Section 4.3.2). Recall from section 4.1 that we
consider the following schemes as static since they do not have a join protocol unlike
the schemes in Section 4.4. A better naming would have been “owned-key” group
signatures since the authority in both constructions can add users later on and the
signing keys are created by the authority without the involvement of the users.

4.3.1 Boneh, Boyen, and Shacham Scheme

In Crypto’04 Boneh, Boyen and Shacham proposed a group signature scheme that
is secure under the assumption that the Strong Diffie–Hellman problem (Definition
2.2.11) is hard and the Decision Linear problem (Definition 2.2.14) [20] is hard. In
this section we will go through the construction of their scheme. The algorithms are
described below and the prefix BBS is used to distinguish them from other algorithms
in this thesis:

• BBS.Setup(k) : This algorithm takes a security parameter k that is used to gen-
erate a bilinear map e : G1×G2 → G3 where G1, G2 and G3 are of prime order p
(p is determined using the parameter k as mention in section 2.2). Furthermore

2The trusted third party that plays the role of the key generator can defeat exculpability since it
has all private keys of all users.

41

4.3. Static Group Signatures-Constructions 4. Group Signature Schemes

there exists a computable isomorphism ψ from G2 to G1. Suppose that the De-
cision Linear Problem (Definition 2.2.14) is hard to solve in G1 and the q-Strong
Diffie–Hellman (see Definition 2.2.11) is hard to solve (as defined by security pa-
rameter k) in both G1 and G2. Choose a hash function H : {0, 1}∗ → Z∗

p. Select
a generator g2 ∈ G2 uniformly at random and set g1 = ψ(g2). Select γ ∈R Z∗

p.
Spri = γ. Spub = (e,G1, G2, g1, g2,H).

• BBS.KeyGen(Spri,Spub) : Select h ∈R G1 and ζ1, ζ2 ∈R Z∗
p. Set u, v ∈ G1 such

that uζ1 = vζ2 = h. This can be computed by assigning u = h1/ζ1 and v = h1/ζ2 .
Calculate w = gγ

2 . Generate for each user a private key bsk[i] = (Ai, xi), where
Ai = g

1/(γ+xi)
1 ∈ G1 and xi ∈ Z∗

p\{−γ}. Then gpk = (h, u, v, w) and the tracing
key is tk = (ζ1, ζ2).

• BBS.Sign(Spub,gpk,bsk[i],M) : The signer chooses α, β, rα, rβ, rx, rδ1 , rδ2 ∈R

Z∗
p.

He computes T1 = uα,T2 = vβ, and T3 = Aih
α+β. He calculates δ1 = xiα

and δ2 = xiβ.

He then computes
R1 = urα ,
R2 = vrβ ,
R3 = e(T3, g2)rxe(h,w)−rα−rβe(h, g2)−rδ1

−rδ2 ,
R4 = T rx

1 u−rδ1 ,
R5 = T rx

2 v−rδ2 .

The signer calculates c = H(M,T1, T2, T3, R1, R2, R3, R4, R5) ∈ Z∗
p.

Then computes sα = rα + cα, sβ = rβ + cβ, sx = rx + cxi, sδ1 = rδ1 + cδ1,
and sδ2 = rδ2 + cδ2.

The signature will be σ = (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2).

• BBS.Verify(gpk,Spub,M, σ) : The verifier re-derives the following:
R̄1 = usαT−c

1 ,
R̄2 = vsβT−c

2 ,
R̄4 = T sx

1 u−sδ1 ,
R̄5 = T sx

2 v−sδ2 ,

42

4.3. Static Group Signatures-Constructions 4. Group Signature Schemes

R̄3 = e(T3, g2)sxe(h,w)−sα−sβe(h, g2)−sδ1
−sδ2 (e(T3,w)

e(g1,g2))
c.

To verify the signature check whether c = H(M,T1, T2, T3, R̄1, R̄2, R̄3, R̄4, R̄5)
holds. If it is true then accept signature otherwise reject it.

• BBS.Open(M, σ, tk,Spub,gpk) : To trace a signature σ to a signer. The au-
thority first verifies its validity. The second step is to recover Ai = T3/(T

ζ1
1 T ζ2

2)
and compare it to a list of Ai of the members of the group.

This scheme has been proven secure under full anonymity and full traceability defi-
nitions (Section 4.2.2). It is efficient since the size of the signature is constant. The
work done in that paper was a fundamental building block of our constructions in later
chapters because of its security and efficiency.

4.3.2 Boneh and Shacham’s Scheme

After the publication of Boneh et al.’s work in Crypto’04 (previous section), Boneh
and Shacham decided to modify the scheme further so that it enables revocation [25].
The revocation is done by having a list that contains a token representing each revoked
user. Using that list a verifier can test whether the signature belongs to a revoked
user. Using the revocation algorithm the authority can identify the signer of any valid
signature. The authority has all the tokens of members of the group. It creates a fake
revocation list containing all members’ tokens and runs the revocation algorithm on the
fake list. It should trace to a member in that list. In other words the Open algorithm is
replaced with Revoke. When a verifier is running Revoke he is checking whether signer
is revoked or not. On the other hand, when the authority runs the Revoke algorithm
on the fake list it is tracing the signature to a signer. The scheme proposed is secure
under the assumption that the q-SDH problem (See Section 2.2.11) and the Decision
Linear problem (See Section 2.2.14) are hard.
A description of their method follows and a prefix BS is used to distinguish the algo-
rithms in this section from ones in other sections:

• BS.Setup(k) : This algorithm takes a security parameter k and generates a bi-
linear map e : G1 ×G2 → G3 where G1, G2 are of prime order and G1, G2 have
a computable isomorphism ψ from G2 to G1. Suppose further that the Decision
Linear is hard to solve in G1 and the SDH is hard to solve in both (G1, G2).
Choose the hash functions H1 : {0, 1}∗ → Z∗

p and H2 with range G2
2. A generator

g2 ∈ G2 is randomly chosen and g1 = ψ(g2) is computed. Select γ ∈R Z∗
p. Let

Spub = (e,G1, G2, G3, g1, g2,H1,H2) and Spri = γ.

43

4.3. Static Group Signatures-Constructions 4. Group Signature Schemes

• BS.KeyGen(Spri,Spub) : Set w = gγ
2 . For each user i generate the private key

bsk[i] = (Ai, xi), where Ai = g
1/(γ+xi)
1 . The public key is gpk = (g1, g2, w). The

revocation token is Ai.

• BS.Sign(M, σ,Spub,Spri) : The signer picks r ∈R Z∗
p and obtains

(ū, v̄) = H2(gpk,M, r). The signer computes the images in G1 so that u = ψ(ū)
and v = ψ(v̄).
The signer selects an exponent α ∈R Z∗

p then computes T1 = uα and T2 = Aiv
α.

Let δ = xiα. Let rα, rx, rδ ∈R Z∗
p.

The signer computes
R1 = urα

R3 = T rx
1 .u−rδ

R2 = e(T2, g2)rxe(v, w)−rδe(v, g2)−rδ .
Let c = H1(gpk,M, r, T1, T2, R1, R2, R3).
Then computes sα = rα + cα, sx = rx + cxi, and sδ = rδ + cδ.
Signature is σ = (r, T1, T2, c, sα, sx, sδ).

• BS.Verify(M, σ,Spub,gpk) : The verifier starts with recomputing ū, v̄, u, and
v, and then deriving
R̄1 = usα/T c

1

R̄3 = T sx
1 u−sδ

R̄2 = e(T2, g2)sxe(v, w)−sαe(v, g2)−sδ(e(T2,w)
e(g1,g2))

c.
To accept a signature the equality c = H2(gpk,M, r, T1, T2, R̄1, R̄2, R̄3) must hold,
else reject the signature.

• BS.Revoke(σ, [..A..]) : For each element A in the revocation list [..A..] check if
e(T2/A, ū) = e(T1, v̄), if it is true then that user is revoked.

The constructions in Section 4.3.1 and 4.3.2 are strongly related with the main differ-
ence being that the bases of the exponents (i.e. u and v) are randomized each time
using the hash function H2. This randomization makes it possible to remove an ele-
ment T3 and possible to have an element T2 that can be tested against revoked users
in algorithm Revoke. The scheme is still fully traceable and fully anonymous.
In this section we have explained static group signatures, their definition, their secu-
rity notions, and we have given two examples for recent constructions. The following
section we go through the same discussion for dynamic group signatures.

44

4.4. Dynamic Group Signature Schemes 4. Group Signature Schemes

4.4 Dynamic Group Signature Schemes

In Crypto’97 Camenisch and Stadler came up with the first dynamic group signature
scheme (See Section 4.5.1) in their work [36]. They introduced the concept of joining
a group at any point of time regardless of the timing of the setup stage of the system.
Much research has been carried out afterwards in order to increase dynamic group
signatures efficiency.
In dynamic group signatures we have five main entities: the signer, the verifier, the
opener, the issuer and the key generator. The opener is responsible for revoking the
anonymity of the signer in case of a dispute while the issuer is responsible of giving out
private keys to members that join the group.
In this case, the scheme starts with the key generator (KeyGen) setting up the system
by generating the required keys and sending them to the right entities (See Step 1a,1b,1c
and 1d Figure 4-2). A special key used for tracing signatures is sent securely to the
opener tk. A key for generating private keys ik is sent to the issuer. A general public
key gpk is sent to everyone.
The signer can contribute in creating his private key. The signer and the issuer run a
protocol (See Step 2 Figure 4-2) and as a result a registration key regi and a private
key bsk[i] are created (The protocol is referred to as Join protocol). The registration
key is added to a list which is accessible to the opener. That list is useful for the opener
since it is used together with the tk to break the anonymity of the signer (See Step 3
Figure 4-2). The private key is used to sign messages (See Step 4 Figure 4-2). The
verifier will check the validity of a signature using the general public key (See Step 5
Figure 4-2). If she is in doubt of the signature she can consult the opener (See Step 6
Figure 4-2). The opener should be able to prove that it traced the signature to a valid
signer (See Step 7 Figure 4-2).

Figure 4-2: Dynamic Group Signature Scheme

In the following section we describe the algorithms of the dynamic group signature in
more detail.

45

4.4. Dynamic Group Signature Schemes 4. Group Signature Schemes

4.4.1 Definition

In this section we will define a dynamic group signature by defining its algorithms. To
differentiate between algorithms in this section we will use the prefix DGS in front of
them. A dynamic group signature is defined in six main algorithms DGS.KeyGen,
DGS.U.KeyGen, DGS.Sign, DGS.V erify, DGS.Open, DGS.Judge and a protocol
DGS.Join between user Ui and issuer Iss. The algorithms and protocols are described
as follows:

• DGS.KeyGen(k1) : This algorithm is run by the key generator. It takes as
input a security parameter k1 and it outputs three types of keys. The first is the
issuer key isk which is given to the issuer as a secret key in order to produce
private keys for new members of the group. The second key is the tracing key tk
which is a secret key given to the opener and enables it to revoke the anonymity
of a signer when needed. The last key is a general public key gpk used mainly in
verifying signatures. These keys are used as inputs to other algorithms as shown
later.

• DGS.U.KeyGen(k2) : This is run by a user who is thinking of joining a group.
The input of this algorithm depends on the implementation (it is usually an-
other security parameter k2). The output is a pair of public and private keys
(upk[i], usk[i]). The public keys can be obtained by anyone.

• DGS.Join(Iss(isk) : Ui(usk[i],upk[i])) : This is an interactive protocol between
the issuer Iss and the user Ui. The idea behind the protocol is to enable the
user to become a member of the group. To engage the protocol the user would
be using the pair of keys (upk[i], usk[i]) as inputs while the issuer would be using
isk. By the end of the protocol the user should have a basic secret key bsk[i] that
will enable him to sign on behalf of the group and the issuer should be able to
calculate a registration key regi. The latter key will be added to the list of users
and that list is accessible by the opener and is used for tracing a signature to a
signer.

• DGS.Sign(bsk[i],M) : This algorithm is run by a member of the group where
given a message M and a secret key bsk[i] he can produce a signature σ.

• DGS.Verify(σ,gpk,M) : This algorithm is run by a verifier who given the pub-
lic key gpk, the message M , and the signature σ, she can decide whether the

46

4.4. Dynamic Group Signature Schemes 4. Group Signature Schemes

signature is valid or not.

• DGS.Open(M, σ, tk, [..regi..]) : This is an algorithm that is run by the opener.
Given a signature σ, a message M , a list of registration keys [..regi..] and a trac-
ing key tk, the authority can output an index i of the signer and τ which is a
proof of this claim.

• DGS.Judge(M, σ, τ) : This is an algorithm run by the verifier where given a
proof τ , a message M and a signature σ, the verifier can either accept the claim
of the opener that i is the signer or reject it.

Recall that we consider the major difference between the dynamic group signature
schemes and the static ones to be the fact that users generate part of their private keys
and can join the group at any point. This is the reason behind having the algorithms
Join and U.KeyGen. The Judge algorithm helps in assuring non-frameability in dy-
namic group signature schemes. The rest of the algorithms are similar to the ones in
static group signatures.
In the following section we explain the core security requirements needed to prove a dy-
namic group signature secure. According to Bellare, Shi and Zhang in [13] it is enough
to prove the scheme secure under the non-frameability, traceability and anonymity’s
strong definitions they provided. In the following section we explain these definitions.

4.4.2 Security Notions

Bellare, Shi, and Zhang used provable security in [13] (See Chapter 3) in order to define
the security notions required in a dynamic group signature. We have three adversarial
models each representing one of the security notions anonymity, traceability, and non-
frameability. All three models use a set of oracles that the adversary can query. Some
oracles require the Join protocol to be thought of as many separate stages. Assume that
in each stage in the Join protocol one of the two parties takes an incoming message and
a current state and returns an outgoing message with an updated state and a decision
of accept, reject or continue the protocol. The form of these messages and states are
implementation dependent. We can now describe the oracles as follows:

• AddUser Oracle: The Add-User Oracle is meant to add an honest user to a
certain list. This oracle allows an adversary to add a user i to the list of honest
users HU . The oracle picks a pair (usk[i], upk[i]) on behalf of the user and then
it executes the Join protocol by playing the rule of both the issuer and user. At
the end of this oracle an entry regi is added to the registration database and an
entry usk[i] is added to a list of private keys. The public key upk[i] is given to
the adversary.

47

4.4. Dynamic Group Signature Schemes 4. Group Signature Schemes

• CrptUser Oracle: The Corrupted-User oracle allows the adversary to corrupt
a user i. It starts with the adversary choosing a upk[i] key and then setting it
to be the public key of i. At this stage the oracle initializes the issuer’s state in
anticipation for starting the Join protocol which will take place in the following
Snd2Iss oracle.

• Snd2Iss Oracle: The Send-to-Issuer oracle assumes a corrupted user performing
the Join algorithm with an honest issuer. The adversary provides the oracle with
an index i and a messageM to be sent to the issuer. The oracle having maintained
the issuer state of the previous CrptUser Oracle creates the right response as in
the Join protocol, returns the message to the adversary and sets an entry regi

in the registration database if the protocol completes.

• Snd2Usr Oracle: The Send-to-User oracle is used to engage a Join protocol
with an issuer who has been corrupted by the adversary. The adversary sends a
message M and an index i to be sent to the user. The oracle maintains the state
of the user by creating a pair (upk[i], usk[i]) the first time i is sent and saving it
in a list for later use. The oracle computes a response as in the Join algorithm.

• USK Oracle: The adversary can query the User-Secret-Key oracle by sending
an index i to expose the user secret keys (usk[i], bsk[i]).

• RReg Oracle: The Read-Registration oracle allows the adversary to query for
a registration key for the user i by sending the index to the oracle. The oracle
responds by sending regi.

• WReg Oracle: The Write-Registration oracle allows the adversary to modify
or write to the registration table by sending an index i and the key regi.

• Signature Oracle: A signature oracle allows the the adversary to query a sig-
nature from user i on message M as long as i is an honest user. The oracle replies
with a valid signature.

• Open Oracle: The opening oracle allows the user to submit a message M , and
a signature σ to obtain the output of the original open algorithm that uses tk.

These oracles will be used in the three adversarial models defined below to give the
adversary some reasonable privileges then study whether or not he has an advantage
in breaking the scheme. These models are used to define the security notions of full
anonymity, full traceability and non-frameability [13].

Full Anonymity We say that a dynamic group signature is fully anonymous if no
polynomially bounded adversary Adam has a non-negligible advantage against chal-
lenger Charles in the following Dynamic Group signature Anonymity DGA game:

48

4.4. Dynamic Group Signature Schemes 4. Group Signature Schemes

• DGA.Setup: Charles will play the role of the key generator. He generates the
general public key gpk, the tracing key tk, and the issuing key isk. The issuing
key isk is given to Adam along with the public key gpk.

• DGA.Phase(1): In this phaseAdam queries the oracles Open, Snd2Iss, Snd2Usr,
WReg, RReg, USK, Signature and CrptUser and Charles responds with an out-
put that corresponds to the ones of the oracles described earlier.

• DGA.Challenge: Adam decides on a message M and two indexes (i0, i1) he
would like to be challenged on. Charles replies with signature σb of either member
(i.e. b ∈ {0, 1}).

• DGA.Phase(2): This phase is similar to Phase(1) except that σb can not be
queried in the Open oracle.

• DGA.Output: Adam outputs a guess b̄ ∈ {0, 1}. If b̄ = b, Adam wins the game.

This adversarial game model is similar to the one defined in Section 4.2.2 for static group
signatures. The main difference between them is the type of oracles Charles runs. In
this game we show that the opener using the tracing key should be the only entity
capable of revoking anonymity. Therefore the choice of oracles takes into consideration
that the issuer can be totally corrupted. The issuer in this game is corrupted since
Adam has isk and access to the oracle Snd2Iss and WReg. This implies Adam can
play the role of the issuer in Join protocol. Adam can also obtain honest users’ secret
keys. He can query for signatures and ask to trace them as in Section 4.2.2 using the
Open and USK oracles. He can also corrupt a user and interact with the issuer on their
behalf given the fact he has access to Snd2User and CrptUser. Finally, he can read and
write to the registration list with WReg. Adam definitely can not corrupt the opener
since that contradicts with the purpose of the game since the opener should be able to
revoke anonymity of members and no one else.
We represent the advantage of the adversary in winning the attack as AdvDGA(n, k) =
Pr[b = b̄] − 1/2 where n is the number of users, and k is the security parameter used
in setting up the system.

Definition 4.4.1. Full Anonymity:
A dynamic group signature scheme is fully anonymous if for any polynomial time adver-
sary, Adam, the advantage of winning the game is negligible. That is AdvDGA(n, k) < ε

where ε is negligible.

Full Traceability We say a group signature is traceable if no polynomially bounded
adversary Adam has a non-negligible advantage against a challenger Charles in the
Dynamic Group signature Traceability DGT game:

49

4.4. Dynamic Group Signature Schemes 4. Group Signature Schemes

• DGT.Setup: Charles will play the role of the key generator. He generates the
general public key gpk, the tracing key tk, and the issuing key isk. The tracing
key tk is given to Adam along with the public key gpk.

• DGT.Oracles: Adam queries the oracles Snd2Iss, RReg, USK, AddUser, Sig-
nature and CrptUser and Charles responds with an output that corresponds to
the ones of the oracles described earlier.

• DGT.Challenge: Adam asks to be challenged on a message M . He sends
a forged signature σ on that message to Charles. Charles checks three things
before declaring victory to Adam. First of all he checks that the signature verifies.
If the signature verifies, then Adam has not lost the game yet. Charles checks
whether an honest opener can identify the origin of the signature (i.e. get a valid
i). If he can not identify it then Adam won the game and 1 is returned; Otherwise
Charles checks whether or not the honest opener produces a correct proof of its
claim where the Judge algorithm accepts that proof. If it fails then Adam has
won the game and 1 is returned else he lost and 0 is returned.

The traceability model is similar to the one in Section 4.2.2 in many ways. The opener
can be totally corrupted since forging a signature should not rely on whether you can
revoke anonymity or not. On the other hand, the issuer can not be corrupted at all
since he is the one who generates private keys and we are proving that only he is capable
of that. The idea of the game is to ask the adversary to produce a signature where an
honest opener can not identify the origin of it or if he does trace it the opener can not
produce a correct proof τ for it. Adam is given strong attack capabilities. He has the
tracing key tk since the opener can be totally corrupted. He can obtain private keys
for users by querying USK and he can create honest members by querying AddUser.
He can corrupt users and read the registration list using oracle CrptUser and RReg.
He can interact with the issuer on behalf of the corrupted users via Snd2Iss. In other
words, Adam can play the role of a corrupted user in a Join protocol but not the role
of a corrupted issuer. Adam does not need the Open oracle since he has the tracing
key tk. We emphasize the fact that Adam can not corrupt the issuer and that is a
reasonable assumption otherwise he can create fake members that do not trace. For
the same reason he can not query WReg.
We represent the advantage of the adversary in winning the attack as AdvDGT (n, k) =
Pr[Exp = 1] where n is the number of users, k is the security parameter used in setting
up the system and Exp = 1 refers to the game returning 1.

Definition 4.4.2. Full Traceability:
A dynamic group signature scheme is fully traceable if for any polynomial time adver-
sary, Adam, the advantage of winning the game is negligible. That is AdvDGT (n, k) < ε

where ε is negligible.

50

4.5. Dynamic Group Signatures-Constructions 4. Group Signature Schemes

Non-Frameability: We say that a dynamic group signature is Non-Frameable if no
polynomially bounded adversary Adam has a non-negligible advantage against chal-
lenger Charles in the following Dynamic Group Signature Frameability DGF game:

• DGF.Setup: Charles will play the role of the key generator. He generates the
general public key gpk, the tracing key tk, and the issuing key isk. All three keys
are given to Adam.

• DGF.Oracles: Adam queries the oracles Snd2Usr, WReg, USK, Signature and
CrptUser and Charles responds as described earlier.

• DGF.Challenge: Adam asks to be challenged on a message M , signature σ,
identity i and a proof τ . Adam wins and 1 is returned if all of the following
statements are true: (1) σ is a valid signature on M . (2) i is an honest signer.
(3) Judge accepts τ as proof that i created the signature. (4) Adam has not
queried (i,M) in the signature oracle nor did he query i in USK oracle.
If any of the four statements fail Adam loses and 0 is returned.

Adam in this game model is trying to produce a valid proof that an honest user created a
verifiable signature even though that signature was not created by that member. Adam
is given powerful capabilities. He is given both the tracing key tk and the issuing key
isk and access to the Snd2Usr oracle. This implies that the adversary can fully corrupt
both issuer and opener. He gets private keys of members by querying USK, and he can
corrupt users too by querying CrptUser.
We represent the advantage of the adversary in winning the attack as AdvDGF (n, k) =
Pr[Exp = 1] where n is the number of users, k is the security parameter used in setting
up the system and Exp = 1 refers to the game returning 1.

Definition 4.4.3. Non-Frameability:
A dynamic group signature scheme is Non-Frameable if for any polynomial time adver-
sary, Adam, the advantage of winning the game is negligible. That is AdvDGF (n, k) < ε

where ε is negligible.

4.5 Dynamic Group Signatures-Constructions

In this section we give two different constructions of a dynamic group signature. In
section 4.5.1 the first ever dynamic group signature, proposed by Camenisch and Stadler
in Crypto’97 [36], is explained. The next subsection (Section 4.5.2) will go through
the construction of a more recent and more practical group signature that has been
proposed by Ateniese et al. in the work done in [4].

51

4.5. Dynamic Group Signatures-Constructions 4. Group Signature Schemes

4.5.1 Camenisch and Stadler Scheme

Camenisch and Stadler were the first to come up with the concept of dynamic groups [36].
Even though the authors have suggested using ZKP in order to prove honesty of the
opener, their scheme did not include the Judge algorithm, and their suggestion was
informal, since it was not included in the security proofs. Another difference in their
scheme compared to other dynamic schemes is that the opener, issuer and key generator
are one authority. This causes minor differences between the algorithms of Camenisch
and Stadler scheme compared to the general definition we had in Section 4.4.2.
The security of their scheme was dependent on the DLP (Definition 2.2.1), and the secu-
rity of both RSA (Section 2.4.1) and Schnorr (Section 2.4.2) signatures. The algorithms
are based on the definitions of signature of knowledge of the double discrete logarithm
(Definition 2.5.6) and the e-th root of the double discrete logarithm (Definition 2.5.7).
The following is a description of the algorithms of the scheme.

• CS.KeyGen(k1) : An RSA public key (n, e) is generated with the security pa-
rameter k1 (See Section 2.4.1) and the private key of the RSA represents the
issuing key isk = d. The authority also picks an element g ∈ G where G is a
cyclic group of order n and the discrete logarithmic problem is hard in G. The
authority picks an element a ∈ Z∗

n. It finally picks an upper bound λ on the
length of the secret keys and a constant ε > 1 (needed for the SKLOGLOG
defined in 2.5.6). The public key is gpk = (n, e,G, g, a, λ, ε).

• CS.U.KeyGen : A user chooses his secret key usk[i] ∈R {0, ..., 2λ− 1} and com-
putes y = ausk[i](mod n) and z = gy. The public key is upk[i] = (y, z) where z
is computable by any party given y.

• CS.Join(Iss(isk) : Ui(usk[i],upk[i])) : The user commits himself to y by sign-
ing it and sends upk[i] to the authority. User has to prove that he knows the
discrete logarithm of y to base a using signature of knowledge techniques (See
Section 2.5.3). The authority if convinced with the proof returns the certificate
v to user
v ≡ (y + 1)1/e(mod n)
The user is now a member of the group and can sign using bsk[i] = (usk[i], y, v).
This triple is infeasible to calculate without the help of the authority. Calculating
the e-th root of y + 1 is hard because the factorization of n is unknown (This
is equivalent to RSA which is believed to be as hard as the factorization prob-
lem [51]). If y + 1 is computed by calculating we for some w it will be infeasible
to calculate the discrete logarithm of we − 1 to the base of a.

52

4.5. Dynamic Group Signatures-Constructions 4. Group Signature Schemes

• CS.Sign(bsk[i],M): To sign a message M a member will need to calculate
ḡ = gr for r ∈R Z∗

n. The signer calculates z̄ = ḡy. Then he calculates V1 =
SKLOGLOG[α : z̄ = ḡaα

](M). Finally, he calculates V2 = SKROOTLOG[β :
z̄ḡ = ḡβe

](M). σ = (ḡ, z̄, V1, V2).
(See Section 2.5.3 for the definitions of SKROOTLOG and SKLOGLOG).

• CS.Verify(σ,gpk,M): The verifier checks the correctness of the signature of
knowledge of V1, V2. If both are correct then signature is valid (Recall the defini-
tions 2.5.6 and 2.5.7). Correctness of V1 implies that z̄ḡ = ḡaα+1 for some α the
signer knows. V2 proves that the signer knows an e-th root of (aα +1). Therefore
the correctness of both implies the signer knows a secret key and has a certificate.

• CS.Open(σ) : The authority knows tk = logḡ z̄ for all members. It can use that
knowledge in tracing the signature (ḡ, z̄, V1, V2) by checking ḡtk = z̄

The scheme was proposed in 1997 that is eight years before the security notions of
Bellare, Shi and Zhang were proposed. Therefore the security of the scheme was proven
under the different notions mentioned in 4.1.2. It was the first dynamic group signature
scheme ever proposed. The following section will give a more recent scheme that is
proven secure under full anonymity, full traceability and non-frameability.

4.5.2 ACHM Scheme

Ateniese et al. came up with a scheme whose security depends on the complexity as-
sumptions sLRSW, EDH, and sSXDH (See Definitions 2.2.18, 2.2.15, and 2.2.16). The
scheme is proven fully anonymous, fully traceable and non-frameable. The reader is
referred to the main paper for the proofs [4]. The authors of the paper used the Ca-
menisch–Lysyanskaya signature scheme (Section 2.4.3) and the Boneh–Boyen signature
scheme (Section 2.4.4) as building blocks for their group signatures. The signature
of Camenisch–Lysyanskaya will be notated as CLσ while Boneh–Boyen will be BBσ
leaving the notation σ to present the main ACHM group signature.
We should highlight that the signature schemes introduced in Section 2.4
(“Camenisch–Lysyanskaya” and “Boneh–Boyen”) were modified in this section to serve
as building blocks. Consider the following:

• Camenisch–Lysyanskaya: This signature was changed so that it becomes a blind
signature. Recall CL.Sign(M, sk) in Section 2.4.3 takes as an input the mes-
sage M and the secret key sk = (s, t). It chooses a random a ∈R G1 and out-
puts CLσ=(a,at,as+stM ,aM ,aMt). In the ACHM we replace that notation with
CLσ = BCL.Signsk(aM) such that the signing key is sk and the message signed

53

4.5. Dynamic Group Signatures-Constructions 4. Group Signature Schemes

is hidden since aM is given as an input rather than M itself.

• Boneh–Boyen: This signature has changed because the public keys g1 and g2 of
the scheme in Section 2.4.4 will keep changing and are not part of the public key
of the ACHM group signature scheme. Recall BB.Sign(sk,M) in Section 2.4.4
takes a message M and the secret key sk ∈ Z∗

p as inputs. A random r ∈R Z∗
p

is selected and the signature BBσ = (gr
1, g

1/(sk+r)
2 , g

1/(r+M)
2). However, BBσ =

BBB.Signsk(M, g1, g2) used in this section implies a signature BBσ has been
created on message M using private key sk and bases (g1, g2).

Ateniese et al. have one authority in the scheme which they referred to as group
manager GM. The reason for that was the fact that there is no main tracing key for
the system. Each member had a tracing element given to the group manager as an
outcome for the joining protocol. This made it hard to separate the issuer from the
opener. Details of the algorithm are shown below:

• ACHM.Setup(k1): Takes a security parameter k1 to generate the public pa-
rameters Spub = (p,G1, G2, G3, g1, g2). Run the CL.Setup using the same pairing
tuple in Spub to produce gpk = (Spub,S = gs

2, T = gt
2) which will be public and

the private parameters Spri = (s, t).

• ACHM.U.KeyGen(Spub) : Each user i chooses usk[i] ∈R Z∗
p and h ∈R G1. He

establishes a public key upk[i] = (h, e(h, g2)usk[i]) used for joining a group.

• ACHM.Join(Ui(gpk,usk[i]),GM(upk[i],Spri)) This is an interactive protocol
between user Ui and the group manager GM. The user takes inputs his secret key
and the public key of the group. Group manager takes inputs the user’s public
key upk[i] and the private parameters Spri. The interaction is as follows:

1. Ui gives the public key upk[i] = (p1, p2), g
usk[i]
1 and tracing information

tk = g
usk[i]
2 to the group manager GM. If e(p1, tk) 6= p2 or usk[i] was in the

registration database D then abort. Otherwise, GM adds tk to D.

2. Ui sends to the GM a commitment to his secret key cmt = PCOM(usk[i]).
GM considers the public parameters of the PCOM scheme (Definition 2.5.1)
to be g1, and h. Ui and GM run the signature of Camenisch–Lysyanskaya in
(Section 2.4.3) on the committed value. GM picks r ∈R Z∗

p and sets f1 = gr
1.

GM computes (f2, f3) = BCL.Signgsk(f
usk[i]
1). Ui verifies CLσ. If it does

not verify, he aborts.

54

4.6. New Features 4. Group Signature Schemes

3. Ui uses a zero knowledge proof that the committed value usk[i] in cmt is
consistent with the public key upk[i]. He also provides extractable zero
knowledge proof of usk[i] (See Section 2.5).

4. GM gives an extractable zero knowledge proof of Spri = (s, t).

5. Ui calculates f4 = f
usk[i]
1 and f5 = f

usk[i]
2

6. Ui has obtained the membership certificate Ci = (f1, f2, f3, f4, f5)=
(a, at, as+st(usk[i]), ausk[i], at(usk[i])).

• ACHM.Sign(usk[i],Ci,m) : Ui uses his secret key, certificate and a message as
inputs for the signature algorithm. He first re-randomizes Ci using r ∈ Z∗

p so that
he gets (a1, ..., a5) = (f r

1 , ..., f
r
5).

Compute BBσ = BBB.Signusk[i](m,a5, g2) = (a6, a7, a8). GSσ = (a1, ..., a8) is
of the form (b, bt, bs+st(usk[i]), busk[i], bt(usk[i]), bv, g1/(usk[i]+v)

2 , g1/(v+m)
2)

• ACHM.Verify(gpk,m,GSσ) : To verifyGSσ = (a1, a2, ..., a8). Check if (a1, ..., a5)
is a valid CLσ. Check if (a6, a7, a8) is a valid BBσ. If both are valid accept GSσ
otherwise reject it.

• ACHM.Open(gsk,m,GSσ) : Check each record in databaseD whether e(a4, g2) =
e(a1, tk). If a match is found then output i as the index of the signer.

• ACHM.V.Open(gsk,m,GSσ,upk[i], tk) : GM checks the signature GSσ is
valid. GM traces it to a user Ui. Finally, GM gives a zero knowledge proof that
he knows an α such that e(p1, tk) = p2 and e(a1, tk) = e(a4, g2).

The scheme proposed was proven secure under full anonymity, full traceability and
non-frameability as defined by Bellare, Shi, and Zhang in [13]. It is practical since the
size of the key and signature is constant.
The following section explains some features that have been added to group signatures
in order to use them for certain applications.

4.6 Features Added to Group Signature Schemes

Many features have been added to group signatures to serve different applications. We
describe briefly some of the features and research done in the field:

• Flexible Sized Group Signatures: As stated earlier adding new members to
the system was limited to some predefined number and that problem was first
solved by Camenisch and Stadler in [36]. Removing members was also difficult.

55

4.6. New Features 4. Group Signature Schemes

In practice, adding and revoking are necessities. Research was done in order to
make the size of the number of group members changeable [42, 31, 82, 5, 34,
43, 25, 57, 100, 52]. At first the modifications were simply trying to add the
special algorithms like Revoke and Join [42, 31]. Later on, research was more
about improving such algorithms. In [5, 34] the authors tried to have revocation
algorithms that : (I) Did not rely on time stamps as previous algorithms, or
(II) did not require the signature size to be dependent on the number of revoked
users. In [43] the proposed scheme made the signing and verifying algorithms
independent from the number of current users or revoked ones. In [25] the authors
introduced the concept of revocation lists to the operation of group signatures,
which meant much less computational and communicational overhead compared
to previous schemes. Research in revoking and adding users in the most efficient
way continues until today.

