

University of Bath

PHD

Boundary conditions in Abelian sandpiles

Gamlin, Samuel

Award date:
2016

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Bath Research Portal

https://core.ac.uk/display/161920012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Boundary conditions in Abelian

sandpiles.
submitted by

Samuel Lee Gamlin

for the degree of Doctor of Philosophy

of the

University of Bath

Department of Mathematical Sciences

November 2015

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy

of this thesis has been supplied on condition that anyone who consults it is understood

to recognise that its copyright rests with the author and that they must not copy it or

use material from it except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation with

effect from .

Signed on behalf of the Faculty of Science .

SUMMARY

The focus of this thesis is to investigate the impact of the boundary conditions on

configurations in the Abelian sandpile model. We have two main results to present in

this thesis.

Firstly we give a family of continuous, measure preserving, almost one-to-one map-

pings from the wired spanning forest to recurrent sandpiles. In the special case of Zd,

d ≥ 2, we show how these bijections yield a power law upper bound on the rate of

convergence to the sandpile measure along any exhaustion of Zd.

Secondly we consider the Abelian sandpile on ladder graphs. For the ladder sandpile

measure, ν, a recurrent configuration on the boundary, I, and a cylinder event, E, we

provide an upper bound for
∣∣∣ν(E|I)− ν(E)

∣∣∣.

ACKNOWLEDGEMENTS

I would like thank everyone that has helped and supported through my PhD. I have

no doubt that I would not of reached this stage without the people around me to help

me along the way.

In particular my supervisor, Antal Járai, for all his guidance and his patience as I

slowly learnt how to communicate my ideas clearly.

My family for the morale support and for letting me ramble on about my work to

them whether they had any idea what I was talking about or not.

Finally to everyone who ever came to Drinks in the Parade, without who I probably

would have lost my mind many times during this process.

CONTENTS

List of Figures . iii

1 Introduction. 1

1.1 Outline of Thesis. 2

1.2 Details of publications . 3

2 Background information. 4

2.1 Graphs, spanning forests and groves. 4

2.2 Wilson’s algorithm. 6

2.2.1 Generating groves. 11

2.3 Abelian sandpile model. 13

2.3.1 Burning bijection. 16

3 Anchored burning bijection. 19

3.1 Introduction . 19

3.2 Anchored bijections . 23

3.3 Rate of convergence in Z
d, d ≥ 3. 28

3.4 Rate of convergence in Z
2. 37

4 Boundary conditions on the strip. 45

4.1 Introduction. 45

4.2 Preliminary results. 48

4.2.1 Decomposition of the domain. 49

4.3 Burning based on rungs. 52

4.4 Bounds for paths in a grove. 56

4.4.1 Bound for a nested path. 57

4.4.2 Bound for adjacent paths. 67

4.4.3 Bound for a grove. 69

4.5 Bound for existence of a block. 77

4.6 Proof of Theorems. 80

i

CONTENTS

4.7 Periodic Boundary on the strip. 83

A An encoding of the burning process. 85

A.1 Construction of Sk. 89

A.2 Properties of Sk. 91

Bibliography 102

ii

LIST OF FIGURES

3.1 An example of the construction of a block. 42

4.1 An illustrative example of a potential decomposition of the domain via

balls. 50

4.2 An example of a potential decomposition of the paths over the first two

balls in the domain. 60

4.3 An example of the first three steps in a construction of a block. 78

A.1 An example of a sandpile configuration on the first three rungs of the

graph {1, 2, 3, 4, 5, 6} × N . 96

A.2 Encoding of η(1) as T1. Vertices are coloured according to which set

they are in; Black is for R1
1 and blue is for R1

2 97

A.3 S1, where the red vertices are ones that have been declared burnt and

the blue vertices are those in the set R1
2. 97

A.4 Encoding of η(2) as T2. Vertices are coloured according to which set

they are in; Green is for R2
1, black is for R2

2 and blue is for R2
3 98

A.5 Q2, with red vertices representing vertices that have burnt and blue

vertices are those in the set R2
3. 98

A.6 S2, with red vertices representing vertices that have burnt and the blue

vertices are those in the set R2
3. 99

A.7 S3, with red vertices representing vertices that have burnt and the blue

vertices are those in the set R3
4. 99

A.8 A possible simplification of S3. 100

iii

CHAPTER 1

INTRODUCTION.

Let us begin by informally introducing the model that is the focus of this thesis, the for-

mal definition is postponed until Chapter 2. The Abelian sandpile model is a stochastic

particle model defined on a graph by a cellular automaton. It starts by assigning each

vertex a number of particles to hold, known as the vertex’s height. Each vertex has

a maximum capacity of particles it can hold and if it ever has more than its capacity

it sends particles to its neighbours, this is known as toppling. Particles are lost when

vertices on the boundary topple meaning that there is a limited capacity in the graph

and it will eventually stop toppling. If all vertices have less particles than their capac-

ity we say the configuration is stable. Generally a vertex’s capacity is taken to be the

degree of the vertex and thus in this case the system will be stable when each vertex,

v, has height in {0, . . . deg(v) − 1}. When the system is stable we randomly choose a

vertex and give it an extra particle.

This model, and similar variations, have arisen in several different contexts, prob-

ably most notably as the chip-firing game, see [18]. Our motivation for studying this

model follows from the statistical physics background.

In [3] Bak, Tang and Wiesenfeld introduced the idea of self-organized criticality.

Many dynamical systems in nature have been found to be attracted to some critical

point where it demonstrates power law behaviour. The authors wanted to describe a

dynamical system that would be robust, in the sense that perturbations in the original

state would not be observable after a reasonable period of time had past. This would

mean that fine tuning of any input parameters would not be needed in order for the

power law behaviour to arise. Many of the existing models at the time studied phase

transitions, these required this fine tuning which is at odds with the abundance of nat-

ural occurrences of this kind of behaviour. This robustness of self-organized criticality

would suggest that this is a more plausible explanation for their existence. In their

paper they gave a “toy example” that demonstrated the properties they were after,

this example would later be named the Abelian sandpile model.

1

Chapter 1. Introduction.

Dhar [11] was the first to study the model in its own right, realising that it was

imbued with many advantageous properties that made explicit calculations possible.

This means it has the capacity to demonstrate potentially important underlying princi-

ples of self-organized criticality and is a useful tool for further study into these kinds of

systems. This has led to it being one of the primary models used to study self-organised

criticality.

The model has shown connections to a variety of different areas, further suggesting

that it may be able to highlight interesting properties of such systems and thus making

it a model worthy of further research. Crucial to our analysis will be the close rela-

tionship between the sandpile model and the uniform spanning tree of a graph. This

in turns leads to a strong connection to (loop-erased) random walks.

The objective of this thesis, as suggested by its title, was to try and answer the ques-

tion “How far away does the configuration feel the impact of the boundary conditions

in the sandpile model?” In particular we are interested in the stable configurations that

could occur after the dynamics have been running for a long time, we refer to these as

the “recurrent” states. We postpone a more formal definition to later in this chapter.

The reason that this kind of question is difficult is due to the fact that there are

inherent global aspects to a recurrent stable sandpile configuration. For example, to see

if a configuration is recurrent it does not suffice to consider any number of subsets of the

configuration and it can only be checked when the configuration is viewed as a whole.

However the fact that any one step in the dynamics of the model involve a finite number

of vertices gives hope that these global factors should not be the dominant aspect in

the model’s behaviour. This does indeed seem to be the case. It is the influence of

these global factors that most of the work in this thesis is aimed towards helping us

control.

1.1 Outline of Thesis.

The results of this thesis are split into two main chapters, each takes a different approach

to try and partially answer the question about boundary conditions.

Firstly we are concerned with a general graph with a particular type of boundary

condition, namely taking a subset of a recurrent configuration. Secondly we consider

a much more general boundary condition, where we specify the heights of the vertices

in the sandpile at the boundary, but we can only show that this holds on a particular

type of graph. A more detailed break down is as follows.

In Chapter 2 we formally introduce the sandpile model as well as results that are

fundamental to the work in this thesis, including Wilson’s algorithm and the standard

burning bijection.

The main result of Chapter 3 is the construction of a family of continuous, measure

2

Chapter 1. Introduction.

preserving, injective mappings between spanning forests and sandpiles up to a set of zero

measure. Our mappings can be constructed on general infinite graphs G satisfying a

common condition. The advantage of our new maps, as opposed to the known standard

mapping, will be that it behaves well when we take the limit with respect to an infinite

graph.

As an application of our new bijection, we show that it yields a coupling between

the uniform measures on recurrent sandpiles on an infinite graph and a subgraph, that

we can analyse on Z
d, d ≥ 2. This leads to a power law upper bound on the rate

of convergence of the measure on the subgraph to the measure defined on the whole

graph.

Hence if we are interested in a sandpile event it suffices to consider the sandpile

configuration in a sufficiently large subgraph that includes the vertices that determine

the event. This implies that the global aspect in the recurrence of a sandpile has limited

influence on the configuration in this setting.

In Chapter 4 we consider the Abelian sandpile on ladder graphs, a graph of the

form [1, N] × N ⊂ Z
2. The purpose of this chapter is to investigate the dependence of

the sandpile configuration on heights of vertices in a different part of the graph.

Suppose we are given two sandpile configuration events E and F that are determined

by the height at vertices in some disjoint sets V1 and V2 respectively. We show that

if V1 and V2 are sufficiently far apart, then P(E|F) ≈ P(E). Moreover we show that

the error in this approximation is exponentially decreasing with respect to the distance

between V1 and V2. We provide a quantitative estimate for the rate of decay with

respect to the distance between them.

In the appendix A we present an encoding of the burning process on Ladder graphs

and propose a use for it by stating a conjecture.

1.2 Details of publications

Chapter 3 is based on joint work that has been published, [15]. Some adaptations have

been made to it so that the thesis reads better when viewed as a whole.

Gamlin, Samuel L. ; Járai, Antal A.

Anchored burning bijections on finite and infinite graphs.

Electronic Journal of Probability 19 (2014), no. 117, 23 pp. MR3296533

3

CHAPTER 2

BACKGROUND INFORMATION.

2.1 Graphs, spanning forests and groves.

The Abelian sandpile model is defined with respect to an underlying graph, therefore

for clarity we will state the main notations that we use relating to graphs.

A graph, G = (V,E), consists of a set of vertices, V , and a set of edges, E, that

connect the vertices.

Definition 2.1. i) A planar graph is one that can be embedded into R
2 in such a way

that none of the edges of the graph intersect except at vertices.

ii) A multigraph is a graph that allows two vertices to be connected by more than one

edge.

iii) A graph is connected if for any two vertices in the graph there is a path of edges

in E between them.

iv)A graph G1 = (V1, E1), such that V1 ⊂ V and E1 ⊂ E, is simply connected if G1 is

connected and (V \ V1, E \E1) is also connected.

v) A directed graph is one where each edge e ∈ E has a fixed direction. We say that e

starts at tail(e) and ends at head(e).

vi) Two vertices are said to be neighbours if they are connected by an edge.

vii) Given a set W we write ∂W for the set of vertices in W c := V \W that have a

neighbour in W . Whilst ∂iW is a subset of vertices in W that have a neighbour in W c.

viii) degW (v) is the degree of v in the subgraph induced by W ⊂ V . If a subscript is

not specified then, unless clear from the surroundings to which graph it is referring, we

will assume we mean in the whole graph so here deg(v) = degV (v).

ix) The graph distance between two vertices x, y is denoted distG(x, y), if the graph is

clear from the context we will drop the subscript G. For a set A we define dist(x,A) :=

min{dist(x, y) : y ∈ A}.
x) A graph is said to be transient if it contains a vertex, v, such that a random walk

started from v is transient. A graph that is not transient is said to be recurrent. xi) A

4

Chapter 2. Background information.

graph G1 = (V1, E1) is a subgraph of G = (V,E) if V1 ⊂ V and E1 is the set of edges

between the vertices of V1 induced from E.

For finite graphs we will often define our graph as G = (V ∪ {s}, E), that is the

graph has a distinguished vertex s, called the sink.

For an infinite graph G = (V,E) we introduce the concept of an exhaustion. This

is defined in terms of an increasing sequence of finite sets V1 ⊂ V2 ⊂ V3 ⊂ . . . V such

that ∪∞
n=1Vn = V .

There are two main boundary conditions that a subgraph will have in this thesis,

called free and wired. Using an exhaustion there are natural identifications to subgraphs

for each of the respective boundary conditions.

When we consider the free boundary condition we define GF
n = (Vn, En) where

En ⊂ E is the set of edges whose end vertices are both contained in Vn. When we

prescribe the wired boundary condition we define GW
n = (Vn ∪{s}, Ẽn). Similar to En,

Ẽn consists of all edges whose end vertices are both in Vn but also contains a new set

of edges which attach to the sink. For each edge in E that has one end attached to a

vertex, v, in Vn and the other end attached to a vertex in V \ Vn we include an edge

from v to s in Ẽn. Equivalently this can be seen as identifying all vertices in V \ Vn to

a single vertex s and removing any loop edges.

Another boundary condition that is worth briefly mentioning is the so called Par-

tially wired boundary. This is prescribed as a mixture of the other two boundary

conditions, where some subsets of ∂Vn have been wired together and had loop edges

removed whilst other vertices act as a free boundary.

An important tool for extracting the relevant information from an underlying graph

is to consider their spanning trees.

Definition 2.2. i) A loop is a sequence of distinct edges that define a path with the

same start and end vertex.

ii) A spanning tree of a connected graph G = (V,E) is a subgraph T = (V, F) with

F ⊂ E such that T is connected and there is no loop in T .

ii) A spanning forest of G is a subgraph T = (V, F), where we drop the restriction that

T is connected, so only require that F ⊂ E does not contain any loops.

We denote the uniform measure on spanning trees of a finite connected graph, Gn,

by USTGF
n
or USTGW

n
respective to the boundary conditions. Let Tn = (Vn, Fn) be a

spanning tree on Gn. If we then take the weak limit with respect to an exhaustion we

produce a measure on infinite graphs which is denoted FSF, respectively WSF, which

is concentrated on spanning forests of G. This was shown on Z
d in [44]. Formally let

T = (V, F) be a spanning forest of G and for any finite K ⊂ B ⊂ E

WSF(F ∩B = K) = lim
n→∞

USTGW
n
(Fn ∩B = K)

FSF(F ∩B = K) = lim
n→∞

USTGF
n
(Fn ∩B = K).

5

Chapter 2. Background information.

On Z
d the limit is independent of the choice of exhaustion and boundary condition,

free, wired or partial, this is implicitly shown by the proofs of [44] but was first explicitly

shown by Häggström [17]. See [37] for details with regards to the more general case.

Unless otherwise specified we will henceforth assume that we have a wired graph.

It is well-known and easy to see that in a spanning forest of an infinite graph

WSF-a.s. all components are infinite trees.

A component is said to have one end if there is finite symmetric difference between

any two infinite self-avoiding paths in the component.

We will primarily be interested in graphs that satisfy the condition

WSF-a.s. all components have one end. (2.1)

While, in general, condition (2.1) is difficult to verify, it is known to hold on a large

class of graphs, including Z
d, d ≥ 2; see [44, 7, 38, 37].

Another important property of a graph is how many trees a uniform spanning

forest, T , will have. For example, Pemantle, [44], investigated this in the case of Zd.

For d = 1, 2, 3, 4, WSF-a.s T is connected, that is it is a spanning tree. For Zd, d ≥ 5,

WSF-a.s T is a spanning forest with an infinite number of spanning trees.

Note that in the case of d = 1 condition (2.1) is not satisfied, namely it has two

ends. This means that when we require this property, which we do for all results

relating to an infinite graph in the whole of this thesis, the proofs would not hold for

sandpile configurations on Z. However as sandpiles on Z are trivial, there is little merit

to trying to extend the results to hold in this case.

An important property of a spanning tree is where paths from different vertices

first meet. Let T be a spanning tree of a finite graph, G = (V ∪ {s}, E). The earliest

common ancestor of a set A, denoted eca(A), is a vertex v ∈ T such that from every

vertex in A the directed path to s passes through v. Moreover any other vertex that

has this property must be on the path from v to s.

Note that for a spanning tree of an infinite graph we can similarly define the earliest

common ancestor by considering paths to infinity instead of paths to s. For a graph

with the one-end property this will be well defined. However for a spanning forest we

can only define the concept of an earliest common ancestor when we consider vertices

that are restricted to one component.

2.2 Wilson’s algorithm.

Wilson’s algorithm is a method to generate a spanning forest for a graph. It relies on

the idea of a Loop erased random walk to do this.

The loop-erased random walk, LERW, is produced from a random walk. Let (Xn)

be a random walk of finite length. The idea is to chronologically travel along the

path removing any cycles as they are formed. Suppose j = min{n ∈ N : ∃i <

6

Chapter 2. Background information.

n with Xn = Xi} then this is the first loop that needs to be erased leaving the path

(X1,X2, . . . Xi,Xj+1,Xj+2 . . .). This path can then be relabelled and the process re-

peated until no more cycles exist. Given a finite path π its loop-erasure is denoted

LE(π).

It is worth noting that the distribution of a LERW is not the same as that of a

self avoiding random walk, see [32] or [39] for more information about self-avoiding

walks. However we do have the useful fact which is usually called the Domain Markov

property, [35]. A LERW from x to y on the domain D, has the same distribution as

taking the first step according to the LERW transition probabilities, say to z, and then,

if Pz(τy < τx) > 0, running a LERW from z to y on the domain D \ {x}.
Wilson’s algorithm can be split into three different cases depending on whether the

graph is finite, recurrent or transient.

Wilson’s algorithm on finite graphs.

Let G = (V ∪ {s}, E) be a finite connected graph. Start by defining a set T0 := {s}
Choose a vertex v1 ∈ V . Run a random walk from v1 until the first time it hits s,

take the loop erasure of this path, denote it by α1. Set T1 := {s}∪α1, this is therefore

a subgraph containing vertices and edges.

Assume that Ti−1 has been defined and let V (Ti−1) be the vertex set for this

subgraph.

Choose a vertex vi ∈ V \ V (Ti−1) in a manner that depends only on past walks.

Next run a random walk from vi until the first time it hits a vertex in V (Ti−1). Take

the loop erasure of this path, denote it by αi. Then define a new set Ti := Ti−1 ∪ αi.

As the graph is finite there exists a k ∈ N such that V (Tk) = V . Therefore we can

inductively define Ti for i ≤ k at which point the algorithm terminates.

As shown in the next lemma the method of choosing the next vertex from which

to start a new walk from is independent from the final distribution as long as it only

relies on the past. One common strategy for making this choice is to fix an ordering

of V before the algorithm begins. When it is time to chose vi the first vertex, with

respect to this ordering, that is not an element of V (Ti−1) is chosen.

Lemma 2.3. The subgraph, T := Tk, Wilson’s algorithm generates is a spanning tree.

Moreover T is distributed accordingly to USTG and is independent of the choices made

in the algorithm.

Proof. This was first proven by Wilson [50], see also [37].

Firstly the output of the algorithm will be a spanning tree because every vertex

is connected to s and there can not be a loop in T by construction. By recurrence of

random walks this occurs in finite time with probability 1. In order to consider the

distribution we introduce the idea of cycle popping.

To each vertex v ∈ V we associate an i.i.d. sequence of arrows {evi : i = 1, 2, . . . },
where evi is an oriented edge with tail(evi) = v and head(evi) uniformly random among

7

Chapter 2. Background information.

the neighbours of v. The stacks associated to different v are independent. We say that

evi has colour i, and we envision ev1 lying directly above ev2 in the stack, and similarly,

for all k, evk lying directly above evk+1. An oriented cycle C is associated the weight

w(C) =
∏

u∈C degG(u)
−1. Sometimes we will need to consider coloured cycles, that

is, a cycle consisting of some arrows ev1i1 , . . . , e
vr
ir
. We will use bold characters, like C,

to denote coloured cycles. In this case, C will denote the cycle obtained from C by

ignoring the colours.

Wilson’s algorithm [50] is based on the idea of cycle popping that we now describe.

We start with a configuration of stacks of arrows, as described above. We refer to

the arrows in position 1 as lying on top of the stack and say that initially evi is in

position i. Suppose that arrows ev11 , . . . , e
vr
1 on top of the stacks form a coloured cycle

C. By popping C, we mean removing the arrows in C from the stacks, and shifting

the positions of the arrows beneath them upwards. That is: after popping C, e
vj
k will

be in position k − 1 for j = 1, . . . , r, k ≥ 2. Similarly, if at any later time some arrows

ev1i1 , . . . , e
vr
ir

are all in position 1 and form an oriented cycle C, we may pop them and

shift the arrows beneath them upwards.

If we trace the edges given by the stacks of arrows, by following the ith arrow in the

stack upon the ith visit to a vertex, we will create a random walk path. Thus one way

of generating the stacks is by running successive random walks. Observe that popping

cycles on top of the stacks in the order that a random walk following arrows reaches

them is equivalent to running a LERW on the graph.

This relationship between random walks and stacks of arrows makes it clear that

Wilson’s algorithm corresponds to one particular method for choosing the order in

which to pop cycles. Also that the method for choosing which vertex to start a walk

from in Wilson’s algorithm simply corresponds to selecting a different order in which

to pop cycles. Hence it is necessary to show that the order that cycles are popped does

not influence the spanning tree obtained; uniformity of the spanning tree will then

follow from the uniform selection of the stacks of arrows as explained later.

Observe that if two disjoint cycles are popped then the order of popping is irrelevant,

whilst for two intersecting coloured cycles there is only one order in which they could

be popped.

Now to see that the order of cycle poppings is irrelevant we will consider the se-

quence, C1, . . . CN , generated when Wilson’s algorithm has been used to decide which

cycle to pop at each step. As Wilson’s algorithm terminates in finite time, with prob-

ability 1, we can assume that after a finite number of cycles have been popped there

are no more coloured cycles on top of the stacks.

Suppose we have another sequence of poppings C′
1,C

′
2, If C1 = C′

1 then we can

perform the first popping in both sequences and consider C2, . . .CN and C′
2,C

′
3,

Hence, without loss of generality, assume that C′
1 6= C1. There exists k = min{j ≤

N : C′
1 ∩ Cj 6= ∅}, if no such cycle existed then C′

1 would be disjoint from the other

cycles and thus all of its arrows would remain on top of the stacks after C1, . . .CN

8

Chapter 2. Background information.

had been popped which would mean after they had been popped C′
1 could be popped.

This contradicts the fact that Wilson’s algorithm terminates when there are no more

coloured cycles on top of the stacks.

Arbitrarily choose v ∈ C′
1 ∩ Ck. The arrow on top of the stack at v will be used

in both cycles, otherwise k would not be minimal or C′
1 could not be popped. Next

consider the vertex, w, that the arrow pointed towards. By the same argument both

cycles would use the arrow with colour 1 at w because this is the first cycle to visit w

that could of been popped. Hence by following the arrows and repeating this argument

for each vertex in the cycle we see that C′
1 = Ck.

Therefore we could use the order C′
1,C1, . . .Ck−1,Ck+1, . . .CN to pop cycles in-

stead of the sequence given by Wilson’s algorithm without changing the arrows that

will be on top of the stacks at the end of the process. This is becauseC′
1 is disjoint from

C1, . . .Ck−1, so by the above observation the order they are popped can be exchanged.

Now C′
1,C1, . . .Ck−1,Ck+1, . . .CN and C′

1,C
′
2, . . . have the same cycle to begin their

respective sequences so we could pop this cycle and repeat the above argument with the

remaining sequences of cycles. After N iterations we would have popped C′
1, . . .C

′
N ,

moreover we would have popped C1, . . .CN , although possibly in a different order. By

choice of the sequence this means that there are no more cycles to be popped on top

of the stacks of arrows. Thus the two sequences must be permutations of the same set

of coloured cycles.

If we think of the stacks of arrows as being given to us beforehand it is clear that the

choices made during Wilson’s algorithm can not impact on the output of the process.

Suppose we have a set of coloured cycles C and a spanning tree T . Then we can

deduce the colour of edges in the spanning tree from knowledge of the cycles popped,

enabling us to recreate the observed parts of the stacks of arrows. Note if we had any

other spanning tree T ′ then (C, T ′) also defines a set of stacks of arrows. Now the

probability of the stacks of arrows generating the pair (C, T) is equal to the probability

of having the correct coloured arrow at every height in each stack. As each arrow is

chosen independently and uniformly the probability of having (C, T) is proportional to

the weights of the coloured cycles and the tree. To define the weight of a tree, T , firstly

note we can assign a unique direction to each edge in T by having it oriented towards s.

Then the weight is given by w(T) = 1
Z

∏
e∈T deg(tail(e))−1, where Z is a normalisation

constant that is fixed by the underlying graph G. Therefore we have that

P(output the spanning tree T) =
∑

C: set of
coloured cycles

w(C)w(T).

Finally as the cycles that are popped and the final spanning tree are independent we

can conclude that the probability that Wilson’s algorithm outputs a given spanning tree

is proportional to the weight of that tree and hence the outputted trees are distributed

according to USTG.

9

Chapter 2. Background information.

This algorithm can be generalised for use on infinite graphs where it will produce

spanning forests distributed according to WSF. There are two ways to generalise the

algorithm depending on the underlying graph.

Wilson’s algorithm on recurrent graphs.

The algorithm proceeds in the same way as it did for the finite case with the only

difference occurring in the first step. Rather than starting with the sink, which does

not exist in the infinite graph, we can choose any vertex v0 and take T0 = {v0}. Then
following the above algorithm we will generate a spanning tree. This follows from

observing that from the point of view of an undirected spanning tree of a finite graph

there is nothing special about the vertex s, therefore we could have equally chosen any

other vertex to be the initial vertex to be placed in the tree. Also although the graph

is infinite, due to recurrence every walk will eventually hit v0 or a previous path and

hence each step will terminate in finite time almost surely.

If we were interested in the restriction of the spanning tree onto a finite subset,

D, of this infinite graph then we would chose the start vertex, v0 ∈ D and then by

recurrence each random walk would visit a finite number of vertices and once a random

walk has been run from each vertex of D they will be connected to the spanning tree.

Moreover the restriction of T to D is now fixed. This is the idea behind proving the

existence of WSF and that WSF = FSF in recurrent graphs.

Wilson’s algorithm on transient graphs.

If the underlying graph is transient then a slightly different method is needed because

a random walk may not hit the previous paths. In this case the algorithm is started

by running an infinite loop erased random walk. Note that due to the transient nature

of the graph that a vertex will only be visited a finite number of times almost surely

and thus after the final visit to a vertex the edge connected to it in the tree will be

fixed. Therefore the LERW will converge to a loop erased path. Then using this as the

first path the algorithm can proceed in the same manner as the finite case except that

the random walks are run until they either hit the previous paths or if a random walk

does not intersect the paths we again take the loop erasure of its infinite path. Due to

some walks being infinite, this method is also sometimes known as Wilson’s algorithm

rooted at infinity. This method was first described in [7, Theorem 5.1], where, similar

to the finite case, the idea of cycle popping was used.

The key to this generalisation is that Loop-erasure also makes sense for infinite paths

π, as long as π visits every vertex finitely often. To describe Wilson’s method rooted

at infinity, order the vertices of Zd arbitrarily as v1, v2, Starting from v1, follow

the arrows on top of the stacks, and whenever a cycle is completed, pop that cycle.

The trajectory traced by this walk is a simple random walk {S(1)(m)}m≥0 under P,

the underlying probability measure for the stacks of arrows. Due to transience, every

10

Chapter 2. Background information.

vertex is visited only finitely many times, with probability 1. Hence, on this event,

there is a well-defined configuration of stacks of un-popped arrows, after the entire

trajectory of S(1) has been traced. On top of the stacks now lie F1 := LE(S(1)[0,∞)),

and unexamined arrows everywhere else. Next, starting from v2, again follow the arrows

on top of the stacks, popping any cycles that are completed. The trace of the path

will now be a random walk S(2)[0, τ (2)], where τ (2) ∈ [0,∞] is the first hitting time

of F1. Upon hitting F1, a segment of F1 is retraced without encountering any further

cycle, and on top of the stacks will lie F2 := F1 ∪ LE(S(2)[0, τ (2)]), with unexamined

arrows everywhere else. Continue this way with v3, v4, With probability one, from

each stack only finitely many arrows get popped, hence the procedure reveals a random

spanning forest T . Due to [7, Theorem 5.1], T is distributed according to WSF.

2.2.1 Generating groves.

In Chapter 4 we will be interested in a particular kind of spanning forest known as a

grove. The terminology of a Grove was introduced in [9], [45] and [31].

Definition 2.4. A grove on a graph G with respect to Λ ⊂ ∂iG is a spanning forest of

G such that every component of the forest contains at least one vertex of Λ.

For a grove, G, with respect to Λ, denote the components of G by g1, g2 Then

G induces a partition on Λ, where a component in the partition is given by Λi := gi∩Λ,

we will refer to this partition as the connection pattern of G. When G is planar then

the induced partition will be non-crossing.

Definition 2.5. The backbone, bG, of a grove G with respect to Λ is a subset of the

graph where only vertices and edges that are on a path between vertices of Λ are included.

This includes all vertices in Λ even those which are only connected to themselves via a

empty path. Let bi be the part of the backbone that is connected to Λi.

We want to instil a sense of direction onto the groves, therefore in each component

we will fix a vertex of Λ to be the root, such that all edges on the backbone are directed

towards the root in their component.

Henceforth when we discuss partitions of Λ we will assume that we also know which

vertex is a root in each component, if we wish to emphasise that we know the root we

will call it a directed partition. When such a partition forms part of a grove we use the

terminology rooted grove.

We want to use the idea of Wilson’s algorithm to be able to generate a grove

conditioned upon a given connection pattern on Λ, that is groves that induce the

partition (Λ1,Λ2 . . .).

