

University of Bath

PHD

Numerical Solution of Linear and Nonlinear Eigenvalue Problems

Akinola, Richard

Award date:
2010

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

Numerical Solution of Linear and

Nonlinear Eigenvalue Problems

submitted by

Richard Olatokunbo Akinola
. . .
for the degree of Doctor of Philosophy

of the

University of Bath

Department of Mathematical Sciences

May 2010

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been supplied on the condition that anyone who

consults it is understood to recognise that its copyright rests with its author

and that no quotation from the thesis and no information derived from it may

be published without the prior written consent of the author.

This thesis may be made available for consultation within the University Li­

brary and may be photocopied or lent to other libraries for the purposes of

consultation.

Signature of Author .

Richard O. latokunbo. Akino. la

SUMMARY

Given a real parameter-dependent matrix, we obtain an algorithm for com­

puting the value of the parameter and corresponding eigenvalue for which

two eigenvalues of the matrix coalesce to form a 2-dimensional Jordan block.

Our algorithms are based on extended versions of the implicit determinant

method of Spence and Poulton [55]. We consider when the eigenvalue is both

real and complex, which results in solving systems of nonlinear equations by

Newton’s or the Gauss-Newton method. Our algorithms rely on good initial

guesses, but if these are available, we obtain quadratic convergence.

Next, we describe two quadratically convergent algorithms for computing

a nearby defective matrix which are cheaper than already known ones. The

first approach extends the implicit determinant method in [55] to find param­

eter values for which a certain Hermitian matrix is singular subject to a con­

straint. This results in using Newton’s method to solve a real system of three

nonlinear equations. The second approach involves simply writing down all

the nonlinear equations and solving a real over-determined system using the

Gauss-Newton method. We only consider the case where the nearest defective

matrix is real.

Finally, we consider the computation of an algebraically simple complex

eigenpair of a nonsymmetric matrix where the eigenvector is normalised using

the natural 2-norm, which produces only a single real normalising equation.

We obtain an under-determined system of nonlinear equations which is solved

by the Gauss-Newton method. We show how to obtain an equivalent square

linear system of equations for the computation of the desired eigenpairs. This

square system is exactly what would have been obtained if we had ignored the

non uniqueness and non differentiability of the normalisation.

ACKNOWLEDGEMENTS

Thank you Lord for saving me. Indeed, ”it is not of him that willeth, neither

of him that runneth, but of God that showeth mercies.” Blessed be your name

for bringing me to the end of my academic career against all odds.

My profound appreciation goes tomy supervisor, Professor Alastair Spence

for his assistance, gainful discussions, patience and positive feedbacks during

the period of my Ph.D. To Professor Ivan Graham, for his comments during

the review stages, they really helped to improve this work and Dr. Françoise

Tisseur (University of Manchester) for reading this thesis.

This Ph.D. would not have been possible if not for the University of Bath

studentship I received to which I say ”thanks with much ’muchness’ ” for this

rare priviledge. Thanks to the Vice-Chancellor of the University of Jos, as well

as other colleagues of the Department of Mathematics, University of Jos, Nige­

ria. Prof. L. S. O. Liverpool for his immense support.

Many thanks to my office mates: Lisema for being a brother, Dave, Aidan,

Simon, Claire, Robert. To Melina, Zhivko, Chris, Mr Cooper & Gabrielle.

Thanks to the staff and computer support team of the department for ever

willing to help. Kudos to Bro & Sis. Okor and Pastor Juliana for interceding

on my behalf. Prof. Mike Threadgill, thanks for sharing the burden during

the difficult moments. To my siblings: O. laronke, the families of O. layinka and

Pastor ’Niyi for their prayers when the ship almost capsized. Much thanks to

my Dad, Mr S. O. Akino. la for teaching me how to read and enduring all the

pains my studies cost him. E. sun re, Mo.mo . mi. To Oyeke.mi Bo . larinwa-BBK

for been there and all those far and near whom for reason of space I can’t men­

tion your names, I say ’e . seun=thank you.’ I must not forget the AIMS family

South Africa, and all those whose destiny is co-optied with this Ph.D.

Emi le.ni t’aiye ti ro, wipe oun le dan nkan nkan se. Sugbo. n mori anu Re.
gba, Olu Orun lo ba mi se. Eeru O lo run ba mi 2×, oun to ba ti pinu loko n re ,.
ko se ni to le daduro. .

CONTENTS

List of Figures . iv

List of Tables . vi

List of Algorithms . viii

List of Notations . x

1	 Introduction 1

1.1	 Background Theory: Jordan Blocks and some Important Defini­

tions . 5

1.2	 Computing a Nearby Defective Matrix 8

1.3	 Background: ABCDLemma and the Implicit DeterminantMethod 11

1.4	 A Comparison of the Implicit Determinant

Method and Inverse Iteration . 14

1.5	 Background: The Gauss-Newton Method 20

1.5.1 Over-Determined Systems of Nonlinear Equations . . . 20

1.5.2 Under-Determined Systems of Nonlinear Equations . . . 23

1.6	 Survey of Newton’s Method and Inverse Iteration with Com­

plex Shift . 25

1.7	 Structure of this Thesis . 28

2	 Implicit DeterminantMethod and the Computation of a 2-Dimensional

Jordan Block in a Parameter Dependent Matrix 30

2.1	 Introduction . 30

i

CONTENTS

2.2	 The Implicit Determinant Method for a Parameter-Dependent

Matrix . 32

2.2.1	 Newton based Algorithm for solving (2.11) 36

2.2.2	 Eigenvalue Structure near the 2-Dimensional Jordan Block 41

2.2.3	 Discussion of Attainable Accuracy 43

2.3 Numerical Experiments . 48

2.4 Efficient Solves using Block Elimination Mixed Method 55

2.4.1	 Block Elimination Doolittle (BED) and Block Elimination

Crout (BEC) . 56

2.4.2	 Block Elimination Mixed method (BEM) 60

2.4.3	 Thomas Algorithm for Solving Block Tridiagonal Systems 62

2.5 Implicit Determinant Method and Complex Eigenvalues 67

2.5.1	 The Gauss-Newton Method for Solving (2.61) 73

2.6 Conclusion . 78

3 The Calculation of the Distance to a Nearby Defective Matrix 79

3.1	 Introduction . 79

3.2	 The Implicit Determinant Method to find a

Nearby Defective Matrix . 83

3.3	 Newton’s method applied to g(α, β, ε) = 0 87

3.3.1	 Optimal Starting Vectors when A is Nonnormal 93

3.4 Numerical Experiments . 94

3.5 Finding d(A) and a Nearby Defective Matrix 101

3.6 Numerical Experiments . 110

3.7 Conclusion . 114

4 Inverse Iteration with a Complex Shift	 116

4.1 Introduction . 116

4.2 Eigenpair Computation & Under-determined Nonlinear Systems 119

4.3	 A Theoretical form for the Nullvector of the Jacobian (4.9) . . . 127

4.4	 Square System for Complex Eigenvalues of a Matrix 129

4.5	 Computing the Eigenpairs (z,λ) by solving a Square Complex

System of Equations for B = I . 137

4.6	 Square System for Complex Eigenvalues of a Matrix for B = I . 141
�
4.7 Conclusion . 146

ii

CONTENTS

5 Conclusions and Further Work 147

Bibliography . 148

iii

LIST OF FIGURES

2-1 Behaviour of f (λ,γ) = 0 near (λ∗,γ∗) 43

2-2 (a). For γ < γ∗. (b). For γ = γ∗ (c). For γ > γ∗ 44

4-1 Convergence history for Example 4.5.1 141

iv

LIST OF TABLES

2.1 Values of γ(k) and λ(k) . 51

2.2 Values of γ(k) and λ(k) . 52

2.3 Values of γ(k) and λ(k) . 54

2.4 Comparing Cpu time using LU versus BEM 66

2.5 Values of α(k), β(k) and γ(k) . 77

3.1 Columns five and six shows quadratic convergence for Example

3.4.1. 95

3.2 Results for Example 3.4.2, n = 6. 95

3.3 Results for Example 3.4.2, n = 15. 96

3.4 Results for Example 3.4.2, n = 20. 97

3.5 Results for Example 3.4.3, n = 6. 97

3.6 Results for Example 3.4.3, for n = 12. 98

3.7 Results for Example 3.4.4. 99

3.8 Results for Example 3.4.5, n = 6. 100

3.9 Results for Example 3.4.5, n = 20. 100

3.10 Columns five and six shows quadratic convergence for Example

3.4.1. Quadratic convergence is lost in the last row, possibly due

to round off errors. 111

3.11 Results for Example 3.4.2, n = 6 using Algorithm 13. 112

3.12 Results for Example 3.4.2, n = 15 using Algorithm 13. 112

3.13 Results for Example 3.4.2, n = 20 using Algorithm 13. 112

vi

LIST OF TABLES

3.14 Results for Example 3.4.3, n = 6 using Algorithm 13. 113

3.15 Results for Example 3.4.3, n = 12 using Algorithm 13. 113

3.16 Results for Example 3.4.4 using Algorithm 13. 114

4.1 Values of α(k) and β(k) . 125

4.2 Values of α(k) and β(k) . 137

4.3 Values of α(k) and β(k) . 140

vii

LIST OF ALGORITHMS

1 Inverse Iteration and Newton’s Method 16

2 Implicit Determinant Method Algorithm 18

3 Newton-based Algorithm for Computing [λ(k), γ(k)]T 39

4 Fixed Precision Iterative Refinement 46

5 Mixed Precision Iterative Refinement 47

6 BED Algorithm for solving Bordered Linear Systems 58

7 BEC Algorithm for solving Bordered Linear Systems 59

8 BEM Algorithm for Solving Bordered Linear Systems 60

9 BEM+k Algorithm (k number of iterative refinements) 61

10 Thomas Algorithm for block Tridiagonal Systems 65

11 Implicit Determinant on N(α, β,γ) to find [α(k), β(k),γ(k)]T . . . 76

12 Newton’s method for computing α, β and ε. 90

13 Gauss-Newton Algorithm for Computing a Nearby Defective

Matrix . 110

14 Eigenpair Computation using Gauss-Newton’s method 125

15 Eigenpair Computation using Newton’s method 136

16 Eigenpair Computation using Newton’s method 140

viii

LIST OF NOTATIONS

We present a list of frequently used notations in this thesis. Real and complex

scalars are written with Greek letters while vectors and matrices are boldfaced.

Symbols Definitions

Λε(A) ε-pseudospectrum of A . 10

�.�2 2-norm . 79

AH Hermitian transpose of A . 9

σj jth singular value . 9

I Identity matrix . 5

O Zero matrix . 121

ek The kth column of an identity matrix . 27

N The set of all natural numbers. 20

R The set of all real numbers. 9

C The set of all complex numbers. 5

Cn An n component complex vector. 5

Cn×n The set of all n by n complex matrices with complex entries. 80

Rn An n component real vector. .11

Rn×n The set of all n by n real matrices with real entries. 5

κ(A) Condition number of A. 44

N (A) The nullspace of A. 7

rank(A) The rank of A. 124

i The imaginary unit of a complex number. 117

λ∗ The eigenvalue at the root. 7

λ(k) The kth eigenvalue. 39

h Mesh size. 49

A(γ) A parameter-dependent matrix A. 1

x

LIST OF ALGORITHMS

Im(z) Imaginary part of z. 87

Re(z) Real part of z. 86

dim(A) Dimension of A. 7

AT A transposed. 7

1 vector of all ones. 125

xi

CHAPTER 1

Introduction

In this thesis, we are interested in the numerical solution of some linear and

nonlinear eigenvalue problems for real nonsymmetric n by n matrices. First,

given a real parameter-dependent matrix A(γ), which is at least twice con­

tinuously differentiable with respect to γ, the problem is: as γ is varied, at

what particular value of γ∗ do two real or complex eigenvalues λ1 and λ2,

say, of A(γ∗) coalesce at λ∗ to form a 2-dimensional Jordan block? Second, we

consider a related problem of computing the distance of a simple matrix to a

nearby defective matrix. A defective matrix by definition, has a Jordan block

of at least dimension two. Third, we study Newton’s method for the compu­

tation of an algebraically simple complex eigenpair in which special attention

is paid to the normalisation of the eigenvector.

Let us first consider a simple situation. Let B be an n by n symmetric matrix

and C an n by n nonsymmetric matrix. Let γ be a real parameter and consider

the following parameter-dependent eigenvalue problem

(B + γC)x = λx; or A(γ)x = λx, (1.1)

where A(γ) = (B + γC). When γ is zero, (1.1) becomes the standard sym­

metric eigenvalue problem of which, all the eigenvalues are real. However, as

γ is increased monotonically from zero, the symmetric structure in B is lost

because of the perturbation induced by the unsymmetric matrix γC [29]. As a

1

Introduction

result of this, for particular values of γ, two eigenvalues of A(γ) may coalesce

to form a 2-dimensional Jordan block or they may not coalesce after all. It is

easy to construct a 2 by 2 example where there is coalescence and another 2 by

2 example where coalescence does not occur. A particular case where coales­

cence is guaranteed to occur would be if Cwhere skew-symmetric, so that as γ

tends to infinity all the eigenvalues would tend to purely imaginary values. A

physical example where coalescence does occur, is in the flutter problem (see,

for example [53]) which we discuss next.

Flutter is a dynamic instability which can occur in structures in motion,

subject to aerodynamic loading [7] as in the coalescence of two real eigenvalues

in a supersonic panel flutter problem (see, for example [53]). The following

parameter-dependent generalized eigenvalue problem

(KT + γA)q = λMq, (1.2)

arises from the finite element discretization of a supersonic panel flutter par­

tial differential equation, where KT and M are symmetric positive definite; the

total stiffness and consistent mass matrices respectively, and A is the nonsym­

metric aerodynamic load matrix. In this context, γ represents the dynamic

pressure parameter and the pair q and λ represent displacements and eigen­

values respectively. When γ = 0, (1.2) corresponds to the symmetric eigen­

value problem of which all the eigenvalues are real and positive. However, as

the dynamic pressure parameter γ is increased monotonically from zero, the

first two smallest eigenvalues λ1 and λ2, say, move and coalesce together to

λ∗ at γ = γ∗ (which corresponds to the flutter speed [8, p. 423]) to form a

2-dimensional Jordan block and become complex conjugate eigenpairs when

γ > γ∗ (see, for example, [43, pp. 2268-2269], [44, p. 748]). See more explana­

tions in Section 2.3.

Another reason why the study of eigenvalue coalescence is important is

because a knowledge of where they coalesce can be used to explain the stabil­

ity of time-dependent ordinary or partial differential equations. For example,

consider the following parameter-dependent ordinary differential equation

dw
= −F(w,γ). (1.3)

dt

2

Introduction

If we denote ws as the steady state solution, then this means that at steady

state
dws

= −F(ws,γ) = 0. (1.4)
dt

Now, ifw = ws + u is an approximation to the solution where u is a perturbing

vector, then using Taylor Series (see, for example, [16, p. 18]), we can rewrite

(1.3) as

d []
(ws + u) = −F(ws + u,γ) = − F(ws,γ) + Fws (ws,γ)u + h.o.t. ,

dt

where Fws (ws,γ) is the Jacobian with respect tows and γ. Using (1.4) and after

neglecting second and higher order terms, we obtain

du du

dt
= −Fws (ws,γ)u; or

dt
= A(γ)u, (1.5)

where A(γ) = −Fws (ws,γ). Since the sign of the Jacobian above is negative,

this means that the right half plane is stable. The behaviour of the solution of

(1.5) depends on the spectrum of Fws (ws,γ), which is obtained by solving an

eigenvalue problem of the form

A(γ)φ = λφ.

One possible scenario is when Fws (ws,γ) corresponds to a 2 by 2 matrix hav­

ing repeated real eigenvalues λ∗, corresponding to a 2-dimensional Jordan

block. Then the solution to the ordinary differential equation (1.5) can then

be written as (see, for example, [45, 467-469])

u(t) = (a1 + a2t)e λ
∗tφ + a3e λ

∗tφ̂, (1.6)

for real constants a1, a2 and a3, where
[
− Fws (ws,γ) − λ∗I

]
φ̂ = φ, and φ̂ is a

generalised eigenvector of −Fws (ws,γ) corresponding to λ∗. If the right half
plane is stable, then the leftmost eigenvalues of the Jacobian Fws (ws,γ) deter­

mine the linearized stability of the steady state solutions of dw = −F(w,γ)dt

and one way of detecting Hopf bifurcation1 points is to observe the first few

1[12, p. 61] A Hopf bifurcation occurs when a complex conjugate pair of eigenvalues of the
parameter-dependent Jacobian −Fws (ws,γ) crosses the imaginary axis. This is typical for one

3

Introduction

leftmost eigenvalues. Hence, to recognise if instabilities are caused by real

or complex eigenvalues crossing the imaginary axis, it is important to know

when leftmost real eigenvalues coalesce and become leftmost complex conju­

gate eigenvalues (see, for example, Cliffe et al. [12, pp. 40, 99]).

An example that we discuss in detail with numerical results in Section 2.3

is the coalescence of two eigenvalues in a parameter-dependent nonsymmet­

ric matrix to form a 2-dimensional Jordan block. This example arises from an

eigenvalue problem that comes from the linearized stability of a partial dif­

ferential equation. It is motivated by the computation of the stability of fluid

flows governed by the steady-state Navier-Stokes equation as presented by

Graham et. al., in [28]. In our example, we seek the values of λ∗ and γ∗ such
that two real leftmost eigenvalues of A(γ∗), obtained from the finite centred

difference discritization of the resulting PDE eigenvalue problem, coalesce at

λ∗ to form a 2-dimensional Jordan block.

Another example of the importance of a 2-dimensional Jordan block is in

the monitoring of the dynamics of power systems in electrical engineering

(see, for example, Dodson et. al., [19]). Here, Dodson et. al., discussed the

coalescence of two complex eigenvalues to form a 2-dimensional Jordan block

as either power transfer or generator redispatch change. A numerical exam­

ple arising from this application is given in Section 2.5.1 of Chapter 2. Two­

dimensional Jordan blocks also arise when one considers the problem of com­

puting the nearest defective matrix from a simple one. Alam & Bora [4] de­

veloped a numerical algorithm for computing the distance of a simple matrix

from the set of matrices having a Jordan block of at least dimension two. A

more detailed discussion of the history of this problem will follow in Section

1.2. In Chapter 3, we present an algorithm for the computation of a nearby

defective matrix which is much more efficient than the Algorithm in Alam &

Bora [4]. It is not guaranteed to find the nearest defective matrix since it is

based on Newton’s method. However, it succeeded in finding the nearest de­

fective matrix in all the test examples.

Lastly, a further example of where Jordan blocks appear is in Freitag and

Spence [22], who computed the distance of a stable matrix to the set of unsta­

ble matrices by computing a 2-dimensional Jordan block in a special class of

parameter-dependent problems of the form (1.5).

4

Introduction

parameter-dependent Hamiltonian matrices.

The plan of this introductory chapter is as follows. In Section 1.1, we define

some terms in use throughout this thesis. This will then be followed in Sec­

tion 1.2 by a survey of previous attempts at finding an algorithm for comput­

ing a nearest defective matrix to a simple matrix. Next, Section 1.3 discusses

two key mathematical tools used in this thesis: the ABCD Lemma and the im­

plicit determinantmethod. Furthermore, we compare the implicit determinant

method and inverse iteration, in Section 1.4. In Section 1.5, we discuss the the­

ory of the Gauss-Newtonmethod for solving over- and under-determined sys­

tem of nonlinear equations. Section 1.6, presents a survey of Newton’s method

and inverse iteration with emphasises on the normalisation. Finally, in Section

1.7, we describe the structure of this thesis.

Next, we define some Linear Algebra terms and summarize the theory of

Jordan blocks.

1.1	 Background Theory: Jordan Blocks and some

Important Definitions

In this section, we define somewell known linear algebraic terms used through­

out this thesis for quick reference and present background theory on Jordan

blocks. Among other definitions, we define what a Jordan block is, algebraic

and geometric multiplicities of the eigenvalue of a matrix, as well as what it

means for a matrix to have a 2-dimensional Jordan block.

Let A ∈ R be a real n by n matrix and λ ∈ C an eigenvalue of A corre­

sponding to the nonzero eigenvector φ ∈ Cn, such that

Aφ = λφ.	 (1.7)

The vector φ is often referred to as a right eigenvector [40]. A left eigenvector

corresponding to the eigenvalue λ is defined as any nonzero vector ψ that sat­

isfies ψTA = λψT . The term geometric multiplicity of an eigenvalue λ of A

is defined as the dimension of the nullspace of (A− λI). The algebraic multi­

plicity of an eigenvalue λ of A is its multiplicity as a root of the characteristic

polynomial of A (see, for example, [60, p. 184]). We say λ is algebraically sim­

5

�

(
)

Introduction

ple if it is a simple root of the characteristic polynomial. If λ is algebraically

simple, then its corresponding left and right eigenvectors are not orthogonal,

that is ψTφ = 0 (see, for example, [21, p. 29, equation 2.2]).

Next, we define what it means for a matrix to have a 2-dimensional Jordan

block. But before we do that, it is important to know what a Jordan block is

first.

Definition 1.1.1. [41, p. 358] A square upper-triangular matrix J(λ) that satisfies

the following properties

(a).	 all its main diagonal entries equal λ,

(b).	 all its entries on the first superdiagonal equal to one,

(c). all other entries are zero,

is called a Jordan block.

The following result explains the relationship between the Jordan decomposi­

tion of A and the Jordan block of A.

Theorem 1.1.1. [23, p. 317] If A ∈ Cn×n, then there exists a nonsingular Y ∈ Cn×n

such that

= Y−1AY J(λ1), J(λ2), . . . , J(λt)J
 = diag
 ,

where
 
 

λi 1 0· · ·

. .
0	 λi

. . ..

. . .



















J(λi) = .
 .
 .
 ,
.
 .
 .

. 1

0 0 λi· · ·
is an m(λi) m(λi) matrix and m(λ1) + m(λ2) + + m(λt) = n, m(λi) is the ×	 · · ·
algebraic multiplicity of λi and t is the number of linearly independent eigenvectors of

A corresponding to the number of blocks.

A way to recognise if the matrix A(γ) has a 2-dimensional Jordan block is

given in the next definition.

6

�

�

Introduction

Definition 1.1.2. [22] Let λ∗ be an eigenvalue of A(γ∗). A(γ∗) has a 2-dimensional

Jordan block corresponding to the eigenvalue λ∗ if λ∗ has algebraic multiplicity 2 and

geometric multiplicity 1.

An immediate consequence of λ∗ being algebraically double and geometrically

simple in the above definition is explained as follows. If

φ∗ ∈ N
(
A(γ∗) − λ∗I

)
\{0} and ψ∗ ∈ N

(
A(γ∗) − λ∗I

)T \{0}, then

ψ∗Tφ∗ = 0, (1.8)

and there exists a generalised eigenvector φ̂∗ corresponding to λ∗ which satis­

fies
(
A(γ∗) − λ∗I

)
φ̂∗ = φ∗, and ψ∗Tφ̂∗ �= 0. (1.9)

We have used the Jordan chain equations (see, for example [41, pp. 359]) to

arrive at the last equation and the condition ψ∗Tφ̂∗ = 0 ensures that the di­

mension of the Jordan block is exactly 2. After premultiplying both sides of

(1.9) by
(
A(γ∗) − λ∗I

)
, we obtain

(
A(γ∗) − λ∗I

)2
φ̂∗ =

(
A(γ∗) − λ∗I

)
φ∗ = 0.

This shows that the algebraic multiplicity of λ∗ is at least two and that φ̂∗ is
indeed a generalised eigenvector.

Before we continue, we give some further definitions in use.

Definition 1.1.3. [4] An n× n matrix is simple if it has n distinct eigenvalues.

Definition 1.1.4. [60, p. 185] An eigenvalue is said to be defective if its algebraic

multiplicity is greater than its geometric multiplicity. A matrix is said to be defective

if it has one or more defective eigenvalues.

Definition 1.1.5. [3, p. 367] The distance d(A) of a simple matrix A from a nearby

defective one, B is defined as,

d(A) = inf{�A− B� : B is defective}, (1.10)

and

gap(A) = min
|λi − λj|

, (1.11)
i=j 2

7

Introduction

where the λi’s for i = 1, 2, . . . n, are the eigenvalues of A.

In the next section, we give a survey of previous attempts at finding a near­

est defective matrix to a simple matrix.

1.2 Computing a Nearby Defective Matrix

As mentioned in the introductory section, one of the applications where a

2-dimensional Jordan block arises is in the computation of a nearest defec­

tive matrix from a simple one. Let A ∈ Rn×n be a simple matrix. The next

problem that we seek an answer to in this thesis, is to describe how to find

a nearby defective matrix to A. In more precise terms, we attempt to pro­

vide a partial answer to a question posed by Wilkinson (see, [62, pp.90-93])

i.e., ”Given a simple matrix A, find d(A) and a defective matrix B such that

d(A) = inf{�A − B� : B is defective}.” The main reason for computing a

nearby defective matrix to A is because: if A has a nearby defective matrix,

then it has ill-conditioned eigenvalues [64]. The focus in this section, is to

present in a chronological order, a brief survey of previous attempts at finding

a nearest defective matrix from a simple one. We survey the contributions of

Ruhe, Wilkinson, Malyshev and Alam & Bora.

In an attempt to provide an answer toWilkinson’s problem, Ruhe [50, p. 58]

gave a bound for the distance between a matrix A having distinct eigenvalues

and the set of matrices having at least two coinciding eigenvalues, in terms of

the angle between a vector and a subspace.

In Wilkinson’s paper [64], he assumes that if A is a matrix with an ill-

conditioned eigenvalue z and B = QAQH , Q unitary, then there exists a

nearby matrix B + E having multiple eigenvalues. In that paper, he gave a

sharper bound for the distance between A and the set of matrices having mul­

tiple eigenvalues than Ruhe’s [50]. Wilkinson’s proof uses the inner product

s = yHx, where y and x are the unit left and right eigenvectors corresponding

to the eigenvalue z. The reciprocal of s is the condition number of a simple

eigenvalue of A. Thus, a small s implies that the condition number of the

eigenvalue is large. He shows that if s is ’small’, then there exists a perturbed

matrix B+ E having z as a multiple eigenvalue and A+ F = QHBQ+ QHEQ,

F = QHEQ such that the ratio �F�/�A�, is small [64].

8

[]

Introduction

More recently, Malyshev [37], proved that the 2-norm distance from an n ×
n matrix A to the set of matrices with multiple eigenvalues z ∈ C and ω ∈ R

is given by

d(A) = min max σ2n−1
A− zI ωI

,
z∈C ω≥0 0 A− zI

where σj is the jth singular value. However, as Malyshev admits, the above

expression for d(A) is mainly of theoretical interest and not so useful as a com­

putational result. This is because the outer minimization is a hard optimisation

problem.

If A is normal, Alam [3], gives a procedure for constructing the nearest

defective matrix to A. His construction is based on an appropriate pair of

eigenvalues of A and their corresponding unit eigenvectors. The matrix Bwas

constructed such that d(A) = �A − B�. Alam’s paper [3], consists of two

important results: the first result is important because it provides a formula

for finding the nearest defective matrix from a normal matrix A. Moreover, the

formula is based on the normalized left and right singular vectors u and v of

A− zI corresponding to its smallest singular value σn �= 0 such that uHv = 0,

and z is a defective eigenvalue of B with σn = �A− B�. The second result is
important because, it tells us how to find z i.e., the midpoint of a pair (λi,λj)

of eigenvalues of A such that = 2 gap(A), where gap(A) is as defined |λi − λj|
as in (1.11)

λi + λj
z = . (1.12)

2

With this value of z, Alam and Bora constructed two defective matrices B,B′

by the formulae [3]

B = A− (λi −
2

λj) (xi √−
2

xj) (xi + √
2

xj)
H

= A−
4

1
(λi − λj)(xi − xj)(xi + xj)

H ,

(1.13)

and

B′ = A− (λi −
2

λj) (xi √+

2

xj) (xi −√
2

xj)
H

= A− 1
4
(λi − λj)(xi + xj)(xi − xj)

H ,

(1.14)

such that d(A) = gap(A) = �A − B� = �A − B′�. Here, λi and xi for

i = 1, . . . , n are n distinct eigenvalues of A and their corresponding unit eigen­

9

Introduction

vectors respectively.

When A is nonnormal, Alam and Bora [4, p. 292], presented an algorithm

for finding the nearest defective matrix to a simple matrix, and the distance

between them. Alam and Bora [4, p. 284] proved that given a complex n by

n matrix, with z ∈ C\Λ(A) which has to be found, Λ(A) is the spectrum of

A, u and v are a pair of normalized left and right singular vectors of A − zI

corresponding to the smallest singular value ε such that uHv = 0, then the

nearest defective matrix to A is given by the formula; B = A− εuvH . It was

shown that u and v are left and right eigenvectors of B corresponding to the

eigenvalue z i.e., uHB = zuH and Bv = zv. Since uHv = 0, this implies that

z is a multiple eigenvalue of B, hence d(A) = ε. However, their algorithm for

finding the values of z and ε, and the nearest defective matrix to A relies on

the computation of the ε-pseudospectrum of A which we now describe.

The ε-pseudospectra Λε(A) of a matrix A, can be defined as [61, p. 458]

⋃

Λε(A) = Λ(B), (1.15)
B∈A(ε)

where

A(ε) = {B ∈ C
n×n : �A− B� ≤ ε}.

For any ε > 0, the ε-pseudospectrum of A, Λε(A) consists of nontrivial compo­

nents and the interior of each of its component contains at least one eigenvalue

of A. As ε is increased, the components of Λε(A) coalesce and z, the eigen­

value of the defective matrix B is found from the point of coalescence. This

notion of ε-pseudospectra was used to show that if z is a point of coalescence

of two components of Λε(A), then z is a multiple eigenvalue of the defective

matrix B such that ε = �A− B�. Though the paper [4], provides the solution

to Wilkinson’s problem, the algorithm given for computing a nearest defective

matrix is slow and impractical for large matrices. This is because it requires

the computation of the ε-pseudospectrum of A and a decision as to when two

components of Λε(A) coalesce is needed, and it is not obvious how this may

be achieved automatically. The first drawback has been circumvented with

the development of a new free software eigtool by Wright [67]. An excellent

overview of previous methods for computing the nearest defective matrix has

10

[]

Introduction

been given by Overton [47].

In the next section, we present a review on the implicit determinant method

of Spence and Poulton for the solution of a nonlinear eigenvalue problem aris­

ing from photonic crystals [55] as well as Keller’s [33] ABCD Lemma.

1.3	 Background: ABCDLemma and the Implicit De­

terminant Method

In this section, we present two key mathematical tools that will be of great

use in this thesis. In the first case, we present Keller’s [33] ABCD Lemma.

Secondly, we review the implicit determinant method of Spence and Poulton

[55] which makes use of a special case of the ABCD Lemma and Cramer’s rule.

The key results in this section are Lemmas 1.3.1 and 1.3.2.

First, we present the one-dimensional version of Keller’s [33] ABCDLemma.

Lemma 1.3.1. The ”ABCD” Lemma

Let A be an n by n matrix, b, c ∈ Rn and d ∈ R. Let

A b
M = ,	 (1.16)

cT d

be an (n + 1) by (n + 1) real matrix.

(a).	 Suppose that A is nonsingular, then there exists the following decomposition of

M, [] [] []
A b I 0 A b

cT d
=

cTA−1 1 0T d− cTA−1b
. (1.17)

The matrix M is nonsingular if and only if d − cTA−1b �= 0.

(b).	 If A is singular of rank(A) = n − 1, then M is nonsingular if and only if

ψTb �= 0, for all ψ ∈ N (AT)\{0} and cTφ �= 0, for all φ ∈ N (A)\{0}.

Proof: See [33].

Next, we describe Spence and Poulton’s implicit determinant method as for­

mulated in [55]. The aim of presenting the implicit determinant method is be­

11

�

�

Introduction

cause we want to extend it to the parameter-dependent nonsymmetric matrix

case to find a 2-dimensional Jordan block.

The implicit determinant method of Spence and Poulton [55] is a method

of converting a problem for n n matrices into an equivalent scalar problem. ×
We can solve the scalar problem in a number of ways, for example, using the

bisection method. The fact that it is efficient to implement Newton’s method is

an added advantage. In the paper [55], the theory of the implicit determinant

method was given for the case in which A(γ) is Hermitian, and comparisons

were made on the convergence of the implicit determinant method and non­

linear inverse iteration applied to a nonlinear eigenvalue problem arising in a

photonic crystal problem.

Given a parameter-dependent Hermitian matrix A(γ) and assume A(γ) is

a smooth function of γ. Let [55, p. 69]

A(γ)x = 0, where x = 0, (1.18)

be a parameter-dependent eigenvalue problem.

Consider the following (n + 1) by (n + 1) bordered linear system of equa­

tions [55, p. 70],
[] [] []
A(γ) b x 0

= , (1.19)
bH 0 f 1

which shows that the eigenvector x is normalised using bHx = 1. The fol­

lowing result is the main mathematical tool of Spence and Poulton’s implicit

determinant method.

Lemma 1.3.2. [55, pp. 70] Let (x∗,γ∗) solve (1.18) with A(γ) Hermitian. Assume

that zero is a simple eigenvalue of A(γ∗), such that

(a). dimN
[
A(γ∗)

]
= 1.

(b). For some b ∈ Cn\{0}, assume

bH x∗ = 0. (1.20)

12

[]

Introduction

Then the (n + 1) by (n + 1) matrix M(γ) defined by

A(γ) b
M(γ) = ,

bH 0

is nonsingular at γ = γ∗.

Proof: See [33].

From the result of Lemma 1.3.2, M(γ) is nonsingular at the root. Following

[55], this means that by an application of the implicit function theorem (see,

for example, [56, p. 186]) M(γ) is nonsingular for γ near γ∗ because A(γ) is a

smooth function of γ. Therefore, from (1.19) x and f are smooth functions of γ

and we can write x = x(γ) and f = f (γ). So that (1.19) becomes

[] [] []
A(γ) b x(γ) 0

= . (1.21)
bH 0 f (γ) 1

Now, by applying Cramer’s rule (see [32, p. 414]) to (1.21), we obtain

detA(γ)
f (γ) = . (1.22)

detM(γ)

As stated in [55], because A(γ) and M(γ) are both Hermitian, this means that

f (γ) is real. We conclude by saying that the main idea behind the implicit

determinant method is that if M(γ) is nonsingular, then f (γ) = 0 if and only

if A(γ) is singular. So we seek zeros of f (γ) as a way of finding the zeros of

the determinant of A(γ). Spence and Poulton continue by finding the solution

of f (γ) = 0 using Newton’s method, which requires the calculation of fγ(γ),

where fγ(γ) = d
d
γ f (γ). This is accomplished by solving

[] [] []
A(γ) b xγ(γ) A (γ)x(γ)′

,
bH 0 fγ(γ)

= −
0

obtained by differentiating both sides of (1.21) with respect to γ. After which

the sequence of γ iterates is computed by γ(k+1) = γ(k) f (γ(k))/ fγ(γ(k)), for −
k = 0, 1, 2, Using the above matrix equation, fγ(γ∗) was shown to be equal

to −x∗HA′(γ∗)x(γ∗). Hence, fγ(γ∗) is nonzero provided x∗HA′(γ∗)x(γ∗) is

13

Introduction

nonzero.

Note that, Freitag and Spence in [22], extended the method recounted above

to a special class of parameter-dependent Hamiltonian matrices by computing

a 2-dimensional Jordan block to solve a distance to instablility problem. In

this case, A(γ) is H(γ) − iωI where H(γ) is the parameter-dependent Hamil­

tonian, ω R and M(γ) = M(γ,ω) is now nonsymmetric-depending on ∈
two parameters γ and ω. In Chapter 2 of this thesis, we extend the idea of

Spence and Poulton’s implicit determinant method [55, p. 71] further, to the

case of computing a 2-dimensional Jordan block from a parameter-dependent

nonsymmetric matrix. This version of the implicit determinant method shows

that there is a relationship between the zeros of f (λ,γ) and the determinant of

(A(γ) − λI).

First and foremost, in the next section, we present the implicit determinant

method for a nonsymmetric matrix and compare it with inverse iteration.

1.4 A Comparison of the Implicit Determinant

Method and Inverse Iteration

Let A be a real n by n nonsymmetric matrix. In this section, we give the non­

symmetric version of inverse iteration and then extend the implicit determi­

nant method of Spence and Poulton to a nonsymmetric A. We conclude by

comparing this version of the implicit determinant method with inverse itera­

tion. The discussion on inverse iteration in this section is a special case of [21]

for the standard eigenvalue problem.

Recall from (1.7) that (A− λI)φ = 0. So, if we add to (1.7) the eigenvec­

tor normalization cTφ = 1, then the extended system of nonlinear equations

becomes: (see, also [21, p. 29])

[
(A− λI)φ

]

F(w) = = 0, (1.23)
cTφ − 1

where w = [φT ,λ]. Using the ABCD Lemma [33], it can be shown that the

14

�

Introduction

Jacobian Fw(w) is nonsingular,

Fw(w) =
[
A− λI −φ

]

. (1.24)
cT 0

at the root. Hence, its inverse exists at an algebraically simple eigenvalue (i.e.,

ψTφ �= 0, for all ψ ∈ N (AT − λI)\{0} and φ ∈ N (A− λI)\{0}) and if c is
chosen such that cTφ = 0. Newton’s method

Fw(w(k))Δw(k) = −F(w(k))

w(k+1) = w(k) + Δw(k), (1.25)

with cTφ(k) = 1, now becomes

[
A− λ(k)I −φ(k)][

Δφ(k)] [
(A− λ(k)I)φ(k)]

.
cT 0 Δλ(k)

= −
cTφ(k) − 1

By expanding the above, we have the following system of equations

(A− λ(k)I)Δφ(k) − Δλ(k)φ(k) = −(A− λ(k)I)φ(k)

c TΔφ(k) = 0.

