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Summary

Dye-sensitized solar cells are a class of photovoltaics that have shown promise in producing

electricity at a reasonable price. Although the processes limiting performance of the devices are

quite well understood, their quantification has not been incorporated into a single consistent

framework. In this study this framework, based on continuum charge transport equations,

is presented and used to investigate the effectiveness of common characterisation methods.

Approximate analytical solutions to the model are also derived and it is shown that these

can be used to solve the device model inverse problem by fitting the solutions to impedance

spectroscopy measurements. Experimental results indicate that the overall device model is

a good description of the system and that it can be used to quantify different power loss

mechanisms.

Additionally some initial work was undertaken to formulate a charge transport model for a

new class of photovoltaics called perovskite cells. The cell is modelled as a p-i-n heterojunction

where the perovskite absorber is an intrinsic semiconductor sandwiched between two selective

contacts. Simulations indicate that a significant built-in field drives free charges towards the

contacts significantly improving charge collection.
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Chapter 1

Introduction

1.1 Motivation for the Study

One of the key challenges of this century is to respond to the ever growing demand for energy

without sacrificing quality of human life either in the short or the long term. Present reliance

on fossil fuels is undesirable as eventually exploitable deposits will be depleted and burning

carbon compounds releases a number of harmful materials into the atmosphere. Indeed the

Brent Crude spot benchmark price for crude oil has risen from approximately 18 United States

dollars in 1999 to about 108 in 2013 [1] — a six-fold increase in just fourteen years — and

current proven reserves are estimated to be sufficient for only half a century of production at

present levels [1]. World Health Organization has also stated that air pollution may account for

more than one percent of total mortality worldwide [2]. One would therefore prefer to extract

energy from cleaner and more sustainable sources than fossil fuels.

The average solar power that reaches the surface of Earth is about 1.2 · 1017 W [3] which

can be compared to the total world primary energy consumption of 1.7 ·1013 W as given by the

oil company BP [1]. Clearly solar power has technical potential to be one of the biggest sources

of energy globally. It also has the advantages of being renewable, clean and suitable to both

small and large scale energy production. Solar radiation can be converted into heat using simple

absorbers or directly into electricity using photovoltaic devices (commonly known as solar cells).

Traditional silicon-based solar cells have good efficiency and stability but they are, at present,

too costly [4] to manufacture and deploy to be commercially competitive with traditional power

generation. One possible alternative technology is the dye-sensitized solar cell (DSSC). This

type of cell should be relatively cheap, easy to manufacture and has shown promise in high

efficiency [5] and adequate lifetime [6]. To date, a number of problems in combining high

efficiency, stability and simple manufacturing [7, 8] have hindered the commercial adoption of

this technology. Therefore considerable effort is directed towards improving cell efficiency and

stability through identifying and utilizing new materials.
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1.2 Aims and Scope

Due to the vast quantity of possible material combinations that can be employed in dye solar

cells, simple trial and error is very unlikely to produce the optimal materials and processing

methods. Performance characterization through several different measurements is used to gain

insight into optimal cell construction. As the system produces electricity from light, natural

ways to probe it are various optical and electrical measurements. This study will examine

electrical measurements as these are generally simple enough to conduct on complete solar cells

yielding crucial in situ information.

A dye solar cell is a quite a complicated system and any interpretation of electrical mea-

surements requires a theory for cell operation. A relatively simple diffusion model has been

developed over the course of the last two decades and successfully used by many authors to

explain various measurements [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. However, in its most

advanced formulations [19], the diffusion model requires numerical methods in order to solve it,

and therefore there have been few studies where a quantitative agreement between measured

and calculated cell performance has been achieved without any arbitrary additions to the model

[18, 19]. In this study it is shown that under certain conditions the complicated diffusion model

can be simplified to the point where closed form solutions are feasible and that these solutions

can be exploited to refine the model parameters in order to obtain highly accurate predictions.

The overall methodology enables quantitative analysis of several performance limiting factors in

fully assembled solar cells and could be in principle adapted to production line quality control.

Before delving into the diffusion model in chapter 4, some essential solid state physics is

reviewed in chapter 2 and an introduction to solar cell physics and characterization methods

is given in chapter 3. The analytical solutions and their application to both simulated and

experimental data are shown in chapters 5 and 6. Additionally chapter 7 contains some early

work on a charge transport model for a new perovskite solar cell that has the same advantages

as the dye cell but better performance.
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Chapter 2

Essential Solid State Physics

2.1 Electrons in Matter and the Schrödinger Equation

According to classical quantum mechanics, an electron orbiting an atomic nucleus is described

by the Schrödinger equation of the form

ih

2π
· ∂ψ
∂t

= − h2

4π2µ
∇2ψ − qQ

4πε0r
ψ (2.1)

where i is the imaginary unit, h is the Planck constant, ψ is the wavefunction of the electron,

t is time, µ is the reduced mass of the electron and the atomic nucleus, q is the elementary

charge, Q is the electric charge of the atomic nucleus, ε0 is the vacuum permittivity and r the

distance between the electron and the nucleus.

This equation, describing the electronic structure of a hydrogen atom, can be solved in closed

form. The result is that the solutions are discrete and correspond to a set of discontinuous

energy levels. Larger atoms cannot be solved analytically due to the added electron-electron

interactions, but numerical solutions — confirmed by experiments — result in discrete energy

levels as well [20].

In matter a very large number of atoms are brought close together changing the electronic

structure. At first the energy levels split into several new ones and as more atoms are added

the number of levels becomes so large that they can be thought to merge into continuous bands

of allowed energies. However, gaps of forbidden energies (i.e. energies that do not correspond

to any standing wave solutions) remain [20].

In a crystal atoms are ordered in a distinct repeating arrangement, which — assuming that

electron-electron interactions can be neglected — results in that the wave function has the form

ψ(k̄, r̄) = ei·k̄·r̄ · U(k̄, r̄) (2.2)

where U(k̄, r̄) is a lattice periodical function that depends on the repeating arrangement of

atoms, k̄ is the wave vector of the electron wave, and r̄ is the position vector. The importance

of this Bloch wave solution is that at equilibrium electrons are delocalized across the entire
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crystal structure [21].

Bloch waves are not applicable to disordered materials as there is no long range order. In

this case electrons are understood to be localized around a few atoms [22].

Both electric and optical properties of materials result from their electronic band structure.

For example, semiconductors and insulators are materials where electrons have filled the highest

occupied energy band completely whereas in metals this band is only partially filled [23].

2.2 Electron Transport in Solids

When modelling charge transport in crystalline matter, an electron can be thought of as a

localized wave packet that is governed by semiclassical equations of motion [21]

∂r̄

∂t
= v̄(k̄) =

2π

h
· ∂E(k̄)

∂k̄
(2.3)

∂k̄

∂t
= −2πq

h
·
(
Ēel +

v̄(k̄)

c
× H̄

)
(2.4)

where r̄ is the position vector, t is time, v̄(k̄) is the group velocity of the wave packet, E is

energy, k̄ is the wave vector, q is the elementray charge, Ēel is electric field, c is the speed of

light and H̄ the magnetic field.

The equations describe a classical wave packet; the only quantum mechanical part comes

from the k̄ dependence of the energy E. Bloch’s theorem states that wave functions are unique

only to the first Brillouin zone meaning that both wave functions and energy levels are periodic

to the reciprocal lattice. Hence the electron velocity (group velocity of the wave packet) is

limited and can even be opposite to the electrostatic force acting on it. Net flow of electrons is

calculated by integrating the product of state occupation and state velocity over all the electron

states in the system. Due to the periodicity of energies the integral for full bands is always zero

(the integral of the gradient of a periodic function over a full period is always zero) meaning

that full energy bands do not contribute to electric current at all [21].

Electron transport in disordered materials is considered to occur through electron hopping

between localized states where the energy difference of the states has a major effect on hopping

probability [22]. Because an electron cannot transfer to a state that is already occupied and a

hop to a state with much larger energy is highly improbable, the hopping model also results in

electric conduction being determined by electrons in partially filled energy bands.

In semiconductors there are two partially filled bands: the conduction band has the higher

energy and it is mostly empty whereas the lower energy valence band is almost full of electrons.

The valence band conduction can be simplified by tracking the movement of electron vacancies

called holes instead of electrons. The behaviour of these imaginary particles is identical to

positively charged real particles [23].

The essential results of solid state electron transport theory described here are that only

some electrons contribute to net electric current and that electrons can be modelled to move
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as localized wave packets. This picture is used in this report to justify modelling electrons and

holes as classical particles instead of waves.

2.3 Density of Electron States in a Semiconductor

The number of electrons in a given system depends on the number of electron states and

the probability of electrons occupying these states. The number of states should properly be

calculated from the Schrödinger equation but solid state textbooks have a way to obtain an

approximation [23] by assuming that electrons are free to move inside the crystal.

First it is assumed that the crystal is a cube with an edge length L and that the electron

wavefunction falls to zero at the boundaries. This limits the wavenumbers to

kx =
2πn

L
(2.5)

where n is an integer and kx is the wave number (amplitude of the wave vector component) in

the x-direction.

The previous equation applies to each cartesian component of the wavenumber. The number

of allowed states that have an absolute wavenumber value between k and k + dk is

g′(k)dk =
L3k2

2π2
dk (2.6)

Near the band minimum or maximum (relevant energies for semiconductors) the relationship

between wavenumber k and energy E can be approximated as a parabola

E(k) ≈ 1

2
· ∂

2E

∂k2
(k = 0) · k2 + E(k = 0) (2.7)

where the prefactor is the curvature of the parabola. Inserting k = 2π
h p into the second partial

derivative yields

∂2E

∂k2
=

h2

4π2
· ∂

2E

∂p2
=

h2

4π2meff
(2.8)

where the last equals sign results from the kinetic energy of a classical particle E = p2

2m thus

defining the the effective mass of the electron meff .

Solving k from the last two equations and inserting it into the expression for density of

states gives

g′(E)dE = g′(k)dk ⇔ g′(E) = g′(k)
dk

dE
=

L3

4π2
·
(

8π2meff

h2

) 3
2

·
√
E (2.9)

This density of states is for the entire crystal so it must be divided by volume in order

to obtain the density of states per unit volume. Also, classical quantum mechanics does not

account for spin, which is a relativistic property. This can be corrected by multiplying the final

density of states by two corresponding to the two possible electron spin states.
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g(E) =
2g′(E)

L3
=

1

2π2
·
(

8π2meff

h2

) 3
2

·
√
E (2.10)

The importance of this equation is that now density of states near band minima or maxima

can be approximated using the effective mass meff which is obtained from the curvature of the

band.

2.4 Electron Statistics, Free Energy and Charge Carrier

Concentrations

Based on fundamental postulates in statistical physics and applying the Pauli exclusion principle

(which states that only one electron can occupy a given quantum state at a time), one can

show that the probability of an electron occupying an energy state is given by the Fermi-Dirac

statistics [24]

f(E) =
1

e
E−EF
kBT + 1

(2.11)

where E is the energy of the state, EF is the Fermi level, kB is the Boltzmann constant and T

is the absolute temperature.

The Fermi level is the same as the chemical potential of electrons, which is defined as the

energy that is added to or subtracted from the system by the addition or subtraction of one

electron. It is also called free energy because the change in energy of the system is the same

regardless of the energy of the individual electron added or removed and hence is the amount

of energy freed — or carried away — by the removal of an electron from the system. Note that

in electrochemistry it is called electrochemical potential because conceptually it can be divided

into chemical and electrostatic parts [25].

Experimentally differences in electron free energies between two points can be measured as

a voltage

V =
∆EF
q

(2.12)

where V is voltage and q is the elementary charge.

It should also be noted that free energy is only defined for a system in equilibrium whereas

one is mostly interested in non-equilibrium systems where net flows of energy or particles are

present. The solution to this contradiction is that thermal motion is thought to occur in very

fast time scales compared to other processes allowing one to reason that any differences to

equilibrium statistics are small enough to be negligible. Thus one defines a quasi-equilibrium

condition where equilibrium statistics can be used locally and separately for conduction and

valence bands.

The number of electrons in the conduction band can be calculated by integrating the product

of the density of states and occupation probability across all the conduction band states

11



n =

∫ ∞
EC

g(E − EC) · f(E − EC) d(E − EC) (2.13)

Integrating the Fermi-Dirac function cannot be done analytically but when the Fermi level is

significantly below the conduction band (i.e. E−EF � 0) one can approximate the Fermi-Dirac

function with the Boltzmann distribution

f(E) =
1

e
E−EF
kBT + 1

≈ 1

e
E−EF
kBT

= e
EF−E
kBT (2.14)

Performing the integration gives

n =

∫ ∞
EC

1

2π2
·
(

8π2meff

h2

) 3
2

·
√
E − EC · e

EF−E+EC
kBT d(E − EC)

=
1

2π2
·
(

8π2meff

h2

) 3
2

·
√
π

2
· (kBT )

3
2 · e

EF−EC
kBT

= 2 ·
(

2πmeffkBT

h2

) 3
2

· e
EF−EC
kBT (2.15)

The coefficient in front of the exponential term is called the effective conduction band density

of states NC .

NC = 2 ·
(

2πmeffkBT

h2

) 3
2

(2.16)

For holes in the valence band the calculation is almost the same

p =

∫ EV

−∞
g(E − EV ) · (1− f(E − EV )) d(E − EV )

= NV · e
EV −EF
kBT (2.17)

where p is the number density (concentration) of holes and NV is the effective valence band

density of states

NV = 2 ·
(

2πmeff,pkBT

h2

) 3
2

(2.18)

Charge carrier concentration can also be expressed in terms of equilibrium concentrations

n = NC · e
EF−EC
kBT = neq · e

EF−EF,eq
kBT (2.19)

p = NV · e
EV −EF
kBT = peq · e

−EF+EF,eq
kBT (2.20)
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where

neq = NC · e
EF,eq−EC

kBT (2.21)

peq = NV · e
EV −EF,eq

kBT (2.22)

EF,eq is the Fermi level at equilibrium. The advantage of this formulation is that by setting the

zero of energy the same as the equilibrium Fermi level one only has to specify the equilibrium

carrier concentrations as opposed to conduction and valence band levels and densities of state

in order to calculate the Fermi levels.

EF,n − EF,eq
q

=
kBT

q
· ln
(
n

neq

)
(2.23)

EF,eq − EF,p
q

=
kBT

q
· ln
(
p

peq

)
(2.24)

where EF,n and EF,p are the conduction and valence band (quasi-)Fermi levels.

2.5 The Continuity Equation

Stating that particles of any type are created or destroyed in a given (arbitrary) volume only by

specific sources or sinks leads to the conclusion that the change in the number of particles in the

volume must correspond to these source (or sink) terms as well as particle in- or outflow through

the surfaces of the volume. Using Gauss’ divergence theorem one can state this mathematically

as a differential equation for an infitely small point in space.

∂n

∂t
= −∇ · j + S (2.25)

where n is the number density of the particles in question, t is time, j the flux of the particles

and S is the source or sink term. Note that from now on electrons and other charged patricles

will be modelled as classical particles with well defined positions instead of waves.

In semiconductors charged particles move both due to drift caused by electric fields and due

to diffusion caused by concentration differences. Magnetic fields will also affect moving charges,

but in this report these fields are always assumed to be zero.

When placed under the influence of an electric field in free space, a charged particle accel-

erates indefinitely ultimately reaching relativistic speeds. Inside matter, however, the particle

will collide with other particles (atoms, ions or electrons) and will move at a finite speed called

drift velocity. At low electric field values, drift velocity is proportional to electric field and a

coefficient called mobility. [26]

jdrift = znµ · (−∇ϕ) (2.26)
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where z is the charge number and µ the electrical mobility of the particle. Here electric field

has been expressed as the negative gradient of electric potential ϕ.

Thermal motion causes particles to move around in matter randomly. Einstein showed [27]

that this random movement can be approximated by

jdiffusion = −D∇n (2.27)

where D is the diffusion coefficient.

Einstein also showed that as long as the energy of the particles is described by the Boltzmann

distribution, the diffusion coefficient can be expressed using the particle mobility, temperature

and natural constants [27].

D =
kBT

q
· µ (2.28)

where kB is the Boltzmann constant, T is temperature and q is the elementary charge.
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Chapter 3

Photovoltaic Devices and

Characterization Techniques

A photovoltaic cell is a device that converts electromagnetic energy into electric energy through

the photovoltaic effect. In this chapter the underlying physics of photovoltaics is briefly sum-

marized and important characterization techniques used in this report are discussed.

3.1 Photovoltaic Effect

When electromagnetic radiation of suitable energy is absorbed by a piece of material, there is

a chance that an electron is excited from its initial state to a one with higher energy leaving

behind a vacancy called a hole. As the electron and hole have opposite electric charge, they are

bound together through electrostatic interaction. In some materials the relative permittivity is

high enough that the bound state called an exciton will dissociate into a free electron and hole

almost immediately due to thermal motion, in others this requires a nearby vacant state of lower

energy for the electron or hole to transfer into. In any case the dissociated charges must prefer

to move into opposite directions due to some energetic asymmetry that has been built into

the cell in order to collect electric current. Without this asymmetry electrons will eventually

recombine with the holes and no electrical energy can be gathered [28]. An illustration for the

photovoltaic effect in given in figure 3-1.

3.2 I-V and J-V Curves

As solar cells are made to produce as much electric power as possible from available electro-

magnetic radiation, the most important measurement of cell performance is its current-voltage

dependence or I-V curve. The cell is placed under a lamp and the current given by the cell

is measured as reverse voltage is varied. Both current and voltage given by the cell depend

on cell temperature as well as the incident light intensity and spectrum. Therefore measure-
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Figure 3-1: Illustration of the principle behind photovoltaic devices. An incoming photon (γ)
excites an electron (e−) from a lower energy state to higher one leaving a behind a hole (h+).
Initially the electron and hole form a bound state called an exciton which will break up either
spontaneously or due to energetic asymmetry (not shown). Finally a type of built-in asymmetry
in the cell (band bending on the left) will cause the free electron and hole to preferentially move
in different directions leading to electric current.

ments are usually made in — or normalized to — Standard Reporting Conditions (SRC) with

a temperature of 25◦C, Air Mass 1.5 G spectrum and incident power intensity 1000 W/m2.

This intensity and spectrum is also commonly called 1 sun as it is close to the solar radiation

hitting the surface of Earth at a latitude of 48◦ on a clear day at solar noon (the power density

is rounded to 1000 W/m2 for convenience) [29].

Photocurrent is directly proportional to the area of the cell. Current density is therefore a

better value than current for characterizing the performance of a particular cell design and is

usually given instead of current. In this case the plot is called the J-V curve. An example J-V

curve is given in figure 3-2.

A number of values are calculated from the I-V curve. Open circuit voltage Voc is the value

of reverse bias applied to the cell when there is no current. Short circuit current Isc (or current

density Jsc) is the value of current with no reverse bias.

Fill factor FF is defined by

FF =
ImppVmpp
IscVoc

(3.1)

where Impp and Vmpp are the current density and voltage at the maximum power point. This

value describes the squareness of the I-V curve. In general low fill factor indicates high internal

resistance in the cell.

The power conversion efficiency PCE or ηPC of the cell is
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Figure 3-2: An example experimental J-V curve of a dye-sensitized solar cell.

ηPC =
ImppVmpp

P
=
IscVocFF

P
(3.2)

where P is the power density (W/m2) of the incident light.

Most solar cell I-V curves can be described by an equation describing an electrical circuit

where a current source is connected in parallel with a diode and in series with a resistor [28].

Icell = Iph − ID · e
q(Vcell+RsIcell)

mkBT (3.3)

where Icell is cell current, Iph is the photogeneration current of the cell, q is the elementary

charge, Vcell cell voltage, Rs reistance of the resistor, kB the Boltzmann constant, T cell tem-

perature and m the cell nonideality factor. Although more detailed physical models give better

agreement with experiment, this equation is often used to calculate the nonideality factor,

which may give some information about the underlying physical processes of recombination.

For example, the equation predicts that increasing light intensity by a factor of ten will increase

open circuit voltage by m · 59 mV.

Although the I-V curves and power conversion efficiencies at different lighting and tempera-

ture conditions contain all the necessary information about device performance to an end user,

they do not provide enough information to someone seeking to improve the device. The first

steps towards addressing this issue are taken in the next section.
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3.3 Process Efficiencies in a Solar Cell

As stated before a photovoltaic device requires light to create free electric charges and some

type of asymmetry to drive these charges into one direction. If this asymmetry is not strong

enough some charges will recombine by falling back into their initial state. In an ideal device all

incident photons will be absorbed by the correct material, all absorbed photons will create free

charges and all free charges are collected. Therefore the current efficiency, also known as the

external quantum efficiency (EQE) or incident photon to collected electron efficiency (IPCE)

can be divided into three parts: light harvesting, absorbed photon to charge generation and

charge collection efficiencies.

IPCE =
Icell

qAcellφ
= ηLH · ηAPCG · ηCOL (3.4)

where Icell is the cell current, q the elementary charge, Acell cell area, φ the incident photon

flux and ηLH , ηAPCG and ηCOL are the light harvesting, absorbed photon to charge generation

and charge collection efficiencies, respectively. In dye solar cells free charge generation occurs

through electron injection into a lower energy level (see next chapter) so absorbed photon

to charge generation efficiency is usually called the injection efficiency ηINJ [18]. Note that

typically IPCE (and EQE) are understood to be given at short circuit unless otherwise stated,

although the numbers can be defined anywhere on the I-V curve. This convention is also used

elsewhere in this report.

Light harvesting and free charge generation depend either entirely or heavily on the optical

properties of the cell which are not the focus of this study. As such these two are referred

collectively as the charge generation efficiency in this report. Charge collection efficiency, on

the other hand, is the target of this work. Unfortunately there is no simple and reliable way to

measure charge generation and collection efficiencies separetely meaning that charge transport

models must be used to discern between the them. Most of the modelling work in this study is

done to achieve this.

In order to separate charge generation and collection, as well as potential different recom-

bination processes from each other, one must be able to use measurement data to obtain the

correct parameter values of the model used to describe charge transport. Thus the problem is

not only to find the correct model, but to also find a way to solve the inverse problem associated

with it.

Overall power conversion efficiency depends not only on the current efficiency but also on

the voltage efficiency. Ideally all the energy of every incoming photon can be exploited but in

practice this is not the case. If an electron is excited beyond the lower limit of the conduction

band, the collisions caused by thermal motion will cause the electron to drop into the lowest

unoccupied conduction band state very quickly. The same happens for holes in the valence

band with the difference that holes move up in electron energy as they have the opposite

electric charge. When this thermalization is combined with unavoidable radiative losses caused

by free electrons recombining with free holes, the result is that any photon energy exceeding

the absorber band gap cannot be utilized using a conventional solar cell [28]. Therefore one
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can write the voltage efficiency of the solar cell as

ηvoltage =
qVcell
Ebg

· Ebg
Ephoton

(3.5)

where Vcell is the cell voltage, Ebg absorber band gap and Ephoton the average energy of the

incident photons. The band gap depends on the absorber material and the average photon

energy on the spectrum of incident light. Thus these constants do not need to be measured

from a full device.