Definition 2.6. Let G be a grove with partition (Λ1,Λ2 . . .) which contains a compo-

nent g1, with Λ1 = {v1, . . . vn}, n ≥ 1. By resampling b1 we mean the process which

11

Chapter 2. Background information.

takes the backbone bG removes b1 and replaces it with the set of LERWs, b′1, we now

describe.

If n = 1 then the component b1 consists solely of the vertex v1 and so we must

have that b′1 := {v1} = b1. Therefore the process of resampling b1 could not change the

backbone in this case.

Now for the non-trivial cases when n ≥ 2 there will be a root in Λ1 say it is vi.

Take the loop erasure of a random walk from v1 conditioned to hit vi before intersecting

b2 ∪ b3 ∪ . . . , call this path b′1(1). Note this walk is only allowed to hit Λ at a vertex in

{v1, . . . vn}. We now proceed iteratively.

Suppose vj is not on a previous path to vi but vk is already on a path for all k < j.

Let b′1(j−1) be the set of paths connected to v1, . . . , vj−1 Then run a random walk from

vj conditioned to avoid vertices in b2 ∪ b3 ∪ Terminate the walk when it first hits

a vertex that is in b′1(j − 1), call this path α. Define b′1(j) := LE(α) ∪ b′1(j − 1).

When v1, . . . vn are all connected to vi the process will terminate and it will have

produced a new component of the backbone b′1 := b′1(n). The set b′1 ∪ b2 ∪ . . . will be a

backbone of the graph.

Lemma 2.7. Let b1∪b2∪ . . . be a backbone of a grove G that is chosen uniformly from

the set of all backbones that induce the partition (Λ1,Λ2, . . .). If b′1 is a resampling of

b1 then b′1 ∪ b2 ∪ b3 ∪ . . . is also distributed uniformly amongst backbones of G that

induce the partition (Λ1,Λ2, . . .).

Before we prove this lemma we will introduce an adaptation of Wilson’s algorithm

that generates a grove with a given partition on Λ.

Suppose we have a graph G and a desired partition of Λ, p = (Λ1,Λ2 . . .).

Step 1. Choose a set Θ ⊂ Λ such that Θ ∩ Λi = {vi} for each i ≥ 1. Set an

ordering, ≺, of the vertices of G that depends only on the structure of G.

Step 2. Identify the vertices v1, v2, v3, . . . into one vertex which we will call the

sink, s, this can be done in such a way that for any edge connecting to s we know which

of the vertices v1, v2, v3, . . . the edge was connected to in the original graph. Call this

new graph Gs.

Step 3. Run Wilson’s algorithm using vertices from Λ2 as the start vertices, with

the order determined by ≺. When all vertices in Λi are connected we iteratively proceed

by using vertices in Λi+1 as the start vertices.

Step 4. Once all vertices in Λ \ Λ1 are connected use vertices of Λ1 as the start

vertices in Wilson’s algorithm. We use ≺ to decide on the order within Λ1.

Step 5. When all vertices in Λ are connected to s, continue with Wilson’s algorithm

using ≺ to chose the next start vertex at each stage.

Step 6. Separate the sink into its original vertices. If the grove does not induce p

on Λ discard the grove and restart the algorithm. When we have a grove with partition

p the algorithm terminates.

12

Chapter 2. Background information.

By Lemma 2.3 at the end of step 5 the algorithm will generate a spanning tree of

Gs distributed according to USTGs .

As Gs was constructed in such a way to retain knowledge of the corresponding edges

in the original graph we can separate the sink in the spanning tree of Gs into its original

components. The edges would remain unchanged except for each edge connecting to s

which would be replaced with an edge connecting to one of v1, v2, v3 . . . accordingly. If

we did this the spanning tree would become a spanning forest with each element of Θ

being in a different component.

When the algorithm finishes it will have produced a grove with partition p. More-

over as we are simply discarding elements from a uniform distribution that do not

satisfy a given property this algorithm will generate groves uniformly amongst groves

which induce a partition p on Λ as desired.

Proof of Lemma 2.7. This property is stated in [31] for n = 2 and follows fromWilson’s

algorithm.

Let us consider the above algorithm in terms of the backbone of a graph. In this

context we can see that Step 3 is generating the components b2, b3, . . . chronologically.

Whilst Step 4 generates the component b1.

With this observation it is clear that if we consider the construction of a grove that

was not discarded and look at the state of the construction at the end of Step 3, it will

have the same distribution as taking the backbone of a uniformly chosen grove with

partition p and discarding b1.

Now running step 4 and asking for a path that does not cause the grove to be

discarded is exactly the process of resampling b1. Therefore if we replaced step 4 with

that of the resampling process the final distribution would be unchanged. Hence we

can conclude that b′1 ∪ b2 ∪ b3 ∪ . . . and b1 ∪ b2 ∪ . . . have the same distribution.

2.3 Abelian sandpile model.

We know formally define the Abelian sandpile model.

Let G = (V ∪ {s},E) be a finite, connected multigraph, with the wired boundary

condition. A sandpile configuration, that we usually denote by η, consists of assigning

an integer number of particles η(v) ∈ {0, 1, 2, . . .} to every non-sink vertex v ∈ V . The

sandpile η is stable, if η(v) ∈ {0, 1, . . . ,degG(v) − 1}, for all v ∈ V , where degG(v) is

the degree of the vertex v in the graph G.

The dynamics of the model consist of two ingredients. The first is called toppling.

This occurs when a vertex has at least as many particles as its degree. For such a vertex

v, its height is reduced by its degree and one particle is sent along every edge incident

with v with the neighbouring vertex’s height increasing accordingly (i.e. vertices with

multiple edges connecting them to v receive more than one particle). Particles reaching

the sink are lost (i.e. we do not keep track of them). The toppling of v is summarised

13

Chapter 2. Background information.

by the mapping Sv : η(w) → η(w) −∆v,w, w ∈ V , using the Laplacian matrix

∆v,w =

degG(w) if w = v;

−av,w if w 6= v;

where av,w is the number of edges connecting vertices v,w ∈ V .

Lemma 2.8. Toppling all unstable vertices in a sandpile configuration will yield a

unique stable configuration independent of the order of topplings.

Proof. This was first shown in [11] and is the reason for the occurrence of Abelian in

the model’s name. Firstly note that as particles are lost to the sink the process of

toppling all unstable vertex must terminate in a finite number of steps and thus it

reaches a stable configuration. Next observe that if we had two vertices, v,w, that

were unstable it is clear that Sv ◦Sw = Sw ◦Sv as both can be represented by the map

η(x) → η(x) − degG(v)δx,v − degG(w)δx,w + av,x + aw,x for x ∈ V , where δy,z is 1 if

y = z and 0 otherwise.

Using this observation we need to show that the set of vertices that are toppled and

the number of times each vertex is toppled does not change by altering the order that

we choose to topple vertices.

Suppose we have a sequence of vertices X = x1, . . . , xN that stabilise the sandpile η

when toppled. We now proceed to induct upon N , with the basis case of N = 2 having

been shown above. We need to show any other order of vertices that can be toppled

define a map that is equivalent to SxN
◦ SxN−1

◦ · · · ◦ Sx1 .

Suppose Y = y1, . . . yM is another sequence of vertices that could be toppled. Now

from X we know that x1 is unstable in η and therefore x1 must appear in y1, . . . yM at

least once, because toppling other vertices can not reduce the height at x1 which needs

to happen before the sandpile is stable. Let k := min{i ∈ N : yi = x1}.
Now consider the map given by Y ,

Sym ◦ · · · ◦ Sy1 = Sym ◦ · · · ◦ Syk+1
◦ Sx1 ◦ Syk−1

◦ · · · ◦ Sy1 .

However we know that x1 is unstable in η thus it could be toppled before y1, . . . yk−1,

which are all distinct from x1 by choice of k. Therefore by repeated application of

being able to change the order of two distinct vertices toppling, we can deduce that

the same sandpile is achieved by the mapping Sym ◦ · · · ◦ Syk+1
◦ Syk−1

◦ · · · ◦ Sy1 ◦ Sx1 .

Now comparing this to the map SxN
◦ SxN−1

· · · ◦ Sx1 we see that they now have the

same first step and then we have a sequence of N − 1 and M − 1 topplings respectively

to perform.

Repeating this for each xi in turn shows that M ≥ N and will eventually produce

the map Sy′
M−N

◦ · · · ◦Sy′1 ◦SxN
◦SxN−1

· · · ◦Sx1 , where y
′
1, . . . y

′
M−N are the remaining

cycles that have not been matched. However once we have performed the first N

steps we know that the configuration is stable so no more topplings can be performed,

14

Chapter 2. Background information.

because the sequence x1, . . . xN has been toppled. Thus we can conclude that M = N

and so any sequence of vertices that stabilise a sandpile result in the same configuration

as claimed.

We use the notation η◦ to denote the unique configuration that η stabilises to via

toppling all unstable vertices.

The second ingredient of the model is particle additions. Given a stable sandpile η,

we add a particle at a randomly chosen vertex v ∈ V , and then stabilize via topplings,

if necessary. Successive particle additions yield a Markov chain on the set of stable

sandpiles.

We can then define a set of recurrent stable configurations for this Markov chain.

It is the properties of these recurrent configurations that has been an important area

of research and is the subject of this thesis.

We denote the set of recurrent states of this Markov chain by RG, and by νG the

unique stationary distribution, that is the uniform distribution on RG [11].

The quotient Z
V /ZV∆G defines a set of equivalence classes with respect to the

graph Laplacian, where elements in the same class differ by integer linear combinations

of rows of ∆G.

Lemma 2.9. Each equivalence class contains exactly one element of RG. In particular

this means that |RG| = det(∆G).

Before we prove this, following the method in [24], let us draw the readers attention

to the following two important sandpile configurations.

Lemma 2.10. (i) Define the sandpile configuration ηmax by ηmax(v) = deg(v) − 1

∀v ∈ V , then ηmax is stable and recurrent.

(ii) Let δ(v) = deg(v), then the configuration ζ := δ − δ◦ is everywhere positive and it

is an integer sum of rows of ∆G. Also for any stable recurrent configuration η we have

that (η + ζ)◦ = η.

Proof. (i) ηmax satisfies the definition of a stable sandpile. In ηmax each vertex has

the maximum number of particles possible in a stable configuration, thus given any

other recurrent stable configuration it is clear that using particle additions ηmax can

be reached and is therefore itself recurrent.

(ii) As every vertex is unstable in δ each vertex must lose at least one particle to

reach δ◦ so the difference between the configurations will be greater than 1 at each

vertex. As observed above, toppling an unstable vertex corresponds to subtracting the

corresponding row of ∆G from the configuration. Thus for some constants ci ≥ 0 we

can write δ◦ = δ −∑i ci∆i where ∆i is the i
th row of ∆G.

To see the final statement consider the configuration δ + ζ + ǫ, where ǫ(v) > 0 for

every v ∈ V and it is chosen such that δ + ǫ stabilises to η, such a configuration exists

by definition of η being recurrent.

15

Chapter 2. Background information.

As ζ(v) > 0 ∀v ∈ V we can begin by toppling the vertices that are needed to

stabilise δ + ǫ. This would produce the configuration η + ζ which can then be further

stabilised to yield some recurrent configuration, (η + ζ)◦.

Alternatively we could begin by toppling vertices involved in stabilising δ, this is

allowed as (ζ+ ǫ)(v) > 0 ∀v ∈ V , this then produces the configuration δ◦+ζ+ ǫ = δ+ ǫ

but this can then be further stabilised using that (δ + ǫ)◦ = η.

By Lemma 2.8 the configuration δ+ζ+ǫ has a unique stabilisation and so (η+ζ)◦ =

η.

Proof of Lemma 2.9. Observe that for any sandpile configuration by adding nζ(v) > 0

∀v ∈ V to the configuration, for n sufficiently large, we can obtain an equivalent con-

figuration whose vertices all have heights greater than their degree. This configuration

would then stabilise to a recurrent configuration, because it can be reached from ηmax

via particle additions and the fact that every configuration can be stabilised. Hence

every equivalence class has at least one stable recurrent sandpile configuration.

It remains to show that any two recurrent stable configurations that are equivalent

must in fact be equal.

If we have two recurrent stable sandpile configurations, η1, η2 in the same equiva-

lence class we can find constants ci, di ≥ 0 such that η3 := η1+
∑

i ci∆i = η2+
∑

i di∆i.

Take M = max{maxi∈N ci,maxj∈N dj} and consider the configuration η3 +Mζ. By

choice of M this will be a positive configuration and as it can be reached from η1,

equivalently η2, via a sequence of particle additions it must be recurrent.

By first performing the topplings corresponding to subtracting
∑

i ci∆i from the

configuration, this is a valid selection of topplings asM is chosen large enough such that

even after performing these subtractions all vertices will have a non-negative height.

This would yield the configuration η1 +Mζ which can be further stabilised to η1 by

Lemma 2.10.

Alternatively from η3+Mζ we could start by performing the topplings correspond-

ing to subtracting
∑

i di∆i, which is allowed by choice of M . This would leave η2+Mζ

this can then be stabilised to η2.

Finally due to Lemma 2.8 there is a unique stabilisation of η3+Mζ and so η1 = η2.

It therefore follows that each equivalence class contains exactly one stable recurrent

configuration and hence |RG| = det(∆G).

By the matrix tree theorem, see [37], it is also known that the number of spanning

trees on a graph G is det(∆G). It is this observation which first suggested that a

relationship between recurrent sandpile configurations and spanning trees existed.

2.3.1 Burning bijection.

We now introduce a fundamental tool for investigating sandpile configurations which

is the burning algorithm of Dhar [11].

16

Chapter 2. Background information.

The following combinatorial characterization of RG follows from [11, 40] (see also

[18]):

RG =

{
η ∈

∏

x∈V
{0, . . . ,degG(x)− 1} : η is ample for all ∅ 6= F ⊂ V

}
.

Here η is called ample for F , if there exists x ∈ F such that η(x) ≥ degF (x).

Given η ∈ RG, at time 0 we declare the sink to be “burnt”. Following this, we

successively “burn” vertices where η(x) is at least as much as the number of edges

leading from x to any unburnt neighbours. More precisely, we set

B0 := {s}, U0 := V,

and for j ≥ 1 we inductively set:

Bj :=
{
v ∈ Uj−1 : η(v) ≥ degUj−1

(v)
}
, Uj := Uj−1 \Bj .

Here Bj (resp. Uj), are the sets of vertices burnt, (resp. unburnt), at time j. Since η is

ample for any non-empty Uj−1, we have Uj = ∅ eventually, at which time the algorithm

terminates. We say v ∈ Bj has burning time j.

Majumdar and Dhar [40], following the above burning algorithm, constructed a

bijection ϕG : RG → TG, where TG is the set of spanning trees of G. The map

ϕG : η 7→ t can be defined as follows. Fix for each v ∈ V an ordering ≺v of the oriented

edges {fi : tail(fi) = v}.
If v ∈ Bj , let

mv :=
∣∣∣
{
f : tail(f) = v, head(f) ∈

⋃

j′<j

Bj′

}∣∣∣,

Fv := {e : tail(e) = v, head(e) ∈ Bj−1} .
(2.2)

We can use the ordering to enumerate Fv, so we have e
(v)
0 ≺v e

(v)
1 ≺v · · · ≺v e

(v)
deg(v)−1.

Due to the burning rule, we have

η(v) = deg(v)−mv + ℓv for some 0 ≤ ℓv < |Fv |. (2.3)

With ℓv as above, we then place the directed edge e
(v)
ℓv

in t, for each v ∈ V , and forget

the orientation of the edges. Observe that the burning time of a vertex v ∈ V equals

distt(v, s).

The image of νG under ϕG is the uniform spanning tree measure USTG, i.e. the

uniform distribution on TG.
This procedure can be reversed in order to find the inverse mapping, which we now

briefly describe.

17

Chapter 2. Background information.

Given a spanning tree T and a set of vertices W we will now describe how to

compute the sandpile configuration on W . To find the height of a vertex v we need to

know the distance from v and its neighbours to the sink. We do this by assigning every

vertex a burning time. Set B0 := {s}, and then for i ∈ N set Bi := {v : distt(v, s) = i}.
Note that these sets correspond to the same sets generated by the burning algorithm.

Hence for each vertex we know mv and Fv and so we can use the burning rule η(v) =

deg(v)−mv + ℓv to compute the height at each vertex v.

If we can find the earliest common ancestor of a vertex and its neighbours then we

can use the above argument but instead of asking for the distance to s we only require

the distances to the e.c.a. This is a useful observation that simplifies the algorithm

when we want to compute the sandpile configuration on a finite subgraph of certain

infinite graphs.

The burning bijection has been very fruitful in proving things about the sandpile

model; see e.g. [46, 29, 2, 26], it was also the starting point for much of the work in

this thesis.

See the surveys [12, 47, 22] for further background on the sandpile model.

18

CHAPTER 3

ANCHORED BURNING BIJECTION.

3.1 Introduction

Having introduced the map between sandpile configurations and spanning trees on

finite graphs it is natural to look for an extension of the burning bijection to infinite

graphs, and this leads to some highly non-trivial questions. The main difficulty in

trying to do this is that on finite graphs the burning algorithm starts from the sink, so

the analogous process on infinite graphs should start from infinity. This chapter will be

concerned with a particular way of overcoming this problem. However, as we outline

below, some very natural questions remain open.

For the remainder of this chapter, let G = (V,E) be a locally finite, connected,

infinite graph that satisfies the one-end property. Given an exhaustion by finite sub-

graphs: V1 ⊂ V2 ⊂ · · · ⊂ V , ∪∞
n=1Vn = V , let Gn = (Vn ∪ {s},En) denote the wired

graph obtained by identifying the vertices in V \ Vn, that becomes the sink s, and

removing loop-edges at s. Note that there is a natural identification between En and

those edges in E that have an end vertex in Vn. Recall we denote by WSF the weak

limit of the measures USTGn [37], called the wired uniform spanning forest measure on

G.

We denote

T :=

{
spanning subgraphs of G such that all

components are infinite one-ended trees

}
.

The counterpart of T for the sandpile model will be

R :=

{
η ∈

∏

x∈V
{0, . . . ,degG(x)− 1} : η is ample for all finite ∅ 6= F ⊂ V

}
,

that we call the recurrent configurations on G.

Athreya and Járai [2] considered the case of Zd, d ≥ 2, with Vn = [−n, n]d ∩ Z
d,

19

Chapter 3. Anchored burning bijection.

and they showed that νGn has a weak limit ν that concentrates on R. When 2 ≤ d ≤ 4

the argument is particularly transparent. It was shown by Pemantle [44] that when

2 ≤ d ≤ 4, the measure WSF concentrates on the set

T conn :=
{
one-ended spanning trees of Zd

}
⊂ T .

In this case the limiting sandpile measure ν is exhibited as the image of WSF under

a map ψ : T conn → R. Here ψ is defined essentially by inverting the relationships

(2.2)–(2.3), that can be made sense of in Z
d for t ∈ T conn. Namely, fix t ∈ T conn

and v ∈ Z
d. Let v∗ denote the unique vertex such that all infinite paths starting at

a neighbour of v pass through v∗, and v∗ is nearest to v with respect to distt (this

is the earliest common ancestor of the neighbours of v, such a vertex exists because

t ∈ T conn). Orient all edges of t towards infinity (this makes sense, because t has one

end). Let

m′
v :=

∣∣∣
{
f : tail(f) = v, distt(head(f), v

∗) < distt(v, v
∗)
}∣∣∣,

F ′
v := {e : tail(e) = v, distt(head(e), v

∗) = distt(v, v
∗)− 1} .

Enumerate F ′
v as e0 ≺v · · · ≺v e|F ′

v|−1, and let 0 ≤ ℓ′ < |F ′
v| be the unique index such

that eℓ′ ∈ t. Then we set

ψ(t)(v) := η(v) := 2d−m′
v + ℓ′, v ∈ Z

d.

It is not difficult to see that ψ is continuous on T conn. Where our understanding of

continuous is in the sense that if t1, t2 ∈ T conn then ∀M ∈ N ∃N ∈ N such that if t1 and

t2 agree on [−n, n]d for n > N then ψ(t1) and ψ(t2) agree in [−M,M]d. (In a certain

sense, ψ is the limit of the inverse bijections ψGn := ϕ−1
Gn

: TGn → RGn .) Moreover,

ψ is equivariant under translations of Zd, if the orderings {≺v: v ∈ Z
d} are chosen

equivariant. It is tempting to conjecture that ψ is almost one-to-one, i.e. injective up

to sets of measure 0. We do not have a proof of this.

Open Question 1. Is ψ almost one-to-one in the case of Zd, 2 ≤ d ≤ 4?

When d > 4, it turned out to be necessary to add extra randomness to the WSF in

order to construct ν [2], so there is no natural mapping T → R, a priori.

The main result of this chapter is the construction of a family of measure preserving

mappings between spanning forests and sandpiles that are almost one-to-one. Our

mappings can be constructed on general infinite graphs G satisfying condition (2.1),

in particular, also on some non-transitive graphs. In this general setting, Járai and

Werning [28] showed that νGn converges weakly to a limit ν, that is independent of

the exhaustion. Our construction is a natural extension of the one in [28], that in

turn was based on an observation of Majumdar and Dhar [41] and Priezzhev [46]. In

general, when G = (V,E) is transitive, our mappings will not be invariant under all

20

Chapter 3. Anchored burning bijection.

graph automorphism.

Definition 3.1. An anchor is a sequence D = {D1,D2, . . .} of finite subsets of vertices

such that

(i) D1 ⊂ D2 ⊂ . . . and ∪k≥1Dk = V ;

(ii) Dk is simply connected for each k ≥ 1, i.e. all connected components of V \Dk

are infinite.

In Section 3.2 we will associate to any anchor D a particular burning rule. That

is, for any finite Λ ⊂ V and configuration η ∈ RΛ we define burning times τD(x,Λ; η),

x ∈ Λ in such a way that at each time only vertices that are burnable in the sense

of Dhar [11] are burnt, (but it may be that some burnable vertices are not burnt at

the first opportunity). The advantage of our rule will be that it is easy to pass to the

limit Λ ↑ V , i.e. we can define a consistent set of burning times τD(x; η) ∈ (Z,Z) for

ν-a.e. η ∈ R. The reason for requiring (ii) in Definition 3.1 is that for general Dk, our

burning rule will be identical if we replace Dk by the smallest simply connected set

containing it.

Theorem 3.2. Assume that the infinite graph G satisfies condition (2.1). The burning

rule arising from any anchor D defines a continuous, measure preserving, injective map

ψD from (T ,WSF) to (R, ν).
The precise meaning of “defines” will become clear in Section 3.2, where we intro-

duce the anchored bijection and the map ψD. Indeed, the anchor will serve to prescribe

a “preferred direction” for the burning of configurations on V starting from infinity.

The following question complements Open Question 1.

Open Question 2. For Z
d, d > 4, is there a continuous measure preserving map from

(T ,WSF) to (R, ν) that is equivariant with respect to translations?

Open Questions 1 and 2 are connected to a result of Schmidt and Verbitskiy [48].

They constructed, for any d ≥ 2, a family of Z
d-equivariant continuous surjective

mappings from R onto the so called harmonic model, i.e. functions from Z
d to the unit

circle that are harmonic modulo 1. The image of ν under their maps is the unique

measure of maximum entropy of the harmonic model [48, Theorem 5.9].

As an application of the anchored bijection, we show that combined with Wilson’s

stacks of arrows construction [50] it yields a coupling between νGn and ν that we can

analyse on Z
d, d ≥ 2. This leads to a power law upper bound on the rate of convergence

of νGn to ν.

Theorem 3.3. Let d ≥ 2 and k ∈ N. Take E to be any cylinder event that depends

only on the heights within distance k of the origin. Then fix a sufficiently large, but

finite, Λ ⊂ Z
d. Let N be the radius of the largest ball centred at the origin that is

contained in Λ. There exists α = α(d) > 0 such that we have

|νΛ(E)− ν(E)| ≤ C(k, d)N−α. (3.1)

21

Chapter 3. Anchored burning bijection.

The exponent α and the dependence on k are explicit, although not optimal; see

Theorem 3.12 and Theorem 3.20 for more detailed statements. Estimates analogous to

(3.1), but restricted to d = 2, 3, have been given in the context of the zero dissipation

limit in the abelian avalanche model [21, 27]. We believe that our approach will lead

to a significant simplification, and an extension to all d ≥ 2, of the arguments of [21].

As mentioned earlier, we will define burning processes on both finite and infinite

configurations in such a way that these behave well with respect to taking limits. In

particular, restricting an infinite recurrent configuration to distinct large finite sets

Λ1,Λ2, the anchored burning processes on Λ1 and Λ2 couple with high probability, in

the following sense:

lim
Λ↑V

[
τD(x,Λ; η) − τD(y,Λ; η)

]
=
(
c1(x, y; η), c2(x, y; η)

)
. (3.2)

This property will be proven in Lemma 3.11. We do not know whether the same state-

ment is true for Dhar’s original burning algorithm, where at each step every burnable

vertex is burnt simultaneously.

Open Question 3. Let τ(x, k; η) denote the burning time of x with respect to Dhar’s

original burning algorithm in the ball of radius k centred at the origin in Z
d. Does the

analogue of (3.2) hold for Zd, 2 ≤ d ≤ 4, as k → ∞?

If the answer is yes, this would imply an affirmative answer to Open Question 1.

This is because the coupling defines a burning time from infinity (unique up to a time

shift) and this can be used to define the inverse map. Note that the arguments of [2]

show that the statement of Open Question 3 fails for Zd, d > 4.

We close this introduction by remarking that a certain analogue of the statement of

Open Question 3 holds on graphs of the form G = G0 × Z, with G0 a finite connected

graph. Indeed, with respect to the left-burnable measure studied by Járai and Lyons

[25], it is not difficult to construct a sandpile configuration on the subgraph G0×{i, i+
1, i + 2} for some i ∈ Z, that forces the burning times of vertices in G0 × [i+ 3,∞] to

be independent of the burning times of vertices in G0× [−∞, i−1], and hence coupling

occurs. It was in fact by studying this case that we arrived at the idea of anchored

bijections.

The rest of this chapter has the following structure. In Section 3.2 we define the

anchored bijection in the finite case and then show how this extends to give a bijection

in the infinite case. In Section 3.3 we present the quantitative bounds on Z
d when

d ≥ 3. In Section 3.4 we give the bounds on Z
2. Throughout the remainder of this

chapter Cd will stand for an unspecified positive constant dependent only on d, whilst

C,C1, C2 > 0 are unspecified constants that do not depend on d.

22

Chapter 3. Anchored burning bijection.

3.2 Anchored bijections

Recall that G = (V,E) is a locally finite infinite graph satisfying (2.1); we allow parallel

edges. Let D = {D1,D2, . . . } be an anchor, and let D0 := ∅. Given any finite Λ ⊂ V ,

we form the wired graph GΛ = (Λ ∪ {s},EΛ), and denote

TΛ = collection of spanning trees in GΛ,

RΛ = recurrent sandpiles in GΛ.

We first define a bijection between RΛ and TΛ that is an extension of the one considered

in [28].

Anchored bijection in finite Λ.

Let K = max{k ≥ 0 : Dk ⊂ Λ}. Fix η ∈ RΛ. Our definitions will depend on D,

but we will not always indicate this in our notation.

Phase 1. We apply the usual burning algorithm to η with the restriction that we

do not allow any vertex of DK to burn. That is, we define

B
(1)
0 := {s},

U
(1)
0 := Λ,

and for j ≥ 1 we inductively set:

B
(1)
j :=

{
v ∈ U

(1)
j−1 \DK : η(v) ≥ deg

U
(1)
j−1

(v)

}
,

U
(1)
j := U

(1)
j−1 \B

(1)
j .

We have B
(1)
j = ∅ eventually. Note that there may be vertices in Λ \DK that do not

burn in Phase 1. These vertices, together with the vertices in DK , will burn in later

phases.

Assuming Phase i − 1 has already been defined for some 2 ≤ i ≤ K + 1, we

inductively define Phase i as follows.

Phase i. We continue the burning algorithm on η with the restriction that no

vertex of DK−i+1 is allowed to burn. That is, we set

B
(i)
0 := ∪j≥0B

(i−1)
j ,

U
(i)
0 := Λ \B(i)

0 ,

and for j ≥ 1 we inductively set:

B
(i)
j :=

{
v ∈ U

(i)
j−1 \DK−i+1 : η(v) ≥ deg

U
(i)
j−1

(v)

}
,

U
(i)
j := U

(i)
j−1 \B

(i)
j .

23

Chapter 3. Anchored burning bijection.

We have B
(i)
j = ∅ eventually. Note that if i ≤ K, there may be vertices in Λ \DK−i+1

that do not burn in Phase i, only later.

Since η is recurrent, all vertices that did not burn in Phases 1, . . . ,K, do burn in

Phase K + 1 (if this was not true, we would have found a subset that is not ample for

η). Hence we have ∪j≥0B
(K+1)
j = Λ ∪ {s}

We now define a map ϕD,Λ : RΛ → TΛ. Regard GΛ as an oriented graph, with

each edge being present with both possible orientations. We fix for each v ∈ Λ a linear

ordering ≺v of the oriented edges e such that tail(e) = v. Given the burning of η as

above, we define what oriented edges will be present in the tree t = ϕD,Λ(η).

If v ∈ B
(i)
j for some 1 ≤ i ≤ K + 1 and j ≥ 1, then we place an oriented edge

pointing from v to some w ∈ B
(i)
j−1. In the case j = 1 such an edge exists, because v

must have a neighbour outside U
(i)
0 , and hence in B

(i)
0 . In the case of j ≥ 2 such an

edge also exists, because the requirement to burn v at step j implies that the degree

of v in U
(i)
j−1 is strictly smaller than its degree in U

(i)
j−2. Hence v has a neighbour in

B
(i)
j−1 = U

(i)
j−2 \ U

(i)
j−1. If there is more than one w ∈ B

(i)
j−1 neighbouring v, we make

the choice of the edge dependent on η(v), similarly to the usual burning bijection.

