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Abstract 
 

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that catalyses the 

synthesis of ADP-ribose polymers from NAD+, in response to DNA strand breaks. 

PARP-1 is implicated in the pathogenesis of many diseases and plays a major role in 

controlling the repair of damaged DNA. Inhibitors of PARP-1 are of use in the treatment 

of cancer, as potentiators of radiotherapy and chemotherapy. 5-Aminoisoquinolin- 

-1(2H)-one hydrochloride (5-AIQ.HCl) is a potent, water-soluble PARP-1 inhibitor that 

exhibits outstanding activity in a wide range of disease models in vivo. The aim of this 

project is the design and synthesis of derivatives with substituents at the 4-position of 

5-AIQ. 

 

The modes of cyclisation of methyl 2-(substituted)alkynyl-3-nitrobenzoates with 

different electrophiles (ICl, PhSeCl, HgSO4) were studied. The exclusive formation of 

isocoumarins demonstrates the influence of the nitro group in directing electrophile-

driven cyclisations towards the 6-endo-dig mode. The crystal structure of 5-nitro-3-

phenyl-4-phenylselenylisocoumarin showed intermolecular and intramolecular π-

stacking. Attempted synthesis of 4-benzyl-5-nitroisoquinolin-1-one by selective 

reduction of the nitrile of methyl 2-(1-cyano-2-phenylethyl)-3-nitrobenzamide failed; 

approach of DIBAL-H to the nitrile was sterically obstructed, leading to reduction of the 

ester to give 2-(2-formyl-6-nitrophenyl)-3-phenylpropanenitrile. Bromination of 5-nitro-

isoquinolin-1-one gave 4-bromo-5-nitroisoquinolin-1-one but Pd(0)-catalysed cross-

couplings (Stille, Sonogashira, Suzuki-Miyaura) of this and of 4-bromo-5-AIQ failed. An 

alternative approach was Pd-catalysed cyclisation of N-(2-alkenyl)-2-iodo-3-

nitrobenzamides. Reaction of N,N-diallyl-2-iodo-3-nitrobenzamide with Pd(PPh3)4 gave 

2-allyl-4-methyl-5-nitroisoquinolin-1-one and 2-allyl-4-methylene-5-nitro-3,4-dihydro-

isoquinolin-1-one. N-Benzhydryl-N-cinnamyl-2-iodo-3-nitrobenzamide gave 2-benz-

hydryl-4-benzyl-5-nitroisoquinolin-1-one and 2-benzhydryl-4-benzylidene-5-nitro-3,4-

dihydroisoquinolin-1-one. These products are not interconvertible. The secondary 

amides N-allyl-2-iodo-3-nitrobenzamide and N N-((substituted)-cinnamyl)-2-iodo-3-

nitrobenzamide gave good yields of the required 4-methyl- and 4-((substituted)-benzyl)-

5-nitroisoquinolin-1-ones, respectively, under optimised conditions (Pd(PPh3)4, Et3N, 

Bu4NCl, 150°C, rapid heating). Hydrogenation gave 4-methyl- and 4-benzyl-5-amino-

isoquinolin-1-ones. The 4-substituted 5-AIQs were evaluated for inhibition of 

recombinant human PARP-1 activity. Three were more potent than 5-AIQ; 5-amino-4-

methylisoquinolin-1-one (IC50 = 0.25 µM), 5-amino-4-benzylisoquinolin-1-one (IC50 = 

0.5 µM) and 5-amino-4-bromoisoquinolin-1-one (IC50 = 1.0 µM). 
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1. Introduction 

 

Advanced cancer is one of the leading causes of death in the Western world. 

Chemotherapy and radiotherapy are the two main treatment modalities currently 

available. However, lack of selectivity, treatment-related toxicity and the emergence of 

resistance limit their effectiveness. Efficient repair of DNA in the cancer cell is an 

important reason for therapeutic resistance and this repair of tumour cell DNA that has 

been damaged by radiation and chemotherapeutic agents has been identified as a 

major obstacle in the path of effective treatment of cancer. Targeting DNA repair 

pathways has been identified as one of the novel strategies for effective DNA repair 

inhibition in cancer therapy. Inhibition of DNA repair has the potential to enhance the 

effectiveness of currently available DNA damaging agents.1 

 

1.1 DNA repair 

 

The integrity and survival of a cell is critically dependent on the stability of the gene. 

Cellular DNA is repeatedly exposed to exogenous and endogenous toxins, such as 

oxygen free radicals, ionising radiation, UV light and various chemical agents. Cells 

have highly conserved DNA-damage sensor mechanisms in response to such cytotoxic 

exposures.2 These include: 

1. Initiation of DNA repair, removal of DNA damage and restoration of the 

continuity of the DNA duplex. 

2. Activation of the DNA-damage checkpoint, which stops cell cycle progression 

to allow for repair and prevention of the transmission of damaged 

chromosomes. 

3. Transcriptional responses cause changes in the transcriptional profile that are 

beneficial to the cell. 

4. Apoptosis to eliminate heavily damaged or seriously deregulated cells. 

5. Tolerance of damage 

 

These responses determine survival of the cell (with mutated gene) or initiation of 

programmed cell death. DNA repair is the most effective defence system and 

comprises six major DNA repair pathways. 

1. Base excision repair (BER) 

2. Nucleotide excision repair (NER) 

3. Mismatch repair (MMR) 

4. Double-strand break repair (DSBR) 
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5. Reversion repair (Direct repair) 

6. Cross-link repair 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. DNA damage responses in mammalian cells.1 

 

NER is the major repair system for removing bulky DNA lesions formed by exposure to 

UV radiation or chemicals, or by addition of protein to DNA. The damaged bases are 

removed by excision nuclease which makes dual incisions bracketing the lesion in the 

damaged strand.3 MMR removes nucleotides mispaired by DNA polymerases and 

insertion/deletion loops that result from slippage during replication or during 

recombination. The main targets of MMR are base mismatches such as G/T, C/G, A/C 

and C/C. The four principal steps in MMR are:  

1. Recognition of mismatch 

2. Recruitment of additional MMR factors 

3. Strand discrimination 

4. Resynthesis of excised strand 

 

Double-strand breaks are produced by reactive oxygen species, X-rays or ionising 

radiation and during replication of single strand breaks (SSB). DNA double-strand 

breaks are repaired either by homologous recombination (HR) or non-homologous end-

joining (NHEJ) mechanisms. When, after replication, a second identical DNA copy is 

available, homologous recombination is preferred; otherwise cells rely on end-joining, 

which is error-prone. 

 

Treatment of cells with alkylating agents gives rise to N-alkylated and O-alkylated 

purines and pyrimidines. One of the critical O-alkylated lesions is O6-alkylguanine. 

Some single repair proteins can directly revert these lesions. In human cells, removal 

DNA repair 

DNA 
damage 

Damage 
sensors 

Apoptosis Transcription 
response 

MMR Cross-link 
repair 

Reversion 
repair 

NER DSBR 

Tolerance Checkpoint 
activation 

BER 



 3 

of the O6-methyl group from O6-methylguanine in DNA is accomplished by O6-

methylguanine DNA methyltransferase (MGMT). Another protein involved in the DNA 

damage reversion is photolyase which binds to DNA damage induced by UV light and 

causes photoreversal of UV-induced pyrimidine dimers.4 Many bifunctional agents such 

as cisplatin, nitrogen mustard, and mitomycin D induce interstrand DNA cross-links and 

DNA-protein cross-links. XPF-ERCC1 nuclease plays a special role in cross-link repair.  

 

Base excision repair is the main guardian against damage due to cellular metabolism, 

including that resulting from oxygen species, methylation, deamination and 

hydroxylation. BER is mainly responsible for removing damaged bases, which can be 

recognised by specific enzymes, the DNA glycosylases. Lesions removed from DNA by 

BER include N-alkylated purines (7-methylguanine, 3-methyladenine, 3-

methylguanine), 8-oxo-7,8-dihydroguanine (8-OxoG) and thymine glycol. The major 

oxidised purine, 8-OxoG is highly mutagenic because of mispairing with adenine. N-

Alkylpurines are hydrolysed at the N-glycosylic bond, giving rise to apurinic/apyrimidinic 

(AP) sites, which are one of the most frequent and potent lethal lesions. Both modified 

bases and AP sites are repaired by BER.4,5  Depending on the initial events in base 

removal, the repair patch may be single nucleotide (short patch) or 2-10 nucleotides 

(long patch). Short-patch BER involves removal of the incorrect or damaged base by a 

DNA glycosylase which generates an AP site, which in turn is cleaved by an AP 

endonuclease/3´phosphodiesterase leaving a single-strand break. Replacement of the 

damaged base and religation of the DNA involves binding of PARP-1 and / or PARP-2, 

followed by recruitment of a complex including DNA polymerase β, DNA ligase I or 

III/XRCC I (X-ray repair cross-complementing) protein. Long-patch repair is involved in 

the repair of oxidised or reduced AP sites.6 

 

In response to DNA damage, the progression of the cell cycle into S phase is delayed 

by the G1 cell cycle checkpoint control, whereas progression into M phase is halted by 

the G2 checkpoint. Prolongation of the G1 and G2 phases functions to permit more 

effective repair of DNA, and thus avoids DNA synthesis and mitosis in the presence of 

excessive DNA damage.  

 

Some DNA lesions often persist through replication of the genome, in which case cells 

have evolved damage tolerance systems to allow complete replication in the presence 

of DNA damage. This response tolerates, rather than removes, DNA damage and 

consists of two mechanisms: a) template switching and b) lesion bypass. Template 

switching involves synthesis of DNA on the undamaged template only. Lesion bypass 
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utilises the damaged template by nucleotide incorporation opposite the lesion, followed 

by extension of DNA synthesis.7 

 

1.2 DNA repair inhibition 

 

Use of pseudosubstrates of MGMT as DNA repair inhibitors is a promising strategy to 

increase the efficacy of therapies based on alkylating agents. O6-Benzylguanine (O6-

BG) is a non-toxic inhibitor of MGMT. It reacts with MGMT by covalent transfer of the 

benzyl group to the active site cysteine and, hence, leads to inactivation of MGMT. O6-

(4-bromothenyl)guanine (O6-BTG) is an orally bioavailable inhibitor of MGMT, which is 

ten-fold more potent than O6-BG. One strategy for disabling BER is to target the DNA 

repair enzyme APE I which processes the AP site. Methoxyamine is a small molecule 

which specifically targets BER by binding directly to AP sites and preventing their 

processing by APE I. This leads to an accumulation of these potentially cytotoxic sites.  

 

Human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM-Rad3-

related) are potential sensors of DNA damage. ATM responds to the presence of DNA 

double-strand breaks (DSBs) and initiate signaling cascades leading to a DNA damage 

checkpoint. Wortmannin is an irreversible inhibitor of ATM. and hence rejoining of 

double strand breaks (DSBs). 3-Cyano-6-hydrazonomethyl-5-(4-pyridyl)pyrid-(1H)-2-

one (OK-1035) and NU7026 (2-(morpholin-4-yl)-benzo[h]chromen-4-one) are  potent 

and specific inhibitors of DNA-PK. KU-0055933 (2-morpholin-4-yl-6-thianthren-1-yl-

pyran-4-one) is a small-molecule ATP competitive inhibitor of ATM kinase. Use of small 

inhibitory RNA molecules (siRNAs) to inhibit specific protein expression has highlighted 

their potential as therapeutic agents. Peptide co-therapy is another strategy that can be 

used to specifically inhibit protein function. Pentamidine is a potent inhibitor of the 

enzyme endo-exonuclease which plays a role in double strand break repair and 

recombination. PARP-targeting inhibitors have structural similarity to the natural 

substrate NAD+, and thus act as competitive inhibitors.8 

 

1.3 Poly(ADP-ribose) polymerase-1 

 

NAD+ 
(1) is a versatile biomolecule, which functions as a coenzyme in many oxidation-

reduction reactions. Poly(ADP-ribosyl)ation is a post-translational modification of 

proteins catalysed by poly(ADP-ribose) polymerases (PARPs) and is involved in the 

regulation of DNA repair, gene transcription, cell-cycle progression, cell death, 

chromatin function, genomic stability and cell adhesion.9 Poly(ADP-ribose)polymerase-
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1 (PARP-1, EC 2.4.2.30) is the most abundant, founder member of the PARP family 

and has been the most extensively studied. PARP-1 is also known as poly(ADP-ribose) 

synthetase (PARS) and poly(ADP-ribose) transferase (PADPRT). It is a nuclear 

enzyme present in eukaryotes. PARP-1, upon activation by DNA damage, catalyses 

poly(ADP-ribosyl)ation by transferring ADP-ribose units from its substrate NAD+ to a 

variety of acceptor proteins. 
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1.3.1 The PARP super family 

 

Recently identification of some novel putative PARP homologues increased the 

number of PARP family members to seventeen. The main members of the family are 

categorised into five groups.9 

• DNA-damage dependent PARPs consisting of  PARP-1 and PARP-2 

• Tankyrases consisting of tankyrase-1 and tankyrase-2 

• CCCH-type zinc finger PARPs consisting of tiPARP, PARP-12 and PARP-13 

• Macro-PARPS such as PARP-9, PARP-14, and PARP-15 

• Other PARPs including PARP-3, vPARP, PARP-10, PARP-6, PARP-8, PARP-

11 and PARP-16 
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Figure 2. Schematic representation of the domain structures of the PARP superfamily.9 
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1.3.2 Modular organisation of PARP-1 
 

PARP-1 molecular sensor of DNA breaks, is a 113 KDa protein composed of 1014 

amino acid residues, predominantly localised in the cell nucleus. Three main functional 

elements were identified in the PARP molecule following partial proteolysis.10  

• The amino terminal fragment of 46 KDa contains the DNA-binding domain, 

which includes two zinc-finger motifs and a nuclear localisation signal (NLS).11 

Zinc fingers (FI and FII) are loops (residues 2-97 and 106-207) in the 

polypeptide chain formed as a result of a zinc-ion-coordinating cysteine and 

histidine residues.12 These zinc fingers of PARP-1 recognize single and double-

stranded DNA breaks and trigger activation of the enzyme. FII plays an 

important role in the binding of DNA containing single stranded breaks, whereas 

enzymatic activity is totally abolished in FI mutants, whatever the nature of the 

DNA breaks.13 Bipartite NLS ensures efficient translocation to the nucleus. 