After collecting like terms in the first equation above and using the relation

φ(k+1) = φ(k) + Δφ(k), we obtain

(A− λ(k)I)φ(k+1) = Δλ(k)φ(k) (1.26)

Upon division of both sides by Δλ(k) and letting w(k) = φ
Δ

(

λ

k+

(k

1

)

)
we have

(A− λ(k)I)w(k) = φ(k), (1.27)

using the fact that cTΔφ(k) = 0, we have cTφ(k+1) = cT(φ(k) + Δφ(k)) = 1.

15

[]

Introduction

Hence, cTw(k) =
Δλ
1
(k) , from which Δλ(k) = T

1
(k) . Therefore,
c w

φ(k+1) = Δλ(k)w(k)

(k)w
= . (1.28)

T (k)c w

By making use of (1.25) we have

λ(k+1) = λ(k) + Δλ(k)

= λ(k) +
T

1
(k)

. (1.29)
c w

From the above analysis, Algorithm 1 is immediate.

Algorithm 1 Inverse Iteration and Newton’s Method

Input: φ(0), λ(0), c(0) such that cTφ(0) = 1, tol.
1: for k = 1, 2, , until convergence do · · ·
2: Solve (A− λ(k)I)w(k) = φ(k−1).

3: Compute Δλ(k) = T
1

(k) . c w

4: Compute λ(k+1) = λ(k) + Δλ(k).

5: Update φ(k+1) = Δλ(k)w(k).
6: Test for convergence.
7: end for

Output: φ∗ and λ∗.

Next, we describe the implicit determinant method for a nonsymmetric A.

Consider the following (n + 1) by (n + 1) bordered linear system of equations

[55, p. 70],
[] [] []
(A− λI) b x

=
0

. (1.30)
cT 0 f 1

Lemma 1.4.1. Let (x∗,λ∗) solve (1.30). Assume that zero is a simple eigenvalue of

(A− λ∗I), such that

(a). dimN (A− λ∗I) = 1.

(b). For some b, c ∈ Rn\{0}, assume

ψ∗Tb �= 0, and c T x∗ �= 0, (1.31)

16

[]

Introduction

for all ψ∗ ∈ N
[
(AT − λ∗I)

]
.

Then the (n + 1) by (n + 1) matrix M(λ∗) defined by

M(λ∗) =
(A− λ∗I) b

,
cT 0

is nonsingular.

Proof: See [33].

Since the result of Lemma 1.4.1 shows that M(λ∗) is nonsingular, then follow­

ing [55], this means that by an application of the implicit function theorem (see,

for example, [56, p. 186]), M(λ) is nonsingular for λ near λ∗ because (A− λI)

is a smooth function of λ. Therefore, from (1.30) x and f are smooth functions

of λ and we can write x = x(λ) and f = f (λ). So that (1.30) becomes

[] [] []
(A− λI) b x(λ)

=
0

. (1.32)
cT 0 f (λ) 1

Now, by applying Cramer’s rule (see [32, p. 414]) to (1.32), we obtain

f (λ) =
det(A− λI)

. (1.33)
detM(λ)

By the implicit determinant method, if M(λ) is nonsingular, then f (λ) = 0 if

and only if (A − λI) is singular, which is attainable at the root. So we seek

zeros of f (λ) as a way of finding the zeros of the determinant of (A− λI). To

find the solution of f (λ) = 0 using Newton’s method, we need fλ(λ), where

fλ(λ) = d
d
λ f (λ). This means we have to differentiate (1.32) with respect to λ

and solve [] [] []
(A− λI) b xλ(λ)

=
x(λ)

. (1.34)
cT 0 fλ(λ) 0

After which the sequence of λ iterates is computed by

λ(k+1) = λ(k) −
f

f

λ

(

(

λ

λ

(

(

k

k

)

)

)

)
, (1.35)

for k = 0, 1, 2, . . ., until convergence. At the root, observe that by expanding

17

�

�

Introduction

the first row of (1.34), one obtains

(A− λ∗I)xλ(λ∗) + fλ(λ∗)b = x(λ∗). (1.36)

Hence, after premultiplying both sides by ψ∗T, then

fλ(λ∗) =
ψ∗

ψ

T

∗
x
T

(

b

λ∗)
, since ψ∗Tb �= 0. (1.37)

But for an algebraically simple eigenvalue, the left and right eigenvector are

not orthogonal i.e., ψ∗T x(λ∗) = 0. Therefore,

fλ(λ∗) = 0. (1.38)

Algorithm 2 is now immediate.

Algorithm 2 Implicit Determinant Method Algorithm for a Simple Matrix

Input: Choose b, c, λ(0), such that M(λ(0)) is nonsingular, tol.
1: for k = 1, 2, , until convergence do · · ·
2: Solve (1.32) for x(λ) and f (λ).
3: Solve (1.34) for xλ(λ) and fλ(λ).
4: Update

λ(k+1) = λ(k) −
f

f

λ

(

(

λ

λ

(

(

k

k

)

)

)

)
.

5: Test for convergence.
6: end for

Output: x(λ∗) and λ∗.

Stop Algorithm 2 as soon as

tol.� f (λ(k))� ≤

Now, we present the theory to explain the link between the implicit deter­

minant method and inverse iteration. For ease of notation, we shall drop the

superscripts k and write λ(k+1) = λ+ and λ(k) = λ.

We start by assuming that λ �= λ∗, which implies (A− λI) is nonsingular.

18

Introduction

Observe by expanding along the first row of (1.32), that

(A− λI)x(λ) + b f (λ) = 0, and x(λ) + (A− λI)−1b f (λ) = 0.

Premultiply both sides by cT and solve for f (λ) using the second row of (1.32)

to obtain
1

f (λ) = −
cT(A− λI)−1b

. (1.39)

Similarly, it can be shown by using the first row of (1.34) and cTxλ(λ) from the

second row that
cT(A− λI)−1x(λ)

fλ(λ) = . (1.40)
cT(A− λI)−1b

Note from (1.27), that if we replace w with y and φ with x, that is,

(A− λI)y = x, then y = (A− λI)−1 x(λ),

and we can rewrite (1.40) as

T

fλ(λ) =
c y

.
cT(A− λI)−1b

Now, it is easy to see that (1.35) reduces to

1
λ+ = λ + .

Tc y

Which is the same update for λ as that obtained using inverse iteration, see

(1.29). What remains now is to give the implicit determinant method’s ana­

logue for the eigenvector update which we explain below.

Set (A− λI)z = b in (1.32) and expand the first row to obtain

(A− λI)x(λ) + f (λ)(A− λI)z = 0, then x(λ) = − f (λ)z.

Observe that because the second row of (1.32) implies cTx(λ) = 1, then by

premultiplying both sides of x(λ) = f (λ)z by cT simplifies to

1 z
f (λ) = − , and x(λ) = .

T Tc z c z

19

Introduction

We conclude this section by saying that the implicit determinant method is

an inefficient way of carrying out inverse iteration. This is because it involves

two linear system solves at each iteration. However, one advantage of the im­

plicit determinant method over inverse iteration is that it converges quadrati­

cally when the dimension of the nullspace of (A− λ∗I) is one, which includes

the case when λ∗ is a defective eigenvalue. Inverse iteration converges with

|λ(k) − λ∗| = O(1/k) as k → ∞, k ∈ N when λ∗ is a defective eigenvalue as
illustrated in [63] (see, also [11]). Other advantages of the implicit determinant

method will be seen in Chapters 2 and 3.

In the next section, we present some background theory on the Gauss-

Newton method, which is used several times in the chapters ahead.

1.5 Background: The Gauss-Newton Method

In this section, we present backgroundmaterials on the Gauss-Newton method

for solving over- and under-determined systems of nonlinear equations. The

motivation for these discussions comes from the fact that in Section 2.5 of

Chapter 2, we will solve an over-determined system of 4-real nonlinear equa­

tions in 3 real unknowns, which arises from the theory on the coalescence of

two complex eigenvalues to form a 2-dimensional Jordan block in a parameter­

dependent matrix. Also, in Chapter 3, we will solve a system of (2n + 3) real

nonlinear equations in (2n + 2) real unknowns arising from the theory of the

nearest defective matrix problem. We present the theory of under-determined

system of nonlinear equations because it will be applied in Chapter 4 as a key

theoretical tool for solving the generalised eigenvalue problem.

1.5.1 Over-Determined Systems of Nonlinear Equations

This subsection considers the solution of over-determined nonlinear system

of equations in which the number of equations is more than the number of

unknowns.

Let F : Rn Rm for m > n. Consider the problem of finding a solution �→
to the over-determined nonlinear system of equations F(w) = 0. Define g :

20

[

(
)

Introduction

Rn R [46, p. 267] as �→

1 1 m

F(w)TF(w) = fi(w)2 . (1.41)
∑
g(w) =

2
 2

i=1

A minimizer of (1.41) for w ∈ Rn is the least squares solution of the over­

determined system of nonlinear equations F(w) = 0 [46]. Thus,

m

∑
∇g(w) =
 fi(w)∇ fi(w)
i=1

]
∇ f1(w) ∇ f2(w) ∇ fm(w) f1(w)· · ·



(1.42)
=













f2(w)
. . .

fm(w)

  
∂ f1(w) ∂ f2(w) ∂ fm(w)

f1(w)=
 ∂w1 ∂w1 ∂w1
· · ·

∂ f1(w) ∂ f2(w) ∂ fm(w)
∂w2 ∂w2 ∂w2



























f2(w)
.
.
.

· · ·

. . .
. . .
. . .· · ·

∂ f1(w) ∂ f2(w) ∂ fm(w)
∂wn

fm(w)
∂wn ∂wn

· · ·
= [Fw(w)]TF(w),

Rm×n is assumed to be of full rank. Hence, find­where the Jacobian Fw(w) ∈
ing a stationary point of (1.41) is equivalent to finding the zeros of

∇g(w) = [Fw(w)]TF(w) = 0. (1.43)

Differentiating (1.42) again we obtain

m

∇
2

∇ fi(w)∇ fi(w)T + fi(w)∇2 fi(w)∑
g(w) =

i=1

= [Fw(w)]TFw(w) + R(w),

21

(

(
)

(

Introduction

where


 

∂2 fi(w) ∂2 fi(w) ∂2 fi(w)

∂w1
2 ∂w1∂w2

· · · ∂w1∂wn

∂2 fi(w) ∂2 fi(w) ∂ fi(w)
∂w2∂wn

















m m
∂w2∂w1 ∂w2 · · ·

∑
fi(w)∇2 fi(w) = ∑
R(w) =
 fi(w) 2 .

.· · ·

∂2 fi(w) ∂2 fi(w) ∂2 fi(w)
∂wn∂w1 ∂wn∂w2 n

2· · ·
∂w

i=1 i=1

Newton’s method applied to finding the zeros of (1.43) is

w(k+1) = w(k) − [∇2 g(w(k))]−1
∇g(w(k))

= w
(k) −
 [Fw(w(k))]TFw(w(k)) + R(w(k))
)−1

[Fw(w(k))]TF(w(k)).

(1.44)

The second term on the right hand side of (1.42) implies solving for Δw(k) in

[Fw(w(k))]TFw(w(k)) + R(w(k)) Δw
(k) = −[Fw(w(k))]TF(w(k)),

and adding it to w(k) to obtain w(k+1). If we exclude2 the second-order term of

∇
2g(w) [42] in (1.44), then we have the Gauss-Newton method,

w
(k+1) (k)= w
 −
 [Fw(w(k))]TFw(w(k))
)−1

[Fw(w(k))]TF(w(k)). (1.45)

In practice, we solve for Δw(k) in

[Fw(w(k))]TFw(w(k))Δw(k) = −[Fw(w(k))]TF(w(k)), (1.46)

and update

w(k+1) = w(k) + Δw(k). (1.47)

We remark that, (1.46) reminds us of the least squares method for minimizing

�Ax−b� using the normal equations and can be solved using several methods

(see, for example, Trefethen [60, pp. 77-84]). We will concentrate on using the

2When R(w∗) = 0, [16, p. 222], this occurs when we have a zero-residual problem, that is,
if F(w∗) = 0, then the sequence of iterates generated by the Gauss-Newton method converges
quadratically. If R(w∗) is small in comparism to Fw(w∗)TFw(w∗), then the Gauss-Newton
iterates converges linearly. If R(w∗) is too large, then the Gauss-Newton iterates may not
converge at all.

22

Introduction

QR factorization in finding a solution to (1.46). This entails finding the reduced

QR factorization of Fw(w) = QR, where Q ∈ Rm×n is unitary and R ∈ Rn×n

is upper triangular, and substitute into (1.46). Consequently,

RTQTQRΔw(k) = −RTQTF(w(k)), and RTRΔw(k) = −RTQTF(w(k)).

Thus, if R is nonsingular, then by multiplying both sides by the inverse of R

transposed, yields

RΔw(k) = −QTF(w(k)). (1.48)

So we solve a triangular system of n equations for the n unknowns Δw(k).

Upon solving the linear system of equations for Δw(k), we substitute Δw(k)

into (1.47) to obtain w(k+1).

The following theoretical discussion on the solution of under-determined

system of nonlinear equations will be used later in Chapter 4.

1.5.2 Under-Determined Systems of Nonlinear Equations

Let F : Rn Rm where m < n. Consider the problem of solving the follow­→
ing under-determined system of nonlinear equations F(w) = 0. In order to

solve the system of nonlinear equations, we first linearize it. By a linearization

technique (see, [46, pp.181-185]), it is not difficult to see that for k = 0, 1, 2, . . .

Fw(w(k))Δw(k) = −F(w(k)), (1.49)

which is a sequence of under-determined linear system of equations where

the Jacobian Fw(w(k)) is assumed to be of full rank. The least squares solution

Δw(k) of minimum norm to the under-determined linear system of equations

(1.49) is

Δw(k) = −Fw(w(k))†F(w(k)); (1.50)

where

Fw(w(k))† = Fw(w(k))T[Fw(w(k))Fw(w(k))T]−1,

23

Introduction

is theMoore-Penrose pseudo-inverse of Fw(w(k)) (see also, [40, p. 143]). There­

fore, we obtain

Δw(k) = −Fw(w(k))†F(w(k)); and w(k+1) = w(k) + Δw(k), (1.51)

which is the local Gauss-Newton method [17, pp. 221-222]. In actual compu­

tation, in solving Fw(w(k))Δw(k) = −F(w(k)), we do not compute the Moore-

Penrose pseudo-inverse of Fw(w(k)) explicitly. Rather, we find the reduced

QR factorization Fw(w(k))
T

= QR where Q is a real m by n matrix and R

is an n by n real matrix, which means that Fw(w(k)) = RTQT . Thus, (1.49)

becomes RTQTΔw(k) = −F(w(k)). By letting g(k) = QTΔw(k) we obtain,

RTg(k) = −F(w(k)). Computationally, we first solve the upper-triangular sys­

tem

RT g(k) = −F(w(k)),

for the unknown vector g(k). With the computed value of g(k), we then solve

QTΔw(k) = g(k),

for Δw(k). But after premultiplying both sides of the above equation by Q, we

obtain the solution to (1.49) as

Δw(k) = Qg(k).

Since Fw(w(k)) is assumed to be of full rank, R is invertible. Hence, the solu­

tion to (1.49) can also be expressed as Δw(k) = −QR−TF(w(k)). The sequence

of iterates {w(k)} generated by the local Gauss-Newton method converges

quadratically if F(w∗) = 0 (see for example, [49, p. 44], [46, p. 409], [34, p.

57], [18, p. 9], [46, pp. 412-413]). One ’fundamental’ property of the minimum

norm solution (1.50) which we will use in Chapter 4 is given in the following

lemma.

Lemma 1.5.1. [10, p. 6] Let Fw(w(k)) be of full rank m. If

Fw(w(k))Δw(k) = −F(w(k)),

24

Introduction

is an under-determined linear system of equations, then its least squares solution

Δw(k) = −Fw(w(k))T[Fw(w(k))Fw(w(k))T]−1F(w(k)),

is orthogonal to the nullspace of Fw(w(k)).

Proof: By definition, if n(k) is in the nullspace of Fw(w(k)), then

Fw(w(k))n(k) = 0.

Thus,

n(k)T Δw(k) = −n(k)T Fw(w(k))T[Fw(w(k))Fw(w(k))T]−1F(w(k))

= −[Fw(w(k))n(k)]T[Fw(w(k))Fw(w(k))T]−1F(w(k)),

and because Fw(w(k))n(k) = 0, n(k)T Δw(k) = 0. This shows that Δw(k) is

orthogonal to the nullspace of Fw(w(k)).

In the next section, we give a literature survey of Newton’s method and in­

verse iteration with a complex shift.

1.6	 Survey of Newton’s Method and Inverse Itera­

tion with Complex Shift

This section surveys the contributions of Ruhe [51] and Tisseur [59] to the so­

lution of nonlinear eigenvalue problems using Newton’s method and inverse

iteration as well as Parlett and Saad’s [48]. The main point is that both [51] and

[59] use two different differentiable normalisations: (1.55) and (1.58), while in

Chapter 4 we analyse the natural extension of the distance norm, which is a

non differentiable normalisation and so leads to interesting theoretical ques­

tions.

Let T(λ) be a parameter-dependent n by n matrix whose entries are ana­

lytic functions of the complex number λ [51]. In this section, we give a brief

survey on previous approaches used to compute the eigenpair (φ,λ) from the

25

[]

Introduction

eigenvalue problem

T(λ)φ = 0, (1.52)

where φ ∈ Cn\{0}. The standard eigenvalue problem Aφ = λφ, is a special

case of (1.52) if [51, p. 674]

T(λ) = A− λI, (1.53)

or the generalised eigenvalue problem if

T(λ) = A− λB. (1.54)

In order to apply Newton’s method to (1.52), Ruhe in [51, pp. 677-678], added

the normalisation

c Hφ = 1, (1.55)

where c is a fixed nonzero vector and obtained the following system of non­

linear (n + 1) equations in (n + 1) unknowns w = [φ,λ]T ,

T(λ)φ
F(w) = = 0. (1.56)

cHφ − 1

By an application of Newton’s method to the nonlinear eigenvalue problem

above, we have

w(k+1) = w(k) − [Fw(w(k))]−1F(w(k)), for k = 0, 1, 2, ,· · ·

where in this case the Jacobian

Fw(w(k)) =

[
T(λ(k)) T (λ(k))φ(k)

]

.
′

cH 0

In a manner analogous to the discussion following (1.45), we can write the

second term on the right hand sides of w(k+1) as Fw(w(k))Δw(k) = −F(w(k))

or

[] [] []
T(λ(k)) (λ(k))φ(k) φ(k+1) −φ(k) T(λ(k))φ(k)T′

cH 0 λ(k+1) − λ(k)
= −

cHφ(k) − 1
. (1.57)

26

Introduction

After expanding along the first row and if φ(k) is normalised as in (1.55), then

one obtains [51, p. 678]

−T(λ(k))φ(k+1) = (λ(k+1) − λ(k))T (λ(k))φ(k)′

c Hφ(k+1) = 1.

It can be easily deduced that Newton’s method above is equivalent to a non­

linear version of inverse iteration below as [51, p. 678]

T(λ(k))v(k+1) = T (λ(k))φ(k)′

λ(k+1) = λ(k) Hφ(k)/(c H (k+1))− c v

φ(k+1) = Sv(k+1),

S is a normalisation constant.

Parlett and Saad in [48], studied inverse iteration with a complex shift

σ = α + iβ where α and β are real. They showed that by replacing the shifted

complex system (A − σB)φ = Bϕ, with a real one, the size of the problem

is doubled, where ϕ = ϕ1 + iϕ2, φ = φ1 + iφ2 for ϕ1,ϕ2,φ1,φ2 ∈ Rn and

i =
√
−1 is the imaginary unit of a complex number. This is because solving

a complex linear system of equations takes twice the storage and is roughly

three times the cost of solving a real system [38]. When real arithmetic rather

than complex arithmetic is used, we lose any band structure in A and B [48].

The numerical examples in [48], show linear convergence to the eigenvalue

closest to the fixed shift.

Next, Tisseur in [59] considered the symmetric definite generalised eigen­

value problem Aφ = λBφ, λ ∈ R as a special case of (1.52) with T(λ) defined

as (1.54), where A is symmetric and B is symmetric positive definite but with

the real normalisation

τes
Tφ = τ; for some fixed s, (1.58)

where τ = max(�A�, �B�), (see, for example, [59, p. 1049]) and ej is the jth

column of the identity matrix. The real scalar τ is introduced to scale F(w) and

27

[] []

Introduction

Fw(w) when A and B are multiplied by a scalar. In this case,

F(w) =
(A− λB)φ

, and Fw(w) =
(A− λB) −Bφ

.
τeTφ − τ τes

T 0s

Tisseur [59], showed that the Jacobian Fw(w) above is singular at the root if

and only if λ∗ is a finite multiple eigenvalue of the pencil (A,B). The main

result in [59] is Theorem 2.4 [59, pp. 1044-1046]. It shows that if the linear

system to be solved is not too ill conditioned, the solver is not completely un­

stable, the Jacobian is approximated accurately enough and we have a good

initial guess very close to the solution, then the norm of the residual reduces

after one step of Newton’s method in floating point arithmetic. Tisseur, also

examined how fixed and mixed precision iterative refinement affect the com­

puted residual from Newton’s method and remarked ”the use of extended

precision for computing the residual has no effect on the rate of convergence

of Newton’s method.”

In addition, it was shown numerically in [59, pp. 1053-1054] that if New­

ton’s method is applied in floating point arithmetic with mixed precision it­

erative refinement, the linear solver is unstable and there are inaccuracies in

computing the Jacobian, then this may affect the rate of convergence of New­

ton’s method but not the accuracy and stability of the computed eigenvalues.

In the next section, we describe the structure of this thesis.

1.7 Structure of this Thesis

In this section we give a recap of the content of this thesis. Our approach for

finding the values of γ∗ such that two eigenvalues λ1 and λ2, say, of A(γ∗)
coalesce at λ∗, is to extend the implicit determinant method of Spence and

Poulton [55] to finding the values of γ∗ and λ∗ such that
(
A(γ∗) − λ∗I

)
has a

2-dimensional Jordan block corresponding to a zero eigenvalue. When λ∗ is
real, this involves the solution of two real system of nonlinear equations for

the two real unknowns γ∗ and λ∗. However, when λ∗ is complex, we write

λ∗ = α∗ + iβ∗, where α∗, β∗ are real. This reduces to using the Gauss-Newton

method to solve a real over-determined system of four nonlinear equations for

28

Introduction

the three real unknowns α∗, β∗ and γ∗. In both the real and complex cases, our

approach gives quadratic convergence and results of numerical experiments

are given which confirm the theory. These results are discussed in Chapter 2.

In Chapter 3, we present two approaches for solving the nearest defective

matrix problemwhich are more computationally efficient than those proposed

by Alam & Bora [4]. The first approach for solving the question posed by

Wilkinson, is to extend the implicit determinantmethod of Spence and Poulton

[55] to find parameter values for which a certain Hermitian matrix is singular

subject to a constraint. The application of the extended version of the implicit

determinant method, results in using Newton’s method to solve a real system

of three nonlinear equations for the three real unknowns, α, β and ε, where

z = α + iβ and ε is the distance between the simple matrix A and the defective

B. This part of Chapter 3 has been submitted for publication (see, [2]). The

second approach for solving the nearest defective matrix problem is to use the

Gauss-Newton method to solve a real system of (2n + 3) nonlinear equations

for (2n + 2) real unknowns. We only describe the later method for the case in

which z is real.

Finally, in Chapter 4, we consider the numerical solution of a nonsymmetric

eigenvalue problem Aφ = λBφ where A is nonsymmetric and B is symmetric

positive definite and λ is complex. While Ruhe [51] and Tisseur [59] used the

differentiable normalisations cHφ = 1, and es
Tφ = 1 respectively, we show

that the generalisation of the usual 2-norm normalisation to the complex case

still gives quadratic convergence even though the normalisation φHBφ = 1 is

not differentiable. This then leads to several interesting theoretical questions.

We conclude by ignoring the fact that the normalisation is non differentiable

and solved the resulting n complex and one real nonlinear equations for (n +

1) unknowns. Numerical experiments are given to back up our theoretical

discussion.

Throughout this thesis, we try to be as consistent as possible in the use of

notations. In all numerical computations, we used Matlab� Version 7.9.0.529

(R2009b).

29

CHAPTER 2

Implicit Determinant Method and the Computation

of a 2-Dimensional Jordan Block in a Parameter

Dependent Matrix

2.1 Introduction

Let A(γ) be a real n by n nonsymmetric matrix with a real parameter γ such

that A(γ) is at least twice continuously differentiable with respect to γ. In

this chapter, we present an extension of the implicit determinant method of

Spence and Poulton [55] for the numerical computation of a 2-dimensional

Jordan block in a parameter-dependent nonsymmetric matrix. A similar ap­

proach has been applied by Freitag and Spence [22] to solve a distance to in­

stability problem for the special case where A(γ) is a Hamiltonian matrix. We

will also use the implicit determinant method in the next chapter to derive a

method for computing a nearby defective matrix.

Let λ∗ ∈ C be an eigenvalue of A(γ∗). In this chapter, we consider the

problem of finding γ∗ such that A(γ∗) has a 2-dimensional Jordan block cor­

responding to the eigenvalue λ∗.
Jordan blocks are important for a number of reasons. First of all, as dis­

cussed in Chapter 1, matrices that have a Jordan block are related to sensitivity

of eigendecompositions (see, for example, [14]). Secondly, they arise in appli­

cations. For example, two eigenvalues coalesce to form a 2-dimensional Jordan

30

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

block in a supersonic panel flutter (see, [53]). Thirdly, as illustrated by Dodson

et al., in [19], 2-dimensional Jordan blocks arise in power systems dynamics

to determine when two damped oscillatory modes coalesce as power system

parameters e.g., power transfer and generator redispatch, change. This means

that the linearized power system has two complex conjugate eigenvalues that

coalesce in both damping and frequency i.e., real and imaginary parts coalesce

respectively.

In [22], Freitag and Spence extended the method of Spence and Poulton to

a special class of parameter-dependent Hamiltonian matrices by computing

a 2-dimensional Jordan block to solve a distance to instability problem. This

chapter considers a more general setting than in [22] and also extends to the

large, sparse nonsymmetric matrix case. The main mathematical tools used in

this chapter are Keller’s [33] ABCD Lemma, the Gauss-Newton method and

the Block Elimination Mixed method (BEM) (see, for example, [25], [27]) for

the efficient solution of bordered linear systems of equations.

This chapter is structured as follows: In Section 2.2, we describe an ex­

tended version of the implicit determinant method for the computation of a

2-dimensional Jordan block when λ∗, the eigenvalue corresponding to the Jor­

dan block, is real, and present the main result, namely, Theorem 2.2.1. In Sec­

tion 2.3, we present results of numerical experiments which support the theory.

For an efficient solution of the bordered linear system of equations that arise

from discretised partial differential equations, in Section 2.4, we describe the

Block Elimination Mixed method ([25], [27]).

When A(γ) has a special structure, for example, tridiagonal or block tridi­

agonal, BEM takes advantage of this structure. Note that in solving block tridi­

agonal systems, it is efficient to use the block Thomas algorithm (see, for exam­

ple [31, pp. 58-61]). As a result of this, in Subsection 2.4.3, we briefly describe

the block Thomas algorithm for solving block tridiagonal systems. Finally, in

Section 2.5, we extend the theory of the implicit determinant method of Spence

and Poulton [55] to compute a 2-dimensional Jordan block in a parameter­

dependent nonsymmetric matrix when λ∗ is complex. Throughout this chap­

ter, we assume that γ is real.

31

[]

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

2.2	 The Implicit Determinant Method for a Real 2­

Dimensional Jordan Block in a Parameter-

Dependent Matrix

In this section, we describe an application of the implicit determinant method

of Spence and Poulton [55, p. 71], to a parameter-dependent nonsymmetric

matrix A(γ). We first assume that λ∗ is real, so to be precise, the problem is

to find real λ∗ and γ∗ such that A(γ∗) − λ∗I has a 2-dimensional Jordan block

corresponding to a zero eigenvalue. This is presented in the main result of

this section, namely, Theorem 2.2.1. We present a Newton-based algorithm

for computing the pair (λ∗,γ∗) in Subsection 2.2.1. In Subsection 2.2.2, we

describe the eigenvalue behaviour of A(γ) for γ near γ∗ by applying stan­
dard bifurcation theory. This is then followed by a brief description on how to

choose optimal starting values as well as stopping criteria for the algorithm. A

condition for the algorithm to converge is given in Theorem 2.2.2.

LetA(γ) be a real parameter-dependent matrix where A(γ) is at least twice

continuously differentiable. In order to find the values of λ∗ and γ∗ such that
A(γ∗) −λ∗I has a 2-dimensional Jordan block corresponding to the zero eigen­

value, we consider the following problem (see also [55, (15), (26)]),

[] [] []
A(γ) − λI b x

=
0

, (2.1)
cT 0 f 1

where b and c are real n−component constant vectors, f ∈ R and x ∈ Rn\{0}.
The next result is an application of Keller’s [33] ABCD Lemma to (2.1) and

it shows that the matrix in (2.1) is nonsingular at the root under certain condi­

tions.

Lemma 2.2.1. Let (x∗,λ∗,γ∗) solve (2.1). Let zero be an eigenvalue of A(γ∗) − λ∗I
corresponding to a 2-dimensional Jordan block and rank(A(γ∗) − λ∗I) = n − 1,

then

M(λ∗,γ∗) =
A(γ∗) − λ∗I b

, (2.2)
cT 0

is nonsingular if and only if ψ∗Tb �= 0 for all ψ∗ ∈ N
(
A(γ∗) − λ∗I

)T \{0} and

32

()

�

�

[]

�

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

cTφ∗ �= 0 for all φ∗ ∈ N
(
A(γ∗) − λ∗I

)
\{0}.

Proof: Let ψ∗Tb �= 0 for all ψ∗ ∈ N
(
A(γ∗) − λ∗I

)T \{0} and cTφ∗ �= 0 for

all φ∗ ∈ N
(
A(γ∗) − λ∗I

)T \{0}. If we can show that p and q are each zero in

[] []
A(γ∗) − λ∗I b p

= 0,
Tc 0 q

then M(λ∗,γ∗) is nonsingular. By expanding along the first row, we obtain

A(γ∗) − λ∗I p + qb = 0.

Using
(
A(γ∗)T − λ∗I

)
ψ∗ = 0, it then implies

ψ∗T(A(γ∗) − λ∗I
)
p + qψ∗Tb = 0,

reduces to qψ∗Tb = 0. Therefore, q = 0,
(
A(γ∗) − λ∗I

)
p = 0 and p = τφ∗,

where τ is a real scalar. Now, cTp = τcTφ∗ = 0 is obvious by expanding along

the second row. Consequently, τ = 0 and p = 0.

Conversely, let M(λ∗,γ∗) be nonsingular. Assume
(
A(γ∗)T − λ∗I

)
is sin­

gular and cTφ∗ = 0, we want to show by contradiction that cTφ∗ = 0. We

multiply M(λ∗,γ∗) from the right by the nonzero vector [φ∗, 0]T

[] [] [()]
A(γ∗)T − λ∗I b φ∗

=
A(γ∗)T − λ∗I φ∗

= 0. (2.3)
cT 0 0 cTφ∗

This shows that we have multiplied the nonsingular matrix M(λ∗,γ∗) by a
nonzero vector to obtain the zero vector, this implies that M(λ∗,γ∗) is singular,
a contradiction, hence cTφ∗ = 0. Similarly, let ψ∗Tb = 0, multiply M(λ∗,γ∗)
from the left by the nonzero vector [ψ∗, 0]T to obtain

[ψ∗ 0]T
A(γ∗)T

T

− λ∗I b
= [ψ∗T(A(γ∗)T − λ∗I

)
ψ∗Tb] = [0T 0].

c 0

This shows that M(λ∗,γ∗) is singular, contradicting the nonsingularity of

M(λ∗,γ∗), therefore, ψ∗Tb = 0.

It should be remarked that since M(λ∗,γ∗) is nonsingular, then M(λ,γ) is

33

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

nonsingular for λ and γ near λ∗ and γ∗ because A(γ) − λI is a smooth func­

tion of λ and γ (see also [55, p. 71]). Next, we extend Spence and Poulton’s

implicit determinant method [55, p. 71] for computing a 2-dimensional Jordan

block in a parameter-dependent nonsymmetric matrix. It shows that there is a

relationship between the zeros of f (λ,γ) and the determinant of A(γ) − λI.

Lemma 2.2.2. Let the conditions of Lemma 2.2.1 hold, and consider the linear system

(2.1). Then

1. f = f (λ,γ) and x = x(λ,γ),

2. f (λ∗,γ∗) = 0 if and only if det[A(γ∗) − λ∗I] = 0,

3. For λ = λ∗, γ = γ∗, x(λ,γ) = x(λ∗,γ∗) ∈ N
(
A(γ∗) − λ∗I

)
\{0}.

Proof: Lemma 2.2.1 shows that M(λ∗,γ∗) is nonsingular. Since A(γ) − λI

is a smooth function of λ and γ, then using the implicit function theorem (see

for example, Spence and Graham [56, p. 186]), M(λ,γ) is nonsingular for λ

and γ near λ∗ and γ∗. Hence, x and f are smooth functions of λ and γ, so that

we can write f = f (λ,γ) and x = x(λ,γ). Moreover, we can rewrite (2.1) as

[] [] []
A(γ) − λI b x(λ,γ)

=
0

. (2.4)
cT 0 f (λ,γ) 1

Thus, the first part of the theorem is proved. Using Cramer’s rule (see, for

example, [32, p. 414]) yields

f (λ,γ) =
det[A(γ) − λI]

, (2.5)
detM(λ,γ)

(see also, (1.22)). Therefore, f (λ,γ) = 0 if and only if (A(γ) − λI) is singular­

which is attainable at the root. To obtain x(λ∗,γ∗) we substitute f (λ∗,γ∗) = 0

into the first equation in (2.4), giving (A(γ∗) − λ∗I)x(λ∗,γ∗) = 0. This im­

plies x(λ∗,γ∗) = τφ∗, where τ is real but nonzero, because (A(γ∗) − λ∗I) is
singular. Hence, x(λ∗,γ∗) ∈ N (A(γ∗) − λ∗I).

The above result means that we compute the zeros of f (λ,γ) as a way of

finding the zeros of the determinant of A(γ) −λI. The next fundamental result

34

�

()

�

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

shows the condition satisfied by f (λ,γ), and its partial derivatives: fλ(λ,γ)

and fλλ(λ,γ) at the root. Thismain result will be used in the following analysis

to show that a certain 2 by 2 Jacobian matrix is nonsingular at the root.

Theorem 2.2.1. Let A(γ∗) be a real n by n matrix with a 2-dimensional Jordan block

corresponding to the real eigenvalue λ∗. If b, c are chosen such that M(λ∗,γ∗) is
nonsingular, then

1. f (λ∗,γ∗) = 0,

2. fλ(λ∗,γ∗) = 0,

3. fλλ(λ∗,γ∗) = 0.

Proof: The first part of the theorem follows from the second part of Lemma

2.2.2. After differentiating both sides of (2.4) with respect to λ, we obtain

[] [] []
A(γ) − λI b xλ(λ,γ)

=
x(λ,γ)

, (2.6)
cT 0 fλ(λ,γ) 0

where xλ(λ,γ) = d
d
λ x(λ,γ) and fλ(λ,γ) = d

d
λ f (λ,γ). Now, if we expand

along the first n rows, then

A(γ) − λI xλ(λ,γ) + fλ(λ,γ)b = x(λ,γ). (2.7)

Evaluate the above at λ = λ∗ and γ = γ∗, premultiply both sides by ψ∗T, for
all ψ∗ ∈ N

(
A(γ∗) − λ∗I

)T \ {0}, to obtain

ψ∗T(A(γ∗) − λ∗I
)
xλ(λ∗,γ∗) + fλ(λ∗,γ∗)ψ∗Tb = ψ∗T x(λ∗,γ∗),

which simplifies to

ψ∗T x(λ∗,γ∗) τψ∗Tφ∗
fλ(λ∗,γ∗) = = , τ = 0, (2.8)

ψ∗Tb ψ∗Tb
�

where we have used the fact from Lemma 2.2.1 that ψ∗Tb = 0 and x(λ∗,γ∗) =

τφ∗ by virtue of Lemma 2.2.2. Butψ∗Tφ∗ = 0, since A(γ∗) has a 2-dimensional

Jordan block. Hence, fλ(λ∗,γ∗) = 0. Thus, proving the second part of the

35

()

[]

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

theorem. After substituting fλ(λ∗,γ∗) = 0 into (2.7),

A(γ∗) − λ∗I xλ(λ∗,γ∗) = x(λ∗,γ∗).

