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Abstract

This thesis presents a new technique to identify a 2D mask showing the extent of par-
ticulate aerosol distributions in satellite imagery. This technique uses a supervised
texture classification approach, and utilises data from two distinct satellite sources.
The vertical feature mask (VFM) product from the CALIPSO lidar, provides an ac-
curate description of the aerosol content of the atmosphere but has a limited footprint
and coverage. The CALIPSO VFM is used to provide training data in order to form
classifiers to be applied to other imagery, namely data from the spinning enhanced
visible and infrared imager (SEVIRI) on the MSG satellite. The output from the clas-
sification is a 2D mask representing the locations of the particulate aerosol of interest
within the SEVIRI image.

This approach has been demonstrated on test cases over land and ocean, and shows a
good agreement with other techniques for the detection of particulate aerosol. However,
the supervised texture approach provides outputs at a higher resolution than the ex-
isting methods and the same approach is applicable over land and ocean and therefore
shows the advantages compared to the current techniques.

Furthermore, the coverage of the approach can be further extended using signature
extension and chain classification. Signature extension was applied to one of the test
cases to monitor the same geographical region with temporal extension away from
the initial supervised classification. The experiments showed that it was possible to
extend the coverage for ±90 minutes from the original classification and indicates the
possibility of greater extension over larger temporal windows.
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Chapter 1

Introduction

This chapter introduces the effect particulate aerosols have on multiple scientific disci-

plines, and explains why an increasing number of sensors networks and platforms are

being implemented to specifically study particulate aerosols. There are three main plat-

forms currently employed for monitoring tropospheric aerosols; ground-based networks,

aircraft-based instruments, and satellites. Satellite based sensors offer the only viable

approach for global monitoring of atmospheric aerosols and a survey of the current

satellites and the techniques used are discussed in greater depth in Chapter 2.

Despite there being multiple dedicated sensors and variety of approaches, no one tech-

nique provides coverage over all terrestrial surfaces or at all times. Therefore, multiple

approaches are currently required to monitor particulate aerosols and these outputs

are still limited by the location of the sensors for ground- and aircraft-based sensors,

or the repeat cycle of the satellite platforms.

1.1 The Importance of Particulate Aerosols

The apparent importance of Greenhouse Gases, such as carbon dioxide CO2, methane

CH4 and Nitrous Oxide NOx, and the effect their build up may have on global warming

is well known. The global appreciation is reflected by 187 states ratifying the Kyoto

Protocol, as of Nov 2009, which aims to stabilise and reduce the amount of green-

house gas in the atmosphere to a level that would prevent dangerous anthropogenic

interference with the climate [UNFCCC, 1997].

An emphasis has been placed on monitoring of anthropogenic aerosols, in particular

1



those released from combustion of fossil fuels, as they have a significant affect on

radiation propagation and cloud nucleation, and due to a relatively recent massive

influx of these aerosols into the atmosphere [Prospero, 1999].

One of the reason particulate aerosols have been overlooked is due to their presence in

the atmosphere throughout human history as evidenced in ice and snow core records. In

fact, human civilization is closely linked to the transportation of particulate minerals,

which can create loess deposits in the soil which are highly fertile and are found where

many early European and Asian Civilizations developed.

Mineral dust is a major constituent of particulate aerosols, and it has been estimated

that up to 50% of the mineral dust present in the atmosphere is due to wind-blown

mineral dust [Tegen et al., 1996]. Therefore, the ability to identify these deflated min-

eral distributions would contribute significantly to quantifying the affect of particulate

aerosols has on the climate.

Other contributions to tropospheric particulate aerosols include smoke from biomass

burning, urban haze from urban and industrial pollution, and ash from volcanic erup-

tions.

1.2 Affect of Aerosols on Climatic Processes

The recent increased awareness of the impact of particulate aerosols on climatic pro-

cesses is partly due to strong affects with low volumetric ratios [Buseck and Psfai,

1999]. The affect on the climate is difficult to assess, which is in part due to an at-

mospheric lifetime of weeks compared to 102 − 103 years of anthropogenic greenhouse

gases, limiting the time available to detect and assess any affects on the climate and

atmosphere [Schwartz and Andreae, 1996].

1.2.1 Direct Radiative Forcing

Radiative forcing measures the influence a factor has on the incoming and outgoing

energy in the Earth’s atmosphere, and is used to measure the importance of the factor

as a potential climate change mechanism [IPCC, 2007], and is measured in watts per

square metre (Wm−2). Positive forcing means a net warming of the Earth’s surface,

whilst negative forcing represents a net cooling.

2



Particulate aerosols in the troposphere can have both a positive and negative forcing

affect. Particles will more efficiently scatter light with a wavelength close to the particle

size, and hence submicron particles will scatter incoming sunlight and have a cooling

effect in the Earth’s surface. Outgoing radiation is emitted as Infra red (IR), which

can be absorbed by silicate materials and so mineral dust can also have a greenhouse

effect [Buseck and Psfai, 1999, Kaufman et al., 2002a].

It has been suggested that mineral aerosols have a direct forcing of −0.75Wm−2 [Duce

et al., 1995], which is similar to that of sulphates released through the used of fossil

fuels. If this is the case, atmospheric dust distributions could be masking positive

forcing effects of anthropogenic greenhouse gases and explain why global temperatures

have not increased by as much as climate models for greenhouse gases have predicted.

The overall forcing effect will vary depending on the exact makeup of the particulate

aerosols and their size distribution, the geographical location and environmental factors

such as humidity and the sunlight intensity.

1.2.2 Cloud Formation

Cloud droplets form around small particles, without which droplets would not be able to

form under normal atmospheric conditions. The presence of particulate aerosols means

the available condensed water is shared over a larger the number of cloud condensation

nuclei (CCN) during cloud formation, giving a higher number of droplets but reducing

the average droplet size by 20-30%.

The larger number of droplets increases the scattering within the cloud, with an as-

sociated rise in the cloud albedo, providing a cooling affect by reflecting some of the

incident solar radiation. This represents an indirect forcing affect due to the presence

particulate aerosols.

Clouds with smaller droplets are also more persistent as they are less likely to cause

rain, and can exert their increased cooling affect for longer, compared to regular cloud

formations.

1.2.3 Deposition of Mineral Dust

The main source of iron in the oceans away from river outflows, is through deposition

of particulate aerosols [Buseck and Psfai, 1999]. The amount of Iron present has been
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linked to a lower presence of plankton than that expected when the abundance of

nutrients in the ocean is considered. Therefore the deposition of mineral dust may

have a major effects on life at bottom of the food chain, affecting the ecosystem for

large areas of the ocean.

1.3 Observing Particulate Aerosols

Monitoring of particulate aerosols presents a more complex task than monitoring green-

house gases, due to the high spatial variability and short lifetimes. For example, as

early as 1960, global increases in CO2 concentrations were measured using a single

ground-based instrument, due to the homogeneous distributions and long lifetimes. In

contrast, continuous in-situ or satellite measurements are needed to monitor particulate

aerosols on a global scale [Kaufman et al., 2002a].

Remote sensing from space offers a greater scope for global monitoring due to its

greater coverage. The importance of monitoring the Earth’s atmosphere to quantify

the affects of anthropogenic greenhouse gases and particulate aerosols has led to an

increasing number of satellites in recent years for this purpose.

The recently launched A-Train [L’Ecuyer and Jiang, 2010] is one attempt to increase

the capability for monitoring the Earth’s atmosphere and including particulate aerosols.

The A-Train is a constellation of satellites operated by National Aeronautics and Space

Administration (NASA) and the French government space agency, Centre National

d’Etudes Spatiales (CNES) and includes multiple complementary sensors for measur-

ing aerosols, clouds, and temperature amongst others. This includes instruments for

multi-band spectral imaging (MODerate resolution Imaging Spectrometer, MODIS on

AQUA), cloud profiling radar (CloudSat) and a space borne lidar (CALIPSO), and the

Ozone Monitoring Instrument (OMI).

Despite the multiple dedicated platforms, remote sensing of aerosols remains a difficult

problem, and no one satellite or sensor can provide complete coverage in all conditions

[King et al., 1999a]. One of the major problems is that aerosol plumes are semi-

transparent in satellite images, and particulate aerosols such as smoke and mineral

dust have similar spectral signatures so it is difficult to distinguish between them.

Shao and Dong [2006] identify four main challenges for satellite remote sensing of

mineral dust, namely
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1. to provide real-time monitoring through dust storm identification from satellite

imagery;

2. to derive land-surface and atmospheric parameters for dust modeling;

3. to derive physical quantities for validation of dust predictions and for data as-

similation; and

4. to derive long-term dust climatology.

Whilst these challenges refer specifically to mineral dust, they are also applicable to

the task of remote sensing of particulate aerosols in general.

Currently there are many techniques that perform this task but with limitations such

as the terrestrial surface type or the time of day or with a limited temporal or spatial

resolution. This thesis presents work that addresses the first point, presenting a new

approach to identify particulate aerosols in satellite imagery which works without mod-

ification over ocean and terrestrial surface, in both day and night time images which

has the potential for global coverage at a higher resolution than is currently possible.

1.3.1 Structure of this Thesis

In the following chapters a new approach to identifying particulate aerosol using satel-

lite imagery is discussed. This new technique addresses the problems in the existing

methods for aerosol detection which are reviewed in Chapter 2. The new approach uses

supervised texture classification, which has not been applied to the task of remote sens-

ing of atmospheric aerosols before. This utilises data from two distinct satellite sources,

to provide a linear training set to form the classifier. Chapter 3 discusses the use of

texture classification and the advantages when classes cannot be resolved spectrally.

Chapter 4 investigates the suitability of linear training sets for supervised texture clas-

sifications, which has not been explicitly investigated in literature. Chapter 5 describes

the new supervised texture method to identify atmospheric aerosol distributions pre-

sented in this thesis, with example results from mineral dust test cases over. Chapter

6 introduces signature extension and chain classification methods for extending the

coverage of the new approach, including example results using signature extension for

first order temporal classification as step towards global coverage. Chapter 7 continues

with a summary of the conclusions of the work and the thesis concludes with possible

future work in chapter 8.
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Chapter 2

Existing Methods of Detecting

Tropospheric Aerosols

This aim of this chapter is to provide a summary of the existing platforms and current

approaches used to detect tropospheric aerosol distributions, with a focus on partic-

ulate aerosols. The emphasis is on providing an overview of satellite remote sensing

approaches, as these are capable of providing global coverage. The products that are

measured, the coverage provided, and associated failure modes of the different tech-

niques are examined to provide a snapshot of the current capabilities of monitoring

tropospheric aerosols.

2.1 Platforms used for Monitoring Atmospheric Aerosols

As discussed in chapter 1, multiple platforms are used to monitor atmospheric aerosol

distributions. Satellite-based sensors offer the only viable method to achieve global

coverage, but other platforms are still important in particular to provide validation

data for satellite techniques, or providing high resolution observations of specific events.

Here the three main sensor platforms are introduced with examples of each approach

and how each approach is likely to be employed.
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2.1.1 Ground-Based Sensors

Ground-based networks normally consist of a set of federated sensors that monitor

the aerosol content in immediate area surrounding each site and, as such, provide de-

tailed information on aerosol content at sparse and irregular sample points. Individual

projects usually impose standardization on the sensors and instruments, calibration

and processing to provide quality assurance when comparing data from different sites

within the same network. Due to the limited coverage of ground-based networks, one

of their main functions is to validate satellite aerosol retrievals and as such they have

a significant input into global monitoring.

The AErosol RObotic NETwork (AERONET) is an example of ground-based network,

established by NASA, CNES and the University of Lille [NASA, 2010b]. AERONET

uses a network of sunphotometers to measure the direct aerosol optical depth (AOD),

as well as using radiance measurements to produce aerosol optical properties such as

the particle size distributions, single scattering albedo, phase functions and the complex

refractive index.

Figure 2.1: Distribution of AERONET sites around the World.

AERONET has established itself as the reference standard for measuring AOD due to

it high accuracy, and the large number of sites [Liu et al., 2003] and as such is used to

validate various satellite retrievals [Chu et al., 2002] [Remer et al., 2002] [Torres et al.,

2002a].

Another example of a ground-based network is the European Aerosol Research LIdar

NETwork (EARLINET), which consists of over 25 lidars stations distributed over Eu-
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Figure 2.2: Distribution of EARLINET sites around Europe, reproduced from Pap-
palardo et al. [2009]

rope, see figure 2.2. EARLINET was established in 2000 to provide a comprehensive

quantitative and statistically significant database for the aerosol distributions over Eu-

rope [EARLINET, 2011], and has recently contributed to the monitoring of volcanic

ash from the Eyjafjallajökull eruptions [Wiegner et al., 2011].

2.1.2 Aircraft-Based Sensors

Tropospheric aerosol distributions can be examined using in-situ aircraft instruments.

An example of which is the Facility for Airborne Atmospheric Measurements (FAAM)

BAe-146 aircraft, which is a joint project of the Met Office and the Natural Environ-

ment Research Council (NERC). The aircraft is equipped with multiple core sensors to

support the UK atmospheric research community on campaigns throughout the world,

with the possibility of additional non-core to provide supplementary data. Of particular

use for monitoring particulate aerosols are:
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PCASP (core)a,b. Passive Cavity Aerosol Spectrometer Probe , an optical probe used

to measure aerosol particle sizes in the range of 0.1 − 3µ m and records the

concentration, mean volumetric ratios and the size spectrum.

The Nephelometer (core)a,b. Rosemount pair aerosol inlet used measure the optical

properties of aerosols by examining the scattering and back scattering coefficients

at three wavelengths, 450nm , 550nm and 700nm.

PSAP (core)a,b. Particle Soot Absorption Photometer, measures the aerosol Absorp-

tion coefficient.

CCN (non− core)a,b. CCN instrument measures the number of Cloud Condensation

Nuclei.

EZLidar (non− core)a,c. Nadir viewing near-ultraviolet Lidar providing vertical pro-

files of atmospheric layers (clear air, aerosol, clouds) and allowing aerosol optical

properties to be derived.

a [FAAM, 2010]; b [Highwood et al., 2007a]; c [Marenco, 2010]

Aircraft based sensors have been used for numerous campaigns to investigate atmo-

spheric particulate aerosols, including DODO, DABEX [Formenti et al., 2008]; for mea-

suring aerosol properties for use in radiative transfer calculations (ADRIEX) [Highwood

et al., 2007b], validation of AERONET and satellite based aerosol retrievals [Christo-

pher et al., 2009]. Most recently they have been employed for monitoring the volcanic

ash fall out from Icelandic volcano Eyjafjallajoekull, determining the position, altitude

and thickness of ash plume [Woolley, 2010].

Aircraft measurements provide detailed information on the physical and chemical prop-

erties of the atmospheric dust distributions. This allows fingerprinting of the dust to

identify the source and also the impact their presence in the atmosphere and deposi-

tion will cause. Despite the detailed information aircraft measurements offer, they are

costly and are limited by the area covered by the aircraft during its flight.

2.1.3 Satellite-Based Sensors

The existing methods employed for satellite-based aerosol detection and retrieval fall

into three categories; radiative transfer model (RTM), brightness temperature differ-

ence (BTD) methods and space-borne lidar.
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RTM and BTD approaches are similar in that they are employed on radiometric data

and often both approaches are used to on data from the same multi-spectral sen-

sor. These sensors can be geostationary, such as Meteosat Second Generation (MSG),

or polar orbiting, such as Ozone Monitoring Instrument (OMI) on AURA and the

Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra (1999) and Aqua

(2002).

The nadir viewing nature of these sensors measures the observed radiance at the top

of the atmosphere over a relatively large field of view (FOV). As such, they offer good

horizontal resolution, limited by the raw data from the sensor, but little information

about the vertical profile of the atmospheric aerosols. Therefore, using RTM and BTM

will yield 2D aerosol products with information in the horizontal plane.

Space-borne Lidar represents a significantly different approach to RTM and BTD meth-

ods. Lidars are active sensors, emitting laser pulses in the ultra violet (UV), visible

(VIS), and near infra red (NIR) spectral range, which allows the range of objects to

be determined by measuring the time delay between transmission and detection of a

reflected signal. Space-borne Lidar can therefore examine the properties of aerosols via

their interaction with the incident pulses through the observed backscatter, and com-

bines this with the range to create a vertical profile of the atmosphere. Lidar outputs

therefore contain excellent vertical resolution, but have a limited FOV, and are there-

fore mounted on polar orbiting platforms to give a continuous vertical profile directly

underneath the satellite platform.

The specific techniques employed by these different satellite-based sensors are discussed

in detail in the next section, and further information on the horizontal, vertical and

temporal resolution of these outputs are discussed.

2.2 Methods of Observing Aerosols using Satellite-Based

Sensors

The previous section introduced three main techniques used by satellite-based sensors to

observe atmospheric aerosols. Details are given on how these techniques are described

in the following section, including the sensor platforms where they are utilised and the

strengths and weaknesses of the different approaches.

It is common for researchers to develop their own algorithms tailored to a specific

sensors, although methods exist that can be applied to the raw sensor data and are
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applicable to multiple platforms. The techniques included here are intended to give a

snapshot of the current capabilities for the remote sensing of particulate aerosols from

space.

2.2.1 Radiative Transfer Model Methods

These methods are based around estimating the surface contribution to the radiance

observed at the top of the atmosphere and employ models of aerosols to explain the

difference between the measured and expected clear sky radiance. This approach infers

the presence and aerosol type, which leads to a dust mask, simultaneously with the

retrieval of the aerosol properties such as aerosol optical thickness (AOT) and mass

concentration. This is achieved by comparing the received and expected radiance and

using a pre-calculated table to infer the type and amount of aerosol that could lead to

the observed difference.

The accuracy of the results is dependent on the ability to calculate the proportion of

the measured radiance that is due to aerosols and the ability of the aerosol models to

represent the aerosols present. The key problem for retrievals performed from satel-

lites is how to separate the observed spectral reflectance into atmospheric and surface

contributions. Over the ocean the surface contribution is assumed to be negligible, as

the surface reflects virtually none of the infra red wavelength. Over land, however,

the reflectance varies with surface type and has a contribution similar in magnitude to

the observed reflectance of the atmosphere. The methods for separating surface and

atmospheric components of the measured radiance vary between algorithms and have

differing levels of complexity.

Dark Target Method

Retrieval of the AOT from radiometric data is achieved by modeling the reflectance and

scattering of solar radiation. The AOT can be inferred by accounting for radiation from

surface reflectance, scattering by the atmosphere and absorption by gases and aerosols.

The reflected radiation at the top of the atmosphere expressed as a reflectance function

[King et al., 1999b]:

R(τa, ω0;µ, µ0, φ) =
πI(0,−µ, φ)

µ0F0
(2.1)
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where, I(0,−µ, φ) is the reflected intensity or radiance; τa is the aerosol optical depth;

ω0 is the single scattering albedo; µ is the absolute value of the cosine of the zenith

angle, θ0, measured with respect to the downward direction; φ is the relative azimuth

angle between the emerging radiation and incident solar radiation; and µ0 the cosine

of the solar zenith angle, θ0. This expression normalises the emerging radiation with

the incident solar flux, F0 , and so represents the albedo of the Earth-atmosphere for

isotropic radiation.

For a cloud free vertically homogeneous atmosphere over a Lambertian surface with

reflectance, Ag, the reflectance function in equation 2.1 becomes:

R(τa, ω0;µ, µ0, φ) =Ratm(τa, ω0;µ, µ0, φ) +
Ag

1−Ag ¯ratm(τa, ω0)

· tatm(τa, ω0;µ) tatm(τa, ω0;µ0)

(2.2)

where R(τa, ω0;µ, µ0, φ) is the reflectance function; ¯ratm(τa, ω0) is the spherical albedo;

and tatm(τa, ω0;µ0) is the total transmission (diffuse plus direct) when Ag = 0. The

Lambertian reflectance is often replaced by the bidirectional reflectance properties of

the surface when equation 2.2 is used on satellite observations [Lee and Kaufman, 1986].
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Figure 2.3: Difference between the reflectance function and the surface reflectance for

various values the aerosol optical thickness τa and single scattering albedo ω0 [King

et al., 1999b]

The effect of aerosol optical depth and single scattering albedo on the reflection func-

tion is shown in figure 2.3. This shows the difference between the reflectance func-

tion and surface reflectance for four different values of aerosol optical thickness (τa =

0.0, 0.2, 0.4, 0.6) and two values of the single scattering albedo ( ω0 = 0.81 and 0.96).