• The central 22 KDa fragment, the automodification domain, contains 15 

conserved glutamate residues, which are presumed targets for auto-poly(ADP-

ribosyl)ation. Through the breast cancer susceptibility protein C terminus 

(BRCT) motif PARP-1 participates in various protein-protein interactions. A 

leucine zipper motif, characteristic of protein-protein associations, is also 

present in this domain. 

• The C-terminal catalytic domain (46 KDa) contains a block of 50 amino acids 

(residues 859-908) that are highly conserved among vertebrates and is known 

as the ‘PARP signature’.13 It catalyses NAD+ hydrolysis, initiation, elongation, 

branching and termination of ADP-ribose polymer synthesis. This also contains 

Glu988 which is directly involved in the catalysis of the ADP-ribose transfer 

reaction. The structure of catalytically competent PARP-CF (40 KDa 

polypeptide) has been reported by Ruf et al.14 

 

1.3.3 Other members 

 

PARP-2 is a 62 KDa protein of 570 amino acids. PARP-2 bears the strongest 

resemblance to PARP-1 and is also activated by DNA strand interruptions. PARP-2 

contributes to the residual PARP activity observed in PARP-1(-/-) cells after treatment 

with DNA damaging agents. DNA binding domain of PARP-2 is distinct from PARP-1 

and PARP-2 lacks the central automodification domain. Even though PARP-2 is devoid 

of zinc fingers, DNA binding is facilitated by the high ratio of basic amino acids in 

DBD.15 

 



 8 

PARP-3 is a 67 KDa polypeptide comprising 540 amino acid residues. The N-terminal 

region is short (54 amino acid residues) and contains a targeting motif which localises 

the enzyme in the centrosome. PARP-3 functions in the maturation of the daughter 

centriole until the G1-S restriction point. hPARP-3 appears to be the first known marker 

of the daughter centriole.16 

 

PARP-4/vPARP is the catalytic component of vault particles, which are barrel-shaped 

ribonucleoprotein complexes involved in multidrug resistance of human tumours. As 

shown in Figure 2, vPARP contains a BRCT domain, a region homologous to the 

catalytic domain of PARP, a region similar to the inter-α-trypsin inhibitor protein, von 

Willebrand factor type A domain and major vault protein interacting domain. vPARP is 

involved in mitosis by ADP-ribosylation of the major vault protein.17 

 

Tankyrases were identified as components of the human telomeric complex. 

Telomeres are essential for chromosome maintenance and stability and are maintained 

by telomerase, a specialised reverse transcriptase. Besides the PARP catalytic 

domain, tankyrase-1 (PARP-5a) has a sterile α motif, ANK domain containing 24 

ankyrin repeats and histidine-, proline-, serine-rich region (HPS) that mediates protein-

protein interactions. Tankyrase-1 poly(ADP-ribosyl)ates telomere repeat binding factor 

1 (TRF1), thereby causing the latter to be released from telomeres, allowing access of 

telomerase, that restores telomeric sequences lost during cell division. In this way, 

Tankyrase-1 acts as a positive regulator for telomere length. Tankyrase-2 (PARP-5b) 

differs from tankyrase-1 in that it lacks the N-terminal HPS domain, but it probably 

shares some overlapping functions with tankyrase-1. Knocking down human tankyrase-

1 gene expression with small interfering RNA (siRNA) showed that it has an essential 

regulatory function in mitotic segregation.18,19 

 

The CCCH-type PARP subfamily contains tiPARP (PARP-7), PARP-12 and PARP-13. 

These members share a similar domain organisation comprising CX8CX5CX3-like zinc 

fingers, a WWE domain and a PARP catalytic domain. The WWE domain is a putative 

protein–protein interaction motif that contains two conserved Trp residues and one Glu 

residue. PARP-13, identified as ZAP, is a rat protein that confers resistance to retroviral 

infection.20 ZAP binds to viral RNA via the CCCH zinc fingers and inhibits the 

accumulation of viral RNA. 

 

PARP-9, PARP-14 and PARP-15 belong to the subfamily of macro-PARPs, which link 

1–3 macro domains to a PARP domain. All three are localised within the same 3q21 
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chromosomal region. PARP-9 was found to be overexpressed in aggressive diffuse 

large B-cell lymphomas (DLB-CL) and might promote the dissemination of malignant B 

cells in high-risk DLB-CL. Macro domains in macro PARPs have a phosphoesterase 

activity that functions on poly(ADP-ribose). Such macro-PARPs could generate 

polymer ends that could not be elongated by a PARP, which would provide a way for 

macro PARPs to control polymer size. 21,22  

 

PARP-10 contains an RNA recognition motif (RRM) and a Gly-rich domain. PARP-10 

shuttles between the cytoplasm and the nucleus and accumulates within the nucleolus 

where it acquires a CDK2-dependent phosphorylation during late-G1–S phase and 

during prometaphase to cytokinesis.23 PARP-10 is potent inhibitor of the cell 

transformation that is mediated by c-Myc in the presence of Ha-Ras.  

 

1.4 Mechanism of action of PARP-1 

 

Poly(ADP-ribosyl)ation occurs in almost all nucleated cells of mammals, plants and 

lower eukaryotes but is absent in yeast.24 The activation of PARP-1, followed by 

poly(ADP-ribosyl)ation, is one of the earliest cellular responses to DNA damage. In the 

absence of DNA damage, PARP-1 displays negligible activity. However, binding of 

PARP-1 to DNA breaks increases enzyme activity up to 500-fold.25 Poly(ADP-

ribosyl)ation comprises of very complex regulatory mechanisms and consists of three 

main reactions: initiation, elongation and branching. 

 

1.4.1 Initiation 

 

During initiation, substrate NAD+ binds to the catalytic site of PARP-1. Tight hydrogen 

bonding with Gly863 and Ser904 mechanically stretches and weakens the C-N 

glycosidic bond (nicotinamide-ribose). This cleavage results in generation of the 

intermediate cyclic oxonium ion and leaving of nicotinamide (2). This is followed by the 

transfer of the resulting ADP-ribosyl moiety (electrophile) to the nucleophilic centre of 

an appropriate protein acceptor. The protein acceptors may be nuclear proteins 

including histones (H1 and H2B), p53 and DNA ligases, DNA polymerases, DNA 

topoisomerases, high mobility group proteins (HMG) and DNA-dependent protein 

kinases. Poly(ADP-ribosyl)ation of these nuclear proteins is referred to as 

heteromodification. However, the main protein to be poly(ADP-ribosyl)ated is PARP-1 

itself in a process known as automodification. Glutamate, aspartate or carboxy terminal 

lysine (Glu, Asp, or COOH-Lys) residues of acceptor proteins are then covalently 



 10 

modified by the addition of an ADP-ribose subunit, via formation of an ester bond 

between the protein and the ADP-ribose residue.26 
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Scheme 1. The proposed mechanism of NAD+ cleavage by PARP-1. 

 

1.4.2 Elongation 

 

Polymer elongation involves the formation of an α(1’’→2’) glycosidic bond between C-

1’’ of nicotinamide ribose and the 2’-OH of the adenine ribose. This results in formation 

of linear polyanionic polymers with chain lengths of up to 200 ADP-ribose units.27,28  

 

1.4.3 Branching 

 

Polymer branching occurs when the C-1 of the nicotinamide ribose is joined with the 2-

OH of the nicotinamide ribose of another ADP-ribose polymer via a 1’’’→2” glycosidic 

bond. Polymer branching occurs on average after 20 ADP-ribose units. 
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Figure 3. Formation of linear and branched poly(ADP-ribose) polymer. 

 

1.4.4 Termination  

 

The synthesis of long negatively charged polymers on histones causes an electrostatic 

repulsion of the nuclear protein from DNA. The strong affinity of histones for poly(ADP-

ribose) compared to DNA, results in temporary dissociation of histones from damaged 

DNA and their transient electrostatic binding to poly(ADP-ribose). This results in 

relaxation of the chromatin at the site of the nick allowing access of repair enzymes.29 

Reassembly of the histone-DNA complex is triggered by poly(ADP-

ribose)glycohydrolase (see below).30  

 

During automodification, PARP-1 acts as a catalytic dimer. The introduction of a SSB in 

the DNA duplex induces flexibility at the nicked site. PARP-1 binds specifically through 

the second zinc finger to the centre of the characteristic V-shape in the DNA molecule 

and the enzyme covers seven base-pairs symmetrically on each side of the break.13 

This, in turn, leads to the recruitment of a second PARP-1 molecule through the leucine 

zipper motif in the automodification domain.31 The second PARP-1 molecule serves as 

a polymer acceptor during subsequent ADP-ribose polymer synthesis by the first 

PARP-1 molecule.32 
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Figure 4. Mechanism of action of PARP-1.33 
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polymer is synthesised by PARP-1, it is immediately hydrolysed by the constitutively 
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ribose monomers.34 PARG is known to catalyse hydrolysis both of terminal ADP-ribose 

units from poly(ADP-ribose) polymers via exoglycosidic activity and to remove larger 

oligo(ADP-ribose) fragments through endoglycosidic cleavage.35 The Km value of 

PARG is lower for larger ADP-ribose polymers than for smaller ones, indicating that the 

enzyme probably removes and catabolises bigger fragments first, then switches to 

remove ADP-ribose units one by one. The proximal ADP-ribose moiety is removed 

from the acceptor proteins by ADP-ribosyl protein lyase.36 It was shown to liberate a 
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dehydrated form of ADP-ribose (5’-ADP-3”-deoxypent-2”-enofuranose) from the 

acceptor protein. The degradation of ADP-ribose polymers represents a major 

regulatory mechanism for PARP-1, resulting in the down regulation of the enzyme and 

frees the site for further polymer synthesis. 

 

1.5 PARP-1: Biological Roles 

 

1.5.1 PARP-1 and DNA repair 

 

PARP-1 has been implicated in DNA repair and the maintenance of genomic integrity. 

This ‘guardian angel’ function of PARP-1 is supported by delayed DNA base-excision 

repair (BER) and the high frequency of sister chromatid exchange in PARP-1-deficient 

cells after exposure to ionizing radiation or alkylating agents.37 PARP-1 interacts with 

multiple nuclear components of the single-strand break repair (SSBR) and BER 

pathways, including the nick sensor DNA ligase III, the adaptor factor XRCC1 and DNA 

repair enzymes such as DNA polymerase-β and DNA ligase III.38 The following steps 

are found to be involved in the process: 

• Identification of the DNA break 

• Translation and amplification of the damage signal, the poly(ADP-ribosyl)ation 

of PARP-1 itself and of histones H1 and H2B, the triggering of chromatin 

structure relaxation thereby increasing the access of DNA repair enzymes to 

the break 

• Recruitment of XRCC1 to the damaged site followed by the assembly of the 

SSBR complex 

• End processing, whereby polynucleotide kinase that is stimulated by XRCC1 

converts the DNA ends to 5′-phosphate and 3′-hydroxyl moieties 

• Gap filling by DNA polymerase  

• Ligation step catalysed by DNA ligase III. 

 

Another role of PARP-1 in DNA repair is regulation of the topological state of DNA, i.e. 

activity of DNA topoisomerase I. This enzyme plays an important role in controlling the 

level of DNA supercoiling and relieving the torsional stress that is generated during 

replication, transcription, recombination and chromatin remodelling. During this 

process, topoisomerase I can get trapped in a covalent complex with nicked DNA 

through the 3′-phosphate terminus, which inhibits its DNA-ligase activity. If unrepaired, 

this can lead to genomic instability or apoptosis. ADP-ribose polymers target specific 

domains of topoisomerase I and induce the enzyme to remove itself from cleaved DNA 
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and close the resulting gap.39 The poly(ADP-ribose)polymer can also serve as an 

emergency source of energy used by base-excision machinery to synthesise ATP.40 

 

1.5.2 PARP-1 in the regulation of gene expression  

 

PARP-1 regulates the expression of various proteins at the transcriptional level. Three 

principal mechanisms are found to be involved: first, the regulation of chromatin 

structure and function; second, the regulation of DNA methylation by PARP-1; and 

third, the participation of PARP-1 in enhancer/promoter-binding complexes. In the first, 

poly(ADP-ribosyl)ation confers negative charge to histones, resulting in electrostatic 

repulsion between DNA and histones. Loosening histone-DNA interactions renders 

various genes accessible to the transcriptional machinery. In the second mechanism, 

PARP-1 binds to DNA methyltransferase-1 (DNMT), which is a key enzyme in DNA 

methylation and a global regulator of gene expression, and thereby inhibits its catalytic 

function.41 Thirdly, regulation of transcription is associated with functional interactions 

of PARP-1 and various non-histone proteins. PARP-1 acts as a coactivator in nuclear 

factor-κB (NF-κB)-mediated transcription.42 NF-κB is a key transcription factor 

regulating the expression of several elements of inflammation such as cytokines, 

chemokines, adhesion molecules (ICAM-1), and inflammatory mediators like inducible 

nitric oxide synthase (iNOS) and inducible form of cyclooxygenase (COX-2). It has 

been shown that inhibition of PARP-1 activity (5-AIQ) reduces NF-κB-mediated 

transcription suggesting that catalytic activity of the enzyme is required.43-45 Studies 

have also showed that PARP-1 deficient cells were defective in NF-κB-dependent 

transcription activation in response to tumour necrosis factor (TNF). Treating mice with 

bacterial lipopolysaccharide (LPS), an endotoxin, resulted in the rapid activation of NF-

κB in macrophages from PARP-1 competent mice but not from PARP-1 knockout mice. 

