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Abstract 

Electrical impedance tomography (EIT) is an imaging technique for detecting 

the internal conductivity distribution of an object by voltage measurements 

taken by an exterior electrode. EIT has been researched in many different 

application areas in the world as a simpler, cheaper alternative to many other 

imaging methods. The topic of this PhD study is mainly focused on a number of 

key developments in both hardware and software implementation. The basic 

theories of EIT, including forward problem, inverse problem of EIT and the 

sensor design have been described. Major contributions of the thesis are in 

computational and experimental aspects of EIT in a wide variety of geometries. 

A sparse and memory efficient method has been presented to solve large scale 

3D EIT problems. A parallel conjugate gradient (PCG) has been applied to 

demonstrate computational improvements using synthetic and experimental 

data. 3D EIT has been implemented for planar array geometry for limited 

access tomography. Furthermore, multiple frequencies with complex 

conductivity reconstruction are presented and applied to an EIT-based fabric 

pressure mapping sensor. A comparative study with traditional tank phantom is 

presented to provide a context for a fabric pressure mapping sensor. As the 

motivation for different frequency response with different conductivity inclusions, 

frequency difference EIT has been implemented to overcome problems of time 

difference EIT.  
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Chapter.1 Introduction 

Electrical impedance tomography (EIT) is an imaging technique that provides a 

tomographic conductivity image of a subject from exterior current-voltage 

measurement [1]. A typical EIT system is built by connecting a current source 

and voltage measurement unit and an array of electrodes [2-4]. In an EIT 

measurement, a set of small signal currents is applied to pair of electrodes, then 

the resulting voltages are measured. A control computer is used to calculate the 

conductivity distribution from the voltage measurement and visualize the 

conductivity image. 

EIT is a new and emerging tomographic imaging technique with great potential 

in many application areas. EIT is geometrically flexible allowing imaging for 

almost any possible geometry. The spectral information in electrical properties 

in many applications makes multi-frequency EIT a new frontier for EIT research. 

This thesis addresses these challenges through computational enhancements 

and verification through experimental studies. The work involves modelling of 

multi-frequency EIT and development of sensors and phantoms in a wide range 

of geometries including circular array, rectangular array, planar array, cylindrical 

array and thin-plane EIT in a fabric pressure mapping sensor. 

1.1. Aims and Objectives 

This research involves several EIT software and hardware developments, which 

include multi-frequency imaging for different sensors as well as solving EIT 

large data processing problems by improving both software and hardware 

performances. A wide range of EIT geometries are aim to be studied in order to 

discover potential application areas. Specific targets are set to ensure the 

research is done smoothly and successfully: 

 Research the background and basics of electrical impedance 

tomography including history, forward problem, inverse problem, etc. 

Understand the current state of EIT research around the world and 

investigate the advantages and weaknesses of EIT. 

 Characterise experimental EIT data acquisition systems. 
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o Redesign multiplexer board for 32 channel EIT system use. 

o Build various types of experimental EIT phantoms (16 electrodes, 

32 electrodes, plane array and fabric pressure mapping sensor).  

 Develop algorithms that can deal with sparse Jacobian and multiple uses 

of a computer central processing unit (CPU). These will operate better 

than the existing programs in terms of computer memory storage and 

time consumption. 

 A subsurface EIT study by using planar array EIT sensors. 

 Implement a MATLAB program that can be tested on different types and 

geometries of fabric sensor. The program needs to be able to reconstruct 

complex conductivity images. 

 Develop a frequency difference algorithm that includes optimising the 

regularisation parameters and localisation method to improve resolution 

and reduce computational costs. 

The progress takes large amount of effort and time on MATLAB code 

generating and error solving as well as many laboratory experiments.  

1.2. Thesis organisation 

A general background of EIT is given in the thesis and specific focuses on the 

objectives of the PhD study are given in other chapters of the thesis. 

This chapter presents a general introduction to EIT and the aims and objectives 

of this PhD research. 

The second chapter gives an overall of EIT’s background, history and 

developments. 

Chapter 3 explains how EIT hardware works, including the installation of the 

system and the data acquisition method. Two different EIT systems used 

throughout the thesis are described in detail. A relative mathematical model of 

the forward and inverse problem of 3D EIT is introduced. The most commonly 

used regularization scheme, Tikhonov regularization, is explained. 
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In Chapter 4, methods of FEM meshing are described. A wide range of EIT 

phantom fabrications have been made and their performance has been tested 

using a reconstruction algorithm. 

Chapter 5 introduces a reconstruction algorithm called Block-wise CGLS 

reconstruction using Sparse Jacobian. It overcomes problems such as large 

computer memory usage in inverse calculations. 

Chapter 6 shows an experimental study of subsurface EIT imaging. Simulations 

are done by using a computer model. Experiment phantoms are designed to 

test the performance. 

Chapter 7 is a comprehensive work on multiple frequencies EIT with complex 

conductivity reconstruction while applying on an EIT-based fabric pressure 

mapping sensor. This gives an understanding of how doing a complex 

conductivity reconstruction with a range of frequencies could possibly benefit 

the image outcome. 

In Chapter 8, a frequency difference EIT reconstruction method is used to 

separate a low frequency response object from a high frequency one. This 

could potentially be used in a lung tumour monitoring process. 

Chapter 9 provides the conclusion and future developments of the PhD 

research. 
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Chapter.2 EIT background 

In this chapter a general introduction to electrical impedance tomography is 

presented. A brief history of EIT imaging will be given as well as a basic 

introduction to bio-impedance and its application in medical imaging. 

2.1. Motivation 

Impedance imaging using EIT has three primary applications: medical, 

geophysical and industrial [5]. Process tomography uses EIT to detect 

conductive fluids in flowing pipes. The petrochemical industry uses EIT to 

determine liquid quantity, mixing behaviour and to measure the flow rate. In 

geophysics it can be used for mineral detection over the earth’s surface or for 

borehole scanning. For medical applications there are some challenging and 

promising applications of EIT, such as monitoring brain or lung functions [6, 7]. 

Conventional tomography techniques are expensive, requiring large hospital 

spaces, and emit radiation. EIT appears to be an attractive alternative as it is 

non- invasive, portable, inexpensive and easy to use.  

2.2. Brief history 

The first reported use of EIT can be traced back to 100 years ago in geological 

studies [8]. An identical technique named industrial process tomography (IPT) 

has been used today by industrial groups for detection of air bubbles in process 

pipes or for monitoring pipe flows [9]. Before 1978, EIT was developed for 

nonclinical applications until Henderson and Webster introduced the first 

published impedance image for human tissue [10]. They had produced a 

transmission map of the tissues directly from current-voltage data by using a 

rectangular array of 100 electrodes on one side of the chest earthed with a 

single large electrode on the other side. Low conductivity areas in the image 

were claimed to correspond to the lungs.  

The first attempt at EIT began as an offshoot of X-ray computed tomography 

and was flawed in its theoretical assumption that electric currents flow in 

straight lines [11]. A wide range of image reconstruction techniques have been 

developed specifically to capture the behaviour of electrical current. An 
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impedance tomography system for imaging brain tumours was proposed by 

Benabid [12]. It was a prototype impedance scanner which had two parallel 

arrays of electrodes attached in a saline filled tank, and which was able to 

detect an impedance change inserted between the electrode arrays [7]. The first 

clinical impedance tomography system was developed by Baber and Brown in 

the Department of Medical Physics in Sheffield in 1987 [13, 14]. It was a 

commercially available prototype called the Sheffield Mark 1 system, which has 

been widely used to perform various clinical studies and is still being used by 

many EIT research centres today. It was a 16 channel system which was able 

to make multiple impedance measurements and could obtain 10 images per 

second. As for its advantages, the Sheffield Mark 1 [15] was portable and 

relatively inexpensive compared with ultrasound, CT and MRI scanners.  

By the mid 1990s, Hellige and Hahn from the research group in Gottingen had 

developed a predominantly digital EIT system called GOE MF 2 [16], which was 

a further development step beyond the Sheffield Mark 1 system. They used the 

system to perform experimental validation studies of EIT on animals, 

physiological studies in volunteers and clinical research. It was specifically 

designed for evaluating the capability of EIT to monitor regional lung function. 

In 2001, a company named Drager, together with the Gottingen EIT group, 

initiated a cooperation strategy on the development of EIT with the mutual 

objective of improving the technology, design and software. The company was 

willing to make EIT not only for experimental research but also for daily clinical 

practice. They have introduced a new commercial device named Pulmo Vista 

500 [17], which is one of the most successful commercial EIT systems in the 

world today. 

EIT has been very successful in industrial process tomography applications. 

Industrial Tomography Systems (ITS) is a lead supplier of industrial electrical 

impedance tomography systems [18]. 
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2.3. Clinical applications 

EIT has shown promising results in a wide range of clinical applications 

including thoracic, gastrointestinal function, breast cancer, lung and brain 

function [8, 17, 19]. Here is presented an overall progress on these applications. 

2.3.1. Electrical properties of biological tissues 

When EIT is applied in clinical applications it uses the electrical properties of 

tissues and their cellular structure, including blood, to reconstruct an image 

which represents human organs or physiology mechanisms associated with cell 

structures [20]. There is a large resistivity contrast (up to about 200:1) between 

a wide range of tissue types in the body. Therefore it is possible to use 

resistivity to form anatomical images. Furthermore, there is often a significant 

contrast between normal and pathological tissue [21]. To measure resistivity, a 

current must flow in the tissue and the resulting voltages be measured. 

Although cell layers are rather complex biological systems, their electronic 

characteristics integrated over a large collective of cells can to a good 

approximation be modelled by basic elements [22]. Tissues and tumours both 

consist of cells and membranes which have high resistivity and also can be 

seem as small capacitors. In tumours, the cell density is often higher than 

normal cells, which results in a rise in impedance. Figure 1 shows an equivalent 

circuit diagram for bioimpedance cell structure. The impedance properties of 

tissue comprise two components: the resistance TER and reactance. The 

conductive characteristics of body fluids provide the resistive component Rmed, 

whereas the cell membranes act as imperfect capacitors Ccl. The electrodes 

and in particular the interface between the electrodes and the culture medium 

exhibit a more complex impedance behaviour, which is called constant phase 

element (CPE). The CPE model is suited to mathematically describe the 

characteristic frequency-dependence of the electrode-medium interface's 

impedance. 



15 
 

 

Figure 1: Cell impedance model (Adapted from [22]) 

The biological tissue impedance measurements can be made over a range of 

frequencies from low (20Hz) to high (10MHz). The impedance properties of 

biological tissues vary within a whole frequency spectrum (Figure 2). The step 

changes in impedance are called dispersions and are due to the loss of 

particular polarization processes as frequency increases [23].  

 

Figure 2: Idealized spectra of the dielectric properties of tissues [24] 

As shown in Figure 3, while high frequency measurements are applied, the 

current passes right through membranes, and the result is dependent on tissue 

and liquids both inside and outside the cells. At low frequencies the membranes 
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impede current flow. Therefore, bioimpedance can be used to measure volumes, 

shapes or electrical properties of tissue. 

 

Figure 3: Impedance properties of tissue 

2.3.2. Lung EIT 

There are many traditional imaging modalities for monitoring pulmonary function, 

such as X-ray, CT and MRI scanners. These techniques are relatively mature 

and provide high spatial resolution images. However, to image ventilation and 

perfusion with these methods, patients must be brought to the device and 

repeatedly exposed to ionising radiation (in the case of X-ray and CT scanners), 

which is undesirable. Also the systems are required to be stationary, and with 

high capital and maintenance cost. EIT provides an alternative solution for 

these disadvantages in lung function monitoring. One of the most promising 

areas that thoracic EIT [7] is focusing on is detection of blood clots in the lungs 

or pulmonary emboli, a common and often serious complication of surgery. 

There is also potential in using EIT for bedside monitoring of lung gestation of 

pre-term neonates [25].  Premature birth is often accompanied by complications 

due to lung immaturity. Lung disease in infancy can cause long-term health 

problems. Therefore, it is important to monitor lung maturity and development of 

pre-term neonates [26]. EIT has made lung function testing available for this 

age range and provides a safe and non-invasive observing environment. This 
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may improve the quality of clinical care of infants and of those with lung and 

heart diseases. 

Lung EIT is becoming a major clinical diagnosis area of medical EIT imaging 

[26, 27]. In the clinical field, patients with acute lung injury in respiratory require 

positive pressure ventilation to ensure adequate gas exchange. Mechanical 

ventilation (MV) represents the main support to maintain acceptable pulmonary 

gas exchange whilst treating the underlying disease [28]. However, with high 

pressure applied to obtain a sufficient tidal volume for specific patients, MV 

could lead to lung injury due to over distension. Damage caused by MV to the 

lungs has been termed ventilator-induced/associated lung injury (VILI/VALI). 

This awareness triggered extensive research into potential solutions, the most 

important ones being lung protective ventilation (LPV) strategies [29]. 

Implementing LPV strategies requires an online monitoring tool capable of 

providing information on the regional behaviour of lungs and which EIT 

potentially offers. Therefore, the increasing awareness of LPV strategies leads 

to the motivation of driving EIT research into a useful tool to help in optimizing 

LPV strategies. 

To show the progression of interest in the clinical application of EIT monitoring, 

Figure 4 indicates the number of publications on lung EIT compared with those 

on VILI/VALI and on LPV over 50 years. Interest in lung EIT increased when 

more work was done in VILI and VALI in clinical study. 
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Figure 4: Number of publications on VILI/VALI, LPV and lung EIT in peer-

reviewed journals (Adapted from [29]) 

It can be observed that the publication number increased significantly in recent 

years, which proved the increasing interest and potential development of lung 

EIT.  