Formally, we let:

mv :=
∣∣∣
{
f : tail(f) = v, head(f) ∈

⋃

j′<j

B
(i)
j′

}∣∣∣,

Fv :=
{
e : tail(e) = v, head(e) ∈ B

(i)
j−1

}
.

Due to the burning rule, we have

η(v) = deg(v)−mv + ℓ for some 0 ≤ ℓ < |Fv |.

With ℓ as above, let ev ∈ Fv be that edge e such that |{f ∈ Fv : f ≺v e}| = ℓ. Then

we place the directed edge ev in t.

Once an edge has been included for each vertex in Λ the collection of edges that

give t is complete and so ϕD,Λ(η) is defined.

Lemma 3.4. For any η ∈ RΛ the collection of edges t (disregarding their orientations)

is a spanning tree of GΛ, and the map ϕD,Λ : η 7→ t is injective. Consequently, ϕD,Λ is

a bijection between RΛ and TΛ.

Proof. It is clear from the definitions that there are no cycles in t, since the sets B
(i)
j ,

are disjoint and “lexicographically ordered” by the indices (i, j) for 1 ≤ i ≤ K + 1,

j ≥ 1. In order to show injectivity, suppose that η1 6= η2. There is a first time (i, j)

in the burning processes of η1 and η2, where the “two processes differ”. That is, there

exists a lexicographically smallest (i, j) such that B
(i′)
j′ (η1) = B

(i′)
j′ (η2) for all i′ < i,

24

Chapter 3. Anchored burning bijection.

j′ ≥ 1 and for all i′ = i, j′ < j, and η1(v) = η2(v) for all elements v of these sets, but

there exists v ∈ B
(i)
j (η1) ∪B(i)

j (η2) such that η1(v) 6= η2(v).

It is easy to check that our definition of ϕD,Λ assigns different oriented edges emanating

from v for η1 and η2. Since all edges are oriented towards the sink, this implies that the

two trees also differ as unoriented trees, proving injectivity. Since RΛ and TΛ have the

same number of elements, namely det(∆) [11], it follows that ϕD,Λ is a bijection.

Given η ∈ RΛ, we define the burning time τD(x,Λ; η) as the index of the pair (i, j)

in the lexicographic order, where B
(i)
j ∋ x, 1 ≤ i ≤ K + 1, j ≥ 1 (we restrict to the

non-empty B
(i)
j ’s). Note that in general this differs from the graph distance of x from

s in the tree ϕD,Λ(η). This is because at Step 1 of Phase i, we may be connecting a

vertex v ∈ B
(i)
1 ∩ DK−i+2 to a vertex w that was not burnt in the last step of Phase

i− 1.

Given D ⊂ Λ and a spanning tree t of GΛ, we write desct(D) for the set of descen-

dants of D in t, that is, the collection of vertices w such that the path in t from w to

s has a vertex in D.

Lemma 3.5. For any finite Λ ⊂ V , 1 ≤ i ≤ K + 1, and η ∈ RΛ, the set of vertices

that did not burn by the end of Phase i are precisely the descendants of DK−i+1. That

is, we have U
(i+1)
0 = descϕD,Λ(η)(DK−i+1).

Proof. Observe that all vertices in B
(i+1)
1 are in DK−i+1, otherwise they could have

been burnt in Phase i. Since the oriented edges assigned by the bijection respect the

lexicographic order, and the orientation is towards the sink, this implies that all vertices

burnt in Phases i + 1, . . . ,K + 1 are in descϕD,Λ(η)(DK−i+1). On the other hand, if a

vertex v was burnt in one of the Phases 1, 2, . . . , i, then all vertices on the oriented path

from v to s were also burnt in one of these Phases, and hence v 6∈ descϕD,Λ(η)(DK−i+1).

This completes the proof.

We next formulate a consistency property between the sandpile configurations on

the sets descϕD,Λ(η)(Dk), k ≥ 1, that will help us to take the limit Λ ↑ V .

Definition 3.6. Given k ≥ 1 and a finite simply connected set W with Dk ⊂ W ⊂ V

and ∂Dk ∩ V 6= ∅, we define the graph G∗
W,k = (W ∪ {s},E∗

W,k) as follows. It contains

all the edges that W induces in the graph V , and for each edge e ∈ E that connects a

vertex u ∈ Dk with a vertex v ∈ V \W , there is an edge in E∗
W,k between u and s. Note

that there is a natural identification between E∗
W,k and a subset of E, and we will use

this identification freely in what follows.

Lemma 3.7. (i) Suppose Dk ⊂W ⊂ V with W simply connected. There is a mapping

ψW,k : TG∗

W,k
→ RG∗

W,k
such that whenever Λ ⊃W , t ∈ TΛ and W = desct(Dk) holds,

the restriction of the sandpile ϕ−1
D,Λ(t) to W equals ψW,k(tW,k),

25

Chapter 3. Anchored burning bijection.

where tW,k denotes the restriction of t to the edges in E∗
W,k.

(ii) Suppose Dk′ ⊂ Dk ⊂W . Let t ∈ TG∗

W,k
. If W ′ = desct(Dk′), then

the restriction of ψW,k(t) to W
′ is given by ψW ′,k′(tW ′,k′).

Proof. (i) Firstly observe that for every W there exists a t ∈ TΛ such that W =

desct(Dk). Write η = ϕ−1
D,Λ(t). Due to Lemma 3.5, the statement W = desct(Dk) is

equivalent to the statement that in the sandpile η, W is precisely the set of vertices

that did not burn in Phase K − k + 1. It is easy to check using the burning rules

that as η varies over all sandpiles with this property, the restriction ηW ranges over

RG∗

W,k
, and tW,k is a spanning tree of G∗

W,k. It follows from our definition of Phases

K−k+2, . . . ,K+1 of the anchored bijection that tW,k is entirely determined by ηW , in

a way independent of Λ. The map ηW 7→ tW,k is injective, and since |RG∗

W,k
| = |TG∗

W,k
|

it is bijective. Hence ψW,k can be defined as the inverse of this map.

(ii) This follows similarly to part (i), because if Λ ⊃W and η is as in part (i), then

the restriction of ηW to W ′ is ηW ′ .

We are now ready to extend the bijection to G.

Anchored bijection on G.

Observe that for every t ∈ T and v ∈ V there is a unique infinite path in t starting

at v. Hence for any finite D ⊂ V , we can define desct(D) as those vertices for which

the infinite path starting at v has a vertex in D.

Given t ∈ T , for every k ≥ 1 let Wk = desct(Dk). Observe that due to the one-end

property (2.1) of elements of T , Wk is finite for all k ≥ 1, WSFa.s. Denote by tWk,k

the restriction of t to the edges in E∗
Wk,k

. Due to Lemma 3.7(ii), the configurations

ψWk,k(tWk,k) consistently define a stable configuration η on V . This η will be an

element of R, because for any finite F ⊂ V there exists k ≥ 1 such that Dk ⊃ F , and

ψWk,k(tWk,k) = ηWk
is ample for F . We denote the configuration obtained by ψD(t), so

ψD : T → R.

Remark 3.8. Whenever Λ ⊃ Wk = desct(Dk), we have the following property. If we

start burning ψD(t)|Λ with the restriction that no vertex of Dk is allowed to burn, then

the set of vertices that cannot be burnt is exactly Wk. This follows by considering the

burning process in some Wk′ ⊃ Λ.

Lemma 3.9. The map ψD is injective and continuous.

Proof. Suppose that t1, t2 ∈ T such that ψD(t1) = ψD(t2). Let us denote W
(1)
k =

desct1(Dk) and W
(2)
k = desct2(Dk), and let Λ = W

(1)
k ∪W (2)

k . By Remark 3.8, if we

start the burning process on ψD(t1)|Λ = ψD(t2)|Λ in Λ (with the restriction that Dk is

not allowed to burn), then the set of vertices that do not burn equals both W
(1)
k and

W
(2)
k . In particular, these sets are equal, that is, W

(1)
k =W

(2)
k . Denoting their common

26

Chapter 3. Anchored burning bijection.

value by Wk, we have

ψWk,k(t1|E∗

Wk,k
) = ψD(t1)|Wk

= ψD(t2)|Wk
= ψWk,k(t2|E∗

Wk,k
).

Hence t1 equals t2 on E∗
Wk,k

. Since k is arbitrary, it follows that t1 = t2, and therefore

ψD is injective.

In order to see continuity, fix t ∈ T , let η = ψD(t), and let k ≥ 1 be fixed. Let

Wk = desct(Dk). Suppose that t′ ∈ T has the property that t′ agrees with t on all

edges in E that have an end vertex in Wk. Then it follows that desct′(Dk) = Wk, and

t′Wk,k
= tWk,k. Therefore

ψD(t′)|Wk
= ψWk,k(t

′
Wk,k

) = ψWk,k(tWk,k) = ψD(t)|Wk
.

Since k ≥ 1 is arbitrary, Wk ⊃ Dk and ∪k≥1Dk = V , this implies that for all M > 0

there exists Λ such that if t1 equals t2 on Λ then ψcD(t1)|DM
= ψD(t2)|DM

.

The following lemma follows directly from the proof of [28, Theorem 3]. We provide

a sketch of the proof for the reader’s convenience.

Lemma 3.10. The image of WSF under ψD equals ν = limΛ↑V νΛ.

Sketch of the proof. Let E be a cylinder event that only depends on the sandpile heights

in Dk for some k ≥ 1. For any Λ ⊃ Dk, let WΛ,k be the random set of vertices that

are unburnt just before the phase in which we first allow vertices in Dk to burn, that

is, U
(K−k+2)
0 . Due to Lemma 3.5, WΛ,k also equals the set of descendants of Dk in

ψ−1
D,Λ(ηΛ), where ηΛ is the sandpile configuration in Λ. Recall the auxiliary graph G∗

W,k

from Definition 3.6. Due to the proof of Lemma 3.7(i), for any fixed set Dk ⊂W ⊂ Λ,

the conditional distribution of ηW , given the event {WΛ,k = W} is given by νG∗

W,k
.

Hence, conditioning on the value of WΛ,k, we have:

νΛ(E) =
∑

Dk⊂W⊂Λ

νΛ(WΛ,k =W)νG∗

W,k
(ηW ∈ E). (3.3)

Note that, in the notation of Lemma 3.7, we have

νG∗

W,k
(ηW ∈ E) = USTG∗

W,k
(t : ψW,k(t) ∈ E)

= WSF(t : ψW,k(tW,k) ∈ E |desct(Dk) =W)

= WSF(t : ψD(t) ∈ E |desct(Dk) =W).

In particular, this probability does not depend on Λ. We also have

lim
Λ↑V

νΛ(WΛ,k =W) = lim
Λ↑V

USTΛ(t : desct(Dk) =W) = WSF(t : desct(Dk) =W).

This is because for a fixed finite setW , the event desct(Dk) =W is spanning-tree-local:

it only depends on the status of the edges in E∗
W,k. Finally, note that due to the one-end

27

Chapter 3. Anchored burning bijection.

property (2.1) the family {WΛ,k : Λ ⊃ Dk} is tight, in the sense that

lim
M→∞

sup
Λ⊃DM

USTΛ(t : desct(Dk) 6⊂ DM) = 0.

This allows us to pass to the limit in (3.3) and obtain

lim
Λ↑V

νΛ(E) = ν(E)

=
∑

W :W is finite
W⊃Dk

WSF(t : desct(Dk) =W)WSF(ψD(t) ∈ E |desct(Dk) =W)

= WSF(t : ψD(t) ∈ E).

Lemmas 3.9, 3.10 imply Theorem 3.2.

Our final lemma shows the coupling property (3.2).

Lemma 3.11. Fix o ∈ D1. For any t ∈ T and x ∈ V the limit

lim
Λ↑V

[
τD(x,Λ;ψD(t)) − τD(o,Λ;ψD(t))

]
=: τD(x; η) ∈ (Z,Z)

exist.

Proof. Let k ≥ 1 be the smallest index such that x ∈ Dk, let W = desct(Dk), and

suppose that Λ ⊃ W . Due to Remark 3.8, for any such Λ the last k + 1 phases of the

burning of ηΛ have identical history. This implies the claim.

3.3 Rate of convergence in Z
d, d ≥ 3.

Henceforth we consider the graphs G = Z
d, and in this section we assume d ≥ 3. Let

Dk be the intersection of the Euclidean ball of radius k about the origin with Z
d.

Let Λ ⊂ Z
d be finite. We consider the realizations of WSF and USTGΛ

via stacks

of arrows, as introduced in chapter 2. Recall the notation we defined there.

Define P as the underlying probability measure for the stacks of arrows. An oriented

cycle C in Z
d is associated the weight w(C) = (2d)−|C|, where |C| denotes the number

of arrows in C. Sometimes we will need to consider coloured cycles, that is, a cycle

consisting of some arrows ev1i1 , . . . , e
vr
ir
. We will again use bold characters, like C, to

denote coloured cycles. In this case, C will denote the cycle obtained fromC by ignoring

the colours.

Also recall that we described how Cycle popping can be made sense of in transient

graphs. Here we will need the following alternative way of popping cycles in Z
d:

first pop all cycles contained in D1, then pop all cycles contained in D2, etc. (3.4)

28

Chapter 3. Anchored burning bijection.

Wilson’s proof for finite graphs [50], stated here as Lemma 2.3, can be adapted to

show that on the probability 1 event when T is a well-defined sample from WSF, the

procedure (3.4) reveals exactly the same forest T as the more standard algorithm that

was presented in subsection 2.2. In particular, for any finite Λ ⊂ Z
d, cycle popping

in Λ also terminates with probability 1, resulting in a spanning tree TΛ, distributed

according to USTGΛ
. Thus, using the same stacks of arrows for cycle popping in Λ and

in Z
d provides the required coupling of WSF and USTGΛ

.

Given a cylinder event E ⊂ {0, . . . , 2d − 1}Dk only depending on sandpile heights

in Dk, let us write EZd = {T : ψD(T) ∈ E} and EΛ = {TΛ : ψD,Λ(TΛ) ∈ E}. We have

P(EΛ) = νΛ(E), due to Lemma 3.4 and P(EZd) = ν(E), due to Lemma 3.10.

Theorem 3.12. Let E be a cylinder event depending only on the sandpile heights in

Dk. Let d ≥ 3, let Λ ⊂ Z
d be a finite set and let N be the radius of the largest ball

centred at the origin that is contained in Λ. We have

|νΛ(E)− ν(E)| ≤ P(EΛ∆EZd) ≤

Cdk
d−1N

2−d
2d if d ≥ 5;

Ck26/9N−2/9 if d = 4;

Ck25/13N−1/13 if d = 3.

Here ∆ denotes symmetric difference.

The proof is broken down into a number of propositions and lemmas. Let us write

Wk for the random set of descendants of Dk in T ,

Proposition 3.13. Suppose d ≥ 3, 1 ≤ k < n < N , and Λ ⊃ DN . Let E∗
W,k be as

defined in Definition 3.6, then there is a constant Cd > 0, which depends only on d,

such that

P

(
Wk ⊂ Dn but Wk 6=Wk,Λ or T |E∗

W,k
6= TΛ|E∗

W,k

)
≤ Cd

kd−2n2

(N − n)d−2
. (3.5)

Proof. If we successively pop all cycles in Dn, then in Dn+1, then in Dn+2, etc., then

we see that P-a.s. on the event Wk ⊂ Dn we have Wk,Λ′ = Wk and T |E∗

W,k
= TΛ|E∗

W,k

for all large enough finite Λ′. Therefore, it is enough to show that for all finite Λ′ ⊃ Λ

we have

P

(
Wk,Λ′ ⊂ Dn but Wk,Λ′ 6=Wk,Λ or TΛ′ |E∗

W,k
6= TΛ|E∗

W,k

)
≤ Cd

kd−2n2

(N − n)d−2
, (3.6)

with Cd independent of Λ, Λ′.

In order to prove (3.6), we first pop all cycles we can that are contained in Λ.

This leaves on top of the stacks in Λ the wired spanning tree TΛ of GΛ. Let L denote

the collection of remaining coloured cycles contained in Λ′ that need to be popped in

order to obtain the wired spanning tree TΛ′ in Λ′. For convenience, the cycles in L are

regarded as having colours according to their current positions in the stacks, i.e. after

29

Chapter 3. Anchored burning bijection.

all cycles contained in Λ have been popped. We claim that the probability distribution

of L is proportional to total weight and that L is independent of the wired spanning

tree TΛ′ in Λ′, that is:

P(L = {C1, . . . ,CK}, TΛ′ = tΛ′) = USTGΛ′
(tΛ′)

1

Z

K∏

j=1

w(Cj), (3.7)

where Z is a normalization factor. Indeed, we show that this follows from Wilson’s

theorem [50]. Let us write L0
Λ, respectively L0

Λ′ , for the collection of coloured cycles

contained in Λ, respectively Λ′, that we need to pop in order to reveal TΛ, respectively

TΛ′ . Then L is a deterministic function of L0
Λ′ (recall that the colours of cycles in L are

according to their positions acquired after cycle popping in Λ is complete). By Wilson’s

theorem, TΛ′ is independent of L0
Λ′ , and hence of L, and is distributed according to

USTGΛ′
. Therefore, the left hand side of (3.7) equals

USTGΛ′
(tΛ′)P(L = {C1, . . . ,CK}).

In order to show that the second factor is proportional to weight, first observe that L0
Λ′

and the pair (L0
Λ,L) are deterministic functions of each other. We show that L0

Λ and L

are independent. This is because, using Wilson’s Theorem again, L0
Λ, TΛ, the stacks of

arrows beneath TΛ, and the stacks of arrows in Λ′ \ Λ are mutually independent, and

L is a deterministic function of the latter three. We have

P(L0
Λ = {C0

1, . . . ,C
0
K0}, L = {C1, . . . ,CK}) = 1

Z0
Λ′

×
K0∏

ℓ=1

w(C0
ℓ)×

K∏

j=1

w(Cj).

Summing over all instances of L0
Λ, the independence of L0

Λ and L implies

P(L = {C1, . . . ,CK}) = 1

Z

K∏

j=1

w(Cj).

This proves the claim made in (3.7)

We introduce a partial order on elements of L as follows: we say that C ≺ C′, if

there exist j ≥ 1 and a sequence of coloured cycles C = Cj,Cj−1, . . . ,C0 = C′ all in

L, such that for each 1 ≤ r ≤ j, the coloured cycles Cr−1 and Cr share at least one

vertex whose colour in Cr is one greater than its colour in Cr−1. The meaning of the

relation ≺ is the following:

C ≺ C′ ⇐⇒ regardless of the order of popping, C′ is popped before C.

(3.8)

(Recall that the set L does not depend on the order of popping.) The direction =⇒ of

this equivalence is immediate from the definition of ≺. To see the ⇐= direction, let us

pop every cycle we can without popping C′. This does not reveal C. Now pop C′, and

30

Chapter 3. Anchored burning bijection.

note that any cycle that is revealed as a result of poppingC′ necessarily shares a vertex

with C′. Popping further cycles it holds that any cycle that is revealed has a chain of

cycles leading to C′. In particular, C must have this property. The equivalence (3.8)

makes it clear that ≺ is a partial order on L.

We apply a parallel popping procedure to reveal L, defined in stages. In each stage,

we pop all cycles on top of the stacks, simultaneously. If the event on the left hand

side of (3.6) occurs, we pop some cycle that intersects W := Wk,Λ′ ∪ ∂Wk,Λ′. Indeed,

if we never popped any such cycles, then the arrows attached to all the vertices in W

would have the same direction as they had in TΛ, which would force Wk,Λ′ = Wk,Λ

and TΛ′ |E∗

W,k
= TΛ|E∗

W,k
. Let us select, according to some fixed arbitrary rule, a cycle

D1 ∈ L such that D1 ∩W 6= ∅ and a vertex w ∈ D1 ∩W . Let

M := {D ∈ L : D � D1}. (3.9)

Observe that M can be popped from L (without popping any other cycles), since by

construction, M is closed under domination in the partial order ≺. Define L̃ to be the

collection of coloured cycles left after popping M from L.

Lemma 3.14. The map L 7→ (M, L̃) is injective.

Proof. This immediately follows from the definition of the map.

We are going to join the cycles in M into a single loop γ in Z
d, and then bound

the probability of the possible arising loops in Lemma 3.16 below. Note that by the

definition of M, the arrow at w on the top of its stack is included in a loop that we

want to pop. There is also a unique edge in D1 directed towards w, label this edge as

eD1 . We set γ(0) = w. We define γ by following the arrows, starting with the one on

the top of the stack of w, and whenever we visit a vertex v for the i-th time, we use

the i-th coloured arrow at v. The walk stops when it uses the edge eD1 . We call γ the

loop associated to M. The purpose of the next lemma is to show that γ is well-defined

and the map M → γ is injective.

Lemma 3.15. Let W ⊂ Dn be a fixed set and let w ∈ ∂W be a fixed vertex. Suppose

that L is a collection of coloured cycles that can be popped, and D1 ∈ L has the property

that w ∈ D1 ∩ (W ∪ ∂W), with eD1 the unique edge in D1 directed towards w. Let M

be defined by formula (3.9). Then we have:

(i) The loop associated to M is well-defined in that the walk does return to w.

(ii) Every coloured edge in M is used exactly once by the loop.

(iii) The map M 7→ γ is injective.

Proof. (i), (ii) We prove the two statements together by induction on the number of

cycles in M. If M consists of the single cycle D1, the statements are trivial. Otherwise,

consider the first time we return to a vertex v that we visited before. Then the cycle

just found, D, say, is necessarily on top of the stacks and D 6= D1, in particular eD1

31

Chapter 3. Anchored burning bijection.

has not been used. Also, since the walk starts with an arrow belonging to a cycle in

M, it is easy to see that D ∈ M. Now pop D, and define L′, M′, D′
1 by moving the

arrows in the stacks of the vertices of D up by one (and removing the arrows in D).

Observe that L′, M′, D′
1 also satisfy the hypotheses of the Lemma, so by the induction

hypothesis, the walk γ′ defined by M′ visits each arrow of M′ exactly once. Hence

inserting into γ′ the cycle D at v we get the walk γ defined by M. This implies the

statements (i) and (ii).

(iii) This follows from the fact that by construction, following the history of the

loop-erasure process on γ (started at w) the loops erased are precisely the loops in

M.

We continue with the proof of Proposition 3.13. We bound the left hand side of

(3.6) from above as follows. Let Π denote the class of all sets of coloured loops that are

possible values of L. Let Γw denote the collection of loops in Z
d that start and end at

w and visit Λc. Let Γw,Λ′ denote those loops in Γw that stay inside Λ′. By the stated

independence of the spanning tree in Λ′ and L, we have

P

(
Wk,Λ′ ⊂ Dn and Wk,Λ′ 6=Wk,Λ or TΛ′ |E∗

W,k
6= TΛ|E∗

W,k

)

≤
∑

W⊂Dn

µΛ′(Wk,Λ′ =W)
1

Z

∑

L∈Π:∃D1∈L,
D1∩∂W 6=∅

∏

C∈L
w(C). (3.10)

We fix W , and estimate the sum over L. To every L occurring in the sum, we have

associated (by our arbitrary rule), a choice of w ∈ ∂W and M ⊂ L containing w. This

M, in turn determines a loop γ based at w. Observe that

∏

C∈L
w(C) =

∏

D∈M
w(D)×

∏

C̃∈L̃

w(C̃) = w(γ) ×
∏

C̃∈L̃

w(C̃).

Hence, using the injectivity statements in Lemma 3.14 and Lemma 3.15(iii), the last

three terms in the right hand side of (3.10) is at most

1

Z

∑

w∈∂W

∑

γ∈Γw,Λ′

w(γ)
∑

L̃∈Π

∏

C̃∈L̃

w(C̃) ≤
∑

w∈∂W

∑

γ∈Γw,Λ′

w(γ)

≤
∑

w∈∂W

∑

γ∈Γw

w(γ).
(3.11)

Lemma 3.16. For any w ∈ Dn, we have

∑

γ∈Γw

w(γ) ≤ Cd

(N − n)d−2
. (3.12)

Proof. The weight of a loop is equal to the probability of each step present occurring.

Therefore the sum of the weights over loops Γw equals the sum of the probabilities of

32

Chapter 3. Anchored burning bijection.

random walk paths that start and end at w and exit Λ. Letting Sv denote a simple

random walk started at time 0 at v and let ξN be the first exit time of DN we get

∑

γ∈Γw

w(γ)

=
∑

m≥0

∑

z∈∂DN

∑

r>m

P(ξN = m, Sw(m) = z)P(Sw(r) = w, | ξN = m, Sw(m) = z)

=
∑

m≥0

∑

z∈∂DN

P(ξN = m, Sw(m) = z)
∑

r>0

P(Sz(r) = w)

=
∑

m≥0

∑

z∈∂DN

P(ξN = m, Sw(m) = z)G(z, w)

≤ Cd

(N − n)d−2

∑

m≥0

∑

z∈∂DN

P(ξN = m, S(m) = z)

=
Cd

(N − n)d−2
.

Here G(z, w) is Green’s function, see [35, Section 4.3] for a proof of the bound on

G(z, w).

Inserting (3.12) and (3.11) into (3.10) we get

P

(
Wk,Λ′ ⊂ Dn and Wk,Λ′ 6=Wk,Λ or TΛ′ |E∗

W,k
6= TΛ|E∗

W,k

)

≤
∑

W⊂Dn

µΛ′(Wk,Λ′ =W)
1

Z

∑

L∈Π:∃D1∈L,
D1∩∂W 6=∅

∏

C∈L
w(C)

≤
∑

W⊂Dn

µΛ′(Wk,Λ′ =W)
∑

w∈∂W

∑

γ∈Γw

w(γ)

≤
∑

W⊂Dn

µΛ′(Wk,Λ′ =W)
∑

w∈∂W

Cd

(N − n)d−2

≤ Cd

(N − n)d−2

∑

W⊂Dn

µΛ′(Wk,Λ′ =W)|∂W |

≤ Cd

(N − n)d−2
EµΛ′

[
|∂Wk,Λ′ | :Wk,Λ′ ⊂ Dn

]

≤ Cd

(N − n)d−2
EµΛ′

[
|Wk,Λ′ | : Wk,Λ′ ⊂ Dn

]
.

(3.13)

We estimate the right hand side in the last equation in the following lemma.

Lemma 3.17. We have

EµΛ′

[
|Wk,Λ′ | :Wk,Λ′ ⊂ Dn

]
≤ Cdk

d−2n2.

Proof. By considering running Wilson’s algorithm, as described in Section 2.2, with the

first walk starting from x it follows that that the probability that a vertex x ∈ Dn \Dk

is in Wk,Λ′ is at most the probability that a simple random walk started at x hits Dk.

33

Chapter 3. Anchored burning bijection.

This is bounded by Cdk
d−2/|x|d−2. Summing over x ∈ Dn gives

EµΛ′

[
|Wk,Λ′ | :Wk,Λ′ ⊂ Dn

]
≤ |Dk|+ EµΛ′

[
|Wk,Λ′ ∩ (Dn \Dk)|

]

≤ Cdk
d + Cdn

2kd−2

≤ Cdn
2kd−2.

The above lemma and (3.13) completes the proof of Proposition 3.13.

Proposition 3.18. Suppose d ≥ 3. Then for all k > 0 there exits a sufficiently large

n such that

P(Wk 6⊂ Dn) ≤ Cdk
d−1n

2−d
2d .

We prove this proposition by extending the argument of [38, Theorem 4.1], that

requires a couple of alterations.

Proof. Condition on the event that the restriction of the uniform spanning forest to

Dk, denoted T |Dk
, is a fixed forest K. Let Kj , j = 1, 2, . . . denote the connected

components of K. Then

P(desc(Dk) 6⊂ Dn |T |Dk
= K) = P

(
∪j

{
desc(Kj) 6⊂ Dn

} ∣∣T |Dk
= K

)

≤
∑

j

P(desc(Kj) 6⊂ Dn |T |Dk
= K).

In order to deal with the summand in the last expression, we need to generalize [38,

Lemma 3.2]. Given a graph G, and V a subset of the vertices, we denote by G/V

the graph obtained from G by identifying all the vertices in V to a single vertex and

removing loop-edges.

Lemma 3.19. Let G be a finite graph containing Dk as a subgraph and s a vertex

of G with s 6∈ Dk. Let TK denote the uniform spanning tree of G conditioned on its

restriction to Dk being K. Let Lj(TK) denote the unique path from Kj to s in TK .

Then on the set of edges not belonging to Kj , the graph TK \ Lj(TK) is stochastically

dominated by the uniform spanning tree of G/(Kj ∪{s}), conditioned on the event that

its restriction to Dk/Kj equals K/Kj .

Proof. First we further condition on Lj(TK) = L. Note that under this conditioning,

TK \ L has the same distribution as the uniform spanning tree of G/Vert(L) given K,

where Vert(·) denotes the vertex set of a graph. By the negative association theorem

of Feder and Mihail [14], [37, Chapter 4], conditioning on an edge being present makes

the remaining set of edges stochastically smaller. As Vert(L) contains both Kj and s

we can repeatedly apply this result to deduce that on the edges not belonging to Kj∪L
the set of edges TK \ L is dominated by the uniform spanning tree of G/(Kj ∪ {s})

34

Chapter 3. Anchored burning bijection.

given K/Kj . We can now average over all possible paths L = Lj(TK) to remove this

part of the conditioning and get the stated lemma.