Combining the current and voltage efficiencies yields the overall power conversion efficiency

ηPC = IPCE · ηvoltage = ηLH · ηAPCG · ηCOL ·
qVcell
Ebg

· Ebg
Ephoton

(3.6)

3.4 Impedance Spectroscopy

Impedance spectroscopy is a measurement where a small perturbation (voltage or current) is

applied to the cell and the resulting output (current or voltage) is measured. In its most common

form a sinusoidal perturbing signal is applied on top of a steady-state bias. Scanning across

a range of frequencies will then give information about the behaviour of the cell. Impedance

itself is defined as the transfer function linking current and voltage of a linear time-invariant

system [30].

Z(ω) =
VAC(ω)

IAC(ω)
(3.7)

where Z is impedance, ω is the angular frequency of the perturbation, VAC is the alternating

voltage and IAC the alternating current. Physically impedance measurement results consist of

two values: the first is the ratio of the signal and perturbation amplitudes and the second is the

phase shift between the signals. Usually impedance as well as alternating currents and voltages

are given as complex numbers [30]. For a short introduction in using complex numbers to

represent sinusoidal signals, see appendix A. A dye solar cell impedance spectrum is described

in appendix B.

Most systems, particularly electrochemical ones, are not linear and therefore the output

signal in equation 3.7 refers only to the linear part of the full signal. This is not a problem

if the signal is measured using a frequency response analyser which can implement a type of

Fourier analysis to isolate only the linear part of the output signal [30].

The output signal S of a non-linear system can be represented as a Fourier series plus a

noise term N [30, 31]

S = A0 sin(ωt+ φ0) +

∞∑
k=1

(Ak sin(kωt+ φk)) +N (3.8)

where the sum is the non-linear part of the signal.

Multiplying the output by the input signal and integrating the product over one or multiple
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full cycles yields the linear part of the output signal S because as the integration time increases

the integral of noise approaches zero and the orthogonality of sines and cosines yields

∫ n· 2πω

0

sin(mωt) · sin(kωt+ φk) dt

=

∫ n· 2πω

0

sin(mωt) · sin(kωt) · cos(φk) dt+

∫ n· 2πω

0

sin(mωt) · cos(kωt) · sin(φk) dt

= 0 , when m 6= k (3.9)

where n, m and k are integers.

The importance of rejecting the non-linear part of the signal is that frequency-based measur-

ments can be mathematically described using linear or linearized equations as the measurement

itself rejects all higher harmonics caused by non-linearity of the response. This greatly simplifies

modelling and is a reason for choosing to use impedance spectroscopy over transient methods

— which are only approximately linear with small perturbations — in this report.
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Chapter 4

Dye-Sensitized Solar Cell Device

Model

4.1 Dye-Sensitized Solar Cell

A dye-sensitized solar cell (DSSC) consists of a semiconductor, dye and a hole conducting layer

on a suitable mechanical support. Incoming photons are absorbed by dye molecules attached

to the surface of the semiconductor. The energy of the photon excites an electron from an

occupied molecular orbital to a higher unoccupied one. The electron is then injected from the

dye into the conduction band of the semiconductor, from which it can be collected into an

external circuit. The oxidized dye molecule is regenerated by an electron transfer from the

hole conductor. After the electron has moved through the external circuit, it reduces the hole

conductor [32].

Figure 4.1 shows the layers in a typical dye solar cell. The cell is built on a glass sheet coated

with fluorine-doped tin oxide (FTO). Nanoporous titanium dioxide acts as the semiconductor

and is sensitized by a ruthenium complex dye. The combination of the semiconductor and dye

is called the photoelectrode (PE). A reduction-oxidation couple (typically iodide/tri-iodide) in

organic solvent (typically acetonitrile or similar) acts as the hole conductor. The porosity of

the semiconductor increases the effective surface area by several orders of magnitude enabling

more dye molecules to attach to its surface. Although this enhances short circuit current, it

also increases electron back reaction into the electrolyte. One of the remarkable features of

the dye solar cell is that back reaction can be suppressed so efficiently that a high surface area

junction is actually desirable. Another FTO glass sheet coated with platinum is used as the

counter electrode (CE) to return the electron from the external current into the cell [32].

An energy scheme for a dye-sensitized solar cell is also given in figure 4.1. A photon excites

an electron from the highest occupied molecular orbital (HOMO) S0 to the lowest unoccupied

molecular orbital (LUMO) S∗ (1). The electron is then injected into the conduction band (CB)

of the semiconductor with a lifetime of femto- to picoseconds (2). The electron could also return
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Figure 4-1: An illustration of the layers in a typical dye-sensitized solar cell and an energy
scheme. The cell is built by depositing a nanoporous titanium dioxide layer on glass with some
transparent conductive oxide (TCO). Dye is adsorbed on the surface of the nanoparticles and
the entire cell filled with a redox electrolyte. Another TCO glass piece with additional platinum
catalyst acts as a counter electrode. Light is absorbed by the dye exciting an electron from a
ground state S0 to an excited state S∗ (1). The electron is then injected into the conduction
band (CB) of the TiO2 (2) before it can fall back to the original state (3). A conduction band
electron may recombine with an excited dye molecule (4) or directly with an oxidized redox
ion (5). A possible additional recombination pathway is from the localized (trap) states below
conduction band into the electrolyte (8). Power is generated when electrons diffuse to the
contact (6) and the reduced redox ion regenerates the dye (7).
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to its original state (3) but this radiative recombination takes several nanoseconds hence making

injection much more probable. The electron can also be captured from the semiconductor by an

oxidized dye species (4) or the electrolyte (5) before it can diffuse into the external circuit (6).

The dye molecule gets an electron from the electrolyte (7) in just pico- to nanoseconds whereas

both transport into the external circuit and recombination from the semiconductor occur at a

timescale of microseconds to seconds. Recapture from the semiconductor is therefore considered

the most important recombination mechanism in a dye-sensitized solar cell. Another possibility

is recombination from localized states (traps) beneath the conduction band (8) [32].

The electrons present in the semiconductor increase the electrochemical potential (also

known as quasi-Fermi level) in the material. The difference of this potential and the redox

potential of the electrolyte is the measured cell voltage. The band gap of the common ruthe-

nium dyes is about 1.7 eV, the TiO2 conduction band is about 0.2 eV lower than the dye LUMO

level and the energy difference between the iodine electrolyte and the ground state of the dye is

about 0.6-0.7 eV. These values give a maximum open circuit voltage of about 0.8-0.9 V [32, 33].

In practice, however, open circuit voltages are somewhat lower due to electron recombination

from the semiconductor and/or trap states. In principle one would prefer for the LUMO and

redox levels to be closer to the conduction band bottom and dye HOMO levels, respectively.

However, the energy differences are necessary for the injection and regeneration reactions to

dominate as lower driving forces result in slower reactions. Moreover, the energy scheme in

figure 4.1 is more complicated in reality as iodide/tri-iodide redox couple involves the transfer

of two electrons and thus the energy level relevant to regeneration is the redox potential of

iodine radical/iodide, which is considerably lower than the redox potential of the overall couple

[15].

Laboratory scale devices can be made up to 10% efficiencies [34] although achieving this level

of performance requires optimizations that are too impractical to be used routinely. According

to the solar cell record efficiency listings in the journal Progress in Photovoltaics, the current

verified champion cell has an efficiency of 11.9% [35].

4.2 Dye Solar Cell Device Model

A dye solar cell is a photoelectrochemical device meaning that to fully understand its operation

one has to model interactions with light, chemical reactions as well as movement of electrons.

This study concentrates on electrical measurements and thus optical and chemical models are

given less attention. The standard configuration of sensitized titanium dioxide on fluorine-

doped tin oxide coated glass with iodide/tri-iodide redox couple in organic solvent is assumed

as this corresponds to the experimental work done in chapter 5.

In the following sections an electrical model for the dye solar cell is developed. The focus is

on a device level picture and details and effects that cannot be seen with electrical measurements

are ignored.

The model can perhaps be easier to understand using a conceptual equivalent circuit that

represents the different physical processes as ideal electric circuit elements. This conceptual
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Figure 4-2: Conceptual dye solar cell equivalent circuit. Sheet resistance of the FTO glass
substrate is treated as a resistor Rs. Recombination from the titanium dioxide is treated as a
distributed resistance rrec. Diffusion (rt), recombination from the substrate (Rsu) and counter
electrode overpotential (Rce) are also treated as resistors. Trapping (cpe) as well as counter
electrode and substrate interfacial capacitances (Cce and Csu) are treated as simple capacitors.
Light absorption and charge generation is modeled as a current source (iph).

circuit is given shown in figure 4-2.

4.2.1 The Continuity Equations

Since one is ultimately interested in the current the cell produces as function of applied voltage,

the treatment will start with the conduction band (or free) electrons of the semiconductor

following the scheme first presented by Soedergren et al. [9]. The semiconductor is treated a

quasi-homogeneous layer in contact with the electrolyte: porosity, grain boundaries or band

bending effects are neglected although they may be considered to be implicitly included in the

parameters. For example, poor electrical connections between particles and higher porosity

would lead to a smaller effective diffusion coefficient.

The continuity equation for conduction band electrons is

∂nc
∂t

= −∇ · j +G−R− Tc (4.1)

where nc is conduction band electron density, t is time and j electron flux. Electron injection

(generation, G) from the dye is the source term. Recombination (R) into the electrolyte and

trapping (Tc) into the localized states are sink terms. Recombination of electrons with the

oxidized dye molecules will be taken into account in the generation term G, as shown below in

the recombination and dye regeneration section.

Conventional wisdom holds that electron transport in the conduction band occurs by diffu-
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sion as long range electric fields are screened by the electrolyte ions that surround the semicon-

ductor nanoparticles (see figure 4.1) [9, 18]. Peter also calculated the electric potential change

inside the particles assuming moderate N-type doping and concluded that band bending is

negligible [36].

The flux is therefore

j = −Dc ·
∂nc
∂x

(4.2)

where Dc is the free electron diffusion coefficient. For the sake of simplicity the coefficient is

assumed to be independent of position or electron density. This assumption is also backed by

experiment [17].

Transport of ions in the electrolyte is also thought to occur by diffusion as the short distances

between electrodes preclude convection and theoretical calculations by Papageorgiou et al. [37]

have indicated that the electrochemically inactive ions effectively screen the electric field making

drift negligible at all but very high current densities.

The continuity equation for the oxidized redox ion species is

∂cox
∂t

= Dox ·
∂2cox
∂x2

+ SoxG− SoxR (4.3)

where cox is the oxidized ion concentration, Dox is the diffusion coefficient and Sox the number

of ions reduced or oxidized by one transferred electron. For example, two electrons are needed

to reduce one tri-iodide ion into three iodide ions so Sox for tri-iodide is 0.5.

For the reduced species the continuity equation is

∂cred
∂t

= Dred ·
∂2cred
∂x2

− SredG+ SredR (4.4)

where cred is the reduced species concentration, Dred is the diffusion coefficient and Sred the

number of ions reduced or oxidized by one transferred ion. For example, two electrons are

needed to oxidize three iodide ions into one tri-iodide ion so Sred for iodide is 1.5.

As shown in figure 4.1 electrolyte both fills the pores of the photoelectrode and the gap

between the electrodes. The above continuity equations describe transport in the porous area

whereas in the free area the source and sink terms are zero.

∂cox,F
∂t

= Dox,F ·
∂2cox,F
∂x2

(4.5)

∂cred,F
∂t

= Dred,F ·
∂2cred,F
∂x2

(4.6)

where the subsript F denotes the free electrolyte layer.

Note that trapping of electrons into surface states should be matched by the same amount

of charge accumulating on the electrolyte side meaning that capacitive terms should be added

to the redox ion continuity equations as well. The justification for omitting these is that ions

have much higher concentrations than electrons and hence surface capacitance effects should
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be very small. For example, tri-iodide has usually the smallest concentration in the electrolyte

at about 2 · 1025 m−3 whereas measurements of total electron concentration in the TiO2 film

at open circuit give values of about 1 · 1024 m−3 [38].

4.2.2 Light Absorption and Injection

As with any other photovoltaic device, a dye-sensitized solar cell works by absorbing photons of

suitable energy and converts them into free electrons. For this to happen, the incoming photon

must be absorbed by the dye. However, all cells must have many other components that

necessarily absorb some of the available energy. Firstly, light must pass through the cell sealing

materials and mechanical supports (typically glass or plastic). Secondly, in most configurations

light will enter the cell after penetrating a transparent conductive layer (TCO) that is used to

collect cell current. As electrical conductivity and transparency in the visible region tend to

be mutually exclusive properties, transparency is necessarily compromised to reduce resistive

losses. Another absorbing medium in the cell is the electrolyte which fills the photoelectrode

pores.

Typically the optical model coupled to the diffusion equation follows simple Lambert-Beer

exponential decay [9, 18], which assumes wavelength-independent absorption and neglects any

scattering in the layers. The reasons for this choice are simplicity of equations, narrow band

illumination using LEDs in common measurements and the lack of any strongly scattering

materials in most (but not all [34]) cells.

φTiO2 = φTsubste
αtx+σ (4.7)

where φTiO2 is the photon flux inside the photoelectrode, φ is the photon flux directly outside

the cell, Tsubst is the transparency of the supporting structure (seals, glass, and TCO, addition-

ally electrolyte and catalyst if light enters from the counter electrode side), x is the position

in the film and αt is the total extinction coefficient of the sensitized and electrolyte filled film.

In the formalism used here αt also has a sign indicating the direction of illumination: conven-

tional photoelectrode side lighting is presented as a negative αt. A scaling factor σ is used to

normalize light intensity in order to avoid additional prefactors when using counter electrode

side illumination.

PE side: αt < 0, σ = 0 (4.8)

CE side: αt > 0, σ = αtd (4.9)

where d is the thickness of the titania film.

Once the photon has excited an electron into the LUMO level of the dye, it can then

either fall back to the original HOMO level (radiative recombination) or be injected into the

conduction band.

In principle one could formulate a physical model for electron injection in a DSSC. However,

this study is concerned with electrical properties of the device and any details not captured
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by electrical measurements are omitted. In practice it is found that injection is only weakly

influenced by electron density in the film [38] thus enabling one to model it as an undetermined

constant.

In summary overall photogeneration of free electrons in the semiconductor is modeled as

Lambert-Beer exponential decay of light intensity multiplied by absorption coefficient of the

dye as well as injection efficiency.

G = αdηINJηREGφTsubste
αtx+σ (4.10)

where αd is dye light extinction coefficient and nINJ electron injection efficiency. Regeneration

efficiency nREG is discussed in the recombination section below.

Noting that integrating the generation term over the film thickness gives the total photoin-

jection current, which is the same as incident photon flux multiplied by the product of light

harvesting, injection and regeneration efficiencies, one can simplify the generation term to

G = ηLHηINJηREGφ ·
αt

eαtd − 1
· eαtx (4.11)

where ηLH is light harvesting efficiency.

Combining the three efficiencies yields overall charge generation efficiency, which simplifies

the model in the case where light harvesting, injection and renegeration are assumed to be

constant.

ηCG = ηLHηINJηREG (4.12)

where ηCG is the charge generation efficiency.

4.2.3 Localized States: Trapping

In addition to conduction band states, time dependent electrical measurements give evidence

that most of the electrons in the titanium dioxide film in fact occupy localized states between

the conduction and valence bands [14, 39]. The nature and origin of these traps is uncertain at

present, although Zhu et al. found evidence that traps are located at the nanoparticle surfaces

[40]. Katoh et al. [41] also observed a particle size effect in injection studies which they related

to trap states giving further evidence of the traps being located on the surface.

Bisquert and Vikhrenko introduced a model where localized electrons are thought to occupy

a continuum of exponentially distributed states in equilibrium with the conduction band [10].

The concentration of trapped electrons can be calculated by multiplying the density of trap

states with the Fermi-Dirac occupation probability.

nt =

∫ EC

EV

Nt,0e
βT ·

E−EC
kBT · 1

e
E−EF
kBT + 1

dE (4.13)

where Nt,0 is the trap density coefficient, βT is the trap distribution parameter, E is energy

and EV , EC and EF are the valence, conduction and Fermi energy levels, respectively.
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The integral can be evaluated analytically if the Fermi-Dirac function is approximated by

a step function

nt ≈
∫ EF

EV

Nt,0e
βT ·

E−EC
kBT · 1 dE +

∫ EC

EF

Nt,0e
βT,0·

E−EC
kBT · 0 dE

= Nt,0 ·
kBT

βT
·
(
e
βT ·

EF−EC
kBT − eβT ·

EV −EC
kBT

)
≈ Nt,0 ·

kBT

βT
· eβT ·

EF−EC
kBT = nt,eqe

βT ·
EF−EF,eq

kBT (4.14)

where nt,eq is the trapped electron concentrataion at equilibrium and EF,eq is the equilibrium

Fermi level.

The conduction band electron concentration is given by

nc = NCe
EF−EC
kBT = nc,eqe

EF−EF,eq
kBT (4.15)

where NC is the conduction band density of states and nc,eq is the equilibrium conduction band

electron concentration.

Assuming that conduction band and trapped electrons are in equilibrium, their concentra-

tions can be described using a common Fermi level and the two last equations can be combined

to get

nt =
nt,eq

nβTc,eq
· nβTc (4.16)

This results in the trapping term

Tc =
∂nt
∂t

=
nt,eqβT

nβTc,eq
· nβT−1

c · ∂nc
∂t

(4.17)

4.2.4 Recombination and Dye Regeneration

As stated before, a conduction band electron may recombine with an oxidized redox ion or

dye molecule before it has time to travel into the external circuit. Measurements of open

circuit voltage against light intensity indicate that this back reaction is a nonlinear function

of conduction band electrons which is usually explained as evidence of recombination from the

trap states (see previous section) [11].

In principle recombination into the electrolyte from the trap states could be calculated by

integrating the product of trapped electron number and reaction rate across the band gap

energy,

RT =

∫ EC

EV

kr,t(E)nt(EF , E) dE (4.18)

where RT is recombination from trap states, kr,t(E) is trap recombination rate coefficient and

28



nt(EF , E) is the concentration of trapped electrons per energy.

Unfortunately the energy dependence of the recombination rate coefficient kr,t is unknown

so in practice the integral cannot be calculated. Bisquert et al. [16] have used Marcus–Gerischer

theory to obtain one expression but this theory is only valid for outer sphere redox couples where

electron transfer merely distorts chemical bonds instead of breaking them. The iodide/tri-iodide

redox couple reactions do involve breaking of bonds so at first it appears that the model is not

valid. It is possible that the rate determining step is indeed a suitable reaction but at present

the exact recombination pathway is unknown (see below) so for now one must simply accept a

phenomenological recombination rate model.

Fortunately experimental evidence indicates that for a large voltage range recombination is

well described by a simple power law [11, 18].

R ∝ (nc − nc,eq)γ (4.19)

where nc and nc,eq are the current and equilibrium conduction band electron concentrations.

This form is also approximately compatible with the Marcus–Gerischer theory derived by Bis-

quert et al. discussed above [16].

Back reaction to the electrolyte also requires the presence of oxidized redox ions. The most

commonly used iodide/tri-iodide couple actually involves the transfer of two electrons

I−3 + 2e− ⇔ 3I− (4.20)

The exact pathway for recombination is presently unclear and in fact even the main electron

acceptor species is not known as the iodide/tri-iodide redox couple is formed by elemental iodine

capturing an iodide ion [15].

I− + I2 ⇔ I−3 (4.21)

Irrespective of whether recombination involves iodine or tri-iodide, the rate seems to be

linear with respect to iodine/tri-iodide concentration [15].

R = kr,c ·
cacc
cacc,eq

· (nc − nc,eq)γ (4.22)

where kr is the recombination rate constant, cacc is the electron acceptor concentration (number

of molecules per m3), cacc,eq equilibrium acceptor concentration, nc and nc,eq the conduction

band electron density at operating conditions and equilibrium, respectively.

In this report tri-iodide is considered to be the electron acceptor. Should one prefer to

consider iodine as well one has to account for the tri-iodide formation reaction (equation 4.21).

The equilibrium of this reaction is so far to the right side that very little iodine is present

in the electrolyte [15]. Therefore tri-iodide concentration is effectively independent of iodide

concentration but iodine is not. Using the law of mass action yields
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cI2 =
cI−3
cI−
· 1

KI2

⇒ cI2
cI2,eq

=
cI−3
cI−3,eq

·
cI−eq,

cI−
(4.23)

where KI2 the equilibrium constant for the reaction.

Dye regeneration by the electrolyte and dye mediated recombination by photogenerated

electrons are responsible for the reduction of the oxidized dye molecule. As one does not

wish to lose any conduction band electrons to the dye, achieving fast regeneration kinetics is

necessary for highly efficient devices. Traditional thinking has been that dye regeneration is

100% efficient in good cells as some cells convert 100% of incident photons (after correcting

for substrate transparency) into current in certain conditions [32]. Jennings and coworkers,

however, argue that while this may be the case at short circuit, it may not hold when electron

density is increased [42]. Assuming that the number of oxidized dye molecules reaches a steady

state immediately under electrical perturbation (dye regeneration is too fast to be seen with

any electrical measurement [32]), they have derived an expression for regeneration efficiency

that is a function of redox ion and electron densities.

ηREG =
kREGc

γred
red

kREGc
γred
red + ken

γe
c

(4.24)

where nREG is regeneration efficiency, kREG is regeneration rate constant, cred is the reduced

ion concentration, ke dye recombination rate constant and nc conduction band electron density.

Experimentally Jennings et al. [42] find that the presented model works well at high electron

densities but requires an extra recombination pathway at low densities. Anderson et al. also

studied regeneration and presented the equation above but without the exponents [43] (more

precisely they found the reaction order to be close to three with respect to total electron

concentration, which results in a reaction order of one for conduction band electrons when

trapped electrons are taken into account). Both works agreed that regeneration can be assumed

perfect or close to perfect at high iodide concentrations at short circuit.

In this report the exponents are assumed to be 1 or regeneration efficiency is assumed to be

constant.

4.2.5 Counter Electrode Overpotential

Although electron transfer from the counter electrode to the oxidized redox ion is a very fast

process when using suitable catalysts, the voltage loss (usually termed overpotential) at this

interface is not negligible — at least when mass transport limitations start to play a role at

high current densities. Although the overall reaction is the same as given in the recombination

section (equation 4.20), the pathway may be different. Here, the model overviewed by Halme

et al. [18] is briefly summarized.

The current-overpotential equation for a metallic electrode in the presence of a redox couple

[25] is
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Icell
Acell

= i0

(
cox
cox,eq

e
βCE

qV CE
kBT − cred

cred,eq
e
−(1−βCE)

qV CE
kBT

)
(4.25)

where Icell is cell current, Acell is cell area, i0 exchange current density (rate coeffcient), cred,

cred,eq, cox, cox,eq the present and equilibrium concentration of the reduced and oxidized ions,

βCE a symmetry parameter and VCE the voltage loss. If redox ion concentrations can be

assumed to be the same as their equilibrium values, then this equation is also called the Butler-

Volmer equation [25].