This means that xλ(λ∗,γ∗) can be taken as the generalised eigenvector φ̂∗ of
A(γ∗), corresponding to the eigenvalue λ∗ (cf., equation (1.9)). Since the Jor­

dan block has dimension 2, we have

ψ∗T xλ(λ∗,γ∗) �= 0, (2.9)

(see also [22, (13)]). Again, by differentiating both sides of (2.6) with respect to

λ, [] [] []
A(γ) − λI b xλλ(λ,γ)

=
2xλ(λ,γ)

. (2.10)
cT 0 fλλ(λ,γ) 0

In a manner analogous to the analysis that led to (2.8), we obtain

fλλ(λ∗,γ∗) =
2ψ∗T

ψ

xλ

∗
(
T

λ

b

∗,γ∗) �= 0,

by virtue of (2.9).

Conditions 1. and 2. of Theorem 2.2.1, indicate how to find the values of λ∗

and γ∗, namely, set up the nonlinear system of equations

f (λ,γ)
G(y) = = 0, (2.11)

fλ(λ,γ)

where y = [λ,γ]T . Observe that because f (λ,γ) and fλ(λ,γ) are both real,

and since λ and γ are also real, this implies that (2.11) entails solving two real

nonlinear equations in two real unknowns. In the next section, we present a

Newton based algorithm for solving (2.11) in the form of Algorithm 3.

2.2.1 Newton based Algorithm for solving (2.11)

The aims of this subsection are: to prove that the Jacobian of (2.11) is non­

singular at the root under a certain nondegeneracy condition, hence, showing

quadratic convergence for close enough starting guesses, and to describe how

36

[]

[]

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

to implement Newton’s method for G(y) = 0 given by (2.11). The key re­

sult in this section, Theorem 2.2.2, guarantees the quadratic convergence of

the Newton based Algorithm.

We first show how to calculate the elements: fγ(λ,γ) and fλγ(λ,γ) of the

Jacobian

fλ(λ,γ) fγ(λ,γ)
Gy(y) = , (2.12)

fλλ(λ,γ) fλγ(λ,γ)

of G(y) in (2.11). The other two elements fλ(λ,γ) and fλλ(λ,γ) can be ob­

tained by solving (2.6) and (2.10) respectively. This will then be followed by

presenting a condition under which the Jacobian (2.12) is nonsingular at the

root. Algorithm 3 is given for computing λ and γ. Finally, we will describe

how to choose b and c as well as state a criterion for stopping the algorithm.

After differentiating (2.4) and (2.6) with respect to γ, we obtain

[] [] []
A(γ) − λI b xγ(λ,γ)

=
−A′(γ)x(λ,γ)

, (2.13)
cT 0 fγ(λ,γ) 0

where A (γ) = d
d
γ A(γ) and ′

[] [] []
A(γ) − λI b xλγ(λ,γ) −A′(γ)xλ(λ,γ) + xγ(λ,γ)

cT 0 fλγ(λ,γ)
=

0
. (2.14)

So for a given (λ,γ), fγ(λ,γ) and fλγ(λ,γ) can be obtained by solving (2.13)

and (2.14) respectively.

From Theorem 2.2.1, at the root (see also [22, p. 7]),

Gy(y
∗) =

0 fγ(λ∗,γ∗)
. (2.15)

fλλ(λ∗,γ∗) fλγ(λ∗,γ∗)

Accordingly,

det[Gy(y
∗)] = − fγ(λ∗,γ∗) fλλ(λ∗,γ∗),

is nonzero if fγ(λ∗,γ∗) is not equal to zero (using the third part of Theo­
rem 2.2.1). In the next theorem, we use the expression for the determinant

37

�

�

�

()

�
�

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

of Gy(y∗) above to show that the Jacobian is nonsingular if and only if

ψ∗TA′(γ∗)x(λ∗,γ∗) = 0,

which is equivalent to fγ(λ∗,γ∗) = 0.

Theorem 2.2.2. Under the assumptions of Theorem 2.2.1, the Jacobian Gy(y∗), is
nonsingular if and only if ψ∗TA (γ∗)x(λ∗,γ∗) = 0. ′

Proof: At the root, the first n rows of (2.13) give,

A(γ∗) − λ∗I xγ(λ∗,γ∗) + fγ(λ∗,γ∗)b = −A (γ∗)x(λ∗,γ∗). ′

By premultiplying both sides byψ∗T where ψ∗ ∈ N (A(γ∗) − λ∗I)T\{0}, with

some simplifications, we have

′
fγ(λ∗,γ∗) = − ψ

∗TA (γ∗)x(λ∗,γ∗)
, (2.16)

ψ∗Tb

Observe that ψ∗Tb = 0, by the assumption in Lemma 2.2.1. So, fγ(λ∗,γ∗) is
nonzero if and only if ψ∗TA (γ∗)x(λ∗,γ∗) = 0. Therefore, ′

det[Gy(y
∗)] �= 0, ⇐⇒ ψ∗TA′(γ∗)x(λ∗,γ∗) �= 0.

The above Theorem gives a condition that ensures the inverse of Gy(y∗) exists
and Algorithm 3 is guaranteed to converge quadratically with a close enough

initial guess. Next, we present Algorithm 3which is actuallyNewton’s method

for finding the zeros of G(y) = 0.

Observe that because f (λ,γ) and its partial derivatives can be computed

using the same matrix M(λ,γ) defined by (2.2), but with different right hand

sides, this means that only one ’LU’ factorization is needed in each iteration of

Algorithm 3. The stopping condition for Algorithm 3 is

�Δy(k)� ≤ tol, (2.18)

where Δy(k) = [Δλ(k),Δγ(k)]T and tol is some user defined error tolerance.

38

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Algorithm 3 Newton-based Algorithm for Computing [λ(k), γ(k)]T

Input: Choose λ(0), γ(0) and b, c ∈ Cn\{0} such that M(λ(0),γ(0)) is nonsin­
gular, tol.

1: for k = 0, 1, 2, . . ., until convergence do
2:	 Solve (2.4), to obtain x(λ(k),γ(k)) and f (λ(k),γ(k)).

3:	 Use the x(λ(k),γ(k)) obtained from (2.4) in solving (2.6) for xλ(λ(k),γ(k))
and fλ(λ(k),γ(k)).

4:	 Use the f (λ(k),γ(k)) and fλ(λ(k),γ(k)) to form

G(y(k)) =
[

f

f

λ

(

(

λ

λ

(

(

k

k

)

)
,

,

γ

γ

(

(

k

k

)

)
)

)

]

.

5:	 Solve (2.10) for xλλ(λ(k),γ(k)) and fλλ(λ(k),γ(k)) using the xλ(λ(k),γ(k))
obtained from (2.6).

6:	 Solve (2.13) for xγ(λ(k),γ(k)) and fγ(λ(k),γ(k)) using the values obtained
from (2.4).

7:	 Using the xλ(λ(k),γ(k)) and xγ(λ(k),γ(k)) obtained from (2.10) and (2.13)

respectively, solve (2.14) for xλγ(λ(k),γ(k)) and fλγ(λ(k),γ(k)).
8:	 Form and solve the linear system of equations

[
fλ(λ(k),γ(k)) fγ(λ(k),γ(k))

] [
Δλ(k)

] [
f (λ(k),γ(k))

]

fλλ(λ(k),γ(k)) fλγ(λ(k),γ(k)) Δγ(k) = −
fλ(λ(k),γ(k))

, (2.17)

for [Δλ(k),Δγ(k)]T .
9:	 Apply Newton update

[
λ(k+1)

] [
λ(k)

] [
Δλ(k)

]

= + .
γ(k+1) γ(k) Δγ(k)

10: end for
Output: y(kmax) = [λ(kmax), γ(kmax)]T .

39

�
�

�
∣
∣
∣
∣

�

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

The choice of the vectors b and c should be such that ψ∗Tb = 0 and

cTφ∗ = 0, in agreement with the conditions of Lemma 2.2.1. We could take

c as an estimate of x∗, namely, the right singular vector of A(γ(0)) (where γ(0)

is a starting guess for γ∗) corresponding to its smallest singular value and mo­

tivated by the result of Theorem 2.2.2, we could take b = A (γ(0))c. One of the ′

computational implications of the result of Theorem 2.2.2 is that, for fγ(λ∗,γ∗)
to be nonzero, an optimal choice of b would be b = A (γ∗)x(λ∗,γ∗), so that ′

fγ(λ∗,γ∗) = −1. However, because λ∗,γ∗ and x(λ∗,γ∗) are not known before

hand, that is why we take b = A (γ(0))c. ′

The following result is an extension of the result of Spence and Poulton [54,

pp. 588-589] and it shows that ψ∗TA (γ∗)x(λ∗,γ∗) = 0 if and only if ′

d

dγ

det[A(γ) − λI]
 ,

(λ,γ)=(λ∗,γ∗)

is nonzero.

Lemma 2.2.3. Let x(λ∗,γ∗) solve (2.4), such that det[A(γ∗) − λ∗I] = 0. Then

ψ∗TA (γ∗)x(λ∗,γ∗) = 0, (2.19) ′

if and only if
d

dγ

det[A(γ) − λI]
 �= 0. (2.20)

(λ,γ)=(λ∗,γ∗)

Proof: Using (2.5) in the proof of Lemma 2.2.2, we obtain

det[A(γ) − λI] = f (λ,γ) detM(λ,γ).

By differentiating both sides with respect to γ and evaluating at the root, yields

d

dγ

det[A(γ) − λI]
 =
 fγ(λ∗,γ∗) detM(λ∗,γ∗).

(λ,γ)=(λ∗,γ∗)

It is easily seen from (2.16) that

d

dγ

det[A(γ) − λI]

ψ∗TA (γ∗)x(λ∗,γ∗)′
= −
 detM(λ∗,γ∗),

(λ,γ)=(λ∗,γ∗) ψ∗Tb

40

�

�

()

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

if and only if

ψ∗TA′(γ∗)x(λ∗,γ∗) �= 0.

Since Lemma 2.2.1 guarantees that the determinant of M(λ∗,γ∗) is nonzero
the result follows.

Condition (2.20) shows that the determinant of A(γ) − λI passes through zero

with a nonzero derivative at (λ,γ) = (λ∗,γ∗), which is a typical nondegener­

acy condition. Besides, the fact that the condition (2.19) holds is very essential

for Algorithm 3 to work. This is because, it ensures that fγ(λ∗,γ∗) is nonzero,
hence, the nonsingularity of the Jacobian (2.12) at the root.

Next, we discuss the eigenvalue structure of A(γ) near the Jordan block in

the following subsection.

2.2.2 Eigenvalue Structure near the 2-Dimensional Jordan Block

In this subsection, we describe the eigenvalue behaviour of A(γ) for γ near

γ∗ by applying standard bifurcation theory ideas (see, for example, Example

5.1 of [56]) to (2.11). However, the techniques are fairly straightforward so we

describe the analysis from first principles.

First, we write down (2.11) again for ease of reference:

f (λ,γ) = 0, fλ(λ,γ) = 0, for all λ,

andwe assume the following conditions are satisfied as in the previous section:

f (λ∗,γ∗) = 0, (2.21)

fλ(λ∗,γ∗) = 0, (2.22)

fγ(λ∗,γ∗) �= 0, (2.23)

fλλ(λ∗,γ∗) = 0. (2.24)

Since f (λ∗,γ∗) = 0 and fγ(λ∗,γ∗) = 0, the implicit function theorem [56]

implies that for (λ,γ) near (λ∗,γ∗), γ = γ(λ) and we may write

f λ,γ(λ) = 0.

41

()

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Differentiation with respect to λ leads to

() ()dγ(λ)
fλ λ,γ(λ) + fγ λ,γ(λ) = 0, (2.25)

dλ

and evaluation at (λ∗,γ∗) shows that

dγ(λ∗)
= 0,

dλ

using (2.22) and (2.23).

Similarly, by differentiating (2.25) with respect to λ, one obtains

()
[

() ()dγ(λ)
]
dγ(λ)

fλλ λ,γ(λ) + 2 fλγ λ,γ(λ) + fγγ λ,γ(λ)
dλ dλ

()d2γ
+ fγ λ,γ(λ) (λ) = 0,

dλ2

and evaluating at λ = λ∗, γ = γ∗, yields

d2γ fλλ
(
λ∗,γ(λ∗)

)

dλ2
(λ∗) = −

fγ
(
λ∗,γ(λ∗)

) �= 0,

using (2.23) and (2.24). Hence, local to (λ∗,γ∗) we may write the solution of

f (λ,γ(λ)) = 0 as

1
(
λ∗,γ(λ∗)

)
fλλ

γ(λ) = γ(λ∗) −
2
(λ − λ∗)2

fγ
(
λ∗,γ(λ∗)

) + h.o.t,

fλλ λ∗,γ(λ∗)
using Taylor series. Assuming

fγ
(
λ∗,γ(λ∗)

) > 0, (it is easy to see what

happens if the sign is reversed) it is possible to sketch a solution diagram of

f (λ,γ) = 0 near (λ∗,γ∗) as follows (see Figure 2-1). Here we see that, for

γ < γ∗, there are two real solutions of f (λ,γ) = 0 say, (λ1,γ) and (λ2,γ).

This corresponds to there being two real eigenvalues say, λ1 and λ2 of A(γ)

for γ < γ∗. As γ approaches γ∗, the two solutions of f (λ,γ) = 0 coalesce

to form a unique quadratic turning point of f (λ,γ) = 0, which corresponds

to a 2-dimensional Jordan block of A(γ∗). Since (λ∗,γ∗) is an isolated root of
f (λ,γ) = 0, fλ(λ,γ) = 0, A(γ∗) has an isolated 2-dimensional Jordan block at

42

{

Implicit Determinant Method and the Computation of a 2-Dimensional

Jordan Block in a Parameter Dependent Matrix

λ1

λ∗

λ2

γ < γ∗ γ∗ γ

f (λ,γ) = 0

λ

f (λ∗,γ∗) = 0
fλ(λ∗,γ∗) = 0

Figure 2-1: The figure above shows the path of solution of f (λ,γ) = 0 near
(λ∗,γ∗). Not drawn to scale.

γ = γ∗ and λ = λ∗. For γ > γ∗, there are no real solutions of f (λ,γ) = 0. This

corresponds to the fact that for γ > γ∗, A(γ) has two complex eigenvalues

near (λ∗,γ∗). So we may sketch the eigenvalue structure of A(γ) near (λ∗,γ∗)
as follows (see Figure 2-2).

Before we present the result of numerical experiments, we next discuss at­

tainable accuracy of solving the linear systems in Algorithm 3.

2.2.3 Discussion of Attainable Accuracy

A close look at Algorithm 3 and precisely steps 8 and 9 shows that for each

k, we update Δλ(k) and Δγ(k) by solving the 2 by 2 linear system of equa­

tions (2.17), where the coefficients comprising of fλ(λ,γ), fλλ(λ,γ), fγ(λ,γ),

fλγ(λ,γ) and right hand sides f (λ,γ), fλ(λ,γ) are subject to errors from lin­

ear solves with M(λ(k),γ(k)). As a result of this, in this section, we briefly

discuss the attainable accuracy of the solution computed from (2.17) and lin­

ear solves with M(λ(k),γ(k)) by stating some well known perturbation results

on linear systems. This will then be followed by a short theoretical discussion

on iterative refinement.

The following result taken from [6, pp. 462-463] gives a bound on the at­

43

Implicit Determinant Method and the Computation of a 2-Dimensional

Jordan Block in a Parameter Dependent Matrix

Im(λ) Im(λ) Im(λ)

Re(λ)

Re(λ)Re(λ)
λ1 λ2 λ1

λ2

λ∗

(a). (b). (c).

Figure 2-2: (a). For γ < γ∗, we see 2 real but distinct eigenvalues of A(γ). (b).
When γ = γ∗, we see the coalescence of two distinct eigenvalues at λ = λ∗.
(c). For γ > γ∗, the eigenvalues become complex conjugate eigenvalues. Not
drawn to scale.

tainable accuracy of the computed solution from linear systems.

Lemma 2.2.4. Let A be nonsingular and consider the problem of solving Ax = b.

Let ΔA and Δb be perturbations of A and b respectively. Assuming that

1
< ,�ΔA� �A−1�

then A + ΔA is nonsingular. Moreover, if we define Δx by

(A + ΔA)(x + Δx) = b + Δb, (2.26)

then
�Δx� κ(A)

{ �ΔA�
+

�Δb�}

. (2.27) �x� ≤
1− κ(A)�ΔA��A�−1 �A� �b�

The above result [15, p. 33] shows that the relative error in the solution

of Ax = b is a multiple of the relative errors in the inputs A and b, where

in this case A = M(λ(k),γ(k)), x is [x(λ(k),γ(k)), f (λ(k),γ(k))]T or its partial

derivatives and b are the corresponding right hand sides.

As stated earlier in the first paragraph of this section, each of the elements

in the coefficient matrix and right hand sides in the 2 by 2 system

[] [] []
fλ(λ(k),γ(k)) fγ(λ(k),γ(k)) Δλ(k) f (λ(k),γ(k))

,
fλλ(λ(k),γ(k)) fλγ(λ(k),γ(k)) Δγ(k)

= −
fλ(λ(k),γ(k))

44

[
] []

∥
∥
∥
∥

[
]
∥
∥
∥
∥

/
∥
∥
∥
∥

[
]
∥
∥
∥
∥

(

(
)

∥
∥
∥
∥

[
]
∥
∥
∥
∥

/
∥
∥
∥
∥

[
]
∥
∥
∥
∥

∥
∥
∥
∥

[
]
∥
∥
∥
∥

/
∥
∥
∥
∥

[
]
∥
∥
∥
∥

)

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

have errors, arising from solves with M(λ,γ). So, in fact1,

] [

fλ(λ,γ) + ε11 fγ(λ,γ) + ε12 Δλ + ε5 f (λ,γ) + ε7
fλλ(λ,γ) + ε21 fλγ(λ,γ) + ε22 Δγ + ε6

= −
fλ(λ,γ) + ε11

, (2.28)

where each of the εij’s for i, j = 1, 2 and ε j for j = 5, 6, 7 are errors in computing

fλ(λ,γ), fλλ(λ,γ), fγ(λ,γ), and fλγ(λ,γ) e.t.c. From (2.28), in the light of

Lemma 2.2.4, such that Gy(y) is nonsingular and

�ΔGy(y)��Gy(y)−1� ≤ c < 1,

for some constant c, then

ε5

ε6

Δλ

Δγ

fλ(λ,γ) fγ(λ,γ)

fλλ(λ,γ) fλγ(λ,γ)

ε11 ε12

ε21 ε22
� κ
 (y)
Gy

(2.29)

+
 .

f (λ,γ)

fλ(λ,γ)

ε7

ε11

In most cases of interest here, the condition number of Gy(y) is likely to be

”small”, so we assume that the main errors in finding [Δλ,Δγ]T arise from

the errors caused by the solves with M(λ,γ). Hence, [Δλ,Δγ]T can only be

computed to high accuracy if the εij’s and ε j’s are small (of the order of machine

precision), and the size of the condition number of M(λ,γ) is also small.

As will be seen in the PDE examples in the next section, a large condi­

tion number of M(λ,γ) impacts on the achievable accuracy of [Δλ,Δγ]T . But

iterative refinement seeks to overcome errors of linear systems in which the

condition number of the coefficient matrix is large. This is what motivates the

following brief discussion on the theory of iterative refinement.

Assuming Ax = b has been solved by Gaussian elimination with partial

pivoting and we want to improve the accuracy of the computed solution x̂.

Iterative refinement (see, for example [30, p. 232]) is a method of improving

the computed solution x̂ to the linear system Ax = b. This involves computing

the residual of the system, r = b−Ax̂, solving As = r and updating x = x̂+ s.

1We dropped the superscripts, as in λ(k) in each of the f (λ,γ) e.t.c., for ease of notation.

45

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

If r, s and x are computed in the absence of round off errors, then x is the exact

solution to the system. The key idea behind iterative refinement [30, p. 232] is

that, if the residual r and s are computed accurately enough, then there will be

some improvements in the accuracy of x.

Algorithm 4 is called fixed precision iterative refinement (see, for example

Golub and van Loan [23]). The term “fixed precision” is so used because, both

the residual r and the s are computed using the same precision. Let us recall

Algorithm 4 Fixed Precision Iterative Refinement

Input: A, x̂,b
1: Compute LU factorization of A.
2: for k = 1, 2, . . . , do
3: Compute the residual r = b−Ax̂.
4: Solve Lt = Pr for t.
5: Solve Us = t, for s.
6: x = x̂ + s.
7: x̂ = x.
8: end for

Output: x.

what Golub and van Loan [23, pp. 124-127] has to say about the accuracy of

computed solutions from Gaussian elimination. If the machine precision ε is

such that ε = 10−a , a ∈ N and the condition number of A, κ(A) = 10m where

m ∈ N, then Gaussian elimination produces a solution x̂ that has (a − m)

correct decimal digits.

If the working precision is double precision, then one of the ways of com­

puting r accurately is by using quadruple precision (that is, double the work­

ing precision). That is, we compute r in quadruple precision before rounding

it to double precision. This means that if 16-digit arithmetic is used to compute

PA = LU, x, t and s in Algorithm 5 [23, p. 127], then 32-digit arithmetic is used

to compute r = b−Ax̂ in mixed precision iterative refinement, P is a permuta­

tionmatrix. Whenmixed precision iterative refinement is used, Golub and van

Loan [23, p. 127] make the following heuristic statement about the accuracy

of the computed solution: if the machine precision ε = 10−a and κ(A) = 10m ,

then Algorithm 5 produces an x which has approximately min{a, k(a − m)}
correct decimal digits. So k = 1 which corresponds to one iterative refinement

shows no benefit according to Golub and van Loan.

46

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Algorithm 5 Mixed Precision Iterative Refinement

Input: A, x̂,b
1: Compute LU factorization of A.
2: for k = 1, 2, . . . , do
3: Compute the residual r = b−Ax̂, (using double the working precision).
4: Solve Lt = Pr for t.
5: Solve Us = t, for s.
6: x = x̂ + s.
7: x̂ = x.
8: end for

Output: x.

The above argument is based on the accuracy of the solution computed by

fixed and mixed precision iterative refinements in which the solver for A is

Gaussian elimination with partial pivoting. However, Higham [30, p. 234],

gives the following two results on fixed and mixed precision iterative refine­

ments.

Lemma 2.2.5. (Fixed precision iterative refinement [30, p. 234]) Let A be an n by n

nonsingular matrix and assume L̂ and Û are the computed LU factors of A. Further,

let fixed precision iterative refinement be applied to the linear system Ax = b, using

LU factorisation. If ω defined by ω = ε� |A−1||L̂||Û| �∞ is sufficiently less than one,

then iterative refinement reduces the error by a factor approximately ω at each stage

until
�x − x̂k�∞

� 2nε cond(A, x), �x�∞

where ε is machine precision, A is the componentwise absolute value of the elements | |
in A and [30, p. 135]

cond(A, x) =
� |A−1||A||x| �∞

. �x�∞

Lemma 2.2.6. (Mixed precision iterative refinement [30, p. 234]) Let iterative refine­

ment be applied to the nonsingular linear system Ax = b, using LU factorisation and

with residuals computed in quadruple precision. Let ω = ε�|A−1||L̂||Û|�∞, where

L̂ and Û are the computed LU factors of A. Then, provided ω is sufficiently less than

one, iterative refinement reduces the error by a factor approximately ω at each stage

47

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

until
�x − x̂�∞

ε. �x�∞
≈

The above result i.e., Lemma 2.2.6 shows that Higham’s result on mixed

precision iterative refinement is at variance with Golub and van Loan’s heuris­

tic argument.

As stated earlier, because our input data are in double precision, in order

to improve the accuracy of the computed solution in Ax = b, we would need

to compute the residual in quadruple precision [15, p. 62] in a mixed preci­

sion iterative refinement. However, quadruple precision arithmetic may not

be available or it takes ages to run. As a result of this, the numerical experi­

ments that will be carried out in the next section are done in fixed precision

iterative refinement with one step of iterative refinement. Of which, we will

make use of Algorithm 4 to obtain numerical results.

In the next section, we present result of numerical experiments to support

the theory developed so far.

2.3 Numerical Experiments

In this section, we discuss the performance of Algorithm 3 described earlier,

on some numerical examples which confirms that quadratic convergence is

achieved. In all numerical experiments, our aim is to find the particular value

of γ∗ such that two simple leftmost eigenvalues λ1 and λ2 of A(γ) coalesce at

λ∗ to form a 2-dimensional Jordan block. Typically, the two leftmost eigenval­

ues will be most important in applications.

The motivation for the examples we consider comes from the computation

of fluid flows governed by the steady-state Navier-Stokes equations as pre­

sented in [28]. Assuming that a reference velocity field v has been computed

for some particular parameter values. To assess its stability, it is necessary

to solve the following partial differential equation eigenvalue problem [28, p.

1152]:

−νΔu + v.∇u + u.∇v + ∇p = λu

∇.u = 0, (2.30)

48

1

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

where λ ∈ C is an eigenvalue and the pair (u, p) are the non-trivial eigenfunc­

tions satisfying suitable homogeneous boundary conditions. The parameter ν

is the viscosity, which is inversely proportional to the Reynolds number Re.

The eigenfunction (u, p) consists of the velocity u, and the pressure p.

For the numerical experiments discussed in this section, we modify (2.30)

by assuming that the viscosity ν = 1, the reference velocity v will be taken

as v = [γ,γ]T or v = [γ, 5]T, where γ is a constant over the domain, and the

pressure term, ∇p is neglected. So that (2.30) reduces to

−Δu + γux + γuy = λu, (2.31)

in Examples 2.3.2 and 2.3.4, and −Δu + γux + 5uy = λu in Example 2.3.3

respectively. The first example below explains the reason for choosing varying

mesh sizes in the discretization of the partial differential equations eigenvalue

problem in Examples 2.3.2, 2.3.3 and 2.3.4, below.

Example 2.3.1. Consider the following parameter-dependent ordinary differential

eigenvalue problem, discretized using finite centred differences (cf. (2.31))

d2u du −
dx2

+ γ
dx

= λu; u(0) = u(1) = 0, (2.32)

with a constant mesh size h = n+
1
1 . Observe that for k = 1, 2, . . . , n we have the

following discretized form of (2.32)

−(hγ + 2)uk−1 + 4uk + (hγ − 2)uk+1 = λuk. (2.33)
2h2

After imposing the initial conditions, the resulting discretized eigenvalue problem

A(γ)u = λu is as follows

 

u1 u14 (hγ − 2)








−(hγ + 2) 4 (hγ − 2)

−(hγ + 2) 4 (hγ − 2)

· · · · · · · · · · · ·

(hγ − 2)· · ·

















u2

u3

u4

· · ·









= λ









u2

u3

u4

· · ·









2h2
,

−(hγ + 2) 4 un un

where A(γ) is a n by n matrix and u = [u1, u2, u3, . . . , un]
T. Note that for γ∗ = ± h

2 ,

A(γ∗) has an n−dimensional Jordan block corresponding to the eigenvalue λ∗ = 4-as

49

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

against the Jordan block of dimension two we are interested in. The same phenomenon

arises if one discretizes (2.31) using equally spaced mesh sizes. As a result of this, in

the following examples, we use a discretization with a variable mesh.

Example 2.3.2. Consider finding a 2-dimensional Jordan block of A(γ), derived by a

finite centred difference discretization of the convection-diffusion eigenvalue problem

−Δu + γux + γuy = λu, in D := [0, 1] × [0, 1], (2.34)

u = 0, on Γ := ∂D,

on a 32 by 32 grid with 961 degrees of freedom2 . For γ = 5 and with a constant
1step size h = 32 , Golub and Ye [24] gave the two leftmost eigenvalues of (2.34) as

λ1 ≈ 32.18 and λ2 ≈ 61.58, while the other eigenvalues satisfy Re(λ) ≥ 61.58.

However, for this particular numerical experiment, we will use variable mesh sizes,

chosen as: h1 = 0.15, h2 = 0.2, h3 = 0.3, h31 = 0.07, h32 = 0.09. The other

intermediate values of h are computed by

hk =
1− (h1 + h2 + h3 + h31 + h32)

, for k = 4, 5, , 30, p = 31.
p− 4

· · ·

The error tolerance in Algorithm 3 is taken to be 7 × 10−15 . For γ(0) = 15, we

computed A(γ(0)) and applied two steps of inverse iteration on A(γ(0)) − λ̂I with

λ̂ = 72 as a shift. The initial starting vector for the inverse iteration is

x(0) = [1, 0, 1, 0, 0, , 0, 0, 1, 0, 1]T/2. · · ·

We obtained the estimate (x,λ) for the eigenpair, and took λ(0) = λ. The vectors c

and b were kept fixed as c = x and b = A (γ(0))c, as discussed in Section 2.2.1. ′

The first two eigenvalues of A(γ∗) coalesced at 74.72506 for γ∗ = 15.17519 to

form a 2-dimensional Jordan block as shown in Table 2.1. The solution is obtained by

finding the LU factorization of M(λ(k),γ(k)) with one step of iterative refinement in

each iteration. This became necessary so as to improve the accuracy of the computed

solutions.

Observe from the fifth and sixth columns of Table 2.2 that we obtain quadratic

convergence for k = 2, 3, 4 and 5. However, this quadratic convergence is lost from

2Degrees of freedom is the number of interior mesh points.

50

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

k λ(k) λ(k+1) − λ(k)| | γ(k+1) − γ(k)| | �Δy(k)� �G(y(k))�
0 72.00000 1.9e+00 8.7e-02 1.9e+00 4.9e-01
1 73.85590 7.7e-01 7.2e-02 7.7e-01 1.5e-01
2 74.62308 1.0e-01 1.6e-02 1.0e-01 2.3e-02
3 74.72358 1.5e-03 3.9e-04 1.5e-03 5.2e-04
4 74.72506 3.7e-07 1.3e-07 3.9e-07 1.7e-07
5 74.72506 1.8e-13 1.1e-14 1.9e-13 1.5e-14
6 74.72506 1.4e-14 0.0e+00 9.6e-15 8.9e-16
7 74.72506 0.0e+00 0.0e+00 1.5e-15 8.0e-16

Table 2.1: Values of γ(k) and λ(k) for the discretized convection-diffusion eigen­
value problem (2.34) in Example 2.3.2. Columns 5 and 6 show that the results
converged quadratically for k = 2, 3, 4 and 5 as predicted by Theorem 2.2.2.

the sixth iterate because of round-off errors in computing the five unknowns and their

respective residuals from (2.4), (2.6), (2.10), (2.13) and (2.14). The condition number

of M(λ∗,γ∗) is approximately 2× 108, while that of Gy(y∗) is approximately 86.

The large condition number of M(λ∗,γ∗) suggests that we will not achieve accuracy
to full double precision, and this is indeed observed in the last three rows of the last two

columns of Table 2.1. The computed nonzero values of fγ(λ∗,γ∗) and fλλ(λ∗,γ∗) are
approximately −1.30221 and 0.01543 respectively. So, the conditions of Theorems

2.2.1 and 2.2.2 are satisfied.

Example 2.3.3. This is the same with the first example but with the second γ replaced

with a 5. Consider A(γ) derived by a finite centred difference discretization of the

following convection-diffusion eigenvalue problem

2−∇ u + γux + 5uy = λu, in D := [0, 1] × [0, 1], (2.35)

u = 0, on Γ := ∂D,

on a 32 by 32 grid with 961 degrees of freedom. This means that A(γ) is of size 961

by 961. The error tolerance, tol = 5 × 10−15 while Table 2.2 shows the tabulated

values of λ and γ. The solution is obtained by finding the LU factorization of M(λ,γ)

plus one iterative refinement. For γ(0) = −16, we computed A(γ(0)) and used two

steps of inverse iteration with λ̂ = 47 as a shift to obtain an estimate for the eigen­

pair (x,λ) with λ(0) = λ, and the initial starting vector for the inverse iteration is

x(0) = [1, 0, 1, 0 , 0, 1, 0, 1]T/2. c and b were kept fixed as c = x, the computed · · ·

51

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

estimate of the eigenvector from inverse iteration and b = A (γ(0))c. The stopping ′

criterion is as stated in (2.18). The variable step sizes are chosen as follows: h1 = 0.15,

h2 = 0.22, h3 = 0.41, h31 = 0.07, h32 = 0.1, the other intermediate values of h are

computed by the relation

hk =
1− (h1 + h2 + h3 + h31 + h32)

, for k = 4, 5, , 30, p = 31.
p− 4

· · ·

Quadratic convergence is easily seen from the fifth column of Table 2.2, from the

fourth to the seventh iterates. The condition number of M(λ∗,γ∗) and Gy(y∗) are
approximately 3× 108 and 14 respectively. In this example, which has a greater el­

ement of nonsymmetry than the previous example, we again fail to see convergence

to machine precision, but given the size of the condition number of M(λ,γ) at the

root, the results are remarkably good. From the numerical computations, we obtained

fγ(λ∗,γ∗) ≈ −0.84065, fλλ(λ∗,γ∗) ≈ 0.07262, which are nonzero. Thus, the com­

puted values of fγ(λ∗,γ∗) and fλλ(λ∗,γ∗) agree with the conditions of Theorems

2.2.1 and 2.2.2 that they are nonzero. From the numerical experiments, the first two

k λ(k) λ(k+1) − λ(k)| | γ(k+1) − γ(k)| | �Δy(k)� �G(y(k))�
0 47.99881 8.8e-01 1.8e-01 9.0e-01 9.8e-01
1 48.87667 1.5e+00 1.5e-02 1.5e+00 4.8e-01
2 50.40657 4.3e-01 2.1e-01 4.8e-01 1.9e-01
3 50.83488 4.3e-01 1.4e-02 4.3e-01 1.7e-02
4 50.40355 1.1e-01 1.5e-03 1.1e-01 1.1e-02
5 50.51520 1.0e-02 7.0e-04 1.0e-02 1.2e-03
6 50.52546 6.7e-05 7.6e-06 6.7e-05 1.0e-05
7 50.52553 2.0e-09 3.9e-10 2.1e-09 4.4e-10
8 50.52553 2.8e-14 1.8e-15 2.7e-14 2.9e-15
9 50.52553 0.0e+00 0.0e+00 1.0e-15 2.4e-16

Table 2.2: Values of γ(k) and λ(k) for the discretized convection-diffusion eigen­
value problem (2.35) in Example 2.3.3. Column five shows that the results con­
verged quadratically as predicted by Theorem 2.2.2, with the exception of the
last two rows.

real leftmost eigenvalues of A(γ∗) coalesced at λ∗ = 50.52553 for γ∗ = −15.97019.

Example 2.3.4. This example is the same as that in Example 2.3.2 where A(γ) is de­

rived by a finite difference discretization of the convection-diffusion eigenvalue prob­

52

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

lem

2−∇ u + γux + γuy = λu, in D := [0, 1] × [0, 1],

u = 0, on Γ := ∂D,

using centre differences but on a 64 by 64 grid so that there are 63× 63 (3969) degrees

of freedom. The number of degrees of freedom in this example is approximately four

times larger than that of Example 2.3.2. The variable step sizes are chosen as: h1 =

0.15, h2 = 0.2, h3 = 0.3, h31 = 0.07, h32 = 0.09. The other intermediate values of h

are computed by

hk =
1− (h1 + h2 + h3 + h31 + h32)

, for k = 4, 5, , 62, p = 63.
p− 4

· · ·

The error tolerance is 8× 10−15. Given γ(0) = 0, we computed A(γ(0)) and used in­

verse iteration with λ̂ = 62 as a shift to obtain an estimate for the eigenpair (x,λ) of

-1 times the Laplacian, where λ(0) = λ. The starting vector for the inverse iteration is

x(0) = [1, 0, 0 , 0, 0]T. c and b were kept fixed as c = x and b = A′(γ(0))c. The · · ·
first two real eigenvalues of A(γ∗) coalesced at λ∗ = 63.33495 for γ∗ = −0.25951

to form a 2-dimensional Jordan block as shown in Table 2.3. The solution is obtained

by finding the LU factorization of M(λ(k),γ(k)) plus one iterative refinement in each

iteration. We observed quadratic convergence for k = 2, 3, 4 and 5 of column five.

The loss of quadratic convergence in the last two rows of Table 2.3 is due to the im­

precision in computing the residual in each of the linear solves of Algorithm 3 as

stated in Lemma 2.2.5 in the previous section. At the root, fγ(λ,γ) = −0.75971 and

fλλ(λ,γ) = −0.32598, so the conditions of Theorem 2.2.1 and 2.2.2 are satisfied.

Though no numerical computation is done, the next example is a potential

application of the theory discussed in this chapter.