We will use the following corollary of Lemma 3.19 that can be deduced by taking

weak limits. Let FK,j denote the wired spanning forest conditioned on K with Kj wired

to infinity (defined as the weak limit of uniform spanning trees conditioned on K with

Kj wired to the sink).

The set of descendants of Kj in the wired uniform spanning forest conditioned

on K is stochastically dominated by the connected component of Kj in FK,j.

The rest of the proof follows an outline similar to the proof of [38, Theorem 4.1].

We define edge sets E1 ⊂ E2 ⊂ . . . as follows. Let E0 = Kj . Assuming En has been

defined, let Sn be the set of vertices of the connected component of FK,j∩En containing

Kj . If all edges incident with Sn are in En, we set En+1 = En. If not, let e be an edge

incident with Sn that minimizes min{r : e ⊂ Br}, where Br = {x ∈ Z
d : ‖x‖∞ ≤ r},

and set

En+1 :=

En ∪ {e} if e does not connect Sn with a component Ki, i 6= j;

En ∪ {e} ∪Ki if e connects Sn with Ki.

When in the above En ⊂ Br−1, i.e. a new part of the anchor is visited by the process,

we make the further requirement that e be the edge along which the unit current flow

from Sn to ∞ is maximal.

Let Mn be the effective conductance from Sn to ∞ in the complement of En, with

the end points of edges of K identified and any loops erased:

Mn := C(Sn ↔ ∞ in (Zd/K) \ En).

Then by [38, Lemma 3.3], [43, Theorem 7], (Mn)n≥0 is a martingale with respect to

the filtration Fn generated by En, Fj,K ∩En.

The M0 term is no longer constant, as in the original proof. Nevertheless, the

argument of [38, Theorem 4.1] gives:

P(desc(Kj) 6⊂ Dn |T |Dk
= K) ≤ Cdn

2−d
2d M0(Kj)

We now bound M0(Kj) still with the conditioning that on Dk we have the forest K.

Therefore we can work on the graph produced by deleting any edges from Dk that

do not appear in K and contracting each component of K to a distinct vertex. By

definition, the effective conductance from Kj to ∞ is the infimum of the energy of

functions that are zero on Kj and one except on finitely many vertices. Therefore

consider the function defined by g(v) = 0 if v ∈ Kj and one otherwise. This is clearly a

35

Chapter 3. Anchored burning bijection.

valid function with regards to the infimum and will have energy equal to the number of

edges connected to Kj . As all edges in Dk that are not present in K have been deleted

and Kj is a connected component of K, the only edges will be those connected to Kj

from the outside of Dk. An upper bound for M0(Kj) is therefore provided by the size

of this set which is at most Cd|∂Dk ∩Kj |.
Summing over the connected components, and using the fact that the Kj’s are

disjoint and cover all of Dk, we get

∑

j

M0(Kj) ≤ Cd|∂Dk| ≤ Cdk
d−1.

Then as this bound is independent of K we can average over all possible K to get the

unconditioned result:

P(desc(Dk) 6⊂ Dn) ≤ Cdn
2−d
2d kd−1.

This completes the proof of Proposition 3.18.

Proof of Theorem 3.12. If Wk = Wk,Λ and T and TΛ agree on E∗
W,k, then ψD and

ψD,Λ will produce the same sandpile configuration on Dk. Therefore to bound the

difference of the measures on any cylinder event E defined on Dk it suffices to bound

the probability that the descendants in the spanning trees differ, or the trees differ on

that set of descendants.

|ν(E)− νΛ(E)| ≤ P(EZd∆EΛ)

≤ P

(
Wk 6=Wk,Λ or T |E∗

W,k
6= TΛ|E∗

W,k

)

≤ P

(
Wk ⊂ Dn but Wk 6=Wk,Λ or T |E∗

W,k
6= TΛ|E∗

W,k

)
+ P(Wk 6⊂ Dn)

≤ Cd
kd−2n2

(N − n)d−2
+ Cdk

d−1n
2−d
2d .

(3.14)

The final step follows from applications of Propositions 3.13 and 3.18.

We now optimise the choice of n. We may assume N ≥ 2n, in which case (N −
n)d−2 ≥ cdN

d−2.

When d ≥ 5, we take n = 1
2N , which gives the bound Cdk

d−1N
2−d
2d .

When d = 4, the two terms in the right hand side of (3.14) are of the same order

if n = k4/9N8/9. This gives the bound Ck26/9N−2/9.

When d = 3, we take n = k6/13N6/13. This yields the bound Ck25/13N−1/13.

36

Chapter 3. Anchored burning bijection.

3.4 Rate of convergence in Z
2.

In this section we bound the rate of convergence on Z
2 in Theorem 3.20 below. As was

the case for d ≥ 3, the result will follow directly from the bijections and a bound on

the probability that, in a suitable coupling, the descendants of Dk in Z
2 differ from

those in Λ. This bound is given in Proposition 3.21. Due to recurrence, we cannot

use Wilson’s method rooted at infinity, so the construction of the coupling is more

involved. Write G = (Λ ∪ {s},EΛ) for the graph on which the sandpile is defined.

Recall that given a cylinder event E determined by the sandpile heights in Dk, we

write EZ2 = {T : ψD(T) ∈ E} and EΛ = {TΛ : ψD,Λ(TΛ) ∈ E}, where T is a sample

from WSF and TΛ is a sample from USTG.

Theorem 3.20. Let E be a cylinder event determined by the sandpile heights in Dk,

and let Λ ⊂ Z
2 be a finite set. Let N be the largest integer such that DN ⊂ Λ. Given

ε > 0, there is a constant C = C(ε) > 0 and a coupling P = PΛ,k,ε of T and TΛ, such

that in this coupling we have

|ν(E)− νΛ(E)| ≤ P(EZ2∆EΛ) ≤ C
k5/32

N1/16−ε
.

We will write Wk, respectively Wk,Λ, for the set of descendants of Dk in T , respec-

tively TΛ. Then Theorem 3.20 follows immediately from the following proposition.

Proposition 3.21. For any k, ε > 0 there exists Λ′ such that for all Λ ⊃ Λ′, with

N being the largest integer such that DN ⊂ Λ then there exists C = C(ε) > 0 and a

coupling P = PΛ,k,ε of T and TΛ such that in this coupling

P (Wk 6=Wk,Λ or T and TΛ differ on some edge touching Wk) ≤ C
k5/32

N1/16−ε
.

The coupling will be achieved by passing to the planar dual graphs. The idea is

to construct paths in the dual tree that together surround Dk in such a way that all

descendants of Dk are necessarily in the interior of the region defined by the paths.

Then it will be sufficient to couple the dual trees in the interior of that region.

Let G∗ = (Λ∗,E∗
Λ) denote the planar dual of G. The vertex set Λ∗ is naturally

identified with a subset of the dual lattice (Z2)∗ = Z
2 + (1/2, 1/2). The planar graph

G∗ has one unbounded face: the face corresponding to the sink s via duality. The dual

spanning tree T ∗
Λ is defined on G∗, by including a dual edge e∗ in T ∗

Λ if and only if the

corresponding edge e is not in TΛ. Then T ∗
Λ is a sample from USTG∗ (i.e. with free

boundary conditions). It is well known that as Λ ↑ Z
2, the measure USTG∗ converges

weakly to the free spanning forest measure FSF, which for Z
2 coincides with WSF

[44, 37]. Let T ∗ denote a sample from this measure on the graph (Z2)∗. We refer to

paths in Z
2 as primal paths, and paths in (Z2)∗ as dual paths. Let o∗ be the dual

vertex o+ (1/2, 1/2) ∈ (Z2)∗, where o is the origin in Z
2. For any m ≥ 0 we define the

37

Chapter 3. Anchored burning bijection.

balls in the dual graph:

D∗
m := {w ∈ (Z2)∗ : |w − o∗| ≤ m}.

The construction of the coupling is broken down into a sequence of steps, and the

required estimates stated as lemmas. We collect the estimates at the end and prove

Proposition 3.21. The integers ℓ ≥ 1 and k < n < r < R < N will be parameters that

we choose at the end to optimize the bound.

Step 1. Coupling the backbones inside D∗
r . We will need to work with fixed

“backbones” in our trees. Since T ∗ has one end WSF-a.s., there is a unique infinite

path γ∗ in T ∗ that starts at o∗. We call γ∗ the backbone of T ∗. The free spanning tree

on Λ∗ does not have a unique backbone (there are typically several paths from o∗ to the

boundary of Λ∗). Therefore, we will first work with the wired boundary condition in

the dual graph, i.e. we consider the graph G̃∗ = (Λ∗ ∪{s∗}, Ẽ∗
Λ) obtained by connecting

each vertex in Λ∗ to s∗ by as many edges as it needs, for its degree to be 4. Then we

will compare USTG̃∗ to USTG∗ using the well known monotone coupling between them

[44, 37]. Let T̃ ∗
Λ denote a sample from USTG̃∗ . Let γ

∗
Λ denote the unique path between

o∗ and s∗ in T̃ ∗
Λ. We call γ∗Λ the backbone of T̃ ∗

Λ.

We fix a coupling between γ∗ and γ∗Λ that maximizes the probability that their

first ℓ steps are identical. The next lemma collects some LERW estimates from the

literature that we use to estimate the probability that the restrictions of γ∗Λ and γ∗ to

the ball D∗
r differ from each other.

Lemma 3.22. (i) There exists a constant C > 0 such that for all ℓ <
√
N , we have

P(first ℓ steps of γ∗ and γ∗Λ are not identical) ≤ C
ℓ2

N
ln

(
N

ℓ

)
.

(ii) There exists a constnat C > 0 such that if R > 4r, we have

P(γ∗Λ returns to D∗
r after its first exit from D∗

R) ≤ C
r

R

and

P(γ∗ returns to D∗
r after its first exit from D∗

R) ≤ C
r

R
.

(iii) For all ε > 0 there exists M > 0 such that for all R > M we have that

E[number of steps of γ∗ until first exit from D∗
R] = R

5
4
+ε

(iv) For all λ, ε > 0, N > 4R we have that there exist C(ε), C1, C2 > 0 such that

P(number of steps of γ∗Λ until first exit from D∗
R > λC(ε)R

5
4
+ε) ≤ C1e

−C2λ.

Remark 3.23. Note that in contrast with [35, Proposition 11.3.1], the above bounds

38

Chapter 3. Anchored burning bijection.

give us power law (rather than logarithmic) control on the errors, since we are free to

discard a collection of “bad paths” in D∗
r of small probability on which convergence to

the infinite LERW would be much slower.

Proof of Lemma 3.22. (i) The statement follows from [33, Proposition 7.4.2]. Note that

although the exact statement is not present in the reference, it immediately follows from

the proof presented there.

(ii) This is [5, Lemma 2.4].

(iii) This result was first shown by Kenyon [30] (stated there in the upper half

plane). It also follows by combining [4, Proposition 6.2(2)] and [42, Theorem 5.7].

(iv) This follows from [4, Corollary 3.4], [4, Theorem 5.8(4)] and part (iii).

The next lemma puts the above estimates together and bounds the probability that

the restrictions of γ∗Λ and γ∗ to the ball D∗
r are not identical.

Lemma 3.24. There exist constants C,C(ε), C1, C2 > 0 such that for all λ, ε > 0, and

sufficiently large N , with N > 4R > 16r, we have that

P(γ∗Λ ∩D∗
r 6= γ∗ ∩D∗

r) ≤ C
λ2C(ε)2R

5
2
+2ε

N
ln

(
N

λC(ε)R5/4+ε

)
+ C1 exp(−C2λ) + 2C

r

R

Proof. Let F1 be the event that the first ℓ steps of γ∗ and γ∗Λ coincide, the event

maximized by our choice of coupling. We therefore need to choose ℓ appropriately to

get the desired result.

Let F2 be the event that the length of γ∗Λ until first exit of D∗
R is less than ℓ.

Let F3 be the event that neither γ∗Λ nor γ∗ return to D∗
r after their first exits from

D∗
R.

On the event F2 ∩ F3, we have that the first ℓ steps of γ∗Λ includes γ∗Λ ∩D∗
r . If F1

also occurs, then we have γ∗Λ ∩D∗
r = γ∗ ∩D∗

r . We choose ℓ = λC(ε)R5/4+ε. By Lemma

3.22(i),(iv),(ii) we have

P(γ∗Λ ∩D∗
r 6= γ∗ ∩D∗

r)

≤P(F c
1) + P(F c

2) + P(F c
3)

≤Cλ
2C(ε)2R

5
2
+2ε

N
ln

(
N

λC(ε)R5/4+ε

)
+C1 exp(−C2λ) + 2C

r

R
.

Step 2. Constructing the dual paths that surround D∗
k. On the event

γ∗Λ ∩ D∗
r 6= γ∗ ∩ D∗

r , we extend the coupling of γ∗Λ and γ∗ to a coupling of WSF and

USTG̃∗

Λ
in an arbitrary way. (For example: make them conditionally independent given

the backbones.) On the event γ∗Λ ∩D∗
r = γ∗ ∩D∗

r , we extend the coupling via Wilson’s

stacks of arrows construction. For each x ∈ D∗
r \ γ∗, we assign identical stacks for the

constructions in Λ∗ and (Z2)∗, respectively. For all other vertices, the stacks in Λ∗ are

39

Chapter 3. Anchored burning bijection.

assigned independently from those in (Z2)∗. This defines a coupling of WSF and UST
G̃∗

on (Z2)∗.

We now construct the required set of dual paths. Write γ∗r for the portion of γ∗ up

to its first exit from D∗
r .

Definition 3.25. By a block, we mean a set U of dual edges with the properties:

(i) U ⊂ D∗
n \D∗

k;

(ii) U ∪ γ∗r is a connected set of edges;

(iii) the set of vertices of U ∪ γ∗r disconnects D∗
k from (D∗

n)
c.

Lemma 3.26. There exists C > 0 such that for r > 4n > 16k and γ∗Λ ∩D∗
r = γ∗ ∩D∗

r

we have that

P

(
we can pop a set of coloured cycles contained in

D∗
n \D∗

k so that the arrows revealed contain a block

)
≥ 1− C

(
k

n

)1/4

− C
n

r
.

Proof. Due to Lemma 3.22(ii), we have P(γ∗ ∩D∗
n 6= γ∗r ∩D∗

n) ≤ C(n/r). Henceforth

assume that we are on the event when γ∗ ∩D∗
n = γ∗r ∩D∗

n.

We start with a minor adaptation of the argument of [1, Lemma 6.1]. Let v ∈
(Z2)∗ be a vertex at distance

√
kn from o∗, and let {S(n)}n≥0 be simple random

walk starting at v. Let τ be the first time when either S exits D∗
n \D∗

k, or when the

loop-erasure of S has made a non-contractible loop around D∗
k. Let us use the sequence

S(1), S(2), . . . , S(τ) as our successive choices in Wilson’s algorithm, where γ∗r is already

part of the tree to be constructed. That is, whenever a random walk step is to be made,

we use the next step of S for the random walk step, and whenever a new vertex is to

be chosen in the algorithm, we use the next vertex not in the tree that is visited by S

as the new vertex.

We claim that on the event S[0, τ] ⊂ D∗
n\D∗

k the set of edges, U , that this algorithm

has included in the tree by time τ is a block. Indeed, condition (i) holds because the

walk never left D∗
n \D∗

k. Also, observe that the set of vertices of LE(S[0, τ)) do not get

erased, and hence condition (iii) holds. Finally, condition (ii) holds, because each piece

of the tree we create gets joined to γ∗r (here is where we use that γ∗ ∩D∗
n = γ∗r ∩D∗

n).

Note that since S(τ − 1) does not get erased, the last piece is also joined. This proves

the claim. Interpreting the construction in terms of stacks of arrows, we see that the

probability of the event in part (i) is at least the probability that S[0, τ] ⊂ D∗
n \D∗

k.

The probability that a non-contractible loop is created could be bounded by ≥
1 − C(k/n)ζ with some ζ, C > 0, by ideas similar to [35, Exercise 3.3], showing the

statement (i) with ζ in place of 1/4. In order to get the explicit exponent 1/4, we

combine the argument with an idea that was inspired by [6].

Again we are going to start with γ∗r as our initial tree. Choose a subpath γ∗k,n of γ∗r
that forms a crossing from D∗

k to (D∗
n)

c. Write Hρ for the circle of radius ρ centred at

40

Chapter 3. Anchored burning bijection.

o∗. Define the annulus:

Ak,n = {z ∈ R
2 : k + 1 < |z − o∗| < n− 1}.

Choose a point, not necessarily a vertex, Q ∈ γ∗k,n ∩H√
kn, and let α0 = H√

kn \ {Q}.
Let P1 be the mid-point of α0, and let v1 be a vertex of (Z2)∗ closest to P1. Run a

random walk S(1) from v1 to γ∗k,n, and add edges to the tree in the same way as we did

with S. Let π1 be the set of edges added. Note that π1 is not necessarily a connected

set of edges, however, γ∗r ∪ π1 is. From the two subarcs of α0 defined by P1, throw

away the one that is on the same side of γ∗k,n as where π1 hit, and let us call the other

arc α1. On the event when {S(1)} ⊂ Ak,n, the arc α1 has the property that any dual

lattice path from Hk to Hn that is vertex-disjoint from γ∗r ∪ π1 has to intersect α1.

Continue inductively in the following way. Suppose that for some i ≥ 1 the arc αi

and the sets of edges π1, . . . , πi have been defined. Let Pi+1 be the mid-point of αi and

let vi+1 be the vertex of (Z2)∗ closest to Pi+1. Run a random walk S(i+1) from vi+1 to

γ∗k,n ∪ π1 ∪ · · · ∪ πi, and let πi+1 be the set of edges that get added to the tree. From

the two subarcs of αi, throw away the one that is on the same side of γ∗r as where πi+1

hit, and call the other one αi+1. On the event when {S(i+1)} ⊂ Ak,n, the arc αi+1

has the property that any dual lattice path from Hk to Hn that is vertex-disjoint from

γ∗r ∪ π1 ∪ · · · ∪ πi+1 has to intersect αi+1.

The construction is well defined until a time when the length of the arc αi becomes

of order 1. Stop the construction the first time when the arc length of αi is less than

10, say. We can select further vertices vi+1, . . . , vi+K (with K a fixed constant, say,

K = ⌈10
√
2 + 4⌉) such that if we start further random walks at these vertices, then

γ∗ ∪ π1 ∪ · · · ∪ πi+K contains a block. An example of the start of this construction is

shown in Figure 3.1.

It remains to bound the probability that the walks S(1), S(2), . . . all remain inside

D∗
n\D∗

k. The i-th walk S(i) starts at distance O(2−i
√
kn) from the current tree Ti−1 :=

γ∗k,n ∪ π1 ∪ · · · ∪ πi−1. If it were to leave D∗
n \D∗

k without hitting Ti−1, it would first

have to leave the ball

B∗(vi; (1/4)
√
kn) := {w ∈ (Z2)∗ : |w − vi| ≤ (1/4)

√
kn}.

without hitting Ti−1. Using Beurling’s estimate [35, Section 6.8], the probability of

this can be controlled

P(S(i) hits Ti−1 before exitting B∗(vi; (1/4)
√
kn) ≤ C(2−i

√
kn/

√
kn)1/2.

Regardless of where the walk exits B∗(vi; (1/4)
√
kn), the exit point z∗i is still at distance

≍
√
kn from o∗. It follows, again using Beurling’s estimate, that the probability that the

continuation of the walk from z∗i exits D∗
n without hitting Ti−1 is at most C(

√
kn/n)1/2.

Similarly, together with a time-reversal argument, the probability that the walk started

41

Chapter 3. Anchored burning bijection.

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

γ∗r

γ∗k,n

rnk

v1v2

v3

v4
v5

Figure 3.1: An example of the construction of a block. The thick line is γ∗r , and the red piece
is γ∗k,n. LERWs were started successively at v1, v2, etc. Note the gaps between pieces in some
of the LERWs, where an intersection with γ∗r \ γ∗k,n has occurred.

42

Chapter 3. Anchored burning bijection.

at z∗i hits D∗
k before hitting Ti−1 is at most C(k/

√
kn)1/2. Combining these three

estimates we get the bound

P({S(i)} 6⊂ D∗
n \D∗

k |Ti−1) ≤ C

(
2−i

√
kn√

kn

) 1
2

×

(√

kn

n

) 1
2

+

(
k√
kn

)1
2

= C21−i/2

(
k

n

) 1
4

.

Summing over i we get the claimed bound C1(k/n)
1/4.

Step 3. Coupling the set of descendants. We now complete the definition of

the coupling of TΛ and T . Fix a monotone coupling between T̃ ∗
Λ and T ∗

Λ, such that

e∗ ∈ T̃ ∗
Λ ∩ E∗

Λ implies e∗ ∈ T ∗
Λ; see [37, Chapter 10]. Define TΛ and T as the dual trees

of T ∗
Λ and T ∗. This completes the definition of required coupling PΛ,k,ε.

Lemma 3.27.

(i) When T̃ ∗
Λ contains a block, we have Wk,Λ ⊂ Dr.

(ii) When T ∗ contains a block, we have Wk ⊂ Dr.

(iii) When the event in Lemma 3.26 occurs, we have Wk,Λ = Wk ⊂ Dr and T and TΛ

agree on the set of edges with at least one end vertex in Wk.

Proof. (i) Since T ∗
Λ is stochastically larger than T̃ ∗

Λ, the edges in the block are also

present in T ∗
Λ. Since the the union of the block with γ∗r is connected, any two dual

vertices in the interior of the block are connected by a path in T̃ ∗
Λ. Hence no new edges

are added in the interior of the block when passing from T̃ ∗
Λ to T ∗

Λ.

Suppose that Dk had a descendant v ∈ Dc
r in TΛ. Then there would be a primal

path β starting at v that visits Dk and ends outside Dr. Since the block surrounds Dk,

this would contradict the connectivity of the block (as a set of edges).

(ii) The same argument as in the previous paragraph applies here.

(iii) Since we are using the same stacks of arrows in D∗
r \ γ∗r , the same block exists

in Λ∗ and in (Z2)∗, and the trees coincide in the interior of the region defined by the

block. Therefore, the trees TΛ and T also coincide in this region. By parts (i) and (ii),

the set of descendants are contained in this region and are equal in TΛ and T .

Proof of Proposition 3.21. By Lemma 3.27 we have Wk,Λ =Wk if the event in Lemma

3.26 occurred which in turn assumed that the event in Lemma 3.24 did not occur.

Therefore we have

P (Wk 6=Wk,Λ or T and TΛ differ on some edge with an end vertex in Wk)

≤ C
λ2C(ε)2R

5
2
+2ε

N
ln

(
N

λC(ε)R5/4+ε

)
+ C1 exp(−C2λ) + C

r

R
+ C

(
k

n

)1/4

+ C
n

r
.

43

Chapter 3. Anchored burning bijection.

We can now optimise our choice of parameters by taking n = (kr4)1/5, r = (R5k)1/6,

R = (kN6)1/16 and choose λ such that λ2R2ε = N ε, note these choices mean that the

necessary criteria we required for intermediary results are satisfied.

44

CHAPTER 4

BOUNDARY CONDITIONS ON THE STRIP.

4.1 Introduction.

In this section we are interested in the dependencies between the heights in a recurrent

sandpile configuration.

The definition of a sandpile configuration being recurrent shows that there is a

global influence effecting the sandpile configuration. However the existence of the

thermodynamic limit for the sandpile measure, for example, suggests that the model is

dominated by local factors. We want to try and quantify which of these two aspects is

the dominant factor in its behaviour.

For the case of sandpiles on the graph Z
d, d ≥ 2, Járai and Redig, [26], showed

that the sandpile measure, ν, was tail trivial, equivalently that for any cylinder event

E and for all ε > 0 there exists an n ∈ N such that for any event F , depending only

on vertices that are not in [−n, n]d,

|ν(E ∩ F)− ν(E)ν(F)| ≤ ε.

The aim of this chapter was to strengthen this result to give control of ν(E|F). We

believe a statement of the following form should hold true but we are currently unable

to prove it.

Open Question 4. Let G = (V,E) be a graph with Λ ⊂ V and ν the associated sandpile

measure. Under what constraints on G does the following hold? Let E be any cylinder

event determined by vertices in Λ. For all ε > 0 there exists an n ∈ N such that for any

cylinder event, F , that is determined by vertices which are at least a graph distance of

n from vertices in Λ, we have that

∣∣ν(E|F)− ν(E)
∣∣ ≤ ε.

However as an intermediary step we have been able to prove this result in the special

45

Chapter 4. Boundary conditions on the strip.

case of a ladder graph, which is a subgraph of Z2.

Definition 4.1. A ladder graph is of the form G × N ∪ {s} where the vertices in the

left most copy of G, G × {1}, are connected to s. A copy of the graph G is called a

rung, with the ith rung from the left being denoted by Ri.

In this chapter we will take the rungs to be a finite subset of Z.

Járai and Lyons showed in [25] that there exists a sandpile measure on the full ladder

graph, which is where the graph is instead given by G×Z. As this graph has two-ends

it does not have a unique natural measure and depending on the interpretation of the

intuition for burning an infinite graph of “starting the burning process at infinity” the

resulting measure can change. We will work with what they called in their paper the

left-burnable measure.

Given a finite set of vertices V , a vertex v ∈ V is allowed to burn if it satisfies

two properties. Firstly its height is greater than the number of its neighbours that are

currently unburnt, this is the understanding of burnable from Majumdar and Dhar’s

burning bijection [40]. Secondly we require that there is a nearest neighbour path from

v to R−∞ that only uses vertices that have already been burnt or are in V c. We will

henceforth refer to this as the standard burning rule and the bijection it induces as the

standard bijection.

The existence of the measure on infinite graphs was shown by considering rungs

whose vertices all have maximal heights which are “renewals”, in the sense that the

sandpile configurations on either side of a maximal rung would be conditionally inde-

pendent.

It therefore immediately follows that for the one-sided ladder graphs, G × N, that

we consider in this thesis, there exists a measure for the sandpiles on the infinite graph.

This is true because the measure of a sandpile, η, on our graph will have the same

distribution as asking for the configuration on the positive rungs to correspond to η in

the full ladder graph under the left-burnable measure conditioned on a maximal rung

occurring at rung 0.

The existence of these “renewals” would immediately lead to an upper bound on

the influence of the boundary conditions but it would be a very weak bound especially

for large N .

The aim of this chapter is to prove the following related theorems which will provide

better control over the influence of the boundary.

Theorem 4.2. Let η be a recurrent sandpile configuration on the graph [0, N] ×
[−q1,∞) ⊂ Z

2, for q1 > 0. Let ηi denote the configuration on the vertices in Ri.

Let ν be the measure on recurrent sandpile configurations. We define I := {ηj =

Ej for j ∈ [−q, 0]}, the event that the sandpile between rung −q and rung 0 is some

known configuration, E. Further define η(i, j) to be any event that is determined by

the configuration of the sandpile between rungs i and j. Then with k ≥ N2 + γN for

sufficiently large γ > 0 and some constants c1, c2, c3 > 0, we have that

46

Chapter 4. Boundary conditions on the strip.

∣∣∣ν
(
η(k,∞)|I

)
− ν
(
η(k,∞)

)∣∣∣ ≤ c1 exp(−c2γ + c3N).

To prove this we will first prove the result on the finite graph.

Theorem 4.3. Let η be a recurrent sandpile configuration on the graph [0, N] ×
[−q1, q2] ⊂ Z

2, for some q1, q2 > 0. Let ηi denote the configuration on the vertices

in Ri. Let ν[−q1,q2] be the measure on recurrent sandpile configurations on the graph

[0, N] × [−q1, q2] ⊂ Z
2. We define I := {ηj = Ej for j ∈ [−q1, 0]}, the event that the

sandpile between rung −q1 and rung 0 is some known configuration, E. Further define

η(i, j) to be any event that is determined by the configuration of the sandpile between

rungs i and j. Then with q2 > k ≥ N2 + γN for sufficiently large γ > 0 and some

constants c1, c2, c3 > 0, we have that

∣∣∣ν[−q1,q2]

(
η(k, q2)|I

)
− ν[−q1,q2]

(
η(k, q2)

)∣∣∣ ≤ c1 exp(−c2γ + c3N). (4.1)

The key to the proof of our theorems is to use a variation of the standard burning

bijection. This allows us to convert the events in (4.1) into statements about spanning

trees.

However the sandpile event we wish to condition upon does not convert into an

event that is easily dealt with, therefore it will be beneficial to further condition upon

a stronger spanning tree event which is a subset of I under this modified bijection.

It will turn out that the stronger conditioning we want to use is to specify the con-

nection pattern of a grove at R1. A grove and spanning forest can both be constructed

using LERWs hence we can use our knowledge of random walks, which are much more

malleable objects than sandpile configurations, to study the probability of the relevant

events.

Using these observations the proofs of the theorems effectively come down to show-

ing that we can bound the impact of the dependence of the spanning tree at Rk on

the spanning tree at R0 when conditioned on the partition induced by the grove at R1.

This is done in two parts.

Firstly we will give an upper bound for the probability that a path in a grove on

R1 will reach RKN .

Having shown this it suffices to bound the probability that the spanning tree at Rk

will depend on the spanning tree up to RKN . This is done using the idea of a block,

similar to the construction in the previous chapter.

The remainder of the chapter has the following structure.

Section 4.2 contains the statement of our notation and some preliminary results.

In Section 4.3 we introduce and justify the adaptation of the burning bijection.

In Section 4.4 we provide the bounds for the distance that paths in a grove will reach.

Section 4.5 contains a bound for the probability of having a block in a spanning tree.

Section 4.6 brings these results together to conclude the proofs of theorems 4.2 and

47

Chapter 4. Boundary conditions on the strip.

4.3.

In Section 4.7 we briefly consider an equivalent statement on graphs with different

boundary conditions.