There is an increased sensitivity to aerosol optical depth when the surface reflectance,

Ag, is less than 0.1. This implies that the aerosol optical depth τa can be measured

over dark surfaces such as the ocean, and dark targets over land. Consequently, this

approach is referred to as the dark target method.

The MODIS sensor (on Aqua and Terra) uses a dark target method as the main method

for performing aerosol retrieval. The MODIS aerosol retrieval algorithm is split into

two parts covering retrievals over land and ocean. The core idea of both approaches is

to use a radiative transfer model to pre-compute a look up table (LUT), for a set of

aerosols with log normal size distributions and various surface parameters. The algo-

rithm assumes that the aerosol properties within a scene can be adequately described

by combining one fine and one coarse aerosol mode, with appropriate weightings. The
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observed spectral reflectance is then compared to the LUT and a least-squares fit is

used to find the best solution [Remer et al., 2009].

Over the ocean, the surface contribution is assumed to negligible and retrievals can be

directly performed on the observed radiance. Over the terrestrial surface, the surface

contribution can not be ignored and needs to be removed from the observed radiance

before performing an inversion. [Kaufman et al., 2002b] showed that the surface re-

flectance’s over vegetation and dark soils in visible wavelengths are correlated with

the reflectance in shortwave infrared (SWIR) channels. This enables the surface con-

tribution to the reflectance to be found and then removed, allowing the atmospheric

contribution to be inverted and the recovery of the aerosol information.

The MODIS aerosol products have a 10km × 10km resolutions at nadir, compared to

250m, 500m, 1km resolution for the individual channels, as the mean radiance of the

good pixels with the 10km×10km window is used to perform a retrieval. ’Good’ pixels

defined as being over a suitably dark background and free from other contaminants.

Over land, no retrievals are performed if the 2.1µm surface reflectance is above 0.15,

which prevents coverage for larger areas of land, especially over the desert surfaces

which are a significant source of atmospheric dust [Hsu et al., 2004]. The MODIS

cloud mask [Martins et al., 2002] and snow/ice mask [Li et al., 2005] are used to mask

contaminated pixels, as the presence of water has a similar affect on the observed radi-

ance as aerosols. Inland water bodies are also masked using the Normalized Difference

Vegetation Index (NDVI) [Remer et al., 2005].

After masking contaminated pixels, and identifying dark pixels, a retrieval is only

performed if there 12 or more pixels. This means that when dust clouds are interspersed

with clouds, or over a bright surface, no information can be retrieved. This presents

a problem when attempting to identify and track mineral dust over its bright surface

desert source.

Deep Blue Method

The Deep Blue algorithm was developed to address the limitations of dark target model

for aerosol retrievals over bright land surface such as deserts and urban areas [Hsu et al.,

2004]. The algorithm has been designed to work with the Sea-viewing Wide Field-

of-view Sensor (SeaWiFS) [Hooker, 1992] and both MODIS instruments currently in

operation. Deep Blue utilises radiance measurements from blue channels (412 nm, 490

nm and 670 nm) and uses a polarized radiative transfer model to calculate the reflected

intensity field at the top of the atmosphere from a database of precalculated surface
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albedo measurements.

A cloud screening procedure based on the spatial variance is used to prevent retrievals

with cloud contaminated pixels. Additionally, to distinguish between thick dust layers

and clouds the Deep Blue aerosol index (DAI) is used, which is a similar measure to

the Total Ozone Mapping Spectrometer (TOMS) aerosol index. The measured radi-

ance is then compared to a LUT generated using smoke and dust models with various

values for solar, satellite, and azimuth angles, the surface reflectance, AOT, and single-

scattering albedo. A Maximum Likelihood method is used to find the best match of

AOT and single-scattering albedo for the given radiance, and hence provide the spatial

distribution of a given aerosol. Assumptions are placed on the dominant aerosol model

used for the retrieval based on the geographical location and time of the year. Results

over sites in Nigeria and Saudi Arabia have been compared to AERONET, showing

good agreement with results for AOT consistently within 20% to those measured by

sunphotometers [Hsu et al., 2004]].

The Deep Blue algorithm produces outputs at the resolution of the data from the

satellite. MODIS channels 8 (412 nm) , 10 (490 nm), and 13 (670 nm), have a resolution

of 1 km2 at nadir, giving deep blue retrievals a higher resolution than the normal

MODIS aerosol retrieval with the additional benefit of working over bright surfaces.

However this approach is only be applicable over bright surfaces, e.g. arid, semiarid,

urban and sparse vegetation surface, and so limits where the deep blue algorithm can

be applied.

OMI aerosol algorithm

The objectives for the Ozone Monitoring Instrument (OMI) on the EOS Aura Satellite

mission include monitoring atmospheric constituents that affect the Earth’s climate

and, as such, includes an aerosol retrieval algorithm [NASA, 2011]. OMI is the successor

the Total Ozone Mapping Spectrometer (TOMS) series of satellites of satellites which

has a proven contribution to monitoring global aerosol sources over the past 25 years.

OMI provides daily global coverage with a spatial resolution of 13 × 24 km2, and is

located in the A-train constellation with EOS-Aqua and CALIPSO amongst others.

OMI provides hyper-spectral data in the visible (VIS) and ultraviolet (UV) spectrum,

which is advantageous over infrared based methods as retrievals are possible over the

whole of the terrestrial surface including arid desert regions.

In a manner similar to MODIS, radiative transfer calculations are used to generate

a LUT for 24 different aerosol models drawn from 5 major aerosol types, covering
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urban/industrial, biomass burning, desert dust, oceanic and volcanic sources. The

LUT are generated for various solar, viewing and relative azimuth angles, surface pres-

sures and aerosol concentrations. OMI has two different retrieval modes; the multi-

wavelength method using 17 different spectral bands, and the near UV method which

uses only two spectral bands [Stammes and Noordhoek, 2002].

The multi-wavelength method is predominantly used over ocean, while the near UV

approach used over land, but overall the approach is fundamentally the same for both

methods. Cloud screening is used to mask cloudy pixels, as retrievals are only possible

for cloud free scenes. Geographical and spectral data is used to select a subset of

candidate aerosol models used to fit the observed radiance to the LUT which is corrected

using a surface reflectance database returning the AOT, single scattering albedo (SSA)

and the dominant aerosol type.

OMI cannot perform retrievals when aerosols are interspersed with cloud. OMI and its

predecessor instrument, TOMS, have proven track records for monitoring atmospheric

aerosols and OMI does have a robust method for retrievals over bright surfaces [Ahn

et al., 2008, Torres et al., 2002b]. The major drawback of OMI retrievals is the low

resolution compared to other methods such as MODIS and Deep Blue retrievals, which

only allows observations of large-scale trends such as daily and monthly average of the

aerosol optical depth

Infrared Difference Dust index

The Infrared Difference Dust Index (IDDI) is a dust product derived from Satellite

IR imagery. Originally, the IDDI was applied to first generation Meteosat Satellite IR

images, but these have been replaced by images from the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) sensor on Meteosat Second Generation (MSG) satellites.

The IDDI is the simplest of the RTM methods considered in this section, as the aerosol

contribution to the measured radiance is not directly modeled. Instead, it is assumed

to be solely due to the presence of mineral dust, which geographically limits where the

IDDI can be applied.

The IDDI uses a quasi-linear relationship between satellite detected radiance and the

shortwave optical depth of dust [Legrand et al., 2001]. The affect of dust on the radiance

detected is examined by comparing an instantaneous IR image with a reference image

representing the clear sky radiance. The reference image is built up over a period of

days and assumes that the maximum radiance detected at each pixel equates to its

clear sky response. The difference between the instantaneous and reference images can
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then be used to determine the AOT.

The IDDI is calculated at midday as this maximizes the sensitivity of the outgoing IR

radiance to dust. As water vapour has a similar radiative forcing effect as dust clouds

it can produce false dust readings. This effect can be minimized by only calculating

the IDDI over arid regions such as the Sahara and Sahel regions of North Africa and

by using cloud masks to exclude affected parts of the image where clouds are present.

These requirements mean that the IDDI is a geographically limited metric, which can

only be applied to arid regions away from the coast. Therefore, the IDDI does not have

global coverage and its accuracy is limited by that of the cloud mask and the quality

of the clear sky reference image.

2.2.2 Brightness Temperature Difference Methods

Brightness Temperature Difference methods use the Thermal IR (TIR) channels to

retrieve information about optical thickness and particle size. The use of TIR channels

means that these techniques can be applied in both day and night conditions and over

bright surfaces. The 8-10m and 10-12m channels show a strong spectral variation in the

transmittance for many aerosols [Ackerman, 1997], whilst the atmosphere is relatively

transparent. Therefore, BTD techniques can be used to recover information about the

aerosols present.

Ackerman used theoretical simulations of mineral dust using a spherical particle model

to explain the satellite BTD observations. These simulations showed a quasi-linear re-

lationship between BT11−BT12 and BT8−BT11 and the AOT, where BTx represents

the equivalent brightness temperature of channel x, and BTx−BTy represents the dif-

ference between the equivalent brightness temperature of channels x and y. Ackerman

[1997] also suggested that negative values of BT11−BT12 are useful for observing dust

storms over bright surfaces where radiative transfer methods traditionally fail.

MSG dust enhancement

The MSG dust enhancement is an example of a trispectral BTD method and is used

to identify mineral dust outbreaks using images from the SEVIRI sensor on MSG

satellites. The BTD of various channels is used in conjunction with range clipping and

gamma correction to form an RGB image, see table 2.1.
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Table 2.1: MSG dust RGB composite settings, where BTx represents the equivalent
brightness temperature for the spectral band centred on xµm and BTx − BTy is the
difference between two brightness temperature images.

Beam Channel Range Gamma

Red BT12 − BT10.8 −4 − 2K 1.0

Green BT10.8 − BT8.7 0 − 15K 2.5

Blue BT10.8 261 − 289K 1.0

Figure 2.4: Example of MSG dust product. Dust is indicated as magenta in the RGB
image

The mineral dust appears as magenta within the RGB image, with the tone varying

depending on the time of day and the background surface. As such, it is only a

qualitative measure of atmospheric dust distributions. An example of the MSG dust

product is included in figure 2.4.

Zhang’s BTD product

Zhang et al. [2006] built on the work by Ackerman [Ackerman, 1997] to develop a

dust storm mask, which can be used to identify dust outbreaks. The observations

used the discrete ordinates radiative transfer program (DISORT) coupled with Mie

scattering code as a forward model to simulate behaviour observed in the BTD images.

Furthermore, the modelling showed that the AOT and particle size can be retrieved

using a pre-calculated LUT if the underlying surface temperature is known.
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Table 2.2: Zhang BTD dust mask, reproduced from [Zhang et al., 2006]. BTD(x-y) is
the difference between the equivalent brightness temperature images for the spectral
band xµm and y µm.

Threshold Mask Flag Description

BTD(11-12) >-0.5 and BTD(8-11) >0 1 Relative strong dust region

BTD(11-12) >-0.5 and BTD(8-11) <0 2 Relative weak dust region

BTD(11-12) >0 and BTD(8-11) >0 3 Ice cloud

BTD(11-12) >0 and BTD(8-11) <0 4 Low cloud or surface

0 >BTD(11-12)>-0.5 5 Uncertain region

The dust storm mask and retrieval algorithm was developed to be used on MODIS

images but has been shown to work with MSG data [Li et al., 2007], giving results at

resolutions of 1 km2 and 3 km2 at Nadir, respectively. This approach provides global

coverage through MODIS and MSG data, and has the ability to detect dust storms

during day and night. However the mask was developed on a specific severe dust storm

in Northern China in April 2001 and so may not be globally applicable for example for

African or Arabian dust events.

2.2.3 Space-Borne Lidar: CALIOP on CALIPSO

The primary payload of the Cloud-Aerosol Lidar and Infra red Pathfinder Satellite

Observation (CALIPSO) platform [NASA, 2010a] is the Cloud-Aerosol Lidar with Or-

thoganol Polarization (CALIOP) sensor. CALIOP is equipped with two redundant

Nd:YAG lasers, of which only one is used at a time, producing linearly polarized

beams at wavelengths 532 nm and 1064 nm. CALIOP uses three receiving channels;

1 to measure the total backscatter intensity at 1064 nm and 2 channels to measure the

orthogonally polarised components of 532 nm backscatter, which are used to provide

vertical profiles of the atmosphere.

The primary products for CALIPSO are those derived from the CALIOP sensor. An

introduction to the CALIPSO retrieval and data products can be found in [Vaughana

et al., 2004], which breaks down the processing into three areas each with their own

algorithm theoretical basis document. The three areas are:

Feature detection and Layer Properties [Vaughan et al., 2005] These algorithms

are concerned with identification of “features”within the backscatter signals that

correspond to targets of interest, namely clouds, aerosols and surface returns.

Until the feature boundaries are identified, the subsequent tasks of feature iden-

tification and property retrieval cannot be achieved.
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Scene Classification [Liu et al., 2005] The first task is to determine whether the

feature is cloud or aerosol using the cloud-aerosol discriminations (CAD) algo-

rithm, and then once this has been determined use the scene classification algo-

rithms (SCA) to determine the cloud ice-water phase and the cloud and aerosol

subtype.

Extinction Retrieval and Particle Properties [Young et al., 2008] Once the fea-

ture type has been determined, the optical properties can be retrieved. Multiple

scattering effects cannot be ignored in space-borne lidar, and so feature-dependant

corrections are applied, producing optical depths for each feature within the scene

Due to the mixture of strong and weak features, and the inherent noise in the signals,

horizontal and vertical averaging is required to enhance feature detection and lead

to accurate retrievals. This is achieved using a Selective, Iterated Boundary Locator

(SIBYL) to identify feature boundaries, and the Hybrid Extinction Retrieval Algorithm

(HERA) and only once these are complete can the cloud and aerosol results be extracted

for use in the output products [Liu et al., 2005].

Outputs from CALIPSO are produced in three formats: the vertical feature mask

(VFM) containing the ”what” and ”where” information on the vertical structure of the

atmosphere along-track; cloud and aerosol layers providing statistical descriptions of

the detected feature, and separate profile products mapping the vertical distribution of

backscatter and extinction coefficients for clouds and aerosols [Vaughana et al., 2004].

The VFM is the key product for identification of atmospheric aerosols from CALIPSO,

providing breakdown of the atmospheric layers including the aerosol subtype. Cloud

and Aerosol discrimination utilises the different scattering properties of clouds and

aerosol, using the backscatter colour ratio χ = β1064/β532 where β1064 and β532 is the

backscatter at 1064 nm and 532 nm respectively.

Clouds generally have large particle size with respect to the CALIOP wavelengths,

which means there will be no substantial spectral variation in backscatter and hence

χcloud ≈ 1. In contrast, for most aerosols the particles are much smaller and so the

backscatter exhibits spectral dependence, giving χaerosol < 1. The ability to discrimi-

nate between cloud and aerosols in this manner can be seen in figure 2.5.

Aerosol subtyping is achieved with model matching scheme using using the following

characteristics:

� optical - χ, β532, δv the depolarization ratio, which is proportional to the hydration
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Figure 2.5: modelled scattering properties for aerosol and clouds, reproduced from [Liu
et al., 2005]
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state

� geophysical - latitude and longitude to indicate surface type

� temporal - to indicate season, as aerosol loading can be seasonally dependant

These characteristics are used to create decision points for selecting the most likely

aerosol type for each layer of aerosol identified. Six different aerosol subtypes are

defined; polluted continental, biomass burning, desert dust, polluted dust, clean con-

tinental and marine. The properties of the first four are derived from cluster analysis

of AERONET data, and clean continental and marine aerosols were synthesized using

long-range continental transport and sea salt observations using a backscatter neph-

elometer respectively.

Due to the active nature of the CALIOP sensor, the CALIPSO VFM has several ad-

vantages over passive imaging approaches for aerosol identification. The CALIPSO

VFM is able to return the aerosol types over all surface types, and the range informa-

tion from the LIDAR allows the vertical structure of aerosol distribution to be found,

and allows for observations when aerosols are occluded preventing detection in passive

imaging approaches.

The drawbacks of CALIPSO VFM are the limited FOV of ≈ 100m and the polar orbit,

which limits the area that can be observed, which prevents CALIPSO from being able

to provide near-continuous monitoring of particular aerosol events.

2.3 Summary of Existing Products for the detection of

Tropospheric Aerosols

This section includes a table summary of methods and platforms discussed in the

previous sections to indicate the current capabilities and to identify where there is

scope for new approaches.

Whilst Aeronet and the FAAM BAe-146 offer the most reliable techniques for the de-

tection of particulate aerosols, the nature of the platforms mean they provide limited

coverage and in the case of the FAAM BAe-146, is expensive to operate for contin-

uous monitoring. Satellite platforms therefore provide the only real opportunity for

global monitoring and detection of particulate aerosols. MODIS and OMI provide the

most robust radiometric approaches for aerosol retrieval but these have their limita-

tions. The standard MODIS retrieval approach fails over bright surfaces and in the
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presence of water vapour and cloud, the Deep blue algorithm proposed to counter this

allows MODIS to provide retrievals over bright surfaces, but has limited applicability

over other surfaces. The polar orbit of the MODIS platforms also prevent continuous

monitoring of a specific event, such as volcanic ash cloud or smoke from a forest fire.

OMI is similarly limited by its polar orbit, and fails with the present of cloud but the

wavelengths used allows retrievals over a wider range of surfaces compared to MODIS.

The resolution of the OMI products is also an issue, with OMI having the coarsest

resolution of all the radiometric approaches.

The CALIPSO VFM is extremely useful product, with the active LIDAR giving the

ability to provide vertical profile of the atmosphere and the ability to discriminate

between aerosol types and clouds over all terrestrial surface. However the field of view

and coverage is extremely limited, and is dependant on the overpass coinciding with

a particulate event in order to provide data. Despite these limitations, the CALIPSO

VFM can still be utilised to provide accurate aerosol classification along its overpass

which can be combined with another satellite source to increase the coverage.
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Chapter 3

Supervised Texture Classification

This chapter introduces the idea of image texture and its applications. Image tex-

ture can be used for classification problems which cannot be resolved spectrally. In

these instances, image texture provides a method to separate the classes within feature

space. Multiple different texture features schemes exist in literature, with two of the

most widely used approaches, Grey Level Co-occurrence Features (GLCF) and Gabor

Filter Banks (GFB) presented. These texture schemes have also previously been used

in the analysis of remotely sensed imagery. This chapter also includes an introduc-

tion to supervised classification methods and compares this approach to unsupervised

approaches. This includes the importance of representative training samples and the

effect on the accuracy of supervised classification, and how the definition of represen-

tative samples differs depending on the classifier selected. Finally a method of using

supervised classification for identifying atmospheric aerosol distributions in satellite

imagery is presented.

3.1 Image Texture

In many image analysis tasks, it is common to assume a certain level of uniformity

of spectral intensity over a local region within the image. This assumption does not

always hold for real images and can therefore cause errors particularly for classification

tasks. The local variation of spectral intensity for a region of a specific object or class

is the image texture. The texture pattern may be due to the physical structure of the

surface which directly relates a tactile pattern to an image texture. Image texture can

also be be due to difference in the reflectance properties of a surface.
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Image texture can be easily be interpreted by the eye, but is hard to define in machine

learning tasks. The definitions of how to define a image region as belonging to a single

texture varies throughout the literature, with a summary given in [Tuceryan and Jain,

1993]. The most useful definition for classification tasks is:

Definition 1 Texture regions are defined as equivalent if the statistics or measures

selected are the same, slowly varying or periodic within the given region. [Sklansky,

2007]

Image texture is widely used in remote sensing applications for a diverse set of tasks

including aerosol detection [Khazenie and Lee, 1992], oil slick detection [Brekke and

Solberg, 2005], lithiological discrimination [Chica-Olmo and Abarca-Hernandez, 2000]

and land cover in synthetic aperture radar (SAR) images [Fukuda and Hirosawa, 1999].

Texture features can be seen as a way of deriving multiple features from a single spectral

band. When image texture analysis was first proposed, the number of spectral channels

was small and so image texture feature provided additional features to improve the

accuracy and reliability of machine learning outputs. With the advent of multi- and

hyper-spectral sensors, the amount of spectral information available is greatly increased.

Given the vast quantities of spectral data now available, texture analysis is frequently

employed when different classes within an image share a similar spectral signature are

not separable spectrally, thus demonstrating the continued importance of image texture

analysis.