Example 2.3.5. Consider the following generalized eigenvalue problem

(KT + γA)q = λMq, (2.36)

arising from the finite element discretization of the supersonic panel flutter problem

(as discussed in the third paragraph of Chapter 1), where KT and M are the total stiff­

ness and consistent mass matrices respectively which are symmetric positive definite,

53

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

k λ(k) λ(k+1) − λ(k)| | γ(k+1) − γ(k)| | �Δy(k)� �G(y(k))�
0 62.00001 6.8e-01 1.8e-01 7.1e-01 6.1e-01
1 62.68194 5.6e-01 2.3e-02 5.6e-01 2.1e-01
2 63.24539 9.2e-02 5.5e-02 1.1e-01 4.7e-02
3 63.33725 2.3e-03 8.2e-04 2.4e-03 1.1e-03
4 63.33494 3.4e-06 1.6e-06 3.8e-06 1.5e-06
5 63.33495 6.1e-12 1.2e-12 6.3e-12 2.4e-12
6 63.33495 0.0e+00 2.0e-14 2.1e-14 1.6e-14
7 63.33495 0.0e+00 2.8e-16 6.7e-16 3.2e-16

Table 2.3: Values of γ(k) and λ(k) for the discretized convection-diffusion eigen­
value problem (2.34) in Example 2.3.4. Column 5 show that, for k = 2, 3, 4 and
5 we obtained quadratic convergence as predicted by Theorem 2.2.2.

and A is the nonsymmetric aerodynamic load matrix. In this context, γ represents

the dynamic pressure parameter and the pair q and λ represent displacements and

eigenvalues respectively. When γ = 0, the eigenvalues of (2.36) are real and positive.

However, as γ is increased monotonically from zero, the first two smallest eigenvalues

λ1 and λ2, move and coalesce together to λ∗ at γ = γ∗ and become complex conjugate

eigenpairs (see, for example, [43, pp. 2268-2269], [44, p. 748]). By making the sub­

stitutions x = LTq and M = LLT, the above generalized eigenvalue problem reduces

to

(B + γC)x = λx, (2.37)

where B = L−1KTL
−T, C = L−1AL−T and in the notation of this chapter (2.37)

becomes A(γ)x = λx with A(γ) = B + γC. Note that M = LLT is the Cholesky

factorization [52, p. 262] of M where L is a lower triangular matrix with positive

diagonal elements.

For us to solve the five bordered linear system of equations in Algorithm 3

efficiently, in the next section, we present a description of the Block Elimination

Mixed method (BEM) algorithm.

54

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

2.4	 Efficient Solves using Block Elimination Mixed

Method

This section is motivated by a desire to solve the bordered linear system of

equations (2.4), (2.6), (2.10), (2.13), (2.14) for f (λ,γ), fλ(λ,γ), fλλ(λ,γ), fγ(λ,γ),

fλγ(λ,γ) respectively in Algorithm 3 more efficiently when A arises from a

discretized partial differential equation eigenvalue problem and hence has

special structure. This is accomplished using the Block Elimination Mixed

method (BEM) of Govaerts and Pryce [25], [27] for solving bordered linear sys­

tem of equations. There are three subsections. In Subsection 2.4.1, we present

the Block Elimination Doolittle (BED) and the Block Elimination Crout (BEC)

algorithm. In Subsection 2.4.2, we describe the Block EliminationMixed (BEM)

algorithm. A description of the Thomas algorithm for solving block tridiago­

nal systems is given in Subsection 2.4.3. We will compare the computational

time of solving all the systems involving M(λ,γ) on the left hand side using

LU-factorization with the time it takes using BEM in Examples 2.3.2, 2.3.3 and

2.3.4 of the last section.

First, we give a brief discussion of what is meant by a stable solver. A solver

T for A is a map T : Rn Rn such that T(v) is an approximate solution to →
AT = v. T is stable if there exists ΔA, Δv such that [25, p. 470]

(A + ΔA)T(v) = v + Δv, where �ΔA� ≤ εCT�A�, �Δv� ≤ εCT�v�,
(2.38)

ε is a floating point round off unit and CT is a stability constant of T which

is modest [26, p. 497, 500]. Examples of stable solvers are: QR factorization,

Cholesky factorization, while an example of an unstable solver is Gaussian

elimination without pivoting. However, following [60, pp. 163-170], ”Gaus­

sian elimination with partial pivoting is explosively unstable for certain matri­

ces, yet stable in practice.” It is unstable for those matrices in which the growth

factor3 is large. In this thesis, we shall take the view of [60] and assume that

Gaussian elimination with partial pivoting is a stable solver. When we used

3Assuming A has been factored into PA = LU, then the growth factor of A is defined as

ξ =
maxi,j |uij | , where uij and aij are the entries of U and A respectively. Typically for stability,
maxi,j |aij |

ξ should be of order one [60, p. 165].

55

[]

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

QR factorization in the numerical examples of the last section, there was no

significant improvements than those obtained using LU.

Let A be singular or nearly singular and consider the problem of solving

the following linear system of equations Mp = b,

[] [] []
A b x y

= ,	 (2.39)
cT d f e

with f , e ∈ R and x, y ∈ Rn, where

M =
c

A b

d
∈ R

(n+1)×(n+1),
T

is nonsingular. One of the ways of solving (2.39) is to apply the LU factoriza­

tion directly to M but this will probably destroy any structure in A. However,

BEM (Block Elimination Mixed) is an alternative method of obtaining x and

f which is more efficient and takes advantage of the structure in A. BEM is

based on two block elimination methods: Block Elimination Doolittle (BED)

and Block Elimination Crout (BEC). Following [25], if M is well conditioned

and A, AT are solved in a stable way, then BED produces f accurately without

any iterative refinement. In the same vein, BEC produces x accurately. The

backward error analysis shows that the accuracy of the solution obtained by

BEC depends on the size of the norm of the computed h-which is a vector that

is defined later in Algorithms 7 and 8 (see, [25, Proposition 3.3, p. 476-477]). In

a nutshell, BEM uses the ’relative strengths’ of the two algorithms. This forms

the basis for the following discussion on BED and BEC.

2.4.1	 Block Elimination Doolittle (BED) and Block Elimina­

tion Crout (BEC)

BED is a method of solving the bordered linear system of equations (2.39) by

factoring M blockwise using the following Doolittle factorization (see, for ex­

56

[] []

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

ample, [27, p. 162], [25, p. 470])

[] [] []
A b I 0 A b

cT d
=

wT 1 0T µ1

,

so that after expanding the right hand side

A b A b

cT d
=

wTA wTb + µ1

,

and equating to the left hand side, we obtain wTA = cT which implies

AT w = c.

In the same vein, since d = wTb + µ1, we have

µ1 = d−w Tb.

Note that µ1 is not equal to zero because M is assumed nonsingular. Moreover,

by expanding along the last row of

[] [] [] [] []
A b x A b x y

cT d f
=

wTA wTb + µ1 f
=

e
,

we obtain wTAx + fwTb + fµ1 = e and wT(Ax + fb) + fµ1 = e. Using

Ax + fb = y, yields wTy + fµ1 = e. Which implies

f = (e −w T y)/µ1.

The above analysis now gives rise to Algorithm 6 (see, for example, [25]).

Note that the first two steps in Algorithm 6 compute the block Doolittle

factorization and do not rely on the right hand side of (2.39). Furthermore, the

backward error analysis shows that the computed f is an exact solution of a

system near Mp = g (see, for example, [25, pp. 474-475]), hence, BED gives

accurate approximations to f without any iterative refinement. However, it

was observed numerically that one major drawback of BED [25, p. 471] is that

57

[] []

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Algorithm 6 BED Algorithm for solving Bordered Linear Systems

Input: M partitioned into A, b, c, d and right hand sides y and e.
1: Solve ATw = c for w.
2: Compute µ1 = d−wTb.
3: Compute f = (e −wTy)/µ1.
4: Solve Ax = y− fb for x.

Output: x, f .

more iterative refinement steps are needed to give a good approximation to x.

Next, we present a description of the BEC algorithm.

BEC is another way of solving (2.39) by using the following block Crout

factorization (see, for example [27, p. 162], [25, p. 470])

[] [] []
A b A 0 I q

cT d
=

cT µ 0T 1
, µ �= 0.

After expanding the right hand side,

A b A Aq
= .

cT d cT cTq + µ

By equating both sides componentwise, we obtain

Aq = b,

and

µ = d− T c q.

Observe that because M is nonsingular by assumption, this means that µ can­

not be zero. If we expand along the first n rows of

[] [] [] [] []
A b x A Aq x y

cT d f
=

cT cTq + µ f
=

e
, (2.40)

we obtain Ax + fAq = y. By letting h = x + fq, x = h− fq, implies

A(x + fq) = y

58

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

can be rewritten as

Ah = y.

Now observe that from the last row of (2.40), cTx + f (cTq+ µ) = e. After some

simplifications using h = x + fq, we obtain

f = (e − c Th)/µ.

These now give rise to the following algorithm: BEC Algorithm 7 ([25, p. 470],

[27, pp. 162-163]). The two algorithms outlined above, BED and BEC give

Algorithm 7 BEC Algorithm for solving Bordered Linear Systems

Input: M partitioned into A, b, c, d and right hand sides y and e.
1: Solve Aq = b for q.
2: Compute µ = d− cTq.
3: Solve Ah = y for h.
4: Compute f = (e − cTh)/µ.
5: Compute x = h− fq for x.

Output: x, f .

very good approximations to both x and f if M and A are well conditioned

or M is well conditioned and A is not too ill-conditioned and a solver for A

and AT is stable [25, p. 470]. However, Govaerts and Pryce ([25, p. 470] [26,

492-493]) suggested that, in the special case when A is less well conditioned,

the computed solutions can be improved by iterative refinement. Govaerts

and Pryce [26, 492-493] used LU and QR solvers in showing that BEC+14 (BEC

plus one iterative refinement) gives x and f accurately with two examples in

which A is singular in one and nearly singular in the other. Nevertheless, it has

been shown numerically in [27, 471-472] that BEC+1 fails (failure in computing

x accurately) with a solver based on the preconditioned conjugate gradient

algorithm applied to a symmetric positive-semidefinite A (with the diagonals

of A as preconditioner) and proposed the method of Block Elimination Mixed

(BEM) ([26, p. 491], [25, p. 470], [27, pp. 162-163]).

4In the iterative refinement step of BEC+1, we do not recompute q and µ again i.e., Crout’s
factorization is done once. Meaning that BEC+1 entails only 3 ”black box” solves for A [26, p.
492].

59

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

2.4.2 Block Elimination Mixed method (BEM)

In this section, we present the Block Elimination Mixed method (BEM) algo­

rithm given by Govaerts [25] which combines the two previous algorithms.

BEM uses a mixture of BED and BEC in which f is first computed by BED,

the value of f obtained in addition to a zero vector as an approximate solution

to x, are then used in one step of BEC [25, p. 472] to produce the following

algorithm: BEM Algorithm 8.

Algorithm 8 BEM Algorithm for Solving Bordered Linear Systems

Input: M partitioned into A, b, c, d and right hand sides y and e.
1: Solve ATw = c for w.
2: Calculate µ1 = d−wTb.
3: Calculate f = (e −wTy)/µ1.
4: Solve Aq = b for q.
5: Calculate µ = d− cTq.
6: Compute y1 = y− fb.
7: Compute e1 = e − f d.
8: Solve Ah = y1 for h.
9: Calculate f1 = (e1 − cTh)/µ.

10: Compute x = h− f1q.
11: Compute f = f + f1.
Output: x, f .

The error analysis of BEM in [25] shows that it gives accurate approxima­

tions to both x and f if M is well conditioned and the solvers for both A and

AT are stable. Observe from Algorithm 8, that the first three steps are the pre­

processing part of BED, steps 4-5 of BEM are the preprocessing part of BEC.

Furthermore, steps 6-7 compute the residuals with the f obtained in step 3

and a zero vector for x as first approximations to the solution. Steps 8-10 cor­

responds to the residual correction by BEC, while in step 11, the computed

value of f is updated. For a solver based on ’LU’ factorization, only one LU

factorization is needed to implement steps 1, 4 and 8 of BEM. This is because

A = LU implies AT = UTLT . It should be remarked that step 4 of BED is

omitted in BEM to escape another solve for A. Had we included step 4 of BED

in BEM, we then modify steps 6-7 and update x = x + x1 in step 12 [25, p. 473].

If A is ill-conditioned, then the computed results of BEM can be improved

by one (i.e., BEM+1) or more iterative refinements. BEM+1 requires just four

60

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

solves, namely, the three solves in Algorithm 8 plus one solve in step 7 of Al­

gorithm 9. Next, we present the iterative refinement steps of BEM: Algorithm

9.

Algorithm 9 BEM+k Algorithm (k number of iterative refinements)

Input: M partitioned into A, b, c, d and right hand sides y and e.
1: Use BEM Algorithm 8 to compute x1 and f1, w,q, µ1 and µ.
2: for k = 1, 2, . . . , do
3:	 Compute the residuals

y1 = y−Ax1 − f1b.

e1 = e − cTx1 − f1d.

4:	 Calculate f = (e1 −wTy1)/µ1.
5:	 Compute y2 = y1 − fb.
6:	 Compute e2 = e1 − f d.
7:	 Solve Ah = y2 for h using Thomas algorithm or any other solver.
8:	 Calculate f2 = (e2 − cTh)/µ.
9:	 Compute x2 = h− f2q.

10: Compute f2 = f + f2.
11: Update x1 = x1 + x2 and f1 = f1 + f2.
12: end for
Output: x1, f1.

We conclude this section by stating that given stable solvers for A and AT ,

BEM is a stable solver. Let CT be the common upper bound of the stability

constants of the solvers with A and A transposed, The stability result in [27, p.

165] shows that provided M is not too ill-conditioned, the stability constant of

BEM is a linear combination of CT and the inner product constant
5 CP.

Often in cases where the matrixA arises from the five-point finite difference

discretization of partial differential equations, it usually has special structure,

that is, large sparse and block tridiagonal. In which an ’LU’ type factorization

destroys the sparsity structure within the blocks, it is better to use solvers that

preserve this block structure. One of such structure preserving direct solver is

the block Thomas algorithm. In the next section, we describe the block Thomas

algorithm for solving block tridiagonal systems.

5The inner product constant Cp is such that f l(xTy) = xTϑy, ϑ (εCP) where ϑ is a ∈
diagonal matrix and CP ≤ n, n is the size of A. In the scalar case, the notation ϑ ∈ 1(δ), δ > 0
means ϑ = eµ where µ δ. In the matrix case, ϑ is a product of a finite number of matrices | | ≤
exp(Ek) where ∑k �Ek� ≤ δ [27, p. 474].

61

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

2.4.3	 Thomas Algorithm for Solving Block Tridiagonal Sys­

tems

We consider the problem of solving a square linear system of equations, Ax =

b in which A is large sparse, partitioned into blocks, each block is of size N by

N and is either diagonal or tridiagonal. In practical applications, such matri­

ces arise from a five-point finite difference discretization of partial differential

equations as in Examples 2.3.2, 2.3.3 and 2.3.4.

This section is structured as follows, we use a block LU-type factorization

in factoringA, after which block forward and backward substitutions are used

in solving for the unknown vector-x. We present Algorithm 10, which is actu­

ally the Thomas algorithm for solving block tridiagonal systems, and the com­

putational cost in terms of the number of floating point operations required.

The material in this section can be found in [31, pp. 58-61], [20, pp. 121-122]

and [1].

Let A be partitioned as


B1 C1

A2 B2 C2

A3 B3 C3
A
 =























,
 (2.41)
.

AN−1 BN−1 CN−1

AN BN

where the Ak,Bk,Ck’s are of size N by N. Note that the Ak,Bk,Ck’s do not

have to be equal. The unknown vector x and corresponding right hand side is

partitioned as



x1	 b1









x2

x3
.
.
.










,
 and b
 =










b2

b3
.
.
.










x
 =
 ,
 (2.42)

xN bN

where each xk and bk are in R
N. We factor A into a block LU type factorization

62

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

of the form


Γ1 I Δ1


































I
 Δ2

I












Θ2 Γ2

Θ3 Γ3 Δ3

. .
. .

A = LU =
 ,
. .
. .
. .

ΘN−1 ΓN−1

. .

I ΔN−1

IΘN ΓN

(2.43)

where I is the N by N identity matrix, Θk, Δk and Γk are square matrices.

The ’L’ and ’U’ factors are block bidiagonal and the above factorization is not

unique. This is because, we can also factor A as


I Γ1 Θ2

A =












Δ1

I























Γ2

ΘN












.

I
 Θ3

I
Δ2 Γ3 Θ4

. .
. .
. .

ΔN−2

. .
. .
. .

ΓN−1

ΔN−1 I ΓN

After expanding the right hand side of (2.43) and comparing with the entries

of A in (2.41) blockwisely, we obtain

Θk = Ak, for k = 2, 3, . . . , N,

Γ1 = B1, and Γ1Δ1 = C1,

and the following recurrence ΓkΔk = Ck, where

Γk = Bk −AkΔk−1,

for k = 2, 3, . . . N. We first solve for Δk, use the previous Δk−1 and then sub­

stitute into Γk = Bk − AkΔk−1 to get the Γk’s. This completes the block LU

factorization of A. The system Ax = b now reduces to solving

Ly = b, and Ux = y,

63

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

for y and x respectively. Now, using the L factor in (2.42), we can rewrite

Ly = b as


Γ1 y1 b1

Ly =












A2 Γ2

ΓN−1























y2

y3
.
.
.

yN−1












=












b2

b3
.
.
.

bN−1












.

A3 Γ3

.

AN−1

AN ΓN yN bN

Observe that one can solve for the yk’s, using forward substitution, beginning

with Γ1y1 = b1, for y1. Then for k = 2, 3, . . . , N, we solve for the remaining

yk’s from the relation

Γkyk = bk −Akyk−1.

We now substitute the computed values of yk into Ux = y, that is,


I Δ1 x1 y1











I Δ2






















x2

x3
.
.
.

xN−1












=












y2

y3
.
.
.

yN−1












.

I Δ3

.

I ΔN−1

I xN yN

It is easily seen from the last row above that xN = yN. Using backward substi­

tution, we obtain the remaining xk’s from the recurrence relation

xk = yk − Δkxk+1,

for k = N − 1,N − 2, . . . , 2, 1. The above theory now leads to Algorithm 10:

Thomas Algorithm (see, for example, [31, pp. 58-61] and [20, pp. 121-122]).

Note that ’LU’ factorization can be used in the four block solves in Algorithm

10. This is what makes the Thomas algorithm an efficient solver for BEM,

because one can store the ’L’ and ’U’ factors for Γ1 and Γk in steps 2 and 6 of

Algorithm 10 to solve the systems in steps 1, 4 and 8 of BEM Algorithm 8.

Next, we briefly describe the operation counts for the Thomas Algorithm.

64

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Algorithm 10 Thomas Algorithm for block Tridiagonal Systems

Input: A, b and N.
1: Set Γ1 = B1.
2: Solve Γ1Δ1 = C1 for Δ1.
3: Solve Γ1y1 = b1 for y1.
4: for k = 2, 3 . . . , N do
5: Compute Γk = Bk −AkΔk−1.
6: Solve ΓkΔk = Ck for Δk.
7: Solve Γkyk = bk −Akyk−1, for yk.
8: end for
9: Set xN = yN.

10: for k = N − 1 : −1 : 1 do
11: xk = yk − Δkxk+1.
12: end for
Output: x

Note that since A has been partitioned into N blocks in N unknowns, this

means that there are n = N2 unknowns. Observe that the solution of Ax = b

by LU factorization costs O(N2)3 operations. Since the product of two N by

N matrices requires N3 operations [31], this implies that forward substitution

which involves (N − 1) matrix-matrix multiplication at a cost of 2N3 opera­

tions and approximately 2(N2)2 total operations. Similarly, there are (N − 1)

LU factorizations at 23N
3 operations which amounts to approximately O(N2)2

operations. Moreover, N2 triangular solves are required at a cost of N2 oper­

ations and ∼ O(N2)2 floating point operations. Therefore, the total floating

point operations required for Thomas block tridiagonal algorithm is approx­

imately O(N2)2 operations. Hence, in solving Ax = b where A is large and

sparse, Thomas algorithm requires less number of operations and storage than

the direct LU.

Finally, we compare the computational time and number of iterations ob­

tained by using direct LU factorization to solve the bordered linear systems of

Algorithm 3 and BEM on three numerical examples from the last section. In

all numerical examples, the solver for BEM is the Thomas algorithm for block

tridiagonal systems. The comparison table is drawn based on the results pre­

sented in Tables 2.1, 2.2 and 2.3 of Examples 2.3.2, 2.3.3 and 2.3.4 respectively.

Example 2.4.1. We repeated the computations in Section 2.3 using BEM with the

65

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

same initial guesses and stopping tolerance. Table 2.4 gives a comparison of the cpu

time and number of iterations obtained by solving the five bordered systems in Al­

gorithm 2.2.2 using LU factorization of M(λ(k),γ(k)) and BEM. In using BEM, at

each stage of the iteration, we used the Thomas algorithm in solving the three linear

systems in BEM involving A(γ(k)) − λ(k)I on the left hand sides, that is, steps 1, 4,

and 8 of Algorithm 8, where in this case Ak and Ck are diagonal matrices and Bk are

tridiagonal. The numerical experiments show that solving the bordered system in Ex­

amples 2.3.2, 2.3.3 and 2.3.4 using LU factorization of M(λ(k),γ(k)) and BEM plus

one iterative refinement give identical results at the root.

Example
LU of M(λ(k),γ(k)) BEM+1

Size of A(γ) Time/s k Time/s k
2.3.2 961× 961 0.32 7 0.09 8
2.3.3 961× 961 0.32 9 0.09 10
2.3.4 3969× 3969 12.02 7 1.01 7

Table 2.4: Comparing the cpu time between the solution obtained by direct

LU factorization of M(λ(k),γ(k)) with one iterative refinement and BEM+1.

The solver for A(γ(k)) − λ(k)I in BEM is the Thomas algorithm for solving
block tridiagonal systems. Clearly, BEM solver outperforms its LU factoriza­
tion counterpart with the same number of iterative refinement.

From Table 2.4, Time/s represents the total time (in seconds) taken to solve for

f (λ,γ), fλ(λ,γ), fλλ(λ,γ), fγ(λ,γ), fλγ(λ,γ) and the corresponding x’s. k rep­

resents the total number of iterations it took for Algorithm 3 to satisfy the desired tol­

erance as reported in the tables in Section 2.3. We remark that as we approach the root

in the course of implementing BEM, A(γ(k)) − λ(k)I became singular as predicted by

the theory. Nevertheless, we did not encounter any problem with the program. This

is because, only blockwise solves of the entries in A(γ(k)) − λ(k)I are carried out in

the Thomas algorithm. Besides, each Γk in (2.43) is not singular. It should be noted

that without iterative refinement, the accuracy of the results obtained by BEM is of or­

der 10−12 and 10−13. A similar situation was encountered in using LU factorization

on M(λ(k),γ(k)). As a result of this, one step of iterative refinement, significantly

improved the accuracy of the computed solution by BEM and LU factorization on

Examples 2.3.2, 2.3.3, 2.3.4.

Observe from the second row, third and fourth columns of Table 2.4 that while

it took 0.32 seconds and 7 iterations for the computed solution obtained by LU fac­

66

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

torization of M(λ(k),γ(k)) with one iterative refinement to converge to the desired

tolerance, columns five and six show that BEM+1 takes 0.09 seconds and 9 iterations.

In the same vein, from the third row, it took 0.32 seconds for the direct LU solver with

M(λ(k),γ(k)) plus one iterative refinement and 0.09 seconds with BEM+1. It took 9

and 10 iterations respectively for both methods to converge to the desired tolerance.

In the last row of Table 2.4, we see that when the size of the mesh is doubled, the

total time taken to solve the five linear systems in Algorithm 3 involvingM(λ(k),γ(k))

on the right hand sides by LU factorization plus one iterative refinement is twelve

times more than the time it took BEM+1. It should be mentioned that when systems

involving M(λ(k),γ(k)) on the left hand sides were solved in Examples 2.3.2 and

2.3.3 using BEM with an LU solver, it took more time than with an LU solver on

M(λ(k),γ(k)). This is because BEM required more than one iterative refinements to

attain the desired accuracy achieved by using LU on M(λ(k),γ(k)) in both examples.

This is as a result of the near-singularity or singularity of A(γ(k)) − λ(k)I.

In summary, as shown in Table 2.4, the goal of this section has been achieved as we

have been able to solve the five bordered linear systems in Algorithm 3 more efficiently

using BEM plus one iterative refinement.

In the next section, we present the special case of the theory developed in

Section 2.2 in which λ is complex.

2.5	 Implicit Determinant Method for a Parameter-

Dependent Matrix when λ is Complex

Up till now, we have assumed that λ∗ is real. In this section, we extend the

theory to the case when λ∗ is complex, and give an example.

When λ∗ is complex in (2.4), we split λ into its real and imaginary parts as

λ = α + iβ, where α and β are real. Hence, (2.11) can be rewritten as


 

f (α, β,γ)

G(y) =

 fα(α, β,γ)

fβ(α, β,γ)



= 0,	 (2.44)

where y = [α, β,γ]T, and f (α, β,γ), fα(α, β,γ), fβ(α, β,γ) are complex. This

means G(y) = 0, is six real nonlinear equations in three real unknowns, that

67

()

[]

(
)

[
]
 [
]

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

is,
 

G(y) =












Re f (α, β,γ)

Re fα(α, β,γ)

Re fβ(α, β,γ)

Im f (α, β,γ)

Im fα(α, β,γ)

Im fβ(α, β,γ)












= 0.

However, in the course of the discussion in this section, this will reduce to a

system of four real nonlinear equations in three real unknowns. This is due to

the fact that fβ(α, β,γ) = i fα(α, β,γ) for all values of α, β and γ as we prove

later. Hence, the last equation in (2.44) contains no extra information, and so

it will be neglected. The resulting system of nonlinear equations will then be

solved using the Gauss-Newton method.

This section is structured as follows, we begin by applying the theory of

the implicit determinant method to

N(α, β,γ) = A(γ) − λI = A(γ) − (α + iβ)I,

where dim N
 N(α∗, β∗,γ∗) =
 1, and N(α∗, β∗,γ∗) has a 2-dimensional Jor­

dan block corresponding to a zero eigenvalue. This will then be followed by

presenting the four real nonlinear equations in three real unknowns. In Sub­

section 2.5.1, we show that the resulting Jacobian is of full rank and use the

Gauss-Newton method in solving the over-determined nonlinear system of

equations. The key results in this section are Lemma 2.5.1, Theorems 2.5.1,

2.5.2, 2.5.3, and Algorithm 11 is given for computing α∗, β∗ and γ∗.
Write M from (2.2) in the form

N(α, β,γ) b
M(α, β,γ) = ,

cH 0

where N(α, β,γ)
=
 A− (α + iβ)I
 , b and c satisfy the conditions of Lemma

2.2.1 and consider the following system of linear equations

] [

N(α, β,γ) b x(α, β,γ) 0

= . (2.45)
cH 0 f (α, β,γ) 1

68

[] []

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Here,N(α, β,γ) is complex and b, c may be complex, so x(α, β,γ) and f (α, β,γ)

are complex. Observe that

Nα(α, β,γ) = −I, Nβ(α, β,γ) = −iI, and Nγ(α, β,γ) = A (γ), (2.46) ′

so Nβ(α, β,γ) = iNα(α, β,γ), where Nα(α, β,γ) = d
d
α N(α, β,γ) e.t.c.

Lemma 2.5.1. If b, c are chosen such that M(α∗, β∗,γ∗) is nonsingular, then

fβ(α, β,γ) = i fα(α, β,γ),

for all α, β and γ.

Proof: After differentiating (2.45) with respect to α and using (2.46), we ob­

tain [] [] []
N(α, β,γ) b xα(α, β,γ) x(α, β,γ)

= . (2.47)
cH 0 fα(α, β,γ) 0

Again, if we differentiate both sides of (2.45) with respect to β, then with the

help of (2.46),

[] [] []
N(α, β,γ) b xβ(α, β,γ) ix(α, β,γ)

cH 0 fβ(α, β,γ)
=

0
. (2.48)

Note that both equations (2.47) and (2.48) have the same left hand sideM(α, β,γ)

but with different right hand sides, though, the right hand side of (2.47) is a

multiple of the right hand side of (2.48), that is,

xβ(α, β,γ) xα(α, β,γ)
= i , (2.49)

fβ(α, β,γ) fα(α, β,γ)

for all α, β and γ. Hence, fβ(α, β,γ) = i fα(α, β,γ) and xβ(α, β,γ) = ixα(α, β,γ)

for all α, β and γ.

The following fundamental result is a corollary of Theorem 2.2.1.

Theorem 2.5.1. Let A(γ∗) be a real n by n matrix such that

dimN
(
N(α∗, β∗,γ∗)

)
= 1.

69

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Let zero be an eigenvalue of N(α∗, β∗,γ∗) corresponding to a 2-dimensional Jordan

block. If b, c are chosen such that M(α∗, β∗,γ∗) is nonsingular, then

1. f (α∗, β∗,γ∗) = 0,

2. fα(α∗, β∗,γ∗) = 0,

3. fβ(α∗, β∗,γ∗) = 0,

4. fαα(α∗, β∗,γ∗) �= 0.

Proof: From (2.45) and because dim N
(
N(α∗, β∗,γ∗)

)
= 1, the first part of

the theorem follows from Lemma 2.2.2. By expanding the first n rows of (2.47)

and evaluating at the root, one easily obtains

N(α∗, β∗,γ∗)xα(α∗, β∗,γ∗) + fα(α∗, β∗,γ∗)b = x(α∗, β∗,γ∗). (2.50)

After premultiplying both sides by ψ∗H, for all ψ∗ ∈ N [N(α∗, β∗,γ∗)H]\{0},
we obtain

ψ∗HN(α∗, β∗,γ∗)xα(α∗, β∗,γ∗) + fα(α∗, β∗,γ∗)ψ∗Hb = ψ∗H x(α∗, β∗,γ∗).

The definition of ψ∗ ensures that the first term on the left hand side equals

zero, so that

ψ∗H x(α∗, β∗,γ∗) τψ∗Hφ∗
fα(α∗, β∗,γ∗) = = .

ψ∗Hb ψ∗Hb

Note that from Lemma 2.2.1, x(α∗, β∗,γ∗) = τφ∗. Hence, fα(α∗, β∗,γ∗) = 0

because ψ∗Hφ∗ = 0, (cf., Theorem 2.2.1). Thus,

N(α∗, β∗,γ∗)xα(α∗, β∗,γ∗) = x(α∗, β∗,γ∗),

is obvious from (2.50). This means xα(α∗, β∗,γ∗) can be taken as the gener­
alised eigenvector of N(α∗, β∗,γ∗) corresponding to a double zero eigenvalue.

Hence,

ψ∗H xα(α∗, β∗,γ∗) �= 0, (2.51)

by the dimensionality of the Jordan block.

70

[] []

�

� �

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Since (2.49) holds for all α, β and γ, we deduce that,

fβ(α∗, β∗,γ∗) = i fα(α∗, β∗,γ∗) = 0,

because fα(α∗, β∗,γ∗). Thus, proving the third part of the theorem. Next, if

we differentiate both sides of (2.47) with respect to α and after some simplifi­

cations [] [] []
N(α, β,γ) b xαα(α, β,γ) 2xα(α, β,γ)

= . (2.52)
cH 0 fαα(α, β,γ) 0

This means

N(α, β,γ)xαα(α, β,γ) + fαα(α, β,γ)b = 2xα(α, β,γ),

and
2ψ∗H xα(α∗, β∗,γ∗)

fαα(α∗, β∗,γ∗) = . (2.53)
ψ∗Hb

Accordingly, fαα(α∗, β∗,γ∗) is nonzero using (2.51).

Now, by differentiating both sides of (2.48) with respect to β,

[] [] [] []
N(α, β,γ) b xββ(α, β,γ)

=
2ixβ(α, β,γ)

=
−2xα(α, β,γ)

.
cH 0 fββ(α, β,γ) 0 0

(2.54)

Observe from (2.52) and (2.54) that for all α, β and γ,

xββ(α, β,γ) xαα(α, β,γ)
= − . (2.55)

fββ(α, β,γ) fαα(α, β,γ)

The next result tells usmore about the conditions satisfied by the partial deriva­

tives of f (α, β,γ). The second part of the theorem makes use of (2.49).

Theorem 2.5.2. Assume the conditions of Theorem 2.5.1 hold. If

ψ∗HA (γ∗)x(α∗, β∗,γ∗) = 0, ′

then fγ(α∗, β∗,γ∗) = 0. Moreover, fαβ(α∗, β∗,γ∗) = 0.

71

[]

�

[] []

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Proof: If we differentiate both sides of (2.45) with respect to γ, then

[] [] []
N(α, β,γ) b xγ(α, β,γ)

=
−A (γ)x(α, β,γ)

. (2.56)
′

cH 0 fγ(α, β,γ) 0

But by assumption, ψ∗HA′(γ∗)x(α∗, β∗,γ∗) is nonzero, this implies

fγ(α∗, β∗,γ∗) = − ψ
∗HA′(γ∗)x(α∗, β∗,γ∗)

,
ψ∗Hb

is also nonzero. Furthermore, by differentiating both sides of (2.47) with re­

spect to β, and using (2.49) yields

[] [] []
N(α, β,γ) b xαβ(α, β,γ) xβ(α, β,γ) + ixα(α, β,γ)

cH 0 fαβ(α, β,γ)
=

0
(2.57)

2ixα(α, β,γ)
= .

0

It is not difficult to see from (2.49) that

2iψ∗H xα(α∗, β∗,γ∗)
fαβ(α∗, β∗,γ∗) = , (2.58)

ψ∗Hb

which is nonzero, since ψ∗H xα(α∗, β∗,γ∗) = 0.

Notice that by virtue of the right hand sides of (2.52) and (2.57),

xαβ(α, β,γ) xαα(α, β,γ)
= i . (2.59)

fαβ(α, β,γ) fαα(α, β,γ)

Observe that after differentiating both sides of (2.47) and (2.48) respectively

with respect to γ, one easily obtains

[] [] []
N(α, β,γ) b xαγ(α, β,γ)

=
xγ(α, β,γ) −A′(γ)xα(α, β,γ)

.
cH 0 fαγ(α, β,γ) 0

(2.60)

Since fβ(α, β,γ) = i fα(α, β,γ) for all α, β and γ from (2.49), it then means

fβ(α, β,γ) contains no extra information. Consequently, we neglect the third

72

[]

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

equation in (2.44), so that

f (α, β,γ)
G(y) = = 0.

fα(α, β,γ)

Therefore, the six over-determined nonlinear system in three real unknowns

presented earlier reduces to the following four real over-determined nonlinear

system of equations in three real unknowns,



F(y) =







Re[f (α, β,γ)]

Re[fα(α, β,γ)]

Im[f (α, β,γ)]

Im[fα(α, β,γ)]







= 0, (2.61)

where F : R3 → R4, F(y) ∈ R4 and y = [α, β,γ]T . The Jacobian of F(y), can

be expressed as



Fy(y) =






Re[fα(α, β,γ)] Re[fβ(α, β,γ)] Re[fγ(α, β,γ)]

Re fαα(α, β,γ) Re[fαβ(α, β,γ)] Re[fαγ(α, β,γ)]

Im[fα(α, β,γ)] Im[fβ(α, β,γ)] Im[fγ(α, β,γ)]

Im[fαα(α, β,γ)] Im[fαβ(α, β,γ)] Im[fαγ(α, β,γ)]







∈
 R4×3 .
 (2.62)

Next, we describe the Gauss-Newton method for solving the four real over­

determined nonlinear system of equations for the three real unknown param­

eters, α, β and γ.

2.5.1 The Gauss-Newton Method for Solving (2.61)

In this section, we show that the rectangular Jacobian in (2.62) is of full rank

at the root and apply the Gauss-Newton method to solve the four real over­

determined nonlinear system of equations (2.61) in three real unknowns. The

key result in this section is Theorem 2.5.3, and Algorithm 11 is given for com­

puting the parameters α, β and γ.

From the algebra of complex numbers, since fβ(α, β,γ) = i fα(α, β,γ), this

73

�

�

�

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

is equivalent to Re[fβ(α, β,γ)] = −Im[fα(α, β,γ)] and

Im[fβ(α, β,γ)] = Re[fα(α, β,γ)].

In the same vein, Re[fαβ(α, β,γ)] = −Im[fαα(α, β,γ)] and

Im[fαβ(α, β,γ)] = Re[fαα(α, β,γ)],

because

fαβ(α, β,γ) = i fαα(α, β,γ).

Now, observe from (2.58), that fαα(α∗, β∗,γ∗) = 0. This implies that either

Re[fαα(α∗, β∗,γ∗)] is nonzero and Im[fαα(α∗, β∗,γ∗) is zero, or, Re[fαα(α∗, β∗,γ∗)]
is zero and Im[fαα(α∗, β∗,γ∗)] is nonzero, or, both are nonzero. The same ar­

gument holds for the real and imaginary parts of fαβ(α∗, β∗,γ∗). Hence, at the

root, the Jacobian simplifies to


 

0 0 Re[fγ(α∗, β∗,γ∗)]

Re[fαα(α∗, β∗,γ∗)] −Im[fαα(α∗, β∗,γ∗)] Im[fαγ(α∗, β∗,γ∗)]












Fy(y
∗) = .

Im[fγ(α∗, β∗,γ∗)] 0 0

Im[fαα(α∗, β∗,γ∗)] Re[fαα(α∗, β∗,γ∗)] Im[fαγ(α∗, β∗,γ∗)]
(2.63)

The next theorem shows that the Jacobian above is of full rank.

Theorem 2.5.3. Under the assumptions of Theorem 2.5.1 and if fγ(α∗, β∗,γ∗) = 0,

then the Jacobian (2.63) is of full rank.

