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Abstract

We study the gradient flow model of the Landau-de Gennes energy functional for nematic liquid

crystals at the isotropic-nematic transition temperature on prototype geometries. We focus on the

three-dimensional droplet, the disc and the square with Dirichlet boundary conditions and different

types of initial conditions, with the aim of observing interesting transient dynamics which may be of

practical relevance. We use a fourth-order Landau-de Gennes bulk potential which admits isotropic

and uniaxial minima at the transition temperature. For a droplet with radial boundary conditions,

a large class of physically relevant initial conditions generate dynamic solutions with a well-defined

isotropic-nematic front which propagates according to mean curvature for significant times. We

introduce radially symmetric obstacles into the droplet and prove the existence of pulsating wave

solutions of the gradient flow model in certain parameter regimes. The average velocity of the

pulsating wave is determined by some critical forcing which can be verified numerically. On the

unit disc, we make a distinction between planar and non-planar initial conditions and minimal and

non-minimal Dirichlet boundary conditions. Planar initial conditions generate solutions with an

isotropic core for all times whereas non-planar initial conditions generate solutions that escape into

the third dimension. Non-minimal boundary conditions result in solutions with boundary layers.

These solutions can have either a largely nematic interior profile or a largely isotropic interior profile,

depending on the initial conditions. On the square, we provide an analytic description of the Well

Order Reconstruction solution first reported numerically by Kralj and Majumdar in 2014. We

interpret the Well Order Reconstruction solution as a critical point of a related scalar variational

problem and prove that the solution is globally stable on small domains. We use the gradient

flow model of the Landau-de Gennes energy to numerically study the emergence of new solution

branches from the Well Order Reconstruction solution. We conclude this thesis by studying a triple

phase Landau-de Gennes model with a sixth-order bulk potential which admits isotropic, uniaxial

and biaxial minima at a special temperature known as the triple point temperature. For some

model problems, we can use asymptotic methods to prove that isotropic-uniaxial, uniaxial-biaxial

and isotropic-biaxial fronts propagate according to mean curvature and to prove an angle condition

that holds when the fronts intersect at a triple junction. We corroborate our formal calculations

with a numerical investigation of the full Landau-de Gennes gradient flow system.
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CHAPTER 1

Introduction to liquid crystals

We begin with an introduction to liquid crystals, reviewing the molecular structure and history of

this intriguing phase of matter. We discuss the nematic liquid crystal phase in detail and outline

the particular aspects to be studied in this thesis. This chapter finishes with an overview of further

liquid crystal phases and applications.

1.1 The liquid crystal phase

Liquid crystals are an intermediate phase of matter between the conventional solid and liquid

phases. The liquid phase is isotropic with randomly diffusing molecules and the solid phase is

anisotropic with highly ordered molecules. Liquid crystals are anisotropic materials in which

the molecules have a combination of orientational and positional order with positional ordering

imposed in at most two dimensions [31]. Orientational ordering is the result of attractive forces

between rod- or disc-shaped molecules which are stronger when the molecules are aligned. The

molecular order in liquid crystals leads to the formation of fascinating textures, see Figure 1-1 [26].

Liquid crystals were first discovered in 1888 by Friedrich Reinitzer whilst extracting cholesterol

compounds from carrots. It seemed to Reinitzer that cholesteryl benzoate had two melting points;

melting from a solid to a cloudy liquid and then from a cloudy to clear liquid. Reinitzer consulted

physicist Otto Lehmann who began his own study of these materials, first investigating the cloudy
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Chapter 1. Introduction to liquid crystals

phase of cholesteryl benzoate and then similar compounds. Lehmann described these phases as

flowing crystals but in 1900 they became known as liquid crystals. In 1907 Daniel Vorländer

attributed the characteristics of this phase to rod-shaped molecules. This enabled the synthesis of

hundreds of liquid crystal compounds and the discovery that a material may transition through

many liquid crystal phases. In 1922 Georges Friedel classified these liquid crystal phases based

on their molecular order into three phases; nematic, smectic and cholesteric [106, 37]. We will

discuss each of these phases later in this chapter.

Since 1888, thousands of materials have been found to exhibit a liquid crystalline phase and liquid

crystals have been the subject of much research, both analytical and experimental. Liquid crystals

in confinement are an exciting source of challenges for mathematicians and practical scientists

alike and the mathematical analysis of liquid crystal phenomena plays a key role in the next

generation of experiments and future applications.

Figure 1-1: Microphotographs of liquid crystal samples [83].

1.2 The nematic liquid crystal phase

A material may go through several liquid crystal phases as it transitions between the solid and

liquid states. The molecules in each phase have different positional and orientational order. The

simplest of these liquid crystal phases is the nematic phase. In the nematic phase the molecules

have orientational order only and align along preferred directions as they diffuse. These special

directions are known as directors. Uniaxial nematic liquid crystals have a single distinguished

direction as illustrated in Figure 1-2. This anisotropy leads to birefringence where light propagation

through a material depends on the direction and polarisation of the light. The molecules in

the uniaxial phase are generally rod-shaped and of roughly 2nm in length and 0.5nm in width.

Alternatively in the biaxial nematic phase there are two special directions of molecular alignment.

In this case the molecules are often cuboid-shaped, this allows for the second axis of reflective

symmetry necessary for two directors [31].
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Chapter 1. Introduction to liquid crystals

(a) (b) (c) (d)

Figure 1-2: The molecules of a material in a) the solid phase, b) the uniaxial nematic phase with
high orientational order, c) the uniaxial nematic phase with low orientational order and d) the
isotropic phase.

1.2.1 Phase transitions

Phase transitions between isotropic and nematic phases occur due to changes in environment. In

thermotropic liquid crystals phase transitions are induced by temperature change and in a lyotropic

liquid crystal, by concentration change [22]. In thermotropic materials, the molecules become

more ordered as temperature decreases, inducing the transition between isotropic and nematic

phases. This is illustrated in Figure 1-3 where bright droplets of nematic liquid crystal invade the

dark isotropic phase as temperature is decreased. The random isotropic phase is energetically

preferable in higher temperatures but as the temperature falls, the ordered nematic phase becomes

favourable. The boundary of the droplets, distinguished by a fast change in nematic order, expands

accordingly as the temperature decreases.

Figure 1-3: An isotropic to nematic phase transition occurs as temperature decreases [111].

1.2.2 Defects

The anisotropy of nematic liquid crystals leads to the formation of fascinating patterns and textures

as seen in Figure 1-4. These patterns are somewhat caused by defects which occur where there is

a rapid change in the director profile [38]. In a nematic liquid crystal sample these defects can

occur at a point or along a line. Two point defects are seen in the first photo of Figure 1-4 and

line defects are illustrated in the second.
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Chapter 1. Introduction to liquid crystals

Figure 1-4: Microphotographs of liquid crystal samples [83].

Some examples of the molecular arrangements in points defects are shown in Figure 1-5. The

strength of a point defect is labelled by the winding number m and given by the number of

anticlockwise rotations of the director in traversing an anticlockwise path [98]. In particular, the

first defect in Figure 1-5 is known as the Radial Hedgehog defect and has winding number +1.

This is a three-dimensional point defect which occurs in spherical droplets filled with nematic

liquid crystal. The Radial Hedgehog has perfect radial symmetry with radial nematic alignment

and an isolated isotropic point at the centre which corresponds to the point defect [80].

Figure 1-5: Example director profiles which result in point defects [48, 27].

1.2.3 Nematodynamics

The dynamics of nematic liquid crystals in confinement are known as nematodynamics. Often

a macroscopic approach is employed to model nematodynamics with a system of three coupled

equations. This system comprises a continuity equation and an equation for the time evolution of

the fluid velocity, as would be seen in a model for an isotropic liquid. However, a third equation is

required for the time evolution of the director field. Nematic flows are typically more complex

than those of ordinary fluids due to this coupling of the velocity and director fields [31, 101].

1.3 Other liquid crystal phases

Many different liquid crystal phases may be observed as a material transitions between different

states. Here we briefly discuss some of the common liquid crystal phases. In a smectic liquid
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Chapter 1. Introduction to liquid crystals

crystal the molecules are arranged in layers. In the smectic A phase the preferred direction of

molecular alignment is perpendicular to the layers but in the smectic C phase the molecules align

at some angle to the layers [88].

Figure 1-6: Molecular arrangement in smectic A (left) and smectic C (right) phases.

In the cholesteric liquid crystal phase the molecules form a helical structure. As depicted in

Figure 1-7, the molecules are positioned in layers of nematic liquid crystal with the preferred

direction of molecular alignment rotating through the levels. This twisting is described by the

pitch, the distance over which the director rotates by 2π [59]. The molecular order displayed in

the cholesteric phase is achieved by dissolving a chiral compound in a nematic liquid crystal [31].

Figure 1-7: Molecular arrangement in a cholesteric liquid crystal.

The blue liquid crystal phase has been detected during the cholesteric to isotropic phase transition

as temperature is increased. A cubic molecular structure forms as this phase transition occurs.

This phase typically has limited stability and is only observed for very small temperature regimes

[77, 25]. A microphotograph of the blue phase is shown in Figure 1-8.

Figure 1-8: Microphotograph of a blue phase liquid crystal [83].

9



Chapter 1. Introduction to liquid crystals

1.4 Applications of nematic liquid crystals

Nematic liquid crystals have unique optical properties and hence have numerous and diverse appli-

cations. These include technological applications, most famously in Liquid Crystal Displays. These

displays have a key property; the display supports two contrasting states which one can switch

between. Typically, the surfaces of pixels are treated so that the molecules can be manipulated

into two different arrangements with contrasting optical properties [107]. One specific example of

a Liquid Crystal Display is the Twisted Nematic Display. This display became very popular in the

1970s in small devices such as watches and calculators due to its low power consumption [32].

The display consists of a layer of nematic liquid crystal sandwiched between two plates which are

treated in order to induce a fixed molecular orientation in the plane of the plates. The preferred

directions on the top and bottom plates are orthogonal. In the absence of an electric field, the

molecules twist uniformly between the plates. This twisted state is transparent to incident light.

When a voltage is applied, the molecules align with the field and block incident light, resulting in

an opaque state [52, 37].

One disadvantage of the Twisted Nematic Display is that a voltage is required to maintain the

dark state. A bistable display is such that both optically contrasting states can be maintained with

no applied voltage and power is only required for switching between the states. This means that a

bistable display requires less power than a Twisted Nematic Display and also has much shorter

switching times between states [37]. Several bistable devices have been developed using nematic

liquid crystals but many use cholesteric and smectic phases as well. The most popular nematic

bistable device is the Zenithal Bistable Display which consists of nematic liquid crystal between

a flat top plate and a bottom plate with a wedge-shaped grating. This display supports two

stable states; a defect-free state and a state which contains defects near the bottom plate. The

curvature of the wedges on the bottom plate is chosen to ensure the stability of both states [69, 57].

There are numerous other applications. For example, many of the optical properties of a liquid

crystal are temperature dependent. This means that liquid crystalline materials can change colour

as temperature varies. Naturally such materials have been used in rough thermometers where

the temperature is read using a colour key. Further, this has allowed liquid crystals to be used in

medical applications to detect small changes in temperature such as during a caesarean or a skin

graft [78].
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CHAPTER 2

Preliminary material and review

In Chapter 2 we discuss the mathematical modelling of nematic liquid crystals and introduce the

particular variational theory and gradient flow model studied throughout this thesis. We review

relevant front propagation and phase field theory and give an example of a model problem. We

then discuss the numerical methods employed to complement the analysis in each chapter. This

chapter is concluded with a thesis overview and literature review.

2.1 Mathematical modelling of nematic liquid crystals

Nematic liquid crystals can be mathematically modelled using macroscopic approaches such as

mean field or variational theories. In mean field theories, the nematic sample is described using a

probability distribution for molecular orientations on the unit ball. The mean of this distribution

gives the preferred direction of molecular alignment and a standard deviation-type measurement

gives the degree of orientational order [82]. In this thesis we focus on variational theories where

equilibrium configurations of a liquid crystal sample in a domain Ω correspond to critical points

of a given energy functional subject to appropriate boundary conditions. There are three main

variational approaches in the theory of nematic liquid crystals.

The simplest, the Oseen-Frank theory, is used in the context of uniaxial nematic liquid crystals.

In the uniaxial liquid crystal phase there is a unique preferred direction at each point in space,
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Chapter 2. Preliminary material and review

known as the director n. The Oseen-Frank theory assumes constant degree of orientational order

[109] and is given by

IOF [n] =

∫
Ω

L1(∇ · n) + L2(n · (∇× n))2 + L3(n× (∇× n))2 dV .

As shown above, the integrand of the Oseen-Frank energy has three components corresponding

to penalizing the splaying, twisting and bending of molecules respectively. For the one-constant

approximation it is assumed that L1 = L2 = L3 = L. We take L = 1 and so the one-constant

approximation of the Oseen-Frank energy is given by

IOF [n] =

∫
Ω

|∇n|2 dV .

Subject to suitable boundary conditions, minimizers of the one-constant approximation IOF (n) are

examples of harmonic maps [12, 76]. The Oseen-Frank theory is restricted as the assumption of a

constant degree of orientational order allows only for point defects but not line or surface defects

[68, 76].

The more general Ericksen theory is also used to describe uniaxial nematic liquid crystals but

allows for varying orientational order which is described by an order parameter s [39]. The Ericksen

energy functional is given by

IE [n, s] =

∫
Ω

s2|∇n|2 + k |∇s|2 + W0(s) dV ,

where k is an elastic constant and W0 is a bulk potential. The order parameter s is zero where n

has a singularity which allows this variational theory to account for all defects [4, 67, 76].

This thesis focuses on the Landau-de Gennes theory, the most general continuum theory for

nematic liquid crystals. As well as uniaxial nematic liquid crystals, the Landau-de Gennes theory

also accounts for the biaxial nematic liquid crystal phase [76]. At each point in this phase the

molecules can have two preferred directions of alignment and hence two directors [54]. As a

result there are two axes of symmetry in the molecular alignment, as opposed to the unique axis

of symmetry seen in the uniaxial phase. Within the Landau-de Gennes framework, a Q-tensor

parameter is used to describe the state of the liquid crystal. The parameter Q is a symmetric,
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Chapter 2. Preliminary material and review

traceless, 3× 3 matrix [82], so that Q ∈ S0 where

S0 :=
{

Q ∈ R3×3 : Qij = Qji ,
∑

Qii = 0
}

.

A Q-tensor is said to be

• isotropic if Q = 0.

• uniaxial if Q has a pair of degenerate non-zero eigenvalues.

• biaxial if Q has three distinct eigenvalues [31, 82].

Any matrix Q ∈ S0 can be written in the form

Q = s

(
n⊗ n− I

3

)
+ r

(
m⊗m− I

3

)
,

where n and m are unit eigenvectors of Q. In particular, a uniaxial Q-tensor can be written as

Q = s

(
n⊗ n− I

3

)
, (2.1)

where n is the unit eigenvector of Q with non-degenerate eigenvalue [76]. The eigenvectors of Q

correspond to the directors of the nematic sample. The scalar order parameters s and r give the

degree of alignment with respect to the relevant director. In general, boundary behaviour is dictated

by enforcing Dirichlet boundary conditions. This is known as strong anchoring. Alternatively, we

can work with the more physically realistic weak anchoring and impose a given surface energy [106].

With no surface energies or external fields, the most general Landau-De Gennes energy functional

is of the form

ILG [Q] =

∫
Ω

ω(Q,∇Q) + fB(Q) dV , (2.2)

where ω(Q,∇Q) represents an elastic energy penalty which penalises spatial inhomogeneities [76].

The simplest case is a one-constant elastic energy density, as described above for the Oseen-Frank

energy. This is given by

ω =
L

2
|∇Q|2 where |∇Q|2 =

3∑
i ,j ,k=1

(
∂Qij

∂xk

)2

.
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Chapter 2. Preliminary material and review

The bulk energy density fB(Q) is a potential function which accounts for the preferred state of the

material. We choose fB(Q) to allow for multiple local minima and a first-order transition between

isotropic and nematic states [61, 76]. The simplest appropriate function is a quartic polynomial in

Q, hence we let

fB(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
, (2.3)

where

trQ2 =
3∑

i ,j=1

QijQji and trQ3 =
3∑

i ,j ,k=1

QijQjkQki .

The constants A, B , C and L are material and temperature dependent constants. In practice it

is assumed only the dependence of A on temperature is important, with the linear relationship

A = A0(T − T ∗) where A0 is a positive constant and T ∗ is the supercooling temperature below

which the isotropic state is unstable [22].

2.1.1 The gradient flow model

We study the dynamics predicted by the gradient flow model associated with the Landau-de

Gennes energy. Gradient flows are evolution equations driven by a decreasing energy [87] and the

gradient flow model used here describes the Landau-de Gennes energy with the L2-norm as the

dissipation mechanism. These relaxation principles dictate that, for a given initial condition, the

system should evolve to a nearby equilibrium or local minimizer of the Landau-de Gennes energy.

The gradient flow model is often used in the context of nematic liquid crystals dynamics [90, 91]

and is believed to be a good approximation to these dynamics at a constant temperature without

any fluid flow. The dynamic equations of the gradient flow system associated with the Landau-de

Gennes energy are given by

γQt = L∇2Q− AQ + B

(
QQ− I

3
|Q|2

)
− C |Q|2Q, (2.4)

where γ is a positive rotational viscosity and QQ = QipQpj for i , j , p = 1, 2, 3 [70]. The right-hand

side of this equation is given by the right-hand side of the relevant Euler-Lagrange equations:

0 = LQij ,kk −
∂fB(Q)

∂Qij
+

1

3

∂fB(Q)

∂Qkk
δij for i , j , k = 1, 2, 3. (2.5)

These equations include a Lagrange multiplier which accounts for the traceless condition [71].

14
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Let R be the characteristic size of the domain. We work in the limit of vanishing elastic constant

which describes domains with length scales much larger than the nematic correlation length

ξ ∝
√

LC/B2. We non-dimensionalize the system (2.4) by setting t̄ = tL
γR2 , x̄ = x

R
to yield

Qt̄ = ∇2
Q− 1

L̃

[
AQ− B

(
QQ− I

3
|Q|2

)
+ C |Q|2Q

]
, (2.6)

where ∇2
denotes the Laplacian with respect to the rescaled coordinate x̄ and L̃ = L

R2 Nm−2. We

now drop the tilde from L and the bars from the dimensionless variables.

The gradient flow model of the Landau-de Gennes energy is a system of five coupled nonlinear

parabolic partial differential equations for the Q-tensor. We impose a Dirichlet boundary condition

and set Q equal to some Q-tensor Qb on ∂Ω. We can use standard results in the theory of

parabolic partial differential equations to prove that the gradient flow system (2.6) has a unique

solution for physically relevant initial and boundary conditions:

Proposition 2.1. Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. Given a smooth

fixed boundary condition Q(x, t) = Qb(x) on ∂Ω and smooth initial condition Q(x, 0) = Q0(x),

the parabolic system (2.6) has a unique solution Q(x, t) ∈ C∞(Ω) for all t ≥ 0.

Proof. The existence of a solution for the system (2.6) is standard, see [81] for a proof. From [76],

we have that, for suitable initial and boundary conditions, the dynamic solution is bounded with

|Q (r, t)| ≤
√

2
3

B
3C

for all t ≥ 0. The uniqueness result follows from an immediate application

of Gronwall’s inequality to the difference Qd = Q1 − Q2 of two supposed solutions, Q1 and

Q2, subject to the fixed boundary condition and the same initial condition [94]. In particular,

Qd(x, t) = 0 on ∂Ω and Qd(x, 0) = 0 for x ∈ Ω. One can then show that Qd(x, t) = 0 for x ∈ Ω

and for all t ≥ 0.

2.1.2 The isotropic-nematic transition temperature

It is well known that the critical points of the quartic bulk potential fB(Q) are given by either

uniaxial or isotropic Q-tensors:

Proposition 2.2. The stationary points of the bulk energy density fB(Q) are given by Q-tensors

of the form

Q = s

(
n⊗ n − I

3

)
. (2.7)

That is, by either isotropic or uniaxial Q-tensors.
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Proof. Follows as in Majumdar 2010 [71] and Ball 2012 [7]. We can write tr(Qn) =
∑3

i=1 λ
n
i

where λi are the eigenvalues of Q, and hence

fB(Q) = f (λ1,λ2,λ3) =
A

2

2∑
i=1

λ2
i −

B

3

3∑
i=1

λ3
i +

C

4

(
3∑

i=1

λ2
i

)2

− 2δ
3∑

i=1

λi .

The Lagrange multiplier δ is introduced due to the traceless condition. The stationary points of

f (λ1,λ2,λ3) will solve ∂f
∂λi

= 0 for i = 1, 2, 3 or

Aλi − Bλ2
i + C

(
3∑

k=1

λ2
k

)
λi = 2δ for i = 1, 2, 3,

and the traceless condition
∑3

i=1 λi = 0. This system can be written as

(λi − λj)

(
A− B(λi + λj) + C

3∑
k=1

λ2
k

)
= 0 for 1 ≤ i < j ≤ 3. (2.8)

Suppose, for a contradiction, that we have three distinct eigenvalues. Then the system (2.8) yields

A− B(λ1 + λ2) + C
3∑

k=1

λ2
k = 0 and A− B(λ1 + λ3) + C

3∑
k=1

λ2
k = 0,

which simplifies to B(λ2 − λ3) = 0. This contradicts our assumption that all eigenvalues are

distinct. Therefore we have two or three equal eigenvalues and hence a uniaxial or isotropic

Q-tensor.

For Q-tensors of the form (2.7), fB(Q) is a function of the scalar order parameter s with

fB(Q) = fB(s) =
A

3
s2 − 2B

27
s3 +

C

9
s4.

For this bulk energy expression there are three steady states given by solutions of dfB
ds

= 0:

s0 = 0 ,

s+ =
B +
√

B2 − 24AC

4C
,

s− =
B −
√

B2 − 24AC

4C
.
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These steady states define three temperature regimes in terms of A:

• A ≤ 0, where the stable states are s+ and s− with s+ the global minimizer.

• 0 < A ≤ B2

27C
, where the stable states are s+ and 0 with s+ the global minimizer.

• B2

27C
< A ≤ B2

24C
, where the stable states are s+ and 0 with 0 the global minimizer.

Hence, we have three characteristic values of A:

• A = 0, below which the isotropic phase is unstable.

• A = B2

27C
, where the isotropic phase and the stable nematic phase have equal energies.

• A = B2

24C
, above which the nematic equilibria do not exist.

We focus on the special temperature A = B2

27C
, this is known as the isotropic-nematic transition

temperature. At this temperature fB(s) becomes a double welled potential with two equal energy

minima. This is illustrated in Figure 2-1 with a plot of fB(s) for A = B2

27C
.

Figure 2-1: Bulk potential fB(s) for A = B2

27C
, B = 0.64× 104 Nm−2 and C = 0.35× 104 Nm−2

[71].

2.1.3 The Radial Hedgehog defect

As discussed in Chapter 1, the director of a nematic sample need not be smooth everywhere and

the director profile may include point and line defects [31]. A point defect of particular interest

is the Radial Hedgehog defect which occurs in spherical droplets of nematic liquid crystal. The

Radial Hedgehog defect is described by the Q-tensor

H = s(r)

(
r̂ ⊗ r̂ − I

3

)
,
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where r̂ = (cosφ sin θ, sinφ sin θ, cos θ) is the three-dimensional unit radial vector (given in

spherical polar coordinates defined by r 2 = x2 + y 2 + z2, φ = arctan( y
x

) and θ = arccos( z
r
)

where φ ∈ [0, 2π) and θ ∈ [0,π)). The tensor H satisfies the Landau-de Gennes Euler-Lagrange

equations (2.5) provided s(r) is a solution of

L

(
d2s

dr 2
+

2

r

ds

dr
− 6s

r 2

)
− s

3
(2Cs2 − Bs + 3A) = 0. (2.9)

The resulting Q-tensor is an example of an explicit critical point of the Landau-de Gennes energy

functional [73]. The director of this radially symmetric solution is given by the three-dimensional

unit radial vector r̂ with an isolated point defect at the droplet centre [80], as illustrated in Figure

2-2. The point defect corresponds to an isotropic core where the order parameter s is zero.

The scalar order parameter equation (2.9) is shown to have a unique solution which is monotonic in

Majumdar 2012 [73] for large radii, in the limit T → −∞ and in Lamy 2013 [61] for T < T ∗ (the

supercooling temperature below which the isotropic state is unstable). In Henao and Majumdar

2012 [54] the authors show that uniaxial global minimizers of the Landau-de Gennes energy must

be of Radial Hedgehog-type for low temperatures. In Lamy 2015 [63] the author studies the Radial

Hedgehog solution in the Landau-de Gennes framework and imposes radial Dirichlet boundary

conditions on the surface of the sphere. These boundary conditions dictate that Q = s0(r̂⊗ r̂− I
3

)

on r = 1 where s0 is chosen so that this Q-tensor minimizes the bulk potential. In this case, it is

shown that the Radial Hedgehog solution is the unique uniaxial critical point of the Landau-de

Gennes energy on the sphere for all temperatures. The Radial Hedgehog is unstable to symmetry

breaking biaxial perturbations for low temperatures as discussed in Mkaddem and Gartland 2000

[80] and Majumdar 2012 [73]. In Ignat et al 2015 [56] the Radial Hedgehog is shown to be stable

to arbitrary perturbations for temperatures close to the supercooling temperature T ∗.

Figure 2-2: Molecular arrangement in the Radial Hedgehog defect.
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2.2 Front propagation and phase field models

A phase field consists of two or more phases co-existing inside a single domain. These different

states are separated by a sharp interface or front where the material transitions between the

two phases [18]. Both bulk phases are local minimizers of an appropriate energy so the front is

maintained and front motion is driven by the relative stability of the opposing phases. A phase

field model employs an order parameter to describe the appearance and evolution of the front

described above [6]. This order parameter varies quickly and smoothly in the transition region of

the domain and is constant within each region of uniform phase [47]. Reaction diffusion equations

can be used to model phase fields. A standard example of such an equation is

∂s

∂t
= L∇2s + f (s), (2.10)

for small parameter L. The bulk phases are given by the stable steady states. These are the

solutions of f (s) = 0 which are local minimizers of the potential V (s) = −
∫ s

0
f (s) ds. If the

system has two or more stable steady states, a sharp front can separate two regions with s taking

a steady state value in each region and changing rapidly in between. The system will advance to

minimize the potential V (s) and the front will propagate to this end [89].

In the case of nematic liquid crystals, a phase field model is used to describe the interplay between

stable isotropic and nematic states within the Landau-de Gennes framework. We are interested

in the propagation of the dividing interface, particularly the longevity of the front and front

propagation velocity. In what follows we present a simple model problem to motivate the rest of

the thesis.

2.2.1 Travelling wave solutions in one-dimension

In one-dimension the reaction diffusion equation (2.10) simplifies to

∂s

∂t
= L

∂2s

∂x2
+ f (s),

and we assume that f (s) admits at least two stable steady states. In one-dimension, a steady

state s∗ is stable if f ′(s∗) < 0 and unstable if f ′(s∗) > 0. Assuming a planar front connects stable

steady states s1 > s2, we can rewrite the reaction diffusion equation in a co-moving frame and in

terms of a single variable ξ = x − ct. The constant c is the speed at which the front propagates

19



Chapter 2. Preliminary material and review

[89]. Together with the appropriate boundary conditions at ξ = ±∞, we have

Ls ′′(ξ) + cs ′(ξ) + f (s) = 0, (2.11)

s → s1 as ξ → ∞, s → s2 as ξ → −∞. (2.12)

A solution of (2.11)-(2.12) exists for a unique value of c . This is because both steady states

correspond to saddle points in the phase plane with exactly one trajectory leaving and entering

each point. The relevant trajectories only coincide for one value of the parameter c . As a front

solution of (2.11) corresponds to a heteroclinic trajectory in the phase plane, we find a solution

for this particular value of c [89]. This is illustrated in Figure 2-3.

Figure 2-3: A phase plane where p = ds
dξ

with no connecting trajectory, left, and a connecting

trajectory, right [89].

2.2.2 A model problem

In the simple case of a uniaxial nematic liquid crystal with constant director and order parameter

s = s(x , t) for Ω := {0 ≤ x ≤ 1}, the Landau-de Gennes energy functional becomes

ILG [s] =

∫ 1

0

L

2

(
∂s

∂x

)2

+
A

3
s2 − 2B

27
s3 +

C

9
s4 dx .

In this case, the gradient flow dynamic equations simplify to

∂s

∂t
= L

∂2s

∂x2
− 2

9
s(2Cs2 − Bs + 3A). (2.13)
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On the change of variables ξ = x − ct, (2.13) becomes

L
d2s

dξ2
+ c

ds

dξ
− 2

9
s(2Cs2 − Bs + 3A) = 0. (2.14)

The appropriate boundary conditions are dependent on the stable steady states of the bulk

potential fB(s) and hence the temperature regime. To find travelling wave solutions for A ≤ 0,

we change to phase plane variables by defining p = ds
dξ

and so (2.14) becomes

Lp
dp

ds
+ cp − 2

9
s(2Cs2 − Bs + 3A) = 0, (2.15)

and impose the boundary conditions p(s+) = p(s−) = 0. Following a standard paradigm, for

example from [89], we suppose p(s) = N(s+ − s)(s − s−) for some constant N . Substitution into

equation (2.15) yields

N =
2

3

√
C

2L
and c = −B

3

√
L

2C
.

We can now find travelling wave solutions of (2.13) by integrating

ds

dξ
=

2

3

√
C

2L
(s+ − s)(s − s−).

Choosing s(0) = 0 gives

s(x , t) = s−s+

1− exp
(

(s+ − s−) 2
3

√
C
2L

(x − ct)
)

s+ − s− exp
(

(s+ − s−) 2
3

√
C
2L

(x − ct)
) .

Following the same method for 0 < A ≤ B2

24C
we find

s(x , t) =
s+s− exp

(
s+(x − ct) 2

3

√
C
2L

)
s+ − s− + s− exp

(
s+(x − ct) 2

3

√
C
2L

) where c =

√
L

2C

(
B

6
−
√

B2 − 24AC

2

)
.

Note that at the isotropic-nematic transition temperature A = B2

27C
, the above expression gives

c = 0. Hence propagation speed is zero and the front is stationary. This would be expected

because the isotropic state and the stable nematic state are equal energy minimizers of the bulk

potential at this temperature and we are working in one-dimension.
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We make note of a well-known result regarding the stability of such travelling waves:

Theorem 2.1. Suppose s(x , t) is a solution of the reaction diffusion equation (2.13) in the

0 < A ≤ B2

24C
regime with an initial condition such that

lim sup
x→−∞

s(x , 0) < s−, lim inf
x→∞

s(x , 0) > s−, 0 ≤ s(x , 0) ≤ s+.

Then there exists z0, K and ω, with K, ω > 0, such that

|s(x , t)− S(x − ct − z0)| < K exp(−ωt),

where S(x,t) is a travelling wave solution of (2.13).

Proof. The proof is standard and can be adapted from [44]. The first step is to prove the uniform

convergence of s(x , t)→ S(x − ct − z0) as t →∞. To finish the proof, convergence is shown to

occur at an exponential rate.

2.3 Numerical methods

Throughout this thesis, our formal analysis is complemented by numerical investigations. We solve

the full gradient flow system associated with the Landau-de Gennes energy functional in (2.6),

imposing Dirichlet boundary conditions, on various domains.

We use finite difference schemes to estimate the spatial derivatives in the Laplacian. Our domain

is embedded into either the square [−1, 1]2 for two-dimensional domains or the cube [−1, 1]3 for

three-dimensional domains which are discretised with the following grids. Most often, we use a

finite difference scheme on a square grid with step size h, as illustrated in the left diagram of

Figure 2-4, and a four-point Laplacian with

∇2uj ,k ≈
uE + uN + uW + uS − 4uj ,k

h2
.

Here uj ,k estimates the value of u(−1 + jh,−1 + kh). This scheme is extended to the three-

dimensional case in the intuitive way. In Chapter 6 it is necessary to adopt a hexagonal grid and a

six-point Laplacian, as shown in the right diagram of Figure 2-4. Here

∇2uj ,k ≈
2

3

uN + uNE + uSE + uS + uSW + uNW − 6uj ,k

h2
,
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for h and uj ,k as before [42].

Figure 2-4: A square finite difference grid (left) and a hexagonal finite difference grid (right) [42].

These cartesian grids are utilised even when working on spherical domains as they allow us to avoid

both the singularity at the origin associated with polar coordinates and the additional stability

constraints imposed by the necessity of grid refinement at the origin. Once the spatial domain is

discretised, we solve the equations in (2.6) by the method of lines [66]. That is, the system of

partial differential equations is recast as a system of ordinary differential equations of the form

dy

dt
= f (t, y), y(t0) = y0, (2.16)

where y represents all the grid values of the solution.

To accomplish time stepping in our numerical simulations we use the standard RK4 Runge-Kutta

method [23]. Runge-Kutta methods are used to numerically solve ordinary differential equations

of the form (2.16). Each step is of the form

yi+1 = yi + (a1k1 + a2k2 + ... + ankn)∆t, (2.17)

for step size ∆t, constant a’s, p’s and q’s and

k1 = f (ti , yi),

kj = f (ti + pj−1∆t, yi + qj−1,1k1∆t + ... + qn−1,n−1kn−1∆t) for j > 1.

We use a fourth-order Runge-Kutta scheme taking n = 4. The relevant constants (a1 − a4,

p1 − p3 and q11, q21, q22, q31, q32, q33) are found by equating the right-hand side of equation

(2.17) with a Taylor expansion of the left-hand side about ti [23]. The most common fourth-order

Runge-Kutta scheme (RK4) takes q31 = q32 = q21 = 0, q11 = q22 = 1
2
, q33 = 1; p1 = p2 = 1/2
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p3 = 1 and a1 = a4 = 1
6
, a2 = a3 = 1

3
[17]. Therefore our scheme is given by

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4),

where

k1 = f (ti , yi), k2 = f

(
ti +

∆t

2
, yi + k1

∆t

2

)
,

k3 = f

(
ti +

∆t

2
, yi + k2

∆t

2

)
and k4 = f (ti + ∆t, yi + k3∆t).