3.1.1 Grey Level Co-occurrence Features

Grey level co-occurrence features were one of the first attempts to model image texture

explicitly [Haralick et al., 1973]. Haralick et al. [1973] proposed using neighbouring

grey-tone spatial dependencies to create the grey level co-occurrence matrix (GLCM)

from which texture features are derived. A 2D digital intensity image is represented

at each pixel by one of NG grey levels, with G ∈ 0, 1, ...NG − 1 representing the set of

grey levels in the image. Each pixel, excluding edge pixels, has 8 nearest neighbours,

see figure 3.1.
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Figure 3.1: Indicating the 8 nearest neighbour pixels for a non-edge pixel

Haralick et al. [1973] proposed that texture information is contained in the average or

overall spatial relationship the grey tones have with one another. Specifically this is

captured by the relative frequency, P (i, j) , of which two pixels with grey levels i and

j , that are separated by a distance, d , and angle, θ, occur within an image block.

This results in a NG ×NG matrix, with each entry at i, j indicating the probability of

a pixel pair having the grey value of i and j . The total number of pixel pairs is used

to normalize the matrix P (i, j), and is referred to as the Grey Level Co-occurrence

Matrix.

Haralick et al. [1973] only considered a single pixel spacing, which gives four possible

orientations (figure 3.1). Despite 8 nearest neighbours, only 4 orientations are required

to capture all the co-occurrence relationships. For example, the grey levels represented

at the centre pixel and 6th pixel in figure 3.1 will be captured when 6 is the centre pixel

along the 45◦ orientation. When the pixel spacing increases, the number of possible

orientations increases, however only those in the range 0− 180◦ need to be considered.

Once the GLCM has been calculated, multiple textural features can be generated, see

table 3.1.
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Table 3.1: Texture Features for GLCM and grey level co-occurrence linked list (GLCLL)
implementations, adapted from Clausi and Zhao [2003]
Feature GLCM GLCLL

Uniformity (UNI)
∑G

i=1

∑G
j=1 P

2
ij

∑L
n=1 P

2
n

Entropy (ENT) −
∑G

i=1

∑G
j=1 PijlogPij −

∑L
n=1 PnlogPn

Maximum Probability
(MAX)

max{Pij}∀(i, j) max{Pn}∀(n)

Dissimilarity (DIS)
∑G

i=1

∑G
j=1 Pij |i− j| −

∑L
n=1 Pn |in − jn|

Contrast (CON)
∑G

i=1

∑G
j=1 Pij(i− j)2 sumL

n=1Pn(in − jn)2

Inverse difference mo-
ment (IDM)

∑G
i=1

∑G
j=1

Pij

1+(i−j)2
∑L

n=1
Pk

1+(in−jn)2

Inverse difference (INV)
∑G

i=1

∑G
j=1

Pij

1+(i−j)
∑L

n=1
Pn

1+(in−jn)

Correlation (COR)
∑G

i=1

∑G
j=1 frac(i− µ)(j − µ)Pijσ

2
∑L

n=1
in−µ)(jn−µ)Pij

σ2

µ =
∑G

i=1

∑G
j=1 Pij µ =

∑L
n=1 inPn

σ2 =
∑G

i=1(i− µ)2
∑G

j=1 Pij σ2 =
∑L

n=1(in − µ)2Pn

One of the problems of GLCM is the relatively high computation cost in terms of calcu-

lation time and memory storage required. A different GLCM is required for each pairing

of pixel spacing, d and orientation, θ, within each image block. Clausi and Jernigan

[2002] suggest multiple approaches to reduce the computation costs for calculating the

GLCM:

Reduce NG: Quantising the image to have fewer gray levels, reduces the size of each

GLCM which in turn reduces the storage requirements and the number of iter-

ations required to calculate. The disadvantage of this approach is the potential

removal of useful information.

Use non-overlapping image blocks: Pixelwise segmentation and classification re-

quires GLCM and subsequnet features to be calculated for an image block gener-

ated using the desired window size centred on each pixel. The use of nonoverlap-

ping image blocks will reduce the number of GLCM that need to be calculated,

but the resolution of the output will also be reduced and can become blocky.

Reducing the number of features and orientations: This approach limits the com-

putation cost by only calculating features which provide the most information.

This is better than the previous suggestions as no information is lost and the

output will match the input resolution. However, the pertinent features and ori-

entations are likely to change depending on the classification task, and will likely

need to be determined by examining a “full set”of features.

Clausi and Jernigan [2002] conclude that a better approach would be to reduce the
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unnecessary computational steps when calculating the GLCM. GLCM are recognised

as being sparse, and therefore looping over all possible gray level pairing is inefficient

when most of the entries will be zero. Clausi and Jernigan [2002] demonstrate that

within a 20 × 20 image block, a maximum of 20 × 19 × 2 = 760 different entries are

possible. If NG = 256, then 256×256 = 65536 iterations would be performed to capture

a maximum of 760 non-zero entries.

A linked list implementation [Clausi and Zhao, 2003, Clausi and Jernigan, 2002] is one

approach to reduce the storage and computation for calculating gray level co-occurrence

probabilities. The grey level co-occurrence linked list (GLCLL) approach only stores

the non-zero probabilities, greatly reducing the storage. At the nth node, linked list

contains:

� Probability value, Pn

� Grey level pair, (in, jn)

As the image block is processed and a particular (i, j) pairing identified, the list is

searched to see if the grey-level pair already exists. If it is present in the list, the

probability is updated; if not then then a new entry is created relating to the grey-level

pair.

Features can be calculated by summations over the length of the list, L, which only

contain non-zero probabilities and hence only processes information that contributes

to the feature statistics. This requires slight changes to the how the feature statistics

are calculated, and is included in table 3.1.

3.1.2 2D Gabor Filters

The most efficient way to process the large amounts of data associated with biological

and computer vision is a repetition of similar localized operations, similar to those

observed in studies of cortical arrangements [Porat and Zeevi, 2002]. Decomposing an

image using multi-channel filtering allows the relevant texture feature to be used to

classify the textures. This multi-channel approach mimics the Human visual system

[Clausi and Jernigan, 2000], and can be achieved by utilising Gabor Filters, as the

Gabor elementary functions are localized.

A 2D Gabor filter consists of a sinusoidal plane wave of a particular frequency and

orientation modulated by 2D Gaussian Envelope, and have optimal resolution in both
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the spatial and spatial frequency domains [Jain and Farrokhnia, 1991]. The output

from a Gabor filter would ideally contain a discontinuity at a texture boundary and so

detection of these discontinuities forms the basis of segmentation [Dunn and Higgins,

2002]. However the parameters of the Gabor filter would need to be selected to illicit

a response to a particular texture, and so it is more common to apply a bank of Gabor

filters.

A bank of 2D Gabor filters can be applied to image to provide texture information,

using a parametric sweep to alter the filters size, orientation and frequency in order to

generate responses to multiple texture types. The magnitude response to the Gabor

Filters provides consistently good texture segmentation of the Brodatz test images

and is simple to implement [Clausi and Jernigan, 2000]. Also more specific to task of

identifying atmospheric aerosols, the magnitude response has already previously been

used to identify dust and smoke in IR satellite imagery [Khazenie and Lee, 1992].

The 2D Gabor Filter is a Gaussian modulated by a complex sinusoid, of the form:

h(x, y) =
1

2πσxσy
exp{−1

2

[
x2

σ2x
+
y2

σ2y

]
}exp{j2πFx} (3.1)

The x-axis of the Gaussian is aligned to the orientation of complex exponent, θ, and

so rotation of the x − y plane can generate arbitrary filter orientations. The filter

bank parameters were set by selecting the number of orientations, nθ, and setting

the orientation bandwidth, Bθ, to the orientation spacing which provides reasonable

coverage in the spatial-frequency domain [Clausi and Jernigan, 2000]. This allows the

radial bandwidth,Br, to be calculated that maximizes the coverage in the frequency

domain whilst minimizing the overlap between filters [Jain and Healey, 2002, Bovik

et al., 1990]:

Br = log2(
1 + tan(Bθ/2)

1− tan(Bθ/2)
) (3.2)

The extent of Gaussian envelope can then be calculated by setting the cut off in fre-

quency and angular direction to −6db [Clausi and Jernigan, 2000]:

σx =

√
ln2(2Br + 1)√
2πF (2Br − 1)

(3.3)
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Figure 3.2: Half magnitude frequency response to a example Gabor filter bank with 4
orientations and 5 frequencies

σy =

√
ln2√

2πFtan(Bθ/2)
(3.4)

The size of the filter is truncated to 3σm to reduce the computation cost during the

convolution [Jain and Healey, 2002].

The filter bank frequencies can be determined by calculating the peak frequency, Fpeak,

and then setting further frequencies using a single octave spacing [Bovik et al., 1990].

Fpeak =
0.5

1 + tan(Bθ/2)
(3.5)

Fm = 0.5Fm−1 (3.6)

Figure 3.2 shows the coverage in the frequency domain for a Gabor filter bank with

four orientations (nθ = 4) and five frequencies (nf = 5). The white areas show the
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half magnitude extent of the GFB and represent points where the magnitude of the

frequency response is greater than half of the peak magnitude. The x axis corresponds

to θ = 0 and increasing values of result in anti-clockwise rotations about the origin.

Lower values of frequency correspond to larger spatial variations, and eventually the

spatial extent can become so large the filter response no longer captures textural in-

formation. Lower frequency values also increase the filter size (see equations 3.3 and

3.4), which leads to increased computation time. Careful selection of the number of fre-

quencies is required to capture all the necessary texture information without capturing

responses to features too large to be texture based.

Bovik et al. [1990] and Clausi and Jernigan [2000] suggest that the application of a

Gaussian post filter to smooth the magnitude response to a Gabor filter. Textures

that do not have a sufficiently narrow bandwidth leak into other filter responses and

Gaussian post filtering can reduce the leakage whilst maintaining textural boundaries.

The post filter is matched to the Gabor filter by using the Gaussian envelope but with

greater spatial extent. The Gaussian envelope in equation 3.1 can be represented by:

g(x, y) =
1

2πσxσy
exp{−1

2
[
x2

σ2x
+
y2

σ2y
]} (3.7)

The extent of the Gaussian post filter can be controlled by λ , such that the post filter

is represented by:

g(λx, λy) (3.8)

Smaller values of λ lead to greater smoothing. Bovik et al. [1990] and Clausi and

Jernigan [2000] recommend a value of λ = 2/3.

3.2 Supervised Classification

Classification methods can be either classified as supervised or unsupervised, depend-

ing on whether or not training data is used during the construction of the classifier.

Training data is a group of pixels within an image whose classes are known a priori and

are used to estimate the texture properties of each class. Supervised classification uses

this information to decide to which class to assign each pixel, based on the similarity of
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the textural properties. Unsupervised classification uses clustering algorithms [Xu and

Wunsch, 2005] to group pixels that exhibit similar features. It is an iterative approach

that attempts to minimize an error measure between the texture features of the indi-

vidual pixels in each class and the average features as represented by the mean values

at the cluster centre. A commonly used example is the K-means clustering algorithm

which attempts to minimise the variance within the cluster.

One of the advantages supervised classification methods have over their unsupervised

counterparts is the ability of the user to define categories relating to meaningful classes,

as opposed to those naturally occurring within the feature space. No further user input

is required to match the natural categories with the information classes of interest to

derive a thematic map [Campbell, 2006]. Selecting defined classes allows the user

to identify single or multiple features of interest and also allows comparison between

classifications produced at different times and locations.

However, a major limitation of supervised schemes is the need for suitable training data.

In many remote sensing applications ground truth is collected by field work or manual

image interpretation and one of the three main map sampling schemes, for example

simple random sampling, used to provide appropriate training data [Baraldi et al.,

2005]. Due to difficulty and expense it is not always practical to provide the desired

number of appropriately distributed samples and this frequently leads to problems

when using high-dimensional feature spaces [Jimenez and Landgrebe, 2002]. In order

to produce reliable classifiers, a training set should ideally fully describe all of the classes

present[Foody and Mathur, 2004b], and several rules of thumb exist which indicate the

minimum number of samples per class required to achieve this [Jimenez and Landgrebe,

2002, Mather, 2004].

A commonly used limit for multivariate data sets is a minimum of 30p pixels per class,

where p is the number of features and the samples are independent. This indicates that

there are two failure methods of potential training data for supervised classification.

Firstly, Small training sets relative to the number of features can lead to ill- and

poorly-posed learning problems. Both of these introduce the curse of dimensionality

and produce classifiers with poor generalization capability [Jimenez and Landgrebe,

2002].

The second issue is the independence samples, which relates to the sampling scheme

used to obtain the training set. If the class of a particular pixel was known, then it is

likely that a neighbouring pixel would also be of the same class. This is due to image

region pertaining to the single class are likely to contain more pixels in the central

bulk than at at an edge where the pixel borders another class. Thus it is nearby pixels

and not just those that are adjacent that will not be statistically independent. This
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correlation between nearby pixels is called spatial auto-correlation. Samples that are

not independent, will over estimate the presence of classes in the training set compared

to independent samples, which consequently causes the covariance of a particular class

to be underestimated and implies the class is more homogeneous and distinct that it

really is [Mather, 2004].

Random sampling ensures the independence of samples, and provides better classifica-

tion results compared to using a contiguous block of samples [Campbell, 1981, Mather,

2004], and is generally accepted to be the best sampling scheme for generating training

sets. This places a higher demand on the number of samples required in the ground

truth, to allow a sufficiently sized random sampling to be drawn to provide a represen-

tative and independent training set.

However, classification techniques exist that do not require a full statistical description

of each class in order to train the classify. These approaches make no assumptions

about an underlying parametric model, and examples of these non-parametric classifiers

include support vector machines (SVM) [Foody and Mathur, 2004a] and decision trees

[Simard et al., 2002]. Instead, training samples near the classification hyperplane or

decision boundaries that separate the classes are the most useful. Non-parametric

classifiers therefore have the potential to be more robust to small training sets [Foody

and Mathur, 2004b]. However, Huang et al. [2002] have shown that larger training sets

still provide better classification for SVM. In their work, the training sets were selected

by random sampling and, as such, larger sets have a higher probability of containing

points near the hyperplane boundary. This implies that non-parametric classifiers will

only perform well with small training sets, providing adequate border training samples

are included. This introduces the additional problem of identifying border training

samples from within a ground truth sample in order to be sub-sampled.

The definition of a useful training set will depend on the classifier being used, however

all approaches require accurate ground truth in order to generate classifiers that can be

readily generalized and applied to subsequent scenes and images. Due to the difficulty

in obtaining useful training sets, many practical applications of supervised classification

are undertaken with less than ideal training data, but are still capable of producing

useful results.

3.2.1 Feature Space Reduction

Advances in computing power and the amount of data collected and stored has led to

significantly larger number of features being considered for machine learning tasks in
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recent years. 15 years ago few applications considered more 40 features whereas in the

past decade feature numbers in the order of 102 − 104 are not atypical [Guyon and

Elisseeff, 2003]. High-dimensional feature spaces suffer from the well-known curse of

dimensionality, which adversely affects many learning algorithms [Yang and Pedersen,

1997]. Therefore, reducing the dimensionality of the feature space has many potential

benefits including a reduction the storage requirements, shorter training and utilization

times, and importantly for small training sets, defying the curse of dimensionality to

improve performance [Guyon and Elisseeff, 2003]. Feature space reduction can be

broadly separated into two areas; feature selection and feature extraction.

Feature selection reduces the dimensions of the feature space by selecting a subset of

the original features which, ideally, maximizes the classification ability whilst reducing

the computational costs. Feature space reduction is a logical choice when dealing

with small training sets and one such class of techniques is wrapper approaches, which

use the classification method as a black box and rank the feature subsets based on

the classification accuracy compared to the training data [Yusta, 2009]. Typically,

an exhaustive search can not be used to find the optimal feature subset as it is too

computationally expensive and, instead, sequential search methods can be applied.

Forward sequential feature selection (FSFS) adds features one-by-one to the subset that

maximises the classification accuracy. Similarly, backward sequential feature selection

(BSFS) successively removes features to maximise the accuracy metric [Kohavi and

John, 1997].

As an alternative to feature selection, feature extraction can be used to remap the

feature space, for example by using a linear combination of the existing features, to

a new feature space which is more favourable either through better separation of the

classes or by concentrating the majority of information in a small number of features.

Here, feature extraction methods are applied to the original texture features to provide

a remapped feature set, with the aim of producing a higher classification rate. Prin-

cipal component analysis (PCA) and linear discriminant analysis (LDA) are common

examples of this approach. Ideally, the new feature set will provide better separation

between the classes than the original features.

Principal component analysis (PCA) is one of the standard techniques for reducing a

complex data set to a lower dimension, which can reveal underlying simplified struc-

tures. PCA is an orthogonal linear transformation that transforms the data to a new

coordinate system such that the greatest variance by any projection of the data comes

to lie on the first coordinate (the first principal component), the second greatest vari-

ance on the second coordinate etc. The underlying assumption of PCA is that the

direction with the largest variance contains the data of interest, and so the new coor-

dinate system is one that maximizes the signal to noise ratio (SNR). The outputs from
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PCA frequently show the proportion of information represented by each coordinate,

which can be used to reduce the dimensions of the data required to describe the under-

lying behaviour. One of the draw backs of using PCA is the inability to incorporate a

priori information, such as a training set in supervised classification example, in order

to select the coordinate transform. Kernel PCA methods are an extension to the PCA

which can deal with non-linear transforms derived from prior information.

Linear discriminant analysis (LDA) is related to PCA, as they both look at linear

combinations of the data in an attempt to understand the underlying behaviour. Where

they differ is that LDA explicitly takes into account the the training data to create

a linear combination of original features that yields the largest difference between the

classes. LDA is intuitively more attractive than PCA as it considers the underlying class

structure. This is supported by Cheriyadat and Bruce [2004], who showed that PCA

is not the optimal solution for dimensionality reduction for classification applications.

However, when the classes are under represented, PCA has been shown to outperform

LDA [Mart́ınez and Kak, 2002].

3.2.2 The Applicability of Supervised Texture Classification Using

Linear Training Sets

As previously discussed in chapter 1, one of the difficulties in a observing particulate

aerosols in satellite imagery is the similarity on the spectral response of multiple par-

ticulate aerosols, making it hard to distinguish between the different types [King et al.,

1999a]. Furthermore, there is a wide variation in the spectral response, depending on

the time of day, year and the underlying surface.

To address this, Khazenie and Lee [1992] proposed that texture information could be

used to address these issues and consistently identify aerosol plumes from the underlying

background and to separate aerosol types. They used three differently derived texture

measures namely grey level co-occurrence features, Normalized Difference histograms

and 2D Gabor Transforms, and found that 2D Gabor transforms were the most efficient

and robust in detecting aerosol features in NOAA Advanced Very High Resolution

Radiometer (AHVRR) images. Unsupervised clustering was used to identify 7 clusters,

including deep dust and light dust. Diop et al. [2006] used a similar approach on

Meteosat First Generation (MFG) images using unsupervised clustering to identify

dust clouds in IR images using GLCF. The segmentation results showed a comparable

performance to that of the IDDI for identifying dust clouds over North Africa.

These unsupervised approaches show the potential for texture based classification to be
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able to identify particulate aerosol distributions in satellite imagery. Further improve-

ments could be made by replacing the clustering approach with supervised classifica-

tion, which would allow the a specific particulate aerosol to be selected and identified

without any further user input.

A potential source for training data is the CALIPSO VFM. As discussed in section

2.2.3, the VFM provides discrimination between clear air, clouds and aerosols, and

provides aerosol subtypes to allow for detection of specific particulate aerosols. The

CALIPSO VFM can provide training data for satellite imagery, providing the data is

co-located with the VFM and captured at the same time, which was first presented in

Wiltshire et al. [2009].

MODIS on AQUA and SEVIRI on MSG are two good candidates to provide the imagery

for supervised texture analysis. AQUA is located in the A-Train constellation with

CALIPSO, and so will always provide imagery that is temporally and spatially matched

to CALIPSO. In contrast, MSG is a geostationary satellite with a limited FOV centred

over the prime meridian, and so will not always be spatially matched to CALIPSO.

MSG does have a short repeat cycle, compared to MODIS on AQUA, which allows for

better continual observation of an aerosol event and it is also ideally located to observe

dust events generated over the Saharan desert.

The CALIPSO VFM may not provide useful training data due to the narrow FOV and

the polar orbit of CALIPSO. This translates into a near linear path of training samples,

which can lead to spatial auto-correlation effects introduced earlier. An example of a

CALIPSO VFM and SEVIRI imagery is included in figure 3.3. In this instance the

CALIPSO VFM is used to provide training data to identify a dust storm in a 10.6 IR

SEVIRI image taken over North Africa on 21/02/2007. The SEVIRI image is shown

with the CALIPSO overpass overlaid in blue and the dust locations shown in red.