2.3.3. Breast tumour 

As the cell density of tumours is higher than normal tissues, different impedance 

properties could be detected by using EIT when monitoring the common 

condition of breast cancer [30-32]. X-ray mammography is being used for 

women breast cancer imaging at the moment. The limitation of this is that 

during the procedure the patient’s breast has to be compressed flat in order to 

visualize all the tissue and minimize the required radiation dose; this could 

cause discomfort or pain for the patient. The research groups in Dartmouth [33, 

34] and Moscow [35] have made preliminary clinical tests of breast tumour 

imaging using EIT, but a satisfying result has not as yet been proved. 

2.3.4. Brain function 

There are two main potential areas of imaging brain function in clinical 

applications, which are epileptic activity and stroke. Traditional scanners like X-

ray CT and MRI are well-developed for the job, although it is not practicable to 

operate serial or rapid imaging. The problem occurs when immediate 
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thrombolytic drugs are required for a stroke due to haemorrhaging. It is not 

possible for a CT scan to obtain images and report the situation in 30 minutes. 

EIT is able to apply continuous monitoring which enables distinction of 

haemorrhagic from ischaemic stroke, thus enabling the rapid use of 

thrombolytic drugs. One of the difficulties faced by brain EIT imaging is that 

current is hard to inject through the resistive skull. The EIT group in University 

College London have been developing an optimized brain imaging EIT system. 

They have achieved satisfactory image quality through the resistive skull by 

using widely spaced electrodes for current injection [6]. Using the Sheffield 

Mark 1 system, a series of pilot studies have been performed in animals with 

electrodes placed directly on the brain, and observations show that suitable 

impedance changes could be detected in stroke, epilepsy and evoked activity 

[36-38]. 

2.4. Industrial process tomography 

Electrical resistance tomography (ERT) is the most popular solution for 

industrial process applications [39, 40]. EIT has also been developed for on-line 

imaging of two-phase flows as a new high speed tomography [39, 41]. It has 

been proved to be a powerful tool for mapping the concentration and velocity 

distributions of the second phase in two-phase flows, where conductivity 

difference exists between the two-phase fluids [42]. For instance, EIT has been 

used to visualize the bubble distribution in a two-phase flow field and it provides 

a simpler and cheaper solution than other existing techniques [18, 43]. 

2.5. EIT-based fabric pressure mapping sensor 

Apart from conventional applications like Industrial EIT, geophysical EIT and 

medical EIT, EIT as a pressure mapping imaging method is relatively new in the 

research field [44]. 

When pressure is applied to a fabric patch whose boundary is clamped, its 

conductivity decreases with increasing pressure. Pressure-induced shape 

change over the sensor area creates a change in the conductivity distribution, 

which leads to the change in current-voltage data in the EIT system. The EIT 

system displays the image of the conductivity changes from current-voltage 
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data measured at the boundary of the fabric patch. Finally, the pressure 

distribution is estimated from the conductivity images. In terms of application, 

this particular technology enables pressure monitoring applications such as 

pressure ulcer prevention in clinical care. Additionally, potential touch sensitive 

applications to robotic skin can be considered since conventional point-based 

sensor mapping is almost impossible to implement for complex geometries like 

hand and face [45-47]. 

The original idea of applying EIT-based pressure sensing for pressure ulcers 

was initially introduced by Fulton and Lipczynski in 1993 [48]. However, 

experimental trials failed to identify a suitable conductive material for an EIT 

pressure sensor. At that time, they did not take advantage of the enhanced 

flexibility and stretch potential of a fabric-based EIT sensor. So the work was 

eventually dropped. Recently, Alirezaei [49] has shown promising results with 

regard to flexibility and stretch potential of these sensors and their integration in 

robotics as an artificial skin interface. Together with various new conductive 

materials, such as pressure sensitive and conductive rubber as well as many 

other fabric-based materials developed over the years, the EIT-based pressure 

mapping imaging has progressed rapidly and has become a promising 

technique. 

2.6. Theory 

In practice most EIT systems use constant current sources and measure 

voltage differences between adjacent pairs of electrodes. To obtain an image 

with good spatial resolution, a number of such measurements are required. This 

can be achieved by applying different current distributions to the body, and 

repeating the voltage measurements. From the set of measurements, an image 

reconstruction technique generates the tomographic image. Mathematically, the 

known quantities are the voltages and currents at certain points on the body; 

the unknown is the resistivity within the body, which is the inverse problem [39, 

50]. In order to solve the inverse problem the forward problem needs to be 

solved.  At low frequencies, these quantities are related by Laplace's equation: 

0    . 
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where  is the conductivity (admittivity may be represented by a complex ) 

and   is the potential.  

With suitable boundary conditions the above forward problem can be solved. 

Most in-vivo images have been produced using linearised, approximating 

techniques. These attempt to find a solution for a small change in resistivity 

from a known starting value. Until recently, the change in resistivity was 

measured over time, and EIT images were inherently of physiological function. 

Time difference 2D imaging is widely used in lung EIT. It is now possible to 

produce anatomical images using the new reconstruction technique, by imaging 

changes with frequency (frequency difference imaging).   

Three dimensional EIT (using multiple rings of electrodes and designed to 

create a 3D image of conductivity changes in a larger section of lungs) [51] has 

not yet been widely studied considering the difficulties caused by an increase of 

electrode numbers, a complicated reconstruction process, etc. Some people 

have done simulation studies on 3D EIT, such as 3D image reconstruction 

based on a complete electrode model [52], and a finite element method of 

solving the 3D EIT forward model [53]. However, proper hardware design and 

experimental validation are lacking. For the advantages of acquiring better 

information, it is considered to be a potential benefit for clinical use. Also the 

idea of taking multiple frequency measurements to detect the characteristic 

differences between tissue types [54, 55] is a potential improvement for 

monitoring tumour in clinical use. 

2.7 Introduction to frequency difference EIT 

EIT has various potential applications in the medical area, such as function 

monitoring in lung EIT imaging. In traditional lung EIT imaging, dynamical 

images of the entire lung are generated to clinically investigate aspects of 

respiratory functions. Lung tumour imaging using EIT is proposed during cancer 

treatment processes such as radiation therapy. This poses some major 

challenges including: spatial resolution for lung tumour imaging is far more 

challenging than imaging entire lung itself; time difference imaging that may not 

work as the reference image of the patient without lung tumour may not exist. 
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Additionally, imaging a lung interior may become very challenging due to its low 

electrical conductivity, so a complex impedance imaging may be needed. 

Traditional EIT reconstruction uses a time difference imaging technique. 

However, time difference EIT may not be useful for monitoring lung tumour 

behaviour as it is difficult to obtain background data of the lung while the tumour 

has already existed in the region [33, 56, 57]. This problem may be solved by 

using frequency difference reconstruction [58-61] as it only requires 

measurement data at two different frequencies. In early frequency difference 

EIT (fdEIT) methods, frequency-difference images were formed by back-

projecting the algorithm of the ratio of two voltages at two frequencies [58, 62-

65]. More recent studies adopted the sensitivity matrix with a voltage difference 

at two frequencies [31, 66]. This will work in clinical cases only if two 

frequencies at which the tumour has a different electrical conductivity (or 

permittivity) compared to normal tissues can be found [67, 68]. From Figure 5 it 

can be observed that the average conductivity of tumour tissue is significantly 

higher than normal tissue over the entire frequency range (from 10Hz to 1MHz). 

The difficulty is that lung itself has a different frequency response compared to 

chest tissues [69]. In this case, EIT for lung tumour monitoring can take 

advantage of a priori information from diagnostic X-Ray CT images; both data 

from thorax and lung are treated as background data. When a lung tumour is 

moving or changing, conductivity changes due to frequency change can 

produce a conductivity image of the lung tumour. 
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Figure 5: Spectral behaviour of normal and tumour tissue (adapted from [21]) 

2.8 State of technology 

2.8.1. Hardware 

Many versions of EIT systems have been developed by academic research 

groups all over the world, including commercial clinical EIT systems [70]. Table 

1 shows specifications of a list of recent EIT systems. 

 Table 1: Specifications of EIT systems used throughout the world 

Protocol Number of 

channels 

Speed Resolution Bandwidth SNR 

Two-

terminal 

voltage 

source 

64 

parallel 

Dartmouth 

30 frames s-1 

30 meas s-1 

16bits 10kHz- 10mHz 100dB 

Four 

terminal 

current 

source 

32 channel 

semi parallel 

Kyung Hee (IIRC) 

1 frames s-1 

32 meas s-1 

12 bits 10Hz- 500 kHz 

10 frequencies 

100dB 

2/4 terminal 

current 

source 

Current and 

volt semi 

parallel 

Oxford Brookes 

OXBACT 5  

25 frames s-1 25 

meas s-1  

16 bits 26kHz– 56kHz 

Single 

frequency 

n/a 

Two-

terminal 

voltage/ 

current  

72 channel 

parallel 

Rensselaer ACT4 

2.1 frames s-1 

16 bits 300Hz- 1MHz  

8 frequencies 

90dB 

Four 8 channel Sheffield Mk 3.5  12 bits 2kHz- 1.6MHz 40dB 
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terminal 

current 

source 

semi parallel 25 frames s-1 

25 meas s-1 

30 frequencies 

Four 

channel 

current 

source 

64 channel 

serial  

UCL Mk2.5  

0.12 frames s-1  

33 meas s-1 

12 bits 20Hz-1MHz 

30 frequency 

40dB 

Four 

terminal 

current 

source  

64 channel 

serial 

UCL mk1b 

3 frames s-1 

774 meas s-1 

12 bits 225Hz- 77Khz 

Single 

frequency 

50 – 

30 dB 

 

All current EIT systems are configured similar to the Sheffield Mark 1 system 

[15] with a small number (16-32) of electrodes either suited with a belt or 

attached to the thorax like a ring of electrodes. Current is driven across 

electrode pairs and differential voltages are measured. Current EIT systems 

have greatly improved noise and interference issues. The updated 

reconstruction algorithms provide much better image resolution and robustness 

to electrode errors with reduced image artefacts [71]. Furthermore, sampling 

rates become much higher, like the KCHU MARK system have up to 30 frames 

per second, which makes continuous analysis of lung ventilation and perfusion 

sufficient. 

2.8.2. State of algorithms  

The majority of EIT reconstructions are based on linear, one-step reconstruction 

algorithms known as back projection. More recently, the application of image 

reconstruction to a specific tomography problem has become simplified by the 

introduction of user-defined functions implemented from Electrical Impedance 

and Diffuse Optical Reconstruction Software (EIDORS). This is a tomography 

tool-suite written in MATLAB script and was first introduced in 2D form by 

Vauhkonen in 2000. More recently, EIDORS has been further enhanced into a 
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3D version [72]. It provides algorithms for forward and inverse modelling and 

also shares data and promotes collaboration between groups working in the 

field.  

The most common EIT algorithms deal with static (time difference) EIT. In order 

for a static EIT image reconstruction algorithm to be reliable, a forward model 

that includes every aspect of the imaging object has to be constructed. This 

requires knowledge of the boundary geometry, electrode positions and other 

sources of systematic artefacts in measured data. However, in practice, it is 

difficult to obtain such information with a reasonable accuracy and cost. Since 

static EIT imaging is sensitive to these errors, it has a limited applicability so far. 

Even though numerous time-difference EIT (tdEIT) methods have been applied 

to image lung functions, stomach emptying, brain functions and others, there 

are cases where time-referenced data are not available. For example, in all 

applications of EIT for tumour imaging, including breast tumours, time-

referenced data do not exist at the time of imaging since the patient either has a 

tumour or not at that time. Stroke-type detection using EIT is another example. 

In these cases, static EIT imaging has been tried but reconstructed images 

suffered from all kinds of technical difficulties. 

In medical problems conductivity contrasts can be large. Using the linearised 

method to calculate a change in conductivity between two states, measured 

either at different times (dynamic imaging) or with different frequencies is 

considered to be useful.  Complex conductivity spectra of numerous biological 

tissues show frequency dependent changes [5, 40, 68]. This indicates that a 

complex conductivity distribution inside an imaging object can be viewed as a 

function of frequency. Based on this observation, there have been attempts to 

perform frequency-difference image reconstructions [62, 73-75]. However, there 

has been not much study on its theory and reconstruction algorithm, as well as 

on experimental results.  

More mature algorithm developments on frequency difference EIT (fdEIT) were 

established by the EIT group from South Korea in recent years. A weighted 

frequency difference solver has been proposed and it suggests that images can 

be shown by utilizing differences of measured boundary voltages between 
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chosen frequencies. This creates a great interest on further fdEIT experiments 

for future potential applications that tdEIT cannot solve. 

2.9. Conclusion 

The chapter has shown an overview of electrical impedance tomography. A 

background study and recent developments of technology have been 

introduced. The fundamental knowledge of how EIT can be applied to clinical 

applications has been described. Evidence has shown that EIT is reliable and 

can possibly be an alternative solution for a whole range of clinical problems. 

There is now a large and growing interest in the technology and commercial 

devices have been introduced to the market recently. However, there are still 

many issues that have not been solved, such as relatively low spatial resolution 

and electrode position errors, which could slow down the development progress. 

Overall, the author believes that there are still many improvements can be 

made including both software and hardware design for EIT systems. Therefore, 

this study is motivated and can potentially make a contribution to the clinical 

and other fields. 
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Chapter.3 EIT Hardware and 

software 

This chapter introduces EIT hardware and software. Two EIT systems are being 

using in the research laboratory. The first one is a LabVIEW based EIT system 

with 16 channels built by Mehmet Emre [76]. For experiments with more 

measurements and accuracy, a 32 channel system would work better than the 

16 channel one. This chapter describes the task to extend the original design to 

a 32 channel system. The other system being used is the KCHU Mark2.5 

commercial EIT system from Yonsei University Korea. EIT reconstruction 

software is briefly introduced in this chapter. 