• Identity Based Group Signature: Identity based cryptography was proposed
by Shamir in 1984 in [123]. He suggested replacing public key schemes by identity
based ones. In other words, he proposed replacing public keys with identities.
In [107] the first identity based group signature was proposed, where the verifying
key was replaced with an identity ID that represents the group of signers. Re-
search in this line was to improve such schemes performance-wise [113], property-
wise [135] or security-wise [7]. Performance implies improving keys size, signature
size, computational and communicational overhead. Property-wise modification
can be mixing other properties of group signatures with identity based group
signatures [140, 47, 72, 7]. Security improvements might include trying to have
stronger security notions and proofs. In [135] they suggested having a group
signature where group manager, members and opener are all identity-based.

• Blind Group Signatures: Blind signatures were introduced for cases where
a signer should not know the content of a message. Even if he sees the pair of
message and signature later on, signer should not be able to recollect it. The idea
of blind group signatures was first proposed to improve e-cash systems. Group
blind signature was proposed in [90]. Cryptographers since then tried to modify
it performance-wise, property-wise and security-wise [71, 140]

• Multi-group and Sub-group Signatures : In [6] Ateniese et al. introduced
the concepts multi-groups and sub-groups. Multi-group means a user that belongs
to two groups or more can sign on behalf of both with one signature. The word
“multi” in this case refers to more than one group but there is one signature and
one signer. Sub-group signatures is enabling the verifier to know if a signature
belongs to a certain sub-group.

• Convertible Group Signatures: In the schemes proposed by Kim et al. [83],

56

4.7. Chapter Summary 4. Group Signature Schemes

in addition to the properties of group signatures, the release of a single bit string
by the signer turns all of his group signatures into ordinary digital signatures.
Both [89, 88] showed that Kim et al.’s work to be insecure under an attack they
have defined. Finally [92] proposed a totally new convertible scheme and as far
as we know that has not been proved insecure yet.

• Hierarchical Group Signature: Hierarchy in group signatures comes from the
possibility that a group might have more than one manager and they are arranged
in a hierarchy. That is a group manager can open signatures of members who
are under his responsibility and his signature can be opened by another group
manager higher in hierarchy. It was introduced in [131] and as far as we know no
more papers took that research line further.

• Group Signcryption: In cryptography, signcryption is a public key cryptosys-
tem that was designed to both digitally sign and encrypt a message simultane-
ously. Therefore, signcryption implementations are meant to be secure, but also
more efficient than traditional system, which was sign and then encrypt. Sign-
cryption was introduced in 1996 by Yuliang Zheng in [141]. In 2003, Kwak–Moon
suggested having a group signcryption scheme. Any member of the group can
signcrypt a message on behalf of the rest. In [133] cryptanalysis revealed that
the Kwak–Moon scheme cannot satisfy any of the properties of unforgeability,
coalition-resistance, and traceability. In [86] the authors extended Kwak–Moon
in order to reduce the security flaws it had.

Following these examples of how different features were added to group signatures, we
should explain our contribution to the set of features. In this thesis we introduce a
new generation of group signature schemes. We propose attribute based authentication
schemes (Chapter 5 and 6). The idea behind our scheme is to enable the verifier to
choose a possible set of attributes he would like the member of the group to have
before signing a message. Referring to the scenario 4.1.1 Alice may want the employee
to be in a particular department. Group signature is a powerful cryptosystem that we
will be using as a building block. The following two chapters have a comprehensive
description of our scheme and a general construction that permits us to transfer any
group signature scheme to an attribute authentication scheme.

4.7 Chapter Summary

Group signatures are digital signatures that allow any member within a group to sign
on behalf of the group. Group signatures were introduced by Chaum and Heyst in [41].
It is one of many signature schemes allowing multiple alternative signatories existing in
the literature such as multi-signatures, aggregate signatures, threshold signatures and

57

4.7. Chapter Summary 4. Group Signature Schemes

ring signatures. Group signature is divided into two main types static and dynamic.
Formal definitions of their security was proposed in two different papers [9] and [13].
For a static group signature it is enough to prove a scheme secure by proving full
anonymity and full traceability. In a dynamic group signature it is enough to prove a
scheme secure by proving full anonymity, full traceability and non-frameability. Many
features have been added to group signatures and our contribution will be to develop
an attribute authentication system that relies on group signatures as a building block.

58

Chapter 5

Attribute Authentication

Schemes

We start this chapter by explaining a structure used in the creation of our scheme.
The structure is referred to as an attribute tree and is used to verify the trueness of a
monotone boolean expression where inputs to that expression represent attributes (e.g.
Junior Manager and in Department ‘A’). Verification of that expression can not be used
as a standalone verification scheme but will be used together with other cryptographic
blocks to create our attribute authentication scheme.
In Sections 5.3, 5.4, and 5.5 we explain the three main phases of creating our scheme.
In the first phase we modify group signatures in order to include the attribute tree,
therefore we name the scheme attribute based group signature. We give the definition
of the new scheme, the definition of the security notions required and an example
construction. Then we analyze the scheme giving advantages and disadvantages of it.
Disadvantages of the attribute based group signatures led us to redesign a new system
(Phase II in Section 5.4). The new design is referred to as the attribute authentication
scheme (AAS). Section 5.4 covers definitions of the scheme, and its security notions. It
gives an example construction. We finally analyze the attribute authentication scheme
discussing its advantages and disadvantages.
Section 5.5 enhances the AAS. The major advance of such a scheme is the dynamic
property where users enroll themselves in the group rather than being assigned to
become members. In other words, there is a join protocol in the scheme. The DAAS
scheme inherits all advantages of the AAS scheme and adds to it extra features. In
Section 5.5 we define the new scheme and its security notions. We give an example of
a construction and finish the section by analyzing the scheme’s security and efficiency.
Section 5.4.6 and 5.5.6 introduce extra protocols to the schemes in Section 5.4 and 5.5.
These protocols enhance the security of the scheme. It explains how to exchange
information between the different entities in the system.

59

5.1. Introduction 5. Attribute Authentication Schemes

Finally, we finish the chapter with a conclusion of our result and a summary of the
chapter.

5.1 Introduction

The aim of this chapter is to come up with an attribute authentication scheme that
serves the following scenario:

Scenario 5.1.1. Bob manages a company with many departments and many employees.
Employees are divided according to positions, responsibilities, levels, departments ...
etc. As in group signatures any member can sign on behalf of the whole company.
Nevertheless, the verifier can set a policy on what kind of characteristics he would
like the signer to have. For example, Alice as a verifier, wants the employee signing
to prove to be a senior manager in department A or a manager (senior/junior) in
department B. Similar to group signatures there is a private key for each employee and
a public key for the company used for the purpose of signing and verifying. Additional
to that each employee obtains from the company a registration key that will help him
get attribute related keys from attribute authorities. Attribute authorities can be the
different departments of the company. Alice sends her request to the whole company.
The request format should make it clear that Alice needs the signer to be: (Senior
manager and Department A) or ((Junior Manager and Department B) or (Senior
Manager and Department B)). Employees with sufficient attribute-related keys can
sign on behalf of the company. Anonymity under a set of attributes is a requirement.
In case of a dispute only Bob as the manager can revoke anonymity.

We will refer to such a scheme as the attribute authentication scheme (AAS) and it
should include the following properties:

• No previous knowledge assumption: Previous cryptosystems relied on knowing
the public key of the signer before hand or maybe their identity too. In this
scheme we cannot assume that Alice has any information about the employees of
the company. She may or may not know them from before.

• Unforgeable: This property is inherited from group signatures. It is hard for
someone outside the group of possible signers to forge a signature. The signer
has to be an employee in the company. In addition to that, proof of possession
of attributes is hard to fake. Only employees with sufficient attributes can create
valid signatures.

• Anonymity of Identity: Signatures can not be linked to a signer. The verifier
or any eavesdropper can not reveal the identity of the signer from the signature.
However, anonymity can only be subject to the required attributes. For example,

60

5.1. Introduction 5. Attribute Authentication Schemes

if there is only one person (say Joe) with a given attribute X, and Alice requests
the attribute X, the signer cannot be anonymous.

• Unlinkable: The verifier cannot distinguish whether two signatures were created
by the same signer or not. If signatures are linked, the identity of the signers
may get exposed by time causing anonymity to break.

• Traceable: Traceability is required in order to prevent employees from misusing
anonymity. Bob and only him as a manager can revoke the anonymity of the
signers and trace signatures to members of the group even if they were part of a
coalition.

• Anonymity of Attributes: The scheme should not enclose the attributes with the
signature, it should just provide a proof of possession of sufficient set of attributes.
For instance, in Alice’s policy she does not need to know whether the employee
signing is actually in department A or B. All she needs to know is that her policy
is satisfied and it does not matter how.

• Coalition Resistant: If two valid employees have enough attributes, jointly, that
satisfy the policy they should not be able to create a valid group signature as
if they were one person. For instance, an employee in department A but not
a senior manager and a senior manager in department C should not be able to
create an acceptable signature to Alice.

• Separability: The different departments should be capable of providing attributes
independently of the rest of the company.

In this chapter we describe the three main phases we went through while designing
the cryptosystem. Phase one covers the properties above except for anonymity of at-
tributes. Phase two improved phase one to include anonymity of attributes. The level
of separability improved in every stage. The details on how it improved is described
throughout this chapter.
The methodology explaining how policies have been created is out of the scope of the
thesis. It is assumed that the verifier decides on a policy that includes a description of
attributes he requires from the signer and represents it using the attribute tree struc-
ture explained in 5.2.
In the following section we shall discuss existing attribute oriented authentication
schemes. We will point out their drawbacks in order to convince the reader that a
new cryptographic scheme is needed for implementing scenario 5.1.1.

5.1.1 Attribute Oriented Authentication

Our proposed authentication scheme was not the first research to be done on authen-
ticating with attributes. Cryptographers realized the importance of moving towards

61

5.1. Introduction 5. Attribute Authentication Schemes

attribute oriented authentication since early 80’s. However, the solutions provided
varied according to the applications given and none of the existing solutions cover all
properties we require. There are two terms that will be used throughout this thesis:
Attributes and Credentials Digital credentials are the computer analog to paper cre-
dentials such as Student ID, Driving license, passports etc. Attributes are descriptions
of users in a digital form such as age, nationality, position etc. An attribute can be
presented in more than one credential. For example, nationality can be proven with a
passport or civilian ID. The terms have been used equally in literature depending on
the application and the cryptosystem. We use the term “Attribute Oriented Authen-
tication” to include authentication schemes that are similar to the proposed attribute
authentication scheme in this thesis. Even though some of cryptosystems below use
the term credential rather than attribute.
In this section we shall introduce some examples of attribute oriented schemes and
analyze their properties.

• Identity Based Cryptography: Identity based cryptography is a special form
of public key cryptography. Here, the public key has been replaced with the iden-
tity of either the signer or the decryptor. The idea was first proposed in Crypto’84
when Shamir presented his work in [123]. The following is an explanation on how
identity based cryptography works:

– Identity Based Signatures: There are three entities; a signer, a verifier and
a key generator. The signer obtains a private key that corresponds to his
identity from a key generator. He signs a message with that key. The verifier
uses the identity of the signer to check validity of the signature.

– Identity Based Encryption: There are three entities; an encryptor, decryp-
tor, and a key generator. The decryptor sends his identity to the key gen-
erator and obtains a private key that corresponds to it. The encryptor will
use that identity to encrypt the message. The ciphertext is decrypted with
the private key.

Much research has been done on identity based cryptography [21, 73, 48, 46] since
Shamir’s first proposal.
If we consider an identity to be an attribute then this is the first step towards
having an attribute based authentication scheme. In the work done in hidden
credentials [74, 28] and the work in cryptographic workflow [2] the authors sug-
gested a credential based cryptographic scheme. The general idea is to create
an encryption scheme such that the receiver of a ciphertext can only decrypt if
he satisfies a particular policy chosen by the sender at the time of encryption.
The schemes were based on identity based encryption. These techniques can be
also used for authentication purposes. Identities in these papers were created

62

5.1. Introduction 5. Attribute Authentication Schemes

using the ID of the person encrypting concatenated with attribute templates (i.e.
IDnew=IDorg||template1||...||templaten where IDnew is given to the key gener-
ator and he produces a private key for it, IDorg is the actual identity of the
decryptor, and finally templatej is a publicly known template for attribute j).
The following is a toy example: Alice encrypts a message to Bob with a certain
policy. Bob decrypts the message if he satisfies the policy and sends it back
encrypted with Alice’s public key. Alice will be able to authenticate Bob by
knowing he obtains sufficient credentials since he would have not been able to
decrypt otherwise.
Another approach to achieve authentication with identity based signatures, rather
than identity based encryption, is by concatenating identities to some attribute
templates that are publicly known as shown earlier. The signer requests private
keys that correspond to such concatenation. The verifier will use such concatena-
tion to create a verification key. We can then implement the scenario in 5.1.1.Two
different signers can not join their attributes together to sign a message since that
requires contacting the key generator for a new private key. The signer is forced
to attach his identity to the signature which leads to breaking the anonymity
and unlinkability of the scheme. There is no way to maintain the anonymity of
attributes of the signer since the attribute templates are disclosed with the signa-
ture. Finally, we are assuming some previous knowledge given that the identity
of the signer is used by the verifier.

• Anonymous Credentials: In anonymous credential systems (or pseudonym
systems) there are users and organizations. Organizations know the users by
their pseudonyms and they issue credentials to these pseudonyms. Users can
prove possession of a credential even to organizations that know them with a
different pseudonym. Such proofs have to guarantee anonymity of the user and it
has to be unlinkable. Credentials should also be coalition resistant and unforge-
able. Such a system was first introduced by Chaum in [40]. In 2001, Camenisch
and Lysyanskaya proposed the first practical solution for such a scheme [32], in
the sense that their solution enabled proving possession of credentials multiple
times without involving the organization each time and proofs are still unlinkable.
They offer for the first time anonymity revocation under certain conditions and
terms. Finally, they offer organization separability.
In that same year, Verheul also proposed a scheme that improves practicality
of Chaum’s system. He named the new scheme a “Self-Blindable Credential
Certificates” [132]. The system binds a user’s pseudonym to their public key cor-
responding to the private key to which the user possesses. Verheul added to the
system a third entity so that now it includes a user, an organization (referred to

63

5.1. Introduction 5. Attribute Authentication Schemes

in his paper as the trust providers), and service provider. Self blindable creden-
tials are issued by an organization. A credential is an organization’s testimonial
about the user. Service providers are parties that rely on such statements.
In anonymous credential systems there can be two types of credentials: multiple-
show or single-show. The usage of each type depends on whether the credential
needs to be used more than once or not. For example, a credential that repre-
sents a driving license should be of type multiple-show while a credential used to
represent a medical prescription is a single-show.
A lot of research has been done in this topic mainly to improve security and
practicality of the first scheme of Chaum’s. As regards security, forgeability,
anonymity and unlinkability were the main concerns. Other desirable properties
are restricting credential sharing, anonymity revocation, credential revocation ...
There are two ways to discourage users from sharing credentials. The first is
referred to as “PKI-assured non-transferability” [58, 67, 91] where sharing a cre-
dential implies sharing a valuable secret key from outside the system (e.g. credit
card detail). The second way of restricting sharing credentials was having all-or-
nothing policy where sharing one credential reveals all others [32].
Revocation is another powerful modification to the scheme. It can refer to either
attribute revocation or user revocation [33, 34].
Breaking anonymity was also studied. Anonymity will facilitate misbehavior
of users; so in case of a quarrel some authority should be able to revoke that
anonymity [32].
Using anonymous credential systems is one suggestion to rectify the predicament
of scenario 5.1.1. Nonetheless, some core properties are missing. For example,
schemes introduced so far are not coalition resistant even though some existing
proposals have provided techniques to discourage credential sharing. Anonymous
credential systems do not provide attribute anonymity because the attributes
used are disclosed with the credentials. On the bright side the existing systems
guarantee anonymity and unlinkability. The traceability of the signature is de-
cided by the signer therefore it is conditional. Anonymous credentials can be
used to implement our scheme but will not achieve all properties we need.

• Trust Negotiation Trust negotiation is the process of exchanging digital creden-
tials between strangers in order to built trust gradually. In old systems authenti-
cation simply relied on previous knowledge about the other party such as having
to use passwords, public keys, identities ... Nowadays, in open systems where
two strangers need to communicate, property based authentication is needed and
using trust negotiation is ideal.
The idea of trust negotiation was first proposed in [137]. The authors introduced
trust negotiation protocols that describe the exact method of exchanging the

64

5.1. Introduction 5. Attribute Authentication Schemes

credentials. The protocols enabled resource owners and users to establish trust
in one another through cautious, iterative, bilateral disclosure of credentials. A
sequence of exchanges take place starting from the least significant credentials.
As the level of exchanges increase, trust should increase and disclosure of more
sensitive credentials take place until resource is granted and all policies are met.
Lots of trust negotiation strategies and protocols are suggested in literature. The
challenge researchers had to face is finding the balance point between privacy and
completeness. The aim of the protocols is to minimize the amount of credentials
being exchanged without sacrificing the success of the negotiation. The negotia-
tion should allow access mediators or resource requesters to terminate once they
lose trust in one another. Lots of times the fear of information exposure causes
the negotiation to end. Improving the strategies to accomplish such balance was
the focus of research [138, 139, 136].
Trust negotiation has been used for authentication and authorization purposes
especially in open system environments. Strangers have to interact with each
other in such environments where no third party existed, at least not online. The
scheme does not serve our scenario 5.1.1 since it slowly reveals the privacy of the
user, and breaks both the anonymity and unlinkability of the scheme.

• Mesh Signatures The idea of mesh signatures is relatively new. In Euro-
Crypt’07 Boyen presented a paper that proposed the first mesh signature ever [27].
The idea can be considered as an extension to ring signatures (See Section 4.1.1),
but with added modularity and a much richer language for expressing signer am-
biguity. Intuitively, mesh signatures (as in ring signatures) need to be anonymous
and unforgeable.
A mesh signature is a non-interactive witness-indistinguishable proof that some
monotone boolean expression is true, where each input of that expression is la-
beled with a key and message pair and is true only if the mesh signer is in
possession of a valid signature on the stated message under the stated key.
Boyen did not present his scheme as an attribute oriented authentication. The
purpose of the scheme was to enable secret leaking with “unwitting and unwilling
participants” as mentioned in the title of his paper. Mesh signature seemed as
a promising scheme for our purposes because of the boolean expression proof.
If the keys and messages in the expression presented attributes then the proof
of the expression is equivalent to proof of possession of attributes. In Maji et
al.’s paper [93], an attribute based authentication scheme was built extending
our work in [81, 79] and using mesh signatures.
The drawback of such an idea is the fact that mesh signatures are a continuation
of ring signatures therefore traceability is not an option. Each user would also
have a pair of public and private keys. The signer needs to know and use public

65

5.2. Attribute Tree 5. Attribute Authentication Schemes

keys of other members of the group too.

The shortcomings of existing attribute oriented schemes were the inspiration of the
development of our new scheme. This chapter explains in details the scheme developed.

5.2 Attribute Tree

An attribute tree is the structure used to present the verifier’s request. It was first
proposed in [69] to implement an attribute based encryption scheme where the authors
used a tree structure, bilinear maps and Lagrange interpolation to build a policy for
decryption. In such a tree each interior node is a threshold gate and the leaves are linked
to attributes. A threshold gate represents m of n children branching from the current
node which need to be satisfied for the parent to be considered satisfied. Satisfaction of
a leaf is achieved by owning an attribute. For further explanation, consider the example
in Figure 5-1 that demonstrates the scenario 5.1.1. Γ will be used as a description to

Figure 5-1: Attribute Tree

our attribute tree. For example, to represent the tree in Figure 5-1, Γ = {(1, 2),(2, 2),
(2, 2), Senior Manager, Dept. A, Dept. B, (1, 2), Senior Manager, Junior Manager},
where (m,n) represents a threshold gate m of n. The description Γ is representing
the tree in a Top-Down-Left-Right manner. Let κ be the number of leaves in Γ. For
simplicity, in the example above we have chosen m of n to either represent an “or”
relation where m = 1 and n = 2 or it represents an “and” relation where m = 2 and
n = 2.
Υi is the set describing all attributes owned by a member. For example, if Smith is a
senior manager and works in Department A, ΥSmith = {Senior, Dept. A }. The size
of Υi is represented by µ.
=i is a subset of Υi. It is sufficient to prove possession of some subset =i of the
attributes rather than all. For example, if Pat requires the employee signing to be a

66

5.2. Attribute Tree 5. Attribute Authentication Schemes

senior manager only, then Smith can use =Smith = {Senior}. The size of =i is τ .
Consider the following scenario:

Scenario 5.2.1. Victor wants Pat to prove possession of a set of attributes. He builds
the tree Γ and sends it to Pat. Pat checks her Υi which will be presented as a set of
private keys. She will use whatever key(s) she requires to prove to Victor that she indeed
satisfies the tree he requested. In other words she decides on a set =i. She creates a
proof P and sends it to Victor. Victor can verify P.

To implement such a scenario we will have three main algorithms as described below:

• Setup(k) : This algorithm is run by a trusted third party. It takes as an
input a security parameter k and generates a bilinear map (Definition 2.2.9)
e : G1 × G2 → G3 defined on groups of prime order p. A generator w ∈ G2 is
chosen and is public to everyone. Each member of the system will have a private
key Ai ∈ G1 where i is an index referring to the user. The exact way of choosing
Ai and w will be according to the AAS scheme used and we will explain that in
detail in later sections. For now we will assume the key Ai is chosen uniquely for
each user.
The trusted third party has a master key tj ∈ Z∗

p for each attribute j. That key
will be used in creating what we refer to as attribute public key bpkj and attribute
private key Ti,j . A set of attribute public keys is notated as B. Every public key
of an attribute j equals bpkj = wtj and every private key of the attribute j of
user i equals Ti,j = A

1/tj
i .

• TCreate(Γ, α,B) : Victor starts with deciding the structure of the tree Γ as
shown in Figure 5-1. Accordingly he decides B. The structure of the tree Γ in-
cludes the attributes needed, the threshold gates of the nodes, and their indexes
while the set B is the attribute public key needed to construct such a tree. He
then picks a secret α ∈ Z∗

p. The choice of α is dependent on the AAS scheme
(details will be explained in later sections).
Victor randomly assigns all nodes (other than the root) an index and adds the
indexes to Γ. We use the notation Index(Node) to represent the index of a
node where Index(Node) ∈ Z∗

p. Starting from the root he chooses polynomials
qnode over Z∗

p where all polynomials are of degree dnode = knode − 1, and knode

is the threshold gate of a node. Assign qroot(0) = α while the rest of the nodes
qnode(0) = qparent(Index(Node)). Notice that given the number required by the
threshold gate qnode and the indexes, one can calculate α with Lagrange interpo-
lation (see Definition 2.1.13). However, α will be Victor’s secret that will help
him verify the tree is satisfied. Victor will calculate Dj = bpk

qj(0)
j for all leaves,

67

5.2. Attribute Tree 5. Attribute Authentication Schemes

he will let D = D1, ..., Dκ and he will send 〈Γ, D〉 to Pat.

• TVerify(D,=i, T̄) : Pat decides from Γ and Υi (she owns) which private keys
to use (i.e. she decides =i). T̄ is elements that are calculated using the set of
private keys in =i and D = D1, ..., Dκ produced in the previous algorithm. For
now we will assume T̄ = {CT1, CT2, ..., CTτ} where CTj = T β

i,j , and β ∈R Z∗
p.

Given Pat has enough attributes she can run a recursive function SignNode as
follows; If the node is a leaf in the tree the algorithm returns the following:

SignNode(leaf) =

{
If (j ∈ =i); return e(CTj , Dj)
Otherwise return ⊥

For a node ρ which is not a leaf the algorithm proceeds as follows: For all children
z of the node ρ it calls SignNode and stores output as Fz. Let Ŝρ be an arbitrary
kρ sized set of children nodes z such that Fz 6= ⊥ and if no such set exist return
⊥. Otherwise let

∆Ŝρ,index(z) =
∏

ι∈Ŝρ\{index(z)}

(−ι/(index(z)− ι))

and compute

Fρ=
∏

z∈Ŝρ

F
qz(0)∆Ŝρ,index(z)
z =

∏
z∈Ŝρ

e(T β
i,j , Dj)

qz(0).∆Ŝρ,index(z) =
∏

z∈Ŝρ

e(Aβ
i , w)qz(0).∆Ŝρ,index(z)

=
∏

z∈Ŝρ

e(Ai, w)βqparent(z)(index(z)).∆Ŝρ,index(z) = e(Ai, w)qρ(0)β

Calculate Froot then if the tree is satisfied Froot = e(Aβ
i , w)α(see Example 5.2.2).

68

5.2. Attribute Tree 5. Attribute Authentication Schemes

Example 5.2.2. This is an example of how the tree actually works. The indexes are
random and so are the polynomials and they are chosen over Z∗

p. The number on top
of each node in the tree Figure 5-2 is the index of that node Index(Node). Assume

Figure 5-2: Attribute Tree with indexing

α = 9 and further assume that the polynomials are set to the following:
qroot(0) = 9 qroot(x) = 9
q8(0) = qroot(8) = 9 q7(0) = qroot(7) = 9
q8(x) = 2x+ 9 q7(x) = 3x+ 9
q1(0) = q8(1) = 11 q2(0) = q8(2) = 13
q3(0) = q7(3) = 18 q6(0) = q7(6) = 27
q6(x) = 27 q4(0) = q6(4) = 27
q5(0) = q6(5) = 27
Let Pat be a senior manager in department A. She will be using D1 = bpk1 = wt1

and D2 = bpk2 = wt2 in the TV erify algorithm. She has the private keys Ti,1 = A
1/t1
i

and Ti,2 = A
1/t2
i . She is interested in the left subtree therefore indexes 1 and 2. Note

that the degree of the root is 1 therefore we can stop in index 8. Pat will calculate the
product of :
e(Ti,1, D1)

−2
1−2 e(Ti,2, D2)

−1
2−1

= e(Ai, w)q1(0)(−2
(1−2)

)
e(Ai, w)q2(0)(−1

2−1
)

= e(Ai, w)11(−2
(1−2)

)
e(Ai, w)13(−1

2−1
)

= e(Ai, w)22e(Ai, w)−13

= e(Ai, w)9

= e(Ai, w)α

Pat will raise the whole element to the power of a β which she chooses randomly.

69

5.2. Attribute Tree 5. Attribute Authentication Schemes

Pat can create the proof P that consists of two parts Froot and a trapdoor td (i.e.
P = 〈Froot, td〉 is sent to Victor). The trapdoor is a way to reveal that Froot contains α
implying satisfaction of the tree. Meanwhile the trapdoor has to maintain the random-
ization in Froot. The trapdoor will be calculated using the public key of the attribute
authentication scheme. For instance, in this section the public key is w therefore the
trapdoor is td = wβ where β ∈R Z∗

p is the randomization factor we want to reserve.
Later sections in this chapter will explain in more details how the registration key Ai,
w and td are exactly calculated.
Given that Victor knows P = 〈Froot, td〉, w, and α he can verify that Pat satisfies the
tree by verifying F 1/α

root = e(Ai, td). Notice forging the pair 〈Froot, td〉 is as hard as the
BDH problem (See Definition 2.2.9).
To prove that consider the following game which we will refer to as Forgery of Attribute
Possession (FAP). In this game we have a Charles as a challenger and Adam as an
adversary. The game runs as follows:

• Setup: Charles starts by creating the public key w and private keys Ai of all
users. He sends the information to Adam. Charles then chooses the attribute
master keys t0,, tm for the whole universe of attributes.

• Phase 1: In this phase Adam can query any of the three oracles below:

– AttPriKey Oracle: Adam sends a users private key base Ai together with
an index for an attribute j and Charles responds back with Ti,j .

– TVfy Oracle: Adam runs TCreate on Γ, α, and B of his choice. He sends
the outcome D together with index of user i to Charles and asks for a
verification. Charles should reply with a valid P. Since Charles has all
master keys of all attributes such a proof is straight forward.

– AttMasKey Oracle: Adam sends an attribute j and gets its master key tj .

• Challenge: Adam asks to be challenged on a certain tree Γ1, user l and attribute
z where l has not been queried in AttPriKey for attribute z and z has not been
queried in the AttMasKey Oracle. Charles sends the D of a new tree Γ2 with a
root of threshold (2 out of 2) where the first child is Γ1 and the second is with
base bpkz.

• Phase 2: This phase is similar to phase 1 as long as the challenged user l is not
queried in AttPriKey for attribute z and z is not queried in AttMasKey.

• Output: Adam should respond with a valid P = (Froot, td). If P is verifiable then
Adam wins else he loses the game.

The game assumes the issuer of the private key bases is corrupted since all Ai are
given to Adam. It gives Adam the power of knowing attribute private keys of different

70

5.2. Attribute Tree 5. Attribute Authentication Schemes

attributes and for different users by querying the oracle AttPriKey. It also gives him
the power to generate private keys since he can query their master keys in AttMasKey
oracle. The information that would be hidden from Adam is the master key tz and
the private attribute key Tl,z where l is the user and z is the attribute in which Adam
requested to be challenged upon. It is natural to hide these keys for knowing them
contradicts the purpose of the game.
In the literature such an attribute tree was used in attribute based encryption only.
The proof was merged with the CPA game (Section 3.2). The general idea of the
proofs was by assuming there exist an adversary Adam that breaks the CPA and
concluding that a simulator running Adam can solve the DBDH problem. When Adam
requests the challenge he sends two messages m1 and m2 to the simulator who chooses
one randomly and simulates a ciphertext with the elements of the DBDH. Recall the
elements are (A, B, C, Z)=(ga, gb, gc, e(g, g)z) where z is either random or z = abc (See
Definition 2.2.10). In case z = abc then the simulation of the ciphertext is equivalent to
a normal ciphertext. Therefore if Adam guesses the message being encrypted correctly
then z most probably is not random. If he guesses it incorrectly then z must be random.
Consequently the advantage of solving the DBDH for the simulator is non-negligible.
Using the same technique in signatures is not easy because the winning condition is
coming up with a proof P rather than giving out a boolean guess.
To prove the game is hard to win we use a non-traditional approach as follows:
Let the root polynomial be qr(x) and has two child nodes. The subtree Γ1 has a root
with the polynomial q1(x) which represents the first child of Γ2 and is indexed as x1.
The other child is holding attribute tz, has polynomial q2(x) and is indexed as x2.
Further let that qr(0) = α, q1(0) = qr(x1) = y1 and q2(0) = qr(x2) = y2. The root
polynomial is of degree 1 since the threshold gate is 2. This implies that Adam knows
that Lagrange is applied therefore the following formula must hold:
e(Ai, w)α = (e(Ai, w)y2.x2e(A,w)−y1.x2)1/(x1−x2)

Adam also knows the value of elements (x1, x2, e(Ai, w)y2 , Ai, w, wy1tz , wtz).
Adam does not know e(Ai, w)α, e(Ai, w)y1 , α, y1, and tz.
Note that values x1, x2, y1, y2, and sometimes α itself change each round a D is created.
Adam might have also obtained a set of Ti,k keys for users he queried in AttPriKey
Oracle but definitely not the one in the challenge (i.e. Ti,k = A

1/tz
k where k 6= l). He

can also calculate e(Ak, w)α for all the Ti,k he possess.
Adam also would have obtained a set of tj where j 6= z.
Table 5.2 summarizes the maximum set of data Adam can obtain from the game model.
To win the game Adam needs to calculate a pair P = (Froot, td) that is valid for user l
(i.e. Froot = e(Aβ

l , w)α and td = wβ). The challenge is actually in calculating e(Al, w)α

rather than P. The reason behind that is the fact that w is known for Adam and β is
of his choice so calculating e(Al, w)α implies calculating P.

71

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

Table 5.1: Information Obtained by Adam

Information Source
List of Ai Setup
w Setup
2D List of Ti,j where j 6= z and i 6= l AttPriKey Oracle
List of P = (Froot, td) TVfy Oracle
List of tj where j 6= z AttMasKey Oracle
D = D1, ..., Dκ Challenge
(x1, x2, e(Al, w)y2 , wy1tz , wtz) Challenge and Lagrange Interpolation
List of e(Ak, w)α Ti,k from AttPriKey and D of the Challenge

As mentioned earlier Adam knows from Lagrange interpolation the following:
e(Al, w)α = (e(Al, w)y2.x2e(Al, w)−y1.x2)1/(x1−x2)

To win the challenge Adam either calculates the right hand side of the equation or the
left hand side.
From what Adam (See Table 5.2) has α is not enclosed implicitly or explicitly except
in the bilinear maps he calculates (i.e. List of e(Ak, w)α) and deriving it from them is
as hard as solving the BDH.
Alternatively, to calculate the right hand side of the equation, Adam can try to calculate
either wy1 or e(Al, w)y1 which will help him calculate e(Al, w)α using Lagrange. From
Table 5.2 Adam knows wy1tz and wtz . Calculating wy1 from that is impossible because
y1 is totally bound with tz. Further more, calculating e(Al, w)y1 from what Adam has
requires breaking the DLP.

5.3 Phase I: Attribute Based Group Signature

The first phase for creating attribute based authentication systems was to modify group
signatures to include attribute verifications using the tree structure in Section 5.2.
The reason behind using group signatures as the foundation of our work was the se-
curity notions studied in literature for such cryptographic schemes (See Section 4.1.2
for details). A lot of the security requirements we need in our scheme overlap with
the one’s proposed for group signatures. Examples will be anonymity, unlinkability,
unforgeability, ... This made using group signatures for our scheme sound promising.
Similar to group signatures we have three main entities: the signer, the verifier and the
authority. However, there is more than one public key each representing the group as
a whole. The difference between the public keys is the corresponding set of attributes
the signer needs to possess in order to consider the signature as valid. A database is
added so everyone has access to such keys. The verifiers can retrieve keys from the
database (Step 3 in Figure 5-3) since it is publicly known. If the key does not exist he

72

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

can request it to be added to the database (Step 1 and 2 in Figure 5-3). Each member
in the group (potential signer) has a set of private attribute keys and a main private
key (Step 4 in Figure 5-3). When signing the main private key is used together with a
subset of the private attribute key set. The subset is decided according to the public
key chosen for verification and the signature is sent to the verifier (Step 5 in Figure 5-
3). We are assuming that the public key to be used is published to the group by the
verifier before hand together with the tree structure. The verifier can then check the
validity of the signature (Step 6 in Figure 5-3). We will refer to this type of schemes
as Attribute Based Group Signatures (ABGS).

Figure 5-3: Attribute Based Group Signatures

In the following section we provide a formal definition of the scheme by explaining the
algorithms used in implementing it.

5.3.1 Definition

In this section we define the algorithms of an ABGS. To distinguish between algorithms
in this section and the ones in any other section we shall be using the prefix ABGS.
In general we have seven main algorithms in an ABGS scheme. The following is a
description of each:

• ABGS.Setup(k): A randomized algorithm that takes a security parameter k as
an input. It outputs a set of public parameters Spub, a set of private parameters
Spri and a tracing key tk.