The potential of supervised classification using linear sets has a wider applicability than

the task presented in Baraldi et al. [2005]. As well as the ability to detect atmospheric

mineral dust distributions, a simple extension would provide the ability to identify any

of the other aerosol subtypes included in the CALIPSO VFM.

Additionally, linear training sets can be provided by other means. Texture classification

techniques have also been used to identify oil spills in synthetic aperture radar (SAR)

images. In particular, gray level co-occurrence features (GLCF) has been found useful

for distinguishing between oil spills and naturally occurring dark patches on the sea

surface [Brekke and Solberg, 2005]. In these instances, the classifiers were trained using

data that was hand-classified by human experts. The infrequency of oil spills means that

training data is scarce [Kubat et al., 1998] and the need for continuous global monitoring
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Figure 3.3: IR10.8 SEVIRI image from UT 13:45 on 21/02/2007 with the CALIPSO
overpass marked in blue and the dust locations in red, reproduced from [Wiltshire
et al., 2009]

places a high cost on expert classification. Here, training data provided along a linear

tract could be useful in two instances. Firstly, ground truth provided by observations

from a ship traversing the slick could prove useful for supervised classification of large

scale spills caused by ecological disasters. Secondly, for smaller scale accidental or

deliberate spills from ships, expert analysis can quickly and efficiently identify a linear

path across the slick, allowing its spatial extent to be determined using a supervised

classifier and hence reducing the workload of manual inspection.

Another example of where linear training data can be found is in the remote sensing

of volcanic ash. The importance of this application has recently been highlighted by

the disruption to air traffic over Europe caused by eruptions of the Icelandic volcano

Eyjafjallajoekull. During the disruption a downward facing lidar and other instruments

on-board an aircraft operated by the Facility for Airborne Atmospheric Monitoring were

used to determine the altitude and thickness of the dust plume along the flight paths

of a number of missions [Woolley, 2010]. The flight paths included significant linear

portions and so the data recorded can provide a linear training set in order to identify

the volcanic ash distribution over a wider area in satellite imagery.

The difficulty in obtaining ground truth for particulate aerosol distributions means

that it is difficult to find a reliable, independent source to validate any outputs using

the supervised texture classification with a linear training set. Therefore, in order to
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determine whether the linear training set can produce reliable classification outputs,

simulated data was used. As the ground truth was explicitly known, the performance

of the linear training can be evaluated accurately to determine its suitability, and this

is the focus of the next chapter.
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Chapter 4

Performance Evaluation of

Supervised Classification

Schemes Using Linear Training

Sets

This chapter investigates the applicability of linear training sets for supervised texture

classification, and compares the performance of different texture features and represen-

tative list of different classifiers. As discussed in the chapter 3, the CALIPSO VFM can

provide a linear training set to identify particulate aerosols in another satellite image,

such as SEVIRI on MSG or MODIS. The lack of ground truth for particulate aerosol

distributions prevents the evaluation of linear training sets on real data, and so instead

simulated images are used. Simulated images are used to identify the best performing

set of texture features and classification schemes for use with a linear training set, which

has not been previously studied. The evaluation methodology is introduced including

the generation of the test images, training sets and the texture features used. The

classifiers used, and the performance evaluation techniques are described and finally

the results and conclusions of the simulations are presented.
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4.1 Simulated Texture Classification Methodology

4.1.1 The Suitability of Linear Training Sets

Linear training sets will be subject to spatial autocorrelation effects. The effect this

leads to the variance of the classes within the image being underestimated, resulting

in classes appearing more homogeneous than they really are and producing classifiers

that generalize poorly.

The use of the CALIPSO VFM as a training set for supervised classification was first

presented in Wiltshire et al. [2009] and was used to identify atmospheric mineral dust

distributions. Based on this scenario, the task falls somewhere ill- and poorly- posed

classification problems. This relates the number of features, or dimensions, of the

feature space compared to the number of samples in the training set and is defined

below [Baraldi et al., 2005].

Definition 2 Ill- posed classification occurs when the number of data dimensions ex-

ceeds the total number of representative samples in the training set, and is much greater

than than the number of per-class samples.

Definition 3 Poorly- posed classification occurs when the number of data dimensions

is less than the total number of representative samples in the training set, but is much

greater than or equal to the number of per-class samples.

As well as the lack of independent samples, the overall number of samples is limited by

the along track resolution of the VFM leading to a small training set which prevents

further sub sampling as insufficient samples would be retained. The result is a small

training set with unrepresentative samples. The work in this chapter examines whether

a linear training set can produce good results, despite the poorly-posed nature of the

classification task. Specifically, for the particular problem of identifying a single texture

of interest within an image containing multiple textures, the reduction in classification

performance resulting when the training data is sampled linearly, instead of randomly, is

quantified for a number of commonly used texture features and classification techniques,

allowing the best performing combinations to be identified.
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4.1.2 Texture Feature Generation

Whilst the motivation for this work is to ascertain the feasibility of using linear train-

ing sets for supervised classification, and subsequently discover a best combination

of textural features and classifiers, the overarching task is to apply these techniques

to identify particulate aerosols. This application drives the type of texture features

considered.

Previous work using unsupervised classification has used GLCF [Diop et al., 2006,

Khazenie and Lee, 1992] and 2D GBF Khazenie and Lee [1992] to identify particulate

aerosol distributions, and are a logical choice for inclusion. Furthermore both GLCF

and 2D GFB are robust and mature texture approaches and are widely used in the

remote sensing community.

GLCF were generated for pixel spacings d = 1 and d = 2 within a fixed 9× 9 window.

The orientations of the features are set by considering all possible spacings using the

Chebyshev distance, resulting in 4 orientations for d = 1(0◦, 45◦, 90◦, and 135◦) and 8

orientations for d = 2(0◦, 26.6◦, 45◦, 63.4◦, 90◦, 116.6◦, 135◦ and 153.4◦). For each pair

of orientation and spacing, the 8 features in table 3.1 were calculated using a linked

list implementation, see Section 3. This gives two GLCF sets, of 32 or 64 features for

d = 1 and d = 2 respectively.

Clausi [2002] proposed a preferred GLCF set containing only contrast, correlation and

entropy which was determined by grouping the different features into three areas;

smoothness, homogeneity and correlation based on the correlation of the individual

features. The main motivations of the work were to reduced the computation cost with

little or no loss of classification performance as well as reducing the number of features,

to avoid the curse of dimensionality when using small training sets. Close examination

of the results shows the performance of the preferred feature set was only significantly

statistically better than all 8 features for one of data sets considered, and this case was

explained by the small sample size leading to a poor estimate of the covariance.

The work presented in this chapter is concerned with the accuracy of the classification

outputs and not the computational cost of the feature generation. Also, reducing the

number of features considered, potentially removes information that provides better

separability of the classes. Therefore, GLCF with all 8 features will be used. In

order to limit the affect of the curse of dimensionality, feature selection and extraction

techniques are applied to all GLCF sets, and these techniques are explained in the

classification section later in this chapter. Should the extra features not provide any

benefit, then contrast, correlation and entropy will dominate the feature selection and
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weightings for feature extraction, and there will be no loss of classification accuracy.

Features from the 2D GBF were generated by calculating the magnitude response of

when each filter is convolved with the input image. The GFB were calculated using

the automated process outlined in section 3 using equations 3.1 - 3.6. This process

requires the number of orientations, nθ, to be set and the GFB parameters and thus

the 2D GFB can be generated. Clausi and Jernigan [2000] suggest a filter spacing of

30◦, which equates to nθ = 6, although nθ = 4 is often used in literature.

Here, a value of 4 or 6 is used for nθ and the first six frequencies (nf = 6), giving a

GFB consisting of 24 or 36 filters respectively. Gaussian smoothing can be applied to

the magnitude response of the GFB, by setting a parameter γ to control the spatial

extent of the Gaussian envelope. Two different values of γ were used; γ = 1 to match

the Gaussian envelope used in the corresponding 2D Gabor filter, and γ = 2
3 which

gives the best classification result in Bovik et al. [1990] and Clausi and Jernigan [2000].

This results in three post filtering schemes when no smoothing is also considered. For

easy identification the 2D GFB are referred to using the triplet (nθ, nf , γ), where γ = 0

is used to denote no post filtering.

A third texture feature can be generated using a fused feature set combining GLCF and

2D GFB features. Clausi and Deng [2005] provided a design rationale for concatenating

these features and compared the performance of the fused feature sets with those of

the contributing GLCF and 2D GFB. The fused feature set was proposed to overcome

the inconsistent performance of 2D GFB with higher frequencies. GFB are ideal for

characterizing a pure sinusoid, and a tuned filter will return a flat magnitude response

to sinusoid. A practical signal can be decomposed into a weighted sum of sinusoids,

and hence GFB are well suited for texture analysis [Clausi and Jernigan, 2000].

Clausi and Deng [2005] demonstrated the effect of sinusoids with Gaussian noise by

calculating the magnitude response of the sinusoid using a tuned GFB over a range

of frequencies with the results showed the inconsistency of Gabor filters at higher

frequencies. This is explained by the higher frequency filters having a larger spatial-

frequency bandwidth, and as the noise is evenly distributed in the spatial-frequency

domain, higher frequencies filters include more noise energy. Their solution was to

replace the high frequency Gabor filters with GLCF statistics of contrast, entropy and

correlation with pixel spacings of d = 1 and d = 2, which results in the capture of local

high frequency information. Similar analysis using sinusoids with additive Gaussian

noise has shown that the these GLCF show no frequency dependence.

Furthermore, Clausi and Deng [2005] suggest that GLCF are not suitable for capturing

the low and mid-frequency information as process is highly parameterized, with multiple
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values of grey-level quantisation, window size and pixel spacings. For each set of

parameters, the co-occurrence frequencies need to be calculated to derive the features

which is computationally expensive. 2D GFB provide a computationally more efficient

means to capture the low and mid-frequency texture information.

The best performing texture set [Clausi and Deng, 2005] in terms of class separability

and classification accuracy consisted of:

1. The GLCF statistics of contrast, entropy and correlation calculated for pixel

spacings d = 1 and d = 2, at four orientations: (0◦, 45◦, 90◦, and 135◦) within a

fixed 9× 9 window.

2. The magnitude response of the GFB defined by the triplet (6, 4, 2/3)

This results in a fused feature set containing 24 GLCF (3 statistics, at 4 orientations

and 2 pixel spacing) and 24 GFB magnitude response (4 frequencies at 6 orientations).

4.2 Classification Methods

Applying a representative range of classification techniques to the simulated images de-

scribed above enables the most appropriate classification approach for use with linearly

sampled training data to be determined. As previously discussed, feature selection and

extraction techniques are used to reduce the number of features used by some of the

classifiers, as this helps reduce the problems associated with small training sets and

high dimensional feature spaces. Feature space reduction is not required for the increas-

ingly popular SVM techniques. This is because SVM use a kernel function to provide

a non-linear mapping of the training data, but as the inner product never needs to be

evaluated, dimensionality issues are avoided [Oommen et al., 2008]. Due to the poorly-

posed nature of the supervised classification task and the unrepresentative samples, an

unsupervised approach is also applied to demonstrate the benefit of using linear train-

ing sets over no a priori knowledge. K-means clustering was selected as commonly used

unsupervised learning algorithm, and has previously been used to identify the spatial

extent of dust clouds in satellite imagery [Diop et al., 2006, Khazenie and Lee, 1992].

Three distinct types of classifiers were used, those based on feature selection, feature

extraction, and non-parametric classifiers.
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4.2.1 Feature Selection Based Classifiers

A minimum distance classifier was used in conjunction with wrapper approaches, FSFS

and BSFS, for the feature selection based classifiers. Minimum distance classifiers work

by calculating the distance between the features at each pixel in the input image and

class mean of the corresponding features for the texture of interest, derived from the

training data. Their performance can be improved when feature selection or feature

extraction is used to reduce the dimensionality of the feature space.

FSFS adds features one-by-one to the subset to maximise a chosen classification met-

ric. Initially, classification is performed using each feature on its own, with the best

performing feature selected. The remaining unselected features are then tried in con-

junction with the 1st feature, to find the best pair of features, and so on until the

feature subset reaches a desired size. Conversely, backward sequential feature selection

starts with the entire feature set in the subset and sequentially removes a feature one

at a time that gives the most improvement in the classification of the training set.

The classification is performed by examining the distance between a pixel under test

and the class centre. As the true statistics are unknown, the class centre is estimated

from the training set, such that the mean vector µk for class k is found using:

µk =
1

N

N∑
n=1

(xn − µk)(xn − µk)T (4.1)

where xn are the individual pixels within class k, of a total N .

The Euclidean distance dEuclideank is the the simplest distance measure but it does not

take into account the distribution of the data around the class centre. Equation 4.2

calculates the Euclidean distance between the feature vector at a pixel, x, and the class

mean, µk.

dEuclideank =
√

(x− µk)T (x− µk) (4.2)

The Mahalanobis distance (MD) measure takes uses the covariance matrix which takes

into account the shape of the distribution of the data around the class centre. The

Mahalanobis distance measure is a weighted Euclidean distance, with the weighting

determined by the variability of the sample point calculated using the by the covariance

matrix [Wölfel and Ekenel, 2005].
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dMahalanobis
k =

√
(x− µ)TC−1

k (x− µ) (4.3)

Again, as the true class statistics are unknown the covariance matrix is estimated from

the training data using Equation 4.4.

Ck =
1

N − 1

N∑
n=1

(xn − µk)(xn − µk)T (4.4)

To determine whether the samples are classified as belonging to a particular texture, an

Upper Control Limit (UCL) is calculated based on an outlier detection method, which

treats the square MD as T 2 values and applies the Hotelling T 2 tests [MacGregor

and Kourti, 1995]. The upper control limit for MD calculated using estimate of the

covariance matrix is found using:

T 2
UCL =

(N − 1)(N + 1)q

N(N − q)
Fα(q,N − q) (4.5)

where q is the number of texture features currently in the subset and Fα is the upper

α100% critical point of the F-distribution with q and N − q degrees of freedom. A

value of α = 0.95 was used.

The classification is then performed pixel by pixel, with a pixel being assigned to the

class of interest if MD ≤ T 2
UCL. The classification performance is evaluated for all the

feature sets by comparing the output to the training set. Accuracy is commonly used

to evaluate machine learning tasks, however it is not a good metric when the classes are

unequally represented in the training set. The simulations in this chapter model a real

world situation where the training set is likely to be dominated by the class of interest,

for example a particular type of particulate aerosol. For example, a classifier that only

correctly identifies half of the pixels in the central band of the simulated images shown

in figure 4.1 as belonging to the texture of interest will still achieve a classification

accuracy of 77.78%. In these situations both the True Positive Rate (TPR) and the

True Negative Rate (TNR) are expected to be high simultaneously and their geometric

mean (GM), described by [Kubat et al., 1998] and calculated by:

GM =
√
TPR.TNR (4.6)
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provides a balanced measure of the performance between the classes. This measure

is nonlinear, independent of the distribution of the classes and is robust when the

distribution changes with time or is different in the training and test set

The GM scores calculated using the training set are used for comparison to identify

which feature to add (FSFS) or remove (BSFS) from the feature subset.

4.2.2 Feature Extraction Based Classifiers

Feature extraction approaches used Principal component analysis (PCA) and linear

discriminant analysis (LDA). PCA was applied to the original feature set to provide a

new feature with the principal components used as features for the minimum distance

classifier described above. As well as being a feature extraction technique, LDA is a

commonly used classifier in its own right and is applied using the inbuilt functions in

the Matlab statistics tool box [MATLAB, 2009].

4.2.3 Non-parametric Classifiers

Non-parametric classifiers include SVM and decision tree classifiers. LIBSVM [Chang

and Lin, 2001] is used to implement soft margin SVM classifier using radial basis

functions (RBF) as the kernel. Two parameters are required in this instance, γ, which

controls the width of the RBF and C, the value of the soft margin. A reliable approach

would be to conduct an exhaustive grid search over a suitable parameter space and

select the best settings [Staelin, 2003]. Exhaustive searches can result in long run

times due to the high number parameter combinations and grid search is widely used

to reduce the computational burden. In this instance a log2 parametric grid search is

used as suggested in the LIBSVM documentation [Chang and Lin, 2001]. N-fold cross

validation is commonly used to evaluate each parameter set it alleviates the problem of

over-training by using independent training samples to evaulate the classifer [Staelin,

2003]. Here 10-fold cross validation is seleted to determine the optimal values for the

soft margin, C, and the RBF, γ as it led to high classification accuracy. Decision tree

classification is implemented using the inbuilt functions in the MATLAB statistics tool

box [MATLAB, 2009] which uses the common “Gini ”splitting function and allows

pruning to simplify the final tree and prevent over-fitting.

Preliminary work using SVM has shown that support vectors are more likely to be

drawn from near the boundary between different classes. A linear training set crosses

this boundary and hence are likely to provide support vectors despite the small training
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set and therefore achieve a good classification rate.

4.3 Classification Performance Evaluation

4.3.1 Texture Image and Training Data

Simulated images were used to model the situation where there is a single texture of

interest amongst other, possibly multiple textures. To this end, two 256 × 256 pixel test

images were created containing two and five separate textures respectively, as shown

in figure 4.1. Both underlying masks contain a central band representing the texture

of interest, analogous to dust in the SEVIRI images in Wiltshire et al. [2009] or an oil

spill on the sea surface. The central band extends across the full width of the image

to ensure that any sampling line passing down the image will always contain pixels

from the texture of interest. The two-texture test image models the simple binary

classification case while the five-texture image represents the more realistic situation

of a single texture to be identified in an image containing multiple textures.

All texture boundaries in the test images are based on sinusoids so that they are not

aligned with any mask-based texture features. As in Clausi and Jernigan [2000], the

images were populated with Brodatz textures [Brodatz, 1999] that exhibit distinct

regions of texture without regular or repeating pattern and hence mimic the natural

textures that are observed in remotely sensed images of the Earth. The two texture

image consists of D29 (beach sand) in the central band, surrounded by D9 (grass). The

five textures image maintains D29 (beach sand) in the central band, and D57 (hand

made paper), D12 (bark), D38 (water) were selected in addition to D9 (grass) for the

surrounding textures.

A further test image was generated by populating the five texture mask with textures

from the Outex texture database [Ojala et al., 2002a]. The Outex textures were se-

lected to match test 000 from the Outex Supervised texture segmentation suite, namely

Canvas 002 at 45, Canvas 001 at 15, Canvas 026 at 60, tile 005 at 60 and carpet 004 at

75. All the Outex images were captured using the “inca”illumination at 100dpi. The

resulting synthetic texture image is shown in figure 4.2.

The linear training sets were generated of arbitrary vertical orientations by randomly

selecting pairs of pixels from the top and bottom rows of the image and joining them

with a straight line. This fixed the number of samples per training set to the image

height of 256 pixels and 100 such sets were generated, see figure 4.3. Each random
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Figure 4.1: Texture masks (left) and the corresponding synthetic texture test images
(right) for the two texture (top) and five texture (bottom) simulated images.
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Figure 4.2: Five texture test image populated with the Outex textures

training set was generated by randomly selecting 256 pixel locations from within the

collection of samples from the 100 linear training sets and 100 such sets were produced.

This strategy results in two sets of training data that only differ in the sampling method

used.

4.3.2 Performance Metrics

For each combination of feature set and classifier the overall classification performance

is determined using the GM equation 4.6. This quantifies how well the class of interest is

identified compared to the original masks (figure 4.1). For comparison, the classification

performance using the randomly-sampled training sets is also found.

In addition, the Forstner covariance distance (FCD) is used to compare how well the

random and linear training sets represent the true class statistics [Förstner and Moonen,

1999]. The FCD measures how different two covariance matrices are, in this case

between those of the training set and the full texture. The FCD is an extension of the

covariance analysis used in Campbell [1981], Mather [2004] and is given by

FCD =
√∑

ln2 λi(H,C)
n
i=1 (4.7)
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Figure 4.3: 5 texture test image with the 100 linear sample lines overlaid in blue.

Table 4.1: Binary Confusion matrix used for the McNemar’s Test
Classification 2

Classification 1 Correct Incorrect

Correct f11 f12
Incorrect f21 f22

where, H is the covariance matrix from the reference samples, C is the covariance ma-

trix from the test samples, and λi is the ith eigenvalue from the generalized eigenvalue

problem |−C|. If the true class statistics are used to generate H, and the training set

is used to generate C, then smaller values of FCD indicate a better representation of

the underlying class. This provides a quantitative comparison of the ability the two

sampling schemes to capture the true class statistics.