As RK4 is explicit we must satisfy stability constraints on the time step. In particular we need

that ∆t
h2 < C (where, for RK4 and a diffusive problem with a normal discretisation matrix, C is

approximately 4 [66, 93]). This implies that the errors for the computed solution, O(∆t4) + O(h2),

are dominated by the spatial discretisation and that the overall accuracy is O(h2). The problem is

stiff: the time step needs to be chosen on stability considerations rather than based on accuracy.

Further, given that we focus on the propagation of sharp fronts which typically have characteristic

width O(
√

L), we must choose h�
√

L.

The Dirichlet boundary conditions are implemented at the points of the grid outside a radius of

1− h
2
. This is a simple form of an embedded boundary method, see [65, 19, 24], and is carried

out as follows. We divide the points of the grid into three categories; outer points, inner points

and boundary points. Outer points are in cells of the grid completely outside the unit sphere and

the value of the solution at these points is dictated by the Dirichlet boundary condition. Inner

cells are completely inside the unit sphere and these points evolve according to the numerical

scheme described above. Boundary cells, through which the boundary of the domain passes, are

treated as outer cells and the value of the solution at these points is also dictated by the boundary

conditions. Figure 2-5 provides an illustration of the method described above for the disc.

Figure 2-5: Dirichlet boundary conditions are imposed at the grid points at the centres of the
dark blue cells. The solution evolves in the light blue cells according to our numerical scheme.
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As in [24], we recall that our finite difference numerical scheme induces O(h2) truncation errors in

the interior and note that this boundary method causes O(h) truncation errors on the boundary.

Hence, we find the truncation error τj ,k at (−1 + jh,−1 + kh) is given by

τj ,k =

O(h) if (−1 + jh, −1 + kh) is a boundary point or is adjacent to a boundary point,

O(h2) otherwise.

As the O(h) error is limited to the boundary region, the solution error is still O(h2) in the interior

and overall error is O(h2) in L1 [24].

The methods described above are sufficient for the computations attempted here. For more

accurate or complex problems implicit schemes may be necessary as they do not have such strict

stability restrictions.

2.4 Thesis overview and literature review

Chapter 3 focuses on a nematic filled three-dimensional droplet with Dirichlet radial boundary

conditions in the Landau-de Gennes framework. We work at the isotropic-nematic transition

temperature and with the one-constant elastic energy density in the limit of vanishing elastic

constant. This limit is studied in detail in the context of energy minimizers of the Landau-de

Gennes energy functional. In Majumdar and Zarnescu 2010 [76], the authors show that global

Landau-de Gennes minimizers on suitable three-dimensional domains are well approximated by a

limiting harmonic map away from singularities. This limiting harmonic map is a minimizer of the

bulk potential and hence corresponds to a uniaxial Q-tensor with the director given by a minimizer

of a relevant harmonic map problem.

We adopt the gradient flow model to describe the nematodynamics in the absence of fluid flow

at a constant temperature. Standard theory for parabolic systems shows that there exists a

unique dynamic time-dependent solution for physically relevant initial and boundary conditions.

Gradient flows have often been used in the context of liquid crystal dynamics. For example, in

Popa-Nita and Sluckin 1996 [90] and Popa-Nita, Sluckin and Wheeler 1997 [91] the authors

study a one-dimensional gradient flow model and the effects of biaxiality and elastic anisotropy

in the Landau-de Gennes framework. In Fei et al 2015 [43], the authors study isotropic-nematic

front propagation using the method of matched asymptotic expansions within the more general

Beris-Edwards theory for nematodynamics [102]. In particular, the authors account for fluid flow

and the coupling between fluid flow and nematic order. They derive evolution laws for the velocity
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field, the director field of nematic alignment and the isotropic-nematic front but without any

special attention to the effects of boundary and initial conditions. We work in a simpler dynamical

framework with no fluid flow but with focus on how the dynamics are affected by the choice of

boundary and initial data.

At the isotropic-nematic transition temperature, the Landau-de Gennes bulk potential bears

strong resemblance to the Ginzburg-Landau potential in superconductivity [50]. In our first model

problem we use the concept of normalized energy introduced in Bronsard and Kohn 1991 [13]

and Bronsard and Stoth 1996 [15], to prove that isotropic-nematic interfaces propagate according

to mean curvature in certain model situations. That is, the front moves with normal velocity

equal to the average of its principal curvatures. At each point, the principal curvatures κ1 and κ2

are the maximum and minimum curvatures of the front surface, corresponding to the directions

along which the front surface bends the most and least respectively. The long-time dynamics are

described by an explicit critical point of the Landau-de Gennes energy - the Radial Hedgehog

solution. As introduced in Chapters 1 and 2, the Radial Hedgehog solution is radially symmetric,

with radial nematic alignment and a point defect at the centre corresponding to an isotropic core.

We finish Chapter 3 with some numerical simulations of the full Landau-de Gennes gradient flow

system. We focus on the interplay between initial conditions and transient dynamics followed by

convergence to the static Radial Hedgehog solution using four different representative initial condi-

tions. The transient dynamics have universal features which could have experimental repercussions.

Chapter 4 builds on the results of Chapter 3 with a study of the propagation of isotropic-nematic

fronts in the presence of obstacles in three-dimensional spherical droplets. These obstacles, im-

posed by periodic forcing terms, affect the speed of the front resulting in an outward propagating

space-time periodic pulsating wave solution. Such periodic forcing terms can be used to model

front motion across porous media or through material impurities [35]. These types of forcing

terms are also used to study front propagation over dislocation lines, such as in Kardar 1998 [58]

where the author discusses interface pinning in solids with line defects.

Our problem is inspired by the work in Dirr and Yip 2006 [35] for the Allen-Cahn equation with

unit elastic constant in one-dimension. We adapt the arguments to the case with small elastic

constant on the three-dimensional sphere where forcing terms are dominant over mean curvature

contributions to front propagation. This yields a critical minimal forcing strength required for

pulsating wave solutions and an average front velocity for near critical forcing.

A key concept in [35] is a front motion phenomenon called an avalanche. Avalanches are periods

of very quick front motion. Successive avalanches are separated by times of very slow front motion.
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Avalanche motion is studied in many cases of obstacle driven motion and reaction diffusion

equations. In Fisher 1998 [45] the author discusses avalanche interface motion and pinning and

de-pinning in the presence of random obstacles using mean field theory for various model processes.

In Carpio and Bonilla 2003 [21] alternating fast and slow front motion is observed for discrete

bistable reaction diffusion equations for obstacle strength close to a critical de-pinning forcing.

Chapter 4 is complemented with numerical simulations on a three-dimensional annulus and a

two-dimensional square. We work on the annulus in order to minimize front motion by mean

curvature and to better estimate the critical forcing required for pulsating wave solutions. We work

with a range of initial conditions and compare our numerical results to our analytical predictions.

Next we solve the Landau-de Gennes gradient flow system with forcing terms on the square. We

introduce forcing terms which are periodic in the y -direction and induce front propagation down

the square. We impose Dirichlet boundary conditions on the top and bottom edges. Inspired

by two papers by Xia, Ponson, Ravichandran and Bhattacharya, we investigate the effect of a

moon-shaped obstacle which opposes front motion. In particular, we are interested in how the

orientation of the obstacle with respect to the front affects interface motion. In 2013 [112] the

authors study the adhesion between surfaces and thin films, studying the force required to peel

various thin films away from a given surface. In 2015 [113] a film with a circular arc-shaped

heterogeneity is considered using numerical simulations and experiments. The arc-shaped area of

the film has a higher adhesion to the surface. This is achieved experimentally by creating the

shape on the film using an ink. The authors found that if the film is peeled from the surface

starting from the rounded side of the arc, more peeling force is required to separate the film and

surface than if the film is peeled from the surface starting from the pointed side of the arc. We

make similar observations for certain forcings. First, we orientate the moon-shaped obstacle in the

square so that the long rounded edge will meet the isotropic-nematic front as it travels down the

square. We find the isotropic-nematic front becomes pinned by the obstacle in this case. However,

if the moon-shaped obstacle is rotated by π, so the front meets the two points of the moon first,

the interface is able to pass through.

In Chapter 5 we first consider a two-dimensional disc with Dirichlet boundary conditions subject

to two distinct types of initial condition; planar and non-planar. Planar Q-tensors have zero Q13

and Q23 components and non-planar Q-tensors do not. We prove that planar initial conditions

evolve to planar dynamic solutions which have an isotropic point at the centre of the disc for

all times. These solutions develop an isotropic-nematic front which propagates inwards and is

arrested near the origin. Non-planar initial conditions, including small non-planar perturbations of
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planar initial conditions, converge to a universal non-planar profile. The small-time dynamics are

almost indistinguishable from the planar case, however the front collapses at the origin and the

dynamic solution escapes into an entirely nematic state. We track the transient dynamics and

numerically compute quantitative estimates for the persistence time of the interface.

Our results are largely numerical, complemented by an analysis of a class of radially symmetric

planar critical points of the Landau-de Gennes energy on a disc introduced in Ignat et al 2015

[55] and Fratta et al 2016 [33] for low temperatures. These solutions are labelled by two order

parameters u and v that only depend on the radial distance from the origin. The theoretical

results in this section are a generalization to the isotropic-nematic transition temperature of the

results in [55] and [33]. In these papers the authors use (u, v)-solutions to study the existence

and stability of defects of half-integer degree in the Landau-de Gennes framework.

We use the (u, v)-critical points to construct radially symmetric and non-symmetric initial con-

ditions for the numerical simulations. The different types of initial conditions suggest that the

transient dynamics have universal features independent of the symmetry or uniaxiality/biaxiality

of the initial condition. For example, in all cases we have a well-defined isotropic-nematic front as

a clear feature of the evolution trajectory.

So far, the model problems in Chapter 5 have minimal boundary conditions which are mini-

mizers of the Landau-de Gennes bulk potential. In the last section, we study two-dimensional

and three-dimensional dynamic solutions on a disc with non-minimal boundary conditions. The

two-dimensional case can be easily understood and all dynamic solutions exhibit a rapidly growing

isotropic core with a thin boundary layer. The three-dimensional case is more exciting and the

transient dynamics are sensitive to the initial condition. In particular, the transient dynamics are

dependent on the initial front location, a feature not seen in the model problems with minimal

Dirichlet boundary conditions. For a planar initial condition with an isotropic-nematic front

relatively close to the centre of the disc, the interface propagates inwards and replicates the

planar dynamics observed for minimal boundary conditions. If the planar initial condition has an

isotropic-nematic front close to the boundary of the disc, the interface propagates outwards and

yields an almost entirely isotropic interior. In all cases, we have a boundary layer to match the

fixed non-minimal Dirichlet condition.

In Chapter 6 we construct an Order Reconstruction-type Landau-de Gennes critical point on

a square domain of edge length λ. This critical point is distinguished by a uniaxial cross with

negative scalar order parameter along the square diagonals. This chapter is motivated by the

Well Order Reconstruction solution (WORS) numerically reported in Kralj and Majumdar 2014

28



Chapter 2. Preliminary material and review

[60] for nematic-filled square wells. Nematic-filled square wells have been widely studied in the

literature. For example, in Tsakonas et al 2007 [107], the authors study a planar bistable device

consisting of a periodic array of micron-scale shallow square wells. The surfaces are treated to

induce tangent boundary conditions so that the molecules in contact with the well edges lie in the

plane of the surface. The authors complement their experiments with numerical modelling in the

two-dimensional Landau-de Gennes framework. The authors observe two different static equilibria:

a diagonal state for which the molecules roughly align along one of the square diagonals and

a rotated state for which the molecules roughly rotate by π radians between a pair of opposite

edges. In [60], the authors numerically model this device within the Landau-de Gennes theory.

The authors recover the diagonal and rotated solutions for square dimensions much larger than a

material dependent length scale known as the biaxial correlation length. However, for squares of

edge length comparable to the biaxial correlation length, the authors find a new solution for which

the Q-tensor has a constant set of eigenvectors, one of which is ẑ, the unit vector in the z-direction.

The Well Order Reconstruction solution has a uniaxial diagonal cross along which the Q-tensor

has two equal positive eigenvalues and hence negative scalar order parameter. This uniaxial cross

is surrounded by a ring of maximal biaxiality (where the Q-tensor has a zero eigenvalue) which

matches the uniaxial tangent Dirichlet conditions on the square edges. The WORS is interesting

because it a two-dimensional example of an Order Reconstruction solution on the square. That

is, the Q-tensor mediates between the uniaxial diagonal cross and the uniaxial boundary via an

eigenvalue exchange where the eigenframe is constant and only the eigenvalues change.

Order Reconstruction solutions have a long history in the context of nematic liquid crystals. They

were reported in [100, 80] for uniaxial nematic defect cores where the defect core is surrounded

by a torus of maximal biaxiality. The torus mediates between the uniaxial nematic state at the

defect core and a uniaxial nematic state away from the core. Order Reconstruction solutions

have been studied for hybrid nematic cells, typically consisting of a layer of nematic material

sandwiched between a pair of parallel plates with a preferred boundary orientation on each plate

[86, 10]. In Palffy-Muhoray, Gartland and Kelly 1994 [86], the authors work with orthogonal

preferred boundary orientations. For small cell gaps, the authors find an Order Reconstruction

solution with a constant eigenframe which connects the two opposing boundary alignments through

one-dimensional eigenvalue variations along the normal of the plates. This Order Reconstruction

solution is the only observable solution for cell gaps smaller than a certain critical value. For

larger cell gaps, the authors observe the familiar twisted profiles where the eigenvectors rotate

continuously throughout the cell to match the boundary alignments. The authors numerically

compute a bifurcation diagram and show that the Order Reconstruction solution undergoes a
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supercritical pitchfork bifurcation at a critical cell gap. In Lamy 2014 [62], the author studies

the hybrid cell in a one-dimensional setting in the Landau-de Gennes framework. For a range of

temperatures, the author proves the existence and uniqueness of the Order Reconstruction solution

for small cell gaps as well as a supercritical pitchfork bifurcation as the cell gap increases. In Bisi

et al 2003 [10], the authors consider the hybrid cell problem for non-orthogonal preferred boundary

alignments. Their findings are contrasting to those of [86] and an unstable Order Reconstruction

solution is observed for cell gaps larger than a critical value with the familiar twisted solutions

always being preferred irrespective of cell gap.

We analytically study the two-dimensional Well Order Reconstruction solution on a square of

edge length λ. We impose Dirichlet tangent conditions consistent with the experiments in [107]

and look for Landau-de Gennes critical points which have a constant eigenframe with ẑ as an

eigenvector and a uniaxial cross along the square diagonals. We parametrize these critical points

by three order parameters, q1, q2 and q3. At a fixed temperature, we can prove the existence

of a class of Landau-de Gennes critical points with q2 = 0 and constant q3, with one degree of

freedom labelled by q1, for all values of λ. These critical points have a constant eigenframe by

construction. The uniaxial cross is equivalent to q1 = 0 along the square diagonals and in this

case these critical points mimic the WORS. We interpret q1 as a minimizer of a scalar variational

problem with Dirichlet conditions and prove that the WORS is the unique critical point for small

λ and that the critical point undergoes a supercritical pitchfork bifurcation as λ increases.

This chapter finishes with a numerical study of the gradient flow model of the Landau-de Gennes

energy on a square of edge length λ with Dirichlet boundary conditions and WORS-type initial

conditions. The long-time dynamic solutions converge to the WORS for small λ and we numerically

compute estimates for the critical λ at which the WORS loses stability. The critical λ is proportional

to the biaxial correlation length as predicted from the numerical simulations in [60] where the

authors solve the Landau-de Gennes Euler-Lagrange equations with effectively constant initial

conditions. Next we prove the existence of an Order Reconstruction-type solution on a regular

hexagon of edge length λ. The method of proof is different to that on a square and we require

Palais’s principle of symmetric criticality [85, 62]. Again, we numerically observe the Order

Reconstruction-type solution for small λ and find the critical stability criterion is proportional

to the biaxial correlation length. This suggests that Order Reconstruction-type solutions may

be generic for some regular convex polygons, raising interesting questions about the geometry,

symmetry and multiplicity of Landau-de Gennes equilibria.
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In Chapter 7 we consider a sixth-order Landau-de Gennes bulk potential which can admit biaxial

minimizers in contrast to the fourth-order bulk potential which can only admit isotropic and

uniaxial critical points. The biaxial phase, in which the molecules align with respect to two

directors, has been predicted theoretically and observed experimentally. The existence of the

biaxial nematic state was first predicted in Freiser 1970 [46]. Using the mean field Maier-Saupe

theory, Freiser suggested that a phase transition from the uniaxial to the biaxial phase would

occur as temperatures are lowered, due to the asymmetry of the molecules.

First- and second-order phase transitions between isotropic, uniaxial and biaxial states have been

observed with decreasing temperature in thermotropic liquid crystals. A potassium-based compound

was the subject of Yu and Saupe 1980 [114]. The authors focused on a small concentration range

and detected a phase sequence containing isotropic, biaxial and multiple uniaxial states. This

phase sequence was observed to be reversible on heating and cooling. Another thermotropic liquid

crystalline material was considered in Merkel et al 2004 [79]. A low temperature biaxial phase was

found after cooling the sample caused a second-order phase transition.

Although the biaxial state was initially theoretically studied using mean fields theories, variational

approaches have also been employed. In Gramsbergen, Longa and de Jeu 1986 [51], the Landau-de

Gennes energy functional is generalised by an additional sixth-order term in the bulk energy which

allows for a biaxial phase. In Prostakov, Larin and Stryukov 2002 [92] a further extended bulk

potential is explored with three additional terms of orders 4 to 6. In both papers phase diagrams

are presented for various parameter ranges showing first- and second-order phase transitions

between isotropic, uniaxial and biaxial states.

We follow the methods in Allender and Longa 2008 [3] where the Landau-de Gennes energy

functional is generalised to allow for stable biaxial states using the sixth-order bulk potential

discussed in [92]. In [3] the authors plot phase planes for different parameter values and, in

particular, show the existence of a triple point temperature at which there exists equal energy

isotropic, uniaxial and biaxial minimizers of the sixth-order bulk potential.

We return to the (u, v)-solutions introduced in [33] and discussed in Chapter 5. We study

the gradient flow system for the (u, v)-parameters resulting from the Landau-de Gennes energy

functional with sixth-order bulk potential. We focus on the evolution of fronts which separate the

isotropic, uniaxial and biaxial phases at the triple point temperature. These fronts are imposed by

suitable boundary and initial conditions. We use asymptotic methods to show that each interface

evolves according to mean curvature in the limit of vanishing elastic constant and that, if the

fronts meet at a triple junction, the interfaces meet at angles of 2π
3

. Asymptotic methods have

been used to study three phase motion in Bronsard and Reitich 1993 [14] and Garcke, Nestler
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and Stoth 1998 [47]. In [14] the authors discuss three phase front motion for the vector-valued

Allen-Cahn, proving interface motion by mean curvature and an angle condition at the triple

junction. Results from Rubinstein, Sternberg and Keller 1989 [96], which focuses on front motion

in the scalar Allen-Cahn framework, are quoted in [14]. The methods from these two papers can

be adapted to the (u, v)-system.

We complete Chapter 7 with numerical simulations, solving the full Landau-de Gennes gradient flow

system associated with the sixth-order bulk potential. We impose different initial and boundary

conditions to demonstrate the existence and behaviour of sharp fronts between the three co-existing

states. There are situations where the numerical results depart from the asymptotic predictions

and we discuss plausible reasons for this effect.

2.5 Publication and collaboration details

Chapters 3 and 5 of this thesis are joint work with Apala Majumdar and Paul Milewski. This work

has been published in the SIAM Journal on Applied Mathematics as reference [74]. Chapter 4 of

this thesis is joint work with Apala Majumdar and Nicolas Dirr. A paper on this work is currently

in preparation. Chapter 6 is joint work with Apala Majumdar and Giacomo Canevari. This work

has been also been accepted for publication in the SIAM Journal on Applied Mathematics and is

reference [20].
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CHAPTER 3

Front propagation in spherical droplets

In Chapter 3 we focus on the Landau-de Gennes gradient flow system in the three-dimensional

nematic droplet with Dirichlet radial boundary conditions. First we use the concept of normalized

energy, introduced in Bronsard and Kohn 1991 [13], to prove motion by mean curvature of

isotropic-nematic fronts at the isotropic-nematic transition temperature in a certain asymptotic

limit. In the second half of Chapter 3 we numerically study the interplay between initial conditions

and transient dynamics for four representative initial conditions.

3.1 Problem formulation

We take our domain to be the unit sphere given by Ω := {x ∈ R3; |x| ≤ 1}. Throughout this

chapter we work at the isotropic-nematic transition temperature where A = B2

27C
and investigate

the propagation of fronts which separate the isotropic phase from the stable nematic phase in the

limit L→ 0. To this end, we look for dynamic Radial Hedgehog-type solutions of the gradient

flow system in (2.6). That is, we work with an ansatz of the form

Q = h(r , t)

(
r̂ ⊗ r̂ − I

3

)
, (3.1)

where r̂ = (cosφ sin θ, sinφ sin θ, cos θ) is the three-dimensional unit radial vector and h(r , t) is

a scalar order parameter. We refer to these as Radial Hedgehog-type solutions by analogy with
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the static Radial Hedgehog solution described in Chapter 2. We impose the Dirichlet Radial

Hedgehog-type boundary condition

Qb =
B

3C

(
r̂ ⊗ r̂ − I

3

)
on ∂Ω. (3.2)

Note that Qb is a minimizer of the normalised bulk potential at the isotropic-nematic transition

temperature. We work with uniaxial Radial Hedgehog-type initial conditions with front structures,

such as

Q(x, 0) =

0 for 0 ≤ |x| < r0,

B
3C

(
r̂ ⊗ r̂ − I

3

)
for r0 < |x| ≤ 1,

where 1
2
< r0 < 1. This initial condition describes a sharp front at r0 which separates the two

minimizers of the bulk potential. We substitute the ansatz (3.1) into the non-dimensionalized

gradient flow model associated with the Landau-de Gennes energy which we normalize by letting

Q̄ = Q/s+ = 3C
B

Q. This yields

Q̄t = ∇2Q̄− 9

L̄

[
1

3
Q̄− 3

(
Q̄Q̄− I

3
|Q̄|2

)
+ |Q̄|2Q̄

]
, (3.3)

where L̄ = 81C
B2 L. We impose Q̄ = Q̄b and Q̄(x, 0) = Q̄(x, 0), where Q̄b and Q̄(x, 0) are related to

Qb and Q(x, 0) by the change of variables described above. We drop the bars on the normalized

Q-tensor in what follows. On substitution we find that we have a solution of the gradient flow

dynamic equations (3.3) of the form (3.1) provided h(r , t) satisfies

ht = hrr +
2

r
hr −

6h

r 2
+

3

L̄
h (1− h) (2h − 1). (3.4)

The boundary conditions on h(r , t) are h(0, t) = 0 and h(1, t) = 1 for all t ≥ 0 and the initial

conditions require that

h(r , 0) =

0 for 0 ≤ r < r0,

1 for r0 < r ≤ 1.
(3.5)

The partial differential equation for the evolution of h(r , t) in (3.4) can be interpreted as the

gradient flow model associated with the one-dimensional energy functional

1

4π
√

L̄
ILG [h] =

∫ 1

0

[√
L̄

(
h2
r

3
+

2h2

r 2

)
+

h2 (h − 1)2

√
L̄

]
r 2 dr . (3.6)
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We briefly discuss the behaviour of the solution h(r , t) of (3.4) close to the origin. Taking an

expansion h(r , t) =
√

L̄h1(s, t) + L̄h2(s, t) + ..., where s = r√
L̄

, we find to leading order

0 =
d2h1

ds2
+

2

s

dh1

ds
− 6h

s2
− 3h1.

Following the steps in [110], we make the change of variables H(z)z−
1
2 = h1(s) where z = ks

and k = 3i . This yields

z2 d2H

dz2
+ z

dH

dz
+

[
z2 −

(
5

2

)2
]

H = 0.

The solutions to this equation are Bessel Functions and we have

H(z) = AJ 5
2
(z) + BY 5

2
(z),

for constants A and B , where Jn is the Bessel Function of the First Kind of order n and Yn is the

Bessel Function of the Second Kind of order n [110]. We set B = 0 as Bessel Functions of the

Second Kind tend to infinity at the origin. Therefore, returning to the original variables, we have

h(r) = A
J 5

2

(
k√
L̄

r
)

√
k√
L̄

r
,

close to the origin. The expansion of the Bessel Function J 5
2

in powers of r allows us to check

that this behaviour is in agreement with that described in [73]. That is,

h(r) =
∞∑

m=0

Amrm = A2r 2

(
1− r 2

14
+ o(r 4)

)

where Am = 0 for all m odd, as r → 0.

Given a solution h(r , t) of (3.4), we can construct a Radial Hedgehog-type dynamic solution of

the gradient flow equations (3.3). By virtue of the uniqueness result in Proposition 2.1, this is

the physically relevant solution for this model problem and hence we reduce the five-dimensional

evolution problem to a one-dimensional evolution problem.

In [13] the authors study a closely related problem for front propagation in the Ginzburg-Landau

framework. They rigorously prove front propagation by mean curvature for suitably defined initial
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conditions with appropriately bounded energy. Our governing equation (3.4) is similar to that

studied in [13], however we have an extra −6h
r2 term. In particular, we cannot quote results from

[13] (and [15]) without verifying that key inequalities are unchanged for L̄ sufficiently small.

In this chapter we show that for suitable initial conditions h(r , 0), the solution h(r , t) will retain

the front structure for all times 0 ≤ t ≤ T (where T will be defined later) and that the front will

evolve according to mean curvature. In the case of a spherical interface evolving according to

mean curvature, the front position ρ(t) satisfies

dρ

dt
= −2

ρ
, ρ(0) = r0.

Define the step function

f (r , t) =

0 for 0 ≤ r < ρ(t),

1 for ρ(t) < r ≤ 1.

We will show that the solution h(r , t) of (3.4) tends to the function f (r , t) in L1. That is,∫ 1

0

|h(r , t)− f (r , t)|r 2 dr → 0 as L̄→ 0.

3.2 The weighted energy functional

We move into a co-moving frame by making the change of variables R = r − ρ(t), τ = t and

defining

w(R , τ) = h(R + ρ(τ), τ) for − ρ(τ) ≤ R ≤ 1− ρ(τ), τ ≥ 0.

Then hr = wR and ht = wτ − wR
dρ
dτ

= wτ + 2
ρ

wR so we can rewrite (3.4) to yield

√
L̄wτ =

√
L̄

(
wRR −

2R

ρ(R + ρ)
wR −

6w

(R + ρ)2

)
+

3√
L̄

w(1− w)(2w − 1), (3.7)

with w(−ρ(τ), τ) = 0 and w(1− ρ(τ), τ) = 1. Next, inspired by [13] and [15], we introduce a

weight function φ(R , τ) defined to be a solution of

φR = − 2R

ρ(R + ρ)
φ,

and note that

φ(R , τ) = exp

(
−2R

ρ

)(
1 +

R

ρ

)2

,
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is a solution of this equation. We will use that this solution satisfies

0 ≤ φ ≤ 1, φ(−ρ(τ), τ) = 0, φ(0, τ) = 1 and φτ ≤ 0,

φ(R , τ) ≥ 1− 4

ρ(T1)2
R2 for − a ≤ R ≤ a, τ ≤ T1. (3.8)

In particular, φ(R , τ) ≥ 1
2

for −a ≤ R ≤ a, τ ≤ T1 where a = min( 1
4
√

2
, 1−r0) and T1 = 1

4
(r 2

0− 1
4

)

is the first time for which ρ(t) = 1
2
. We now write (3.7) as

√
L̄wτ −

√
L̄

φ
(φwR)R +

6w
√

L̄

(R + ρ)2
− 3√

L̄
w(1− w)(2w − 1) = 0, (3.9)

for −ρ(τ) ≤ R ≤ 1− ρ(τ). The next step is to define the weighted energy

Eφ[w ](τ) =

∫ 1−ρ(τ)

−ρ(τ)

φ(R , τ)

[√
L̄

(
w 2
R

3
+

2w 2

(R + ρ)2

)
+

w 2(1− w)2

√
L̄

]
dR . (3.10)

The rate of change of the weighted energy with respect to τ is given by

d

dτ
Eφ[w ](τ) =

∫ 1−ρ(τ)

−ρ(τ)

φτ

[√
L̄

(
w 2
R

3
+

2w 2

(R + ρ)2

)
+

w 2(1− w)2

√
L̄

]
dR

+

∫ 1−ρ(τ)

−ρ(τ)

φ

[√
L̄

(
2

3
wRwRτ + 4

wwτ

(R + ρ)2

)
− 2

wτ√
L̄

w(1− w)(2w − 1)

]
dR

− φdρ

dt

[√
L̄

(
w 2
R

3
+

2w 2

(R + ρ)2

)
+

w 2(1− w)2

√
L̄

] ∣∣∣∣∣
R=1−ρ(τ)

R=−ρ(τ)

,

using Leibniz’s rule of integration.

Following the steps in [13], the first integral in the expression is non-positive since φτ ≤ 0. Further,

noting that (φwRwτ )R − wτ (φwR)R = φwRwRτ and recalling (3.9) we can show∫ 1−ρ(τ)

−ρ(τ)

φ

[√
L̄

(
2

3
wRwRτ + 4

wwτ

(R + ρ)2

)
− 2

wτ√
L̄

w(1− w)(2w − 1)

]
dR

= −2

3

√
L̄

∫ 1−ρ(τ)

−ρ(τ)

φw 2
τ dR +

2

3

√
L̄φwRwτ

∣∣∣∣
R=1−ρ(τ)

.
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Using that φ = 0 at R = −ρ(τ) and w = 1 at R = 1− ρ(τ) we have

d

dτ
Eφ[w ](τ) ≤ −2

3

√
L̄

∫ 1−ρ(τ)

−ρ(τ)

φw 2
τ dR +

2

3

√
L̄φwRwτ

∣∣∣∣
R=1−ρ(τ)

− 1

3

√
L̄φ

dρ

dt
w 2
R

∣∣∣∣
R=1−ρ(τ)

+
4

ρ

√
L̄φ.

Further ht = wτ − dρ
dτ

wR = 0 at R = 1− ρ(τ) so we can write

2

3

√
L̄φwRwτ −

1

3

√
L̄φ

dρ

dτ
w 2
R

∣∣∣∣
R=1−ρ(τ)

=
1

3

√
L̄φ

dρ

dτ
w 2
R

∣∣∣∣
R=1−ρ(τ)

= − 2

3ρ

√
L̄φw 2

R

∣∣∣∣
R=1−ρ(τ)

< 0.

As φ ≤ 1 and ρ ≥ 1
2

for τ ≤ T1, we finally have

d

dτ
Eφ[w ](τ) ≤ −2

3

√
L̄

∫ 1−ρ(τ)

−ρ(τ)

φ(R , τ)w 2
τ dR + 8

√
L̄,

for τ ≤ T1. Hence we have proved:

Proposition 3.1. For Eφ[w ](τ), the weighted energy defined in (3.10), we have the following

inequality
d

dτ
Eφ[w ](τ) ≤ −2

3

√
L̄

∫ 1−ρ(τ)

−ρ(τ)

φ(R , τ)w 2
τ dR + 8

√
L̄,

for all τ ≤ T1.

For the similar problem in the Ginzburg-Landau framework discussed in [13], the weighted energy

is strictly decreasing. We have an additional positive contribution from the −6h
r2 term in (3.4) and

hence have less control on the weighted energy. However, we will see that this bound suffices for

L̄ sufficiently small. The next step is to find a lower bound on the weighted energy.

Define the function

g(s) =
2√
3

∫ s

0

w(1− w) dw .

The interface energy associated with the front is thought of as g(1) = 1
3
√

3
. Further, define the

step function

v(R) =

0 for − ρ(τ) ≤ R < 0,

1 for 0 < R ≤ 1− ρ(τ),

and proceed with the following proposition adapted from [15].
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Proposition 3.2. Let 0 < α ≤ 1
4
. If for some smooth function w

Eφ[w ](τ) ≤ C1 and

∫ a

−a
|g(w)− g(v)| dR ≤ g(1)

4
L̄α, (3.11)

then

Eφ[w ](τ) ≥ g(1)− C2L̄
1
2
−α − C3L̄2α,

for all τ ≤ T1. C1, C2, C3 are positive constants and independent of L̄.

Proof. We begin the proof by defining two regions:

S+ =

{
R : w(R) ≥ 1

2

}
and S− =

{
R : w(R) <

1

2

}
.

Since v = 0 for R < 0, (3.11) implies∫ 0

−2L̄α
|g(w)− g(0)| dR ≤ g(1)

4
L̄α.

As g(w(R)) is bounded below by g
(

1
2

)
over S+, we must have that∫

S+∩(−2L̄α,0)

|g(w)− g(0)| dR ≥ |S+ ∩ (−2L̄α, 0)|
[

g

(
1

2

)
− g(0)

]
.

Using these two inequalities we deduce

|S+ ∩ (−2L̄α, 0)| ≤ 1

2
L̄α,

and so

|S− ∩ (−2L̄α, 0)| ≥ 3

2
L̄α.

From the assumption of the proposition

Eφ[w ](τ) =

∫ 1−ρ(τ)

−ρ(τ)

φ(R , τ)

[√
L̄

(
w 2
R

3
+

2w 2

(R + ρ)2

)
+

w 2(1− w)2

√
L̄

]
dR ≤ C1,

and so, in particular, ∫
S−∩(−2L̄α,0)

φ
w 2(1− w)2

√
L̄

dR ≤ C1.
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As φ ≥ 1
2

for −a ≤ R ≤ a and τ ≤ T1 this yields∫
S−∩(−2L̄α,0)

w 2(1− w)2 dR ≤ 2C1

√
L̄.

Therefore there exists R1 ∈ S− ∩ (−2L̄α, 0) for which

w 2(R1)(1− w(R1))2 ≤ 4

3
C1L̄

1−2α
2 .