In fact, PARP-1-deficient mice were extremely resistant to LPS-induced endotoxic 

shock.46 Although NF-κB-dependent transcriptional activation is promoted by PARP-1, 

sometimes expression of NF-κB-target genes is silenced by PARP-1.47 PARP-1 is also 

required for the activation of other inflammation-related transcription factors, such as 

activator protein-1 (AP1), AP2, transcription enhancer factor-1 (TEF-1), trans-acting 

transcription factor-1 (SP1), octamer-binding transcription factor-1 (Oct1), yin-yang-1 

(YY1) and signal transducer and activator of transcription-1 (STAT1).48 
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1.5.3 PARP-1 in DNA replication and cellular differentiation 

 

Poly(ADP-ribosyl)ation plays an active role during the process of DNA replication and 

differentiation. The involvement of PARP-1 in the regulation of replication is supported 

by observations that poly(ADP-ribose) metabolism is accelerated in the nuclei of 

proliferating cells. The fact that PARP-1 copurifies with DNA polymerase α and δ, DNA 

primase, DNA helicase, DNA ligase, topoisomerases I and II, and key components of 

the multiprotein replication complex (MRC) suggests that PARP-1 is part of the MRC. 

Poly(ADP-ribosylation) of histones was proposed to facilitate the assembly and 

deposition of histone complexes on DNA during replication. Various experimental 

models using PARP-1-knockout cells and pharmacological inhibition have 

demonstrated an inhibition of DNA replication and cell proliferation, thus suggesting a 

possible role of PARP-1 in regulating these two processes.28 

 

Replication and differentiation are closely coupled processes and this may provide a 

rationale for the differentiation-modifying effect of PARP-1. To function as specialised 

building blocks of tissues, cells need to undergo a series of proliferative steps during 

which they gain new functions and lose others. This process requires concerted gene 

activation and results in differentiation into specialised cells such as hepatocytes, 

neurons and renal tubular cells. The idea that PARP-1 interferes with differentiation is 

supported by the findings that PARP-1 inhibitors were found to inhibit differentiation of 

human granulocyte-macrophage progenitor cells to the macrophage lineage. 

Overexpression of PARP-1 also arrests NB4 cells and blocks all 

trans-retinoic acid-induced terminal neutrophilic differentiation.40 

 

1.5.4 PARP-1 in cell death  

 

Despite the ‘guardian angel’ functions of PARP-1, its over-activation has been 

proposed to represent a cell-elimination pathway through which severely damaged 

cells are removed from tissues. This suggests that the PARP-1-directed DNA repair 

process is a highly inefficient and energy-consuming process. 

 

1.5.4.1 Cellular energy dynamics 

 

PARP-1 is a very abundant enzyme with up to one PARP molecule for each 1000 bp of 

DNA. With the formation of each ADP-ribose polymer, PARP-1 consumes up to 200 

molecules of NAD+. In addition, the rate of turnover of nuclear NAD+ in a normal intact 
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cell is estimated to be at least 100-fold less than in the DNA-damaged poly(ADP 

ribosyl)ating cell.25 Over-activation of PARP-1 can affect cellular energy levels by 

depleting the cellular stores of substrate NAD+.  

 

NAD+ is an essential cofactor in energy metabolism. It is an important respiratory 

coenzyme that regulates an array of vital cellular processes, such as glycolysis and 

mitochondria respiration, thereby providing ATP for most cellular processes. NAD+ also 

serves as the precursor for nicotinamide adenine dinucleotide phosphate (NADP), 

which acts as a cofactor for the pentose shunt and for bioreductive synthetic pathways, 

and is involved in the maintenance of reduced glutathione pools.49 The level of 

poly(ADP-ribosyl)ation in cells is the most important factor for the maintenance of NAD+ 

levels. DNA-damage-induced NAD+ depletion results in ATP depletion because NAD+ 

resynthesis requires at least two molecules of ATP per molecule. The result of massive 

NAD+ usage is a decline in the rate of all vital processes, leading to cellular dysfunction 

and, ultimately, cell death. Moreover, under these precarious conditions, 

phosphoribosyl pyrophosphate synthetase and nicotinamide mononucleotide adenylyl 

transferase consume ATP in an effort to replenish the cellular NAD+ store, further 

worsening the energy shortage and leading to a pronounced reduction of energy-

dependent processes, such as DNA, RNA and protein synthesis.25  

 

1.5.4.2 The “suicide hypothesis” 

 

PARP-1 carries out two seemingly contradictory activities, DNA repair that enables the 

cell to survive and NAD+ depletion to kill the cell. Based on this observation, Berger50 

proposed a “suicide concept” postulating that the activation of PARP-1 by massive 

DNA damage is actually a suicide response, since it causes rapid depletion of NAD+ 

and ATP depletion and leads to cell death before there is an opportunity to repair the 

DNA. This cell death is presumably Nature’s way of preventing gravely damaged cells 

from attempting to repair themselves. Such a suicide mechanism limits the possibility 

that massively damaged cells will try to repair and survive with a high mutation 

frequency and a potentially malignant transformation. This activation of PARP-1 by 

DNA damage may provide a safety mechanism whereby massively damaged cells are 

removed from the population, thereby decreasing the likelihood of preserving cells with 

highly mutant phenotypes. When a cell is damaged, the partial energy depletion 

provided by PARP-1 activation may prevent the cell from overexerting itself until DNA 

repair is completed.  
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1.5.4.3 The “molecular switch hypothesis” 

 

The “suicide hypothesis” is controversial because it was never established whether an 

extensively damaged cell dies because of a depleted NAD+/ ATP pool or from the DNA 

damage itself. The two sides of the argument viewed PARP-1 either as an 

indispensable cellular survival factor or as an active mediator of cell death. However, it 

is currently accepted that PARP-1 has been implicated in both apoptosis and necrosis, 

the actual mode of cell death being determined chiefly by the level of NAD+ and ATP. It 

was therefore plausible to hypothesise that PARP-1 serves as a molecular switch 

between apoptosis and necrosis.51 Virág and Szabó40 proposed a unifying concept 

according to which, cells that are exposed to DNA-damaging agents can enter three 

pathways based on the intensity of the stimulus (severity of DNA damage) (FIG. 5).  

• PARP-1 activated by mild to moderate genotoxic stimuli facilitates DNA repair, 

by signalling cell-cycle arrest and by interacting with DNA-repair enzymes such 

as XRCC1 and DNA-dependent protein kinase (DNA-PK). As a result, DNA 

damage is repaired and cells survive without the risk of passing on mutated 

genes.  

• In the second pathway, more severe DNA damage induces apoptotic cell death, 

with caspases, the main executor enzymes (caspase 7 and caspase 3) of the 

apoptotic process, inactivating PARP-1 by cleaving it into two fragments (p89 

and p24) at the DEVD motif in the nuclear localization signal of PARP-1.52 

Cleavage at this site separates the DNA binding domain from the catalytic 

domain, which inactivates the enzyme. PARP-1 cleavage is viewed as a marker 

of apoptosis, rather than an executor of the process. This pathway allows cells 

with irreparable DNA damage to be eliminated in a safe way i.e. via ingestion by 

macrophages. In fact, PARP-1 cleavage prevents the overactivation and 

thereby maintains cellular energy for certain ATP-sensitive steps of apoptosis.53 

Cleavage of PARP-1 is believed to aim at promoting apoptosis by preventing 

DNA repair-induced survival and by blocking energy depletion-induced 

necrosis. 

• The third pathway, necrotic cell death, is induced by extensive DNA breakage 

caused by oxidative or nitrosative stress (hydroxyl radical, peroxynitrite, nitroxyl 

anion). The overactivation of PARP-1 depletes the cellular stores of its 

substrate NAD+ and, consequently, ATP level. The severely compromised 

cellular energetic state inhibits the apoptotic cell death process to proceed 

because many steps of apoptosis are known to depend on ATP. Under these 

conditions, pharmacological PARP inhibition or the absence of PARP in PARP-
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deficient mice preserves cellular ATP and NAD+ pools in oxidatively stressed 

cells and thereby allows them to either function normally or die by apoptosis 

instead of necrosis.40 In addition to numerous biochemical and morphological 

similarities and differences between apoptosis and necrosis, a distinctive 

feature of necrosis is the disintegration of the plasma membrane (as opposed to 

the compaction of apoptotic cells, which is followed by elimination). Consequent 

leakage of cellular content from necrotic cells into the surrounding tissue 

exacerbates the inflammatory responses. 

 

According to Figure 5, depending on the intensity of the stimulus, PARP-1 regulates 

three different pathways. In the case of mild DNA damage, poly(ADP-ribosyl)ation 

facilitates DNA repair and, therefore, survival (route 1). More severe genotoxic stimuli 

activate an apoptotic pathway that eliminates cells with damaged DNA (route 2). The 

most severe DNA damage can cause excessive PARP activation, which depletes 

cellular NAD+/ATP stores. NAD+/ATP depletion blocks apoptosis and results in necrosis 

(route 3). The inhibition of PARP-1 in cells entering route 1 suppresses repair and, 

therefore, diverts cells to route 2 (dashed arrow on the left). The inhibition of PARP in 

cells that are entering route 3 preserves ATP and cellular energy stores, and either 

prevents cell death or enables it to occur through apoptosis instead of necrosis 

(dashed arrow on the right). 
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Figure 5. Intensity of DNA-damaging stimuli determines the fate of cells: survival, apoptosis or 

necrosis.40 

 

A great variety of human diseases, such as cancer, ischaemia-reperfusion injury, 

inflammatory disorders and neurodegenerative diseases involve damage to DNA as a 

crucial element to their pathogenesis. Most of these damages are caused by oxidative 

stress where PARP-1 is very much involved as the final mediator of cellular injury and 

death. PARP-1 inhibition, therefore, is an attractive method for studying the 

significance of this enzyme in biological systems and may prove useful for the therapy 

of these diseases. PARP-1 has been extensively investigated as a target of novel 

compounds, capable of inhibiting its catalytic activity, which may be used in a broad 

spectrum of diseases to counteract PARP mediated cell death or to enhance the 

efficacy of chemotherapy and radiotherapy. 
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1.6 Therapeutic potential of PARP-1 inhibition 

 

1.6.1 PARP-1 inhibition in cancer therapy 

 

Radiotherapy and many chemotherapeutic approaches to cancer therapy act by 

inducing DNA damage. Since PARP-1 is a controlling enzyme in the repair of damage 

to DNA, it is unsurprising that the first proposed application of PARP-1 inhibition was in 

radiopotentiation and chemopotentiation. DNA repair processes mediated by PARP-1 

can lead to resistance to chemotherapy and radiotherapy. Therefore inhibition of DNA 

repair may be therapeutically beneficial in the treatment of cancer. The rationale for the 

use of PARP-1 inhibitors as chemo- and radio-sensitisers comes from the observation 

that PARP-1 is important for DNA base-excision repair and its inhibition caused a 

significant delay in the DNA repair processes. 

 

1.6.1.1 Chemopotentiation 

 

Co-administration of a PARP-1 inhibitor with cytotoxic drugs that cause single- and 

double-strand DNA breaks potentiates the activity of these agents and causes 

persistent DNA single-strand breaks. A potential role of PARP-1 inhibitors as 

resistance modifiers when used in combination with the methylating agent 

temozolomide (TMZ) were evaluated.54 The methylating agent temozolomide (TMZ) is 

used in the therapy of various central nervous system (CNS) tumours. TMZ resistance 

develops frequently and diminishes the clinical response. This phenomenon is often 

the result of the efficient repair of methyl adducts at the O6-position of guanine 

mediated by MGMT. The combination of PARP inhibitors with TMZ interferes with the 

repair of methylpurines. When PARP is inhibited, the recruitment-promoting functions 

of XRCC1 are impaired, which hampers strand rejoining; this leads to the generation of 

permanent single-strand breaks that trigger the apoptotic process. It is in combination 

with this cytotoxic agent that PARP-1 inhibitors were introduced into the clinic for 

cancer patients in 2003. Tentori et al.55 demonstrated that the antitumour activity of 

TMZ against brain lymphoma is enhanced by the use of an intracerebral injection of the 

PARP-1 inhibitor NU1025 (8-hydroxy-2-methylquinazolin-4(3H)-one). Systemic 

administration of GPI15427 enhanced the efficacy of TMZ against metastatic 

melanoma, glioblastoma multiforme and lymphoma growing in the brain. These drug 

combinations enhanced the survival of lymphoma-bearing mice with respect to 

treatment with TMZ only. AG14361 increased the activity of temozolomide and 

topotecan, and the activity of radiation therapy in vitro.56 AG014699 is a potent tricyclic 
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indole PARP inhibitor that has completed both Phase I and II studies in combination 

with temozolomide. Clinical trials are also in progress for INO-1001 in combination with 

temozolomide in patients with malignant glioma.6  

 

PARP inhibitors have also been shown to enhance the cytotoxicity of the camptothecin-

derived DNA topoisomerase I poisons irinotecan and topotecan.57 Camptothecins act 

through the stabilisation of topoisomerase I-cleavage complexes. Poly(ADP-

ribosyl)ated PARP-1 and PARP-2 counteract the action of camptothecin by facilitating 

the resealing of DNA-strand breaks. Therefore, it is conceivable that the enhancement 

of camptothecin cytotoxicity induced by PARP inhibitors may be due to the impairment 

of the strand break re-joining mediated by topoisomerase I itself.58 

 

Non-toxic concentrations of 5-methylnicotinamide dramatically potentiated the 

cytotoxicity of N-methyl-N-nitrosourea and of γ-radiation.59 The PARP inhibitor 4-amino-

1,8-naphthalimide has been shown to sensitize p53-deficient breast cancer cell lines to 

apoptosis induced by doxorubicin, an anticancer drug commonly used for adjuvant 

therapy of breast cancer. The combination of doxorubicin and PARP inhibitor PJ34 is 

effective in reducing cardiac toxicity induced by the former.60 Cisplatin and its analogue 

carboplatin, which generate platinum DNA adducts, are used for the treatment of germ 

cell tumours, gynaecologic cancers, lung, bladder and head/neck cancer, whereas 

oxaliplatin is used for the treatment of colon cancer. Oral administration of BGP-15 

shortly before cisplatin treatment prevented drug induced renal failure without reducing 

the antitumor efficacy of the chemotherapeutic agent.61  

 

1.6.1.2 Radiopotentiation 

 

An intriguing area of use of PARP-1 inhibitors is in the potentiation of radiotherapy. 