4.2 Preliminary results.

Throughout this chapter we will use c, c1, c2 . . . to represent unspecified positive con-

stants which have unless otherwise stated will have no dependence on any other vari-

ables. We may use the same notation to represent different constants in different results

throughout the chapter, however we will maintain consistency of the constants within

a calculation.

We will begin by defining the random walk terminology we will require.

Definition 4.4.
(
Sv(j)

)
j∈N denotes a simple random walk started at v, if the start

vertex is obvious from the setting or not important we will often drop the v from the

notation. We denote by τ the first hitting time with respect to the random walk, and

by ξ the first exit time. More precisely we define

τx := min{j ≥ 0 : S(j) = x}
τ+x := min{j > 0 : S(j) = x}
τA := min{j ≥ 0 : S(j) ∈ A}
ξA := min{j ≥ 0 : S(j) 6∈ A}

Let GD(x, y) be the Green’s function of a simple random walk that is stopped upon first

exiting a domain D.

In order to state some preliminary result we introduce the following notation with

respect to two distinct vertices a,w ∈ R1.

Take π1 to be an arbitrary loop-erased random walk in ∪i≥1Ri which was started at

v1 and terminated upon hitting v2, with v1, v2 ∈ R1 such that they are in the interval

between a and w.

Set π3 to be an arbitrary loop-erased random walk in ∪i≥1Ri which starts at v3 and

ends at v4 with v3, v4 ∈ R1 such that a and w are in the interval between v3 and v4.

Define the sets

Z := π1 ∪ π3 ∪ (R1 \ {a})
Z ′ := π1 ∪ π3 ∪R1.

Let the domain D1 be the connected component of {[0, N] × [1,∞)} \ {π1 ∪ π3} that

contains the vertices a and w.

The exact construction of the instigating paths, π1, π3 and the reason we need to

consider such sets, will become apparent later in this chapter. However as it will turn

48

Chapter 4. Boundary conditions on the strip.

out that the results we will get will be uniform amongst the possible paths, it is not

necessary to formally define how they arise yet and it suffices to state the results in

terms of arbitrary paths that satisfy the above restrictions.

4.2.1 Decomposition of the domain.

In Section 4.4 we will decompose the domain D1 into different sections based upon a

sequence of balls that a random walk would have to travel through. We now describe

the criteria for the decomposition.

Definition 4.5. Let Bk be a ball with centre ok and radius 0 < rk ≤ N/2 (we do not

insist that ok is a lattice point).

Define B′
k to be the ball of radius

(√
2−

√
2
)
rk centred at ok.

Let α be a path from a vertex in R1 that hits Bk, denote the first intersection point as

vk ∈ ∂iBk. Then define B′′
k,α to be the ball of radius rk centred at vk.

We wish to choose the balls Bk in such a way that we maximise the total number

of balls whilst still having each ball satisfy the following criteria.

For all k:

(i) Bk ∩ Z ′ = ∅
(ii) Every path from a vertex in R1 to R|ok|+rk that does not intersect Z ′ must intersect

Bk.

(iii) Given Bk−1 and for any path α, from R1 that hits Bk−1 before Z ′, we require that

Bk ∩B′′
k−1,α = ∅.

See Figure 4.1 for an example decomposition.

Remark 4.6. The radii for B′
k and B′′

k,α have been chosen such that the part of ∂iB
′′
k,α

that intersects B′
k is given by an arc with angle π/2. This will be required later in the

chapter so that we will have the correct set up in order to be able to apply Lemma 4.7

which is stated next.

We now state some preliminary results that will be needed for proofs later in the

chapter.

Lemma 4.7. There exists a constant c > 0 such that for all θ ∈ [−π, π] there exists

R ∈ N such that for all r > R the following holds. Let B be a ball with centre (0, 0)

and radius r. Suppose there exists a set A such that A ⊂ B but does not intersect the

ball centred at (r, 0) of radius r. Then

P

(
arg(S(0,0)(ξB)) ∈ [θ − π/4, θ + π/4]

∣∣∣ξB < τA

)
≥ c.

Proof. The case for θ = 0 is Proposition 3.5 in [42]. Although originally stated for a

ball with an integer radius the extension to a real-valued radius follows immediately

from the proof provided there. Consequently the same proof will hold for all θ by

symmetry of the random walk and domain.

49

C
h
a
p
ter

4
.

B
o
u
n
d
a
ry

co
n
d
itio

n
s
o
n
th
e
strip

.

B1

B′
1

o2

B2

o3

B3

B′′
1,α

π3

α

o1

v

Figure 4.1: An illustrative example of a potential decomposition of the domain, although it may be a non-optimal choice of balls. The red part of the ball’s
boundary are where a ball B′′ may be centred.

5
0

Chapter 4. Boundary conditions on the strip.

Lemma 4.8. Let c > 0 be a positive constant, u1, w1 ∈ ∂iB
′
k and let B be a ball centred

at u1 which is contained in Bk and has a radius rk/8, or a constant radius if rk/8 < 1.

If x ∈ ∂iB then

Pw1(τu1 < τZ) ≥ cPx(τu1 < τZ)

Proof. Firstly note that if rk < 8 that the result is trivially true as the probability a

random walk goes from w1 to x without hitting Z or u1 is at least a constant as we

can find a viable path of constant length between them, so

Pw1(τu1 < τZ) ≥ Pw1(τx < τZ∪{u1})Px(τu1 < τZ) ≥ cPx(τu1 < τZ).

Henceforth we can assume B has a radius of rk/8, which is a sufficient condition to

ensure that dist(y, Z) ≥ c1rk ∀y ∈ B.

We need to consider two cases depending on the distance between u1 and w1.

If w1 6∈ B then |u1 − w1| ≥ c2rk and so we can immediately apply the Harnack

inequality. This is because the hitting probability is a harmonic function and there

is a compact connected set containing w1 and x whose vertices are at least c3rk from

{u1} ∪ Z. Hence Pw1(τu1 < τZ) ≥ cPx(τu1 < τZ) holds.

If on the other hand u1 and w1 are both contained in B, then we need to take an

extra step. This is to ensure that the distance to u1 is at least c3rk, where upon we

are able to apply Harnack’s inequality and compare to the walk from x.

Pw1(τu1 < τZ)

= Pw1(τu1 < ξB) + Pw1(ξB < τu1)
∑

y∈∂B
Pw1(S(ξB) = y|ξB < τu1)Py(τu1 < τZ)

≥ Pw1(τu1 < ξB)Px(τu1 < τZ)

+ Pw1(ξB < τu1)
∑

y∈∂B
Pw1(S(ξB) = y|ξB < τu1)cPx(τu1 < τZ)

≥ cPx(τu1 < τZ)(Pw1(τu1 < ξB) + Pw1(ξB < τu1)).

Thus the result holds in both cases.

Let D = [0, 1] × R
+ ⊂ R

2. Let τ̃A and ξ̃A be the hitting and exit times of a set by

A by a standard two dimensional Brownian motion respectively. By v ∈ Rj we mean

that v ∈ R
2 has x co-ordinate j.

Lemma 4.9. There exists a constant C1 < 1 such that for any v ∈ Rj

Pv(τ̃R(j+1)
< ξ̃D) ≤ C1.

Note that the constant bound does not need to depend on the x co-ordinate.

51

Chapter 4. Boundary conditions on the strip.

Lemma 4.10. Let v be a vertex in RMN then, with K ≥ M + 1 and for sufficiently

large N , there exists a constant d > 0 such that

Pv(τRKN
< τZ′) ≤ exp(−d(K −M)). (4.2)

Proof. Firstly we will rescale the domain so the random walk is on the lattice D∩ 1
NZ

2,

under this rescaling v ∈ RKN becomes v ∈ RK . Next note that increasing the usable

domain of the random walk will yield an upper bound for the event in the left hand

side of (4.2), so in particular if Z ′ was replaced by Dc, we would obtain the relationship

Pv(τRKN
< τZ′) ≤ Pv(τRK

< ξD).

Now we can decompose the domain into disjoint boxes of size 1 × 1. Therefore we

can see in order for the event to be successful that the random walk will have to cross

at least K−M disjoint boxes without hitting the boundary. Note that the probability

of successfully crossing a box is dependent on the path through the previous boxes only

through the starting vertex. Therefore we have

Pv(τRK
< ξD) ≤

K−1∏

i=M

max
wi∈Ri

Pwi
(τR(i+1)

< ξD).

To bound this we consider the walk in each box separately. As N tends to infinity

a random walk on D ∩ 1
NZ

2 will converge to a standard two dimensional Brownian

motion on D. Therefore we can approximate the probability of a random walk to cross

a box with that given for a Brownian motion and then apply Lemma 4.9 to get

Pwi
(τR(i+1)

< ξD) ≤ c2Pwi
(τ̃R(i+1)

< ξ̃D) ≤ c2C1.

By taking N sufficiently large we can make c2 as near to 1 as required to make c2C1 < 1.

Hence we can conclude that for sufficiently large N , ∃c < 1 such that

Pv(τRKN
< τZ′) ≤ cK−M .

Remark 4.11. The restriction of K ≥M +1 could be weakened however as this would

complicate the proof and is an unnecessary case for what we require we have chosen

not to prove the more general result.

4.3 Burning based on rungs.

We now introduce a modification to the standard burning bijection. The motivation

for the alteration is to more easily enable the separate treatment of the parts of the

52

Chapter 4. Boundary conditions on the strip.

graph where we have information, i.e the sandpile configuration up to and including

R0, and the part we have no more information than that which is derived through

the influence of the first part. The advantage of this new bijection over the standard

burning bijection is explained in Lemma 4.13 and Remark 4.14 after the construction.

Definition 4.12. Let the burning bijection centred at R0 be the following adaptation

of the standard bijection, it will be denoted by φR0 a map from recurrent sandpile

configurations to spanning trees.

Suppose the underlying graph G = [0, N]× [−q1, q2]∪ {s} is a finite but arbitrarily

large ladder graph and η is a sandpile configuration on G. The idea is to use the

standard burning algorithm but only on the negative or positive rungs at each stage.

Define two subgraphs of G,

Λ1 := ∪q1
i=0 R−i,

Λ2 := ∪q2
i=1 Ri.

Phase 1. We apply the usual burning algorithm to η with the restriction that we

do not allow any vertex of Λ2 to burn. That is, we define

B
(1)
0 := {s},

U
(1)
0 := Λ1 ∪ Λ2,

and for j ≥ 1 we inductively set:

B
(1)
j :=

{
v ∈ U

(1)
j−1 ∩ Λ1 : η(v) ≥ deg

U
(1)
j−1

(v)

}
,

U
(1)
j := U

(1)
j−1 \B

(1)
j .

Note that there may be vertices in Λ1 that do not burn in Phase 1. These vertices,

together with the vertices in Λ2, will burn in later phases.

There will exist a k > 0 such that B
(1)
k = ∅ eventually. The set of vertices that

remain unburnt in Λ1 at the end of phase 1 is defined as

U (1) := U
(1)
k .

Assuming Phase i−1 has already been defined, then for even i we inductively define

Phase i and i+ 1 as follows.

Phase i. We continue the burning algorithm on η with the restriction that no

vertex of Λ1 is allowed to burn. That is, we set

B
(i)
0 := ∪j≥0B

(i−1)
j ,

U
(i)
0 := U (i−1),

53

Chapter 4. Boundary conditions on the strip.

and for j ≥ 1 we inductively set:

B
(i)
j :=

{
v ∈ U

(i)
j−1 ∩ Λ2 : η(v) ≥ deg

U
(i)
j−1

(v)

}
,

U
(i)
j := U

(i)
j−1 \B

(i)
j .

There exists a smallest k > 0 such that B
(i)
k = ∅ at which point any vertices that

can be burnt under the restrictions have been, so define the set of unburnt vertices in

Λ2 at the end of phase i as

U (i) := U
(i)
k .

Phase i + 1. We continue the burning algorithm on η in much the same manner,

except now with the restriction that no vertex of Λ2 is allowed to burn. That is, we set

B
(i+1)
0 := ∪j≥0B

(i)
j ,

U
(i+1)
0 := U (i),

and for j ≥ 1 we inductively set:

B
(i+1)
j :=

{
v ∈ U (i+1)

j−1 ∩ Λ1 : η(v) ≥ deg
U

(i+1)
j−1

(v)

}
,

U
(i+1)
j := U

(i+1)
j−1 \B(i+1)

j .

There exists a smallest k′ > 0 such that B
(i+1)
k′ = ∅, this means no more vertices

can currently be burned in Λ1. For this value of k′ we define

U (i+1) := U
(i+1)
k′ .

After a finite number of phases all vertices in Λ1 and Λ2 will be burnt. We now use

these sets to construct the spanning tree.

If v ∈ B
(i)
j for some i ≥ 1 and j ≥ 1, then we place an oriented edge pointing from

v to some w ∈ B
(i)
j−1. In the case j = 1 such an edge exists, because v must have a

neighbour outside U
(i)
0 , and hence in B

(i)
0 . In the case j ≥ 2 such an edge also exists,

because the requirement to burn v at step j implies that the degree of v in U
(i)
j−1 is

strictly smaller than its degree in U
(i)
j−2. Hence v has a neighbour in B

(i)
j−1 = U

(i)
j−2\U

(i)
j−1.

If there is more than one w ∈ B
(i)
j−1 neighbouring v, we make the choice of the edge

dependent on η(v), via the burning rule as we did in the usual burning bijection.

If v ∈ B(i)
j , let

mv :=
∣∣∣
{
f : tail(f) = v, head(f) ∈

⋃

j′<j

B
(i)
j′

}∣∣∣,

Fv :=
{
e : tail(e) = v, head(e) ∈ B

(i)
j−1

}
.

54

Chapter 4. Boundary conditions on the strip.

Then there exists some 0 ≤ ℓv < |Fv | such that

η(v) = deg(v)−mv + ℓv.

With respect to a well defined ordering of the vertices of Fv , we then place the ℓthv edge

of Fv in the tree.

Forgetting the orientation of all the edges will then yield a spanning tree of G,

denoted φR0(η), this can therefore be used to define the map φR0 . The proof that φR0

is indeed a bijection immediately follows from the one provided for Lemma 3.4.

Having described this modified burning bijection we now explain why it is necessary.

Recall the definition of a rooted grove and that a grove with respect toR1 determines

a partition of R1, with a direction from each vertex towards the corresponding root

vertex in their component. It will be these rooted partitions and set of all possible

groves that could be associated to it that will be key to our argument.

Let G = (V,E), define the graph Λ+
1 by the vertex set of V ∩ ⋃i≤1Ri and the

induced edges from E between two vertices in Λ1 and those between a vertex of Λ1 and

a vertex of R1.

Lemma 4.13. Given a restriction of a recurrent configuration to Λ1, ηΛ1 , and a rooted

partition of R1, p. Define a set of sandpile configurations on G by

Ω := Ω(ηΛ1 , p) = {ζ : ζ|Λ1 = ηΛ1 and φR0(ζ) induces the partition p on R1}.

There is a unique spanning forest, F on Λ+
1 , such that φR0(ζ)|Λ+

1
= F ∀ζ ∈ Ω.

Proof. Let ζ1, ζ2 ∈ Ω, we will show that the spanning forest they produce under φR0

will be the same when restricted to Λ+
1 .

During Phase 1 of the burning procedure we only burn vertices in Λ1 and so as

ζ1|Λ1 = ζ2|Λ1 the process will be identical and thus so will the sets B
(1)
j (ζ1) = B

(1)
j (ζ2),

for j > 0.

Now when we reach Phase 2 the procedures may deviate because the configurations

differ on Λ2. However we can still deduce which vertices in R1 will burn in this phase,

because φR0(ζ1) and φR0(ζ2) induce the same partition p on R1.

By definition of a rooted partition we know that the root is the first vertex that

burns in a component and also that every other vertex in that component is connected

via a path through Λ2 to the root. This means that the root must burn in the first

step of a phase and the other vertices in the component must burn in later steps in

the same phase. Let p1 be a component of p and v be the root in p1. Then if v has

a neighbour in R0 that burnt in Phase 1 then v ∈ B
(2)
1 (ζi) and p1 ⊂ ∪j≥1B

(2)
j (ζi) for

i = 1, 2. Therefore ∪j≥1B
(2)
j (ζ1) ∩R1 = ∪j≥1B

(2)
j (ζ2) ∩R1.

Now as we know the subset of R1 that burnt in Phase 2 we can perform Phase 3.

The burning of ζ1 will again match the burning of ζ2 in this phase because for each

vertex in Λ1 the same set of neighbours have burnt in ζ1 and ζ2.

55

Chapter 4. Boundary conditions on the strip.

Proceeding inductively with respect to the number of phases we can conclude that

the burning times of vertices in Λ1 will agree for all sandpiles in Ω as will the phase in

which vertices in R1 burnt.

Next we can follow the burning procedure to start producing an oriented spanning

tree on G, specifically the forest restricted to Λ+
1 . If i is odd then for v ∈ B

(i)
j ∩ Λ1 we

know which neighbours burnt in B
(i)
j−1 and so we know which oriented edge to include

in the spanning forest. This covers all edges oriented away from vertices in Λ1.

For w ∈ R1 we can also specify some of the oriented edges that will be included. If

w is a root then an edge is placed directed from w to its neighbour in R0, as this is the

only neighbouring vertex that burnt in the previous phase.

If w is not a root then no oriented edges are directed out of it in F . This is because

edges from w would be directed towards the root through vertices in Λ2 and so no edge

would be directed from w to vertices in Λ1.

Therefore there is a unique forest F such that F = φR0(ζ)|Λ+
1
for all ζ ∈ Ω.

Remark 4.14. Recall we are interested in conditioning on a sandpile configuration

on Λ1. By Lemma 4.13 we have seen that further conditioning on a rooted partition

fixes the spanning forest on Λ+
1 under φR0 . This allows us to interpret conditioning

on a sandpile configuration in terms of a spanning tree event, namely having a rooted

partition as a boundary condition.

In contrast the standard bijection would not fix the forest on Λ1 and so we could

not reduce the problem to a question about spanning trees. This is because the spanning

tree on Λ1 under the standard bijection depends on the length of paths through Λ2 not

just which vertices are connected. Trying to condition on the length of paths between

vertices in R1 would make the following approach too unwieldy.

With this observation we now turn our attention to controlling aspects of the grove’s

distribution when conditioned upon having a given rooted partition.

4.4 Bounds for paths in a grove.

The next step towards being able to prove Theorem 4.3 is to control how far the paths

in a spanning forest will reach when conditioned upon having a given rooted partition

on R1. This is done in the following Proposition and the remainder of this section is

devoted to proving it.

Proposition 4.15. Let c1, c2, c3 > 0 be positive constants. Let g be a grove with respect

to R1, with bg being the backbone of the grove. Let p denote a rooted partition on R1.

Then for K,N > 0 sufficiently large

P(bg ∩RKN+N2 6= ∅| bg induces p) ≤ c1 exp(−c2K + c3N).

We first wish to consider what type of paths connected to R1 we will find in a grove.

56

Chapter 4. Boundary conditions on the strip.

Definition 4.16. Given a set of 2m vertices, labelled a1, . . . am, b1, . . . bm with a path

connecting ai to bi for each i ∈ {1, . . . m}, then there are two main ways that the paths

can occur in relation to each other:

i)Nested paths are such that the vertices are ordered as a1, a2, . . . am, bm, . . . b2, b1.

ii)Adjacent paths are such that the vertices are ordered as a1, b1, a2, b2 . . . ambm.

We say a component, g1 is nested inside of another, g2, if there exists a path in g1

that is nested inside of a path in g2. We say two components are adjacent if they are

not nested.

Clearly these are not all of the possible realisations of how components are connected

to a rung, however they are the main ones we need to consider. This is because the

only other kinds of components will either be trivial or, as we will see later, can be

bounded using results on nested and adjacent paths.

Next recall the definition of a grove and that a grove determines a partition of R1,

with a special vertex selected in each component. It will be these rooted partitions

and the set of all possible groves that could be associated to a partition that we want

to work with. Also recall that we have the resampling process to construct a grove

uniformly using random walks.

Therefore if we are interested in paths in the grove we need to have control of

LERWs with fixed start and end vertices conditioned to avoid other paths.

In the next two subsections we will provide bounds for the two main types of path

before combining the results to say something about the grove as a whole.

4.4.1 Bound for a nested path.

Proposition 4.17. Take c1, c2 > 0 as positive constants. Let w and a be distinct

vertices in R1 and π1, π3, Z satisfying Definition 4.4. Let K,L ∈ N be such that K >

L+ 1 and π1 ∩RLN = ∅. Then for sufficiently large N

Pw(LERW to a intersects RKN |τa < τ+Z) ≤ c1 exp(−c2(K − L))

Proof. Firstly note that if π3 disconnects w from RKN then the statement is trivially

true, hence assume that that w is not disconnected from RKN .

Next we observe that if a loop-erased random walk is to hit RKN before hitting a

then the random walk that generates it must also hit RKN before a. Therefore we can

say that

Pw(LERW to a intersects RKN |τa < τ+Z) ≤ Pw(τRKN
< τa|τa < τ+Z). (4.3)

The key to understand whether this event is successful is to split it into three parts,

the start, middle and end. There will be a path from w, denoted Sw, and a path from

a, denoted Sa, that both reach RKN and then there will be a path that joins them

together. All of the paths must not hit Z. The idea of the proof is to generate the two

57

Chapter 4. Boundary conditions on the strip.

paths to RKN simultaneously and utilise the fact that with high probability at some

point the paths get close to each other whilst being away from the boundary. When

the paths are near each other we will be able to simplify the expression by cancelling

similar terms.

We first consider the following decomposition of a successful path.

Pw(τRKN
< τa < τ+Z)

= Pw(τRKN
< τ+Z′)

∑

v∈RKN

Pw(Sw(τRKN
) = v|τRKN

< τ+Z′)Pv(τa < τZ) (4.4)

Then we can manipulate the final term using the reversibility of a random walk.

Pv(τa < τZ) = Pv(τa < τZ |τ+v > τa ∧ τZ)GD1(v, v)

= Pa(τv < τZ |τ+a > τv ∧ τZ)GD1(v, v)
GD1(a, a)

GD1(a, a)

= Pa(τv < τZ)
GD1(v, v)

GD1(a, a)
. (4.5)

Now substitute (4.5) into (4.4) to get

Pw(τRKN
< τa < τ+Z)

= Pw(τRKN
< τ+Z′)

∑

v∈RKN

Pw(Sw(τRKN
) = v|τRKN

< τ+Z′)Pa(τv < τZ)
GD1(v, v)

GD1(a, a)
. (4.6)

Now we split the domain from RLN to R(K+L)N/2 into a sequence of balls and a

set of the remaining space. The balls B1, B2, . . . Bn, have radii rk = r(k, π3) and are

as described at the start of subsection 4.2.1. The maximum diameter of a ball is N so

there is a decomposition with n ≥ c(K − L) balls for any possible domain D1.

Decomposition of paths from R1 to RKN that do not intersect Z.

We want to use these balls to decompose the paths from a and w to RKN . As any walk

that hit Z can not satisfy the event it suffices to decompose the pairs of paths such

that the path starting from a does not intersect Z before hitting RKN and that, after

time 1, the path from w does not hit Z ′ before hitting RKN . We wish to decompose

the paths in a way that will highlight when the two paths are both near to each other

but more importantly are also away from the boundary. See Figure 4.2 for an example

decomposition.

First consider the path from w until it first hits RKN without hitting Z ′ after it

takes its first step away from w. We will decompose this into a sequence of paths,

(γi)i∈N, which in turn consists of three paths, γi := γ0i ∪ γ1i ∪ γ2i .
Define γ01 to be the path from w until it first hits B1, say at v1. This means that

B′′
1,γ0

1
is defined. Define γ11 to be the path from v1 until the first time it hits B′

1 or exits

58

Chapter 4. Boundary conditions on the strip.

B′′
1,γ0

1
. Denote the vertex where γ11 ends by w1, then define γ21 to be the path from w1

until it first exits B′′
1,γ0

1
. Set x1 to be the end vertex of this path. Note this means

that if γ11 ended upon exiting B′′
1,γ0

1
then γ21 = {w1}, i.e the walk takes no steps, and

x1 = w1.

Now suppose we have constructed γi−1 and it ended at xi−1, then we inductively

define γi for i ≤ n.

Define γ0i to be the path from xi−1 until the path first hits Bi, say at vi. This means

B′′
i,γ0

i

is defined. Define γ1i to be the path from vi until it first hits B
′
i or exits B

′′
i,γ0

i

. If

γ1i ends at wi, then set γ2i to be the path from wi until it first exits B′′
i,γ0

i

. Note this

means that if γ1i ended upon exiting B′′
i,γ0

i

then γ2i = {wi}.
Having defined γ1, . . . γn we define a further couple of related paths.

Suppose γn ended at xn then we define γn+1 to be the path from xn until it first

reaches RK+L
2

N , say at xn+1. Finally define γn+2 to be the path from xn+1 until it first

intersects RKN .

Let the last vertex in γn+2 be denoted by v. Now we similarly decompose the walk

from a to v that does not intersect Z.

Define β01 to be the path from a until it first hits B1, say at y1. This means that

B′′
1,β0

1
is defined. Set β11 to be the path from y1 until it first hits B′

1 or exits B′′
1,β0

1
. Let

the end vertex of β11 be denoted a1, then set β21 to be the path from a1 until it first

exits B′′
1,β0

1
, call the vertex it ends at u1. Note this means that if β11 ended upon exiting

B′′
1,β0

1
then β21 = {a1}, i.e it takes no steps, and u1 = a1.

Now suppose we have constructed β2i−1 and it ended at ui−1, then we can inductively

define βji for j = 0, 1, 2 and i ≤ n as follows.

Define β0i to be the path from ui−1 until the path first hits Bi, say at yi. This means

B′′
i,β0

i

is defined. Define β1i to be the path from yi until it first hits B′
i or exits B′′

i,β0
i

.

Let the end vertex of β1i be denoted ai, then set β2i to be the path from ai until it first

exits B′′
i,β0

i

. Label the last vertex visited by this path as ui. Note this means that if β1i
ended upon exiting B′′

i,β0
i

then β2i = {ui}. Define βi := β0i ∪ β1i ∪ β2i for 1 ≤ i ≤ n.

Suppose βn ended at un then we define βn+1 to be the path from un until it first

reaches RK+L
2

N , say at un+1. Finally define βn+2 to be the path from un+1 until it first

hits v.

Given a path α, with the number of steps used in α denoted |α|, we define the

associated weight of the path by

ω(α) :=

(
1

4

)|α|
.

Now we use this decomposition of the paths and the same notation for end vertices

to decompose the probabilities in (4.6). Firstly we can separate out the first part of

59

C
h
a
p
ter

4
.

B
o
u
n
d
a
ry

co
n
d
itio

n
s
o
n
th
e
strip

.

B1

B′
1

B′′
1,γ0

1

γ01

γ11
γ02

B′′
2,γ0

2

v2

γ12

γ22

x2

B2

B′
2

β01

B′′
1,β0

1

β11
β21

u1

β02

B′′
2,β0

2

β12

β22

a1

y2

a2

u2

a

y1

w2

x1

v1

w

Figure 4.2: An example of a potential decomposition of the paths over the first two balls. We have removed the boundary and previous paths to make the
diagram clearer. Later in this subsection we define some sets Ej ,Fj, in this example the pair of paths (γ1, β1) ∈ F1 whilst (γ1 ∪ γ2, β1 ∪ β2) ∈ E2.

6
0

Chapter 4. Boundary conditions on the strip.

the walk.

Pw(τRKN
< τ+Z′) =

∑

γ1

ω(γ1)Px1(τRKN
< τZ′).

For clarity we are summing over the paths that start at w and exit B′′
1,γ0

1
without

returning to w or hitting any other vertex in Z ′.

Observe we could repeat this process for each of the remaining paths in the decom-

position to get

Pw(τRKN
< τ+Z′) =

∑

γ1,γ2...γn+2

n+2∏

i=1

ω(γi). (4.7)

Then similarly for the walk from a we get

Pa(τv < τZ) =
∑

β1,...βn+2

n+2∏

i=1

ω(βi).

Substituting these into (4.6), with v being the last vertex in γn+2, and noting that

Pw(Sw(τRKN
) = v|τRKN

< τ+Z′) becomes the indicator function on the event v = v, we

get

Pw(τRKN
< τa < τ+Z) =

∑

γ1,γ2...γn+2

β1,...βn+2

n+2∏

i=1

ω(γi)ω(βi)
GD1(v, v)

GD1(a, a)
. (4.8)

We now want to use the decomposition to choose useful times to evaluate the

probabilities, namely these times will be based on the collection of paths Ej and F ,

that we now define.

Define Ei to be the collection of pairs of paths that have the property that the two

walks both end a section of their decomposition in B′
i but do not for any previous balls,

and such that they do not intersect Z, Z ′ respectively. Formally, with wk being the

end point of γ1k and ak the end point of β1k , set

Ei := {(∪i
j=1γj ,∪i

j=1βj) : wi, ai ∈ B′
i, wk 6∈ B′

k or ak 6∈ B′
k ∀k < i}.

Alternatively given a random walk Sw that ends upon hitting a and satisfies τB′

i
<

τa < τZ , we can ask if Sw ∈ Ei. This makes sense as (4.6) and the following decompo-

sition give a method for producing the paths γj , βj , from such a walk, and we can then

ask if these uniquely determined paths satisfy Ei.

Note that Ei is therefore determined by the paths γ1, . . . γi and β1 . . . βi.