A complicating factor with the iodide/tri-iodide redox couple is that electron transfer seems

to involve the dissociation of iodine molecules into elemental iodine on the catalyst surface and

the subsequent electron transfer to form iodide [44]. This means that, as far as the counter

electrode reaction is concerned, the oxidized redox ”ion” is actually iodine atom. Assuming

that all the other reactions are in equilibrium, one can use the law of mass action to express

atomic iodine concentration in terms of iodide and tri-iodide [18].

cI = KI ·

√
cI−3
cI−

(4.26)

where KI is the equilibrium constant.

The resulting current-overpotential relation is

Icell
Acell

= i0

(√
cI3
cI3,eq

·
cI−eq
cI−

e
βCE

qV CE
kBT − cI−

cI−eq
e
−(1−βCE)

qV CE
kBT

)
(4.27)

4.2.6 Contact Resistance and Substrate Recombination

Significant recombination occurs at low photovoltages from the fluorine-doped tin oxide (FTO)

surface and therefore blocking layers of compact TiO2 deposited with spray pyrolysis are used

to reduce this effect [12]. The blocking layer could also lead to a significant contact resistance

as its interface with could function as a Schottky diode. Fortunately in practice the contact

resistance appears to be negligible [14, 18, 39]. Therefore this resistance is taken to be zero in

this report.

Based on Tafel plots in a report by Cameron et al. [12] substrate recombination is taken to

have the same current–voltage behaviour as the counter electrode.

Isurf
Acell

= i0,s

(√
cI3
cI3,eq

·
cI−eq
cI−

e
βPE

qV PE
kBT − cI−

cI−eq
e
−(1−βPE)

qV PE
kBT

)
(4.28)

where Isurf is the substrate recombination current, i0,s the substrate exchange current and

VPE is the photoelectrode voltage.
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4.2.7 Electrolyte Capacitance

Electric potential difference between a solid electrode and bulk electrolyte results in ions moving

towards or away from the electrode according to their electric charge. The standard Gouy-

Chapman-Stern theory [25] divides the electrolyte in two layers: In the compact layer ions are

densely packed on the electrode surface and their response to changes in electric field is small.

The opposite is true for the diffuse layer as the concentration of ions is so small that they can

be thought of as point charges. Although the theory provides only a qualitative description

of experimental electrolytes, it is deemed adequate for the purposes of this report as counter

electrode capacitance is not particularly important for dye solar cell performance.

The key prediction here is that differential capacitance is not constant but will depend on

overpotential. Electrolyte capacitance will also affect the photoelectrode but it is assumed that

this has already been taken into account by the phenomenological trap density of states. The

author would also argue that due to the relatively large mass and likely nonlinear transport

kinetics caused by dense packing of ions the charges cannot be assumed to relax to a steady

state infinitely fast resulting in the prediction that electrolyte capacitance will depend on the

frequency of an electric perturbation. This is indeed experimentally observed in most solid–

electrolyte interfaces although usually it is explained to be caused by the microscopic structure

of the interface [45].

For the purposes of the model presented here, electrolyte capacitance is taken to behave as

an ideal capacitor.

4.2.8 Substrate Series Resistance

A dye solar cell must be constructed on conductive substrate as the semiconductor has too

high a resistivity for efficient lateral current collection. The most common substrate is fluorine

doped tin oxide (FTO) glass which is about 80% transparent in the visible with sheet resistance

values of ca. 7-15 ohms/square [46].

Voltage loss due to sheet resistance depends mostly on cell configuration with large (di-

mensions exceeding 1 cm) continuous areas having very high loss [47]. The magnitude of the

voltage loss itself is not a significant complicating factor in cell modelling, but the distributed

nature of it is. Sheet resistance causes different parts of the cell to experience a different applied

voltage which effectively makes the cell nonhomogeneous. However, in practice laboratory scale

cells are simply made small enough (<1 cm2) for a single series resistor approximation to be

reasonable. Nevertheless, some measurements can be expected to be somewhat distorted due to

the distributed series resistance caused by the geometry of the cell. In this report simulations

are made with no substrate series resistance present.

4.2.9 Summary and Normalized Form of the Continuity Equations

Inserting the generation, recombination and trapping terms into the continuity equations yields
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(
1 +

nt,eqβT

nβTc,eq
· nβT−1

c

)
· ∂nc
∂t

= Dc
∂2nc
∂x2

− kr ·
cacc
cacc,eq

· (nc − nc,eq)γ

+ ηLHηINJφ ·
kREGcred

kREGcred + kenc
· αt
eαtd − 1

eαtx (4.29)

for conduction band electrons. Iodide and tri-iodide equations are

∂cred
∂t

= Dred
∂2cred
∂x2

+ Sredkr ·
cacc
cacc,eq

· (nc − nc,eq)γ

− SredηLHηINJφ ·
kREGcred

kREGcred + kenc
· αt
eαtd − 1

eαtx (4.30)

∂cox
∂t

= Dox
∂2cox
∂x2

+ Soxkr ·
cacc
cacc,eq

· (nc − nc,eq)γ

− SoxηLHηINJφ ·
kREGcred

kREGcred + kenc
· αt
eαtd − 1

eαtx (4.31)

in the porous photoelectrode film and

∂cred,F
∂t

= Dred,F
∂2cred,F
∂x2

(4.32)

∂cox,F
∂t

= Dox,F
∂2cox,F
∂x2

(4.33)

in the free electrolyte layer. The subsript F indicates this layer.

Expressing all concentrations by the normalized concentration (concentration divided by

equlibrium concentration and denoted with the subscript N) and distance by normalized dis-

tance y (distance divided by photoelectrode film thickness d) results in

Tc,N ·
∂nc,N
∂t

=
Dcnc,eq

d
· ∂

2nc,N
∂y2

−RN · (nc,N − 1)
γ

+GNe
αtdy (4.34)

Tred,N ·
∂cred,N
∂t

=
Dredcred,eq
Sredd

· ∂
2cred,N
∂y2

+RN · (nc,N − 1)
γ −GN · eαtdy (4.35)

Tox,N ·
∂cox,N
∂t

=
Doxcox,eq
Soxd

· ∂
2cox,N
∂y2

−RN · (nc,N − 1)
γ

+GN · eαtdy (4.36)
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Tred,N ·
∂cred,F,N

∂t
=
Dred,F cred,eq

Sredd
· ∂

2cred,F,N
∂y2

(4.37)

Tox,F ·
∂cox,F,N

∂t
=
Dox,F cox,eq

Soxd
· ∂

2cox,F,N
∂y2

(4.38)

where

Tc,N = nc,eqd+ nt,eqdβT · nβT−1
c,N (4.39)

Tred,N =
cred,eqd

Sred
(4.40)

Tox,N =
cox,eqd

Sox
(4.41)

RN = krdn
γ
c,eq (4.42)

GN = ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nc,N
cred,N

)−1

· αtd

eαtd − 1
(4.43)

The advantage of the normalized formalism is that it reduces the number of independent

parameters. Note that the redox ion equations have been divided by either Sox or Sred in order

to group these numbers with the diffusion coefficients.

4.2.10 DC and AC Equations

As the continuity equations are nonlinear and have two independent variables, solving the

time-dependent cases are somewhat demanding problems. For sinusoidal small perturbations,

however, it is possible to find a solution that simplifies the system to a linear one with one

independent variable. This is one of the main reasons why this report focuses on impedance

spectroscopy as analysing sinusoidal data is much easier compared to other waveforms or tran-

sient measurements.

Deriving the small perturbation equations begins with stating that electron and ion concen-

trations can be divided into steady-state (DC) and time-dependent (AC) parts. Here, photon

flux is considered to remain constant.

nc,N (y, t) = nDC(y) + nAC(y, t) (4.44)

cred,N (y, t) = cred,DC(y) + cred,AC(y, t) (4.45)

cox,N (y, t) = cox,DC(y) + cox,AC(y, t) (4.46)
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cred,F,N (y, t) = cred,F,DC(y) + cred,F,AC(y, t) (4.47)

cox,F,N (y, t) = cox,F,DC(y) + cox,F,AC(y, t) (4.48)

Linear terms separate easily into DC and AC terms but for nonlinear terms first-order Taylor

polynomial approximations are necessary.

cacc,DC + cacc,AC
cacc,eq

· (nDC + nAC − 1)
γ ≈ cacc,DC

cacc,eq
· (nDC − 1)

γ

+
cacc,AC
cacc,eq

· (nDC − 1)
γ

+ γ · cacc,DC
cacc,eq

· (nDC − 1)
γ−1

nAC (4.49)

(nDC + nAC)
βT−1 · ∂ (nDC + nAC)

∂t
≈ nβT−1

DC · ∂nAC
∂t

(4.50)

(
1 +

kenc,eq
kREGcred,eq

· nDC + nAC
cred,DC + cred,AC

)−1

≈
(

1 +
kenc,eq

kREGcred,eq
· nDC
cred,DC

)−1

−
(

1 +
kenc,eq

kREGcred,eq
· nDC
cred,DC

)−2

· kenc,eq
kREGcred,eq

· 1

cred,DC
· nAC

+

(
1 +

kenc,eq
kREGcred,eq

· nDC
cred,DC

)−2

· kenc,eq
kREGcred,eq

· nDC
c2red,DC

· cred,AC (4.51)

Inserting these approximations into the continuity equations results in separate DC and AC

equations.

DC equations are:

Dcnc,eq
d

· ∂
2nDC
∂y2

− krdnγc,eq ·
cacc,DC
cacc,eq

· (nDC − 1)
γ

+ ηLHηINJφ · ηREG,DC ·
αtd

eαtd − 1
eαtdy = 0 (4.52)

Dredcred,eq
Sredd

· ∂
2cred,DC
∂y2

+ krdn
γ
c,eq ·

cacc,DC
cacc,eq

· (nDC − 1)
γ

− ηLHηINJφ · ηREG,DC ·
αtd

eαtd − 1
eαtdy = 0 (4.53)
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Doxcox,eq
Soxd

· ∂
2cox,DC
∂y2

− krdnγc,eq ·
cacc,DC
cacc,eq

· (nDC − 1)
γ

+ ηLHηINJφ · ηREG,DC ·
αtd

eαtd − 1
eαtdy = 0 (4.54)

Dred,F cred,eq
Sredd

· ∂
2cred,F,DC
∂y2

= 0 (4.55)

Dox,F cox,eq
Soxd

· ∂
2cox,F,DC
∂y2

= 0 (4.56)

AC equations are:

(
nc,eqd+ nt,eqdβT · nβT−1

DC

)
· ∂nAC

∂t
=
Dcnc,eq

d
· ∂

2nAC
∂y2

− krdnγc,eq ·
cacc,AC
cacc,eq

· (nDC − 1)
γ − krdnγc,eq · γ ·

cacc,DC
cacc,eq

· (nDC − 1)
γ−1

nAC

+ ηLHηINJφ · (ηREG,AC,n + ηREG,AC,red) ·
αtd

eαtd − 1
eαtdy (4.57)

cred,eqd

Sred
· ∂cred,AC

∂t
=
Dredcred,eq
Sredd

· ∂
2cred,AC
∂y2

+ krdn
γ
c,eq ·

cacc,AC
cacc,eq

· (nDC − 1)
γ

+ krdn
γ
c,eq · γ ·

cacc,DC
cacc,eq

· (nDC − 1)
γ−1

nAC

− ηLHηINJφ · (ηREG,AC,n + ηREG,AC,red) ·
αtd

eαtd − 1
eαtdy (4.58)

cox,eqd

Sox
· ∂cox,AC

∂t
=
Doxcred,eq
Soxd

· ∂
2cox,AC
∂y2

− krdnγc,eq ·
cacc,AC
cacc,eq

· (nDC − 1)
γ

− krdnγc,eq · γ ·
cacc,DC
cacc,eq

· (nDC − 1)
γ−1

nAC

+ ηLHηINJφ · (ηREG,AC,n + ηREG,AC,red) ·
αtd

eαtd − 1
eαtdy (4.59)

cred,eqd

Sred
· ∂cred,F,AC

∂t
=
Dred,F cred,eq

Sredd
· ∂

2cred,F,AC
∂y2

(4.60)

cox,eqd

Sox
· ∂cox,F,AC

∂t
=
Dox,F cox,eq

Soxd
· ∂

2cox,F,AC
∂y2

(4.61)

where

36



ηREG,DC =

(
1 +

kenc,eq
kREGcred,eq

· nDC
cred,DC

)−1

(4.62)

ηREG,AC,n = −
(

1 +
kenc,eq

kREGcred,eq
· nDC
cred,DC

)−2

· kenc,eq
kREGcred,eq

· 1

cred,DC
· nAC (4.63)

ηREG,AC,red =

(
1 +

kenc,eq
kREGcred,eq

· nDC
cred,DC

)−2

· kenc,eq
kREGcred,eq

· nDC
c2red,DC

· cred,AC . (4.64)

The AC equations are linear which enables solutions of the form

f(y, t) = g(y)eiωt ⇒ ∂f

∂t
= iωg(y)eiωt (4.65)

where f is the concentration of any of the charge carriers, i is the imaginary unit and ω is the

angular frequency of the AC signal. Inserting this solution makes it possible to divide the time-

dependent exponential part out of the equations leaving position y as the only independent

variable.

4.2.11 Boundary Conditions: DC problem

For the substrate–photoelectrode interface two alternative boundary conditions are used: Dirichlet-

type condition for known voltage and Neumann-type for known current.

Voltage boundary condition fixes the normalized electron concentration at the interface:

nDC(y = 0) = e
qVPE
kBT (4.66)

where nDC is the normalized electron concentration and VPE is the voltage applied to the

photoelectrode (the difference between current electron Fermi level at the FTO contact and

electron Fermi level at equilibrium both divided by elementary charge). Note that setting

VPE to zero correctly results in the equilibrium electron concentration because the normalized

concentration is defined as the actual concentration divided by the equilibrium concentration

(nDC = nc
nc,eq

). Also note that VPE is not the same as measured cell voltage which includes

voltage loss due to series resistance.

Current boundary condition fixes the electron flux:

Dcnc,eq
d

· ∂nDC(y = 0)

∂y
=
Icell + Isurf

qAcell
(4.67)

where Icell is the current in the external circuit and Isurf is the substrate recombination current.

In this report the DC current boundary condition is used only for the analytical approximations

in chapter 5, where the sum of cell and substrate recombination currents is specified.

Electrons are not permitted to flow through the back ”wall” of the photoelectrode as elec-
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trons will transfer into the electrolyte only by recombination or via the counter electrode.

Therefore the flux at the right hand side is zero.

Dcnc,eq
d

· ∂nDC(y = 1)

∂y
= 0 (4.68)

As for the redox ions in the electrolyte, substrate recombination causes oxidized ions to turn

into reduced ions. Thus at the substrate there is a flux boundary condition for both ion types.

Dredcred,eq
Sredd

· ∂cred,DC(y = 0)

∂y
= − Isurf

qAcell
(4.69)

Doxcox,eq
Soxd

· ∂cox,DC(y = 0)

∂y
=

Isurf
qAcell

(4.70)

Substrate recombination current Isurf is given in equation 4.28.

At the boundary between photoelectrode and free electrolyte layer ion concentrations and

their fluxes must be continuous.

cred,DC(y = 1) = cred,F,DC(y = 1) (4.71)

cox,DC(y = 1) = cox,F,DC(y = 1) (4.72)

Dredcred,eq
d

· ∂cred,DC(y = 1)

∂y
=
Dred,F cred,eq

d
· ∂cred,F,DC(y = 1)

∂y
(4.73)

Doxcox,eq
d

· ∂cox,DC(y = 1)

∂y
=
Dox,F cox,eq

d
· ∂cox,F,DC(y = 1)

∂y
(4.74)

The fact that total number of atoms taking part in the redox reactions in the cell must remain

unchanged at all times gives the final conditions. Assuming that electron accumulation in the

photoelectrode has a negligible effect on overall charge in the electrolyte, atomic conservation

leads to the conservation of both reduced and oxidized ions individually. Mathematically this

means that the integrals of both redox ion concentrations across the entire cell are always

constant,

∫ 1

0

Pcred,DC dy +

∫ del
d +1

1

cred,F,DC dy = 1 (4.75)

∫ 1

0

Pcox,DC dy +

∫ del
d +1

1

cox,F,DC dy = 1 (4.76)

where del is the length of the free electrolyte layer. The photoelectrode porosity P is used to

take into account the lower volume of electrolyte per unit of total volume in the photoelectrode

compared to the free electrolyte layer as some of the space is taken by the solid semiconductor.

The integrals can be converted into differential equation form for the purpose of implement-
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ing them in numerical differential equation solvers.

dIred
dy

=

Pcred,DC if 0 ≤ y ≤ 1

cred,F,DC if 1 ≤ y ≤ 1 + del
d

(4.77)

dIox
dy

=

Pcox,DC if 0 ≤ y ≤ 1

cox,F,DC if 1 ≤ y ≤ 1 + del
d

(4.78)

where Ired and Iox and the integrated redox ion concentrations.

The boundary conditions are

Ired(y = 0) = 0 (4.79)

Ired(y = 1 +
del
d

) = 1 (4.80)

Iox(y = 0) = 0 (4.81)

Iox(y = 1 +
del
d

) = 1 (4.82)

4.2.12 Boundary Conditions: AC problem

In this report the only alternate current measurement considered is impedance spectroscopy.

Most boundary conditions remain the same as in the steady-state case.

Starting with electron boundary conditions, both sides have current boundary conditions.

Dcnc,eq
d

· ∂nAC(y = 0)

∂y
=
Icell,ACe

iωt + Isurf,ACe
iωt

qAcell
(4.83)

where Icell,AC and Isurf,AC are the amplitudes of the external and substrate recombination

currents, respectively.

Dcnc,eq
d

· ∂nAC(y = 1)

∂y
= 0 (4.84)

It was previously assumed in the derivation of the continuity equations that redox ion

concentrations are not affected by capacitive effects on the photoelectrode surface. The same

simplification is also made for substrate and counter electrode capacitances. Therefore only

electron transfer across the interfaces (faradaic current) contributes to redox ion concentration

fluxes.

39



Dredcred,eq
Sredd

· ∂cred,AC(y = 0)

∂y
= −Isurf,AC,Re

iωt

qAcell
(4.85)

Doxcox,eq
Soxd

· ∂cox,AC(y = 0)

∂y
=
Isurf,AC,Re

iωt

qAcell
(4.86)

where Isurf,AC,R is the faradaic part of the substrate recombination current amplitude. In the

next section this will be linked to the electron and redox ion concentrations at the substrate.

Continuity of redox ion concentrations and fluxes remain valid for the free electrolyte layer

interface.

cred,AC(y = 1) = cred,F,AC(y = 1) (4.87)

cox,AC(y = 1) = cox,F,AC(y = 1) (4.88)

Dredcred,eq
d

· ∂cred,AC(y = 1)

∂y
=
Dred,F cred,eq

d
· ∂cred,F,AC(y = 1)

∂y
(4.89)

Doxcox,eq
d

· ∂cox,AC(y = 1)

∂y
=
Dox,F cox,eq

d
· ∂cox,F,AC(y = 1)

∂y
(4.90)

The same arguments used in redox ion concentration gradients at the substrate are also

valid for the counter electrode:

Dredcred,eq
Sredd

·
∂cred,AC(y = del

d )

∂y
=
Icell,AC,Re

iωt

qAcell
(4.91)

Doxcox,eq
Soxd

·
∂cox,AC(y = del

d )

∂y
= −Icell,AC,Re

iωt

qAcell
(4.92)

where Icell,AC,R is the faradaic part of the cell external current amplitude.

4.2.13 Substrate Recombination and Counter Electrode Responses

for Small Perturbations

Earlier in sections 4.2.5 and 4.2.6 steady-state expressions for counter electrode overpotential

and substrate recombination were presented. For a small perturbation these must be linearized

in order to obtain the AC response.

In the previous section current was used in the boundary conditions. Therefore it is natural

to use current as the perturbing signal here as well.

Differentiating both sides of equation 4.27 by cell current and rearranging leads to
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∂VCE
∂Icell

=
kBT

qi0Acell

(
βCE

√
cox,N
cred,N

e
βCE

qV CE
kBT + (1− βCE) · cred,Ne−(1−βCE)

qV CE
kBT

)−1

·

(
1 +

(
i0Acell

2

√
cox,N
c3red,N

e
βCE

qV CE
kBT + i0Acelle

−(1−βCE)
qV CE
kBT

)
· ∂cred,N
∂Icell

− i0Acell
2

√
1

cox,Ncred,N
e
βCE

qV CE
kBT · ∂cox,N

∂Icell

)
(4.93)

AC voltage loss can be approximated by

VAC =
∂V

∂I
(VDC) · IAC = R(VDC) · IAC (4.94)

where R(VDC) is the differential resistance of the system at voltage VDC . Therefore counter

electrode AC voltage loss is

VCE,AC =
kBT

qi0Acell

·
(
βCE

√
cox,DC
cred,DC

e
βCE

qV CE,DC
kBT + (1− βCE) · cred,DCe(βCE−1)

qV CE,DC
kBT

)−1

·

(
Icell,AC,R +

(
i0Acell

2

√
cox,DC
c3red,DC

e
βCE

qV CE,DC
kBT + i0Acelle

(βCE−1)
qV CE,DC

kBT

)
· cred,AC

− i0Acell
2

√
1

cox,DCcred,DC
e
βCE

qV CE,DC
kBT · cox,AC

)
(4.95)

where the simplification

∂(cred/ox,DC + cred/ox,AC)

∂Icell,AC,R
· Icell,AC,R =

cred/ox,AC

Icell,AC,R
· Icell,AC,R = cred/ox,AC (4.96)

is used. This is valid because the AC continuity equations are linear so redox ion concentrations

are proportional to the perturbing currents.
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Substrate recombination is governed by the same mathematics so

VPE,AC =
kBT

qi0,sAcell

·
(
βPE

√
cox,DC
cred,DC

e
βPE

qV PE,DC
kBT + (1− βPE) · cred,DCe−(1−βPE)

qV PE,DC
kBT

)−1

·

(
Isurf,AC,R +

(
i0,sAcell

2

√
cox,DC
c3red,DC

e
βPE

qV PE,DC
kBT + i0,sAcelle

−(1−βPE)
qV PE,DC

kBT

)
· cred,AC

− i0,sAcell
2

√
1

cox,DCcred,DC
e
βPE

qV PE,DC
kBT · cox,AC

)
(4.97)

The previous section required linking the faradaic parts of the substrate and external cur-

rents to the electron and redox ion concentrations. In the simulations presented in this report,

it is noted that the substrate and counter electrode capacitances are sufficiently small that for

low frequencies capacitive currents are actually insignificant compared to the faradaic currents.

At high frequencies redox ion concentration changes are negligible meaning that the relative

magnitudes of faradaic and capacitive currents are irrelevant. Therefore

Icell,AC,R ≈ Icell,AC (4.98)

Isurf,AC,R ≈ Isurf,AC (4.99)

Substrate recombination current Isurf,AC is not known before the model is solved. However,

knowledge of its value is unnecessary as it simply links redox ion gradients (equations 4.89 and

4.90) to photoelectrode voltage (equation 4.97).

4.2.14 Electron Concentration and Photoelectrode Voltage

Solid state physics states (see equation 2.19) that the normalized electron concentration at the

photoelectrode–substrate interface has the form

nc,N (y = 0) = e
qVPE
kBT (4.100)

where nc,N is the normalized electron concentration (absolute electron concentration divided by

equilibrium concentration) and VPE is the photoelectrode voltage (difference between current

and equilibrium electron quasi-Fermi levels divided by elementary charge). The measured cell

voltage is given in the next section.