Treatment with ionising radiation is the most widely used anticancer intervention after 

surgery. Radiotherapy damages cells by causing both single- and double-strand breaks 

and inducing apoptotic cell death. DNA repair mechanisms within cancer cells attempt 

to minimise this damage and then resistance emerges. In vivo efficacy of PARP 

inhibition for radiosensitisation has been recently demonstrated by a preclinical study 

showing that intraperitoneal administration of the PARP inhibitor AG14361 significantly 

enhances sensitivity of colon carcinoma subcutaneous xenografts to radiation 

therapy.56 AG14361 also inhibited the recovery of growth-arrested cells from potentially 

lethal irradiation damage. This sensitisation of growth-arrested cells is important for 

tumour radiation therapy because experimental and clinical evidence indicate that the 
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growth-arrested cell fraction within a tumour is radiation-resistant and capable of re-

entering the cell proliferation cycle and thereby re-populating the tumour after radiation 

therapy. The PARP inhibitor INO-1001 has also demonstrated radiosensitising effects 

in vitro and in vivo. 6(5H)-Phenanthridinone, a PARP-1 inhibitor, also enhanced 

cytotoxicity induced by ionising radiation.62  

 

1.6.1.3 PARP-1 inhibitors as single agents in DNA repair-deficient tumours 
 

PARP inhibitors might be beneficial in cancer treatment as a single agent. This would 

certainly have an advantage in terms of toxicity, as one of the concerns of 

chemotherapy combination studies is systemic toxicity caused by the use of PARP 

inhibitors as enhancers of cancer therapy. BRCA1 and BRCA2 are essential for the 

repair of double strand DNA breaks (DSBs) by the process of homologous 

recombination (HR). BRCA1-deficient and BRCA2-deficient cells, when compared with 

matched wild-type cells, were profoundly sensitive to inhibitors of PARP-1 In some 

cases, BRCA-deficient cells were more than 1000 times more sensitive to nanomolar 

concentrations of PARP inhibitor, suggesting the possibility of a highly selective 

therapy.63 PARP-1 is crucial for the repair of single-strand DNA breaks (SSBs) and 

PARP inhibitors cause an increase in persistent SSBs by targeting the HR deficiency in 

BRCA-deficient cells. Germ-line mutations in BRCA1 and BRCA2 indicate high risk for 

breast, ovarian, and other malignancies. In these cells, PARP inhibition results in cell 

cycle arrest and apoptosis. This suggests a role for PARP inhibitors as single agents in 

cancers exhibiting BRCA1 and BRCA2 mutations. Evaluation of KU0058948 suggested 

that the sensitivity of BRCA1- and BRCA2-deficient cells to PARP inhibition seems to 

be dependent on the potency and/or specificity of the PARP inhibitor. A Phase I study 

is ongoing with the KuDOS orally available PARP-1 inhibitor (KU-00559436) as a 

single anti-cancer agent. In addition, a Phase II study of AG014699 in metastatic breast 

and ovarian cancer in proven carriers of a BRCA-1 or BRCA-2 mutation is in 

progress.,64 

 

1.6.2 PARP-1 inhibition in reperfusion injury 

 

Clinically, when there is a reduced blood supply to the tissues, the cells are said to be 

ischaemic. Ischaemia is a common condition during surgery and in many diseases, 

such as myocardial infarction, stroke and haemorrhage. Early reperfusion is an 

absolute prerequisite for the survival of ischaemic tissues. However, reperfusion has 

often been observed to exacerbate the injury sustained by the ischaemic tissues and 

lethally damage the organs (ischaemia-reperfusion injury). The damage, which occurs 
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during the early minutes of reperfusion, is far greater than would have occurred if the 

ischaemia had been maintained.65  

 

It is well established that oxygen-derived free radicals and oxidants play a role in the 

pathogenesis of ischaemia–reperfusion. Recent studies confirmed this “oxygen 

paradox” and suggested that reperfusion could trigger sudden metabolic and 

physiological changes, most notably, an outburst of oxidants and free radical 

production, in particular, hydrogen peroxide, hydroxyl radical, superoxide anion, nitric 

oxide and peroxynitrite.66-68 These are capable of exerting cytotoxic effects 

independently or synergistically, via a number of mechanisms; both hydroxyl radical 

and peroxynitrite (a highly reactive oxidant produced from the reaction between nitric 

oxide and superoxide) can also trigger massive DNA single strand break, leading to 

PARP-1 over-activation.66 In stroke, heart attack and other forms of reperfusion injury, 

the main steps of the process are as follows.48 

• The occlusion of a blood vessel prevents blood flow to the organ. 

• Restoration of the blood flow (spontaneously or in conjunction with a medical 

intervention, such as thrombolysis or angioplasty) triggers the generation of 

various oxidants and free radicals. 

• These species (hydrogen peroxide, hydroxyl radical and peroxynitrite) induce a 

range of oxidative and nitrosative injuries to the cells, including protein and lipid 

modifications, mitochondrial dysfunction and DNA damage (base modifications 

and DNA-strand breakage). 

• PARP-1 senses the DNA breaks and becomes activated. 

• This process leads to the consumption of NAD+, initially mainly from the 

cytosolic pool. 

• The cell attempts to regenerate NAD+ from nicotinamide, which is converted to 

nicotinamide mononucleotide by phosphoribosyl transferase using 

phosphoribosyl pyrophosphate obtained from ATP.  

• PARP-activation-induced depletion of the cellular pyridine nucleotide pool 

impairs important NAD+-dependent cellular pathways, including glycolysis and 

mitochondrial respiration. NAD+ deficiency allows only the ATP-consuming part 

of anaerobic glycolysis to take place, thereby decreasing the synthesis of 

pyruvate and the mitochondrial formation of NADH. NADH-deficient 

mitochondria undergo depolarisation, which converts the ATP synthase into an 

ATPase. 

• Finally, the ensuing cellular energetic starvation leads to the shutdown of 

energy-requiring processes which leads to a breakdown of membrane potential 
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and leakage of the membrane. These events promote futile cycles that, 

ultimately, lead to cell death through the necrotic route.  

 

It has been proposed that inhibition of PARP-1 should alleviate depletion of NAD+ and 

protect organs from damage following ischaemia and reperfusion. Table 1 summarises 

some of the diseases in which PARP inhibition or deficiency provides therapeutic 

benefit in vivo. Two organs in which PARP-mediated reperfusion injury has been 

intensively investigated are the brain and heart. Pharmacological inhibition of PARP-1 

with 3-aminobenzamide (3-AB) significantly improved the outcome of myocardial 

dysfunction, as evidenced by a reduction in creatine phosphokinase levels, reduced 

infarct size, and preserved ATP pools.69-72 5-Aminoisoquinolin-1-one (5-AIQ) also 

proved to be a potent inhibitor of poly(ADP-ribose)polymerase activity in cardiac 

myoblasts and reduces myocardial infarct size in vivo.73 Neuronal damage following 

stroke and other neurodegenerative processes is thought to stem from over-excitation 

attributable to a massive release of the excitatory neurotransmitter glutamate acting on 

the N-methyl-D-aspartate (NMDA) receptor and other subtype receptors.74 Stimulation 

of NMDA activates the production of nitric oxide by neuronal nitric oxide synthase 

(nNOS), which ultimately accounts for reperfusion injury in the central nervous system. 

In PARP-1 knockout mice, a markedly reduced infarct volume is observed after 

transient middle cerebral artery occlusion.75 Several PARP-1 inhibitors have also been 

shown to reduce infarct size and improve neurological status in cerebral ischaemia-

reperfusion.75-77 

 
Table 1. PARP inhibition in animal models of inflammation, reperfusion, degenerative 

and vascular diseases.48 

 

3-AB, 3-aminobenzamide; ISQ, 5-hydroxyisoquinolin-1-one; DPQ, 3,4-dihydro-5-[4-1(1-

piperidinyl)butoxy]1(2H)-isoquinolinone; G-PH, aza-5[H]-phenanthridin-6-one 

derivative; PHT, 6(5H)-phenanthridinone; INH2B, 5-iodo-6-amino-1,2-benzopyrone; 

GPI-6150, 1,11b-dihydro-[2H]benzopyrano[4,3,2-de]isoquinolin-3-one; PJ-34, N-(6-

oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide; INO-1001, Inotek’s 

indenoisoquinolinone derivative; 5-AIQ, 5-aminoisoquinolin-one; ONO-1924H, N-[3-(4-

Oxo-3,4-dihydro-phthalazin-1-yl)phenyl]-4-(morpholin-4-yl)butanamide 

methanesulfonate monohydrate; DR2313, 2-methyl-3,5,7,8-tetrahydrothipyrano[4,3-

d]pyrimidine-4-one; AIF, apoptosis-inducing factor; F-Q, 2,8-disubstituted quinazolin-

4(3H)-one (43d); NA, nicotinamide; 4-OHQ, 4-hydroxyquinazoline; I/R, 

ischaemia/reperfusion; NMDA, N-methyl-D-aspartate.  
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Organ/Disease model PARP inhibitors Effects of PARP-1 inhibition 

Brain   

Stroke 3-AB, ISQ, DPQ, G-PH, 

PHT, INH2BP, GPI-

6150, PJ-3476, INO-

1001, ONO-1924H,  

Reduction in necrosis of the neurons, 

improvement in neurological status, 

protection against white-matter damage 

and AIF translocation 

Traumatic brain injury 3-AB44, GPI-6150, PJ-

34, INO-1001 

Improved neurological status 

Hypoglycaemia ISQ Improved survival and behavioural status 

Meningitis 3-AB Improved survival, neurological status 

and reduced inflammatory mediator 

production 

Parkinson’s disease GPI-6150, ISQ, F-Q Improved neurological outcome and 

dopamine loss 

Heart   

Myocardial infarction 3-AB,71,72 NA, ISQ, 5-

AIQ,73 PJ-34, INO-1001, 

GPI-6150 

Reduced myocardial necrosis, reduced 

infarct size, improved myocardial 

contractility, and reduced neutrophil 

infiltration 

Transplantation 3-AB84, PJ-34, INO-

1001 

Improved myocardial contractility, 

reduced inflammatory mediator 

production, extension of transplant 

survival 

Ischaemic 

cardiomyopathy 

PJ-34, INO-1001 Improved myocardial contractility, 

improved survival 

Diabetic 

cardiomyopathy 

PJ-34, INO-1001 Improved myocardial contractility 

Ageing-associated heart 

failure 

PJ-34, INO-1001 Prevention or reversal of diabetic 

endothelial dysfunction 

Vasculature   

Diabetic endothelial 

dysfunction 

PJ-34, INO-1001 Prevention or reversal of diabetic 

endothelial dysfunction 

Ageing, Hypertension PJ-34, INO-1001 Protection against the development of 

endothelial dysfunction 

Lung   

Acute respiratory 

distress syndrome 

Benzamide, PJ-34, 5-

AIQ95 

PARP inhibition suppresses endotoxin 

induced pulmonary damage, reduces 

inflammatory mediator production and 

NMDA mediator production and lung 

oedema formation 
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Organ/Disease model PARP inhibitors Effects of PARP-1 inhibition 

Ovalbumin-induced 

asthma 

3-AB, 5-AIQ, PJ-34 Reduced inflammatory mediator 

production and improved pulmonary 

function 

Endocrine/pancreas   

Diabetes NA, 3-AB, INH2BP Protection against necrosis of islets and 

reduction in the degree of 

hyperglycaemia 

Joint/Arthritis NA, 3-AB, PJ-34 Reduced arthritis severity and incidence 

Skeletal muscle I/R 3-AB70 Reduction in reperfusion injury necrosis 

markers 

Liver   

I/R injury PJ-34, 5-AIQ80,81 Improved survival, reduced hepatic 

necrosis and protection against hepatic 

leukostasis 

Kidney I/R Benzamide, 3-AB, 5-

AIQ,82 PJ-34 

PARP inhibitors accelerate the recovery 

of normal renal function after I/R injury 

Transplantation PJ-34 No effect on the function of the 

transplanted kidney 

GI tract   

Colitis 3-AB78, NA, INH2B, PJ-

34, 5-AIQ92, GPI-6150,79 

INO-1001, ISQ 

Improved survival, protection against gut 

shortening, lipid peroxidation, nitrosative 

damage and ICAM1 expression 

Mesenteric I/R injury 3-AB, NA, GPI-6150, Protection against histological damage, 

neutrophil infiltration and mucosal barrier 

failure 

Eye   

Uveitis PJ-34 Protection from leukocyte migration 

Diabetic retinopathy PJ-34 Inhibition of the development of acellular 

capillaries and reduced leukostasis 

Retinal I/R 3-AB83 Reduced I/R damage to the retina 

Ear   

Cochlear I/R injury 3-AB Improvement of cochlear function 

Skin   

Sulphur mustard 

induced vesication 

3-AB, NA Protection against NAD+ depletion and 

microvesicle formation 

Peripheral nerve   

Diabetic neuropathy ISQ, PJ-34 Protection against loss of motor and 

sensory nerve conductance 

Cavernous nerve injury INO-1001 Improved erectile function 
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Organ/Disease model PARP inhibitors Effects of PARP-1 inhibition 