Define F to be the set of pairs of walks that reach R(K+L)N/2 without having a

section of their decomposition where they both end in a ball B′
j, i.e the paths that do

61

Chapter 4. Boundary conditions on the strip.

not satisfy the criteria for any Ej . Formally

F := {(∪n
k=1γj ,∪n

k=1βn) : wk 6∈ B′
k or ak 6∈ B′

k ∀k ≤ n}. (4.9)

Thus in order for F to be satisfied the pair of paths (γk, βk) must satisfy the

corresponding event Fk := {γk ∩ B′
k = ∅ or βk ∩ B′

k = ∅}, for all k ≤ n. Hence

F =
⋂

k≤n Fk. In the same way as we did for the set Ej we can extend this definition

to the case of a single path between w and a if it reached R(K+L)N/2.

It is worth noting that we could define these sets of paths in terms of a stopping

time of the Markov chain consisting of the two random walks and an index variable

to keep track of which part of the walk you are considering. We will not state this

formally as we do not explicitly require this property.

If we wanted the event Ej or F to also occur we can rewrite (4.8) in the following

ways

Pw(τRKN
< τa < τ+Z , Ej) =

∑

γ1,γ2...γj
β1,...βj

Ej

∑

γj+1,...γn+2

βj+1,...βn+2

n+2∏

i=1

ω(γi)ω(βi)
GD1(v, v)

GD1(a, a)
, (4.10)

Pw(τRKN
< τa < τ+Z , F) =

∑

γ1,γ2...γn
β1,...βn

F

∑

γn+1,γn+2
βn+1,βn+2

n+2∏

i=1

ω(γi)ω(βi)
GD1(v, v)

GD1(a, a)
. (4.11)

We now define some related terminology. Suppose instead of having a walk between

w and a that visited RKN we instead had a walk from w to a that hit B′
j. Then note

we could use the same decomposition as above to split this walk into a set of pairs of

paths (γ̂i, β̂i) for i ≤ j and a walk between ŵj and âj, where ŵj is the end point of γ̂1j
and âj is the end point of β̂1j .

Define the related collection of pairs of paths Êi,

Êi := {(∪i
j=1γ̂j ,∪i

j=1β̂j) : ŵi, âi ∈ B′
i, ŵk 6∈ B′

k or âk 6∈ B′
k ∀k < i}.

It is therefore not difficult to see that following the same argument, as for the case

with a walk via RKN , would yield a similar statement when we consider walks that

satisfy Êj.

Pw(τB′

j
< τa < τZ , Êj) =

∑

γ̂1...γ̂j
β̂1...β̂j

Êj

j∏

i=1

ω(γ̂i)ω(β̂i)Pŵj
(τâj < τZ′)

GD1(âj , âj)

GD1(a, a)
. (4.12)

Next we show that we can extract an exponential term by relaxing some of the

walk’s criteria.

62

Chapter 4. Boundary conditions on the strip.

Lemma 4.18. For all K,N > 0 sufficiently large there exists constants c1, c2 > 0 such

that

Pw(τRKN
< τa < τ+Z , Ej) ≤ c1 exp(−c2(K − L))Pw(τa < τ+Z , Êj).

Lemma 4.19. For all K,N > 0 sufficiently large there exists a constant c > 0 such

that

Pw(τRKN
< τa < τ+Z , F) ≤ exp(−c(K − L))Pw(τRKN

< τa < τ+Z).

Proof of Lemma 4.18. Starting from (4.10) we want to bound the paths that occur

after the walk hits B′
j by an exponential term.

Notice that by combining the equivalent statements of (4.6) and (4.7) when we

also require the paths to be in Ej , we can regroup some of the paths in the following

manner,

∑

γ1,γ2...γj
β1,...βj

Ej

∑

γj+1,...γn+2

βj+1,...βn+2

n+2∏

i=1

ω(γi)ω(βi)
GD1(v, v)

GD1(a, a)

=
∑

γ1...γj
β1...βj

Ej

j∏

i=1

ω(γi)ω(βi)Pwj
(τRKN

< τZ′)

×
∑

v∈RKN

Pwj
(Swj

(τRKN
) = v|τRKN

< τZ′)Paj (τv < τZ)
GD1(v, v)

GD1(a, a)
(4.13)

Now we will do some manipulation with two of the terms in this expression using

the time reversal of a random walk.

Paj(τv < τZ)GD1(v, v)

= GD1(aj , aj)Paj (τv < τZ |τ+aj > τv ∧ τZ)GD1(v, v)

= GD1(aj , aj)Pv(τaj < τZ |τ+v > τaj ∧ τZ)GD1(v, v)

= GD1(aj , aj)Pv(τaj < τZ).

Let B be a ball of radius rk/8 centred at aj , or a constant radius if rk < 8. Now

63

Chapter 4. Boundary conditions on the strip.

using Lemma 4.8 we can deduce that

GD1(aj , aj)Pv(τaj < τZ)

= GD1(aj, aj)Pv(τB < τZ)
∑

x∈∂iB
Pv(Sv(τB) = x|τB < τZ)Px(τaj < τZ)

≤ GD1(aj, aj)Pv(τB < τZ)
∑

x∈∂iB
Pv(S(τB) = x|τB < τZ)cPwj

(τaj < τZ)

≤ c1GD1(aj , aj)Pwj
(τaj < τZ′)

Note in the final step we have used that adding a to the domain increases the random

walks chance of hitting aj before terminating thus switching Z with Z ′ respects the

direction of the inequality.

Due to the properties we imposed on the choice of balls, B1, . . . Bn, we know that

each ball is between RLN and R(K+L)N/2 therefore the distance between wj and RKN

is at least c3(K − L)N , hence we can use Lemma 4.10 to deduce

Pwj
(τRKN

< τZ′) ≤ exp(−c2(K − L)).

Now substitute these last two upper bounds into (4.13), to deduce

Pw(τRKN
< τa < τ+Z , Ej)

≤
∑

γ1...γj
β1...βj

Ej

j∏

i=1

ω(γi)ω(βi) exp(−c2(K − L))

×
∑

v∈RKN

Pwj
(Swj

(τRKN
) = v|τRKN

< τZ′)c1Pwj
(τaj < τZ′)

GD1(aj , aj)

GD1(a, a)

=c1 exp(−c2(K − L))
∑

γ1...γj
β1...βj

Ej

j∏

i=1

ω(γi)ω(βi)Pwj
(τaj < τZ′)

GD1(aj , aj)

GD1(a, a)
. (4.14)

Now we compare the terms in (4.14) to those in (4.12). Note that a set of j pairs

of paths satisfies Ej if and only if it satisfies Êj and the paths would have the same

weight in both settings, this allows us to see that

64

Chapter 4. Boundary conditions on the strip.

∑

γ̂1...γ̂j
β̂1...β̂j

Êj

j∏

i=1

ω(γ̂i)ω(β̂i)Pŵj
(τâj < τZ′)

GD1(âj , âj)

GD1(a, a)

=
∑

γ1...γj
β1...βj

Ej

j∏

i=1

ω(γi)ω(βi)Pwj
(τaj < τZ′)

GD1(aj , aj)

GD1(a, a)
.

Thus by using this equivalence we can substitute (4.12) into (4.14) to conclude that

Pw(τRKN
< τa < τ+Z , Ej)

≤c1 exp(−c2(K − L))
∑

γ̂1...γ̂j
β̂1...β̂j

Êj

j∏

i=1

ω(γ̂i)ω(β̂i)Pŵj
(τâj < τZ′)

GD1(âj , âj)

GD1(a, a)

≤c1 exp(−c2(K − L))Pw(τB′

j
< τa < τZ , Êj)

≤c4 exp(−c2(K − L))Pw(τa < τZ , Êj).

Now we need to consider the control we have over the event when F occurs instead

of an Ej.

Proof of Lemma 4.19. By Remark 4.6 we are able to apply Lemma 4.7 to deduce that

Pvi(S(ξB′′

k,γ0
i

) ∈ B′
k|ξB′′

k,γ0
i

< τZ′) ≥ d

Pyi(S(ξB′′

k,β0
i

) ∈ B′
k|ξB′′

k,β0
i

< τZ) ≥ d.

Therefore, as the paths are independent, we have that for any k ≤ n

P(γk ∩B′
k = ∅ or βk ∩B′

k = ∅|γk ∩ Z ′ = ∅, βk ∩ Z = ∅) ≤ 1− d2. (4.15)

Next look at one pair of paths and show that we can separate out the event Fk

occurring.

Hence, with vk, respectively yk, being the end vertex of γ0k , respectively β
0
k , we can

65

Chapter 4. Boundary conditions on the strip.

use (4.15), to get

∑

γk ,βk
Fk

ω(γk)ω(βk)

=
∑

γ0
k
,β0

k

ω(γ0k)ω(β
0
k)Pvk(ξB′′

k,γ0
k

< τZ′)Pyk(ξB′′

k,β0
k

< τZ)

× P(γk ∩B′
k = ∅ or βk ∩B′

k = ∅|γ0k , β0k , γk ∩ Z ′ = ∅, βk ∩ Z = ∅)
≤(1− d2)

∑

γk ,βk

ω(γk)ω(βk). (4.16)

This is true for all pairs of paths so doing this simplification for each of the first n

pairs of paths, (γk, βk) yields

∑

γ1,γ2...γn
β1,...βn

F

n∏

i=1

ω(γi)ω(βi) ≤(1− d2)n
∑

γ1,γ2...γn
β1,...βn

n∏

i=1

ω(γi)ω(βi)

≤ exp(−c(K − L))
∑

γ1,γ2...γn
β1,...βn

n∏

i=1

ω(γi)ω(βi)

as n > c1(K − L) by the choice of balls we used to decompose the domain.

Now recall (4.11), where v was the last vertex in γn+2, and substitute the previous

expression into it.

Pw(τRKN
< τa < τ+Z , F)

=
∑

γ1,γ2...γn
β1,...βn

F

∑

γn+1,γn+2
βn+1,βn+2

n+2∏

i=1

ω(γi)ω(βi)
GD1(v, v)

GD1(a, a)

≤ exp(−c(K − L))
∑

γ1,γ2...γn
β1,...βn

n∏

i=1

ω(γi)ω(βi))
∑

γn+1,γn+2

βn+1,βn+2

n+2∏

i=n+1

ω(γi)ω(βi)
GD1(v, v)

GD1(a, a)

Comparing this to (4.8) we can conclude that

Pw(τRKN
< τa < τ+Z , F) ≤ exp(−c(K − L))Pw(τRKN

< τa < τ+Z) (4.17)

as required.

We can now recall (4.3) and conclude the proof of Proposition 4.17 by utilising the

Lemmas 4.18 and 4.19, to derive the desired result.

66

Chapter 4. Boundary conditions on the strip.

Pw(τRKN
< τa|τa < τ+Z)

=
Pw(τRKN

< τa < τ+Z)

Pw(τa < τ+Z)

=

∑n
i=1 Pw(τRKN

< τa < τ+Z , Ei) + Pw(τRKN
< τa < τ+Z , F)

Pw(τa < τ+Z)

≤
∑n

i=1 c1 exp(−c2(K − L))Pw(τa < τ+Z , Êi)

Pw(τa < τ+Z)

+
exp(−c3(K − L))Pw(τRKN

< τa < τ+Z)

Pw(τa < τ+Z)

≤ c1 exp(−c2(K − L))
Pw(τa < τ+Z ,

⋃n
i=1 Êi)

Pw(τa < τ+Z)
+ exp(−c3(K − L))

Pw(τa < τ+Z)

Pw(τa < τ+Z)

≤ c1 exp(−c2(K − L))
Pw(τa < τ+Z)

Pw(τa < τ+Z)
+ exp(−c3(K − L))

≤ c4 exp(−c5(K − L)).

4.4.2 Bound for adjacent paths.

Now we have control over nested paths in this subsection we turn our attention to

adjacent paths.

Proposition 4.20. Let the union of the set of some paths between vertices in R1,

denoted π, be such that they do not disconnect a and w from each other or the boundary

of the graph. Moreover let rung LN be the smallest such that RLN ∩ π = ∅. Take

Z := π ∪R1 \ {a}. Then for sufficiently large N ,

Pw(LERW to a intersects RKN |τa < τ+Z) ≤ c1 exp(−c2(K − L)).

Proof. The strategy is to show that it is unlikely for the parts of the walk that intersect

RKN to not be contained in loops.

Let
(
S(n)

)
n∈N be a random walk started at w that terminates upon first hitting

a or returning to Z. Set M1 := (L + 2K)/3 and M2 := (2L +K)/3 and define three

probability measures for y ∈ RKN , x ∈ RM1N and a path α.

σ1(y) := Pw(the last vertex in RKN visited by
(
S(n)

)
n∈N is y|τRKN

< τa < τ+Z)

σ2(x, y, α) := Py(Sy(τRM1N
) = x|τRM1N

< τ+α , τa < τZ ∧ τ+RKN
)

σ3(u, x, α) := Px(Sx(τRM2N
) = u|τRM2N

< τα).

Firstly note that a and Z can not be in a loop as the walk would stop upon hitting

them so their LERW hitting time is the same as the RW hitting time.

67

Chapter 4. Boundary conditions on the strip.

Next we will assume that the random walk reaches RKN and will condition upon y

being the last vertex in RKN that the random walk visited.

Define Υ to be the loop erasure of the random walk up until the final time the

random walk was at y, given that the walk hits RKN before Z ∪ {a} and will then

reach a before hitting Z.

As y was conditioned to be the last vertex visited by the random walk in RKN ,

not returning to y is equivalent to not returning to RKN . Introduce the notation τ̂

for the hitting time of a loop-erased path starting from w and terminating at a, so the

event τ̂RKN
< τ̂a is that the loop erased path from w to a hits RKN . Then we have the

expression

Pw(τ̂RKN
< τ̂a|τRKN

< τa < τ+Z , last vertex visited in RKN is y)

=
∑

α: path from w to y

P(Υ = α)Py(τa < τ+α |τa < τZ ∧ τ+RKN
).

Therefore

Pw(τ̂RKN
< τ̂a|τa < τ+Z)

=Pw(τRKN
< τa|τa < τ+Z)

∑

y∈RKN

σ1(y)Py(τ̂RKN
< τ̂a|τa < τZ , last visit to RKN at y)

≤
∑

y∈RKN

σ1(y)
∑

α

P(Υ = α)Py(τa < τ+α |τa < τZ ∧ τ+RKN
)

=
∑

y∈RKN

σ1(y)
∑

α

P(Υ = α)Py(τRM1N
< τ+α |τa < τZ ∧ τ+RKN

)

×
∑

x∈RM1N

σ2(x, y, α)Px(τa < τα|τa < τZ ∧ τRKN
)

≤
∑

y∈RKN

σ1(y)
∑

α

P(Υ = α)
∑

x∈RM1N

σ2(x, y, α)
∑

u∈RM2N

(

Px(τRM2N
< τα, Sx(τRM2N

) = u|τa < τZ ∧ τRKN
)Pu(τa < τα|τa < τZ ∧ τRKN

)
)

≤
∑

y∈RKN

∑

α

∑

x∈RM1N

∑

u∈RM2N

σ1(y)P(Υ = α)σ2(x, y, α)

× Px(τRM2N
< τα, Sx(τRM2N

) = u|τa < τZ ∧ τRKN
). (4.18)

Define the harmonic function h(v) := Pv(τa < τZ ∧ τRKN
) which vanishes outside

of the domain. Note that any vertices u ∈ RM2N and x ∈ RM1N are at least c1N

from a, Z and RKN . Therefore the Harnack inequality holds and we can deduce that

h(u) ≤ c2h(x). Due to the choice of the function h we also have that the conditions of

a Doob h-transform are satisfied so we can deduce that

68

Chapter 4. Boundary conditions on the strip.

Px(τRM2N
< τα, S(τRM2N

) = u|τa < τZ ∧ τRKN
)

= Px

(
τRM2N

< τα, S(τRM2N
) = u

)h(u)
h(x)

≤ c2Px

(
τRM2N

< τα, S(τRM2N
) = u

)

= c2σ3(u, x, α)Px(τRM2N
< τα) (4.19)

Substituting (4.19) into (4.18) gives

Pw(τ̂RKN
< τ̂a|τa < τ+Z)

≤
∑

y∈RKN

∑

α

∑

x∈RM1N

∑

u∈RM2N

c2σ1(y)P(Υ = α)σ2(x, y, α)σ3(u, x, α)Px(τRM2N
< τα)

Finally by Lemma 4.10,

Px(τRM2N
< τα) ≤ c3 exp(−c4(M2 −M1)) = c3 exp(−c5(K − L)),

although the domain on which this random walk is terminated is different from the one

stated in Lemma 4.10 it is clear that the proof for the result in this setting is equivalent

and so the same bound also holds in this case. This allows us to conclude that

Pw(τ̂RKN
< τ̂a|τa < τ+Z)

≤
∑

y∈RKN

∑

α

∑

x∈RM1N

∑

u∈RM1N

c2σ1(y)P(Υ = α)σ2(x, y, α)σ3(u, x, α)c3 exp(−c5(K − L))

≤ c6 exp(−c5(K − L)).

4.4.3 Bound for a grove.

Now we have the individual bounds we will show that we can take any combination of

these paths and associated bounds to produce a uniform bound for the whole grove.

Lemma 4.21. Suppose we have a partition of a grove consisting of m components with

each component being a path nested inside of the previous one. If we uniformly choose

a grove that satisfies this connection pattern then look at the furthest rung that any of

the nested paths in the grove reached then we can say that

P(a nested paths crosses R(K+m)N) ≤ exp (−c1K + c2m) .

Proof. Suppose we have a grove selected uniformly from groves that induce the desired

partition on R1 . Recall if we resample a component then the resulting grove is also

69

Chapter 4. Boundary conditions on the strip.

uniform. Therefore we can resample each path in turn, working from the inside out,

extracting the relevant information at each step allowing us to check if the final path

reaches R(K+m)N .

Let Fi contain the information of how the first i paths have been resampled. Let

Xi be the distance reached by the ith path beyond the furthest rung that the i − 1th

path hit upon resampling conditioned on Fi. Hence the furthest rung reached by the

sequence of nested paths after resampling will be
∑m

i=1Xi since after resampling the

grove has the same distribution as the original grove it suffices to provide a bound for

this term.

The behaviour of Xi conditioned on Fi−1, for i < m is bounded by Proposition 4.17

where π1 is taken to be the i−1th resampled path and π3 is some path that has not been

resampled yet. For x ∈ R
+ this Proposition will give us a bound for the probability

that Xi −N ≥ x. Note that the criteria for the Proposition to be applied require us to

be asking about distances of at least N and hence we will work with Xi −N .

For the mth path we need to use Propostion 4.20 instead as there will not be a path

that disconnects it from the boundary to play the role of π3.

Note we can find two constants c1, c2 > 0 such that the upper bound in Proposition

4.17 and Propostion 4.20 are the same. Hence for all i

P(Xi > x+N |Fi−1) ≤ c1 exp

(−c2(x+N)

N

)
.

Introduce the new sigma algebra, Gi, which contains the information about the

furthest rung reached by each of the previous i paths. In the proofs of Proposition 4.17

and Propostion 4.20 it is only Gi rather than Fi that we need to know. Hence the same

bound holds when we condition on Gi instead of Fi.

Introduce the i.i.d geometric random variables Zi with parameter 1 − exp
(−c2

N

)
,

which are independent of Gm. This means that

P(Xi > x+N |Gi−1) ≤ c1 exp

(−c2(x+N)

N

)
≤ c1 exp

(−c2x
N

)
= c1P(Zi > x).

70

Chapter 4. Boundary conditions on the strip.

Hence

P

(m∑

i=1

(Xi −N) > KN
)

=
∑

x1,...xm∈Z+∑m
i=1 xi≥KN

P(X1 −N = x1|G0)P(X2 −N = x2|G1) . . . P(Xm −N = xm|Gm−1)

=

∞∑

ς=0

∑

x1,...xm−1∈Z+
∑m−1

i=1 xi=ς

P(X1 −N = x1|G0) . . .P(Xm−1 −N = xm−1|Gm−2)

×
∑

xm∈Z+

xm≥KN−ς

P(Xm −N = xm|Gm−1)

=

∞∑

ς=0

∑

x1,...xm−1∈Z+
∑m−1

i=1 xi=ς

P(X1 −N = x1|G0) . . .P(Xm−1 −N = xm−1|Gm−2)

× P(Xm −N ≥ KN − ς|Gm−1)

≤
∞∑

ς=0

∑

x1,...xm−1∈Z+
∑m−1

i=1 xi=ς

P(X1 −N = x1|G0) . . .P(Xm−1 −N = xm−1|Gm−2)

× c1P(Zm ≥ KN − ς)

=
∞∑

ς=0

∑

x1,...xm−1∈Z+
∑m−1

i=1 xi=ς

P(X1 −N = x1|G0) . . .P(Xm−1 −N = xm−1|Gm−2)

×
∑

xm∈Z+

xm≥KN−ς

c1P(Zm = xm)

= c1
∑

x1,...xm∈Z+∑m
i=1 xi≥KN

P(X1 −N = x1|G0) . . .P(Xm−1 −N = xm−1|Gm−2)P(Zm = xm).

As Zm is independent of X1, . . . Xm there is no reason we now can not repeat this

argument for Xm−1. Repeating for each Xi in turn allows us to deduce that

P

(m∑

i=1

(Xi −N) > KN
)
≤

∑

x1,...xm∈Z+∑m
i=1 xi≥KN

c1P(Z1 = x1)c1P(Z2 = x2) . . . c1P(Zm = xm)

= cm1 P(

m∑

i=1

Zm ≥ KN).

Next we use Markov’s inequality, then insisting that t ≤ c2
N we can use the moment

71

Chapter 4. Boundary conditions on the strip.

generating function of a geometric random variable and then finally take t = c2
2N to get

P

(m∑

i=1

(Xi −N) > KN
)

≤ cm1 P

(m∑

i=1

Zi > KN
)

≤ min
0<t<

c2
N

cm1 P

(
exp

(m∑

i=1

Zit
)
≥ exp(KNt)

)

≤ min
0<t<

c2
N

cm1
E[exp(t

∑m
i=1 Zi)]

exp(KNt)

= min
0<t<

c2
N

cm1

∏m
i=1 E[exp(Zit)]

exp(KNt)

≤ min
0<t<

c2
N

cm1 exp(−KNt)
(

(1− exp(−c2
N)) exp(t)

1− (1− (1− exp(−c2
N)) exp(t)

)m

≤ min
0<t<

c2
N

cm1 exp(−KN c2
2N

)

(
(1− exp(−c2

N)) exp(c2
2N)

1− (1− (1− exp(−c2
N)) exp(c2

2N)

)m

≤ cm1 exp(−c3K)

(
exp(c2

2N)− exp(−c2
2N)

1− exp(−c2
2N)

)m

= cm1 exp(−c3K)
(
1 + exp

(c2
2N

))m

≤ cm1 exp(−c3K)cm4

≤ exp(−c3K + c5m).

Lemma 4.22. Suppose we have a grove with respect to R1 that is uniformly chosen

from the set of all groves that consist of m adjacent paths. For K > 1,

P(One of the m adjacent paths reaches RKN) ≤ c1m exp(−c2K).

Proof. This will be shown by resampling each path in turn and checking if any of the

paths reached RKN , as noted early the resulting grove will have the same distribution

as the original grove chosen. Suppose that we are resampling the path between w and a

and that the union of all the other adjacent paths connected to R1, whether resampled

or original, is denoted by π. We assume that the furthest rung that π reaches is RMN .

Then depending on the size of M we can use our previous results to handle this case.

If M > 1 ∨K/2, then observe that until the walk reaches RMN we are in the same

situation as Proposition 4.17. Whilst in the set up of that Proposition we have a path

between R1 and RMN on either side in this setting we can use the paths in π to play

the same role.

This is allowed because the only relevant information we need to extract from the

72

Chapter 4. Boundary conditions on the strip.

enclosing path in the proof of the proposition was that we could decompose the domain

using balls which have a maximum allowed radius and that the probability of a walk

between two rungs to avoid the paths was exponentially bounded. Therefore if we have

a path either side we have exactly the same situation. Moreover even if we had a path

on only one side the same proof works, because the decomposition would be the same

but using the boundary to control the size of the ball and an equivalent statement to

Lemma 4.9 exists when we only have one path.

More formally let Z := π ∪ R1 and recall the notation that τ̂RKN
< τ̂a denotes

the event of a LERW started from w that is stopped at a intersecting RKN . As there

is no path nested inside we can take L = 0 and conclude that there exists constants

d1, d2 > 0 such that

Pw(τ̂RMN
< τ̂a|τa < τ+Z) ≤ d1 exp(−cM) ≤ d1 exp(−d2K).

Once the walk passes RMN then there would be no other paths outside it as all

previous paths would be behind RMN and we our interested if the path manages to

cross RKN . This is therefore the same set up as we have in Proposition 4.20 with

M = L. Observe that for the cases M < 1 or M < K/2 we have K − M ≥ cK.

Therefore we can conclude that there exists constants d3, d4, d5 > 0 such that

Pw(τ̂RKN
< τ̂a|τa < τ+Z) ≤ d3 exp(−d4(K −M)) ≤ d3 exp(−d5K).

Finally we note that by taking the constants c1 = max{d1, d3} and c2 = min{d2, d5}
we can get an upper bound that holds in both settings. Therefore each path has the

same bound for reaching RKN and it is independent of the other paths in the backbone,

thus

P(One of the m adjacent paths reaches RKN) ≤
m∑

i=1

Pw(τ̂RKN
< τ̂a|τa < τ+Z ∧ τα)

≤ c1m exp(−c2K).

Remark 4.23. The bound that this yields is significantly stronger than the final bound

that we are able to prove. This offers hope that if in future work we can provide control

of how many nested paths are likely to exist in a grove we will be able to make a beneficial

improvement to the overall bound.

Definition 4.24. For a partition p of R1, define Pp to be the uniform probability

measure on groves with respect to R1 which have induced the partition p on R1.

Lemma 4.25. Let bg be the backbone of a uniformly chosen grove with respect to R1

and let gc be one of its components. Suppose gc∩R1 = {v1, v2, . . . vn}, where the vertices

are ordered according to their vertical co-ordinate. The path in bg that connects v1 to

73

Chapter 4. Boundary conditions on the strip.

vn has the distribution of a loop-erased random walk started at v1 conditioned to hit vn

before hitting hitting a vertex in bg \ gc.

Proof. Firstly note to generate a uniformly distributed rooted groves we could first

generate a uniformly distributed grove then uniformly choose the roots in each compo-

nent.

Now recall the algorithm for generating groves conditioned on the partition induced

on R1 that we introduced in Chapter 2. The first step in the algorithm was to choose

the roots in each component. We know that in Wilson’s algorithm the choices we make

do not effect the distribution of the spanning tree that is outputted and hence we are

free to chose different roots in the components without changing the distribution of the

undirected grove created.

Therefore given the partition {v1, . . . vn} we are free to generate the attached back-

bone component with v1 being the root. Moreover we can let vn be the first vertex we

start a LERW from. Thus the path from vn to v1 will have the stated distribution.

Remark 4.26. The path from v1 to vn will encompass the other paths in the backbone

of gc, hence if any path in gc crosses RKN so must this extremal path.

Lemma 4.27. Suppose we have a partition p of R1 and let bg be a backbone of a

uniformly selected grove with respect to R1. Suppose that bg consists of m components

with m′ of them containing at least two vertices.

Then

Pp(bg ∩R(K+m′)N 6= ∅) ≤ c1 exp(−c2K + c3m
′). (4.20)

Proof. This will be proven by showing that the upper bound for the partition with all

nested paths will hold for any other configuration of components.

There is one type of component that can occur in a partition which we have not

yet considered and that is one which contains a solitary vertex.

The solitary vertices, by definition, can not have a path that returns to R1 and so

they can not make the event in the left-hand side of (4.20) occur. Moreover by Lemma

2.7 we know that in the resampling process we only condition on the other paths in the

backbone and thus not the paths connected to solitary vertices. Therefore we would

only generate the paths that attached to the solitary vertices after the other paths

have been generated at which point the occurrence of the event will have already been

determined. Therefore solitary vertices only influence is through the requirement that

the paths in bg must avoid them.

Therefore there are m′ components that we need to consider further.

Observe that in the proofs of Proposition 4.17, Proposition 4.20, Lemma 4.21 and

Lemma 4.22, the dependence on the other components in the backbone comes only

through the furthest rung that they reached. Thus the only information we need from

each backbone component is the furthest rung that it intersects. Also note that, in

74

Chapter 4. Boundary conditions on the strip.

both of these Lemmas, increasing the number of components monotonically increases

the upper bound produced.

If a component of p, pi had more than two vertices then we can apply Lemma 4.25.

Suppose pi = {v1, v2, . . . vn}, with the vertices ordered according to their vertical co-

ordinate. Then the furthest rung reached by the backbone attached to this component

is the same as the furthest rung that the path from v1 to vn intersects. This has the

distribution of a LERW path conditioned to avoid the other backbone components.

Recall with π1, π3 being the relevant nesting paths, if they exist, from the other

backbone components, the proofs of Propositions 4.17 and 4.20 used Z = π1 ∪ π3 ∪
(R1 \ {vn}). Notice that the same proofs would hold if instead we had taken Z =

π1 ∪ π3 ∪ (R1 \ {v2, . . . vn}) and Z ′ = π1 ∪ π3 ∪ (R1 \ {v2, . . . vn−1}). This would allow

the LERW from v1 to vn to return to vertices in pi, whilst still yielding the same upper

bound.

These walks would therefore have the same distribution as the LERW we want to

run from v1 to vn conditioned to avoid other backbone components. Therefore the

upper bounds in Propositions 4.17 and 4.20 also hold for the distance reached by the

backbone connected to pi.

This means that if pi has more than two vertices in it then the exact number of

vertices contained in pi does not effect our upper bound for the furthest rung reached

by the associated backbone component.