Rearranging for voltage results in

VPE =
kBT

q
· ln(nc,N (y = 0)) (4.101)

Dividing both voltage and electron concentration into DC and AC terms gives
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VPE,DC + VPE,AC =
kBT

q
· ln
(
nDC(y = 0) + nAC(y = 0)

)
≈ kBT

q
·
(

ln
(
nDC(y = 0)

)
+
nAC(y = 0)

nDC(y = 0)

)
(4.102)

Thus AC voltage is

VPE,AC =
kBT

q
· nAC(y = 0)

nDC(y = 0)
(4.103)

4.2.15 Reference Electrode Potential

As stated before, differences in electrochemical potential of electrons between two points can be

measured as voltage. In the previous section photoelectrode voltage was expressed as a function

of electron concentration. The reference level against which photoelectrode electrochemical po-

tential is compared in this picture is the equilibrium level at zero bias in the dark as determined

by the electrolyte electrochemical potential. However, during cell operation redox ion concen-

trations differ from their equilibrium values and subsequently the electrolyte electrochemical

potential becomes position-dependent.

For a two electrode measurement this has already been taken into account in the counter

electrode overpotential as equation 4.27 actually gives the potential difference between the

counter electrode and the equilibrium level. Thus in the cell voltage equation the photoelectrode

and counter electrode reference potentials cancel out.

Vcell =
1

q
· (EF,PE − EF,eq − EF,CE + EF,eq)− VS

=
1

q
· (EF,PE − EF,CE)− VS

= VPE − VCE − VS (4.104)

where VPE is the photoelectrode voltage, VCE counter electrode voltage and VS voltage loss

due to series resistance.

Three electrode measurements enable the measurement of photoelectrode and counter elec-

trode voltages separately by adding a new electrode that is assumed to be in equilibrium with

the electrolyte (no current is allowed to flow through it) and measuring its potential with respect

to either the photoelectrode or the counter electrode (or both if the series resistance between

the two is negligible). The potential difference between this reference electrode and equilibrium

potential is given by the Nernst equation

VREF =
kBT

zq
ln

((
cox,eq
cox

)vox
·
(

cred
cred,eq

)vred)
(4.105)

where z is the number electrons transferred in the reaction from reduced ion to oxidized ion

or vice versa, vox the number of oxidized ions involved in the reaction and vred the number of
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reduced ions involved. Note that, as stated before, in the case of the tri-iodide/iodide redox

couple, the counter electrode reaction involves iodine atoms and iodide. Therefore one can

use z = 1 and the oxidized ion concentration can be calculated using the law of mass action

(equation 4.26). The result is the same if one considers only the iodide/tri-iodide equilibrium

reaction.

VREF,DC =
kBT

zq
ln

(√
cI−3,eq
cI−3,DC

·
cI−DC
cI−eq

·
cI−DC
cI−eq

)
(4.106)

For the AC case the reference voltage should be linearized in the same way as photoelectrode

voltage, giving

VREF,AC =
kBT

q
·

(
−1

2
·
cI−3 ,AC

cI−3 ,DC
+

3

2
·
cI−,AC
cI−,DC

)
(4.107)

where the law of mass action has been used to obtain the redox ion concentrations. This

equation can also be obtained from the counter electrode overpotential equation by taking the

limit of infinite exchange current density.

In this report the reference electrode is assumed to be located at the counter electrode.

Measurable voltages are therefore

VPE/REF = VPE − VREF (4.108)

and

VCE/REF = VCE − VREF (4.109)

Redox ion concentrations are naturally evaluated at the counter electrode (y = 1 + del
d ).

4.2.16 Impedance

Impedance is defined as the ratio of AC voltage and current. Overall cell impedance ZTOT is

the external AC voltage divided by the external AC current.

ZTOT = −Vcell,AC
Icell,AC

(4.110)

where the minus sign is due to the signs chosen for voltage and current in this report.

Cell voltage comprises of photoelectrode voltage and counter electrode voltage resulting in

two impedance elements (three if series resistance is also included). In the photoelectrode model

only faradaic substrate and counter electrode currents were taken into account. Therefore the

impedances are corrected for the presence capacitance via parallel connections.
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ZTOT = ZPE+SU + ZCE =

(
− Icell,AC
VPE,AC − VREF,AC

+ iωCSU

)−1

+

(
Icell,AC

VCE,AC − VREF,AC
+ iωCCE

)−1

(4.111)

4.3 Results

4.3.1 Parameter Values

Parameter values for the model were chosen so that simulated experiments would give roughly

the same results as reported in most of the references as well as the experimental results in

the next chapter. Basic parameters are given in table 4.1 and the derived normalized ones in

table 4.2. Most of the normalized parameters can be, at least in principle, measured using

purely electrical measurements, whereas measuring any of the basic values will require other

methods as well.

Recombination rate coefficient kr was set to produce a reasonable open circuit voltage (about

0.8 V at a light intensity roughly comparable to one sun). Electron equilibrium and trapped

electron equilibrium concentrations were set so that transport resistance and photoelectrode

capacitance values derived from simulated impedance spectra were reasonably close to the ones

measured from the experimental cell (see next chapter for details). Trap distribution parameter

was also based on the same measurements. Light absorption coefficient was set to correspond to

moderate absorption corresponding to the fact the typical N719 dye absorbs only weakly at high

wavelengths [32]. Regeneration coefficients were set to give similar dye regeneration efficiencies

as given by Anderson et al. [43]. Redox ion diffusion coefficients in the film were based on

free electrolyte layer values for acetonitrile solvent [48] reduced by a factor of three due to the

porosity, tortuosity and constrictivity of the film. Equilibrium concentrations corresponded to

the electrolyte recipe used in the experimental work reported in the next chapter (30 mM I2

and 0.6 M I− with all iodine forming tri-iodide). Counter electrode exchange current density

was set to produce a very low counter electrode differential resistance of about 1 Ωcm2 [18] at

zero bias current. Substrate exchange current density was simply set to a value where it was a

significant but not dominant recombination source. Symmetry factors were set to 0.5 as this is

the simplest case.
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Parameter description Symbol Unit Value Reference

Photoelectrode parameters
Electron diffusion coefficient Dc m2/s 2.0 · 10−9 [49]
Recombination rate coefficient kr m3γ−2/s 5.0 · 107 assumption
Recombination order γ – 0.7 [18]
Electron equilibrium concentration nc,eq 1/m3 3.0 · 109 assumption
Trapped electrons at equilibrium nt,eq 1/m3 5.0 · 1020 assumption
Trap distribution parameter βT – 0.3 assumption
Film thickness d m 10 · 10−6 [34]
Film porosity P – 0.5 [50]

Optical parameters
Total light absorption coefficient αt 1/m 1.0 · 105 assumption
Light harvesting efficiency ηLH – 0.7 assumption
Injection efficiency ηINJ – 1.0 assumption
Regeneration rate coefficient kREG 1/(m2s) 7.28 · 10−13 assumption
Dye recombination rate coefficient ke 1/(m2s) 1.0 · 10−12 assumption

Electrolyte parameters
Iodide diffusion coefficient in photoelectrode Dred m2/s 3.0 · 10−10 assumption
Tri-iodide diffusion coefficient in photoelectrode Dox m2/s 3.0 · 10−10 assumption
Iodide diffusion coefficient in free electrolyte Dred,F m2/s 9.0 · 10−10 [48]
Tri-iodide diffusion coefficient in free electrolyte Dox,F m2/s 9.0 · 10−10 [48]
Iodide equilibrium concentration cred,eq 1/m3 3.43 · 1026 assumption
Tri-iodide equilibrium concentration cox,eq 1/m3 1.81 · 1025 assumption
Iodide reaction coefficient Sred – 1.5
Tri-iodide reaction coefficient Sox – 0.5
Free electrolyte layer thickness del m 30 · 10−6 assumption

Counter electrode parameters
Exchange current density i0 A/m2 2.0 · 10−2 assumption
Symmetry factor βCE – 0.5 assumption
Capacitance CCE F 1.5 · 10−4 assumption

Substrate parameters
Exchange current density i0,s A/m2 3.0 · 10−6 assumption
Symmetry factor βPE – 0.5 assumption
Capacitance CPE F 5.0 · 10−5 assumption

Cell and external parameters
Cell area Acell m2 1 · 10−4 assumption
Cell temperature T K 298 assumption
Incident photon flux ϕ 1/(m2s) 2.0 · 1021

Table 4.1: Base parameter values used in dye solar cell modelling.
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Parameter description Symbol Unit Value

Photoelectrode parameters
Normalized electron diffusion coefficient Dcnc,eq/d 1/(m2s) 1.8 · 108

Normalized recombination rate coefficient krn
γ
c,eqd 1/(m2s) 1.29 · 1011

Recombination order γ – 0.7
Normalized electron equilibrium concentration nc,eqd 1/m2 3.0 · 104

Normalized trapped electrons at equilibrium nt,eqd 1/m2 1.5 · 1015

Trap distribution parameter βT – 0.3
Film porosity P – 0.5

Optical parameters
Normalized total light absorption coefficient αtd – 1.0 · 105

Light harvesting efficiency ηLH – 0.7
Injection efficiency ηINJ – 1.0
Normalized dye recombination rate coefficient kenc,eq/(kREGcred,eq) 4.0 · 10−15

Electrolyte parameters
Normalized iodide diffusion coefficient Dred/d

2 1/s 3.0
Normalized tri-iodide diffusion coefficient Dox/d

2 1/s 3.0
Iodide diffusion coefficient ratio Dred/Dred,F – 0.333
Tri-iodide diffusion coefficient ratio Dox/Dox,F – 0.333
Normalized iodide equilibrium concentration cred,eqd/Sred 1/m2 2.29 · 1021

Normalized tri-iodide equilibrium concentration cox,eqd/Sox 1/m2 3.61 · 1020

Normalized free electrolyte layer thickness del
d 3.00

Counter electrode parameters
Exchange current density i0 A/m2 3.0 · 10−6

Symmetry factor βCE – 0.5
Capacitance CCE F 5.0 · 10−6

Substrate parameters
Exchange current density i0,s A/m2 3.0 · 10−6

Symmetry factor βPE – 0.5
Capacitance CPE F 5.0 · 10−6

Cell and external parameters
Cell area Acell m2 1 · 10−4

Cell temperature T K 298
Incident photon flux ϕ 1/(m2s) 2.0 · 1021

Table 4.2: Base case normalized parameter values used in dye solar cell modelling.
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4.3.2 Charge Carrier Concentrations

Figures 4-3, 4-4 and 4-5 show simulated (see appendix C for a brief description of the model

solver) electron, iodide and tri-iodide concentrations in the cell at short circuit, maximum power

point and at open circuit. A key finding from the calculations is that beyond maximum power

point electron and iodide concentrations remain fairly flat whereas tri-iodide concentration is

approximately constant only near open circuit. These results are consistent with earlier work

by various authors [9, 13, 19, 37, 50].
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Figure 4-3: Simulated photoelectrode conduction band electron concentrations at short circuit
(solid line), maximum power point (dotted line) and open circuit (dashed line).
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Figure 4-4: Simulated iodide concentrations at short circuit (solid line), maximum power point
(dotted line) and open circuit (dashed line). 3.0 · 1026 ions per cubic metre is approximately
0.5 M (moles per litre).
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Figure 4-5: Simulated tri-iodide concentrations at short circuit (solid line), maximum power
point (dotted line) and open circuit (dashed line). 3.0·1025 ions per cubic metre is approximately
50 mM (millimoles per litre).
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4.3.3 Light Intensity Dependence of Short Circuit Current and Open

Circuit Voltage

The light intensity dependence of short circuit current and open circuit voltage were simulated

for four different cell variations: in the base case all parameter values were as they are given

in table 4.2, in the perfect regeneration case normalized dye recombination rate coefficient was

set to zero, in the no substrate recombination case subtrate exchange current was additionally

set to zero, and in the last case the the entire electrolyte model was omitted in addition to the

previous changes.

Figure 4-6 shows the simulated incident photon to collected electron (IPCE) values for the

model variations. Substrate recombination was calculated to be insignificant and therefore

the results from the model variant with no substrate recombination are not plotted in the

figure. In this case short circuit refers to the voltage applied to the photoelectrode meaning

that cell voltage is slightly negative due to series resistance at the counter electrode. At low

light intensities all models result in effectively the same IPCE values. At high light intensities

tri-iodide concentration increases at the photoelectrode (see figure 4-5) leading to increased

recombination. In the base case model variant IPCE is lowered even further by the decrease

of regeneration efficiency due to both higher electron and lower iodide concentrations at the

photoelectrode (see equation 4.24).

The most important finding is that IPCE increases with light intensity as long as electrolyte

mass transport and dye recombination effects are small enough to be negligible. The reason is

that current density is proportional to the gradient of electron concentration whereas photoelec-

trode recombination is sublinear with respect to electron concentration. However, if electron

collection is already 100% effective at low light intensities, then IPCE will remain constant.

These results indicate that plotting IPCE as a function of light intensity is a simple and useful

way of obtaining qualitative information about electron collection and mass transport in the

electrolyte.

Calculated open circuit voltages are plotted in figure 4-7. Diffusion of redox ions in the

electrolyte had a negligible effect on simulated open circuit voltages so the no electrolyte model

variant has been omitted from the figure. Consistent with results at short circuit, regeneration

efficiency was effectively perfect below 0.75 V. Substrate recombination, on the other hand,

lowers open circuit voltages the most at low light intensities. All models result in voltages that

are well-described by linear fits to the logarithm of light intensity indicating that plotting open

circuit voltage as a function of light intensity cannot be used to differentiate between different

recombination mechanisms.
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Figure 4-6: Simulated IPCE values for base case (circles and solid line), perfect regeneration
(squared and dotted line) and no electrolyte mass transport (triangles and dashed line) model
variations. Removing substrate recombination had an insignificant effect on short circuit cur-
rents compared to the perfect regeneration case and is therefore not shown.
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Figure 4-7: Simulated open circuit voltages for the base (circles and solid line), perfect re-
generation (squares and dotted line) and no substrate recombination (diamonds and dashed
line) model variations. Electrolyte concentrations at open circuit were essentially the same as
equilibrium concentrations meaning that the no electrolyte mass transport model (not shown in
figure) resulted in the same values as the no substrate recombination variation. A straight line
fit gives an ideality factor of 1.54 for the base case model, 1.61 for the perfect recombination
case and 1.42 for the no substrate recombination case.
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Chapter 5

Solving the Dye-Sensitized Solar

Cell Device Model Inverse

Problem at Low Light Intensities

In this chapter a scheme utilizing steady-state and impedance spectroscopy measurements is

developed in order solve the inverse problem set up by the device model of the previous chapter.

As the model is quite complicated, the scheme assumes that diffusion of ions in the electrolyte

can be neglected which greatly simplifies the problem. The downside of the assumption is that

the scheme is valid only at low current densities limiting it to low light intensities.

In principle one could use a brute force approach in solving the inverse problem by setting up

an optimization routine that varies the parameter values, numerically calculates the DC and AC

solutions for all the measurements and then compares the difference between the calculated and

measured data before starting a new iteration. However, in practice one finds that the numerical

solutions are quite expensive in terms of computing power compared to what is available on a

single desktop. Additionally the optimization methods required in both the numerical solutions

and the parameter value search are not necessarily robust enough to be left running for long

periods of time without human intervention. While these problems could be overcome with

enough effort, in this report is has been deemed better to use approximations that enable

dividing the problem into several smaller ones. These smaller problems are then simplified until

a combination of analytical solutions and numerical optimization using spreadsheet programs

can be used to solve them.

First the model is simplified until it can be solved analytically. Then analytical solutions

describing the I-V curve (DC solution) and electrical impedance (AC solution) measurements

are found. The time-dependent solution is formulated using just a few electric circuit element

values. Finally the circuit element values are related to the model parameter values. In addition

to the photoelectrode described by the continuity equation, substrate recombination and series

resistance are also taken into account.
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In section 5.2 the method is applied to simulated data in order to show that the inverse

problem can be solved before analysing experimental data in section 5.3.

5.1 Theory

5.1.1 The Simplified Model at Low Current Densities

As shown in figures 4-4 and 4-5, ion concentrations in the electrolyte at open circuit are ef-

fectively the same as equilibrium concentrations. Therefore at low current densities it can be

assumed that redox ion concentrations do not change from their equilibrium values at all, re-

ducing the number of continuity equations to be solved from five to just the one describing

electrons.

Using the division into DC and AC equations from the previous chapter, the electron equa-

tions simplify to

Dcnc,eq
d

· ∂
2nDC
∂y2

− krdnγc,eq · (nDC − 1)
γ

+ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nDC

)−1

· αtd

eαtd − 1
eαtdy = 0 (5.1)

(
nc,eqd+ nt,eqdβT · nβT−1

DC

) ∂nAC
∂t

=
Dcnc,eq

d
· ∂

2nAC
∂y2

− krdnγc,eq · γ · (nDC − 1)
γ−1

nAC

+ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nDC

)−2

· kenc,eqnAC
kREGcred,eq

· αtd

eαtd − 1
eαtdy (5.2)

The recombination and regeneration terms are nonlinear with respect to normalized electron

concentration nDC meaning that analytical solutions are not possible. However, as shown in

figure 4-3, beyond maximum power point electron concentration is almost constant. Hence

replacing the nonlinear terms with first-order Taylor approximations appears to be a viable

strategy in finding an analytical solution.

A first guess for the steady-state equation is calculated by assuming constant electron con-

centration.

nDC(y) ≈ nfg (5.3)

where nfg is the constant first guess for electron concentration.

Regeneration term is simplified with the following approximation
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ηREG =

(
1 +

kenc,eq
kREGcred,eq

nfg

)−1

≈
(

1 +
kenc,eq

kREGcred,eq
nreg,0

)−1

−
(

1 +
kenc,eq

kREGcred,eq
nreg,0

)−2

· kenc,eq
kREGcred,eq

·
n1−γ
reg,0

γ
· (nγfg − n

γ
reg,0)

= ηREG,0 (1 + γ − γηREG,0)

− η2
REG,0 ·

(
1

ηREG,0
− 1

)1−γ

·
(

kenc,eq
kREGcred,eq

)γ
·
nγfg
γ

(5.4)

where ηREG,0 is the regeneration efficiency value around which the Taylor approximation is

made and nreg,0 is the corresponding electron concentration.

Integrating recombination and generation terms across the photoelectrode film thickness

gives the current that is extracted at the contact (the sum of cell current and surface recombi-

nation current)

∫ 1

0

{
− krdnγeqn

γ
fg + ηREG,0 (1 + γ − γηREG,0) · φηLHηINJαtd

eαtd − 1
eαty

− η2
REG,0 ·

(
1

ηREG,0
− 1

)1−γ

·
(

kenc,eq
kREGcred,eq

)γ
·
nγfg
γ
· φηLHηINJαtd

eαtd − 1
eαty

}
dy

=
Icell + Isurf

qAcell

⇒ nfg =

 φηLHηINJ · (1 + γ − γηREG,0)− Icell+Isurf
qAcell

krdn
γ
c,eq + η2

REG,0 ·
(

1
ηREG,0−1

)1−γ
·
(

kenc,eq
kREGcred,eq

)γ
· φηLHηINJγ


1
γ

(5.5)

This expression is very important as it relates the (weighted) average electron concentration

in the photoelectrode to light intensity, cell current and model parameters.

Now recombination and generation terms can be simplified using Taylor approximations

around the first guess nfg. The additional -1 in the recombination term is also removed as

electron concentration under illumination or when current is flowing is always so high that it

makes no difference (i.e. nDC ≈ nfg � 1) .

For the DC equation the approximations are

krdn
γ
c,eq (nDC − 1)

γ ≈ krdnγc,eq (nfg − 1)
γ

+ krdn
γ
c,eqγ · (nfg − 1)

γ−1 · (nDC − nfg)

≈ krdnγc,eqn
γ
fg + krdn

γ
c,eqγn

γ−1
fg · (nDC − nfg) (5.6)
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ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nDC

)−1

· αtd

eαtd − 1
eαtdy

≈ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−1

· αtd

eαtd − 1
eαtdy

− ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−2

· kenc,eq
kREGcred,eq

· (nDC − nfg) (5.7)

and for the AC equation

krdn
γ
c,eqγ (nDC − 1)

γ ≈ krdnγc,eqγn
γ
fg (5.8)

ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nDC

)−2

· kenc,eqnAC
kREGcred,eq

· αtd

eαtd − 1
eαtdy

≈ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−2

· kenc,eqnAC
kREGcred,eq

(5.9)

nβT−1
DC ≈ nβT−1

fg (5.10)

Note that the decay of light intensity in the film is no longer modeled in the generation terms

describing recombination to the excited dye (last terms in equations 5.7 and 5.9). Therefore this

approximation is accurate only when recombination to the excited state of the dye is negligible

or when light is only weakly absorbed in the cell.

The final simplified equations are

Dcnc,eq
d

· ∂
2nDC
∂y2

− krdnγc,eq · γn
γ
fg · (nDC − nfg)− krdn

γ
c,eq · n

γ
fg

+ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−1

· αtd

eαtd − 1
eαtdy

− ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−2

· kenc,eq
kREGcred,eq

· (nDC − nfg) = 0 (5.11)

and

(
nc,eqd+ nt,eqdβT · nβT−1

fg

)
· ∂nAC

∂t
=
Dcnc,eq

d
· ∂

2nAC
∂y2

− krdnγc,eq · γ · n
γ−1
fg nAC

+ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−2

· kenc,eqnAC
kREGcred,eq

(5.12)
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The simplified photoelectrode model is expected to be a good approximation when both

electron and redox ion concentrations are nearly constant. These conditions occur at low

current densities and high voltages. However, at very high voltages redox ion diffusion will

affect the gradient of the I-V curve limiting this simplification to low light intensities.

5.1.2 DC Solution for I-V Curves

The simplified DC equation is linear with respect to normalized electron concentration meaning

that an analytical solution can be found.

The boundary conditions are the same as in section 4.2.11 of the previous chapter. The

analytical solution uses the current boundary condition at the photoelectrode contact.

The solution is

nDC(y) =
λ

d
· d

Dcnc,eq
· Icell + Isurf

qAcell
·

(
sinh(

d

λ
y)−

cosh( dλy)

tanh( dλ )

)

+
d

Dcnc,eq
· ηLHηINJφ
eαtd − 1

· αtd

(αtd)2 − ( dλ )2
·

(
αtde

αtd

sinh( dλ )
· λ
d
· cosh(

d

λ
y)

− eαtdy + αtd sinh(
d

λ
y)− αtd ·

cosh( dλy)

tanh( dλ )

)

+ nfg − krdnγeq ·
(
λ

d

)2

· d

Dcnc,eq
· nγfg (5.13)

where

λ

d
=

√√√√Dcnc,eq
d

·

(
krdn

γ
c,eqγn

γ−1
fg + ηLHηINJφ ·

(
1 +

kenc,eq · nfg
kREGcred,eq

)−2

· kenc,eq
kREGcred,eq

)−1

(5.14)

is the differential diffusion length λ [17] divided by film thickness d. The first guess electron

concentration nfg is given in equation 5.5.