• ABGS.M.KeyGen(Spub,Spri): An algorithm that takes the system parame-
ters. It generates what is called private key bases bsk[i] for any user i. It also
generates a public key base w. Finally, it calculates for all attributes a master
key tj , where j presents an index of the attribute.

• ABGS.A.KeyGenpub(Γ,Spri,Spub, t1, ..., tκ): This algorithm generates public

73

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

keys gpk for an attribute tree described in Γ (See Figure 5-1 as an example).

• ABGS.A.KeyGenpri(bsk[i],Υi, t1, ..., tµ): Creates the private key gsk for user
i to enable him to authenticate himself and his properties which are described
in Υi. The key gsk includes a set of private attribute keys Ti,j that are used
according to the need.

• ABGS.Sign(gpk,gsk,M): Given a public key of an attribute tree, a private
key of a user i and a message, output a signature σ and =i.

• ABGS.Verify(gpk,M, σ,=i): Given a message, a public key of a certain at-
tribute tree, a signature and a set =i, output either an acceptance or a rejection
for the signature.

• ABGS.Open(Spub,gpk, tk, t1,, tµ,M, σ,=i): The open algorithm is given a
specific signature, a public key and the tracing key as inputs. It traces to the
signer i even if he is a member in forging coalition. The attributes that belong
to =i can also be traced using the tracing keys and the master keys t1,...,tµ.

From the algorithms above one can spot two main disadvantages of an ABGS scheme.
The first disadvantage is that the signer encloses all his attributes with the signature
by sending =i, therefore attribute anonymity is not covered. The second disadvantage
is that the verifier has to retrieve a new public key from the database every time the
verification policy changes. He might even need to contact the authority asking it to
update the database. Later in this Chapter, Section 5.4 and Section 5.5, these two
problems will be addressed. In the next section we will explain the security notions
of full anonymity and full traceability for an ABGS scheme.

5.3.2 Security Notions

Before discussing the security of the scheme we need to define correctness. Informally,
a scheme is correct if and only if valid signatures verify and all signatures trace to a
member of the group even if that member is part of a coalition.

Definition 5.3.1. (Correctness of an ABGS scheme):
For all keys gsk generated correctly, every signature generated by a member i verifies as
valid unless the member did not have enough attributes where the signature is verified
as invalid. Every valid signature traces to a member of the group. In other words,
V erify(gpk,M,=i, Sign(gpk, gsk,M)) = valid;

74

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

and Open(Sign(gpk, gsk,M), Spub, tk, t1, ..., tµ,M,=i) = i and =i is sufficient accord-
ing to Γ;
Otherwise V erify(...) = not valid;

Anonymity and traceability are the standard acceptable notions of security for group
signatures [9, 20, 19]. Hence, it is natural to require that attribute based group sig-
natures satisfy these security notions. However, the definition of those notions must
be strengthened, to adjust to the fact that the verifier decides the role of a signer in a
group. We start with explaining the different oracles queried in the game model:

• PriKey Oracle: The Private-Key oracle allows an adversary to obtain a private
key for a specific user. The adversary queries the oracle by sending it an index i.
The oracle responds with sending the private key bsk[i].

• AttKey Oracle: The Attribute Key oracle allows an adversary to obtain a set
of private attribute keys Ti,j for a set Υi for user i.

• Signature Oracle: This oracle allows the adversary to obtain a signature σ on
a message M from user i. The adversary sends the tuple (M, i,Γ,=i) as its query,
implying that it requires a signature of user i on message M under the policies
described in Γ using the subset =i. The oracle responds with σ.

• Open Oracle: This oracle is meant for tracing a particular signature to a signer.
The adversary queries it by sending (σ,M,=i), expecting to know the user i that
signed M and generated σ. The oracle sends back i.

• PubKey Oracle: The Public-Key oracle allows an adversary to request a public
key of a certain tree of its choice to be added to the database.

Recall that Adam is the adversary and Charles is the challenger in the game. Charles
runs the algorithms ABGS.Setup, ABGS.M.KeyGen, and ABGS.A.KeyGenpub.
Charles will have created the parameters Spri and Spub, n private keys bsk[i], tracing
key tk, and a list of attribute public keys gpk. In the anonymity game the master keys,
tj for every attribute j, are chosen by Charles since they are part of the Open oracle
while in the traceability game they are chosen by Adam and given to Charles.

ABGS Full Anonymity: We say that an attribute based group signature scheme
is fully anonymous if no polynomially bounded adversary Adam has a non-negligible
advantage against Charles in the following attribute based group signature anonymity
game (AAGS):

• AAGS.Setup: Charles sets up the system as described earlier by running
ABGS.Setup, and ABGS.M.KeyGen. Creating the outputs Spub, Spri, tk, a

75

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

list of bsk[i], w, and a list of tj . The list of public keys, gpk, is created and
initially it is empty. Adam has access to that list and is also given the public
parameters Spub. Note that Charles keeps the tracing key tk and the master
keys t1,...,tm to himself since they can be used for opening signatures. The rest
is given to Adam.

• AAGS.Phase (1): Adam can query the oracles PriKey, Open, AttKey, Signa-
ture, and PubKey as described earlier.

• AAGS.Challenge: Adam decides when to request his challenge. He sends
Charles two indexes (i0, i1), a message M , a public key of Γ and =i of his choice.
Charles replies with a signature σb where b ∈ {0, 1} and σb is the result of signing
with the triple 〈ib,M,=i〉.

• AAGS.Phase (2): Phase two is exactly the same as phase one except that
Adam cannot query the Open oracle on the message challenged.

• AAGS.Guess: Adam tries to guess b̄ ∈ {0, 1}. If b = b̄, Adam succeeds other-
wise he fails.

The adversary is given strong attack capabilities. He has access to oracles like PriKey,
AttKey, Signature, Open, and PubKey. The challenge can be queried again as a Sig-
nature oracle in Phase (2), which makes the game model defined include the notion of
unlinkability If the scheme was linkable then Adam can win the full anonymity game
explained earlier. If they were linkable, Adam would have queried both i0 and i1 from
the Signature oracle, then he would have linked the signatures to the inputs of the
challenge in order to determine the signer and win the game.
We define the advantage of attacking the scheme as AdvAAGS(n, k) = Pr[b = b̄]− 1/2
where n is number of users and k is the security parameter.

Definition 5.3.2. Full Anonymity:
An ABGS scheme is fully anonymous if for any polynomial time adversary Adam, the
advantage of winning the game is negligible. In other words, AdvAAGS(n, k) < ε where
ε is negligible.

ABGS Full Traceability: We say that an attribute based group signature scheme
is fully traceable if no polynomially bounded adversary Adam has a non-negligible
advantage against Charles in the following attribute based group signature traceability
game (TAGS):

76

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

• TAGS.Init: Adam chooses the universal set of attributes he would like to be
challenged on and that is by choosing the master keys t1,...,tm. Both Charles

and Adam can access that set.

• TAGS.Setup: Charles sets up the system as described earlier by running
ABGS.Setup and ABGS.M.KeyGen. The public parameters Spub and the trac-
ing key tk are given to Adam. The parameters Spri on the other hand are kept
a secret.

• TAGS.Oracles: Adam can query the oracles PriKey, AttKey, and Signature
as described earlier. There is no need for querying the PubKey or Open oracles
since Adam has all master keys and the tracing key.

• TAGS.Output: If Adam is successful he outputs a forged signature σ that
Charles fails to trace using the open algorithm. Otherwise Adam fails. Charles
outputs 1 if Adam wins otherwise he outputs 0.

Adam has strong attack capabilities. He is provided with the secret tracing keys there-
fore he can revoke the anonymity of any signer. Adam also can query PriKey, AttKey,
and Signature oracles. Note that the game includes unforgeability and is a strong form
of coalition resistance. If we are to represent a game model individually for each of the
security notions, unforgeability would be the same challenge as long as the message in
that stage has not been queried before whereas coalition resistance is the same game
without giving Adam the tracing elements.
We represent the advantage of the adversary in winning the attack as AdvTAGS(n, k) =
Pr[Exp = 1] where n is the number of users, k is security parameter used in setting
up the system and Exp = 1 refers to the game returning 1.

Definition 5.3.3. Full Traceability:
An ABGS scheme is fully traceable if for any polynomial time adversary, Adam, the
advantage of winning the game is negligible. That is AdvTAGS(n, k) < ε where ε is
negligible.

In both adversarial game models we have given Adam the knowledge of all master
keys. Therefore the game models do not capture attribute unforgeability. Given the
fact that we are using the attribute tree structure which is secure against FAP attacks
(Section 5.2), our scheme most probably inherits that security notion. However this is
just an assumption. One of the main strengths of the schemes proposed in Section 5.4
and Section 5.5 over the ABGS scheme is that we provide a third game model to capture
attribute forgeability.

77

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

In the following section we give an example on a construction of an ABGS scheme.
It is based on the group signature proposed by Boneh, Boyen, and Shacham (See
Section 4.3.1).

5.3.3 Construction

In this section we construct an ABGS scheme based on Boneh et al ’s. work in “Short
Group Signatures” in [20]. We add the prefix AGSC to distinguish between algorithms
in this section and other sections. The algorithms are described below:

• AGSC.Setup(k): Consider a bilinear map e : G1 × G2 → G3 with all three
groups multiplicative and of prime order. A computable isomorphism ψ is be-
tween G1 and G2. Furthermore, the q-SDH (See Definition 2.2.11 and Assump-
tion 2.2.12) is hard to solve in G1 and G2 and the linear problem (See Defini-
tion 2.2.14) is hard to solve in G1. Select a hash function H : {0, 1}∗ → Z∗

p. Select
a generator g2 ∈R G2 and then set g1 = ψ(g2). Select h ∈R G1 and ξ1, ξ2 ∈R Z∗

p.
The tracing key tk = 〈ξ1, ξ2〉 will be used later in the open algorithm. Set
u, v ∈ G1 such that uξ1 = vξ2 = h (by computing u = h−ξ1 and v = h−ξ2). Let
γ ∈R Z∗

p. Define a universe of attributes U = {1, 2, ...,m} and for each attribute
j ∈ U choose a number tj ∈R Z∗

p. Let Spub = 〈G1, G2,G3,e,H,g1,g2,h,u,v 〉.
Spri = 〈γ, tk〉.

• AGSC.M.KeyGen(Spri,Spub): Calculate the main public key base w = gγ
2 .

Using γ in Spri generate for each user i a private key base bsk[i] = 〈Ai, xi〉. The
bsk[i] should be a SDH pair where xi ∈R Z∗

p and Ai = g
1/(γ+xi)
1 ∈ G1.

• AGSC.A.KeyGenpub(Γ,Spri,Spub, t1, ..., tκ): To generate a public key for a
certain attribute tree Γ the B is calculated. The B is the set of public attribute
keys for attributes used in Γ. Each attribute public is bpkj = g

tj
2 .

The algorithm D = TCreate(Γ, γ, B) is run. D = {D1,...,Dκ} where Dj =
bpk

qj(0)
j . Sending γ as the second argument in TCreate implies that qroot = γ.

The public key will be gpk=〈g1, g2, h, u, v, w, D, h1,...,hκ〉 where hj = h1/tj .

• AGSC.A.KeyGenpri(bsk[i],Υi, t1, ..., tµ) For every attribute j that user i owns
(i.e. j ∈ Υi) calculate Ti,j = A

1/tj
i = g

1/(tj(γ+xi))
1 . The private key for a user i

will be the tuple gsk = 〈Ai,xi,Ti,1,...,Ti,µ〉.

• AGSC.Sign(gpk,gsk,M): For signing user i, starts with choosing the set =i

he will be using then he needs to do the following:

78

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

Let ζ, β, α ∈R Z∗
p.

Compute the linear encryption (Definition 2.3.2) of Ai and Ti,j where j ∈ =i.
The ciphertext of the encryption will equal C1 = uζ , C2 = vβ, C3 = Aih

ζ+β, and
CTj = (Ti,jh

ζ+β
j)α. The variable α is used to avoid linkability of the signature,

otherwise the ratio between CTj and C3 is constant. In other words if α did not
exist an adversary can compare two signatures by dividing CTj

C3
. If the result is

equal for the two signatures then the signatures must have been created by the
same signer.
Let δ1 = xiζ, δ2 = xiβ.
Let rζ ,rβ,rx,rδ1 and rδ2 ∈R Z∗

p.
Calculate
R1 = urζ ,
R2 = vrβ ,
R4 = Crx

1 u−rδ1 ,
R3 = e(C3, g2)rxe(h,w)−rζ−rβe(h, g2)−rδ1

−rδ2

R5 = Crx
2 v−rδ2 .

Let c = H(M,C1, C2, C3, R1, R2, R3, R4, R5) ∈ Z∗
p.

Construct the values sζ = (rζ + cζ), sβ = (rβ + cβ), sx = (rx + cxi), sδ1 =
(rδ1 + cδ1), and sδ2 = (rδ2 + cδ2).
Let the trapdoor used in verifying the tree satisfaction be td = wα (Section 5.2).
The signature equals σ = 〈C1, C2, C3, c, CT1,...,CTτ , sζ , sβ, sx, sδ1 , sδ2 , td,=i〉.

• AGSC.Verify(gpk,M, σ,=i): The verifier needs to run the algorithm
Froot = TV erify(D,=i, T̄) where T̄ = {CT1,...,CTτ} as shown in Section 5.2.
Note that in SignNode(leaf) the value returned is e(CTj , Dj) = e(Aih

ζ+β, gα
2)qj(0).

Note that the value of the root polynomial when evaluated at 0 is qroot(0) = γ,
therefore if the tree is satisfied Froot = e(C3, td).
Calculate
R̄1 = usζC−c

1 ,
R̄2 = vsβC−c

2 ,
R̄4 = Csx

1 u−sδ1 ,
R̄5 = Csx

2 v−sδ2 ,
R̄3=e(C3, g2)sxe(h,w)−sζ−sβe(h, g2)−sδ1

−sδ2 (e(C3,w)
e(g1,g2))

c.
If c = H(M,C1, C2, C3, R̄1, R̄2, R̄3, R̄4, R̄5) then accept the signature, otherwise
reject it.

• AGSC.Open(Spub,gpk, tk, t1, ..., tτ ,M, σ,=i): This algorithm traces a signa-
ture to a signer. To do so the authority will be using the 〈G1, G2, G3, e, H, g1,

79

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

g2, h, u, v, Γ, w〉 derived from Spub and gpk.
Step one in the tracing will be verifying the signature. Afterwards, the group
manager can recover Ai by calculating Ai = C3/(C

ξ1
1 C

ξ2
2). Now the manager can

look up the user with index Ai. The manager can also verify the attributes. For
each attribute, he checks the following equality e(CTj , w) = e((AiC

ξ1
1 C

ξ2
2)1/tj , td).

If the equality holds for an attribute j then the j is said to be traced to the same
user i.
The reason behind limiting the possibility of being the group manager to the key
generator is the need to use tj when calculating j. Furthermore, the key genera-
tor can not convey tj in an encrypted matter to the group manager because that
implies that he can create private attribute keys therefore increasing the number
of authorities we need to trust other than the key generator.

5.3.4 General Discussion of the ABGS Scheme

In this section we discuss the advantages and disadvantages of the scheme in general.
In the proposed scheme we managed to cover some issues discussed in Section 5.1.
The scheme is anonymous and unlinkable if proven secure under the full anonymity
game. The scheme is unforgeable, traceable and coalition resistant when proved secure
under the full traceability game. However, in the ABGS scheme we have failed to
achieve attribute anonymity since the signer encloses =i with the signature. This
means the verifier knows what attributes were used in creating the signature. The
other disadvantage is not providing separability at any level. The authority creates
all keys whether it is attribute based or non-attribute based. The authority is also
responsible of tracing the signatures. It would have been nice if we had some kind
of hierarchy. For example, if the employee is in department “A”, he should get his
key from the department rather than the manager Bob. It will also be nice to have
the department trace the signer rather than Bob. In the ABGS scheme this is not
possible since it requires knowing the tracing key and the private master key(s) of
the signer. For instance, in scenario of Section 5.2 the verifier needs the signer to be
a senior manager in department “A”. If the department is responsible of tracing it
needs to know the master key of attribute “senior manager”. Separability decreases
the bottleneck on the manager. It also improves the security of the scheme since not
even Bob can tell which attributes a user possess. Another disadvantage is having the
verification requirement known to all, the policy of the verifier is exposed. Finally, the
security proofs can be strengthened by providing a third game model, which has not
been done in this section. That game model should capture attribute unforgeability
property rather than depending on the fact that we are using the tree structure. A
possible design for that game model is to allow Adam to obtain all private keys and
m − 1 master keys in the system. Adam is asked to provide a signature that proves

80

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

possession of the missing attribute. If he succeeds in generating a valid signature then
he wins the game otherwise he loses. In the schemes proposed in Section 5.4 and
Section 5.5 we provide such game model.
ABGS scheme has covered a considerable amount of properties desired in implementing
a new attribute based scheme, however it has its drawbacks.

5.3.5 Analysis of the Construction of the ABGS Scheme 5.3.3

Previously we discussed how the ABGS has some advantages and disadvantages. These
were inherent in the construction itself. We opt to discuss correctness of the constructed
scheme. We then give a brief proof of security of the scheme under the definitions of full
anonymity and traceability. In Appendix A we give a more comprehensive proof. We
also discuss some efficiency issues in our construction. We shall start with correctness.

Theorem 5.3.4. The Construction in Section 5.3.3 is correct according to defini-
tion 5.3.1.

In order to prove correctness we need to show that R̄1 = R1, R̄2 = R2, R̄3 = R3,
R̄4 = R4, R̄5 = R5 because that leads to c = H(M,C1, C2, C3, R̄1, R̄2, R̄3, R̄4, R̄5)
which means the signature is accepted.

R̄1=usζC−c
1 =urζ+cζ(uζ)−c=urζ=R1

R̄2=vsβC−c
2 =vrβ+cβ(vβ)−c=vrβ=R2

R̄4=Csx
1 u−sδ1=uζ(rx+cx)u(−rδ1

−cδ1)=Crx
1 u−rδ1=R4

R̄5=Csx
2 v−sδ2=vβ(rx+cx)v(−rδ2

−cδ2)=Crx
2 v−rδ2 = R5

Finally, R̄3 = R3 holds for the following reasons:

R̄3 = e(C3, g2)sxe(h,w)−sζ−sβe(h, g2)−sδ1
−sδ2 (e(C3,w)

e(g1,g2))
c

= e(C3, g2)rx+cxe(h,w)−rζ−rβ−cζ−cβe(h, g2)−rδ1
−rδ2

−cxζ−cxβ(e(C3,w)
e(g1,g2))

c

= (e(C3, g2)cxe(h,w)−cζ−cβe(h, g2)−cxζ−cxβ)(e(C3, g2)rxe(h,w)−rζ−rβe(h, g2)−rδ1
−rδ2)(e(C3,w)

e(g1,g2))
c

= (e(C3, g
x
2)ce(h−ζ−β, w)ce(h−ζ−β, gx

2)c)(R3)(
e(C3,w)
e(g1,g2))

c

= e(C3h
−ζ−β, wgx

2)ce(C3, w)−c(R3)(
e(C3,w)
e(g1,g2))

c

81

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

= (e(Ai,wgx
2)

e(C3,w))c(R3)(
e(C3,w)
e(g1,g2))

c

= (e(g1,g2)
e(C3,w))

c(R3)(
e(C3,w)
e(g1,g2))

c

= R3

Under “correctness of the scheme” we should also discuss the open algorithm. In
the open algorithm we recover Ai by calculating

C3/(C
ξ1
1 C

ξ2
2) = (Aih

ζ+β)/(uζξ1vβξ2)

= (Aih
ζ+β)/(hζ+β) = Ai

The next step is to verify e(CTj , w) = e((AiC
ξ1
1 C

ξ2
2)1/tj , td) for each attributes CTj .

They must be equal if Ai used in computing CTj is the same as the one used in calcu-
lating the right hand side of the equation:

e(CTj , w) = e((Ti,jh
ζ+β
j)α, w) = e((Aih

ζ+β)1/tj , td) = e((AiC
ξ1
1 C

ξ2
2)1/tj , td).

After proving correctness of the scheme we shall discuss full anonymity and full trace-
ability.

Theorem 5.3.5. If the linear encryption is IND-CPA secure then the ABGS scheme
is fully anonymous, under the same attribute set, under the random oracle assumption.

In other words, if there is an adversary Adam that breaks the scheme’s full anonymity
then there exists an adversary Eve that breaks into the linear encryption IND-CPA
security. It makes sense to assume anonymity under the same attribute set, otherwise
you can easily distinguish between signatures from attributes owned by each signer.
For instance if user i0 in the challenge has a different set of attributes than i1, then
Adam can know the signer from the list T̄={CT1,...,CTτ} enclosed with the signature.
To prove Theorem 5.3.5, we run the adversarial model defined in Section 5.3.1. We
will assume we have an adversary Adam attacking the ABGS scheme. Let Eve be
the adversary threatening the linear encryptions IND-CPA security. Eve will play a
role of a challenger with Adam. She will make use of his talent to break the IND-
CPA security. When Adam wants to be challenged, he sends i0, i1, a message M ,
an attribute structure Γ and a set =i to Eve. Eve has the values Ai0 , Ai1 since she
is the one who ran the setup. She will give Ai0 , Ai1 as messages to challenge the
IND-CPA security of the linear encryption. She will get back a ciphertext of one of
them, Aib . The ciphertext is in the form C̄ = 〈C1, C2, C3〉, where C1 = uζ , C2 =
vβ, and C3 = Aibh

ζ+β. Eve can calculate CTj = C
α/tj
3 . She can then calculate

82

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

c,=i, sζ , sβ, sx, sδ1 , and sδ2 (Details in Appendix A.1.1). Eve sends Adam the signature
of ib as σb = 〈C1,C2,C3,c,CT1,...,CTµ,sζ , sβ, sx, sδ1 , sδ2 ,=i, td〉. Notice that Eve herself
does not know b. If Adam breaks the ABGS anonymity, he will send Eve the right
value of b. Eve will use it to know whether Ai0 or Ai1 has been encrypted. Therefore,
Eve breaks the IND-CPA security of linear encryption. In Appendix A.1.1 we describe
more details about the proof.

Theorem 5.3.6. If q-SDH is hard on group G1 and G2 then the ABGS scheme is
fully-traceable under the random oracle assumption where q is related to the number of
user n.

In other words, if there is an adversary Adam that breaks the traceability of the scheme
then the q-SDH problem is solved. The comprehensive proof of Theorem 5.3.6 is given
in the Appendix A.2.1. A simplified version will be explained in this section.
In our proof we use the game described in Section 5.3.1, the Forking Lemma (Theorem
3.4.1), and Boneh–Boyen theorem (Theorem 2.2.13). A signature will be represented
as 〈M,σ0, c, σ1, σ2〉. M is the signed message. σ0 = 〈C1, C2, C3, R1, R2, R3, R4, R5〉. c
is the value derived from hashing σ0. σ1 = 〈sζ , sβ, sx, sδ1 , sδ2〉 which are values used to
calculate the missing inputs for the hash function. Finally σ2 = 〈CT1, ..., CTτ ,=i, td〉
the values that depend on the set of attributes in each Signature oracle. Notice σ2 does
not exist in the Forking lemma (Theorem 3.4.1) and the reason is it was introduced in
this thesis is to hold attribute related elements of the signature.
We will run the game in Section 5.3.1 twice. In both simulated runs, Charles is given
an (n) SDH instance, (g̀1, g̀2, g̀

γ
2 , g̀

γ2

2 , ..., g̀γq

2). By applying the Boneh–Boyen’s theorem,
Charles can obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2 and (n− 1) SDH pairs (Ai, xi) which he
will use as the private key bases bsk[i].
The next step is showing how the Forking Lemma can be applied here to prove that
a new SDH pair can be generated, if a forgery exists. The difference between the two
simulated runs is the response to the hash oracle (See Appendix A.2.1). According to
the Forking Lemma, if Adam can find with non-negligible probability a valid signature
〈M,σ0, c, σ1, σ2〉, then with a replay another valid signature 〈M,σ0, c̀, σ̀1, σ2〉 is out-
putted with a non-negligible probability. Recall from the Forking Lemma that c 6= c̀.
We show how we can extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̀, σ̀1, σ2〉 a new SDH tuple.
Let ∆c = c− c̀, ∆sζ = sζ − s̀ζ , and similarly for ∆sβ,∆sx,∆sδ1 , and ∆sδ2 .
Divide two instances of the equations used previously in proving Theorem 5.3.4 where
one instance is with c̀ and the other is with c to get the following:

• Dividing R1/R̀1:

1 = R1

R̀1
= R̄1

`̄R1

= u
sζ C−c

1

u
s̀ζ C−c̀

1

= u
∆sζ

C∆c
1

83

5.3. Attribute Based Group Signature 5. Attribute Authentication Schemes

uζ̃ = C1; where ζ̃ = ∆sζ/∆c

• Dividing R2/R̀2:

1 = R2

R̀2
= R̄2

`̄R2

= v
sβ C−c

2

v
s̀β C−c̀

2

= v
∆sβ

C∆c
2

vβ̃ = C2; where β̃ = ∆sβ/∆c

• Dividing Csx
1 /C s̀x

1 :

C∆sx
1 = C∆cx

1 = uζx∆c = uδ1∆c = uδ1c−δ1c̀ = uδ1c−δ1c̀+rδ1
−rδ1 = u∆sδ1

where ∆sδ1 = ζ̃∆sx because

ζ̃∆sx = (∆sζ

∆c)∆sx =
(

ζ∆c+(rζ−rζ)
∆c

)
(x∆c+ (rx − rx)) = δ1∆c = ∆sδ1

• Dividing Csx
2 /C s̀x

2 :

C∆sx
2 = C∆cx

2 = vβx∆c = vδ2∆c = vδ2c−δ2c̀ = vδ2c−δ2c̀+rδ2
−rδ2 = v∆sδ2

where ∆sδ2 = β̃∆sx because

β̃∆sx =
(

∆sβ

∆c

)
∆sx =

(
β∆c+(rβ−rβ)

∆c

)
(x∆c+ (rx − rx)) = δ2∆c = ∆sδ2

• Dividing (e(g1,g2)/e(C3,w))c

(e(g1,g2)/e(C3,w))c̀ :

(e(g1, g2)/e(C3, w))∆c

= e(C3, g2)∆sxe(h,w)−∆sζ−∆sβe(h, g2)−∆sδ1
−∆sδ2

= e(C3, g2)∆sxe(h,w)−∆sζ−∆sβe(h, g2)−ζ̃∆sx−β̃∆sx

The above equations are similar to the calculation of R̄3 = R3 in the correct-
ness proof.

Let x̃ = ∆sx/∆c and Ã = C3h
−(ζ̃+β̃) we can compute the following:

Recall that (e(g1, g2)/e(C3, w))∆c = e(C3, g2)∆sxe(h,w)−∆sζ−∆sβe(h, g2)−ζ̃∆sx−β̃∆sx

84

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

This implies that e(g1, g2)/e(C3, w)=e(C3, g2)x̃e(h,w)−ζ̃−β̃e(h, g2)−x̃(ζ̃+β̃)

Furthermore the equality e(g1, g2)=e(Ã, wgx̃
2) holds.

Hence we obtain a new SDH pair (Ã, x̃) breaking Boneh–Boyen’s theorem.
The ABGS is fully anonymous and fully traceable under the random oracle assumption.
Finally, we shall comment on the efficiency of the scheme. The private key size, the
public key size and the signature are linearly dependent on the number of attributes
used in creating them. This is not practical if we are to use the system for larger scale.
It will also be nice to have the verifier decide the attribute tree and create a verification
key without the need to contact the authority each time.
Although our proposed scheme implements the major properties we require, we desire
more. This led us to come up with the idea of an AAS scheme that is explained in the
following section.

5.4 Phase II: Attribute Authentication Scheme

As discussed in Section 5.3.4 an ABGS did improve a lot on existing authentication
schemes. Nevertheless, it had drawbacks. It does not achieve all required properties
explained for scenario 5.1.1. Therefore we have proposed a new system referred to as
the Attribute Authentication Scheme (AAS).
An attribute authentication scheme consists of four entities; a central authority (Bob),
an attribute authority (department), a signer (employee) and a verifier (Alice). The
central authority will publish one public key base for the group (Step 1a Figure 5-4)
and this will be used in verifying a signature. The central authority creates many
pairs of private key bases and registration keys to be used in signing messages. Each
member (possible signer) of the group will be given their unique pair (i.e. Bob gives
each employee a pair as shown in Step 1b Figure 5-4). Each member will be using
the registration key to register with an attribute authority (Step 2 in Figure 5-4).
Registering with an authority implies getting a copy of a private attribute key (Step 3a
in Figure 5-4). A set of private attribute keys will then be used in signing a message.
The public key base created earlier will be used by the attribute authority to create
an attribute public key (Step 3b in Figure 5-4). The verifier (Alice) will create a
verification key using the public key base and as many public attribute keys as needed
(Step 4 in Figure 5-4). The verification key describes what attributes the verifier would
like the signer to possess. It will also be used in both signing and verifying processes.
An employee with such qualification (i.e has enough private keys) can then sign a
message (Step 5 in Figure 5-4). The system can have many attribute authorities but
has to have one central authority. The central authority can be an attribute authority

85

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

itself.

Figure 5-4: Attribute Authentication Scheme

5.4.1 Definition

An attribute authentication scheme (AAS) contains a suite of algorithms and protocols
that are executed by the entities (central authority, attribute authority, signer and
verifier). To describe the scheme we define the following algorithms and protocols:

• Setup(k): This algorithm is run by the central authority, it takes a security
parameter k as an input and outputs two sets of parameters, Spri and Spub. The
system parameters Spri is kept by the authority, while Spub is published for all to
see and use.

• M.KeyGen(Spri,Spub): This algorithm is run by the central authority. It takes
the inputs Spri, and Spub. It then generates pairs of private key bases bsk[i] and
registration keys Ai where the pairs are distributed to the members of the group.
Then Spub and Spri are used to generate a public key base w known to all. The
bsk[i] is kept private to the user, while the Ai is given to trusted third parties, as
shown in A.KeyGenpri. Later on, in this chapter, we will show how to replace
this algorithm with a protocol that conceals Ai (Section 5.4.6) from everyone but
the member.

• A.KeyGenpub(Spub,w) : This algorithm is run by the attribute authorities.
Each authority is responsible for one or more attributes and for every attribute j,
the authority creates a corresponding master key tj . It is this key which is used to
create the attribute-related keys. Using the master keys, the public parameters
Spub and public key base w, the authority creates public keys bpkj representing
the attributes it supports. Only the attribute authorities can produce such keys
since it requires the knowledge of tj .

• A.KeyGenpri(Ai, j,RL) : This algorithm is run by the attribute authorities. In
this algorithm member i registers with his key Ai to obtain a special private key

86

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

Ti,j . Due to the fact that the attribute authority is supposed to be independent
from the central authority it is best to check the user against a list RL, where
RL contains all registration keys Ai of all users which have been revoked. If user
has not been revoked, the private attribute key is calculated using the attribute
authority’s master key tj . Member i will be then using his private key gsk =
〈bsk[i],Ai, Ti,1,...,Ti,µ〉 to sign. We should point out that not all Ti,j have to be
generated by the same attribute authority and that each signature will have a
different set of Ti,j depending on the verifier’s request. We will exchange this
algorithm with a protocol that hides Ai from the attribute authority and gets the
same output of this algorithm (Section 5.4.6).

• Verifign(Ui(gsk,M),V(M, B̄,w)) : This stage is a protocol between the verifier
V and the signer Ui. The verifier takes as an input B̄ = (bpk1,...,bpkm) and a
message M to create a verification key D to be sent to the group. The signer
uses his private key gsk, the message M and D as inputs to an algorithm Sign

that creates a signature σ that corresponds to D as follows σ = Sign(gsk,M,D).
Ui sends σ to V and the verifier runs an algorithm Verify using σ, M , D and w
as inputs. The algorithm checks the validity of the signature and whether or not
the signer is revoked as follows V erify(σ,M,D,w,RL) = {Accept, Reject}.

• Revoke(Ai,RL) : This algorithm is run by the central authority. It adds a
registration key Ai of revoked users to the revocation list RL.

• ChkRvk(σ,RL) : This algorithm takes a signature σ and a revocation list RL. It
returns i if the user is revoked and on the list otherwise it returns −1. ChkRvk
is an algorithm run by either the verifier or the central authority. The index
returned does not mean much to the verifier. The verifier only wants to know
whether the user has been revoked or not. So if the value of the index is anything
other than −1 the user has been revoked. If ChkRvk is run by the central
authority then the index refers to a user and that will help in tracing signatures
to users as explained in the following Open algorithm.

• Open(σ,FRL) : This algorithm is meant for tracing a signer in case of a dispute
and revoking his anonymity. FRL is a list created by the central authority who
stores the value Ai for all members of the groups and adds all members (while
maintaining indexes) to that fake revocation list FRL. It runs ChkRvk(σ, FRL)
which returns an index i. Since all members belong to FRL the value of i must
reveal the identity of the signer. Open is not a totally new algorithm because it
uses ChkRvk on a fake list FRL.

87

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

5.4.2 Security Notions

Like any other cryptographic scheme before we prove security of an AAS scheme we
have to ensure correctness.

Definition 5.4.1. (Correctness of an AAS scheme): For all keys gsk generated cor-
rectly, every signature generated by a member i verifies as valid unless the user has been
revoked or the member did not have enough attributes. Every valid signature should
trace to a member of the group. In other words,
V erify(Dv, w,M,RL, Sign(M,Ds, gsk)) = valid;
where ChkRvk(Sign(M,Ds, gsk), RL) = −1, Ds = Dv

and Open(Sign(M,Ds, gsk)) = i;
Otherwise V erify(...) = not valid;

The next stage is to define adversarial models that will include security notions men-
tioned in Section 5.1. In the adversarial model we assume we have an adversary that
interacts with a hypothetical challenger. We refer to the adversary as Adam and the
challenger as Charles. Three adversarial models are enough to cover all security no-
tions. We refer to them as the “full anonymity” model, the “full traceability” model,
and the “unforgeability of attributes” model. The three models allow Adam to query
certain oracles run by Charles. In the full anonymity and full traceability game model
we assume that the attribute authority is corrupted and we give the adversary the
ability to choose the master keys he would like to be challenged on.
Before we define the adversarial models we list the oracles:

• USK Oracle: To query this oracle the adversary sends the challenger an index
i in order to find the user’s private key base bsk[i] and registration key Ai. The
challenger will send the pair (bsk[i], Ai) to the adversary. Note that since the
adversary is given the ability to choose the attribute master keys he would like
to be challenged on, he can create private attribute keys from whatever private
key bases he has.