3.1. LabVIEW based EIT system 

3.1.1. Hardware set up 

EIT systems apply current to a medium or a body and the resulting voltage 

created by the electric field is measured by electrode sensors [77]. The number 

of electrodes can vary depending on the system. A larger number of electrodes 

will yield higher resolution but will increase the processing time. 16 electrode 

systems are commonly used by many institutions, such as Sheffield and 

Manchester. Figure 6 indicates the block diagram of an EIT hardware design. 

The desired measurement protocol can be achieved by adopting a suitable 

switching pattern for the multiplexer. The multiplexer enables excitation 

sequence of the current injection and voltage measurement pattern to be 

applied onto the sensor electrodes. The data acquisition system collects 

differential voltage values from the multiplexer, converts them into binary form 

and transfers the data to the PC. The received data is used to produce images 

by using image reconstruction algorithms. The data acquisition system is also 

capable of acting as the current source.   
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Figure 6: Block diagram of 32 electrode EIT system hardware 

The system built is LabVIEW based, using the National Instruments DAC for 

data acquisition and multiplexers for channel switching. Figure 7 is a picture of 

the whole system including the power supply, data acquisition card, multiplexer 

and the EIT test phantom. Two multiplexers are used to control the DAC 

switching; one supplies excitation to the electrodes and second acquires the 

measurements. There are 32 different current excitation patterns and each 

arrangement has 29 differential voltage measurements, so 32*29=928 

measurements. 
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Figure 7: Picture of a 32 channel 3D EIT system 

3.1.2. Data acquisition 

The data acquisition system collects the measured voltage from electrode and 

then the data is processed by a PC [78]. The EIT system requires a high speed 

computer with sufficient memory to acquire the data. A data acquisition card 

minimises the use of hardware as it is capable of collecting measured data 

accurately at high sampling rate. Conventional data acquisition systems require 

hardware to measure voltage, to filter, demodulate and convert to digital form, 

and a signal processing unit to transfer the data to PC. The National 

Instruments data acquisition card has a built-in data pre-processing unit; hence 

it receives data, converts to digital signal and transfers to the PC without having 

to use additional hardware, so the use of hardware is minimised. The system is 

also compatible with LabVIEW, which enables control of the sensor’s switching 

pattern during the measurement process. 

3.1.3. Multiplexer switching 

The upgrade requires the designing of a 32 channel multiplexer and the revised 

switching patterns’ binary codes. There are two feasible approaches for the 
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multiplexer design. One is to redesign a 32 channel multiplexer by using a 1 to 

32 channels multiplexer. This is low cost, efficient and consists of minimal 

circuitry and hence reduced measurement errors due to stray capacitance. 

However, there is very limited number of 32 channel multiplexers available in 

the market and most of these multiplexers are not suitable for an EIT application. 

The second approach is to use an existing 16 channels multiplexer circuit with 

inverters to develop 32 channel systems. This second system requires twice as 

much circuitry but it will save time on designing an entirely new system and it is 

also proven to be suitable for an EIT application; therefore an existing 16 

channel multiplexing system would be adapted to operate on a 32 channel 

system. The diagram below shows the current excitation and voltage 

measurement circuit diagrams for the 32 channel multiplexer. Channels 1-16 

can be measured from the multiplexer 1.1 and then channels 17-32 can be 

made operational by switching enable pin high, which switches off multiplexer 

1.2 ON and 1.1 OFF [51]. The same principles apply for the remaining 8 

multiplexers. Figure 9 is the designed circuit diagram of the multiplexers. Figure 

8 below demonstrates the first measurement pattern for current excitation on 

electrodes 1 and 2. A similar table can be used to create the switching pattern 

for the remaining excitation and measurement patterns. There are 32 different 

current excitation patterns and each arrangement has 29 differential voltage 

measurements, so 32*29=928 channels.  
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Figure 8: Multiplexer switching code for electrode excitation 1 and 2  [51] 

 

Figure 9: Multiplexer design of 32 channel system 

3.1.4. 32 Channel multiplexer wiring design 

Figure 10 shows the connection diagram for excitation systems for a 32 

electrode system. As we can see from the diagram, pins 31 and 47 are used for 

outputting the current to the multiplexers, where pin 31 is the excitation pin and 
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47 is the current sink. Pins 65 – 74 are used to turn the multiplexer switching 

patterns. 

 

 

Figure 10: A 32 channel wiring system for excitation 

Figure 11 represents the wiring diagram of data acquisition system for a 32 

electrode system. Pins 1 and 2 are used for taking measurements. Pins 97 to 

106 are used for driving the switching code for measurements. 
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Figure 11:  A 32 channel data acquisition wiring diagram for voltage 

measurement 

3.2. KCHU Mark2.5 system 

The KCHU Mark2.5 EIT system is a 16-channel system and has one power box 

and one current source. It can be used for multi-frequency tests.  Figure 12 

shows the device and its power supply. The system is optimised for operating 

from 50Hz to 500kHz. The output impedance of the current source is over 1 MΩ 

at all chosen frequencies.  

The main issue in obtaining the complex impedance spectrum in EIT hardware 

is maintaining a similar performance at the low and high operating frequency. 

The improved Howland current source is adopted to maximize output 
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impedance and wide-band voltage measurement amplifiers. Additionally, the 

circuit for calibrating the output impedance of the current source is inserted at 

the operating frequency which was over 1MHz. A detailed description for the 

hardware is written in [79, 80]. 

 

 

Figure 12: Photo of the KHU Mark2 

The current source has a high current amplitude stability of 0.009–0.095% and 

a low total harmonic distortion of 0.2×10−3 to 0.08%. The signal to noise ratio is 

about 75-85dB depending on frequencies and measurement channels [6]. 

The complete system contains the following parts: (1) a computer with an USB 

port and EIT software; (2) a main controller, DSP (TMS320LF2812 [81]); (3) an 

intra-network controller on a digital backplane; (4) impedance measurement 

modules; and (5) switching circuits on an analog backplane [82]. 

TMS320LF2812 (see detail in the Appendix) is the newest and the best-

performance DSP controller among the TMS320C2000 series. It has 56 digital 

I/O ports, 128KX16bit flash and 18KX16bit SRAM. The highest sampling 

frequency is 150MHz.   
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The general structure of the KHU Mark2.5 is imaged below (Figure 13). The 

analog switching board is used for signal switching (like AC/DC or DC/AC) and 

after the 16 IMM channels the signal is transferred to the digital backplane 

which contains a DSP controller and an intra-network controller, which lastly 

sends it to the PC computer to process the image.  

 

Figure 13: Structure of the KHU Mark2 (adapted from [82]) 

3.3. EIT software 

This section explains the mathematical framework of EIT which includes 

forward problem, inverse problem and regularization techniques etc. Algorithms 

used in all experiments and simulations are described in detail in this chapter. 

3.3.1. EIT measurement pattern 

A variety of protocols for injecting current and collecting voltage measurements 

have been proposed over the years [52]. There are two main driving protocols 

which are pair drive and multiple drives. The pair drive method uses a single 

source current connected to the driving electrode pairs with measurements on 

the remaining pairs of electrodes. The current source is then switched to 

another pair of electrodes and the measurement is repeated on the remaining 

electrode pairs. The multiple drive system is able to drive current in more than 

two electrodes at one time, but with a more complex set-up and higher costs. 
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The most common measurement pattern is known as the adjacent pattern. The 

current is applied to the adjacent electrodes and voltage is measured on the 

remaining adjacent electrodes. For a 16 channel example, the current is applied 

to an adjacent pair of electrodes and the resultant voltages between the 

remaining 13 adjacent pairs of electrodes are measured. In Figure 14, current is 

injected through an electrode pair (1, 2) and the resulting boundary voltage 

differences are measured from electrode pairs (3, 4), (4, 5)…  (14, 15), (15, 16) 

[83]. Voltages are not measured between pairs (16, 1), (1, 2), or (2, 3). 

Secondly, the current is injected between pair (2, 3), and the voltage difference 

measurements are done between pairs (4, 5) (5, 6) … (15, 16) (16, 1). The 

process is repeated 16 times, which means that all 16 adjacent pairs of 

electrodes have been powered. The total number of measurements will be 

16x13=208. This would produce a data frame that has size of 1x208. The 

current is excited around the boundaries and therefore the resolution is greater 

on the outer regions and relatively low in the central region.  

 

Figure 14: Adjacent current pattern of a 8 electrode EIT system [39] 

3.3.2. Forward model 

An image, or solution, is obtained by repeatedly running a forward model and 

an inverse solver until convergence is attained. The forward problem of EIT is to 

determine the voltage distribution arising from the current pattern injection onto 

the object [84]. 

The basic field quantities involved in EIT are the electric field E and the 

magnetic field H, which will be modelled as vector valued functions of space 
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and time [85]. Electric displacement D and magnetic flux B will be produced 

when the fields are applied to a material. By Faraday’s Law of induction:  

B
E

t


  

                                                    (1) 

and Coulomb’s Law: 

D
H J

t


  

                                                  (2) 

where J is the electric current density. Assume the media to be linear and 

isotropic, the magnetic permeability is then a scalar function   and the 

magnetic flux B H . The permittivity    is similar to the permeability with 

D E . In a conductive medium, the conduction current density is cJ E . 

The total current is then c sJ J J  , the sum of the conduction and source 

currents. Now the time harmonic Maxwell’s equations are given by: 

E i H

H i E J





  

                            (3) 

The conductivity and permittivity can be combined as a complex admittivity 

i  and the equation becomes: 

( ) sH i E J                          

 (4) 

Typically in EIT the source current sJ is zero at frequency . The quasi-static 

approximation assumes H is negligible, so that 0E   and therefore for a 

scalar potential , E   . 

3.3.3. Direct approach and complete electrode model 

We have a given body   with a smooth boundary d . The body has 

conductivity . The scalar potential is  and the electric field is E   . From 

Ohm’s law, the current density is J     . In the absence of interior current 

sources, Kirchhoff’s law is governed by Laplace’s equation: 

0                                         (5) 
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where   is the complex-valued electric potential and   is the complex 

conductivity of the medium. The appropriate boundary conditions (complete 

electrode model) [6, 52, 53, 86] are needed to enable a representative model 

for the EIT measurement process. Utilisation of the boundary condition of the 

complete electrode EIT model includes,  
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, , 1, 2,..., ,

0, / ,

l

l l x l

l x l

e
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z U r e l L

dS I r e l L
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  





                                     (6) 

where lz  is the effective contact impedance between the 
thl  electrode and the 

tissue,   is the outward normal to the surface electrodes, U  is the complex-

valued voltage, I  is the complex-valued current and le  denotes the electrode l . 

Here, 
/ L

x l lr e 
means a point on the boundary not under the electrodes [87, 

88].  

Let an imaging object occupy a two-dimensional region with its boundary . 

On the boundary, electrodes le , 1,2,...,l L  are attached. For complex 

impedance imaging, given a current with magnitude I and angular frequency   

is injected through a chosen pair of adjacent electrodes ( le and 1le  ) to generate 

an electric potential, the resulting potential V  is governed by: 

* * =0  （ ）                                           (7) 

where 
* i     is the complex conductivity distribution.  

The Jacobian matrix is then established for a linearised inverse problem [89]. If 

 and RV  are the real parts of admittivity and voltage respectively, while   and 

IV  are the imaginary parts, the complex voltage measurements are formed by: 

RR RI R

IR II I

J J V

J J V

 

 

 

 
                                         (8) 
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The Jacobian which corresponds to the effect of perturbations in conductivity on 

the real part of the measurements can be expressed as: 

R
RR

V
J





                                                   (9) 

and the Jacobian corresponding to the effect of the conductivity perturbations 

on the imaginary part of the measurements is: 

I
RI

V
J





                                                    (10) 

Therefore the remaining two combinations would be: 

I
IR

V
J





                                                     (11) 

and 

I
II

V
J





                                                     (12) 

Thus the forward problem would become: 

* * *J V                                                (13) 

RR RI R

IR II I

J J V

J J V





    
    

                                      (14) 

The complex conductivity perturbation * in Equation (7) can be computed by 

the linearised reconstruction algorithm via: 

-1*=( * *+ ) * *T TJ J L J  V                           (15)  

where is *J  the Jacobian matrix for complex impedance, L  is the regularization 

matrix,   is the regularization parameter and *V is the complex measured 

voltage. 

3.3.4. Inverse problem 

The inverse problem is the image reconstructing step for EIT. The aim of the 

reconstruction algorithm is to determine the conductivity distribution given by 
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the voltage measurement and sensitivity matrix [90]. The following equation can 

be described as the voltage measurements across the surface: 

V J                                                 (16) 

Where V  is the voltage measurement and J  is known as the Jacobian matrix 

which relates the voltage measurement to the image. The inverse problem of 

EIT is to solve  for given V and J. Therefore, the above equation becomes: 

T TJ V J J                                        (17) 

1( )T TJJ J V                                         (18) 

3.3.5. Tikhonov regularization and singular value decomposition 

The EIT system is usually ill-posed [91, 92] and inconsistent because of some 

limited sources and noisy projection data. As a result it is very important to 

ensure a reasonable solution for the ill-posed problem to system equations 

existing at each linearised step [93, 94]. The system can be basically solved by 

using a linear back projection reconstruction technique including Tikhonov 

regularization [91]. 

Tikhonov regularization is the most commonly used method of regularization of 

ill-posed problems. The EIT inverse problem is not well-posed. 

V J                                          (19) 

The standard approach is known as linear least squares and seeks to minimize 

the residual: 

2|| ||V J   
                                     (20) 

where  || . ||  is the Euclidean norm. This may be due to the system being over 

determined or underdetermined. In the latter case this is no better than the 

original problem. 