In order to determine whether the differences in the classification scores using different

feature sets, classifiers or sampling schemes are significant, a McNemar’s test was used

[Foody, 2004]. The first task is to condense the confusion matrix to a 2 by 2 matrix,

which determines at each pixel whether the classification is correct or not, see Table

4.1.

The test is based on the standardised normal test statistics (equation 4.8), and assumes

z2 follow a chi-squared, χ2, distribution with one degree of freedom. This modifies the

test equation from 4.8 to 4.9,
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Table 4.2: Best mean GM performance (±2 standard deviations) for each classification
technique and the texture features with which the best results was achieved, applied
to the 2 class image. The GLCF are denoted Cn where n is the pixel spacing and the
GFB are described by the triplet (nθ, nf , γ) and Fused is a combined GLCF and GFB

2 class

Random Linear

FSFS 0.905 ± 0.029 (6,6,0) 0.853 ± 0.077 (C1)
BSFS 0.913 ± 0.025 (6,6,0) 0.856 ± 0.072 (C1)
PCA 0.900 ± 0.066 (6,6,0) 0.899 ± 0.161 (C1)
LDA 0.952 ± 0.004 (6,6,2/3) 0.935 ± 0.010 (C1)
TREE 0.913 ± 0.040 (C1) 0.910 ± 0.077 (C1)
SVM 0.941 ± 0.022 (6,6,0) 0.919 ± 0.037 (C1)

z =
f12 − f21√
f12 + f21

(4.8)

χ2 =
(f12 − f21)2

f12 + f21
(4.9)

This allows the calculated z values to be compared to tabulated chi-squared values to

indicate the statistical significance. For a significance level of 0.05, a value of |z| > 1.96

shows the difference in the classification score is significant.

4.4 Simulation Results

Every combination of texture features and classifier is applied to the 100 linear and 100

random training sets from the two simulated Brodatz images described previously and

the average GM classification performances recorded. Table 4.2 presents the maximum

GM results achieved by each of the classification schemes for both linearly and randomly

sampled training sets with 95% confidence intervals, and also shows the texture features

with which this performance is achieved. The tests were repeated with the position

of the Brodatz textures in the 2 and 5 texture test images varied to give different

textures of interest and these results confirmed that those in Tables 4.2 and 4.3 are

representative.

When random sampling is used, GFB features provide the best classification results for

5 of the 6 classification techniques for both the 2 and 5 texture test images. The GFB

(6,6,0) is the most popular texture feature set and when used by SVM provides the

best classification performance for the 5 texture test image. The performance of the
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Table 4.3: Best mean GM performance (±2 standard deviations) for each classification
technique and the texture features with which the best results was achieved, applied
to the 5 class image. The GLCF are denoted Cn where n is the pixel spacing and the
GFB are described by the triplet (nθ, nf , γ) and Fused is a combined GLCF and GFB

5 class

Random Linear

FSFS 0.869 ± 0.018 (6,6,1) 0.823 ± 0.041(C1)
BSFS 0.864 ± 0.027 (Fused) 0.811 ± 0.073 (C1)
PCA 0.850 ± 0.048 (6,6,1) 0.809 ± 0.078 (Fused)
LDA 0.864 ± 0.021 (6,6,0) 0.731 ± 0.151 (6,6,0)
TREE 0.799 ± 0.053 (6,6,0) 0.752 ± 0.145 (C1)
SVM 0.900 ± 0.039 (6,6,0) 0.813 ± 0.071 (C1)

Figure 4.4: Example output images for best performing classification of the 2 texture
image. The image on the left is representative of the mean GM for random sampling,
using LDA on (6, 6, 2/3). The image on the right is representative of the mean GM for
linear sampling, using LDA on C1.

GFB texture features are in line with those reported elsewhere for texture classification

schemes using random sampling [Clausi and Jernigan, 2000], when the reduced size of

the training data is taken into account. Conversely, when linear sampling is used GLCF

with a single pixel spacing consistently provide the best classification scores. They are

the features preferred by all classification techniques for the two texture test image

and by 4 out of 6 classifiers for the 5 texture test image. Over all experiments, the

GLCF that were frequently selected were dissimilarity, contrast, inverse difference and

correlation. This feature selection shows general agreement with the selection of one

feature from each of the classes of smoothness, homogeneity and correlation, that has

been shown to be the ideal scenario [Clausi, 2002].

The results for 2 texture test image show that LDA provides the best classification
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Figure 4.5: Example output images for classification of the 5 texture image. The image
on the left is representative of the mean GM for linear sampling, using FSFS on C1.
The image on the right is representative of the mean GM for linear sampling, using
SVM on C1.

for both the linear and the randomly sampled training sets. Figure 4.4 shows output

images with a GM close to the mean GM, when LDA is used on (6,6,2/3) for random

sampling and C1 for linear sampling. LDA also exhibits the smallest variance in GM

scores, with a very small confidence interval for both sampling schemes, indicating

LDA gives consistently good results over all the runs. All the classification techniques

perform well for randomly sampled training sets with GM scores in excess of 90%. As

expected, the classification performance decreases when linearly sampled training sets

are used. Whilst GM scores for LDA decrease by less than 2%, the wrapper techniques

(FSFS and BSFS) show decreases in excess of 5%. Despite this, the results show that

linearly sampled training sets still provide a high classification performance, with a GM

above 85% for all approaches. The spread of the GM scores also increases when linear

sampling is used, with the confidence intervals approximately doubling in size when

compared to random sampling. This is expected, due to the spatial auto-correlation

that affects the linear sampling. Should the linear tract occur over a region that is not

useful to the classifier then multiple training samples will be affected, providing many

fewer samples of use. This is unlike random sampling, where the distribution of useful

samples within the training set will be approximately constant over all the training

sets.

For all classifiers, the overall classification performance for the 5 texture image is lower

than for the 2 texture image. This is to be expected as this image poses a more

complicated classification problem and hence results in lower GM scores. In this more

realistic scenario, linear sampling shows a larger decrease in GM scores than for the 2
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texture image, with an average decrease of 6.8%. Unlike the 2 texture case, where it

produced the best GM performance, LDA only out-performs PCA for random sampling

and is the worst performing classifier for linear sampling. This decrease in performance

is due to the introduction of additional textures in the input image, whilst fixing the

number of classes at 2. LDA represents the class of interest as an individual class and

groups all other classes together into a single class. While this has no effect for the

2 texture image, as the other class contains only one texture, for the 5 texture case

the 4 other textures are grouped into a single class. This is an ill-posed problem for

LDA as the classification boundaries will be found using one set of class statistics that,

in reality, contains multiple classes. With the 5 texture test image, SVM provides

the best classification using random sampling (90%) but drops significantly to 81.3%

when linear sampling is used. Feature selection, in particular FSFS, provides the best

classification using linear sampling (82.3%) although BSFS (81.1%), SVM (81.3%) and

PCA (80.9%) also perform well. Figure 4.5 shows representative output images for the

5 texture example, using FSFS and SVM applied to C1. The confidence intervals for

the GM scores are broadly comparable to those for the 2 texture test image. They also

approximately double when moving from random to linear sampling.

The classification performances of the supervised techniques were also compared to that

of a representative unsupervised classifier. To this end, the Matlab implementation of

k-means clustering algorithm was applied to the 5 texture simulated image using FSFS

and GLCF with single pixel spacing. Using the 100 linear tracks as the training sets

the best individual run recorded a GM of 68.5% and the peak average GM performance

was 60.5%. The average GM result is within 3% of the equivalent k-means results with

randomly sampled training sets but is 13% lower than the worst performing supervised

classifier and over 20% lower than the best performing supervised classifiers in 4.3.

This demonstrates there is a significant advantage in using supervised classifiers, even

when the linearly sampled training data is less than ideal.

Figures 4.6 and 4.7 show the mean GM and FCD versus the number of GLCF selected

for the 5 texture image using the FSFS minimum distance classifier, the classifier and

features that produced the best performance with linear sampling. Examination of

the FCD shows that, in general, linear sampling provides a better representation of

the texture of interest than random sampling, a result that at first sight appears to

contradict the existing literature on training samples. The explanation of this lies in

the number of samples needed to adequately represent the class of interest. On average,

each linear and random training set contains 64 samples from the texture of interest.

Using 30p samples per class as a guideline for complete representation, this suggests

that the training sets only provide an adequate statistical description when just 1 or

2 features are used. Random sampling does have a smaller FCD than linear but only
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Figure 4.6: Average GM scores for 100 linear and 100 random sample sets for the 5
texture test image with FSFS using GLCF with pixel spacings of 1 and 2.
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Figure 4.7: Average FCD scores for 100 linear and 100 random sample sets for the 5
texture test image with FSFS using GLCF with pixel spacings of 1 and 2.
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when a single feature is used and the 30p samples per class criterion is met. When

2 features are used, the number of samples in the training sets is on the limit of

the minimum required to fully describe the class and, with each subsequent feature

added, the class of interest is increasingly under-represented in the training sets. In

these circumstances, linear sampling can provide a better representation of the class

providing the class is relatively homogeneous because its spatial autocorrelation effects

correctly predict a lower variance, and hence a better representation of a relatively

flat and homogeneous texture. Although the minimum FCD occurs when only 1 or 2

features are selected this does not always result in the maximum classification score; this

implies that a good representation of the class does not guarantee a good classification

performance. Indeed, the accuracy of the output map will depend on how well the

training set represents the underlying class and how distinct the classes are within that

feature subset.

The GM scores in Figure 4.6 show that feature selection has a greater affect when linear

sampling is used. Initially, as features are added the GM increases for both random and

linear sampling up to a peak value. For random sampling the GM score then slowly

decreases with increasing features, with a maximum drop of 5-10% depending on the

pixel spacing of the GLCF. The decrease for linear sampling happens at a much faster

rate with the GM falling by over 25%, compared to the peak GM value. These results

were also observed when GFB features and the fused feature set were used. For linear

sampling, the highest GM values occur with GLCF for a single pixel spacing in the 4-6

features range, where the curve is relatively flat. This therefore provides a good choice

for the number of features to use with FSFS minimum distance classifiers and linearly

sampled training data in practical classification applications. Figure 4.6 also shows that

the classification rate for linear sampling using GLCF with 2 pixel spacing begins to

increases with the addition of features after the minimum at 49 features. The expected

result would show an increase in the classification rate with additional features until a

maximum is reached, and then the classification rate will level off or decline as observed

for the random sampling. This behaviour was also observed using BSFS although the

trend is reversed; the classification rate falling as features are removed before rising

as expected to a maximum. This can be explained by the greedy nature of selection

algorithms and as such it is possible to arrive a local minima.

Of the two wrapper techniques, FSFS and BSFS provide very similar GM scores, in

particular for the difficult 5 texture image using linear sampling. Here, the choice

between FSFS and BSFS may come down to computational efficiency which in turn

depends on the number of features in the subset. When the subset size approaches

the total number of features, BSFS will arrive at the best subset faster than FSFS.

Conversely, with a small subset FSFS will be faster, although it is noted that both FSFS

and BSFS are likely to be suboptimal due to the greedy nature of their algorithms.
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Table 4.4: Peak GM scores (±2 standard deviations) using FSFS with GLCF with pixel
spacings of 1 and 2. The corresponding number of features with which this performance
is achieved is shown in brackets

FSFS

Pixel Spacing 1 2

2 textures
Random 0.876 ±0.449 (7) 0.888 ±0.024 (17)
Linear 0.853 ±0.077 (5) 0.848 ±0.072 (5)

5 textures
Random 0.842 ±0.020(13) 0.834 ±0.020 (16)
Linear 0.823 ±0.041 (5) 0.801 ±0.056 (5)

Table 4.5: Peak GM scores (±2 standard deviations) using BSFS with GLCF with pixel
spacings of 1 and 2. The corresponding number of features with which this performance
is achieved is shown in brackets

BSFS

Pixel Spacing 1 2

2 textures
Random 0.880 ±0.038 (8) 0.883 ±0.027 (13)
Linear 0.856 ±0.072 (6) 0.840 ±0.066 (6)

5 textures
Random 0.842 ±0.024 (9) 0.825 ±0.027 (12)
Linear 0.811 ±0.073 (6) 0.783 ±0.076 (7)

Tables 4.4 and 4.5 compares maximum GM values achieved using FSFS and BSFS and

the number of features at which they occurred for both test images with linear and

random sampling. The results show that over the 2 test images the average GM for

linear sampling is only 3.2% below that of random sampling, with the difference for the 5

texture image being slightly less than for the 2 texture image. Linear sampling achieves

its best performance with a feature subset that is typically less than half the size of the

subset used by random sampling. Therefore, whilst random sampling provides the best

classification performance of the feature selection approaches, it requires more features

and hence is more computationally expensive. For linear training sets, the feature

subset sizes for the peak GM scores show that a small subset of 7 or less features

provides the best classification performance, and hence FSFS is more computationally

efficient than BSFS.

Table 4.6: McNemar’s test comparing FSFS with linear training data using GLCF with
1 pixel spacing to all other feature sets for the 5 texture test image. GLCF are denoted
Cn where n is the pixel spacing and the GFB are described by the triplet (nθ, nf , γ)
and Fused is a combined GLCF and GFB features
Feature Set C2 4, 6, 0 4, 6, 23 4, 6, 1 6, 6, 0 6, 6, 23 6, 6, 1 Fused

Z mean 14.84 63.44 31.62 13.24 77.91 60.09 57.65 35.33

std 19.89 27.17 24.05 39.86 26.92 33.24 28.63 18.55

% of runs above
significance
threshold

74.1% 98.8% 89.1% 61.1% 99.8% 96.0% 97.4% 96.4%
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Table 4.7: Best mean GM scores (±2 standard deviations) for each rotation of the
Brodatz test image, using FSFS and SVM with GLCF with single pixel spacing . The
corresponding number of features with which this performance is achieved is shown in
brackets for FSFS

Linear Random

Texture of in-
terest

FSFS SVM FSFS SVM

D29 0.823 ±0.041 (5) 0.813 ±0.071 0.842 ±0.020 (13) 0.871 ±0.036

D9 0.918 ±0.102 (1) 0.941 ±0.050 0.951 ±0.015 (1) 0.956 ±0.018

D38 0.881 ±0.091 (3) 0.899 ±0.068 0.931 ±0.029 (6) 0.940 ±0.019

D12 0.660 ±0.143 (7) 0.709 ±0.108 0.650 ±0.072 (15) 0.799 ±0.059

D57 0.788 ±0.088 (5) 0.805 ±0.084 0.812 ±0.036 (11) 0.851 ±0.039

Average 0.814 ±0.205 0.834 ±0.180 0.837 ±0.219 0.883 ±0.122

The GM scores for the more realistic 5 texture scenario suggest that FSFS using GLCF

with single pixel spacing (d = 1) provide the best classification performance using linear

training data. To determine whether this result is statistically significant, McNemar’s

Test is used to compare GLCF with d=1 to all other feature sets. Table 3 presents the

mean z values and their standard deviations, with positive z values indicating that the

GM classification performance of GLCF with d=1 is better than that of the feature set

under comparison. For a significance level of 0.05, a value of |z| > 1.96 is statistically

significant. The results in Table 4.6 show that the mean values of z are always positive

and above the significance threshold. Using the standard deviations of z, Table 4.6

also shows the percentage of runs for which there is a 95% confidence that GLCF with

d = 1 are significantly better. These results demonstrate that, even when compared to

the next best feature set, GFB (4,6,1), GLCF with d = 1 are still significantly better

for 61% of runs, and are significantly better for over 96% of runs for 5 of the other 7

feature sets compared. Similar analysis using SVM instead of FSFS shows that GLCF

with d=1 again produce the highest GM results, although as all the mean values of z

are in the range ±10 with standards deviations ≥ 20 this preference is not statistically

significant.

The classification results presented above are for the Brodatz test images and to es-

tablish how well they can be generalized the textures in the five-texture Brodatz and

Outex test images shown in Figure 4.1 and 4.2 are rotated such that the texture of in-

terest to be identified is different in each image. This produces two sets of test images

with five images in each. The two best two performing classifiers, FSFS and SVM,

are then applied to each test image using the 100 linear and 100 random training sets

shown in Figure 4.3. GLCF with a pixel spacing of 1 were used with both classifiers,

as these feature have been shown to produce the best classification performance with

linear training.
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Table 4.8: Best mean GM scores (±2 standard deviations) for each rotation of the
Outex test image, using FSFS and SVM with GLCF with single pixel spacing . The
corresponding number of features with which this performance is achieved is shown in
brackets for FSFS

Linear Random

Texture of in-
terest

FSFS SVM FSFS SVM

Carpet 004 0.932 ±0.065 (2) 0.958 ±0.027 0.953 ±0.026 (4) 0.973 ±0.013

Tile 005 0.865 ±0.074 (6) 0.845 ±0.074 0.862 ±0.094 (7) 0.904 ±0.029

Canvas 026 0.786 ±0.080 (8) 0.840 ±0.070 0.785 ±0.060 (11) 0.883 ±0.025

Canvas 001 0.746 ±0.056 (4) 0.677 ±0.140 0.751 ±0.021 (15) 0.744 ±0.084

Canvas 002 0.779 ±0.057 (5) 0.791 ±0.092 0.772 ±0.026 (15) 0.837 ±0.028

Average 0.821 ±0.1516 0.822 ±0.204 0.825 ±0.159 0.865 ±0.159

The GM classification performances for each rotation of the Brodatz and Outex images

and the averages of the 5 rotations are shown in Tables 4.7 and 4.8, respectively. The

results for the five texture Brodatz image shown in Figure 4.1 that was used in the above

evaluations are shown in the first row of Table 4.7, where D29 is the texture of interest.

Comparison of the classification performance of D29 with the average performances for

the Brodatz and the Outex textures shows that the D29 image is a very representative

of the test images, as its performance for all classifiers and training sets is within

a few percentage points of the average performances. The results in Tables 4.7 and

4.8 show that SVM outperforms FSFS for 7 of the 10 tests using linear sampling;

and 9 out of 10 tests using random sampling. The peak GM scores for FSFS show

that linear sampling uses a smaller feature set than random sampling, with a median

value of 5 features for linear sampling compared to 11 features for random sampling,

confirming the findings for the D29 Brodatz test image reported above. Overall, the

best classification performance achieved with linear training data is 82.8%, an average

of 4.6% lower than that achieved with random training sets.

The average GM score for the Brodatz image shows that SVM outperforms FSFS

using linear (83.4% c.f. 81.4%) and random sampling ( 88.3% c.f. 83.7%). SVM also

outperforms FSFS for the average GM score of the Outex test images, although the

difference for linear sampling is only 0.1% (82.1% c.f. to 82.2%). To determine whether

these results are statistically significant McNemar’s Test is again used to compare the

classification performance of SVM to that of FSFS. For the Brodatz images, the mean

Z values were all negative and above the significance threshold of 1.96, which indicates

that the better performance of SVM is significant. The one instance where FSFS has a

higher GM than SVM is shown to be not significant. For the Outex images, the mean

Z values show that only one of the two instances where FSFS yields a higher GM than

SVM is significant. Overall, SVM is above the significance threshold for 80% of runs

for the Brodatz images, and for 75% of the runs for the Outex images. This indicates
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that SVM will generally outperform FSFS, although there will be some instances where

FSFS will yield statistically significant and higher GM scores.

4.5 Conclusions

The performance of supervised texture classification schemes for the particular case

where the training data is limited to a small number of samples from a linear path,

a situation encountered in several important remotely sensing applications. In these

circumstances, random sampling is not possible and the training data is also subject to

spatial autocorrelation effects. Example applications of this type include the detection

of atmospheric dust, volcanic ash and identifying oil spills. In these cases there is a

single texture of interest to be identified within images containing multiple textures.

Using a simulated image of Brodatz textures, the classification performances of dif-

ferent textural features and 6 supervised classification techniques were quantified and

compared with the results achieved using randomly sampled training sets. The best

performing classification techniques for linearly sampled training data were found to be

the FSFS selection wrapper approach and SVM. Both these techniques achieve their

best classifications using GLCF with d = 1, although this was only statistically sig-

nificant for the FSFS classifier. A range of 4-7 GLCF was also found to produce the

best FSFS performance. The classification performance of 4 of the 6 classifiers was in

excess of 80% whereas an unsupervised k-means classifier only achieved a GM of just

over 60%; this underlines the benefits of a supervised approach.

When SVM and FSFS and GLCF with single pixel spacing were applied to the Brodatz

and Outex test images with different rotations of the texture of interest, both classifiers

achieve average GM scores in excess of 82% using linear sampling. The average perfor-

mance drop was also less than 5%, when compared with random sampling. This implies

that despite the limitations of the training data, supervised classification schemes are

appropriate techniques for applications of this type. Despite the SVM classification

score being negligibly higher than FSFS for the Outex images and only 2% higher for

the Brodatz images, the differences are statistically significant indicating that SVM is

the preferred classifier for linear training data.