However w(R1) < 1
2

as R ∈ S− so we can conclude that

w(R1) ≤ L1L̄
1−2α

4 ,

for some positive constant L1 independent of L̄. Following the same methods, it is possible to

show the existence of a point R2 ∈ (0, 2L̄α) for which

w(R2) ≥ 1− L2L̄
1−2α

4 ,

for some positive constant L2 independent of L̄. The last step is to compute bounds for the

weighted energy following [15]. Note that

Eφ[w ](τ) ≥
∫ R2

R1

φ

(√
L̄

w 2
R

3
+

w 2(1− w)2

√
L̄

)
dR ,

≥
∫ R2

R1

2√
3
φ|wR |w(1− w) dR , (3.12)

and recall the lower bound in (3.8) which gives φ(R , τ) ≥ 1− 64L̄2α for R ∈ (R1, R2). Further

|gR | =
2√
3
|wR |w(1− w),

and hence for 0 < α ≤ 1
4
, (3.12) becomes

Eφ[w ](τ) ≥ (1− 64L̄2α)|g(w(R2))− g(w(R1))|,

≥ (1− 64L̄2α)
(

g(1)− L4L̄
1−2α

2

)
,

≥ g(1)− L5L̄
1
2
−α − L6L̄2α,

for positive constants L3, L4, L5, L6 independent of L̄.
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The next propositions concern the existence of a function w which satisfies the hypotheses of

Proposition 3.2. Proposition 3.3 constructs a function which satisfies the energy bound in (3.11)

initially and will be used in conjunction with Proposition 3.1 to give the energy bound for all

times. The construction is very similar to that described in [104] and we give a statement for

completeness. In Proposition 3.4 we prove that for the initial condition constructed in Proposition

3.3, the second assumption in (3.11) holds all τ ≤ T2 for some time T2 of order one.

Proposition 3.3. Define the function

σ(R) =
1

1 + exp(−
√

3R)
.

Further, for L̄ sufficiently small define

w (R) =



1 for 2L̄1/4 < R ≤ 1,

1 +

(
1−σ

(
1

L̄1/4

)
L̄1/4

)(
R − 2L̄1/4

)
for L̄1/4 ≤ R ≤ 2L̄1/4,

σ
(

R√
L̄

)
for − L̄1/4 ≤ R ≤ L̄1/4,

σ
(
− 1

L̄1/4

)
L̄1/4

(
R + 2L̄1/4

)
for − 2L̄1/4 ≤ R ≤ −L̄1/4,

0 for 0 ≤ R < −2L̄1/4.

(3.13)

Then

Eφ[w ](0) ≤ g(1) + C1L̄1/4, (3.14)

and ∫ ρ(τ)

−ρ(τ)

g(w(R))− g(v(R)) dR ≤ C2L̄1/8, (3.15)

for some positive constants C1 and C2 independent of L̄.

Proof. Follows the same steps as [104]. The proof of the inequality (3.14) follows by a direct

computation of the weighted energy Eφ[w ] for w as in (3.13), using that dσ
dR

=
√

3σ(1 − σ).

Inequality (3.15) follows from the convergence of w to v as L̄→ 0.

41



Chapter 3. Front propagation in spherical droplets

Proposition 3.4. Let 0 < α ≤ 1
6
. Assume that Eφ[w ](0) ≤ g(1) + C1L̄2α for some positive

constant C1 independent of L̄ and that for a as introduced previously∫ a

−a
|g(w(R , 0))− g(v)| dR ≤ g(1)

8
L̄α.

Let T2 be the first time for which∫ a

−a
|g(w(R , T2))− g(w(R , 0))| dR =

g(1)

8
L̄α.

Then T2 ≥ min(T1, C ) (so T2 is order one) for some positive constant C independent of L̄ and∫ a

−a
|g(w(R , τ))− g(v)| dR ≤ g(1)

4
L̄α,

for all τ ≤ T2.

Proof. The proof closely follows that in [15]. From the assumptions of the proposition and the

triangle inequality we have, for all τ ≤ T2,∫ a

−a
|g(w(R , τ))− g(v)| dR ≤ g(1)

4
L̄α.

If T2 ≥ T1 the result follows so suppose that T2 ≤ T1. We recall that for all τ ≤ T2 ≤ T1 we

have

φ(R , τ) ≥ 1

2
for − a ≤ R ≤ a.

Proposition 3.1 and the initial bound on the weighted energy yield

Eφ[w ](T2) ≤ g(1) + C1L̄2α + 8
√

L̄T2. (3.16)

Therefore the assumptions of Proposition 3.2 apply and we can obtain a lower bound for the

weighted energy of the form

Eφ[w ](T2) ≥ g(1)− C2L̄
1
2
−α − C3L̄2α.

Hence

Eφ[w ](0)− Eφ[w ](T2) ≤ L1L̄2α + L2L̄
1
2
−α, (3.17)
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for positive constants L1 and L2 independent of L̄. Next, we note that

g(1)

8
L̄α =

∫ a

−a
|g(w(R , T2))− g(w(R , 0))| dR ,

≤
∫ a

−a

∫ T2

0

|∂τg(w(R , τ))| dτ dR ,

≤ 4√
3

∫ a

−a

∫ T2

0

φ|wτ |w(1− w) dτ dR ,

≤ 2√
3

(
δL̄

1−2α
2

∫ T2

0

∫ a

−a
φ|wτ |2 dR dτ +

1

δL̄
1−2α

2

∫ T2

0

∫ a

−a
φw 2(1− w)2 dR dτ

)
,

for any δ > 0. Proposition 3.1 implies

2

3

√
L̄

∫ 1−ρ(τ)

−ρ(τ)

φ(R , τ)w 2
τ dR ≤ − d

dτ
Eφ[h](τ) + 8

√
L̄,

and so ∫ T2

0

∫ a

−a
φ|wτ |2 dR dτ ≤ 3

2
√

L̄
(Eφ[w ](0)− Eφ[w ](T2)) + 12T2.

Hence we can conclude using inequality (3.17) that

g(1)

8
L̄α ≤ 2√

3

[
δ
(

L3L̄α + L4L̄
1−4α

2 + L5L̄
1−2α

2

)
+

L̄α

δ
T2Eφ[w ](T2)

]
,

for postive constants L3, L4 and L5 independent of L̄. Dividing through by L̄α yields

g(1)

8
≤ 2√

3

[
δ
(

L3 + L4L̄
1−6α

2 + L5L̄
1−4α

2

)
+

1

δ
T2Eφ[w ](T2)

]
.

We choose δ sufficiently small and recall (3.16) to deduce that for 0 < α ≤ 1
6

and for L̄ sufficiently

small, T2 is order one.

Equipped with a weighted energy and estimates of the rate of change and bounds for this weighted

energy, we are now in a position to adapt arguments from [13] to prove our main result.
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3.3 Front propagation by mean curvature

Theorem 3.1. Suppose h(0, 0) = 0, h(1, 0) = 1 and that h(r , 0) satisfies∫ 1

0

ψ0(r)

[√
L̄

(
hr (r , 0)2

3
+

2h(r , 0)2

r 2

)
+

h(r , 0)2(1− h(r , 0))2

√
L̄

]
r 2 dr ≤ g(1) + C1L̄2α,

where

ψ0(r) =
1

r 2
0

exp

[
−2

(
r

r0
− 1

)]
,

and ∫ 1

0

|g(h(r , 0))− g(f (r , 0))| dR ≤ C2L̄α,

for positive constants C1 and C2 independent of L̄. (The existence of an initial condition satisfying

these conditions follows from Proposition 3.3 for α = 1
8
.) Then for t ≤ T = min(T2, T1)∫ 1

0

|hL̄(r , t)− f (r , t)|r 2 dr → 0, (3.18)

as L̄→ 0, where hL̄(r , t) is the solution of (3.4) subject to initial condition (3.5) and

f (r , t) =

0 for 0 ≤ r < ρ(t),

1 for ρ(t) < r ≤ 1.

Proof. For a contradiction, suppose (3.18) does not hold. In this case there exists a sequence

L̄j > 0 with L̄j → 0 as j →∞ and some constant δ such that∫ T

0

∫ 1

0

|hL̄j
(r , t)− f (r , t)|r 2 dr dt ≥ δ.

By [13, Theorem 2.3] there exists a subsequence L̄j and a function h∗(r , t) such that hL̄j
(r , t)→

h∗(r , t) as j →∞ and ∫ T

0

∫ 1

0

|h∗(r , t)− f (r , t)|r 2 dr dt ≥ δ.

Let v ∗(R , τ) = h∗(R + ρ(τ), τ), then the initial bound on the weighted energy implies that

Eφ[v ∗](0) ≤ g(1) + C1L̄2α. From Proposition 3.1, we have that for any τ ≤ T

Eφ[v ∗](τ) ≤ g(1) + C1L̄2α + K
√

L̄T , (3.19)
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for positive constant K independent of L̄. Proposition 3.4 gives us that∫ a

−a
|g(v ∗(R , τ))− g(v(R))|dR ≤ g(1)

4
L̄α,

for all τ ≤ T . Hence the lower bound on the weighted energy in (3.12) applies to yield

∫ 2L̄α

−2L̄α
φ

[√
L̄

(
v ∗2

R

3
+

2v ∗2

(R + ρ)2

)
+

v ∗2(1− v ∗)2

√
L̄

]
dR ≥ g(1)− C2L̄

1
2
−α − C3L̄2α, (3.20)

for positive constants C2 and C3 independent of L̄. Therefore combining the upper bound (3.19),

the lower bound (3.20) and that φ(R , τ) ≥ 1
2

for −a ≤ R ≤ a and τ ≤ T , we find

∫ −2L̄α

−ρ(τ)

1

2

[√
L̄

(
v ∗R

2

3
+

2v ∗2

(R + ρ)2

)
+

v ∗2(1− v ∗)2

√
L̄

]
dR ≤ C4L̄

1
2
−α + C5L̄2α + C6L̄

1
2 ,

for positive constants C4, C5 and C6 independent of L̄. However

|gR(v ∗)| ≤
√

L̄

(
v ∗R

2

3
+

2v ∗2

(R + ρ)2

)
+

v ∗2(1− v ∗)2

√
L̄

,

because

|gR(v ∗)| =
2√
3
|v ∗R |v ∗(1− v ∗) ≤

√
L̄

v ∗2
R

3
+

v ∗2(1− v ∗)2

√
L̄

.

Therefore ∫ −2L̄α

−ρ(τ)

1

2
|gR | dR ≤ C4L̄

1
2
−α + C5L̄2α + C6L̄

1
2 .

This implies that g is essentially constant on (−ρ(τ),−2L̄α) and since there exists R1 ∈ (−2L̄α, 0)

for which v ∗ = 0 as L̄→ 0, we deduce that g(v ∗) = g(0) for R ∈ (−ρ(τ),−2L̄α). Hence v ∗ = 0

for R ≤ −2L̄α. Similarly we can show that v ∗ = 1 for R ≥ 2L̄α. Therefore in the limit L̄→ 0, we

have v ∗ = f (r , t) and a contradiction which finishes the proof.

Intuitively, this theorem gives that for suitable initial conditions with efficient fronts, the system

does not have the energy to create additional interfaces away from ρ(τ). Hence v ∗ is effectively

constant away from the front, which evolves according to mean curvature at least for an order

one length of time.
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3.4 Numerical simulations in spherical droplets

In this section we numerically study the full non-dimensionalized Landau-de Gennes gradient flow

system on the sphere at the isotropic-nematic transition temperature. Recall we normalized the

five coupled nonlinear parabolic partial differential equations to yield (3.3), which can be written

explicitly as

∂Q11

∂t
= ∇2Q11−

9

L̄

(
2(Q2

11 + Q2
22 + Q2

12 + Q11Q22 + Q2
13 + Q2

23)Q11

− (Q2
11 + Q2

12 + Q2
13 − 2Q2

22 − 2Q11Q22 − 2Q2
23) +

1

3
Q11

)
, (3.21)

∂Q22

∂t
= ∇2Q22−

9

L̄

(
2(Q2

11 + Q2
22 + Q2

12 + Q11Q22 + Q2
13 + Q2

23)Q22

− (Q2
12 + Q2

22 + Q2
23 − 2Q2

11 − 2Q11Q22 − 2Q2
13) +

1

3
Q22

)
, (3.22)

∂Q̄12

∂t
= ∇2Q12−

9

L̄

(
2(Q2

11 + Q2
22 + Q2

12 + Q11Q22 + Q2
13 + Q2

23)Q12

− 3(Q11Q12 + Q12Q22 + Q̄13Q23) +
1

3
Q12

)
, (3.23)

∂Q13

∂t
= ∇2Q13−

9

L̄

(
2Q2

11 + Q2
22 + Q2

12 + Q11Q22 + Q2
13 + Q2

23)Q13

− 3(Q12Q23 − Q22Q13) +
1

3
Q13

)
, (3.24)

∂Q23

∂t
= ∇2Q23−

9

L̄

(
2(Q2

11 + Q2
22 + Q2

12 + Q11Q22 + Q2
13 + Q2

23)Q23

− 3(Q12Q13Q23Q11) +
1

3
Q23

)
. (3.25)

In the above L̄ = 81C
B2 L as before. We work with L̄ = 6.9× 10−4 unless specified otherwise.

3.4.1 Numerical methods

In this section, and for other geometries in later chapters unless specified otherwise, the system of

partial differential equations (3.21) - (3.25) is solved using the methods described in Chapter 2.

The unit sphere is embedded into the cube [−1, 1]3 which is discretised with a uniform cartesian

grid with spatial resolution h. The Dirichlet boundary conditions are implemented at the points of

the grid within distance h
2

of the boundary of the unit sphere. For interior points, the solution

satisfies the system (3.21)-(3.25) and in the exterior of the physical domain, we solve Qt = 0.
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We use finite difference schemes for spatial derivatives and time stepping is accomplished with a

standard fourth-order Runge-Kutta scheme.

3.4.2 Numerical simulations

We solve the system (3.21)-(3.25) with four different sets of initial conditions subject to the fixed

boundary condition

Qb = r̂ ⊗ r̂ − I

3
on r = 1, (3.26)

where r̂ is the three-dimensional unit radial vector. The first two initial conditions concern uniaxial

Radial Hedgehog-type initial conditions of the form

Q(r, 0) = h(r , 0)

(
r̂ ⊗ r̂ − I

3

)
. (3.27)

Case I prescribes an initial condition h(r , 0) with a front structure given by

h(r , 0) =
1

2

[
1 + tanh

(
r − r0√

L̄

)]
,

and Case II focuses on initial conditions without a front structure with

h(r , 0) = r . (3.28)

For Cases I and II, by virtue of the well-posedness of the gradient flow system, we can check that

the corresponding dynamic solution Q(r, t) is given by

Q(r, t) = h(r , t)

(
r̂ ⊗ r̂ − I

3

)
,

where h(r , t) is a solution of (3.4) subject to the relevant initial condition.

For each initial condition we study several aspects of the solution generated. First we study

|Q(r, t)|2 to illustrate the evolution of the order parameter h(r , t) and the interface introduced by

the initial condition. We plot the position of the front with time and make comparisons with the

motion by mean curvature predicted in Section 3.3. Next we consider the eigenvalues of Q(r, t).

Recall that the eigenvalues of a Q-tensor determine whether the nematic sample is in an isotropic,

uniaxial or biaxial phase. The evolution of the initial interface can also be tracked by studying the

eigenvalues of Q(r, t).
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In [76], the authors present a general analysis of Landau-de Gennes energy minimizers in the

L̄→ 0 limit. Based on their analysis, it is expected the minimizers will be of the form

Q∗ = s

(
n∗ ⊗ n∗ − I

3

)
,

where s = 0 or s = 1 (so that Q is a minimizer of fB(Q)) and n∗ is a solution of the harmonic

map equations

∇2n∗ + |∇n∗|2n∗ = 0.

These are the minimizers predicted by the Oseen-Frank theory. One solution of the harmonic map

equations on a sphere subject to the boundary condition (3.26) is

n∗ = r̂ = (cosφ sin θ, sinφ sin θ, cos θ).

Hence, we also numerically compute the differences
∣∣Q(r, t)ij −Q∗ij

∣∣ for s = 1 and observe that

Q(r, t)→ |Q(r, t)|
(

r̂ ⊗ r̂ − I

3

)
as t →∞,

where |Q(r, t)| has a front structure close to the origin which connects s = 0 and s = 1. This

behaviour is illustrated with plots for the Q11 component of the Q-tensor matrix.

Case I is within the remit of Theorem 3.1. The numerics demonstrate that the solution retains

the front structure for all times as in Figure 3-1. The interface propagates towards the origin

according to mean curvature for small times, as illustrated in Figure 3-2, which also shows the

improved comparison as L̄ decreases. For long times the front equilibrates near the origin. The

radius of the isotropic core scales with
√

L̄, as expected, and arises out of the saddle structure of

Q(r, t) at the origin. This structure is visible in the final time panel of Figure 3-3. Further, this

figure demonstrates the convergence of Q(r, t)→ Q∗ for the Q11 entry of the Q-tensor matrix.

Figure 3-4 shows that Q(r, t) has exactly two eigenvalues for r > ρ(t), where ρ(t) is the front

position (and one eigenvalue for r < ρ(t)). Therefore the nematic region of the solution is uniaxial

for all times.
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Figure 3-1: |Q(r, t)|2 for a cross-section of the sphere for Case I at t = 0, t = 0.001, t = 0.05
and t = 0.125 (top left to bottom right). The spatial resolution is h = 1

256
.

Figure 3-2: Front position ρ for Case I with r0 = 0.5 for L̄ = 3.5×10−3 (dashed) and L̄ = 6.9×10−4
(solid) and predicted position according to motion by mean curvature (blue). The radius of the

isotropic core of the steady solution scales with
√

L̄ and hence the front is arrested at an O(
√

L̄)

distance away from the origin. Here
√

L̄ = 5.92× 10−2 (dashed) and 2.62× 10−2 (solid). This
contributes to the deviations from the predicted evolution by mean curvature seen in this figure.
As L̄ decreases, the isotropic core gets smaller and interface evolution approaches that according
to mean curvature.
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Figure 3-3: Q(r, t)11 − Q∗11 for a cross-section of the sphere for Case I at t = 0, t = 0.001,
t = 0.05 and t = 0.125.

Figure 3-4: Radial profiles of the eigenvalues of Q(r, t) for Case I at t = 0, t = 0.001, t = 0.05
and t = 0.125.
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Case II is not within the remit of Theorem 3.1 as the initial condition (3.28) does not have an

initial front. However, illustrated by the eigenvalue plots in Figure 3-5, the dynamic solution

quickly develops an inwards-propagating interface separating the isotropic core from the nematic

state. The long-time behaviour of the dynamic solutions for Cases I and II are indistinguishable

and we have the same comparison to mean curvature motion, see Figure 3-6.

Figure 3-5: Radial profiles of the eigenvalues of Q(r, t) for Case II at t = 0, t = 0.001, t = 0.05
and t = 0.125. The spatial resolution is h = 1

256
.

Figure 3-6: Front position ρ for Case II with r0 = 0.5 for L̄ = 3.5×10−3 (dashed) and L̄ = 6.9×104

(solid) and predicted position according to motion by mean curvature (blue). As for Case I, the

front is arrested at an O(
√

L̄) distance away from the origin. For this figure,
√

L̄ = 5.92× 10−2

(dashed) and 2.62× 10−2 (solid). This results in deviations from the predicted evolution by mean
curvature which improve as L̄ gets smaller and the isotropic core of the steady solution decreases.
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For Case III, the initial condition is biaxial with

Q(r, 0) = h(r , 0)

(
r̂ ⊗ r̂ − I

3

)
+ s(r) (m⊗m− p⊗ p) ,

where m and p are given by

m = (cos θ cosφ, cos θ sinφ,− sin θ) and p = (cosφ, sinφ, 0) .

The function h(r , 0) has a front structure, as given in Case I, and s(r) = r(1− r). This initial

condition and the subsequent dynamics are outside the scope of Theorem 3.1. In particular, we

are not guaranteed the radial symmetry of the dynamic solution, as with Cases I and II above.

The numerics show that the solution quickly becomes uniaxial as demonstrated by the evolution

of the eigenvalues of Q(r, t) in Figure 3-7. The dynamic solution exhibits an inwards propagating

interface which equilibrates near the origin, also see Figure 3-7. Figure 3-8 shows the convergence

of Q(r, t) to Q∗. Unlike in Case I, the Q-tensor in the nematic region is not initially equal to Q∗.

Figure 3-7: Radial profiles of the eigenvalues of Q(r, t) for Case III at t = 0, t = 10−5,
t = 1.5× 10−4 and t = 0.085. The spatial resolution is h = 1

256
.
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Figure 3-8: Q(r, t)11 − Q∗11 for a cross-section of the sphere for Case III at t = 0, t = 10−5,
t = 1.5× 10−4 and t = 0.085.

Case IV breaks the radial symmetry of the initial order parameter by employing a uniaxial initial

condition of the form (3.27) with

h(r , 0) =
1

2

[
1 + tanh

(
r 2 sin2 θ cos2 φ + 4r 2 sin2 θ sin2 φ + 2r 2 cos2 θ − 0.5√

L̄

)]
.

For this initial condition the initial interface is ellipsoidal in shape. The dynamic front becomes

radially symmetric as it collapses which suggests front evolution by mean curvature. The subse-

quent dynamics are indistinguishable from Case I as seen in Figure 3-9.

Based on these four representative cases, we would expect that all dynamic solutions, irrespective of

initial condition, to numerically converge to a Radial Hedgehog-type solution, |Q(r, t)|
(
r̂ ⊗ r̂ − I

3

)
,

where |Q(r, t)| has an isotropic core near r = 0 and |Q(r, t)|2 → 2
3
h2

+ rapidly away from r = 0.

This is consistent with the analysis of Landau-de Gennes energy minimizers in the L̄→ 0 limit.
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Figure 3-9: |Q(r, t)|2 for a cross-section of the sphere for Case IV with L̄ = 3.5× 10−3 at t = 0,
t = 0.025, t = 0.05 and t = 0.1. The spatial resolution is h = 1

128
.
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CHAPTER 4

Front propagation in heterogeneous materials

Chapter 4 continues the study of the Landau-de Gennes gradient flow system on the three-

dimensional nematic droplet. In this chapter we consider isotropic-nematic front propagation

at the isotropic-nematic transition temperature in the presence of radially symmetric, periodic

obstacles. First we prove the existence of pulsating wave solutions and calculate an average front

velocity for a range of obstacle strengths by adapting the methods in Dirr and Yip 2006 [35].

At the end of Chapter 4 we carry out several numerical experiments, simulating the full Landau-de

Gennes gradient flow system in the presence of obstacles. Firstly, we work on a three-dimensional

annulus with periodic radial obstacles as studied previously. Secondly, we work on a square domain

with two types of obstacle; periodic obstacles and a stronger moon-shaped obstacle motivated by

the work in Xia et al 2015 [113]. We study how the moon’s orientation affects front motion.

4.1 Problem formulation

We adapt the non-dimensionalized and normalized gradient flow model associated with the Landau-

de Gennes energy at the isotropic-nematic transition temperature in (3.21)-(3.25) (setting R = 1

in the non-dimensionalization) and consider the dynamic equations

Qt = ∇2Q− 9

L̄

[
1

3
Q− 3

(
QQ− I

3
|Q|2

)
+ |Q|2Q

]
+

2

3

δ

L̄

(
r̂ × r̂ − I

3

)
(g(r) + F ), (4.1)
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where r̂ = (cosφ sin θ, sinφ sin θ, cos θ) denotes the three-dimensional unit radial vector and

L̄ = 81C
B2 L as in Chapter 3. This set-up is inspired by [35], where the Allen-Cahn equation in

one-dimension is considered:

vt = vxx −W ′(v) + δ(g(x) + F ) for x ∈ R, (4.2)

and W (v) = (1− v 2)2. In both cases, the forcing terms are given by a periodic forcing function

g with small period p and mean zero which represents a heterogeneous material and a constant

F which corresponds to an external force. The parameter δ is small but lower bounds on δ in

terms of L will be specified later. We look for dynamic Radial Hedgehog-type solutions of (4.1)

of the form

Q = h(r , t)

(
r̂ ⊗ r̂ − I

3

)
.

We substitute this ansatz into the dynamic equations (4.1) to show that h(r , t) evolves according

to

ht = hrr +
2

r
hr −

6

r 2
h − W ′(h)

L̄
+
δ(g(r) + F )

L̄
. (4.3)

The function W (h) = 3
2
h2(h − 1)2 is a double welled potential, g(·) is a periodic function with

small period p and mean zero, as described above, F is a constant and L̄ = 81C
B2 as in Chapter 3.

We are interested in pulsating wave solutions of equation (4.3). These are solutions which are

space-time periodic. For certain ranges of δ and L̄ we show that there exists a constant F̂ such

that for F < F̂ < 0 there are pulsating wave solutions of (4.3). These pulsating waves propagate

with an average velocity proportional to
√

F̂ − F provided that F̂ − F is small. Throughout this

chapter, we use the norms defined by

||f ||0,b = sup{|f (z) exp(b
√

L̄|z |)|} and ||f ||1,b = ||f ||0,b + ||f ′||0,b,

where 0 < b < min
(

W ′′(1)

L̄
, W ′′(0)

L̄

)
.

4.2 Existence of pulsating waves solutions

We look for solutions of (4.3) with moving fronts which connect the zeroes of − 6
r2 h −W ′(h) +

δ(g(r) + F ). The zeros are perturbed from 0 and 1 by terms of O(δ + L̄) due to the presence of

the forcing terms and the term 6
r2 h in the evolution equation (4.3). Expanding on the approach in
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[35], we account for these perturbations by defining functions m±(r) and w +(r) such that

h ≈ δm−(r) and h ≈ 1 + δm+(r) + L̄w +(r),

close to r = 0 and r = 1 respectively. Hence at either end point we have

δ

(
m−rr (r) +

2

r
m−r (r)− 6

r 2
m−(r)

)
−W ′(δm−(r))

L̄
+
δ(g(r) + F )

L̄
= 0, (4.4)

δ

(
m+

rr (r) +
2

r
m+

r (r)− 6

r 2
m+(r)

)
− 6

r 2
+ L̄

(
w +
r (r , t) +

2

r
w +
r (r , t)− 6

r 2
w +(r , t)

)
(4.5)

− W ′(1 + δm+(r) + L̄w +(r , t))

L̄
+
δ(g(r) + F )

L̄
= 0,

with m−(0) = 0. We transfer (4.3) to a co-moving frame by making the change of variables

z = r − k(t) = r − ρ(t)− c(t), (4.6)

where k(t) = ρ(t) + c(t) is the position of the front. The function ρ(t) satisfies

dρ

dt
= − 2

k(t)
= − 2

ρ(t) + c(t)
,

and accounts for front motion due to mean curvature motivated by the work in Chapter 3. The

function c(t) accounts for front motion due to the forcing terms. We choose the parameters δ

and L̄ so that ċ(t) is much larger than ρ̇(t) and is the main contribution to interface motion. Our

main task in this chapter is to prove the following theorem.

Theorem 4.1. Suppose
√

L̄ � δ, then for any σ > 0 there exists C1, C2, L̄∗ > 0 such that for

0 < L̄ < L̄∗, suitable initial conditions and a forcing term F which satisfies

0 < C1

√
L̄

δ
≤ F̂ − F ≤ C2,

there exists a constant TF and a solution HF of (4.3) such that

HF (r , t) = HF (r + p, t + TF ).
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Further, the average front velocity VF = p/TF satisfies

(1− σ)p
α̂δ

√
β̂(F̂ − F )
√

L̄π
≤ VF ≤ (1 + σ)p

α̂δ

√
β̂(F̂ − F )
√

L̄π
.

This theorem is analogous to [35, Theorem 3] where (4.2) is shown to have inward propagating

pulsating wave solutions with fronts which advance with average velocity VF ≈ α̂δ
π

(β̂(F − F̂ ))
1
2

for 0 < C1δ ≤ F − F̂ ≤ C2 when g has period 1. In Theorem 4.1 we have used the following

quantities:

s(a) = −
∫ ∞
−∞

g(z + a)mz(z) dz , (4.7)

F̂ = s∗, α̂ =
1√

L̄
∫∞
−∞m2

z dz
and β̂ =

s ′′(0)

2
, (4.8)

where s∗ is the minimum of s, which without loss of generality, is attained at a = 0, ±p, ±2p....

The function m(z) is a solution of

0 = mzz −
W ′(m)

L̄
, (4.9)

with m(z)→ 0 as z → −∞ and m(z)→ 1 as z →∞. A solution of (4.9) is given by

m(z) =
1

exp
(
−
√

3
L̄

z
)

+ 1
. (4.10)

There exists a positive constant C such that this solution satisfies

|m(z)− 1| ≤ C exp
(
−a
√

L̄z
)

for z ≥ 0, (4.11)

|m(z)| ≤ C exp
(

a
√

L̄z
)

for z ≤ 0, (4.12)

|mz(z)| ≤ C√
L̄

exp
(
−a
√

L̄|z |
)

, (4.13)

for any a such that 0 < a <
√

3
L̄

. The bound
√

L̄� δ in the theorem statement ensures that the

forcing terms have the dominant contribution to front motion.
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Inspired by [35], we assume the following ansatz for h(r , t):

h(r , t) = m(z) + m̃(z) + E (z , t) + φ(z , t), (4.14)

where m(z) is as described previously and z = r − k(t) as introduced in (4.6). The functions

m̃(z) and E (z , t) are given by

E (z , t) = α(z)δm−(r) + β(z)(δm+(r) + L̄w +(r)),

m̃(z) = γ1(z)(1−m(z)) + γ2(z)(−m(z)).

The functions α(z), β(z), γ1(z) and γ2(z) are smooth positive functions such that for some

suitable positive constants K1 large and K2 < 1 we have,

α(z) =

1 for z ≤ −
√

L̄K1p,

0 for z ≥ −
√

L̄(K1 − 1)p,
γ1(z) =

1 for z ≥ K2p,

0 for z ≤ K2

2
p,

β(z) =

0 for z ≤
√

L̄(K1 − 1)p,

1 for z ≥
√

L̄K1p.
γ2(z) =

1 for z ≤ −K2p,

0 for z ≥ −K2

2
p.

The ansatz in (4.14) compares h(r , t) to m(z). The difference between h(r , t) and m(z) is

accounted for by E (z , t) at the end points and by φ(z , t) near z = 0 (the front position). We

have assumed h ≈ δm−(r) near r = 0 and h ≈ 1 + δm+(r) + L̄w +(r) near r = 1 and hence

φ(z , t) = 0 and φz(z , t) = 0 at the end points. The functions γ1(z) and γ2(z) are chosen so that

m(z) + m̃(z) = 0 and m(z) + m̃(z) = 1 near r = 0 and r = 1 respectively. The ansatz for h(r , t)

given in (4.14) now connects the values {0, 1 + δm+(1) + L̄w(1)}, as needed (as equation (4.4)

requires m−(0) = 0).

Substituting the ansatz (4.14) into the evolution equation (4.3) with change of variables (4.6)

yields

φt =φzz + ċ((m + m̃)z + Ez + φz)− Et + (m + m̃)zz + Ezz

+

(
2

z + ρ + c
− 2

ρ + c

)
((m + m̃)z + Ez + φz)− 6

(z + ρ + c)2
(m + m̃ + E + φ)

− W ′(m + m̃ + E + φ)

L̄
+
δ(g(z + ρ + c) + F )

L̄
. (4.15)
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This chapter proceeds following the steps in [35]. Firstly, we find an expression for ċ(t) (the front

motion induced by the forcing terms as introduced in (4.6)) and show that this expression is always

well-defined. This requires proving bounds on ||φ(·, t)||1,b and ||φ(·, t)||0,b given suitable initial

conditions. In [35], the authors bound ||φ(·, t)||0,b ≤ ||φ(·, t)||1,b and find bounds on ||φ(·, t)||1,b

only. However, due to the small parameter L̄ in our problem, this bound on ||φ(·, t)||0,b is too

weak for our purposes. Instead we need to prove two bounds; ||φ(·, t)||0,b ≤ A(δ + L̄) and

||φ(·, t)||1,b ≤ A√
L̄

(L̄ + δ) for some positive constant A. The first step is then to prove that if

sup
t∈[0,T ]

||φ(·, t)||1,b ≤ B1(
√

L̄ + δ/
√

L̄) and sup
t∈[0,T ]

||φ(·, t)||0,b ≤ B2(L̄ + δ), (4.16)

for some T > 0 and constants B1 and B2 then

sup
t∈[0,T ]

||φ(·, t)||1,b ≤ B̄1(
√

L̄ + δ/
√

L̄) and sup
t∈[0,T ]

||φ(·, t)||0,b ≤ B̄2(L̄ + δ),

for all time (for some constants B̄1 and B̄2). This allows us to show that for suitable initial

conditions we can bound ||φ(·, t)||1,b and ||φ(·, t)||1,b as required for all time. In fact, if (4.16)

holds, then we can expand:

W ′(m + m̃ + E + φ) ≈ W ′(m + m̃ + E ) + φW ′′(m + m̃ + E ) + O(φ2),

φW ′′(m + m̃ + E ) ≈ φW ′′(m) + O((E + m̃)φ).

Using the bounds on m(z) in (4.11)-(4.12) and the range where γ1(z) and γ2(z) are non-zero

together with E = O(δ + L̄), we find

W ′(m + m̃ + E + φ) ≈ W ′(m + m̃ + E ) + φW ′′(m) + O((δ + L̄)φ) + O(φ2).

Then (4.15) reduces to

φt = φzz −
W ′′(m)

L̄
φ + H(z ,φ, t), (4.17)

where

H(z ,φ, t) = T1 + T2 + T3 + O1

(
(δ + L̄)φ

L̄

)
+ O2

(
φ2

L̄

)
,
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and

T1 =ċ((m + m̃)z + Ez + φz)− Et −
2

ρ + c
Ez ,

T2 =(m + m̃)zz +

(
2

z + ρ + c
− 2

ρ + c

)
(m + m̃)z −

6

(z + ρ + c)2
(m + m̃)

− W ′(m + m̃ + E )

L̄
+ Ezz +

2

z + ρ + c
Ez −

6

(z + ρ + c)2
E +

δ(g(z + ρ + c) + F )

L̄
,

T3 =

(
2

z + ρ + c
− 2

ρ + c

)
φz −

6

(z + ρ + c)2
φ.