• Signature Oracle: To query this oracle the adversary sends the challenger a
verification key he createdD, a messageM and an index i. The adversary requires
the signature of member i on message M using D. The challenger sends σ

• Revoke Oracle: To query this oracle the adversary sends the challenger an
index i. The challenger adds Ai to the list RL. The list RL is public and the
adversary can access it (Note that the Revoke oracle replaces the Open oracle
in Section 5.3 and 5.5. This is a logical consequence of the fact that the open
algorithm depends on the revocation technique as explained in the definition).

88

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

• AttPriKey Oracle: To query this oracle the adversary sends a registration key
Ai to the challenger together with an index of the attribute j. The output of this
query is a private attribute key Ti,j .

• AttMasKey Oracle: To query this oracle the adversary sends an index j to the
challenger. The challenger responds with sending the output tj .

Adam initializes both the traceability and anonymity game models by deciding the
universal set of attributes U in which he would like to be challenged upon. Assume U
is of size m and contains a list of master keys tj that will be used. Both Charles and
Adam have access to U .
AAS Full Anonymity: We say that an AAS Scheme is fully anonymous under
a specific set of attributes, if no polynomially bounded adversary Adam has a non-
negligible advantage against the challenger Charles in the following AAAS game:

• AAAS.Setup: Charles plays the role of the central authority. He runs the al-
gorithms Setup, and M.KeyGen to produce the systems Spub, and Spri. Charles
also generates the n private key bases bsk[i] and n registration keys Ai. He sends
to Adam parameters Spub. Finally, both Adam and Charles generate m public
attribute keys 〈bpk1,...,bpkm〉.

• AAAS.Phase (1): Charles runs the three oracles, USK, Signature oracle, and
Revoke oracle as explained above. Adam can query these oracles to obtain any
information he thinks he will require in breaking the scheme.

• AAAS.Challenge: Adam asks to be challenged on a message M , two indexes
i0,i1, and verification key D. Charles responds back with a signature σb, where
b ∈ {0, 1}. The signer can be either i0 or i1. Both i0, i1 should not have been
queried in the Revoke oracle or USK oracle, however it can be queried on the
Signature oracle.

• AAAS.Phase (2): This stage is similar to Phase 1. Except that (i0, i1) should
not be sent to the Revoke nor the USK oracles.

• AAAS.Output: Adam outputs a guess b̄ ∈ {0, 1}. If b̄ = b, Adam wins the
game.

The adversary has been given strong attack capabilities by getting access to oracles
such as USK, Revoke and Signature. Adam does not need to query oracles AttMasKey
and AttPriKey because he obtains all master keys tj . He is not allowed to query both
i0, and i1 in the Revoke oracle or the USK oracle because that will give away the
identities. If one of them is revoked (ChkRvk is used) or if he has the private key
base then Adam can distinguish the signature and identify the signer. However, Adam

89

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

can query signatures of (i0, i1) and still his advantage in guessing the signer should
be negligible. This implies that the signatures can not be linked and the advantage
of winning the game is AdvAAAS(n, k) = Pr[b = b̄] − 1/2, where n is the maximum
bound of the numbers of members and k is the security parameter used for setting up
the system.

Definition 5.4.2. Full Anonymity:
A scheme is fully anonymous if for all polynomial time adversary Adam, AdvAAAS(n, k) <
ε and ε is negligible.

AAS Full Traceability: We say that our AAS scheme is traceable if no polynomi-
ally bounded adversary Adam has a non-negligible advantage against the challenger
Charles in the following TAAS game:

• TAAS.Setup: Charles plays the role of the central authority as done in the
setup stage of the anonymity game model mentioned earlier. He runs the algo-
rithms Setup, and M.KeyGen to produce Spub, and Spri. Charles also generates
n private key bases bsk[i] and n registration keys Ai. Spub are sent to Adam and
Adam is given all registration keys Ai. Finally, both Adam and Charles generate
m public attribute keys 〈bpk1,...,bpkm〉.

• TAAS.Queries: Charles runs two oracles: USK oracle, and Signature oracle.
Adam queries them as described earlier.

• TAAS.Output: Adam asks to be challenged on a message M which he sends to
Charles. Charles calculates a new D and sends it back to Adam. Adam replies
with a signature σ. Charles verifies the signature. If it is not valid return 0. If it
turns out to be a valid signature Charles tries tracing it to a signer. If it traces
to a signer in which Adam did not query before or if it traces to a nonmember
then Adam wins the game. Charles returns 1 if Adam wins else 0 is returned.

Note that Adam does not have to query the Revoke oracle. He has a more power-
ful capability and that is the list of all registration keys. Adam can run the revoke
algorithm himself. Adam does not need to query oracles AttMasKey and AttPriKey
because he obtains all master keys tj . Recall full traceability includes unforgeability.
One can reduce the challenge to produce a valid pair of message and signature, where
the message was not queried in phase 1. The adversarial model with such reduction
is the definition of unforgeability. Therefore full traceability implicitly proves unforge-
ability. Additionally a strong formalization of coalition resistance is obtained in this
game since this can be defined with a similar game where the adversary is not given
the registration keys. If we refer to the returned value as Exp then the advantage of
winning the game is notated as AdvTAAS(n, k) = Pr[Exp = 1].

90

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

Definition 5.4.3. Full Traceability:
A scheme is fully traceable if for all polynomial time adversary Adam, AdvTAAS(n, k) <
ε and ε is negligible.

AAS Unforgeability of Attributes: We say that our AAS scheme is Attribute-
Unforgable if no polynomially bounded adversary Adam has a non-negligible advantage
against the challenger Charles in the following AFAAS game:

• AFAAS.Setup: Charles plays the role of the central authority and all attribute
authorities in the system. He runs the algorithms Setup, and M.KeyGen to
produce Spub, and Spri. Charles also generates n private key bases bsk[i] and
n registration keys Ai. Charles can produce the set of all attributes in the
system since he is playing the role of all attribute authorities. He generates a set
of master keys t1, ..., tm. He creates all public attributes needed bpk1, ..., bpkm.
Adam is given Spub, the list of registration keys Ai, and the set of attribute public
keys bpkj . Charles keeps the list of private keys bsk[i], parameters Spri and the
list of master keys tj .

• AFAAS.Phase (1): Charles runs the oracles Signature, USK, AttPriKey and
AttMasKey. Adam can query these oracles to obtain extra information he may
require for the attack. Adam does not need the Revoke oracle since he has all
registration keys Ai and can trace signatures using the open algorithm.

• AFAAS.Challenge: Adam sends a tree Γ1, user l and attribute z in which he
would like to be challenged on. Charles replies with D for a tree Γ2 where Γ2

has two subtrees the first is Γ1 and the other is based on tz. The threshold value
of the root in Γ2 is 2. The challenge condition is that user l has not been queried
in AttPriKey for the attribute z. Furthermore the challenged index z should
not have been queried in AttMasKey. These two conditions are reasonable as
violating them would contradict the purpose of the game.

• AFAAS.Phase (2): This phase is similar to Phase 1 as long as the challenge
conditions are not broken.

• AFAAS.Output: Adam outputs a signature σ for the user l on the verification
key D. If that signature is valid then the adversary wins and Charles outputs 1
otherwise Adam loses and Charles outputs 0.

In this game Adam is given strong attack capability. He can trace any signature since
he has all registration keys. He can corrupt users since he can query the USK oracle.
He can corrupt attribute authorities by obtaining the master keys with the AttMasKey
oracle. The challenge is to create a signature using an attribute z that has not been
queried in AttMasKey and a signer l that does not have the attribute private key for z.

91

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

If Adam can output a valid signature that proves that user l has attribute z he would
win the game. If we refer to the returned value as Exp then the advantage of winning
the game is notated as AdvAFAAS(n, k) = Pr[Exp = 1]

Definition 5.4.4. Unforgeability of Attributes:
An AAS scheme is attribute-unforgeable if for all polynomial time adversary Adam,
AdvAFAAS(n, k) < ε and ε is negligible.

5.4.3 Construction of our AAS Scheme

In this section we will construct our AAS scheme based on the work done by Boneh and
Shacham [25]. We now go through the algorithms defined in Section 5.4.1 and show
how we can build them. We will use the abbreviation AASC to distinguish between
algorithms here and in other sections of the thesis.

• AASC.Setup(k): Consider a bilinear pair e : G1×G2 → G3 where (G1, G2) have
a computable isomorphism ψ from G2 to G1 and all three groups G1, G2 and G3

are multiplicative and of prime order p. Suppose that the q-SDH problem is hard
to solve in G1 and G2 (See Definition 2.2.11 and Assumption 2.2.12) and the deci-
sion linear problem (Definition 2.2.14) is hard to solve in G2. Select a hash func-
tion H : {0, 1}∗ → Z∗

p. Select a hash function H0 with range G2
2. Let g2 ∈R G2

and then set g1 = ψ(g2). Let γ ∈R Z∗
p, then Spub = 〈G1, G2, G3, e,H,H0, g1, g2〉

and Spri = γ.

• AASC.M.KeyGen(Spri,Spub) : Using γ generate for each user i a private key
base bsk[i] = 〈Ai, xi〉. All bsk[i] should be SDH pairs, where xi ∈R Z∗

p and
Ai = g

1/(γ+xi)
1 ∈ G1. Let Ai be the registration key and compute the public key

base as w = gγ
2 .

• AASC.A.KeyGenpub(Spub): The public key for attribute j is bpkj = wtj =
g

γtj
2 , where tj ∈R Z∗

p

• AASC.A.KeyGenpri(Ai, j,RL): User i wants to register attribute j. It con-
tacts the attribute authority in charge, which in turn checks the revocation list
RL. If the member i is not on the list the authority calculates Ti,j = A

1/tj
i

and gives this information to user i. After running this algorithm with differ-
ent attribute authorities the user i should obtain a private key gsk = 〈Ai, xi,
Ti,1,...,Ti,µ〉.

92

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

• AASC.Verifign(Ui(gsk,M),V(M,B)) : The protocol runs as follows:

1. V has collected all public key bases it needs B = (bpk1,...,bpkκ). V then
chooses an element α ∈R Z∗

p and decides a Γ. Finally, V calculates D =
TCreate(Γ, α,B) = (D1,...,Dκ) (Section 5.2) and sends to Ui.

2. Ui in this stage runs the algorithm Sign(M, gsk,D) as follows:
Calculate Froot = TV erify(D,Υi, T̄) (Section 5.2) where T̄ = {T β

i,1,...,T
β
i,κ},

β ∈R Z∗
p and Υi is the set of attributes the user decides to use when signing.

Ui selects an r ∈R Z∗
p to obtain H0(D,M, r) = (ū, v̄). Next Ui computes

the images u = ψ(ū) and v = ψ(v̄). Let ξ, β, rξ, rx, and rδ ∈R Z∗
p.

Following on from this Ui computes C1 = uξ, C2 = Aiv
ξ, C3 = e(vξ, w)β

and C4 = wβ.

Let δ = xiξ, sξ = rξ + cξ, sx = rx + cxi and sδ = rδ + cδ.

Then compute R1 = urξ ; R3 = Crx
1 u−rδ .

R2 = e(C2, g2)rxe(v, w)−rξe(v, g2)−rδ

Compute c = H(M, r,C1, C2, C3, C4, R1, R2, R3),

Finally, Ui sends σ = (r, C1, C2, C3, C4, c, sξ, sx, sδ, Froot) to V. Note that
the trapdoor to prove the satisfaction of the tree Γ is td = (C3, C4) (Section
5.2).

3. In this stage the verifier V calculates V erify(σ,M,D,w,RL) as follows:
Calculate H0(D,M, r) = (ū, v̄) then u = ψ(ū), and v = ψ(v̄). The verifier
derives R1,R2 and R3 by calculating

R̄1 = usξ/Cc
1, R̄3 = Csx

1 u−sδ

R̄2 = e(C2, g2)sxe(v, w)−sξe(v, g2)−sδ(e(C2,w)
e(g1,g2))

c.

If c 6= H(M, r,C1, C2, C3, C4, R̄1, R̄2, R̄3) then reject signature.

V verifies the attributes by checking F 1/α
rootC3 = e(C2, C4).

93

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

V ensures AASC.ChkRvk(σ,RL) returns −1.

The protocol ends with V verifying the signer is a member of the group that
satisfies V’s requirements and is not revoked.

• AASC.ChkRvk(σ,RL) : This algorithm takes a signature σ and a revocation
list RL. For each registration key on the list A∗ check that e(C2/A

∗, ū) = e(C1, v̄).
If it is equal then return the index i indicating user is revoked. Otherwise if the
equality does not hold for any of the elements in the list return −1 indicating
member is not revoked.

Algorithms Revoke(Ai,RL) and Open(σ,FRL) are exactly as described in Sec-
tion 5.4.1 and do not need to be explained further.

5.4.4 General Discussion of the AAS Scheme

In this section we give a general discussion about the AAS scheme proposed in Sec-
tion 5.4.1. An AAS scheme is anonymous and unlinkable once proven secure under
full anonymity definition. It is also unforgeable, coalition resistant, and traceable once
proven secure under the full traceability definition and the attribute unforgeability
model. The idea of attribute authorities enables separability in the scheme. Each at-
tribute authority creates its key independently. The central authority is the only entity
capable of tracing signatures to members of the group. The verifier does not have to
contact the central authority each time he has changed his policy (i.e. Γ) unless he
does not have the public attribute key bpkj for an attribute he requires. He is the
one who creates the verification key. The scheme covers all properties required in Sec-
tion 5.1. Anyone can verify a signature belongs to a member of the group but only
the verifier can know whether or not the signer satisfies the attribute tree requested in
that signature. This is the outcome of enabling the verifier to create the D rather than
download them from a database as done in Section 5.3. The verification key is linearly
dependent on the number of attributes used in creating it. It would have been nice if
we managed to hide the verifier’s request of attributes from those who do not possess
enough attributes.

5.4.5 Analysis of the Construction of the AAS Scheme 5.4.3

Naturally, the construction inherits the advantages and disadvantages of the general
scheme. We shall discuss more specific properties for the construction. We start by
discussing the correctness of the scheme.

Theorem 5.4.5. The construction in Section 5.4.3 is correct according to defini-
tion 5.4.1.

94

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

We will start the proof by checking that R̄1 = R1, R̄2 = R2, and R̄3 = R3. If they
equalities hold then c = H(M, r,C1, C2, C3, C4, R̄1, R̄2, R̄3).

R̄1 = usξ/Cc
1 = (urξ+cξ)/(ucξ) = urξ = R1

R̄3 = Csx
1 u−sδ = uξrx+cxiξu−rδ−cxiξ = uξrxu−rδ = R3

R̄2 = e(C2, g2)sxe(v, w)−sξe(v, g2)−sδ

(
e(C2,w)
e(g1,g2)

)c

= e(C2, g2)rx+xice(v, w)−(rξ+ξc)e(v, g2)−(rδ+xiξc)
(

e(C2,w)
e(g1,g2)

)c

= e(C2, g2)xice(v, w)−ξce(v, g2)−xiξc
(

e(C2,w)
e(g1,g2)

)c
(R2)

=
(

e(C2,g2)xi+γ

e(v,g2)(γ+xi)ξe(g1,g2)

)c
(R2)

=
(

e(g
1/(xi+γ)
1 vξ,g2)xi+γ

e(v,g2)(γ+xi)ξe(g1,g2)

)c

(R2) = R2

The second step is to prove the attribute authentication is correct too. In other words
we need to justify the equality of F 1/α

rootC3 = e(C2, C4).
Recall Froot = e(Aβ

i , w)α (Section 5.2). The prove is as follows:
F

1/α
rootC3 = e(Aβ

i , w)e(vξ, w)β = e(Aiv
ξ, w)β = e(C2, C4)

The final step in proving correctness is to show that the scheme opens the signature
correctly. This is done by proving the equality e(C2/A

∗, ū) = e(C1, v̄) holds when
A∗ = Ai as shown below:
e(C2/A

∗, ū) = e(C2/Ai, ū) = e(vξ, ū) = e(uξ, v̄) = e(C1, v̄).
After proving correctness of the scheme we opt to prove the scheme is fully anonymous,
fully traceable and attribute-unforgeable. For the comprehensive proof see Appendix
A.1.2, A.2.2 and A.3.1. In this section we give a general idea on of the proof.

Theorem 5.4.6. If the decision linear assumption holds in group G2 then the AAS is
anonymous under the random oracle assumption.

Let Adam be an adversary that is attacking the AAS scheme’s anonymity. Eve is the
challenger in the anonymity game, she is also an adversary that is trying to attack the
decision linear assumption. Charles is the challenger of Eve. Charles gives Eve the
tuple 〈u0,u1,u2,h0 = ua

0,h1 = ub
1,Z〉 where u0,u1,u2 ∈ G2 and a, b ∈ Z∗

p. Eve’s challenge
is to decide whether Z is random or Z = ua+b

2 . A simulation run of the adversarial
anonymity game takes place between Eve and Adam. In the setup of the game, Eve
creates the system parameters Spub and Spri. She creates n−2 private key bases bsk[i].
The missing two will be assumed to be Ai0 = ZW/ua

2 and Ai1 = Wub
2 for a random

W ∈ G2. If Z = ua+b
2 then Ai0 = Ai1 . Notice that Eve does not know bsk[i0] nor

95

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

bsk[i1] but she will pretend she does if they are ever queried by the Signature oracle.
Eve will create the signature as follows:

• If i0 is queried do the following: Eve picks a random s, t, l, β ∈ Z∗
p and makes the

following assignments:
C1 = h0u

s
0; C2 = ZWus

2h
t
0u

st
0 ; ū = ul

0; v̄ = (u2u
t
0)

l.
Let ξ = (a+ s)/l ∈ Z∗

p, then C1 = ūξ and C2 = Ai0 v̄
ξ.

Eve assigns C3 = e(ZW,w)β and C4 = wβ. She calculates Froot by replacing the
recursive algorithm SignNode with Fake-SignNode, which is described below:

Fake-SignNode =


If (j ∈ Γ); return e((us

2h
t
0u

st
0)tj , Dj)β

=e(us
2h

t
0u

st
0 , w)βqj(0)

Otherwise return ⊥

Froot in this case will equal e(us
2h

t
0u

st
0 , w)βα. Notice that F

1/α
root.C3 = e(C2, w)β. If

β1, β2 are random elements in Z∗
p, then it is hard to distinguish between the follow-

ing two triples: 〈e(vξ, w)β1 , wβ1 , e(Ai, w)β1α〉 and 〈e(ZW,w)β2 , wβ2 , e(us
2h

t
0u

st
0 , w)β2α〉.

• If i1 is queried do the following: Eve picks a random s, t, l, β ∈ Z∗
p and makes the

following assignments:

C1 = h1u
s
1; C2 = Wht

1u
st
1 /u

s
2; ū = ul

1; v̄ = (ut
1/u2)l

Let ξ = (b+ s)/l ∈ Z∗
p. Then C1 = ūξ and C2 = Ai1 v̄

ξ.

Eve assigns C3 = e(W,w)β and C4 = wβ. She calculates Froot by replacing the

recursive algorithm SignNode with Fake-SignNode which is described below:

Fake-SignNode =


If (j ∈ Γ); return e((ht

1u
st
1 /u

s
2)

tj , Dj)β

=e(ht
1u

st
1 /u

s
2, w)βqj(0)

Otherwise return ⊥

Froot in this case will equal e(ht
1u

st
1 /u

s
2, w)βα. Notice that F

1/α
root.C3 = e(C2, w)β.

If β1, β2 are random elements in Z∗
p, it is hard to distinguish between the triples:

〈e(vξ, w)β1 , wβ1 , e(Ai, w)β1α〉 and 〈e(W,w)β2 , wβ2 , e(ht
1u

st
1 /u

s
2, w)β2α〉

Eve chooses r, c, sξ, sx, sδ ∈R Z∗
p. Eve sets the values

R1 = usξ/ψ(C1)c, R3 = ψ(C1)sxψ(u)−sδ , and
R2 = e(ψ(C2), g2)sxe(ψ(v̄), w)−sξe(ψ(v̄), g2)−sδ (e(ψ(C2), w)/e(g1, g2))

c.
Note that it is hard to distinguish between a valid signature and the signatures created
by Eve for i0 and i1. If these elements are queried in other oracles Eve may abort. In
the appendix we show how that has a low probability of happening.
Assume Adam can break the anonymity of the scheme. This assumption implies Eve
always guesses b correctly when Z is not random because a valid signature is simulated.

96

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

Otherwise, Eve has a probability of 1/2 to guess b. Therefore, one would expect that
if Adam has an advantage in breaking the anonymity of the scheme Eve will have an
advantage in breaking the linear challenge. The appendix A.1.2 has more details of the
proof.
Following the proof of anonymity we have to prove full traceability:

Theorem 5.4.7. If q-SDH is hard on groups G1 and G2 then the AAS is fully traceable
under the random oracle where q is related to the number of users n.

For proving full traceability we use the Forking Lemma (See Definition 3.4.1) as done
for proving the full traceability of the ABGS (See Section 5.3.5).
Let Adam be a forger of any type in which the security model succeeds with probability
ε̃. A signature will be represented as 〈M ,σ0,c,σ1,σ2〉, M is the signed message, σ0 = 〈r,
C1, C2, C3, C4, R1, R2, R3〉, c is the value derived from hashing σ0, and σ1 = 〈sξ, sx, sδ〉
which are values used to calculate the missing inputs for the hash function. Finally,
σ2 = Froot the value that depends on the set of attributes in each Signature oracle.
We will run the game in Section 5.4.1 twice. In both simulated runs, Charles is given
an (n) SDH instance, (g̀1, g̀2, g̀

γ
2 , g̀

γ2

2 ,...,g̀γn

2). By applying the Boneh–Boyen theorem,
Charles can obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2 and (n− 1) SDH pairs (Ai, xi) which he
will use as the private key bases bsk[i].
We run the adversarial traceability game twice with difference between the two runs
being the response to the hash oracle (See Appendix A.2.2). According to the Forking
Lemma if Adam can find a valid signature 〈M,σ0, c, σ1, σ2〉 in the first run with a
non-negligible probability, then it can create 〈M,σ0, c̀, σ̀1, σ2〉 in the second run with
the same random elements but a different hash oracle. We will use the signature
〈M,σ0, c, σ1, σ2〉 resulting from the first round and signature 〈M,σ0, c̀, σ̀1, σ2〉 outputted
in the second to create a new SDH pair. Recall from the Forking Lemma that c 6= c̀.
Let ∆c = c− c̃, and ∆sξ = sξ − s̃ξ, and similarly for ∆sx, and ∆sδ.
Divide two instances of the equations used previously in proving correctness of the
scheme. One instance with c̃ and the other with c to obtain the following:

• Dividing Cc
1/C

c̃
1 = usξ/us̃ξ we get

uα̃ = C1; where ξ̃ = ∆sξ/∆c

• Dividing Csx
1 /C s̃x

1 = usδ/us̃δwill lead to
∆sδ = ξ̃∆sx

• Dividing (e(g1, g2)/e(C2, w))∆c will lead to
e(C2, g2)∆sxe(v, w)−∆sξe(v, g2)−ξ̃∆sx

Letting x̃ = ∆sx/∆c we get e(g1, g2)/e(C2, w) = e(C2, g2)x̃e(v, w)−ξ̃e(v, g2)−x̃ξ̃ which
can be rearranged as e(g1, g2) = e(C2v

−ξ̃, wgx̃
2). Let Ã = C2v

−ξ̃ and we get e(Ã, wgx̃
2) =

e(g1, g2). Hence we obtain a new SDH pair (Ã, x̃) breaking Boneh –Boyen theorem (See

97

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

Theorem 2.2.13).
. We should prove the ABGS scheme attribute unforgeable.

Theorem 5.4.8. Breaking the Unforgeability of Attributes in the AAS construction is
as hard as solving the DLP.

Our approach in proving that is very similar to the proof in Section 5.2. We run the
adversarial game model and then list all possible information Adam may obtain. We
prove that with such a list Adam can not create the element Froot in the signature
unless the DLP is broken. Appendix A.3.1 explains the details of the proof.
Finally, we need to analyze efficiency of the AAS scheme. The main highlight of
the efficiency of the construction is the signature’s size. Unlike the ABGS where the
signature was linearly dependent on the number of attributes, the AAS construction
is of a constant size. Compared to Boneh and Shacham’s group signature scheme the
signature size in the AAS scheme has increased with three elements only and they are
Froot, C3, and C4.

5.4.6 Attribute Exchange Protocols

Previously, in the game models of full anonymity and traceability, we assumed the
attribute authority is dishonest by giving Adam the privilege of creating the master
keys in the initialization stage of the games. However, in real life, we need the signer
to be able to verify that the attribute private keys he obtains are valid and will help in
signing. Furthermore, he needs to verify that the attribute public key is accepted by
everyone in the system as valid verification keys.. In this section we add two further
protocols which will help establish that. We start with defining what we mean by
“Honestly Generated Attribute Keys”.

Definition 5.4.9. (Honestly Generated Attribute Public Keys): The public attribute
key is “generated honestly” if the attribute authority can not produce it or change it
without the knowledge of the central authority.

Definition 5.4.10. (Honestly Generated Attribute Private Keys): The private at-
tribute key is “generated honestly” if the member can verify its correctness with an
honestly generated public attribute key and the members’ registration key.

To improve our scheme we add two protocols the APK and the ASK. We start with
defining these protocols and then we explain how these protocols work with our con-
struction in Section 5.4.3. The protocols are defined as follows:

• APK(CA : AAj): This protocol runs between the attribute authority AAj and
the central authority CA. It takes no input since all calculations are done by
choosing random elements. At the end of the protocol the central authority
should obtain bpkj and the attribute authority should obtain tj .

98

5.4. Attribute Authentication Scheme 5. Attribute Authentication Schemes

• ASK(AAj(tj) : Ui(gsk)): This protocol runs between the attribute authority
AAj and the user Ui. The inputs are the master key of the attribute tj and the
users private key gsk. At the end of the protocol the attribute authority should
have authenticated the user and the user should get Ti,j without revealing the
registration key Ai to AAj .

Attribute Public Key Exchange Protocol (APK): This protocol is between the
central authority CA and attribute authority AAj . It authenticates the attribute au-
thority to the central authority. It guarantees that the attribute authorities generate
the master key honestly. Therefore we replace the A.KeyGenpub algorithm with a in-
teractive protocol. This protocol is a 6-move key generation protocol adopted from
Groth’s work in [70]. The procedure is as follows:

1. AAj picks a random a, b ∈ Z∗
p and c ∈ Z∗

p. AAj then sends A = wa, B = wb, and
C = wc to CA.

2. CA picks d, e ∈ Z∗
p and sends DE = wdCe to AAj

3. AAj picks f ∈ Z∗
p and sends it to CA.

4. CA sends e, d to AAj .

5. AAj checks DE = wdCe. If the check passes calculate tj = a+ d+ f . Then send
z = (d+ f)a+ b mod p and c to CA.

6. CA checks C = wc and Ad+fB = wz and output bpkj = Awd+f .

Note that our scheme does not deal with the honesty of the AAj but it guarantees
honesty when generating the master key. We will assume some form of standard au-
thentication occurred before the protocol started. Therefore throughout this protocol
our CA is agreeing on the master key used by the AAj but without revealing the key.

Attribute Private Key Exchange Protocol (ASK): This protocol is between
the attribute authority AAj and a member of the group Ui. The purpose behind the
protocol is to authenticate the member before giving him a private attribute key. Ear-
lier we described the procedure for obtaining attribute private keys by explaining the
algorithm A.KeyGenpri. This can be replaced with the ASK protocol that runs as
follows:

1. The attribute authority may want to verify some information about the member
before giving him an attribute.

99

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

2. The member Ui and the attribute authority AAj run the protocol
V erifign(Ui(gsk,M),AAj(M,B)) where the value of M is not significant to the
protocol and can be any random message.

3. From the V erifign protocol AAj obtains the signature,
σ = (r,C1,C2,C3,C4,c,sξ,sx,sδ).

4. AAj attempts to verify the signature. If it is valid AAj sends E = C
1/tj
2 and F =

v1/tj back. Note that v is known to AAj because r is known (See Section 5.4.3).

5. Ui calculates his attribute private key Ti,j = E/F ξ = C
1/tj
2 /vξ/tj = (A1/tj

i vξ/tj)/vξ/tj =
A

1/tj
i .

6. Ui verifies Ti,j is correct by checking e(Ti,j , bpkj) = e(Ai, w).

Note that the attribute authority does not know the attribute private key of the user
since it can not calculate it from C2. It also does not know the registration key either
because it is coded in C2.
Protocols ASK and APK ensure that Definition 5.4.9 and 5.4.10 holds.

Claim 5.4.11. The ASK protocol ensures honesty of the attribute private key gener-
ation as defined in 5.4.10 and APK protocols ensures honestly of attribute public key
generation as defined 5.4.9.

We prove the claim in two steps. Step one is to prove the attribute public key is gen-
erated honestly and the second step is proving that attribute private key is generated
honestly. To generate the attribute public key we used the APK protocol. This pro-
tocol has perfect correctness and assuming the discrete logarithm problem is hard it is
possible to black box simulate both the AAj and CA. The reader is referred to [70] for
the full proof.
This leaves us with proving the private attribute key is generated honestly. Creating
this key was achieved using the ASK protocol between Ui and AAj . Assuming that
the AAS scheme is fully traceable, and σ obtained in the third step of the protocol
(V erifign) verifies, then the pair (C2, v) must be created honestly. AAj calculates
C

1/tj
2 , v1/tj which is impossible to do without the value of tj . In the sixth step of the

protocol Ui verifies that tj used in calculating Ti,j is the same as tj used in calculating
bpkj . Ui can trust that bpkj was created honestly using the APK protocol. Therefore
he can trust that Ti,j is honestly created too.

5.5 Phase III: Dynamic Attribute Based Authentication

Schemes

A Dynamic Attribute based Authentication Scheme (DAAS) is an improved AAS
scheme. In our previous design of an AAS scheme the attribute authorities were not

100

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

trusted and we had methods to judge their honesty. On the other hand, the central
authority had a major control over the system. It created the private keys and traced
the signatures in order to revoke anonymity. Given such powers central authority can
impersonate the signers by using their private keys and therefore misuse the ability to
issue keys. In this phase we separate the responsibility of tracing and issuing keys so
that a different authority is in control of each job. We also enable the member to choose
part of his private key so that only he can sign but if he misbehaves his signature is
still traceable.

In a DAAS system we have six entities a signer, a verifier, an attribute authority,

Figure 5-5: Dynamic Attribute based Authentication Scheme

a central authority, an open manager and an issuer manager. The central authority
creates a public key base known to all other entities, an issuer key and a tracing key.
The issuer key is given to the issuer manager and is used in creating signing keys (Step
1a in Figure 5-5). The tracing key is given to the open manager and is used in tracing
signatures (Step 1b in Figure 5-5). The public key base is used by different entities for
different reasons. Attribute authorities use it to create an attribute public key (Step 1c
in Figure 5-5) while verifiers use it in the verification process (Step 1d in Figure 5-5). A
join protocol is executed between users and the issuer manager (Step 2 in Figure 5-5).
During that protocol a private key base and a registration key is created for the user
such that the issuer has enough information about the user to help the open manager
to trace signatures. However, no one other than the user (possible signer) will know

101

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

the full private key. The issuer manager sends the registration key to the open manager
to add the new member to the list of possible signers when tracing a signature (Step
3 in Figure 5-5). Now that the signer has his private key base, he is ready to register
and obtain attribute private keys. He sends his registration key to the authority which
gives him in return an attribute private key (Step 4 and 5a in Figure 5-5). The veri-
fier collects all attribute public keys he needs and uses them together with the public
key base to generate a verification key (Step 6 in Figure 5-5). That key is sent to all
potential signers and any one with enough attribute private keys can sign (Step 7 in
Figure 5-5). If the verifier doubts the signature he can ask the open manager to trace
it (Step 8 in Figure 5-5). The open manager should be able to send a proof back to
the verifier that a certain user did actually sign and that he as an open manager is not
framing the wrong user (Step 9 in Figure 5-5). The verifier can verify the signature
and decide whether he accepts or rejects it. All these steps do not need to be executed
every time a signature is sent. The steps that are repeated constantly are Steps 6 and
7 in Figure 5-5.

5.5.1 Definition

The dynamic attribute based authentication scheme is a collection of algorithms and
protocols that are executed by the entities (signer, verifier, central authority, attribute
authority, open manager and issuer manager). We define the scheme by explaining
these algorithms or protocols as follows:

• D.KeyGen(k1) : This algorithm is run by the central authority. It uses the
security parameter k1 for generating three keys. The issuer key isk that is given
to the issuer manager. The tracing key tk given to the open manager. The
general public key gpk known to all.

• D.U.KeyGen(k2) : This algorithm is run by the user. Using a security param-
eter k2 the user generates a user public key upk[i] and private key usk[i]. The
security parameters k1 and k2 are not logically connected, though it might be
wise to choose them together. The decision of k1 will affect the full anonymity
and full traceability games defined later in Section 5.5.2. On the other hand, the
parameter k2 should be chosen so that the pair (upk[i], usk[i]) can be used in an
unforgeable signature scheme. That signature scheme will be used in the D.Join
protocol.

• D.Join(Iss(isk) : Ui(upk[i],usk[i])) : This is a protocol that is followed by the
issuer manager Iss and a user Ui. The user Ui uses the keys generated in
D.U.KeyGen as inputs to the protocol and Iss uses the issuer key isk as an
input. The result of the protocol is a private key base known to the user only

102

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

bsk[i] and a registration key Ai saved in a database accessible by the open man-
ager.

• D.A.KeyGenpub(gpk, j) : This algorithm is run by the attribute authority
where using the public key gpk, an attribute public key bpkj is generated for
attribute j.

• D.A.KeyGenpri(Ai, j) : This algorithm is run by the attribute authority where
an attribute private key Ti,j is generated for user i and attribute j using the user’s
registration key. The user will use gsk = (bsk[i],Ti,1, ..., Ti,µ) for signing.

• D.Verifign(Ui(gsk,M) : V(M,B,gpk)) : This protocol is engaged between the
user Ui and verifier V. The user uses his general secret key gsk and a message
M as an input and the verifier uses the public key gpk and a set of attribute
public key he needs (i.e. B = (bpk1,...,bpkκ)). At the end of the protocol the
user sends a signature σ, created with an algorithm σ = Sign(M,D, gsk), to the
verifier that proves possession of attributes. The verifier can check validity of such
a signature by using the V erify algorithm which helps in deciding whether to
accept or reject a signature such that V erify(D, gpk,M, σ) = {Accept, Reject}.

• D.Open(σ, tk) : The open manager uses the tracing key tk and the registration
key database (updated in the join protocol) to trace a signature σ to member i.