Hence once we know there are m′ components of the partition with at least two

vertices the only further information required to utilise the results of the upper bounds

we have thus far produced, is to know how the end vertices of each component are

arranged in the partition with respect to each other.

There are two distinct ways that two components of a grove can be in relation to

each other, either they are adjacent or they are nested. We can use Lemma 4.22 to

bound the probability of any of m′ successive adjacent components reaching R(K+m′)N

by c1m
′ exp(−c2(K +m′)).

Next for the case of a grove having m′ nested components, we have the bound from

Lemma 4.21 for a path in the backbone reaching R(K+m′)N of exp(−c3K + c4m
′) . By

comparing these bounds, and taking c3 > 0 sufficiently small and c4 > 0 sufficiently

large, we see that for all valid K,N,m′ our weaker bound is achieved by taking all

components nested over all adjacent components.

The proof is concluded by showing that taking any other possible combination of

nested and adjacent components does not increase the bound given by only having

nested components.

Firstly consider having two adjacent components which are nested inside the same

outer component. Observe that the bound for the outer nested component depends only

on the adjacent components through the furthest rung that was reached by either of

the inner components. Therefore if we could replace the two adjacent components with

components that had a greater probability of travelling further then the backbone as a

75

Chapter 4. Boundary conditions on the strip.

whole would be more likely to reach a higher rung. As we previous observed, replacing

two adjacent components with two nested components will increase the bound for the

distance reached. Hence the case of having adjacent components in one step of a

sequence of nested components is bounded above by the case where all components are

in one nested sequence.

The other example to consider is that of having two nested components being

adjacent to each other. Suppose the adjacent components had m1 and m2 components

in respectively. Then by Lemmas 4.21 and 4.22 the probability of either component

reaching R(K+m1+m2)N is

c5 exp(−c6(K +m2) + c7m1) + c5 exp(−c6(K +m1) + c7m2).

By insisting that the constants are sufficiently large, or small respectively, this is less

than c5 exp(−c6K + c7(m1 + m2)) for all K,N,m1,m2, which we would obtain from

having all paths in one nested sequence.

From these cases any other combination of adjacent and nested components will

clearly also be bounded by the case of all components being nested.

Remark 4.28. Using a similar argument we could have shown that if a partition p had

m′ components with at least two vertices and the longest sequence of nested components

was m′′ then

Pp(bg ∩R(K+m′′)N 6= ∅) ≤ c1m
′ exp(−c2K + c3m

′′).

This would not strengthen the final bound that we are able to prove in this thesis but if

in future work we could control the number of nested components this bound would lead

to a stronger result.

We now posses all the results we require to complete the objective of this section

and prove a bound for the probability that a grove contains a path that travels too far.

Proof of Proposition 4.15. Suppose the partition p of R1 consist of the components

(p1, p2, . . . pm), with m′ components having at least two vertices.

By Lemma 4.27 an upper bound can be provided based on the size of m′. It is

clear that increasing m′, the number of non-solitary vertex partitions, increases the

upper bound. As increasing the number of vertices in a partition beyond two does not

increase the bound, taking each component pi to contain exactly two vertices, except

if N is odd when we take p1 to have three vertices, will provide an upper bound that

holds uniformly for all possible partitions.

Hence we can take m = m′ ≤ N/2 and conclude that

Pp(bg ∩RKN+N2 6= ∅) ≤ c1 exp(−c2K + c3N).

76

Chapter 4. Boundary conditions on the strip.

4.5 Bound for existence of a block.

Recall that any spanning forest is uniquely determined by the dual spanning forest it

defines. The original graph we are working on, (G× [−q1, q2])∪{s}, has free boundary
conditions on the top,bottom and right-hand side and has the wired boundary on the

left-hand side of the graph, this means the dual graph has a free boundary on the left-

hand side and a wired boundary on the other three sides of the graph. For convenience

we will use a modification of the planar dual and split the sink into multiple vertices.

Denote by s1 the vertex that the top row of vertices in the dual graph are connected

to, and s2 for the sink connected to the bottom row.

In the previous chapter we also had the concept of a block, although it is a slight

variation of this we now want.

Definition 4.29. A block between Ri and Rj , is a set of edges, U , in the dual tree

such that it has the following properties:

(i) U is contained between Ri and Rj.

(ii) U consists of two sets of connected edges, one component containing s1 and the

other s2.

(iii) There exists a unique edge in the original graph that it is included in every path

from Ri to Rj that does not intersect U .

Lemma 4.30. There exists constants c1, c2 > 0 such that for all K∗ ≥ 1, m > 0 and

for sufficiently large N

P(no block between Rm and Rm+K∗N) ≤ c1 exp(−c2K∗).

Proof. The approach used here is the same idea as we used to construct a block in the

previous chapter, by bounding the probability of a given construction occurring.

Construction of a block.

We firstly describe a particular method of constructing a block between the desired

rungs, then we will bound the probability of such a construction successfully occurring.

See Figure 4.3 for an example of the first three steps of a typical construction.

Let vi denote the vertex that the ith random walk will start from in the dual graph.

From each start vertex, vi, we will run a loop erased random walk until the first

time it hits s1 ∪ s2 or any other vertex in the previous paths. Denote the ith path by

αi.

We now inductively define the start vertices, all of which will be on rungm+K∗N/2.

Set v1 = (m+K∗N/2, N/2), the mid-point of the domain that can contain U .

Suppose the LERW from v1 that terminates upon hitting s1∪s2 generated the path

α1. If α1 contains the vertex s1 then take v2 to be (m+K∗N/2, N/4). Alternatively

if α1 contains s2 we would take v2 := (m+K∗N/2, 3N/4).

More generally suppose we have created the first i − 1 start vertices and paths.

The vertex vi−1 will be situated in an interval between two of the vertices in the set

77

Chapter 4. Boundary conditions on the strip.

v1

v2

v3

Figure 4.3: An example of the first three steps in a construction of a block.

{s1, s2, v1, v2 . . . vi−2}. We denote the vertices it is between by u and w, note that

one will be in the connected component containing s1 and the other will be in the

component connected to s2. For a vertex v let vh denote its vertical co-ordinate.

If αi−1 ends at a vertex that is connect to u we take the midpoint between vi−1 and

w, namely vi =
(
m+K∗N/2, (vhi−1 + wh)/2

)
. If instead αi−1 ends at a vertex that is

connect to w we take the midpoint between vi−1 and u to be the next start vertex, so

we would have vi =
(
m+K∗N/2, (vhi−1 + uh)/2

)
. The path αi is then defined to be the

LERW started at vi that terminates upon first hitting a vertex in
⋃i−1

j=1 αj ∪ {s1, s2}.
If the above construction of vi does not give a vertex then take the nearest vertex

in the dual graph and split any draws by taking the higher vertex, or by any other

arbitrary rule.

This procedure continues until the first time we have a start vertex whose neigh-

bouring vertices in rung m+K∗N/2 are both previous start vertices. The process will

then terminate after generating the walk from this vertex.

If all of the paths in this construction end before they pass Rm or Rm+K∗N , then

it will have created a block in the dual forest between these rungs.

Probabilistic bound.

We can therefore provide an upper bound for the probability of there not existing a

block by the probability that this construction does not succeed in producing a block.

In order for this construction to fail it suffices to check if any of the walks exit the

domain before hitting the previous paths.

By an application of Lemma 4.10 we can deduce that the probability of α1 exiting

the box before hitting s1 or s2 is at most exp(−cK∗).

Now consider the ith walk. In order to pass Rm or Rm+K∗N the walk must first

78

Chapter 4. Boundary conditions on the strip.

reach a distance N from vi. Observe that vi will be at most 2−iN from a vertex in a

previous paths, in particular from vi−1.

Let Bi be a ball of radius N around vi. It is possible that this will not be completely

contained within the domain, however the walk can not reach the part of the ball outside

the domain without hitting s1 or s2 hence the walk will always terminate before leaving

the domain. Therefore considering the ball and the ball restricted to the domain amount

to the same thing.

By Beurling’s estimate, [35, Section 6.8], we have that

Pvi(ξBi
< τ∪j<iαj

) ≤ c1

(
2−iN

N

) 1
2

.

Next suppose the walk managed to reach a distance N from the start vertex without

being terminated, this means we can no longer assume that it will be near any vertex

in the previous path. We now no longer concern ourselves with whether the walk hits

the previous paths and just ask for the walk to avoid s1 and s2, this is allowed as we

only need to deduce an upper bound.

Consider the first vertex, x, that the random walk hits that was distance N from

vi. From x if the walk is to reach Rm without hitting s1 or s2 then it must first reach

rung m+ (K
∗

2 − 1)N . By Lemma 4.10, the probability that a walk from R
m+(K

∗

2
−1)N

could reach Rm without hitting s1 ∪ s2 is bounded above by exp(−c2(K∗ − 1)), note

that this bound holds uniformly for all vertices in Rm+(K
∗

2
−1)N . Hence

Px(τRm ≤ τs1 ∧ τs2)
=

∑

y∈R
m+(K

∗

2 −1)N

Px(τR
m+(K

∗

2 −1)N
≤ τs1 ∧ τs2 , Sx(τR

m+(K
∗

2 −1)N
) = y)Py(τRm ≤ τs1 ∧ τs2)

≤ Px(τR
m+(K

∗

2 −1)N
≤ τs1 ∧ τs2) exp(−c2(K∗ − 1))

≤ exp(−c2(K∗ − 1)).

Similarly using the symmetry of the walk and the domain, for the walk to reach

Rm+K∗N it must first hit rung m+ (K
∗

2 + 1)N , and then we could apply Lemma 4.10

to the remaining part of the walk to deduce

Px(τRm+K∗N
< τs1 ∧ τs2) ≤ exp(−c2(K∗ − 1)).

Therefore

Px(τRm ∧ τRm+K∗N
≤ τs1 ∧ τs2) ≤ Px(τRm ≤ τs1 ∧ τs2) + Px(τRm+K∗N

< τs1 ∧ τs2)
≤ 2 exp(−c2(K∗ − 1)),

79

Chapter 4. Boundary conditions on the strip.

and so for i ≥ 2

P(ith path fails)

≤ Pvi(ξBi
< τ∪j<iαj

)
∑

x∈∂Bi

P(S(ξBi
) = x|ξBi

< τ∪j<iαj
)Px(τRm ∧ τRm+K∗N ≤ τs1 ∧ τs2)

≤ c12
1−i/2 exp(−c2(K∗ − 1)).

Now bounding the sum over the finite number of paths involved in the construction

by an infinite sum gives

P(no block) ≤ P(construction fails) ≤ exp(−cK∗) + c1

∞∑

i=2

21−i/2 exp(−c2(K∗ − 1))

≤ c3 exp(−c2K∗).

We now have all the concepts and results we require to prove the theorem.

4.6 Proof of Theorems.

Let bg be the backbone component of the grove g on Λ2. Let p(bg) be the partition the

backbone induces on R1.

Proof of Theorem 4.3. Recall from Chapter 2 that once the spanning tree up to the

earliest common ancestor of a vertex and its neighbours is known then the sandpile

configuration at that vertex can be computed. Therefore to determine whether the

event η(k, q2) occurs it suffices to know the descendants of the earliest common ancestor

of vertices in Rk−1 in the spanning tree associated via φR0 .

Therefore if we can find a coupling between spanning trees when conditioned on I or

with no conditioning, we would have a bound for the difference between the conditioned

and unconditioned measures.

By Lemma 4.13 we see that conditioning on a suitable rooted partition for the grove

with respect to R1 as well as the sandpile configuration on Λ1 is enough to determine

the spanning forest, F , on Λ+
1 . Let the set of rooted partitions on R1 that can be

involved in giving rise to I on Λ1 be denoted by P.

Therefore the spanning forest on Λ2 with respect to the burning bijection centred

at R0 conditioning on I can be studied by conditioning on a partition from P and the

spanning forest on Λ+
1 . We now further condition on which of the possible partitions,

p ∈ P, occurs.

Now observe that the spanning forest F is only a dependent of the distribution of

the groves on Λ2 through the partition p. Consequently when investigating groves on

80

Chapter 4. Boundary conditions on the strip.

Λ2 conditioned on I we will wish to consider groves on Λ2 conditioned on p which is

determined by the backbone bg.

Next consider the method of constructing a grove with a prescribed connection

pattern presented in Chapter 2. If bg is constructed and it does not intersect RθN+N2

then we could continue the algorithm by runningWilson’s algorithm on vertices between

RθN+N2 and RθN+N2+K∗N . Note that as a spanning forest is uniquely determined by

its dual we could equivalently continue the algorithm by running Wilson’s algorithm

on the dual graph, which will be denoted G∗.

Let us consider how knowledge of bg in the primal graph converts into a dual tree

event. Observe that in the dual tree knowing that the tree on the primal graph must

contain the edges in bg is equivalent to saying there is a set of edges b∗g that can not

be included in the dual tree.

Therefore constructing the dual tree can be done utilising Wilson’s algorithm on

each connected component of the graph G∗ \ b∗g. Moreover as we are free to choose

the start vertices used in Wilson’s algorithm we can use the same method as for the

construction described in the proof of Lemma 4.30 to construct the part of the dual

tree that occurs between RθN+N2 and RθN+N2+K∗N .

Assuming that bg does not cross RθN+N2 the transition probabilities for the random

walks involved in the construction of a block between RθN+N2 and RθN+N2+K∗N in

G∗ are the same as those used when running Wilson’s algorithm on the graph G∗ \ b∗g.
This observation allows us to couple the construction of a block under conditioning and

the unconditioned case, and thus we will be able to utilise Lemma 4.30 in the desired

setting.

If a block existed in the dual tree, it would mean that the earliest common ancestor

of RN2+θN+K∗N would be forced to occur after RN2+θN . Thus the sandpile configura-

tion on RN2+θN+K∗N , and therefore all later rungs, are independent of the spanning

tree up to RN2+θN and thus would be independent of I.

An upper bound could therefore be provided if we can control the events that bg

does not intersect RθN+N2 and that a block exists between RθN+N2 and RθN+N2+K∗N .

Observe that the bound in Proposition 4.15 is uniform with respect to the rooted

partition p we have conditioned upon. Hence the same bound will also hold when we

have conditioned upon the event p(bg) ∈ P. Therefore we have control over whether

bg intersects RθN+N2 .

Assuming that none of the paths in bg intersect RN2+θN , we can use Wilson’s

algorithm to generate the uniform spanning forest on the remaining graph, conditioned

on the backbone connected to R1 being bg. Due to our earlier observations in this proof

about coupling the block construction in the conditioned and unconditioned case we can

deduce that the probability of a block occurring between RθN+N2 and RθN+N2+K∗N is

bounded by Lemma 4.30.

Therefore for any rung k such that k > K∗N + θN +N2 the spanning tree at Rk is

independent of I if either the backbone attached to R1 reaches RN2+θN and conditioned

81

Chapter 4. Boundary conditions on the strip.

on this backbone we then have independence, or no path in the backbone attached to

the vertices in R1 reaches RN2+θN and conditioned on this type of backbone we have

a block between rungs N2 + θN and N2 + θN +K∗N .

Therefore combining the bounds found in Proposition 4.15 and Lemma 4.30, we

have some constants c1, c2, c3, c4, c5, c6 > 0 which have no dependence on θ or N such

that

∣∣∣ν[−q1,q2](η(k, q2)|I)− ν[−q1,q2](η(k, q2)
∣∣∣

≤P(bg ∩RθN+N2 6= ∅|p(bg) ∈ P)

+ P(there is not a block between RθN+N2 and RθN+N2+K∗N)

≤c1 exp(−c2θ + c3N) + c4 exp(−c5K∗)

≤c6 exp(−c2θ + c3N).

By taking K∗ = c2θ+c3N
c5

and θ sufficiently large.

Proof of Theorem 4.2. To extend the result to hold on a graph with an infinite number

of rungs we need some approximations.

From convergence of the sandpile measures on Ladder graphs proven in [26], it

follows that for all ε1, ε2 > 0 there exists a Q1 > 0 such that when q2 > Q1 the

following hold

∣∣∣ν[−q1,q2](η(k, q2)|I) − ν(η(k, q2)|I)
∣∣∣ ≤ ε1

∣∣∣ν[−q1,q2](η(k, q2))− ν(η(k, q2))
∣∣∣ ≤ ε2.

Also we have that we can approximate an event depending on an infinite number

of rungs by cyclinder events , so for all ε3, ε4 > 0 there exists Q2 > 0 such that when

q2 > Q2 the following statements are true.

∣∣∣ν(η(k, q2)|I)− ν(η(k,∞)|I)
∣∣∣ ≤ ε3

∣∣∣ν(η(k, q2))− ν(η(k,∞))
∣∣∣ ≤ ε4.

Hence by taking q2 > max{Q1, Q2}
∣∣∣ν(η(k,∞)|I) − ν(η(k,∞))

∣∣∣ ≤ ε1 + ε2 + ε3 + ε4 +
∣∣∣ν(η(k, q2)|I)− ν(η(k, q2)

∣∣∣.

Moreover we can chose ε1, ε2, ε3, ε4 such that
∑

i εi < exp(−c2γ + c3N) and then the

result follows from Theorem 4.3.

82

Chapter 4. Boundary conditions on the strip.

4.7 Periodic Boundary on the strip.

In the final section of this chapter we briefly consider what would happen if we had

defined the lattice graph on the surface of a cylinder, i.e it was periodic in the vertical

direction.

Theorem 4.31. Given the graph [0, N + 1]× [−q,∞) ⊂ Z
2 for any q > 0, where row

0 and row N + 1 have been identified, so we have a lattice grid on the surface of a

cylinder. Let η be a recurrent sandpile configuration on this graph and let ηi denote

the configuration on the vertices in the ith rung, Ri. Let ν be the measure on recurrent

sandpile configurations on this graph. We define I := {ηj = Ej for j ∈ [−q, 0]}, the
event that the sandpile between rung −q and rung 0 is some known configuration, E.

Further define η(i, j) to be any event that is determined by the configuration of the

sandpile between rungs i and j. Then with k ≥ N2 + γN for sufficiently large γ > 0

and some constant c1, c2, c3 > 0, we have that

∣∣∣ν
(
η(k,∞)|I

)
− ν
(
η(k,∞)

)∣∣∣ ≤ c1 exp(−c2γ + c3N). (4.21)

We now briefly give a rough outline to how the proof would proceed, by highlighting

the areas where it differs from the proof of Theorem 4.2.

Sketch of proof. Most of this proof will follow immediately from the above results for

the non-periodic boundary case. The proof of Theorem 4.2 follows from Theorem 4.3,

it will also be true that in the periodic boundary case that the result on an infinite

ladder graph follows from the result on a finite graph. Therefore we need to see how

Theorem 4.3 would need to be altered to hold in this new setting.

There are two parts to the proof that we need to check. Firstly we can again im-

plement the same decomposition of the domain as in section 4.2.1. Note the maximum

diameter of a ball would still be N . Hence we can still use the same argument to

decompose the random walk into paths that may or may not hit the centre of the balls.

Now observe that an equivalent bound to lemma 4.9 exists in the periodic case. Thus

the same proofs as in Section 4.4 will also work in the periodic case.

The second part in Section 4.5 where we build a block would need more care and

there is a distinction between the proofs. In the non-periodic case the random walk

on the dual graph was always within N/2 steps of the sink and so we could utilise

this to bound the probability of the walk reaching a distant rung without hitting the

sink. Unfortunately this is no longer true in the periodic case, so to prove a result of

the form of Lemma 4.30 we will require a different approach. However we can use a

similar idea to one we had whilst creating a block in Chapter 3. This involved creating

a “backbone” that was sufficiently “well behaved” (note this is not the same as the

backbone of the grove we have discussed earlier in this chapter). By a backbone we

now mean a path in the dual tree from a vertex in Rm+K∗N to the sink. For a random

83

Chapter 4. Boundary conditions on the strip.

walk starting from a vertex in Ri for some i > m we say the walk is well behaved if

once the random walk has hit Rm it does not return to Rm+K∗N .

Once the backbone has been created the remainder of the construction is the same

as the non-periodic case except that the backbone now plays the role of {s1} ∪ {s2}.
The proof found in Chapter 3 required three properties. Firstly that the infinite

LERW and the LERW stopped upon exiting a subgraph Λ agreed in some domain.

Secondly that once the walk was sufficiently far away it would not return to a ball about

the origin. Finally that the rest of the construction was satisfied. These requirements

are now translated into the current setting.

The first and second requirement can be dealt with together, by showing that the

random walk that generates the backbone, from a vertex in Rm+K∗N that terminates

upon hitting the sink in the dual tree, is well behaved. An upper bound will then follow

from existing results. By conditioning on the LERW path until the walk first intersects

Rm and using the domain Markov property we can see that the required behaviour

of the remainder of the walk can be controlled by an application of Proposition 4.17.

This is therefore exponentially bounded by c1 exp(−c2K∗). Note that whilst the path

until the first intersection with Rm will depend on bg the bound for the remainder of

the walk holds uniformly for all possible paths and thus this bound also holds when

conditioning upon knowledge of the backbone, bg, in the primal tree.

The third requirement is controlled by the same method as in the non-periodic case

by using Beurling’s estimate and an equivalent statement to Lemma 4.10. This would

yield an upper bound of exp(−c3K∗), which again would hold uniformly amongst all

possible well behaved backbone paths.

Hence, up to some changes in constants, the same bound holds for the periodic case

as for the non-periodic case.

84

APPENDIX A

AN ENCODING OF THE BURNING PROCESS.

In this appendix we will give a construction on recurrent Ladder sandpiles that encode

the burning process with respect to rungs.

Recall a ladder sandpile is of the form G×N where a copy of the graph G is called

a rung. A special vertex, s, is defined to be the sink and each vertex in rung 1 will be

connected to the sink by one edge.

Also recall that in [25], Járai and Lyons showed that there existed a measure on

“left-burnable” sandpiles on [1, N] × Z. The left-hand boundary of a finite subgraph,

H, is given by those v ∈ H such that there exists an (infinite) path from v to R−∞ that

only uses vertices in H that have been declared burnt and vertices in Hc ⊂ [1, N]× Z.

By “left-burnable” it is meant that the configuration on H can be burnt under the

usual burning rule when restricted to only allowing a vertex to burn when it is on the

left-hand boundary of H.

This allows us to conclude the existence of a measure on our related graph. The

distribution of recurrent sandpile configurations that can occur after a maximum rung

as given by the left-burnable measure is exactly the distribution on the graphs we

consider.

In [16] it was shown that there is a Markov chain that encodes the possible con-

figurations of the spanning tree for the ladder graph with rungs given by G = {0, 1}.
By considering non-crossing partitions of the vertices in a rung the statespace for the

spanning tree of the graph {1, . . . N} × N ⊂ Z
2 can be chosen such that its size is

exp(cN).

Ideally we would like to have an encoding of the sandpile configuration whose states-

pace contained configurations on a rung but this is not sufficient information to ensure

the sandpile is recurrent. This is because the recurrence of a configuration has a non-

local aspect which causes non-trivial constraints to be placed on which sequences of

rung configuration are allowed to occur. Therefore we need to include more informa-

tion; the approach we take here is to know how previous rungs can possibly burn as

85

Appendix A. An encoding of the burning process.

well as the configuration on a rung.

In [25], the authors also showed that there existed such a Markov chain on ladder

sandpiles of the form G×N ⊂ Z
2. However the size of their statespace grows at a non-

optimal rate. We can give an encoding for sandpiles on these graphs that we believe

has an exponential number of elements in its statespace.

For a subgraph, H, of a ladder graph, we use the notation RH to denote the

set of sandpile configurations that can occur on the graph H as part of a recurrent

configuration on the whole ladder graph.

Definition A.1. Given two sandpile configurations η, ζ ∈ RG×[1,q] we define the ex-

tended sandpile, θ := η ∪ ζ on the graph G × [1, 2q] by taking θ|RG×[1,q]
= η and

θ|RG×[q+1,2q]
= ζ.

Definition A.2. For a set S and maps ϕq : RG×[1,q] → RG × S define the set Φ =

{ϕq : q ≥ 1}. Suppose we are also given a map ψ : RG × S → S. We say the triple

(S,Φ, ψ) is a coding if the following properties hold.

(i) For q1, q2 ≥ 1 let η1, respectively η2, be recurrent configurations on G × [1, q1],

respectively G×[1, q2], and ζ a sandpile configuration on G×[1,∞). If ϕq1(η1) = ϕq2(η2)

then the extended sandpile η1 ∪ ζ is a recurrent configuration on G × N if and only if

η2 ∪ ζ is a recurrent configuration.

(ii) With the projection mapping, π : (RG×S) → RG, we have that π(ϕk(η(1, k))) =

η(k).

(iii) For k ≥ 2, if ϕk−1(η(0, k− 1))) = (η(k− 1), σk−1) and ϕk(η(0, k)) = (η(k), σk)

then ψ(η(k), σk−1) = σk.

The construction in [25] would satisfy this definition for G = [1, N] ⊂ Z, however

it would not satisfy the following conjecture.

Conjecture A.3. For G = [1, N] there exists a triple (S,Φ, ψ) that satisfies Definition

A.2 such that there exists a constant c > 0 such that |R[1,N] × S| ≤ exp(cN).

If we could prove such a result then we could define an encoding which had a

statespace with an exponential number of elements, which we suspect to be true due

to the connection with spanning trees.

The encoding we present in this appendix satisfies Definition A.2 and we believe

that it may also simplify the amount of information required to keep track of the

burning at each stage suggesting a proof of the conjecture is possible. In our encoding

the set S will be the set of possible multigraphs Sk which we will define shortly.

It is also hoped that once the Ladder graph case has been proven that this encoding

could be further generalised to one that works on Z
d and provide another way of

thinking about recurrent sandpiles in this important setting.

Trying to use the standard burning bijection to find such an a coding would not

be useful. The reason for this, similar to the one faced in Chapter 4, is that we would

86

Appendix A. An encoding of the burning process.

not only need to know what vertices in a rung can burn but also to have a concept of

respective burning times. Therefore we use a different burning rule, which is referred

to as burning with respect to rungs.

In Chapter 4 we had a modified burning rule where burning could only occur in

one of the two sections at a time. Here we use a similar idea where burning can occur

in only one rung at a time. This burning procedure was introduced in [25].

Burning based on rungs. Let η be a sandpile on the ladder graph H = {s} ∪
(G× [0, q]) with vertex set V ∪ {s}.

Phase 1: Declare the sink to be burnt, so we can define two sets, B(1) = {s} and

U(1) = V .

Phase i: Using the standard burning rule we find the set of unburnt vertices, W ,

that are currently in a position to be burnt,

W := {v ∈ U(i− 1) : η(v) ≥ degU(i−1)(v)}.

Let f := f(i, η) = min{n ∈ N : W ∩ Rn 6= ∅}. Burn any vertices in Rf that we

can without allowing any vertex in another rung to burn. To find this we define the

following sets,

B(i, 1) = {v ∈ Rf ∩ U(i− 1) : η(v) ≥ degU(i−1)(v)}
U(i, 1) = U(i− 1) \B(i, 1).

Then inductively for j ≥ 2 define

B(i, j) = {v ∈ Rf ∩ U(i, j − 1) : η(v) ≥ degU(i,j−1)(v)}
U(i, j) = U(i, j − 1) \B(i, j)

There exists a j∗ such that B(i, j∗) = ∅ and at this step the phase terminates and we

set B(i) = ∪j∗

j=1B(i, j) and U(i) = U(i− 1) \B(i).

Let φR be the mapping that given a sandpile configuration, η will assign labels to

the unburnt vertices. Namely φR(η,w) assigns w the label corresponding to the index

of the step and phase that w can burn in η according to the burning based on rungs

procedure.

This algorithm will terminate when no more vertices remain unburnt in a finite

graph. If we applied this algorithm to an infinite graph, then the burning procedure in

any finite subset of the graph will terminate in finite time almost surely, with respect

to the left-burning measure. This follows from the fact that the graph has the one-end

property.

In the construction that follows we can have any finite graph as the rung, including

d-dimensional and non-planar graphs.

87

Appendix A. An encoding of the burning process.

It is clear that retaining knowledge of all of the previous rungs, η(1, k), would

determine which configurations are allowed to occur on rung k + 1. The idea behind

our encoding of the sandpiles is for each rung, Rk, to be associated to a directed

multigraph, Sk, whose edges have been given an integer label that encodes all the

information about how the burning can continue through the previous rungs. Another

interpretation, using the ideas of the previous chapter, is that the graph Sk will encode

the set of possible partitions that could be induced on the rung Rk that would allow

burning of the remainder of the graph.

Burning a multigraph. We now introduce the procedure of burning a directed

multigraph whose edges are labelled with a non-negative integer number. The outcome

of this procedure is to declare some vertices and edges to be burnt and to reduce the

label of some of the unburnt edges. To perform this operation we would initially be

given a vertex (or vertices) that have been declared burnt and a set of edges, E, that

are exempt, in the sense that they will not be declared burnt.

Suppose we have a vertex, v, that is burnt then every edge not contained in E that

is directed out of v is declared to be burnt.

Now consider an unburnt vertex, w. When an edge directed into w is declared burnt

subtract one from the label of each edge that is directed out of w that had a non-zero

label. If a vertex has an edge directed out of it that has a label of zero attached to it

then the vertex is declared burnt. A vertex is also declared burnt if it has no out going

edges (this situation can not arise in the following construction but can occur when we

start to allow the graph to be simplified).

When no more edges or vertices can be burnt in the graph, except for those in E,

it is said to have been burnt.

There is another operation on the multigraph which we will call removal. This

works on a labelled graph that is burnt and a given subset of vertices, W , by removing

any edge or vertex that are not in W but have been labelled as burnt. If an edge has

its start or end vertex removed then it too is removed.

We would like to highlight a couple of points for the reader. Firstly that the edges in

E can have their labels reduced, possibly even to zero, but can not be declared burnt.