Proof: If we can show that the unknowns p, q and r are zero in






















p

0 0 Re[fγ(α∗, β∗,γ∗)]

Re[fαα(α∗, β∗,γ∗)] −Im[fαα(α∗, β∗,γ∗)] Re[fαγ(α∗, β∗,γ∗)]








= 0,







q

Im[fγ(α∗, β∗,γ∗)] 0 0

Im[fαα(α∗, β∗,γ∗)] Re[fαα(α∗, β∗,γ∗)] Im[fαγ(α∗, β∗,γ∗)]
r

then the Jacobian is of full rank. From the first and third rows, and using

the fact that fγ(α∗, β∗,γ∗) = 0, so that, at least one of Re fγ(α∗, β∗,γ∗) and
Im fγ(α∗, β∗,γ∗) is nonzero. This implies, r = 0. This means that we are left

74

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

with

[] [] []
p p

Fy(y
∗)[2 =

Re[fαα(α∗, β∗,γ∗)] −Im[fαα(α∗, β∗,γ∗)]
= 0. ×2]

q Im[fαα(α∗, β∗,γ∗)] Re[fαα(α∗, β∗,γ∗)] q

The determinant of the matrix on the left hand side above is

det[Fy(y
∗)[2×2]] = (Re[fαα(α∗, β∗,γ∗)])2 + (Im[fαα(α∗, β∗,γ∗)])2.

But from Theorem 2.5.1, fαα(α∗, β∗,γ∗) is nonzero. Accordingly, the determi­

nant of [Fy(y∗)[2×2]] is nonzero and Fy(y
∗)[2×2] is nonsingular . Therefore,

p = q = 0 and so Fy(y∗) is of full rank.

So far, because fβ(α, β,γ) = i fα(α, β,γ), we have been able to reduce the six

real over-determined nonlinear system of equations in three real unknowns to

four with the same number of unknowns. In addition, we have been able to

show that the resulting Jacobian is of full rank at the root. Next, we describe

an application of the Gauss-Newton method for the solution of the four real

over-determined nonlinear system of equations in three real unknowns.

By an application of Gauss-Newton method (see, for example, [16, pp. 221­

223]) to the nonlinear least squares problem

min
y∈R3

�F(y)�,

we solve (at least in theory)

[Fy(y
(k))TFy(y

(k))]Δy(k) = −Fy(y
(k))TF(y(k)), (2.64)

for Δy(k) and update y(k+1) = y(k) + Δy(k). Computationally, we find the re­

duced QR factorization of Fy(y(k)) = QR, where Q ∈ R4×3 and R ∈ R3×3.

After making the necessary substitutions in (2.64), we obtain

RΔy(k) = −QTF(y(k)).

Thus, the four real over-determined nonlinear equations in three real unknowns

reduce to solving a square linear system of 3 equations for the 3 unknowns

75

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Δy(k) = [Δα(k),Δβ(k),Δγ(k)] and updating



α(k+1)
 

α(k)
 

Δα(k)



β(k+1) 

= β(k) 
+ Δβ(k)

for k = 0, 1, 2,
      ,

γ(k+1) γ(k) Δγ(k)

Algorithm 11 Implicit Determinant on N(α, β,γ) to find [α(k), β(k),γ(k)]T

Input: Choose α(0), β(0),γ(0) and b, c ∈ Rn\{0} such that M(α(0), β(0),γ(0)) is
nonsingular, tol.

1: for k = 0, 1, 2, . . . , until convergence do
2:	 Solve (2.45) for f (α(k), β(k),γ(k)).

3:	 Use the x(α(k), β(k),γ(k)) from the first step to compute fα(α(k), β(k),γ(k))
from (2.47).

4:	 Equate fβ(α(k), β(k),γ(k)) = i fα(α(k), β(k),γ(k)).

5:	 With xα(α(k), β(k),γ(k)) from step 2, solve (2.52) for fαα(α(k), β(k),γ(k)).

6:	 Equate fαβ(α(k), β(k),γ(k)) = i fαα(α(k), β(k),γ(k)).

7:	 Solve (2.56) for fγ(α(k), β(k),γ(k)).

8:	 Solve (2.60) for fαγ(α(k), β(k),γ(k)).

9:	 Form F(y(k)) from (2.61).

10: Find the reduced QR factorization of Fy(y(k)) as in (2.62).
11: Solve the 3 by 3 linear system

RΔy(k) = −QTF(y(k)),

for Δy(k).
12: Apply Newton update


α(k+1)  

α(k)  
Δα(k) 

β(k+1)  = β(k) + Δβ(k)  .
γ(k+1) γ(k) Δγ(k)

13: end for

Output: ykmax = [α(kmax), β(kmax),γ(kmax)].

Algorithm 11 involves five linear solves with M(α(k), β(k),γ(k)) on the left

hand side but with different right hand sides. Hence, for each iteration, only

one LU-factorization is computed while the L and U factors are used in the

76

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

five solves. The stopping condition for Algorithm 11 is

�Δy(k)� ≤ tol. (2.65)

Next, we give the following numerical example which illustrates the above

theory.

Example 2.5.1. Consider the following real parameter-dependent matrix



A(γ) =







−1 1 2 1

γ −1 0 2

−2 −1 −1 1

0 −2 γ −1







,

where γ represents power dispatch. This matrix was used in [19, p. 342] to illustrate

exact resonance of two complex conjugate pairs of eigenvalues, which occurs when

two damped oscillatory modes coalesce. In this example, we seek the value of γ∗ such
that A(γ∗) has a 2-dimensional Jordan block corresponding to the eigenvalue λ∗ =

α∗ + iβ∗. In fact, γ∗ = 0. The initial guesses for α(0), β(0) and γ(0) are 2, 5 and 2

respectively. We chose c and b as c = [1, 0, 0, 0]T and b = A (γ)c. The computed ′

values of α, β and γ are as tabulated in Table 2.5. From Table 2.5, we see that as we

k α(k) β(k) γ(k) λ(k+1) − λ(k)| | β(k+1) − β(k)| | γ(k+1) − γ(k)| | �G(y(k))�
0 2.0 5.0 2e+00 3.5e+00 1.6e+00 1.2e+01 1.2e+01
1 -1.4 3.3 9e+00 4.3e-01 2.4e+00 1.4e+01 1.5e+01
2 -1.0 0.9 4e+00 1.9e+00 2.0e+00 5.2e+00 5.9e+00
3 -2.9 2.9 5e-01 1.1e+00 1.1e+00 1.8e+00 2.4e+00
4 -1.8 1.9 1e+00 8.8e-01 1.6e-01 1.8e+00 2.0e+00
5 -1.0 2.0 5e-01 2.3e-02 5.2e-02 5.2e-01 5.2e-01
6 -0.9 2.0 1e-02 4.9e-03 1.3e-02 1.4e-02 2.0e-02
7 -1.0 2.0 3e-07 3.1e-05 2.2e-05 3.9e-07 3.8e-05
8 -1.0 2.0 9e-10 2.6e-12 4.2e-13 9.1e-10 9.1e-10
9 -1.0 2.0 5e-20 0.0e+00 0.0e+00 5.1e-20 5.2e-20

Table 2.5: Values of α(k), β(k) and γ(k) obtained after applying Algorithm 11
on A(γ). From the last row, it will be observed that α∗ = −1, β∗ = 2 and
γ∗ = 0. Column 8 show that the results converged quadratically as predicted
by Theorem 2.5.2.

approach the root (in this context, ’root’ is the same as resonance), we observe quadratic

convergence in column eight. This agrees with the standard Gauss-Newton theory.

77

Implicit Determinant Method and the Computation of a 2-Dimensional
Jordan Block in a Parameter Dependent Matrix

Besides, at γ∗ = 0, our computations show that α∗ = −1, β∗ = 2, and λ∗ = −1+ 2i,

(as in [19]). Moreover, the computed values of fγ(α∗, β∗,γ∗) and fαα(λ∗, β∗,γ∗) are
-2 and 2-2i respectively, which are nonzero as required by Theorems 2.5.1 (part 4) and

2.5.2.

2.6 Conclusion

The aim of this chapter has been achieved, in the sense that given a real parameter­

dependent nonsymmetric matrix A(γ), we have been able to extend the im­

plicit determinant method of Spence and Poulton in [55] to obtain numerical

algorithms for determining when two eigenvalues of A(γ) move together and

coalesce as the parameter γ is varied thereby forming a 2-dimensional Jordan

block. The algorithms are based on Newton’s method and we provide condi­

tions under which they achieve quadratic convergence. Results of numerical

experiments are given which confirm the theory. Be that as it may, the algo­

rithms relies on close enough initial guesses to the desired values of λ and

γ.

78

CHAPTER 3

The Calculation of the Distance to a Nearby

Defective Matrix

3.1 Introduction

Let A be a complex n by n matrix with n distinct eigenvalues. It is a classic

problem in numerical linear algebra to find

d(A) = inf{�A− B� : B is a defective matrix},

where � · � = � · �F or � · � = � · �2. Hence, d(A) is the distance of the matrix

A to the set of matrices which have a Jordan block of at least dimension 2. In

this chapter, given a simple matrix A, we present two numerical methods to

find a nearby defective matrix from A and the distance between them. For the

first method, we extend the implicit determinant method used in Chapter 2 to

formulate the problem as a real system of three nonlinear equations in three

real unknowns which will be solved by Newton’s method.

The second method is more straightforward but less elegant. Assuming

the nearest defective matrix is real, we simply write down all the equations

involving all the unknowns, and obtain a real system of (2n + 3) nonlinear

equations in (2n + 2) real unknowns (we do not consider the complex case

here). Though not guaranteed to find the nearest defective matrix, since New­

ton’s method provides no such guarantees, in all the examples considered our

79

The Calculation of the Distance to a Nearby Defective Matrix

methods did, in fact, find the nearest defective matrix and hence d(A) was

computed.

The distance of a simple matrix to a defective matrix is linked with the sen­

sitivity analysis of eigenvalues. The condition number of a simple eigenvalue

λ is given by 1/ yHx , (see [62]) where x and y are normalised right and left | |
eigenvectors respectively corresponding to λ. For a defective eigenvalue, we

have yHx = 0. Therefore, the condition number of the defective eigenvalue λ,

is infinite.

However, it is well-known that even if the eigenvalues of a matrix are sim­

ple andwell-separated from each other, they can be ill-conditioned [62]. Hence

the measure of the distance d(A) of a matrix A to a defective matrix B is im­

portant for determining the sensitivity of an eigendecomposition. There is a

very informative discussion and history of this problem in [5], where the con­

tributions of Demmel [13; 14] and Wilkinson [65; 66] are discussed in detail.

Another important paper is that by Lippert and Edelman [36], who use ideas

from differential geometry and singularity theory to discuss the sensitivity of

double eigenvalues. In particular, they present a condition that measures the

ill-conditioning of a matrix with a 2-dimensional Jordan block. Section 1.2 of

Chapter one, contains some more literature reviews on this topic. The key pa­

per that provides the solution to the nearest defective matrix problem is that

of Alam & Bora [4] who provide both the theory and an algorithm based on

pseudospectra.

Following Trefethen and Embree [61], the ε-pseudospectrum Λε(A) of a

matrix A is given by

Λε(A) = {σmin(A− zI) < ε},

where ε > 0, σmin denotes the smallest singular value and z ∈ C. Equivalently,

Λε(A) = {z ∈ C |det(A + E− zI) = 0, for some E ∈ C
n×n with �E� < ε}.

If Λε(A) has n components, then A + E has n distinct eigenvalues for all per­

turbation matrices E ∈ Cn×n with �E� < ε and hence, A + E is not defective.

Alam and Bora [4] take these ideas and seek the smallest perturbation matrix

E such that the pseudospectra of A + E coalesce. They present the following

80

The Calculation of the Distance to a Nearby Defective Matrix

theorem (see [4, Theorem 4.1] and [5, Lemma 1]).

Theorem 3.1.1. Let A ∈ Cn×n and z ∈ C \ Λ(A), so that A − zI has a simple

smallest singular value ε > 0 with corresponding left and right singular vectors u

and v such that (A− zI)v = εu. Then z is an eigenvalue of B = A− εuvH with

geometric multiplicity 1 and corresponding left and right eigenvectors u and v re­

spectively. Furthermore, if uHv = 0, then z has algebraic multiplicity two which is

greater than one (its geometric multiplicity), hence it is a defective eigenvalue of B and

�A− B� = ε.

Proof: First, we want to show that z is an eigenvalue of B. To do this, we

subtract zI from both sides of B = A− εuvH to obtain

B− zI = A− zI− εuv H ,

and by post multiplying both sides by the right singular vector v we have,

(B− zI)v = (A− zI− εuv H)v = (A− zI)v − εu = 0,

by assumption. Hence, Bv = zv. In a similar fashion, it can be shown that

uHB = zuH . This shows that u and v are left and right eigenvectors cor­

responding to the eigenvalue z. Next, we want to show that the geometric

multiplicity of z is one. From (B − zI)v = (A − zI − εuvH)v, and using the

singular value decomposition

n

A− zI
 = UΣVH =
 σkukv
H∑
 k ,

k=1

where u = un, σn = ε and v = vn. Thus, since σn = ε is a simple singular

value of (B− zI),

n

σkukvk
H − εuv HB− zI
 ∑=

k=1

1−n
∑
k=1

σkukvk
H + σnunvn

H − εunvn
H

1−n
∑

=

=
k=1

= Un−1Σn−1Vn
H
−1.

81

σkukvk
H

The Calculation of the Distance to a Nearby Defective Matrix

This shows that the rank of B− zI is n− 1. Hence z has a geometric multiplicity

of 11. Furthermore, if uHv = 0, then standard Jordan theory shows that there

exists a generalised eigenvector v̂ corresponding to the eigenvalue z such that

(B − zI)v̂ = v. Hence, (B − zI)2v̂ = 0 with v̂ �= 0. Therefore, the algebraic

multiplicity of z is greater than one (its geometric multiplicity), hence z is a

defective eigenvalue of B.

Theorem 3.1.1 leads to the result E := −εuvH so that B = A + E is a defec­

tive matrix and

d(A) = �E� = ε�uv H� = ε,

since vHv = uHu = 1. One drawback of the algorithm in [4] is that it is rather

expensive since it involves repeated calculation of pseudospectra. Also a deci­

sion on when two pseudospectral curves coalesce is required. In [5], a method

based on calculating lowest generalised saddle points of singular values is de­

scribed. This has the advantage that it is able to deal with the nongeneric case

when A− εuvH is ill-conditioned. We shall present a straightforward, yet ele­

gant and very fast method that deals with the generic case when A− εuvH is

well-conditioned.

Using the notation of Theorem 3.1.1 the problem is to find z ∈ C, u, v ∈ Cn

and ε ∈ R such that

(A− zI)v − εu = 0, (3.1)

εv − (A− zI)H u = 0, (3.2)

and

u H v = 0. (3.3)

Following Theorem 3.1.1 and Lippert and Edelman [36, Sections 4 and 5] we

make the following assumption.

Assumption 3.1.1. Assume A − zI satisfies the conditions of Theorem 3.1.1 and

that B = A− εuvH is well-conditioned. That is, with z = α + iβ, the 2× 2 matrix

1rank(B − zI) = n − dimN (B − zI) = n − 1. This means that the dimension of the
nullspace of B− zI is 1 or B has a geometric multiplicity of 1.

82

[]

[]

[]

The Calculation of the Distance to a Nearby Defective Matrix

εαα εαβ
is well-conditioned, where εαα denotes the second partial derivative of ε

εαβ εββ

with respect to α, etc. (see [36, Theorem 5.1 and Corollary 5.2]).

This chapter is organised as follows. Section 3.2 contains some background

theory and the derivation of the implicit determinant method to solve the near­

est defective matrix problem. Section 3.3 describes Newton’s method applied

to this problem and in Section 3.4 we give numerical examples that illustrate

the power of our approach. An alternative approach based on solving (3.1),

(3.2) and (3.3) with normalisations of u and v is presented in Section 3.5. This

is not as elegant as the one in Sections 3.2-3.4, yet gives the same results.

3.2 The Implicit Determinant Method to find a

Nearby Defective Matrix

In this section, we describe some background theory and present our numeri­

cal approach to finding a nearby defective matrix from a simple one, which is

formulated as solving a real 3-dimensional nonlinear system. We emphasise

that, since our numerical method uses standard Newton’s method to solve the

nonlinear system, we cannot guarantee that it finds the nearest defective ma­

trix. Therefore, the use of the word ’nearby’. However, a more sophisticated

nonlinear solver may be used if greater reliability were sought. We do not do

this here because in all our examples the nearest defective matrix was found

using standard Newton’s method.

First, we formulate the problem following Alam and Bora [4, Section 4].

Equations (3.1)-(3.2) can be written as

[] []
−εI A− zI u

= 0. (3.4)
(A− zI)H −εI v

u
Set z = α + iβ, x = and consider the Hermitian matrix [4]

v

K(α, β, ε) = (
−εI

)H

A− (α + iβ)I
. (3.5)

A− (α + iβ)I −εI

83

[] []

[]

()

[]

�

The Calculation of the Distance to a Nearby Defective Matrix

Clearly, by the Hermitian property of K(α, β, ε), x is both a right and left nul­

lvector of K(α, β, ε). Now, it is not difficult to see that,

Kα(α, β, ε) =
−I

; and Kβ(α, β, ε) = i
−I

; −I I

with Kε(α, β, ε) = −I2n. From above, it is obvious that Kαε(α, β, ε) = O,

Kαα(α, β, ε) = O, Kββ(α, β, ε) = O, e.t.c. The following Lemma follows im­

mediately from Assumption 3.1.1.

Lemma 3.2.1. Let ε > 0 satisfy the conditions in Theorem 3.1.1. Furthermore, let

z = α + iβ be such that K(α, β, ε)x = 0, where x =
u

v
∈ C

2n\{0}. Then

dimN K(α, β, ε) = 1.

Proof: If ε is a simple singular value of (A − zI), then the right and left

singular vectors v and u in (3.1) and (3.2) are uniquely defined (up to their

u
sign). Hence, there exists only one vector x = (up to sign) which satisfies

v

K(α, β, ε)x = 0 and hence the result follows.

We now introduce an algorithm to find the critical values of α, β and ε such

that the Hermitian matrix K(α, β, ε) is singular at the root and the constraint

on x given by (3.3) is satisfied. We use the implicit determinant method, in­

troduced in [55] to find photonic band structure in periodic materials such as

photonic crystals. In [22], the implicit determinant method was used to find a

2-dimensional Jordan block in a Hamiltonian matrix in order to calculate the

distance to instability and in Chapter 2 it was used to compute a 2-dimensional

Jordan block in a parameter-dependent nonsymmetric matrix. Here, we have

a three-parameter problem with a constraint to satisfy.

First, we introduce the bordered matrix M(α, β,γ), defined in (3.6) below.

The next theorem gives conditions to ensure that this matrix is nonsingular.

Theorem 3.2.1. Let (α∗, β∗, ε∗, x∗) solve

K(α, β, ε)x(α, β, ε) = 0, x(α, β, ε) = 0,

84

�

[]

The Calculation of the Distance to a Nearby Defective Matrix

so that dim N
(
K(α∗, β∗, ε∗)

)
= 1 and x∗ ∈ N

(
K(α∗, β∗, ε∗)

)
\ {0}. For some

c ∈ C2n\{0}, assume
H c x∗ = 0.

Then the Hermitian matrix

K(α, β, ε) c
M(α, β, ε) = , (3.6)

cH 0

is nonsingular at α = α∗, β = β∗, ε = ε∗.

Proof: This result follows from the proof of the first part of Lemma 2.2.1.

Now consider the following linear system

[] [] []
K(α, β, ε) c x 0

= , (3.7)
cH 0 f 1

where K(α, β, ε) is given by (3.5). As M(α∗, β∗, ε∗) is nonsingular we have

that M(α, β, ε) is nonsingular for α, β and ε in the vicinity of α∗, β∗ and ε∗.
Theorem 3.2.1 implies that both x and f are smooth functions of α, β and ε

near (α∗, β∗, ε∗), and so we write x = x(α, β,γ), f = f (α, β,γ) and (3.7) as

[] [] []
K(α, β, ε) c x(α, β, ε) 0

cH 0 f (α, β, ε)
=

1
. (3.8)

Applying Cramer’s rule to (3.8), we obtain

detK(α, β, ε)
f (α, β, ε) = .

detM(α, β, ε)

Since M(α, β, ε) is nonsingular in the neighbourhood of (α∗, β∗, ε∗), then by
Theorem 3.2.1 there is an equivalence between the zero eigenvalue ofK(α, β, ε)

(which we are looking for) and the zeros of f (α, β, ε). Hence, to find the values

of α, β and ε such that det K(α, β, ε) = 0 we seek the solutions of

f (α, β, ε) = 0. (3.9)

85

[]

[]

[]

The Calculation of the Distance to a Nearby Defective Matrix

If f (α∗, β∗, ε∗) = 0, then the first row of (3.8) reduces to

K(α∗, β∗, ε∗)x(α∗, β∗, ε∗) = 0, (3.10)

that is, x(α∗, β∗, ε∗) = x∗ is an eigenvector of K(α∗, β∗, ε∗) belonging to the
eigenvalue zero. For the following derivation we use the notation

u(α, β, ε)
x(α, β, ε) = . (3.11)

v(α, β, ε)

Note also that since K(α, β, ε) and M(α, β, ε) are Hermitian, f (α, β, ε) is real.

Differentiating both sides of (3.8) with respect to α leads to

 
[] [] [] v(α, β, ε)
K(α, β, ε) c xα(α, β, ε) −Kα(α, β, ε)x(α, β, ε)

cH 0 fα(α, β, ε)
=

0
= 

u(α, β, ε)


 .

0

(3.12)

Expanding along the first row gives

v(α, β, ε)
K(α, β, ε)xα(α, β, ε) + c fα(α, β, ε) = . (3.13)

u(α, β, ε)

Multiplying this equation, evaluated at (α∗, β∗, ε∗), from the left by the eigen­

vector x∗H of K(α∗, β∗, ε∗) gives

[] v∗
fα(α∗, β∗, ε∗) = u∗H v∗H

u∗

= u∗H v∗ + v∗H u∗

= 2Re(u∗H v∗),

where we have used x∗H c = 1 from (3.8). Similarly, differentiating both sides

86

[]

The Calculation of the Distance to a Nearby Defective Matrix

of (3.8) with respect to β, gives

 
[] [] [] v(α, β, ε)
K(α, β, ε) c xβ(α, β, ε)

=
−Kβ(α, β, ε)x(α, β, ε)

= i −u(α, β, ε) .
 

cH 0 fβ(α, β, ε) 0


0
(3.14)

Again, evaluating at (α∗, β∗, ε∗) and multiplying by x∗H from the left leads to

[] v∗
fβ(α∗, β∗, ε∗) = i u∗H v∗H −u∗

= i(u∗H v∗ − v∗H u∗)

= −2Im(u∗H v∗).

Clearly,

fα(α∗, β∗, ε∗) = 0 and fβ(α∗, β∗, ε∗) = 0 u∗H v∗ = 0. ⇐⇒

Thus, we have reduced the problem of finding a solution to

detK(α∗, β∗, ε∗) = 0,

with u∗H v∗ = 0, to that of solving g(α, β, ε) = 0, where

 

f (α, β, ε)
g(α, β, ε) =  fα(α, β, ε)


, (3.15)

fβ(α, β, ε)

which is a real system of three nonlinear equations in three real unknowns. In

the next section we describe the solution procedure using Newton’s method.

3.3 Newton’s method applied to g(α, β, ε) = 0

In this section, we describe how to implement Newton’s method for the non­

linear system g(α, β, ε) = 0. We also obtain a nondegeneracy condition that en­

sures nonsingularity of the Jacobian matrix of g(α, β, ε) at the root, and hence

87

[
] [] []

[
] []

The Calculation of the Distance to a Nearby Defective Matrix

confirms that Newton’s method converges quadratically for a close enough

starting guess. The nondegeneracy condition is shown to be equivalent to

one introduced by Lippert and Edelman [36] for the conditioning of the 2­

dimensional Jordan block of B = A− εuvH (see Assumption 3.1.1). The main

result in this section is Lemma 3.3.1 and Algorithm 12 is given for computing

the values of the parameters α, β and ε.

Newton’s method applied to g(α, β, ε) is given by


 

Δα(k)

G(α(k), β(k), ε(k)) = −g(α(k), β(k), ε(k)), (3.16)
Δβ(k)





Δε(k)

where α(k+1) = α(k) + Δα(k), β(k+1) = β(k) + Δβ(k) and ε(k+1) = ε(k) + Δε(k),

for k = 0, 1, 2 . . . until convergence, with a starting guess (α(0), β(0), ε(0)), and

where the Jacobian is


 

(k) (k) (k)
fα fβ fε
(k) (k) (k)







G(α(k), β(k), ε(k)) = ,
 (3.17)
f
 f
 f
αα αε αβ

(k) (k) (k)
f f fβα ββ βε

and all the matrix entries are evaluated at (α(k), β(k), ε(k)). The values of f (k),

fα
(k)

and fβ
(k)

are found using (3.8), (3.12) and (3.14). For the remaining values,

we differentiate (3.8), (3.12) and (3.14) with respect to ε, that is,

] [
K(α, β, ε) c xε(α, β, ε) −Kε(α, β, ε) x(α, β, ε)

= ,
 (3.18)
=

H 0 fε(α, β, ε) 0 0
c

and

] [
K(α, β, ε) c xαε(α, β, ε) −[Kα(α, β, ε)xε(α, β, ε) + Kε(α, β, ε)xα(α, β, ε)]

=

c
H 0 fαε(α, β, ε) 0

(3.19)


 

vε(α, β, ε) + uα(α, β, ε)





uε(α, β, ε) + vα(α, β, ε)=
 ,

0

88

The Calculation of the Distance to a Nearby Defective Matrix

as well as

[] [] []
K(α, β, ε) c xβε(α, β, ε) −[Kβ(α, β, ε)xε(α, β, ε) + Kε(α, β, ε)xβ(α, β, ε)]

=
cH 0 fβε(α, β, ε) 0

(3.20)
 

ivε(α, β, ε) + uβ(α, β, ε)
= −iuε(α, β, ε) + vβ(α, β, ε)


,

0

(k) (k) (k)
in order to find fε , fαε and fβε respectively. Furthermore, by differentiating

both sides of (3.12) with respect to α and β, we obtain

 
[] [] [] vα(α, β, ε)
K(α,

H

β, ε) c xαα(α, β, ε)
=

−2Kα(α, β, ε)xα(α, β, ε)
= 2


uα(α, β, ε)


,

c 0 fαα(α, β, ε) 0
0

(3.21)

and

[] [] []
K(α, β, ε) c xαβ(α, β, ε) −[Kβ(α, β, ε)xα(α, β, ε) + Kα(α, β, ε)xβ(α, β, ε)]

=
cH 0 fαβ(α, β, ε) 0

(3.22)
 

ivα(α, β, ε) + vβ(α, β, ε)
=  
−iuα(α, β, ε) + uβ(α, β, ε) ,

0

(k) (k) (k)
to compute fαα and fαβ = fβα respectively. Finally, differentiate both sides of

(3.14) with respect to β to get

[] [] []
K(α, β, ε) c xββ(α, β, ε) −2Kβ(α, β, ε)xβ(α, β, ε)

cH 0 fββ(α, β, ε)
=

0
(3.23)

 
vβ(α, β, ε)

= 2i−uβ(α, β, ε)

 .

0

89

�

The Calculation of the Distance to a Nearby Defective Matrix

Therefore, in order to evaluate the components of G(α(k), β(k), ε(k)) and

g(α(k), β(k), ε(k)) we only need to solve the linear systems above, which, im­

portantly, all have the sameHermitian system matrix M(α(k), β(k), ε(k)). Hence,

only one LU factorisation of M(α(k), β(k), ε(k)) per iteration inNewton’s method

is required. Note that Newton’s method itself is only carried out in three di­

mensions. Next, we state the Newton-based algorithm for this problem.

Algorithm 12 Newton’s method for computing α, β and ε.

Input: Given (α(0), β(0), ε(0)) and c ∈ C2n\{0} such that M(α(0), β(0), ε(0)) is
nonsingular; set k = 0:

1: Solve (3.8) and (3.12) and (3.14) in order to evaluate



f (α(k), β(k), ε(k))



g(α(k), β(k), ε(k)) = 
fα(α(k), β(k), ε(k)) .
fβ(α(k), β(k), ε(k))

2: Solve (3.18), (3.21), (3.22), (3.23), (3.19) and (3.20) in order to evaluate the
Jacobian G(α(k), β(k), ε(k)) given by (3.17).

3: Newton update: Solve (3.16) in order to get (α(k+1), β(k+1), ε(k+1))
4: Repeat until convergence.

Output: α∗, β∗, ε∗

Finally we show, that provided a certain nondegeneracy condition holds,

the Jacobian G is nonsingular at the root. In the limit we have


0 0 fε

∗

G(α∗, β∗, ε∗) =



f

∗ f ∗ f ∗αα αβ αε




, (3.24)

f ∗ f ∗ f ∗βα ββ βε

since fα
∗ = fβ

∗ = 0. Multiplying the first row of (3.18) evaluated at (α∗, β∗, ε∗)
from the left by x∗H gives

fε(α∗, β∗, ε∗) = x∗H x∗ = 0,

(recall x∗H c = 1 from (3.8)). Hence, the Jacobian (3.24) is nonsingular if and

only if

F∗ f ∗ f ∗ 2 = 0, since f ∗ = f ∗ (3.25) αα f
∗ �αβ := ββ − αβ αβ βα.

90

[]	 []

[]

�
[]

The Calculation of the Distance to a Nearby Defective Matrix

With similar calculations as before we obtain

fαα(α∗, β∗, ε∗) = 2x∗H	 v∗α , fββ(α∗, β∗, ε∗) = 2ix∗H v∗β , (3.26)
u∗

α −u∗
β

and ([] [])

fαβ(α∗, β∗, ε∗) = x∗H i
v∗α +

v∗β . (3.27) −u∗
α u∗

β

Lemma 3.3.1. : Under Assumption 3.1.1, F∗ = αα f
∗ 2 = 0.f ∗ f ∗αβ ββ − αβ �

Proof: If ε is a simple singular value of (A− (α + βi)I), α, β ∈ R, so that

() ()H
A− (α + βi)I v = εu, A− (α + βi)I u = εv,

then (see Sun [58]) ε, u and v are smooth functions of α and β. Furthermore,

Lippert and Edelman [36, Theorem 3.1] show that if u∗H v∗ = 0, then ε∗α :=

εα(α∗, β∗) = 0, ε∗β := εβ(α∗, β∗) = 0 and B = A− εu∗v∗H has a 2-dimensional

Jordan block. In addition, the ill-conditioning of the matrix B is determined by

the ill-conditioning of

ε∗αα ε∗αβ E = ,
ε∗ ε∗αβ ββ

see [36, Corollary 5.2]. Under Assumption 3.1.1 we have det(E) = 0. Recall
u

(3.4) and (3.5) with ε = ε(α, β), v = v(α, β), u = u(α, β) and x = . This
v

means (3.4) and (3.5) can be rewritten as

[] []
−ε(α, β)I A− (α + iβ)I u(α, β)

= 0. (3.28)
[A− (α + iβ)]H −ε(α, β)I v(α, β)

Differentiate both sides with respect to α to obtain

[] []
−εα(α, β)I −I u(α, β)

(3.29) −I −εα(α, β)I v(α, β)
[] []

−ε(α, β)I A− (α + iβ)I uα(α, β)
+	 = 0.

[A− (α + iβ)]H −ε(α, β)I vα(α, β)

91

[]	 []

[]

[]

[]

[]

The Calculation of the Distance to a Nearby Defective Matrix

Again, by differentiating both sides of the above with respect to α, yields

[] [] [] []
−εαα(α, β)I O u(α, β) −εα(α, β)I −I uα(α, β)

+ 2
O −εαα(α, β)I v(α, β) −I −εα(α, β)I vα(α, β)

[] []
−ε(α, β)I A− (α + iβ)I uαα(α, β)

+	 = 0.
[A− (α + iβ)]H	 −ε(α, β)I vαα(α, β)

Now, using the fact that at the root εα(α, β) = 0, then

−εαα(α∗, β∗)x(α∗, β∗) − 2
vα(α∗, β∗)

+ K(α∗, β∗, ε∗)
uαα(α∗, β∗)

= 0.
uα(α∗, β∗) vαα(α∗, β∗)

So that

K(α∗, β∗, ε∗)xαα(α∗, β∗) − 2
vα(α∗, β∗)

= x(α∗, β∗)εαα(α∗, β∗). (3.30)
uα(α∗, β∗)

After premultiplying both sides by x∗H = x(α∗, β∗), we have

vα(α∗, β∗)
x∗HK(α∗, β∗, ε∗)xαα(α∗, β∗) − 2x∗H

uα(α∗, β∗)
= (x∗H x∗)εαα(α∗, β∗).

The first term on the left hand side is zero because x∗ is both a left and right
nullvector of K(α∗, β∗, ε∗), so that the above reduces to

2x∗H vα(α∗, β∗)
= −(x∗H x∗)εαα(α∗, β∗).

uα(α∗, β∗)

Using the definition for fαα(α∗, β∗) from (3.26) in the above expression, then

fαα(α∗, β∗) = 2x∗H	 vα(α∗, β∗)
= −(x∗H x∗)εαα(α∗, β∗).

uα(α∗, β∗)

Taking the second partial derivative of both sides of (3.29) with respect to β

92

[]

[]

� �

The Calculation of the Distance to a Nearby Defective Matrix

and evaluating at the root using εα(α∗, β∗) = εβ(α∗, β∗) = 0 we obtain

K(α∗, β∗, ε∗)x∗
−ivα

∗ − v∗β = ε∗ (3.31) αβ + αβx
∗.

iu∗
α − u∗

β

Similarly, it can be shown by taking first and second partial derivatives of both

sides of (3.28) with respect to β and evaluating at the root, that

K(α∗, β∗, ε∗)x∗ββ + 2i
−v∗β = ε∗ββx

∗. (3.32)
u∗

β

Premultiplying both sides of (3.31) and (3.32) by the eigenvector x∗H of

K(α∗, β∗, ε∗), we obtain respectively

x∗)ε∗ and f ∗ ββ, (3.33) fαβ
∗ = −(x∗H

αβ ββ = −(x∗H x∗)ε∗

where we have used (3.26) and (3.27). Therefore,

αβ = αα f
∗ f ∗ 2 = (x∗H x∗)2

[2] = (x∗H x∗)2 det(E) �= 0, F∗ f ∗ ββ − αβ ε∗ααε∗ββ − ε∗αβ

since det(E) = 0 and x∗ = 0.

In summary, Lemma 3.3.1 shows that when the defective matrix B = A− εuvH

is well-conditioned, Algorithm 12 should exhibit quadratic convergence for a

close enough starting guess.

Next, we present a brief discussion on how to choose optimum starting

vectors for Algorithm 12.

3.3.1 Optimal Starting Vectors when A is Nonnormal

In this subsection, given a simple nonnormal matrix A, we discuss a system­

atic way to choose good starting guesses for computing d(A) and a nearby

defective matrix from A.

1. Reduce matrix to Schur form (this is not necessary in cases where A is

already in upper triangular form).

93

[]

The Calculation of the Distance to a Nearby Defective Matrix

2. Take z(0) as the average of the two smallest diagonal elements, for exam­

ple, for the Kahan matrix we could take z(0) = s
n−1

2
+sn , or a value close

to the average of two diagonal elements where the defective eigenvalues

is suspected to be lurking (if they are known before hand), e.g., Trefethen

and Wilkinson matrix.

3. Find the singular value decomposition of (A− z(0)I).

4. Choose ε(0) as the minimum singular value of (A− z(0)I).

5. Choose u(0), v(0), as the left and right singular vectors respectively corre­

sponding to the smallest singular value ε(0) of (A− z(0)I), x(0) = [u(0), v(0)]T ,

so that c = x(0).

3.4 Numerical Experiments

We now illustrate the numerical performance of our method with several ex­

amples which are taken from [4]. As has been mentioned earlier, since our

method is based on Newton’s method it finds a nearby defective matrix. We

cannot guarantee it finds the nearest defective matrix. However, in all cases

considered here, our method found the nearest defective matrix according to

Alam and Bora [4] (but at much less cost, of course). Throughout this section,

Δy(k) = [Δα(k),Δβ(k),Δε(k)]T .

Example 3.4.1. Consider the matrix A =
−1 5

, (see [61]). As initial guesses
0 −2

we choose α(0) = β(0) = 0, ε(0) = σmin, u
(0) = umin and v

(0) = vmin, where σmin is

the minimum singular value of A with corresponding left and right singular vectors

umin and vmin. x
(0) is determined from (3.11) and c = x(0). We stop the iteration

once

�g(α(k), β(k), ε(k))� < τ, where τ = 10× 10−15 .