The significance of this solution is that one only needs to guess the correct regeneration

efficiency nREG,0 and specify the sum of cell and substrate currents in order to obtain an

explicit expression for photoelectrode voltage. Surface recombination and series resistance can

be added as correction terms to obtain cell current and voltage.

5.1.3 AC Solution for Impedance Spectroscopy

The boundary conditions for the simplified model are the same as the ones for the full model

(see section 4.2.12).

The solution is
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nAC(y) =
Icell,AC + Isurf,AC

qAcell
· a · d

Dcnc,eq
·
(

sinh(ay)− cosh(ay)

tanh(a)

)
(5.15)

where

a =

√(
d

λ

)2

+ iω · (nc,eqd+ nt,eqdβTn
βT−1
fg ) · d

Dcnc,eq
(5.16)

Impedance of the photoelectrode is defined as

ZPE = − ∂VPE,AC
∂(Icell,AC + Isurf,AC)

≈ − VPE,AC
Icell,AC + Isurf,AC

= −kBT
q
· nAC(y = 0)

nDC(y = 0)
· 1

Icell,AC + Isurf,AC
(5.17)

Photoelectrode impedance can be expressed using resistances and capacitances by defining

RT =
kBT

q2Acell
· d

Dcnc,eq
· 1

nDC(y = 0)
(5.18)

RREC,E =
kBT

q2Acell
·
n1−γ
fg

krdn
γ
c,eq
· 1

γnDC(y = 0)
(5.19)

RREC,D =
kBT

q2Acell
· 1

ηLHηINJφ
·
(

1 +
kenc,eq · nfg
kREGcred,eq

)2

·
(

kenc,eq
kREGcred,eq

)−1

· 1

nDC(y = 0)
(5.20)

CT =
q2Acell
kBT

· (nc,eqd+ nt,eqdβTn
βT−1
fg ) · nDC(y = 0) (5.21)

where RT is transport resistance, RREC,E and RREC,D electrolyte and dye recombination

resistances, and CT photoelectrode capacitance.

The resulting impedance is

ZPE =
RT√

RT
RREC,E

+ RT
RREC,D

+ iωCT · tanh
√

RT
RREC,E

+ RT
RREC,D

+ iωCT
(5.22)

The simplified AC model gives mathematically the same result as the transmission line

model [45]. The only difference is that in this model dye recombination is also present although

the model has been simplified to the point where it is indistinguishable from recombination to

the electrolyte.

The model is not yet complete as the effect of the substrate must also be taken into account.

Although substrate recombination is small, that does not mean it or substrate capacitance are

negligible. Therefore the photoelectrode impedance element must be placed in parallel with

the substrate impedance element ZSU .
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ZPE+SU =

(
1

ZPE
+

1

ZSU

)−1

(5.23)

ZSU =

(
1

RSU
+ iωCSU

)−1

(5.24)

where RSU is the substrate differential resistance and CSU is the substrate capacitance.

Substrate differential resistance is derived by differentiating equation 4.28 with photoelec-

trode voltage VPE

RSU =
∂VPE
∂Isurf

=
kBT

q
· 1

i0,sAcell
·
(
βPEe

βPE
qVPE,DC
kBT + (1− βPE)e

(1−βPE)
qVPE,DC
kBT

)−1

(5.25)

The solution to the simplified model enables fitting impedance spectra individually with

each spectrum producing a set of resistances and capacitances that can be used for further

analysis.

5.1.4 Model Parameter Values and Circuit Element Values

In the previous section the photoelectrode response to impedance spectroscopy measurement

was expressed in terms of one capacitance and three resistance values. In this section these

values are related to the model parameters and obsevables such as incident photon flux as well

as cell current and voltage.

Remembering the relationship between normalized steady-state electron concentration and

voltage applied to the photoelectrode

nDC(y = 0) = e
qVPE
kBT (5.26)

one can insert this into equations 5.18, 5.19, 5.20 and 5.21 to obtain

RT =
kBT

q2Acell
· d

Dcnc,eq
· e−

qVPE
kBT (5.27)

RREC,E =
kBT

q2Acell
·
n1−γ
fg

krdn
γ
c,eq
· e

−qVPE
kBT

γ
(5.28)

RREC,D =
kBT

q2Acell
· 1

ηLHηINJφ
·
(

1 +
kenc,eq · nfg
kREGcred,eq

)2

·
(

kenc,eq
kREGcred,eq

)−1

· e−
qVPE
kBT (5.29)

CT =
q2Acell
kBT

· (nc,eqd+ nt,eqdβTn
βT−1
fg ) · e

qVPE
kBT (5.30)

At open circuit photoelectrode voltage equals cell voltage (VPE = Vcell) meaning that
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impedance measurements at open circuit can be fitted to the model parameters. For impedance

spectra where DC current is not zero a correction for series resistance must be made.

Note that fitting a single impedance spectrum does not distinguish between recombination

to the electrolyte (RREC,E) and recombination to the excited dye (RREC,D). Only their com-

bination can be measured. In this report this is called photoelectrode recombination resistance

RREC .

RREC =

(
1

RREC,E
+

1

RREC,D

)−1

(5.31)

5.1.5 Correcting For Substrate Recombination

In the previous sections substrate recombination current was assumed to be known for the

methods to work. Here a method to evaluate substrate recombination is presented.

At low cell voltages recombination throughout the photoelectrode film is either negligible or

effectively constant. Therefore the curvature of the I-V curve at low voltages is due to substrate

recombination as long as current densities are low enough for redox ion concentrations to remain

approximately constant.

The result is that in the dark at low voltages the I-V curve can be approximated using a

simple diode equation.

Icell = −Isurf = −Acell · i0,seβPE
q(Vcell+Vs)

kBT

⇒ ln(−Icell) = ln(Acell · i0,s) + βPE ·
q(Vcell + Vs)

kBT
(5.32)

where Vs is the voltage loss due to series resistance.

The importance of this equation is that it enables fitting the symmetry factor βPE and

exchange current i0,s if the effect of series resistance can be quantified. Impedance spectroscopy

can be used to do this.

An estimate for the differential substrate resistance used in impedance spectroscopy can be

calculated by differentiating equation 5.32

RSU =

(
∂Isurf

∂(Vcell + Vs)

)−1

=
1

Acell · i0,sβPE
· kBT

q
· e−βPE

q(Vcell+Vs)

kBT (5.33)

5.2 Results From Simulated Data

Before the theory was applied to experimental results, it was validated on simulated data.

I-V curves and impedance spectra were simulated using the full numerical model described

in the previous chapter. Both photoelectrode and counter electrode impedance values were

given separately as this corresponds to a measurement with a reference electrode. Simulated

frequencies were approximately from 0.05 Hz to 1000 Hz.
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Figure 5-1: Simulated (circles) dark current and a fit to equation 5.32 (solid line). At high cell
voltages photoelectrode recombination and electrolyte diffusion start to dominate dark current
and equation 5.32 is no longer valid.

5.2.1 Substrate Recombination

Figure 5-1 shows the natural logarithm of simulated dark current as a function of series re-

sistance corrected cell voltage. Fitting a straight line to the low voltage data points yielded

reasonable estimates for both the symmetry factor βPE and the exchange current i0,s. The

substrate resistance values calculated from the fit using equation 5.33 were low enough to make

a significant impact to the fitting of simulated impedance spectra.

5.2.2 Impedance Spectra

Photoelectrode impedance data was fitted to equation 5.23 using Microsoft Excel. Counter

electrode resistance was assumed to have a constant value based on low frequency counter

electrode impedance values calculated from simulated potential differences between counter

and reference electrodes.

At low cell voltages the substrate capacitance visibly distorts the high frequency part of

the impedance spectrum (figure 5-2). This highlights the importance of including substrate

capacitance in the impedance model. The impedance spectra could be fitted to several combi-
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Figure 5-2: Simulated (circles with substrate capacitance, dotted line without substrate capaci-
tance) photoelectrode impedance values at 603 mV bias voltage. At high frequencies (lower left
corner in the main figure; also shown in the inset) substrate capacitance causes distortion of the
photoelectrode response. Fitting the analytical model without substrate capacitance (dashed
line) results in a bad fit with incorrect photoelectrode transport resistance value whereas in-
cluding substrate capacitance (solid line) gives a good fit and a correct value for transport
resistance.

nations of recombination and substrate resistances indicating that the measurement does not

adequately distinguish between the two. The solution was that substrate resistance values were

taken from the dark current estimate and kept constant throughout the fitting process. Unfor-

tunately this correction did not yield reliable photoelectrode resistance values as the substrate

resistances could not be determined to a sufficiently high degree of accuracy.

At high cell voltages tri-iodide diffusion starts to affect the low frequency part of the spec-

trum which makes fits over the entire frequency range progressively worse. This problem can

be alleviated by dropping some of the low frequency data points from the fit entirely as the

analytical model does not take into account any redox ion diffusion. Figure 5-3 shows results

from the numerical both with and without ion diffusion as well as the obtained fit using the

analytical model.
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Figure 5-3: Simulated (circles with tri-iodide diffusion, dotted line without) and fitted (solid
line) photoelectrode impedance values at 728 mV bias voltage. Dropping low frequency data
points (lower right corner) from the fitting partially compensates for the missing ion diffusion
in the analytical model resulting in a better fit to the underlying physics. The last data point
included in the fitting is shown as a filled circle.
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

Figure 5-4: Photoelectrode capacitance values derived from simulated impedance measure-
ments (circles) and fit to equation 5.30 (solid line). At low voltages electron concentration
is not uniform in the photoelectrode leading to position-dependent capacitance (capacitance
is dominated by the nonlinear trapping term defined in equation 4.17) and unreliable fits.
Therefore two lowest capacitance values were excluded from fitting.

5.2.3 Circuit Element Fits

Circuit element values were obtained from fitting open circuit impedance spectra to equa-

tions 5.27 and 5.30. As it was not possible to get reliable fits for photoelectrode recombination

resistances, photoelectrode resistance was combined with the substrate resistance to fit the

resulting resistance element by combining equations 5.28, 5.29, 5.31, 5.33 and 5.34.

RREC+SU =


√

RT
RREC

· tanh
(√

RT
RREC

)
RT

+
1

RSU

−1

(5.34)

The model parameters were also fit to open circuit voltages using equation 5.13. All fits

were performed simultaneously by minimizing the sum of squared relative error. Fits are shown

in figures 5-4, 5-5, 5-6 and 5-7.
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Figure 5-5: Photoelectrode transport resistance values derived from simulated impedance mea-
surements (circles) and fit to equation 5.27 (solid line).
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Figure 5-6: Combined photoelectrode and substrate resistance values derived from simulated
impedance measurements (circles) and fit to equation 5.34 (solid line).
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Figure 5-7: Open circuit voltages from numerical simulations (circles) and model fit (solid line,
equation 5.13).
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5.2.4 Parameter Values and Recreated J-V Curves

Comparison of actual and fitted model parameters is shown in table 5.1. The fitting procedure

reproduces the original parameter values with very high accuracy indicating that it is a viable

way to solve the inverse problem. Electron equilibrium concentration (nc,eq) and dye recombi-

nation coefficients (kenc,eq/(kREGcred,eq)) could not be fitted as they have negligible effect on

cell operation at the studied voltages. Additionally the model is not sensitive enough to the

light absorption coefficient (αtd) to allow it be fitted. Therefore its value was chosen to be the

same as in the numerical simulations.

Figure 5-8 compares the I-V curves resulting from the fitted parameters values calculated

using the analytical approximation to the original numerical ones. The curves match almost

exactly indicating that at low light intensities the analytical approximation is valid even at

short circuit.
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Parameter description Symbol Original value Fitted value

Photoelectrode parameters
Normalized electron diffusion coefficient Dcnc,eq/d 1.80 · 108 1.81 · 108

Normalized recombination rate coefficient krn
γ
c,eqd 1.29 · 1011 0.752 · 1011

Recombination order γ 0.7 0.717
Normalized electron equilibrium concentration nc,eqd 3.0 · 104 0
Normalized trapped electrons at equilibrium nt,eqd 1.5 · 1015 0.635 · 1015

Trap distribution βT 0.3 0.327

Optical parameters
Normalized total light absorption coefficient αtd −1 −1
Light harvesting and injection efficiency ηLHηINJ 0.7 0.689

Normalized dye recombination rate coefficient
kenc,eq

kREGcred,eq
4.0 · 10−15 0

Substrate parameters
Exchange current density i0,s 3.00 · 10−6 2.93 · 10−6

Symmetry factor βPE 0.5 0.504

Table 5.1: Original and fitted parameter values for the simulated dye solar cell.
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Figure 5-8: Numerically calculated (circles) and analytically recreated (solid line) I-V curves.
The simulated incident photon flux for the upper curve is 6.32 · 1019 1/(m2s) and 2.00 · 1018

1/(m2s) for the lower one.
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5.3 Results From Experimental Data

After validating the inverse problem solution using simulated data, the method was applied to

experimental data obtained from a single dye solar cell.

5.3.1 Experimental

A dye-sensitized solar cell was produced via the following procedure: FTO glass (Aldrich, TEC

15) was cleaned with Milli-RO water (In-house), DECON 90 (Decon), isopropanol (Fisher,

LRG) and ethanol (Fisher, ARG). To prepare the photoanode, a blocking layer of TiO2 was

applied to the conducting side of the glass by spray pyrolysis on a hot plate at 400◦C using a

solution of 0.2M di-isopropoxytitanium bis(acetylacetonate) (Aldrich) in isopropanol. A layer

of TiO2 nanoparticles was then deposited onto this substrate by the doctor blade technique.

2 layers of magic tape (Scotch) were used to mark out a 1 cm wide strip on the glass, and

TiO2 paste (Dyesol, DSL 18NR-T) was applied. This was left in a saturated EtOH atmosphere

for 30s then heated at 100◦C. The film was then sintered at 500 ◦C for 30 minutes (in air).

Films were dyed by submerging in 3 · 10−4 M N719 dye (Dyesol) solution with 1:1 t-Butanol

(Sigma-Aldrich, 99.7%):Acetonitrile (Fisher, HPLC) mixture used as solvent. Dye-sensitization

was conducted overnight (ca. 16 hours) in blacked out containers. All chemicals were used as

supplied.

To make the cathode, two 0.6mm diameter holes were drilled into FTO glass (Aldrich,

TEC 7) which was then cleaned as described above. Platinum was then deposited by dropping

several drops of 5 · 10−3 M Hexachloroplatinate (Aldrich, 99.995%) solution in isopropanol on

the conductive side of the glass. This was then heated at 390◦C for 15 minutes. To assemble

the cell, a hot-melt Surlyn (Solaronix, SX1170-25PF) gasket was used, and once the two sides

were sealed together, a small quantity of electrolyte was introduced through the drilled holes.

This consisted of 0.03M I2 (Aldrich, 99.999%), 0.6M 3-propyl-1-methylimidazolium iodide (Alfa

Aesar), 0.1M guanidine thiocyanate (Fluka, 99%) and 0.5M tert-butylpyridine(Aldrich, 99%)

in an acetonitrile:valeronitrile (Aldrich) solvent in the ratio 85:15. The open back holes were

sealed using Surlyn and a piece of coverslip glass (SLS). Finally, a layer of silver conductive paint

(RS Components) was applied to the two electrodes to reduce series resistance. Cell fabrication

was conducted by Thomas Risbridger from University of Bath Department of Chemistry.

Impedance spectra were recorded at open circuit using a frequency response analyser (So-

lartron 1250) connected to a potentiostat (Solartron 1287). Both devices were computer con-

trolled using ZPlot 3.0a software (Scribner Associates). Recorded frequencies were from 65535

Hz to 0.5 Hz and the amplitude of the voltage perturbation was 10 mV. After changing the

bias voltage, cell current was monitored for several minutes until the cell could be seen to reach

a steady-state. I-V curves were measured before and after EIS measurements using the same

setup. Illumination was provided by a green LED (peak emission wavelength at 525nm) pow-

ered by a LED custom-built driver. Photon flux data was taken from the voltage supplied to

the LED driver. This was calibrated by measuring the emission spectrum of the LED and com-

paring it to the current output of a silicon photodiode (Thorlabs FDS1010, external quantum
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Figure 5-9: Measured (circles) dark current and a fit to equation 5.32 (solid line). At low
voltages the current is too low to be measured accurately. At high voltages photoelectrode
recombination starts to dominate dark current and equation 5.32 is no longer valid.

efficiency provided by the manufacturer). In order to improve stability, the cell was illuminated

at open circuit overnight before measurements.

5.3.2 Substrate Recombination

Figure 5-9 shows the natural logarithm of measured dark current as a function of series resis-

tance corrected cell current as well as the fit to equation 5.32. Unlike in the simulated cell,

the substrate resistance values calculated from the fit were so large that they had only a minor

effect on the overall differential resistance of the cell at high voltages.

5.3.3 Impedance Spectra

Impedance was measured at open circuit at sixteen different light intensities. Unlike in the sim-

ulated case, the experimental cell did not have a separate reference electrode so the impedance

model also had to include the counter electrode. Series resistance caused by the FTO glass

electrode substrates was also included.

Zcell = Rs + ZCE + ZPE+SU (5.35)
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where Zcell is the overall cell impedance, Rs the substrate series resistance, ZCE counter

electrode impedance and ZPE+SU the combined photoelectrode and photoelectrode substrate

impedance. Counter electrode impedance was modelled as a simple resistor in parallel with a

capacitor.

ZCE =

(
1

RCE
+ iωCCE

)−1

(5.36)

where RCE is the counter electrode resistance and CCE the capacitance.

At low voltages the substrate capacitance distorts the high frequency part of the impedance

spectrum just as predicted in the simulations (see figure 5-10). However, substrate capacitances

were fitted to consistent values only at low bias voltages which indicates that the two-electrode

measurement cannot accurately distinguish between the various high frequency effects caused

by the counter electrode, substrate and electron transport at the photoelectrode.

High voltages also show behaviour predicted by the simulations as at low frequencies the

fits underestimated the total differential resistance of the cell possibly indicating a small con-

tribution from electrolyte diffusion (figure 5-11). However, it is also possible that the spectra

are somewhat distorted by the distributed series resistance caused by device geometry (see

section 4.2.8) or overall heterogeneity of the photoelectrode. The fits could have been im-

proved by replacing the capacitors with constant phase elements [45] but this was considered

to be undesirable as the constant phase element contains an additional parameter that has no

straightforward physical meaning.

5.3.4 Parameter Values and Recreated J-V Curves

The fitting of the model parameters was conducted in the same way as in the simulated case.

The only difference was that fitted recombination resistance values were deemed to be suffi-

ciently reliable to be used in parameter fitting. Therefore recombination resistances were fitted

to equations 5.19, 5.20 and 5.31.

Table 5.2 shows the fitted parameter values. The data could be fitted without any recombi-

nation to the dye implying that at the measured voltages and light intensities dye regeneration

is perfect. The combined light harvesting and injection efficiency was about 77% which is

only slightly below the transparency of the conductive glass given by the manufacturer (81%

[46]) indicating that generation of free charge is almost ideal in the photoelectrode film. It

is also consistent with previous studies of incident photon to collected electron efficiencies at

wavelengths corresponding to green light [32].

Measured and fitted circuit element as well as open circuit voltage values are given in

figures 5-12, 5-13, 5-14 and 5-15. Model fits are generally quite good, although there appears to

be a disagreement between measured and predicted slopes of photoelectrode transport resistance

versus open circuit voltage. Considering that transport resistance values are fitted from the

impedance spectra, the difference could be due to systematic error in fitting. Another possibility

is the resistance of the recombination blocking layer which is ignored in the model.
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Figure 5-10: Measured (circles) and fitted (solid line) impedance spectrum at 648mV bias
voltage. Substrate capacitance is needed to fit the high frequency part of the spectrum (lower
left corner and inset).
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Figure 5-11: Measured (circles) and fitted (solid line) impedance spectrum at 718 mV bias volt-
age. The low frequency part (lower right corner) of the measured spectrum may indicate some
contribution from electrolyte diffusion. Another possibility is that the cell is not homogeneous.
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Parameter description Symbol Fitted value

Photoelectrode parameters
Normalized electron diffusion coefficient Dcnc,eq/d 4.4 · 107

Normalized recombination rate coefficient krn
γ
c,eqd 1.4 · 1010

Recombination order γ 0.79
Normalized electron equilibrium concentration nc,eqd 0
Normalized trapped electrons at equilibrium nt,eqd 3.0 · 1015

Trap distribution βT 0.27

Optical parameters
Normalized total light absorption coefficient αtd −3
Light harvesting and injection efficiency ηLHηINJ 0.77

Normalized dye recombination rate coefficient
kenc,eq

kREGcred,eq
0

Substrate parameters
Exchange current density i0,s 1.7 · 10−7

Symmetry factor βPE 0.21

Cell parameters
Counter electrode resistance RCE 1.8
Series resistance RS 13

Table 5.2: Fitted parameter values for the experimental dye solar cell.

Fitting open circuit voltages to the diode equation (equation 3.3), gives a nonideality factor

of 1.38. Impedance data indicates that this is caused by the combination of photoelectrode

recombination (nonideality factor of 1.27 calculated from the inverse of the recombination

order) and substrate recombination (nonideality factor of 4.76 calculated from the inverse of

the symmetry factor).
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Figure 5-12: Photoelectrode capacitance values derived from impedance measurements (circles)
and fit to equation 5.21 (solid line).
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Figure 5-13: Photoelectrode transport resistance values derived from impedance measurements
(circles) and fit to equation 5.18 (solid line).
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Figure 5-14: Photoelectrode recombination resistance values derived from impedance measure-
ments (circles) and fit to equation 5.31 (solid line).
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

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Figure 5-15: Measured (circles) and fitted (solid line) open circuit voltages. A straight line fit
(not shown) gives a nonideality factor of 1.38.
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Measured and predicted J-V curves for four different light intensities are given in figure 5-16.

Although from this figure it would appear that the model is almost perfect in predicting short

circuit currents, comparing experimental and predicted IPCE ratios (figure 5-17) shows that

this is not the case. Still, the model predictions are very good when taking into account that

no short circuit information was used in the fitting. Including this information is very likely to

improve results but given how the model is formulated, solving short circuit conditions requires

numerical iteration as the boundary conditions specify the sum of cell current and substrate

recombination current instead of cell voltage. Therefore short circuit data was not included in

the fitting.

At the maximum power point with the highest measured photon flux (6.61 · 1019 1/(m2s) )

the model predicts that approximately 76% of generated electrons are collected in the external

circuit, whereas about 4% and 21% are lost to substrate and photoelectrode recombination.

At higher light intensities the maximum power point voltage increases resulting in substrate

recombination becoming even less important. However, it should be noted that the measured

cell had much higher transport to recombination resistance ratios than what have been reported

in high efficiency cells [14] indicating that for good dye cells electron collection is not limited by

the conductivity of the photoelectrode. Therefore in these cells substrate recombination could

be the dominant recombination pathway although overall recombination is low.

5.4 Conclusions

In this chapter a simplified dye solar cell model is used to solve the inverse problem posed by the

numerical model described in the previous chapter using impedance spectroscopy. Applying

the method to experimental data showed good agreement between predicted and measured

data indicating that the continuity equation model is an accurate description of the device.