• D.Judge(V(td) : OM(tk)) : This is a protocol between the verifier V and the
open manager OM in order to prove that the open manager is not framing user
i and that the open algorithm does in fact trace to him. The verifier calculates
a trapdoor td from the signature σ and sends it to the manager. The open
manager sends a proof P that user i is the one being traced and that proof uses
the trapdoor td to verify.

5.5.2 Security Notions

Given the fact that DAAS schemes are an extension to AAS then the correctness
definition does not change much. The following is the definition of DAAS correctness:

Definition 5.5.1. (Correctness of an DAAS scheme): For all keys gsk generated cor-
rectly, every signature generated by a member i verifies as valid unless the member
did not have enough attributes. Every valid signature should trace to a member of the
group. In other words,
V erify(Dv, gpk,M, Sign(M,Ds, gsk)) = valid;
where Ds = Dv and
if V erify(...) = valid then Open(Sign(M,Ds, gsk), tk) = i;
Otherwise V erify(...) = not valid;

103

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

It is natural to assume that the security notions full traceability, full anonymity and
attribute unforgeability are required in a DAAS scheme. The definitions are similar to
the ones in Section 5.4.2. However, the oracle Revoke is replaced with Open Oracle.
Two new oracles are added to include the join protocol and we will refer to them as
the CrptJoinUsr and CrptJoinIss. Before we define the adversarial models we recall
the oracles needed and add to them the definition of the new oracles.

• USK Oracle: To query this oracle the adversary sends the challenger an index
i in order to find the user’s private key base bsk[i], registration key Ai and the
user’s secret key usk[i]. The challenger will send the triple (bsk[i], Ai, usk[i]) to
the adversary.

• Signature Oracle: To query this oracle the adversary sends the challenger a
verification key he created D, a message M and an index i. The challenger sends
σ = Sign(M,D, gsk).

• Open Oracle: To query this oracle the adversary sends the challenger a signature
σ. The challenger replies with an index i of the signer and can execute the Judge
protocol with that reply.

• CrptJoinUsr Oracle: In this oracle the adversary engages with the challenger
in a join protocol where the adversary plays the role of the user and the challenger
is the issuer manager.

• CrptJoinIss Oracle: In this oracle the adversary engages with the challenger in
a join protocol where the adversary plays the role of the issuer and the challenger
is the user.

• AttPriKey Oracle: To query this oracle the adversary sends a registration key
Ai to the challenger together with an index of the attribute j. The output of this
query is a private attribute key Ti,j .

• AttMasKey Oracle: To query this oracle the adversary sends an index j to the
challenger. The challenger responds with sending the output tj .

Similar to the adversarial models in Section 5.4.2, both game models full traceability
and full anonymity start with Adam choosing the master keys of the universal set of
attributes U = {t1,...,tm}. We will first define the full anonymity game.
DAAS Full Anonymity: We say that an DAAS Scheme is fully anonymous under
a specific set of attributes, if no polynomially bounded adversary Adam has a non-
negligible advantage against the challenger Charles in the following A.DAAS game:

• A.DAAS.Setup: Charles sets up the system. He creates a tracing key tk,
issuer key isk and a general public key gpk. He gives the gpk and issuing key isk
to the adversary.

104

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

• A.DAAS.Phase 1: Charles will run the oracles, USK, a Signature oracle,
CrptJoinUsr, CrptJoinIss and Open oracle.

• A.DAAS.Challenge: Adam asks to be challenged on a message M , two indexes
i0,i1, and verification key D. Charles responds back with a signature σb, where
b ∈ {0, 1}. The signer can be either i0 or i1. Both i0, i1 should not have been
queried in the CrptJoinUsr oracle, however it can be queried in the Signature
oracle.

• A.DAAS.Phase 2: This stage is similar to Phase 1. The signature σb is not
queried in the open algorithm.

• A.DAAS.Output: Adam outputs a guess b̄ ∈ {0, 1}. If b̄ = b, Adam wins the
game.

In this game we assume the attribute authority is totally corrupted since Adam decides
the master keys of the attributes (i.e. tj). We also assume that the issuer is corrupted
since Adam gets the issuer key. The open manager can not be corrupted because if
the tracing key is obtained by Adam then anonymity is impossible since he can run
the open algorithm. We did allow the Signature oracle to be queried for the indexes
of the challenge in both phase 1 and 2. This implies that unlinkability is taken into
consideration in this game. We assumed in the challenge that CrptJoinUsr is not used
to query any of i0 and i1. This is a reasonable assumption since the challenger does
not know the private key of the users and can not create signatures. In phase 2, we
limited the open oracle so that the signature is not queried in the open oracle. This is
another reasonable assumption since if you trace it to a signer with the open oracle the
challenge is meaningless because the adversary did not guess the signer but was told
who he is. Let the advantage AdvA.DAAS(k1) = Pr[b = b̄] − 1/2. Then the definition
of full anonymity is:

Definition 5.5.2. Full Anonymity:
A scheme is fully anonymous if for all polynomial time adversaries Adam, AdvA.DAAS(k1) <
ε and ε is negligible.

AAS Full Traceability: We say that our DAAS scheme is traceable if no polyno-
mially bounded adversary Adam has a non-negligible advantage against the challenger
Charles in the following T.DAAS game:

• T.DAAS.Setup: Charles sets up the system and generates the tracing key tk,
issuer key isk and the general public key gpk. He sends Adam the tracing key tk
and the general public key gpk. Both Charles and Adam can calculate attribute
public keys since they both have access to the master keys of all attribute.

105

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

• T.DAAS.Queries: Charles runs oracles: USK oracle, Signature oracle, and
CrptJoinUsr. Adam queries them as described earlier.

• T.DAAS.Output: Adam asks to be challenged on a M which he sends to
Charles. Charles calculates a new D and sends it back to Adam. Adam replies
with a signature σ. Charles verifies the signature. If it is not valid return 0. If it
turns out to be a valid signature Charles tries tracing it to a signer. If it traces
to a signer in which Adam did not query before or if it traces to a nonmember
then Adam wins the game. Charles returns 1 if Adam wins else 0 is returned.

In the game above we assume that the open manager is totally corrupted by giving
Adam the tracing key. The attribute authorities are also corrupted since everyone
knows the master keys of all attributes. The issuing key is kept a secret from the
adversary, otherwise he can easily issue a private key that can not trace to a member
of the group. Adam does not need to query the open oracle since that is redundant
with the fact that he has the tracing keys. If we refer to this game as Exp then the
advantage is AdvT.DAAS(k) = Pr[Exp = 1] and definition of traceability is as follows:

Definition 5.5.3. Full Traceability:
A scheme is fully traceable if for all polynomial time adversaries Adam, AdvT.DAAS(k1) <
ε and ε is negligible.

DAAS Unforgeability of Attributes: We say that our DAAS scheme is Attribute-
Unforgable if no polynomially bounded adversary Adam has a non-negligible advantage
against the challenger Charles in the following AFDAAS game:

• AFDAAS.Setup: Charles sets up the system. He generates the tracing key
tk, the issuer key isk, and the general public key gpk. Charles plays the role of
all attribute authorities in the system. He creates the universe of attributes by
choosing a list of master keys t1,...,tm. Charles calculates the attribute public
keys bpk1,...,bpkm which he sends together with tk and gpk to Adam. Charles
keeps to himself isk and list of tj .

• AFDAAS.Phase (1): Charles runs the oracles USK, Signature, CrptJoinUsr,
AttPriKey, and AttMasKey. Adam can query these oracles in order to obtain
information that may help him break the scheme.

• AFDAAS.Challenge: Adam sends a tree Γ1, user l and attribute z which he
would like to be challenged on. Charles replies with D for a tree Γ2 where Γ2

has two subtrees: the first is Γ1 and the other is based on tz. The threshold value
of the root in Γ2 is 2. The challenge condition is that user l has not been queried
in AttPriKey for the attribute z. Furthermore the challenged index z should not
have been queried in AttMasKey. These two conditions are reasonable as they
contradict with the purpose of the game.

106

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

• AFDAAS.Phase (2): This phase is similar to Phase 1 as long as the challenge
conditions are not broken.

• AFDAAS.Output: Adam outputs a signature σ for the user l on the verification
key D. If that signature is valid then the adversary wins and Charles outputs 1
otherwise Adam loses and Charles outputs 0.

Adam is given strong capabilities. We assume the open manager is totally corrupted
since Adam is given the tracing key tk. Adam can also corrupt attribute authorities of
his choice since he can query the AttMasKey. The only condition is that the attribute
he asks to be challenged upon should not be corrupted as that contradicts with the
purpose of the game model. Adam can also corrupt users by querying USK oracle or
CrptJoinUsr. Furthermore, Adam can get attribute private keys for different users and
different attributes as long as he does not query the user l for the attribute z of the
challenge itself. This is a logical assumption because the idea of the game is to create
a valid signature that proves that a user has an attribute when he does not really own
it. If we refer to the output of this game as Exp then the advantage of the game is
notated as AdvAFDAAS(k1) = Pr[Exp = 1].

Definition 5.5.4. Unforgeability of Attributes:
A DAAS scheme is attribute-unforgeable if for all polynomial time adversaries,
AdvAFDAAS(k1) < ε and ε is negligible.

Non-frameability The last security notion we require in a DAAS is to prove non-
frameability. We have to prove that given the tracing key, the issuing key, the general
public key and all private keys of users, the adversary can not run the Judge protocol
and prove that another user is the signer of a message.

• F.DAAS.Setup: Charles sets up the systems and gives the issuing key, tracing
key, and general public key to Adam.

• F.DAAS.Queries: In this stage Adam can query the CrptJoinUsr, CrptJoinIss,
Signature and the USK oracles.

• F.DAAS.Challenge: Adam chooses an index i, a signature σ, a verification key
D, and a message M . He sends them to Charles. Charles verifies the signature.
If it is not valid return 0 else trace the signature. If it traces to a user not
from the system then return 0. Otherwise Charles accepts the challenge on the
registration key Ai and lets Adam know. Adam and Charles have to engage in a
judge protocol where Adam proves to Charles that A∗ is the signer. If A∗ = Ai

then return 0 else return 1.

In non-frameability we can assume all authorities are corrupted. We did not need an
Open oracle since the tracing keys are given to Adam. The rest of the oracles are there

107

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

since some private keys of honest users are generated and Adam may want to corrupt
them. If this experiment is referred to as Exp then the advantage of winning the game
is defined as AdvF.DAAS(n, k) = Pr[Exp = 1].

Definition 5.5.5. Non-frameability:
A scheme is non-frameable if for all polynomial time adversaries Adam, AdvF.DAAS(k1) <
ε and ε is negligible.

5.5.3 Construction of the DAAS

In this section we give an example of a DAAS construction that is an extension to the
construction in Section 5.3.3. We use the prefix DAAS in front of the algorithms to
distinguish them from the ones in other sections. The algorithms are as follows:

• DAAS.KeyGen(k1) : Using the security parameter k1 a bilinear map e : G1 ×
G2 → G3 is chosen where G1, G2 and G3 are of prime order with a computable
isomorphism between G1 and G2. Suppose further that the DDH problem is hard
in G1 and the q-SDH is hard to solve in G1 and G2 (See Definition 2.2.11 and
Assumption 2.2.12). The scheme employs a hash function H : {0, 1}∗ → Z∗

p.
Let ξ1 and ξ2 ∈R Z∗

p. Generators g1, g2, g3, and g4 ∈ G1 are selected such that
g1 = gξ1

4 and g2 = gξ2
4 . Choose h ∈R G2 and assign w = hγ where γ ∈ Z∗

p.
The issuer key is isk = γ, the tracing key tk = {ξ1, ξ2}, and the general public
key is gpk = 〈e, G1, G2, G3, H, g1, g2, g3, g4, h, w〉.

• DAAS.U.KeyGen(k2) : The user sets up any digital signature scheme using
security parameter k2 and generates a public key upk[i] and a secret key usk[i]
for themselves.

• DAAS.Join(Iss(isk) : Ui(upk[i],usk[i])) : The protocol runs as follows:

1. Iss sends gν
1 for some ν ∈R Z∗

p.

2. Ui picks a yi ∈R Z∗
p. Calculate gνyi

1 , and send it to Iss. Ui stores gyi
1 for use

in Step 4.

3. Iss can calculate gyi
1 and then chooses xi ∈R Z∗

p. He calculates Ai =
(gyi

1 g3)
1/(xi+γ). Iss sends Aig

yi
1 to Ui.

4. Ui calculates Ai from this and gyi
1 that was stored in Step 2. Ui can then

check Ai ∈ G1, calculate S = Sign(Ai, usk[i]) and send S to Iss.

108

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

5. Iss checks S with respect to upk[i] and Ai and saves (upk[i], Ai, xi, S) in a
database. Iss sends xig

yi
1 to the user. S here is used as a commitment to

the private key parts chosen by the user.

6. Ui computes xi and verifies A(xi+γ)
i = g3g

yi
1 . The element Ai will be consid-

ered as the registration key. The users basic secret key is bsk[i] = 〈Ai, xi, yi〉.

• DAAS.A.KeyGenpub(gpk, j) : Attribute authority generates an attribute pub-
lic key for each attribute j it controls by calculating bpkj = wtj for an tj ∈R Z∗

p.

• DAAS.A.KeyGenpri(Ai, j) : Generates an attribute private key for each user i
that owns j. The attribute private key is Ti,j = A

1/tj
i . The user general secret

key is gsk = 〈bsk[i], Ti,1,...,Ti,µ〉.

• DAAS.Verifign(Ui(gsk,M) : V(M,B)) : The protocol runs as follows:

1. V has a set of public attribute keys B = (bpk1,...,bpkκ). He chooses α ∈R Z∗
p

and decides on a tree Γ. The verifier can now calculateD = TCreate(Γ, α,B) =
{D1,...,Dκ}.

2. In this stage Ui runs the algorithm σ = Sign(M,D, gsk):
He chooses β1, β2 ∈R Z∗

p. Sets β = β1β2. Then calculates Froot = TV erify(D,=i, T̄)
where T̄ = {T β

i,1,...,T
β
i,κ}.

Let ζ, δ, rζ , rδ, rx, rz ∈R Z∗
p.

Calculate C1 = gζ
4 , C2 = Aig

ζ
1 , C3 = gδ

4, C4 = Aig
δ
2, C5 = e(gδ

2A
1−β2
i , w)β1

and C6 = wβ1 .

Then signer calculates
R1 = g4,
R3 = grδ

4 ,
R4 = g

rζ

1 g
−rδ
2

R2 = e(C2, h)rxe(g1, w)−rζe(g1, h)−rz .

Compute c = H(M,C1, C2, C3, C4, C5, C6, R1, R2, R3, R4).
Let sζ = rζ+cζ, sδ = rδ+cδ, sx = rx+cxi and sz = rz+cz where z = xiζ+y.

109

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

Ui sends signature σ = (C1, C2, C3, C4, C5, C6, Froot, c, sζ , sδ, sx, sz).

3. V runs the algorithm V erify(M,σ,D, gpk) as shown below:
He verifies the signature by first checking the attributes. That is done by
checking that F 1/α

rootC5 = e(C4, C6). If that is false the signature is rejected
else the V runs a verification algorithm as described below:
The verifier starts with deriving the elements
R̄1 = g

sζ

4 C
−c
1 ,

R̄3 = gsδ
4 C

−c
3 ,

R̄4 = g
sζ

1 g
−sδ
2 /(C2C

−1
4)c

R̄2 = e(C2, h)sxe(g1, w)−sζe(g1, h)−sz(e(C2,w)
e(g3,h))c.

Check if c = H(M , C1, C2, C3, C4, C5, C6, R̄1, R̄2, R̄3, R̄4); if it is not
equal then reject the signature.

• DAAS.Open(σ, α) : Open manager first verifies the signature using α. He then
starts the tracing procedure using the tracing key tk = {ξ1, ξ2}. He compares the
(A)’s saved for every member in his database with Ai. The way he does such a
comparison is by deriving Ai = (C2/(C1)ξ1) = (C4/(C3)ξ2).

• DAAS.Judge(V(td, σ) : OM(tk)) : The signature S on Ai is used as the proof
that open manager is not framing user i. To prove that Ai was used in the
signature being opened σ a zero knowledge proof is used as follows:

1. V picks a random rnd ∈ Z∗
p and sends the pair td = (Crnd

1 , Crnd
2) to the open

manager.

2. Open manager calculates P = (Crnd
2 /Crndξ1

1) = Arnd
i . Note that the open

manager does not know rnd. He sends the proof P = Arnd
i to the verifier.

3. V can calculate Ai from P since he knows rnd.

5.5.4 General Discussion of the DAAS scheme

In this section we give a general analysis of the design of the scheme and a more
specific analysis of the construction. The scheme inherits the major advantages of the
AAS scheme. If proven fully traceable and attribute-unforgeable then it is unforgeable,
coalition resistant and traceable. If the scheme is proven fully anonymous then it is
both anonymous and unlinkable. The scheme is more dynamic since users can join
anytime. The separability of duties is a major advantage to the AAS scheme. Having
more authorities each responsible for a specific duty removes the bottle neck from the
central authority. It also implies extra security since in the game models we were able
to corrupt an authority while testing the other. Finally, the member of the group is

110

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

no longer given a private key, instead he creates it jointly with the issuer manager.
The attribute authority is still not trusted and we will show in the later section (See
Section 5.5.6) how we can guarantee honesty of the key generation of attributes. One
other main contribution to this scheme over the AAS scheme is non-frameability where
the open manager can not claim anyone to have signed a signature unless they truly
did.

5.5.5 Analysis of the Construction of the DAAS Scheme 5.5.3

The construction naturally contains all advantages we have mentioned in the general
analysis. We shall show that it is correct and secure according to the definitions in
Section 5.5.1.

Theorem 5.5.6. The construction in Section 5.5.3 is correct according to the Defini-
tion 5.5.1.

To prove correctness we start with showing that R̄1 = R1, R̄2 = R2, R̄3 = R3, and
R̄4 = R4. The equalities hold as shown:

R̄1 = g
sζ

4 C
−c
1 = g

rζ+cζ
4 g−cζ

4 = g
rζ

4 = R1

R̄3 = gsδ
4 C

−c
3 = grδ+cδ

4 g−cδ
4 = grδ

4 = R3

R̄4 = g
sζ

1 g
−sδ
2 /(C2C

−1
4)c = g

(rζ+cζ)
1 g

−(rδ+cδ)
2 /((Aig

ζ
1)(Aig

δ
2)
−1)c = g

rζ

1 g
−rδ
2

R̄2 = e(C2, h)sxe(g1, w)−sζe(g1, h)−sz

(
e(C2,w)
e(g3,h)

)c

= e(C2, h)rx+cxie(g1, w)−(rζ+cζ)e(g1, h)−(rz+cz)
(

e(C2,w)
e(g3,h)

)c

= R2(e(Ai, h)cxe(gζ
1 , h)

cxie(g1, w)−cζe(g1, h)−c(xζ+y))
(

e(C2,w)
e(g3,h)

)c

= R2(e(Ai, h)cxie(Ai, h)cxie(g1, w)−cζe(g1, h)−cy)
(

e(C2,w)
e(g3,h)

)c

= R2

(
e(Ai,h)xie(C2,w)
e(g1,w)ζe(g1,h)y e(g3, h)

)c

= R2

(
e(Ai,h)xie(Ai,w)

e(g1,h)e(g3,h)

)c

= R2

(
e(Ai,h)xi+γ

e(g1g3,h)

)c
= R2

The following step is to prove correctness of the attribute verification and the open
algorithm. Given that the Froot = e(Ai, w)αβ then

111

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

F
1/α
rootC5 = e(Ai, w)β1β2e(gδ

2A
1−β2
i , w)β1 = e(Aig

δ
2, w)β1 = e(C4, C6).

Proving the open algorithm is correct is by proving that Ai = C2/(C1)ξ1 = C4/(C3)ξ2

is correct. So
C2/(C1)ξ1 = (Aig

ζ
1)/g

ζ
1 = Ai

C4/(C3)ξ2 = (Aig
δ
2)/g

δ
2 = Ai

Next step is to prove the systems to be fully anonymous.

Theorem 5.5.7. If the Elgamal Encryption Scheme is IND-CPA secure then the DAAS
scheme is fully anonymous under the random oracle.

Assume the adversary Adam has the capability of breaking the scheme’s anonymity.
Eve is trying to break the IND-CPA security of Elgamal. She is given the Elgamal
public key (g1, g4) ∈ G2

1 where g1 = gξ1
4 and ξ1 ∈ Z∗

p. ξ1 is kept secret to the challenger
while the rest is public and known to Eve. Eve calculates g2 = g1g

rnd1
4 therefore

ξ2 = ξ1 + rnd1 where rnd1 ∈ Z∗
p. Eve chooses a γ ∈ Z∗

p, h ∈ G2 and g3 ∈ G1. Eve can
calculate gpk and then start challenging Adam. The oracles of Phase (1) and (2) are
explained in details in appendix A.1.3. In the challenge Adam sends i0, i1, M and D

to Eve. She sends Ai0 and Ai1 to Charles as messages she wants to be challenged on.
Charles encrypts one of them and returns ciphertext (C1 = gζ

4 , C2 = Abg
ζ
1). Note that

Eve has to guess b.
Eve simulates a signature by choosing a random rnd2 ∈ Z∗

p and calculating C4 =
C2C

rnd1
1 grnd2

2 and C3 = C1g
rnd2
4 . Given that δ = ζ+rnd2, then C4 = Abg

δ
2 and C3 = gδ

4.
Eve chooses randomly sζ , sδ, sx, sz and c from Z∗

p. Note that c should have not been
a response to a query to the hash oracle. She calculates R1 = g

sζ

4 C
−c
1 , R3 = gsδ

4 C
−c
3 ,

R4 = g
sζ

1 g
−sδ
2 /(C2C

−1
4)c and R2 = e(C2, h)sxe(g1, w)−sζe(g1, h)−sz(e(C2,w)

e(g3,h))c. Finally
Eve creates Froot with Ti,j = (C2C

rnd1
1)1/tj therefore Froot = e(C2C

rnd1
1 , wβ)α for some

random β ∈ Z∗
p. C6 = wβ and C5 = e(grnd2

2 , wβ).
Adam guesses b̄ in which he sends to Eve and she sends it to Charles as her guess.
Note that if Adam guesses right Eve does too.
After proving full anonymity we opt to prove full traceability.

Definition 5.5.8. If the q-SDH is hard in group G1 and G2 then the DAAS scheme is
fully traceable under the random oracle assumption.

The method we use for that is similar to the one we used in the full traceability in AAS
scheme. Adam is a forger. The signature format is similar to Section 5.4.5 and two
simulated runs of the adversarial game take place where Charles is given an (n) SDH
instance, (g̀1, g̀2, g̀

γ
2 , g̀γ2

2 ,..., g̀γq

2). By applying the Boneh –Boyen theorem, Charles
can obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2 and (n − 1) SDH pairs (Ai, xi) which he will use
in creating the private key bases bsk[i] = (Ai, xi, yi). In the Appendix A.2.3 we show
details of how to respond to the oracles of the game.
The Forking Lemma is applied to obtain ∆c = c− ĉ, and ∆sζ = sζ − ŝζ , and similarly

112

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

for ∆sx, ∆sδ, ∆sx and ∆sz.
Divide two instances of the equations used previously in proving correctness of the
scheme. One instance with ĉ and the other with c to obtain the following:

• Dividing Cc
1/C

ĉ
1 = g

sζ

4 /g
ŝζ

4 we get
gζ̂
4 = C1; where ζ̂ = ∆sζ/∆c

• Dividing Csδ
2 /C

ŝδ
2 = gsδ

4 /g
ŝδ
4 we get

gδ̂
4 = C2; where δ̂ = ∆sδ/∆c

• The division of (C2C
−1
4)∆c = g

∆sζ

1 g∆sδ
4 implies (C2C

−1
4) = gζ̂

1g
δ̂
4

• The division of e(C2, h)∆sxe(g1, w)−∆sζe(g1, h)−∆sz = (e(g3,h)
e(C2,w))

∆c leads to

e(C2, h)x̂e(g1, w)−ζ̂e(g1, h)−ẑ = (e(g3,h)
e(C2,w))

∆c for x̂ = ∆sx/∆c and ẑ = ∆sz/∆c

If Â = C2g
ζ̂
1 and ŷ = ẑ − ζ̂x̂ then from the last division we get e(Â, h)x̂e(Â, w) =

e(g3, h)e(g1, h)ŷ this implies we have obtained a certificate (Â, x̂, ŷ) where Â = (g3g
ŷ
1)1/(x̂+γ).

This leads to a SDH pair (A, x) and breaking Boneh –Boyen theorem (See Theorem
2.2.13). Knowing that Â = (g3g

ŷ
1)1/(x̂+γ) = (gŷ+rnd1

1)1/(x̂+γ).
Calculate (A, x) = (Â1/(ŷ+rnd1), xi).
We now need to prove the scheme secure against attribute forgeability.

Theorem 5.5.9. Breaking the Unforgeability of Attributes in the DAAS construction
is as hard as solving the DLP.

We use a similar technique to the proof in Section 5.2. In Appendix A.3.2 we show the
details of the proof. We show how using the game model defined in 5.5.2, Adam can
obtain a list of information. We then prove that creating a signature with the missing
attribute relies on the ability to create a valid Froot. We further prove that the list of
information Adam has will not help him in deriving Froot unless Adam is capable of
solving the DLP.
Finally we discuss Non-frameability. Given all secret keys Adam can not convince
Charles that the signer is someone other than who he actually is.

Theorem 5.5.10. (Non-frameability) Breaking the Non-frameability of the scheme is
as hard as the Discrete Logarithm problem.

The adversarial game is shown below:

• F.DAAS.Setup: Charles generates the keys isk, tk, and gpk. He gives all of
them to Adam. Recall that Adam initiates all games by choosing the universal
set of attributes’ master keys U = {t1,...,tm}. Therefore both Adam and Charles
can create attribute keys, create private keys, and trace signatures.

113

5.5. Dynamic Attribute Authentication 5. Attribute Authentication Schemes

• F.DAAS.Oracles: The oracles responses are computed as done in the construc-
tion since all keys are known to both Adam and Charles. However, every time a
new registration key Ai is created (using oracles CrptJoinUsr, and CrptJoinIss)
it is compared with the list of Ai generated by the oracles earlier. This is to
ensure that no two users have the same yi. Assume (A, x) is a pair in the list.
The comparison is done by first deriving Ai = C2/(C1)ξ1 . Then looking up the
xi from the list of possible signers. Then compare
A

xi+γ
i
g3

= Ax+γ

g3

this equality implies that
gyi
1 = gy

1

If that holds for any element in the list then y = yi and Charles aborts. If it
does not hold add the new Ai to the list.

• F.DAAS.Output: Adam chooses an index i, a signature σ, a verification key D,
and a message M . He sends them to Charles. Charles verifies the signature and
if it is not valid he aborts the game returning 0. He then traces it by calculating
Ai = C2/(C1)ξ1 = C4/(C3)ξ2 . Charles accepts the challenge on Ai and sends to
Adam the values Crd

2 and Crd
1 for a random rd ∈ Z∗

p. Adam has to reply with
(A∗)rd where A∗ 6= Ai and A∗ is on the list of possible signers.

Assuming Adam wins the game and the discrete logarithm problem is hard then
Adam must know a value s ∈ Z such that As

i = A∗ in order to calculate (A∗)rd =
(C2/(C1)ξ1)s.rd = As.rd

i . Given that we will try deriving the valid key (A∗, y∗, x∗) ac-
cording to s. Consider the following statements:
A∗ = As

i

A∗ = (g3g
y∗

1)1/(x∗+γ)

Ai = (g3g
yi
1)1/(xi+γ)

From these statements one can derive:
A∗ = As

i = (g3g
yi
1)s/(xi+γ) = (g3g

y∗

1)1/(x∗+γ)

(gs/(xi+γ)
3 g

yi(s/(xi+γ))
1) = (g1/(x∗+γ)

3 g
y∗/(x∗+γ)
1)

We can conclude that
s/(xi + γ) = 1/(x∗ + γ), therefore x∗ = ((xi + γ)/s)− γ
and
yi(s/(xi + γ)) = y∗/(x∗ + γ) = y∗(s/(xi + γ)) therefore yi = y∗

Since we know that yi 6= y from the comparisons that took place in querying the oracles
and that contradicts the equations we derived we can conclude that Adam can not have
known an s and if he wins the game then he must have broken the discrete logarithm
problem to get the rd element.

114

5.6. Chapter Summary 5. Attribute Authentication Schemes

5.5.6 Attribute Exchange Protocols

In this section we want change the algorithms A.KeyGenpri and A.KeyGenpub to pro-
tocols just as done in Section 5.4.6. The APK exchange protocol is exactly the same
as in Section 5.4.6. The ASK protocol differs slightly. The following is an explanation
on how it differs.

Attribute Private Key Exchange Protocol (ASK): This protocol is executed
between the attribute authority and the user as shown

1. The attribute authority may want to verify some information about the member
before giving him an attribute.

2. The member Ui and the attribute authority AAj runs the protocol
V erifign(Ui(gsk,M),AAj(M,B)).

3. From the V erifign protocol AAj obtains the signature,
σ = (C1, C2, C3, C4, C5, C6, Froot, c, sζ , sδ, sx, sz).

4. AAj attempts to verify the signature. If it is valid AAj sends E = C
1/tj
2 and

F = g
1/tj
1 back.

5. Ui calculates his attribute private key Ti,j = E/F δ = A
1/tj
i .

6. Ui verifies Ti,j is correct by checking e(Ti,j , bpkj) = e(Ai, w).

Recall from Section 5.4.6 that the attribute public key can not be changed or modified
without the knowledge of the central authority in an AAS scheme. Since the protocol
APK did not change at all in the DAAS scheme, the same holds for the attribute public
key in the DAAS scheme. The attribute authority can not calculate elements E and
F without the knowledge of the master key tj . The user can verify that the tj used
in creating the Ti,j is the same as the one used in the attribute public key through
the sixth step in the protocol. This implies honesty of the attribute authority when
generating the attribute private key. Similar to the ASK protocol in 5.4.6 the attribute
authority does not have a clue about the value of Ai or Ti,j .

5.6 Chapter Summary

In this chapter we proposed three main schemes an attribute based group signature
scheme (ABGS) an attribute based authentication scheme (AAS), and a dynamic at-
tribute based authentication scheme (DAAS). In all schemes the verifier decides the
characteristics of the signer by building an attribute tree. An attribute tree is a struc-
ture used to prove possession of a set of attributes. It represents a monotone boolean

115

5.6. Chapter Summary 5. Attribute Authentication Schemes

expressions where inputs are attributes. In Section 5.2 we have defined such tree and
its powerful properties.
Attribute based group signatures were proposed in Section 5.3. The idea behind them
is to embed attributes in group signatures allowing the verifier to decide on a subgroup
of signers in which he prefers the signer to belong from. The verifier decides such sub-
group by building a desired attribute tree. In that section we define the scheme and
its security notions. We give an example on the construction. We end the section by
analyzing that example and the scheme in general.
Attribute based authentication scheme was explained in Section 5.4. After having pro-
vided the ABGS we realized some desired properties are missing from the scheme such
as separability, and attribute anonymity. Therefore we introduced the AAS scheme.
The scheme has stronger capabilities than the ABGS and is much more efficient. In
that section we define the scheme and its security. We then give an example of a con-
struction. We later end the section with analyzing the scheme and the example.
Dynamic attribute based authentication scheme is an extension to an AAS scheme
(Section 5.5). The AAS scheme achieves all required properties but its efficiency and
security can be improved by having an extra level of separability, a dynamic property
and extra security notions (non-frameability). The dynamic property implies that users
can join the group whenever they want. The extra level of separability is achieved by
dividing the two tasks of the central authority (Issuing keys and tracing signatures) in
the AAS scheme so that different authorities take control of each. Non-frameability
allows the verifier to check that the open manager is not accusing a signer to have
signed a certain message when revoking anonymity.
Sections 5.4.6 and 5.5.6 strengthens the AAS and DAAS scheme by adding two pro-
tocols. In cryptography the less trusted third parties needed the stronger the scheme.
Therefore the attribute authorities are not to be trusted. Nevertheless, they play an
important role in our system and a method for verifying their honesty should be pro-
vided. The protocols reinforced in our system enables such verification.
In the following chapter we are going to give a general construction for converting any
static group signature scheme to an AAS scheme.

116

Chapter 6

General Construction

In this chapter we give a general construction of an AAS scheme from a static group
signature scheme using the extra building block, the attribute tree structure defined in
Section 5.2. In Section 6.3 we give a proof that our general construction creates an AAS
scheme that is fully traceable and anonymous if the inputted static group signature is
fully traceable and anonymous. Section 6.4 shows an example of a construction based
on the general one in Section 6.2 that uses Bellare, Micciancio and Warinschi as the
input static group signature scheme.

6.1 Introduction

A massive amount of research has been done on group signatures since Chaum and
Heyst proposed them first. Cryptographers tried adding new features to it. They
have also improved its efficiency and security. Our proposed AAS scheme is new in
literature and to save a vast number of work for researchers we came up with a general
construction of the AAS scheme from any static group signature scheme. Our general
construction is a powerful tool to convert any existing static group signature system
to an AAS scheme while maintaining security features and inheriting properties of the
inputted group signature.

6.2 The General Construction

Creating an AAS scheme requires three stages. The first stage is finding a secure group
signature scheme that will prove that the signer is a member of the group in a fully
anonymous and traceable matter. The second stage is proving possession of attributes
and that is using the tree in Section 5.2. The third stage is to prove that the signer
of the group signature scheme is a signer satisfying the attributes. In this section
we demonstrate stage three. We show how to use the group signature algorithms
in Section 4.2.1 and the attribute tree structure in Section 5.2 to create the AAS

117

6.2. The General Construction 6. General Construction

algorithms in Section 5.4.1. We should highlight the fact that an attribute tree as
defined in Section 5.2 requires bilinear maps. To guarantee FAP security (Section 5.2),
the bilinear map e : G1 ×G2 → G3 should be chosen over groups of prime order where
the BDH (See Definition 2.2.9) is hard. In order to convert the elements of the group
signature, which can be of any key space, into elements in the mathematical groups G1

and G2 we use hash functions. The hash function chosen should be collision resistant.
The algorithms of the AAS scheme are constructed as follows:

• GCS.Setup : The central authority follows the steps below:

1. Run SGS.Setup to produce the system parameters Spub, and Spri.

2. Choose a hash function H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → G2.

3. Output (Spri, Spub, H1, H2), where Spri is kept private to the central au-
thority and the rest can be accessed by anyone.