The results provide an underpinning experimental basis for the use of supervised texture

classification to identify atmospheric dust. This approach derives a linear training set

from the CALIPSO VFM which can be used to train supervised classifier for texture

feature generated from SEVIRI imagery [Wiltshire et al., 2009]. The next chapter

presents a case study that uses linear training sets derived from the CALIPSO VFM
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to identify particulate aerosol distributions in satellite imagery, comparing the results

with existing methods for detecting particulate aerosols.
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Chapter 5

Remote Sensing of Atmospheric

Particulate Aerosols with

Supervised Texture Classification

Over Different Terrestrial

Surfaces

This chapter describes the application of supervised texture classification using linear

training sets for a real world remote sensing task. By applying the texture features and

classifiers identified in the previous chapter to two orthogonal satellite sources, SEVIRI

images from MSG and CALIPSO Lidar overpass data, an output mask identifying the

spatial extent of a particulate dust event can be produced.

The algorithm broadly follows the approach used in the simulation, with the inclusion of

some additional pre-processing steps to accommodate the satellite images and training

data. The algorithm is split into three stages:

1. Data selection and image registration: This enables the CALIPSO Vertical Fea-

ture Mask (VFM) to be used to identify the training pixels in the SEVIRI image

2. Generation of texture features: Using the best performing texture feature set

findings from the simulations, texture features are generated for the SEVIRI

image

3. Supervised Classification: Using the linear training set from the positions iden-
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tified by the CALIPSO VFM, the preferred classifiers from the simulations are

applied to generate a output dust mask.

Two example events are included; one over land and one over water, to demonstrate

that the supervised texture approach can be used without modification over multiple

surfaces. The example events are fully described in Section 5.4. The resulting output

dust masks are evaluated against other existing methods for particulate dust detection.

The choice of the technique for comparison is dependent on multiple factors including

the underlying surface type and the time. Details on the when existing techniques are

most applicable are discussed in Section 2.2.

5.1 Data Selection and Image Registration

The latest MSG satellite, designated Met-9, is a geostationary satellite positioned over

prime meridian, and is ideally situated to monitor Saharan dust storms and their

movement over the Atlantic Ocean. The SEVIRI sensor on MSG provides images with

good latitudinal, longitudinal and temporal resolution over 12 spectral bands between

0.75µm and 13.4µm, with a 15 minutes repeat cycle, but no vertical information.

As described in chapter 2, the CALIPSO satellite follows a 16 day polar orbit with the

CALIOP sensor providing a continuous, along track vertical cross-section of the atmo-

sphere. The CALIPSO overpass provides excellent vertical and along-track resolution

but poor cross-track and temporal resolution. The CALIPSO VFM classifies the at-

mosphere into 8 classes, of which one is aerosol. The aerosol class is further subdivided

in 8 subclasses, including mineral dust. Once the CALIPSO VFM is registered with

the SEVIRI image, dust locations can be identified provide the training data required

for supervised texture classification algorithms.

The first task is to identify a dust event that coincides with a CALIPSO overpass.

CALIPSO archive data is available online [NASA, 2008] from the Langley atmospheric

sciences data centre. A Java tool can be used to browse the data products from the

CALIPSO project, and is searchable by data and location. The data product of interest

is the level 2 VFM v2.01 which is latest release at the time this thesis was authored.

The data is available in HDF format and can be directly imported into Matlab, but

needs to be reconstructed before use [ASDC, 2008]. The CALIPSO VFM data packing

and reconstruction method is included in Appendix C.

In order to register the two data sources, the SEVIRI image that most closely matches

66



Figure 5.1: Saharan dust outbreak on 21/02/2007. Reconstructed vertical feature mask
from the CALIPSO data for an overpass of North Africa from UT 13:50

the time and location of the CALIPSO overpass is obtained. SEVIRI images are

generated at 15 minute intervals, although the image is formed over a 12 minute scan.

The CALIPSO VFM is tied to its polar orbit, and hence time varies along-track. The

approach used here is to assume that the overpass time is locally constant and to

select the closest SEVIRI image to the CALIPSO overpass time. This is a reasonable

assumption as in the worst case the error will be 7.5 minutes.

SEVIRI images are available from the EUMETSAT online archive [EUMETSAT, 2008]

and are provided as a full disk image of the Earth centred over 0◦ longitude in an

orthographic projection. Each image pixel has an associated latitude and longitude

tag. To reduce the processing time required to generate the texture features, a region

of interest is extracted. Here a 10◦ × 10◦ region of interest is defined, centred on the

dust event. The dust event itself is selected by using the CALIPSO VFM to identify

an edge of dust cloud, so that region of interest will contain known dust and non-dust

samples. The latitude and longitude of the CALIPSO is used to centre the region of

interest, and this section is extracted from the full disk and is remapped so that the

pixels are linear with latitude and longitude.

The SEVIRI data is delivered representing the counts and not radiance data. Counts
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Figure 5.2: IR10.8 MSG image from UT 13:45 on 21/02/2007 with the corresponding
CALIPSO overpass marked in blue and dust location in red.

are used by EUMETSAT to match the full range of the 10 bit integer representation

to the range of radiances observed in each of the 10 MSG channel [Müller, 2007].

Counts can easily be converted to radiance by a simple linear scaling and offset, which

is included in Appendix B.1. Here, SEVIRI channel 9 is used as it corresponds to

the 10.6µm spectral band in the IR range. The visible range is not useful over land

surfaces as airborne dust has similar reflective properties to the underlying surface. IR

is selected as is provides good contrast for wind raised dust when compared to heated

land surfaces [Lee, 1989]. Another advantage of using IR is the availability of imagery

at night, enabling 24 hour coverage to be provided.

With the region of interest extracted and remapped, the task of spatially registering

the two data sources only requires a simple solution. By defining the resolution of the

pixels in the region of interest in terms of latitude (reslat) and longitude (reslon) the

CALIPSO overpass can be mapped on the SEVERI image by.

reslat =
rangelat
rows

(5.1)

and
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reslon =
rangelon
cols

(5.2)

This provides a measure of the degrees per pixel. As the latitude and longitude is

known for each of the pixels in the SEVERI image, any latitude and longitude can be

mapped to the image. For simplicity, the origin is selected as the bottom left of the

SEVERI image, and the pixel locations for a given latitude and longitude can be found

using:

x =
longitude− lon0

reslon
(5.3)

and

y =
latitude− lat0

reslat
(5.4)

where longitude and latitude are the input coordinates to map to the region of interest,

x and y are the output pixel locations within the remapped SEVIRI image, and lat0

and lon0 are the latitude and longitude of the selected origin.

Each VFM data entry has geographical latitude and longitude tags, which allow the

data to be mapped to the corresponding pixel within the reprojected SEVIRI image.

Each entry in the VFM is represented by a 16 bit integer which contains information

on the feature type and subtypes specific information. Table C.1 contains a description

of the feature classification flags to interpret the VFM. The first task in identifying the

training set is to find the entries classified as aerosol, with sub feature type of interest,

in this instance dust. If dust is present and is not occluded by cloud or another aerosol

type then it is marked as dust, all other entries are marked as non-dust. This achieved

in practice by examining each column of the VFM, if all altitudes higher than the dust

are identified as clear air then the training sample is labelled as dust. The thickness

of the dust layer is not considered here, so a single dust entry in the VFM will be

classified as dust providing it is not occluded. The minimum thickness for a dust layer

to be enter the training set is therfore set to the vertical resolution of the VFM. This

varies depending on the height of the layer, with a resolution of 30m under 8.2km, 60m

between 8.2 to 20.1km and 180m for over 20.1km (see Figure C.1).

Figure 5.2 shows an example SEVIRI IR10.8 µm image for a Saharan dust outbreak

from 21/02/2007 that corresponds to the CALIPSO VFM of figure 5.1. This is taken
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from the land test case used later to evaluate the performance of the supervised texture

dust mask.

5.2 Generation of Texture Features

The simulation results in the chapter 4 indicate that GLCF with a single pixel spacing

provides the best texture features for supervised classification using linear training set.

However, the application to real world imagery and textures presents a more complex

problem than the two simulation images considered. In this case, GLCF may not

produce the best results with a linear training set.

Also, the previous work using unsupervised texture classification should not be ignored.

Khazenie and Lee [1992] compared GLCF, Normalised Difference histograms and 2D

GFB, concluding that 2D GFB were the most efficient and robust in detecting aerosol

features. Despite the unsupervised approach used, this demonstrates that in some

circumstances 2D GFB produce features that provide good separation of aerosols in

the feature space, which lead to good classification results. Therefore, a full range of

GLCF and 2D GFB were applied to see if the conclusions resulting from the simulation

hold for real applications of remote sensing of atmospheric aerosols.

Before the texture features are calculated, the underlying background representing

the spectral response of the Earth’s surface can be removed. This leaves the spectral

response of the atmosphere only, which intuitively suggests it will produce better results

as the texture features relate to the atmospheric content and not the Earth’s surface.

Another advantage of removing the background image is that it allows the classification

to be applied across land-ocean boundaries. This approach is adopted by Diop et al.

[2006] in their unsupervised texture classification, and for the IDDI [Legrand et al.,

2001] and other radiative transfer model approaches for detecting atmospheric aerosols

over land surfaces. When these approaches are applied over ocean as well as terrestrial

surfaces, the removal of the background reference image is not deemed necessary as

the ocean is sufficiently flat and dark as to have minimal effect on the overall spectral

response.

The underlying albedo reference image is built up by examining other SEVIRI images

from the same time of day over 15 day window centred on the day of interest. For each

pixel, a probability density is generated and the most likely value over the 15 day period

is selected for the reference image (see Figure 5.3). This approach relies on clear sky

responses being prevalent with the 15 day window. The underlying image is removed

from the SEVERI image using an exclusive OR (XOR) operation [Bayoko et al., 1996,
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Figure 5.3: 15 day background reference image centred on 21/02/2007 at 13:45UT.

Diop et al., 2006] (see figure 5.4). This approach is preferred to a simple-element wise

subtraction as the latter requires different ordering over land and ocean due to the

differing surface brightness.

As in the simulations, GLCF were generated for pixel spacings d = 1 and d = 2 within a

fixed 9× 9 window. The orientations of the features are set by considering all possible

spacings using the Chebyshev distance. For each pair of orientation and spacing, 8

features were calculated (see Table 3.1) giving two GLCF sets, of 32 or 64 features for

d = 1 and d = 2 respectively.

Features from the 2D GBF were generated using the magnitude response of when each

filter is convolved with the input image. The GFB were calculated using equations 3.1

- 3.6 as described in Chapter 3. GFB were generated using, nθ = 4 or 6, nf = 6, and

λ = 0, 23 or 1. This results in 24 or 36 features, depending on the value of nθ, and gives

6 different feature sets when the three post filtering schemes are considered.

5.3 Supervised Texture Classification and Evaluation

The simulations identified that the wrapper approaches and SVM consistently provided

the best classification results for linear training sets. Small feature sets of in the range

of 4-7 features provided the best classification for the wrapper approaches, and so FSFS
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Figure 5.4: IR10.8 SEVIRI image from 21/02/2007 UT13:45 with background reference
image removed by XOR operation.

is computationally more efficient than BSFS. For this reason FSFS with a maximum

feature subset of 5 and SVM were selected to generate output masks.

The classification approaches were applied to texture features generated for the SEVIRI

input image with and without background reference image removed. This allows the

effect of removing the spectral response from Earth’s surface to be determined.

The output masks from the supervised texture classification algorithm were compared

to dust flags from OMI on AURA (ocean and land) and BTD (land). The OMI dust

product was selected due to its proven long history of contribution to monitoring of

atmospheric aerosols [Ahn et al., 2008]. In particular the near-UV aerosol sensing

technique (See Chapter 2) was used for comparison due to its ability to detect desert

dust over terrestrial background. Due to different resolutions of the input SEVIRI

images and the OMI dust flag, the supervised texture dust flag is down sampled and

remapped to match the OMI resolution and projection before comparison.

The OMI near-UV aerosol product (OMAERUV) is capable of distinguishing between

smoke, dust and sulfates and also includes entries for when the aerosol type cannot

be determined. This OMAERUV also has an associated quality assessment flag which

indicates the confidence in the outputs and failure mechanisms when no retrievals are

possible. These flags are used to indicate the reliable entries in OMAERUV, and

only these regions are used in the comparison to the output masks generated by the
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supervised texture classification method. Reliable entries in the OMAERUV Final

Algorithms Flag can be classified as most reliable (0), reliable (1) and less reliable (2),

and these values are used to identify the appropriate data for comparison.

The BTD dust mask was proposed by Zhang et al. [2006] for MODIS imagery and was

used as an additional comparison technique for the test case over land. The output

mask consists of 5 classes, including strong and weak dust. This output is recast

as a binary dust mask, combining strong and weak region as the supervised texture

approach does not distinguish between the relative strengths. The higher resolution

of the BTD dust mask provides a better indication of the accuracy of the supervised

texture classification at the borders with cloud, which can be missed in the larger

footprint of OMI pixels.

For both the OMI dust flag, and the BTD dust mask, the Geometric mean (Equa-

tion 4.6) was used to rate the accuracy of the dust mask from the supervised texture

algorithm relative to the other dust products.

5.4 Evaluation of Dust Event Test Cases

The supervised classification algorithm was applied to two dust events over; one over

ocean and one over land. The European organisation for exploitation of METereological

SATellites (EUMETSAT), who operate the MSG satellites with the European space

Agency (ESA) provide a selection of topical test cases for study on their website, and

the two examples were selected from the list of dust test cases observed with the SEVIRI

sensor on MSG EUMETSAT [2010].

The CALIPSO VFM were registered to the IR10.6µm region of interest for the corre-

sponding SEVIRI image, and the training sets generated, illustrated in figures 5.7 and

5.14. The region of interests for both cases were selected to include an apparent edge

in the dust storm, as indicated in the CALIPSO VFM (see figures 5.6 and 5.13, for the

ocean and land test cases, respectively.

5.4.1 Ocean Test Case

The ocean test case is part of a major transport of desert dust from West Africa to the

Lesser Antilles during 20th -26th June 2007. The specific images used were taken from

21st June 2007 at 16:15 UTC. Figure 5.5 shows the MODIS false colour RGB image
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Figure 5.5: False Colour RGB of region of interest for the Ocean test case, generated
using MODIS on AQUA data from 16:15UTC 21/06/2007

of the region of interest for the ocean test case. Figure 5.6 shows the corresponding

section of the CALIPSO VFM, with all of the region classified as aerosol also having

the subclassification of mineral dust. Figure 5.7 shows the SEVIRI IR10.6µm over

the region of interest, with the CALIPSO VFM overpass indicated in blue, and dust

locations indicated in red.

Table 5.1 shows the best GM scores comparing the supervised texture dust flag to the

OMI dust flag for the the Ocean test case. The results show high correspondence with

the OMI dust flag, with a GM of 92.8% using a single feature which drops by 6.5%

to 86.3% when 5 features were used (see 5.8). A qualitative comparison of the output

mask with the false colour RGB of the scene indicates that a single feature may not

provide the best results.

Figure 5.9 shows the supervised texture dust flag for the ocean test case, using a both

1 and 5 features. Whilst the GM score is higher when compared to OMI for 1 feature,

the RGB image (see Figure 5.5) shows that dense cloud regions in the lower half of

the image were identified as dust. When 5 features were used, the regions of cloud

misclassified as dust were reduced.

The GM is higher for 1 feature due to the dense cloud regions being misclassified in

the OMI data as dust, which indicates the inherent problem of comparing the results

to data that itself can contain errors.
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Figure 5.6: CALIPSO VFM for ocean test case on 21/06/2007

Figure 5.7: IR10.8 SEVIRI image for the ocean test case at UT 16:30 on 21/06/2007
with the CALIPSO overpass marked in blue and the dust locations in red
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Table 5.1: Best geometric mean scores for the Ocean test case comparing supervised
texture dust flag to the near UV OMI dust flag for multiple texture types . For FSFS,
the number of features that produced the best GM are included in brackets.

Ocean Test Case

Feature Set
Classifier

FSFS SVM

C1 0.9282(1) 0.8788

C2 0.9234(1) 0.8425

4,6,0 0.8634(1) 0.8634

4,6,23 0.8788(1) 0.8530

4,6,1 0.8814(1) 0.8399

6,6,0 0.8557(4) 0.8345

6,6,23 0.8989(1) 0.8073

6,6,1 0.9063(1) 0.8425

Figure 5.8: GM versus features using multiple Feature Sets for the Ocean test case
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Figure 5.9: Supervised texture dust flag using GLCF with d=1 and FSFS with 1
(left) and 5 (right) features for the ocean test case with dust indicated in white. The
CALIPSO overpass is overlaid in blue and dust location indicated with red.

Figure 5.10: Supervised texture dust flag for the ocean test case using SVM on GLCF
with d=1. Dust indicated in white and the CALIPSO overpass is overlaid in blue and
dust location indicated with red.

77



Figure 5.11: Output mask for the Ocean test case using FSFS with 1 feature and 2D
GFB (6,6,1)

The ocean test case shows high GM scores for SVM (Table 5.1), again with the best

results occurring for GLCF with d = 1. In this case, the resultant output mask produces

very similar results to FSFS and can be seen in figure 5.10. The good performance

of SVM for the ocean test case supports the idea that SVM will work providing the

non-dust class does not contain a high number of textures. Over ocean, there is little

background response from the ocean, and the CALIPSO VFM indicates the scene is

dominated by Dust and Cloud. This scenario matches the simulations in the previous

chapter and hence SVM yields a good performance.

The GM scores for all the 2D GFB indicate a good level of performance for the ocean

test case (> 80%), although GLCF with d=1 provides a higher GM. Examination of

the output masks however shows that whilst 2D GFB indicate the bulk area where

dust is present, the performance at the dust / non-dust boundary is poor. The best

performing 2D GFB (6,6,1) is included as an example in figure 5.11, which demonstrates

the smoothing and poorer performance at the boundaries.

5.4.2 Land Test Case

The land test case is taken from a large dust swirl over Algeria which occurred during

the 20th - 22nd February 2007, with images taken at 13:45 UTC from the 21st February
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Figure 5.12: False Colour RGB of region of interest for the Land test case, generated
using MODIS on AQUA data from 13:45UTC on 21/02/2007.

(see figure 5.12. For the land test case, the background reference image was generated

with the option to remove it using the XOR operation (see figure 5.4).

Comparison with OMI dust product

Also, these dust event examples present a much more difficult problem to the classifiers,

in particular to SVM. The reduction of the CALIPSO VFM to a binary set including

’dust’ and ’non-dust’, is an over simplification that can impact on the classification

performance. Whereas in the simulations, non-dust could be one of 4 different texture,

in the real world examples non-dust can contain a much larger range textures including

other aerosols, clouds, different surface types and combinations of all these. This

combination of textures in the non-dust class can make defining the hyperplane between

the dust and non-dust class difficult, which affects the classification performance. FSFS

is less susceptible to this as this is a true binary classifier and only considers the dust

entries in the training set in order to identify dust throughout the whole image.

The land test case shows that the supervised texture approach can provide a good

correspondence (> 80%) with the OMI dust flag. The overall performance is generally

lower than the ocean test case, which can have multiple causes. The OMI retrieval is

a harder task over terrestrial surface, which can affect the accuracy of the OMI data
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Figure 5.13: CALIPSO VFM for land test case on 21/02/2007 over North Africa from
UT 13:50.

Figure 5.14: IR10.8 SEVIRI image for the land test case at UT 13:45 on 21/02/2007
with the CALIPSO overpass marked in blue and the dust locations in red.

80



Figure 5.15: OMI dust flag (top) and the supervised texture dust flag (bottom) for the
land test case, down sampled and projected to match OMI. Dust is shown in white,
Non-dust in grey, and black signifies the region outside of the area of interest.
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Table 5.2: Best geometric mean scores for the Land test case comparing supervised
texture dust flag to the near UV OMI dust flag for multiple texture types . For FSFS,
the number of features that produced the best GM are included in brackets.