2 2|| || || ||V J V    
                  (21) 
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 is called the Tikhonov matrix. In many cases this matrix is chosen as the 

identity matrix, giving preference to solutions with smaller norms. In other cases, 

high pass operators may be used to enforce smoothness if the underlying 

vector is believed to be mostly continuous. This regularization improves the 

conditioning of the problem, thus enabling a numerical solution. An explicit 

solution, denoted by V̂ , is given by: 

1ˆ ( )T T TV J J J     
               (22) 

The effect of regularization may be varied via the scale of matrix  . For = I , 
T

=
2 , the above equation can be written as: 

2 1ˆ ( )T TV J J I J    
                (23) 

Where 
2 is the regularisation parameter dependent on the noise level and I is 

the identity matrix.  

The linear system would become better conditioned after the regularization is 

applied. However, it does not necessarily prove of having a perfect solution. 

When dealing with sets of equations or matrices that are either small or 

numerically very close to singular, a powerful mathematical technique called 

singular value decomposition (SVD) [95] is introduced. Singular value 

decomposition provides a convenient way for breaking a matrix, which perhaps 

contains some data that are interesting, into simpler, meaningful pieces [96].  

Any m n  matrix with m n  can be written as the product of an m n  column 

orthogonal matrix U , an n n  diagonal matrix with positive or zero elements, and 

the conjugate transpose of an n n  orthogonal matrix V . SVD is a 

decomposition of matrix:  

TJ U V                      (24) 

With singular values i  and Tikhonov matrix I  , the Tikhonov regularized 

solution can now be expressed as: 
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where D has diagonal values: 

2

2

1
( )i

i i

D diag


  
 


                                     (26) 

3.4 Conclusion 

In this chapter, two EIT hardware systems being used for experiments 

throughout the thesis have been proposed. One is a 32 channel EIT hardware 

design using LabVIEW software and NI DAC and the other is a commercial EIT 

system called KCHU Mark2. Also, EIT theory including the forward and inverse 

problem is described, and some well-known image reconstruction algorithms 

have been introduced.  
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Chapter.4 EIT Phantom fabrication 

and modelling 

4.1. Phantom design 

The first designed phantom is a 2D circular phantom consisting of 32 

rectangular electrode plates (Figure 15). The electrodes are curved and fixed at 

the top of the tank. The phantom is constructed using a cylindrical plastic pipe 

with a square board fixed at the bottom. As shown in the engineering drawing, 

the diameter of the pipe is 23cm and the height is 16cm. The phantom is built 

with long electrodes with dimensions of 2.5 x 16cm and 0.2mm thickness. Pitch 

between each electrode is 2cm. The electrodes are made of steel (conductivity 

of approximately 1.3x106 s/m) which may not oxidize fast as compared to 

copper and aluminium. 

 

Figure 15:  A 32 channel 2D EIT phantom (picture and engineer drawing) 

A square fabric sensor has been built (Figure 16). The sensor consists of 3 

main parts: a wooden frame, the fabric material and the electrodes. The frame 
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is constructed from two wooden plates with one on the top of the fabric and the 

other at the bottom. The sensor is a square shape with side length of 35cm. 32 

identical copper electrodes (conductivity of approximately 58.5x106 s/m) with 

size of 1.5 x 2cm and thickness of 0.2mm are placed with 2.5cm pitch between 

each other. 16 bolts are used to hold the position of the electrodes.  

 

Figure 16: Square fabric sensor (picture and engineer drawing) 

In order to test the 32 channel EIT hardware performance, a relative 3D test 

phantom needed to be built. The basic structure of the phantom is a 20 x 30cm 

plastic tube, with another plastic plate sealed at one end of the tube [97]. The 

electrodes, size 5 x 8cm, are cut from aluminium plates (conductivity of 

approximately 36.9x106 s/m) with thickness around 0.2mm. Holes are drilled 

equally spaced (2cm) in each layer and the gap between the two layers is 12cm. 

Electrodes have been curved at an angle to fit the circular tank. Screws are 

used to hold the electrodes in position and also act as connectors to the wiring 

system. Washers are inserted in each screw and silicon is used to seal any gap 

between the electrodes and the holes. Figure 17 shows the top and side view of 

the completed phantom. 
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Figure 17: Top and side view of the 32 channel system (picture and engineer 

drawing) 

Figure 18 shows the newly built planar array sensor. It is a square shape 3D 

phantom with width 14cm and height 25cm. Circular shape electrodes (radius = 

5cm, thickness=0.2mm) are attached in two sides of the phantom. The distance 

between each electrode is 2.5cm. Each side consists of 16 electrodes.  
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Figure18: Plane array EIT phantom (picture and engineer drawing) 

4.2. Phantom modelling 

To solve Equation 6 with the complete electrode model, a finite element method 

(FEM) has been used [72, 98]. Considering that the FEM has the advantage of 

a building model for objects in any shape and handling inhomogeneous material 

properties, it is adopted here to solve the forward problem of the 3D EIT [39]. 

Finite element methods calculate the approximate solution for potential 

difference and conductivity. They convert the body under investigation into 

number of elements called finite element mesh. 
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EIDORS provides code for generating an FEM model for most typical EIT 

models. The meshing is done by a software named Net-gen. The function calls 

Net-gen automatically. Several parameters have to be decided for accurate 

meshing, which are: 

 Type of model (circular, rectangular or others) 

 Number of electrodes 

 Number of planes 

 Electrode size (width, height) 

 Tank size (width, height) 

 Electrode position (centre height) 

 Mesh density. 

Two by eight electrode model and two by sixteen electrode model are the most 

commonly used 3D EIT systems for both experimental validation and algorithm 

testing. In this research, two FEM models are mainly required. One is a basic 

32 channel 3D EIT model. The other FEM model, which consists of four planes 

of 32 electrodes, would be used to evaluate the performance of the 

reconstruction algorithm developed for large scale EIT problem later on. The 

two meshings are shown in Figure 19. 

 

Figure 19: FEM of a 32 electrode EIT system and a 128 electrode model 
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A mesh for a 4 by 4 electrode plane array EIT is also required in the research 

(Figure 20). 

 

Figure 20: Finite element mesh of 4x4 surface electrode EIT model 

 

Net-gen can also generate more complex geometries, such as a human thorax 

model shown in Figure 21, which can be used to simulate lung images. 

 

 

Figure 21: Meshing of a 3D human thorax model with lungs 
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4.3 Phantom tests 

In order to avoid most experimental errors, several test constraints have to be 

considered: 

 Equal measure of saline solution used for all tests  

 Same image reconstruction software 

 Data acquisition parameters such as sampling rate and number of 

samples are maintained throughout all systems 

 Test objects are placed in the same locations in the phantom for image 

reconstruction 

 Repeated tests to eliminate the experimental anomalies. 

4.4. Reconstruction images and discussion 

Figure 22 shows the reconstruction results of the 32 channel 2D circular EIT 

system. Each reconstruction image is referred to a location picture that shows 

the exact position of the actual inclusion within the test phantom. Notice the 

regions showing in the reconstruction which have exceeded the tank size and 

would not be taken into account.  
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Figure 22:  Experiment reference location pictures and reconstruction results of 

2D phantom 

 

Figure 23 shows the reconstruction results of our square fabric sensor. 
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Figure 23:  Experiment reference location pictures and reconstruction results of 

the fabric sensor 

For our 3D phantom, experiments were performed for three different cases 

(shown in Figure 24). As potential changes occur more obviously when an 

object with a different conductivity is placed close to the electrodes, the most 

difficult reconstruction task for a single inclusion would be placing the object in 

the centre position. In the first case, a plastic cylinder with radius 2cm is 

inserted and the result is indicated. Secondly, two plastic cylinders (one solid 

with radius 2cm and one hollow with radius 1.5cm) are placed side by side 

close to the electrodes. In the third experiment, two bottle cans are used as 

samples and are placed at different heights inside the tank (one is near a side 

at the top and the other is at an opposite position at the bottom). This test is 

best for proving the 3D performance as it shows the reconstruction in both 

electrode layers. 
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Figure 24: Experiment reference location pictures and reconstruction results of 

3D phantom 
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4.5. Data analysis of EIT measurements 

In order to perform difference imaging, the measurement has to be recorded 

twice; one is for the background data reading, and the other is for the 

measurement with test sample included. Figures 25, 26 and 27 show the 

background data reading of the three different EIT phantom designs. 

 

 

Figure 25: Background reading of the 32 channel 2D phantom (simulation and 

real data) 
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Figure 26: Background reading of the square fabric sensor (simulation and real 

data) 
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Figure 27: Background reading of the 32 channel 3D EIT system (simulation 

and real data) 

Overall the system performed well and provided good “U shape” data in all 

three different phantom data collections. There is a little distortion when the 

signal is small; this may cause by the system noise. 
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4.6. Conclusion 

A variety of meshings for different types of EIT sensor have been demonstrated 

including a 2D tank sensor, a square fabric sensor and also a 3D tank sensor. 

Also several experiments have been done using different EIT phantoms. In the 

next section a special reconstruction technique to improve the performance of 

EIT when dealing with large number of measurements will be presented. 
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Chapter.5 Sparse Jacobian and 

parallel computing in 3D EIT 

Although EIT is a fast and simple imaging technique compared with other 

tomography methods like CT and X-ray, there is still great interest in optimising 

the computational performance of EIT image reconstruction while maintaining 

the image quality. This chapter describes a method for obtaining benefits on 

computer memory and time saving. 

5.1 Background 

The back projection reconstruction algorithm is a traditional method that 

provides fast and accurate results for a typical 16 electrode EIT system. 

However, an idea has been created such that if the number of electrodes is 

increased, making the system become larger in scale, such as a 128 electrode 

system, then a large number of measurements and pixels [99, 100] would be 

obtained. As a result of increasing the density of the sensitivity distribution, then 

the problem might become similar to a CT problem, which would potentially 

increase the image quality. Limitations appear to the traditional back projection 

reconstruction algorithm when facing a large scale 3D EIT problem as a great 

deal of information needs to be stored and calculation of the Jacobian matrix 

becomes unfeasible. A new reconstruction technique combining the Block-wise 

conjugate gradient method and sparse matrix simplification is developed to 

overcome these problems. The new combination reconstruction technique has 

significant advantages in the computational time of large scale EIT 

reconstruction without decreasing the image quality. 

In the chapter, three dimensional EIT [101, 102] is taken into consideration. 

Increasing the number of electrodes will increase the number of independent 

measurements. This increase will provide more impedance information to the 

measurements [103, 104]. Theoretical consideration for information content in 

EIT data has been presented in [105], which provides a good guideline for 

selection of the number of electrodes. For EIT in 3D, the information required 

extends to multiple layers; a large number of electrodes could mean better 
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coverage of 3D space. If the number of electrodes increases to 128 (e.g. 4 

planes of 32 electrodes), the number of independent measurements is 8000, 

and with 256 electrodes (e.g. 4 planes of 64 electrodes) the number of 

measurements is as high as 32384.   

With a priori knowledge of the conductivity distribution, one can reduce the size 

of the inverse problem (number of voxels or degrees of freedom used in the 

image reconstruction) [106]. Assuming there is no prior knowledge about the 

conductivity distribution, then a large number of voxels is needed for the inverse 

problems. When the problem of a large number of electrodes and a large 

number of voxels happens, limitations appear as large size matrices need to be 

stored and large matrix inversions are required. In EIT each row of the Jacobian 

matrix represents the sensitivity of one measurement with respect to all voxels. 

In 3D EIT the values of the Jacobian matrix in each row have a very large 

dynamical range, making some of the voxels almost in-sensitive to a particular 

measurement.  In this chapter the Jacobian matrix is reduced to a sparse matrix 

by setting very small values to zero. Sensitivity of a given measurement to 

some voxels can be very low and here this very small value is set to zero. 

Conjugate gradient methods are well suited for such a large scale inversion. In 

this chapter, a new reconstruction technique has been proposed by combining 

the Block-wise conjugate gradient method and sparse matrix reduction to the 

Jacobian matrix to overcome the computational and memory problems in large 

scale 3D EIT. Adjacent current measurement patterns were used in all tests. 

5.2. Sparse Jacobian and threshold limits 

Due to the nature of 3D EIT, the sensitivity of the measurements to conductivity 

changes far from field of view of the relevant electrode pair can be very small. 

These values from the sensitivity map would appear to be close to zero. The 

zero elements still remain in the matrix, which takes up memory and means 

they are used in the inverse calculation. The sparse matrix reduction method 

indicates that values which are very small, typically below a certain threshold, 

can be located and transformed to zero. These zero elements are then 

eliminated from the Jacobian matrix. This effect would decrease the total 

number of non-zero elements of the Jacobian matrix and hence reduce the 



59 
 

memory storage. Figure 28 shows an example of the effect after thresholding. 

Level of sparsity (LOS) is defined as the number of non-zero elements divided 

by the total number of elements in the matrix. 

 

Figure 28: Histogram of the level of sparsity of Jacobian for a 32 channel 

system 

The new Jacobian 
kJ  after being sparsed is then formed: 
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where j corresponds to the element number within the domain and nm denotes 

the number of measurements. The Jacobian matrix 
kJ   now contains a large 

number of zero values. This study investigates the reduction of the memory 

usage of the Jacobian by comparing the non-zero elements and the suitable 

value for thresholding. Two ways to define the threshold value were considered. 

One is to make the threshold to be a small percentage t of the maximum value 

of each row of the Jacobian matrix (t is a small percentage value, e.g. 0.01%). 
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The second way of thresholding is that the threshold can be t% of the average 

value of a sum of nm  biggest numbers in each row of the Jacobian matrix. Let 

the sum of a list of h biggest values in a row of the Jacobian be max( )hJ , then: 

max( )
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There might be some abnormal elements in the forward modelling mesh, which 

result in high values of sensitivity. The second method is used to avoid this and 

make the thresholding more accurate. Therefore, all tests in this chapter are 

made with the second thresholding method. 