• GCS.M.KeyGen: The central authority creates the public key base w, n private
key bases bsk[i] and registration keys Ai as follows:

1. Run SGS.KeyGen algorithm to get n private keys, bsk[i].

2. Let the private key base of the AAS be bsk[i]. Let the registration key,
Ai = H1(bsk[i]).

3. The central authority saves H2(bsk[i]) in a database which we will refer to
as T used for tracing purposes.

• GCS.A.KeyGenpub: The attribute authority chooses for attribute j, a master
key tj ∈R Z∗

p in order to create the attribute public key, bpkj = H2(Spub)tj . To
guarantee honesty of attribute authority in generating the key, this algorithm is
replaced with the protocol APK as explained in Section 5.4.6.

• GCS.A.KeyGenpri : An attribute private key for user i will be Ti,j = A
1/tj
i .

The private key the member will use to sign with is gsk = 〈bsk[i], Ti,1, ..., Ti,j〉
where j is the number of attributes he owns. As done in Section 5.4.6, this al-
gorithm is replaced with the protocol ASK. The protocol in this case is different
from the one in Section 5.4.6 and we will explain it later in this section.

• GCS.SignVerify : This stage is a Sign/Verify protocol (this corresponds to the
V erifign algorithm in Section 5.4) that runs between verifier V and member Ui

as follows:

1. V chooses a Γ and collects all public key bases it needs B̄ = (bpk1, ..., bpkκ).
V chooses α ∈R Z∗

p. V calculates w = H2(Spub). V can calculate D =

118

6.2. The General Construction 6. General Construction

(D1, ..., Dκ) = TCreate(Γ, α,B) as shown in Section 5.2 and sends the val-
ues together with Γ to Ui.

2. Ui in this stage runs the AAS signature algorithm by first calculating GSσ =
SGS.Sign(M, bsk[i], Spub). Ui picks β ∈R Z∗

p and calculates T̄ = {CT1, CT2,
..., CTτ} where CTj = T β

i,j . These values enable Ui to run the algorithm
TV erify(D,=i, T̄) = Froot as done in Section 5.2. Ui assigns td = Aβ

i .
Ui calculates T K = GS.Sign(Froot, bsk[i], Spub) and L = e(td,H2(bsk[i])).
The signature is σ = (GSσ, T K, Froot, td,L) and is sent to the verifier.

3. V in this stage runs the AAS verification algorithm. V starts with verify-
ing GS.σ using the algorithm GS.V erify. He can verify the attributes by
checking F

1/α
root = e(td, w). V verifies the signature on Froot whether it is

valid or not. If all three hold then output accept signature otherwise reject
it.

We shall point out that L and T K are meant for tracing a signature as shown
later. The element T K will be used as a proof that verifier V used a random
element α on the signature. This kind of proof will be useful in the opening
algorithm.

• GCS.Open : First step is to verify the signature σ. Note that verifier can not
manipulate α because it is inbuilt in Froot which the signer agreed on by signing
it in T K. Second step is to run the GS.Open on GS.σ that will identify the
member. Finally, check whether L = e(td,H2(bsk[i])) of the user whereH2(bsk[i])
is retrieved from T .

Simple Conversion Method: The purpose behind adding the hash functions H1,H2

and the element L in the construction above is to convert any private key and public
key to generators that belong to groups G1, and G2. This enables using the bilinear
maps and reserves the possibility of tracing to a user. In case the private key and/or the
public key are already generators then there is no need to add all these elements (See
example in Section 5.4). We can assume that our hash function Hb(g) = gsomething,
where b ∈ {1, 2} and g ∈ Gb.

Attribute Private Key Protocol (ASK): Earlier we described the procedure of
obtaining attribute private keys as the algorithm A.KeyGenpri(Ai, j). This can be
replaced with a protocol that runs as follows:

1. The attribute authority may want to verify some information about the member
before giving him an attribute.

119

6.3. General Construction Security Proofs 6. General Construction

2. The member Ui and the attribute authority AAj run the protocol
V erifign(Ui(gsk,M),AAj(M, B̄)).

3. From the V erifign protocolAAj obtains the signature σ = (GSσ, T K, Froot, td,L).

4. AAj can verify the signature and if it is valid AAj sends td1/tj back.

5. Ui can calculate his attribute private key Ti,j = (td1/tj)1/β .

6. Ui verifies Ti,j is correct by checking e(Ti,j , bpkj) = e(Ai, w).

Note that the attribute authority does not know the attribute private key of the user
since it does not know β. This protocol and the APK protocol (explained in Sec-
tion 5.4.6) will guarantee honesty in the generation of the attribute keys. The following
section will prove full anonymity and traceability of the scheme.

6.3 General Construction Security Proofs

To prove full traceability and full anonymity of the general construction in Section 6.2,
we introduce three entities. An adversary Adam who tries to break the security of the
AAS scheme. Charles who will be the challenger of the adversarial game models of the
group signature scheme. Eve who plays the role of the challenger when dealing with
Adam and the role of the adversary when dealing with Charles. Assuming that Adam
breaks the security of the AAS scheme, we will show how Eve would win the challenge
against Charles. We shall start with the full anonymity of the general construction.

Theorem 6.3.1. Anonymity of AAS: Given a group signature that is fully anonymous
the attribute based authentication scheme created by the general construction is fully
anonymous too.

Consider the following game:

• Init: Adam chooses (t1,...,tm) ∈ Z∗
p as master keys.

• Setup: Charles runs SGS.Setup to produce the Spub and Spri. Charles sends
Spub to Eve. Eve adds two hash functions H1 and H2 to Spub and sends them to
Adam.

• Phase(1): This stage consists of three oracles. In the USK oracle Adam sends
Eve an index i. Eve sends that index to Charles as a query to the PriKey oracle
(See Section 4.2.2). Charles replies with bsk[i]. Eve sends Ai = H1(bsk[i]) of
member i together with bsk[i] to Adam.
In the Signature oracle, Adam can calculate a D since he has the master keys
(t1,...,tm). He sends D, a message M and an index i to Eve. Eve sends i to

120

6.3. General Construction Security Proofs 6. General Construction

Charles and queries the PriKey oracle. Charles responds back with bsk[i]. Eve
calculates Ai = H1(bsk[i]). She calculates GSσ. She has the master keys to
calculate as many Ti,j as she needs. She chooses a β ∈R Z∗

p which will help her
calculate (Froot, td) as shown in the general construction. Eve can send Adam

σ = (GS.σ, Froot, td).
Open oracle Adam can either send a signature he received in the Signature oracle
or a signature he creates from one of the private keys he got from the private key
oracle. Along with σ he sends the message M and the verification key D. Eve
sends GSσ and M to Charles accessing the Open oracle of the group signature
anonymity game. Charles sends back an index. Eve sends that index to Adam.

• Challenge: Adam sends Eve two indexes (i0, i1), a message M and D as a chal-
lenge. Eve sends Charles (i0, i1,M) as her challenge. Charles replies with GSσb.
Eve can calculate (Froot, td) by choosing a random td ∈ G1. She then calculates
td1/tj for all attributes needed. Finally she can calculate Froot = e(td, w)α. Adam
will not be able to tell it is an invalid pair since he can not distinguish between
td = H1(bsk[i])β and a random generator. Eve sends σb = (GS.σ, Froot, td) to
Adam.

• Phase 2: Phase 2 is similar to phase 1 as long as the open oracle is not queried
with the same index used in the challenge.

• Guess: Adam gives a guess b̄ to Eve and she sends b̄ to Charles as her own
guess.

If Adam can guess b̄ then Eve can guess the signer of GSσb. Note that we dropped L
and T K from the anonymity analysis. L is an element that preserves the randomness
of the signature in the public key and has nothing related to the signer. It is hard
to distinguish between L = e(td,H2(bsk[i])) and just a random L unless you have the
tracing list T . T K is a signature on Froot and is anonymous since the group signature
is anonymous. It also reveals nothing about the signer unless you have the tracing keys
since both T K and GSσ should trace to the same signer.
Next we shall prove the Theorem 6.3.2 by the same methodology we have followed
for proving full anonymity. In the game in Section 5.4.2 we gave the adversary any
information that will help him trace a signature but in this game since we need the
private key bsk[i] for creating the registration key Ai and Eve does not have all bsk[i]
values, we shall have a Tracing-key oracle. The oracle is defined in the queries phase
below:

Theorem 6.3.2. Traceability of AAS: Given a group signature that is fully traceable
the attribute based authentication scheme created by the general construction is fully
traceable too.

121

6.3. General Construction Security Proofs 6. General Construction

Consider the following game:

• Init: Adam chooses (t1,...,tm) ∈ Z∗
p as master keys.

• Setup: The Setup of this game model is similar to the setup in the anonymity
game model where Charles runs SGS.Setup to produce the Spub and Spri, then
he sends Spub to Eve. Eve adds hash functions H1 and H2 to Spub and sends
them to Adam. However, in this game model Adam is given the secret tracing
keys tk.

• Queries: This stage consists of three oracles, the USK oracle, the Signature
oracle and finally a Tracing-key oracle. The USK and Signature oracle are
queried exactly as done in the anonymity game where Adam sends a query to
Eve and Eve sends a query to the PriKey Oracle. Once Eve gets the private
key from Charles, she can respond to Adam by either signing a message and
sending σ = (GS.σ, Froot, td,L, T K) (Signature oracle) or by sending the pair
(Ai = H1(bsk[i]), bsk[i]) (USK oracle).
The last oracle is the Tracing-key oracle where Adam queries a tracing key of a
user. He sends Eve an index i. Eve sends the index she got to Charles querying
the PriKey oracle. She gets bsk[i] and responds to Adam by sending H2(bsk[i]).
Giving Adam access to this oracle and giving him the tracing key tk makes it
possible for him to trace any signature he likes, therefore there is no need for the
Open oracle in this game.

• Output: Adam asks to be challenged on a message M which he sends to Eve.
Eve calculates a random D and sends to Adam. Adam replies with a forged
signature σ. Eve challenges Charles on the same message. She sends GS.σ to
Charles as her output to the challenge.

If Adam is successful in breaking full traceability, then σ should verify, which means
GS.σ should verify too. The signature σ should also trace to a nonmember of the group
or to a member that has not been queried. Running SGS.Open on GS.σ is one step
in the AAS scheme’s Open algorithm. That means GS.σ should also trace to either a
nonmember or a member that has not been queried. We can conclude that if Adam was
successful in winning the game, Eve would be successful in winning the game against
Charles.
After having introduced a general construction and proving its security dependent
on the security of the group signature used, we shall give an example of the general
construction. Section 6.4 recalls the Bellare, Micciancio and Warinschi Group Signature
and uses their scheme in demonstrating the general construction in Section 6.2.

122

6.4. Example of a General Construction 6. General Construction

6.4 Example of a General Construction

The foundations and formal definitions related to static group signature schemes were
proposed in 2003 by Bellare, Micciancio and Warinschi [9]. In that paper, the authors
proposed a construction based on digital signatures, encryption schemes and NIZK
proof. In this section we first recall that group signature construction (Section 6.4.1)
and then use it to demonstrate that the general construction proposed in Section 6.2
works (Section 6.4.2).

6.4.1 Bellare, Micciancio and Warinschi (BMW) Group Signature

Scheme

Bellare, Micciancio and Warinschi proposed a group signature construction that uses
three building blocks as follows:

• Digital Signature with Setup, Sign, and S.Verify as the algorithms (Section 2.4).

• Encryption Scheme with KeyGen, Encrypt and Decrypt as the algorithms (Sec-
tion 2.3)

• Non-Interactive Zero Knowledge Proof with Prove and Z.Verify as algorithms
(Section 2.5.2)

The following are the algorithms of the BMW group signature scheme:

• BMW.Setup(k,n): Using security parameter k set up the group signature for
n members as follows:

1. Let the reference string of the zero knowledge proof be R ← {0, 1}Poly(k)

(i.e. polynomial in the length of the problem instance).

2. Run Setup of the digital signature to generate pks and sks.

3. Run KeyGen of the encryption scheme to generate pke and ske.

4. For every member in the group run the setup of the digital signature scheme
to obtain the pair (pki,ski) and then create a certificate certi = Sign(sks, 〈i, pki〉).

5. The public key gpk = (R, pke, pks) for the group.

6. The tracing key tk = (n, pke, ske, pks).

7. The private key bsk[i] = (k,R, i, pki, ski, certi, pke, pks) for each member i
in the group.

• BMW.Sign(M,bsk[i],gpk): To generate a signature σ on message M using the
user’s private key bsk[i] follow the steps below:

1. Create a signature s = Sign(ski,M).

123

6.4. Example of a General Construction 6. General Construction

2. Choose a random element r ∈R {0, 1}k

3. Create ciphertext C = Encrypt(pke, 〈i, pki, certi, s〉, r) where r is the ran-
domizing coin of the encryption.

4. Create the proof P = Prove(k,R, 〈pke, pks,M,C〉, 〈i, pki, certi, s, r〉). The
proof is implying that the public key used in creating s and the index i are
certified in certi with respect to the key pks.

5. Signature σ = (P, C)

• BMW.Verify(M,gpk, σ) : Checking validity of the signature is done by verify-
ing the zero knowledge proof, Z.V erify(k,R,P, 〈pke, pks,M,C〉).

• BMW.Open(M, σ, tk) : To trace a signature the following steps are done:

1. Verify the signature if it is not valid then return 0.

2. Calculate Decrypt(C, ske) = 〈i, pk, cert, s〉.

3. If n < i OR S.V erify(pk,M, s) = 0 OR S.V erify(pks, cert, 〈i, pk〉) = 0
return 0.

4. Else return i.

The scheme was proven fully anonymous and fully traceable in [9] if we choose the
suitable encryption scheme and digital signature scheme. The following are the full
traceability and anonymity theorems.

Theorem 6.4.1. Full Anonymity of the BMW scheme:
If the encryption scheme is an IND-CCA (Section 3.2) secure encryption scheme and
NIZK is a simulation sound (Section 2.5.2), computational zero-knowledge proof system
then group signature scheme BMW is fully-anonymous.

Theorem 6.4.2. Full Traceability of the BMW scheme:
If the digital signature scheme is secure against forgery under chosen message attack
(Section 3.2) and NIZK is a sound in a non-interactive proof system then group signa-
ture scheme BMW is fully-traceable.

The reader is referred to the main paper for the proofs. In this thesis we aim to use the
BMW construction in illustrating the functionality of our general construction defined
in Section 6.2.

6.4.2 AAS Scheme Based on BMW Group Signature Scheme

In this section we apply the general construction in Section 6.2 to the group signature
construction in Section 6.4.1 to build a new AAS scheme. The algorithms of the scheme
are described below:

124

6.4. Example of a General Construction 6. General Construction

• GCS.Setup : The central authority follows the steps below:

1. Run BMW.Setup to produce the system parameters. The output shall be
the public key gpk = (R, pke, pks) for the group. The tracing key tk =
(n, pke, ske, pks). The private key bsk[i] = (k,R, i, pki, ski, certi, pke, pks)
for each member i in the group.

2. Choose a hash function H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → G2.

3. The public parameters are the gpk, H1 and H2. The private parameters are
tk and any private parameter formed in the digital signature or encryption
scheme chosen. The private key base is bsk[i] while the registration key is
Ai=H1 (k,R,i,pki,ski,certi,pke,pks)

4. Calculate H2(k,R,i,pki,ski,certi,pke,pks) and add the value to database T

• GCS.A.KeyGenpub: The attribute authority calculates the attribute public
key bpkj = H2(R, pke, pks)tj where tj ∈R Z∗

p

• GCS.A.KeyGenpri : An attribute private key for user i will be Ti,j = A
1/tj
i and

gsk = 〈bsk[i], Ti,1, ..., Ti,j〉

• GCS.Verifign : The V erifign runs as follows:

1. V chooses a Γ and collects B̄ = (bpk1,...,bpkκ). V chooses α ∈R Z∗
p. V calcu-

lates w = H2(R, pke, pks). V can calculateD = (D1,...,Dκ) = TCreate(Γ, α,B)
as shown in Section 5.2 and sends the values together with Γ to Ui.

2. Ui runs the signature algorithm, GSσ = BMW.Sign(M, bsk[i], gpk) = (P, C).
In order to run Froot = TV erify(D,=i, T̄), Ui picks β ∈R Z∗

p and calculates
T̄ = {CT1, CT2, ..., CTτ}.

3. Ui calculates T K = BMW.Sign(Froot, bsk[i], gpk), td = Aβ
i and

L = e(R,H2(k,R, i, pki, ski, certi, pke, pks)).
The signature is σ = (GSσ, T K, Froot, td,L) and is send to the verifier.

4. V can now verify GS.σ using the algorithm BMW.V erify. He can verify the
attributes by checking F

1/α
root = e(Aβ

i , w). V verifies the signature on Froot

whether it is valid or not. If all three hold then output accept signature
otherwise reject it.

125

6.5. Chapter Summary 6. General Construction

• GCS.Open First step is to verify the signature σ. Note that the verifier can not
manipulate α because α is inbuilt in Froot which the signer agreed on by signing
it in T K. The second step is to run the BMW.Open on GS.σ that will identify
the member. Finally, check whether L = e(td,H2(k,R, i, pki, ski, certi, pke, pks))
of the user where H2(k,R,i,pki,ski,certi,pke,pks) is retrieved from T .

6.5 Chapter Summary

In this chapter we proposed a general construction that enables converting static group
signatures to attribute authentication schemes (Section 6.2). The general construction
is based on the attribute tree and the concept of group signature schemes. The AAS
scheme resulting from the general construction was proven fully anonymous and fully
traceable if the group signature used holds such properties too (Section 6.3). In Sec-
tion 6.4 an example was given on the general construction and that example was based
on Bellare, Micciancio and Warinschi group signature scheme. A general construction
for dynamic AAS scheme is kept as future work and is not covered in this thesis.

126

Chapter 7

Concluding Remarks and Future

Work

This Chapter highlights some future plans for taking the research of attribute au-
thentication schemes further. Topics such as revocation, hierarchal authorities, hiding
the policy of the verifier and possibility of other attribute authentication schemes are
discussed.

7.1 Introduction

In this thesis we constructed an attribute authentication scheme that enables the ver-
ifier to decide a set of credentials he would like the signing member of a certain group
(of potential signers) to possess. The core properties we required in the scheme are
traceability, unforgeability, anonymity, unlinkability, attribute anonymity, coalition re-
sistance and separability of authorities. We constructed our scheme in three phases:
ABGS (Section 5.3), AAS (Section 5.4), and DAAS (Section 5.5), each time improving
the scheme to get closer to our aim. However, there are some desired properties that
improve our scheme and provide stronger foundations.
Revocation is one of these properties that can strengthen our foundation. In the AAS
scheme we proposed in Section 5.4 we had discussed revocation of members of the group
however the revocation of attributes is kept as future work (See Section 7.2).
Another property would be hierarchy in authorities. We have shown different levels of
separability in our constructions, in Chapter 5, which is a nice feature in any crypto-
graphic scheme. Nonetheless some authorities have a hierarchal structure rather then
a separable one. In Section 7.3 we explain the need of hierarchal structures.
Chapter 5 also discussed the need to preserve attribute anonymity of a signer which
we have successfully achieved by using the attribute tree structure, whereas hiding the
policy of the verifier is not mentioned. Everyone can tell the type of credentials a

127

7.2. Revocation 7. Concluding Remarks and Future Work

verifier needs even the nonmembers of the group. Section 7.4 suggests general ideas on
how to solve the problem.
In Chapter 4 we proposed a general construction for the AAS scheme. The general
construction is based on the attribute tree structure and on static group signatures. A
similar construction to achieve DAAS schemes will be helpful (See Section 7.5).
The final possible extension for our research is to try create other cryptographic schemes
that are attribute based. Section 7.6 explains some of the ideas that can be considered.

7.2 Revocation

In the real life scenario humans do not possess their attributes forever. A student can
graduate, an employee can retire, a prescription can expire...etc. Revocation is the
process of discarding an attribute from a certain user in the system.
The first revocation technique used widely in cryptography and can be applied to the
AAS scheme is timestamps. In such a technique an expiry date is implicitly built in
the certificate. When the date passes the certificate will not verify anymore. So if it
takes a student three years to graduate we can create a student ID that expires by that
time. This technique is useful and usually needs less computational time than other
known revocation techniques in the literature.
The second method used for revocation is by renewing the certificates. So every time
a user is revoked the authority publishes specific information that will help valid users
update their certificates accordingly. In other words the user recalculates the private
key used in creating certificates. For example every year a group of students graduate,
the university publishes certain information that can be used only by current students
to update their certificates. The computational overhead of such an approach is usually
higher than timestamps especially for signers or certificate owners. The advantage of
such approach is that updating can happen at anytime in the future.
The last method known in literature is a revocation list. The authority in control can
publish a list of information that helps knowing whether a user of a certain certificate is
revoked or not by testing it against certain elements in that list. This approach removes
the overhead from the owner of the certificate to the verifier since they are the ones
checking the revocation list. It has an advantage on the timestamps since revocation
again can happen anytime in the future. Finding a balance of all three methods of
revoking is still an unresolved issue in cryptography. Several studies have been done
on revocation in cryptographic schemes [101, 50, 116, 75]. Myers established a metric
in which these various approaches are analyzed, and that includes [99]:

• Population Size and Symmetry: The absolute size of potentially revocable cer-
tificates is a major influence when it comes to deciding the revocation technique
adopted. In AAS schemes that means the number of users in the system mul-

128

7.3. Hierarchal Authorities 7. Concluding Remarks and Future Work

tiplied by the maximum number of attributes one can own. The effects of pop-
ulation asymmetry must be considered too. For example in the AAS scheme,
this resembles the following question: Is the set of verifiers that need a specific
attribute as part of their policy smaller then the set of members owning that
attribute?

• Timeliness of revocation information: This is measured by asking oneself: How
soon would the verifier need to know that a certain attribute is revoked from a
certain user?

• Connectivity and bandwidth utilization: Some revocation approaches will require
the verifier to be online others rely on cached data. Since in our AAS scheme we
have multiple attributes each from an authority assuming connectivity is a bad
idea.

• Responsiveness to security critical needs: Attributes that are sensitive need im-
mediate revocation if exposed and an expiry date is not sufficient. However
timestamps are efficient to compute and therefore used for attributes that are
less sensitive.

7.3 Hierarchal Authorities

In the constructions in Chapter 5 authorities are acting separably. However in real life
they are either separate or hierarchal. For example, having a certificate or a student
ID proving that Alice is a student in the University of Bath implies she is part of
the student group in general, meaning that all universities need to be a hierarchal
organization that fall under the Ministry of Education. This kind of hierarchy helps in
minimizing the numbers of certificates users need to have. Theoretically speaking, it
should also improve computational time of the certificate. Hierarchy has been studied
in two fields of cryptography. The first field is “Role Based Access Controls” [125] and
the second field is “Identity Based Cryptography” [66]. The underlying technique in
both fields is quite similar and depends on identifying either the “User of the System”
or the “Authority”. This compromises anonymity of the scheme. However, Kim et al.
proposed a hierarchal group signature scheme [84] that possibly can help in creating a
hierarchal AAS scheme.

7.4 Concealing the Policy of the Verifier

In all schemes proposed in Chapter 5 the verifier had to decide on the credentials
he needs and announce them to all members of the group. Anyone, including an
eavesdropper, will know what type of attributes the verifier is looking for in a signature.

129

7.5. More on The General Construction 7. Concluding Remarks and Future Work

The verifier either encloses his policy with the verification key or the policy can be
derived from the key. It would have been nice if the policy was encrypted in such a
way that only members of the group who satisfy it can decrypt the cipher. A possible
solution for this problem is using searchable encryption [22, 80]. Searchable encryption
is the ability to search for certain keywords in the ciphertext using trapdoors. Assuming
the verifier encrypts the verification request so that the keywords are the attributes he
requires, each member of the group will try to search the ciphertext for the attributes
they own and if they find it they can sign the message. A major difference though
between the normal searchable encryption scheme and the one we need for this purpose
is the trapdoors. In our scheme trapdoors should be private elements that only members
who own a specific attribute have its trapdoor whereas the main searchable encryption
scheme has them public.
Attribute based encryption [69] is another possible solution that seems promising. In
such an encryption scheme the encryptor (i.e. verifier in AAS standards) decides the
attributes he wants the decryptor (i.e. Potential signer within the group) to possess
in order to manage to decrypt the ciphertext. In other words the verifier encrypts his
policy with itself and sends it out to the members of the group. Only members who
satisfy it can actually decrypt and reveal the policy.

7.5 More on The General Construction

In Chapter 4 a general construction for an AAS scheme has been proposed. However
the need of dynamic groups requires finding a general construction for DAAS schemes.
Loosely speaking, the idea is to find a way to convert any dynamic group signature
(See Chapter 4) to a dynamic attribute based scheme (See Chapter 5). If we follow
the same methodology we used in Chapter 4 two issues will come up. First of all, the
registration key was equal to Ai = H1(bsk[i]). In dynamic group signatures bsk[i] is
chosen jointly by the user and the authority in the join protocol and the user is the
only one who actually knows its final value. An option is to use key regi and hashing it
to become the registration key Ai = H1(regi). The second problem is to find a way to
run the Judge algorithm on the attributes without revealing anything about Ai. Once
a general construction is created it has to be proved secure under full anonymity, full
traceability and Non-frameability.
In our general construction the attribute tree and bilinear maps are used. It would be
desirable to define a general construction based on a higher level cryptosystem. One
general idea is to use building blocks such as an attribute based encryption and group
signature. The central authority runs a group signature setup to generate one public
key gpk for the group, a tracing key tk, and a private key bsk[i] for each member i
in the group. Each attribute authority creates a public key and a private key for the

130

7.6. Attribute Based Cryptography 7. Concluding Remarks and Future Work

attributes. The verifier creates his request by sending an encrypted random message
to the group. Any member with sufficient attributes will be able to decrypt and then
send that message back signed as a member of the group. This general construction is
on a higher cryptosystem level and requires to be proven secure under all the notions
defined in Chapter 5.

7.6 Attribute Based Cryptography

In the literature there are two types of attribute based cryptographic schemes: En-
cryption (ABE) and signature (ABS). Goyal et al. [69] proposed the first ABE scheme
where decrypting relied on owning a set of attributes and much research was done in
order to improve that. In [45, 134] the authors proposed ciphertext policy attribute-
based encryption (CP-ABE), where all secret keys are associated with sets of attributes
and ciphertexts are linked with an access structure on attributes. Decryption in such
a scheme is enabled if and only if the users’ attribute set satisfies the ciphertext access
structure. In [106] the authors used circuits rather then attribute trees and the benefit
was to enable a “Not” relation in the policies. Attribute based signatures were pro-
posed in our thesis and extensions were explained in Chapter 5. Maji, Prabhakaran,
and Rosulek extended our work in order to disable traceability and making signatures
anonymous to everyone including any type of manager or authority [93]. As a backbone
to their scheme they have used Mesh Signatures. More cryptographic schemes can be
useful if they were attribute based and the following are some examples

• Signcryption: Traditionally, documents were signed and then encrypted in or-
der to maintain authenticity and confidentiality. However that is not efficient
since you have to run four algorithms in total, Sign/Encrypt on one side and
Verify/Decrypt on the other. In [141] the first signcryption scheme was proposed
where Sign and Encrypt were merged into one algorithm and so was Verify and
Decrypt. Having an attribute based signcryption will help in hiding the verifier’s
policy. It will be joining the ABE together with the ABS. It will be a powerful
tool that can be used for trust negotiation purposes as described in Section 5.1.1.

• E-voting scheme: Electronic voting schemes are cryptosystems that enable fair
voting. They enable people to elect and vote electronically. Chaum was the first
to propose the concept in his work of [39]. The system should fulfill the following
three properties:

– Correctness: The computed tally must be correct according to the cast legal
votes.

– Privacy: Votes must be kept private.

– Availability: Every entitled voter is able to participate in the election.

131

7.7. Complicated Policies 7. Concluding Remarks and Future Work

– Verification: A voter should be able to verify their vote has been registered
correctly.

In some voting systems the voter should be above a certain age, a citizen of a
certain country,...etc. These kind of conditions require an attribute based voting
scheme.

• Broadcast encryption: A Broadcast Encryption Scheme is a set of algorithms
that allow a transmitter to send encrypted messages to a collection of users such
that only a privileged subset of users can decrypt them. Broadcast Encryption
was desperately needed for copyright purposes, digital TV channels distribution,
and music transmissions. Such an encryption scheme was first introduced in 1994
in [62]. In that paper the authors pictured a scenario where there is a center
and a set of users that are provided by that center with keys. Now the center
broadcast an encrypted message and that only subscribed users could decrypt.
Nonmembers of such system are curious to get to know the message. If they
succeed the system is said to be broken. We call the scheme K-resilient if it takes
K revoked users to collude and break the system. Broadcast encryption can be
used in military forces where the army is sent a message and any soldier can
decrypt it. In such a situation it might be necessary that specific soldiers are the
only ones capable of decrypting. For instance you might want the decryptor to
be a senior officer in the air force. Attribute based broadcast encryption would
be a nice invention that serves such purposes.

Other cryptosystems exist and may benefit from being transfered into attribute based
schemes. We have just explained some examples in this section.

7.7 Expanding to more Complicated Policies

In our thesis the policy was expressed as a boolean monotone expression with “and”,
“or”, and “ m of n ” relations. Extra relations can be added, examples on such relations
are given below and are based on scenario 5.1.1.

• Not Relation : Alice wants the potential signer to not be from department C.

• If..then..Relation : If employee is a senior manager then he is a manager.

• Greater/Less than Relation: A potential signer should have been employed for
less than 10 years.

The attribute tree is a powerful tool to express attributes however there might be a
different structure that is capable of capturing more relations between the attributes
and is more efficient than the attribute tree. Choosing polynomials and calculating

132

7.8. Scalability of the AAS Scheme 7. Concluding Remarks and Future Work

Lagrange interpolation may get expensive if the number of attributes required is high
since each node should have a polynomial of a degree of one less than the threshold
gate.

7.8 Scalability of the AAS Scheme

The scheme has its disadvantages when it comes to implementing it on a larger scale.
The system needs one central authority and it is hard to decide in real life who should
play that role. Besides which, having one authority causes a bottleneck. It would be
nice if we can change the system to enable more than one higher authority.
Each member of a group has to contact several entities to collect different attributes.
However, comparing it to the real life scenario people do contact a variety of authorities
in order to get their credentials. For instance, your birth certificate, passport, ID card,
driving license, etc, are all collected from a different authorities.
Scaling the system to include a massive number of attributes in one policy needs ad-
dressing. The more attributes are needed the larger the attribute tree is and the larger
the verification key D is. This will make it hard to send it to the potential signers and
the computational overhead increases too. One may argue that the ultimate policy has
to be agreed by humans, and that does not require a large set of attributes anyway.
Nevertheless, it would be nice to have the size of the verification key constant rather
than linearly dependent on the number of attributes.

133

Bibliography

[1] M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Applications to
Universally-Composable Threshold Cryptography. In Advances in Cryptology
- CRYPTO 2000, volume 3152 of Lecture Notes in Computer Science, pages 317–
334. Springer-Verlag, 2004.

[2] S. Al-Riyami, J. Malone-Lee, and N. Smart. Escrow free encryption support-
ing cryptographic workflow. In International Journal of Information Security,
volume 5, pages 217–230, September 2006.

[3] J. Almansa, I. Damgȧrd, and J. Nielsen. Simplified Threshold RSA with Adaptive
and Proactive Security. In Advances in Cryptology - EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 593–611. Springer-Verlag, 2006.

[4] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385,
2005. http://eprint.iacr.org/.

[5] G. Ateniese, D. Song, and G. Tsudik. Quasi-Efficient Revocation in Group Sig-
natures. In Proceedings of Financial Cryptography’01, volume 2357 of Lecture
Notes in Computer Science, pages 183–197. Springer-Verlag, 2001.

[6] G. Ateniese and G. Tsudik. Some Open Issues and New Directions in Group
Signature Schemes. In Proceedings of Financial Cryptography’99, volume 1648 of
Lecture Notes in Computer Science, pages 196–211. Springer-Verlag, 1999.

[7] M. Au, J. Liu, T. Yuen, and D. Wong. ID-Based Ring Signature Scheme Secure
in the Standard Model. In Proceedings of Advances in Information and Com-
puter Security, volume 4266 of Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, 2006.

[8] M. Bellare. A Note on Negligible Functions. Journal of Cryptology, 15:271–284,
2002.

[9] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of Group Signatures:
Formal Definitions, Simplified Requirements, and a Construction Based on Gen-

134

eral Assumptions. In Advances in Cryptology - EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 614–629. Springer-Verlag, 2003.

[10] M. Bellare and G. Neven. Identity-Based Multi-signatures from RSA. In CT-
RSA, pages 145–162, 2007.

[11] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols. In ACM Conference on Computer and Communi-
cations Security, pages 62–73, 1993.

[12] M. Bellare and P. Rogaway. Introduction to Modern Cryptography. http://www.
cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf, 2005.

[13] M. Bellare, H. Shi, and C. Zhang. Foundations of Group Signatures: The Case of
Dynamic Groups. In Topics in Cryptology CT-RSA 2005, volume 3376 of Lecture
Notes in Computer Science, pages 136–153. Springer-Verlag, 2005.

[14] A. Bender, J. Katz, and R. Morselli. Ring Signatures: Stronger Definitions and
Constructions Without Random Oracles. In Theory of Cryptography, volume
3876 of Lecture Notes in Computer Science, pages 60–79. Springer-Verlag, 2006.

[15] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge
University Press, 1 edition, 1999.

[16] I. Blake, G. Seroussi, and N. Smart. Advances in Elliptic Curves in Cryptography.
Cambridge University Press, 1 edition, 2004.

[17] M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge and Its
Applications. In Proceedings of the twentieth annual ACM symposium on Theory
of computing, ACM, pages 103–112, 1988.

[18] B. Boer. Diffie-Hellman is as Strong as Discrete log for Certain Primes. In Ad-
vances in Cryptology - CRYPTO 1988, volume 403 of Lecture Notes in Computer
Science, pages 530–539. Springer-Verlag, 1988.

[19] D. Boneh and X. Boyen. Short Signatures without Random Oracles. In Advances
in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 382–400. Springer-Verlag, 2004.

[20] D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. In Advances in
Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 41 – 55. Springer-Verlag, 2004.

[21] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.
In Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 213–229. Springer-Verlag, 2001.

135

[22] D. Boneh, G.Crescenzo, R. Ostrovsky, and G. Persiano. Public Key Encryption
with Keyword Search. In Advances in Cryptology - EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 506–522. Springer-Verlag, 2004.

[23] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps. In Advances in Cryptology - EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 416–432.
Springer-Verlag, 2003.

[24] D. Boneh, C. Gentry, and B. Waters. Collusion Resistant Broadcast Encryp-
tion with Short Ciphertexts and Private Keys. In Advances in Cryptology -
CRYPTO’05, LNCS, pages 258–275. Springer-Verlag New York Inc, 2005.