The model predicts that the current output of the measured cell is somewhat limited by the

conductivity of the photoelectrode, but experimental evidence from others [14] shows that this

is not the case in general. The observed nonideal behaviour of open circuit voltage versus

light intensity can be explained by a combination of substrate recombination and nonlinear

recombination from the photoelectrode.

However, as the simplified model assumes uniform redox ion concentration in the electrolyte,

it is only valid at low light intensities and current densities. Therefore an improved model that

includes diffusion of ions in the electrolyte is needed to quantify the role electrolyte conductivity

and regeneration of dye molecules play in limiting device efficiency.
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Figure 5-16: Measured (circles) and predicted (solid lines) J-V curves at photon flux values of
6.61 · 1019, 4.57 · 1019 and 1.95 · 1019 1/(m2s) as well as in the dark. Open circuit voltages used
in fitting the model parameters are shown as filled triangles.
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Figure 5-17: Measured (circles) and predicted (solid line) incident photon to collected electron
(IPCE) values. Model predictions are close to the measured values but do not replicate the
light intensity dependence accurately.
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Chapter 6

Solving the Dye-Sensitized Solar

Cell Device Model Inverse

Problem at High Light Intensities

In the previous chapter the device model inverse problem was solved at low light intensities

where diffusion of redox ions in the electrolyte could be ignored. In this chapter the model is

improved by taking into account the diffusion of tri-iodide. The cost of this improvement is a

significant increase in the complexity of the solutions.

6.1 Theory

6.1.1 Simplified Equations with Tri-iodide Diffusion

The continuity equations are simplified using the same principles as in the previous chapter:

non-linear terms are linearized using first-order Taylor approximations. Only the recombination

term differs from the previously considered case, the rest can be found in the previous chapter.

The DC approximation is

krdn
γ
c,eq · cox,DC · n

γ
DC

≈ krdnγc,eq · n
γ
fg · cox,DC + krdn

γ
c,eq · cox,fg · γ · n

γ−1
fg · (nDC − nfg) (6.1)

and the AC one

krdn
γ
c,eq · cox,AC · n

γ
DC + krdn

γ
c,eq · cox,DC · γ · n

γ−1
DC · nAC

≈ krdnγc,eq · cox,AC · n
γ
fg + krdn

γ
c,eq · cox,fg · γ · n

γ−1
fg · nAC (6.2)
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where n is the normalized conduction band electron concentration and cox the normalized tri-

iodide concentration. The subscript fg indicates a constant first guess for the concentrations.

The resulting simplified continuity equations are

Dcnc,eq
d

· ∂
2nDC
∂y2

− krdnγc,eq · cox,DC · n
γ
fg − krdn

γ
c,eq · cox,fg · γn

γ−1
fg · (nDC − nfg)

+ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−1

· αtd

eαtd − 1
eαtdy

− ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−2

· kenc,eq
kREGcred,eq

· (nDC − nfg) = 0 (6.3)

Doxcox,eq
Soxd

· ∂
2cox,DC
∂y2

− krdnγc,eq · cox,DC · n
γ
fg − krdn

γ
c,eq · cox,fg · γn

γ−1
fg · (nDC − nfg)

+ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−1

· αtd

eαtd − 1
eαtdy

− ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−2

· kenc,eq
kREGcred,eq

· (nDC − nfg) = 0 (6.4)

for the DC case and

(
nc,eqd+ nt,eqdβT · nβT−1

fg

)
· ∂nAC

∂t
=
Dcnc,eq

d
· ∂

2nAC
∂y2

− krdnγc,eq · cox,AC · n
γ
fg − krdn

γ
c,eq · cox,fg · γ · n

γ−1
fg nAC

+ ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−2

· kenc,eqnAC
kREGcred,eq

(6.5)

cox,eqd

Sox
· ∂cox,AC

∂t
=
Doxcred,eq
Soxd

· ∂
2cox,AC
∂y2

− krdnγc,eq · cox,AC · n
γ
fg

− krdnγc,eq · γ · cox,fg · n
γ−1
fg nAC

− ηLHηINJφ ·
(

1 +
kenc,eq

kREGcred,eq
· nfg

)−2

· kenc,eq
kREGcred,eq

· nAC (6.6)

for the AC one.

The first guess for electron concentration is again calculated by assuming that it is constant

and integrating over the film thickness. However, now the recombination term includes the

tri-iodide concentration as well.

86



∫ 1

0

{
− krdnγeqcox,fgn

γ
fg + ηREG,0 (1 + γ − γηREG,0) · φηLHηINJαtd

eαtd − 1
eαtdy

− η2
REG,0 ·

(
1

ηREG,0
− 1

)1−γ

·
(

kenc,eq
kREGcred,eq

)γ
·
nγfg
γ
· φηLHηINJαtd

eαtd − 1
eαtdy

}
dy

=
Icell + Isurf

qAcell

⇒ nfg =

 φηLHηINJ · (1 + γ − γηREG,0)− Icell+Isurf
qAcell

krdn
γ
c,eqcox,fg + η2

REG,0 ·
(

1
ηREG,0−1

)1−γ
·
(

kenc,eq
kREGcred,eq

)γ
· φηLHηINJγ


1
γ

(6.7)

The first guess for tri-iodide concentration is a little more complicated. It is calculated

by assuming a constant recombination term and noting that substracting total recombination

(both from the photoelectrode and substrate) from total generation yields cell current.

∫ 1

0

{
− krdnγeqcox,fgn

γ
fg + ηREG,0 (1 + γ − γηREG,0) · φηLHηINJαtd

eαtd − 1
eαtdy

}
dy =

Icell + Isurf
qAcell

⇒ krdn
γ
eqcox,fgn

γ
fg = ηREG,0 (1 + γ − γηREG,0)φηLHηINJ −

Icell + Isurf
qAcell

(6.8)

This simplifies the continuity equation for tri-iodide to

Doxcox,eq
Soxd

· ∂
2cox,fx,y
∂y2

− ηREG,0 (1 + γ − γηREG,0)φηLHηINJ +
Icell + Isurf

qAcell

ηREG,0 (1 + γ − γηREG,0) · φηLHηINJαtd
eαtd − 1

eαtdy = 0 (6.9)

where cox,fg,y is the first guess tri-iodide concentration that has not yet been set to a constant

by averaging.

The boundary conditions, the same as given in chapter 4, require solution also in the free

electrolyte layer. Using these, the overall solution is

cox,fg,y(y) = Ay2 +By + Ceαtdy + E (6.10)

where

A =
1

2
· Soxd

Doxcox,eq
·
(
ηREG,0 (1 + γ − γηREG,0)φηLHηINJ −

Icell + Isurf
qAcell

)
(6.11)

B =
Isurf
qAcell

· Soxd

Doxcox,eq
(6.12)
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C = − Soxd

Doxcox,eq
· 1

αtd
· ηLHηINJφ
eαtd − 1

· ηREG,0 (1 + γ − γηREG,0) (6.13)

E = cox,eq +

(
P +

del
d

)−1

·

(
−A

(
P

3
+
del
d

)
−B

(
P

2
+
del
d

)

− C
(
P · e

αtd − 1

αtd
+ eαtd · del

d

)
+

Icell
qAcell

· Soxd

Doxcox,eq
· 1

2
·
(
del
d

)2
)

(6.14)

The substrate recombination current is calculated from the solution, so at first it must be

guessed. In this report, the first guess is zero.

The first guess tri-iodide concentration cox,fg must be constant in order to keep the solutions

manageable. Therefore the average of the position-dependent first guess cox,fg,y is used.

cox,fg =

∫ 1

0

cox,fg,y(y) dy =
A

3
+
B

2
+ C · e

αtd − 1

αtd
+ E (6.15)

6.1.2 DC Solution

Using the boundary conditions found in chapter 4 (analytical solutions use the current boundary

condition at the photoelectrode substrate), the solutions to the simplified DC equations are

nDC = An sinh(ay) +Bn cosh(ay) + Cne
αtdy + Fny +Hn (6.16)

cox,DC = Aox sinh(ay) +Box cosh(ay) + Coxe
αtdy + Foxy +Hox (6.17)

cox,F,DC = Aox,F (y − 1) +Box,F,DC (6.18)

where

a =

√(
d

λn

)2

+

(
d

λox

)2

(6.19)

λn
d

=

√√√√Dcnc,eq
d

(
krdn

γ
c,eqcox,fgγn

γ−1
fg + ηLHηINJφ ·

(
1 +

kenc,eq · nfg
kREGcred,eq

)−2

· kenc,eq
kREGcred,eq

)−1

(6.20)

λox
d

=

√
Doxcox,eq
Soxd

· 1

krdn
γ
c,eqn

γ
fg

(6.21)

An =
1

a
·
(
Icell + Isurf

qAcell
· d

Dcnc,eq
− αtdCn − Fn

)
(6.22)

88



Bn = − An
tanh(a)

− Cn ·
αtde

αtd

a sinh(a)
− Fn
a sinh(a)

(6.23)

Cn = − d

Dcnc,eq
· ηLHηINJφ ·

(
1 +

kenc,eq · nfg
kREGcred,eq

)−1

· 1

αtd
· 1

eαtd − 1
(6.24)

Fn = −Doxcox,eq
Soxd

· d

Dcnc,eq
·
(
λn
d

)2

·
(

d

λox

)2

· Fox (6.25)

Hn = nfg −
Doxcox,eq
Soxd

· d

Dcnc,eq
·
(
λn
d

)2

·
(

d

λox

)2

·Hox (6.26)

Aox =
Soxd

Doxcox,eq
· Dcnc,eq

d
·An (6.27)

Box =
Soxd

Doxcox,eq
· Dcnc,eq

d
·Bn (6.28)

Cox = − Soxd

Doxcox,eq
· ηLHηINJφ ·

(
1 +

kenc,eq · nfg
kREGcred,eq

)−1

· 1

αtd
· 1

eαtd − 1
(6.29)

Fox = −

(
1 +

(
λn
d

)2

·
(

d

λox

)2
)−1

· Icell
qAcell

· Soxd

Doxcox,eq
(6.30)

Hox = 1 +

(
P +

del
d

)−1

·

(
−Aox

(
P

a
(cosh(a)− 1) +

del
d
· sinh(a)

)

−Box
(
P

A
sinh(a) +

del
d
· cosh(a)

)
− Cox

(
P

αtd

(
eαtd − 1

))
− Fox

2
·
(
del
d

)2
)

(6.31)

Aox,F = − Icell
qAcell

· Soxd

Dox,F cox,eq
(6.32)

Box,F = Aox sinh(a) +Box cosh(a) + Coxe
αtd + Fox +Hox (6.33)

6.1.3 AC Solution

The AC solution is so complicated that before giving the solutions, the equations are simplified

further by expressing them in terms of voltages and equivalent circuit elements.

Multiplying both continuity equations with qAcell and defining

RREC,E =
kBT

q2Acell
·

n1−γ
fg

krdn
γ
c,eqcox,fg

· 1

γnDC(y = 0)
(6.34)
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RT,ox =
1

qAcell
· kBT

q
· Soxd

Doxcox,eq
(6.35)

RREC,ox =
1

qAcell
· kBT

q
· 1

krdn
γ
c,eqn

γ
fg

(6.36)

Cox = qAcell ·
q

kBT
· cox,eqd
Sox

(6.37)

Vox =
kBT

q
· cox,AC (6.38)

the continuity equations become

CT ·
∂VAC
∂t

=
1

RT
· ∂

2VAC
∂y2

− VAC
RREC

− Vox
RREC,ox

(6.39)

Cox ·
∂Vox
∂t

=
1

RT,ox
· ∂

2Vox
∂y2

− VAC
RREC

− Vox
RREC,ox

(6.40)

VAC , RT , RREC and CT are defined in equations 4.103 (as VPE,AC ), 5.18, 5.31, 5.21, respec-

tively.

The free electrolyte layer equation for tri-iodide becomes

Cox ·
∂Vox,F
∂t

=
Dox,F

Dox ·RT,ox
· ∂

2Vox,F
∂y2

(6.41)

The boundary conditions become

1

RT
· ∂VAC
∂y

(y = 0) = Icell,AC + Isurf,AC (6.42)

1

RT
· ∂VAC
∂y

(y = 1) = 0 (6.43)

1

RT,ox
· ∂Vox
∂y

(y = 0) = Isurf (6.44)

Vox(y = 1) = Vox,F (y = 1) (6.45)

1

RT,ox
· ∂Vox
∂y

(y = 1) =
Dox,F

Dox ·RT,ox
· ∂Vox,F

∂y
(y = 1) (6.46)

Dox,F

Dox ·RT,ox
· ∂Vox
∂y

(y = 1 +
del
d

) = −Icell (6.47)

The solutions are
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VAC =
(
An sinh(a1y) +Bn cosh(a1y) + En sinh(a2y) + Fn cosh(a2y)

)
· eiωt (6.48)

Vox =
(
Aox sinh(a1y) +Box cosh(a1y) + Eox sinh(a2y) + Fox cosh(a2y)

)
· eiωt (6.49)

Vox,F =
(
Aox,F sinh(aF (y − 1)) +Box,F cosh(aF (y − 1))

)
· eiωt (6.50)

where

a1 =
−M +

√
M2 + 4N

2
(6.51)

a2 =
−M −

√
M2 + 4N

2
(6.52)

M =
RT,ox
RREC,ox

+ iωCoxRT,ox +
RT
RREC

+ iωCTRT (6.53)

N =
RT
RREC

· RT,ox
RREC,ox

(6.54)

X1 =
a1

RT
− 1

RREC
− iωCT (6.55)

X2 =
a2

RT
− 1

RREC
− iωCT (6.56)

An = Aox ·
1

X1RREC,ox
(6.57)

Bn = Box ·
1

X1RREC,ox
(6.58)

En = Eox ·
1

X2RREC,ox
(6.59)

Fn = Fox ·
1

X2RREC,ox
(6.60)

Aox =
RREC,ox

a1
·
(

1

X1
− 1

X2

)−1

·
(
RT (Icell,AC + Isurf,AC)− RT,oxIsurf,AC

RREC,oxX2

)
(6.61)
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Box = −Aox − Eox ·
X1

X2
· a2 cosh(a2)

a1 sinh(a1)
− Fox ·

X1

X2
· a2 sinh(a2)

a1 sinh(a1)
(6.62)

Eox =
RT,oxIsurf,AC

a2
−Aox ·

a1

a2
(6.63)

Fox =

(
a2 sinh(a2) + aF tanh(aF

del
d

)− X1a2 sinh(a2)

X2a1 sinh(a1)
·
(
a1 sinh(a1) + aF tanh(aF

del
d

)

))−1

·

(
− Eox

(
a2 cosh(a2) + aF tanh(aF

del
d

)

)
−Aox

(
a1 cosh(a1) + aF tanh(aF

del
d

)

)
+

(
Aox + Eox ·

X1

X2
· a2 cosh(a2)

a1 cosh(a1)

)
·
(
a1 sinh(a1) + aF tanh(aF

del
d

)

)
− Icell,ACRT,ox ·

Dox

Dox,F
· 1

cosh(aF
del
d )

)
(6.64)

aF =

√
iωCoxRT,ox ·

Dox,F

Dox
(6.65)

Aox,F = −IcellRT,ox ·
Dox

Dox,F
· 1

aF cosh(aF
del
d )
−Box tanh(aF

del
d

) (6.66)

Box,F = Aox sinh(a1) +Box cosh(a1) + Eox sinh(a2) + Fox cosh(a2) (6.67)

Now that diffusion of tri-iodide in the electrolyte is taken into account, the redox potential

of the electrolyte is no longer the same as in equilibrium. Therefore reference electrode potential

should be taken into account in the voltage modelling.

Reference electrode potential is

VREF =
kBT

q
·
(
cred,AC
cred,DC

+
1

2

(
− cox,AC
cox,DC

+
cred,AC
cred,DC

))
= −kBT

q
· 1

2cox,DC
·
(
Aox,F sinh(aF

del
d

) +Box,F cosh(aF
del
d

)

)
(6.68)

where iodide concentration has been assumed to be the same as in equilibrium.

The impedance becomes

ZPE+SU,EL = −VAC − VREF
Icell,AC

(6.69)

Note that substrate recombination affects voltage through the current term Isurf,AC which

must be determined through equation 4.103. In this report the model is simplified by setting

substrate recombination current to zero in the continuity equations and placing a substrate

impedance element in parallel with the photoelectrode impedance element. In effect this means
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that substrate recombination current is not taken into account in the tri-iodide concentration.

ZPE+SU,EL ≈
(

1

ZPE,EL
+

1

ZSU

)−1

(6.70)

where ZPE,EL refers to ZPE+SU,EL of equation 6.69 with Isurf,AC = 0. Substrate capacitance

was already omitted in the original numerical model but later added via the same parallel

element (see sections 4.2.13 and 4.2.16).

6.1.4 Tri-iodide Diffusion Coefficients in the Photoelectrode and Free

Electrolyte Layer

In addition to the circuit elements, the analytical solution also requires the ratio of tri-iodide

diffusion coefficients in the photoelectrode pores and free electrolyte layer. Although in principle

this information is contained in the impedance data, in practice the data is not detailed enough

to obtain this value. Fortunately measurement of diffusion limited currents can be used to

determine the diffusion coefficient ratio assuming one knows the thicknesses of the layers and

the porosity of the photoelectrode. Photoelectrode thickness can be measured mechanically

using a profiler whereas the free electrolyte layer thickness depends on the thickness of the

gasket used to separate the two electrodes. Porosity can be measured by nitrogen adsorption.

The necessary assumption for this measurement is that tri-iodide (or in general the oxidized

redox ion) is the ion that limits current flow.

At a very high forward bias in the dark recombination current is so high that the photo-

electrode film pores are completely empty of tri-iodide and all ions coming near the back wall

of the electrode are immediately reduced to iodide. In this case current flow is determined by

diffusion in the free electrolyte layer.

At steady-state the tri-iodide concentration gradient is constant. Requiring that the overall

number of tri-iodide ions is conserved, the concentration must integrate to the same number as

at equilibrium.

∫ 1+
del
d

1

∂cox,F,DC
∂y

dy = P +
del
d

⇒ ∂cox,F,DC
∂y

=

(
P +

del
d

)
· d
del

(6.71)

where cox,F,DC is the normalized tri-iodide concentration in the free electrolyte layer. Convert-

ing the gradient into current yields

Imax,fb = −qAcell ·
Dox,F cox,eq

Soxd
· ∂cox,DC

∂y
= −qAcell ·

Dox,F cox,eq
Soxd

·
(
P +

del
d

)
· d
del

(6.72)

At a high reverse bias all current passes through the photoelectrode substrate because
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electrons cannot jump to the semiconductor conduction band due to a very large energy barrier.

In this case the continuity equation of tri-iodide gives

∂cox,F,DC
∂y

= −
(
P +

del
d

)
·
(
P +

del
d

+ P · Dox

Dox,F

)−1

(6.73)

Imax,rb = −qAcell ·
Dox,F cox,eq

Soxd
· ∂cox,DC

∂y

= qAcell ·
Dox,F cox,eq

Soxd
·
(
P +

del
d

)
·
(
P +

del
d

+ P · Dox

Dox,F

)−1

(6.74)

The ratio is

Imax,fb
Imax,rb

= − d

del
·
(
P +

del
d

+ P · Dox

Dox,F

)
(6.75)

6.1.5 Counter Electrode Overpotential

In the previous chapter counter electrode voltage loss was modelled as a simple resistor as

this is a valid approximation at low current densities. At higher currents, however, the full

model should be used. This requires a model for the redox ion concentrations which is already

described above as well as measurements of the exchange current and symmetry factor.

In this report symmetry factor is simply assumed to be 0.5 whereas the exchange current can

be obtained from the counter electrode impedance arc. At open circuit the counter electrode

differential resistance is

RCE =
∂VCE
∂Icell

=
kBT

q
· 1

i0Acell
(6.76)

where i0 is the exchange current.

6.2 Results From Simulated Data

As in the previous chapter, the inverse solution was validated using numerically simulated data.

In addition to the five impedance data points used in the previous chapter, seven new data

points were added using the full numerical solver. Again, it was assumed that photoelectrode

and counter electrode responses could be measured separately by using a reference electrode.

Photoelectrode porosity and thickness, free electrolyte layer thickness and ratio of tri-iodide

diffusion coefficients in the photoelectrode pores and free electrolyte layer were assumed to be

known (the numerical model could not be solved at extreme current densities which meant that

the limiting current measurement could not be modelled).
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Figure 6-1: Simulated (circles) and fitted (solid line) photoelectrode impedance spectrum at
821mV bias voltage. Electrolyte diffusion is visible as an additional arc on the right. The
numerical simulations failed to converge reliably at high frequencies and therefore this data is
omitted (only data from the analytical model is shown in the inset).

6.2.1 Impedance Fitting

The seven new photoelectrode impedance spectra were fitted to equation 6.70 using Microsoft

Excel. At high open circuit voltages diffusion of redox ions was clearly visible as an additional

low frequency arc (figure 6-1). At lower voltages the electrolyte arc gradually blended into the

photoelectrode arc until the electrolyte contribution could not be reliably distinguished (see

figure 5-3). High frequency simulations were omitted as the numerical model did not reliably

converge at these conditions. The result was that transport resistance could not be accurately

fitted at high voltages as the characteristic line was not visible.

Both RT,ox and Cox are defined to be constant in equations 6.35 and 6.37 but in the

impedance fits their values varied more than two orders of magnitude. Their product, however,

was approximately constant with the correct value. Therefore the equilibrium concentration

could not be fitted from the impedance data (through Cox assuming film thickness d is known),

but tri-iodide diffusion coefficient value could be extracted via the product of RT,ox and Cox.
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Figure 6-2: Simulated (circles) and fitted (solid line) photoelectrode transport resistance values.

6.2.2 Circuit Element Fits

Circuit element values obtained by fitting impedance values to equations 5.18 (figure 6-2) and

5.21 (figure 6-3). As it was not possible to get reliable fits for photoelectrode or tri-iodide

recombination resistances, these resistances were combined with the substrate resistance to

fit the resulting resistance elements using two versions of equation 6.70 in the limit of zero

frequency. In the first version (figure 6-4), resistance was calculated without any diffusion

effects (i.e. Rox =∞). The second version (also in figure 6-4) was the unaltered equation 6.70.

Open circuit voltages were also fitted to the steady-state equation 6.16.
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Figure 6-3: Simulated (circles) and fitted (solid line) photoelectrode capacitance values.
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Figure 6-4: Simulated (circles and squares) and fitted (solid and dotted lines) photoelectrode
differential resistance values with (squares and dotted line) and without (circles and solid line)
electrolyte diffusion effects.
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Figure 6-5: Simulated (circles) and fitted (solid line) dye solar cell open circuit voltages.
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6.2.3 Parameter Values and Recreated J-V Curves

A comparison of actual and fitted model parameters is shown in table 6.1. As in the low light

intensity case, the fitting procedure reproduces the original parameter values with reasonable

accuracy indicating that it is a viable way to solve the inverse problem.

As was the case in the previous chapter, electron equilibrium concentration (nc,eq) and light

absorption coefficient (αtd) could not be fitted. Additionally photoelectrode porosity and the

ratio of tri-iodide diffusion coefficients in the photoelectrode pores and free electrolyte layer

were assumed to be known. Therefore all of these values were chosen to be the same as in the

numerical simulations.