5.3. Block-wise conjugate gradient least square 

5.3.1. Conjugate gradient 

The main problem of large scale 3D EIT reconstruction is to solve the inverse 

problem involving a large dimensional Jacobian matrix J . Krylov subspace 

methods, especially conjugate gradient, are currently used for large scale 3D 

problems [107]. The Conjugate Gradient method is the most prominent iterative 

method to solve sparse systems of linear equations [42, 108]. Being fast and 

suitable to solve the inversion working with a large sensitivity matrix, Conjugate 

Gradient Least Square (CGLS) can be easily implemented on parallel 

processors [109]. This is an iterative method that generates a number of 

iterations,
kx  

of successive approximations to the solution and residuals, 

k kr b Ax  , 
and search directions, 

kP ,
 to update the iterates and residuals [110, 

111]. It can be applied to sparse systems that are too large to be handled by 

direct methods. 

An implementation of CGLS for the EIT problem can be expressed as follows: 

Jx b                                                                                        (30) 

where J  is the sensitivity matrix obtained by the forward problem, x is the image 

and b is the measurement data. 
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The least square problem is to minimise 

Jx b
                                                                                      (31)

 

Since TJ J  is positive-definite for any matrix J , the conjugate gradient algorithm 

can be applied to the normal equations 

T TJ Jx J b                                                                                      (32) 

Let 
0 0r b Jx   .  The following loop shows the iteration of CGLS: 

 

Algorithm1: Conjugate gradient method 

where 
kr is the residual at the thk step and 

kp  is an auxiliary vector of length n. 

The loop approximates to the solution 
1kx 
 with the minimum residual error

1kr 
. 

With CGLS, the number of iterations provides the effect of regularisation to the 

final reconstructed image. The number of iterations required depends on the 
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meshing size and scale of the problem (number of electrodes). Tikhonov 

regularisation can be applied to the Jacobian by adding a regularisation term: 

x
0

J b

I

   
   

                                                                                     (33) 
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where  is the regularisation parameter and I is identity matrix.  

The CGLS iteration already has a regularization effect. Due to the 

computational aspect, the identity matrix is used here to make the inversion 

more stable and still be memory efficient. It is fully sparsed and becomes the 

last block of the matrix [112]. 

5.3.2. Block-wise matrix vector multiplication 

A simulation for a 128 electrode system was firstly done to test the performance 

of the sparse Jacobian CGLS method. The algorithm was run in MATLAB using 

an 8GB RAM computer. However MATLAB could not handle the forward 

problem as an error message said out of memory. Assume there is no other 

background usage of memory, the PC would provide a fully virtual memory of 

8GB to MATLAB and MATLAB itself does not limit the memory usage. This 

indicated that the current computer storage capacity (RAM) may not be 

sufficient to process and store a full Jacobian matrix in the 3D EIT problem with 

a large number of measurements. The block-wise matrix method suggests that 

one can separate the Jacobian into blocks, and solve the inverse problem in a 

matrix free method as CGLS does not require access to the full matrix J [110]. 

Therefore all that is needed is a simple matrix vector multiplication with each of 

J and J per iteration. The matrix J can be divided in to 1l   blocks (24a). 

 As described in the CGLS, two matrix multiplications are mainly considered, 

the Jp  multiplication and TJ r multiplication. Therefore, the Jp  multiplication can 

be done in block-wise format (24b) where p is a vector with size n x 1. Similarly, 

in the TJ r multiplication, r has a size of 1x (m + n) which can be partitioned into l 

+ 1 blocks, shows in (24c), where each block has a dimension of ( ) /m n l . 
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where k = 1 , 2 , 3 … l , 1l  , each block 
kJ  has a dimension of /m l by n  and 

1lJ 
is  the n n  regularised identity matrix used for Tikhonov regularisation. 

From (10c), TJ r can be expressed as the sum of all  T

k kJ r  blocks, 

1

1

l
T T

k k

k

J r J r




                                                                                (34) 

 Each block-wise sensitivity element 
kJ can be loaded at the same time and 

matrix multiplication steps can be done in parallel using computers with multiple 

cores. This will improve the reconstruction speed significantly. 

5.4. Results 

5.4.1. Simulation results 

Simulations are initially done using the 32 channel system to test the feasibility 

of the sparse Jacobian CGLS algorithm and also to measure the optimum 

threshold value. The simulations are done using a desktop computer with an 8 

core CPU and 4GB RAM. For the 32 electrode model, which gives 928 

measurements, the sensitivity map has been partitioned into 58 segments. All 

reconstructions are done in parallel execution with 7 cores. The results are 

shown in Figure 29. The mesh has parameters of tank height=30cm, tank 

width=15cm, electrode height=8cm, electrode width=5cm.  

 

  

32 electrodes EIT system meshing True image( a sphere with 

radius=4cm in the centre) 
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Original reconstruction(200 iterations) 

 

LOS=100% 

Threshold= 0.1%* max(100)J  

 

LOS=88.54% 

  

Threshold= 0.5%* max(100)J  

 

LOS=66.81% 

Threshold= 1%* max(100)J  

 

LOS=52.90% 

  

Threshold= 2%* max(100)J  

LOS=38.08% 

Threshold= 5%* max(100)J  

LOS=22.93% 

Figure 29: Simulation results of 32 channels EIT system 
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Figure 30: 1D plot of normalized conductivity distribution against number of 

voxels 

 

Table 2: Image quality measures based on GREIT (32 electrode simulation 

case) 

Threshold 

value 

AR(Amplitude 

response) 

PE(Position 

error) 

RES(Resolution) SD(Shape 

deformation) 

Original 38 10.9, 13.9 0.1053 9 

0.1% 38 10.9,13.9 0.1053 9 

0.5% 33 10.87,14.15 0.0914 15 

1% 22 10.63,11.31 0.0609 4 

2% 12 10.87,14.15 0.0332 15 

5% 11 10.89,13.97 0.0305 18 
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The performance of thresholding in a critical case was evaluated, which is by 

inputting a spherical inclusion in the centre of the imaging area. Since it is very 

difficult to observe the degradation of the image quality directly from the 

reconstructed images, a 1D plot of normalized conductivity was used to 

compare the image qualities of different threshold values. For image 

visualisation a 21 x 21 x 21 3D grid is used. Figure 30 shows the 1D graph 

using the 32 channel simulation case and is a line from plane z=11 and along a 

line of y=11. It can be observed that the image quality remains up to a limit 

where the threshold value is equal to approximately 1% of the average of the 

maximum 100 values. After that point distortion starts to occur in the image 

region. Further simulation shows that the image quality is lost significantly when 

a threshold value of 2% is applied. Therefore, the simulation results for the 32 

electrode system show that a suitable threshold value would be up to 1%. This 

value of thresholding will be the maximum point that can provide satisfactory 

image information. Any other inclusion types and locations might have higher 

tolerance on the threshold percentage, but they will always produce satisfying 

images with thresholding between 0.1% and 1%, since the simulation is done in 

a critical case. From the ratio of the number of non-zeros in the Jacobian matrix 

and the total elements in the Jacobian matrix, the level of sparsity and the 

reduction in memory storage can be calculated. For an optimum thresholding of 

1%, approximately 50% of total matrix elements are transformed to zeros and 

can be eliminated.  

To further analyse the results, GREIT performance parameters [85] have been 

used to perform image quality measurement. Figure 31 shows a set of figures of 

merit to characterize the image qualities based on GREIT. Based on images of 

point targets, several figures of merit are defined: amplitude response (AR), 

position error (PE), resolution (RES), shape deformation (SD) and ringing 

(RNG). AR measures the ratio of image pixel amplitudes in the target in the 

background to that in the reconstructed image. It is considered to be the most 

important figure of merit in quality measures. PE measures the extent to which 

reconstructed images faithfully represent the position of the image target. RES 

measures the size of reconstructed targets as a fraction of the medium. 
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Reconstruction algorithms typically create circular images for the medium 

boundary. SD measures the fraction of the reconstructed one-fourth amplitude 

set which does not fit within a circle of the reconstructed area. This indicates 

shape changes of the objects near the medium boundary. RNG indicates 

whether reconstructed images show areas of opposite sign surrounding the 

main reconstructed target area. Constant AR is considered to be the most 

important figure of merit. PE is required to be small and constant compare with 

the original reconstruction image as a second important parameter. An increase 

in value of PE could mean more error obtained in reconstruction of the object 

location. A uniform RES would represent a more accurate shape of the target 

conductivity distribution as well as a uniform SD and is considered to be another 

important figure of merit. Large SD shows incorrect interpretation of images. A 

low and uniform RNG is important to indicate the correctness of conductive 

pattern inside the reconstruction region. Table 2 shows a set of figures of merit 

to characterize the image qualities based on GREIT. It can be observed that 

some image information degrades as the threshold increases. It is suggested 

that there is a direct relationship between the LOS and image quality (image 

quality remained well while LOS is higher than 50%). Notice that GREIT is a 

new tool for measuring image quality by calculating several figures of merits; 

however it is not possible to simultaneously optimize all measures. Random 

measurement noise would occur which may effect on error calculation. Most of 

the parameters are expected to be similar to the parameters of true images, as 

quality goes down the difference becomes bigger. It is therefore a useful tool for 

analysing the performance of the sparse matrix algorithm. 

 

Figure 31: Performance figure of merit for evaluation of GREIT images 
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5.4.2. Experimental validation 

In order to experimentally validate the programme performance, a LabVIEW 

based EIT system was built.  The simple EIT system was developed using the 

National Instruments system for data acquisition and a multiplexer for channel 

switching. Details of the system are described in the hardware chapter. 

Two metal cans with radius 2cm, height 10cm are used as inclusion in the 

experiment. They are located at two sides of the phantom and with a small 

height difference. Figure 32 shows the reconstruction images with various LOS 

in sparse Jacobian.  

 

 

 

Phantom pictures 

 Original reconstruction(300 iterations) 

 

LOS=100% 
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Threshold= 0.1%* max(100)J  

 

LOS= 88.54% 

Threshold= 0.5%* max(100)J  

 

LOS=66.81% 
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Threshold= 1%* max(100)J  

LOS=52.90% 

Threshold= 2%* max(100)J  

 

LOS= 38.08% 

 

 

Threshold= 5%* max(100)J  

 

LOS= 22.93% 
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Figure 32: Experimental results of 32 channels EIT system 

 

Table 3: Image quality measures based on GREIT (32 electrode real object 

case) 

Threshold 

value 

AR(Amplitude 

response) 

PE(Position 

error) 

RES(Resolution) SD(Shape 

deformation) 

Original 26 19.72, 10.72 0.0720 14 

0.1% 25 19.72,10.72 0.0693 12 

0.5% 21 20.27,10.72 0.0582 15 

1% 29 20.00,10.35 0.0803 22 

2% 53 19.42,9.84 0.1468 58 

5% 61 14.21,5.05 0.1690 80 

 

5.4.3. Large scale data 

Simulations are done to test the performance of the proposed algorithm on a 

128 electrode system. A circular tank model of 32 electrodes by 4 planes is 

generated. The sensitivity map has been divided into 80 blocks, and the CGLS 

is operating with an iteration number of 400. Results are shown in Figure 33. 

The tank height=25cm, tank width=10cm, electrode height=3cm, and electrode 

width=1cm. 
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128 electrodes 3D EIT system FEM mesh 

 

True image 

(A sphere  with radius of  4cm) 

 
 

 

Original reconstruction(400 iterations) 

LOS=100% 

 

Threshold= 0.1%* max(100)J  

LOS= 45.87% 
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Threshold= 0.5%* max(100)J  

LOS= 36.36% 

 

 

Figure 33: Simulation results of the 128 electrode system 

 

Table 4: Image quality measures based on GREIT (32 electrode real object 

case) 

Threshold 

value 

AR(Amplitude 

response) 

PE(Position 

error) 

RES(Resolution) SD(Shape 

deformation) 

Original 39 11.11, 11.19 0.1080 23 

0.1% 32 11, 8.8.86 0.0886 37 

0.5% 26 N/A 0.0720 N/A 
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Table 5: memory requirement 128 electrode system with different threshold 

values 

Threshold value 0 0.001 0.002 

Memory 

requirement for 

each block (bytes) 

18789600 15230176 13852576 

Simulations are done in the same way as previous tests. The first threshold 

value was chosen to be 0.1%. It can be seen that LOS has dropped to 46% 

which is about the minimum point (50%) for the image quality to remain. A 

further experiment is done by increasing the threshold to 0.5%, which gives 36% 

LOS, and a significant drop in image quality can be observed from the 

reconstruction images and GREIT data. In 32 channel system reconstruction, a 

suitable threshold value of 1% is suggested, whereas a threshold of 0.1% is 

optimum in this case. The reconstructions between 32 and 128 channel 

systems show the same pattern, as LOS below 50% will dramatically reduce the 

image quality. This indicates that a suitable threshold value can be obtained 

while LOS is at 50%, but this value is different in various scales of problem. 

5.5. Computational time 

Partitioning the sensitivity matrix J  into a number of blocks enables the block-

wised matrix calculation to be operated in parallel given a multiple core 

computer, which will further enhance the calculation speed. Tables are 

generated to indicate the improvements: 
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Table 6: Time performance comparison of a 32 channel simulation EIT system 

 
Original 

reconstruction 

Threshold 

=0.1% 

Threshold 

=0.5% 

Serial 

reconstruction 
51.13s 51.77s 51.46s 

Parallel 

reconstruction 

(7 cores) 

27.77s 26.94s 27.07s 

 

 

Table 7: Time performance comparison of a 128 channel simulation EIT system 

 
Original 

reconstruction 

Threshold 

=0.1% 

Threshold 

=0.5% 

Serial 

reconstruction 
8291.07s 6973.24s 5936.98s 

Parallel 

reconstruction 

(7 cores) 

1527.90s 1283.68s 1136.06s 

As shown in Table 6, there are small improvements on serial reconstruction 

when thresholding is used for small scale problems. Similarly, parallelisation 

shows little improvement on small scale problems. For large scale problems the 

improvements become significant (Table 7). The reconstruction time decreases 

dramatically as the thresholding is applied. And for parallel implementation the 

computational time has become almost 7 times shorter than the serial method. 