[25] D. Boneh and H. Shacham. Group Signatures with Verifier-Local Revocation.
In Proceedings of the 11’th ACM conference on Computer and Communications
Security, pages 168–177, 2004.

[26] C. Boyd. Digital Multisignatures. In Cryptography and Coding, H.J.Beker and
F.C.Piper Eds., pages 241–246. Oxford University Press, 1989.

[27] X. Boyen. Mesh Signatures: How to Leak a Secret with Unwitting and Unwilling
Participants. In Advances in Cryptology - EUROCRYPT 2007, volume 4515 of
Lecture Notes in Computer Science, pages 210–227. Springer-Verlag, 2007.

[28] R. Bradshaw, J. Holt, and K. Seamons. Concealing complex policies with hidden
credentials. In Proceedings of 11th ACM Conference on Computer and Commu-
nications Security, pages 146–157. ACM Press, 2004.

[29] S. Brands. An efficient off-line electronic cash system based on the representation
problem. http://citeseer.ist.psu.edu/488307.html, 1993. CWI (Centre for
Mathematics and Computer Science) Report CS-R9323.

[30] E. Bresson, J. Stern, and M. Szydlo. Threshold Ring Signatures and Applications
to Ad-hoc Groups. In Advances in Cryptology - CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 465–480. Springer-Verlag, 2002.

[31] J. Camenisch. Efficient and Generalized Group Signatures. In Advances in Cryp-
tology - EUROCRYPT 1997, volume 1233 of Lecture Notes in Computer Science,
pages 465–479. Springer-Verlag, 1997.

[32] J. Camenisch and A. Lysyanskaya. Efficient Non-transferable Anonymous Mul-
tishow Credential System with Optional Anonymity Revocation. In Advances
in Cryptology - EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 93–118. Springer-Verlag, 2001.

136

[33] J. Camenisch and A. Lysyanskaya. Efficient Revocation of Anonymous Group
Membership. Cryptology ePrint Archive, Report 2001/113, 2001. http://

eprint.iacr.org/.

[34] J. Camenisch and A. Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In Advances in Cryptology -
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 61–
76. Springer-Verlag, 2002.

[35] J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Creden-
tials from Bilinear Maps. In Advances in Cryptology - CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 56–72. Springer-Verlag, 2004.

[36] J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large
Groups. In Advances in Cryptology - CRYPTO 1997, volume 1294 of Lecture
Notes in Computer Science, pages 410–424. Springer-Verlag, 1997.

[37] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, revis-
ited (preliminary version). In Proceedings of the 30th Annual ACM Symposium
on the Theory of Computing, pages 209–218. ACM Press, 1998.

[38] C. Castelluccia, S. Jarecki, J. Kim, and G. Tsudik. A Robust Multisignatures
Scheme with Applications to Acknowledgment Aggregation. In SCN, volume
3352, pages 193–207, 2004.

[39] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Commun. ACM, 24(2):84–90, 1981.

[40] D. Chaum. Security without Identification Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[41] D. Chaum and V. Heyst. Group Signatures. In Advances in Cryptology - EURO-
CRYPT 1991, volume 547 of Lecture Notes in Computer Science, pages 257–265.
Springer-Verlag, 1991.

[42] L. Chen and T. Pedersen. New Group Signature Schemes. In Advances in Cryp-
tology - EUROCRYPT 1994, volume 950 of Lecture Notes in Computer Science,
pages 171–181. Springer-Verlag, 1994.

[43] Z. Chen, J. Wang, Y. Wang, J. Huang, and D. Huang. An Efficient Revocation
Algorithm in Group Signatures. In Information Security and Cryptology - ICISC,
volume 2971 of Lecture Notes in Computer Science, pages 339–351. Springer-
Verlag, 2004.

137

[44] J. H. Cheon. Security Analysis of the Strong Diffie-Hellman Problem. In Advances
in Cryptology - EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 1–11. Springer-Verlag, 2006.

[45] L. Cheung and C. Newport. Provably Secure Ciphertext Policy ABE. In ACM
Conference on Computer and Communications Security, pages 456–465, 2007.

[46] J. Choon and J. Cheon. An Identity-Based Signature from Gap Diffie Hellman
Groups. In Public Key Cryptography PKC, volume 2567 of Lecture Notes in
Computer Science, pages 18–30. Springer Verlag, 2003.

[47] S. Chow, L. Hui, and S. Yiu. Identity Based Threshold Ring Signature. In
Information Security and Cryptology, volume 2971 of Lecture Notes in Computer
Science, pages 218–232. Springer-Verlag, 2004.

[48] C. Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues.
In Proceedings of Cryptography and Coding, volume 2260 of Lecture Notes in
Computer Science, pages 360–363. Springer-Verlag, 2001.

[49] H. Cohen and G. Frey. The Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography. Discrete Mathematics and Its Applications-Chapman and Hall/CRC,
2005.

[50] D. A. Cooper. A model of certificate revocation. In ACSAC ’99: Proceedings
of the 15th Annual Computer Security Applications Conference, page 256, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[51] J. Coron and A. May. Deterministic polynomial-time equivalence of computing
the rsa secret key and factoring. J. Cryptology, 20(1):39–50, 2007.

[52] C. Delerable and D. Pointcheval. Dynamic Fully Anonymous Short Group Sig-
natures. In Proceedings of VIETCRYPT 2006, volume 4341 of Lecture Notes in
Computer Science, pages 193–210. Springer-Verlag, 2006.

[53] H. Delfs and H. Knebl. Introduction to Cryptography . Springer, 1 edition, 2002.

[54] A. Dent. Fundamental Problems in Provable Security and Cryptography. In
Philosophical Transactions, volume 364, pages 3215–3230. Royal society, 2006.

[55] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Advances in Cryptology
- CRYPTO 1989, volume 453 of Lecture Notes in Computer Science, pages 307–
315. Springer-Verlag, 1989.

[56] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, 22:644–654, 1976.

138

[57] X. Ding, G. Tsudik, and S. Xu. Leak-Free Group Signatures with Immediate
Revocation. In Proc. of 24th International Conference on Distributed Computing
Systems, pages 608–615, 2004.

[58] C. Dwork, J. Lotspiech, and M. Naor. Digital Signets: Self-enforcing Protection
of Digital Information. In Proc. 28th STOC, Lecture Notes in Computer Science,
pages 489–498. Springer-Verlag, 1996.

[59] C. Dwork, J. Lotspiech, and M. Naor. Digital signets: self-enforcing protection
of digital information (preliminary version). In STOC ’96: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 489–498,
New York, NY, USA, 1996. ACM.

[60] K. Eisentrager, K. Lauter, and P. Montgomery. Fast Elliptic Curve Arithmetic
and Improved Weil Pairing Evaluation. In Topics in Cryptology CT-RSA 2003,
volume 2612 of Lecture Notes in Computer Science, pages 343–354. Springer-
Verlag, 2003.

[61] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In Advances in Cryptology - CRYPTO 1984, volume IT-31
of IEEE Transactions on Information Theory, pages 469–472. Springer-Verlag,
1984.

[62] A. Fiat and M. Naor. Broadcast Encryption. In Advances in Cryptology -
CRYPTO 1993, volume 773 of Lecture Notes in Computer Science, pages 480–
491. Springer-Verlag, 1993.

[63] S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate Pairing . In
Algorithmic Number Theory, volume 2369 of Lecture Notes in Computer Science,
pages 69–86. Springer-Verlag, 2002.

[64] S. Galbraith, H. Hopkins, and I. Shparlinski. Secure Bilinear Diffie-Hellman Bits.
In Information Security and Privacy, volume 3108 of Lecture Notes in Computer
Science, pages 370–378. Springer-Verlag, 2004.

[65] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

[66] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. In Advances
in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes of Computer
Science, pages 149–155. Springer-Verlag, 2002.

[67] O. Goldreich, B. Pfitzman, and R. Rivest. Self-Delegation with Controlled
Propagation or What If you Lose your Laptop. In Advances in Cryptology -

139

CRYPTO 1998, volume 1642 of Lecture Notes in Computer Science, pages 153–
168. Springer-Verlag, 1998.

[68] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Inter-
active Proof Systems. SIAM J. Comput., 18(1):186–208, 1989.

[69] V. Goyal, O. Pandeyy, A. Sahaiz, and B. Waters. Attribute-Based Encryption
for Fine-Grained Access Control of Encrypted Data. In Proceedings of the 13th
ACM conference on Computer and communications security, pages 89–98, 2006.

[70] J. Groth. Fully Anonymous Group Signatures Without Random Oracles. In
Advances in Cryptology - ASIACRYPT 2007, volume 4833 of Lecture Notes in
Computer Science, pages 164–180. Springer-Verlag, 2007.

[71] J. Herranz and F. Laguillaumie. Blind Ring Signatures Secure Under the Chosen-
Target-CDH Assumption. In Proceedings of Information Security, volume 4176
of Lecture Notes in Computer Science, pages 117–130. Springer-Verlag, 2006.

[72] J. Herranz and G. Sez. New Identity-Based Ring Signature Schemes. In Informa-
tion and Communications Security, volume 3269 of Lecture Notes in Computer
Science, pages 27–39. Springer-Verlag, 2004.

[73] F. Hess. Efficient Identity Based Signature Schemes Based on Pairings. In Selected
Areas in Cryptography, volume 2595 of Lecture Notes in Computer Science, pages
310–324. Springer-Verlag, 2003.

[74] J. Holt, R. Bradshaw, K. Seamons, and H. Orman. Hidden Credentials. In 2nd
ACM Workshop on Privacy in the Electronic Society, pages 1–8, 2003.

[75] H. Imai and Y. Zheng, editors. Public Key Cryptography, Third International
Workshop on Practice and Theory in Public Key Cryptography, PKC 2000, Mel-
bourne, Victoria, Australia, January 18-20, 2000, Proceedings, volume 1751 of
Lecture Notes in Computer Science. Springer, 2000.

[76] K. Itakura and K. Nakamura. A Public Key Cryptosystem Suitable for Digital
Multisignatures. In NEC Research and Development, pages 71:1–8, 1983.

[77] A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. In ANTS-IV:
Proceedings of the 4th International Symposium on Algorithmic Number Theory,
pages 385–394, London, UK, 2000. Springer-Verlag.

[78] D. Kahn. The Codebreakers, The Story of Secret Writing. MacMillan, 1st edition,
1967.

[79] D. Khader. Attribute Based Group Signatures. Cryptology ePrint Archive, Re-
port 2007/159, 2007. http://eprint.iacr.org/.

140

[80] D. Khader. Public Key Encryption with Keyword Search Based on K-Resilient
IBE. In Proceedings of Computational Science and Its Applications ICCSA 2007,
volume 4707 of Lecture Notes in Computer Science, pages 1086–1095. Springer-
Verlag, 2007.

[81] D. Khader. Authenticating with Attributes. Cryptology ePrint Archive, Report
2008/031, 2008. http://eprint.iacr.org/.

[82] H. Kim, J. Lim, and D. Lee. Efficient and Secure Member Deletion in Group
Signature Schemes. In Information Security and Cryptology, volume 2015 of
Lecture Notes in Computer Science, pages 150–161. Springer-Verlag, 2001.

[83] S. Kim, S. Park, and D. Won. Convertible Group Signatures. In Advances
in Cryptology - ASIACRYPT 1996, volume 1163 of Lecture Notes in Computer
Science, pages 311–321. Springer-Verlag, 1996.

[84] S. Kim, S. Park, and D. Won. Group Signatures for Hierarchical Multigroups. In
Information Security, volume 1396 of Lecture Notes in Computer Science, pages
273–281. Springer-Verlag, 1998.

[85] B. King. Improved Methods to Perform Threshold RSA. In Advances in Cryp-
tology - ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science,
pages 359–372. Springer-Verlag, 2000.

[86] D. Kwak, S. Moon, G. Wang, and R. Deng. A secure extension of the Kwak-Moon
group signcryption scheme. Computers & Security, 25(6):435–444, 2006.

[87] C. Li, T. Hwang, and Y. Lee. Threshold-Multisignature Schemes where Sus-
pected Forgery implies Traceability of Adversarial Shareholders. In Advances
in Cryptology - EUROCRYPT 1995, volume 950 of Lecture Notes in Computer
Science, pages 194–204. Springer-Verlag, 1995.

[88] Z. Li, Y. Wang, Y. Yang, and W. Wu. Cryptanalysis of convertible group signa-
ture. In Electronics Letters of IEEE, volume 35, pages 1071–1072, 1999.

[89] C. Lim and P. Lee. Remarks on Convertible Signatures of ASIACRYPT’96. In
Electronics Letters of IEEE, volume 33, pages 383–384, 1997.

[90] A. Lysyanskaya and Z. Ramzan. Group Blind Digital Signatures: A Scalable
Solution to Electronic Cash. In Proceedings of Financial Cryptography’98, volume
1465 of Lecture Notes in Computer Science, pages 184–197. Springer-Verlag, 1998.

[91] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym Systems. In Se-
lected Areas in Cryptography, volume 1758 of Lecture Notes in Computer Science,
pages 184–199. Springer-Verlag, 1999.

141

[92] Y.-D. Lyuu and M.-L. Wu. Convertible Group Undeniable Signatures. In In-
formation Security and Cryptology ICISC 2002, volume 2587 of Lecture Notes in
Computer Science, pages 48–61. Springer-Verlag, 2003.

[93] H. Maji, M. Prabhakaran, and M. Rosulek. Attribute-Based Signatures: Achiev-
ing Attribute-Privacy and Collusion-Resistance. Cryptology ePrint Archive, Re-
port 2008/328, 2008. http://eprint.iacr.org/.

[94] W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall Professional
Technical Reference, 2003.

[95] U. Maurer. Towards the Equivalence of Breaking the Diffie-Hellman Protocol
and Computing Discrete Algorithms. In Advances in Cryptology - CRYPTO
1994, volume 839 of Lecture Notes in Computer Science, pages 271–281. Springer-
Verlag, 1994.

[96] U. Maurer and S. Wolf. Lower Bounds on Generic Algorithms in Groups. In Ad-
vances in Cryptology EUROCRYPT’98, volume 1403 of Lecture Notes in Com-
puter Science, page 72. Springer-Verlag, 1998.

[97] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[98] J. Mikucki. Do You Know What I Know? http://www.citeseer.ist.psu.

edu/mikucki99do.html", 1999.

[99] M. Myers. Revocation: Options and Challenges. In Financial Cryptography,
volume 1465 of Lecture Notes in Computer Science, pages 165–171. Springer-
Verlag, 1998.

[100] T. Nakanishi and Y. Sugiyama. A Group Signature Scheme with Efficient Mem-
bership Revocation for Reasonable Groups. In Information Security and Privacy,
volume 3108 of Lecture Notes in Computer Science, pages 336–347. Springer-
Verlag, 2004.

[101] M. Naor and K. Nissim. Certificate Revocation and Certificate Update. In
Proceedings of the 7th USENIX Security Symposium, pages 217–228, San Antonio,
TX, Jan. 1998.

[102] M. Noar. Deniable Ring Authentication. In Advances in Cryptology - CRYPTO
2002, volume 2442 of Lecture Notes in Computer Science, pages 481–489.
Springer-Verlag, 2002.

[103] T. Ohata and T. Okamoto. A Digital Multisignature Scheme based on the Fiat-
Shamir scheme. In Advances in Cryptology - ASIACRYPT 1991, volume 739 of
Lecture Notes in Computer Science, pages 75–79. Springer-Verlag, 1991.

142

[104] T. Okamoto. A digital multisignature scheme using bijective public-key cryp-
tosystems. ACM Trans. Comput. Syst., 6(4):432–441, 1988.

[105] R. Oppliger. Contemporary Cryptography. Artech House Publishers, 2005.

[106] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based Encryption with Non-
Monotonic Access Structures. In ACM Conference on Computer and Communi-
cations Security, pages 195–203, 2007.

[107] S. Park, S. Kim, and D. Won. ID-based Group Signature. In Electronics Letters,
volume 33, pages 1616–1617, 1997.

[108] T. Pedersen. A Threshold Cryptosystem without a Trusted Party. In Advances
in Cryptology - EUROCRYPT 1991, volume 547 of Lecture Notes in Computer
Science, pages 522–526. Springer-Verlag, 1991.

[109] T. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In Advances in Cryptology - CRYPTO 1991, volume 576 of Lecture
Notes in Computer Science, pages 129–140. Springer-Verlag, 1991.

[110] H. Petersen. How to Convert any Digital Signature Scheme into a Group Sig-
nature Scheme. In Proceedings of Security Protocols Workshop, pages 177–190,
1997.

[111] D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. In Journal of Cryptography, volume 13 of Number 3, pages 361–396.
Springer-Verlag, 2000.

[112] J. Pollard. Monte Carlo Methods for Index Computation . Mathematics of
Computation, 32:918–924, 1978.

[113] S. Popescu. An Efficient ID-based Group Signature Scheme. In Studia Univ.
Babes-Bolyai Informatica, volume 2, pages 29–36, 2002. http://www.cs.

ubbcluj.ro/~studia-i/2002-2/.

[114] J. Quisquater, L. Guillou, M. Annick, and T. Berson. How to explain zero-
knowledge protocols to your children. In Advances in Cryptology - CRYPTO
1989, pages 628–631, New York NY USA, 1989. Springer-Verlag New York Inc.

[115] R.Gennaro, S. Jarecki, H.Krawczyk, and T. Rabin. Robust Threshold DSS Signa-
tures. In Advances in Cryptology - EUROCRYPT 2001, volume 1070 of Lecture
Notes in Computer Science, pages 354–371. Springer-Verlag, 2001.

[116] R. Rivest. Can We Eliminate Certificate Revocation Lists? In Financial Cryp-
tography, volume 1465 of Lecture Notes in Computer Science, pages 737–766.
Springer-Verlag, 1998.

143

[117] R. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In Advances
in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer
Science, page 552. Springer-Verlag, 2001.

[118] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[119] K. Rosen. An Introduction to Cryptography-Second Edition. Discrete Mathemat-
ics and Its Applications. Chapman and Hall, 2006.

[120] A. SAHAI. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proceedings of the 40th Symposium on Foundations of
Computer Science, page 543. IEEE, 1999.

[121] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in
C. Wiley, New York, 2nd edition, 1996.

[122] C. Schnorr. Efficient Identification and Signatures for Smart Cards. In Advances
in Cryptology - CRYPTO 1989, volume 435 of Lecture Notes in Computer Sci-
ence, pages 239–252. Springer-Verlag, 1989.

[123] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Advances
in Cryptology - CRYPTO 1984, volume 7 of Lecture Notes in Computer Science,
pages 47–53. Springer-Verlag, 1984.

[124] C. Shannon. Communication Theory of Secrecy Systems. In Bell Systems Tech-
nical Journal, volume 28, pages 656–715, 1949.

[125] W. Shiuh-Jeng and C. Jin-Fu. A Hierarchical and Dynamic Group-Oriented
Cryptographic Scheme (Special Section on Cryptography and Information Secu-
rity). IEICE transactions on fundamentals of electronics, communications and
computer sciences, 79(1):76–85, 1996.

[126] V. Shoup. Practical Threshold Signatures. In Advances in Cryptology - EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 207–220.
Springer-Verlag, 2000.

[127] N. Smart. How secure are elliptic curves over composite extension fields? In
Proceedings of the International Conference on the Theory and Application of
Cryptographic Techniques, pages 30–39, London, UK, 2001. Springer-Verlag.

[128] N. Smart. Cryptography: An Introduction. Mcgraw-Hill College, 2004.

[129] E. Suli and D. Mayers. An Introduction to Numerical Analysis. Cambridge
University Press, 2003.

144

[130] W. Susilo and Y. Mu. Deniable Ring Authentication Revisited. In Applied
Cryptography and Network Security (ACNS 2004), volume 3089 of Lecture Notes
in Computer Science, pages 149–163. Springer-Verlag, 2004.

[131] M. Trolin and D. Wikström. Hierarchical Group Signatures. In Proceedings
of Automata, Languages and Programming, volume 3580 of Lecture Notes in
Computer Science, pages 446–458. Springer-Verlag, 2005.

[132] E. Verheul. Self-Blindable Credential Certificates from the Weil Pairing. In
Advances in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture Notes in
Computer Science, pages 533–551. Springer-Verlag, 2001.

[133] G. Wang, R. Deng, D. Kwak, and S. Moon. Security Analysis of Two Signcryption
Schemes. In Information Security, volume 3225 of Lecture Notes in Computer
Science, pages 123–133. Springer-Verlag, 2004.

[134] B. Waters. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Ef-
ficient, and Provably Secure Realization. Cryptology ePrint Archive, Report
2008/290, 2008. http://eprint.iacr.org/.

[135] V. Wei, T. Yuen, and F. Zhang. Group Signature Where Group Manager Mem-
bers and Open Authority Are Identity-Based. In Proceedings of Information
Security and Privacy, volume 3574 of Lecture Notes in Computer Science, pages
468–480. Springer-Verlag, 2005.

[136] W. Winsborough and N. Li. Safety in Automated Trust Negotiation. ACM Trans.
Inf. Syst. Secur., 9(3):352–390, 2006.

[137] W. Winsborough, K. Seamons, and V. Jones. Automated Trust Negotiation.
In DARPA Information Survivability Conference and Exposition 2000. DISCEX
’00, volume 1, pages 88–102. IEEE, 2000.

[138] W. H. Winsborough and N. Li. Towards Practical Automated Trust Negotiation.
In Proceedings of the Third International Workshop on Policies for Distributed
Systems and Networks (Policy 2002), pages 92–103. IEEE Computer Society
Press, June 2002.

[139] T. Yu, M. Winslett, and K. Seamons. Supporting structured credentials and sen-
sitive policies through interoperable strategies for automated trust negotiation.
ACM Trans. Inf. Syst. Secur., 6(1):1–42, 2003.

[140] F. Zhang and K. Kim. ID-based Blind Signature and Ring Signature from Pair-
ings. In Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 533–547. Springer-Verlag, 2002.

145

[141] Y. Zheng. Digital Signcryption or How to Achieve Cost(Signature and Encryp-
tion) << Cost(Signature) + Cost(Encryption). In Advances in Cryptology -
CRYPTO 1996, volume 1294 of Lecture Notes in Computer Science, pages 165–
179. Springer-Verlag, 1996.

146

Appendix A

Chapter 5 Security Proofs

In this section we give detailed proofs for full traceability and full anonymity of the
ABGS scheme, AAS scheme and DAAS scheme. Furthermore, we give details of the
attribute unforgeability proofs for AAS and DAAS scheme. We will start with full
anonymity.

A.1 Full Anonymity

In this section we will discuss the full anonymity of the three schemes proposed in
Chapter 5. In each three proofs we show how the existence of an adversary Adam that
breaks the anonymity of the scheme implies the existence of another adversary Eve

that breaks a known secure encryption scheme or a complexity assumption. The game
models are described in the following three sections: A.1.1, A.1.2 and A.2.3.

A.1.1 Full Anonymity of an ABGS

Theorem A.1.1. If the linear encryption is IND-CPA secure then the attribute based
group signature scheme is anonymous under the random oracle.

Assume Adam is an adversary that breaks the anonymity of the ABGS scheme. We
will prove that there is an adversary Eve that breaks the IND-CPA security of the
linear encryption using Adam’s talent. The game is demonstrated below:

• Setup: Eve is given the public key LEPK = 〈u, v, h〉 from Charles (See Sec-
tion 2.3.2). Eve chooses γ, t1,...,tm ∈R Z∗

p. Using the LEPK key and the random
values, Eve can calculate an ABGS public parameter Spub = 〈G1, G2, G3, e, g1,
g2, h, u, v〉 for the ABGS scheme. Note that H will be replaced by a random
oracle. Eve also calculates n private key bases bsk[i] = 〈Ai, xi〉 where 1 ≤ i ≤ n.

147

• Phase 1: Eve runs five oracles: a Signature oracle, PriKey oracle, PubKey ora-
cle, AttKey oracle and a Hash oracle.
The Hash oracle has a list that saves a unique random value for each nine-element
tuple queried and the random value is the response to the query. The Hash oracle
should guarantee that no two tuples have the same random value and that each
time it responds with the same random value for the same input.
In the PriKey oracle Adam sends an index i and Eve responds back with bsk[i] =
〈Ai, xi〉.
The AttKey oracle Adam sends a key Ai and Υi and Eve responds with gsk =
〈Ai, Ti,1,...,Ti,µ〉.
The PubKey oracle can be queried by Adam where he sends Γ and Eve adds a
gpk=〈g1, g2, h, u, v, w, D, h1,...,hκ〉 to a database accessible by Adam.
In the Signature oracle Adam sends an index i, a random message M and the
public key gpk to Eve. Eve responds back with a signature σ = 〈C1, C2, C3,
c, CT1,...,CTµ, sζ , sβ, sx, sδ1 , sδ2 ,td, =i〉 on that message from user i. c is the
response of the Hash oracle for the tuple 〈M,C1, C2, C3, R1, R2, R3, R4, R5〉. The
signature is calculated as done in the construction since Charles has the private
keys required.

• Challenge: Now Adam can request from Eve his anonymity challenge by choos-
ing two indexes (i0 and i1), set of attributes =i, a public key gpk and a message
M asking for a signature of one of them. Eve sends Charles both 〈Ai0 , Ai1〉 as
messages requesting her challenge. Charles responds back with the ciphertext
C̄ = 〈C1, C2, C3〉 of Aib where b ∈ {0, 1}. Eve generates a signature by choosing
α, sζ , sβ, sx, sδ1 , sδ2 , c ∈R Z∗

p then calculating :
R̄1 = usζC−c

1 ,
R̄2 = vsβC−c

2 ,
R̄4 = Csx

1 u−sδ1 ,
R̄5 = Csx

2 v−sδ2 ,
R̄3=e(C3, g2)sx .e(h,w)−sζ−sβ .e(h, g2)−sδ1

−sδ2 .(e(C3,w)
e(g1,g2))

c.
Eve adds the tuple 〈M,C1, C2, C3, R1, R2, R3, R4, R5〉 with c to the list of Hash
oracles and calculates td = wα.
Eve sends signature σb=〈C1,C2,C3,C

α/t1
3 ,...,Cα/tτ

3 ,sζ , sβ, sx, sδ1 , sδ2 , c, td, =i〉
and sends it to Adam.

• Phase 2: Adam goes back to issuing further queries as done in Phase one.

• Guess: Adam returns a b̄ to Eve.

Eve outputs b̄ as her answer to Charles. Eve has a high advantage on guessing the
right b̄ = b if and only if Adam can break into the anonymity of the ABGS scheme.

148

A.1.2 Full Anonymity of an AAS

Theorem A.1.2. If the decision linear assumption holds in group G2 then the AAS is
anonymous under the random oracle.

Assuming Adam is an adversary that breaks the anonymity of the AAS scheme, we will
prove that there exist an adversary Eve that solves the decisional linear assumption
using Adam’s capabilities. The resulting game is described below:

• Init: Adam decides the universe set of attributes U = {t1,...,tm}, in which he
would like to be challenged upon and gives it to Eve.

• Setup: Charles gives Eve the tuple 〈u0, u1, u2, h0 = ua
0, h1 = ub

1, Z〉 where
u0, u1, u2, h0, h1, Z ∈ G2 and a, b ∈ Z∗

p. Z is either random or Z = ua+b
2 .

Eve should decide which Z she was given. Recall that g1, g2 are in G1 and G2

respectively. Eve chooses γ ∈R Z∗
p and assigns w = gγ

2 . She creates the n − 2
private key bases bsk[i] = 〈Ai, xi〉 as in Section 5.4.3. She will then choose a
random W ∈ G2. The missing private key bases of user i0 and i1 are defined as
Ai0 = ZW/ua

2 and Ai1 = Wub
2 for some xi0 ,xi1 . Notice that if Z = ua+b

2 then
Ai0 = Ai1 . Eve does not know the values of either bsk[i0] or bsk[i1]. We will
show later in our security model how she can still interact with Adam pretending
she does know them. Eve gives Adam w and Spub = 〈G1,G2, G3, e, g1, g2〉 but
retains Spri = γ. Both Charles and Eve can run the A.KeyGenpub algorithm to
obtain 〈bpk1,...,bpkm〉.

• Phase 1: Eve runs four oracles, the Signature oracle, the USK oracle, the Re-
voke oracle and the Hash oracle. If Adam queries the Hash oracle, Eve should
keep a list of her responses to ensure randomness and consistency for both hash
functions H and H0. In the rest of the oracles Eve’s reaction will be divided into
three responses depending on whether Adam queried i0,i1 or neither.

If Adam queries the Signature oracle he should send an index i, a verifying key
D for a certain attribute tree Γ, and a message M . If (i 6= i0, i1), Eve will reply
with a signature σ = 〈r,C1,C2,C3,C4,c,sξ,sx,sδ, Froot〉 as done in Section 5.4.3. If
(i = i0), Eve picks a random s, t, l, β ∈ Z∗

p and makes the following assignments:
C1 = h0u

s
0; C2 = ZWus

2h
t
0u

st
0 ; ū = ul

0; v̄ = (u2u
t
0)

l.
Let ξ = (a+ s)/l ∈ Z∗

p, then C1 = ūξ and C2 = Ai0 v̄
ξ.

Eve assigns C3 = e(ZW,w)β and C4 = wβ. She calculates Froot by replacing the
recursive algorithm SignNode with Fake-SignNode, which is described below:

149

Fake-SignNode =


If (j ∈ Γ); return e((us

2h
t
0u

st
0)tj , Dj)β

=e(us
2h

t
0u

st
0 , w)βqj(0)

Otherwise return ⊥

Froot in this case will equal e(us
2h

t
0u

st
0 , w)βα. Notice that F

1/α
root.C3 = e(C2, w)β.

Given that β1, β2 ∈R Z∗
p, then it is hard to distinguish between the following two

triples:

〈e(vξ, w)β1 , wβ1 , e(Ai, w)β1α〉 and 〈e(ZW,w)β2 , wβ2 , e(us
2h

t
0u

st
0 , w)β2α〉.

If (i = i1), Eve picks a random s, t, l, β ∈ Z∗
p and makes the following assign-

ments:

C1 = h1u
s
1; C2 = Wht

1u
st
1 /u

s
2; ū = ul

1; v̄ = (ut
1/u2)l

Let ξ = (b+ s)/l ∈ Z∗
p. Then C1 = ūξ and C2 = Ai1 v̄

ξ.

Eve assigns C3 = e(W,w)β and C4 = wβ. She calculates Froot by replacing the

recursive algorithm SignNode with Fake-SignNode which is described below:

Fake-SignNode =


If (j ∈ Γ); return e((ht

1u
st
1 /u

s
2)

tj , Dj)β

=e(ht
1u

st
1 /u

s
2, w)βqj(0)

Otherwise return ⊥

Froot in this case will equal e(ht
1u

st
1 /u

s
2, w)βα. Notice that F

1/α
root.C3 = e(C2, w)β.

If β1, β2 are random elements in Z∗
p, it is hard to distinguish between the triples:

〈e(vξ, w)β1 , wβ1 , e(Ai, w)β1α〉 and 〈e(W,w)β2 , wβ2 , e(ht
1u

st
1 /u

s
2, w)β2α〉

Eve chooses values r, c, sξ, sx, sδ ∈R Z∗
p. Eve sets the values

R1 = usξ/ψ(C1)c, R3 = ψ(C1)sxψ(u)−sδ , and

R2 = e(ψ(C2), g2)sxe(ψ(v̄), w)−sξe(ψ(v̄), g2)−sδ(e(ψ(C2), w)/e(g1, g2))c.

The probability thatH(M,ψ(C1), ψ(C2), ψ(C3), ψ(C4), R1, R2, R3) orH0(D,M, r)
has been queried before is at most qH/p where qH is the numbers of queries. If a

collusion happens Eve reports a failure. Otherwise Eve adds

H(M,ψ(C1), ψ(C2), ψ(C3), ψ(C4), R1, R2, R3) = c and H0(D,M, r) = (ū, v̄) to

the Hash oracles list.

Eve sends to Adam the signature σ = 〈r,ψ(C1),ψ(C2),ψ(C3),ψ(C4),c,sξ,sx,sδ,

Froot〉

Adam queries the Revoke oracle, by sending a users index i to be revoked. Eve

replies with adding Ai to RL. If Adam queries i0, i1, Eve reports failure. RL is

accessible to both Adam and Charles.

150

• Challenge: Adam asks to be challenged on message M , verification key D for

a certain Γ and indexes i∗0 plus i∗1. If {i∗0, i∗1} 6= {i0, i1} then Eve reports failure.

Otherwise, Eve picks randomly b ∈ {0, 1} and generates a signature the same

way it would have done in the Signature oracle. So Eve responds with signature

σb.

• Phase 2: Is exactly like phase 1 as long as i∗0 and i∗1 are not queried in neither

the revoke nor the USK oracles.

• Output : Adam outputs a guess b̄ ∈ {0, 1}. If b = b̄ then Z is random, otherwise

Z = ua+b
2 .

There are two ways this game can end. Case one is when Eve does not abort. If Z is
random then Pr[b = b̄] > 1/2+ ε otherwise if Z = ua+b

2 then both signatures should be
identical and therefore challenge is independent of b. Hence Pr[b = b̄] = 1/2. So the
advantage of Eve solving the linear challenge is at least ε/2.
The second case is Eve aborts and so fails. Eve can abort in the signature queries
with probability qSqH/p where qS is the number of signature queries and qH are hash
queries. The probability that all queries in Phase 1 and the challenge do not cause Eve
to abort is 1/n2. Concatenating both cases together the probability of Eve solving the
linear challenge is (ε/2)((1/n2)− (qSqH)/p) as required.

A.1.3 Full Anonymity of a DAAS

Theorem A.1.3. If ElGamal encryption scheme is IND-CPA secure then the Dynamic
Attribute Authentication Scheme is anonymous under the random oracle.

Adam is an adversary that attacks the schemes anonymity, Eve tries to use Adam’s
capability in order to break the IND-CPA security of ElGamal encryption scheme. The
following is the game model:

• Init: Adam decides the universal set of attributes U = {t1,...,tm}, in which he
would like to be challenged upon and gives it to Eve.

• Setup: Charles sets up the ElGamal Encryption scheme. The public key is
(g1, g4) ∈ G1 where g1 = gξ1

4 and ξ1 ∈ Z∗
p. ξ1 is kept secret to the challenger

while the rest is public and known to Eve. Eve calculates g2 = g1g
rnd1
4 therefore

ξ2 = ξ1 + rnd1 where rnd1 ∈ Z∗
p. Eve chooses a γ ∈ Z∗

p, and h ∈ G2. Eve can
calculate gpk and send it to Adam together with γ.