Land Test Case OMI

Feature Set
With background Background removed

FSFS SVM FSFS SVM

C1 0.8008(1) 0.6398 0.7247 (4) 0.1985

C2 0.7798(1) 0.6734 0.7429(2) 0.4646

4,6,0 0.8183(1) 0.3276 0.5346(4) 0.3993

4,6,23 0.8130(1) 0.1963 0.7890(1) 0.6876

4,6,1 0.7153(1) 0.6439 0.8092(1) 0.6860

6,6,0 0.6763(5) 0.5909 0.8536(3) 0.000

6,6,23 0.7830(2) 0.6371 0.7004(1) 0.2617

6,6,1 0.8044(2) 0.7529 0.6361(1) 0.1891

used for comparison. Also, the non-dust class is likely to contain multiple textures,

which poses a more difficult classification task.

The evaluation is further complicated, as the OMI dust flag indicates that the scene

is nearly completely dominated by dust apart from a small region of cloud in the top

right corner. This allows an otherwise poor output mask which classifies everything

as dust to appear to closely match the OMI dust flag. Figure 5.15 shows the OMI

dust flag compared to the supervised classification dust mask for FSFS with 1 feature

using GLCF with d=1, and indicates this issue. For this reason, the BTD dust mask

is also used. As the BTD approach works on the resolution on the input data, results

will match the resolution of supervised texture approach as opposed to the 13× 24 km

resolution of the OMI dust flag. As such, comparison to the BTD dust mask provide

a better indication of the performance, particularly at dust cloud boundaries.

In most cases, removing the background image results in a lower GM. However the

highest GM of 85.4% occurs with the background removed using FSFS on 2D GFB

(6,6,0). This implies that removing the background can produce a better supervised

classification result. Figure 5.16 shows the output mask from supervised texture clas-

sification using FSFS for 1 feature with 2D GFB(6,6,0). Comparison of this with the

false colour RGB image scene (see 5.12), shows that the mask misclassifies obvious

cloud regions, with predominantly only the borders between dust and cloud regions

not classified as dust. This presents a rather unphysical dust distribution and only

performs well in comparison due to the low resolution of the OMI dust flag coupled

with the scene being dominated by dust.
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Figure 5.16: Output mask for the Land test case with the background removed using
FSFS with 1 feature and 2D GFB (6,6,0).

Table 5.3: Best geometric mean scores comparing supervised texture dust flag to the
BTD dust flag for multiple texture types. For FSFS, the number of features related to
best GM is included in brackets.

Land Test Case BTD

Feature Set
With background Background removed

FSFS SVM FSFS SVM

C1 0.7739(1) 0.6189 0.6258(4) 0.5061

C2 0.7604(1) 0.6393 0.5370(5) 0.5252

4,6,0 0.6491(2) 0.4424 0.5680(3) 0.5332

4,6,23 0.6228(1) 0.4515 0.5585(3) 0.6108

4,6,1 0.5790(1) 0.5171 0.5797(2) 0.6164

6,6,0 0.6647(3) 0.5583 0.6166(5) 0.4028

6,6,23 0.6200(3) 0.5643 0.5656(2) 0.4346

6,6,1 0.6050(2) 0.6159 0.4509(1) 0.5086
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Figure 5.17: BTD dust mask generated using MODIS imagery for the land test case.

Comparison with BTD dust mask using MODIS imagery

Table 5.3 shows the GM for the land test case compared to the BTD dust mask gener-

ated using MODIS imagery (Figure 5.17). The results show that the best performance

is achieved using 1 feature, achieving a GM of 77.4%. The GM score is lower when

compared to BTD dust mask as opposes to the OMI dust flag, due to the fixed win-

dow sizes used to calculate the texture features. The features are calculated using a

9 × 9 window, which allows regions up to 4 pixels from the centre to affect the value.

Therefore, whilst the window may be centred on a dust pixel, cloud can be present

within the window which can affect the texture feature enough such that the super-

vised texture algorithm does not classify it as dust. This can be seen by comparing

the supervised texture dust flag with the false colour RGB (Figure 5.12). For the land

test case, a dense dust region can be seen in the upper right of the image interspersed

with clouds. The supervised texture dust flag identifies this dust region, and rejects

the cloud, although the texture approach is conservative at the dust cloud boundary,

leading to dust being misclassified.

The down-sampling and remapping of the supervised texture dust mask for comparison

with the lower resolution OMI dust flag has an averaging effect which reduces the impact

of the conservative classification, and the OMI dust flag contains less boundaries, as

demonstrated in Figure 5.15. The BTD dust mask has significantly more borders and

operates at the same resolution as the supervised texture dust flag, and hence the GM
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Figure 5.18: Output mask for the Land test case using FSFS with 1 feature and 2D
GFB (4,6,0)

is lower.

Comparison of the feature sets show that GLCF provide better GM scores by at least

10% compared to 2D GFB evaluated against the BTD dust mask. This is not evident

when the OMI dust mask is used for comparison, which indicates that 2D GFB can

perform better than GLCF. An example supervised dust mask is included in Figure

5.18, which indicates the dust mask for the land test case with the background present

using FSFS with 1 feature and 2D GFB (4,6,0). The poor performance is indicated by

the lack of dust identified in the right had side of the image. This error is compounded

by tha fact the dust mask does not identify a dense region of dust, indicated by as

strong dust by the BTD dust mask, and is so dense is visible in the false colour RGB

in Figure 5.12.

When the background is present, FSFS outperforms SVM for all the feature sets ex-

cluding the 2D GFB (6,6,1) for the land test case compared to the BTD dust mask.

When compared to the OMI dust flag, SVM produces lower GM scores than FSFS for

all the feature sets. The drop in the GM scores for the land test case compared to

the OMI dust flag averaged over all the feature sets is > 20%, compared to an average

reduction in the SVM GM score of < 5%. This larger drop for the land test case

supports the idea that SVM will perform poorly when the non-dust class is comprised

of multiple texture which is more likely over land surfaces.

85



On average, better results are obtained for the land test case when the background

is present when compared to the BTD dust mask. Individual cases exist when the

GM scores are better when the background is removed, for a constant feature set and

classifier, for example SVM on 2D GFB (4,6,0), (4,6,23), and (4,6,1). However, the best

results for the land test case occur when the background is present, using FSFS on

GLCF with d = 1.

Despite the lower GM scores, feature sets and classifiers that perform well compared

to the BTD dusk mask are thought to indicate a more reliable metric for the land test

case than a comparison with the OMI dust flag. Qualitative comparison of the BTD

dusk mask with the the false colour RGB indicate that it is better at rejecting cloud

regions, and whilst this does not mean that the BTD approach is better at detecting

dust, it does imply that it has a lower false positive rate. On this basis the most reliable

classification occur when the background in present in the input SEVIRI image.

This may seem counter-intuitive, considering how a majority of existing dust detection

methods attempt to remove the spectral response of the Earth’s surface to aid in

the detection and retrieval. However, the supervised classification uses the textural

response, and not the spectral information. Removing the background from the SEVIRI

image significantly alters the texture in the image, in particular the area corresponding

to the liner training set. This can be seen in Figure 5.4 which shows stark difference

between the dense dust region in the top right of the image, and the area where the

training set is taken. This textural mismatch between the dense and weak dust regions

results in a dust mask that does perform well.

5.4.3 Conclusions

A new supervised texture classification method for identifying a specific type of par-

ticulate aerosol is described. This work built on the analysis of simulated data that

indicated good classification results can be obtained despite small linear training sets.

The new approach has the potential to provide 24 hour coverage over multiple surface

types, which is not available from any of the existing techniques. The use of IR im-

agery allows the detection of aerosols in day and night time conditions, and the use

of SEVIRI imagery on the MSG platform provides data with a 15 minute repeat cy-

cle allowing near-continuous observation. The methods for extending the coverage to

achieve greater coverage is the focus of the next chapter.

The supervised classification algorithm was applied to a two test cases for atmospheric

dust distributions, one over ocean and one over land, with the output dust masks com-
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pared to existing dust detection methods. The results showed a good agreement with

the OMI dust flag, with a correspondence of over 90% over ocean, and 80% over land

in the test cases. Comparison to the Zhang et al. BTD dust mask and qualitative com-

parison to false colour RGB images of the for the land test case shows show successful

rejection of cloud without the use of a cloud mask, and the successful identification of

the dense dust regions observed in the visible RGB image. This is despite the training

data only corresponding to the weaker areas of the dust distribution. The supervised

texture dust image successfully rejects regions of cloud despite having no prior knowl-

edge of the cloud texture, which implies that the textural response of cloud and dust

are sufficiently different to enable successful separation.

The fidelity of classifications at the cloud/dust border were degraded due to the fixed

window size used to generate the texture feature, which allows a few outlier pixels to

affect the features in a much larger area, leading to conservative estimates of the extent

of the dust distribution at the edges. Adaptive window sizes using a similarity metric to

prevent outlier pixels affecting the texture features should help to address the problem

and reduce the conservative classification at the edges of the dust distribution.

The most reliable classifications, when compared to the existing dust detection methods

and qualatative analysis of the the false colour RGB, occurs using FSFS with small

feature sets drawn from GLCF with d = 1. This closely matches the observations

from the simulations, although the best performance occurs with a single feature, as

opposed to the 4-6 range indicated by the simulated data. The difference could be

due to smaller number of training samples available in the real world examples. The

classification problem has become significantly harder, with larger number of texture

present in the input scene. It is likely then that a higher number of samples are needed

to distinguish between the classes, but as the number training samples is smaller,

the curse of dimensionality affects larger feature sets leading to the best classification

occurring with fewer features.

Removing the surface response from the SEVIRI image prior to generating the tex-

ture features did not have the expected benefit and lead to a poor performance of

the supervised texture output masks. The perceived benefit of removing the surface

response is based on isolating the spectral response from atmospheric aerosols, which

is frequently used in existing particulate aerosol detection approaches. Removing the

surface response significantly alters the textural response, and so when texture is used

as the discriminant adversely affects the performance.

The supervised texture dust flag has demonstrated an ability to identify dust distribu-

tions over ocean and terrestrial surfaces, at higher resolutions than existing methods.

The resolution is limited by the input images, and thus can provide outputs that match
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SEVIRI on MSG (3km2 at nadir) and MODIS on AQUA (1km2 at nadir) compared

to the lower resolutions of established techniques such as OMI on AURA (13× 24km2)

and MODIS dust products (10km2). BTD approaches, in particular the technique

described by Zhang et al. [2006], have the potential to offer dust masks at the same

resolution as source images. However this approach does not appear to be robust over

ocean as it failed to identify any dust when applied to ocean test case.

The algorithm can be easily adapted and applied to identify other types of atmospheric

aerosols such as smoke from wild fires, and volcanic ash. These categories exist within

the CALIPSO VFM, and as such only minimal changes to the algorithm are required.

The supervised texture approach has demonstrated an ability to detect atmospheric

aerosol distributions in a local area around the CALIPSO overpass that is used to

provide the training data. This provides only a limited coverage that is linked to

the polar orbit of the CALIPSO satellite. The next chapter considers how to extend

the temporal and spatial coverage away from the initial classification, with the aim of

being able to monitor and track aerosol distributions when it is not co-located with the

CALIPSO overpass.
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Chapter 6

Continuous Observation of

Particulate Aerosols using

Signature Extension

The previous chapter demonstrated that supervised texture classification can be used

to identify particulate aerosol distributions in SEVIRI images, using the CALIPSO

VFM to derive the training set. One of the advantages of using SEVIRI imagery is

the 15 minute repeat cycle that allows near continuous monitoring. Also, as previously

stated, SEVIRI on MSG is ideally located to observe Saharan dust events, and can

provide imagery to potentially track the dust event over its lifecycle.

6.1 Applicability of Supervised Texture Classification for

Detection of Particulate Aerosols

The supervised texture classification approach can only be applied when a CALIPSO

overpass is co-located with the scene, which prevents continual monitoring of the same

event. In effect this limits the supervised texture approach to the same 16 day repeat

cycle observed by the A-Train Satellite Constellation, which contains the CALIPSO

and MODIS on AQUA platforms.

An illustration of the time scales for the repeat cycle of the CALIPSO VFM is provided

for the land dust test case from the previous chapter 5.1. Figure 6.1 shows the day-

and night-time CALIPSO overpass locations on 21/02/2007. A 10◦ × 10◦ region of
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Figure 6.1: Showing the Daytime (red) and nighttime (blue) CALIPSO overpass loca-
tions for 21/02/2007

interest centred on (−5◦, 25◦) is extracted from the SEVERI image at UT13:45 on

21/02/2007 which provides the nearest temporal match to the CALIPSO VFM. This

daytime overpass can be seen in centre of Figure 6.1, crossing over North East African.

The next daytime overpass of CALIPSO is approximately 25◦ west and 90 minutes after

the original when compared at North African latitudes where the region of interest is

located. In order for this to useful for supervised texture classification, the dust event

needs to be moving west at a rate that allows a 10◦ × 10◦ to contain a significant

proportion of the dust event, which is unlikely to regularly occur.

Figure 6.1 shows the original overpass crosses a nighttime CALIPSO overpass just

off the coast of Portugal. This overpass occurs approximately 11.5 hours before the

original overpass. There are multiple crossing points of day- and nighttime overpasses

which can be used to monitor particulate aerosol events over the regions where multiple

overpasses intersect. The repeat cycle of 11.5 hours is significant when compared to

the lifetime of particulate aerosol events which is of the order of days. Significant

changes can happen within this time frame, so a shorter repeat cycle would be needed

to accurately track the dust event.
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6.2 Signature Extension and Chain Classification

The availability of training data limits when supervised texture classification can be

used to monitor particular events. CALIPSO VFM are available over the same region

at best every 11.5 hours, however the SEVIRI images that are used for the classification

used are available every 15 minutes.

This problem is somewhat similar to the Land-Cover classification problem using satel-

lite data. Land-cover classification using Landsat data is typically undertaken one

scene at a time, which requires ground truth for each individual scene and limits rapid

analysis. In order to address this several different approaches have been presented,

although the most applicable to the classification of particulate aerosols are Signature

Extension [Pax-Lenney et al., 2001] and chain classification [Knorn et al., 2009].

Signature extension refers to the process of using a classifier trained on one scene, and

the resulting signatures are applied to other scenes at different locations and times. Pax-

Lenney et al. [2001] successfully used signature extension to identify conifer forest type

in Landsat Thematic Mapper (LTM). The results showed no statistically significant loss

in accuracy when the initial training set was extended to other Landsat images from

the same scene. This is akin to a temporal extension, looking at the same geographical

region.

When the same methods were applied to subsequent images that differed over in loca-

tion and time, the classification accuracy dropped by 8-13% depending on the atmo-

spheric correction used to match the spectral signature between images. Additional

work by [Olthof et al., 2005], showed that the ability to used signature extension is

greatly affected by geographical distance from the original training scene, with the

drop of approximately 50% for a 1500 km separation between the training data and

the test image. This highlights the inherent problem with signature extension; the need

to account for varying topography, illumination and atmospheric effects.

Chain classification, proposed by Knorn et al. [2009], is a technique to address the

geographical dependence of the signature stability, and uses overlap region between

subsequent satellite images to update the training set and produce a new classifier for

the next image. The advantage of chain classification is that no atmospheric correction

is needed to account for spectral differences between images, and the continual update

of the training set should reduce the affect of geographical distance on the classification

accuracy.

The results in [Knorn et al., 2009] show a loss of 5.1% in classification accuracy over
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a chain of 6 LandSat scenes. Each scene is nominally 185 × 170 km, with the overlap

between each scene varies depending on the latitude. Chain classification therefore

shows a significantly smaller decrease in classification accuracy compared to signature

extension over geographical ranges of 1000km.

Signature extension and chain classification can be used to extend the temporal and

geographical coverage of the supervised texture classification method for identifying

atmospheric dust. Signature extension is the simplest to implement, and is capable

of providing monitoring over the same region in consecutive SEVIRI images. In order

to track dust events as they move, chain classification would be more suitable as it

continually updates the training set.

6.3 Detection of particulate Aerosols in Subsequent SE-

VIRI Images using Signature Extension

To demonstrate the continual monitoring of particulate aerosol events, a simple sce-

nario was constructed to monitor the same geographical region over time for the land

dust case. This allows SEVIRI imagery to be used, and provides imagery at 15 minute

intervals. As the scenario requires only temporal extension, signature extension was

selected due as it provides good results for temporal extension, and is simpler to im-

plement than chain classification.

The statistics derived from the CALIPSO VFM are used to generate a dust mask on the

original image, and additionally same scene extracted from the SEVIRI images from

07:45 to 19:45. This represents a ±6 hour temporal window centred on the original

SEVIRI image at 13:45. This temporal range is selected as it represents the maximum

temporal extension required when monitoring a region at or near the intersections of

a day and nighttime CALIPSO overpass. Temporal extension can be applied forward

from one overpass and backward from the other, thus an extension of 6 hours would

be required for continuous monitoring. In this instance, the land dust case does not

correspond to a region where day and nighttime overpasses intersect and is used to

show the feasibility of the approach.

No attempt is made to correct any differences in the spectral differences between the

subsequent images. The best performing classifier from the previous chapter was used

to generate the images for the signature extension scenario, namely FSFS with 1 feature

drawn from GCLF with d = 1.
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Figure 6.2: GM scores for backward temporal signature extension using FSFS and 1
feature for the land test case

The outputs from the signature extension texture classification are compared to the

BTD dust mask [Zhang et al., 2006] generated using SEVIRI imagery, as all the other

products previously used are on satellite platform in polar orbits and so can not provide

continuous monitoring of the same scene (See tables 2.3and 2.4). Again the geometric

mean (4.6) was used to rate the accuracy of the dust mask of the supervised texture

algorithm using signature extension to the BTD dust mask.

Figure 6.3 shows the GM of the dust mask compared to the BTD dust mask using

signature extension FSFS with 1 feature drawn from GLCF with d = 1. The result at

t = 0 relates to the classification which corresponds to the registered CALIPSO VFM

for the test case. Results at subsequent times relate to output masks generated using

signature extension on subsequent SEVIRI images.

Figures 6.2 and 6.3 shows the GM score for backward and forward temporal extension

for the land test case using FSFS with 1 feature. The key metric for measuring the

applicability of signature extension is the decrease in classification performance as time

increases. The BTD dust mask used for comparison is itself susceptible to errors,

and does not represent a ground truth. Furthermore, the temporal range covered in
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Figure 6.3: GM scores for forward temporal signature extension using FSFS and 1
feature for the land test case
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this analysis covers day and night time images which can impact on the brightness

temperature of dust, and hence the errors in the BTD may fluctuate with time. The

GM scores only provide an indication of performance relative to the BTD dust mask,

whose performance is unknown due to the lack of coverage from other techniques.

The initial GM is not particularly high and is a result of the supervised classification

approach and data available to evaluate the results against and not signature extension

as discussed in section 5.4.2. If the performance of the initial classification can be

improved, then the classification using signature extension will also be higher.

The results for the backwards temporal extension shows a small general decrease in the

GM score with subsequent images over 90 minutes, reducing by 2.3%. Intuitively, this

is expected with the decrease in performance increases over longer temporal extension.

Despite little change in the correspondance between the BTD mask and the supervised

texture masks using signature extension, the true dust distribution could vary more

significantly. However, the results correspond well with the work by Olthof et al.

[2005] which showed that temporal signature extension causes little loss in classification

accuracy.

Over the subsequent 4.5 hours, the GM score increases to a maximum of 86.7%. Should

the BTD mask be a true representation of the dust present, the GM score would be be

expected show a continual degradation as observed over the first 90 minutes. Instead,

the increase implies that error in the BTD approach is changing. This is most likely

due to the differences between BTD responses between day and night time images, that

are covered in the time span examined.

Examination of the false colour RGB images, along with the BTD mask and the outputs

from the supervised texture classification (see D), shows that over the period of study,

there is overall movement in the of the visible part of the dust cloud in the RGB, which

is also reflected in little bulk change in the BTD mask. Comparison of the supervised

texture dust mask to the BTD mask shows that cloud continues to be successfully

rejected as it moves within the scene. As with the supervised classification in the

previous chapter, the output mask from signature extension are overly pessimistic at

the cloud/dust boundary, again due to the fixed 9 × 9 window used to generate the

GLCF.

Similar results are observed for the forward temporal extension. Over the first 10

images, representing 150 minutes, the GM scores shows a reduction of 4% from 65%

to 61%. After this, the GM score increases upto a peak of 75% after 255 and 300

minutes. The start of the increase of the GM score corresponds to the transistion from

day to night time images, reflected in the false colour RGB images.
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The GM scores for the backward and forward temporal extension over the ±6 hour

range indicate that BTD is not the best data for comparison. However, there is no

other basis of comparison due to lack of coverage of other satellites and methods. Over

shorter time spans (−90,+150 minutes) the comparison to the BTD shows the expected

behaviour with the GM decreasing slighter as the period for the temporal extension

increases. This correspond to a 4 hour window from 1200 to 1600 UT, over which time

error in BTD would be expected to be reasonably constant due to similar factors such

as temperature and the intensity of the incident light.