Table 3.1 shows the results for Example 3.4.1. Hence, z = −1.5 is a degen­

erate common boundary point of the pseudospectrum, according to [4]. With ε =

4.9510 × 10−2 , u = [−9.8538 × 10−2, −9.9513 × 10−1] and v = [9.9513 ×
10−1, −9.8538× 10−2] we have that B = A− εuvH is a defective matrix. The last

94

�

The Calculation of the Distance to a Nearby Defective Matrix

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 0.0000e+00 0 3.6597e-01 2.5725e-01 2.3e+00 2.7421e-02
1 -2.0400e+00 0 6.8361e-01 4.5671e-01 6.7e-01 -1.0604e-01
2 -1.6498e+00 0 1.4010e-01 6.5424e-02 1.7e-01 -5.4992e-02
3 -1.5063e+00 0 5.5504e-02 3.6573e-03 8.6e-03 -4.5647e-02
4 -1.5000e+00 0 4.9522e-02 7.8979e-06 2.0e-05 -4.5473e-02
5 -1.5000e+00 0 4.9510e-02 4.5572e-11 1.1e-10 -4.5473e-02
6 -1.5000e+00 0 4.9510e-02 1.6022e-17 7.5e-17 -4.5473e-02

Table 3.1: Columns five and six shows quadratic convergence for Example
3.4.1.

column of Table 3.1 shows the value of F
(k)

= f (k) f (k) f
(k)2

(given by (3.25)) and αβ αα ββ − αβ

we see that the final value F∗ = 0 at the root. Algorithm 12 converges quadratically αβ

in 6 iterations, as expected from Newton’s method.

Example 3.4.2. Let A ∈ Cn×n be the Kahan matrix [61], which is given by


1 −c −c −c −c

s −sc −sc −sc
2 2 2A
 =



















,
 (3.34)
s
 −s
 c
 −s
 c

.

sn−1

where sn−1 = 0.1 and s2 + c2 = 1. We consider this matrix for n = 6, 15, 20. The

starting values and stopping condition are chosen as in Example 3.4.1.

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 0.0000e+00 0 9.9694e-03 8.1049e-02 1.4e-01 3.9318e-01
1 1.3643e-01 0 1.2145e-02 3.9165e-02 1.2e-02 -1.0032e+00
2 1.3319e-01 0 7.1339e-04 4.3976e-03 5.5e-03 -4.5529e-01
3 1.2767e-01 0 4.9351e-04 8.2870e-05 4.8e-05 -4.3191e-01
4 1.2763e-01 0 4.7049e-04 4.7344e-08 7.7e-08 -4.3136e-01
5 1.2763e-01 0 4.7049e-04 5.3585e-15 1.8e-14 -4.3136e-01
6 1.2763e-01 0 4.7049e-04 1.5099e-17 2.2e-17 -4.3136e-01

Table 3.2: Results for Example 3.4.2, n = 6. Quadratic convergence is seen in
column five for k = 4 and 5.

Table 3.2 shows the results for n = 6. In this case the two smallest eigenvalues of

95

The Calculation of the Distance to a Nearby Defective Matrix

A i.e., 1.5849× 10−1 and 10−1 coalesce at 1.2763× 10−1 for a value of ε = 4.7049×
10−4 . It means z∗ = 1.2763× 10−1 is a double eigenvalue of the nearby defective

matrix B = A− εuvH with, ε∗ = 4.7049× 10−4 and the computed value of x∗ =

[u, v]T, u and v are the left and right eigenvectors of B corresponding to the eigenvalue
(k)

z∗. The last column of Table 3.2 shows the value of Fαβ , which is not close to zero. The

quadratic convergence rate is observed in rows five and six of column five.

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 0.0000e+00 0 4.7454e-04 6.1760e-03 5.9e-02 5.3943e-03
1 5.9261e-02 0 2.5746e-04 1.2796e-03 2.5e-02 -5.3968e-03
2 8.3781e-02 0 8.5281e-06 8.9265e-05 9.1e-03 6.1204e-01
3 9.2879e-02 0 4.5688e-09 2.2854e-04 1.0e-02 1.5419e-03
4 1.0301e-01 0 2.0519e-06 4.1072e-05 3.6e-03 -2.1635e-04
5 1.0659e-01 0 5.9562e-07 6.4229e-06 6.8e-04 -1.0397e-04
6 1.0727e-01 0 5.2063e-07 1.9724e-07 2.2e-05 -9.0471e-05
7 1.0729e-01 0 5.1757e-07 2.2164e-10 2.5e-08 -9.0078e-05
8 1.0729e-01 0 5.1757e-07 2.7618e-16 3.1e-14 -9.0077e-05
9 1.0729e-01 0 5.1757e-07 3.7721e-18 4.0e-16 -9.0077e-05

Table 3.3: In Example 3.4.2, for n = 15, superlinear convergence is observed
for k = 6, 7, 8 and 9 in columns five and six.

Table 3.3 shows the results for n = 15. In this case the two smallest eigenvalues of

A i.e., 1.1788× 10−1 and 10−1 coalesce at 1.0729× 10−1 for a value of ε = 5.1757×
10−7 . It means z∗ = 1.0729× 10−1 is a double eigenvalue of the nearby defective

matrix B = A− εuvH with, ε∗ = 5.1757× 10−7 and the computed value of x∗ =

[u, v]T, u and v are the left and right eigenvectors of B corresponding to the eigenvalue

z∗.
Table 3.4 shows the results for n = 20. In this case the two smallest eigenvalues of

A i.e., 1.1288× 10−1 and 10−1 coalesce at 1.0501× 10−1 for a value of ε = 2.8841×
10−8 . This means that z∗ = 1.0501 × 10−1 is a double eigenvalue of the nearby

defective matrix B = A− εuvH with, ε∗ = 2.8841× 10−8 and the computed value

of x∗ = [u, v]T, u and v are the left and right eigenvectors of B corresponding to the

eigenvalue z∗.
(k)

From the last columns in Tables 3.2-3.4, we see that the value of Fαβ becomes

smaller as the size of the Kahan matrix becomes large. This means the matrix B =

A − εuvH becomes increasingly ill-conditioned as n increases. We also observed a

corresponding deterioration in the rate of convergence of Newton’s method as the value

96

The Calculation of the Distance to a Nearby Defective Matrix

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 0.0000e+00 0 1.3141e-04 2.0010e-03 4.7e-02 7.2389e-04
1 4.7216e-02 0 5.7554e-05 5.0411e-04 2.5e-02 -1.0374e-03
2 7.2398e-02 0 4.8678e-06 1.5028e-04 2.1e-02 -5.2893e-04
3 9.3454e-02 0 2.5086e-06 1.7045e-05 6.5e-03 -1.7880e-05
4 9.9991e-02 0 9.4991e-09 7.7825e-06 8.1e-03 -2.2361e-05
5 1.0812e-01 0 1.0316e-07 3.0809e-06 4.8e-03 -3.8308e-07
6 1.0332e-01 0 4.4010e-08 2.0224e-06 1.5e-03 -2.3190e-06
7 1.0482e-01 0 3.0835e-08 2.0280e-07 1.9e-04 -1.3074e-06
8 1.0501e-01 0 2.8867e-08 3.2047e-09 3.1e-06 -1.2248e-06
9 1.0501e-01 0 2.8841e-08 8.2531e-13 7.9e-10 -1.2236e-06
10 1.0501e-01 0 2.8841e-08 1.3443e-18 1.1e-15 -1.2236e-06

Table 3.4: Results for Example 3.4.2 for n = 20. The above table shows that
k = 7, 8, 9, 10, we obtained superlinear convergence in columns 5 and 6.

of F
(k)

becomes smaller, which is consistent with the theory. αβ

Example 3.4.3. Let A ∈ Cn×n be the Frank matrix taken from the Matlab gallery

A = gallery(f rank , n), for n = 6, 12. As initial guesses we choose α(0) = β(0) =′ ′

0, ε(0) = σmin, u
(0) = umin and v

(0) = vmin, where σmin is the minimum singular

value of A with corresponding left and right singular vectors umin and vmin. x
(0)

is determined from (3.11), c = x(0) and the stopping condition is the same as in the

previous examples.

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 0.0000e+00 0 3.4855e-03 3.4825e-02 1.0e-01 1.1926e-01
1 1.0137e-01 0 3.5747e-03 5.6058e-03 2.4e-02 -5.9111e-02
2 1.2569e-01 0 6.7098e-04 4.2693e-04 2.2e-03 -3.9088e-02
3 1.2789e-01 0 5.5638e-04 3.2627e-06 1.7e-05 -3.7857e-02
4 1.2790e-01 0 5.5549e-04 1.9673e-10 1.0e-09 -3.7849e-02
5 1.2790e-01 0 5.5549e-04 2.2460e-16 1.2e-15 -3.7849e-02

Table 3.5: Results for Example 3.4.3, n = 6. Almost quadratic convergence can
be seen in column 6 of the above table.

Table 3.5 shows the results for n = 6. In this case, the eigenvalues 7.7080 ×
10−2 and 1.8576× 10−1 closest to zero coalesce at 1.2790× 10−1 for a value of ε =

5.5549× 10−4 . This means that z∗ = 1.8576× 10−1 is a double eigenvalue of the

nearby defective matrix B = A− εuvH with, ε∗ = 5.5549× 10−4 and the computed

97

The Calculation of the Distance to a Nearby Defective Matrix

value of x∗ = [u, v]T, u and v are the left and right eigenvectors of B corresponding to

the eigenvalue z∗. Table 3.6 shows the results for n = 12. In this case the eigenvalues

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 0.0000e+00 0 1.1186e-08 4.3121e-07 1.8e-02 2.2236e-10
1 1.8010e-02 0 4.3454e-09 1.2695e-07 1.2e-02 -3.9762e-10
2 2.9691e-02 0 1.1251e-09 3.4180e-08 6.4e-03 -5.2812e-11
3 3.6065e-02 0 3.5327e-10 7.2436e-09 2.3e-03 -1.1397e-11
4 3.8343e-02 0 2.0008e-10 7.5968e-10 3.0e-04 -6.3856e-12
5 3.8644e-02 0 1.8521e-10 1.2385e-11 5.1e-06 -5.9627e-12
6 3.8649e-02 0 1.8499e-10 3.6841e-15 1.5e-09 -5.9560e-12
7 3.8649e-02 0 1.8499e-10 6.1460e-17 2.5e-11 -5.9560e-12

Table 3.6: Results of Example 3.4.3, for n = 12. Note that we obtained a slower
rate of convergence in column 5 in the table above.

3.1028× 10−2 and 4.9509× 10−2 closest to zero coalesce at 3.8649× 10−2 for a value

of ε = 1.8499× 10−10. This means that z∗ = 3.8649× 10−2 is a double eigenvalue

of the nearby defective matrix B = A − εuvH with, ε∗ = 1.8499× 10−10 and the

computed value of x∗ = [u, v]T, u and v are the left and right eigenvectors of B

corresponding to the eigenvalue z∗.
Again the last columns in tables 3.5 and 3.6 show the values for F

(k)
. From Table αβ

(k)
3.5 we see that if Fαβ is not too small, quadratic, or almost quadratic convergence of

Newton’s method is obtained in column 6. However, for a small value of F
(k)

, as in αβ

Table 3.6, a slower convergence rate is observed.

Example 3.4.4. Consider the 20× 20 bi-diagonal matrix whose diagonal entries are

20, 19, . . . , 1 and the super-diagonals are 20. This matrix was considered by Wilkin­

son in [62] and has eigenvalues 1, 2, . . . , 20. Wilkinson has shown that if ε is added in

position (20, 1), then for ε = 10−10, the eigenvalues display some sort of symmetry

around 10.5. As ε grows [4] from 0 and is approximately equal to 7.8× 10−14 the

eigenvalues 10 and 11 move together and coalesce at 10.5 to form a defective eigen­

value.

We seek ε, u and v such that A− εuvH has a defective eigenvalue around 10.5,

where A is the Wilkinson matrix. As initial guess we take α(0) = 10.2, β(0) = 0,

ε(0) = σmin, u
(0) = umin and v

(0) = vmin, where σmin is the minimum singular

value of A with corresponding left and right singular vectors umin and vmin. x
(0)

98

The Calculation of the Distance to a Nearby Defective Matrix

is determined from (3.11) and c = x(0). The stopping condition is the same as in

Example 3.4.1.

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 10.2000 0 3.6322e-14 7.7484e-14 4.2e-01 -9.5152e-26
1 10.6194 0 1.0132e-13 4.1197e-14 1.2e-01 -8.5682e-26
2 10.4948 0 6.5737e-14 2.7207e-15 5.2e-03 -8.7808e-26
3 10.5000 0 6.1272e-14 4.0129e-18 2.0e-07 -8.7811e-26
4 10.5000 0 6.1264e-14 9.6368e-27 1.9e-14 -8.7811e-26
5 10.5000 0 6.1264e-14 3.7092e-29 1.1e-16 -8.7811e-26

Table 3.7: Results for Example 3.4.4. Superlinear and quadratic convergence is
obtained in columns 5 and 6 respectively.

The numerical results are shown in Table 3.7. We see that β is zero and z = 10.5

for a value of ε = 6.1264 × 10−14 . Hence , B = A − εuvH is a defective matrix

with defective eigenvalue z = 10.5, where u and v have been computed within our
(k)

iteration. We see that the values of Fαβ are very small though, given the extremely

small value for F∗ it is surprising that the method even converges, though it was αβ

sensitive to the starting guess.

Note that in theory the values of α and β are real, however, in practice, since both

v and u are complex imaginary entries at roundoff level can occur.

Example 3.4.5. Let A ∈ Cn×n be the Grcar matrix taken from the Matlab gallery

A = gallery(’grcar’, n), where n = 6, 20. The eigenvalues of A appear in com­

plex conjugate pairs and hence in this case two pairs of complex eigenvalues of A

coalesce at two boundary points of the pseudospectrum.

As initial guesses for n = 6 we take α(0) = 0, β(0) = −1, ε(0) = 0, u(0) =

umin and v
(0) = vmin, where umin and vmin are left and right singular vectors of

A − β(0)iI, corresponding to the smallest singular value. x(0) is determined from

(3.11). The stopping condition is the same as in Example 3.4.1. For n = 20 we take

β(0) = −2.5, the initial guesses for the remaining values are determined similarly.

Furthermore c = x(0).

Table 3.8 shows the results for n = 6. The eigenvalue pairs 1.1391 ± 1.2303i

and 3.5849× 10−1 ± 1.9501i coalesce at 7.5332× 10−1 ± 1.5912i for a value of ε =

2.1519× 10−1 .

Table 3.9 shows the results for n = 20. The eigenvalue pairs 1.0802× 10−1 ±

99

�

The Calculation of the Distance to a Nearby Defective Matrix

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 0.0000e+00 -1.0000 0.0000e+00 5.0533e-01 2.0e+00 1.4186e-01
1 1.2141e+00 -2.3756 -7.4297e-01 2.2193e+01 1.3e+00 -2.7279e+04
2 1.1159e+00 -1.4291 9.5425e-02 5.2914e-01 6.6e-01 -5.0768e+00
3 1.0512e+00 -1.9848 4.3767e-01 4.1255e-01 5.4e-01 -1.1717e+00
4 8.0543e-01 -1.5940 1.4858e-01 8.6847e-02 8.0e-02 -1.1323e+00
5 7.5742e-01 -1.5944 2.1279e-01 5.5621e-03 5.7e-03 -9.7810e-01
6 7.5335e-01 -1.5912 2.1516e-01 4.2790e-05 4.4e-05 -9.6333e-01
7 7.5332e-01 -1.5912 2.1519e-01 2.4851e-09 2.5e-09 -9.6323e-01
8 7.5332e-01 -1.5912 2.1519e-01 1.6564e-16 2.1e-16 -9.6323e-01

Table 3.8: Results of Example 3.4.5, for n = 6. Almost quadratic convergence
is shown in columns 5 and 6.

k α(k) β(k) ε(k) �g(α(k), β(k), ε(k))� �Δy(k)� F
(k)
αβ

0 0.0000e+00 -2.5000 0.0000e+00 1.3806e-01 2.0e-01 9.9103e-01
1 9.5854e-02 -2.3299 1.7989e-02 3.2308e-02 9.5e-02 -2.3623e-01
2 1.3904e-01 -2.2465 1.3564e-03 1.1930e-02 4.8e-02 -1.5963e-01
3 1.6141e-01 -2.2042 7.2914e-04 3.4851e-03 2.3e-02 -2.7982e-02
4 1.5554e-01 -2.1818 4.5435e-04 3.4265e-04 2.2e-03 -2.4693e-02
5 1.5338e-01 -2.1815 4.9060e-04 2.3240e-05 1.5e-04 -2.3956e-02
6 1.5331e-01 -2.1817 4.9141e-04 1.6942e-08 1.1e-07 -2.4012e-02
7 1.5331e-01 -2.1817 4.9141e-04 4.6669e-14 3.1e-13 -2.4012e-02
8 1.5331e-01 -2.1817 4.9141e-04 1.6381e-17 1.0e-16 -2.4012e-02

Table 3.9: Results of Example 3.4.5, for n = 20. Columns 5 and 6 shows almost
quadratic convergence for k = 6 and 7.

2.2253i and 2.1882× 10−1 ± 2.1132i coalesce at 1.5331× 10−1 ± 2.1817i for a value

of ε = 4.9141× 10−4 .
(k)

The last columns in Tables 3.8-3.9 show the values of Fαβ which converge to values

away from zero. The latter iterates illustrate almost quadratic convergence. Note

that in this example β = 0, so z is complex, though this makes no difference to the

numerical method.

100

The Calculation of the Distance to a Nearby Defective Matrix

3.5	 Nonlinear System for Finding d(A) and a Nearby

Defective Matrix

In this section, we present an alternative approach to solving the problem con­

sidered in this chapter, namely, given a simple matrix A, find a nearby defec­

tive matrix B from A and the distance between them. This approach involves

solving an over-determined system of 2n + 3 nonlinear equations in 2n + 2

unknowns. A method based on the Gauss-Newton theory for computing a

nearby defective matrix to A and the distance between them, which is more

efficient than the approach proposed by Alam of Bora [4], even though it does

not guarantee that the computed defective matrix is the nearest. In this sec­

tion, we present the theory only for the case when the nearest defective matrix

is real, as in the case for the Examples 3.4.1-3.4.4 in Section 3.4.

We begin by presenting the system of nonlinear equations (3.35), find an­

alytic expressions for the Jacobian and present the key result; Lemma 3.5.2

which shows that the Jacobian is of full rank and so the method should have

quadratic convergence with a close enough guess.

As mentioned earlier in the introduction to this chapter, the second ap­

proach consists of simply writing down the equations (3.1), (3.2), (3.3) and

adding normalisations of the singular vectors. This is the spirit of Newton’s

method for the standard eigenvalue problem as discussed in Chapter 4 (for

the complex case). Thus, we try to solve the following real over-determined

system of (2n + 3) nonlinear equations

(A− zI)v = εu

1 T 1
v v =

2 2

(AT zI)u = εv (3.35) −
1 T 1
u u =

2 2

u T v = 0,

in (2n + 2) real unknowns: w = [v, ε,u, z]T . Recall, we have assumed that

u and v are real, so that all variables in (3.35) are real. After solving for w

101

[
]

The Calculation of the Distance to a Nearby Defective Matrix

in (3.35), we will then compute a nearby defective matrix B by the formula

B = A− εuvT in line with Alam and Bora [4]. The computed value of ε is then

the distance between the simple matrix A and the defective B.

In compact form F(w) = 0, (3.35) can be expressed as


 

(A− zI)v − εu

1 vTv + 1 2 2−
(AT

















F(w) =
 − zI)u − εv
1 uTu + 1 2 2−

= 0, (3.36)

Tu v

and the Jacobian of the system of equations (3.36) is given by


 

(A− zI) −u −εI −v

−vT 0 0T 0

−εI −v (AT

















Fw(w) = zI)
 .
 (3.37)
−
 −u

0T 0 −uT 0

uT 0 vT 0

Let A− zI = UΣVT be the singular value decomposition of A− zI where


 

σ1

σ2












Σ1
Σ = , with Σ1 , σn−1 > ε, (3.38)
=
 .
ε
 . .

σn−1

and ε �= 0 is a simple smallest singular value of A− zI. Further, let the Jacobian

102

The Calculation of the Distance to a Nearby Defective Matrix

Fw(w) in (3.37) be decomposed as Fw(w) = UFGFVF
T ,


 

UΣVT −Uen −εI −Uν

−(Ven)T 0 0T 0

−εI −Ven (UΣVT)T

0T

















Fw(w) = −Vµ

−(Uen)T0
 0

(Vµ)T 0 (Uν)T 0

 

 

Σ −en −εIU
 −ν
 
 

VT

























T 0 0T 0 













1
 −e
 





n 1
−εI −en Σ

0T
V
=
 −µ

0

,

UT

T1
 0
 −e
n 1

T 0 νT 01
 µ

(3.39)

where en is the nth column of the n by n identity matrix, UF ∈ R(2n+3)×(2n+3),

GF ∈ R(2n+3)×(2n+2), and VF ∈ R(2n+2)×(2n+2). Note that in the above fac­

torization of the Jacobian (3.39), the vectors u and v of (3.37) each have two

different expressions, i.e.,

v = Ven, or v = Uν,

and

u = Uen, or u = Vµ.

By using the fact that u and v are orthogonal i.e., uTv = 0, this gives

u T v = (Uen)
TUν = en

T(UTU)ν = en
Tν = νn = 0. (3.40)

In the same vein, it can be shown that

µn = 0. (3.41)

So that at the root, ν and µ become respectively

ν = [νn−1, 0]
T , and µ = [µn−1, 0]

T . (3.42)

103

�

�

The Calculation of the Distance to a Nearby Defective Matrix

In expanded form, we rewrite the matrix GF as


 

Σ1 0n−1 0n−1 −εIn−1 0n−1 −νn−1

0n
T
−1 ε −1 0n

T
−1 −ε 0

0n
T
−1 −1 0 0n

T
−1 0 0



























GF =
 −εIn−1 0n−1 0n−1 Σ1 0n−1

0T
.
 (3.43)
−µn−1

0
0T−ε
 −1
 ε
n−1

0T
n−1

0T0 0
 −1 0
n−1
T

n−1

0 0 νT
n−1 0 0
µn−1

The following preliminary analysis contains some important relationships that

will help in proving Lemma 3.5.2 and Lemma 3.5.3 shortly. We build on the

assumption that z is a multiple eigenvalue of B by defining v̂ = Vβ as the

right generalised eigenvector corresponding to the eigenvalue z such that

(B− zI)v̂ = v with v T v̂ = 0, and u Tv̂ �= 0.

The condition uTv̂ = 0 ensures that B has a 2-dimensional Jordan block only.

In the same vein, we define û = Uα as the left generalised eigenvector corre­

sponding to z such that

(BT − zI)û = u, with u T û = 0, and v T û �= 0.

By taking transpose of both sides of (B− zI)v̂ = v, we have vT = v̂T(BT − zI),

and post-multiplying by û yields

v T û = v̂T(BT zI)û−
= v̂T u

T ˆ= u v.

This shows that vTû = uTv̂. The following result now follows.

Lemma 3.5.1. If B = A− εuvT has a 2-dimensional Jordan block corresponding to

the eigenvalue z, such that uTv̂ = 0, then

µn
T
−1Σ−

1
1νn−1 �= 0.

104

�

The Calculation of the Distance to a Nearby Defective Matrix

Proof: Since B = A− εuvT, by post-multiplying both sides of

B− zI = A− zI− εuv T ,

by v̂, and after simplifying we get

(B− zI)v̂ = (A− zI)v̂.

Similarly, it can be shown that (BT − zI)û = (AT − zI)û. Since (B− zI)v̂ = v

is the same as (A− zI)v̂ = v, we have UΣ(VTV)β = Uν. Because U, V are

orthogonal, Σβ = ν and so

[] [] []
Σ1 βn−1 =

νn−1
.

ε βn 0

This means that

βn−1 = Σ1
−1νn−1.

Observe that after premultiplying v̂ = Vβ by VT, we have β = VTv̂. By

following the steps that led to (3.40) using vTv̂ = 0, with v = Ven and v̂ = Vβ,

it can be shown that βn = 0. So that we can also write

βn−1 = Vn
T
−1v̂n−1 = Σ1

−1νn−1.

Similarly, taking û = Uα, and (AT zI)û = u, it can be shown as above that −

αn−1 = Un
T
−1ûn−1 = Σ1

−1 µn−1,

and by using the fact that uTv̂ = 0,

T ˆ TVTVβ = µ T T T Σ−1 u v = µ β = µn−1βn−1 = µn−1 1 νn−1. (3.44)

Therefore,

µn
T
−1Σ−

1
1νn−1 �= 0.

In order to apply the Gauss-Newton method to find the solution to the non­

105

The Calculation of the Distance to a Nearby Defective Matrix

linear least squares problem (1.41), we need to show that the Jacobian Fw(w)

in (3.37) is of full rank. Before we prove that the Jacobian is of full rank, we

define the matrix 
 

Σ1 −εI −νn−1






M
 =
 −εI Σ1

T

.
 (3.45)
−µn−1

νT
n−1 0
µn−1

M is obtained from the expanded form of GF in (3.43) by deleting appropriate

rows and columns-reason of which will be made clear in the proof of Lemma

3.5.2.

Lemma 3.5.2. The rank of the Jacobian Fw(w) in (3.37) is 2n + 2 at the root, (that

is, Fw(w∗) is of full rank) if M is nonsingular.

Proof: LetM be nonsingular and p = [pn−1, pn]
T , r = [rn−1, rn]

T be nonzero

vectors, then we want to show that the rank of Fw(w) is 2n + 2. The rank of

Fw(w) equals the rank of GF, because in the decomposition Fw(w) = UFGFVF
T ,

the matrices UF ∈ R(2n+3)×(2n+2) and VF ∈ R(2n+2)×(2n+2) are orthogonal,

while GF ∈ R(2n+3)×(2n+2) is of the same size as Fw(w). So it is enough to

show that the rank of GF equals 2n + 2. This is the same as showing that the

2n + 2 vectors [p, q, r, s]T are zero in







Σ −en −εI −ν
p









T 0 0T 0 













−e
 





n q

r

−εI −en Σ −µ

0T
= 0.

T0
 0
−e
n s

T 0 νT 0µ

To make things easier, we will use the expanded form of GF in (3.43) in our

analysis. Multiply GF from the right by the vector [pn−1, pn, q, rn−1, rn, s]
T ,

upon expanding the matrix vector multiplication and equating to the zero

vector on the right hand side, we obtain pn = q = rn = 0. This is equiva­

lent to deleting the nth, (n + 1)th, (2n + 1)th columns and the nth, (n + 1)th,

(2n + 1)th, (2n + 2)th rows of GF, the remaining nonzero entries constitute the

106

[]

[] []

The Calculation of the Distance to a Nearby Defective Matrix

matrix M. Thus, we are left to show that pn−1 = rn−1 = 0 and s = 0 in

Σ1pn−1 − εrn−1 − νn−1s = 0

−εpn−1 + Σ1rn−1 −µn−1s = 0 (3.46)

µn
T
−1pn−1 + νn

T
−1rn−1 = 0,

which amounts to showing that M is nonsingular. But by assumption, M is

nonsingular, hence, pn−1 = rn−1 = 0 and s = 0. Therefore, [p, q, r, s] =

[pn−1, pn, q, rn−1, rn, s] = 0 and rank(GF) = 2n + 2. Since rank(Fw(w)) =

rank(GF), thus rank(Fw(w)) = 2n + 2 or the Jacobian is of full rank.

Next, we will make use of Keller’s [33] ABCD Lemma 1.3.1 to prove that M is

nonsingular. To do this, we partition M as follows

A b
M = ,

cT d

where in this case

A = −
Σ

ε

1

I

−
Σ

ε

1

I
; b = −

−
µ

νn

n

−
−
1

1

, c T = [µn
T
−1,νn

T
−1], and d = 0.

(3.47)

One of the cases of the ABCD Lemma [33] (cf., Lemma 1.3.1) for showing that

the partitioned matrix M is nonsingular, is when A is nonsingular. So, we need

to show that A is nonsingular. Which is equivalent to showing that a and h are

both zero vectors in [] []
aΣ1 −εI

= 0. (3.48) −εI Σ1 h

Multiply the first n rows by ε and the second by Σ1 and after adding, we have

[] []
Σ1 −εI a

= 0.
0I Σ1

2 − ε2I h

Using (3.49), the fact that Σ2
1 − ε2I is nonsingular if ε < σn−1 (cf., (3.38)), accord­

ingly, h = 0. In the same fashion, because Σ1 is nonsingular we obtain a = 0.

Therefore, A is nonsingular.

107

{ }

The Calculation of the Distance to a Nearby Defective Matrix

The following lemma shows that under certain conditions on ε, the matrix

M defined by (3.45) is nonsingular.

Lemma 3.5.3. Assume that

ε < σn−1. (3.49)

Also, assume ε is so small that its second and higher powers can be neglected, and that

2uTv̂
ε < , (3.50) �ûn−1�2 + �v̂n−1�2

then the matrix M is nonsingular.

Proof: Since A has been shown to be nonsingular, in establishing the nonsin­

gularity of M using the ABCD Lemma, all we need is to show that the Schur

complement, d− cTA−1b, is not equal to zero, where b, cT and d are as defined

in (3.47). To begin, we note that A−1b is the same as solving for [f, g]T in

[] [] []
Σ1 −εI f

=
−νn−1

. (3.51) −εI Σ1 g −µn−1

Multiply the first n-equations by ε and the second one by Σ1, add them to­

gether, solve for g to obtain

g = −[Σ2
1 − ε2I]−1(Σ1µn−1 + ενn−1). (3.52)

Hence, by substituting g into Σ1f− εg = −νn−1; we obtain

f = εΣ
−
1
1 g− Σ1

−1νn−1.

Which is equivalent to

f = − εΣ1
−1[Σ1

2 − ε2I]−1(Σ1µn−1 + ενn−1) + Σ1
−1νn−1 . (3.53)

108

[]

The Calculation of the Distance to a Nearby Defective Matrix

So that

d− c TA−1b = −[µn
T
−1 νn

T
−1]

g

f

= εµ Tn−1Σ1
−1[Σ2

1 − ε2I]−1(Σ1µn−1 + ενn−1) + µn
T
−1Σ−

1
1νn−1

(3.54)

+ νn
T
−1[Σ

2
1 − ε2I]−1(Σ1µn−1 + ενn−1).

From the statement of the Lemma, if ε is so small that its second and higher

powers can be neglected, with some simplifications, we have

d− c TA−1b = 2µn
T
−1Σ1

−1νn−1 + ε(µn
T
−1Σ1

−2 µn−1 + νn
T
−1Σ1

−2νn−1)

= 2µn
T
−1Σ1

−1νn−1 + ε[(Σ1
−1 µn−1)

T(Σ1
−1 µn−1)

+ (Σ−1νn−1)
T(Σ−1νn−1)] 1 1

= 2µn
T
−1Σ1

−1νn−1 + ε(�Σ1
−1 µn−1�2 + �Σ1

−1νn−1�2). (3.55)

It remains to be shown that the expression on the right side of (3.55) is nonzero

provided (3.49) and (3.50) holds. With the simplified expression,

u Tv̂ = µn
T
−1Σ1

−1νn−1 �= 0,

in (3.44), (3.55) now becomes

d− c TA−1b = 2u Tv̂ + ε(�Un
T
−1ûn−1�2 + �Vn

T
−1v̂n−1�2)

= 2u Tv̂ + ε(�ûn−1�2 + �v̂n−1�2). (3.56)

In arriving at the expression on the right hand side above, we made use of the

fact that the matrices Vn−1 and Un−1 are orthogonal. Therefore, d− cTA−1b is

not equal to zero, if for small enough ε,

2uTv̂
ε < . �ûn−1�2 + �v̂n−1�2

This shows that the matrix M is nonsingular if (3.49) and (3.50) holds.

Note that the Jacobian is of full rank under the conditions in which the ma­

109

The Calculation of the Distance to a Nearby Defective Matrix

trix M is nonsingular. Since we have established that the Jacobian is of full

rank, we can conveniently seek a solution for Δw(k) in (1.46). If we apply the

Gauss-Newton method discussed in Subsection 1.5 of Chapter 1 to the over­

determined nonlinear system (3.36), then we obtain the following (cf. (1.47)

and (1.48))

RΔw(k) = −QTF(w(k)), and w(k+1) = w(k) + Δw(k),

where in this case F(w(k)) = QR, Q ∈ R(2n+3)×(2n+2) and R ∈ R(2n+2)×(2n+2).

Now, we present a Gauss-Newton based algorithm for finding the param­

eters for computing a nearby defective matrix to a simple matrix. This is pre­

sented in Algorithm 13.

Algorithm 13 Gauss-Newton Algorithm for Computing a Nearby Defective
Matrix

Input: w(0) = [v(0), ε(0),u(0), z(0)]T , kmax and tol.
1: for k = 0, 1, 2, . . . until convergence do
2: Find the reduced QR factorization of Fw(w(k)) in (3.37).

3: Compute the matrix-vector multiplication y(k) = −QTF(w(k)).

4: Solve the upper-triangular system RΔw(k) = y(k) for Δw(k).

5: Update, w(k+1) = w(k) + Δw(k).
6: end for

Output: w∗.

Algorithm 13 should be stopped as soon as the norm of Δw(k) is less than

or equal to some user defined tolerance.

In the next section, we present the result of numerical experiments which

confirms the theory.

3.6 Numerical Experiments

In this section, we present result of numerical experiments which confirms the

theory discussed in the last section. We show that Algorithm 13 works for the

Trefethen, Kahan, Frank and Wilkinson matrices. The results obtained agrees

with those of Section 3.4 using Algorithm 12 with the same starting guesses.

110

[]

The Calculation of the Distance to a Nearby Defective Matrix

Example 3.6.1. Consider the matrix A =
−1 5

, (see [61]). As initial guesses
0 −2

we choose α(0) = β(0) = 0, ε(0) = σmin, u
(0) = umin and v

(0) = vmin, where σmin is

the minimum singular value of A with corresponding left and right singular vectors

umin and vmin. We stop the iteration once

�Δw(k)� < τ, where τ = 8× 10−16 .

Table 3.10 shows the results for Example 3.4.1. Hence, z = −1.5 with ε = 4.9510×

k α(k) ε(k) ε(k+1) − ε(k)| | α(k+1) − α(k)| | �F(w(k))� �Δw(k)�
0 0.0000 3.6597e-1 1.0e+00 2.0e+00 5.1e-01 2.3e+00
1 -2.0400 6.8361e-1 6.0e-01 5.0e-01 1.2e+00 7.8e-01
2 -1.5386 8.5612e-2 3.6e-02 3.8e-02 7.0e-02 5.3e-02
3 -1.5001 4.9585e-2 7.6e-05 8.1e-05 1.5e-04 1.1e-04
4 -1.5000 4.9510e-2 1.6e-10 1.7e-10 3.3e-10 2.3e-10
5 -1.5000 4.9510e-2 6.9e-18 0.0e+00 2.2e-17 9.0e-18

Table 3.10: Columns five and six shows quadratic convergence for Example
3.4.1. Quadratic convergence is lost in the last row, possibly due to round off
errors.

10−2 , u = [−9.8538×10−2,−9.9513×10−1]T and v = [9.9513×10−1,−9.8538×
10−2]T. Therefore, B = A − εuvH is a defective matrix. The method converges

quadratically in 6 iterations, as expected from Newton’s method. The computed val­

ues of z∗ and ε∗ agree with those of Table 3.1.

Example 3.6.2. Let A ∈ Cn×n be the Kahan matrix [61], which is given by (3.34).