Many organs   

Haemorrhagic, 

endotoxic and septic 

shock 

3-AB, NA, PJ-34, 

INH2BP, GPI-6150, 4-

OHQ, 5-AIQ86 

Protection against haemodynamic 

decompensation, improved survival, 

protection against gut hyperpermeability 

and myocardial, vascular, hepatic and 

renal failure 

Thoracoabdominal I/R PJ-34 Improved survival and neurological status 

HIV Benzamides, 

benzopyrones, INH2BP 

PARP deficiency reduces viral replication 

and integration 

 
Protection against organ damage by PARP-1 inhibitors are also reported in reperfused 

organs such as gut,78,79 skeletal muscle,70 liver,80,81 kidney82 and retina.83 It also 

improves the outcome of heart transplantation84 and protects against multiple organ 

damage secondary to haemorrhagic shock.85-87 

 
1.6.3 PARP-1 inhibition in inflammatory diseases 

 
Over-activation of PARP-1 also induces the expression of a number of genes that are 

essential for inflammatory responses (overviewed in section 1.5.2). PARP-1 acts as co 

activator of NF-κB resulting in expression of NF-κB-dependent inflammatory elements, 

such as cytokines, chemokines, iNOS, ICAM-1 and TNF. Both cytokines and 

chemokines can trigger free-radical formation through many different pathways, for 

example by stimulating xanthine oxidase activity and by recruiting activated 

neutrophils. In addition, the level of production of nitric oxide is increased due to de 

novo iNOS expression. These events further worsen the oxidant stress, producing 

even greater PARP-1 activation and cell dysfunction. The earliest implication of PARP-

1 in the pathophysiology of inflammatory diseases was related to pancreatic islet cell 

injury and diabetes. In streptozotocin-induced pancreatic islet cell injury and diabetes, 

inhibition of PARP-1 with 3-AB prevented NAD+ depletion and the suppression of 

proinsulin synthesis without modifying the extent of DNA damage. Subsequent 

experiments in vivo demonstrated that such inhibition delays the onset of 

streptozotocin- and alloxan-induced diabetes.88,89  

 
The role of PARP-1 activation and the protective effects of PARP inhibitors have also 

been demonstrated in various experimental models of inflammation, including acute 

inflammatory diseases (such as endotoxic shock), as well as chronic inflammation of 

the gut, joints and various other organs. (Table 1) For instance, PARP inhibitors and/or 

PARP deficiency is effective in arthritis,90 colitis,91,92 and pulmonary inflammation.93-95 
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Systemic inflammatory diseases (circulatory shock) are associated with a reduced 

responsiveness of blood vessels to vasoconstrictor agents (a result of nitric oxide and 

peroxynitrite production), myocardial dysfunction and impaired intracellular energetic 

processes, culminating in multiple organ failure. The severity of these inflammatory 

diseases is suppressed by PARP inhibitors and the production of multiple pro-

inflammatory mediators is down-regulated. It was also demonstrated that treatment of 

mice for tissue injury associated with stroke and neurotrauma with PARP inhibitors 3-

AB and 5-AIQ reduced the degree of spinal cord inflammation, tissue injury, neutrophil 

infiltration and apotopsis.96 

 
1.6.4 PARP-1 inhibition in cardiovascular diseases 

 
PARP-1 activation also has a pathogenic role in hypertension, atherosclerosis and 

diabetic cardiovascular complications. In these diseases, the dysfunction of the 

vascular endothelium (that is, a reduction in the ability of the endothelial cell to produce 

nitric oxide and other cytoprotective mediators) is diminished. The oxidant-mediated 

endothelial cell injury is dependent on PARP-1 and can be attenuated by 

pharmacological inhibitors or genetic PARP-1 deficiency.97 For instance elevated 

extracellular glucose levels (as in diabetes) trigger PARP-1 activation through the 

mitochondrial release of oxidants, which is followed by DNA-strand breakage. In 

hypertension, angiotensin II acts on its endothelial receptors and up regulates NADPH 

oxidases. The subsequent generation of superoxide and peroxynitrite triggers DNA-

strand breakage and PARP activation.98 In vivo studies show that PARP-1 inhibition 

improves endothelium-dependent relaxations in hypertensive and diabetic animals.99 

PARP-1 activation is also involved in the early functional changes that are associated 

with atherosclerosis and vascular injury. The preservation of vascular function might 

underlie the protective effect of PARP inhibitors against diabetic neuropathy and 

retinopathy.100,101  

 

1.6.5 PARP-1 inhibition in HIV-1 infection 
 

There is an increasing body of evidence suggesting the involvement of PARP-1 in HIV-

1 infection. During the life cycle of the HIV-1 virus within the infected cell, the RNA 

genome of the virus is reverse-transcribed into double-stranded DNA by reverse 

transcriptase.102 The proviral DNA, in turn, enters the nucleus, where the 

virion-associated viral enzyme, integrase, catalyses the integration of the viral 

double-stranded DNA into the host genome. This process requires nicking of both DNA 

strands and may therefore lead to PARP-1 activation. At present, it seems that PARP-1 
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regulates HIV infection at two levels: integration and transcription and PARP-1 

inhibition may be a viable strategy in controlling HIV-1 infection. Studies show that 

benzopyrone derivatives, benzamides and nicotinamide possess potent antiviral effects 

in HIV-infected cells.103 

 

1.6.6 Other diseases 

 

A large number of studies have been published providing experimental evidence that 

suggests other clinical indications of PARP-1 inhibitors. PARP-1 inhibitors provided 

beneficial effects in a variety of disease conditions including Parkinson's disease,104 

Alzheimer's disease,105 acetaminophen-induced hepatotoxicity106 and UV radiation-

induced dermal necrosis.107 PARP-1 inhibition by 5-AIQ prevents experimental asthma-

like conditions in guinea pigs108 and PJ34 protects against allergic encephalomyelitis in 

an animal model.109 Malfunction of the immune systems often follows profound stress 

and this immunocompromise is alleviated by inhibition of PARP-1 activity.110 

 

1.7 Development of PARP-1 inhibitors 

 

Intensive research over the last decade has yielded multiple classes of PARP-1 

inhibitors, the vast majority of which bind to the nicotinamide-binding domain of the 

enzyme and act as competitive, reversible inhibitors with respect to NAD+, the natural 

substrate for PARP-1. 

 

1.7.1 Classical PARP inhibitors 

 

Nicotinamide (2) and its 5-methyl derivative (3) were shown to be competitive inhibitors 

of PARP-1, at millimolar concentrations (IC50 210 µM). Being a natural compound, 

nicotinamide also acts as a substrate for NAD+ biosynthesis.111 Although reasonably 

soluble, it is a weak inhibitor of the enzyme and lacks specificity. Moreover, 

nicotinamide administered to cells is not always inhibitory but is often stimulatory to 

ADP-ribosylation. It has also been shown to act as a radical scavenger in certain 

experimental models. Benzamide (4) (IC50 22 µM), a close structural analogue of 

nicotinamide first shown by Shall111 to be an effective inhibitor, lacks the ring nitrogen 

and cannot undergo metabolism by NAD-biosynthetic enzymes analogously to 

nicotinamide. However, this compound had limited solubility in water, given the 

hydrophobic nature of its structure. In an attempt to improve the aqueous solubility of 

benzamide, Purnell and Whish112 introduced polar substituents on the 3-position of the 
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aromatic ring of benzamide. 3-Amino- (5), 3-hydroxy- (6) and 3-methoxy-benzamide (7) 

were found to maintain inhibitory activity with improved water solubility. They were 

found to be competitive inhibitors and two of them, 3-amino- and 3-methoxy 

benzamide, (Ki < 2 µM) have become the benchmark PARP inhibitors against which 

novel compounds have been compared.  

 

1.7.2 Structure-activity relationships of PARP-1 inhibitors 

 

The emergence of 3-substituted benzamides as prototype PARP-1 inhibitors has 

stimulated considerable interest in the structure-activity relationship (SAR) of this class 

of compounds and a number of very detailed investigations by research groups 

working independently have been undertaken. Sims et al113 provided new information 

concerning SARs for nicotinamide analogues. The presence of an unsubstituted 

carbamoyl group was found to be essentially a prerequisite for significant activity. 

Picolinamide (8) and isonicotinamide (9) both exhibited activity comparable to 

nicotinamide. Introduction of additional ring nitrogens was also tolerated and 

pyrazinamide (10) was only marginally less potent than nicotinamide. Upon alkylation 

of the ring nitrogen (11) or reduction of the aromatic ring (12) activity was abolished, or 

markedly lowered.  

 

Sestili and coworkers investigated the enzyme-inhibitory activity and in vitro 

potentiation of alkylating agent cytotoxiclty of a series of benzamide analogues 

modified with respect to the nature of the aromatic ring, the carboxamide function and 

aryl substituents.114,115 Replacement of amide group with a carboxylate (13), alkylamide 

(14), sulphonamide (15) and thioamide (16) resulted in dramatic loss of activity. 

Reduction of the aryl ring to furnish cyclohexanecarboxamide (17) abolished activity. 

Replacement of the benzene ring with a thiophene ring in thiophene-3-carboxamide 

(18a) reduced the activity. In contrast to earlier reports which showed that replacement 

of the benzene ring with a thiophene ring in thiophene-3-carboxamide reduced the 

inhibitory potency, an investigation by Shinkwin et al116 demonstrated that the isomeric 

thiophene-2-carboxamide (18b) displayed good PARP-1 inhibition, with potency of the 

same order of magnitude as benzamide. This confirmed that the heterocyclic thiophene 

ring can substitute for the benzene ring in simple PARP inhibitors without significant 

loss in potency. Alkylation of the amino group of 3-aminobenzamide had little effect, 

acylation of this substituent significantly enhanced potency, with 3-acetamido- and 3-

propanamidobenzamide (19) and (20) proving to be potent PARP-1 inhibitors.  
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Figure 6: SARs for nicotinamide and benzamide analogues. 

 

Banasik et al117 conducted one of the most comprehensive investigations to date, 

where they evaluated more than 170 compounds of diverse structures for their ability to 

inhibit PARP-1 and mono(ADP-ribosyl)transferases using standardised assay methods. 

These wide ranges of compounds led to the identification of new templates for the 

design of novel PARP inhibitors. All highly potent inhibitors were polyaromatic 

heterocycles. The studies showed that the compounds that had the carboxamide group 

incorporated within the ring system displayed very potent PARP-1 inhibitory activity. 

The strategy of cyclising an open benzamide structure or creating a further ring system 

on the existing cyclic amide was one of the best approaches to designing new PARP-1 

inhibitors. The compounds include the 1,8-naphthalimide derivatives (21) and (22), 5-

hydroxyisoquinolin-1-one (23), phenanthridinone (24) and the quinazolinone (25). 

Compound (23) was over 100-fold more potent than benzamide and 3-

aminobenzamide. 
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Figure 7: Potent polyaromatic heterocyclic inhibitors according to Banasik’s study.117 
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On the basis of the above structural requirements Griffin et al29 proposed a hypothesis 

for the interaction of inhibitors with the enzyme active-site. According to this 

hypothesis: 

• Benzamides occupy the nicotinamide binding site of PARP-1, with the 3-

substituent accommodated within the ribose nucleoside-binding domain. In 

contrast to the substrate NAD+, inhibitors were incapable of undergoing C-N 

bond cleavage and instead serve as competitive inhibitors.  

• The orientation and electronic properties of the carboxamide group were 

important factors in the binding of inhibitors.  

• Molecular orbital calculations of benzamide derivatives indicated that the ability 

of the carbonyl oxygen to donate π electrons correlates positively with inhibitory 

activity. Hence the carbonyl substituent should be a good hydrogen-bond donor 

to a putative amino acid acceptor within the NAD+-binding domain.  

• Conjugation to an electron-rich aromatic ring improves the donor properties of 

the carbonyl group.  

• The fact that PARP-1 inhibition is good in compounds with an unsubstituted 

carboxamide in the benzamide series explored the possibility of important 

hydrogen-bond interactions this group can have with amino acid donor in the 

enzyme active site. 

 

The preferred conformation of the carboxamide group of NAD+ within the active site of 

the enzyme also has important implications for inhibitor design. Ab initio energy 

calculations performed on the nicotinamide ring of NAD+ indicate that when enzyme 

bound the cofactor adopts the anti-orientation (i.e. carbonyl anti to the 1,2-bond of the 

ring).  

 

Suto et al designed a series of rigid benzamide analogues, the 5-substituted 

dihydroisoquinolin-1-ones and isoquinolin-1-ones, by closing the amide nitrogen upon 

the benzene ring with an ethane bridge to constrain the orientation of the carboxamide 

group into either the anti- or syn-conformation.118 This was achieved via two strategies. 

The first was cyclising an open benzamide structure which gave two compounds, 

depending on the direction of closure: 1) 7-substituted 3,4-dihydroisoquinolin-1-ones 

and 2) 5-substituted 3,4-dihydroisoquinolin-1-ones. The second approach involved 

inserting substituents at the 2-position of 3-hydroxybenzamides, providing a series of 

2,3-disubstituted benzamides. The 5-substituted 3,4-dihydroisoquinolin-1-ones (25a-d), 

where the carboxamide is in the biologically-active anti-orientation, were 50-to 75-fold 

more potent than the 7-substituted syn-analogues (26a-d). The positioning of the 
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substituents on the benzene ring was also found to be critical for optimal activity. When 

the substituent in 5-substituted 3,4-dihydroisoquinolin-1-ones was moved to the -6, -7 

or -8 position (which corresponds to position 4, 5 and 6 of benzamides respectively), 

activity was decreased. It was believed that substituents at the 5-position (or 3-position 

of benzamides) were accommodated within the ribose-nucleoside binding domain. In 

contrast to the substrate NAD+, these compounds are incapable of undergoing C-N 

bond cleavage, thus serving as competitive inhibitors. 
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Figure 8. Schematic representation of the anti- or syn- conformation of the carboxamide group. 
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Table 2. PARP-1 inhibitory activity of conformationally restricted dihydroisoquinolinones and 

benzamide PARP-1 inhibitors.29,118 

Code R IC50 (µµµµM) 

25a NO2  3.2 

26a NO2 13 

25b OMe 0.42 

26b OMe 120 

25c NH2 0.41 

26c NH2 8.0 

25d OH 0.10 

26d OH 9.5 

R IC50 (µµµµM) 

5-OH  
(25d) 

0.10 

6-OH 2.0 

7-OH 9.5 

8-OH 11 

5-OMe 
(25b) 

0.42 

6-OMe 39 

7-OMe 120 

7

6
5

8

N

O

H
1R
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Interestingly, the 2,3-disubstituted benzamide analogues were almost completely 

devoid of activity except for 3-hydroxy-2-methylbenzamide which has only very weak 

activity (IC50 590 µM). Energy calculations revealed that the presence of a 2-substituent 

restricts the rotation of the amides, causing them to exist predominantly in the less 

hindered, inactive syn-conformation.  