By increasing the number of CPU cores the program can further achieve better 

computational time. 
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5.6. Conclusion 

Computational aspects including memory issues and execution time are 

important in developing more efficient 3D EIT systems. A reconstruction method 

for large scale 3D EIT has been proposed. This method is a combination of 

sparse matrix method and a block-wise CGLS algorithm. This is especially 

suitable for large scale EIT problems that cannot be solved by traditional 

methods such as the standard Tikhonov regularisation method. The level of 

thresholding is investigated as a tool for the sparse Jacobian method. It has 

been found that the optimum threshold is different when dealing with varying 

locations of the inclusion(s). However, 32 channel system simulations show that 

when applying the critical case, which is by placing an object in the centre, a 

suitable threshold value of 1% is achieved before the image quality starts to 

degrade. In this worst case scenario (of an object in the centre of 3D phantom), 

increasing the sparsity of the Jacobian matrix by more than 50% will 

dramatically affect the imaging results. In practical settings a calibration of 

thresholding can be done by testing the image quality for the smallest object to 

be detected in the least sensitive area. Adjacent pattern was used in this study, 

and this thresholding value may vary for a different excitation/measurement 

pattern. By making good use of the sparse Jacobian technique and combining 

the method of partitioning the Jacobian into the blocks, the inverse problem in 

large scale 3D EIT problems can be solved effectively. Further improvement 

has been achieved by parallel implementation of the block-wise CGLS in 

multicore systems. This could be a suitable alternative for the large scale EIT 

inverse problem.  
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Chapter.6 Subsurface EIT 

A different EIT geometry for detecting the conductivity distribution beneath the 

surface of a medium is proposed in this chapter. Mueller [113] has presented a 

simple implementation of a 3D reconstruction algorithm on a four by four 

electrode array and the reconstructions obtained from numerical and 

experimental tank data. Such an electrical configuration may be desirable for 

using EIT to detect tumours in the human breast [114].  

6.1. Background 

A planar array system is treated as an emerging measuring platform which has 

multiple uses in medical and clinical areas [115]. Unlike the EIT system with 

annulus electrodes, the planar EIT can provide more flexibility of the electrode 

structure, add convenience in operation [116] and be applied into some difficult 

measuring situations. For example, the size of the breast, head and skin is 

much smaller than the chest and abdomen for which the EIT technique has 

achieved huge success [117]. The previous annular electrode system is no 

longer appropriate for small-volume objects [114], so in order to overcome the 

barrier, the planar array EIT is put forward.  

Though the 3D planar array EIT can be applied to small area detection and 

obtain multi-layer reconstructed images [118-120], there are still technical 

challenges making it hard to employ. Firstly, adding more electrodes to improve 

the distinguishability of the reconstructed images is not possible for the small-

volume objects. Secondly, the planar array EIT system cannot obtain the 

deeper image of the object because of the limitation of the sensitivity of the 

electrodes. Finally, the finite element model and the algorithms involved are 

different from the previous system and this restricts the development of the 

planar array EIT. 

However, the 3D planar array EIT still has a broad prospect in clinical 

application. In the near future, this technique will make great contributions to 

long-term disease observation and cancer detection like the bladder filling 

examination [121], breast tumour screening and skin cancer detection.    



79 
 

The main study of subsurface EIT requires knowledge of hardware design, 

planar array EIT software development and detailed design of experiments 

carried out. In this chapter a planar array of 4 x 4 electrodes attached on the 

surface of a phantom side is constructed to detect the conductivity distribution 

inside a cuboid-shaped phantom and obtain the reconstructed images using 

MATLAB. The data processing is completed by using the EIDORS tool kit to 

solve the forward problems by FEM and iterative regularized inverse solvers. 

The challenging part is to distinguish and locate the inserted objects precisely 

and present the size and shape of the objects in the reconstructed images, 

which means that a more stable and accurate hardware system is needed. 

Methods used to surmount the barriers are utilizing the new algorithm and 

designing an advanced mesh model for image reconstruction. In this section, 

several experiments are conducted and the corresponding reconstructed 

images produced by MATLAB are well presented to demonstrate the whole 

process. 

6.2. System and phantom design 

We implemented a hardware model for a plane array EIT. The phantom is a 

cuboid container which is also made of plexiglass (Figure 34). It has a square 

shape 3D phantom with width 14cm and height 25cm. Circular shape electrodes 

(radius = 5cm) are attached to two sides of the phantom, each side consisting 

of 16 electrodes. As in the proposed simulation model, only one side of the 

experimental phantom is required, which has 4x4 numbers of electrodes. By 

connecting one side of the phantom to the acquisition system, data from the 16 

electrode plane array EIT can be acquired (Figure 35).  
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Figure 34: Top view and lateral view of the planar array EIT phantom 

 

Figure 35: The distributions and numbers of the electrodes 

The 16 circular electrodes are fixed in a 4x4 square shape and the gap between 

each electrode is 1cm. All the electrodes are marked from 1 to 16 in order not to 

get confused when connecting to the equipment. The schematic diagram of the 

positions and numbers of the 16 electrodes is shown in Figure 35. 

The system used in the laboratory is the KHU Mark2.5. In the process of data 

acquisition, the measured voltage potentials are collected at all of the 

electrodes and then processed by the computer with high running speed and 

sufficient capacity. The whole procedure needs a constant current source to 

provide the injection current and a multiplexer to deal with the switching modes 

of the applied current and measured voltages. In my project the adjacent 

switching pattern is also suitable for the voltage measurement. The safe current 

is injected into two adjacent electrodes and the voltages between any other two 

electrodes are measured each time. Then the current will be injected into next 

pair of electrodes and the process will continue until all the electrodes are used. 
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16 electrodes are employed in the experiment, which means that 16x13=208 

measurements are obtained in total. 

 

Figure 36: Planar array EIT phantom 

6.3. Simulation study 

Before the phantom test a series of simulations were done to test the feasibility 

of the subsurface electrode model and examine the performance of the 

programme. The image reconstruction method using in this study is based on 

the 3D surface electrode reconstruction algorithm implemented in EIDORS. 

Different types of inclusions are introduced and also multiple object 

reconstructions are carried out. Furthermore, objects in different locations of the 

surface are imaged to test the coverage of the 3D electrode surface. Another 

important aspect in 3D surface electrode EIT is to find out how far away from 

the electrode plane can the object still be detected. A set of simulations are 

done for this purpose. 

Objects and 
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Figure 37: Computer simulation results of a 4x4 subsurface electrode EIT 

system 

Some applications, such as skin cancer detection, using the planar array EIT 

system only require the system to detect anomalies near the surface electrode 

plane. The simulation studies shown in Figure 37 show promising results when 

an object is located near the electrode plane for both small sphere and larger 

cuboid shape objects. However, it is supposed that image reconstruction would 

become more difficult when the true object is located further away from the 

electrode plane. For applications such as crack detection, when the anomaly is 

located further away from the electrode array, it is essential to have an EIT 

system developed which has the ability to image objects when the distance 

between the object and the electrode array is increasing. A series of simulation 

works have been done to test the reconstruction performance. 
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Figure 38: Simulation study of 3D subsurface EIT system when the object is 

getting further away from the electrode array 

6.4. Experimental validation 

The reconstruction image is the most intuitive and efficient way to assess the 

performance of the EIT system. Here several types of experiments are 

designed to test the performance of this EIT system in all domains. 

To ensure the accuracy of the result, some tips have to be followed during the 

experiment: 

1. Use the same distilled water throughout the experiment to make sure the 

background data is the same; 

2. Do not move the inserted objects when gathering data; 

3. Record the exact place of the object every time and it will be easier to 

compare and at the same time the accuracy of the result is guaranteed.  

6.4.1. Plastic stick in different locations  

The experiments on a single plastic stick with different locations and two plastic 

sticks near the electrodes are designed to test the performance of the 

reconstruction image near the subsurface and the ability to distinguish the two 

objects. 

 

 

Object location Reconstruted image 
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Figure 39: Experiments with plastic sticks in different locations 

The result reveals that the performance of the system with one single object is 

good and the location, shape and size of the object can be observed.  

6.4.2. An iron stick with different distances to the electrode plane 

This series of experiments shows the effect on the reconstruction images with 

different distances. We chose the iron stick as the experimental object because 

the conductivity of iron (around 80W/mK) is much higher than plastic (around 

0.03W/mK) and it makes the iron more detectable. 
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Figure 40: Experiments with the iron stick with different distances 

From the reconstruction images, the yellow area grows thicker as the stick 

moves far away from the electrodes and it means that position of the stick 

moves away from the electrodes. And also the shade of colour changes over 

the distance.  

But due to the limitation of the mesh model it is hard to see any obvious 

difference after 7cm. The possible reason is that the depth of the model is not 
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enough to contain all the information and the reconstructed images are 

compressed into a limited space. So in order to solve the problem, a larger size 

mesh model will be constructed. In the meantime, some unknown noises occur 

in the area far from the electrodes, which implies that the system is not suitable 

for detection in deeper areas.  

6.4.3. An iron stick with different distances to the electrode plane (larger 

mesh size) 
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Figure 41: Repeated experiment in 6.4.2 with a larger-size mesh model 

With a larger-size mesh model, the compressed part is extended and it reflects 

on the colourful area. As shown above, the thickness of the yellow area is 

increasing as the distance increases and it clearly suggests the movement of 

the object. Compared with the previous test, the result of the experiment with 

the larger-size model is much better. From the calibratrion on the x,y and z 

axes, the rough position of the object can be obtained.  

In the first image, the shape of the object is clear and close to the real 

schematic, and as the object moves far away the red area reduces gradually 

because the ability to detect a signal decreases and it presents like an inverted 

cone. But it is not ideal as a simulated image in which the area between the 

object and electrodes can be clearly distinguished. A possible reason is that the 

current field of the circular electrode is not uniform and the density of the current 

field is low away from the electrodes. Also some noise and interfence is shown 

in the reconstruction images.   
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6.4.4. An iron cube with difference distance to the electrode plane    
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Figure 42: The real schematics of the experiments and corresponding 

reconstruction images 

The size of the iron cube (conductivity around 80W/mK) is about 

1.5x1.5x2.5cm. Only three sets of results are displayed above because the size 

of the cube is comparatively small which makes it more difficult to detect and 

determine the shape and position of the cube. Therefore three typical sets are 

chosen to demonstrate the result of the experiment. The distance to the 

electrodes is 1cm, 4cm and 8cm. As seen in the pictures, the result of the 
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experiment is not satisfying and it implies that the 16 circular-electrode planar 

array EIT system is not very feasible for small objects. 

6.4.5. Two different objects in the phantom 

In this experiment, several different objects are used to test the performance of 

the reconstruction algorithm. 

Object location Reconstructed image 

 
 

  

 

Figure 43: Different objects in the phantom and reconstruction images 

In the first picture, two long sticks made of different materials, one is plastic and 

the other is iron, are used. The result reveals that the reconstruction images 

well determine the shape and location of the objects. 

In the second picture, an iron cube and a plastic stick are chosen as the 

experimental objects. Similarly, the objects are put in different locations. The 

reconstruction shows a similar pattern to the stick experiment and it is possible 

to tell the location of the objects from the colour difference and thickness of the 

colourful area. However, it is difficult to determine the size of the objects by 

direct observation from the reconstruction image. 
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6.5 Data analysis and reliability assessment 

Simulation shows promising result in all cases including test of object in 

different distances to the electrode plane. Figure 44 shows the background 

reading taken by simulation and phantom experiment. Both measurements 

have identical pattern and real data has stronger signal. This indicates that 

measurements taken from the sensor is in good quality. However, experimental 

result comes out not being as good as expected from the simulations. This may 

be cause by experimental phantom design could not be perfectly fit the original 

generated mesh. A reliability assessment table (table 8) is generated to 

evaluate the effects and limits of the current designed planar array sensor. 
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Figure 44: Background data of planar array EIT sensor (Simulation and real 

data) 
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Table 8: Reliability assessment of planar array EIT sensor 

 Simulation results Experimental results 

Signal detection Strong Strong 

Object detection Yes Yes 

Multiple objects detection Yes Yes 

Object location Precisely correct Quite accurate 

Size and shape 

reconstruction 

Quite reliable Unreliable 

Reconstruction in depth Very accurate Shows pattern of object 

moving away but 

inaccurate 

 

 

6.6. Conclusion 

All the procedures and details of experiments are presented in the chapter. With 

simulation images and the real schematics it is clear to see the performance of 

the planar array EIT imaging reconstruction method. Simulation study provides 

a promising result. However, experimental validation using a real phantom did 

not work well in all cases, maybe due to some experimental errors. This study is 

proposed to be useful for people working on a subsurface EIT imaging area as 

this is an early study that combines good simulation results and a large number 

of real phantom experiments in many cases. 
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Chapter.7 Multi-frequency EIT for 

fabric pressure mapping sensor 

The EIT-based fabric pressure mapping sensor aims to provide a pressure 

mapping image using current carrying and voltage sensing electrodes attached 

on the boundary of the fabric patch. This is potentially a very cost effective 

pressure mapping imaging solution, in particular for imaging large areas. 

Recently, promising results are being achieved in resistivity imaging for these 

sensors. However, the fabric structure presents capacitive behaviour that could 

also be exploited for pressure mapping imaging.  

In this chapter, an EIT-based fabric pressure mapping sensor is presented and 

tested. In the proposed model a pressure sensitive fabric patch is stretched 

over a deformable support along which electrodes are attached. In order to 

measure the pressure-induced shape change over the fabric patch a 

predetermined sequence of currents is injected and the corresponding voltages 

through electrodes are measured. Reconstructions are done by using complex 

impedance data. To identify how the imaginary part data changes with respect 

to frequency can be a benefit for the image reconstruction, and a series of 

multiple frequency tests are employed. GREIT parameters are calculated to 

measure the image performance. 