Despite the naive assumptions of this simplified signature extension example, the re-

sults indicate that it is a valid technique to monitor atmospheric particulate aerosols

away from a CALIPSO overpass, thus extending the coverage of the supervised texture

approach in the temporal domain by approximately ±2 hours. Due to the variable

error on the only reference data from the BTD approach, no conclusions can be drawn

about the validity of signature extension over the full ±6 hour range, but the initial

work has shown that this approach is plausible.

6.4 Future work for the Near Continuous Monitoring of

Particulate Aerosols

The results above indicate that is is possible to monitor particulate aerosols over the

same location using temporal signature extension. This allows particulate aerosols to

be monitored over a specific region, but does not allow the continuous monitoring of a

single event as it position varies over time.

As previously mentioned, it is unlikely that the an event of interest will correspond with

the orbital path the the A-Train, which means continuous monitoring using CALIPSO,

OMI on AURA and MODIS on AQUA is not possible. SEVIRI provides a full disk

image, and so can be used to continuously track an event providing it occurs in its

field of view. Assuming a CALIPSO VFM can be found that intercepts the event, then

supervised classification can be used to generate an output mask as demonstrated in

the previous chapter.

The event will be moving in space and time relative to the initial supervised classi-

fication output mask, and so signature extension may not provide a good method to

extend the coverage, although it may be possible to utilise chain classification. Due to

the short repeat cycle of 15 minutes, there is likely to be significant overlap between

regions of dust in subsequent images. Figure 6.4 shows the dust mask from the su-
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Figure 6.4: Combined dust mask for supervised texture classification of the Land test
case at UT 1345 and the dust mask using signature extension at UT 1400. The white re-
gions show where both dust masks overlap,grey showing where only one mask identifies
dust, and black showing where no dust is identified in either mask.

pervised classification of the land test case combined with the dust mask derive from

signature extension. The white regions show where both dust masks overlap, the grey

showing where only one mask identifies dust, and black showing where no dust is iden-

tified in either mask. These images are taken when the results from signature extension

match the expected performance, and when the error in BTD approach is expected to

be stable.

Figure 6.4 indicates there is significant overlap between dust regions in subsequent

SEVIRI images. This overlap can be used to derive a new set of class statistics for

dust as described in chain classification, and be applied to a moving region of inter-

est that tracks the event. As new classifiers are derived for each image, there is no

need to account for variation in topography, illumination or atmospheric effects. The

overlapping regions can be derived empirically, using a similar process to that used in

Figure 6.4. Multiple images can be examined to derive a distance from edges that is

likely to be dust in the next SEVIRI image, which can be used for chain classification.

Alternatively, the dust regions can be derived using atmospheric models that take into

account the local conditions including the wind vector that drives the movement of the

dust.

A larger number of samples will be available as training data during chain classifica-
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tion, compared to the limited number of samples provided by the CALIPSO VFM in

the original supervised texture classification. Larger training sets may alter the most

suitable texture features and classifiers for identifying particulate aerosols. In partic-

ular local binary patterns (LBP) would be of interest due to the rotational invariance

and robustness gray-scale variation [Ojala et al., 2002b]. These properties are not nec-

essarily required in the original classification as the textures in the classification and

training sets are predominately at the same orientation desirable, but may be more rel-

evant during chain classification as the texture orientation and illumination will change

with time. Classification with LBP is normally achieved by comparing histograms of

sample and known textures, with classes assigned using a nonparametric dissimilarity

measure. With the increased number of samples available when chain classification is

applied, LBP could be a feasible texture measure to use.

This potentially allows events to be tracked from a CALIPSO overpass either forwards

or backwards in time. Therefore an output mask can be generated until the event

corresponds with another CALIPSO overpass, and the process can be restarted. Theo-

retically this approach can provide near continuous monitoring of events in the SEVIRI

on MSG field of view.

6.5 Conclusions

The work in the chapter 5 showed the benefits of using supervised texture classification

to produce a 2D distribution of particulate aerosols in the atmosphere. The algo-

rithm was applied to two test cases involving atmospheric dust distributions over land

and ocean surfaces, showing its ability identify distributions over different terrestrial

surfaces.

Despite the advantages of this approach, the applicability is still limited by the avail-

ability of ground truth data, which is provided by the CALIPSO VFM data. The polar

orbit of CALIPSO platform meant that an overpass would not always intercept with a

particular event that required monitoring.

Signature extension been used to extend the temporal coverage of the supervised clas-

sification approach over a fixed geographical location. The approach was applied to the

land test case, which showed a 3% drop in classification ability over a 90 minute win-

dow, which matches published work using signature extension for first order temporal

classification.

Further work can look at using chain classification to further extend the coverage over
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time and space, which would allow specific events to be tracked. This would allow events

to be tracked until the next ground truth is available, for example another CALIPSO

overpass, which can be used to generate a new supervised classification mask to which

chain classification can again be applied.
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Chapter 7

Conclusions and Further Work

This chapter provides an overview key conclusions of this thesis and a brief discussion

of where the technique can be improved, as well as other areas of remote sensing where

this technique can be exploited.

7.1 Conclusions

In the preceding chapters a novel approach to detecting atmospheric particulate aerosols

has been demonstrated. This approach differs from existing techniques by using super-

vised texture classification, which has not previously been used to address this problem.

The current techniques for remote sensing of particulate aerosols can be split into three

categories; radiative transfer models, brightness temperature difference approaches and

Space-borne LIDAR, radiative transfer models being the most prevalent and established

approach. All of these approaches have limitations, ranging from inability to work

over various terrestrial surfaces, when particulate aerosols are interspersed with cloud

or water vapour, and limitations on coverage relating to repeat cycle and resolution.

All of these contribute to preventing continual and global monitoring of atmospheric

particulate aerosols.

Some previous work exists in the literature that used unsupervised texture classification

to identify smoke and dust particulates in satellite imagery. Texture approaches present

an advantage over a majority of the existing techniques as they are capable of separating

classes that cannot be resolved in the spectral domain, which is the case with particulate

aerosols.
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In this thesis a new approach to identifying particulate aerosol using satellite imagery

has been proposed. This approach differs from other techniques as it uses supervised

texture classification approach, which aimed to improve on the existing unsupervised

methods with the addition of training data. The proposed approach fuses data from

two distinct satellite sources which is used to provide the training set to form the

classifier, and the imagery to which the classifier is applied. The CALIPSO VFM was

selected to provide a linear tract through imagery from other satellites to provide a

training set.

A linear training set provides a non-ideal supervised classification task, with a small

training set of potentially unrepresentative samples. This scenario was investigated

on a set of simulated texture images using the Brodatz and Outex databases, due to

the lack of ground truth data for satellite remote sensing scenarios. These simulations

compared GLCF and 2D GFB texture feature and 6 supervised classification techniques

using random and linear sampled training sets. The best result for linear sampling was

achieved using FSFS and SVM, using GLCF with d = 1. The performance of the

linear training sets was compared to the random sampling, with random sampling

provided the best classification rates as expected. Linear sampling demonstrated that

a high classification rate in excess of 80% can be achieved (see Table 4.8) whereas an

unsupervised k-means classifier achieved a GM of just over 60%. This demonstrates the

advantages of using a linear training set over unsupervised approaches, and provided

an experimental basis for the supervised texture approach to be applied to real world

examples for the detection of particulate aerosols.

The supervised texture classification approach was applied to two test cases over land

and ocean, aiming to identify a 2D mask showing the extent of particulate dust. The

best performing classifiers and feature sets identified on the simulation were applied

to both test cases. The CALIPSO VFM was used to identify a training set withing

IR SEVIRI imagery from the MSG platform. The results were compared with existing

techniques and showed good correspondence with the OMI dust flag with rates of

greater than 90% for the ocean test case and over 80% for the land test case, see

tables 5.1 and 5.2. The resulting mask is also at a higher resolution than the existing

approaches, producing an output of 3km2 compared to 13km× 24km for MODIS, and

10km2 for OMI and demonstrated that no alogrithm changes were needed to produce

dust masks for different terrestrial surfaces.

Signature extension was then applied to the supervised texture approach to provide

temporal extension to the coverage over the same geographical region. Due to the

limited satellite coverage, only the BTD approach was available to evaluate the results

of signature extension. These results show a decrease of 3% in the classification rate for

temporal extensions of ±90 minutes from the original classification (see Figures 6.2 and
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6.3). Results for a longer extension of ±6 hours were generated, but the results for the

BTD vary over these timescales which prevents meaningful quantative comparison. The

results of the signature extension indicate that it is possible to extend the coverage away

from the initial CALIPSO overpass and provide a monitoring over a fixed geogrpahical

region, but the length of the temporal extension could not be determined.

7.2 Improvements to the Supervised Texture Classifica-

tion Algorithm

The main thrust of the work presented in this thesis is use of supervised texture classifi-

cation with a linear training set to identify a texture of interest. The different elements

of this technique such as the texture measures and the classification techniques used

demonstrated a good level of performance for the test imagery, although only a lim-

ited set were considered in this initial investigation. As such, a number of the elements

within the method could be improved and further study would be needed to investigate

any performance enhancements.

As discussed in chapter 3, two different texture schemes were investigated as they

have previously been applied in similar remote sensing tasks. However other texture

schemes exist and may provide better performance with linear training sets wither on

their own or in conjunction with other texture measures. In particular, LBP may be of

interest for use with signature extension and chain classification approaches to extend

the coverage of results.

Similarly, a representative set of popular classifiers were examined, but other ap-

proaches or variants may yield better results. One area of further investigation could

be the performance metric used to evaluate the feature selection approaches such as

FSFS and BSFS. The geometric mean (4.6) was selected due to the inability of accuracy

to quantify classification creates in imbalanced data sets. Other metrics exist which

have this capability too, such as balanced accuracy, the F measure and combinations

of precision and recall which could lead to improved performance.

The performance of linear training sets was investigated on simulated imagery in chap-

ter 4 and demonstrated it was a valid approach that can yield good classifications rates.

Further analysis could be undertaken to investigate the affect of the number of samples

in the training set on the classification rate. This could provide the limiting behaviour

of linear training sets and indicate when linear training sets are a valid approach.
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7.3 Improvements to Continuous Observations

The continuous observations using signature extension demonstrated the ability for

temporal extension away the initial supervised classification but this approach can not

track events as their location changes. Temporal extension is useful for applications

such as monitoring volcanic ash plumes though fixed regions of airspace. As discussed

in chapter 6, chain classification offers a more robust method to extend the coverage

away from the original classification and would be better suited for the continuous

monitoring of specific event in both the temporal and spatial domains.

7.4 Other applications of Supervised Texture Classifica-

tion Approach

The supervised texture classification approach was demonstrated on examples of min-

eral dust deflated from the Saharan desert, but the algorithm is more widely applicable

to other areas of particulate aerosols such as smoke from forest fires, and volcanic ash

from eruptions. All of these aerosol distributions have a discernible affect on the Earth’s

atmosphere and ecology which is difficult to assess due to the problems in reliably de-

tecting and identifying particulate aerosol distributions. These subclasses of aerosol

are included in the CALIPSO VFM, so the algorithm can be adapted to generate 2D

masks for other aerosol types.

The technique could be extended further by deriving training data from other sources.

The most readily available example for remote sensing of atmospheric aerosols would

be FAAM data. As discussed in chapter 3, FAAM flight paths often include significant

linear portions, and can be used to provide linear training sets to generate classifiers.

As with the CALIPSO VFM, FAAM has the ability to detect and identify multiple

aerosol types, which can be used to further increase the coverage and scope of this

approach.

7.5 Aerosol Strength and Texture Response

Currently, the training data for the class of interest is added to the training set providing

there is a unoccluded view of the texture of interest in the test imagery. For the real

world examples of particulate aerosol detection, the strength or concentration of the

dust is likely to affect the texture response. Dense regions of particulate aerosols are
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easily observed in spectral imagery, whereas weaker concentrations are optically thin.

Therefore it is possible for the concentration to affect the texture response.

Further investigation on the concentration of the aerosol of interest compared to the

texture recorded may show that it is possible to identify strong and weak distributions

within the 2D mask produced and so textural response could be used to inform about

the aerosol concentrations for specific events.

7.6 Further Verification

Underpinning all the suggested areas of further study is the need for independent data

for comparison and evaluation. The supervised texture approached was proposed to

address the deficiencies in the existing methods for the remote sensing of particulate

aerosols, and as such often lacks data for verification. The most reliable and robust of

the existing methods and platforms are MODIS, OMI and CALIPSO products, which

are all within the A-Train satellite constellation. Whilst these can be used to verify

the initial classifications using the CALIPSO VFM as the trainings set (see section 5),

there are differences in output resolutions which prevent direct comparison.

The A-Train follows a 16 day polar orbit, so it can not provide data to evaluate signature

extension or chain classification as there is insufficient coverage. Similarly, if other

sources were used to derive the training data such as FAAM aircraft, there would

need to be careful consideration of when and where to study so that suitable data was

available for verification.

It may prove necessary to combine data sources in order to provide coverage for ver-

ification, especially when attempting to extend the coverage away from the initial

classification. In this instance satellite data can be extended using wind vectors to

model where known particulate aerosols move to [Govindan, 2007], which can be used

to verify the results of signature extension and chain classification.

There are multiple applications and extensions to the concepts described in this thesis,

and providing data for verification is likely to be the most difficult challenge.
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Appendix A

MODIS channels and resolutions

Table A.1: Spectral Channels and Resolutions for the MODIS

sensor.

Channel Bandwidth Resolution

1 620 - 670
250m2

2 841 - 876

3 459 - 479

500m2

4 545 - 565

5 1230 - 1250

6 1628 - 1652

7 2105 - 2155

8 405 - 420

1000m2

9 438 - 448

10 483 - 493

11 526 - 536

12 546 - 556

13 662 - 672

14 673 - 683

15 743 - 753

16 862 - 877

17 890 - 920

18 931 - 941

19 3.660 - 3.840

20 3.929 - 3.989

21 3.929 - 3.989

22 3.929 - 3.989

23 4.020 - 4.080
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Table A.1: (continued)

Channel Bandwidth Resolution

24 4.433 - 4.498

25 4.482 - 4.549

26 1.360 - 1.390

27 6.535 - 6.895

28 7.175 - 7.475

29 8.400 - 8.700

30 9.580 - 9.880

31 10.780 - 11.280

32 11.770 - 12.270

33 13.185 - 13.485

34 13.485 - 13.785

35 13.785 - 14.085

36 14.085 - 14.385
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Appendix B

Converting Counts to Radiance

for SEVIRI Imagery

Table B.1: The scaling and offset applied to the counts to convert to radiance for each
SEVIRI channel, reproduced from [Müller, 2007]

MSG channel Scale Factor Offset

1 0.020135499537 1.026910476387
2 0.025922000408 -0.322022020817
3 0.022258499637 -1.135183481500
4 0.003658666667 -0.186592000000
5 0.008318107869 -0.424223501303
6 0.038621983914 -1.969721179625
7 0.126743582444 -6.463922704667
8 0.103961229947 -5.302022727273
9 0.205034453663 -10.456757136830
10 0.222311421249 -11.337882483713
11 0.157606930632 -8.037953462244
12 0.029498599470 -1.504428572953
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Appendix C

CALIPSO VFM Data Format

Figure C.1 shows how the format of the CALIPSO VFM data extracted from HDF file

representing the vertical cross section of the atmosphere along the CALIPSO overpass.

Additionally, the vertical and horizontal resolution of the data is shown for three dif-

ferent altitude bands. During the reconstruction of the data, the relevant bands are

upscaled using nearest neighbour interpolation, so that the data matches the horizontal

and vertical resolution of the -0.5 to 8.2km band.

Table C.1: Description of the feature classification flags for

interpretation of the VFM, reproduced from ASDC [2008]

Feature Classification Flag Description

Bits Field Description Bit interpretation

1-3 Feature Type

0 = invalid (bad or missing data)

1 = clear air

2 = cloud

3 = aerosol

4 = stratospheric feature

5 = surface

6 = subsurface

7 = no signal (totally attenuated)

4-5 Feature type QA

0 = none

1 = low

2 = medium

3 = high

6-7 Ice/Water Phase

0 = unknown / not determined

1 = ice

2 = water
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Table C.1: (continued)

3 = mixed phase

8-9 Ice/Water Phase QA

0 = none

1 = low

2 = medium

3 = high

10-12

Feature Subtype

If feature type =

aerosol, bits 10-12 will

specify the aerosol type

0 = not determined

1 = clean marine

2 = dust

3 = polluted continental

4 = clean continental

5 = polluted dust

6 = smoke

7 = other

If feature type = cloud,

bits 10-12 will specify

the cloud type.

0 = low overcast, transparent

1 = low overcast, opaque

2 = transition stratocumulus

3 = low, broken cumulus

4 = altocumulus (transparent)

5 = altostratus (opaque)

6 = cirrus (transparent)

7 = deep convective (opaque)

If feature type = Polar

Stratospheric Cloud,

bits 10-12 will specify

PSC classification.

0 = not determined

1 = non-depolarizing PSC

2 = depolarizing PSC

3 = non-depolarizing aerosol

4 = depolarizing aerosol

5 = spare

6 = spare

7 = other

13
Cloud / Aerosol /PSC

Type QA

0 = not confident

1 = confident

14-16

Horizontal averaging

required for detection

(provides a course

measure of feature

backscatter intensity)

0 = not applicable

1 = 1/3 km

2 = 1 km

3 = 5 km

4 = 20 km

5 = 80 km
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Figure C.1: The layout of the VFM values are stored as an 5515 element array (as rows
in the HDF file) for a 5 km section of the overass
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Appendix D

Images for Supervised Texture

Classification Using Signature

Extension

D.1 Backward Signature Extension

(a) Initial Classification at UT13:45

(b) Backward Signature Extension at UT13:30
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(c) Backward Signature Extension at UT13:15

(d) Backward Signature Extension at UT13:00

(e) Backward Signature Extension at UT12:45

(f) Backward Signature Extension at UT12:30
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(g) Backward Signature Extension at UT12:15

(h) Backward Signature Extension at UT12:00

(i) Backward Signature Extension at UT11:45

(j) Backward Signature Extension at UT11:30
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(k) Backward Signature Extension at UT11:15

(l) Backward Signature Extension at UT11:00

(m) Backward Signature Extension at UT10:45

(n) Backward Signature Extension at UT10:30
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(o) Backward Signature Extension at UT10:15

(p) Backward Signature Extension at UT10:00

(q) Backward Signature Extension at UT09:45

(r) Backward Signature Extension at UT09:30
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(s) Backward Signature Extension at UT09:15

(t) Backward Signature Extension at UT09:00

(u) Backward Signature Extension at UT08:45

(v) Backward Signature Extension at UT08:30
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(w) Backward Signature Extension at UT08:15

(x) Backward Signature Extension at UT08:00

(y) Backward Signature Extension at UT07:45

Figure D.1: MODIS RGB image (left), BTD dust mask (centre) and Resulting masks

from backward temporal extension using signature extension on the land test case

(right). Dust is shown as white in the BTD mask and the resultant signature extension

images
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D.2 Forward Signature Extension

(a) Initial Classification at UT13:45

(b) Forward Signature Extension at UT14:00

(c) Forward Signature Extension at UT14:15

(d) Forward Signature Extension at UT14:30
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(e) Forward Signature Extension at UT14:45

(f) Forward Signature Extension at UT15:00

(g) Forward Signature Extension at UT15:15

(h) Forward Signature Extension atUT15:30
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(i) Forward Signature Extension at UT15:45

(j) Forward Signature Extension at UT16:00

(k) Forward Signature Extension at UT16:15

(l) Forward Signature Extension at UT16:30

123



(m) Forward Signature Extension at UT16:45

(n) Forward Signature Extension at UT17:00

(o) Forward Signature Extension at UT17:15

(p) Forward Signature Extension at UT17:30
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(q) Forward Signature Extension at UT17:45

(r) Forward Signature Extension at UT18:00

(s) Forward Signature Extension at UT18:15

(t) Forward Signature Extension at UT18:30
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(u) Forward Signature Extension at UT18:45

(v) Forward Signature Extension at UT19:00

(w) Forward Signature Extension at UT19:15

(x) Forward Signature Extension at UT19:30
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(y) Forward Signature Extension at UT19:45

Figure D.2: MODIS RGB image (left), BTD dust mask (centre) and Resulting masks

from forward temporal extension using signature extension on the land test case (right).

Dust is shown as white in BTD mask and the resultant signature extension images
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