Figure 6-6 compares two J-V curves plotted using the fitted parameters values to ones using

the original values. All J-V curves were calculated using the numerical model as the simplified

analytical model does require some iteration to calculate the correct substrate recombination.

As the fitted tri-iodide equilibrium concentration and diffusion coefficient are somewhat smaller

than original values, the predicted fill factors and short circuit currents are lower than original

ones at high light intensities. The same can also be seen when comparing original and predicted

IPCE ratios (figure 6-7).

6.2.4 Recombination Pathways

The device model has three possible recombination reactions: substrate recombination, re-

combination to the electrolyte and recombination to the dye. Conceptually one can divide

the electrolyte recombination into electron concentration (RECe) and tri-iodide concentration

(RECox) parts by calculating the difference in recombination with actual and equilibrium tri-

iodide concentration.

REC = RECe +RECox = krdn
γ
c,eqn

γ
DC + krdn

γ
c,eqn

γ
DC · (cox,DC − 1) (6.77)

Figure 6-8 shows the different recombination pathway currents as a function of applied cell

voltage at roughly one sun light intensity. The predicted contribution to recombination due

to tri-iodide diffusion is larger than the correct one but otherwise the inverse problem solution

gives the correct magnitudes for the different recombination pathways. The simulated cell is

mostly limited by electron transfer to the electrolyte with tri-iodide diffusion and substrate

recombination playing significant roles. Insufficient regeneration of the dye is not a major

source of recombination at maximum power point but is significant at open circuit.

6.3 Conclusions

In this chapter a method for solving the dye solar cell device model inverse problem has been

introduced. The method was validated on simulated data and reproduced the original pa-

rameter values with good accuracy. Presently the method uses only open circuit data which

makes it difficult to extract the correct parameter values affecting electrolyte conductivity.
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Parameter description Symbol Actual value Fitted value

Photoelectrode parameters
Normalized electron diffusion coefficient Dcnc,eq/d 1.80 · 108 1.77 · 108

Normalized recombination rate coefficient krn
γ
c,eqd 1.29 · 1011 0.973 · 1011

Recombination order γ 0.7 0.708
Normalized electron equilibrium concentration nc,eqd 3.0 · 104 0
Normalized trapped electrons at equilibrium nt,eqd 1.50 · 1015 0.723 · 1015

Trap distribution βT 0.3 0.324
Film porosity P 0.5 0.5

Optical parameters
Normalized total light absorption coefficient αtd −1 −1
Light harvesting and injection efficiency ηLHηINJ 0.700 0.689

Normalized dye recombination rate coefficient
kenc,eq

kREGcred,eq
4.00 · 10−15 3.86 · 10−15

Electrolyte parameters
Normalized tri-iodide diffusion coefficient Dox/d

2 3.00 2.81
Tri-iodide diffusion coefficient ratio Dox/Dox,F 0.33 0.33
Normalized tri-iodide equilibrium concentration cox,eqd/Sox 3.61 · 1020 2.82 · 1020

Normalized free electrolyte layer thickness del
d 3.00 3.00

Substrate parameters
Exchange current density i0,s 3.00 · 10−6 2.93 · 10−6

Symmetry factor βPE 0.5 0.503

Counter electrode parameters
Exchange current density i0 2.00 · 10−6 2.01 · 10−6

Symmetry factor βPE 0.5 0.5

Table 6.1: Actual and fitted parameter values for the simulated dye solar cell.
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Figure 6-6: Simulated (circles) and predicted (solid line) dye solar cell J-V curves at photon
fluxes of 2.0 · 1021 and 6.3 · 1020 1/(m2s). Filled triangles indicate open circuit voltage points
where impedance spectra were simulated. The fitted model predicts somewhat lower electrolyte
conductivity which results in lower fill factors and short circuit currents at high light intensities.
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Figure 6-7: Simulated (circles and solid line) and predicted (squares and dotted line) dye solar
cell IPCE ratios.

Improvements incorporating short circuit data would require numerical solutions but would

undoubtedly improve model fits significantly.

A key feature of the inverse solution is that it enables the estimation of the relative impor-

tance of the different recombination pathways based on measurements that can be implemented

on fully functional cells with standard electrochemical equipment. However, the modelling does

require one to know the porosity and thickness of the photoelectrode film as well as the distance

between the counter electrode and the photoelectrode. Porosity and photoelectrode thicknesses

can be measured before sealing the cell whereas free electrolyte layer thickness can be inferred

from the gasked thickness or possibly measured via absorption of light by tri-iodide. Addition-

ally it was assumed that diffusion limited current could be used to measure the ratio of tri-iodide

diffusion coefficients in the pores and in the free electrolyte layer. Given that this measurement

requires very high applied voltages, it cannot taken for granted that the electrolyte remains

stable throughout the scan. Therefore there is some doubt whether the presented data analysis

can be carried out on an experimental cell with the high level of accuracy achieved here.
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Figure 6-8: Simulated (markers) and predicted (solid and dashed lines) recombination cur-
rents. Circles indicate electrolyte recombination caused by electrons, triangles electrolyte re-
combination caused by the build-up of tri-iodide in the photoelectrode pores, squares substrate
recombination and plus-signs recombination to oxidized dye molecules. Vertical dotted line
indicates maximum power point. Photon flux is 1.59 · 1021 1/(m2s) which roughly corresponds
to one sun light intensity. Simulated short circuit current was 16.5 mA/cm2 compared to a
photogeneration current of 17.8 mA/cm2.
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Chapter 7

Perovskite Solar Cell Device

Model

At time of writing this thesis new thin film solar cells based on organometal halide perovskites

have experienced an explosion of research interest over the past two years, enabled by a major

breakthrough in 2012 by Kim et al [51] and Lee et al [52]. Since then perovskites have already

surpassed the best dye cells in efficiency [35] while being easier to fabricate owing to their solid

state structure. Based on this astounding progress, it appears likely that dye solar cell research

will wither as scientists switch their attention to the more promising perovskite cells.

This chapter details the initial steps taken towards describing charge transport and recom-

bination inside a perovskite solar cell. First the perovskite solar cell is briefly introduced and

then basic material property information taken from literature is used to develop a continuum

model describing a p-i-n heterojunction.

7.1 Organometal Halide Perovskite Solar Cell

A perovskite solar cell consists of four layers deposited on a transparent conductive surface

— usually FTO or ITO (indium tin oxide) glass. These are, in order of deposition, n-type

semiconductor, perovskite absorber, p-type semiconductor or other hole transporting material

and a metal contact . The perovskite layer may also include nanoporous titanium dioxide or

aluminium oxide [51, 52, 53].

In current state of the art the n-type semiconductor is the same as the blocking layer used

in dye solar cells (i.e. a TiO2 layer about 50 nm thick deposited by spray pyrolysis or spin

coating [51, 52, 53]). To date the best absorber has been methylammonium lead tri-iodide

(CH3NH3PbI3) [51, 52, 53]. After spin coating a solution containing methylammonium iodide

(CH3NH3I) and lead di-iodide (PbI2) the two components form a perovskite structure, which

is a face centered cubic structure with methylammonium in the center of the cube, lead in the

corners and iodine in the center of the faces [51]. For the p-type material 2,2,7,7-tetrakis-(N,Ndi-
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Figure 7-1: Approximate energy diagram of the key perovskite cell components. Light is
absorbed in the perosvkite layer creating free holes (h+) and electrons (e−). The conduction
band energy (Ec) of the TiO2 is lower than that of the perovskite allowing electrons to move
into it. The conduction band of spiro-OMeTAD, on the other hand, is much higher creating an
effective energy barrier for electron transfer. Holes have an opposite electric charge to electrons
and can therefore easily transfer into the valence band (Ev) of spiro-OMeTAD while seeing a
large energy barrier opposing the transfer into TiO2.

p-methoxyphenylamine)9,9-spirobifluorene (spiro-OMeTAD) conductive polymer is spin coated

from solution [51]. Conductivity is enhanced by adding some suitable salt into the solution,

which causes p-type doping [54].

Visible light is absorbed in the perovskite lifting some valence band electrons into the

conduction band. The electrons, as well as the produced holes in the valence band, are free to

move in the perovskite but due to the energy band structures of the materials only electrons

can move to the n-type layer and only holes can move to the p-type layer [51] (see figure 7-1).

7.2 P-I-N Heterojunction Model for Perovskite Solar Cell

In this section a continuum model based on partial differential equations describing electron

and hole number densities is developed. As in the case of the dye-sensitized solar cell, a 1-D

structure is considered by assuming that the cell is homogeneous in the other dimensions.

First one must decide whether electron-hole pairs created by absorbed photons dissociate

very quickly due to thermal fluctuations or whether one should model the diffusion of excitons.

This is a well-known problem that is addressed in any textbook dealing with semiconductor

physics. The approach taken is that the electron can be thought to orbit the hole the same
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way an electron orbits a proton in a hydrogen atom. Therefore the hydrogen atom solution of

the Schrödinger equation is valid here as long as one uses the perovskite permittivity instead

of vacuum one and effective masses for the particles. The binding energy given by the solution

is [23]

Eb = − mRq
4

8ε2rε
2
0h

2
, (7.1)

where mR is the reduced mass of the problem (taking effective electron and hole masses as

inputs), q is electron charge, εr is the relative permittivity of the perovskite and h is the Planck

constant.

Frost et al. [55] used density functional theory to calculate theoretical values for the effective

charge carrier masses and for the relative permittivity. Using their results of 0.15 times electron

rest mass for electrons and 0.12 times for holes as well as 25.7 for the relative permittivity [56],

one finds that the binding energy is about 1 meV. Compared to the characteristic thermal

energy of about 26 meV at room temperature (298.15 K), the conclusion is that excitons break

up very quickly due to thermal excitations. Hence only free electrons and holes should be

modelled.

7.2.1 N-type Layer

As shown in figure 7-1 the valence band of TiO2 is thought to lie much lower than the valence

band of the perovskite absorber and hence no significant flow of holes into the TiO2 valence

band occurs. Subsequently modelling will consider only electric potential and transport of

electrons as recombination would require a source for holes.

Electric potential is governed by Gauss’ law:

∂2ϕ

∂x2
= − q

εr,nε0
· (neq,n − n), (7.2)

where ϕ is electric potential, x is distance from the FTO contact, q is elementary charge, εr is

the relative permittivity of the n-type layer, ε0 is vacuum permittivity and n is electron number

density. Titanium dioxide deposited by spray pyrolysis is thought to be moderately n-doped

[12] so the concentration of positively charged donor ions neq,n must also be taken into account.

Electron transport occurs both by drift and diffusion.

je = −Dntype ·
∂n

∂x
+ n · µntype ·

∂ϕ

∂x
, (7.3)

where je is electron flux, Dntype is electron diffusion coefficient and µntype is electron mobility.

Inserting this into the continuity equation 2.25 yields

∂n

∂t
= Dntype ·

∂2n

∂x2
− µntype ·

(
∂n

∂x
· ∂ϕ
∂x

+ n · ∂
2ϕ

∂x2

)
(7.4)
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7.2.2 Perovskite Layer

In addition to charge transport, light absorption leads to the creation of free electrons and holes

and recombination destroys them.

Charge generation is modelled using the same formalism as in the dye cell model. The only

difference is that there are no separate injection and dye regeneration events so all created

excited states are assumed to result in free electrons and holes.

G = ηCGφ ·
αt

eαtd − 1
· eαtx (7.5)

Presently next to nothing is known about recombination in perovskite cells. Therefore

the approach taken here is to use conventional Shockley-Read-Hall formalism from established

semiconductor theory [26]. In this picture there are multiple localized (trap) states in the band

gap which act to catalyse recombination. Generally states that are near the middle of the gap

are the most efficient recombination centers so a model with a single trap state at the center

of the gap is used.

Electrons fall into the trap with a net rate of

Rn =
n · (1− f)−NCe

ET−EC
kBT · f

τn
, (7.6)

where f is the probability the trap is occupied by an electron, NC is the conduction band

density of states, ET is the energy level of the trap, EC is the conduction band energy level

and τn is the pseudo-lifetime of conduction band electrons.

Holes get trapped with the rate

Rp =
p · f −NV e

EV −ET
kBT · (1− f)

τp
, (7.7)

where p is the hole number density, NV the valence band density of states and τp the pseudo-

lifetime of valence band holes.

Combining the two recombination equations by knowing that at steady-state both reactions

must proceed at the same rate yields the occupation probability of the trap, which can then be

inserted into either recombination rate equation to obtain the final equation for recombination

R =
np− neqpeq

τn ·
(
n+NCe

ET−EC
kBT

)
+ τp ·

(
p+NV e

EV −ET
kBT

) . (7.8)

Inserting the recombination and generation terms along with and diffusion transport terms

into respective electron and hole continuity equations results in

∂n

∂t
= Dn ·

∂2n

∂x2
− µn ·

(
∂n

∂x
· ∂ϕ
∂x

+ n · ∂
2ϕ

∂x2

)
+G−R (7.9)

for electrons and
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∂p

∂t
= Dp ·

∂2p

∂x2
+ µp ·

(
∂p

∂x
· ∂ϕ
∂x

+ p · ∂
2ϕ

∂x2

)
+G−R (7.10)

for holes.

Electric potential is again given by Gauss’ Law

∂2ϕ

∂x2
= − q

εrε0
· (p− n+ neq − peq), (7.11)

where neq and peq refer to electron and hole concentrations at equilibrium and without any

band bending effects. For a fully intrinsic semiconductor these cancel out because only free

charges exist (trapped charge is neglected in the model), whereas in doped semiconductors the

equilibrium values represent ionized dopant atoms.

7.2.3 P-type Layer

Due to the energy differences of the conduction bands (see fig. 7-1), no electrons are expected

to be injected into the p-type layer. Thus only the transport of holes is considered. Generation

is zero because the band gap is too high. As there is no process that creates electrons in excess

of thermal generation, recombination is also zero.

∂p

∂t
= Dptype ·

∂2p

∂x2
+ µptype ·

(
∂p

∂x
· ∂ϕ
∂x

+ p · ∂
2ϕ

∂x2

)
(7.12)

∂2ϕ

∂x2
= − q

εr,pε0
· (p− peq,p) (7.13)

7.2.4 Metal Contact to N-type Layer

As stated before, fluorine-doped tin oxide is used as the metal contact for the n-type side. In

principle this configuration could lead to a rectifying Schottky contact but experience with

the same interface in dye cells indicates that there is no significant voltage loss. This is taken

into account in the model by assuming that there is no band bending at the interface and

that electron concentration is the same as equilibrium concentration in bulk material. These

assumptions lead to a perfect ohmic contact with zero voltage loss across the interface.

n = neq,n (7.14)

7.2.5 Boundary Between N-type Layer and Perovskite

Gauss’ Law requires that electric displacement field is continuous across material boundaries

[57]. Remembering that electric displacement field is electric field multiplied by material per-

mittivity and adding the requirement that electric potential must be continuous, one has all

the boundary conditions for electric potential.

109



ε0εr,n ·
∂ϕ

∂x
|ntype = ε0εr ·

∂ϕ

∂x
|perovskite (7.15)

ϕntype = ϕperovskite (7.16)

For electrons, it is assumed that charge transfer across the boundary is infinitely fast result-

ing in a continuous quasi-Fermi level. This should be a reasonable approximation for electron

flow from the perovskite as it is energetically downhill, but may not be valid for the opposite

direction of flow. Therefore this report is restricted to modelling only positive photocurrents

and the continuous quasi-Fermi level assumption should be re-examined for any reverse current

flow calculation.

The difference of the quasi-Fermi level from its equilibrium value is given by

EF − EF,eq = kBT · ln
(
n

neq

)
(7.17)

where EF is the quasi-Fermi level, EF,eq is the quasi-Fermi level at equilibrium, n is electron

concentration and neq is electron concentration at equilibrium. Setting the quasi-Fermi levels

equal at the interface results in

nntype
neq,ntype

· e
EF,eq,ntype

kBT =
n

neq
· e

EF,eq
kBT (7.18)

The flow of electrons is discontinuous by the amount of surface recombination flux.

je,ntype = Dntype ·
∂nntype
∂x

− µntype · nntype ·
∂ϕntype
∂x

=
Icell
qAcell

(7.19)

je,perovskite = Dn ·
∂n

∂x
− µn · n ·

∂ϕ

∂x
=
Icell + Isurf,n

qAcell
(7.20)

where je is the electron flux, Icell is cell current, Isurf,n is the surface recombination current, q

is elementary charge and Acell is cell area.

Hole flux is given by the surface recombination.

jh,perovskite = Dp ·
∂p

∂x
+ µp · p ·

∂ϕ

∂x
=
Isurf,n
qAcell

(7.21)

where jh,perovskite is the hole flux.

In this report surface recombination at the n-type interface is considered to be negligible

as Burschka et al. were able to fabricate a highly efficient cell with a high surface area contact

between mesoporous TiO2 and perovskite [58]. Therefore the surface recombination term is

merely for the purpose of compatibility with possible future modifications.
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7.2.6 Boundary Between Perovskite and P-type Layer

The boundary conditions at the P-type interface are similar to the N-type interface. Aside

from different material properties, surface recombination at this interface is considered to be

significant to device performance [59].

The boundary conditions for electric potential are

ε0εr,p ·
∂ϕ

∂x
|ptype = ε0εr ·

∂ϕ

∂x
|perovskite (7.22)

ϕptype = ϕperovskite (7.23)

for electrons

jn,perovskite = Dn ·
∂n

∂x
− µn · n ·

∂ϕ

∂x
= −Isurf,p

qAcell
(7.24)

and for holes

pptype
peq,ptype

· e−
EF,eq,ptype

kBT =
p

peq
· e−

EF,eq
kBT , (7.25)

jp,ptype = Dptype ·
∂pptype
∂x

+ µptype · pptype ·
∂ϕptype
∂x

= − Icell
qAcell

, (7.26)

jp,perovskite = Dp ·
∂p

∂x
+ µp · p ·

∂ϕ

∂x
= −Icell + Isurf,p

qAcell
(7.27)

For the sake of simplicity and to facilitate numerical solutions (finding the correct solution

was easier when surface recombination did not radically change with electron concentration)

surface recombination is taken to follow a power law dependency to both free electron concen-

tration in the perovskite and free hole concentration in the P-type layer. Physically this can

be a reasonable approximation to trap mediated recombination where trapped electrons and

holes recombine with free holes and electrons, although in this report it is used simply due to

its convenient mathematical form. Expressing the number of trapped electrons as a function of

free electrons is described in section 4.2.3.

Isurf,p
qAcell

= kp · n0.5 · p0.5
ptype (7.28)

where kp is the surface recombination rate coefficient, n the electron concentration at the

perovskite surface and pptype hole concentration at the spiro surface. Note that this formulation

gives some recombination even at equilibrium in the dark. However, the correction term would

include the dark concentration, which requires solving the model numerically. Moreover, the

correction term is also very small as dark concentrations are negligible compared to reasonable

operating conditions.
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Layer Conduction band (EC) Valence band (EV ) Fermi level (EF,eq)
eV eV eV

N-type -3.9 -7.2 -3.95
Perovskite -3.75 -5.4 -4.575
P-type -1.5 -5.05 -5.0

Table 7.1: Material energy level values used in perovskite solar cell modelling. Perovskite
(CH3NH3PbI3) values as well as spiro-OMeTAD HOMO (valence band) and LUMO (conduction
band) values are taken from a report by Schulz et al. [60].

7.2.7 Metal Contact to P-type Layer

As with the N-type side contact, the P-type contact is also assumed to be perfect with no

voltage loss or band bendings. Abate et al. observed negligible contact resistance between

doped spiro-OMeTAD and gold contact [54] giving experimental support to this model.

Perfect contact means that hole concentration at the contact is unchanged from equilibrium

condition in the bulk.

p = peq,p (7.29)

Electric potential is set to zero.

ϕ = 0 (7.30)

7.2.8 Parameter Values

The energy levels of the materials are given in table 7.1. Base values are taken from a report by

Schulz et al. [60] Unfortunately their values for the compact TiO2 given appear to contradict

the picture of easy electron transfer from the perovskite so the conduction band energy level

was set to -3.9 eV versus vacuum instead of -3.6 eV as this ensures that the TiO2 conduction

band lower than the perovskite conduction band. The valence band and Fermi levels were

shifted accordingly. Other changes include reducing the band gap to 1.65 eV based on IPCE

saturation around 750 nm from a report by Lee et al. [52], assuming the perovskite Fermi level

to lie exactly in the middle of the band gap and shifting the spiro highest occupied molecular

orbital (HOMO) 50 meV lower to -5.05 eV. Schulz and coworkers used undoped spiro-OMeTAD

in their measurements. Therefore the Fermi level of doped spiro was simply assumed to be

50 meV higher than the HOMO level. The changes were made because they were found to

facilitate the numerical solving of the model and improve the agreement between experimental

and simulated I-V curves.

Parameter values for the base case transport model are given in table 7.2. Although ref-

erences can be found for some parameters, many values have been simply been set so that

they result in reasonably realistic I-V curves. Typical film thickness values for the N-type,

perovskite and P-type layer are 50, 500 and 500 nm, respectively [52, 53]. However, difficulties
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in numerical solutions necessitated a reduction in perovskite and P-type film thicknesses to 300

and 100 nm.

For the selective contacts, equilibrium carrier concentrations are based simply on estimated

doping densities. For the perovskite effective charge carrier masses from numercal simulations

are used to estimate conduction and valence band densities of state and equilibrium concentra-

tions from the assumption that Fermi level is exactly in the middle of the band gap.

N = 2 ·
(

2πmeffkBT

h2

) 3
2

(7.31)

where N is the density of states, meff is the effective mass (0.15 times electron rest mass for

electrons and 0.12 times for holes [55]), h is the Planck constant, kB is the Boltzmann constant

and T is temperature.

neq = NC · e
EF,eq−EC

kBT (7.32)

peq = NV · e
EV −EF,eq

kBT (7.33)

where NC is the conduction band density of states, NV valence band density of states, EC

conduction band energy, EV valence band energy and EF,eq is the Fermi level at equilibrium.

In addition to the base case model of table 7.2, an alternate scheme was simulated. Here

recombination was set to occur mostly on the perovskite–spiro interface instead of in the bulk

perovskite. The parameter values were otherwise the same as the base case except for the surface

recombination coefficient (5 m/s instead of 0 m/s) and electron and hole pseudo-lifetimes (both

1.25 ns instead of 6.67 ps). The base case pseudo-lifetimes values were chosen so that calculated

open circuit voltages were at the lower end of those reported in the literature [52, 53, 58, 59].