Next we simplify the expression for ċ(t) and find a differential equation for the front position,

yielding an expression for the average front velocity in certain parameter regimes. Our computa-

tions are in three-dimensions, as opposed to the one-dimensional work in [35]. As a result, we

have an extra contribution to front motion driven by the curvature of the front. We take this

contribution into account when defining the co-moving frame in (4.6) and work in a regime where

obstacle driven motion is dominant over motion by mean curvature.

Lastly, we use stronger bounds on ||φ(·, t)||1,b to prove the existence of pulsating wave solutions

for forcing strengths above some critical value. An extension to an unequal welled potential is

discussed in Subsection 4.2.4. Our analytical results are corroborated by numerical simulations

on a three-dimensional annulus in Section 4.3, where we numerically estimate the value of the

critical forcing and consider initial conditions outside the remit of the analysis.

4.2.1 Bounds on H(z, φ, t)

The next step is to find a bound on ||H(·, t)||0,b. To this end we have split H(z ,φ, t) into three

terms. The first term T1 can be written as

T1 =ċ((m + m̃)z + φz)− Et + (ċ(t) + ρ̇(t))Ez .

Note that, as r = z + c(t) + ρ(t),

(ċ(t) + ρ̇(t))Ez − Et = (ċ(t) + ρ̇(t))(α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r , t))).
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Hence we find

T1 = ċ(t)((m + m̃)z + φz) + (ċ(t) + ρ̇(t))(α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r , t))),

and finally

||T1||0,b ≤ A

[
|ċ(t)|

(
1√
L̄

+ ||φ(·, t)||1,b

)
+
δ + L̄√

L̄

]
. (4.18)

To find this bound we have used that dρ
dt

= − 2
k(t)

= − 2
ρ(t)+c(t)

is bounded above by a constant.

Initially we consider interface movement across one period of spatial variation, well away from the

origin. The analysis will show that the forcing terms induce outwards front motion and hence ρ̇(t)

is bounded for all time.

Next, we deal with the second groups of terms which can be written as:

T2 = (m + m̃)zz +

(
2

z + ρ + c
− 2

ρ + c

)
(m + m̃)z −

6

(z + ρ + c)2
(m + m̃) +

6β(z)

(z + ρ + c)2

+
W ′(β(z) + E )

L̄
− W ′(m + m̃ + E )

L̄

+Ezz+
2

z + ρ + c
Ez −

6

(z + ρ + c)2
E − 6β(z)

(z + ρ + c)2
− W ′(β(z) + E )

L̄
+
δ(g(z + ρ + c) + F )

L̄
.

We note that for |z | >
√

L̄K1p, equations (4.4)-(4.5) hold and hence the terms on the last line of

T2 vanish after this point. Further on recalling the definition of m̃, m and the bounds on m in

(4.11)-(4.13), we find

||T2||0,b ≤ A

(
1 +

δ

L̄

)
. (4.19)

The last set of terms is given by

T3 =

(
2

z + ρ + c
− 2

ρ + c

)
φz −

6

(z + ρ + c)2
φ.

Therefore, we can see that ||T3||0,b ≤ A||φ(·, t)||1,b and combining the above, we have

||H(·, t)||0,b ≤ A

[
1+

δ

L̄
+ |ċ |

(
1√
L̄

+ ||φ(·, t)||1,b

)
+ ||φ(·, t)||1,b +

δ + L̄

L̄
||φ(·, t)||0,b +

1

L̄
||φ(·, t)||20,b

]
.

(4.20)
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As in [35], we choose c(t) such that∫ 1−k(t)

−k(t)

φ(z , t)mz(z) dz = 0,

for all t ≥ 0. Note that this is the integral across the full range of z as 0 ≤ r ≤ 1. We can make

this choice of c(t) provided
∫ 1−k(0)

−k(0)
φ(z , 0)mz(z)dz = 0 and

∫ 1−k(t)

−k(t)

φt(z , t)mz(z) dz = 0. (4.21)

Here we have made use of the assumption that φ(z , t) = 0 and φz(z , t) = 0 at the end points.

That is, we assume E (z , t) completely accounts for the difference between h(r , t) and m(z) near

r = 0 and r = 1. For the rest of the chapter we use the following notation for the L2 inner

product:

〈f (z , t), g(z , t)〉 =

∫ 1−k(t)

−k(t)

f (z , t)g(z , t) dz ,

||f ||2 = 〈f , f 〉.

We note that integration by parts yields〈
φzz −

W ′′(m)

L̄
φ, mz

〉
= −

∫ 1−k(t)

−k(t)

φz

(
mzz −

W ′(m)

L̄

)
dz ,

= 0.

Therefore (4.21), together with evolution equation (4.17), implies 0 = 〈H(t, z ,φ), mz〉 and hence

0 = ċ(t)〈(m + m̃)z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r)), mz〉

+

〈
T2 + T3 + O

(
(δ + L̄ + φ)φ

L̄
+
δ + L̄√

L̄

)
, mz

〉
.
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Therefore ċ(t) is given by

ċ(t) = −

〈
(m + m̃)zz +

(
2

z+ρ+c
− 2

ρ+c

)
(m + m̃)z − 6

(z+ρ+c)2 (m + m̃)− W ′(m+m̃+E)

L̄
, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r)), mz

〉
−

〈
Ezz + 2

z+ρ+c
Ez − 6

(z+ρ+c)2 E + δ(g(z+ρ+c)+F )

L̄
, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r)), mz

〉
−

〈(
2

z+ρ+c
− 2

ρ+c

)
φz − 6

(z+ρ+c)2φ + O
(

(δ+L̄+φ)φ

L̄
+ δ+L̄√

L̄

)
, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r)), mz

〉 .

This can be simplified by using the equation for m(z) in (4.9). Further we can note〈
Ezz −

EW ′′(m)

L̄
, mz

〉
= Ezmz −

EW ′(m)

L̄

∣∣∣∣1−k(t)

−k(t)

−
〈

mzz −
W ′(m)

L̄
, Ez

〉
< O

(
δ + L̄√

L̄

)
and

〈
Ez

z + ρ + c
, mz

〉
=

Emz

(z + ρ + c)

∣∣∣∣1−k(t)

−k(t)

−
〈

E ,
d

dz

mz

z + ρ + c

〉
< O

(
δ + L̄√

L̄

)
.

The upper bounds on the above expressions are weak but suffice as we already have an O
(
δ+L̄√

L̄

)
term in the expression for ċ(t). The m̃(z) and E (z , t) terms in ċ(t) are also much smaller than

O
(
δ+L̄√

L̄

)
and hence can be neglected. Therefore ċ(t) simplifies to

ċ(t) = −

〈(
2

z+ρ+c
− 2

ρ+c

)
mz − 6

(z+ρ+c)2 m, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r , t)), mz

〉
−

〈
δ(g(z+ρ+c)+F )

L̄
, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r , t)), mz

〉
−

〈(
2

z+ρ+c
− 2

ρ+c

)
φz − 6

(z+ρ+c)2φ + O
(

(δ+L̄+φ)φ

L̄
+ δ+L̄√

L̄

)
, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r , t)), mz

〉 .

We note that this expression for ċ(t) is well-defined provided the denominator never vanishes. In

particular, we can see that the bounds we assumed in (4.16) hold, that is

sup
t∈[0,T ]

||φ(·, t)||1,b ≤ B1(
√

L̄ + δ/
√

L̄) and sup
t∈[0,T ]

||φ(·, t)||0,b ≤ B2(L̄ + δ), (4.22)
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for some T > 0, the bounds on m(z) in (4.11)-(4.13) and the definition of E (z , t) give

|ċ(t)| ≤ B3

(√
L̄ +

δ√
L̄

)
, (4.23)

for all t ∈ [0, T ]. We have used that ||mz ||2 = O
(

1√
L̄

)
to find (4.23). Further, in this case, the

bound on ||H(·, t)||0,b in (4.20) can be written as

||H(·, t)||0,b ≤ A

[
1+

δ

L̄
+ B

(√
L̄ +

δ√
L̄

)
||φ(·, t)||1,b

+ ||φ(·, t)||1,b +
δ + L̄

L̄
||φ(·, t)||0,b +

1

L̄
||φ(·, t)||20,b

]
,

(4.24)

for some positive constants A and B and for all t ∈ [0, T ]. The key step in proving Theorem 4.1

is showing that the bounds on sup ||φ(·, t)||1,b and sup ||φ(·, t)||0,b in (4.22) hold for all time.

4.2.2 Bounds on φ(z, t)

In this subsection we prove the necessary bounds on ||φ(t)||1,b and ||φ(t)||0,b using the following

results.

Proposition 4.1. Let v(x , t) be the solution of

vt = vxx −
W ′′(m(x))

L̄
v , v(x , 0) = v0,

where v0 ∈ {f : ||f ||1,b <∞} and
∫ 1−k0

−k0
v0(x)m′(x) dx = 0. Then there exists N ≥ 1 and ω > 0

such that

||v(t)||0,b ≤ N exp
(
−ω

L̄
t
)
||v0||0,b, (4.25)

||v(t)||1,b ≤ N
exp(−ω

L̄
t)

√
t
||v0||0,b, (4.26)

||v(t)||1,b ≤ N exp
(
−ω

L̄
t
)
||v0||1,b, (4.27)

for all t ≥ 0.

Proof. The proof follows the same method as in [97, 35]. The strategy involves defining the linear

operator L̄ψ := ψzz − W ′′(m(z))

L̄
ψ. The proof proceeds by considering the equation

(
L̄ − λ

L̄

)
φ = 0

for some complex number λ and proving bounds on ||
(
L̄ − λ

L̄

)−1
g ||0,b and ||

(
L̄ − λ

L̄

)−1
g ||1,b.
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These bounds are used to find bounds on ||v(t)||0,b and ||v(t)||1,b by writing v(t) as a contour

integral.

Proposition 4.2. Let f (t) be a continuous positive function such that for some constants P ≥ 1,

Q, R, ω:

f (t) ≤ P exp(−ωt)f (0) +

∫ t

0

exp(−ω(t − s))(Q + Rf (s)) ds. (4.28)

If R ≤ ω/2, then f (t) ≤ Pf (0) + 2Q/ω for all t ≥ 0.

Proof. The proof is standard and can be found in [35].

To apply Proposition 4.2, we need to prove inequalities of the form (4.28) for ||φ(t)||1,b and

||φ(t)||0,b.

Proposition 4.3. If supt∈[0,T ] ||φ(t)||1,b ≤ B1(
√

L̄ + δ/
√

L̄) and supt∈[0,T ] ||φ(t)||0,b ≤ B2(L̄ + δ)

then there exists N > 1 and ω > 0 such that

||φ(t)||1,b ≤N exp
(
−ω

L̄
t
)
||φ(0)||1,b

+

∫ t

0

N√
L̄

exp
(
−ω

L̄
(t − s)

)
A

[
1 +

δ

L̄
+ B

(√
L̄ +

δ√
L̄

)
||φ(s)||1,b

+ ||φ(s)||1,b +
(δ + L̄)

L̄
||φ(s))||0,b +

1

L̄
||φ(s)||20,b

]
ds, (4.29)

for some positive constants A and B and for all 0 ≤ t ≤ T .

Proposition 4.4. If supt∈[0,T ] ||φ(t)||1,b ≤ B1(
√

L̄ + δ/
√

L̄) and supt∈[0,T ] ||φ(t)||0,b ≤ B2(L̄ + δ)

then there exists N > 1 and ω > 0 such that

||φ(t)||0,b ≤N exp(−ω
L̄

t)||φ(0)||0,b

+

∫ t

0

N exp
(
−ω

L̄
(t − s)

)
A

[
1 +

δ

L̄
+ B

(√
L̄ +

δ√
L̄

)
||φ(s)||1,b

+ ||φ(s)||1,b +
(δ + L̄)

L̄
||φ(s))||0,b +

1

L̄
||φ(s)||20,b

]
ds, (4.30)

for some positive constants A and B and for all 0 ≤ t ≤ T .

Proof of Propositions 4.3 and 4.4. The proofs follow the strategy in [35, Proposition 15]. The

key step is to note that the solution φ(z , t) of (4.17) satisfies, for example,

66



Chapter 4. Front propagation in heterogeneous materials

||φ(t)||1,b = ||S(t)φ(0)||1,b +

∫ t

0

||S(t − s)H(s)||1,b ds,

where S(t) is the solution operator of the equation φt = L̄φ = φzz − W ′′(m(z))

L̄
φ. We recall

the bound for H in (4.24) and apply the bounds (4.25)-(4.27) in Proposition 4.1 using that

〈H , mz〉 = 0.

To summarize Propositions 4.3 and 4.4: if for some T > 0, φ(z , t) satisfies

sup
t∈[0,T ]

||φ(t)||1,b ≤ M

(√
L̄ +

δ√
L̄

)
,

sup
t∈[0,T ]

||φ(t)||0,b ≤ M(L̄ + δ),

then there are positive constants E1, E2, FM1 and FM2 such that

||φ(t)||1,b ≤N exp
(
−ω

L̄
t
)
||φ(0)||1,b

+

∫ t

0

exp
(
−ω

L̄
(t − s)

)[ E1√
L̄

(
1 +

δ

L̄

)
+

FM1√
L̄

(
1 +

δ√
L̄

)
||φ(s)||1,b

]
ds,

||φ(t)||0,b ≤N exp
(
−ω

L̄
t
)
||φ(0)||0,b

+

∫ t

0

exp
(
−ω

L̄
(t − s)

)[
E2

(
1 +

δ

L̄

)
+ FM2

(
1 +

δ

L̄

)
||φ(s)||0,b

]
ds,

for all 0 ≤ t ≤ T . Proposition 4.2 then gives that, provided L̄ and δ are sufficiently small so that,

FM1√
L̄

(
1 +

δ√
L̄

)
<

ω

2L̄
and FM2

(
1 +

δ

L̄

)
<

ω

2L̄
, (4.31)

we have

sup
t∈[0,T ]

||φ(t)||1,b ≤ N ||φ(0)||1,b +
2E1

ω

√
L̄

(
1 +

δ

L̄

)
, (4.32)

sup
t∈[0,T ]

||φ(t)||0,b ≤ N ||φ(0)||0,b +
2E2

ω
L̄

(
1 +

δ

L̄

)
, (4.33)

for all 0 ≤ t ≤ T . We can now prove bounds on ||φ(t)||1,b and ||φ(t)||0,b which hold for all time,

applying the methods in [35] for each bound.
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Proposition 4.5. Choose M so that M/4 ≥ 2E1/ω and M/4 ≥ 2E2/ω . Choose L̄ and δ to

satisfy (4.31). If the initial condition is bounded such that

||φ(0)||1,b ≤
M

4N

√
L̄

(
1 +

δ

L̄

)
and ||φ(0)||0,b ≤

M

4N
L̄

(
1 +

δ

L̄

)
, (4.34)

where N is the constant introduced in Propositions 4.3 and 4.4, then

||φ(t)||1,b ≤ M
√

L̄

(
1 +

δ

L̄

)
and ||φ(t)||0,b ≤ ML̄

(
1 +

δ

L̄

)
, (4.35)

for all t ≥ 0.

Proof. Suppose for a contradiction

TM = inf

{
t : ||φ(t)||1,b = M

√
L̄

(
1 +

δ

L̄

)
or ||φ(t)||0,b = ML̄

(
1 +

δ

L̄

)}
<∞.

Suppose at t = TM we have that ||φ(t)||1,b = M
√

L̄(1 + δ/L̄). Then for t ≤ TM , we have

sup
t∈[0,TM ]

||φ(t)||1,b ≤ M
√

L̄

(
1 +

δ

L̄

)
and sup

t∈[0,TM ]

||φ(t)||0,b ≤ ML̄

(
1 +

δ

L̄

)
, (4.36)

and hence we can use (4.32) to yield

sup
t∈[0,TM ]

||φ(t)||1,b ≤ N ||φ(0)||1,b +
2E1

ω

√
L̄

(
1 +

δ

L̄

)
≤ M

2

√
L̄

(
1 +

δ

L̄

)
.

Hence ||φ(t)||1,b < M
√

L̄(1 + δ/L̄) for all t ∈ [TM , TM + ε] for some small ε and we have the

required contradiction. A similar contradiction follows if ||φ(t)||0,b = ML̄(1+δ/L̄) at T = TM .

The previous proposition gives bounds on ||φ(t)||1,b and ||φ(t)||0,b for all time and we conclude

that our expression for ċ(t) is well-defined. To prove the existence of pulsating wave solutions, we

need a tighter bound on ||φ(t)||1,b. This bound is applicable for sufficient times (of O(L̄)) only:

Proposition 4.6. Choose δ as before, M such that M/16N ≥ E1/ω and an L̄ that satisfies (4.31)

and is such that
√

L̄ ≤ w/16NFM1. If ||φ(0)||1,b ≤ M
4N

√
L̄(1 + δ

L̄
) then ||φ(t)||1,b ≤ M

4N

√
L̄(1 + δ

L̄
)

for all t ≥ L̄
ω

ln(2N).

Proof. Our assumptions mean we have satisfied the conditions for Proposition 4.5. We also make
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use of Proposition 4.3, which gives

||φ(t)||1,b ≤N exp
(
−ω

L̄
t
)
||φ(0)||1,b +

∫ t

0

exp
(
−ω

L̄
(t − s)

)[ E1√
L̄

(
1 +

δ

L̄

)
+

FM1√
L̄
||φ(s)||1,b

]
ds,

≤M

4

√
L̄

(
1 +

δ

L̄

)
exp
(
−ω

L̄
t
)

+
L̄

ω

[
E1√

L̄

(
1 +

δ

L̄

)
+ FM1M

(
1 +

δ

L̄

)]
,

≤ M

8N

√
L̄

(
1 +

δ

L̄

)
+

E1

ω

√
L̄

(
1 +

δ

L̄

)
+

FM1M

ω
L̄

(
1 +

δ

L̄

)
,

≤ M

4N

√
L̄

(
1 +

δ

L̄

)
,

for all t ≥ L̄
ω

ln(2N).

4.2.3 Front speed and existence of a fixed point

We are now in a position to prove Theorem 4.1. Recall that

ċ(t) = −

〈(
2

z+ρ+c
− 2

ρ+c

)
mz − 6

(z+ρ+c)2 m, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r , t)), mz

〉
−

〈
δ(g(z+ρ+c)+F )

L̄
, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r , t)), mz

〉
−

〈(
2

z+ρ+c
− 2

ρ+c

)
φz − 6

(z+ρ+c)2φ + O
(

(δ+L̄+φ)φ

L̄
+ δ+L̄√

L̄

)
, mz

〉
〈

mz + m̃z + φz + α′(z)δm−(r) + β′(z)(δm+(r) + L̄w +(r , t)), mz

〉 .

which, on applying the definitions and properties of m(z), m̃(z), E (z) and φ(z , t), has leading

order behaviour

ċ(t) =
δ

L̄

〈g(z + ρ + c) + F ,−mz〉
||mz ||2 + O(δ/

√
L̄ +
√

L̄)
.

Now recalling the quantities

s(a) = −
∫ ∞
−∞

g(z + a)mz(z) dz , F̂ = s∗, α̂ =
1√

L̄
∫∞
−∞m2

z dz
and β̂ =

s ′′(0)

2
,

where s∗ is the minimum value of s attained at 0, ±p, ±2p..., we have

ċ(t) =
δ

L̄

 −F + s(c(t) + ρ(t))

||mz ||2 + O
(
δ/
√

L̄ +
√

L̄
)
 . (4.37)
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We note that any disparities in running the integral over (−∞,∞) as opposed to (−k(t), 1−k(t))

in the definitions of α̂ and s(a) are exponentially small and can be neglected. We can now write

down a general differential equation for the front position k(t) = c(t) + ρ(t),

k̇(t) = ċ(t) + ρ̇(t) =
δ

L̄

(
−F + s(c(t) + ρ(t))

||mz ||2 + O(δ/
√

L̄ +
√

L̄)

)
− 2

c(t) + ρ(t)
,

=
δ

L̄

(
−F + s(k(t))

||mz ||2 + O(δ/
√

L̄ +
√

L̄)

)
− 2

k(t)
. (4.38)

Due to the bounds on F in theorem statement, namely F < F̂ < 0, the ċ(t) component of the

above expression is smallest in magnitude when the interface position is such that s(k(t)) is

minimized. Therefore, we begin by considering front motion near k(t) = p, 2p, 3p.... Following

the ideas in [35], we fix a small constant 0 < P � p. During the time tP it takes for the front to

travel distance P into a spatial heterogeneity, say from 2p to 2p + P , we have

k̇(t) =
δ√
L̄
α̂(η + β̂(k(t)− 2p)2)− 2

k(t)
, (4.39)

where η = F̂ − F , having used that s ′(2p) = 0 as 2p is a minimizer of s.

Proof of Theorem 4.1.

In the case that δ/
√

L̄� 1, the expression for k̇(t) in (4.39) and the change of variables k̂ = k−2p

give that the time taken by the front to travel from 2p to 2p + P can be expressed as

tP =

√
L̄

α̂δ

∫ P

0

dk̂

η + β̂(k̂(t))2 + O(
√

L̄/δ)
.

Upon integration, provided L̄∗ is sufficiently small and C1 is sufficiently large so that η > O(
√

L̄/δ)

(where L̄∗ and C1 are as in the statement of Theorem 4.1), we find that

tP =

√
L̄

α̂δ

1√
ηβ̂

tan−1


√
β̂P
√
η

 . (4.40)
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Recall η ≤ C2 in statement of Theorem 4.1. Suppose C2 is sufficiently small so that

tan−1


√
β̂P∗

√
η

 ≈ π

2
,

for some 0 < P∗ < P . Then tP∗ follows from (4.40) and tP − tP∗ is very small. This means

the front takes a very small amount of time to travel from 2p + P∗ to 2p + P in comparison to

the time taken to travel from 2p to 2p + P∗. Hence the front displays avalanche motion; slower

phases of motion for interface positions k(t) close to minimizers of s(·) and faster phases of

motion away from these critical points. For the sufficiently small C2 we have

tP ≈
√

L̄

α̂δ

1√
ηβ̂

π

2
.

Therefore, for any σ > 0, we can find C1, C2 and L̄∗ such that

√
L̄(1− σ)π

2α̂δ

√
β̂η

≤ tP ≤
√

L̄(1 + σ)π

2α̂δ

√
β̂η

. (4.41)

As discussed above, we observe very quick front motion for k(t) away from minimizers of s(·).

Therefore, we conclude that the total time for the front to travel one period of the spatial

heterogeneity (for example, from k = 2p to k = 3p) is well approximated by 2tP . This is because

the time taken to travel from 2p + P to 3p − P is much smaller than from 2p to 2p + P and

3p − P to 3p (where front motion is slow as the front position is close to a minimizer of s(·)).

Hence we have the average front velocity VF = p/TF satisfies

(1− σ)p
α̂δ

√
β̂(F̂ − F )
√

L̄π
≤ VF ≤ (1 + σ)p

α̂δ

√
β̂(F̂ − F )
√

L̄π
. (4.42)

The bounds on VF in (4.42) give that it takes sufficient time for the front to travel the distance

p (recall F̂ − F ≤ C2 in the theorem statement of Theorem 4.1). This means the condition of

sufficient time (of order L̄) in Proposition 4.6 is satisfied and we can use the proposition in the

next result. We are now able to prove the existence of pulsating wave solutions which follows

from the existence of a fixed point.

Theorem 4.2 (Existence of fixed point). For M, δ, L̄ and F as in Theorem 4.1 and Proposition

4.6, there exists φ0 such that ||φ0||1,b ≤ M
4N

√
L̄(1 + δ/L̄) and 0 < T (φ) < ∞ such that
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φ(T (φ0)) = φ0, where φ(t) is the solution of (4.17) with initial condition φ0.

Proof. The proof of this theorem follows verbatim from [35, Theorem 19], the key step follows

from Proposition 4.6 which gives ||φ(t)||1,b ≤ ||φ0||1,b for all t ≥ L̄
ω

ln(2N).

This completes the proof of Theorem 4.1.

4.2.4 Extension to an unequal welled potential

In this section we consider the more general case where W (h) is an unequal welled potential. For

an arbitrary value of the rescaled temperature A we have

W ′(h) = 6h2 (h − 1)

(
h − h−

h+

)
,

where

h+ =
B +
√

B2 − 24AC

4C
and h− =

B −
√

B2 − 24AC

4C
.

Again, we study the equation

ht = hrr +
2

r
hr −

6

r 2
h − W ′(h)

L̄
+
δ(g(r) + F )

L̄
, (4.43)

and consider the following proposition.

Proposition 4.7. The front position k(t) of a solution of (4.43) with suitable initial conditions

evolves according to

k̇(t) =
δ

L̄

−F + s(k(t))

||mz ||2
− 2

k(t)
+ ḋ(t),

where ḋ(t) =
√

3
L̄

(
2h−
h+
− 1
)

.

In this case, we make the change of variable z = r − ρ(t)− c(t)− d(t), where c(t) is as before

and ρ(t) now satisfies
dρ

dt
= − 2

ρ + c + d
.

The function d(t) is a linear term accounting for front motion driven by the unequal well structure

of the bulk potential. Again we suppose that h(r , t) = m(z) + m̃(z) + E (z , t) + φ(z , t) with
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E (z , t) and m̃(z) as before. In the case of an unequal welled potential, let m(z) be a solution of

mzz + ḋmz −
W ′(m)

L̄
= 0. (4.44)

We see in Chapter 2 that (4.44) has a solution for a unique value of ḋ which is given by

ḋ(t) =

√
3

L̄

(
2

h−
h+
− 1

)
. (4.45)

The solution m(z) of (4.44) satisfies the bounds in (4.11)-(4.13), in particular

|mz(z)| ≤ C√
L̄

exp
(
−a
√

L̄|z |
)

, (4.46)

for any a satisfying 0 < a <
√

3
L̄

[44]. It is now possible to proceed exactly as before.

4.3 Numerical simulations in heterogeneous materials

We numerically study the full non-dimensionalized and normalized Landau-de Gennes gradient

flow system with forcing terms at the isotropic-nematic transition temperature as in (4.1) given by

Qt = ∇2Q− 9

L̄

[
1

3
Q− 3

(
QQ− I

3
|Q|2

)
+ |Q|2Q

]
+

2

3

δ

L̄

(
r̂ × r̂ − I

3

)
(g(r) + F ),

We take Ω to be the three-dimensional annulus given by

Ω := {x ∈ R3; 9 ≤ |x| ≤ 10}.

In this section we work with initial conditions with front structures positioned well away from the

origin in order to minimize the curvature driven contribution to front velocity. This is necessary as

even the most refined mesh achievable with our numerical methods only allows for L̄ = O(10−4).

This means that δ/
√

L̄ is too small for obstacle driven motion to dominate in the unit sphere. It

is more practical to work on a unit annulus than a large sphere, especially as we expect outwards

front motion. For these simulations, the annulus is discretised with a spherical polar grid (as our

domain no longer contains the origin) and the remaining numerical details are as introduced in

Chapter 2.

We work with either L̄ = 3.5 × 10−3 or 6.9 × 10−4. We consider the periodic forcing term
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g(r) = cos(12πr) which has period p = 1
6
. We impose the boundary conditions

Q(9, t) = 0 and Q(10, t) = r̂ ⊗ r̂ − I

3
,

where r̂ is the three-dimensional unit radial vector. We study the resultant dynamic solutions

for a range of initial conditions, discussing the existence of pulsating wave solutions and making

comparisons with our analytical results when appropriate. We first consider a radially symmetric

initial condition, within the remit of the analysis, given by

Q(r, 0) = h(r)

(
r̂ ⊗ r̂ − I

3

)
, (4.47)

where

h(r) =
1

2

[
1 + tanh

(
r − r0√

L̄

)]
, (4.48)

and r0 = 9.3. We work with δ = 2 throughout. Comparison to the average velocity VF is not

appropriate as these values of L are far too big for our estimate to be valid. However we can

study the existence of pulsating wave solutions, in particular as F decreases past some critical F ∗.

We also compare this F ∗ to the critical F̂ predicted in Section 4.2, however we expect |F ∗| to be

larger than |F̂ | due to the curvature contribution. Recall that F̂ = s∗ and in this case

s∗ = min
a

(
−
∫ ∞
−∞

cos(12π(z + a))mz(z) dz

)
,

= min
a

(
−1

4

∫ ∞
−∞

cos(12π(z + a))sech2

(√
3

4L̄
z

)
dz

)
.

This follows from the solution m(z) in (4.10). We compute F̂ by numerically integrating the

above expression to yield s∗. Firstly, let L̄ = 3.5 × 10−3, then F̂ is found to be F̂ = −0.14.

Figure 4-1 shows the front position for various values of F and suggests that we get a qualitative

change in solution as F increases past F ∗ for −0.84 < F ∗ < −0.83. As expected |F̂ | < |F ∗|.
Figure 4-2 shows how the eigenvalues of Q(r, t) evolve, with time shots taken at t = 0.025

intervals for F = −0.89. The figure confirms that the system remains uniaxial and illustrates

the front velocity increasing and decreasing as the front travels over the obstacles. Next we take

L̄ = 6.9× 10−4. For this value of L̄, we find F̂ = −0.61. Figure 4-3 yields that for L̄ = 6.9× 10−4,

−0.99 < F ∗ < −0.98. Figures 4-3 and 4-1 together suggest that the comparison between F ∗ and

F̂ improves as L̄ decreases.
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Figure 4-1: Front position k for initial condition (4.47) and (4.48) for F = −0.83 (orange),
F = −0.84 (orange dash), F = −0.86 (blue) and F = −0.89 (blue dash) for L = 3.5× 10−3 and
δ = 2.

Figure 4-2: Radial profiles of the eigenvalues of Q(r, t) for initial condition (4.47) and (4.48) for
F = −0.89, L̄ = 3.5× 10−3 and δ = 2 with time shots taken at t = 0.025 intervals starting at
t = 0 (light blue) to t = 0.5 (black).

Figure 4-3: Front position k for initial condition (4.47) and (4.48) for F = −0.98 (orange),
F = −0.99 (orange dash), F = −1.1 (blue) and F = −1.2 (blue dash) for L̄ = 6.9× 10−4 and
δ = 2.
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We now consider initial conditions outside the remit of the analysis, working with F = −0.89,

L̄ = 3.5× 10−3 and δ = 2. An example of such an initial condition is

Q(r, 0) = (r − 9)

(
r̂ ⊗ r̂ − I

3

)
. (4.49)

This initial condition has no front structure however, as shown in Figure 4-4, a propagating front

quickly evolves and the long-time behaviour is as for the previous initial condition.

Figure 4-4: Radial profiles of the eigenvalues of Q(r, t) for initial condition (4.47) and (4.49) with
time shots taken at t = 0.025 intervals starting at t = 0 (light blue) to t = 0.3 (black).

Our third initial condition is biaxial for 9 ≤ r ≤ 9.5 and is given by

Q(r, 0) = h(r)

(
r̂ ⊗ r̂ − I

3

)
+ s(r) (m⊗m− p⊗ p) , (4.50)

where h(r) is given in (4.48), s(r) = 1
10

(1 + tanh (50(r − 9.5))) (r − 9)(10 − r) and m and p

are as in Chapter 3. Plots of the eigenvalues of Q(r, t) show that the solution quickly becomes

uniaxial, see Figure 4-5. Radial symmetry is recovered and a pulsating wave solution is generated.

For initial conditions which are biaxial for all 9 ≤ r ≤ 10, we find the radial symmetry in the

exterior is lost. We no longer observe the formation of radially symmetric rings of alternating high

and low obstacle strength and hence do not find pulsating wave solutions for these initial conditions.

Next we consider an initial condition with a radially asymmetric front, choosing h(r) to impose an

ellipsoidal initial interface in (4.47), see the first time panel of Figure 4-6 (where the annulus has

been rescaled for illustrative purposes). Plots of |Q(r, t)|2 in Figure 4-6 show the ellipsoidal front
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Figure 4-5: Radial profiles of the eigenvalues of Q(r, t) for initial condition (4.50) with time shots
taken at t = 0.025 intervals starting at t = 0 (light blue) to t = 0.3 (black).

becoming more symmetric through the bands of low obstacle strength and slow front motion, and

more eccentric again when the edges of the ellipse reach the bands of high obstacle strength first.

Figure 4-7 demonstrates the existence of pulsating waves solutions for this initial condition.

Figure 4-6: |Q(r, t)|2 for a cross-section of the annulus for a radially asymmetric initial condition
at t = 0, t = 0.08, t = 0.12 and t = 0.18 (top left to bottom right).
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Figure 4-7: Radial profiles of the eigenvalues of Q(r, t) for a radially asymmetric initial condition
with time shots taken at t = 0.025 intervals starting at t = 0 (light blue) to t = 0.3 (black).

Finally, we consider the contribution of motion driven by the curvature of the front. Imposing

initial condition (4.47) and (4.48) on annuli of various radii, we compare front speed for different

initial front positions. We take our domain to be

Ω := {x ∈ R3; R1 ≤ |x| ≤ R1 + 1},

for various R1 with r0 = 2R1+1
2

in (4.48). We expect there to be a large range of R1 for which

the front becomes pinned. Suppose the front travels inwards from 2R1+1
2

, that is, mean curvature

motion dominates on this annulus. As we increase R1, the mean curvature contribution to front

motion decreases and the front becomes pinned when the outwards-motion inducing forcing terms

in a band of high forcing strength (where g(r) < 0) arrests the front. As we increase R1 further,

it is not until the outwards-motion inducing forcing terms in a band of low forcing strength (where

g(r) > 0) can overcome the mean curvature contribution that the front advances.

First we take δ = 2 and plot the front position with time for various R1. From the first graph in

Figure 4-8 we can see how outward front propagation becomes slower as R1 decreases. The front

motion is only slightly inhibited as we decrease from R1 = 9 (the radius considered in all previous

simulations) to R1 = 7, however for R1 = 4 the front becomes pinned and yields a stationary

solution. We decrease δ in order to observe inwards front motion and take δ = 0.3. For R1 = 1,

the front travels inwards and the second graph in Figure 4-8 illustrates the change in speed as the

front advances over alternating regions of high and low opposition. As we increase to R1 = 2,

the front is arrested and we have a stationary solution. It is not until R1 = 35 that low bands of

outwards forcing strength are able to overcome mean curvature and the front moves outwards.
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Figure 4-8: Front position k with R1 = 4 (orange dash), R1 = 5 (blue dash), R1 = 7 (orange),
R1 = 9 (blue) and δ = 2 (left), and R1 = 1 (blue), R1 = 2 (orange), R1 = 35 (blue dash) and
δ = 0.3 (right).