7.1. Background 

Complex conductivity reconstructions with multiple frequencies [122, 123] are 

being studied in this chapter to observe both conductivity and permittivity 

changes due to the pressure applied on the fabric. The related mathematical 

framework of complex conductivity reconstruction is presented. Experimental 

studies on detecting the change of complex conductivity using both an EIT tank 

phantom and a fabric pressure mapping sensor are performed allowing a 

comparative evaluation. First, electrical impedance spectroscopy on a fabric 

pressure mapping sensor is performed. Secondly, complex impedance 

tomography is carried out on a fabric and on a traditional EIT tank phantom. 

Quantitative image quality measures are used to evaluate the performance of a 
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fabric pressure mapping sensor at various frequencies and are compared with 

the better understood tank phantom. This chapter of the thesis demonstrates for 

the first time the useful information available on pressure mapping from the 

imaginary component of conductivity imaging. 

The EIT-based fabric pressure mapping technique has become a popular area 

of EIT study in recent years with various potential applications in mind. It can 

provide major improvements in the cost and operation complexity for clinical 

facilities, as the technology is very cheap and simple. It can be applied to 

dynamic pressure seating systems and mattresses for patients’ ulcer prevention 

[124, 125]. Additionally, potential touch sensitive applications such as robotic 

skin are applicable and are being developed [4, 126-128]. Also different kinds of 

sensor structure have been introduced and tested, such as a rectangular fabric 

pressure mapping sensor. Previous research has shown promising results on 

pressure detection [129, 130]. The characteristic of conductive polymer for an 

EIT-based sensor is evaluated in [131] for analysing the non-linearity and 

hysteresis behaviour of the sensor. These sensors could limit the application of 

pressure mapping imaging, in particular in dynamic situations with rapid 

changes of applied pressure. Further information through multiple frequency 

reconstruction and complex impedance imaging could potentially help to 

overcome these problems. 

Most EIT experiments measure the resistivity information of the object, as the 

capacitive component is used in fewer applications. The resistive component 

can only provide information of the behaviour of the yarn. When the fabric patch 

has been stretched, the air gaps between yarns will change shape and this will 

be the capacitive information. If both resistance and capacitance are obtained, 

the reconstruction image of the fabric might become more accurate and reliable. 

By making a complex conductivity reconstruction one can obtain real and 

imaginary data for conductivity, where the permittivity change is mainly 

indicated by the imaginary part of the voltage measurement and is highly 

related to the capacitive changes in the material. In order to validate this 

approach, various experiments of complex conductivity reconstruction on both 

saline phantom and fabric pressure mapping sensors are performed, which 

provides a comparative study. 
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7.2. Complex impedance measurements on fabric  

In order to analyse the impedance spectrum change of a piece of conductive 

fabric, a device was used to measure the complex impedance. The tetra-polar 

(separate current and voltage electrodes) measurement method was used for 

characterisation of tested fabric material. Each electrode was made up of a pair 

of stainless steel bars. They immobilized the piece of tested fabric with a 

sandwich structure and plastic nuts and bolts. The large surface area and high 

conductive electrodes may minimize the effect of electrode contact impedance. 

Also, this is to ensure that injected current will flow uniformly across the fabric 

material to cancel out the geometric effect. Figure 45 shows the picture of 

measuring the impedance spectrum of a piece of fabric. 

 

Figure 45: Picture of measuring impedance spectrum of a piece of fabric 

Complex impedance values were measured with increasing pressure applied in 

various frequency ranges. Figure 46 is generated by plotting the impedance 

values against different weight data. It can be observed that both real and 

imaginary parts of the impedance measurement vary with frequency. The 

impedance value increases as frequency increases. 
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Figure 46: Plots of complex impedance value against weight data 

There are measurable variations in real and imaginary parts of impedance of 

the fabric structure. This motivates complex impedance tomography for 

pressure sensing fabric. 

7.3. EIT hardware 

To measure the small changes of complex impedance due to the pressure 

requires a high accuracy EIT measurement system with uniform performance 

within the operating frequency range. 

Experiments were carried out using the KHU Mark2 EIT system developed by 

the research group in Kyung Hee University, Korea [82, 132].  

By acquiring two different sets of voltage measurement data, the computer 

software is used to do a time difference image reconstruction. A 16 electrode 
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EIT with adjacent current pattern was used for multiple frequency EIT imaging 

at 1kHz, 10kHz, 50kHz, 100kHz, and 250kHz excitation frequencies. 

7.4. Experimental validations 

To evaluate the behaviour of complex conductivity changes due to the change 

of frequency, two types of sensor have been built: one is a typical 16 electrode 

tank phantom and the other is the 16 channel EIT-based fabric pressure 

mapping sensor. This sensor consists of a conductive fabric patch and a 

circular wooden frame with a sponge pad at the bottom. 16 narrow copper 

plates are used as boundary electrodes placed equidistant between the circular 

frame and the fabric. The conductive fabric used here is EeonTex™ NW170-

SL-PA-1500, developed by Eeonyx Corporation, with a surface resistivity of 

1500 ohm/sq. +/- 15%. It is a nonwoven microfibre coated with a conductive 

formulation, generally used for dynamic pressure sensors [133]. 

Conductivity distribution varies with the deformation of the fabric in respect to 

the pressure sensitive characteristic. Since the modal structure of the fabric-

based sensor is not pure resistance, measurement of the imaginary part of 

conductivity distribution can be useful, particularly for the capacitive effect in the 

contact nodes, and the change due to the deformation of the structure can 

provide valuable information. All experiments include reconstruction images of 

both the real and imaginary parts of conductivity changes.                  

Two sets of experiments were carried out. Each of the tests included a tank 

phantom test and a fabric pressure mapping sensor test. For adjacent current 

pattern EIT measurement, the centre position was considered to be the most 

difficult imaging position. Therefore, the first test was to perform image 

reconstruction in the centre position for both sensors. The results are shown in 

Figure 47. It is important to note that both real and imaginary parts of the 

Jacobian matrix are functions of the real and imaginary parts of the impedance, 

as is reflected in Equation 8 in Chapter 3. 
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Figure 47: Complex conductivity reconstructions at a multiple frequency range 

with centre pressure point (Test 1) 

Most typical EIT experiments only acquire real conductivity information that 

provides good image results like those in Test 1 at a frequency of 10kHz. As the 

frequency increases, it can be observed that image qualities of the real 

conductivity start to degrade, while the imaginary part shows the opposite 

behaviour.  

Change of GREIT parameters of tank phantom results with object at the 

centre with respect to frequency 

 

 

Change of GREIT parameters of fabric sensor results with object at the 

centre with respect to frequency 
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Figure 48: Evaluation of GREIT parameters AR, RES, PE, SD, and RNG as a 

function of point radial position (Test 1) 

From Figure 48 it can be observed that some important parameters, such as 

RES and SD, change relative to the quality of the reconstruction images. 

Focusing on the real part, it indicates that RES drops with increasing SD for real 

conductivity reconstruction while frequency increases. Imaginary part data 

behaves in the opposite manner. It means that the image from real part data is 

losing resolution and starting to shape change when the frequency increases. 

However, the imaginary part image remains in shape and has better resolution. 

PE behaves a bit randomly and shows small changes as the positions do not 

vary much from the centre. This shows that information from the imaginary part 

could be of benefit for reconstruction when the system is operated at high 

frequencies, such as 100kHz. Performance of imaginary images have bigger 

changes through the operating frequencies, because the same amount of 

capacitance variation can produce a different amount of change in the result at 

different operating frequencies.  

The second test was to perform image reconstruction with the target position at 

one side for both sensors. Results are shown in Figure 49. 
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Figure 49: Complex conductivity reconstruction at a multiple frequency range 

with single pressure point by a side (Test 2) 
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 Change of GREIT parameters of tank phantom results with object by a 

side with respect to frequency 

 

Change of GREIT parameters of fabric sensor results with object by a side 

with respect to frequency 

 

 

Figure 50: Evaluation of GREIT parameters AR, RES, PE, SD, and RNG as a 

function of point radial position (Test 2) 
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By observation of the images in Figure 49, both the tank phantom and the fabric 

pressure mapping sensor have shown similar detectability for the object in 

different locations. Low distortion and apparent high quality of reconstruction 

images are produced in all situations. Conductivity distribution of the real part is 

always useful for typical low frequency EIT systems. However, the real part has 

failed to provide satisfactory image information at frequencies of 100kHz and 

250kHz, while the imaginary part becomes more reliable with higher frequency.  

Figure 50 shows the GREIT parameters in the second test. AR measures the 

image pixel amplitude and therefore the value would be reliant on the image 

scale. Both real and imaginary part data provide similar AR values except for 

one strange value that appears in the 250kHz tank test and that may be due to 

a systematic error. RES has obviously gone up for the imaginary part image in 

the tank phantom test. In the fabric sensor experiment, real and imaginary part 

images have significant differences of SD at a frequency of 5kHz. As frequency 

increases they both reach an SD value of about 0.8. It can be observed that PE 

for the real part data is increasing dramatically from around 0.2 to 0.6 in both 

tank and fabric tests. On the contrary, PE for the Imaginary part decreases as 

operational frequency increases. These facts mean that at higher frequencies 

such as 100kHz and 250kHz, reconstructed images of imaginary part data 

locate more accurately to the actual object position.  

7.5. Pressure mapping experiments with load and unload tests 

A linear image reconstruction algorithm was used for time difference EIT 

imaging to recover complex impedance information. An electromechanical 

model needs to be developed to fully model an EIT-based fabric pressure 

mapping sensor. Further work is needed to establish such forward and inverse 

modelling. To motive such a study in future, here nonlinear behaviour of the 

fabric through loading and unloading experiments is investigated. This 

experiment involved investigating the relationship between measured voltage 

and applied pressure. It was done by the application of static loads at the side 

of the fabric. The load was continuously increased and later decreased. The 

load was initially 1kg and voltage readings were taken. It was then increased to 

2kg on the same position, with the corresponding voltage measurements 
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recorded. The procedure was repeated for 3 and 4kg, and for the unloading 

procedure in steps of 3kg, 2kg and down to 1kg. The voltages measured were 

analysed to establish a pressure-voltage relationship. 

The plots in Figure 51 show the relationship between applied mass and the 

norm of the voltage difference between the loaded fabric and fabric background 

(in relaxed mode). The vertical axis gives the norm of the voltages differences, 

while the horizontal axis gives the applied mass. The norm of voltage 

differences are calculated separately for real and imaginary parts of the 

measured voltage. The graphs are used to show the non-linearity in voltage 

norm for loading and unloading of the same mass. The norm of voltage 

differences provides a collective measure for nonlinearity of this 

electromechanical imaging problem. Figure 52 gives a summary of the 

reconstructed images due to loading and unloading of the fabric patch. Future 

work should focus on more sophisticated electromechanical modelling, enabling 

reconstruction of nonlinear behaviour. 

For the real part images between 5kHz and 50kHz, the loading voltage norm 

experiences a non-linear increase with an increase in mass. Consequently, the 

unloading phase experiences a similar relationship, however with a slight drift in 

the norm voltage values between loading and unloading. These drifts during 

unloading can be attributed to the loss in mechanical structure of the already 

loaded-fabric due to stretch.  

Also, for the 10kHz and 50kHz excitation, the non-linearity exhibited by the real 

image is similar to that of the imaginary image. These frequencies present the 

best complex impedance results. After 50kHz, the non-linearity in the real part 

image increases, with the 250kHz frequency having an indescribable voltage-

mass relationship for both loading and unloading. For the imaginary part images 

at 100 and 250kHz, the bias between loading and unloading reduces and 

resembles that of the real part image obtained at 10 and 50kHz. 

Generally, it was established that the offset of the norm voltage between 

loading and unloading is nearly the same as for the real part images between 

10 and 50kHz, as well as for the imaginary part images between 100 and 

250kHz.  
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Figure 51: Nonlinearity and hysteresis during loading and unloading 
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Figure 52: Reconstructed real and imaginary part images for loading and 

unloading mode 

7.6. Conclusions  

The fabric structure exhibits both resistive and capacitive variations under 

mechanical loading conditions. For the first time images of capacitive changes 

due to pressure change were investigated. The imaginary part of conductivity 

changes becomes more reliable when a higher frequency is applied to the fabric. 

This means that the capacitive components are useful when fabric sensor tests 

are performed at high frequencies. Measured voltages for real and imaginary 

parts are showing hysteresis behaviour, essentially motivating future studies of 

nonlinear electromechanical behaviour of the fabric pressure mapping sensor. It 

is important to see that the results show cases when real or imaginary parts 

may not produce satisfactory results and this is important when evaluating the 

repeatability and reliability of pressure mapping imaging using complex 

impedance tomography. The results of the chapter are promising in terms of 

usefulness of the capacitive component of the complex impedance, in the same 

way as the resistive component. Future studies will focus on spectral 

reconstruction, including direct reconstruction of Cole-Cole parameters and 

frequency difference imaging. Further scientific work is needed to develop 

future applications of the pressure mapping EIT as a low cost alternative for 

pressure mapping imaging. 
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Chapter.8 Frequency difference EIT  

The previous chapter described a detailed study on a multiple frequency 

complex impedance reconstruction applied to a fabric pressure mapping sensor. 

While doing multiple frequency reconstruction helped to acquire useful image 

information of each different system’s operating frequency, it is necessary to do 

extended work to implement an efficient, well-performed frequency difference 

solver in order to do a further analysis on the spectral behaviour of EIT samples. 

This chapter presents a frequency difference EIT (fdEIT) algorithm for possibly 

lung tumour monitoring. A simulated fdEIT is used to provide tomographic 

images of lung tumours by assuming that the local area of the tumour is known. 

Further experimental phantom based tests are carried out to validate the 

proposed method.  