 
Structures of representative classes of PARP-1 inhibitors derived from the classical 

PARP scaffolds (benzamide or cyclic lactams) have the benzamide pharmacophore in 

all core structures (Figure 8). This constrained arylamide motif was identified as a 

consensus pharmacophore. In this amide the N-H is held cis to the amide carbonyl 

either by incorporation into a covalent five-membered ring (isoindolones), in covalent 

six-membered rings (isoquinolin-1-ones, 3,4-dihydro-isoquinolin-1-ones, quinazolin-4-

ones, phthalazin-1-ones, thienoisoquinolinones, phenanthridinones, and 

naphthalimides) and covalent seven-membered rings (tricyclic inhibitors of the 

Newcastle group). Intramolecular hydrogen bonds have also been used by this group 

to maintain the required planar benzamide conformation in their potent benzoxazole-4-

carboxamides and benzimidazole-4-carboxamides.119 General understanding of the 

SARs of these benzamide pharmacophore-based PARP inhibitors has led to the 

synthesis of highly potent novel inhibitors.  

 
From the above referenced studies, it became apparent that the following features are 

essential for the competitive inhibition of PARP-1. (Figure 9) 

1. An unsubstituted aromatic or polyaromatic ring system  

2. A carboxamide group restricted into the anti-conformation  

3. At least one proton on the amide nitrogen.  

4. A non-cleavable bond in the 3-position relative to the carboxamide group.  

 

 

 

 

 

 

 

 

 

Figure 9. The consensus pharmacophore for PARP-1 inhibition.  
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Figure 10. Structures of examples of potent inhibitors of PARP activity.  

 

1.7.3 PARP-1 enzyme inhibitor interaction studies 

 

X-ray crystallographic structures of the catalytic fragment of chicken PARP-1 and those 

crystallised with competitive inhibitors, such as PD128763 (25e), NU1025 (41d), 3-

methoxybenzamide (7) and 4-amino-1,8-naphthalimide (22) have helped to confirm the 

above SAR scheme.14,120 Costantino et al have discussed the modelling of PARP-1 

inhibitors bound to the enzyme and the consequent SARs.121 It was found that, in all 

the above PARP-1-inhibitor crystal structures, the position of binding is similar i.e. in 

the nicotinamide sub-site of the NAD+-binding domain of PARP-1. Analysis of the co-

crystal structure for PD128763 (Figure 11) showed that the carboxamide group 

invariably forms three important hydrogen bonds. The carbonyl oxygen of the inhibitor 

accepts two hydrogen bonds, one from the side-chain OH of Ser904, the other from 

Gly863 polypeptide amide NH. The third hydrogen bond is formed between the 

carboxamide NH and Gly863 carbonyl oxygen. The carboxamide must be in an anti 

conformation in order for these interactions to occur with the active site. This supports 

the fact that compounds, in which the amide is constrained in this conformation, are 
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significantly more potent than those with a free amide group. The presence of a planar 

electron-rich aromatic ring is needed to enhance the ability of the carbonyl group to 

participate in hydrogen bonding within the active site. The aromatic ring presumably 

interacts through π-π interactions with Tyr907 and, to some degree, Tyr896, which lines 

the other face of the pocket and provides further binding energy forming a “π-electron 

sandwich”. This contributes to the increased potency for the larger, planar fused ring 

molecule. 

                                 

Figure 11. Enzyme-inhibitor (conserved) interactions between PARP-1 catalytic fragment and 

PD128763 (25e)14 

 

‘Non-conserved interactions’ are strictly dependent on the structural diversity of docked 

inhibitors. For instance, the carboxylate group of Glu-988 is at a distance of only 4 Å to 

the C9 atom of PD128763 (25e) that is structurally equivalent to the anomeric C1N 

atom of the nicotinamide ribose of NAD+14. At this location, Glu-988 could either 

function as a general base activating the acceptor protein for nucleophilic attack at the 

C-1 of the nicotinamide ribose or by stabilising the intermediate oxocarbenium ion 

formed from the cleavage of the ribose-nicotinamide bond of NAD+. DPQ (25f) forms a 

salt-bridge interaction with Asp766, the amino group of 4-amino-1,8-naphthalimide (22) 

forms additional hydrogen bonds with Glu988, and the nitro group of 8-methyl-2-(4-

nitrophenyl)quinazolin-4-one (42i) forms hydrogen bonds with the side chain of 

Asn767.121 

 

In some cases, inhibitors induce structural changes to the active site of human PARP-

1. Fujisawa published the crystal structure of the catalytic domain of human 

recombinant PARP-1 complexed with the inhibitor FR257517 (43e).122 The 

quinazolinone part of the compound binds tightly to the nicotinamide–ribose binding 

site. The hydrophobic 4-fluorophenyl ring of the inhibitor induces a significant 

conformational change in the active site of PARP-1 by displacing the side chain of 

Arg878, which forms the bottom of the active site. X-ray crystallography and molecular 

modelling results for the quinazolinedione-based PARP-1 inhibitor (44)123 also showed 
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that the nitrogen atom of the tetrahydropyridine ring directly binds to the COOH of 

Asp766 and, similar to FR257517, the tetrahydropyridine moiety of this compound 

induces a conformational change. The terminal phenyl ring lies in a deep pocket and 

interacts via van der Waals interactions with the protein.  

 

Modelling studies of 5-AIQ docked into the nicotinamide-binding site of PARP-1 

(chicken) also showed putative water-mediated hydrogen-bond interactions between 

Glu988 of the active site and the amino group similar to 4-amino-1,8-naphthalimide 

(22) (Figure 12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Molecular modelling study of 5-AIQ docked into PARP-1 binding site. A: View 

showing hydrogen bonds from secondary amide to Gly863 and Ser904. B: View showing the π-

electron sandwich with 5-AIQ between Tyr896 and Tyr907. C: View showing proximity of 5-NH2 

group of 5-AIQ to the Glu988 carboxylate.  
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1.7.4 New PARP-1 inhibitors 

 

During the past decade, structure-based drug design and an increased understanding 

of the molecular details of the active site of PARP-1 have facilitated the discovery of 

highly potent new PARP inhibitors. 

 

1.7.4.1 Dihydroisoquinolinones and isoquinolinones 

 

On the basis of Suto’s studies, numerous structural modifications have been made to 

the parent dihydroisoquinolinone and isoquinolinone, giving rise to a great number of 

highly potent and selective PARP-1 inhibitors. 5-hydroxy-3,4-dihydroisoquinolin-1-one 

(25d) was shown to be a potent neuroprotective agent against NMDA-NO mediated 

neurotoxicity in brain cortical cultures.124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. PARP-1 inhibitory activity of various 5-substituted dihydroisoquinolinones and 

isoquinolinones.118 

 

PD128763 (3,4-dihydro-5-methyl-1(2H)-isoquinolinone, (25e) as a chemopotentiating 

agent, sensitises cells to ionising radiation and reduces DNA repair.125 PD128763 was 

found to be 60-fold more potent a PARP-1 inhibitor than 3-AB. DPQ (25f) (3,4-dihydro-

5-(4-(1-piperidinyl)butoxyl)-1(2H)-isoquinolinone) patented by Guilford 

Pharmaceuticals, has been shown to exert neuroprotective effects in cultured cells in 

vitro and stroke models in vivo. It was believed that the structurally flexible 

butoxypiperidine side chain at the 5-position of DPQ favours its insertion into the 

Code R IC50 (µµµµM) 

25(d) OH 0.10 

25(e) 
(PD128763) 

Me 0.14 

25(f) 
(DPQ) 

N
O

 
0.04 

Code R IC50 (µµµµM) 

29(a)  H 6.2 

29(b) NO2 3.2 

29(c) OMe 0.58 

29(d) 
 (5-AIQ) 

NH2 0.24 

29(e)  
ISQ 

OH 0.14 

N

O

H

R

(29)
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hydrophobic pocket within the active site, thereby increasing its potency tremendously. 

The effectiveness of 5-substituted isoquinolinones was comparable to that of the 

corresponding 3,4-dihydro series. 5-Hydroxyisoquinolin-1-one (ISQ, 29e) was found to 

exert PARP inhibitory and cardioprotective effects in ischemic reperfused heart 

preparations in vitro.70 5-AIQ (29d) was found to exhibit tremendous therapeutic 

benefits in a wide range of disease models in vivo, including animal models of 

myocardial infarction, ischaemia-reperfusion of the liver and kidney and acute lung 

inflammation.73,80,81,82,86,92,95,96 

 

1.7.4.2 Isoquinolin-1-one-related compounds 

 

The isoquinolin-1-one core is also present in various tricyclic compounds. 1,8-

Naphthalimide (21) (IC50 = 1.4µM) exerts protective effects in oxidatively stressed 

endothelial cells in vitro. The 4-amino derivative (22) (IC50 = 0.18µM) has been found to 

reduce ischaemia-reperfusion injury in the heart, liver and skeletal muscle.70 It also 

exerts radio- and chemo-sensitising effects in vitro. The benzopyrano(4,3,2-

de)isoquinolinones are a related class of tetracyclic lactams of which GPI-6150 (30) 

(1,11b-dihydro-(2H)benzopyrano(4,3,2-de)isoquinolin-3-one) has been studied 

intensively. GPI-6150 is cytoprotective in vitro and exerts significant protective effects 

in experimental models of stroke, traumatic brain injury, neurodegeneration, circulatory 

shock, diabetes mellitus and various inflammatory conditions (including colitis and 

gouty arthritis).79,126  

 

6(5H)-Phenanthridinone (24) was first identified as a potent PARP inhibitor in vitro by 

Banasik et al.118 This compound, insoluble in water and commonly dissolved in DMSO, 

enhances the cytotoxicity of nitrogen mustards and ionising radiation on lymphoma 

cells in culture. Substituents at the 2- or 3- and 8- positions of the core skeleton were 

preferred attachment points for good PARP-1 inhibition. By incorporation of suitable 

acidic or basic residues onto the ring system, water solubility and improvements of 

potency in vitro were observed. Compound (24e) was found to have 52-fold greater 

inhibition activity as compared to (24) (Table 4). The electron-withdrawing 2-nitro 

compound (24b) and electron-donating 2-amino (24c) and 2,3-diamino (24g) 

compounds showed values of IC50 at ca. 0.17 µM and about 3-fold better than (24).127 

The phenanthridinone derivative PJ-34 (24h) is cytoprotective in vitro and suppresses 

pro-inflammatory cytokine and chemokine production in immunostimulated 

macrophages.128 In in vivo models, PJ-34 improves the functional outcome in stroke, 

myocardial infarction and reperfusion injury, circulatory shock, diabetes and its vascular 
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complications, colitis, arthritis and uveitis. PJ-34 also protects in chronic heart failure 

and improves the endothelium dependent vascular relaxant function in various disease 

models.60,76,94,109, 

      

  

 

 

 

 

 

 

                    

 

N

O

H

R
S

Thieno(2,3-c)isoquinolin-1-ones (33)

N
S

O

H

R

Thieno[3,4-c]pyridin-4(5H)-ones (34)

 

 

Table 4. PARP-1 inhibitory activity of isoquinolin-1-one-related compounds. 

 

Guilford reported a new series of compounds that contain aza-5(H)-phenanthridin-6-

one and partially saturated aza-5(H)phenanthridin 6-one scaffolds.129,130 Two such 

compounds (31) and (32) were evaluated in the transient and permanent stroke models 

Code X R IC50(µµµµM) 

24 H H 0.52 

24(a) H 3-COOMe 0.18 

24(b) H 2-NO2 0.15 

24(c) H 2-NH2 0.18 

24(d) F 3-COOMe 0.04 

24(e) F 3-SO3H 0.01 

24(f) Cl 3-Cl 0.24 

24(g) H 2- NH2 & 3-NH2 0.18 

24(h) 
(PJ34) 

H 
2- HN

O

NMe2
 

0.04 
 

Code R IC50(µµµµM) 

33(a) H 0.30 

33(b) OMe 0.30 

33(c) OH 0.10 

33(d) NH2 0.05 

34(a) Me 9.7 

34(b) Ph 9.9 

8
N

O

H

2

3

X

Phenanthridinones (24)

R

N

O

O

H

N

O

H

N

N

N

CH3

N

O

H

N

HN

N

O

H3CN

(30)

(31) (32)
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and provided a 30–40% reduction in infarct volume. SmithKline Beecham reported 

thieno(2,3-c)isoquinolin-1-ones (33), in which the thieno ring is fused to the 

isoquinolinone scaffold, the most potent being (33d). (33a) was neuroprotective in 

models of brain ischaemia.131,132 Shinkwin et al116 reported the synthesis of 

thienopyridinones (34) inhibiting PARP-1 activity at ca.10 µM. 

 

1.7.4.3 Benzoxazoles and benzimidazoles 

 

Researchers at the University of Newcastle-upon-Tyne designed a series of 

benzoxazole-4-carboxamides119 (35) and benzimidazole-4-carboxamides133 (36) that 

elegantly favoured the active anti-conformation by means of an intramolecular 

hydrogen bond between the amide proton and the cyclic nitrogen. The benzimidazole 

analogues are a few times more potent than the corresponding benzoxazoles. These 

compounds exhibit potencies superior to those usually shown by monocyclic 

carboxamides. Compounds with substituted phenyl groups at the 2-position, such as 

(37b), (37d) and (37g) are the most potent examples in these classes of inhibitors. 

NU1085 (37d) has been adopted as a benchmark inhibitor of PARP-1 due to its 

potency and good solubility in water. It increased the potency of the cytotoxic agents 

topotecan and temozolomide by up to 3-fold.133 

 

 

 
 

 

 

 

Table 5. PARP-1 inhibitory activity of benzoxazole-4-carboxamides and benzimidazole-4-

carboxamides. 