151

• Phase 1: In this phase Adam queries the oracles: USK, a Signature oracle, Crp-
tJoinUsr, CrptJoinIss, Open and the Hash oracle.
In the Hash oracle Eve responses with a unique but random c ∈ Z∗

p every time
the query of the tuple (M,C1, C2, C3, C4, C5, C6, R1, R2, R3, R4) takes place. By
unique we mean for the same input response is always the same and by random
we mean the response is different and random for other inputs. A list of responses
is kept for such purposes.
Replies to the rest of the oracles are straightforward except for the Open oracle.
The reason is that Eve has the issuing key γ, the master keys t1, ..., tm and the
gpk that are needed in the oracles but she does not have the tracing keys ξ1 and
ξ2. Therefore all oracles are run exactly as done in the main scheme except for
the open oracle.
To respond to the open oracle Eve will use the list of registration keys she has
and rnd1. For every element in the list A∗ check the following equality and if it
holds then A∗ = Ai

F
1/α
rootC5

e(A∗, C6)e(Crnd1
3 , C6)

= e(
C4

Crnd1
3 A∗

, C6)

Note that such an equality can not be checked by Adam even if he has the lists
of all A∗ because the element rnd1 is used and is only known to the challenger.

• Challenge: Adam decides on a message M , two indexes (i0, i1) and a verification
key D in which he would like to be challenged on. Eve sends Ai0 , Ai1 as two
messages to challenge Charles with. Charles encrypts one of them and returns
ciphertext (C1 = gζ

4 , C2 = Abg
ζ
1). Note that Eve has to guess b. Eve can

simulate a signature by calculating C4 = C2C
rnd1
1 grnd2

2 and C3 = C1g
rnd2
4 . Given

that δ = ζ+rnd2, then C4 = Abg
δ
2 and C3 = gδ

4. Eve chooses randomly sζ , sδ, sx,
sz and c from Z∗

p. Note that c should have not been a response to a query to the
Hash oracle. She calculates R1 = g

sζ

4 C
−c
1 , R3 = gsδ

4 C
−c
3 , R4 = g

sζ

1 g
−sδ
2 /(C2C

−1
4)c

and R2 = e(C2, h)sxe(g1, w)−sζe(g1, h)−sz(e(C2,w)
e(g3,h))c. Finally Eve creates Froot

with Ti,j = (C2C
rnd1
1)1/tj therefore Froot = e(C2C

rnd1
1 , wβ)α for some random

β ∈ Z∗
p. C6 = wβ and C5 = e(grnd2

2 , wβ).

• Phase 2: This phase is similar to Phase 1 except that σb can not be queried in
the open oracle.

• Output: Adam outputs a guess b̄ ∈ {0, 1}.

Eve can respond to Charles with her guess being b̄.

152

A.2 Full Traceability

Sections A.2.1, A.2.2 and A.2.3 prove the constructions in Chapter 5 fully traceable.
The proofs are very similar. All three models have a Setup, Queries and Output phase.
Setup is for creating all required attributes of the game, while Queries is a stage where
Adam can access certain oracles, and Output is when the Adam decides he can forge a
signature and sends it to Charles to verify its correctness and traceability. If Charles
accepts it as a forged signature Adam wins the game.
We need three steps in all traceability games in this section. We start with defining
a security model for proving full-traceability, then introducing two types of signature
forger, and then we show that the existence of such forgers implies that q-SDH is
easy. Suppose we are given an adversary Adam that breaks the full traceability of the
signature scheme. Charles is the challenger. The following three sections show how
the existence of such an adversary solves the q-SDH problem.

A.2.1 Full Traceability of an ABGS

Theorem A.2.1. If q-SDH is hard on groups G1 and G2 then the ABGS scheme is
fully traceable under the random oracle.

Recall the first step is to define a security model as an interacting framework between
Charles and Adam as follows:

• Init: Adam decides the universal set of attributes he would like to be challenged
on and that is by sending Charles the master keys t1,..., tm ∈R Z∗

p.

• Setup: Charles runs the setup algorithm as in Section 5.3.3 with a bilinear pair
e : G1 × G2 → G3. Let g1,u,v,h ∈ G1, g2 ∈ G2 and ξ1, ξ2, γ ∈ Z∗

p such that
they all satisfy properties mentioned in Section 5.3.3. Charles is given the pairs
〈Ai, xi〉 for an i = 1, ..., n. Some of those pairs have xi = ? which implies that
xi corresponding to Ai is not known; Other pairs are valid SDH pairs. Adam is
given the tracing keys (ξ1, ξ2).

• Queries: There are four oracles that Adam can access. In the Hash oracle
Adam asks Charles for the hash of (M , C1, C2, C3, R1, R2, R3, R4, R5). Adam
responds with a random element c ∈ G1 and saves the answer just in case the
same query is requested again (As done in Section A.1.1 in the ABGS anonymity
game model).
In the Signature oracle Adam asks for a signature on a message M by a member
i over a set of attributes =i using a public key gpk. If xi 6= ?, Charles calculates
Ti,j = A

1/tj
i for all attributes in =i and signs the message normally to obtain

153

σ and give it to Adam. If xi = ? then Charles picks ζ, β, α ∈R Z∗
p sets C1 =

uζ , C2 = vβ, C3 = Aig
ζ+β
1 , and CTj = (Aig

ζ+β
1)α/tj for every attribute in =i. Now

Charles can get σ by choosing α, sζ , sβ, sx, sδ1 , sδ2 , c ∈R Z∗
p then calculating:

R̄1 = usζC−c
1 ,

R̄2 = vsβC−c
2 ,

R̄4 = Csx
1 u−sδ1 ,

R̄5 = Csx
2 v−sδ2 ,

R̄3=e(C3, g2)sx .e(h,w)−sζ−sβ .e(h, g2)−sδ1
−sδ2 .(e(C3,w)

e(g1,g2))
c.

Charles adds the tuple 〈M,C1, C2, C3, R1, R2, R3, R4, R5〉 with c to the list of
Hash oracles and calculates td = wα.
Charles sends signature σb=〈C1,C2,C3,C

α/t1
3 ,...,Cα/tτ

3 ,sζ , sβ, sx, sδ1 , sδ2 , c, td,
=i〉 and sends it to Adam.
In the PriKey oracle Adam asks for the private key in a certain index i and
Charles replies with bsk[i].
In the AttKey oracle Adam sends Ai and an attribute set Υi. If xi 6= ?, Charles
returns back 〈Ti,1,...,Ti,τ 〉 where Ti,j = A

1/tj
i ; otherwise Charles declares failure.

• Output: If Adam is successful, he outputs a forged signature on a message M
corresponding to any public key gpk. The signature should verify correctly yet
not trace to a member that has been queried. Charles runs the verify then the
open algorithm. He then tests the A∗ he calculated through the open algorithm.
If A∗ 6= Ai for all i output σ. If A∗ = Ai∗ for some i∗and if si∗ = ? output σ.
The only possibility left is having A∗ = Ai∗ but si 6= ? Charles declares failure.

From this model of security there are two types of forgery. Type-I outputs a signa-
ture that can be traced to some identity which is not part of {A1,...,An}. Type-II has
A∗ = Ai∗ where 1 ≤ i∗ ≤ n but Adam did not do a private key query on i∗. We should
prove that both forgeries are hard.

Type-I: Considering Theorem 2.2.13 for a (n + 1) SDH, Charles can obtain g1,g2
and w and also use the n pairs (Ai, xi) to calculate the private keys 〈Ai, xi, A

1/t1
i ,...,

A
1/tµ
i 〉. Charles uses these values in interacting with Adam. Adam’s success leads to

forgery of Type-I.

Type-II: Using the same Theorem 2.2.13 but for an n SDH this time, Charles ob-
tains g1, g2 and w and uses the n − 1 pairs (Ai, xi) to calculate the private keys
〈Ai,xi,A

1/t1
i ,...,A1/tµ

i 〉. In a random index i∗, Charles can choose the missing pair ran-
domly where Ai∗ ∈ G1 and set xi∗ = ?. The random private key will be 〈Ai∗ , xi∗ ,
A

1/t1
i∗ ,...,A1/tµ

i∗ 〉. Adam in the security model will fail if he queries the PriKey oracle in
index i∗. Other private key queries will succeed. In the Signature oracle and because
of the Hash oracle, it will be hard to distinguish between signatures with a SDH pair

154

and ones without.
The next step is showing how the Forking Lemma (Definition 3.4.1) can be applied
here to prove that we can generate new SDH pairs if a forgery of any type exists. Let
Adam be a forger of any type in which the security model succeeds. A signature will
be represented as 〈M,σ0, c, σ1, σ2〉. M is the signed message. σ0 = 〈C1, C2, C3, R1,
R2, R3, R4, R5〉. c is the value derived from hashing σ0. σ1 = 〈sζ , sβ, sx, sδ1 , sδ2〉
which are values used to calculate the missing inputs for the hash function. Finally
σ2 = 〈CT1,...,CTτ ,=i〉 the values that depend on the set of attributes in each Signature
oracle.
According to the Forking Lemma, having a replay of this attack with the same random
tape but a different response of the random oracle, implies a new signature 〈σ0, c̀, σ̀1, σ2〉
can be created.
Now we show how we can extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̀, σ̀1, σ2〉 a new SDH
tuple. Let ∆c = c− c̀, ∆sζ = sζ − s̀ζ , and similarly for ∆sβ,∆sx,∆sδ1 , and ∆sδ2 .
Divide two instances of the equations used previously in proving Theorem 5.3.4 where
one instance is with c̀ and the other is with c to get the following:

• Dividing R1/R̀1 we get
uζ̃ = C1; where ζ̃ = ∆sζ/∆c

• Dividing R2/R̀2 we get
vβ̃ = C2; where β̃ = ∆sβ/∆c

• Dividing Csx
1 /C s̀x

1 = usδ1/us̀δ1 will lead to
∆sδ1 = ζ̃∆sx

• Dividing Csx
2 /C s̀x

2 = vsδ2/us̀δ2 will lead to
∆sδ2 = β̃∆sx

• Calculating the following equality:
(e(g1, g2)∆c/e(C3, w))
= e(C3, g2)∆sx .e(h,w)−∆sζ−∆sβ .e(h, g2)−∆sδ1

−∆sδ2

= e(C3, g2)∆sx .e(h,w)−∆sζ−∆sβ .e(h, g2)−ζ̃∆sx−β̃∆sx

From the equations above if we let x̃ = ∆sx/∆c and Ã = C3h
−(ζ̃+β̃) we get the following

equation:
e(g1, g2)/e(C3, w)=e(C3, g2)x̃.e(h,w)−ζ̃−β̃e(h, g2)−x̃(ζ̃+β̃)

155

e(g1, g2)=e(Ã, wgx̃
2)

Hence we obtain a new SDH pair (Ã, x̃) breaking Boneh and Boyen’s Lemma (Definition
2.2.13).

A.2.2 Full Traceability of an AAS

Theorem A.2.2. If q-SDH is hard on groups G1 and G2 then the AAS is fully traceable
under the random oracle.

We start with explaining the security model as an interacting framework between
Charles and Adam as follows:

• Init: Adam decides on the universal set of attributes U = t1,...,tm ∈R Z∗
p, where

m is the size of the set U . Adam sends this list to Charles.

• Setup: Charles is given a bilinear map e : G1 × G2 → G3 with generators
g1 ∈ G1, and g2 ∈ G2. He is also given a value w = gγ

2 and n private key bases
bsk[i] = 〈Ai, xi〉 for an 1 ≤ i ≤ n. Some of those pairs have xi = ? which im-
plies that xi corresponding to Ai is not known; Other pairs are valid SDH pairs
(Definition 2.2.11). Charles sends w, and Spub = 〈G1, G2, G3, e, g1, g2〉 but keeps
Spri = γ. Hash functions H0 and H are represented as random oracles. Both
Charles and Adam can run the A.KeyGenpub to obtain 〈bpk1,...,bpkm〉 where
bpkj = w1/tj . Adam is also given all registration keys A1, .., An.

• Queries: Adam queries the oracles USK, Signature and Hash as follows:
In the USK oracle, Adam asks for a certain private key by sending Charles an
index i. If Adam queries an index where xi = ? abort the game and declare
failure otherwise respond with sending 〈Ai, xi〉.
As for the Hash oracle, Adam asks Charles for the hash of (M , r, C1, C2, C3,
C4, R1, R2, R3), Charles responds with a random element in G1 and saves the
answer just in case the same query is requested again. This represents the hash
function H. When Adam asks Charles for the hash of (D,M, r), Charles re-
sponds with two random elements in G2 and saves the answer.
In the Signature oracle, Adam runs the D = TCreate(Γ, α,B) for a α ∈R Z∗

p and
a set of attribute public keys B. He then sends D to Charles.
Adam requests a signature on a message M by the member i. If xi 6= ? then
Charles follows the same signing procedure done in Section 5.4.3.

If xi = ?, Charles simulates a signature by selecting a r ∈R Z∗
p to obtain

(ū, v̄) ← H0(D,M, r) and sets u ← ψ(ū) and v ← ψ(v̄) . He then picks a ξ

156

and β ∈R Z∗
p.

Following this Charles calculates C1 = uξ, C2 = Aiv
ξ, C3 = e(vξ, w)β and

C4 = wβ and picks c, sδ, sx, and sξ ∈R Z∗
p. He calculates R1 = usξ/Cc

1,
R3 = Csx

1 u−sδ and
R2 = e(C2, g2)sxe(v, w)−sξe(v, g2)−sδ .(e(C2, w)/e(g1, g2))c.
Charles adds c to the list of the Hash oracle H to maintain consistency.

Charles takes every Dj in D and calculates e(Atj
i , Dj)β, this is in place of the

recursive SignNode function in Section 5.2. Charles can now calculate Froot using
the elements it calculated and Γ.

Charles returns the signature σ = (r, C1, C2, C3, C4, c, sξ, sx, sδ, Froot) to Adam.

• Output: Adam asks to be challenged and sends Charles a message M . Charles
responds with a D for a certain Γ. If Adam is successful he will output a signature
σ = (r, C1, C2, C3, C4, c, sξ, sx, sδ, Froot) for a message M where C1 and C2 should
not contain any of the revocation list elements A∗ encoded in them. Let A∗

i be
the value used in signing the forged signature. For i = 1, ..., n, Charles checks
whether e(C2/Ai, ū) = e(C1, v̄). If the equality holds then this implies that
A∗

i = Ai. In that case check if si∗ = ? to output σ or otherwise declare failure. If
the for loop goes through all the (Ai)’s and no equality is identified output σ.

As in the ABGS traceability game model in Section A.2.1, there are two types of forgery
shown below:

Type-I: If we consider Theorem 2.2.13 for a (n+ 1) SDH, we can obtain g1,g2 and w.
We can also use the n pairs (Ai, xi) to calculate the private key bases 〈Ai, xi〉. These
values are used when interacting with Adam. Adam’s success leads to forgery of Type-I.

Type-II: Similar to the traceability game in the previous section Theorem 2.2.13 is
used for a (n) SDH, Charles can obtain g1, g2 and w and uses the n− 1 pairs (Ai, xi)
to calculate the private key bases 〈Ai, xi〉. In a random index i∗, the missing pairs are
chosen randomly where Ai∗ ∈ G1 and set xi∗ = ?. Adam, in the security model, will
fail if he queries the USK oracle with index i∗ and all other private key queries will
succeed. In the Signature oracle (because the hashing oracle is used) it will be hard to
distinguish between signatures with a SDH pair and ones without.

We shall prove that any of the two forgeries contradict the q-SDH assumption using the
Forking Lemma (See Theorem 3.4.1). A signature will be represented as 〈M ,σ0,c,σ1,σ2〉,

157

M is the signed message, σ0 = 〈r,C1,C2,C3,C4,R1,R2,R3〉, c is the value derived from
hashing σ0, and σ1 = 〈sξ, sx, sδ〉 which are values used to calculate the missing inputs
for the hash function. Finally, σ2 = Froot the value that depends on the set of attributes
in each Signature oracle.
We require Adam to query H0 before H to ensure that by rewinding the game we
can change values of H(M, r, ..), while the values of H0(M, r) should remain the same.
Therefore the arguments u, v used in H remain unchanged too.
According to the Forking Lemma if we have a replay of this attack with the same
random tape but a different response of the random oracle 1 we can obtain a signature
〈σ0, c̀, σ̀1, σ2〉.
Finally we show how we can extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̃, σ̃1, σ2〉 a new SDH
tuple. Let ∆c = c− c̃, and ∆sξ = sξ − s̃ξ, and similarly for ∆sx, and ∆sδ.
Divide two instances of the equations used previously in proving correctness of the
scheme. One instance with c̃ and the other with c to obtain the following:

• Dividing Cc
1/C

c̃
1 = usξ/us̃ξ we get

uα̃ = C1; where ξ̃ = ∆sξ/∆c

• Dividing Csx
1 /C s̃x

1 = usδ/us̃δwill lead to
∆sδ = ξ̃∆sx

• Dividing (e(g1, g2)/e(C2, w))∆c will lead to
e(C2, g2)∆sxe(v, w)−∆sξe(v, g2)−ξ̃∆sx

Letting x̃ = ∆sx/∆c we get e(g1, g2)/e(C2, w) = e(C2, g2)x̃e(v, w)−ξ̃e(v, g2)−x̃ξ̃ which
can be rearranged as e(g1, g2) = e(C2v

−ξ̃, wgx̃
2). Let Ã = C2v

−ξ̃ and we get e(Ã, wgx̃
2) =

e(g1, g2). Hence we obtain a new SDH pair (Ã, x̃) breaking Boneh and Boyen’s Lemma
(See Theorem 2.2.13).

A.2.3 Traceability of a DAAS Scheme

Theorem A.2.3. If q-SDH is hard on groups G1, and G2 then the Dynamic Attribute
Based Authentication Scheme is fully traceable under the random oracle.

Similar to the previous two sections and traceability games, the security model will be
defined as an interacting framework between Charles and Adam as follows:

• Init: Adam decides on the universal set of attributes U = t1,...,tm from Z∗
p,

where m is the size of the set U . Adam sends this list to Charles.

• Setup: Charles is given a bilinear map e : G1 × G2 → G3 with generators
g1 ∈ G1 and h ∈ G2. He is also given a value w = hγ and n SDH pairs 〈Oi, xi〉

1In the AAS scheme we mean the random oracle of the hash function H rather than H0

158

for an 1 ≤ i ≤ n, which he will be using in creating private key bases. Some of
those pairs have xi = ? which implies that xi corresponding to Oi is not known;
Other pairs are valid SDH pairs (Definition 2.2.11). Assume users i = 1,...,n1 are
the list of honest users that can be corrupted by querying the USK oracle and
i = n1 + 1, ..., n2 are the ones for dishonest user where the adversary runs the
join protocol with Charles. Note that n = n1 + n2.
Charles chooses ξ1, ξ2 ∈ Z∗

p and g4, g2 ∈ G1 such that g1 = gξ1
4 and g2 = gξ2

4 .
Finally Charles sets g3 = grnd1

1 for some random rnd1 ∈ Z∗
p. Charles sends w,

and gpk = 〈G1, G2, G3, e, g1, g2, g3, g4, h〉. The hash function H is represented as
random oracles. Both Charles and Adam can run the A.KeyGenpub to obtain
〈bpk1,...,bpkm〉 where bpkj = w1/tj . Adam is also given ξ1, and ξ2.

• Queries: Adam queries the oracles USK, Signature, CrptJoinUser and Hash as
follows:

In the USK Oracle, Adam asks for a certain private key by sending Charles an
index 1 ≤ i ≤ n1. If Adam queries an index where xi = ? abort the game and de-
clare failure; Otherwise he chooses a random yi ∈ Z∗

p and calculates Ai = Oyi
i O

rnd
i .

The private key 〈Ai, xi, yi〉 is sent to the adversary.

The Hash oracle is queried when Adam asks Charles for the hash of
(M,C1, C2, C3, C4, C5, C6, R1, R2, R3, R4), Charles responds with a random ele-
ment in Z∗

p and saves the answer just in case the same query is requested again.
This represents the hash function H.
The CrptJoinUser presents Adam and Charles engaging in a join protocol where
Adam resembles a user i and Charles the issuer manager. If i = ∗ abort else run
the join protocol. The join protocol is similar to the one in the construction with
one exception where Charles in the first step sends Ornd2

i . This change helps
Charles to generate private keys from the Oi he has rather than γ since he does
not know it. He can now obtain Oyi

i and calculate from that the key 〈Ai, xi, yi〉
as in the USK oracle. The rest of the protocol runs normally.
In the Signature oracle, Adam runs the D = TCreate(Γ, α,B) for a random
α ∈ Z∗

p and a set of attribute public keys B. He then sends D to Charles.
Adam requests a signature on a message M by the member i. If xi 6= ? then
Charles follows the same signing procedure done in Section 5.4.3.

If xi = ?, Charles simulates a signature. He chooses the random elements sζ , sδ,
sx, sz, ζ, δ, β1, β2 and c, all belong to Z∗

p. Let β = β1+β2. He calculates C1 = gζ
4 ,

C2 = Aig
ζ
1 , C3 = gδ

4, C4 = Aig
δ
2, C5 = e(gδ

2A
1−β2
i , wβ

1) and finally C6 = wβ1 .

159

Charles also computes R1 = g
sζ

4 , R3 = gsδ
4 C

−c
3 , R4 = g

sζ

1 g
−sδ
2 /(C2C

−1
4)−c and

finally R2 = e(C2, h)sxe(g1, w)−sδe(g1, h)−sz(e(C2,w)
e(g3,h))c. Charles adds c to the list

of responses in the hash function.
Charles can calculate Froot as done in the main scheme since he has all master
keys needed.
Signature is σ = (C1, C2, C3, C4, C5, C6, Froot, c, sζ , sδ, sx, sz)

• Output: Adam asks to be challenged and sends Charles a message M . Charles
responds with a D for a certain Γ. If Adam is successful he will output a signature
σ = (r, C1, C2, C3, C4, C5, C6, c, sξ, sx, sδ, Froot) for a message M . Let A∗

i be the
value used in signing the forged signature. For i = 1, ..., n, Charles checks
whether A∗

i = (C2/(C1)ξ1) = (C4/(C3)ξ2). If the equality holds then this implies
that A∗

i = Ai. In that case check if si∗ = ? to output σ or otherwise declare
failure. If the loop goes through all the (Ai)’s and no equality is identified output
σ.

There are two types of forgery. Type-I outputs a signature that can be traced to some
identity which is not part of Oi0 ,...,Oin . Type-II has A∗

i = Oi where 1 ≤ i ≤ n but
Adam did not submit a query of i to the USK oracle nor did he participate in the join
protocol using it. We prove both forgeries are hard.

Type-I: If we consider Theorem 2.2.13 for a (n+ 1) SDH, we can obtain g1,g2 and w.
We can also use the n pairs (Oi, xi) to calculate the private key bases 〈Ai, xi, yi〉. These
values are used when interacting with Adam. Adam’s success leads to forgery of Type-I.

Type-II: Using Theorem 2.2.13 once again but for a (n) SDH, we can obtain g1,
g2 and w. Then we use the n − 1 pairs (Oi, xi) to calculate the private key bases
〈Ai, xi, yi〉. In a random index i∗, we choose the missing pair randomly where Oi∗ ∈ G1

and set xi∗ = ?. Adam, in the security model, will fail if he queries the USK oracle
with index i∗ or use it in the corrupted join protocol. In the Signature oracle (because
the hashing oracle is used) it will be hard to distinguish between signatures with a SDH
pair and ones without.

A signature will be represented as 〈M ,σ0,c,σ1,σ2〉, M is the signed message, σ0 =
〈r,C1,C2,C3,C4,C6, R1, R2, R3, R4〉, c is the value derived from hashing σ0, and
σ1 = 〈sζ ,sδ, sx, sz〉 which are values used to calculate the missing inputs for the
hash function. Finally, σ2 = Froot the value that depends on the set of attributes in
each Signature oracle.
According to the Forking Lemma if we have a replay of this attack with the same
random tape but a different response of the random oracle we can obtain a signature
〈σ0, c̀, σ̀1, σ2〉.

160

Finally we show how we can extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̃, σ̃1, σ2〉 a new SDH
tuple. Let ∆c = c− c̃, and ∆sζ = sζ − s̃ζ , and similarly for ∆sx, ∆sδ, ∆sx and ∆sz.
Divide two instances of the equations used previously in proving correctness of the
scheme. One instance with c̃ and the other with c to obtain the following:

• Dividing Cc
1/C

c̃
1 = g

sζ

4 /g
s̃ζ

4 we get
gζ̃
4 = C1; where ζ̃ = ∆sζ/∆c

• Dividing Csδ
2 /C

s̃δ
2 = gsδ

4 /g
s̃δ
4 we get

gδ̃
4 = C2; where δ̃ = ∆sδ/∆c

• The division of (C2C
−1
4)∆c = g

∆sζ

1 g∆sδ
4 implies (C2C

−1
4) = gζ̃

1g
δ̃
4

• The division of e(C2, h)∆sxe(g1, w)−∆sζe(g1, h)−∆sz = (e(g3,h)
e(C2,w))

∆c leads to

e(C2, h)x̃e(g1, w)−ζ̃e(g1, h)−z̃ = (e(g3,h)
e(C2,w))

∆c for x̃ = ∆sx/∆c and z̃ = ∆sz/∆c

If Ã = C2g
ζ̃
1 and ỹ = z̃ − ζ̃x̃ then from the last division we get e(Ã, h)x̃e(Ã, w) =

e(g3, h)e(g1, h)ỹ this implies we have obtained a certificate (Ã, x̃, ỹ) where Ã = (g3g
ỹ
1)1/(x̃+γ).

This leads to a SDH pair (A, x) and breaking Boneh and Boyen’s Lemma (See Theorem
2.2.13). Knowing that Ã = (g3g

ỹ
1)1/(x̃+γ) = (gỹ+rnd1

1)1/(x̃+γ).
Calculate (A, x) = (Ã1/(ỹ+rnd1), xi).

A.3 Attribute Unforgeability

In this section we prove the AAS scheme and DAAS scheme constructed in Chapter 5
are attribute-unforgeable. In both proofs we explain the game model in detail and
show how Adam can create a list of information about the attribute he lacks but he
can not forge it without breaking the DLP.

A.3.1 Unforgeability of Attributes in AAS

Theorem A.3.1. Breaking the Unforgeability of Attributes in the AAS construction is
as hard as solving the DLP.

The following shows details of the game model defined in Section 5.4. Following that is
a table presenting all the information Adam can obtain within the game. We later prove
that the information is not enough to break the unforgeability of attributes without
solving the DLP.

• Setup: Charles sets up the system. He generates Spub and Spri. He also creates
a set of private key bases bsk[i] = 〈Ai, xi〉. He chooses the set of master keys tj
for every attribute j and calculates the attribute public keys bpkj . He sends Spub

to Adam along with all Ai and bpkj .

161

• Phase 1: Adam queries the following oracles:

– Signature Oracle as described in section 5.4. Note that Charles has all
private keys and attribute master keys he needs in order to create a valid
signature σ and send it to Adam.

– USK Oracle as described in section 5.4. Charles has given Adam all the Ai

but not bsk[i] = 〈Ai, xi〉

– AttPriKey Oracle as described in section 5.2 where Adam can send a key
Ai and an index j and in return he gets Ti,j .

– AttMasKey Oracle as described in section 5.2 where Adam sends an at-
tribute index j to get the master key tj .

Notice that the TVfy Oracle in Section 5.2 is not used here because the Signature
Oracle is sufficient enough (i.e runs the TV erify algorithm). Furthermore the
Revoke oracle of section 5.4 is not required since all Ai are given to Adam and
he can run the open algorithm himself.

• Challenge: Adam sends a tree Γ1, user l and attribute z which he would like to
be challenged on. Charles replies with D for a tree Γ2 where Γ2 has two subtrees
the first is Γ1 and the other is based on tz. The threshold value of the root in Γ2

is 2. The challenge condition is that user l has not been queried in AttPriKey
for the attribute z. Furthermore the challenged index z should not have been
queried in AttMasKey. These two conditions are reasonable as they contradict
the purpose of the game.

• Phase 2: This phase is similar to Phase 1 as long as the challenge conditions
are not broken.

• Output: Adam outputs a signature σ for the user l on the verification key D.
If that signature is valid then the adversary wins otherwise Adam loses.

From the traceability game one can conclude that the signature created in the output
is for a user who has been queried in the USK oracle. Therefore Adam can easily create
the elements of the signature σ = (r, C1, C2, C3, C4, c, sξ, sx, sδ) since we know he has
obtained bsk[i]. The table A.3.1 shows elements that Adam has gained through his
queries. Our approach to show that Adam can not create a signature with the missing
attribute z is similar to the proof in Section 5.2.
Let the root polynomial be qr(x). The subtree Γ1 has a root with the polynomial q1(x)
and the other child holding attribute tz has a polynomial q2(x). Further let qr(0) = α,
q1(0) = qr(x1) = y1 and q2(0) = qr(x2) = y2. The root polynomial is of degree 1
since the threshold gate is 2. This implies that Adam knows that Lagrange is applied
therefore the following formula must hold:

162

Table A.1: Information Obtained by Adam
Information Source
Spub = 〈G1, G2, G3, e,H,H0, g1, g2〉 Setup Phase
List of Ai Setup Phase
List of bpkj = wtj Setup Phase
List of bsk[i] = 〈Ai, xi〉 USK Oracle
2D Array of Ti,j = A

1/tj
i where i 6= l and j 6= z AttPriKey Oracle

List of σ = (r, C1, C2, C3, C4, c, sξ, sx, sδ, Froot) Signature Oracle
List of tj where j 6= z AttMasKey
List of D = 〈bpk1,...,bpkκ〉 Challenge

Froot = e(Al, w)αβ = (e(Al, w)y2.x2e(Al, w)−y1.x2)β/(x1−x2)

Adam also knows the value of elements (x1, x2, β, e(Al, w)y2 , Al, w, wtz).
Adam does not know e(Al, w)α, e(Al, w)y1 , α, y1, and tz.
Note that values x1, x2, y1, y2, and α change in each round as D is created, including
in the challenge. α does not appear explicitly or implicitly in any of the elements
Adam has obtained since it is random each time a D is created and that includes
the challenge. This implies that Froot can be calculated only by deriving the term
e(Al, w)−y1.x2 . Recall that y1 is random each time D is calculated. It appears within
the game just once and that is in the challenge in Dk = bpky1

k = wtzy1 where y1 is
totally bounded with tz since neither tz nor A1/tz

l are known.

A.3.2 Unforgeability of Attributes in the DAAS scheme

Theorem A.3.2. Breaking the Unforgeability of Attributes in the DAAS construction
is as hard as solving the DLP.

The following shows details of the game model defined in Section 5.5. Following that is
a table presenting all the information Adam can obtain within the game. We later prove
that the information is not enough to break the unforgeability of attributes without
solving the DLP.

• AFDAAS.Setup: Charles sets up the system. He generates the tracing key
tk, the issuer key isk, and the general public key gpk. Charles plays the role of
all attribute authorities in the system. He creates the universal of attributes by
choosing a list of master keys t1,...,tm. Charles calculates the attribute public
keys bpk1,...,bpkm which he sends together with tk and gpk to Adam. Charles
keeps to himself isk and list of tj .

• AFDAAS.Phase (1): Charles runs the oracles USK, Signature, CrptJoinUsr,
AttPriKey, and AttMasKey. Adam can query these oracles in order to obtain
information that may help him break the scheme.

163

• AFDAAS.Challenge: Adam sends a tree Γ1, user l and attribute z in which
he would like to be challenged on. Charles replies with D for a tree Γ2 where Γ2

has two subtrees: the first is Γ1 and the other is based on tz. The threshold value
of the root in Γ2 is 2. The challenge condition is that user l has not been queried
in AttPriKey for the attribute z. Furthermore the challenged index z should not
have been queried in AttMasKey. These two conditions are reasonable as the
contradict with the purpose of the game.

• AFDAAS.Phase (2): This phase is similar to Phase 1 as long as the challenge
conditions are not broken.

• AFDAAS.Output: Adam outputs a signature σ for the user l on the verification
key D. If that signature is valid then the adversary wins and Charles outputs 1
otherwise Adam loses and Charles outputs 0.

Charles can reply to the oracles without problems since he has all private keys needed in
creating the outputs such as tk, isk, and list of tj . The proof for this scheme is similar
to the technique used in Section 5.2. From the traceability game we can conclude
that for the signature to be valid, the signer had to query either the USK oracle or
the CrptJoionUsr oracle by Adam. Therefore Adam can easily create the elements
of the signature σ = (r, C1, C2, C3, C4, C5, C6, c, sξ, sx, sδ, sz, sδ) since we know he has
obtained bsk[i]. The table below summarizes the information Adam can obtain through
the game model The challenge for Adam is to create an Froot where F 1/α

rootC5 = e(C4, C6).

Table A.2: Information Obtained by Adam
Information Source
isk = γ Setup Phase
gpk = 〈e, G1, G2, G3, H, g1, g2, g3, g4, h, w〉 Setup Phase
List of Ai Setup Phase
List of bpkj = wtj Setup Phase
List of bsk[i] = 〈Ai, xi, yi〉 USK Oracle
List of bsk[i] = 〈Ai, xi〉 for a yi chosen by Adam CrptJoinUsr Oracle
2D Array of Ti,j = A

1/tj
i where i 6= l and j 6= z AttPriKey Oracle

List of σ = (C1, C2, C3, C4, C5, C6, Froot, c, sζ , sδ, sx, sz) Signature Oracle
List of tj where j 6= z AttMasKey
List of D = 〈bpk1,...,bpkκ〉 Challenge

and α is unknown to Adam.
As in the Section A.3.1, let the root polynomial be qr(x). The subtree Γ1 has a root
with the polynomial q1(x) and the other child holding attribute tz has a polynomial
q2(x). Further let qr(0) = α, q1(0) = qr(x1) = y1 and q2(0) = qr(x2) = y2. The root
polynomial is of degree 1 since the threshold gate is 2. This implies that Adam knows

164

that Lagrange is applied therefore the following formula must hold:
Froot = e(Al, w)αβ = (e(Al, w)y2.x2e(Al, w)−y1.x2)β/(x1−x2)

Adam also knows the value of elements (x1, x2, β, e(Al, w)y2 , Al, w, wtz).
Adam does not know e(Al, w)α, e(Al, w)y1 , α, y1, and tz.
Note that values x1, x2, y1, y2, and α change each round a D is created, including in the
challenge. α does not appear explicitly or implicitly in any of the elements Adam has
obtained since it is random each time a D is created and that includes the challenge.
This implies that Froot can be calculated only by deriving the term e(Al, w)−y1.x2 .
Recall that y1 is random each time D is calculated. It appears within the game just
once and that is in the challenge in Dk = bpky1

k = wtzy1 where y1 is totally bounded
with tz since neither tz nor A1/tz

l are known.

165