4.4 Numerical simulations with a moon-shaped obstacle

Here we solve the full Landau-de Gennes gradient flow system in the unit square given by

Ω := {(x , y) ∈ R2; 1 ≤ x ≤ 2, 1 ≤ y ≤ 2}. We consider the presence of two types of obstacle;

periodic forcing of the form δ(cos(12πy) + F ) and a moon-shaped obstacle given by φf (x , y)

where f (x , y) is shown in Figure 4-9 and φ is a constant. The periodic forcing terms induce front

movement down the square. Inspired by the work in [112] and [113] we study the pinning of an

isotropic-nematic front as it encounters the moon, demonstrating that pinning is dependent on

moon orientation for certain forcings. We work with an initial condition with a front structure

separating the isotropic and nematic states given by

Q(x , y , 0) =
1

2

[
1 + tanh

(
y − y0√

L̄

)](
n̂⊗ n̂− I

3

)
,

where n̂ = (1, 0, 0) and impose the Dirichlet boundary conditions Q(x , 1, t) = 0 and Q(x , 2, t) =

n̂ ⊗ n̂ − I
3
. The remaining sides are free boundaries. In this case the non-dimensionalized and

normalized Landau-de Gennes gradient flow system at the isotropic-nematic transition temperature

is given by

Qt = ∇2Q−9

L̄

[
1

3
Q− 3

(
QQ− I

3
|Q|2

)
+ |Q|2Q

]
+

(
n̂× n̂− I

3

)(
δ

L̄
(g(r) + F ) +

φ

L̄
f (x , y)

)
.

We take δ = 2, F = 1.2, φ = −4 and L̄ = 3.5× 10−3. We find if the front meets the rounded

edge of the moon first the interface becomes pinned. However, the front is able to pass through
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the obstacle if the moon is orientated so the front meets the two points. This is illustrated with

plots of |Q(r, t)|2 in Figures 4-10 and 4-11.

Figure 4-9: f (x , y) for the two orientations of the moon studied.

Figure 4-10: |Q(r, t)|2 for orientation 1 at t = 0, t = 2, t = 4 and t = 7 (top left to bottom
right). The spatial resolution is h = 1

128
.
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Figure 4-11: |Q(r, t)|2 for orientation 2 at t = 0, t = 1.5, t = 4.5 and t = 7.
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CHAPTER 5

Equilibrium configurations on the disc

In Chapter 5 we consider dynamic solutions of the Landau-de Gennes gradient flow system

on the two-dimensional unit disc with Dirichlet boundary conditions subject to two distinct

types of initial condition; planar and non-planar. Working at the isotropic-nematic transition

temperature we compare the resulting transient dynamics and long-term behaviour, including how

the initial condition affects the persistence of isotropic-nematic fronts. Our numerical results are

complemented by the analysis of a class of planar critical points of the Landau-de Gennes energy

introduced in Fratta et al 2016 [33]. These solutions are labelled by two radially symmetric order

parameters u and v . The first parameter u is a measure of the biaxiality of the solution and the

uniaxial part of the solution is accounted for by v .

5.1 Problem formulation

We take our domain to be the unit disc given by

Ω := {x ∈ R2; |x| ≤ 1},

and impose the fixed boundary condition

Qb = r̂ ⊗ r̂ − I

3
on r = 1, (5.1)
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where r̂ = (cos θ, sin θ, 0) is the two-dimensional unit radial vector. We study dynamic solutions of

the Landau-de Gennes gradient flow system (2.4) at the isotropic-nematic transition temperature,

which can be normalised to yield

Qt = ∇2Q− 9

L̄

(
1

3
Q− 3

(
QQ− I

3
|Q|2

)
+ |Q|2Q

)
, (5.2)

subject to the boundary condition (5.1). We work with small values of the elastic constant

L̄ = 81C
B2 L. The fixed boundary condition is purely uniaxial and is a minimum of the relevant bulk

potential.

We begin with some heuristics for the dynamic solutions of (5.2) driven by an understanding

of Landau-de Gennes energy minimizers on the disc. The gradient flow model is based on the

principle that dynamic solutions evolve along a path of decreasing energy and converge to a

critical point of the Landau-de Gennes energy for long times [87]. Hence the long-time behaviour

can be predicted by a study of the critical points or local minimizers of the Landau-de Gennes

energy. As discussed in Chapter 3, in [76] the authors present an analysis of Landau-de Gennes

energy minimizers in the L̄→ 0 limit. Based on their analysis the minimizers converge strongly in

W 1,2 (Ω, S0) to a limiting harmonic map of the form

Q = s

(
n∗ ⊗ n∗ − I

3

)
,

where n∗ is a solution of the harmonic map equations and s = 0 or s = 1 so that Q is a

minimum of the normalised bulk potential. Boundary condition (5.1) dictates that s = 1 and

n∗ = (cos θ, sin θ, 0) on r = 1. The convergence is shown to be uniform away from the singularities

of the limiting harmonic map, which may not be unique. (Also see Golovaty and Montero 2014

[49], where the authors focus on Landau-de Gennes minimizers on planar domains.) Two solutions

of the harmonic map equations ∇2n∗+ |∇n∗|2n∗ = 0 on the disc subject to the boundary condition

n∗ = (cos θ, sin θ, 0) on r = 1, are given by

n1 = (cos θ, sin θ, 0) and n2 =

(
2x

1 + r 2
,

2y

1 + r 2
,

1− r 2

1 + r 2

)
.

We conjecture there are two competing limiting harmonic maps defined in terms of n1 and n2:

Q1 = s

(
n1 ⊗ n1 −

I

3

)
and Q2 =

(
n2 ⊗ n2 −

I

3

)
.
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Since n1 is not defined at r = 0 we must have s = 0 at r = 0 for Q1. Therefore Q1 must have an

isotropic core at the origin with s → 1 rapidly (over a distance of
√

L̄) away from r = 0. However,

n2 has no singularity on Ω since the vector escapes into the third dimension and hence Q2 is not

required to have an isotropic core. We predict that the dynamic solutions of (5.2) subject to (5.1)

converge to either Q1 or Q2 for long times. They converge to Q2 if escape into the third dimension

is possible. If escape into the third dimension is not allowed, dynamic solutions converge to Q1 in-

stead. We prove that escape into third dimension is impossible for certain initial conditions with the

following lemma. We refer to a Q-tensor as being planar if Q13 = Q23 = 0 and non-planar if Q13

and Q23 are not identically zero. In particular, the boundary condition in (5.1) is a planar Q-tensor.

Lemma 5.1. Let Q(r, t) be a solution of the gradient flow system associated with the Landau

-de Gennes energy functional (5.2) on Ω subject to (5.1) with a planar initial condition Q(r, 0)

such that |Q(r, 0)| ≤
√

2
3
. Then Q13 = Q23 = 0 for all t ≥ 0.

Proof. The proof is an immediate application of Gronwall’s inequality [94]. From [72] we have

the following bound for the dynamic solution:

|Q (r, t)| ≤
√

2

3
for all t ≥ 0. (5.3)

The two governing partial differential equations for Q13 and Q23 can be written in the form

∂Q13

∂t
−∇2Q13 =

1

L̄
F (Q)Q13 + BQ12Q23,

∂Q23

∂t
−∇2Q23 =

1

L̄
G (Q)Q23 + BQ12Q13,

where F and G are bounded functions due to (5.3). We multiply the first equation by Q13 and

the second equation by Q23, add the two equations together, integrate by parts and use the fact

that Q13 = Q23 = 0 on r = 1 to get

1

2

d

dt

(∫
Ω

Q2
13 + Q2

23 dV

)
+

∫
Ω

|∇Q13|2 + |∇Q23|2 dV

=
1

L̄

∫
Ω

F (Q)Q2
13 + G (Q)Q2

23 + 2BQ12Q13Q23 dV .
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Hence we have

d

dt

∫
Ω

Q2
13 + Q2

23 dV ≤ δ

L̄

∫
Ω

Q2
13 + Q2

23 dV ,

where δ is a positive constant. An immediate application of Gronwall’s inequality shows that∫
Ω

Q2
13 + Q2

23 dV ≤ exp

(
δ

L̄
t

)(∫
Ω

Q2
13 + Q2

23 dV

) ∣∣∣∣
t=0

= 0,

so that Q13 = Q23 = 0 for all t ≥ 0.

5.2 The (u, v)-static solutions

We illustrate the difference between planar and non-planar initial conditions by focussing on

(u, v)-type initial conditions inspired by the (u, v)-critical points of the Landau-de Gennes energy

reported in [33] for low temperatures where A < 0. We work at A = B2

27C
and, by analogy with

the work in [33], look for special solutions of the normalized Landau-de Gennes Euler-Lagrange

equations at the isotropic-nematic transition temperature given by

0 = L̄∇2Q− 9

(
1

3
Q− 3

(
QQ− I

3
|Q|2

)
+ |Q|2Q

)
,

of the form

Q =
u(r)

2
(n1 ⊗ n1 −m⊗m) + v(r)

(
p⊗ p− I

3

)
, (5.4)

where m = (− sin θ, cos θ, 0) and p = (0, 0, 1). Such solutions, if they exist, are given by solutions

of the following system of coupled second-order ordinary differential equations

urr +
ur

r
− 4u(r)

r 2
=

u

L̄

(
3 + 18v +

9

2
u2 + 6v 2

)
, (5.5)

vrr +
vr
r

=
v

L̄

(
3− 9v +

9

2
u2 + 6v 2

)
+

27

4L̄
u2, (5.6)

with u(0) = vr (0) = 0 and u(1) = 1, v(1) = −1
2

to be consistent with the boundary condition in

(5.1). As in [33], we can prove the existence of a solution pair (u, v) of (5.5)-(5.6) by appealing
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to a variational problem. Define the energy

E(u, v) =

∫ 1

0

[
1

4
u2
r +

1

3
v 2
r +

1

r 2
u2 +

1

L̄

(
3u2

4
+ v 2

)

+
1

L̄

(
9u4

16
+

3u2v 2

2
+ v 4

)
− 1

L̄
v

(
2v 2 − 9u2

2

)]
r dr .

(5.7)

This is simply the rescaled Landau-de Gennes energy of the (u, v)-ansatz. The energy is defined

on the admissible set

S :=

{
(u, v) : [0, 1]→ R2

∣∣∣∣√rur ,
√

rvr ,
u√

r
,
√

rv ∈ L2(0, 1), u(1) = 1, v(1) = −1

2

}
.

Lemma 5.2. For each L̄ > 0, there exists a global minimizer (u, v) ∈ [C∞(0, 1) ∩ C ([0, 1])] ×
[C∞(0, 1) ∩ C 1([0, 1])] of the energy (5.7) on S which satisfies (5.5)-(5.6).

Proof. The proof follows verbatim from [33, Theorem 3.2] for low temperatures. Note that

E(u, v) > −K for all (u, v) ∈ S for some constant K . This gives the existence of a sequence (un, vn)

such that limn→∞ E(un, vn) = infS E(u, v) and that, for some subsequence, (un, vn) ⇀ (u, v) as

n→∞ in [W 1,2((0, 1); r dr)∩L2((0, 1); dr
r

)]×W 1,2((0, 1); r dr). The Rellich-Kondrachov theorem

[1] and the weak lower semi-continuity of the Dirichlet energy give that lim infn→∞ E(un, vn) ≥
E(u, v). Hence there exists a minimizer (u, v) ∈ S . This implies that (u, v) is a solution of the

Euler-Lagrange equations of E(u, v) in (5.5)-(5.6). Further, the Q-tensor in (5.4) must be a

classical solution of the Landau-de Gennes Euler-Lagrange equations (see Appendix A). From this

it follows that (u, v) ∈ [C∞(0, 1) ∩ C ([0, 1])]× [C∞(0, 1) ∩ C 1([0, 1])].

Next we discuss some qualitative properties of the (u, v)-solutions. Similar questions have been

considered in the recent paper [55] for the low temperature regime A < 0 with exception of the

monotonicity result in Lemma 5.4. Our method of proof is somewhat different and is presented

here for completeness.

Lemma 5.3. Let (u, v) be a global minimizer of the energy E in (5.7) subject to u(1) = 1 and

v(1) = −1
2
. Then we have the following bounds

0 ≤ u(r) ≤ 1 and − 1

2
≤ v(r) ≤ 0 for 0 ≤ r ≤ 1.

Proof. We prove the non-negativity of u and non-positivity of v by following the arguments in

[33, 55]. The analyticity of the pair (u, v) and the symmetry E [u, v ] = E [−u, v ] give that u ≥ 0
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since u(1) > 0. We assume for a contradiction that v(r1) = v(r2) = 0 with v(r) > 0 for some

r1 < r < r2. Define the perturbation

v̄(r) =


v(r) for 0 ≤ r ≤ r1,

0 for r1 < r < r2,

v(r) for r2 ≤ r ≤ 1.

A direct computation shows that

E [u, v ]− E [u, v̄ ] =

∫ r2

r1

[
v 2
r

3
+

v 2

L̄
(v − 1)2 +

u2

L̄

(
9v

2
+ 9v 2

)]
r dr > 0,

contradicting the global minimality of the pair (u, v).

Next let us assume that vmin < −1
2

at some r = r0. At r = r0, the left-hand side of (5.6) is

non-negative by definition of a minimum. From the maximum principle we have

|Q|2 =
u2

2
+

2v 2

3
≤ 2

3
.

Hence if vmin < −1
2
, then u2(r0) < 1. Then for vmin < −1

2
we have

3vmin − 9v 2
min + 6v 3

min < −
9

2
,

u2

(
27

4
+

9

2
vmin

)
<

9

2
,

so that the right-hand side of (5.6) is negative, yielding a contradiction.

Similarly, let us assume for a contradiction that umax > 1 at some r = r0. Then the left-hand side

of (5.5) is strictly negative at r = r0 by definition of a maximum. Recalling that −1
2
≤ v ≤ 0

then

umax

(
18v + 6v 2

)
>− 15

2
,

3umax +
9

2
u3

max >
15

2
,

so that the right-hand side of (5.5) is strictly positive, yielding the desired contradiction.
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Next we show that u and v are monotonic functions by borrowing an idea from [61]. We make the

observation that ur (r) > 0 for 0 < r < σ where σ > 0 is sufficiently small. This is an immediate

consequence of u(0) = ur(0) = 0 and u ≥ 0. We compute the second variation of the energy E
in (5.7) by considering perturbations of the form

uε(r) = u(r) + εα(r) and vε(r) = v(r) + εβ(r), (5.8)

with α (1) = β (1) = 0. A standard computation shows that the second variation in this case is

δ2E [α, β] =

∫ 1

0

[
α2
r

4
+
β2
r

3
+
α2

r 2
+

1

L̄

(
3

4
α2 +

27

8
u2α2 +

3

2
v 2α2 + 9vα2

+ β2 − 6vβ2 + 6v 2β2 +
3

2
u2β2 + 9uαβ + 18uvαβ

)]
r dr .

In particular, δ2E [α, β] ≥ 0 for all admissible α and β by the global minimality of (u, v).

Lemma 5.4. Let (u, v) be a global minimizer of the energy in (5.7). Then ur(r) > 0 and

vr (r) < 0 for r > 0.

Proof. We assume for a contradiction that u and v are not monotone. Then there exist points

r1, r2, r3, r4 ∈ [0, 1) such that

ur (r1) = ur (r2) = 0, ur < 0 for r1 < r < r2,

vr (r3) = vr (r4) = 0, vr > 0 for r3 < r < r4.

We differentiate the equations for u and v in (5.5)-(5.6), multiply by rur and rvr respectively and

integrate over r ∈ [r1, r2] and r ∈ [r3, r4] to get the following equalities:∫ r2

r1

r

4
u2
rr +

5

4r
u2
r −

2

r 2
uur (5.9)

+
r

L̄

[
u2
r

(
3

4
+

27

8
u2 +

3

2
v 2 + 9v

)
+ uurvr

(
2

9
+ 54v

)]
dr = 0,∫ r4

r3

r

3
v 2
rr +

v 2
r

3r
(5.10)

+
r

L̄

[
v 2
r

(
1− 6v + 6v 2 +

3

2
u2

)
+ uurvr

(
9

2
+ 54v

)]
dr = 0.
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We define the perturbations α and β as follows:

α(r) =

0 for ur ≥ 0,

ur for ur < 0,
and β(r) =

0 for vr ≤ 0,

vr for vr > 0.

These perturbations satisfy α(1) = β(1) = 0 since u attains its maximum and v attains its

minimum on r = 1. Substituting this choice of (α, β) and recalling (5.9)-(5.10), we obtain

δ2E [α, β] < 0 and the required contradiction.

5.3 Stability of (u, v)-solutions

Next we study the stability of the (u, v)-solution as a critical point of the full Landau-de Gennes

energy. We compute the second variation of the Landau-de Gennes energy about the (u, v)-critical

point and construct an admissible perturbation for which the second variation is negative. This

gives the instability of the (u, v)-critical point where (u, v) is a global minimizer of (5.7).

Consider a perturbation about the (u, v)-critical point Q given in (5.4) of the form W = Q + εV

where V = 0 on r = 1 so that W satisfies the Dirichlet condition in (5.1). Computing the second

variation gives

δ2I =

∫ ∫ ∫
L̄

2
|∇V|2 + 3|V|2 − 54QijVjpVpi + 18(Q · V)2 + 9|Q|2|V|2 dV .

We define a basis for the space of symmetric traceless 3× 3 matrices, choosing{
(n1 ⊗ n1 −m⊗m), (n1 ⊗m + m⊗ n1), (n1 ⊗ p + p⊗ n1), (m⊗ p + p⊗m),

(
p⊗ p− I

3

)}
,

and write V as a linear combination of these matrices given by

V = a (n1 ⊗ n1 −m⊗m)+b (n1 ⊗m + m⊗ n1)

+c (n1 ⊗ p + p⊗ n1) + d (m⊗ p + p⊗m) + e

(
p⊗ p− I

3

)
,

for functions a, b, c , d and e which vanish on r = 1. This allows us to write the second variation
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of the Landau-de Gennes energy in terms of the functions a − e to obtain

δ2I =

∫ ∫ ∫
L̄

(
(∂kb + 2a∂kθ)2 + (∂ka − 2b∂kθ)2 + (∂kc − d∂kθ)2 + (∂kd + c∂kθ)2 +

|∇e|2

3

)
dV

+

∫ ∫ ∫
6

(
a2 + b2 + c2 + d2 +

e2

3

)
dV

+

∫ ∫ ∫
27u(d2 − c2 +

4

3
ae) + 18v(2a2 + 2b2 − c2 − d2)− 12v 2 dV

+

∫ ∫ ∫
18u2a2 + 8v 2e2 + 24uvae + 18

(
u2

2
+

2v 2

3

)(
a2 + b2 + c2 + d2 +

e2

3

)
dV,

where ∂kθ =
(
− y

r2 , x
r2 , 0

)
=
(
− sin θ

r
, cos θ

r
, 0
)
.

Set a = b = d = e = 0 and let

c(r) =
100r 2(1− r 2)2

(1 + 100r 2)
.

Then

δ2I =

∫ ∫ ∫ [
L̄

(
c ′(r)2 +

c(r)2

r 2

)
+

(
6− 27u − 18v + 18

(
u2

2
+

2v 2

3

))
c(r)2

]
r drdθ.

Computing numerical solutions of (5.5) - (5.6) to find u and v , we can evaluate this integral

numerically. We find that δ2I < 0 for log10 L̄ < −1.7 × 10−3, as illustrated in Figure 5-1. We

recall that L̄ = 81C
B2 L and in this figure we use B = 0.64×104Nm−2 and C = 0.35×104Nm−2. As

the second variation of the Landau-de Gennes energy about the (u, v)-critical point is negative for

this perturbation, minimizers of the reduced (u, v)-energy functional are unstable critical points

of the full Landau-de Gennes energy.

Figure 5-1: δ2I/L1/2.
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5.4 Numerical simulations on the disc

We work at the isotropic nematic transition temperature and numerically solve the non-dimensionalized

and normalized full Landau-de Gennes gradient flow system given in (3.3) on the disc subject to

the boundary condition

Qb = r̂ ⊗ r̂ − I

3
on r = 1,

where r̂ is the two-dimensional unit radial vector. We work with L̄ = 6.9 × 10−4 unless stated

otherwise. We focus on the distinction between planar and non-planar initial conditions. Based

on the heuristics presented in Section 5.1, we expect that all dynamic solutions develop a front

separating an isotropic core around r = 0 from the uniaxial nematic phase away from r = 0. For

planar initial conditions, the isotropic-nematic front and isotropic core around the origin persist

for all times whereas for non-planar initial conditions, the interface collapses at the origin and the

dynamic solution escapes to the completely uniaxial state Q2.

Firstly, we consider planar (u, v)-type initial conditions of the form

Q(r, 0) =
u(r , 0)

2
(n1 ⊗ n1 −m⊗m) + v(r , 0)

(
p⊗ p− I

3

)
, (5.11)

where n1, m and p are as in the previous sections. Recall that our boundary condition fixes

u(1) = 1 and v(1) = −1
2
. We define u(r , 0) and v(r , 0) with front structures, setting

u(r , 0) =
1

2

(
1 + tanh

(
r − u0√

L̄

))
and v(r , 0) = −1

4

(
1 + tanh

(
r − v0√

L̄

))
,

for various values of u0 and v0. The corresponding dynamic solution of the full system (2.6) is of

the form

Q(r, t) =
u(r , t)

2
(n1 ⊗ n1 −m⊗m) + v(r , t)

(
p⊗ p− I

3

)
, (5.12)

where

urr +
ur

r
− 4u(r)

r 2
=

u

L̄

[
3 + 18v +

9

2
u2 + 3v 2

]
,

vrr +
vr
r

=
v

L̄

[
3− 9v +

9

2
u2 + 3v 2

]
+

27

4L̄
u2,

subject to u(1, t) = 1 and v(1, t) = −1
2

for all t ≥ 0. From Proposition 2.1, this is the unique
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solution for this model problem. In fact, we can go further and apply the methods in Bronsard

and Stoth 1998 [16] to the (u, v)-system in order to compare isotropic-nematic front motion

with mean curvature motion. As in Chapter 3, we cannot quote the results because the dynamic

equations differ from the vector-valued Ginzburg-Landau model in [16] by the additional term

−4u
r2 . However, for L̄ sufficiently small, this term may be controllable.

Solving the full system (2.6) on the disc with the initial conditions and boundary condition

described above, we observe the typical solution as in Figure 5-2. We find good agreement

with mean curvature propagation for small times, especially as L̄ decreases, as shown in Figure

5-3. Both of these figures demonstrate the front being arrested near the origin. In order to

observe the quick relaxation to uniaxiality we plot the eigenvalues of the dynamic solution Q(r, t),

see Figure 5-4. Varying the values of u0 and v0 does not change the qualitative dynamics: if

u0 6= v0, then Q(r, 0) is biaxial but Q(r, t) quickly becomes uniaxial. Numerically computing the

tensor-difference Q(r, t)−Q1 as a function of time, we find that Q(r, t)→ Q1 away from r = 0

as expected. This is shown in Figure 5-5.

Figure 5-2: |Q(r, t)|2 for initial condition (5.11) with u0 = 0.6 and v0 = 0.4 at t = 0, t = 10−5,
t = 0.001 and t = 0.25 (top left to bottom right). The spatial resolution is h = 1

256
.

92



Chapter 5. Equilibrium configurations on the disc

Figure 5-3: Front position ρ for initial condition (5.11) with u0 = 0.6 and v0 = 0.4 for L̄ =
3.5×10−3 (dashed) and L̄ = 6.9×10−4 (solid) and predicted position according to mean curvature
(blue). As in Chapter 3, the radius of the isotropic core of the steady solution scales with

√
L

and hence the front is arrested at an O(
√

L̄) distance from the origin. Here
√

L̄ = 5.92× 10−2

(dashed) and 2.62× 10−2 (solid). This contributes to the deviations from the predicted evolution
by mean curvature seen in this figure. As L̄ decreases, the isotropic core gets smaller and interface
evolution approaches that according to mean curvature.

Figure 5-4: Radial profiles of the eigenvalues of Q(r, t) for initial condition (5.11) with u0 = 0.6
and v0 = 0.4 at t = 0, t = 10−5, t = 0.001 and t = 0.25.
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Figure 5-5: Q(r, t)11 − (Q1)11 for initial condition (5.11) with u0 = 0.6 and v0 = 0.4 at t = 0,
t = 10−5, t = 0.001 and t = 0.25.

Next we consider a small perturbation to the (u, v)-initial condition in (5.11) that results in a

non-planar initial condition. Let

Q(r , 0) = u(r , 0)

(
n⊗ n− I2

2

)
+ v(r , 0)

(
p⊗ p− I

3

)
, (5.13)

where n = (
√

(1− ε2(1− r)2) cos θ,
√

(1− ε2(1− r)2) sin θ, ε(1− r)) and I2 = n1⊗n1 + m⊗m.

The functions u(r , 0) and v(r , 0) are the same as in the previous initial condition. Again, the

dynamic solution quickly becomes uniaxial irrespective of u0 and v0 and develops a well-defined

front separating an interior isotropic region from the ordered uniaxial nematic state. This is shown

in Figure 5-6. The third time panel of this figure illustrates how the front propagates inwards

and collapses at the origin, instead of being arrested a small distance away. After the interface is

lost, the dynamic solution relaxes to Q2 as illustrated in Figure 5-7 for the Q11 component of the

Q-tensor matrix. Figure 5-8 shows the time evolution of the eigenvalues of Q(r, t) at the origin,

demonstrating the convergence to a completely uniaxial solution. Figure 5-9 plots front position

with time and illustrates that the agreement with mean curvature propagation becomes stronger

as L̄ decreases.
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Figure 5-6: Radial profiles of the eigenvalues of Q(r, t) for initial condition (5.13) with ε = 0.1,
u0 = 0.6 and v0 = 0.4 at t = 0, t = 10−5, t = 0.001 and t = 0.25. The spatial resolution is
h = 1

256
.

Figure 5-7: Q(r, t)11 − (Q2)11 for initial condition (5.13) with ε = 0.1, u0 = 0.6 and v0 = 0.4 at
t = 0, t = 0.001, t = 0.25 and t = 0.6.
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Figure 5-8: Time evolution of the eigenvalues of Q(0, t) for initial condition (5.13) with ε = 0.1,
u0 = 0.6 and v0 = 0.4.

Figure 5-9: Front position ρ for initial condition (5.13) with ε = 0.1, u0 = 0.6 and v0 = 0.4
for L̄ = 3.5 × 10−3 (dashed) and L = 6.9 × 10−4 (solid) and predicted position according to
motion by mean curvature (blue). Initially, the front is arrested at an O(

√
L) distance away from

the origin (before eventually collapsing). Here
√

L = 5.92 × 10−2 (dashed) and 2.62 × 10−2

(solid). Therefore as L decreases, interface evolution more closely resembles that according to
mean curvature.

We also study how the initial non-planarity, as measured by ε, affects the relaxation time to Q2.

We observe that the modulus |Q(0, t)|2 jumps abruptly from zero to 2
3

at some critical time. Let

t∗ be the first time for which |Q (0, t∗)|2 > 1
3
. We define t∗ as the time at which there is loss of

front structure. Figure 5-10 shows t∗ as a function of − log10 ε for various u0 and v0. We find

that t∗ ∝ − log10 ε. This may give some quantitative estimates for the real-time persistence of

isotropic-nematic fronts and their experimental relevance for model problems with non-planar

initial conditions.
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Figure 5-10: Time t∗ at which there is a loss of front structure, for various ε with v0 = 1− u0

and u0: u0 = 0.1 (purple), u0 = 0.4 (blue), u0 = 0.5 (green), u0 = 0.6 (orange) and u0 = 0.9
(red), for initial condition (5.13) and L̄ = 3.5× 10−3. The spatial resolution is 1

128
.

5.4.1 Numerical simulations with biaxial boundary conditions

The Dirichlet conditions imposed so far in Chapter 5 are uniaxial minima of the bulk potential

fB(Q) and are referred to as minimal boundary conditions. We now focus on dynamic solutions

subject to a biaxial planar boundary condition at r = 1 given by

Qb = n1 ⊗ n1 −m⊗m, (5.14)

and a planar biaxial initial condition of the form

Q(r, 0) = s (r , 0) (n1 ⊗ n1 −m⊗m) , (5.15)

where s(r , 0) has a sharp front at r0 ∈ (0, 1) connecting s = 0 and s = 1. The boundary condition

(5.14) is maximally biaxial (with one zero eigenvalue) and is not a minimum of the bulk potential

fB(Q). Subject to such a boundary condition, we expect Landau-de Gennes energy minimizers to

develop a boundary layer as L̄→ 0 based on [103].

We study two-dimensional and three-dimensional dynamic solutions separately. A two-dimensional

solution is a symmetric and traceless 2× 2 matrix [70]. Such two-dimensional Q-tensor matrices

have tr(Q3) = 0 and the corresponding evolution law simplifies to

Qt = ∇2Q− 1

L̄
(3Q + 9|Q|2Q). (5.16)
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The simplest two-dimensional dynamic solution consistent with (5.14) is

Q(r, t) = s(r , t) (n1 ⊗ n1 −m⊗m) . (5.17)

The gradient flow model (5.16) admits a solution of this form provided the function s(r , t) is a

solution of

st = srr +
sr
r
− 4s

r 2
− s

L̄

(
3 + 18s2

)
, (5.18)

with fixed boundary conditions s(0, t) = 0 and s(1, t) = 1 for all t ≥ 0. The equation (5.18) is

the gradient flow model associated with the functional

I [s] =

∫ 1

0

[
s2
r +

4s2

r 2
+

1

L̄

(
3s2 +

9

4
s4

)]
r dr .

The two-dimensional potential has a single minimum at s = 0 and hence the initial front in (5.15)

will not be maintained for dynamic solutions of (5.16). Instead, a large interior isotropic core is

expected to form with a sharp boundary layer to match the Dirichlet condition at r = 1. Next we

study dynamic solutions of the full gradient flow system (2.6) subject to the Dirichlet boundary

condition (5.14) and the planar initial condition (5.15) for three-dimensional Q-tensors. Based

on the analysis in the previous section, we expect all dynamic solutions to remain planar and for

Q(r, t) to have an isotropic core around r = 0, to converge to Q1 away from r = 0 and to have a

boundary layer near r = 1 to match the Dirichlet condition. However, if r0 is sufficiently close to

1, it is possible that three-dimensional solutions exhibit an outward growing isotropic core since

the isotropic phase is also a minimizer of the bulk potential and this scenario may be energetically

favourable compared to relaxation to Q1 in the interior.

There is a big difference in the behaviour of two-dimensional and three-dimensional solutions. The

two-dimensional dynamic solutions are largely isotropic except near r = 1 and three-dimensional

dynamic solutions are largely uniaxial (at least for a range of r0) except near r = 0 and r = 1. We

present numerical results to corroborate the heuristics above, beginning with a numerical study of

the three-dimensional solutions.

We numerically solve the system (2.6) on the disc subject to the fixed boundary condition (5.14)

on r = 1. All other parameter values are the same as in previous sections in this chapter with
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L̄ = 6.9× 10−4. The initial condition is given in (5.15) with

s(r , 0) =
1

2

[
1 + tanh

(
r − r0√

L̄

)]
.

For r0 = 0.5, the solution quickly becomes uniaxial in the interior and develops an inward

propagating front separating the isotropic and nematic phases, see Figure 5-11. The solution

converges to Q1, except for an isotropic core and a thin boundary layer near r = 1, as shown

in Figure 5-12. Next we consider r0 = 0.92 and observe a different behaviour. The interface

evolves so there is a thin boundary layer near r = 1 with a large isotropic core in the interior as

illustrated in Figure 5-13. We compare this three-dimensional behaviour with two-dimensional

solutions for the system (5.16). Here the solution develops an almost entirely isotropic interior

with a thin boundary layer near r = 1 as shown by the eigenvalue evolution in Figure 5-14. Hence

our numerical simulations corroborate our previous analytic reasoning.

Figure 5-11: Radial profiles of the eigenvalues of the three-dimensional Q(r, t) for initial condition
(5.15) with r0 = 0.5 at t = 0, t = 0.001 and t = 0.25. The spatial resolution is h = 1

256
.

Figure 5-12: Radial profiles of Q(r, t)11 − (Q1)11 for initial condition (5.15) with r0 = 0.5 at
t = 0, t = 0.001 and t = 0.25.
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Figure 5-13: Radial profiles of |Q(r, t)|2 for initial condition (5.15) with r0 = 0.92 at t = 0,
t = 0.1 and t = 0.5.

Figure 5-14: Radial profiles of the eigenvalues of the two-dimensional Q(r, t) for initial condition
(5.15) at t = 0, t = 2× 10−5 and t = 2× 10−4.

Overall, in this numerical section of Chapter 5, we have compared the affect of planar and

non-planar initial conditions and minimal and non-minimal boundary conditions. In the three-

dimensional setting with minimal boundary conditions, both planar and non-planar initial conditions

result in an inwards propagating front. If the initial condition is non-planar the solution escapes

to the third dimension and the front is lost. The front persists for a time proportional to log(ε),

where ε is a measure of the non-planarity of the initial condition, before collapsing. If the initial

condition is planar the front is arrested at the origin and persists for all time. Non-minimal

boundary conditions with planar initial conditions, in general, result in an inwards travelling front.

However if the initial front position is close enough to r = 1 we observe a different behaviour: the

front travels outwards, leaving a large isotropic core.
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CHAPTER 6

Equilibrium configurations on the square

In Chapter 6 we work on a truncated square of edge length λ and construct a Well Order

Reconstruction-type critical point of the Landau-de Gennes energy inspired by the numerical work

in Krajl and Majumdar 2014 [60]. This critical point has a uniaxial cross with negative scalar order

parameter along the square diagonals and can be defined in terms of a critical point of a relevant

scalar variational problem. We show that the Well Order Reconstruction solution is globally stable

for small λ and undergoes a pitchfork bifurcation as λ becomes large. We numerically estimate

the critical value of λ on a square and study the analogous problem on a hexagon.