Secondly that there is a distinction between burnt vertices and removed vertices, in

that a burnt vertex is not always removed from the graph. Also note that no removal

operations can be performed until all burning has occurred in a graph.

Remark A.4. Given the set of vertices that are initially burnt every possible order

that we may choose to continue declaring vertices and edges as burnt will yield the

same labelled multigraph when no further edge or vertex can be declared burnt. This

follows from the fact that any vertex or edge that is burnable will still be burnable after

something else has burnt.

The multigraphs, Sk, that we will define are a reformulation of the set of heights

in the sandpile configuration of unburnt vertices with respect to the burning based on

88

Appendix A. An encoding of the burning process.

rungs procedure at the end of a certain phase. The advantage of our encoding is that

a lot of the information in the multigraph can be seen to be redundant. We will now

describe how to create these multigraphs before showing that they can be used to find

a triple that satisfies Definition A.2.

A.1 Construction of Sk.

Given a sandpile configuration, η, defined on the graph H = {s} ∪G × N we describe

how to construct the directed multigraphs inductively.

The graph Sk consists of four parts; a set of vertices representing Rk, a set of

“temporary” vertices representing Rk+1, a set of vertices representing all vertices in

previous rungs and a set of directed edges with labels. The construction of the directed

multigraph Sk is inductive. Given Sk−1 we first take copies of the rungs Rk−1, Rk and

Rk+1 and determine the labelled edge set attached to them. Then these vertices and

edges are combined with Sk−1 to form a new graph, denoted Qk. The final step is to

apply the burning and removal operations to Qk.

We have provided an example for reference at the end of the appendix for the reader

to follow along with, which will hopefully make the process clearer. In the figures the

label of an edge is depicted by placing the appropriate number of arrows on the edge.

We begin with the construction of S1. We will start with the knowledge of η(1) and

that the sink, s, has been declared burnt.

Construction of S1.

Step 1: Encode η(1).

Start with copies of R1 and R2, label them R1
1 and R1

2 respectively. Introduce a map

I1 : (R
1
1 ∪R1

2) → (R1 ∪R2) which represents the natural identification of a vertex in a

copy of a rung to a vertex in H.

For each v ∈ R1
1 place an edge from v directed towards w if I1(v) was a neighbour

of I1(w) in H. The label of an edge that is directed out of v is given by degH(I1(v))−
η(I1(v)). Also include a set of edges, E1, with contains an edge directed from each

v ∈ R1
2 to its neighbour in R1

1, we will arbitrarily give these edges a label of one. The

labelled, directed multigraph this produces is denoted T1, see figure A.2 for an example

construction.

Step 2: Connecting the sink.

As each vertex in R1 is attached to the sink we extend the graph T1 by adding a vertex

s and for each v ∈ R1
1 place an edge directed from the sink to v. Let these edges have

label 0. This graph is denoted Q1.

Step 3: Burning Q1.

Next we allow the graph Q1 to burn with the exemption that no edge from a vertex in

R1
1 directed towards a vertex in R1

2 is allowed to be declared burnt. When Q1 is burnt

we perform the removal operation on it with the restriction that no vertex in R1
1 can

89

Appendix A. An encoding of the burning process.

be removed. This leaves the graph which we will call S1.

Note that the graph S1 has the property that at least one vertex in R1 will have

been declared burnt, this is because η(1) forms part of a recurrrent configuration and

R1 contains all neighbours of s. Also note that the vertex set of S1, V (S1), contains

R1
1 and R1

2.

We now proceed inductively to define the multigraphs Sk, there will be simillarities

to the construction of S1.

Construction of Sk. Suppose that we know the configuration η(k) and the multi-

graph Sk−1. We will assume for an inductive argument that Rk−1
k−1, R

k−1
k ⊂ V (Sk−1)

and that Ek−1 ⊂ E(Sk−1), this will be proven for Sk during the construction. The

basis case for k = 1 is true from the above construction. We will also assume that at

least one vertex of Rk−1
k−1 has been declared burnt in Sk−1, the inductive proof of this

for Sk will be shown later in Lemma A.7.

Step 1: Encoding η(k).

Start with a copy of the vertices in Rk−1, Rk and Rk+1 and label them Rk
k−1, R

k
k and

Rk
k+1 respectively. Each vertex in these copies has a natural identification to a vertex

in H, let this be represented by the map Ik : (Rk
k−1∪Rk

k∪Rk
k+1) → (Rk−1∪Rk∪Rk+1).

For each vertex v ∈ Rk
k place an edge directed from v towards w if Ik(v) and Ik(w)

were neighbours in H. The label of an edge directed out of v is given by degH(Ik(v))−
η(Ik(v)).

Also include an edge direct from each vertex in Rk
k+1 to its neighbour in Rk

k, arbi-

trarily give these a label of one, call this set of edges Ek

The multigraph this yields is denoted by Tk. See figure A.4 for an example of this

step.

Step 2: Connecting the previous graph.

We now wish to combine the graphs Tk and Sk−1. Consider the vertex and edge

sets of the graphs. We have that V (Sk−1) = Rk−1
k−1 ∪Rk−1

k ∪V ′, where V ′ is some set of

vertices. Let E(Sk−1) be the edge set of Sk−1, observe that this will contain Ek−1. For

Tk, we have a vertex set V (Tk) = Rk
k−1 ∪ Rk

k ∪Rk
k+1 and some edge set E(Tk). There

is a natural identification between vertices in Rk−1
j and Rk

j , for j = k − 1, k , given by

by the map I−1
k+1 ◦ Ik|Rk

j
, i.e two vertices can be identified if they both are identified to

the same vertex in H. Using this identification we will stop referring to Rk−1
k ∪Rk−1

k−1.

We will define a new graphQk by specifying its vertex and edge set, namely V (Qk) =

V (Tk) ∪ V (Sk−1) = Rk
k−1 ∪Rk

k ∪Rk
k+1 ∪ V ′, and E(Qk) = E(Tk) ∪ (E(Sk−1) \ Ek−1).

See figure A.5 for the example of the output of this step.

Step 3: Burning Qk.

We now burn the graph Qk to produce the graph Sk. However we do not want to

allow the whole graph to burn, the exemption from the burning on the multigraph is

the edges from vertices in Rk
k to Rk

k+1.

When the multigraph Qk has been burnt we can begin to perform the removal

90

Appendix A. An encoding of the burning process.

operation. We remove all edges that have been declared burnt and remove vertices in

Qk \Rk
k that have been declared burnt.

The subgraph of Qk that this leaves is defined to be Sk. See figures A.3, A.6 and

A.7 for examples of these graphs.

Observe that as Rk
k∪Rk

k+1 ∈ V (Qk) and no vertices in Rk
k are allowed to be removed,

which prevents any vertex in Rk
k+1 from being burnt, we have proved by induction that

Rk
k ∪Rk

k+1 ∈ Sk and Ek ∈ Sk for all k ≥ 1 as we claimed earlier.

The reason that we need these restrictions on the burning and removal is so that

when we construct the multigraph Sk+1 we have a standardised construction and have

a set of vertices that have been declared burnt so that the burning of a multigraph

process can be started.

The purpose of the edges Ek, as we will shortly see, is so that given Sk we can

compute how the burning can occur in Rk when we are given a set of Rk+1 that is

burnt without explicitly knowing the configuration on Rk+1.

Remark A.5. Note that in this construction at each step of the inductive process we

do not need to know where Sk came from only that it contains Rk
k ∪Rk

k+1, and certain

edges between these vertices.

A.2 Properties of Sk.

Remark A.6. This construction respects planarity, in the sense that if G is a planar

graph than Sk is also a planar graph for all k ≥ 1.

Let tk +1 be the index of the phase when a vertex in Rk is burnt for the first time.

Let π be the projection map that gives the phase that a vertex burnt in.

Lemma A.7. For an underlying recurrent sandpile η and for all k ≥ 1,

(i) The vertices of Sk are given by the union of vertices, v, which are unburnt at the

end of phase tk+1, i.e v ∈ ⋃k
i=1Ri such that π(φR(η, v)) > tk+1 and the vertices, w, in

Rk that have been burnt by φR, i.e π(φR(η,w)) ≤ tk+1 .

(ii) Suppose we are given a set of vertices that are burnt in Rk and Rk+1 and we followed

the burning based on rungs procedure until the next time a vertex of Rk+1 needs to be

burnt. The pair (η(k), Sk) determines the set of vertices in Rk that are burnt at this

time.

Proof. Firstly observe that (i) is just a special case of (ii) where no additional vertices

are declared burnt. However we believe the argument is more apparent by doing this

case separately.

(i) This will follow by induction on k and from the observation that Sk is just a

restatement of the sandpile configuration at the end of phase tk+1. To see this we will

follow the process of burning Qk inductively.

91

Appendix A. An encoding of the burning process.

For Q1 we start with the sink being burnt. To see why the set of vertices that are

burnt when Q1 has been burnt is equal to the set of vertices that are assigned a label

with a phase ≤ t2 = 2 by φR we need to look at how we constructed the value of the

labels on edges.

Look at the label on an edge directed out of v and we see it is equal to the number

of neighbouring vertices that need to be burnt in order for v to burn in the burning

procedure. Now each time a neighbour of v burns in Q1 an edge connecting to v will

burn as a result, this means that the value of the label on an edge leaving v is reduced

by one. Hence at any stage of the burning procedure on Q1, the value of the label on

an edge leaving v in Q1 is equal to the number of unburnt neighbours of v that need to

be burnt before v can burn under the burning based on rungs procedure. Therefore an

edge leaving v will have a label of zero if and only if the number of unburnt neighbours

of v is less than or equal to the height of the sandpile at v and thus a vertex burns in

Q1 if and only if π(φR(η, v)) ≤ t2. Therefore (i) holds for S1.

Now suppose Sk−1 satisfies (i). Then using the construction of Qk we can identify

each vertex to one that is unburnt at the end of phase tk or to one that has burnt in

Rk. By the previous observation on the number of arrows on an edge it again follows

that the process of burning Qk to produce Sk will force it to satisfy property (i). Hence

by induction (i) does hold for all k ≥ 1.

(ii) We now consider what we get if given an extra set in Rk and Rk+1 that are

burnt. As these vertices will have a corresponding vertex in Sk we can directly set

these vertices as burnt. Now by following the above procedure we can again create a

set of vertices in Rk that will burn as a result and by the same argument as when no

vertices in Rk+1 were burnt we see this corresponds to the same set of vertices that

will be declared as burnt by running the burning based on rungs procedure until a new

vertex in Rk+1 needs to burn. Hence Sk encodes the burning as claimed.

Definition A.8. Let S be the set of all possible labelled, directed multigraphs that can

arise in our construction. For k ≥ 2 define ψ : RG × S → S by ψ(η(k), Sk−1) := Sk.

This is possible as the only information we used in the construction of Sk was η(k) and

Sk−1.

Next we define Φ := {ϕq : q ≥ 1} by defining each ϕq : RG×[1,q] → RG×S. We can

define the map ϕ1 by the construction of S1, namely ϕ1(η(1)) := (η(1), S1). Then ϕk,

for k ≥ 2, can be defined inductively by

ϕk

(
η(1, k)

)
:=

(
η(k), ψ

(
η(k), ϕk−1

(
η(1, k − 1)

)))
= (η(k), Sk).

Lemma A.9. The triple (S,Φ, ψ) satisfies Definition A.2.

Proof. The statements of (ii) and (iii) follow immediately from the definitions of the

maps.

92

Appendix A. An encoding of the burning process.

(i) Suppose ϕq1(η1[1, q1]) = ϕq2(η2[1, q2]) = (η1(q1), σ1), then this implies that

η1(q1) = η2(q2) by property (ii). First let us check whether a recurrent configuration

that began with η1 could be continued by the configuration ζ(1) on Rq1+1. By applying

Lemma A.7(i) to (η1(q1), σ1) we can find the set of vertices that are burnt in Rq1 when

Rq1+1 is about to burn for the first time. We can then apply the burning rule of the

burning based on rungs procedure to deduce which vertices in ζ(1) can burn. Now by

repeated application of Lemma A.7(ii) we can deduce the subset of ζ(1) that is burnt

when a vertex of Rq1+2 needs to burn. By taking Rq1+2 to have a maximal configuration

the whole of Rq1+2 would burn in the next step. Then again by iteratively using the

burning rule on ζ(1) and Lemma A.7 on σ1 we can continue burning ζ(1). We can then

conclude that ζ(1) is an allowed extension of η1 if and only if by the end of this process

the whole of Rq1+1 has been declared burnt.

Then for each k ≥ q1 we can inductively define σk+1 := ψ(ζ(k + 1), σk) and this

process can be repeated inductively to determine if a configuration ζ(k+2) is allowed.

Moreover as η1(q1) = η2(q2) and both η1 and η2 create the multigraph σ1 if we had

run this argument with η1 replaced by η2 we would have equivalently found that any ζ

that was an allowed extension of η1 was also an allowed extensions of η2. Thus proving

property (i).

If the graphs we have created were left like this we would be adding up to |V (G)|−1

vertices at each step and this would not reduce the information that we must retain

so would not help us investigate the sandpile. However the advantage of encoding by

multigraphs is that we can find that much of the information in the graphs is redundant

when we are only interested in the state of burning in Rk. Thus we can simplify the

graph to reflect this fact. See figures A.7 and A.8 for an example of how a multigraph

may be simplify.

Remark A.10. By Lemma A.7 any sandpile that can give rise to the pair (η, σ) has

the same set of recurrent sandpile extensions. Therefore it also makes sense to talk of

extension of the pair (η, σ), which we will now formally define.

Definition A.11. Given a coding triple (T ,Υ, ρ) and a pair (η, σ) for η ∈ RG, σ ∈ T
we define the recurrent sandpile extensions of (η, σ). By property (i) of a coding triple

the pair (η, σ) specify a unique set of sandpiles that can extend any configuration that

yielded this pair. Moreover by Lemma A.7 given (η, σ) and the maps Υ and ρ we can

determine if a sandpile ζ can extend a configuration that gave rise to the pair without

needing to know any more information about the sandpile configuration that gave rise

to it. The set of all valid ζ that this produces is defined to be the extensions of (η, σ).

Definition A.12. We say two labelled, directed multigraphs, σ, σ′ are equivalent,

denoted σ ∼ σ′, if for all η ∈ RG we have that (η, σ) and (η, σ′) allow the same

recurrent sandpile extensions.

Note that ∼ defines an equivalence relation.

93

Appendix A. An encoding of the burning process.

Definition A.13. Given a coding triple (T ,Υ, ρ) A map χ : T → T is called a

simplification map if for all σ ∈ T we have that σ ∼ χ(σ) and there is a natural

extension of ρ such that ρ : RG × (T ∪ χ(T)) → T ∪ χ(T) is well defined.

Also for a simplification map χ define the set S ′ = S ′(χ) := {χ(Sk) : Sk ∈ S}.

Let χ be a simplification map with respect to the triple (S,Φ, ψ). In this setting

the requirement for the existence of an extension of ψ to be well defined would be

equivalent to the requirement that Sk|Rk
k
∪Rk

k+1
= χ(Sk)|Rk

k
∪Rk

k+1
for all Sk ∈ S. As by

Remark A.5 this would allow the inductive construction of Sk from (η(k), Sk−1) to be

applied to (η(k), χ(Sk−1)). Hence the previous definition of the map ψ can be extended

to be well defined on the larger domain of RG × (S ∪ S ′).

Using this extended definition we claim the following property holds,

χ(ψ(η(k), Sk−1)) ∼ χ
(
ψ(η(k), χ(Sk−1))

)

Proof of claim. Firstly observe that as (η(k), Sk−1) and (η(k), χ(Sk−1)) have the same

set of extensions they must have the same subset of extensions that have the next step

as η(k + 1), therefore it follows that ψ(η(k), Sk−1) ∼ ψ(η(k), χ(Sk−1)).

Thus

χ(ψ(ηk, Sk−1)) = χ(Sk) ∼ Sk = ψ(ηk, Sk−1) ∼ ψ(η(k), χ(Sk−1)).

Definition A.14. Define ψ′ := χ ◦ ψ : RG × (S ∪ S ′) → S ′ and then setting ϕ′
1 := ϕ1,

we can also define inductively

ϕ′
k

(
η(1, k)

)
:=

(
η(k), ψ′

(
η(k), ϕ′

k−1

(
η(1, k − 1)

)))
.

Let Φ′ = {ϕ′
k : k ≥ 1}.

Lemma A.15. The triple (S ′,Φ′, ψ′) satisfies Definition A.2.

Proof. (i) If ψ′
q1(η1[1, q1]) = ψ′

q2(η2[1, q2]) = (η1(q1), S
′
q1) then by equivalence the possi-

ble recurrent extensions are the same as though allowed by (η1(q1), Sq1) which uniquely

determines the allowed extensions of η1 and η2.

The validity of (ii) and (iii) again immediately follow from the definition of the

maps.

There are many ways in which these multigraphs can simplify and we give a selection

of possible rules. This is not a comprehensive list but it should hopefully give the reader

an idea of what is possible.

Note some simplifications may introduce into the graph configurations that are not

desirable, for instance having multiple edges directed from v to w which may alter the

94

Appendix A. An encoding of the burning process.

maximum degree of a vertex or connecting vertices in a way that makes a planar graph

into one that is non-planar. Such alterations may not be advisable for future proofs

so the exact list of simplifications that can be used will depend on how the proofs

involving the encoding will work.

Simplifications. These rules are applied to a graph S′
k except for vertices in, and

edges between, Rk
k ∪Rk

k+1.

1) A vertex without a edge directed out of it can be removed.

2) Remove any edge whose start or end vertex has been removed.

3) Remove the edge from v to w if the vertex v can not be declared burnt whilst w

is still declared unburnt.

4) If the only edge leaving v is to w then we can remove the edge from w to v, if it

exists.

5) If the edge from w to v has label one and it is the only edge directed into v and

it is also the only edge directed out of w, then w can be deleted and any edges that

were directed into w are now connected to v, with their labels unchanged.

6) Delete any vertex and edges that never need to be used in any burning of S′
k,

because the vertices in Rk they help to burn can always be reached via an alternative

path that requires the same set of initial vertices to have burnt.

Each of these rules will give rise to a simplification map and, by the fact that ∼ is

an equivalence relation, any combination of the rules will also be a simplification map.

To demonstrate the type of argument required to prove this we consider rule (5).

Proof that applications of rule (5) define a simplification map. Firstly the vertex and

edges set of Rk
k ∪ Rk

k+1 are not changed by this rule so this property is satisfied. It

suffices to show that given equivalent inputs the continuation of the burning in the

graphs will be identical.

Suppose v,w ∈ Sk satisfied the conditions of (5) and let χ(Sk) be the multigraph

found via an application of rule (5). Now consider how the burning may occur in Sk.

If an edge e1 ∈ E1, the set of edges directed towards w, is declared burnt then the edge

leaving w will now have label 0 and so w will be declared burnt. The only impact this

has is that the edge directed towards v will now be declared burnt. This means the set

of edges leaving v, E2, will have their labels reduced by one.

Now let us consider what occurs in χ(Sk). The edge e1 is now connected to v so

when e1 is burnt the label of edges in E2 will be decreased by one.

Therefore as e1 is the only edge leaving w and is the only edge entering v the set

of edges E1 ∪ E2 completely determine how w and v interact with all other vertices.

Given the same initial input both multigraphs will output the same labels on E1 ∪E2

and thus Sk ∼ χ(Sk).

From this argument it also follows that if we could apply rule (5) multiple times

then the output would still be equivalent to the original graph.

95

Appendix A. An encoding of the burning process.

Conjecture A.16. There exists a simplification map, χ, and a constant, c > 0, such

that for any sandpile on [1, N]×N ⊂ Z
2 the induced multigraphs, χ(Sk), each contains

at most cN vertices.

If this conjecture could be proven then we believe that it would be a big step

towards proving Conjecture A.3. We also believe that similar bounds would exist in

higher dimensions and whilst we are unable to provide an estimate for these cases, we

hope understanding this encoding would be a step in the right direction.

We conclude this appendix by giving an example of the construction and a possible

simplification of a sandpile configuration. Suppose we have a sandpile on the graph

[1, 6] × N ⊂ Z
2 with rung 1 connected to the sink. Then we will construct the multi-

graphs for the first three rungs. In the following figures the label of an edge is given by

the number of arrows on it. To be able to determine the direction of an edge with label

zero we will use the convention that edges that are curved above (resp. below) their

end points are oriented from left to right (resp. right to left) and edges that are curved

to the left (resp. right) of their end points are directed upwards (resp. downwards).

η(1, 3) =

0 2 1
3 3 3
1 2 3
2 3 2
1 0 2
1 2 2

Figure A.1: An example of a sandpile configuration on the first three rungs of the graph
{1, 2, 3, 4, 5, 6}× N

96

Appendix A. An encoding of the burning process.

Figure A.2: Encoding of η(1) as T1. Vertices are coloured according to which set they are in;
Black is for R1

1 and blue is for R1
2

Figure A.3: S1, where the red vertices are ones that have been declared burnt and the blue
vertices are those in the set R1

2.

97

Appendix A. An encoding of the burning process.

Figure A.4: Encoding of η(2) as T2. Vertices are coloured according to which set they are in;
Green is for R2

1, black is for R2
2 and blue is for R2

3

Figure A.5: Q2, with red vertices representing vertices that have burnt and blue vertices are
those in the set R2

3.

98

Appendix A. An encoding of the burning process.

Figure A.6: S2, with red vertices representing vertices that have burnt and the blue vertices
are those in the set R2

3.

Figure A.7: S3, with red vertices representing vertices that have burnt and the blue vertices
are those in the set R3

4.

99

Appendix A. An encoding of the burning process.

Figure A.8: A possible simplification of S3, with red vertices representing vertices that have
burnt and the blue vertices are those in the set R3

4.

100

BIBLIOGRAPHY

[1] Michael Aizenman, Almut Burchard, Charles M. Newman, and David B. Wilson.

Scaling limits for minimal and random spanning trees in two dimensions. Random

Structures Algorithms, 15(3-4):319–367, 1999. Statistical physics methods in dis-

crete probability, combinatorics, and theoretical computer science (Princeton, NJ,

1997).

[2] Siva R. Athreya and Antal A. Járai. Infinite volume limit for the stationary

distribution of abelian sandpile models. Comm. Math. Phys., 249(1):197–213,

2004.

[3] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of

the 1/f noise. Physics Review Letters, 59:381–384, 1987.

[4] Martin T. Barlow and Robert Masson. Exponential tail bounds for loop-erased

random walk in two dimensions. Ann. Probab., 38(6):2379–2417, 2010.

[5] Martin T. Barlow and Robert Masson. Spectral dimension and random walks on

the two dimensional uniform spanning tree. Comm. Math. Phys., 305(1):23–57,

2011.

[6] Itai Benjamini. Large scale degrees and the number of spanning clusters for the

uniform spanning tree. In Perplexing problems in probability, volume 44 of Progr.

Probab., pages 175–183. Birkhäuser Boston, Boston, MA, 1999.

[7] Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm. Uniform spanning

forests. Ann. Probab., 29(1):1–65, 2001.

[8] David Bleecker and George Csordas. Basic partial differential equations. Interna-

tional Press, Cambridge, MA, 1996.

[9] Gabriel D. Carroll and David Speyer. The cube recurrence. Electron. J. Combin.,

11(1):Research Paper 73, 31 pp. (electronic), 2004.

102

Bibliography

[10] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen

der mathematischen Physik. Math. Ann., 100(1):32–74, 1928.

[11] Deepak Dhar. Self-organized critical state of sandpile automaton models. Phys.

Rev. Lett., 64(14):1613–1616, 1990.

[12] Deepak Dhar. Theoretical studies of self-organized criticality. Phys. A, 369(1):29–

70, 2006.

[13] Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, volume 22

of Carus Mathematical Monographs. Mathematical Association of America, Wash-

ington, DC, 1984.

[14] T. Feder and M. Mihail. Balanced matroids. In In Proceedings of the Twenty-

Fourth Annual ACM Symposium on Theory of Computing, pages 23–38. ACM,

New York, 1992.

[15] Samuel L. Gamlin and Antal A. Járai. Anchored burning bijections on finite and

infinite graphs. Electron. J. Probab., 19:no. 117, 23, 2014.

[16] Olle Häggström. Aspects of Spatial Random Processes. PhD thesis, Department

of Mathematics Göteborg, 1994.

[17] Olle Häggström. Random-cluster measures and uniform spanning trees. Stochastic

Process. Appl., 59(2):267–275, 1995.

[18] Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp,

and David B. Wilson. Chip-firing and rotor-routing on directed graphs. In In and

out of equilibrium. 2, volume 60 of Progr. Probab., pages 331–364. Birkhäuser,

Basel, 2008.

[19] Eberhard Hopf. An inequality for positive linear integral operators. J. Math.

Mech., 12:683–692, 1963.

[20] J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág. Determi-

nantal processes and independence. Probab. Surv., 3:206–229, 2006.

[21] A. Járai. Rate of convergence estimates for the zero dissipation limit in abelian

sandpiles. Preprint, 2011. arXiv:110.1437.

[22] A. Járai. Sandpile models. Preprint, 2014. arXiv:1401.0354.

[23] A. Járai and N. Werning. Minimal configurations and sandpile measures. Journal

of Theoretical Probability, 2013.

[24] A. A. Járai. Abelian sandpiles: an overview and results on certain transitive

graphs. Markov Process. Related Fields, 18(1):111–156, 2012.

103

Bibliography

[25] A. A. Járai and R. Lyons. Ladder sandpiles. Markov Process. Related Fields,

13(3):493–518, 2007.

[26] Antal A. Járai and Frank Redig. Infinite volume limit of the abelian sandpile model

in dimensions d ≥ 3. Probab. Theory Related Fields, 141(1-2):181–212, 2008.

[27] Antal A. Járai, Frank Redig, and Ellen Saada. Approaching criticality via the zero

dissipation limit in the abelian avalanche model. J. Stat. Phys., 159(6):1369–1407,

2015.

[28] Antal A. Járai and Nicolás Werning. Minimal configurations and sandpile mea-

sures. J. Theoret. Probab., 27(1):153–167, 2014.

[29] M. Jeng, G. Piroux, and P. Ruelle. Height variables in the abelian sandpile model:

scaling fields and correlations.. Journal Stat. Mech. Theory Exp., 10, 2006. P10015.

[30] Richard Kenyon. The asymptotic determinant of the discrete Laplacian. Acta

Math., 185(2):239–286, 2000.

[31] Richard W. Kenyon and David B. Wilson. Boundary partitions in trees and dimers.

Trans. Amer. Math. Soc., 363(3):1325–1364, 2011.

[32] Gregory F. Lawler. Loop-erased self-avoiding random walk in two and three di-

mensions. J. Statist. Phys., 50(1-2):91–108, 1988.

[33] Gregory F. Lawler. Intersections of random walks. 2013 reprint. Probability and

its Applications. Birkhäuser Boston Inc., Boston, MA, 1991.

[34] Gregory F. Lawler and Vlada Limic. The Beurling estimate for a class of random

walks. Electron. J. Probab., 9:no. 27, 846–861 (electronic), 2004.

[35] Gregory F. Lawler and Vlada Limic. Random walk: a modern introduction, volume

123 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,

Cambridge, 2010.

[36] Lionel Levine and Yuval Peres. Strong spherical asymptotics for rotor-router ag-

gregation and the divisible sandpile. Potential Anal., 30(1):1–27, 2009.

[37] R. Lyons and Y. Peres. Probability on Trees and Networks. Cambridge University

Press, In preparation. Current version available at http://mypage.iu.edu/ rd-

lyons/.

[38] Russell Lyons, Benjamin J. Morris, and Oded Schramm. Ends in uniform spanning

forests. Electron. J. Probab., 13:no. 58, 1702–1725, 2008.

[39] Neal Madras and Gordon Slade. The self-avoiding walk. Modern Birkhäuser Clas-

sics. Birkhäuser/Springer, New York, 2013. Reprint of the 1993 original.

104

Bibliography

[40] S.N Majumdar and D. Dhar. Equivalence between the Abelian sandpile model

and the q→0 limit of the Potts model. Journal of Physics A, 185:129–145, 1991.

[41] SNMajumdar and Deepak Dhar. Height correlations in the abelian sandpile model.

Journal of Physics A: Mathematical and General, 24(7):L357, 1992.

[42] Robert Masson. The growth exponent for planar loop-erased random walk. Elec-

tron. J. Probab., 14:no. 36, 1012–1073, 2009.

[43] Ben Morris. The components of the wired spanning forest are recurrent. Probab.

Theory Related Fields, 125(2):259–265, 2003.

[44] Robin Pemantle. Choosing a spanning tree for the integer lattice uniformly. Ann.

Probab., 19(4):1559–1574, 1991.

[45] T. Kyle Petersen and David Speyer. An arctic circle theorem for Groves. J.

Combin. Theory Ser. A, 111(1):137–164, 2005.

[46] V.B. Priezzhev. Structure of two-dimensional sandpile. i. height probabilities.

Journal of Statistical Physics, 74(5-6):955–979, 1994.

[47] Frank Redig. Mathematical aspects of the abelian sandpile model. InMathematical

statistical physics, pages 657–729. Elsevier B. V., Amsterdam, 2006.

[48] Klaus Schmidt and Evgeny Verbitskiy. Abelian sandpiles and the harmonic model.

Comm. Math. Phys., 292(3):721–759, 2009.

[49] Javier Segura. Monotonicity properties and bounds for the chi-square and gamma

distributions. Appl. Math. Comput., 246:399–415, 2014.

[50] David Bruce Wilson. Generating random spanning trees more quickly than the

cover time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the

Theory of Computing (Philadelphia, PA, 1996), pages 296–303. ACM, New York,

1996.

105