We consider this matrix for n = 6, 15, 20. The starting values and stopping condition

are chosen as in Example 3.4.1. Table 3.6.2 shows the results for n = 6. In this

case, the eigenvalues 1.5849× 10−1 and 10−1 coalesce at 1.2763× 10−1 for a value

of ε = 4.7049× 10−4. Quadratic convergence rate is observed in rows six and seven

of column five, and the computed values of z∗ and ε∗ agree with those of Table 3.2.
Table 3.12 shows the results for n = 15. In this case, the eigenvalues 1.1788×

10−1 and 10−1 coalesce at 1.0729 × 10−1 for a value of ε = 5.1757 × 10−7 . The

computed values of z∗ and ε∗ agree with those of Table 3.3.
Table 3.13 shows the results for n = 20. In this case, the eigenvalues 1.1288×

10−1 and 10−1 coalesce at 1.0501 × 10−1 for a value of ε = 2.8841 × 10−8 . The

111

The Calculation of the Distance to a Nearby Defective Matrix

k α(k) ε(k) ε(k+1) − ε(k)| | α(k+1) − α(k)| | �F(w(k))� �Δw(k)�
0 0.0000e+0 9.9694e-03 2.2e-02 1.4e-01 1.6e-01 3.6e-01
1 1.3643e-1 1.2145e-2 1.2e-02 2.0e-02 7.1e-02 2.2e-01
2 1.1639e-1 3.7277e-4 6.1e-05 9.5e-03 2.5e-02 5.6e-02
3 1.2590e-1 4.3373e-4 3.7e-05 1.7e-03 1.5e-03 1.3e-02
4 1.2760e-1 4.7082e-4 3.3e-07 3.2e-05 8.9e-05 3.5e-04
5 1.2763e-1 4.7049e-4 2.9e-10 1.3e-08 6.3e-08 1.5e-07
6 1.2763e-1 4.7049e-4 4.4e-17 2.2e-15 1.1e-14 2.2e-14
7 1.2763e-1 4.7049e-4 5.4e-20 0.0e+00 9.8e-17 6.8e-17

Table 3.11: Results for Example 3.4.2, n = 6 using Algorithm 13. We observe
quadratic convergence in the last column.

k α(k) ε(k) ε(k+1) − ε(k)| | α(k+1) − α(k)| | �F(w(k))� �Δw(k)�
0 0.0000e+0 4.7454e-4 7.3e-04 5.9e-02 1.2e-02 2.0e-01
1 5.9261e-2 2.5746e-4 2.6e-04 2.5e-02 2.1e-02 2.2e-01
2 8.4526e-2 4.7975e-7 8.7e-07 1.3e-02 2.5e-02 1.7e-01
3 9.7390e-2 1.3523e-6 2.0e-06 7.2e-03 1.5e-02 1.1e-01
4 1.0455e-1 6.6553e-7 1.3e-07 2.4e-03 6.3e-03 4.4e-02
5 1.0699e-1 5.3550e-7 1.8e-08 3.0e-04 9.7e-04 5.7e-03
6 1.0728e-1 5.1778e-7 2.0e-10 4.3e-06 1.6e-05 8.3e-05
7 1.0729e-1 5.1757e-7 4.1e-14 8.9e-10 3.4e-09 1.7e-08
8 1.0729e-1 5.1757e-7 1.6e-21 2.8e-17 1.8e-16 7.0e-16

Table 3.12: Results for Example 3.4.2, n = 15 using Algorithm 13. Quadratic
convergence is observed in rows eight and nine of the last column.

k α(k) ε(k) ε(k+1) − ε(k)| | α(k+1) − α(k)| | �F(w(k))� �Δw(k)�
0 0.0000e+00 1.3141e-04 1.9e-04 4.7e-02 4.0e-03 1.7e-01
1 4.7216e-02 5.7554e-05 5.8e-05 2.7e-02 1.4e-02 1.9e-01
2 7.3921e-02 3.1613e-08 4.3e-07 1.5e-02 1.9e-02 1.8e-01
3 8.9281e-02 4.0206e-07 4.5e-07 9.3e-03 1.6e-02 1.4e-01
4 9.8568e-02 5.2530e-08 1.5e-08 4.7e-03 1.0e-02 9.0e-02
5 1.0329e-01 3.7362e-08 7.9e-09 1.5e-03 4.0e-03 3.3e-02
6 1.0483e-01 2.9487e-08 6.4e-10 1.8e-04 5.4e-04 3.9e-03
7 1.0501e-01 2.8848e-08 7.3e-12 2.2e-06 7.5e-06 4.8e-05
8 1.0501e-01 2.8841e-08 1.1e-15 3.3e-10 1.2e-09 7.3e-09
9 1.0501e-01 2.8841e-08 3.3e-23 0.0e+00 1.9e-16 2.3e-16

Table 3.13: Results for Example 3.4.2, for n = 20 using Algorithm 13. We
observed almost quadratic convergence in the last two rows of the last column.

computed values of z∗ and ε∗ agree with those of Table 3.4.

112

The Calculation of the Distance to a Nearby Defective Matrix

Example 3.6.3. Let A ∈ Cn×n be the Frank matrix taken from the Matlab gallery

A = gallery(’frank’,n), where n = 6, 12. As initial guesses we choose α(0) =

β(0) = 0, ε(0) = σmin, u
(0) = umin and v

(0) = vmin, where σmin is the minimum

singular value of A with corresponding left and right singular vectors umin and vmin.

x(0) is determined from (3.11), the stopping condition is the same as in the previous

examples. Table 3.14 shows the results for n = 6. In this case the eigenvalues 7.7080×

k α(k) ε(k) ε(k+1) − ε(k)| | α(k+1) − α(k)| | �F(w(k))� �Δw(k)�
0 0.0000e+00 3.4855e-03 7.1e-03 1.0e-01 7.0e-02 1.6e-01
1 1.0137e-01 3.5747e-03 3.0e-03 2.4e-02 1.4e-02 4.2e-02
2 1.2532e-01 6.0255e-04 4.7e-05 2.6e-03 1.1e-03 4.1e-03
3 1.2788e-01 5.5588e-04 3.9e-07 2.4e-05 1.0e-05 3.9e-05
4 1.2790e-01 5.5549e-04 3.6e-11 2.1e-09 8.8e-10 3.4e-09
5 1.2790e-01 5.5549e-04 1.1e-19 1.7e-16 7.0e-16 3.9e-16

Table 3.14: Results for Example 3.4.3, n = 6 using Algorithm 13. We observe
almost quadratic convergence in the last column.

10−2 and 1.8576× 10−1 closest to zero coalesce at 1.2790× 10−1 for a value of ε =

5.5549× 10−4. The computed values of z∗ and ε∗ agree with those of Table 3.5.

k α(k) ε(k) ε(k+1) − ε(k)| | α(k+1) − α(k)| | �F(w(k))� �Δw(k)�
0 0.0000e+00 1.1186e-08 1.6e-08 1.8e-02 8.6e-07 2.7e-02
1 1.8010e-02 4.3454e-09 3.9e-09 1.3e-02 4.1e-04 1.9e-02
2 3.0849e-02 4.1641e-10 2.0e-10 6.2e-03 2.1e-04 9.4e-03
3 3.7032e-02 2.2016e-10 3.3e-11 1.5e-03 5.0e-05 2.3e-03
4 3.8559e-02 1.8668e-10 1.7e-12 9.0e-05 3.1e-06 1.4e-04
5 3.8649e-02 1.8499e-10 5.4e-15 3.0e-07 1.1e-08 4.6e-07
6 3.8649e-02 1.8499e-10 1.4e-17 2.6e-11 1.2e-13 3.9e-11
7 3.8649e-02 1.8499e-10 9.0e-18 2.7e-11 1.4e-15 4.1e-11
8 3.8649e-02 1.8499e-10 3.8e-17 7.3e-13 3.5e-16 1.1e-12

Table 3.15: Results for Example 3.4.3, n = 12 using Algorithm 13. We observe
superlinear convergence in the second to the last column.

Table 3.15 shows the results for n = 12. In this case the eigenvalues 3.1028×
10−2 and 4.9509× 10−2 closest to zero coalesce at 3.8649× 10−2 for a value of ε =

1.8499× 10−10. The computed values of z∗ and ε∗ agree with those of Table 3.6.

Example 3.6.4. Consider the 20× 20 bi-diagonal matrix whose diagonal entries are

20, 19, . . . , 1 and the super-diagonals are 20. This matrix was considered byWilkinson

113

The Calculation of the Distance to a Nearby Defective Matrix

[62] and also in Example 3.4.4 and has eigenvalues 1, 2, . . . , 20. We repeated the same

example with the same starting guesses as in Example 3.4.4 but in this case with

Algorithm 13. Results are as tabulated in Table 3.16. The computed values of z∗ and
ε∗ agree with those of Table 3.7.

k α(k) ε(k) ε(k+1) − ε(k)| | α(k+1) − α(k)| | �F(w(k))� �Δw(k)�
0 10.200 3.6322e-14 6.5e-14 4.2e-01 1.6e-13 4.2e-01
1 10.619 1.0152e-13 3.9e-14 1.0e-01 1.5e-02 1.0e-01
2 10.519 6.2701e-14 1.4e-15 1.9e-02 8.5e-04 1.9e-02
3 10.500 6.1312e-14 4.7e-17 1.9e-04 3.0e-05 1.9e-04
4 10.500 6.1264e-14 4.6e-21 6.9e-08 3.0e-09 6.9e-08
5 10.500 6.1264e-14 5.7e-28 4.8e-12 2.6e-15 4.8e-12
6 10.500 6.1264e-14 1.3e-29 0.0e+00 1.9e-15 1.0e-16

Table 3.16: Results for Example 3.4.4 using Algorithm 13. We observed
quadratic convergence except for the last two rows of the last column.

3.7 Conclusion

We have developed two new algorithms for computing a nearby defective ma­

trix. Numerical examples show that these new techniques perform well and

give quadratic convergence in the generic cases. Also, since the first algorithm

is based on Newton’s method applied to a real 3-dimensional nonlinear sys­

tem (with only one LU factorisation required at each step) it is simple to apply

and is significantly faster than the technique in [4]. The second algorithm is

based on the Gauss-Newton method for computing a nearby defective matrix

from a simple one and the distance between them.

However, as has already been mentioned, since the two algorithms are

based on Newton’s method or its variant, convergence to the nearest defec­

tive matrix cannot be guaranteed, though in fact, in all the examples consid­

ered, convergence to the nearest defective matrix was achieved. Of course, a

more sophisticated nonlinear solver, e.g., global Newton’s method or a global

minimiser, could be applied to (3.15) if required.

Though Algorithm 12 is designed to compute a nearby defective matrix

in the generic case (that is, there is a well-conditioned 2-dimensional Jordan

block), the first algorithm has two features that enable it to recognise when

114

The Calculation of the Distance to a Nearby Defective Matrix

the conditions of Assumption 3.1.1 fail. First, if there is another singular value

near ǫ then the condition number of M(α, β, ε) will be large. Second, if the

condition number of M(α, β, ε) is small, but Fαβ is close to zero at the root, then

this indicates the presence of a nearby defective matrix with a Jordan block

of dimension greater than 2. As such the algorithm in this chapter could be

used to provide starting values for an alternative algorithm that could detect

a higher order singularity.

For Algorithm 13, near a three-dimensional Jordan block, the right hand

side condition on ε in (3.50) tends to zero, so ε is forced to zero. This means

that some diagonal elements of R in RΔw(k) = −QTF(w(k)) could be small if

the Jordan block is of dimension three or σn−1 is close to ε = σn, and it is not

possible to distinguish between these two situations.

115

[]

CHAPTER 4

Inverse Iteration with a Complex Shift

4.1 Introduction

Let A be a large sparse, real n by n nonsymmetric matrix and B ∈ Rn×n a sym­

metric positive definite matrix. In this chapter, we consider the problem of

computing the eigenpair (z,λ) from the following generalised complex eigen­

value problem

Az = λBz, C
n , z = 0, (4.1) z ∈ �

where λ ∈ C is the eigenvalue of the pencil (A,B) and z its corresponding

complex eigenvector. We assume that the eigenpair of interest (z,λ) is alge­

braically simple, so that ψH the corresponding left eigenvector is such that

to (4.1) and with v = [z ,λ], the combined system of equations can be ex­

[57, p. 136]

ψHBz �= 0. (4.2)

By adding the normalisation

z HBz = 1, (4.3)

T

pressed in the form F(v) = 0 as

F(v) =
(A− λB)z

= 0. (4.4) −1 zHBz + 1 2 2

116

[]

�

Inverse Iteration with a Complex Shift

Note that zHBz is real since B is symmetric and positive definite. This results

in solving a system of n complex and one real nonlinear equation for the (n +

1) complex unknowns v = [z,λ]T . Note that, if z from (z,λ) solves (4.4),

then so does eiθ z for any θ [0, 2π). Hence, (4.4) does not have a unique ∈
solution. Another drawback of the normalisation (4.3) is that z̄ in zHBz =

z̄TBz is not differentiable1. Therefore, we cannot just differentiate (4.4) and

apply the standard Newton’s method. In this chapter, we shall show how

these drawbacks can be overcome, at least for the B = I case.

Recall that for a real eigenpair (z,λ), (4.4) gives (n + 1) real equations for

(n + 1) real unknowns and Newton’s method for solving (4.4) involves the

solution of the (n + 1) square linear systems

[
A− λ(k)B −Bz(k)

] [
Δz(k)

] [
(A− λ(k)B)z(k)

]

−(Bz(k))T 0 Δλ(k)
= −

−1 (k)T
, (4.5)

z Bz(k) + 1 2 2

for the (n + 1) real unknowns Δv(k) = [Δz(k)T ,Δλ(k)], and updating v(k+1) =

v(k) + Δv(k) for k = 0, 1, 2, Secondly, for (z,λ) complex, Ruhe [51] added

the normalisation cHz = 1, where c is a fixed complex vector instead of (4.3), so

that (4.1) and cHz = 1 provide (n + 1) complex equations for (n + 1) complex

unknowns, and the Jacobian of this system is

(A− λB) −Bz
.

Hc 0

The above Jacobian is square and can be easily shown to be nonsingular, us­

ing the ABCD Lemma if the eigenvalue of interest is algebraically simple and

cHz = 0 at the root. One major distinction between our normalisation and

Ruhe’s is that, ours is the natural normalisation for an eigenvector and we do

not worry about how to choose c.

Our approach for analysing the solution of (4.4) for v begins by splitting

the eigenpair (z,λ) into their real and imaginary parts: z = z1 + iz2, λ =

α + iβ where z1, z2 ∈ Rn, and α, β ∈ R. After expanding (4.4), we obtain

1For a single variable, if z = x + iy, z̄ = x − iy, then the Cauchy-Riemann equations are not
satisfied because, with u(x, y) = x, v(x, y) = −y, then ux(x, y) = 1 and vy(x, y) = −1, whereas
the Cauchy-Riemann equations (see, for example [35]) require that ux(x, y) = vy(x, y). This
shows that z̄ is not differentiable at (x, y).

117

�

Inverse Iteration with a Complex Shift

a real system of (2n + 1) under-determined nonlinear equations in (2n + 2)

real unknowns v = [z1, z2, α, β]T, and it is natural to use the Gauss-Newton

method (see, for example, Deuflhard [17, pp. 222-223]) to obtain a solution.

By linearising the system of under-determined nonlinear equations, we obtain

a system of under-determined linear equations involving the corresponding

Jacobian. The key results in this chapter are Theorems 4.2.1, 4.4.1 and 4.5.1.

This chapter is structured as follows. In Section 4.2, we show that for an

algebraically simple eigenvalue, the Jacobian is of full rank at the root with

a known nullvector. Section 4.3 provides theoretical expressions for the exact

nullvector of the Jacobian. In Section 4.4, we consider the case B = I, where we

show that by adding an extra equation to the system of under-determined lin­

ear equations, one obtains a square one and prove that the solution obtained

by solving this square system is equivalent to that obtained by solving the

under-determined linear system. The extra equation that will be added, stems

from the orthogonality of a known approximate nullvector and the minimum

norm solution to the under-determined system of linear equations. In Theo­

rem 4.5.1, we show that the (2n + 2) square system of equations is equivalent

to the corresponding (n + 1) square system (4.5) with z and λ complex.

To summarise, we give a rigorous proof that, if we ignore the non unique­

ness of solution of (4.4) and the fact that (4.3) is not differentiable, and pro­

ceed by applying Newton’s method to (4.4) formally, then we obtain exactly

the same results obtained using the Gauss-Newton method. Computationally,

this means we may solve square systems like (4.5) using Gaussian elimination

rather than solving rectangular systems as is the case if the Gauss-Newton

method were used. The case B = I is not so nice and as far as we can tell, a

similar result does not apply. This is explained further in Section 4.6.

The analysis in each section is supported by a numerical example. All ap­

proaches described in this chapter, give quadratic convergence, though, as

usual, they rely on good initial guesses to the desired eigenpair. In conclu­

sion, we show the mathematical equivalence of three methods-which is our

main aim in this chapter. Throughout this chapter, �.� = �.�2.

118

[]

Inverse Iteration with a Complex Shift

4.2	 Computation of Complex Eigenpairs by solving

anUnder-determined System of Nonlinear Equa­

tions

In this section, we will expand the system of n complex and one real nonlinear

equations in (n + 1) complex unknowns (4.4) by writing z and λ as z = z1 + iz2
and λ = α + iβ, respectively. The reason for having an under-determined sys­

tem of equations instead of a square system of equations is because, expanding

zHBz = 1 gives only one real equation, since B is symmetric positive definite,

while (A− λB)z = 0 results in 2n real equations. This results in a real (2n + 1)

under-determined system of nonlinear equations in (2n + 2) real unknowns.

This will then be followed by presenting the real under-determined system of

nonlinear equations and an explicit expression for its Jacobian.

Furthermore, we will show in the main result of this section-Theorem 4.2.1

that, if the eigenvalue of interest in (A,B) is algebraically simple, then the

Jacobian has linearly independent rows at the root. We will find the right nul­

lvector of the Jacobian at the root. We conclude the section by presenting Al­

gorithm 14 for computing the complex eigenpair of the matrix pencil (A,B).

A numerical example is given to illustrate the theory.

If we let z = z1 + iz2 and λ = α + iβ, then the nonlinear system of equations

(4.4) can be written as

(A− λB)z = A− (α + iβ)B (z1 + iz2)

= (A− αB)z1 + βBz2 + i[(A− αB)z2 − βBz1], (4.6)

and

z HBz = z1
TBz1 + z2

TBz2.	 (4.7)

Hence, (4.3) implies that

1 1 1 T T 1 −
2
z HBz +

2
= −

2
(z1Bz1 + z2Bz2) +

2
= 0.

Since (A− λB)z = 0, we equate the real and imaginary parts of (4.6) to zero

119

[]

[]

[]

Inverse Iteration with a Complex Shift

and obtain the 2n real equations

(A− αB)z1 + βBz2 = 0,

and

(A− αB)z2 − βBz1 = 0.

This means, F(v) consists of the 2n real equations arising from (4.6) and one

real equation −1(zTBz1 + zTBz2) + 1 = 0; 2 1 2 2

	 

(A− αB)z1 + βBz2
F(v) =  −βBz1 + (A− αB)z2


= 0, (4.8) 	 

−1(zTBz1 + zTBz2) + 1 2 1 2 2

where F : R(2n+2) R(2n+1). The Jacobian, Fv(v) of F(v) with v = [z1, z2, α.β]T →
has the following explicit expression

	 

(A− αB) βB −Bz1 Bz2

Fv(v) = 
 −βB (A− αB) −Bz2 −Bz1 


, (4.9)

−(Bz1)
T −(Bz2)

T 0 0

and is a (2n + 1) by (2n + 2) real matrix. We define the real 2n by 2n matrix M

as

(A− αB) βB
M = . (4.10) −βB (A− αB)

Also, we form the 2n by 2 real matrix

N =	
−Bz1 Bz2

=
[]

, (4.11) −Bz2 −Bz1
−B2w B2w1

B O
consisting of the product of B2 = and the matrix of right nullvectors

O B

120

[] []

[] []

[]

[]

Inverse Iteration with a Complex Shift

(given in the next equation) of M at the root, where

z1 z2
w = , w1 = , (4.12)

z2 −z1

and O is the n by n zero matrix. The Jacobian (4.9) can be rewritten in the

following partitioned form

Fv(v) =
M −B2w B2w1 =

M N
, (4.13) −(B2w)T 0 0 −(B2w)T 0T

with M, N defined in (4.10) and (4.11) respectively. Note that because at the

root,

[] [] []
(A− αB) βB z1 =

(A− αB)z1 + βBz2
= 0, −βB (A− αB) z2 (A− αB)z2 − βBz1

z1
this implies that or its nonzero scalar multiple is a right nullvector of M.

z2
In the same vein, we find

[] [] []
(A− αB) βB z2

=
(A− αB)z2 − βBz1 = 0, −βB (A− αB) −z1 −{(A− αB)z1 + βBz2}

z2
and or its nonzero scalar multiple is also a right nullvector of M at the −z1
root.

Since the eigenvalue λ of (A,B) is algebraically simple by assumption, then

by (4.2), we need to give explicit expressions for the left nullvector of (A− λB)

in order to prove that the Jacobian has full row rank at the root. Observe that

for all ψ ∈ N (A− λB)H\{0}, we define ψ = ψ1 + iψ2, where ψ1,ψ2 ∈ Rn ,

then this implies

ψH(A− λB) = (ψ1
T − iψ2

T)[(A− αB) − iβB]

= ψ1
T(A− αB) − βψ2

TB− i[βψ1
TB + ψ2

T(A− αB)] = 0T .

Hence, ψ1
T(A− αB) − βψ2

TB = 0T and βψTB + ψ2
T(A− αB) = 0T. The impli­1

121

[]

[]

[]

�

Inverse Iteration with a Complex Shift

cation of this is that

[ψ1
T ψ2

T]M = [ψ1
T ψ2

T]
(A− αB) βB

−βB (A− αB)

= [ψ1
T(A− αB) − βψ2

TB βψ1
TB + ψ2

T(A− αB)] = 0T ,

which means, [ψ1
T , ψ2

T] or its nonzero scalar multiple is a left nullvector of M.

Similarly,

[ψ2
T −ψ1

T]M = [ψ2
T −ψ1

T]
(A− αB) βB

−βB (A− αB)

= [βψ1
TB + ψ2

T(A− αB) − {ψT(A− αB) − βψ2
TB}] = 0T ,1

and it shows that [ψ2
T , −ψT] is also a left nullvector of M.1

So we form the matrix C consisting of the 2-dimensional left nullvectors of

M at the root (in practice C is not computed), as

ψ1 ψ2
C = . (4.14)

ψ2 −ψ1

Now, observe that the condition (4.2), implies

ψHBz = [ψ1
TBz1 + ψ2

TBz2] + i[ψ1
TBz2 −ψ2

TBz1] �= 0.

Since ψHBz = 0, this implies

[ψ1
TBz1 + ψ2

TBz2]
2 + [ψ1

TBz2 −ψ2
TBz1]

2 �= 0. (4.15)

Before we continue with the rest of the analysis, we present the main result of

this section which shows that the Jacobian (4.9) has a one dimensional nullvec­

tor at the root.

Theorem 4.2.1. Assume that the eigenpair (z,λ) of the pencil (A,B) is algebraically

simple. If z1 and z2 are nonzero vectors, then φ = {τ[z2
T ,−z1

T, 0, 0], τ ∈ R} is the

eigenspace corresponding to the zero eigenvalue of Fv(v) at the root.

Proof: Post-multiply Fv(v) by the unknown nonzero vector φ = [p ,q]T , ′ ′

122

[]

[]

Inverse Iteration with a Complex Shift

equate to the zero vector and solve

[] []
M N p ′

= 0, −(B2w)T 0T q ′

where M and N are as defined in (4.10) and (4.11) respectively. After expand­

ing, we have the following set of equations

Mp′ + Nq′ = 0 (4.16)

w TB2p = 0. (4.17) ′

Let H = CTN, for all C ∈ N (MT)\{0} as in (4.14). This means,

[] [] [] [] []
ψ1

T ψ2
T B −z1 z2 ψ1

T ψ2
T −Bz1 Bz2

H = =
ψ2

T −ψ1
T B −z2 −z1 ψ2

T −ψ1
T −Bz2 −Bz1

−(ψTBz1 + ψTBz2) ψTBz2 −ψTBz11 2 1 2= .
ψTBz2 −ψTBz1 (ψTBz1 + ψTBz2)1 2 1 2

By premultiplying both sides of (4.16) by CT, we obtain

CTMp + CTNq′ = 0. (4.18) ′

But, CTM = 0T. Consequently, we are left with CTNq = 0, or ′

−(ψTBz1 + ψTBz2) ψTBz2 −ψTBz1′Hq′ = CTNq =
ψT

1

Bz2 −ψT
2

Bz1 (ψ
1
TBz1 + ψ

2
TBz2)

q ′ = 0.
1 2 1 2

Now,

detH = −{(ψ1
TBz1 + ψ2

TBz2)
2 + (ψ1

TBz2 −ψ2
TBz1)

2} �= 0,

using (4.15), which implies H is nonsingular. Thus, q = 0. Equation (4.16) ′

now becomes Mp = 0, meaning that p = µw + τw1. From ′ ′ ′∈ N (M), p

(4.17),

0 = w TB2p = µw TB2w + τw TB2w1.
′

123

�

()

Inverse Iteration with a Complex Shift

Now, because wTB2w1 = 0 and wTB2w = 0, we have µ = 0 and so

p = τw1.
′

Hence, for all τ ∈ R\{0}, p ′ = [τz2,−τz1]
T ∈ N (M) also satisfies equation

(4.17). Therefore, we obtain φ = τ[z2,−z1, 0, 0]
T as the only nonzero nullvec­

tor of Fv(v).

The next result is a corollary to Theorem 4.2.1 and it shows that the Jacobian

(4.9) has linearly independent rows at the root.

Corollary 4.2.1. If the eigenpair (z,λ) of (A,B) is algebraically simple, then the

Jacobian Fv(v) in (4.13) is of full rank at the root.

Proof: Since Theorem 4.2.1 guarantees the existence of a single nonzero nul­

lvector of Fv(v) at the root, then rank Fv(v) = 2n + 1 (using the dimension

theorem, see, for example, [39]). Therefore, the Jacobian (4.9) is of full rank at

the root.

Next, in order to solve the under-determined system of nonlinear equations

(4.8), we need to linearize F(v) = 0. After linearizing F(v) = 0, we have to

solve the following under-determined linear system of equations

Fv(v
(k))Δv(k) = −F(v(k)). (4.19)

Hence, solving for Δv(k) in Fv(v(k))Δv(k) = −F(v(k)), involves solving a 2n + 1

real under-determined linear system of equations for the 2n + 2 real unknowns

Δv(k) = [Δz1
(k)

,Δz2
(k)

,Δα(k),Δβ(k)]T . Following the discussion in Section 1.5.2,

we find the reduced QR factorization Fv(v(k))
T

= QR, where in this case Q

and R are (2n + 2) by (2n + 1) and (2n + 1) by (2n + 1) real matrices respec­

tively. Hence, we solve RTg(k) = −F(v(k)) for g(k) and then obtain the solution

to (4.19) as

Δv(k) = Qg(k),

and update v(k+1) = v(k) + Δv(k). Since we have shown that the Jacobian has

linearly independent rows in Theorem 4.2.1, the whole analysis now gives rise

to Algorithm 14, namely, the Gauss-Newton method applied to F(v) = 0.

124

Inverse Iteration with a Complex Shift

Algorithm 14 Eigenpair Computation using Gauss-Newton’s method

Input: A,B, v(0) = [z
(
1
0)
, z2

(0)
, α(0), β(0)]T , kmax and tol.

1: for k = 0, 1, 2, . . . , until convergence do
2: Find the reduced QR factorisation of Fv(v(k))T = QR.

3: Solve RTg(k) = −F(v(k)) for g(k) in (4.9).

4: Compute Δv(k) = Qg(k) for Δv(k) using (4.8).

5: Update v(k+1) = v(k) + Δv(k).
6: end for

Output: v(kmax).

The stopping condition for Algorithm 14 is

�Δv(k)� ≤ tol.

Next, we give the following numerical example to illustrate the above theory.

Example 4.2.1. Consider the 200 by 200 matrix A bwm200.mtx from the matrix

market library [9]. It is the discretised Jacobian of the Brusselator wave model for a

chemical reaction. The resulting eigenvalue problem with B = I was also studied in

[48] and we are interested in finding the rightmost eigenvalue of A which is closest to

the imaginary axis and its corresponding eigenvector.

In this example, we take α(0) = 0.0, β(0) = 2.5 in line with [48] and took
(0) (0)

√
3 z = 1/2�1� and z = 1/�1�, where 1 is the vector of all ones. Algorithm 1 2 2

14 is stopped as soon as �Δv(k)� is less than or equal to 5.6× 10−14 . The computed

eigenpairs are shown in Table 4.1. Observe that we obtained quadratic convergence

k α(k) β(k) (k+1) w(k)�w − � �λ(k+1) − λ(k)� �Δv(k)� �F(v(k))�
0 0.00000e+00 2.50000 3.8e+00 7.8e-01 3.9e+00 3.6e+01
1 2.34253e-01 1.75371 1.8e+00 2.2e-01 1.8e+00 7.8e+00
2 1.18745e-01 1.94460 8.1e-01 1.4e-01 8.2e-01 1.7e+00
3 4.47044e-02 2.06484 2.5e-01 7.0e-02 2.6e-01 3.4e-01
4 8.82702e-03 2.12479 3.1e-02 1.7e-02 3.5e-02 3.7e-02
5 2.48114e-04 2.13905 4.8e-04 5.2e-04 7.1e-04 7.1e-04
6 1.80714e-05 2.13950 1.2e-07 2.5e-07 2.8e-07 2.8e-07
7 1.81999e-05 2.13950 2.1e-14 2.9e-14 3.6e-14 6.0e-14

Table 4.1: Values of α(k) and β(k) of Example 4.2.1. Columns 6 and 7 show that
the results converged quadratically for k = 3, 4, 5, 6 and 7.

from the second to the last and the last columns of Table 4.1 for k = 3, 4, 5, 6 and 7.

125

[] []

Inverse Iteration with a Complex Shift

At the root, the condition number of Fv(v(k)) is approximately 3× 103 . w(k) in the

above table represents [z1
(k)T

, z2
(k)T

] and λ(k) = [α(k), β(k)].

Next, we show that the solution Δv(k) obtained by solving the under-

determined system of nonlinear equations (4.19) is equivalent to those ob­

tained by solving a square, augmented linear system.

Lemma 4.2.1. Let n(k) be the exact nullvector of Fv(v(k)). The solution Δv(k) can be

obtained via:

(a).	 solving the under-determined linear system of (2n + 1) real equations for the

(2n + 2) real unknowns Δv(k) (4.19) and updating v(k+1) = v(k) + Δv(k),

or

(b).	 solving the square linear system of (2n + 2) real equations (4.39) and updating

v(k+1) = v(k) + Δv(k).

(Here, we neglect round off errors).

Proof: Assume by contradiction that Δv(k) �= Δv1
(k)

, where

Fv(v
(k))Δv(k) = −F(v(k)),

and
Fv(v(k)) (k) F(v(k))

(k)T
Δv1 = − . (4.20)

n	 0

Since n(k) is an exact nullvector of Fv(v(k)) by definition, Fv(v(k))n(k) = 0.

From Lemma 1.5.1,

n(k)T Δv(k) = 0.	 (4.21)

Now, by subtracting Fv(v(k))Δv1
(k)

= −F(v(k)) from Fv(v(k))Δv(k) = −F(v(k)),

results in Fv(v(k))
(
Δv(k) − Δv1

(k))
= 0. Which implies Δv(k) − Δv1

(k)
= τn(k).

After taking the inner product of both sides with n(k), we obtain

(k)T (k) (k)T (k) (k) 2 n Δv n Δv	 .− 1 = τ�n �

The first term on the left hand side of the equation above is zero by virtue of

(4.21) and the second term is also zero, from (4.20). Accordingly, τ�n(k)�2 = 0

126

[]

Inverse Iteration with a Complex Shift

and τ = 0. Which means that Δv(k) − Δv1
(k)

= 0 and Δv(k) = Δv1
(k)

, con­

tradicting the assumption that Δv(k) �= Δv1
(k)

. Consequently, Δv(k) = Δv1
(k)

.

4.3	 A Theoretical form for the Nullvector of the Ja­

cobian (4.9)

In the proof of Lemma 4.2.1 at the tail end of last section, we made use of the

exact nullvector (which we do not compute in practice) of the Jacobian (4.9). In

this section, we give a theoretical expression for the exact nullvector of the Ja­

cobian (4.9) when not at the root. To do this, we rewrite the under-determined

linear system of equations (4.19) in a compressed form, present two impor­

tant theoretical relationships: (4.27) and (4.28) for the exact nullvector of the

Jacobian. These expressions will be used extensively in Sections 4.4 and 4.6

ahead.

Note that the matrix M defined by (4.10) is singular at the root. However,

this section is anchored on the assumption that when v is not at the root, M is

nonsingular.

First, we define the 2n by 2n matrix J as (see, for example [22])

0 I
J = , (4.22) −I 0

and note that [] [] []
0 I z1 z2

Jw = = = w1, (4.23) −I 0 −z1z2

defined by (4.12).

The matrix J satisfies the following properties:

1. JT = −J.

2. JTJ = I2n, where I2n is the 2n by 2n identity matrix.

3. J2 = −I2n.

127

[]

Inverse Iteration with a Complex Shift

4. J commutes with M and B2, i.e., JM = MJ and JB2 = B2J.

5. For w ∈ R2n , wTB2Jw = wTJB2w = 0.

6. Let u be an unknown vector that solves Mu = B2w. By premultiplying

both sides by J we obtain JMu = JB2w and hence MJu = JB2w by the

commutativity of M and J. Therefore,

Mu = B2w, implies M(Ju) = JB2w. (4.24)

The equation Mu = B2w stems from expanding the shifted system (A −
σB)y = Bz, into its real and imaginary parts as in [48] for σ = α + iβ and

z = z1 + iz2. For ease of notation and for the rest of this chapter, we shall drop

the superscripts (k) and write w+ = w + Δw where w+ = w(k+1), replace w(k)

and [Δz1
(k)T

,Δz2
(k)T

] with w and Δw respectively e.t.c.

As earlier stated, we assume that the 2n by 2n matrix M is nonsingular

except at the root. For the rest of this section, our aim is to give an explicit

theoretical expression for the nullvector of (4.9).

Let the exact nullvector n of

Fv(v) =
M −B2w B2Jw

, −(B2w)T 0 0

T R2nbe defined as n = [nw,nα,nβ], where nw , nα and nβ are real scalars, ∈
Jw and M are defined respectively by (4.23) and (4.10). Hence,

 
[] nw

M −B2w B2Jw
nα  = 0, 

−(B2w)T 0 0


nβ

then after expanding the matrix-vector multiplication, we obtain

Mnw −nαB2w + nβ(B2Jw) = 0 (4.25)

w TB2nw = 0. (4.26)

From (4.25), Mnw = nαB2w −nβ(B2Jw), using the fact that J commutes with

128

Inverse Iteration with a Complex Shift

B2 and M, and using (4.24) with B2 = I2n we obtain

nw = nαu −nβJu.	 (4.27)

Sincew is B2-orthogonal to nw by virtue of (4.26), taking the B2-inner product

of both sides of the above with w yields

w TB2nw = nα(w TB2u) −nβ(w TB2Ju) = 0.

We may choose

nα = w TB2Ju, and nβ = w TB2u, (4.28)

since we never normalise n. Hence, nw is given by (4.27) with nα and nβ by

(4.28). So we have a formula for nw in terms of w and u obtained from (4.24).

Therefore,

n = [n T ,nα,nβ] = [(nαu −nβJu)T , (w TB2Ju), (w TB2u)].w

We emphasise that in practice, we would never compute the solution of (4.24).

It will be used for purely theoretical purposes since we know that the Gauss­

Newton solution, Δv, is orthogonal to n.

4.4	 Square System of Equations for The Numerical

Computation of the Complex Eigenvalues of a

Matrix for B = I

In the preceding section, we presented two main important theoretical rela­

tionships, (4.27) and (4.28). In this section, we will make use of these relation­

ships in our discussion but only in the special case in which B = I. Moreover,

in Section (4.2), we saw that the solution to the under-determined system of

nonlinear equations (4.8) for the numerical computation of the complex eigen­

pair (z,λ) of the pencil (A,B) can be solved by the Gauss-Newton method

via QR factorization. It was also stated in Lemma 1.5.1 that the minimum

norm solution to the resulting linear system of equations is orthogonal to the

129

[] []

Inverse Iteration with a Complex Shift

nullspace. However, in Section 4.2, we used the result of Lemma 1.5.1 to add

an extra equation to the under-determined linear system of equations, so as

to obtain a square one. This is because, at each iteration of the computation,

n(k)T Δv(k) = 0 and so it does not change the solution, even though the square

linear system of equations gives a unique solution because the augmented Ja­

cobian is nonsingular.

Nevertheless, as mentioned in the last section, we would never compute n

in practice, but Theorem 4.2.1 guarantees the existence of a unique nullvector

φ at the root. We will use φ(k) defined by φ(k) = [z
(k)

,−z
(k)

, 0, 0] as an ap­2 1

proximation to the exact nullvector n and show that the solution obtained by

solving (4.19) is equivalent to the solution obtained by solving

Fv

φ

(
(

v

k)

(

T

k))
Δv(k) = − F(v(k))

, (4.29)
0

(k)in the absence of round off errors. To do this, we will show that φ(k)T Δv =

0 for each k, where Δv(k) is given by (4.19) and this is the key result in this

section.

This section is structured as follows, we begin by adding the extra equation

n(k)T Δv(k) = 0 to (4.19) in order to obtain the square linear system of equations

(4.20). The main result in this section is Theorem 4.4.1, and Algorithm 15 is

presented for computing the algebraically simple eigenpair of A. Note that

since M has been shown to be singular at the root in section 4.2, this section is

anchored on the assumption that when v is not at the root, M is nonsingular,

but this is acceptable since we use the construction here to prove a theoretical

result about the correction Δv(k) while not at the root.

Consider the problem of solving the under-determined linear system of

equations (4.19) for the (2n + 2) real unknowns Δv = [ΔwT ,Δα,Δβ]. It was

stated in Lemma 1.5.1 that theminimumnorm solution to an under-determined

linear system of equations is orthogonal to the nullspace. It is an application

of this result that yields the following important relationship,

0 = n TΔv = n T Δw + nαΔα + nβΔβ, (4.30) w

130

Inverse Iteration with a Complex Shift

where we have dropped the superscript (k) in α, β,n,w and v. We begin by

writing the linear system of equations (4.19) in expanded form as

 
[] Δw []

M −w Jw 
Δα


=
−Mw

, (4.31) −wT 

Δβ


2
1(wTw − 1)0 0

or,

MΔw − Δαw + ΔβJw = −Mw

T−w TΔw =
2

1
w w −

2

1
.

After rearrangement, the first equation reduces to

Mw+ − Δαw + ΔβJw = 0. (4.32)

By multiplying both sides of the second equation by 2, we obtain:

2w TΔw + w T w = 1.