6.1 Problem formulation

We begin by non-dimensionalizing the Landau-de Gennes energy functional using the change of

variables xi = xi
λ

, where λ is the characteristic length scale of the domain Ω. This yields a rescaled

energy given by

ILG [Q] =

∫
Ω

1

2
|∇Q|2 +

λ2

L
fB(Q) dA,

where Ω is the rescaled domain, ∇ is the rescaled gradient and dA is the rescaled area element.

The associated Euler-Lagrange equations are given by

∇2
Q =

λ2

L

[
AQ− B

(
QQ− I

3
|Q|2

)
+ C |Q|2Q

]
. (6.1)
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In what follows we drop the bars and all statements are in terms of the rescaled variables. We

take our domain to be a truncated square whose diagonals lie along the axes:

Ω :=
{

(x , y) ∈ R2; |x | < 1− ε, |y | < 1− ε, |x + y | < 1, |x − y | < 1
}

.

The boundary ∂Ω consists of four long edges C1 − C4 which are parallel to the lines y = x and

y = −x and four short edges S1 − S4 of length 2ε which are parallel to the x and y axes, see

Figure 6-1. The four long edges are labelled anticlockwise with C1 in the first quadrant. The short

edges are introduced to remove the sharp square vertices and are also labelled anticlockwise.

Figure 6-1: The truncated square Ω. The regular square is also plotted.

We work with Dirichlet boundary conditions on ∂Ω. Following the literature on planar multistable

nematic systems [107, 60], we impose tangent uniaxial Dirichlet conditions on the long edges.

These conditions require the director to be tangent to the edge. To this end we fix Q = Qb on

C1 − C4 where

Qb =

s+

(
n1 ⊗ n1 − I

3

)
on C1 ∪ C3,

s+

(
n2 ⊗ n2 − I

3

)
on C2 ∪ C4,

(6.2)

for n1 = 1√
2

(−1, 1, 0) and n2 = 1√
2

(1, 1, 0). Note that the bulk potential is minimized on C1−C4

by these boundary conditions. We impose Dirichlet conditions on the short edges too but these

conditions are for mathematical convenience. The Dirichlet conditions on the short edges are

chosen to mediate between the boundary conditions on the long edges. One way this can be

achieved is to define the boundary conditions on the short edges in terms of a function given by
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g(s) =
s+

2

(
e−µε

eµs − e−µs

eµε − e−µε
− e−µs + 1

)
for 0 < s < ε where µ =

λB

(CL)1/2
.

Further, g(s) = s+

2
for s > ε and g(s) = −g(−s) for s < 0. We fix Q = Qb on S1 − S4 where

Qb =

g(y) (n1 ⊗ n1 − n2 ⊗ n2)− s+

6
(2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2) on S1 ∪ S3,

g(x) (n1 ⊗ n1 − n2 ⊗ n2)− s+

6
(2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2) on S2 ∪ S4.

(6.3)

Given the Dirichlet conditions (6.2) and (6.3), we define our admissible space to be

A :=
{

Q ∈ W 1,2 (Ω, S0) : Q = Qb on ∂Ω
}

.

It is possible to prove the existence of a global minimizer of the rescaled functional in the admissible

space A, for all A < 0 and for all values of λ > 0. This follows from the direct methods in the

calculus of variations which are discussed in Appendix A.

6.2 Analysis of a scalar variational problem

The Well Order Reconstruction solution (WORS) was first reported numerically in [60] where the

authors observe the WORS solution for small λ. The corresponding Q-tensor is a critical point of

the rescaled Landau-de Gennes energy on the square with two key properties:

(1) it has a constant eigenframe with one eigenvector given by ẑ, the unit vector in the

z-direction.

(2) it has a uniaxial cross with negative scalar order parameter along the square diagonals.

To this end, we look for critical points of the rescaled functional of the form

Q(x , y) = q1(x , y) (n1 ⊗ n1 − n2 ⊗ n2) + q2(x , y) (n1 ⊗ n2 + n2 ⊗ n1) (6.4)

+ q3(x , y)(2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2),

subject to the boundary conditions

q1(x , y) =

s+/2 on C1 ∪ C3,

−s+/2 on C2 ∪ C4,
and q1(x , y) =

g(y) on S1 ∪ S3,

g(x) on S2 ∪ S4,

q2 = 0 and q3 = −s+

6
on ∂Ω.

(6.5)
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The Q-tensor in (6.4) can be written explicitly as −q2(x , y)− q3(x , y) −q1(x , y) 0

−q1(x , y) q2(x , y)− q3(x , y) 0

0 0 2q3(x , y)

 .

Critical points of the form (6.4) mimic the WORS if q2 = 0 everywhere, which ensures a

constant eigenframe with ẑ as an eigenvector, and q1 = 0 along the square diagonals, so that

Q = 3q3(x , y)
(
ẑ⊗ ẑ− I

3

)
on x = 0 and y = 0 to give a uniaxial cross. We begin with a result

on the existence of such critical points.

Proposition 6.1. The Landau-de Gennes Euler-Lagrange equations (6.1) admit a solution of

the form (6.4) on the truncated square Ω subject to the Dirichlet conditions (6.2) and (6.3),

provided the functions q1, q2, q3 satisfy

∇2q1 =
λ2

L

[
Aq1 + 2Bq1q3 + C

(
2q2

1 + 2q2
2 + 6q2

3

)
q1

]
,

∇2q2 =
λ2

L

[
Aq2 + 2Bq2q3 + C

(
2q2

1 + 2q2
2 + 6q2

3

)
q2

]
,

∇2q3 =
λ2

L

[
Aq3 + B

(
1

3

(
q2

1 + q2
2

)
− q2

3

)
+ C

(
2q2

1 + 2q2
2 + 6q2

3

)
q3

]
,

(6.6)

and the boundary conditions in (6.5).

Proof. Consider the energy functional J[q1, q2, q3] given by

J[q1, q2, q3] =

∫
Ω

|∇q1|2 + |∇q2|2 + 3|∇q3|2 (6.7)

+
λ2

L

[
A
(
q2

1 + q2
2 + 3q2

3

)
+ C

(
q2

1 + q2
2 + 3q2

3

)2
+ 2Bq3

(
q2

1 + q2
2

)
− 2Bq3

3

]
dA.

The existence of a global minimizer of the functional J among the triplets (q1, q2, q3) ∈
W 1,2(Ω, R3) satisfying the boundary conditions (6.5) follows from the direct methods in the

calculus of variations (see Appendix A). The system of partial differential equations in (6.6) are

the Euler-Lagrange equations associated with J and hence the globally minimizing (q1, q2, q3)

are classical solutions of this system. From the solutions of the system (6.6), we can check that

the corresponding tensor in (6.4) is an exact solution of the Landau-de Gennes Euler-Lagrange

equations by direct substitution.
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We can check that there is a branch of solutions (q1, 0, q3) of the system (6.6) for all λ > 0 and

all A < 0. This solution branch has a constant eigenframe, however other properties are required

to mimic the WORS. To this end, we focus on a special temperature A = −B2

3C
for which s+ = B

C
.

Here the system (6.6) admits a branch of solutions (q1, q2, q3) = (q(x , y), 0,− B
6C

) consistent with

the Dirichlet conditions (6.5) for all λ > 0. It is easier to analyse solutions with just one variable,

so we work at this temperature for the remainder of the chapter.

Proposition 6.2. For A = −B2

3C
and for all λ > 0, there exists a branch of solutions of the

system (6.6) given by

(q1, 0, q3) =

(
qmin(x , y), 0, − B

6C

)
, (6.8)

consistent with the Dirichlet conditions (6.5). This branch is defined by a minimizer qmin of the

energy

H[q1] =

∫
Ω

|∇q1|2 +
λ2

L

(
Cq4

1 −
B2

2C
q2

1

)
dA, (6.9)

subject to boundary conditions (6.5). The minimizer qmin is hence a classical solution of

∇2q =
λ2

L

(
2Cq3 − B2

2C
q

)
. (6.10)

(This is the first equation in (6.6) with q2 = 0 and q3 = − B
6C

.) Further, we have the bounds

− B

2C
≤ qmin ≤

B

2C
. (6.11)

Proof. If q is a solution of the partial differential equation (6.10) subject to the Dirichlet conditions

(6.5), it follows that the solution branch defined by (6.8) is a solution of the system (6.6) at

A = −B2

3C
for all λ > 0 .

Let qmin be a minimizer of H in the admissible spaceAq := {q ∈ W 1,2(Ω) : q satisfies (6.5) on ∂Ω}.
The existence of such a minimizer follows from the direct methods in the calculus of variations.

Then qmin is a classical solution of the associated Euler-Lagrange equation (6.10) subject to the

boundary conditions (6.5). This gives that the triplet (q1, q2, q3) = (qmin, 0, − B
6C

) is a solution

of the system (6.6) and yields a critical point of the Landau-de Gennes Euler-Lagrange equations.

The bounds (6.11) follow from the maximum principle and the Dirichlet conditions.
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Lemma 6.1. There exists λ0 > 0 such that for any λ < λ0, the solution branch defined

by (q1, q2, q3) = (qmin, 0, − B
6C

) in Proposition 6.2 is the unique minimizer of the Landau-de

Gennes energy.

Proof. The proof follows from a uniqueness result for critical points of the Landau-de Gennes

energy in [62]. By the maximum principle, a critical point Qc of the Landau-de Gennes Euler-

Lagrange equations is bounded with |Qc | ≤ M for some M independent of λ and L [76]. From

[62], the Landau-de Gennes energy is strictly convex on the set {Q ∈ W 1,2(Ω, S0) : |Q| ≤ M}
for sufficiently small λ. As a result, for λ2

L
< λ1 where the constant λ1 depends on the domain,

temperature and material constants, the rescaled Landau-de Gennes energy has a unique critical

point. For A = −B2

3C
, the triplet (q1, q2, q3) = (qmin, 0,− B

6C
) introduced in Proposition 6.2

defines a critical point for all λ > 0. Therefore, the strict convexity of the Landau-de Gennes

energy on the set of bounded Q-tensors for small λ and fixed L, gives that this must be the unique

Landau-de Gennes critical point and hence the Landau-de Gennes global minimizer for sufficiently

small λ.

Lemma 6.2. The function qmin defined in Proposition 6.2 vanishes along the square diagonals

defined by x = 0 and y = 0 provided that λ < λ0 where λ0 is as introduced in Lemma 6.1.

Proof. Note that if q(x , y) is a solution of (6.10) subject to (6.5) then so are the functions

q(−x ,−y), −q(−x , y) and −q(x ,−y). We combine this symmetry with the uniqueness result

for λ < λ0 in Lemma 6.1 to get the desired result. For example, q(x , y) = −q(−x , y) along

x = 0 gives that q(0, y) = 0 and the analogous argument shows q(x , 0) = 0.

From Lemmas 6.1 and 6.2, we deduce that there is a unique Landau-de Gennes critical point of

the form

Qmin(x , y) = qmin(x , y) (n1 ⊗ n1 − n2 ⊗ n2)− B

6C
(2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2) , (6.12)

for sufficiently small λ, where qmin is a global minimizer of the functional H in (6.9). This critical

point has a constant eigenframe with a uniaxial cross of negative scalar order parameter along

the square diagonals and hence mimics the Well Order Reconstruction solution. However, in the

next proposition we show that global minimizers of H do not satisfy the property qmin = 0 on the

coordinate axes for large λ.
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For the following proposition we define the quantity PerΩ to be the Ω-perimeter. For any set E ,

the Ω-perimeter PerΩ(E ) is given by

PerΩ(E ) := sup

{∫
E

∇ · ϕ dA : ϕ ∈ C 1
0 (Ω;R2), |ϕ| ≤ 1 on Ω

}
.

If E has a smooth boundary, then PerΩ(E ) is given by the length of ∂E ∩ Ω by the Divergence

Theorem. Let B denote the set of functions q on Ω that only take the values B
2C

and − B
2C

and

are such that PerΩ{q = − B
2C
} <∞.

Proposition 6.3. For λ > 0, let qmin,λ be a minimizer of H. Then there exists a subsequence

λj → +∞ and a function q∞ ∈ L1(Ω) such that qmin,λj → q∞ in L1(Ω) almost everywhere.

Further, q∞ is a minimizer of the functional J : L1(Ω)→ (−∞, +∞] given by

J[q] = k PerΩ

{
q = − B

2C

}
+

∫
∂Ω

φ(qb(x), q(x)) ds, (6.13)

if q ∈ B and by J[q] = +∞ otherwise. In the above,

φ(s, t) = 2

√
C

L

∣∣∣∣∫ t

s

(
B2

4C 2
− τ 2

)
dτ

∣∣∣∣ = 2

√
C

L

∣∣∣∣13(s3 − t3)− B2

4C 2
(s − t)

∣∣∣∣ , (6.14)

k = φ

(
− B

2C
,

B

2C

)
=

B3

3C 3

√
C

L
. (6.15)

In (6.13), qb is the boundary data defined by (6.5) and q(x) for x ∈ ∂Ω is the trace of q at the

point x (see Appendix A).

Proof. For λ > 0, consider the functional Jλ : L1(Ω)→ (−∞, +∞] given by

Jλ[q] =
1

λ
H[q] +

λB4

16C 3L
=

∫
Ω

1

λ
|∇q|2 +

λC

L

(
q2 − B2

4C 2

)2

dA,

if q ∈ W 1,2(Ω) satisfies the boundary condition (6.5) and by Jλ[q] = +∞ otherwise. A function

q minimizes Jλ if and only if it minimizes H . The result follows from the fact that the functional

Jλ Γ-converges to J as λ→ +∞ in L1(Ω) by [11, Theorem 7.10] and this gives the convergence

of minimizers qmin,λj → q∞ for a subsequence λj →∞ by [11, Theorem 7.3] and [11, Theorem

7.11].

The implications of Proposition 6.3 are as follows. Suppose that for any λ > 0, the minimizer

qmin,λ mimics the WORS. That is, qmin,λ(x , y) = 0 on the coordinate axes, qmin,λ > 0 on the first
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and third quadrant and qmin,λ < 0 on the second and fourth quadrant. Then the limit function

q∞ would be given by

q∞(x , y) =

 B
2C

if xy > 0,

− B
2C

if xy < 0,

with sharp fronts on the square diagonals. Therefore

J[q∞] ≥ kPerΩ

{
q∞ = − B

2C

}
= 4k(1− ε). (6.16)

We now consider the constant function q = B
2C

, which does not match the Dirichlet boundary

condition (6.5). However, we are still able to compute J
[

B
2C

]
and compare this function to q∞.

Using the boundary condition (6.5) and the definitions of φ and k , we have

J

[
B

2C

]
=

∫
C2∪C4

φ

(
qb(x),

B

2C

)
ds

= k Length (C2 ∪ C4) + 4

∫ ε

−ε
φ

(
g(s),

B

2C

)
ds

≤ 2
√

2k(1− ε) + 8kε.

(6.17)

For ε sufficiently small, equations (6.16) and (6.17) give that J[q∞] > J[ B
2C

] which contradicts

the minimality of q∞. Therefore, we can conclude that the minimizers qmin,λ of H do not vanish

on the coordinate axes for large λ. As a consequence, Landau-de Gennes critical points of the

form (6.12) mimic the Well Order Reconstruction solution for small λ only.

6.3 Analysis of the Well Order Reconstruction solution

In this section we study the following aspects of the WORS. Firstly, we study the existence of the

WORS for all λ. In particular, we discuss whether it is possible to give a description of the form

in (6.12) with an interpretation of q as a critical point, but not a minimizer, of the functional H

in (6.9). Secondly, we consider how the stability of the WORS depends on the square size λ.

Again, inspired by [60], we construct WORS-type critical points of the form (6.12) such that

q = 0 on the square diagonals. This implies that the corresponding Q-tensor has a constant

eigenframe and is uniaxial with negative order parameter on the coordinate axes. We define the

corresponding q in terms of the critical point qs of the functional H in (6.9). This definition of qs

is analogous to the saddle solutions of the bistable Allen-Cahn equation studied in [30, 99]. We
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normalize the Euler-Lagrange equations associated with H (as in (6.10)), letting q̄ = 2C
B

q which

yields −∇2q̄ + λ2

L̄
f (q̄) = 0 on Ω,

q̄ = q̄bd on ∂Ω,
(AC)

for f (q̄) = q̄(q̄ − 1)(q̄ + 1) and L̄ = 2C
B2 L. The boundary condition q̄bd is related to qbd in (6.5)

by the change of variables described above. In what follows we drop the bar from the variable

q. For a fixed λ > 0, we define a Well Order Reconstruction solution, or saddle solution, to be a

classical solution qs ∈ C 2(Ω) ∩ C (Ω) of Problem (AC) which satisfies

xy qs(x , y) ≥ 0 for (x , y) ∈ Ω. (6.18)

That is, qs is non-negative on the first and third quadrants, non-positive on the second and fourth

quadrants and vanishes on the coordinate axes. In the next two lemmas we prove the existence

and uniqueness of qs.

Lemma 6.3. There exists a Well Order Reconstruction solution qs for Problem (AC) for any

λ > 0. Further, we have the bounds −1 ≤ qs ≤ 1.

Proof. Define Q to be the truncated quadrant

Q := {(x , y) ∈ Ω: x > 0, y > 0}.

We impose the boundary conditions q = qbd on ∂Q ∩ ∂Ω and q = 0 on ∂Q \ ∂Ω. This boundary

data is continuous because qbd = 0 at the points where ∂Ω intersects the coordinate axes. The

boundary data is also piecewise C 1. Therefore there exist functions q ∈ W 1,2(Q) which satisfy the

boundary conditions in the trace sense. This allows us to find a global minimizer qs ∈ W 1,2(Q) of

H over Q by the direct methods in the calculus of variations. We note that H[qs] = H[|qs|] and

qs = qbd > 0 on ∂Q ∩ ∂Ω. Hence qs ≥ 0 almost everywhere on Q. We define a function on Ω

by the odd reflection of qs about the coordinate axes. This new function, which we still denote

by qs, satisfies (6.18) and is a weak solution of (AC) on Ω \ {0}. The function qs has bounded

gradient for fixed λ so |∇qs| ≤ C for some constant C . This allows us to use the arguments in

[30, Theorem 3] to show that qs is a classical solution of (AC) on Ω, including the origin, for

fixed λ. By elliptic regularity on convex polygons, we can conclude that qs ∈ C 2(Ω) ∩ C (Ω) (see

Appendix A) [53]. Therefore qs is a classical solution of the boundary value problem (AC).

The bounds on qs follow from the maximum principle and the Dirichlet boundary conditions.

109



Chapter 6. Equilibrium configurations on the square

Lemma 6.4. For all λ > 0, there is at most one non-negative solution q ∈ C 2(Q) ∩ C (Q) to

the problem 
−∇2q + λ2

L̄
f (q) = 0 on Q,

q = q̄bd on ∂Q ∩ ∂Ω,

q = 0 on ∂Q \ ∂Ω.

(AC′)

Then there is a unique Well Order Reconstruction solution qs defined in terms of q.

Proof. The proof follows the steps in [30]. Consider two non-negative solutions q1, q2 to (AC′).

Then q := max{q1, q2} is a weak subsolution of (AC′) and so∫
Q

∇q · ∇ϕ +
λ2

L̄
f (q)ϕ dA ≤ 0 for any φ ∈ W 1,2

0 (Q) such that φ ≥ 0,

q ≤ q̄b on ∂Q ∩ ∂Ω and q ≤ 0 on ∂Q \ ∂Ω.

From the proof of Lemma 6.3, 0 ≤ q ≤ 1 as these bounds hold for both q1 and q2. Therefore the

constant 1 is a supersolution of (AC′). By the classical sub and supersolution method there exists

a solution p of (AC′) such that q ≤ p ≤ 1 and 0 ≤ q1 ≤ p on Q [40]. We multiply the equation

for p with q1, multiply the equation for q1 with p, integrate by parts and take the difference to

obtain
λ2

L̄

∫
Q

f (p)q1 − f (q1)p dA =

∫
∂Q

∂p

∂n
q1 −

∂q1

∂n
p ds,

where n is the outward normal to ∂Q. Recalling the definition of f and the boundary conditions

we have
λ2

L̄

∫
Q

q1p
(
p2 − q2

1

)
dA =

∫
∂Q

q̄b

(
∂p

∂n
− ∂q1

∂n

)
ds. (6.19)

The left-hand side is non-negative and the right-hand side is non-positive because 0 ≤ q1 ≤ p

on Q and p = q1 on ∂Q. Therefore both sides of (6.19) must vanish. Further, by applying the

strong maximum principle to Problem (AC′) we deduce that q1 > 0 in the interior of Q which

yields p > 0 in the interior of Q as well. This implies that q1 = p and hence q ≤ q1 on Q (as

q ≤ p). Therefore, we can conclude that q1 > q2 on Q. By the symmetric argument we obtain

q1 < q2 on Q and the result follows.

We can repeat these arguments on the remaining three quadrants to deduce that the Well Order

Reconstruction solution is unique on Ω.
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We now define a Well Order Reconstruction Landau-de Gennes critical point on Ω subject to the

Dirichlet boundary conditions (6.2)-(6.3) and at the fixed temperature A = −B2

3C
by

Qs(x , y) = qs(x , y) (n1 ⊗ n1 − n2 ⊗ n2)− 1

3
(2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2) .

From the previous propositions, the critical point Qs exists for all λ and is the unique Landau-de

Gennes critical point and globally stable for sufficiently small λ. Next we consider the stability of

the Well Order Reconstruction Landau-de Gennes critical point. We study the stability of Qs in

terms of the stability of qs as a critical point of the functional H defined in Proposition 6.2. We

write qs,λ and Hλ to emphasize the dependence on λ.

Theorem 6.1. There exists a unique value λc > 0 such that there is a pitchfork bifurcation at

(λc , qs,λc ). That is, there exist positive numbers ε, δ and two smooth maps

t ∈ (−δ, δ) 7→ λ(t) ∈ (λc − ε, λc + ε) and t ∈ (−δ, δ) 7→ h(t) ∈ W 1,2
0 (Ω),

such that all the pairs (λ, q) ∈ R+ ×W 1,2(Ω) satisfying

q is a solution of (AC),

|λ− λc | ≤ ε and

‖q − qs,λc‖W 1,2(Ω) ≤ ε,

are either

(λ, q) = (λ, qs) or (λ, q) = (λ(t), qs,λ(t) + tηλc + t2h(t)).

Here ηλc ∈ W 1,2
0 (Ω) is an eigenfunction corresponding to the loss of stability at λc . That is,

ηλc 6= 0 is a solution of

∇2ηλc =
λ2
c

L̄

(
3q2

s,λc − 1
)
ηλc on Ω.

Therefore, for fixed B, C , L̄ > 0, qs,λ exists as a critical point of the functional H defined in

Proposition (6.2) for all λ > 0 and loses stability for λ > λc .

Proof. The proof follows the same strategy as [62, Theorem 5.2]. First, we define the admissible

space to be

X :=
{

q ∈ W 1,2(Ω) : q = q̄b on ∂Ω
}

.
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We also define the space Y to be

Y :=
{

q ∈ X : xy q(x , y) ≥ 0 for (x , y) ∈ Ω
}

.

Every function in Y vanishes along the square diagonals of Ω. Lemma 6.4 implies that qs,λ is the

only solution of (AC) that belongs to Y . The stability of qs,λ is measured by the quantity

µ(λ) = inf
η∈W 1,2

0 (Ω)\{0}

δ2Hλ[η]∫
Ω
η2

, (6.20)

where δ2Hλ is the second variation of Hλ at qs,λ and given by

δ2Hλ[η] =

∫
Ω

|∇η|2 +
λ2

L̄

(
3q2

s,λ − 1
)
η2 dA. (6.21)

The proof of the result requires the following lemmas:

Lemma A The map (0, +∞)→ R defined by λ 7→ µ(λ) is smooth and µ′(λ) < 0 for any λ > 0.

Lemma B There exists a positive number λ∗ such that µ(λ) < 0 for any λ ≥ λ∗.

From the stability of the Well Order Reconstruction solution in Lemma 6.1 we know that µ(λ) > 0

for 0 < λ� 1. Combining this with Lemma A and Lemma B, we find a unique λc > 0 such that

µ(λc) = 0. To show that a pitchfork bifurcation arises at λ = λc we apply the Crandall-Rabinowitz

bifurcation theorem to the map

F(λ, h) = −∇2(qs,λ + h) +
λ2

L̄
f (qs,λ + h),

for (λ, h) ∈ R+ ×W 1,2
0 (Ω).

Theorem 6.2 (Crandell-Rabinowitz bifurcation theorem, [28]). Let X , Y be Banach spaces, V

be a neighbourhood of 0 in X and F : (−1, 1)× V → Y have the properties:

• F(t, 0) = 0 for |t| < 1.

• the partial derivatives Ft , Fx and Fxt exist and are continuous.

• the kernal(Fx(0, 0)) and Y /range(Fx(0, 0)) are one-dimensional.

• Fxt(0, 0)x0 6∈ range(Fx(0, 0)) where the kernal(Fx(0, 0)) = span{x0}.
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If Z is any complement of the kernal(Fx(0, 0)) in X , then there exists a neighbourhood U of

(0, 0) in R× X , an interval (−a, a) and continuous functions φ : (−a, a)→ R, ψ : (−a, a)→ Z

such that φ(0) = 0, ψ(0) = 0 and

F−1(0) ∩ U = {(φ(α),αx0 + αψ(α)) : |α| < a} ∪ {(t, 0) : (t, 0) ∈ U}. (6.22)

The assumptions of the theorem follow from Lemma A. In our application x0 = ηλc . Therefore,

by [28, 62] we can find positive numbers ε and δ such that any pair (λ, q) ∈ R+ ×W 1,2(Ω)

satisfying

q is a solution to (AC), |λ− λc | ≤ ε and ‖q − qs,λc‖W 1,2(Ω) ≤ ε

is either of the form (λ, qs,λ) or

(λ, q) = (λ(t), qs,λ(t) + tηλc + t2h(t)), (6.23)

where λ(t) ∈ (λc − ε, λc + ε) and h(t) ∈ W 1,2
0 (Ω) are smooth functions of t ∈ (−δ, δ).

6.4 Numerical simulations on the square and the hexagon

In this section we perform numerical experiments to study Order Reconstruction solutions on two

two-dimensional regular polygons - the square and the hexagon, with the hexagon illustrating

the generality of such solutions. We work with the full and normalized gradient flow system

in the Landau-de Gennes framework at the constant temperature A = −B2

3C
. We work at this

temperature so that we can make comparisons between the numerical and analytical results. First,

we non-dimensionalize the system (6.1) by setting t̄ = tL
λ2 and x̄ = x

λ
, where λ is a characteristic

length scale. We then normalize the system by setting Q̄ = C
B

Q to get

Q̄t̄ = ∇2
Q̄− λ2

L̄

[
2

3
Q̄− 2

(
Q̄Q̄− I

3
|Q̄|2

)
+ 2|Q̄|2Q̄

]
. (6.24)

where L̄ = 2C
B2 L. We drop the bars from the dimensionless and normalized variables.
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6.4.1 Order Reconstruction simulations on the square

We first work on a square centered at the origin with edge length 2 and impose a boundary

condition of the form

Qb = q (x̂⊗ x̂− ŷ ⊗ ŷ)− 1

3
(2ẑ⊗ ẑ− x̂⊗ x̂− ŷ ⊗ ŷ) , (6.25)

where x̂, ŷ, and ẑ are unit vectors in the x , y and z-directions respectively and

q(x ,−1) = q(x , 1) = 1 for − 1 + ε ≤ x ≤ 1− ε,

q(x ,−1) = q(x , 1) = f (x) otherwise,

q(−1, y) = q(1, y) = −1 for − 1 + ε ≤ y ≤ 1− ε,

q(−1, y) = q(1, y) = −f (y) otherwise,

(6.26)

where f (s) = 1
ε
(1 − |s|) for 0 ≤ 1 − |s| ≤ ε. This fixes q to be zero at the vertices. We work

with an initial condition of the form (6.25) given by

Q0 = q0 (x̂⊗ x̂− ŷ ⊗ ŷ)− 1

3
(2ẑ⊗ ẑ− x̂⊗ x̂− ŷ ⊗ ŷ) , (6.27)

with

q0 =

1 for − y < x < y ,

−1 for − x < y < x ,
(6.28)

so that q0 = 0 on the diagonals x = ±y . The initial condition Q0 has a constant eigenframe

and a uniaxial cross with negative order parameter connecting the four square vertices and hence

mimics the Well Order Reconstruction solution studied analytically.

For a boundary condition and an initial condition of the form (6.25)-(6.28), there is a dynamic

solution Q(r, t) of the system (6.24) given by

Q(r, t) = q(x , y , t) (x̂⊗ x̂− ŷ ⊗ ŷ)− 1

3
(2ẑ⊗ ẑ− x̂⊗ x̂− ŷ ⊗ ŷ) , (6.29)

where the evolution of q is governed by

∂q

∂t
= ∇2q − λ2

L̄
q (q − 1) (q + 1) . (6.30)

We solve (6.30) on the square for different values of λ. We expect to see that q = 0 along x = ±y
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for small values of λ since the Well Order Reconstruction solution is the unique Landau-de Gennes

critical point in this regime. We expect to see transition layers near a pair of opposite edges for

large λ due to the result in Proposition 6.3.

In the following simulations we define λ̄2 = λ2

L̄
. In Figures 6-2 and 6-4 we solve (6.30) for

λ̄2 = 0.0418 and λ̄2 = 167.2 respectively. For both figures ε = 0.05 and the solution is

representative of the behaviour for all ε small. For λ̄2 = 0.0418, the scalar profile relaxes the sharp

transition layers at x = ±y but retains the vanishing diagonal cross with q(x ,±y , t) = 0 for all

times. The corresponding dynamic solution Q(r, t) in (6.29) has a uniaxial diagonal cross with

negative order parameter consistent with the stability and uniqueness results for the Well Order

Reconstruction solution. In Figure 6-3, we plot the biaxiality parameter of the converged solution,

β2(Q) = 1− 6
(trQ3)

2

(trQ2)3 .

For λ̄2 = 167.2, the diagonal cross in the initial condition relaxes into a pair of transition layers

near y = −1 and y = +1.

In Figure 6-5 we plot the value of the converged solution at the origin as a function of λ̄2. The

solution no longer vanishes on the diagonal cross if q(0, 0) 6= 0 and we deduce that the Well

Order Reconstruction solution loses stability for values of λ̄2 for which q(0, 0) 6= 0. In Figure 6-5

we see that q(0, 0) = 0 if λ̄2 ≤ 7.69. This numerical bifurcation diagram is consistent with the

pitchfork bifurcation established in Theorem 6.1 and predicts that the Well Order Reconstruction

solution loses stability on a square domain with edge length 2λ for which λ2 > 15LC
B2 .

Figure 6-2: q(x , y , t) with contours at level 0 for λ̄2 = 0.0418 and ε = 0.05 at t = 0, t = 0.01
and t = 2. The spatial resolution is h = 1

200
.
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Figure 6-3: Biaxiality parameter β2(Q(x, t)) for λ̄2 = 0.0418 and at t = 2.

Figure 6-4: q(x , y , t) with contours at level 0 for λ̄2 = 167.2 at t = 0, t = 0.5 and t = 2.

Figure 6-5: q(0, 0) of the converged solution as λ̄2 varies. The critical value is λ̄2 = 7.69.
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6.4.2 Order Reconstruction analysis and simulations on the hexagon

Next we look for Order Reconstruction-type solutions on a regular hexagon of edge length λ,

centered at the origin. As before, we work at the fixed temperature A = −B2

3C
. We interpret Order

Reconstruction solutions loosely and look for critical points of the Landau-de Gennes energy which

have an interior ring of maximal biaxiality inside the hexagon. Let H be a regular hexagon which

is centred at the origin. We take our rescaled domain Ω to be a truncated hexagon given by the

set of points (x , y) in the interior of H which satisfy the inequalities

|x | < 1− ε, 1

2
|x +

√
3y | < 1− ε and

1

2
|x −

√
3y | < 1− ε.

The truncated hexagon Ω is drawn in Figure 6-6 and has the same set of symmetries as the

original hexagon H .

Figure 6-6: The truncated hexagon Ω. The regular hexagon H is also plotted.

The set of symmetries of a hexagon, D6, consists of six reflection symmetries about the symmetry

axes of the hexagon and six rotations of angles kπ
3

for k ∈ {0, ... , 5}. We label the long edges

of ∂Ω as C1 − C6 and, as before, the edges are labelled anticlockwise. We impose the following

Dirichlet boundary conditions on these long edges:

Qb = nb ⊗ nb −
I

3
, (6.31)
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where nb is the unit tangent vector to ∂H given by

nb =


(−1

2
,
√

3
2

, 0) on C1 ∪ C4,

(−1, 0, 0) on C2 ∪ C5,

(−1
2
, −

√
3

2
, 0) on C3 ∪ C6.

(6.32)

We also impose Dirichlet boundary conditions on the short edges of ∂Ω. On the short edge

connecting the vertices (1− ε,
√

3ε) and (1− ε,−
√

3ε), we define

Qb = nb(x , y)⊗ nb(x , y)− I

3
where nb(x , y) =

1√
1
4

+ y2

4ε2

(
−1

2
,

y

2ε
, 0

)
,

and extend this boundary data Qb to the other short edges by successive rotations of π
3

. Note

that the boundary data is consistent with the symmetries of the hexagon.

We look for critical points of the Landau-de Gennes energy on Ω such that:

(1) the corresponding Q-tensor has ẑ as an eigenvector with constant eigenvalue −1
3
.

(2) the origin is a uniaxial point with negative scalar order parameter.