Code R IC50 (µµµµM) 

35(a) Me 9.5 

35(b) Ph 2.1 

Code R Ki (nM) 

36(a) H 95 

36(b) 
[NU1064] 

Me 
99 
 

36(c) Ph 15 

37(a) OMe 6.8 

37(b) CF3 1.2 

Code R Ki (nM) 

37(c) NO2 8 

37(d) 
[NU1085] 

OH 
6 
 

37(e) CN 4 

37(f) Cl 3 

37(g) CH2OH 1.6 
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1.7.4.4 Benzimidazole-related compounds 

 

A natural extension of the benzimidazole class of compounds is to replace the 

hydrogen bond that encourages the molecule to adopt the anti-conformation with a 

covalent bond. Skalitzky et al134 synthesised a series of tricyclic benzimidazoles (38) of 

which (38b), (38f) and (38g) were found to be strong potentiators of the cytotoxic 

activities of temozolomide and topotecan. AG14361 (38f) increased the delay of LoVo 

xenograft growth induced by irinotecan, irradiation or temozolomide by two- to three 

fold. A combination of AG14361 and temozolomide caused the complete regression of 

SW620 xenograft tumours.46 A potent new class of tricyclic lactam indole PARP-1 

inhibitors have been designed, represented by (39) and (40). Compounds (40a), (40c) 

and (40d) displays potent in vitro PARP-1 enzymatic inhibition and enhancement of 

cellular growth inhibition.135 

             

                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. PARP-1 inhibitory activity of benzimidazole-related compounds. 

Code R Ki (nM) 

(a) Ph 4.1 

(b) 4-Cl-Ph 5.7 

(c) 2-Cl-Ph 7.7 

(d) 1-naphthyl 4.9 

(e) 4-PhCH2OH 4.2 

(f) 
AG14361 N  

6.3 

(g) N

 
5.8 

Code R Ki (nM) 

39(a) H 38 

(b) CN 11 

(c) 1-naphthyl 5 

40(a) H 6 

(b) 4-CF3 5 

(c) 4-CH2NMe2 5 

(d) N

 

6 

3

4

NH

HN
1

2

O

R

(39)

3

4

NH

HN
1

2

O

(40)

R

N

N

O
H

N

R

(38)
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1.7.4.5 Quinazolin-4-ones 

 

During initial synthetic studies with benzoxazole-4-carboxamides, an unexpected 

rearrangement occurred to afford the 8-hydroxyquinazolin-4(3H)-one NU1025 (41d).119 

A series of 2-alkyl- and 2-aryl substituted 8-hydroxy-, 8-methyl -, and 8-methoxy 

quinazolin-4(3H)-ones were synthesized and evaluated for PARP inhibitory activity.136 

2-Phenylquinazolinones (42) were marginally less potent than the corresponding 2-

methylquinazolinones (41), but the introduction of an electron-withdrawing or electron-

donating 4-substituent on the 2-aryl ring invariably increased potency. The 8-

methylquinazolinone series (IC50 values 0.13-0.27 µM), were found to be the most 

potent PARP-1 inhibitors. NU1025 (41d) potentiated the cytotoxicity of the 

monomethylating agent 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide (MTIC) and of 

γ-radiation 3.5-and 1.4-fold, respectively.136 

 

Fujisawa synthesised several highly potent quinazolin-4(3H)-one derivatives (43) that 

are modified at the 2,5- and 2,8-positions.137,138 Compound (43b) FR247304 exerts its 

neuroprotective efficacy in in vitro and in vivo experimental models of cerebral 

ischaemia via potent PARP-1 inhibition.139 The 2,8-disubstituted derivative (43d) has a 

three-methylene unit and 4-(4-fluorophenyl)tetrahydropyridine substitution at the 

quinazolinone-2-position. This compound shows strong PARP-1 inhibition and in vivo 

neuroprotective activity. In a mouse model of Parkinson’s disease, this compound 

prevented the depletion of striatal dopamine and metabolites of dihydroxyphenylacetic 

acid and homovanillic acid.  

 

Quinazolinedione-based PARP inhibitor (44) linked with large substitution exhibits 

strong potency against PARP-1 with an IC50 of 60 nM.137 Quinoxaline derivatives (45) 

were identified as potent and selective PARP-2 inhibitors in PARP enzyme assays 

using recombinant PARP-1 and PARP-2.137 Compound (45b) (FR261529) (2-(4-

chlorophenyl)-5- quinoxalinecarboxamide) was about 5-fold more potent for PARP-2 

(IC50 = 7 nM) than PARP-1 (IC50 = 33 nM) and protects against both ROS-induced cell 

injury in vitro and METH-induced dopaminergic neuronal damage in an in vivo 

Parkinson’s disease (PD) model.140 
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Table 7. PARP-1 inhibitory activity of quinazolin-4-ones and quinoxalines. 

Code X R IC50 (µµµµM) 
42(a) OH H 1.06 
(b) OH NO2 0.23 
(c) OH OH 0.29 
(d) OH NH2 0.52 
(e) Me H 0.87 
(f) Me OH 0.22 
(g) Me NH2 0.44 
(h) Me CN 0.27 
(i) Me NO2 0.13 
(j) Me OMe 0.19 
(k) OMe H 4.2 
(l) OMe OMe 2.0 
(m) OMe NO2 0.85 

Code X R IC50 (µµµµM) 
41(a) H H 9.50 
(b) OMe Me 0.78 
(c) Me Me 0.39 
(d) 

[NU1025] 
OH Me 0.40 

Code R 
PARP-1 
IC50(nM) 

PARP-2 
IC50(nM) 

45(a) H 131 14 

(b) 
Cl 

FR261529 
33 7 

(c) CN 101 8 
(d) CF3 118 11 

(e) OMe 71 8 

(f) NH2 87 9 

Code R X IC50 (nM) 

43(a) H H 21 

(b) 
Cl 

FR247304 
H 23 

(c) Cl CN 3 

(d) Cl F 13 

(e) 
Me 

FR257517 
F 16 

N

N
H

O

X

R

Quinazolin-4-ones (41)

N

N
H

O

X

2-Phenyl substituted quinazolin-4-ones (42)

R

H

N

O

H

N

N

R

Quinoxalines (45)

(43)

N

N

O

H

R

(CH2)3
N

X
(44)

N

N

O

H

F

(CH2)4
N

O
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1.7.4.6 Quinazolinone-related compounds 

 

Iconix claimed that (46a) showed selectivity for PARP-1 over PARP-2 with IC50 values 

of 5.5 and 41 µM, respectively. Of the thieno(3,4-d)pyrimidin-4(3)ones, (47a) and (47b) 

give 81% and 42% inhibition of PARP-1 (mouse) at a concentration of 10.8 and 8.8 µM 

respectively.116 Meiji Seika Kaisha reported the neuroprotective effects of DR2313 (48)  

in in vivo models of permanent and transient stroke in rats.141 DR2313 also showed 

excellent profiles in terms of water-solubility and CNS penetration. Pyrimidinones fused 

to a saturated heterocycle with additional keto group (49) were also reported.142 Uracil 

derivatives iodouracil (50a) and iodouridine (50b) reported by Banasik et al117 have 

weak inhibitory effects on PARP-1. 

 

N

N
H

O

S R N

N
H

O

S

R N

N
H

O

CH3

S

N

N
H

O

O

X

R

N

N
H

O

O

R

I

(46) (47) (48) (49) (50)  

 

 

 

 

 

 

 

 

Table 8. PARP-1 inhibitory activity of quinazolinone-related compounds. 

 

1.7.4.7 Phthalazinones 

 

KuDOS Pharmaceuticals, in collaboration with Maybridge, have identified a series of 4-

aryl-2H-phthalazinones as sub-micromolar PARP-1 inhibitors.143 Early SAR studies, 

suggested that structural elaboration around the meta position of the benzyl moiety 

could be potency enhancing. The enhancement of potency via the fluoro substituent 

ortho to the imide ring appeared quite general for this series as exemplified by 

compounds 51e-g. The substituted homopiperazine based amides (51i) were found to 

be most promising lead compounds.144 Further introduction of fluorine at the para 

position of the pendant benzene ring, aiming to block possible metabolism at this 

Code R IC50(µµµµM) 

46(a) H 5.5 

47(a) Me 10.8 

47(b) Ph 8.8 

50(a) H 70 

50(b) ribofuran 43 
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position and extend half-life, resulted in a class of potent inhibitors with excellent 

cellular activity as indicated by (52e-j).  

 

Kamanaka et al reported the neuroprotective effects of the phthalazinone-based PARP 

inhibitor ONO-1924H (53). In a rat stroke model, ONO-1924H reduced the stroke 

volume and attenuated the development of neurological deficits. Structurally, ONO-

1924H is a 2H-phthalazin-1-one substituted in the 4-position with phenyl groups, and 

bearing amine-containing side chains to improve water solubility.145 Further variations 

include a series of tetracyclic benzopyrano(4,3,2-de)phthalazinones (54) and 

indeno(1,2,3-de) phthalazinones (55). Here the 4-phenyl group is held rigid by linking to 

the 5-position either via an oxygen or directly. 

 

1.7.4.8 Isoindolinones   

 

Isoindolinones are another class of PARP-1 inhibitors, which incorporate the requisite 

lactam in a 5-membered ring. The simple 5-substituted derivatives (56) have only poor 

potency (IC50 > 10 µM) but more elaborate side-chains improve activity. Guilford 

claimed the tetracyclic isoindolinones (57) for use in peripheral neuropathy caused by 

stroke trauma, spinal cord damage, ischaemia, reperfusion injury and 

neurodegeneration.142 Novartis patented a series of substituted derivatives of 

indoloquinazolinones as PARP inhibitors. The tetrazole-substituted compound (58) has 

an in vitro IC50 value of 12 nM and dose-dependently reduced infarct size by up to 60% 

in a rabbit myocardial infarction model.48 A series of novel pyrrolocarbazoles was 

synthesized as potential PARP-1 inhibitors. When an additional keto group is adjacent 

to the ring nitrogen to give the imide, the potency is enhanced. Pyrrolocarbazole (59c) 

was identified as a potent PARP-1 inhibitor.146,147 Cephalon evaluated the chemo-

potentiating capacity of CEP-6800 (59d), the novel 3-aminomethyl carbazole imide, in 

combination with three chemotherapeutic agents (temozolomide, irinotecan and 

cisplatin) against U251MG, glioblastoma, HT29 colon carcinoma, and Calu-6 non-small 

cell lung carcinoma xenografts and cell lines. This is an inhibitor of both PARP-1 and 

PARP-2, and has an inhibition constant (Ki) of 5 nM.148 Compound (60) was reported to 

have an IC50 of 2 nM. 



 47 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. PARP-1 inhibitory activity of phthalazinones. 

Code R X IC50 (nM) 

51(a) N
H

O

 
H 20 

(b) N
H

O

 
H 50 

(c) N
H

O
F

F
F
 

H 13 

(d) N

O

O  
H 13 

(e) N

O

O  

F 5 

(f) N

O

O  
F 3.8 

(g) N OO

 
F 4.1 

(h) NO

 
H 8 

(i) N NH
O

 
H 9 

Code R X IC50 (nM) 

52(a) Me H 23 

(b) Et H 15 

(c) nPr H 10 

(d) 
 
H 6 

(e) H F 7 

(f) Me F 9 

(g) Et F 7 

(h) nPr F 5 

(i) 
 

F 5 

(j) 
 

F 5 

Code R IC50 (nM) 

54(a) H 80 

54(b) NHCOMe 37 

55(a) H 140 

55(b) NHCOMe 69 

N

NH

O

R

X

Phthalazinones (51)

N

NH

O

X

O

N
N R

(52)

N

NH

O

N
H

O

(CH2)

N

O
(53)

N

NH

O

O

R

N

NH

O

R

(54) (55)
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N

O

H

R O

N

O

H

(56) (57)

N

N

O

H

N
N

N
NH

(58)

N
H

N O

R

H

(59)

X

 

 

 

 

 

 

 

 

 
Table 10. PARP-1 inhibitory activity of isoindolinones, indoloquinazolinones and 

pyrrolocarbazoles. 

 

1.7.4.9 Miscellaneous classes of compounds  

 

While much development has centered on the lactam/carboxamide pharmacophore, 

there are several groups of compounds that do not possess this functionality. Most of 

these are inhibitors of moderate potency compared to those discussed above and they 

have very different modes of action. For instance, 1,2-benzopyrone (61a) was reported 

as a non-competitive inhibitor of PARP and 6-nitrosobenzopyrone (61b) inhibits PARP 

by interacting with the DNA-binding Zn finger in the N-terminal domain of PARP.149 5-

Iodo-6-amino-1,2-benzopyrone (INH2B) (61c) inhibits PARP-1 by uniquely oxidising 

one of its two zinc fingers, resulting in zinc ion ejection and a concomitant inactivation 

of its activity. It has been shown to protect oxidatively damaged cells in vitro and exert 

beneficial effects in stroke, circulatory shock and autoimmune diabetes.149 Other 

examples include aryl carboxylic acids linked to a 4-t-butylbenzene-1,2-diol fragment 

(62) and coumalic acid derivatives (63).142 

 

The O-(3-piperidino-2-hydroxy-1-propyl)nicotinic amidoxime (BGP-15) (64) belongs to 

the class of unsaturated hydroximic acid derivatives which are claimed to be PARP-1 

inhibitors, and protects the isolated heart from ischaemia–reperfusion injury, with an 

IC50 value of 120 µM.61  

Code X R IC50 (nM) 

59(a) H H 56 

(b) H CN 18 

(c) O H 36 

(d) 
CEP-6800 

O CH2NH2 5 N N
H

N OO

H

(60)
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Table 11. PARP-1 inhibitory activity of miscellaneous classes of compounds.  
 