This in turn reduces to

w T(w + 2Δw) = 1. (4.33)

Since w+ = w + Δw, 2Δw = 2w+ − 2w and w + 2Δw = 2w+ − w, then

wT(w + 2Δw) = wT(2w+ w) = 2wTw+ wTw. Consequently, − −

1 TT + w w = (w w + 1). (4.34)
2

The combined set of equations (4.32) and (4.34), which is the simplified form

of (4.31), can be expressed as:


+


[] w []
M Jw 0−w 

Δα


= . (4.35) −wT 0 0


Δβ

 −2
1(wTw + 1)

131

Inverse Iteration with a Complex Shift

Now, if we expand along the first row of (4.35), then

Mw+ = Δαw − ΔβJw. (4.36)

This means that we could solve (4.35) by solving

Mu = w, and MJu = Jw, (4.37)

(by Property 6 of J after (4.23)), for u, after which the solution of (4.36) is given

by

w + = Δαu − ΔβJu. (4.38)

If we add the nullvector n to the last row of (4.31) with B = I and using (4.30),

then


 

 

 

Δw
M Jw
 −Mw
−w

1
2



 T 








=

 (wTw − 1)



 (4.39)
Δα
0 0
−w
 .

nT nα Δβ 0w nβ

One can also add n to the last row of (4.35) to yield


 

 

 

+M Jw
 0
−w
 w

1T T










=




 (4.40)
Δα
 (w
 w + 1)
0 0
−w

T

−
 .

2

TΔβ
 w
nw nα nβ n
w

By expanding the middle row of (4.40), wTw+ = 12(w
Tw + 1). But from (4.38),

w+ = Δαu −ΔβJu. This implies that, by taking the inner product of both sides

with w, yields

w T w + = Δα(w T u) − Δβ(w TJu) =
1 T(w w + 1).
2

Using the definition (4.28) for nα and nβ with B = I, we obtain

1
(w T w + 1), (4.41) nβΔα −nαΔβ =

2

where the unknown quantities Δα and Δβ are to be determined, so we need an

extra equation to be able to do so. Note that by using nw = nαu − nβJu, and

132

Inverse Iteration with a Complex Shift

(4.28) we can simplify

T T TJT nww = nαu w −nβu w

= nαu
T w + nβu

TJw

= (w TJu)(u T w) + (w T u)(u TJw)

= −(w TJT u)(u T w) + (w T u)(u TJw)

= −[(Jw)T u](w T u) + (w T u)[u T(Jw)]

= −(w1
T u)(w T u) + (w T u)(u T w1)

= 0. (4.42)

Now, after expanding along the third row of (4.40), we have

T + T nww + nαΔα + nβΔβ = nw(w + Δw) + nαΔα + nβΔβ

= n T w +
(
n T Δw + nαΔα + nβΔβ

)
w w

︸ ︷︷ ︸
=0

= n T ww

= 0.

If we substitute the expression (4.27) for nw and (4.38) for w+ into the left hand

side, then one obtains

0 = n T w + + nαΔα + nβΔβw

=
[
nαu

T −nβ(Ju)T
][

Δαu − ΔβJu
]
+ nαΔα + nβΔβ. (4.43)

Furthermore, by expanding the first term on the right hand side, using the

properties of J, then

[
nαu

T −nβ(Ju)T
]
(Δαu − ΔβJu) = nαΔαu T u + nβΔβu TJTJu

= nαΔα�u�2 + nβΔβ�u�2

=
(
nαΔα + nβΔβ

)
�u�2.

Consequently, (4.43) becomes

(
nαΔα + nβΔβ

)
�u�2 + nαΔα + nβΔβ = (1+ �u�2)(nαΔα + nβΔβ) = 0.

133

[]

Inverse Iteration with a Complex Shift

Observe that because u is real, (1+ �u�2) is nonzero. Accordingly, after divid­

ing both sides by (1+ �u�2), then

nαΔα + nβΔβ = 0. (4.44)

We combine the two equations (4.41) and (4.44) below

[] [] [
1 T

]
(w w + 1)nβ −nα Δα

= 2 , (4.45)
nα nβ Δβ 0

and compute Δα, Δβ simultaneously. The matrix on the left hand side is always

nonsingular except at the root (in which case all entries are zero). Observe that

w TJTΔw = −w TJΔw

= −w TJ(w + −w)
T T= −w Jw+ + w Jw

= −w TJw+ ,

where we have used the fact that wTJw = 0 for all w, so that (4.44) can now

be applied to simplify wTJTΔw as

w TJTΔw = −w TJw+

= −w TJ(Δαu − ΔβJu)

= −w T(ΔαJu + Δβu)

= −
[
Δα(w TJu) + Δβ(w T u)

]

= − nαΔα + nβΔβ

= 0. (4.46)

Notice that we have used the property J2 = −I2n to arrive at the third to the

last step above and the definition (4.38) for w+. Therefore, we have proved the

key result

w TJTΔw = 0.

The above analysis leads to the following fundamental result.

Theorem 4.4.1. Let φ(k) = [(Jw)T, 0, 0] be an approximation to the exact nullvector

134

[]

[] []

([])

Inverse Iteration with a Complex Shift

n(k) of

Fv(v
(k)) =

M −w Jw
.

T−w 0 0

(a). The matrix


 

M −w Jw
T





 (4.47)
0 0
−w
 ,

(Jw)T 0 0

is nonsingular at an algebraically simple eigenvalue of Az = λz.

(b). The (unique) solution of


 

 

 

Δw
M Jw

1
2

−Mw

(wTw − 1)

−w

T











=




 (4.48)
Δα
0 0
−w
 ,

(Jw)T 0 0 Δβ 0

is identical to the least squares solution of the under-determined system


 

Δw

M Jw
 −Mw
−w
 




 (4.49)
Δα
 =
 .

1T (wTw − 1)0 0
−w

Δβ 2

Proof:

(a).	 At the root φ = n and since the real (2n + 1) by (2n + 2) Jacobian (4.9)

has been shown to be of full rank in Theorem 4.2.1, so adding the (2n +

2)th row, n T to the Jacobian (4.9) increases the row rank by one (since the

nullvector, n is orthogonal to every row of Fv(v)). Hence,

Fv(v)
rank = 2n + 2.

Tn

Hence, the matrix in (4.47) is nonsingular at the root.

(b). Recall that Δv(k) = [Δw T ,Δα,Δβ]. By using (4.46), this implies

φ(k)T Δv(k) = (Jw)TΔw = w TJTΔw = 0. (4.50)

This shows that (4.48) and (4.49) are equivalent.

135

Inverse Iteration with a Complex Shift

The above result means that instead of solving (4.19) or (4.49) via QR factori­

sation at a cost of approximately 32 n3 floating point operations, we could use 3

LU factorisation to solve (4.48) more efficiently at a cost of approximately 16 n3.3

We now present Algorithm 15 for computing the algebraically simple com­

plex eigenpair of A.

Algorithm 15 Eigenpair Computation using Newton’s method

Input: A,w(0) = [z1
(0)

, z2
(0)

], v(0) = [w(0), α(0), β(0)]T , kmax and tol.
1: for k = 0, 1, 2, . . . until convergence do
2: Compute the LU factorisation of




M

−wT

(Jw)T

−w

0
0

Jw

0
0



 .

3: Form

d(k) =




−Mw

1
2(w

Tw − 1)
0



 .

4: Solve the lower triangular system Lc(k) = d(k) for c(k).

5: Solve the upper triangular system UΔv(k) = c(k) for Δv(k).

6: Update v(k+1) = v(k) + Δv(k).
7: end for

Output: v(kmax) = [w(kmax), α(kmax), β(kmax)]T .

Stop Algorithm 15 as soon as

�Δv(k)� ≤ tol.

Example 4.4.1. We consider the same example as in Example 4.2.1, with the same

starting guesses but with a different algorithm: Algorithm 15. We stopped Algorithm

15, when

�Δv(k)� ≤ 5.6× 10−14 .

The results of Table 4.2 agree with those of Table 4.1 but with little disparities in the

last two columns. This indeed show that the solution obtained by solving the under­

determined system (4.19) is equivalent to those obtained by solving the square system

136

Inverse Iteration with a Complex Shift

k α(k) β(k) �w(k+1) −w(k)� �λ(k+1) − λ(k)� �Δv(k)� �F(v(k))�
0 0.00000e+00 2.50000 3.8e+00 7.8e-01 3.9e+00 3.6e+01
1 2.34253e-01 1.75371 1.8e+00 2.2e-01 1.8e+00 7.8e+00
2 1.18745e-01 1.94460 8.1e-01 1.4e-01 8.2e-01 1.7e+00
3 4.47044e-02 2.06484 2.5e-01 7.0e-02 2.6e-01 3.4e-01
4 8.82702e-03 2.12479 3.1e-02 1.7e-02 3.5e-02 3.7e-02
5 2.48114e-04 2.13905 4.8e-04 5.2e-04 7.1e-04 7.1e-04
6 1.80714e-05 2.13950 1.2e-07 2.5e-07 2.8e-07 2.8e-07

7 1.81999e-05 2.13950 1.3e-14 8.4e-14 8.5e-14 6.3e-14
8 1.81999e-05 2.13950 1.0e-14 4.8e-14 4.9e-14 5.3e-14

Table 4.2: Values of α(k) and β(k) of Example 4.4.1. Columns 5 and 6 show that
the results converged quadratically for k = 3, 4, 5, 6 and 7.

(4.48), the disparities in the eigth and nineth rows are caused by round off errors. It

also shows that Algorithm 14 and Algorithm 15 are equivalent which is our aim.

4.5	 Computing the Eigenpairs (z,λ) by solving a

Square Complex System of Equations for B = I

In this section, our emphasis will be to compute the eigenpairs (z,λ) from

the eigenvalue problem Az = λz in complex arithmetic rather than real arith­

metic. To this end, we will rewrite the (2n + 2) real equations (4.48) back in

complex form. This will yield (n + 1) complex equations in (n + 1) complex

unknowns. It turns out that the system we just derived is precisely what we

would have derived if we had ignored the non uniqueness and non differen­

tiability questions about the normalisation

1 H 1 −
2
z z +

2
= 0,

and ’blindly’ applied Newton’s method to (4.4) with B = I. Since the cost

of solving a complex linear system of equations is roughly three times what

it takes to solve a real system, this means that this method will cost approxi­

mately n3 floating point operations when a solver like LU factorisation is used

to solve the complex system. This should be compared with the cost of solving

the (2n + 2) by (2n + 2) square system (4.48) which has an approximate cost

of 23(2n)3 = 3
16 n3 floating point operations.

137

[] []

[]

[
] []

Inverse Iteration with a Complex Shift

The plan of this section is as follows. We begin by deriving the (n + 1)

complex equation in (n + 1) complex unknowns from (4.48). It should be re­

marked that since (4.48) is a nonsingular system of equations, writing it in

complex form must also produce a nonsingular system.

Recall that by using (4.9) with B = I, the expanded form of Fv(v)Δv =

−F(v) in (4.19) is




Δz1
 
 

(A− αI)
 (A− αI)z1 + βz2βI −z1 z2















= −
Δz2

Δα









(A− αI)

T T

−βz1 + (A− αI)z2
1 T

2 z2) + 1
−βI
 −z2 −z1

0 0

.

1
Tz1 + z(z
−z1 −z −
2 2 2Δβ

(4.51)

z1 z2
But, we know from (4.12) that w = and Jw = . So that

z2 −z1

[(Jw)T, 0, 0] = [z2
T ,−z1

T, 0, 0].

Moreover,
T T T w w = z1 z1 + z2 z2,

and from (4.10),

(A− αI) βI
M = . −βI (A− αI)

The above relationships means that we can rewrite (4.48) as


(A− αI)
 Δz1 (A− αI)z1 + βz2βI −z1 z2

























= −













(A− αI)
T T

Δz2

Δα

−βz1 + (A− αI)z2
1 T

2 z2) + 1
−βI
 −z2 −z1

0 0

.

1
Tz1 + z(z
−z1 −z

T

−
2 2 2
T 0 0 Δβ 0
z2 −z1

(4.52)

We state the following result.

Lemma 4.5.1. The square (2n + 2) by (2n + 2) system of real equations (4.48) is

equivalent to the (n + 1) by (n + 1) system of complex equations

] [

(A− λI) −z Δz (A− λI)z

. (4.53) −zH 0 Δλ
= − −2

1 zHz + 2
1

138

[
] []

Inverse Iteration with a Complex Shift

Proof: Note that the first two rows on the left hand side of (4.52) are the real

and imaginary parts of

(A− λI)Δz − Δλz,

that is, if we expand the first row on the left hand side of (4.53), using z =

z1 + iz2, λ = α + iβ and Δλ = Δα + iΔβ. The last two rows on the left hand

side of (4.52) are the real and imaginary parts of −zHΔz. The same argument

holds for the right hand sides of (4.52) and (4.53).

Therefore,
] [
Δz (A− λI)z

1 H

A− λI −z

= −
 ,

H−z 0 Δλ z z + 1 2 2−
and


(A− αI)
 Δz1 (A− αI)z1 + βz2βI −z1 z2

























= −













(A− αI)
T

Δz2

Δα

−βz1 + (A− αI)z2
1 T T

2 z2) + 1
−βI

T

−z2 −z1

0 0

,

(z
 z1 + z−z1 −z
T

−
2 12 2
T 0 0 Δβ 0
z2 −z1

are equivalent. More importantly, the last system of equations is the same as

(4.48) i.e.,


 

 

 

Δw
M Jw
 −Mw
−w

1
2



 T 








=

 (wTw − 1)



.
 (4.54)
Δα
0 0
−w

(Jw)T 0 0 Δβ 0

Next, we present Algorithm 16 for computing the complex eigenpair of A us­

ing complex arithmetic.

Stop Algorithm 16 as soon as

�Δv(k)� ≤ tol.

Example 4.5.1. We consider the same example as in Example 4.2.1, with the same

starting guesses but with Algorithm 16. We stopped Algorithm 16, when

�Δv(k)� ≤ 5.6× 10−14 .

139

Inverse Iteration with a Complex Shift

Algorithm 16 Eigenpair Computation using Newton’s method

Input: A, v(0) = [z1
(0)

, z2
(0)

, α(0), β(0)]T , kmax and tol.
1: for k = 0, 1, 2, . . . , until convergence do
2: Compute the LU factorisation of

[
A−

(
λ
k)

(

)

k)

H

I −z(k)
]

. −(z 0

3: Form

d(k)

[
(A− λ(k)I)z(k)

]

.= −	
1 z(k) H

z(k) + 1 2 2−
4: Solve the lower triangular system Ly(k) = d(k) for y(k).

5: Solve the upper triangular system UΔv(k) = y(k) for Δv(k).

6: Update v(k+1) = v(k) + Δv(k).
7: end for

Output: v(kmax).

Computed eigenpairs are shown in Table 4.3. Observe that we obtained quadratic

k α(k) + iβ(k) (k+1) z(k)�z − � λ(k+1) − λ(k)| | �Δv(k)� �F(v(k))�
0 0.00000e+00+2.50000e+00i 3.8e+00 7.8e-01 3.9e+00 3.6e+01
1 2.34253e-01+1.75371e+00i 1.8e+00 2.2e-01 1.8e+00 7.8e+00
2 1.18745e-01+1.94460e+00i 8.1e-01 1.4e-01 8.2e-01 1.7e+00
3 4.47044e-02+2.06484e+00i 2.5e-01 7.0e-02 2.6e-01 3.4e-01
4 8.82702e-03+2.12479e+00i 3.1e-02 1.7e-02 3.5e-02 3.7e-02
5 2.48114e-04+2.13905e+00i 4.8e-04 5.2e-04 7.1e-04 7.1e-04
6 1.80714e-05+2.13950e+00i 1.2e-07 2.5e-07 2.8e-07 2.8e-07
7 1.81999e-05+2.13950e+00i 1.1e-14 3.7e-14 3.8e-14 6.3e-14

Table 4.3: Values of α(k) and β(k) of Example 4.5.1. Columns 5 and 6 show that
the results converged quadratically for k = 3, 4, 5, 6 and 7.

convergence from the last two columns of Table 4.3 for k = 3, 4, 5, 6 and 7. Figure

4-1 shows a plot of the logarithm of the residuals against the number of iterations and

the quadratic convergence of the residuals. One or two steps of iterative refinements

did not improve the results either. At the root, the condition number of Fv(v(k)) is

approximately 3× 103. As predicted by the theory, the results of Table 4.3 tallies with

those of Tables 4.1 and 4.2.

140

�

�

�

Inverse Iteration with a Complex Shift

0 1 2 3 4 5 6 7
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
lo

g
||r

(k
) ||

Log of the norm of the residuals vs k
2

Number of iterations

Figure 4-1: Convergence history of the eigenvalue residuals on Example 4.5.1.
The figure shows that the residual converge quadratically.

4.6	 Square System of Equations for The Numerical

Computation of the Complex Eigenpairs of the

Pencil (A,B) for B = I

The focus in this section is to present the theory discussed in Section 4.4 for the

general case in which B = I. The main conclusion is that unlike the B = I case

where we had the nice result wTJTΔw = 0, there is does not appear to be an

equivalent orthogonality result for the B = I case.

First of all, we revise important formulae from Section 4.3 that will be of

use in this section, which are (4.27) and (4.28)

nw = nαu −nβJu,

141

�

[] []

Inverse Iteration with a Complex Shift

and

nα = w TB2Ju, with nβ = w TB2u,

so that

n = [n T ,nα,nβ] = [(nαu −nβJu)T , (w TB2Ju), (w TB2u)].w

Consider the problem of solving the under-determined linear system of equa­

tions (4.31) for the 2n + 2 real unknowns Δv = [ΔwT ,Δα,Δβ]. It was stated in

Lemma 1.5.1 that the minimum norm solution to an under-determined linear

system of equations is orthogonal to the nullspace. It is an application of this

result that yields the following important relationship:

0 = n TΔv = n T Δw + nαΔα + nβΔβ. (4.55) w

If we add the nullvector n to the last row of (4.31) with B = I and using (4.55),

then


 

 

 

Δw
M −B2w B2Jw −Mw

1 TB2w − 1)


−(B2w)T









=




Δα
 (w
 (4.56)
0 0
 .

2

n T nα Δβ 0w nβ

We now rewrite (4.19) in expanded form as:


 

Δw

M −B2w B2Jw Mw





Δα
 (4.57)
,= −

1 TB2w + 1 w2 2−(B2w)T 0 0
 −

Δβ

or,

MΔw − ΔαB2w + ΔβB2Jw = −Mw

−w TB2Δw =
1 1
w TB2w − .

2 2

After rearrangement, the first equation reduces to

Mw+ − ΔαB2w + ΔβB2Jw = 0. (4.58)

142

[] []

Inverse Iteration with a Complex Shift

By multiplying both sides of the second equation by 2, we obtain:

2w TB2Δw + w TB2w = 1.

This in turn reduces to

w TB2(w + 2Δw) = 1. (4.59)

Since w+ = w + Δw, 2Δw = 2w+ − 2w and w + 2Δw = 2w+ − w, then

wTB2(w + 2Δw) = wTB2(2w
+ w) = 2wTB2w

+ wTB2w. Consequently, − −

w TB2w + =
1
(w TB2w + 1). (4.60)

2

The combined set of equations (4.58) and (4.60), which is the simplified form

of (4.57), can be expressed as:


 

+w

M −B2w B2Jw 0





 (4.61)
Δα
 = .

1−(B2w)T (wTB2w + 1)0 0
 −
2Δβ

Now, if we expand along the first row of (4.61), then

Mw+ = ΔαB2w − ΔβB2Jw.

This means that we could solve (4.61) by solving

(4.62)

Mu = B2w, and MJu = JB2w, (by property 6 of J) (4.63)

for u, after which the solution of (4.62) is given by

w + = Δαu − ΔβJu.

By adding n to the last row of (4.61), we have

(4.64)


 

 

 

+M −B2w B2Jw 0
w

1
2(w
(B2w)T TB2w + 1)












=




.
 (4.65)
Δα
0 0

T Tnw nα nβ Δβ nww

143

�

Inverse Iteration with a Complex Shift

Now, expand along the middle row of (4.65),

w TB2w + =
1
(w TB2w + 1),

2

and from (4.64), w+ = Δαu − ΔβJu, where u is given by (4.63). This implies

that by taking the inner product of both sides with w, yields

1 Tw TB2w + = Δα(w TB2u) − Δβ(w TB2Ju) = (w B2w + 1).
2

Using the definition (4.28) for nα and nβ with B = I, we obtain

1
(w TB2w + 1), (4.66) nβΔα −nαΔβ =

2

where the unknown quantities Δα and Δβ are to be determined, so we need an

extra equation to be able to do so. Note that by using nw = nαu − nβJu, and

(4.28) we can simplify

T T nww = nαu w −nβu
TJT w

= nαu
T w + nβu

TJw

= (w TB2Ju)(u T w) + (w TB2u)(u TJw). (4.67)

Now, after expanding along the third row of (4.65), we obtain

T + T nww + nαΔα + nβΔβ = nw(w + Δw) + nαΔα + nβΔβ

= n T w +
(
n T Δw + nαΔα + nβΔβ

)
w w

︸ ︷︷ ︸
=0

= n T ww.

If we substitute the expression (4.27) for nw and (4.64) for w+ into the left hand

side, then one obtains

T + [
T nβ(Ju)T

][]
nww + nαΔα + nβΔβ = nαu − Δαu − ΔβJu + nαΔα + nβΔβ

T = nww. (4.68)

Furthermore, by expanding the first term on the right hand side, using the

144

[]

[]

Inverse Iteration with a Complex Shift

properties of J, then

[
nαu

T −nβ(Ju)T
]
(Δαu − ΔβJu) = nαΔαu T u + nβΔβu TJTJu

= nαΔα�u�2 + nβΔβ�u�2 .

Consequently, (4.68) becomes

T(nαΔα + nβΔβ)�u�2 + (nαΔα + nβΔβ) = (1+ �u�2)(nαΔα + nβΔβ) = nww.

Observe that because u is real, (1+ �u�2) is nonzero. Accordingly, after divid­

ing both sides by (1+ �u�2)

nT w (wTB2Ju)(uTw) + (wTB2u)(uTJw)
nαΔα + nβΔβ = w = . (4.69)

(1+ �u�2) (1+ �u�2)

We combine the two equations (4.66) and (4.69) below

[] [] [
1

]
nβ −nα Δα 2(w

TB2w + 1)
= nT w , (4.70)

nα nβ Δβ
(1+

w

�u�2)

and compute Δα, Δβ simultaneously. The matrix on the left hand side is al­

ways nonsingular except at the root, this is because its determinant is n2
α + n2

β.

Equation (4.69) can now be applied to simplify

w TJTB2Δw = −w TJB2Δw

= −w TB2JΔw

= −w TB2J(w + −w)

= −w TB2Jw
+ + w TB2Jw

= −w TB2J(Δαu − ΔβJu)

= −w TB2(ΔαJu + Δβu)

= − Δα(w TB2Ju) + Δβ(w TB2u)

= − nαΔα + nβΔβ

Tn ww= −
(1+ �u�2)

= −
[
(w TB2Ju)(u T w) + (w TB2u)(u TJw)

]
/(1+ �u�2). (4.71)

145

�

Inverse Iteration with a Complex Shift

Notice that we have used the property J2 = −I2n to arrive at the third to the

last step above and the definition (4.38) for w+ . In addition, by the property

of Δw, it tends to zero in the limit. This implies that wTJTB2Δw = 0 in the

limit. However, there is no reason to suppose that wTJTB2Δw = 0, as the

iteration converges. So there does not appear to be an analogue of the nice

orthogonality result in Section 4.4 for B = I.

4.7 Conclusion

For the standard eigenvalue problem Az = λz, Ruhe [51, Section 3] used the

normalisation cHz = 1 and solved the resulting real (n + 1) by (n + 1) sys­

tem of nonlinear equations to obtain [z,λ]T, we have been able to rigorously

justify that, with the addition of the non differentiable normalisation zHz = 1,

it is still possible to convert the resulting system of under-determined linear

equations into a nonsingular complex square one.

In this chapter, we have proved the mathematical equivalence of three al­

gorithms viz-a-viz Algorithm 14, Algorithm 15 and Algorithm 16. The math­

ematical equivalence of the three algorithms means that the solution obtained

by solving the under-determined linear system of equations is the same as

those obtained by solving the square ones in the absence of round off errors.

Numerical experiments are given which confirm the equivalence of the three

algorithms.

146

CHAPTER 5

Conclusions and Further Work

In this thesis, we have studied the numerical solution of some linear and non­

linear eigenvalue problems. In particular, we have used Newton’s method or

its variants as well as extended versions of the implicit determinant method of

Spence and Poulton [55] to achieve the following:

1. we have obtained an algorithm for computing when two eigenvalues co­

alesce in a parameter-dependent nonsymmetric matrix as the parameter

is varied to form a 2-dimensional Jordan block in Chapter 2.

2. We have derived an efficient algorithm for computing a nearby defective

matrix from a simple one which is cheaper and faster than earlier known

ones.

3. We have contributed to a greater understanding of the natural normali­

sation for a complex eigenvector.

Future work might involve:

1. The extension of the techniques in Chapter 2 to compute more com­

plicated Jordan structures, e.g., 3-dimensional Jordan blocks, or Jordan

blocks corresponding to eigenvalues of geometric multiplicities greater

than one. The latter would require analogues of the ”ABCD” Lemma

using borderings of dimension greater than one.

147

Conclusions and Further Work

2. One could extend the class of problems considered in Chapter 2, to more

challenging physical problems, for example, the full linearized Navier-

Stokes equations.

3. The use of more sophisticated nonlinear solvers than standard Newton’s

method in the solution of the nonlinear systems that arise in the nearby

defective matrix problem. For example, one could consider the use of

global Newton or optimization based algorithms to solve the nonlinear

systems to compute the nearby defective matrix in Chapter 3.

148

BIBLIOGRAPHY

[1] Block Thomas Algorithm.

www4.nscu.edu/eos/users/w/white/www/white/ma580/chap2.5.pdf.

[2] R. O. AKINOLA, M. A. FREITAG AND A. SPENCE, The Calculation of

the Distance to a Nearby Defective Matrix, SIAM Journal of Matrix Analysis

and Applications. (Submitted), (2009).

[3] R. ALAM, On the Construction of Nearest Defective Matrices to a Normal

Matrix, Linear Algebra and its Applications, 395 (2005), pp. 367–370.

[4] R. ALAM, AND S. BORA, On Sensitivity of Eigenvalues and Eigende­

compositions of Matrices, Linear Algebra and its Applications, 396 (2005),

pp. 273–301.

[5] R. ALAM, S. BORA, R. BYERS, AND M. L. OVERTON, Characterisa­

tion and Construction of the Nearest Defective Matrix via Coalescence of Pseu­

dospectral Components, Submitted: Linear Algebra and its Applications,

(2009).

[6] K. E. ATKINSON, An Introduction to Numerical Analysis, John Wiley &

Sons, Inc., 2nd ed., 1989.

[7] M. BENNANI, T. BRACONNIER, AND J. C. DUNYACH, Solving

Large-Scale Nonnormal Eigenproblems in the Aeronautical Industry using Par­

allel BLAS, vol. 1, Proceedings of the International Conference and Exhi­

149

BIBLIOGRAPHY

bition on High-Performance Computing and Networking Applications,

April 1994, pp. 72–77.

[8] R. L. BISPLINGHOFF, AND H. ASHLEY, Principles of Aeroelasticity,

John Wiley & Sons, New York, 1962, ch. 8.

[9] B. BOISVERT, R. POZO, K. REMINGTON, B. MILLER, AND R. LIP­

MAN, Matrix Market. http://math.nist.gov/MatrixMarket/.

[10] S. BOYD, Lecture 8: Least Norm Solutions of Under-determined Equations,

EE263 Autumn 2008-09.

[11] N. CHEN, Inverse Iteration on Defective Matrices, Mathematics of Compu­

tation, 31 (1977), pp. 726–732.

[12] K. A. CLIFFE, A. SPENCE AND S. J. TAVENER, The Numerical Anal­

ysis of Bifurcation Problems with Application to Fluid Mechanics, in Acta Nu­

merica, vol. 9, Cambridge University Press, 2000, pp. 40–131.

[13] J. W. DEMMEL,ANumerical Analyst’s Jordan Canonical Forms, PhD thesis,

University of California, Berkeley, 1983.

[14]	 , Computing Stable Eigendecompositions of Matrices, Linear Algebra and

its Applications, 79 (1986), pp. 163–193.

[15] , Applied Numerical Linear Algebra, SIAM, 1997, ch. 3.

[16] J. E. DENNIS, JR, AND R. B. SCHNABEL, Numerical Methods for Un­

constrained Optimization and Nonlinear Equations, no. 16 in Classics In Ap­

plied Mathematics, SIAM Philadelphia, 1996.

[17] P. DEUFLHARD, Newton Methods for Nonlinear Problems, Springer, 2004,

ch. 4, pp. 174–175.

[18] P. DEUFLHARD, AND G. HEINDL, Affine Invariant Convergence Theo­

rems for Newton’s Method and Extensions to RelatedMethods, SIAM J. Numer.

Anal., 16 (1979), pp. 1–10.

150

http://math.nist.gov/MatrixMarket/

BIBLIOGRAPHY

[19] I. DODSON, I. ZHANG, S. GREENE, H. ENGDAHL AND P. W.

SAUER, Is Modal Resonance a Precursur to Power System Oscillations?, IEEE

Transactions on Circuits and Systems, Part 1, 48 (2001), pp. 340–349.

[20] G. ENGELN-MULLGES, AND F. UHLIG,Numerical Algorithms with C,

Springer, 1996.

[21] M. A. FREITAG, AND A. SPENCE, Convergence of Inexact Inverse Itera­

tion with Application to Preconditioned Iterative Solves, BIT Numerical Math­

ematics, 47 (2006), pp. 27–44.

[22]	 , The Calculation of the Distance to Instability by the Computation of a

Jordan Block, Submitted: Linear Algebra and its Application, (2009).

[23] G. H. GOLUB, AND C. F. VAN LOAN, Matrix Computations, The John

Hopkins University Press, London, 3rd ed., 1996.

[24] G. H. GOLUB, AND Q. YE, Inexact Inverse Iteration for Generalized Eigen­

value Problems, BIT, 40 (2000), pp. 671–684.

[25] W. GOVAERTS, Stable Solvers and Block Elimination for Bordered Ssytems,

SIAM J. Matrix Anal. Appl., 12 (1991), pp. 469–483.

[26] W. GOVAERTS, AND J. D. PRYCE, Block Elimination with one Refinement

Solves Bordered Linear Systems Accurately, BIT, 30 (1990), pp. 490–507.

[27]	 , Mixed Block Elimination for Linear Systems with Wider Borders, IMA

Journal of Numerical Analysis, 13 (1993), pp. 161–180.

[28] I. G. GRAHAM, A. SPENCE AND E. VAINIKKO, Parallel Iterative

Methods for Navier-Stokes Equations and Application to Eigenvalue Computa­

tion, Concurrency and Computation: Practice and Experience, 15 (2003),

pp. 1151–1168.

[29] K. K. GUPTA, On a Numerical Solution of the Supersonic Panel Flutter

Eigenproblem, International Journal for Numerical Methods in Engineer­

ing, (1976), pp. 637–645.

[30] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, SIAM,

1996, ch. 7.

151

BIBLIOGRAPHY

[31] E. ISAACSON, AND H. B. KELLER, Analysis of Numerical Methods,

John Wiley & Sons, Inc., London, 1966.

[32] A. JEFFREY, Mathematics for Engineers and Scientists, Nelson, 1969.

[33] H. B. KELLER, Numerical Solution of Bifurcation and Nonlinear Eigenvalue

Problems, in Applications of Bifurcation Theory, in : P. Rabinowitz, ed.,

Academic Press, New York, 1977, pp. 359–384.

[34] A. N. KOLMOGOROV, AND S. V. FOMIN, Introductory Real Analysis,

Dover Publications, Inc., 1970, ch. 2.

[35] E. KREYSZIG, Advanced Engineering Mathematics, John Wiley & Sons, Inc.,

New York, eighth ed., 1999.

[36] R. A. LIPPERT, AND A. EDELMAN, The Computation and Sensitivity of

Double Eigenvalues, in Advances in Computational Mathematics (Guangzhou,

1997), 202 in Lecture Notes in Pure and Applied Mathematics, Dekker,

New York (1999), pp. 353–393.

[37] A. N. MALYSHEV, A Formula for the 2-norm Distance from a Matrix to the

Set of Matrices with Multiple Eigenvalues, Numer. Math., 83 (1999), pp. 443–

454.

[38] K. MEERBERGEN, AND D. ROOSE,Matrix Transformations for Comput­

ing Rightmost Eigenvalues of Large Sparse Non-Symmetric Eigenvalue Prob­

lems, IMA Journal of Numerical Analysis, 16 (1996), pp. 297–346.

[39] E. D. NERING, Linear Algebra and Matrix Theory, JohnWiley & Sons, Inc.,

second ed., 1970, ch. 1, pp. 31–32.

[40] B. NOBLE,Applied Linear Algebra, Prentice-Hall, Inc., 1969, ch. 5, pp. 143–

145.

[41] B. NOBLE, AND J. W. DANIEL, Applied Linear Algebra, Prentice-Hall,

third ed., 1988, ch. 9, pp. 355–397.

[42] J. NOCEDAL, AND S. J. WRIGHT, Numerical Optimization, Springer,

New York, 2nd ed., 2006.

152

BIBLIOGRAPHY

[43] M. D. OLSON, Finite Elements Applied to Panel Flutter, AIAA, 5 (1967),

pp. 2267–2270.

[44] , Some Flutter Solutions using Finite Elements, AIAA, 8 (1970), pp. 747–

752.

[45] P. J. OLVER, AND C. SHAKIBAN,Applied Linear Algebra, Pearson Pren­

tice Hall, 2006.

[46] J. M. ORTEGA, AND W. C. RHEINBOLDT, Iterative Solution of Nonlin­

ear Equations in Several Variables, Academic Press, London, 1970, ch. 8.

[47] M. L. OVERTON, The Search for the Nearest Defective Matrix, tech. rep.,

Courant Institute of Mathematical Sciences, New York University, 2006.

[48] B. N. PARLETT, AND Y. SAAD, Complex Shift and Invert Strategies for

Real Matrices, Lin. Alg. Appl., (1987), pp. 575–595.

[49] W. C. RHEINBOLDT, A Unified Convergence Theory for a Class of Iterative

Processes, SIAM J. Numer. Anal., 5 (1968).

[50] A. RUHE, Properties of a Matrix with a Very Ill-Conditioned Eigenproblem,

Numerische Mathematik, 15 (1970), pp. 57–60.

[51]	 , Algorithms for the Nonlinear Eigenvalue Problem, SIAM J. Matrix Anal.

Appl., 10 (1973), pp. 674–689.

[52] Y. SAAD, Iterative Methods for Sparse Linear Systems, SIAM, 2nd ed., 2003,

ch. 9.

[53] G. SANDER, C. BON AND M. GERADIN, Finite Element Analysis of

Supersonic Panel Flutter, International Journal for Numerical Methods in

Engineering, 7 (1973), pp. 379–394.

[54] A. SPENCE, AND C. POULTON, Inverse Iteration for Nonlinear

Eigenvalue Problems, Electromagnetic Scattering-IUTAM Symposium on

Asymptotics, Singularities and Homogenisation in Problems of Mechan­

ics, 2003, pp. 585–594.

153

BIBLIOGRAPHY

[55]	 , Photonic Band Structure Calculations using Nonlinear Eigenvalue Tech­

niques, Journal of Computational Physics, 204 (2005), pp. 65 – 81.

[56] A. SPENCE, AND I. G. GRAHAM, The Graduate Student’s Guide to Nu­

merical Analysis ’98, Springer, 1998, Lecture Notes from the VIII EPSRC

Summer School in Numerical Analysis 3, pp. 176–216.

[57]	 G. W. STEWART, Matrix Algorithms, vol. II: Eigensystems, SIAM, 2001.

[58] J. G. SUN, A Note on Simple Nonzero Singular Values, J. Comput. Math., 6

(1988), pp. 258–266.

[59] F. TISSEUR, Newton’s Method in Floating Point Arithmetic and Iterative Re­

finement of Generalized Eigenvalue Problems, SIAM J. Matrix Anal. Appl., 22

(2001), pp. 1038–1057.

[60] L. N. TREFETHEN, AND D. BAU III, Numerical Linear Algebra, SIAM,

Philadelphia, 1997.

[61] L. N. TREFETHEN, AND M. EMBREE, Spectra and Pseudospectra,

Princeton University Press, 2005.

[62] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University

Press, Ely House, London W., 1965.

[63]	 , Inverse Iteration in Theory and in Practice, Istituto Nazionale di Alta

Mathematica, Symposia Mathematica, X (1972), pp. 361–379.

[64]	 , Note on Matrices with a very Ill-Conditioned Eigenproblem, Numerische

Mathematik, 19 (1972), pp. 176–178.

[65] , Sensitivity of Eigenvalues ii, Utilas Math., 25 (1984), pp. 5–76.

[66] , Sensitivity of Eigenvalues ii, Utilas Math., (1986), pp. 243–286.

[67] T. WRIGHT, Eigtool, tech. rep., Software available at,

http://www.comlab.ox.ac.uk/pseudospectra/eigtool, 2002.

154

http://www.comlab.ox.ac.uk/pseudospectra/eigtool,2002