As the long edges are subject to a uniaxial Dirichlet condition with positive order parameter,

we would expect a ring of maximal biaxiality to separate the uniaxial point with negative order

parameter at the origin from the uniaxial boundaries with positive order parameter. In view of (1)

we look for critical points of the form

Q(x) =

 P(x) + 1
6
I2

0

0

0 0 −1
3

 . (6.33)

Here P(x) ∈ S2×2
0 (the set of 2× 2, symmetric and traceless matrices) and I2 is the 2× 2 identity

matrix. The condition (2) translates to P(0, 0) = 0. By substitution, we see that Q is a critical

point of the Landau-de Gennes energy if P is a solution of the system

∇2P =
λ2

2L̄

[
−2P− 4

(
PP− I2

2
|P|2

)
− 4|P|2P

]
, (6.34)
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or a critical point of the functional

F [P] =

∫
Ω

1

2
|∇P|2 +

λ2

L̄

(
−1

2
trP2 − 2

3
trP3 +

1

2
(trP2)2

)
dA. (6.35)

Let Pb denote the boundary data for P. This is related to Qb via the change of variables (6.33).

Lemma 6.5. For any λ > 0, there exists a critical point Ps ∈ C 2(Ω) ∩ C (Ω) of (6.35) which

satisfies the boundary condition Ps = Pb on ∂Ω and Ps(0, 0) = 0.

The corresponding Q-tensor Qs is then related to Ps via the change of variables (6.33) and is a

critical point of the Landau-de Gennes energy with the two required properties, (1) and (2).

Proof. Let A be the admissible set containing maps P ∈ W 1,2(Ω, S2×2
0 ) which satisfy the

boundary condition P = Pb on ∂Ω. Let Asym be the admissible set containing the maps P ∈ A
which are consistent with the symmetries of the hexagon. That is, all P ∈ Asym satisfy

P(x) = SP(STx)ST, (6.36)

for almost all x ∈ Ω and any matrix S ∈ D6. The set Asym is non-empty because the boundary

data Pb satisfies (6.36). We can prove the existence of a minimizer Ps of the energy F in the

class Asym by the direct methods in the calculus of variations.

Whilst Ps is a critical point of F over Asym, we do not know whether it is a critical point

of F over A. However, (6.36) defines an isometric action of D6 on A and the energy F is

invariant with respect to this action. This allows us to apply Palais’s principle of symmetric

criticality [85, 62] which gives that critical points of F in the restricted space Asym are also critical

points in the space A. We conclude that Ps is a critical point of F in A and a solution of the

Euler-Lagrange equations in (6.34). (We obtain that Ps ∈ C 2(Ω) ∩ C (Ω) by elliptic regularity,

Sobolev embeddings and the fact we are working on a Lipchitz domain as discussed in Appendix A.)

Finally, we evaluate (6.36) at the point x = (0, 0) to obtain that

P(0, 0) = SP(0, 0)ST for any S ∈ D6, (6.37)

which requires that Ps(0, 0) = 0 as needed.

Next we perform numerical experiments on the regular hexagon of edge length 1. We solve the

gradient flow equations (6.24) and investigate the stability of the Order Reconstruction-type
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Chapter 6. Equilibrium configurations on the square

critical point in Lemma 6.5. For these simulations, the hexagon is embedded into the square

[−1, 1]2 which is discretised by a uniform hexagonal mesh with spatial resolution h = 1
200

and

with the same symmetries as our domain. This discretisation is necessary to observe the predicted

uniaxial point at the origin. Spacial derivatives are estimated with a six-point Laplacian, as in-

troduced in Chapter 2. The remaining numerical details remain the same as discussed in Chapter 2.

We impose Dirichlet conditions on all six edges of the form

Qb(x , y) =

(
nb ⊗ nb −

I

3

)
, (6.38)

with discontinuities at the vertices. The director nb is the unit tangent vector to the relevant edge

as given in (6.32) and at each vertex we fix Qb to be the average of the two intersecting edges.

We impose an initial condition which divides the hexagon into six regions and three alternating

uniaxial states, as shown in Figure 6-7. We look for solutions which have ẑ as an eigenvector and

a uniaxial point at the origin with negative order parameter. This is equivalent to (i) Q33 = −1
3

everywhere, (ii) Q13 = Q23 = 0 everywhere, (iii) Q11 = Q22 = 1
6

at the origin and (iv) Q12 = 0 at

the origin.

Figure 6-7: The initial conditions on the hexagon for Q11, Q22 and Q12.

Firstly, we solve the gradient flow system (6.24) with the Dirichlet boundary condition (6.38) and

the initial conditions described above for λ̄2 = 3× 10−3. In Figure 6-8 we plot Q11, Q22 and Q12

of the converged solution and see that the origin is indeed a uniaxial point with negative scalar

order parameter. Hence the dynamic solution at the origin is given by

Q((0, 0), t) = −1

2

(
ẑ⊗ ẑ− I

3

)
,
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for large times. Further, we numerically verify that Q33(x, t) = −1
3

and Q13(x, t) = Q23(x, t) = 0

for all times as shown in Figure 6-9. Therefore we can confirm that ẑ is an eigenvector with

constant eigenvalue −1
3

for all times. In Figure 6-10, we plot the biaxiality parameter of the

converged solution,

β2(Q) = 1− 6
(trQ3)

2

(trQ2)3 .

We see a ring of maximal biaxiality around the origin, yielding an Order Reconstruction-type

solution on a regular hexagon. Secondly, in Figures 6-11, 6-12 and 6-13, we plot the components

of the converged solution at the origin as functions of λ̄2. The converged solution respects Q12 = 0

and Q11 = Q22 = 1
6

at the origin for λ̄2 ≤ 5.85 and hence we have a uniaxial point with negative

order parameter at the origin in this regime. The numerical simulations suggest that the Order

Reconstruction-type solution on a regular hexagon loses stability for larger values of λ̄2. The

qualitative trends are the same as those observed on a regular square.

Figure 6-8: Q11(x, t) and Q22(x, t) with contours at level 1
6

and Q12(x, t) with contours at level 0
for λ̄2 = 3× 10−3 and at t = 2.

Figure 6-9: Q33(x, t) = −Q11(x, t)− Q22(x, t) for λ̄2 = 3× 10−3 and at t = 2.
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Figure 6-10: Plot and contour plot of biaxiality parameter β2(Q(x, t)) for λ̄2 = 3× 10−3 and at
t = 2.

Figure 6-11: Q12 at the origin as λ̄2 varies. The critical value is λ̄2 = 5.85.

Figure 6-12: Q11 − 1
6

at the origin as λ̄2 varies. The critical value is λ̄2 = 5.85.
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Figure 6-13: Q22 − 1
6

at the origin as λ̄2 varies. The critical value is λ̄2 = 5.99.
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CHAPTER 7

Triple phase front propagation

The previous chapters employ a fourth-order Landau-de Gennes bulk potential with only isotropic

or uniaxial critical points. In this chapter, we extend our analysis to a sixth-order bulk potential

which admits isotropic, uniaxial and biaxial minimizers at a special temperature called the triple

point temperature in Allender and Longa 2008 [3]. We work on a unit disc and consider the

(u, v)-type critical points introduced in Chapter 5, which can include isotropic, uniaxial and biaxial

states. We use the asymptotic methods in Rubinstein, Sternberg and Keller 1989 [96] to study

the evolution of the two scalar order parameters, u and v , in the (u, v)-type dynamic solutions of

the Landau-de Gennes gradient flow model. We impose suitable boundary and initial conditions

compatible with isotropic-uniaxial, uniaxial-biaxial and isotropic-biaxial fronts and show that such

fronts propagate according to mean curvature in the L→ 0 limit. Further, we follow the methods

in Bronsard and Reitich 1993 [14] to show that for such (u, v)-type dynamic solutions, the triple

phase fronts meet at angles of 2π
3

, if the fronts intersect. We complement our asymptotic study

with a numerical study of the full Landau-de Gennes gradient flow system with sixth-order bulk

potential to reveal interesting pattern formation with three stable phases.

7.1 Problem formulation

Recall from Chapter 2 that the biaxial nematic phase is described by a Q-tensor with three distinct

eigenvalues within the Landau-de Gennes framework [31]. In order to describe first-order phase
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Chapter 7. Triple phase front propagation

transitions between biaxial and uniaxial or isotropic phases we use a sixth-order bulk potential

given by

fB(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4
tr(Q2)2

+
D

5
trQ2trQ3 +

E

6
(trQ2)3 +

(F − E )

6
(trQ3)2,

(7.1)

as introduced in [3]. This higher order bulk potential allows for phase transitions between biaxial

and uniaxial or isotropic phases unlike the fourth-order bulk potential used previously which only

allows for isotropic to uniaxial transitions. The parameters A, B , C , D, E and F are material

dependent constants. As before, A depends on temperature with A = A0(T − T ∗) where T ∗

is the supercooling temperature and A0 > 0. We require E > 0 and F > 0 to guarantee the

stability of the expansion [3]. This ensures that the coefficient of the highest order term in the

bulk potential is positive, hence fB(Q)→∞ as |Q| → ∞ and all energy minima are achieved for

finite |Q|. There are no set values of the parameters in the literature. Further tr(Q2) and tr(Q3)

satisfy the inequality 1
6
tr(Q2)3 − tr(Q3)2 ≥ 0. This is an equality in the uniaxial phase. Therefore

it is natural to define a biaxiality parameter β2(Q) by

β2(Q) = 1− 6
(trQ3)2

(trQ2)3
.

This is a measure of the strength of biaxiality as discussed in [76] and Chapter 6. For uniaxial

Q-tensors β2(Q) = 0 and maximum biaxiality is achieved when β2(Q) = 1.

In this chapter we are interested in critical points of the Landau-de Gennes energy functional of

the form

Q =
u(r , θ)

2
(r̂ ⊗ r̂ −m⊗m) + v(r , θ)

(
p⊗ p− I

3

)
, (7.2)

where r̂ = (cos θ, sin θ, 0) is the two-dimensional unit radial vector, m = (− sin θ, cos θ, 0) and

p = (0, 0, 1). Again, this is motivated by the (u, v)-type critical points of the Landau-de Gennes

energy discussed in [33]. The non-dimensionalized Landau-de Gennes gradient flow system with

sixth-order bulk potential is given by

Qt = ∇2Q− 1

L

[
AQ− B

(
QQ− I

3
|Q|2

)
+ C |Q|2Q

+ E |Q|4Q + (F − E ) trQ3

(
QQ− I

3
|Q|2

)]
.

(7.3)
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Throughout this chapter L is taken to be small. The substitution of the ansatz for Q in (7.2) into

the system (7.3) yields the following system of coupled second-order partial differential equations

ut = ∇2u − 4u

r 2
− f (u, v)

L
, (7.4)

vt = ∇2v − g(u, v)

L
, (7.5)

where

f (u, v) =u

[
A +

2B

3
v + C

(
u2

2
+

2v 2

3

)
− 2D

5

((
u2

2
+

2v 2

3

)
−
(

2v 3

9
− u2v

2

))
+ E

(
u2

2
+

2v 2

3

)2

− 2(F − E )

3
v

(
2v 3

9
− u2v

2

)]
,

g(u, v) =u

[
B

4
u − 3D

20
u

(
u2

2
+

2v 2

3

)
− (F − E )

4
u

(
2v 3

9
− u2v

2

)]
+ v

[
A− B

3
v + C

(
u2

2
+

2v 2

3

)
+

3D

10

(
2

3
v

(
u2

2
+

2v 2

3

)
+

4

3

(
2v 3

9
− u2v

2

))
+ E

(
u2

2
+

2v 2

3

)2

+
(F − E )

3
v

(
2v 3

9
− u2v

2

)]
.

In this derivation we have used that

tr(Q2) =
u2

2
+

2v 2

3
, tr(Q3) =

2v 3

9
− u2v

2
,

and

|∇Q|2 =
1

2
u2
r +

2

3
v 2
r +

1

2r 2
u2
θ +

2

3r 2
v 2
θ +

2

r 2
u2.

Defining W (u, v) = fB(Q), f (u, v) and g(u, v) are given by

f (u, v) = 2Wu(u, v) and g(u, v) =
3

2
Wv (u, v). (7.6)

7.2 Existence of a triple point temperature

Here we discuss the results in [3] which show the existence of a triple point temperature for which

exists isotropic, uniaxial and biaxial minimizers of the sixth-order bulk potential with equal energies.

In this paper, the authors reparametrize tr(Q2) and tr(Q3) using two scalar order parameters q

and ω via:
tr(Q2) = q2 and tr(Q3) = q3(1− ω). (7.7)
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This allows the bulk potential to be written as the sum of a uniaxial energy and two biaxial

energies,

fB(Q) = Fu(q) + Fb(q)ω +
1

6
(F − E )q6ω2, (7.8)

where

Fu =
A

2
q2 − B

3
q3 +

C

4
q4 +

D

5
q5 +

F

6
q6,

Fb =
B

3
q3 − D

5
q5 − F − E

3
q6.

This parametrization makes it simple to compute phase plane diagrams for this system. In what

follows we summarise the methods in [3] and describe a resulting phase plane which includes a

triple point. Phase diagrams are studied in the (A, B)-plane for fixed values of C , D, E and F

and regions and lines of the (A, B)-plane are described parametrically in terms of q.

• For the uniaxial phase to be locally stable we require

∂Fu

∂q
= q(A− Bq + Cq2 + Dq3 + Fq4) = 0,

∂2Fu

∂q2
= A− 2Bq + 3Cq2 + 4Dq3 + 5Fg 4 > 0.

• Transitions between competing phases occur along lines in the (A, B)-plane where fB(Q) is

a double welled potential. Therefore the transition between uniaxial and isotropic regions is

a line in the (A, B)-plane along which Fu(q) is a double welled potential. Hence, at the

transition there must be non-trivial solutions of Fu(q) = 0 and ∂Fu

∂q
= 0. This gives

A =
C

2
q2 +

4D

5
q3 + Fq4, B =

3C

2
q +

9D

5
q2 + 2Fq3.

• For the biaxial phase to be locally stable at some ω = ωb we require

∂fB
∂ω

∣∣∣∣
ωb

= Fb(q) +
F − E

3
q6ωb = 0, (7.9)

∂2fB
∂q2

∂2fB
∂ω2

−
(
∂2fB
∂q∂ω

)2

≥ 0. (7.10)

The condition in (7.10) is the requirement that the determinant of the second derivative of

the bulk potential fB(Q) is positive for a local minimum. Equation (7.9) implies that in a
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stable biaxial phase we must have

fB(Q)|wb
= Fu(q)− 1

6
(F − E )q6ω2

b.

Therefore a stable biaxial state can only be achieved if F − E > 0.

• Referring back to the original expression for fB(Q) in (7.8), we note that the biaxial phase

becomes energetically favourable over a uniaxial phase in regions of the (A, B)-plane where

Fb(q) ≤ 0. This is because if Fb(q) ≤ 0, we can find ω such that

fB(Q)|ω = Fu(q) + Fb(q)ω +
1

6
(F − E )q6ω2 < fB(Q)|ω=0.

Hence the biaxial minimizer is of lower energy than the uniaxial minimizer in these regions.

The transition between uniaxial and biaxial regions occurs when Fb(q) = 0 together with
∂Fu

∂q
= 0. This gives

A = −Cq2 − 2D

5
q3 − q4, B =

3D

5
q2 + (F − E )q3.

If this condition is satisfied then fB(Q) may be a single welled potential which transitions

from admitting a uniaxial minimum to admitting a biaxial minimum across the (A, B)-line

described above. This is a second-order phase transition. If the conditions for a stable

biaxial state are also satisfied along part of this (A, B)-line then fB(Q) is a double welled

potential and we have a first-order phase transition.

• The transition between biaxial and isotropic regions occurs when fB(Q)|wb
= 0 and

∂fB(Q)
∂q

∣∣
ωb

= 0 for non-zero q which yields

A = − 2BD

5(F − E )
−
(

C − 6D2

25(F − E )

)
q2 − q4,

B2 = −1

2
q4

[
4q2 + 3

(
C − 6D2

25(F − E )

)]
(F − E ).

Taking D = 0, the above calculations give that the isotropic-uniaxial, uniaxial-biaxial and isotropic-
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biaxial lines simplify to

B2 =

√
(C 2 + 16AF )3 − C (C 2 − 48AF )

16F
,

B2 =
1

2

(
3AC − C 3 + (C 2 − A)

√
C 2 − 4A

)
(F − E )2,

B2 =
F − E

4

(
C
(
C 2 − 6A

)
− (C 2 − 4A)

3
2

)
,

(7.11)

respectively. Phase plane sketches in [3] are produced using the equations for A and B in (7.11).

A triple point temperature is found when all three of these equalities hold at a point in the

(A, B)-plane. The phase plane from [3] of interest is reproduced in Figure 7-1, showing the

position of a triple point temperature denoted T. (The thicker dark lines are of interest and

represent C = −1, D = 0, E = 1 and F = 13.6.) Figure 7-1 also displays a contour plot of

W (u, v) at a triple point temperature (for A = 0.2387, B = 1.5920, C = −1, D = 0, E = 1

and F = 25). This shows the existence of five equal energy minimizers; two for v > 0, two for

v < 0 and one at (u, v) = (0, 0). The W (u, v) minimizers with v ≤ 0 are physically relevant for

this problem as illustrated in Chapter 5. The W (u, v) minimizers with v > 0 are not relevant

for the full Landau-de Gennes energy, including the Dirichlet energy. The state (u, v) = (0, 0) is

the isotropic state. Of the two minimizers with v < 0, the W (u, v) minimizer with u = −2v is

uniaxial. The second minimizer with v < 0 is biaxial at the triple point temperature. In what

follows we label these three minimizing states a, b and c.

(a) (b)

Figure 7-1: a) The relevant phase plane from [3] showing a triple point temperature denoted T ,
with solid lines representing first-order phase transitions and b) a contour plot of W (u, v) at a
triple point temperature showing five minimizing (u, v)-pairs and the line u = −2v (dashed).
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7.3 Triple phase front propagation

In this section we consider solutions of the system (7.4)-(7.5) with an initial condition consisting

of the three stable biaxial, uniaxial and isotropic states, denoted a, b and c. These phases are

separated by three fronts Γ1, Γ2 and Γ3 which meet at a triple junction, following the set up in [14]

and as shown in Figure 7-2. We take asymptotic expansions in three regions; an outer expansion

far away from the interfaces, an inner expansion close to the interfaces and an expansion close to

the triple junction where the three fronts meet.

Throughout this chapter we focus on the case where all fronts are well away from the origin which

is contained in the isotropic region. This means that the −4u
r2 term in equation (7.4) is of order

one and can be neglected in higher order equations.

Figure 7-2: The three stable states are separated by three fronts Γi which meet at a triple junction.

7.3.1 Outer expansion on fast time scale

First we work on a fast time scale with τ = t
L

. Here equations (7.4)-(7.5) become

uτ = L

(
∇2u − 4u

r 2

)
− f (u, v), (7.12)

vτ = L∇2v − g(u, v). (7.13)

130



Chapter 7. Triple phase front propagation

We take an outer expansion on this time scale, writing u and v as

u = u0
O(x, τ) + Lu1

O(x, τ) + L2u2
O(x, τ) + ...,

v = v 0
O(x, τ) + Lv 1

O(x, τ) + L2v 2
O(x, τ) + ....

Substituting these expressions for u and v into (7.12)-(7.13), we have to leading order

du0
O

dτ
= −f (u0

O , v 0
O) = −2Wu(u0

O , v 0
O),

dv 0
O

dτ
= −g(u0

O , v 0
O) = −3

2
Wv (u0

O , v 0
O).

Hence (u0
O , v 0

O) tends to a minimizer of W (u, v) which will be one of a, b or c at the triple point

temperature [14].

7.3.2 Inner expansion on slow time scale

For the inner expansion close to an interface Γi , we introduce a time scale that is slower than

τ , but faster than t, given by T = t√
L

. We let the front position be described by a function

φ(x, T , t) and take expansions of u and v close to the front given by

u = u0
I (z , x, τ , T , t) +

√
Lu1

I (z , x, τ , T , t) + Lu2
I (z , x, τ , T , t) + ...,

v = v 0
I (z , x, τ , T , t) +

√
Lv 1

I (z , x, τ , T , t) + Lv 2
I (z , x, τ , T , t) + ...,

where z = φ(x, T , t)/
√

L. Substituting these expressions for u and v into (7.4)-(7.5) gives to

leading order

∂u0
I

∂τ
+
∂φ

∂T

∂u0
I

∂z
− (∇φ)2∂

2u0
I

∂z2
+ f (u0

I , v 0
I ) = 0, (7.14)

∂v 0
I

∂τ
+
∂φ

∂T

∂v 0
I

∂z
− (∇φ)2∂

2v 0
I

∂z2
+ g(u0

I , v 0
I ) = 0. (7.15)

We follow the steps in [96], which discusses the scalar Allen-Cahn equation, to show that the

fronts are stationary on the T time scale and evolve according to motion by mean curvature on

the t time scale. Note that (7.14) and (7.15) are equations for u0
I and v 0

I in z and τ , with x,

T and t being thought of as parameters. In order to find φ we assume that u0
I and v 0

I tend to

travelling waves for τ →∞. Hence we suppose that u0
I (z , x, τ , T , t) ∼ Q(z − cτ , x, T , t) and

v 0
I (z , x, τ , T , t) ∼ P(z − cτ , x, T , t) as τ → ∞ for some constant c which corresponds to the
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wave speed. On substitution into equations (7.14) and (7.15), we find Q(z) and P(z) must satisfy

− (∇φ)2Q ′′ +

(
∂φ

∂T
− c

)
Q ′ + f (Q, P) = 0, (7.16)

− (∇φ)2P ′′ +

(
∂φ

∂T
− c

)
P ′ + g(Q, P) = 0. (7.17)

To match the solution away from the front we assume that (Q(z), P(z)) tends to a, b or c as

z → ±∞, for example, (Q, P)→ a as z → −∞ and (Q, P)→ b as z →∞.

Multiplying equations (7.16) and (7.17) through by Q′

2
and 2P′

3
respectively (scalings are motivated

by (7.6)), adding the equations and integrating with respect to z yields(
∂φ

∂T
− c

)∫ ∞
−∞

1

2
(Q ′)2 +

2

3
(P ′)2 dz = −[W ], (7.18)

where [W ] = W (Q(∞), P(∞))−W (Q(−∞), P(−∞)) and denotes the change in W over the

front. Here [W ] = 0 across each front because at the triple point temperature W (u, v) is an

equal triple welled potential. We introduce new functions Ru and Rv :

Ru

(
z − cτ

|∇φ|

)
= Q(z − cτ , x, T , t) and Rv

(
z − cτ

|∇φ|

)
= P(z − cτ , x, T , t).

Equations (7.16)-(7.17) and (7.18) give that Ru(z) and Rv (z) satisfy

Ru ′′ − f (Ru, Rv ) = 0, (7.19)

Rv ′′ − g(Ru, Rv ) = 0. (7.20)

Recall the assumption that u0
I and v 0

I tend to travelling waves as τ →∞. Then, in this limit, by

the definitions of Q, P , Ru and Rv we can write

u0
I (x, T , L) ∼ Ru

(
φ− cT√

L|∇φ|

)
and v 0

I (x, T , L) ∼ Rv

(
φ− cT√

L|∇φ|

)
.

Hence, equations (7.19) and (7.20) give evolution equations for the fronts in the T time scale.

The front position is given by solutions of φ − cT = 0. As [W ] = 0, then (7.18) gives that
∂φ
∂T
− c = 0 and hence the front is stationary on the T time scale.
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The second-order equations for the inner expansions of u and v in (7.4)-(7.5) are given by

∂u1
I

∂τ
+
∂φ

∂T

∂u1
I

∂z
− (∇φ)2∂

2u1
I

∂z2
+
∂f (u0

I , v 0
I )

∂u
u1
I +

∂f (u0
I , v 0

I )

∂v
v 1
I

= −∂u0
I

∂T
+∇2φ

∂u0
I

∂z
+ 2∇φ · ∇

(
∂u0

I

∂z

)
− ∂φ

∂t

∂u0
I

∂z
,

∂v 1
I

∂τ
+
∂φ

∂T

∂v 1
I

∂z
− (∇φ)2∂

2v 1
I

∂z2
+
∂g(u0

I , v 0
I )

∂v
v 1
I +

∂g(u0
I , v 0

I )

∂u
u1
I

= −∂v 0
I

∂T
+∇2φ

∂v 0
I

∂z
+ 2∇φ · ∇

(
∂v 0

I

∂z

)
− ∂φ

∂t

∂v 0
I

∂z
.

Again these are equations in z and τ only, with x, T and t thought of as parameters. In a similar

manner as before, again following the steps in [96], we assume u1
I (z , x, τ , T , t) ∼ Q1(z−cτ , x, T , t)

and v 1
I (z , x, τ , T , t) ∼ P1(z − cτ , x, T , t) as τ →∞. We have seen previously that the front is

stationary on the T time scale and ∂φ
∂T
− c = 0. Hence ∇φ is independent of T . Further Q and

P are independent of T by equations (7.16) and (7.17). Therefore, we find

− (∇φ)2Q ′′1 + 2WQQ(Q, P)Q1 + 2WQPP1 = (∇2φ + 2∇φ · ∇)Q ′ − ∂φ

∂t
Q ′, (7.21)

− (∇φ)2P ′′1 +
3

2
WPP(Q, P)P1 +

3

2
WQPQ1 = (∇2φ + 2∇φ · ∇)P ′ − ∂φ

∂t
P ′. (7.22)

Taking derivatives with respect to z in (7.16) and (7.17) gives that if [W]=0 then

−(∇φ)2Q ′′′ + 2WQQ(Q, P)Q ′ + 2WQPP ′ = 0, (7.23)

−(∇φ)2P ′′′ +
3

2
WPP(Q, P)P ′ +

3

2
WQPQ ′ = 0. (7.24)

Equations (7.21)-(7.22) are multiplied through by Q′

2
and 2P′

3
respectively, added together and

integrated over z . Two application of integration by parts leads to∫ ∞
−∞

Q1

[
− 1

2
(∇φ)2Q ′′′ + WQQ(Q, P)Q ′ + WQPP ′

]
dz

+

∫ ∞
−∞

P1

[
− 2

3
(∇φ)2P ′′′ + WPP(Q, P)P ′ + WQPQ ′

]
dz (7.25)

=

∫ ∞
−∞

(
∇2φ− ∂φ

∂t

)[
1

2
(Q ′)2 +

2

3
(P ′)2

]
+ 2∇φ ·

[
1

2
Q ′∇Q ′ +

2

3
P ′∇P ′

]
dz .
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By (7.23)-(7.24), the left-hand side of (7.25) is zero and we find

∂φ

∂t
= ∇2φ +

∇φ · ∇
∫∞
−∞

1
2
(Q ′)2 + 2

3
(P ′)2 dz∫∞

−∞
1
2
(Q ′)2 + 2

3
(P ′)2 dz

.

By definition Q ′ = Ru ′/|∇φ| and P ′ = Rv ′/|∇φ| so we can rewrite this equation in terms of φ:

∂φ

∂t
= ∇2φ− ∇φ · ∇|∇φ|

|∇φ|
. (7.26)

The right-hand side of this equation can be expressed as |∇φ|κφ where κφ = ∇ · (∇φ/|∇φ|) is

the mean curvature of the level set φ = constant. Hence we have

φt

|∇φ|
= κφ. (7.27)

The left-hand side of (7.27) gives the normal velocity of a level set of φ [96]. Recalling the

assumption that u0
I and v 0

I tend to travelling waves as τ →∞, we can write

u0
I (x, T , L) ∼ Ru

(
φ− cT√

L|∇(φ− cT )|

)
and v 0

I (x, T , L) ∼ Rv

(
φ− cT√

L|∇(φ− cT )|

)
.

One can see that if φ satisfies equation (7.27) then so does φ − cT , hence the level sets of

φ− cT evolve according to mean curvature on the t time scale. As the front position is defined

by solutions of φ− cT = 0, the front propagates according to mean curvature on the t time scale.

7.3.3 Front propagation near the origin

The −4u2

r2 term in (7.4) first appears in the second-order equation for the inner expansion of u

when r = O(L
1
4 ) at a point on the front. In this case we find that

d

dt
(φ− cT ) = |∇φ|κφ −

√
L

r 2

4[Q]∞−∞∫∞
−∞

1
2
(Q ′)2 + 2

3
(P ′)2 dz

.

This extra term is negative when we take the origin to be on the z < 0 side of the front (positive if

we take the origin to be on the z > 0 side) and as the position is given by solutions of φ− cT = 0,

this term opposes front motion towards the origin, as would be expected.
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7.3.4 Front behaviour at the triple junction

If the three fronts are distinct and do not meet, front evolution will be as discussed previously,

with each interface evolving according to its mean curvature on the t time scale at the triple point

temperature. Here we study the scenario that the three fronts meet at a triple junction. In this

section we follow the steps in [14] to find an angle condition at this triple junction. Working on

the t time scale on which the interfaces evolve at the triple point temperature, we define m(t) as

the position of the triple junction. We introduce new coordinates:

Xi =
x−m(t)√

L
,

for Xi = (ξi , ηi) where ξi are coordinates tangent to front Γi and ηi are coordinates perpendicular

to front Γi , as shown in Figure 7-3.

Figure 7-3: Diagram showing variables close to the triple junction over a triangular region Ω with
base size R around m(t) with Ωi being the tangent plane of Γi at m(t) [14].

We take asymptotic expansions of u and v near the triple junction and X1 = 0:

u = u0
m(X1, t) +

√
Lu1

m(X1, t) + Lu2
m(X1, t) + ..., (7.28)

u = v 0
m(X1, t) +

√
Lv 1

m(X1, t) + Lv 2
m(X1, t) + .... (7.29)
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On substitution of these expansions into (7.4)-(7.5) we find leading order behaviour

∇2
X1

u0
m − f (u0

m, v 0
m) = 0, (7.30)

∇2
X1

v 0
m − g(u0

m, v 0
m) = 0, (7.31)

where ∇2
X1

is the Laplacian with respect to the new variable X1. We need to match the solutions

of equations (7.30) and (7.31) with u0
I1 and v 0

I1-the leading order solutions near the front Γ1 and

away from m(t), which are discussed in the previous subsection. In general this requires that

lim
ξi→∞

u0
m(ξi , ηi) = u0

Ii(ηi) and lim
ξi→∞

v 0
m(ξi , ηi) = v 0

Ii (ηi), (7.32)

where ηi is fixed [108, 14] for i = 1, 2, 3 and the functions u0
Ii and v 0

Ii are the leading order solutions

of u and v near the front Γi and away from m(t).

The next step is to multiply equations (7.30) and (7.31) by ∂u0
m

∂η1
and ∂v0

m

∂η1
respectively and then

integrate over Ω, the region depicted in Figure 7-3 [84, 14]:∫ ∫
Ω

∂u0
m

∂η1
f (u0

m, v 0
m) dX1 =

∫ ∫
Ω

∂u0
m

∂η1

∂2u0
m

∂η2
1

+
∂u0

m

∂η1

∂2u0
m

∂ξ2
1

dX1,∫ ∫
Ω

∂v 0
m

∂η1
g(u0

m, v 0
m) dX1 =

∫ ∫
Ω

∂v 0
m

∂η1

∂2v 0
m

∂η2
1

+
∂v 0

m

∂η1

∂2v 0
m

∂ξ2
1

dX1.

These equations can be multiplied through by 1
2

and 2
3

respectively (see equation (7.6)), added

together and rearranged to give∫ ∫
Ω

∂

∂η1

[
W (u0

m, v 0
m) +

1

4

(
∂u0

m

∂ξ1

)2

− 1

4

(
∂u0

m

∂η1

)2

+
1

3

(
∂v 0

m

∂ξ1

)2

− 1

3

(
∂v 0

m

∂η1

)2 ]
dX1

=

∫ ∫
Ω

∂

∂ξ1

(
2

3

∂v 0
m

∂η1

∂v 0
m

∂ξ1
+

1

2

∂u0
m

∂η1

∂u0
m

∂ξ1

)
dX1.

An application of the Divergence theorem yields∫
∂Ω

[
W (u0

m, v 0
m) +

1

4

(
∂u0

m

∂ξ1

)2

− 1

4

(
∂u0

m

∂η1

)2

+
1

3

(
∂v 0

m

∂ξ1

)2

− 1

3

(
∂v 0

m

∂η1

)2 ]
v1 ds (7.33)

= −
∫
∂Ω

(
2

3

∂v 0
m

∂η1

∂v 0
m

∂ξ1
+

1

2

∂u0
m

∂η1

∂u0
m

∂ξ1

)
v2 ds,

where v = (v1, v2) is the outward unit normal vector to ∂Ω.
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Recalling the definitions of ξi and ηi , we have that

ηi = − sin(γi)η1 − cos(γi)ξ1 and ξi = cos(γi)η1 − sin(γi)ξ1, (7.34)

where γi gives the angle between the η1 axis and Ωi , the tangent plane to Γi at m(t) (considering

an anticlockwise rotation). The expressions for ξ1 and η1 in (7.34) give(
∂u0

m

∂ξ1

)2

−
(
∂u0

m

∂η1

)2

= − cos(2γi)

(
∂u0

m

∂ξi

)2

+ 4

(
∂u0

m

∂ηi

∂u0
m

∂ξi
sin(γi) cos(γi)

)
+ cos(2γi)

(
∂u0

m

∂ηi

)2

,(
∂v 0

m

∂ξ1

)2

−
(
∂v 0

m

∂η1

)2

= − cos(2γi)

(
∂v 0

m

∂ξi

)2

+ 4

(
∂v 0

m

∂ηi

∂v 0
m

∂ξi
sin(γi) cos(γi)

)
+ cos(2γi)

(
∂v 0

m

∂ηi

)2

,

for i = 1, 2, 3. In a similar vein we have that

− ∂u0
m

∂η1

∂u0
m

∂ξ1
=

(
∂u0

m

∂ξi

)2

cos(γi) sin(γi) +
∂u0

m

∂ξi

∂u0
m

∂ηi
cos(2γi) +

(
∂u0

m

∂ηi

)2

cos(γi) sin(γi),

− ∂v 0
m

∂η1

∂v 0
m

∂ξ1
=

(
∂v 0

m

∂ξi

)2

cos(γi) sin(γi) +
∂v 0

m

∂ξi

∂v 0
m

∂ηi
cos(2γi) +

(
∂v 0

m

∂ηi

)2

cos(γi) sin(γi),

also for i = 1, 2, 3. The next step in [14] is to write dη1 = ds, dη2 = sin(γ2 + θ) ds and

dη3 = sin(γ3 − θ) ds where θ is the angle shown in Figure 7-3 and apply this change of variables

to the above expressions. These expressions are then substituted into (7.33). As in [14], we split

∂Ω into two domains and take the length of the base of the triangular region Ω, R →∞. The

first domain is everywhere within a distance of α of front Γi and the second domain is everywhere

outside a distance of α of front Γi . Working in the limits R →∞ and α→∞, the integrals over

the second domain in (7.33) vanish due the matching condition as u0
m → u0

O in the integrand.