The photon flux used in the simulations corresponds roughly to one sun illumination.
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Parameter description Symbol Unit Value Reference

Perovskite parameters
Electron mobility µn m2/(Vs) 6.6 · 10−3 [61]
Hole mobility µp m2/(Vs) 6.6 · 10−3 [61]
Electron equilibrium concentration neq 1/m3 1.61 · 1010 see text
Hole equilibrium concentration peq 1/m3 1.15 · 1010 see text
Relative permittivity εr – 25.7 [56]
Electron pseudo-lifetime τn s 6.67 · 10−12 see text
Hole pseudo-lifetime τp s 6.67 · 10−12 see text
Trap energy level ET eV −4.575 assumption
Surface recombination coefficient kp m/s 0 assumption
Layer thickness d m 300 · 10−9 assumption

N-type parameters
Electron mobility µn m2/(Vs) 5 · 10−7 [49]
Electron equilibrium concentration neq 1/m3 1.7 · 1024 [62]
Relative permittivity εr,n – 40 [62]
Layer thickness dn m 50 · 10−9 assumption

P-type parameters
Hole mobility µp m2/(Vs) 3.6 · 10−8 [54]
Hole equilibrium concentration peq 1/m3 5.0 · 1022 [54]
Relative permittivity εr,p – 3 [54]
Layer thickness dp m 100 · 10−9 assumption

Optical parameters
Charge generation efficiency ηCG – 1.0 assumption
Total absorption coefficient αt 1/m −1 · 104 assumption
Incident photon flux φ 1/(m2s) 1 · 1021 n/a

Cell parameters
Cell area Acell m2 1 · 10−4 n/a
Cell temperature T K 298 n/a

Table 7.2: Base parameter values used in perovskite solar cell modelling.
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7.3 Results

7.3.1 Band Diagrams

Simulated (see appendix D for a brief description of the model solver) band diagrams for zero

bias in the dark, near short circuit and at open circuit are shown in figures 7-2, 7-3 and 7-4,

respectively.

Due to the intrinsic semiconductor nature of the perovskite, there is very little electric

charge in the film and the gradient of electric potential (electric field) is effectively constant.

Electric potential change is divided between perovskite and spiro layers. This is unfortunate

as this potential change causes band bending in the spiro layer, which then leads to increased

series resistance through hole depletion near the perovskite interface. Although this effect

diminishes as cell voltage is increased, it would be preferable to have the entire potential

change in the perovskite where the electric field drives charge separation. Both band bending

and voltage loss in the TiO2 layer are negligible due to the relatively high doping density.

The Fermi levels of the selective contacts play a key role in determining the quasi-Fermi

levels in perovskite. As the Fermi level of TiO2 is taken to be closer to the band edge than the

Fermi level of spiro-OMeTAD, electron concentration is typically higher than hole concentration

in the perovskite absorber. This is particularly true near open circuit conditions.
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Figure 7-2: Band diagram of a perovskite cell at zero bias in the dark. Layers from left to
right: TiO2, perovskite, spiro-OMeTAD. Solid lines indicate conduction and valence bands,
dotted line Fermi level (TiO2 valence and spiro conduction band not drawn). Equilibration
of Fermi levels causes band bending which is divided between spiro-OMeTAD and perovskite
layers. Perovskite layer has very little net electric charge at point in the film meaning that the
gradient of electric potential (electric field) is effectively constant. Band bending in spiro leads
to hole depletion near the perovskite interface which will cause increased series resistance.
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Figure 7-3: Band diagram of a perovskite cell near short circuit at 6 mV bias. Layers from left
to right: TiO2, perovskite, spiro-OMeTAD. Solid lines indicate conduction and valence bands,
dotted line Fermi level (TiO2 valence and spiro conduction band not drawn). Electric field
drives charge separation in the perovskite causing a build-up of charge carriers near selective
contacts. Hole depletion in spiro causes significant voltage loss.
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Figure 7-4: Band diagram of a perovskite cell at open circuit (886 mV). Layers from left to
right: TiO2, perovskite, spiro-OMeTAD. Solid lines indicate conduction and valence bands,
dotted line Fermi level (TiO2 valence and spiro conduction band not drawn). Fermi levels
of selective contacts set the Fermi levels in perovskite resulting in higher electron than hole
concentration.
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7.3.2 J-V Curves

Figure 7-5 shows simulated J-V curves of the two different recombination schemes as well as an

experimental cell illuminated with a red LED. Note that neither short circuit currents nor open

circuits voltages of the experimental and simulated cells should be compared as the purpose

of the calculations was not to predict either of these values. Instead the shapes of the curves

could potentially yield useful information.

Band bending induced voltage loss in spiro is a significant factor in the low short circuit

current and fill factor of the base case cell but limited perovskite conductivity is more important

in limiting device efficiency.

In the alternate case with surface recombination perovskite conductivity plays a much

smaller role while spiro series resistance is still significant. Both short circuit current and

fill factors are much higher than in the base case because decreasing cell voltage results in

higher electric potential at the perovskite–spiro interface leading to a steep decrease in electron

concentration (a change of more than three orders of magnitude going from open circuit to

short circuit). A decrease in hole concentration in spiro also reduces surface recombination but

this concentration change is less than a factor of ten between open and short circuit.

The light intensity dependence of open circuit voltage in the simulated cells could be fitted to

nonideality factors of around two: 2.2 for the base recombination case and 2.0 for the alternate

one. Experimental results from ten different cells fabricated by Optoelectronic Device Group

at University of Oxford yielded two different response groups: the first cells had nonideality

factors ranging from 2.4 to 2.9 while in the other group the range was from 5.4 to 5.7. The

simulations therefore appear to be broadly compatible with the first group of cells but not

the other. Differences in experimental cell fabrication were not disclosed to the author so

speculation on reasons for the differences is not possible. Light intensity dependency of short

circuit current was also measured for two cells but no clear trend could be seen.

Based on a comparison of the shapes of the simulated J-V curves to the experimental one, it

would appear that the alternate surface recombination scheme is a better description of the cell,

although it is plausible that relatively minor changes in recombination equations or parameter

values could change this view. Indeed a significant improvement could be seen in the base case

fill factor when the voltage loss caused by P-type layer series resistance was removed (data not

shown).
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Figure 7-5: Measured and simulated J-V curves of perovskite solar cells. Measured cell (circles
and solid line) was illuminated using a red LED with unknown photon flux. Simulated cells were
illuminated with 1·1021 m−2s−1 photon flux corresponding to a maximum short circuit current
of about 16.02 mA/cm2. J-V curve shapes appear to support the alternate recombination
scheme (triangles and dashed line) over the base case (squares and dotted line). Experimental
data provided by Adam Pockett from University of Bath Department of Chemistry using a
cell fabricated by the Photovoltaic and Optoelectronic Device Group at University of Oxford
Department of Physics.
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7.3.3 Effect of Perovskite Fermi Level

Doping could theoretically be used to shift the equilibrium Fermi level of the perovskite poten-

tially changing device performance. Usually doping is thought to increase the charge carrier

concentration and hence improving material conductivity but a careful look at the model equa-

tions (continuity equations 7.9 and 7.10) will show that as long as the perovskite absorber can

be thought of as intrinsic or near-intrinsic (i.e. the right hand side of equation 7.11 is approxi-

mately zero) the selective contacts will primarily determine charge carrier concentrations (via

boundary conditions 7.18 and 7.25. Instead, doping affects mainly the electric potential in the

perovskite. This means that doping must be strong enough to cause a significant change in

electric potential — simply altering equilibrium charge carrier concentrations even by several

orders of magnitude will have negligible effect.

Four different initial Fermi levels were simulated for the base recombination case and three

for the alternate case. Fermi levels and corresponding equilibrium carrier concentrations (equa-

tions 7.32 and 7.33) are given in table 7.3.

Figures 7-6 and 7-7 show the calculated J-V curves for different doping regimes. The most

important effect in both the base and alternate recombination schemes is the improvement

of the fill factor caused by the reduction of spiro series resistance: The electric displacement

field is continuous across the spiro–perovskite interface and thus the gradient of the electric

potential at the perovskite side will affect band bending in spiro. The lower the gradient at a

given electric potential change in perovskite, the less band bending there is in spiro. P-type

doping causes the gradient to be lower and will therefore shift electric potential change to occur

inside the absorber (see figure 7-8).

Decreased band bending in spiro elevates hole concentrations in the perovskite, which results

in lower open circuit voltages in the bulk recombination case and slightly lower fill factors in

the alternate (surface) one although the latter effect so small that it is overwhelmed by the

improved spiro conduction mentioned above. In order to carry significant current in the spiro

depletion layer, the hole concentration must remain reasonably high. Therefore the Fermi level

in the hole depletion layer tends to follow the valence band bending at all but the lowest currents

(see figure 7-3) . When current becomes low enough the Fermi level decouples from the valence

band (figures 7-4 and 7-2) causing a shift in the J-V curve trend (the point where the J-V

curves intersect in figure 7-6).

Enhanced average built-in field resulting from P-type doping is also more effective in driving

free charges towards the selective contacts which yields higher short circuit currents in the bulk

recombination case.

In summary it can be stated that the beneficial effect of light P-type doping is overwhelm-

ingly a consequence of reduced band bending in spiro resulting from the continuity of electric

displacement field. Therefore eliminating this band bending by altering the spiro layer would

render doping ineffective.
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Fermi level Electron concentration Hole concentration
eV 1/m3 1/m3

Base case
-3.935 1.073 · 1021 1.729 · 10−1

-4.575 1.610 · 1010 1.152 · 1010

-5.220 1.989 · 10−1 9.329 · 1020

-5.240 9.130 · 10−2 2.033 · 1021

Alternate case
-3.905 3.451 · 1021 5.377 · 10−2

-4.575 1.610 · 1010 1.152 · 1010

-5.260 4.190 · 10−2 4.429 · 1021

Table 7.3: Fermi levels and corresponding charge carrier concentrations used in modelling the
effect of equilibrium Fermi level in the perovskite.
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Figure 7-6: Effect of perovskite equilibrium Fermi level on the base recombination case J-V
curves. Moving towards N-type doping (circles and solid line) increases open circuit voltage
but decreases short circuit current and maximum power. P-type doping (diamonds and dotted
line) yields the best result. Squares and dashed line indicates intrinsic perovskite, triangles and
dashed line light P-type doping.
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Figure 7-7: Effect of perovskite equilibrium Fermi level on the alternate recombination case J-V
curves. P-type doping (triangles and dashed line) improves fill factor significantly and open
circuit voltage slightly. N-type doping (circles and solid line) decreases device performance
compared to the intrinsic (squares and dashed line) case.
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Figure 7-8: Electric potential at approximately 700 mV forward bias for the alternate recom-
bination scheme cell with -3.905 eV (N-type doping, solid lines) and -5.260 eV (P-type doping,
dashed lines) equilibrium Fermi levels. Vertical lines indicate perovskite boundaries. P-type
doping (lower Fermi level) reduces electric potential change in spiro and increases potential
change in the perovskite (i.e. increases the average electric field inside the absorber).
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7.3.4 Effect of Spiro Doping

As seen in the previous sections, spiro conductivity and band bending plays a major role in

limiting the performance of simulated devices. Therefore added doping of the spiro would

seem to be a viable way to improve power generation. Three different doping densities were

simulated for both the recombination schemes. In addition to just changing equilibrium hole

concentration, doping also moves the equilibrium Fermi level according to the equation

EF,new = EF,old +
kBT

q
· ln
(
peq,old
peq,new

)
(7.34)

Hole concentrations and corresponding Fermi levels can be found in table 7.4.

Simulated J-V curves are shown in figures 7-9 (bulk recombination) and 7-10 (surface recom-

bination). Doping the spiro layer generates the same effect as P-type doping of the perovskite:

spiro band bending decreases improving conductivity (due to reduced hole depletion) and in-

creasing the average built-in field in the perovskite. The results are improved fill factors for

both recombination schemes and significantly lowered open circuit values for the bulk recombi-

nation case (see previous section). Increased electric potential change in perovskite decreases

surface recombination in the alternate recombination scheme improving open circuit voltages

by a few millivolts.

Hole concentration Fermi level
1/m3 eV

2.81 · 1022 −4.985
5.00 · 1022 −5.000
8.89 · 1022 −5.015

Table 7.4: Equilibrium hole concentrations and corresponding Fermi levels used in modelling
the effect of spiro doping on cell J-V curves.
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Figure 7-9: Simulated J-V curves for different doping densities using the bulk recombination
scheme. Hole concentrations were 2.81 · 1022 (circles and solid line), 5.00 · 1022 (squares and
dashed line) and 8.89 · 1022 1/m3 (triangles and dotted line).
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Figure 7-10: Simulated J-V curves for different doping densities using the surface recombination
scheme. Hole concentrations were 2.81 · 1022 (circles and solid line), 5.00 · 1022 (squares and
dashed line) and 8.89 · 1022 1/m3 (triangles and dotted line).
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7.4 Conclusions

The perovskite solar cell has been modelled as a p-i-n heterojunction using continuum drift-

diffusion equations. The results indicate that electric fields play a significant role in charge

transport in the device. In particular the nature of the interface between the perovskite ab-

sorber and spiro-OMeTAD hole selective contact would appear to have a significant effect in

device performance. Band bending of the spiro valence band near the perovskite results in a

hole depletion layer which increases series resistance but decreases any potential surface recom-

bination at this interface.

However, the analysis relies on several unproven assumptions such as the perovskite being

an intrinsic semiconductor and no mobile ions inside either the perovskite or spiro. It could very

well be that spiro behaves more as an electrolyte than a semiconductor and that the anomalous

hysteresis observed in perovskite cells [63] is due to mobile ions. As such, the work contained in

this chapter should be considered exploratory and at best as a starting point for more rigorous

studies. The most important objectives of future work should be to confirm the mode of charge

transport and the importance of various possible recombination pathways in the device.
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Chapter 8

Conclusions and Outlook

In this work device level charge transport models describing dye-sensitized and perovskite solar

cells were developed.

In the case of dye-sensitized solar cells the processes governing cell operation are quite

well understood as a result of more than two decades of scientific studies meaning that the

presented model does not contain anything that has not been previously published by other

authors. However, to the author’s knowledge, this is the first time when features such as

nonlinear recombination and trapping, mass transport in the electrolyte, nonideal regeneration,

and substrate recombination are all incorporated into a single model. Although the model

contains the relevant device physics, some flaws remain: the optical model is admittedly too

simple for a broad range of wavelengths and it is possible that the substrate recombination

blocking layer resistance is large enough to warrant inclusion into the model.

The biggest achievement of this work is the solution to the device model inverse problem

by using analytical approximations and spreadsheet calculations. Two different methods were

developed corresponding to low and high light intensities. The difference between the two is

that in the low light intensity approximation mass transport in the electrolyte is completely

omitted whereas in the high light intesity case tri-iodide transport is included. In both models

the effect of iodide diffusion is assumed to be negligible. Based on simulations made with the

full numerical model, this is a good approximation for typical electrolyte formulations where

iodide concentration is about ten times higher than that of tri-iodide. The low light intensity

inverse solution was applied to an experimental cell resulting in highly accurate predictions for

observed I-V curves even though the analysis utilized only data measured at open circuit. For

the measured cell, charge transport in the TiO2 photoelectrode did limit electron collection but

this is unlikely to be the case for higher efficiency cells made by others [14]. Dye regeneration

appeared to be perfect in the measured cell even at high voltages, which appears to contradict

previous work [42, 43]. However, it is possible that the measured voltages were simply not

high enough to cause significant recombination to the oxidized dye molecules. Therefore both

the transient absorption measurement described by Anderson et al. [43] and the impedance

method of this work should be conducted on the same cell and the conclusions compared.
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In the future the mass transport model of the cell should be validated by applying the

high light intensity inverse solution to experimental cell data. This requires controlling cell

temperature and a reference electrode for separating photoelectrode and counter electrode

responses. Placing the cell on a hot plate is an obvious solution to the former, dividing the

counter electrode conductor surface by e.g. laser scribing can be used to achieve the latter.

The resistive and capacitive properties of the blocking layers should be measured in order to

confirm the observation that blocking layer capacitance can be seen in the high frequency parts

of impedance plots and that the resistance does not distort photoelectrode transport resistance

measurements. Provided that the inverse solution is successful for experimental cells also at high

light intensities, the method should be made part of routine analysis of new cell designs utilizing

novel materials. It should also be noted that the fundamental principles of the inverse solutions

(fitting measured data to analytical solutions of physics-based charge transport models) are

applicable to all electrical devices. Therefore inverse problem solutions for other devices should

be explored.

In contrast to the dye cells very little is known about perovskite solar cell device physics.

In this work perovskite cells are assumed to work as p-i-n heterojunctions, but this cannot

be taken for granted. Based on the simulations, the built-in electric field appears to play a

major role in improving charge separation. The work functions and band structures of the cell

materials would lead one to suggest that the perovskite absorber contains many times more

free electrons than holes. Therefore hole transport could be a performance limiting factor.

Future work on perovskite device physics should focus on finding the correct picture for

electric potential distribution in the cell — which is likely to involve the observed hysteresis —

as well as quantifying the current lost to different recombination processes.

129



Appendix A

Complex Number Representation

of Sinusoidal Signals

This appendix shows how complex numbers can be used to represent the amplitudes and phase

shifts of sinusoidal signals. As shown below, this greatly simplifies the the formalism needed to

express differential equation solutions involving sinusoidal boundary conditions.

We will start by considering a differential equation of the from

∂f

∂t
= −∂f

∂x
(A.1)

subject to the condition

f(x = 0, t) = A sin(ωt+ ϕ) (A.2)

where t is the time variable, A is the amplitude, ω is the angular frequency and ϕ is the phase

shift of the sinusoidal signal.

The solution to this has the form

f = sin(ωt+ ϕ) (D1 sin(ωx) +D2 cos(ωx))

+ cos(ωt+ ϕ) (D3 sin(ωx) +D4 cos(ωx)) (A.3)

where D1, D2, D3 and D4 are constants.

After applying the boundary condition this simplifies to

f = A sin(ωt+ ϕ) cos(ωx)−A cos(ωt+ ϕ) sin(ωx) (A.4)

Both the general and specific solutions are quite complicated compared to the original partial

differential equation. Therefore one would like to use a more compact notation.

We begin by noting that the solution can be expressed as a simple sine wave using a position-
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dependent change in phase shift

f = A sin(ωt+ ϕ− ωx) (A.5)

The importance of this is that for any sine wave amplitude and phase shift define the entire

wave. No further information is needed.

The problem defined in equations A.1 and A.2 is changed into the complex formalism by

changing the boundary conditions function from a sine wave to a complex exponential function.

f(x = 0, t) = Aei(ωt+ϕ) (A.6)

Strictly speaking this boundary condition is different than the previous one because the

complex exponential also has an imaginary part, but if one considers only amplitude and phase

shift to be important (as is the case in any real world application) then this formalism will give

identical results.

The complex exponential boundary condition enables solutions to be sought by separation

of variables

f = g(x)ei(ωt+ϕ) (A.7)

Inserting this into equation A.1 yields

iωg(x)ei(ωt+ϕ) = −∂g(x)

∂x
ei(ωt+ϕ)

⇒ g(x) = C1e
−iωx (A.8)

Applying the boundary condition gives

f = Aei(ωt+ϕ−ωx) (A.9)

As one can see, the complex number formalism results in the same amplitude (A) and phase

shift (ϕ− ωx) as the sine wave formalism.

Other more complicated differential equations often result in solutions where amplitudes

are complex numbers. These can be converted into the real number amplitude and phase shift

formalism using Euler’s formula and trigonometric indentities

(x+ iy)ei(ωt+ϕ) =
√
x2 + y2 · ei(ω+ϕ+arctan(− yx )) (A.10)
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Appendix B

Dye-Sensitized Solar Cell

Impedance Response

Impedance measurements are often visualized using the Nyquist plot where the real part (also

known as resistance) of the complex impedance is plotted as the x-axis and the imaginary

part (reactance) as the y-axis. Usually the y-axis is inverted. Figure B-1 shows an example

Nyquist impedance plot of an experimental dye solar cell. Typically at least three parts can be

easily distinguished in the plot: series resistance caused by the FTO glass, high frequency arc

caused by the counter electrode and a low frequency arc caused by the photoelectrode. When

measured at low enough bias voltages, the photoelectrode arc shows a straight line at high

frequencies indicating the presence of significant transport resistance caused by slow diffusion

of electrons in the semiconductor film. Sometimes it is also possible to see a third arc at very

low frequencies that is caused by slow diffusion of redox ions in the electrolyte (not shown in

the example figure).
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Figure B-1: An example Nyquist plot of a dye solar cell impedance spectrum. Low frequency
points are on the right, high frequency on the left. Substrate series resistance is the difference
between the origin and the first data point on the left. The small arc on the left is caused by the
counter electrode, the bigger arc by the photoelectrode. The straight line at approximately 45
degree angle to the x-axis between the two semicircles is a sign of the photoelectrode transport
resistance caused by the diffusion of electrons. The overall photoelectrode arc is caused by the
combined effect of transport, recombination and capacitance.

133



Appendix C

Dye Solar Cell Model Numerical

Solver

The equations in section 4.2.10 were solved using a numerical solver using a multiple shooting

method implemented in the Python programming language. The method divides the indepen-

dent variable space into multiple parts and guesses the solution at some of the boundaries of

these parts. Then numerical integration is used to obtain the full solution. If the solution is the

correct one, then all concentrations and their gradients are continuous across all the internal

boundaries and the boundary conditions specified in sections 4.2.11 and 4.2.12 hold. Finding

the correct guess is left to a numerical root finding algorithm. The integration and root finding

algorithms were taken from the freely available SciPy library (http://scipy.org/). Initial guesses

were computed using the analytical solutions from chapter 6. Variables were scaled by dividing

them with the average values of the initial guess.

Table C.1 shows the equations constraining solution variables when the y-space is divided

into four parts. The free variables are the inputs to the root finding algorithm. Numerical

integration is performed from y = 0 to y = 0.25, y = 0.5 to y = 0.25, y = 0.5 to y = 0.75 and

y = 1 to y = 0.75. The root is the solution where all variables are continuous at y = 0.25 and

y = 0.75. An example illustrating the multiple shooting method is given in figure C-1.

Variable description Symbol y = 0 y = 0.5 y = 1
Electron concentration nDC 4.66 Free Free

Gradient of electron concentration ∂nDC
∂y Free Free 4.68

Iodide concentration cred,DC Free Free Free

Gradient of iodide concentration ∂nDC
∂y 4.69 Free Free

Tri-iodide concentration cox,DC Free Free Free

Gradient of tri-iodide concentration
∂cox,DC
∂y 4.70 Free Free

Iodide integral Ired 4.79 Free 4.80
Tri-iodide integral Iox 4.81 Free 4.82

Table C.1: Equations constraining the variables in the DC dye solar cell model.
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Figure C-1: Normalized electron concentration calculated with the multiple shooting method
using an analytical initial guess. Concentration is discontinuous at normalized distances y =
0.25 and y = 0.75 indicating that a root finding algorithm must be used to obtain the correct
solution.
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Appendix D

Perovskite Cell Model Numerical

Solver

The perosvkite cell numerical solver was also implemented in Python using the SciPy library

for numerical integration and root finding. However, a shooting method was used instead

of multiple shooting. Gradient of the electric potential at the metal contact of the P-type

layer was specified manually and the boundary conditions and differential equations were used

to calculate the electron concentration at the N-type–metal contact. If the initial electric

potential gradient was correct, then the electron concentration at the other end would match

equation 7.14. Electron concentration at the perovskite-P-type interface is not given directly

by the boundary conditions so it must the found numerically by iteration until the hole gradient

at the N-type–perovskite interface matches equation 7.21.
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