8.1. Methods 

A patient specific model can be developed using diagnostic CT images that can 

locate the tumour position. An FEM model of a 16 electrode EIT human chest 

model is created and a lung image is reconstructed. Figure 53 shows a 

simulation of lung tumour using a human lung mesh model. Reconstructions are 

done using adjacent current patterns. Background data includes thorax and two 

lungs with a tumour in one single frequency; secondary data includes the same 

tumour but assuming a different frequency response. Reconstruction shows 

tumour images under fdEIT and LRT assumptions.  

 

Figure 53: True images of lung tumour and simulation results of reconstructing 

tumour in a human lung structure 
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A reliable simulation of lung tumour monitoring will require both hardware and 

software to have a stable performance. Many experiments relating to the EIT 

imaging technique have been carried out. Based on the literature research, 

biological samples such as banana, carrot and potato are good materials to 

simulate an anomaly in an organ of the human body. Therefore, biological 

samples will be used with saline in this project to simulate a lung tumour 

monitoring study. 

8.2. Choice of biological sample and frequencies 

The selection of a biological sample to act as an anomaly in the phantom is 

based on the conductivity spectra with respect to the input frequency. 

 

Figure 54: Conductivity spectra with respect to frequency of saline, banana, 

carrot and potato 

From Figure 54, it can be seen that the conductivity of saline does not change 

at all within the frequency range 1kHz to 500kHz. Concerning banana, it has a 

relatively low conductivity at low frequency compared to saline. When the 

frequency increases, the conductivity of banana gradually increases and it 

reaches the same conductivity level as saline at 10kHz frequency and carrot at 

around 30kHz frequency. It has the highest conductivity at high frequency 

compared with the other samples in the conductivity spectra.   
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Looking at the potato, it has the lowest conductivity at low frequency. When the 

frequency increases, the conductivity of potato would also increase. It has a 

sharp conductivity difference in the frequency range 10kHz to 100kHz. 

The mixture of saline and carrot behaves the same as saline at frequencies less 

than 100kHz. Then the conductivity of the mixture gradually increases after 

100kHz.  

Considering the frequency-difference EIT performance, potato and banana 

should be the best to act as an anomaly in the phantom. This is because both 

potato and banana have an apparent increment of conductivity when the 

frequency increases. It also means that the two biological samples have a 

frequency-dependent change in conductivity, which is known as frequency 

response. For the conductive region, saline is chosen as the conductivity 

medium in the phantom. The reason for this is that saline requires a very high 

frequency to have an effect on its conductivity. Therefore, when performing an 

fdEIT imaging technique, the measurement of voltage data at different 

frequencies would only affect the conductivity of the anomaly sample, not the 

saline background. Saline would be used as the conductivity background in the 

phantom. All three types of biological sample from the selection would be tested 

as an anomaly at frequencies of 1, 10 and 50kHz. Despite the fact that at 

100kHz frequencies onwards the conductivity difference appeared to be much 

greater, according to Figure 54, the 100kHz frequency script has been tested 

numerous times and the boundary data appears to be fuzzy and unstable. 

Therefore, 50kHz is used instead of 100kHz to perform fdEIT imaging. 

8.3. Experimental results 

In this section, numerous experimental results are obtained and analysed. In 

each part of the experiment a different sample is used to simulate an anomaly 

in the reconstructed image in the phantom study. 

The setup, methodology and instruments used in the following experiments are 

explained in detailed in the hardware chapter of the thesis.  
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All of the experimental results regarding an EIT image reconstruction are 

recorded from a laboratory based phantom filled with saline as a conductive 

medium. 

8.3.1. FdEIT image reconstruction of single sample 

The first test is to evaluate the performance of this fdEIT programme on a 

simple large sample and determine the most convincing range of frequencies to 

acquire the best fdEIT image reconstruction. Results are shown in Figure 55. 

Position of sample 

Frequency 

difference 

(kHz) 

FdEIT image 

reconstruction 

 

A potato in the centre 

1-10 

 

1-50 
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A potato by one side 

1-10 

 

1-50 

 

 

 

A potato by one side 

1-10 

 

1-50 
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A carrot by one side 

1-10 

 

1-50 

 

 

A banana cross the phantom 

1-10 

 

1-50 

 

Figure 55: Simple fdEIT image reconstruction of a single sample 
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By comparing the results of frequency difference at 1 and 10kHz with 1 and 

50kHz, a distinct difference can be clearly seen in the banana test. With a 

frequency difference at 1 and 50 kHz, the anomaly was reconstructed in the 

shape of a banana; whereas at 1 and 10kHz frequency difference the 

reconstructed images have a less dense anomaly simulated by a banana. It 

also shows less error due to the background noise of saline at 1 and 50kHz 

frequency difference. 

8.3.2. Multiple samples reconstruction 

The second experiment shows the image reconstruction of two biological 

samples placed in the phantom. The two biological samples tested are either of 

the same type, or a different type, and both situations are demonstrated in this 

section. 

Position of sample 
Frequency 

difference (kHz) 
FdEIT image reconstruction 

 

Two carrots by sides 

1-10 

 

1-50 
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Carrot and potato laid 

down 

1-10 

 

1-50 

 

 

Carrot and potato by sides 

1-10 

 

1-50 
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Banana on top of potato 

1-10 

 

1-50 

 

Figure 56: FdEIT image reconstruction of multiple samples 

For the two carrots case, the reconstructed images have shown both samples 

correctly. However, there appears to be a significant conductivity contrast 

between the carrot and potato pair. It can be seen that regardless of the volume 

contact of the carrot with saline (no matter whether the carrot is standing or laid 

down in the phantom), the fdEIT image reconstruction could barely show the 

anomaly represented by a carrot when a potato is in place. The reason for this 

is due to the conductivity difference of potato and carrot, in which a potato has a 

higher frequency response than the carrot.  

8.3.3. Distinguish low conductivity object using static imaging 

In this section a set of tests is carried out to show images in a prior knowledge 

time difference EIT method. The same biological samples are used as in fdEIT 

images. 

The aim of the tests is to show the small carrot sample placed near the potato. 

Assuming prior knowledge on the background data exists, data are acquired, 

one with and the other without carrot in one frequency domain. The boundary 
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data include: voltage measurements from a single potato and voltage 

measurements from a potato and a carrot. 

Data acquisition (position of 

sample) 

FdEIT image reconstruction 

using 1kHz and 10kHz 

 
 

Figure 56: FdEIT image reconstruction with a piece of carrot and a potato 

together 

As seen from Figure 56, if only frequency difference reconstruction between 1 

and 10kHz is done in this situation, the reconstruction area of potato would 

completely take over the reconstruction image of carrot. It failed to provide 

information for the position of carrot and this may due to the high conductivity 

contrast and large size difference between two objects. Figure 57 is a difference 

imaging method using two data, one with and one without the carrot piece.  

Data acquisition (position of 

sample) 

Image reconstruction( carrot 

only) 
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Figure 57: Reconstruction of a small piece of carrot from a high conductivity 

contrast background 

Figure 57 shows how the background and inclusion data are collected and the 

final reconstruction image of carrot. 

The static imaging technique performs well in this case to provide correct 

information of the carrot. Localization shows perfectly an image of the carrot 

within the chosen area. Localization can act as a computational improvement in 

reducing the pixel size during the reconstruction. 

As a result, with the data subtraction method from prior knowledge, a specific 

conductivity object could always be distinguished from another high conductivity 

background. 

8.4. Conclusions  

This chapter proposes a frequency difference EIT technique for imaging of 

objects for which time difference may not work. Detailed phantom based 

experimental results are presented. This is a challenging imaging task, and it is 

hoped that it will take advantage of recent momentum in conventional EIT lung 

imaging in order to make progress.  
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Chapter.9 Conclusion and future 

works 

9.1. Conclusion 

Electrical impedance tomography is a low-cost, portable and harmless medical 

imaging method. Being able to image the biological tissues and lesions of the 

body, this emerging technique has a broad application in the clinical area. 

Based on the fact that in the living body different tissues under different 

circumstances will present different conductivities, current is injected and 

voltages are measured to reconstruct the interior conductivity distribution. There 

are hundreds of people all over the world studying and trying to improve this 

technique in order to improve human life.  

This thesis has provided a detailed explanation of the research into electrical 

impedance tomography, and has shown a list of achievements including 

hardware design and software development.  

In EIT, the sensitivity of the measurements to conductivity changes far from the 

relevant electrodes is small. The values from the sensitivity map would appear 

to be very small or zero. When the EIT system has large number of electrodes, 

a large number of measurements and pixels would be included in the 

calculation. As a result of increasing the density of the sensitivity distribution, 

the problem might become similar to a CT problem, which would potentially 

increase the image quality. Limitations appear to the traditional back projection 

reconstruction algorithm when facing a large scale 3D EIT problem, as a great 

deal of information needs to be stored and calculation of the Jacobian matrix 

becomes unfeasible. In Chapter 4, a new reconstruction technique combining 

the Block-wise conjugate gradient method and sparse matrix simplification is 

developed to overcome these problems. The new combination reconstruction 

technique has significant advantages in computational time compared with large 

scale EIT reconstruction, without significantly decreasing the image quality. 
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The sparse matrix reduction technique has also shown great potential in the 

solving of the subsurface EIT imaging problem, as there would be a large 

number of low sensitivity values far away from the surface area. A subsurface 

EIT study has been made in Chapter 5 by constructing a plane array EIT sensor 

and carrying out a series of experimental validations. Simulation has shown 

promising results while experiments have given satisfactory images. This study 

will provide valuable information for people who are keen to investigate 

subsurface imaging in clinical applications. 

EIT-based fabric pressure mapping has become a popular area of EIT study in 

recent years with various potential applications in mind. It can provide major 

improvements in cost and operation complexity for clinical facilities as the 

technology is very cheap and simple. Previous fabric pressure mapping sensor 

studies have shown a range of promising experimental results for different 

sensor structures. Most EIT experiments measure the resistivity information of 

the object, as the capacitive component is used in fewer applications. The 

resistive component can only provide information on the behaviour of the yarn. 

When the fabric patch has been stretched, the air gaps between yarns will 

change shape and this will be the capacitive information. If both resistance and 

capacitance are obtained, the reconstruction image of the fabric might become 

more accurate and reliable. By making a complex conductivity reconstruction 

one can obtain real and imaginary data for conductivity, where the permittivity 

change is mainly indicated by the imaginary part of voltage measurement and is 

highly related to the capacitive changes in the material. New experiments have 

been done to indicate the useful information provided by the imaginary part of 

the conductivity. The imaginary part of conductivity changes becomes more 

reliable when a higher frequency is applied to the fabric. This means that the 

capacitive components are useful when fabric sensor tests are performed at 

high frequencies. The multiple frequency complex reconstruction research gives 

a promising result in terms of usefulness of the capacitive component of the 

complex impedance, in the same way as the resistive component. 

Because the fabric conductivity changes due to frequency selection, there is 

motivation to create a frequency difference EIT method to analyse the 

relationship between frequency and conductivity. Chapter 7 is a comprehensive 
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section that explained frequency difference EIT and showed the performance of 

whole range of biological sample tests. By making a reconstruction with prior 

knowledge of background, an object with specific frequency response can be 

located and monitored inside a chosen region of interest.  

Overall the thesis has made a contribution to designing and fabricating different 

EIT sensors, as well as showing a new developed EIT programme for large 

scale EIT problems. It also provides results and analysis of many potential EIT 

applications, such as planar array EIT and a fabric pressure mapping sensor. 

Various experimental researches are done to evaluate the algorithm 

performance and provide valuable information before proceeding to the actual 

clinical applications. With these achievements and knowledge learned, they are 

expected to make a contribution to current EIT research and provide a 

foundation for the upcoming challenges.  

9.2. Future work 

Enhancing computational improvements of EIT is vital in future EIT studies as 

the complexity of EIT for hardware and software development is increasing. For 

example, all of the following will increase the demand of personal computer 

memory: a large amount of data collection, a more accurate and denser mesh 

requirement, and non-linear image reconstruction. Sparse matrix reduction and 

a block-wise parallel reconstruction technique can be further modified and 

applied to solve other large scale EIT problems in many circumstances. Parallel 

reconstruction can be upgraded, not only for CPU usage but also GPU usage, 

which will further enhance the performance of generating meshing and images. 

A planar array system is treated as an emerging measuring platform, which has 

multiple uses in clinical areas. This thesis has studied the fundamentals of 

planar array EIT and validated the basic sensor performance. Future work will 

include specific sensor model development, such as a planar array sensor for 

skin cancer detection, and improving algorithms. With future success in more 

clinical tests, this technique will make great contributions to long-term disease 

observation and cancer detection, like the bladder filling examination [38], 

breast tumour screening and skin cancer detection. 
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At the current stage of the fabric EIT sensor, only the simplest mathematical 

model is considered and is assumed to be a linear problem between change in 

voltage measurement and conductivity. However, the structure of fabric material 

is complex, and thinking of reconstructing images due to pressure, it is required 

to calculate and linearise the problem more precisely and in more detail. If a 

more accurate model can be created in the future, the reconstructed image is 

expected to be of much better quality. While useful information from the 

imaginary part of data is successfully extracted in the fabric based sensor 

research, it is believed that this can help to obtain and better analyse a 

reconstruction image by doing complex conductivity reconstruction. Frequency 

difference EIT can be applied to fabric sensors in a future study, and new fabric 

materials, such as nanoweb fabric [30], are also interesting discoveries. There 

will also be interest in fabric behaviour in a dynamic situation.  

Frequency difference EIT is becoming a popular solution for non-static EIT 

imaging. In this thesis, fdEIT is tested and proposed to solve clinical EIT 

problems such as lung tumour detection. There are many other potential 

applications for which fdEIT can be implemented. In process tomography, there 

are biological sample applications for which fdEIT can be taken as a solution. 

The immediate application area would be the food industry. 
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