Therefore, with the change of variables and the expressions above, the left-hand side of (7.33)

reduces to

lim
α→∞

lim
R→∞
|ηi |<α

∫
∂Ω

[
W (u0

m, v 0
m) +

1

4

(
∂u0

m

∂ξ1

)2

− 1

4

(
∂u0

m

∂η1

)2

+
1

3

(
∂v 0

m

∂ξ1

)2

− 1

3

(
∂v 0

m

∂η1

)2
]

v1 ds

=

∫ ∞
−∞

[(
1

4

(
∂u0

I2

∂η2

)2

+
1

3

(
∂v 0

I2

∂η2

)2
)

cos(2γ2) + W (u0
I2, v 0

I2)

]
sin(θ)

sin(γ2 + θ)
dη2

−
∫ ∞
−∞

[(
1

4

(
∂u0

I3

∂η3

)2

+
1

3

(
∂v 0

I3

∂η3

)2
)

cos(2γ3) + W (u0
I3, v 0

I3)

]
sin(θ)

sin(γ3 − θ)
dη3.

The integral along dη1 is zero because v1dη1 = 0 as v1 = 0 along the bottom edge of the triangle.
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Using the same change of variable (dη1 = ds, dη2 = sin(γ2 + θ)ds, dη3 = sin(γ3 − θ)ds) the

right-hand side of (7.33) becomes

lim
α→∞

lim
R→∞
|ηi |<α

∫
∂Ω

−
(

2

3

∂v 0
m

∂η1

∂v 0
m

∂ξ1
+

1

2

∂u0
m

∂η1

∂u0
m

∂ξ1

)
v2 ds

=−
∫ ∞
−∞

[
1

2

(
∂u0

I2

∂η2

)2

+
2

3

(
∂v 0

I2

∂η2

)2
]

cos(γ2) sin(γ2)
cos(θ)

sin(γ2 + θ)
dη2

−
∫ ∞
−∞

[
1

2

(
∂u0

I3

∂η3

)2

+
2

3

(
∂v 0

I3

∂η3

)2
]

cos(γ3) sin(γ3)
cos(θ)

sin(γ3 − θ)
dη3,

and again the integral along dη1 is zero, this is because cos(γ1) = cos(3π/2) = 0. Equating the

left- and right-hand sides of (7.33) we obtain

∫ ∞
−∞

[(
1

4

(
∂u0

I2

∂η2

)2

+
1

3

(
∂v 0

I2

∂η2

)2
)

cos(2γ2) + W (u0
I2, v 0

I2)

]
sin(θ)

sin(γ2 + θ)
dη2

−
∫ ∞
−∞

[(
1

4

(
∂u0

I3

∂η3

)2

+
1

3

(
∂v 0

I3

∂η3

)2
)

cos(2γ3) + W (u0
I3, v 0

I3)

]
sin(θ)

sin(γ3 − θ)
dη3

= −
∫ ∞
−∞

[
1

2

(
∂u0

I2

∂η2

)2

+
2

3

(
∂v 0

I2

∂η2

)2
]

cos(γ2) sin(γ2)
cos(θ)

sin(γ2 + θ)
dη2

−
∫ ∞
−∞

[
1

2

(
∂u0

I3

∂η3

)2

+
2

3

(
∂v 0

I3

∂η3

)2
]

cos(γ3) sin(γ3)
cos(θ)

sin(γ3 − θ)
dη3.

(7.35)

The final step is to use the following lemma proved in [105, 14]. A slight change is required

because we have f (u, v) = 2Wu(u, v) and g(u, v) = 3
2
Wv(u, v) (see (7.6)) as opposed to

f (u, v) = Wu(u, v) and g(u, v) = Wv(u, v). The first relation in (7.36) has been scaled

appropriately. This lemma gives properties of the geodesics connecting minima of W found by

minimizing a weighted distance function.

Lemma 7.1. Define

Φab(b) = inf
p∈C1

p(−1)=a, p(1)=b

∫ 1

−1

√
W (p1(t), p2(t))

(
1

4

(
dp1(t)

dt

)2

+
1

3

(
dp2(t)

dt

)2
) 1

2

dt.

Let pab(t) be a geodesic connecting a to b. Then there exists a smooth increasing function

β : (−∞,∞) → (−1, 1) so that the curve γab(z) = pab(β(z)) is a solution of (7.19)-(7.20).
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The function γab = (γab1,γab2) satisfies

1

4

(
∂γab1

∂z

)2

+
1

3

(
∂γab2

∂z

)2

= W (γab1, γab2) and Φab(b) =

∫ ∞
−∞

W (γab1(z), γab2(z)) dz .

(7.36)

Lemma 7.1 and relation (7.36) give that (7.35) can be written as

cos2(γ2)
sin(θ)

sin(γ2 + θ)
Φbc(c)− cos2(γ3)

sin(θ)

sin(γ3 − θ)
Φca(a) =

− cos(γ2) sin(γ2)
cos(θ)

sin(γ2 + θ)
Φbc(c)− cos(γ3) sin(γ3)

cos(θ)

sin(γ3 − θ)
Φca(a).

In the above we have used the relation cos(2γi) = 2 cos2(γi)− 1. On expanding sin(γ2 + θ) and

sin(γ3 − θ) this becomes cos(γ2)Φbc(c) = − cos(γ3)Φca(a). Now, for θ1 and θ3 as in Figure 7-3,

γ2 + π
2

= θ1 and 3π
2
− γ3 = θ3 so

sin(θ1)Φbc(c) = sin(θ3)Φca(a). (7.37)

Rotating Ω so that Γ2 is perpendicular to the base of the triangle in Figure 7-3, we can repeat the

analysis to find the translated relation

sin(θ2)Φca(a) = sin(θ3)Φab(b). (7.38)

Equations (7.37) and (7.38) give an angle condition at the triple junction m(t). If W is an equal

triple welled potential with [W ] = 0 across each front, such as at a triple point temperature, then

(7.36) gives that Φca(a) = Φab(b) = Φbc(c). In this case sin(θ1) = sin(θ2) = sin(θ3), so all the

angles are the same and hence equal 2π/3.

7.4 Triple phase numerical simulations

We finish this chapter with numerical simulations of the full Landau-de Gennes gradient flow

system on the unit disc. We work with the parameters used to generate the W (u, v) contour

plot in Figure 7-1 (A = 0.2387, B = 1.5920, C = −1, D = 0, E = 1, F = 25) and solve the full

Landau-de Gennes gradient flow system with sixth-order bulk potential, non-dimensionalized and

as given in (7.3).
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We impose boundary and initial conditions compatible with fronts between the stable biaxial,

uniaxial and isotropic states, denoted a, b and c respectively. In the first sets of simulations we

impose the biaxial boundary condition

Q =
a1

2
(r̂ ⊗ r̂ −m⊗m) + a2

(
p⊗ p− I

3

)
on r = 1,

where a1 and a2 are the u and v components of a = (a1, a2) which corresponds to the biaxial

stable state. In the next sets of simulations we impose discontinuous boundary conditions, where

two or three states are imposed in different sections of the boundary. We compare the evolution

of the fronts imposed in our initial conditions with the evolution predicted by our analysis. That

is, motion by mean curvature of individual fronts and equal angles between each pair of fronts at

a triple junction.

Our first initial condition has a front structure such that

Q(x, 0) =


0 for 0 ≤ r < r1,

b1

2
(r̂ ⊗ r̂ −m⊗m) + b2

(
p⊗ p− I

3

)
for r1 < r < r2,

a1

2
(r̂ ⊗ r̂ −m⊗m) + a2

(
p⊗ p− I

3

)
for r2 < r ≤ 1,

(7.39)

where 0 < r1 < r2 < 1 and b1 and b2 are the u and v components of b = (b1, b2) which

corresponds to the uniaxial stable state. The initial condition is given explicitly by

Q(x, 0) =
1

2

[
1 + tanh

(
r − r2√

L

)](
b1

2
(r̂ ⊗ r̂ −m⊗m) + b2

(
p⊗ p− I

3

))
+

1

2

[
1 + tanh

(
r − r1√

L

)](
a1 − b1

2
(r̂ ⊗ r̂ −m⊗m) + (a1 − b2)

(
p⊗ p− I

3

))
.

We take r1 = 0.4, r2 = 0.6 and L = 0.01. Figure 7-4 illustrates the evolution of |Q(r, t)|2 on

the disc. The initial front remains radially symmetric as it collapses to the origin. Simulated

front evolution is compared to motion by mean curvature in Figure 7-5 which corroborates the

asymptotic analysis. The plots of the eigenvalues of Q(r, t) in Figure 7-6 demonstrate the division

of the disc into the three stable states. As for previous planar initial conditions, both fronts are

arrested near the origin. We also consider an initial condition with a radially asymmetric front

structure which is based on initial condition (7.39) and shown in the first time panel of Figure 7-7.

The front becomes radially symmetric and travels inwards, suggesting motion by mean curvature

as predicted.
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Figure 7-4: |Q(r, t)|2 for initial condition (7.39) at t = 0, t = 0.05, and t = 0.2. The spatial
resolution is h = 1

256
.

Figure 7-5: Front position ρ (black) for initial condition (7.39) and predicted position according
to motion by mean curvature (blue) for the isotropic-uniaxial front (initial position r = 0.4) and
the uniaxial-biaxial front (initial position r = 0.6). As in Chapters 3 and 5, we would expect
the radius of the isotropic core of the steady solution to scale with

√
L and for the fronts to be

arrested at an O(
√

L) distance from the origin (
√

L = 0.1 in this figure). This contributes to the
deviations from the predicted evolution by mean curvature seen in this figure.

Figure 7-6: Radial profiles of the eigenvalues of Q(r, t) for initial condition (7.39) at t = 0.002,
t = 0.05, and t = 0.2.
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Figure 7-7: |Q(r, t)|2 for a radially asymmetric initial condition at t = 0, t = 0.01, and t = 0.25.

Next we consider an initial condition with a triple junction. This initial condition is shown in the

first time panel of Figure 7-8. The three states, isotropic (dark blue), biaxial (yellow) and uniaxial

(light blue), are separated by three fronts which meet at a triple junction. Our asymptotic analysis,

which is restricted to (u, v)-type solutions of the Landau-de Gennes gradient flow system, predicts

that for sufficiently small L, the fronts will evolve according to their mean curvature and each pair

of interfaces will meet at angles of 2π
3

. However the numerical solutions of the full Landau-de

Gennes gradient flow system do not exhibit this behaviour. Although the triple junction persists for

a short time,the initial isotropic-biaxial front is not maintained and divides into isotropic-uniaxial

and uniaxial-biaxial fronts. We conjecture that there is a point on the initial isotropic-biaxial

interface where (u, v) = (b1 + ε1, b2 + ε2) where ε1, ε2 are small (and b = (b1, b2) corresponds to

the uniaxial state). This point on the isotropic-biaxial interface gets drawn towards the uniaxial

minimizer and hence the front divides into isotropic-uniaxial and uniaxial-biaxial fronts. Once

established, the new isotropic-uniaxial and uniaxial-biaxial fronts appear to evolve according to

mean curvature, eventually forming straight fronts across the disc. This behaviour is illustrated

with plots of |Q(r, t)|2 in Figures 7-8 and 7-9.
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Figure 7-8: |Q(r, t)|2 for an initial condition with a triple junction at t = 0, t = 0.001, t = 0.005,
t = 0.01, t = 0.1 and t = 0.5. The spatial resolution is h = 1

256
.
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Figure 7-9: |Q(r, t)|2 for an initial condition with a triple junction at t = 0, t = 0.001, t = 0.005,
t = 0.01, t = 0.1 and t = 0.5. The spatial resolution is h = 1

256
.
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Lastly, we consider an initial condition which allows us to study how the origin affects front motion,

see the first time panel of Figure 7-10. Based on our analysis, we would expect the front to

be arrested at the origin. However, we observe the front travelling across the origin, which is

contained in the biaxial phase region of the converged solution in the last time panel of Figure

7-10. This suggests that the eigenvectors of Q(r, t) do not have a singularity at the origin and

have evolved from the eigenvectors of Q(r, 0). Therefore, Q(r, t)) is no longer of the assumed

(u, v)-form considered in the asymptotic analysis.

Figure 7-10: |Q(r, t)|2 at t = 0, t = 0.01 and t = 0.5.

To conclude, our numerical simulations of the full Landau-de Gennes gradient flow system

corroborate our asymptotic analysis of (u, v)-type solutions for individual interfaces, demonstrating

that the fronts evolve according to their mean curvature for small L. However, our numerical

simulations demonstrate a different behaviour at the triple junction than predicted by our asymptotic

analysis. The three fronts are unable to meet at equal angles due to the division of the isotropic-

biaxial front into isotropic-uniaxial and uniaxial-biaxial fronts. The numerical experiments also

suggest that the Q-tensor evolves from the ansatz assumed in the asymptotic analysis. In particular,

the results imply that there is a minimizing biaxial Q-tensor of the Landau-de Gennes energy in

the limit L→ 0 which has no singularity at the origin.
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CHAPTER 8

Conclusions and future work

This thesis focuses on the gradient flow model of the Landau-de Gennes energy on prototype

geometries, such as the sphere, the disc and the square, with Dirichlet boundary conditions and

different representative initial conditions at the isotropic-nematic transition temperature. Here we

summarize each chapter and discuss future perspectives.

8.1 Front propagation in spherical droplets

In Chapter 3 we consider the three-dimensional droplet with radial boundary conditions. In the

case of uniaxial radially symmetric initial conditions with isotropic-nematic front structures, we

adapt Ginzburg-Landau methods from [13, 15] to rigorously prove that the isotropic-nematic front

propagates according to mean curvature in the L→ 0 limit. Further, numerical simulations show

that the qualitative dynamics are universal for a large class of uniaxial and biaxial initial conditions,

including radially asymmetric cases. The long-time dynamics are determined by the classical

Radial Hedgehog solution which has been numerically demonstrated to be a global Landau-de

Gennes energy minimizer in this regime [80].

In the future one could consider fluid flow across the interface between the isotropic and nematic

states. This flow is not accounted for in the model discussed in Chapter 3 and therefore it

would be interesting to study isotropic-nematic front propagation within, for example, the Beris-

Edwards equations for nematodynamics as described in Sengupta 2013 [102]. These equations are
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considered in Fei et al 2015 [43] to study isotropic-nematic front propagation using the method of

matched asymptotics. The authors derive evolution laws for the velocity field, the director field of

nematic alignment and the isotropic-nematic interface but do not consider the effects of boundary

or initial conditions. We would focus on the effects of boundary and initial data on the persistence

and evolution of isotropic-nematic fronts in the presence of fluid flow.

Another natural extension would be to rigorously prove motion by mean curvature of the isotropic-

nematic front with radially asymmetric initial conditions. This could be achieved by a level set

approach such as in Evans et al 1992 [41] for the Ginzburg-Landau framework.

8.2 Front propagation in heterogeneous materials

In Chapter 4 we study the propagation of isotropic-nematic fronts in a three-dimensional droplet in

the presence of obstacles modelled by periodic forcing terms. We adapt arguments from [35] to the

three-dimensional case with small elastic constant in model situations where forcing contributions

are dominant over mean curvature contributions to front propagation and prove the existence

of pulsating wave solutions for forcings greater in magnitude than a critical forcing. We provide

estimates for the average front velocity in this regime. The critical forcing is verified via numerical

simulations of the full Landau-de Gennes gradient flow system on the annulus.

In Chapter 4 we also investigate isotropic-nematic front propagation on the unit square with

periodic forcing terms which induce forwards front motion and a moon-shaped obstacle opposing

front motion. We demonstrate that for some forcing strengths, the interface is pinned by the long

rounded side of the moon. However, if the moon-shaped obstacle is flipped and the front meets

the two points of the moon, the front is able to pass through the obstacle.

For the future, it would be ideal to generalise these results to random obstacles with no radial

symmetry. In particular, we are interested in randomly positioned obstacles of random strength as

studied in Dirr, Dondl and Scheutzow 2011 [36] for the Quenched Edwards-Wilkinson equation.

In this paper, a supersolution is found using a percolation result from Dirr et al 2010 [34] to

show that the obstacles pin the front in certain situations. These arguments can be adapted to

the two-dimensional disc as the supersolution construction is still applicable and we are currently

generalising the methods to the three-dimensional sphere.

8.3 Equilibrium configurations on the disc

In Chapter 5 we focus on dynamic solutions of the Landau-de Gennes gradient flow system on the

disc. Our results are largely numerical and complemented by heuristics and analytical reasoning.
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We demonstrate how a choice of planar or non-planar initial condition can influence the long-time

dynamic behaviour. Planar initial conditions generate planar dynamic solutions with an isotropic

core at the centre for all times whereas non-planar solutions follow the planar dynamics for some

time before relaxing into a completely uniaxial state for long times. We also look at non-minimal

boundary conditions which do not minimize the bulk potential. Non-minimal boundary conditions

allow for dynamic scenarios outside the scope of minimal boundary conditions and since minimal

boundary conditions are an idealization, non-minimal Dirichlet conditions can be more physically

relevant. The long-time dynamics can be understood in terms of local and global minimizers of

the Landau-de Gennes energy. Our numerical results show that a large class of physically relevant

liquid crystal model problems can exhibit a well-defined isotropic-nematic front for a length of

time that can be observed experimentally. These results also give insight into how boundary and

initial conditions can be used to yield either largely disordered or ordered profiles.

One could rigorously prove interfacial motion by mean curvature for radially symmetric initial

conditions for this model problem, in the limit of vanishing elastic constant. In particular, for the

(u, v)-system studied on the disc in Chapter 5, we could adapt results from Bronsard and Stoth

1998 [16] which proves front evolution by mean curvature for a similar two-dimensional vector

system. Again, our dynamic equations differ from the Ginzburg-Landau model by an additional

term. However, for L sufficiently small, this term should be controllable.

It would be interesting to analyse the minimizers of the Landau-de Gennes energy functional with

non-minimal boundary conditions, motivated by the numerical study in Chapter 5. Recall that

for minimal boundary conditions, in the limit of vanishing elastic constant, Landau-de Gennes

minimizers converge uniformly to a limiting minimizing harmonic map away from singularities as

discussed in [76]. The work in [76] is inspired by the analogous work in Bethuel et al 1994 [9]

and Bethuel et al 1993 [8] for minimizers of the Ginzburg-Landau energy functional. In Andre

and Shafrir 1998 [5] the authors adapt the arguments from [9] and [8] to prove convergence of

Ginzburg-Landau minimizers to harmonic maps in the interior of a domain subject to non-minimal

boundary conditions. A convenient form of the Landau-de Gennes energy functional is introduced

in Majumdar, Pisante and Henao 2013 [75] (also see [80]) which allows us to write the Landau-de

Gennes bulk potential as the sum of two separate contributions. The first contribution is the

Ginzburg-Landau potential and the second contains information about the uniaxiality or biaxiality

of the Q-tensor. This formulation would hopefully allow us to follow the steps in [5] to prove that

global Landau-de Gennes minimizers converge to minimizing harmonic maps in the interior of a

domain when non-minimal boundary conditions are imposed.
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8.4 Equilibrium configurations on the square

We analytically and numerically study an Order Reconstruction-type Landau-de Gennes critical

point on a square domain at a fixed temperature, motivated by the Well Order Reconstruction

solution critical point reported in [60]. The WORS is distinguished by a constant eigenframe and

a uniaxial cross with negative order parameter along the square diagonals. The WORS critical

point is defined in terms of a scalar variational problem and is globally stable for edge lengths

comparable to the biaxial correlation length of the order
√
L√
C

. Stability is lost via a supercritical

pitchfork bifurcation in the scalar variational setting as the edge length increases.

Recent numerical experiments in Robinson et al 2016 [95] show that there is a continuous branch

of critical points emerging from the Well Order Reconstruction critical point for which the uniaxial

cross continuously deforms from the diagonal towards the edges. In some cases, there can be

up to 81 critical points for a given λ. Further, our numerical investigations on a square and a

hexagon suggest that Order Reconstruction-type critical points exist and are globally stable for

regular two-dimensional polygons with an even number of sides of sufficiently small length. It

would be interesting to study the generic character of Order Reconstruction-type critical points

further in future work.

8.5 Triple phase front propagation

In Chapter 7 we study the propagation of isotropic-uniaxial, uniaxial-biaxial and isotropic-biaxial

fronts which meet at a triple junction. We work with a sixth-order Landau-de Gennes bulk potential

which allows for isotropic, uniaxial and biaxial minima unlike the fourth-order potential employed

in previous chapters. We discuss the existence of a triple point temperature at which there exists

equal energy minimizing isotropic, uniaxial and biaxial states of the sixth-order bulk potential.

We use asymptotic methods to show that all fronts evolve according to their mean curvature

and the angle between each pair of interfaces is equal at a triple junction. We conclude with

numerical experiments for the full Landau-de Gennes gradient flow system with sixth-order bulk

potential. When circular fronts connect the three states our numerical simulations agree with the

asymptotic analysis and the fronts evolve according mean curvature. However an initial condition

with a triple junction does not yield the expected behaviour and the isotropic-biaxial fronts divides

into isotropic-uniaxial and uniaxial-biaxial fronts. This may be because a pair of isotropic-uniaxial

and uniaxial-biaxial fronts are energetically preferable to a single isotropic-biaxial front due to the

positions of the wells of our potential in the plane.

Throughout the asymptotic analysis, we mostly assume that all fronts are well away from the
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origin. It would be interesting to extend the asymptotic analysis of (u, v)-front evolution close

to r = 0, where the fronts should be arrested. However, our numerical results suggest that the

minimizing biaxial Q-tensor evolves from the ansatz assumed in the asymptotic analysis to a

biaxial Q-tensor with no singularity at the origin. One may be able to extend the analysis in [76]

to study the existence of minimizing biaxial Q-tensors of the Landau-de Gennes energy functional

with sixth-order bulk potential in the L→ 0 limit.

8.6 Final conclusion

In this thesis, we study the Landau-de Gennes energy functional for nematic liquid crystals. We

consider either a fourth-order Landau-de Gennes bulk potential which admits isotropic and uniaxial

minima or, as in Chapter 7, a sixth-order bulk potential which admits biaxial minima in addition.

We are interested in distinguished temperatures at which the bulk potential becomes an equal

welled potential. Working at these special temperatures and on several geometries including

the three-dimensional droplet, the disc and the square, we look for solutions to the Landau-de

Gennes gradient flow system with front structures connecting the relevant minimizing states. In

particular, we are interested in how Dirichlet boundary conditions and different types of initial

conditions affect interface motion and persistence. We use the existence of different critical

points of the Landau-de Gennes energy to study these transient dynamics. Namely, we study

Radial Hedgehog-type solutions on the sphere, two parameter (u, v)-solutions on the disc and

the Order Reconstruction solution on the square. Using various analytical techniques such as

matched asymptotics and weighted energy methods as well as numerical investigations of the full

Landau-de Gennes gradient flow system, we discover interesting interface dynamics which may be

of practical relevance. That is, in each case we find that the front structures imposed by the initial

conditions persist for an observable length of time. Further, these interfaces evolve according to

the mean curvature of the geometry in the limit of L→ 0. This behaviour is a pronounced feature

of the transient dynamics on each domain and for a wide range of initial conditions, suggesting

interesting similarities and a generic character for front propagation in nematic liquid crystals for

different geometries, critical points and transition temperatures.
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APPENDIX A

Direct methods in the calculus of variations

In Chapter 6 we consider energy functionals of the form I : A → R where

I [u] =

∫
Ω

f (∇u(x), u(x), x) dx ,

for f (p, z , x) : R2 × R× Ω→ R and

A :=
{

u ∈ W 1,2 (Ω) : u = ub on ∂Ω
}

.

The Sobolev space W 1,2(Ω) is the space of functions such that u ∈ L2(Ω) and weak derivatives

uxi ∈ L2(Ω) for i = 1, 2, where L2(Ω) is the set of square integrable functions on Ω. In general,

W k,p(Ω) is the space of functions such that u ∈ Lp(Ω) and all weak derivatives uαxi ∈ Lp(Ω) for

i = 1, 2 and α = 1, ..., k [29, 40]. The weak derivative uαxi is defined to satisfy∫
Ω

uφαxi dx = (−1)i
∫

Ω

uαxiφ dx , (A.1)

for i = 1, 2 for all φ ∈ C∞0 (Ω) (the set of all functions in C∞(Ω,R2) with closed and bounded

support) [40].

The value u(x) for x ∈ ∂Ω is the trace of u at the point x . The trace is a function which overcomes

any problems which may arise from the fact that u ∈ W 1,2(Ω) may not be continuous [40]. From
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[40], we have that if ∂Ω is C 1 then there exists a bounded linear function T : W 1,2(Ω)→ L2(∂Ω)

such that

(1) T (u) = u|∂Ω for all u ∈ W 1,2(Ω) ∩ C (Ω̄).

(2) ||T (u)||L2(∂Ω) ≤ C ||u||W 1,2(Ω) = C
(∫

Ω
|∇u|2 + u2 dx

) 1
2 for all u ∈ W 1,2(Ω) for some

constant C .

This result can be extended to Lipschitz domains [53] and hence this trace function T allows

us to impose u = ub on ∂Ω in Chapter 6 as the boundaries of the domains in consideration are

Lipschitz.

We are interested in the existence of a global minimizer of I over A. From [29], a global minimizer

of I exists provided that I satisfies the following properties:

(1) I is coercive over A. That is,

I [u] ≥ α||u||W 1,2(Ω) + β for all u ∈ A, for some α > 0, β ∈ R.

(2) I is weakly lower semi-continuous. That is,

lim inf
n→∞

I [un] ≥ I (u) if un ⇀ u in W 1,2(Ω).

The sequence un converges weakly to u in W 1,2(Ω) which means that 〈un,φ〉W 1,2(Ω) →
〈u,φ〉W 1,2(Ω) for all φ ∈ W 1,2(Ω). That is

∫
Ω
∇un · ∇φ + unφ dx →

∫
Ω
∇u · ∇φ + uφ dx

for every φ ∈ W 1,2(Ω).

The second condition is generally hard to verify. However, it is well known that convex functionals

are weakly lower semi-continuous. A function g : X → R is convex if λg(x) + (1 − λ)g(y) ≥
g(λx + (1− λy)) for every x , y ∈ X and λ ∈ [0, 1] [29]. We can use, for example, the following

theorem from [40]:

Theorem A.1. Assume that f is smooth, bounded from below and that the mapping p 7→
f (p, z , x) is convex for each z ∈ R and x ∈ Ω. Then I is weakly lower semi-continuous in

W 1,2(Ω).

Once we know that I satisfies the properties (1) and (2), we have the existence of a minimizer of

I over A, provided that A is non-empty [40]. Throughout Chapter 6 we use that the minimizer
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of our energy functional satisfies the Euler-Lagrange equations associated with the Landau-de

Gennes energy functional. Consider the following theorem from [29]:

Theorem A.2. Let f (p, z , x) : R2 ×R×Ω→ R be a C 2 function. If ū ∈ C 2(Ω) and a solution

of

inf

{
I [u] =

∫
Ω

f (∇u, u, x) dx : u ∈ A
}

, (A.2)

then ū satisfies the Euler-Lagrange equations associated with I :

−
2∑

i=1

(fpi (∇u, u, x))xi + fz(∇u, u, x) = 0. (A.3)

However, in general it is not known that ū ∈ C 2(Ω) only that ū ∈ W 1,2(Ω). If we require that fp

and fz satisfy further properties, we can show that ū ∈ W 1,2(Ω) is a solution of the weak form of

the Euler-Lagrange equations (A.3), given by

∫
Ω

2∑
i=1

fpi (∇u, u, x)φxi + fz(∇u, u, x)φ dx = 0 for all φ ∈ W 1,2
0 (Ω), (A.4)

using a theorem in [40]. The space W 1,2
0 (Ω) is the space of functions in W 1,2(Ω) that vanish on

the boundary ∂Ω [64] in the trace sense.

Theorem A.3. Suppose f satisfies the following growth conditions:

|f (p, z , x)| ≤ C (|p|2 + |q|2 + 1),

|fp(p, z , x)| ≤ C (|p|+ |z |+ 1),

|fz(p, z , x)| ≤ C (|p|+ |z |+ 1),

(A.5)

for some constant C and all p ∈ R2, z ∈ R and x ∈ Ω, and ū satisfies (A.2). Then ū is a weak

solution of the Euler-Lagrange equations and satisfies (A.4).

From the weak form of the Euler-Lagrange equations we can use elliptic regularity and Sobolev

embeddings to show that ū is a classical solution of the Euler-Lagrange equations. For example in

Proposition 6.2 we consider the energy functional

H[q] =

∫
Ω

|∇q|2 +
λ2

L

(
Cq4 − B2

2C
q2

)
dA,

for q ∈ W 1,2(Ω) and satisfying suitable boundary conditions (see (6.5)) on ∂Ω. As H satisfies the
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necessary properties (1), (2) and (A.5) and Ω is Lipschitz, we have the existence of a minimizer q̄

of H which is a weak solution of the Euler-Lagrange equations associated with H . That is,∫
Ω

2∇q · ∇φ dx =

∫
Ω

λ2

L

(
4Cq3 − B2

C 2
q

)
φ dx ,

for all φ ∈ W 1,2
0 (Ω). We employ the Elliptic Regularity Theorem and the Sobolev Embedding

Theorem to show that q ∈ C 2(Ω) and is a classical solution of the Euler-Lagrange equation

associated with H.

Theorem A.4 (Elliptic Regularity Theorem). Suppose u ∈ W 1,2(Ω) such that∫
Ω

∇u · ∇φ dx =

∫
Ω

f φ dx ,

for all φ in W 1,2
0 (Ω) and f ∈ W k,2(Ω). Then u ∈ W k+2,2(Ω) [2].

Theorem A.5 (Sobolev Embedding Theorem). Let Ω be a bounded open domain with Lipschitz

boundary, then W k,p(Ω) ⊆ W l ,q(Ω) provided k− 2
p
> l − 2

q
. Further W k,p(Ω) ⊂ C r (Ω) provided

k − 2
p
> r [2].

We first show that f = λ2

L

(
4Cq3 − B2

C2 q
)
∈ W 0,2(Ω) = L2(Ω) using that q ∈ W 1,2(Ω). This

is achieved by showing that q3 ∈ W 0,2(Ω) as q ∈ W 0,2(Ω) is clear. The Sobolev Embedding

Theorem gives that W 1,2(Ω) ⊆ W 0,q(Ω) = Lq(Ω) for 2 ≤ q < ∞. Hence q ∈ L6(Ω) and so

q3 ∈ L2(Ω) as needed. Therefore f ∈ W 0,2(Ω) and the Elliptic Regularity Theorem then gives

that q ∈ W 2,2(Ω).

We then show that f = λ2

L

(
4Cq3 − B2

C2 q
)
∈ W 1,2(Ω) using that q ∈ W 2,2(Ω). This is achieved

by proving that q3 ∈ W 1,2(Ω). First we note that q3 ∈ L2(Ω) as W 2,2(Ω) ⊆ L6(Ω) by the

Sobolev Embedding Theorem. Secondly, we need to show that 3q2qxi ∈ L2(Ω). This follows from

the Cauchy-Schwarz inequality and the Sobolev Embedding Theorem. The Elliptic Regularity

Theorem then gives that q ∈ W 3,2(Ω).

We repeat the steps again to yield that q ∈ W 4,2(Ω). Then, by the second part of the Sobolev

Embedding Theorem, W 4,2(Ω) ⊂ C 2(Ω) and we have that q ∈ C 2(Ω). Therefore q is a classical

solution of the Euler-Lagrange equations and hence satisfies

∇2q =
λ2

L

(
2Cq3 − B2

2C
q

)
.
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A.0.1 The vector case

It is possible to apply the same approach to the vector case as for the scalar case discussed

previously. This is required in Chapter 6 for the existence of a minimizer of the full Landau-de

Gennes energy functional and for the system in Proposition (6.1). The energy functional is now

of the form

I [u] =

∫
Ω

f (∇u(x), u(x), x) dx ,

and the admissible space is

A :=
{

u ∈ W 1,2 (Ω,Rm) : u = ub on ∂Ω
}

,

where u : Ω→ Rm and f : R2×m ×Rm ×Ω→ Rm [40]. We can apply the previous theory to this

case in a straightforward manner with the two following theorems from [40].

Theorem A.6. If I is coercive, f (p, z , x) is convex in the variable p and A is non-empty, then

there exists ū ∈ A solving

inf

{
I [u] =

∫
Ω

f (∇u, u, x) dx : u ∈ A
}

. (A.6)

This theorem gives the existence of a minimizer of I over A. The next theorem gives that

minimizers of I are weak solutions of the Euler-Lagrange equations associated with I .

Theorem A.7. If f satisfies the conditions (A.5) and ū satisfies (A.6). Then ū is a weak solution

of the Euler-Lagrange equations

−
n∑

i=1

(fpi k (∇u, u, x))xi + fzk (∇u, u, x) = 0 in Ω,

for k = 1, 2, ...m and uk = ub
k on ∂Ω. That is, ū satisfies

m∑
k=1

∫
Ω

2∑
i=1

fpi k (∇u, u, x)φk
xi

+ fzk f (∇u, u, x)φk dx = 0,

for all φ ∈ W 1,2
0 (Ω,Rm).

Again, we can apply the Elliptic Regularity Theorem and the Sobolev Embedding Theorem to

show that the energy minimizers in Chapter 6 are classical solutions of the relevant Euler-Lagrange

equations.
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