Inotek has developed a series of PARP inhibitors derived from compound (65). The 

potent parenteral inhibitor, INO-1001 has an in vitro IC50 value of 1 nM and protective 

effects in stroke, myocardial infarction and chronic heart failure. This drug is now in 

clinical trials for the treatment of reperfusion injury induced by myocardial infarction, 

cardiopulmonary bypass and thoraco-abdominal aortic aneurysm surgery.48 

 

1.7.5 Bioreductive prodrugs of PARP-1 inhibitors  

 

Tissue selectivity is important for PARP-1 inhibitors to sensitise cancer cells towards 

chemotherapy and radiotherapy. Since PARP-1 inhibitors lack selectivity for cancer 

cells, the DNA repair process for rapidly dividing normal cells exposed to cytotoxic 

agents will also be impaired along with those of the tumour cells. This limits the 

effectiveness of inhibitors and gives rise to severe side effects. Use of a prodrug, 

which, in itself, is biologically inactive but could be selectively unmasked or activated by 

the tissues on which it is intended to act, could improve selectivity. Such systems make 

use of biochemical or physiological differences between the normal and tumour cells 

such as bioreductive prodrugs. It was observed that many disease states where PARP-

1 inhibition is therapeutically beneficial, such as cancer, inflammatory disorders and 

ischaemia-reperfusion injuries, are marked by acute or chronic tissue hypoxia. This 

physiological difference in the concentration of oxygen between normal and hypoxic 

tissues was exploited through the design of biologically inactive prodrug systems 

which, upon selective bioreduction in hypoxic tissue, would release PARP-1 inhibitors 

only in that tissue. Four different types of redox-sensitive triggers were designed and 

Code X R IC50(µµµµM) 

61(a) H H - 

(b) NO H - 

(c) NH2 I 10 

62 - - 2.2 

63 - - <10 

N

N

NH2

O

OH

N

(64)

NH

O

(65)
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the proposed mechanism for bioreductive release of PARP-1 inhibitors (DRUG) from 

nitroheterocyclylmethyl- and 4,7-dioxoindole-3-methyl- types are illustrated in schemes 

2 and 3, respectively.150-152  

 

Y

X NO2
DRUG

Y

X NHR
DRUG

Y

X NR
DRUG

Bioreduction

R = H or OH
a: X = O, Y = CH
b: X = MeN, Y = N
c: X = S, Y = CH  

 

Scheme 2. Demonstration of reductively triggered release of drugs from (a) 

5-nitrofuran-2-ylmethyl, (b) 1-methyl-2-nitroimidazole-5-ylmethyl and (c) 

5-nitrothien-2-ylmethoxy  prodrugs.150, 151 

O

O

MeO

N

DRUG

Me

Me

OH

OH

MeO

N

DRUG

Me

Me

OH

OH

MeO

N
Me

Me
DRUG

Bioreduction

OH

MeO

N

OH

Me

Me

OH

OH2

 

Scheme 3. Proposed mechanism of reductively triggered release of drugs from 

4,7-dioxoindole-3-methyl prodrugs.152 

 

The prodrug designed was made of a Trigger (a substrate for the endogenous or 

exogenous activating enzyme) and an Effector (the active drug to be released), joined 

by a Linker which releases the Effector in response to the Trigger.153 5-Iodo- and 

5-bromoisoquinolin-1(2H)-one were chosen as the DRUG for linkage to the Triggers.154 

Since the PARP-1 inhibitory activity of isoquinolin-1(2H)-ones depends critically on the 

carboxamide group, masking of the pharmacophore was achieved either by attaching 

the Trigger at oxygen (giving 1-alkoxyisoquinolinones) or at nitrogen (giving 

2-alkylisoquinolin-1-ones) as shown below.155 
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N

O

TRIGGER

N

O

TRIGGER

R R

1-alkoxyisoquinolinones
R = H, I, or Br

2-alkylisoquinolin-1-ones
 

 

Figure 13. Representation of 1-alkoxyisoquinolinones and 2-alkylisoquinolin-1-ones triggers. 

 

In each case, the release of the isoquinolin-1-one Effector was initiated by chemical 

reduction of the Trigger, designed to mimic bioreduction in hypoxic tissues. Their 

release studies, resulted in a successful expulsion of 5-substituted isoquinolin-1-ones 

from 1-(5-nitrothien-2-ylmethoxy)isoquinolines and 2-(5-nitrofuran-2-ylmethyl) 

isoquinolines upon reductive triggering with a sodium borohydride / palladium / 

aqueous propan-2-ol system. Isoquinolin-1-ones were also found to be rapidly and 

quantitatively released from their 2-(1-methyl-2-nitroimidazole-5-ylmethyl)- and 

1-(4,7-dioxoindole-3-methoxy) derivatives by treatment with zinc / ammonium chloride 

and tin(II) chloride, respectively. It was also observed that reductively triggered release 

of the isoquinolin-1-ones only occurred from the O-linked prodrugs and not from N-

linked  ones.152 Another successful prodrug 4-iodo-3-nitrobenzamide was selectively 

retained and reduced to highly reactive and tumouricidal nitroso-compound, INOBA, in 

the presence of nitroreductase activity in malignant cells.156 In view of the preliminary 

success achieved in vitro with these prodrug systems, it is evident that use of tissue-

selective prodrugs would reduce their potential toxicity on normal tissues and reduce 

the dosage required for therapy. 

 

1.8 PARP Inhibitors in clinical trials 

 

Five PARP inhibitors are currently known to be in oncology clinical trials and two more 

are expected to enter clinical trials shortly; their current status is summarized in Table 

12. 

 

AG-014699 was the first PARP inhibitor to be evaluated in humans for cancer therapy. 

Preclinical data of this agent indicated that the combination of AG-014699 with 

irinotecan and with radiotherapy delayed xenograft tumor growth, and caused 

xenograft tumour regression with temozolomide. The Phase 1 study combined i.v. 

AG014699 with temozolomide in solid tumors, initially evaluating PARP activity in 
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peripheral blood lymphocytes with reduced doses of temozolomide until PARP 

inhibition was observed, and then increasing temozolomide to standard doses (200 

mg/m2) at a fixed AG-014699 dose. The recommended dose for the Phase 2 trial was 

12 mg/m2 AG-014699 with 200 mg/m2 temozolomide. In the Phase 2 trial, there was 

enhancement of temozolomide-related myelosuppression. 

 

Product Company 

Clinical 

status Indication 

INO-1001 Inotek/Genentech 

Phase 2 

Phase 1b 

Cardiovascular indications 

Malignant melanoma 

AGO14699 Pfizer Phase 2 

Advanced solid tumours in combination 

with temozolomide 

Metastatic malignant melanoma 

BS-201 BiPar Sciences Phase 1 Cancer 

BS-401 BiPar Sciences Preclinical Pancreatic cancer 

AZD2281 AstraZeneca Phase 1 Breast cancer 

KU59436 AstraZeneca/KuDOS Phase 2 

Advanced solid tumors 

BRCA1/2 mutant cancers 

In combination with DSB agents in HRD 

tumours 

MGI 

Pharma n/a Preclinical 
Radiation/chemotherapy sensitizer 

ABT-888 Abbott Laboratories Preclinical 

Refractory solid tumours 

and lymphoid malignancies 

 

Table 12. PARP-1 inhibitors in cancer therapy.157,33 

 

KU-0059436 is currently being evaluated in a Phase 1 trial in patients with advanced 

tumours. This study began with daily and twice a day dosing of the oral inhibitor for 14 

days of a 21-day cycle, and is now evaluating continuous twice a day dosing. Minimal 

toxicity has been reported. Pharmacodynamic studies showed dose-dependent 

inhibition of PARP activity in peripheral blood mononuclear cells.  

 

ABT-888 is an oral PARP inhibitor that is the first oncology agent to be studied in a 

Phase 0 clinical trial. In the Phase 0 study, participants with biopsiable tumour are 

given a single dose of ABT-888 to determine the dose range at which PARP is 

effectively inhibited in peripheral blood mononuclear cells and tumour cells. The study 

also aims to assess the pharmacokinetic characteristics of the agent and the time 
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course of PARP inhibition. Phase 1 combination studies will be with temozolomide, 

irinotecan, cyclophosphamide, and carboplatin. 

 

BiPAR Science’s lead compound BSI-201 is being tested as i.v. monotherapy in solid 

tumours, with the objective to determine a maximum tolerated dose and a 

pharmacokinetic profile. BiPAR also currently has another PARP inhibitor, BSI-401, in 

clinical oncology trials. 

 

Inotek’s INO-1001, an indenoisoquinolinone-based PARP inhibitor, is currently in 

Phase 2 trials for cardiovascular indications. It is also being studied in combination 

therapy in metastatic melanoma and glioma and as a single agent in cancer for 

BRCA1- and BRCA2-deficient tumours. A preliminary analysis of a Phase 1 trial 

evaluated INO-1001 in combination with temozolomide in unresectable stage III/IV 

melanoma. The investigators found that non-haematologic toxicities were mild and 

mostly related to temozolomide. 

 

MGI Pharma is developing GPI-21016, an orally available inhibitor of PARP-1 with a Ki 

of 50 nmol/L. Interestingly, GP-21016 ameliorated cisplatin induced neuropathy at the 

same time that antitumour efficacy was enhanced.  

 

AstraZeneca’s AZD2281 was studied in a range of tumour types in Phase I studies. 

Results showed that treatment with AZD2281 led to inhibition of PARP functional 

activity in both surrogate and tumour tissue and they have reported that strong signals 

were detected in hereditary ovarian cancer.  

 

1.9 Water-soluble PARP-1 inhibitors 

 

Most of the PARP-1 inhibitors reported to date are structurally based on the benzamide 

planar ring system, and are poorly water soluble. As a result, many potent inhibitors 

such as 5-hydroxydihydroisoquinolin-1-one (25d), DPQ (25f), PND (24), GPI-6150 (30) 

and INH2B (61c) suffer from poor water-solubility and this gives rise to poor 

pharmaceutical properties. Good water-solubility is a highly desirable property since it 

causes faster dissolution of the drug and thus, better bioavailability. DMSO is often 

used in place of water as a biocompatible vehicle for in vivo administration. However, it 

is a potent scavenger of hydroxyl radicals, and thus is able to reduce the organ injury 

and dysfunction in situations where the production of hydroxyl radicals is observed, 

such as haemorrhagic and endotoxic shock.158 In addition, it also inhibits PARP-1 
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activity weakly.159 This causes a great amount of ambiguity in the determination of the 

actual PARP-1 inhibitory activity.  

 

Our laboratory optimised a synthetic route for the known PARP-1 inhibitor 5-AIQ (29d) 

and then converted it to its highly water-soluble hydrochloride salt, 5-AIQHCl. 

(IC50 0.24 µM).86 Investigation of pharmacological effects of 5-AIQ in a wide range of 

diseases, including animal models of myocardial infarction,73 ischaemia-reperfusion of 

the liver80,81 and kidney,82 heart transplantation84 and acute lung inflammation95 showed 

tremendous therapeutic potential. It also demonstrated protective effects on ischaemia-

reperfusion injury caused by severe haemorrhage and resuscitation in anaesthetized 

rats by abolishing multiple organ injury and dysfunction.86 Compared to the benchmark 

inhibitor 3-AB (5) (10 mg Kg-1 i.v.) only a remarkably low i.v. dose of 30 µg Kg-1 is 

required to confer similar protection. It is evident that 5-AIQ.HCl gains much of its 

advantage over other PARP-1 inhibitors through its excellent water-solubility, which 

conferred favourable pharmacokinetics, such as good absorption and biodistribution.  

 

Following the success of 5-AIQ our laboratory decided to build upon this lead and 

synthesised a series of 3-substituted 5-aminoisoquinolin-1-ones. In general, besides 

having a very good water-solubility profile, most of the 3-substituted isoquinolin-1(2H)-

ones exhibited excellent PARP-1 inhibitory potency with IC50 values in the low 

micromolar range (Table 13). It appeared that alkyl substituents confer slightly greater 

enhancement in PARP-1 inhibitory activities than an aryl moiety. This is especially 

evident with compounds 5-amino-3-methylisoquinolin-1-one (66a) and 

5-amino-3-pentylisoquinolin-1-one (66c) which are about 5- and 3-fold, respectively, 

more potent than the 3-phenyl substituted compound (67a) making them among the 

most potent members in this series. The presence of a para-substituent in the phenyl 

ring seemed to increase the activity, with inductive electron-withdrawing functionalities, 

such as trifluoromethyl (67d) and chloro (67e), appearing to confer slightly greater 

improvement in activity. It is also interesting to note that the introduction of a thiophene 

ring (66e) and a benzyl group (66f) at the 3-position resulted in a drastic loss of 

potency. 5-AIQ substituted, at the N5-position with an amidine group resulted in a 2.5-

fold reduction in activity (68) (IC50 4.04 µM). 
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Table 13. PARP-1 inhibitory activity of 3-substituted 5-aminoisoquinolin-1-ones. 

 

The strategy of building upon 5-AIQ could potentially be extended to the synthesis of 

another class of potential PARP-1 inhibitors, the 4-substituted isoquinolin-1(2H)-ones, 

and 3- and 4-substituted 5-aminoisoquinolin-1(2H)-ones. 

Code R IC50 (µµµµM) 

5-AIQ 
29(d) 

H 1.60 

66(a) Me 0.23 

66(b) Et 0.49 

66(c) Pentyl 0.32 

66(d) isobutyl 1.17 

66(e) 
S  

5.61 

66(f) 
 

5.14 

Code R IC50 (µµµµM) 

67(a) H 1.07 

67(b) OMe 0.90 

67(c) Me 0.88 

67(d) CF3 0.33 

67(e) Cl 0.57 
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2. Aims and Objectives 

 

2.1 Aim 

 

The aim of this research is to design, synthesise and evaluate potent and water-soluble 

DNA-repair (PARP-1) inhibitors using currently established SAR. 

 

2.2 Research proposal 

 

Following the success of 5-AIQ.HCl (29d) with highly encouraging activity in vivo, 

enzyme selectivity and very good water solubility, our laboratory decided to build upon 

this lead. Previous studies on the 5-substituted 3,4-dihydroisoquinolin-1-one and 5-

substituted isoquinolin-1-one classes of PARP-1 inhibitors centred around 

modifications at the 5, 6, 7 or 8-positions.118,154 Following the successful synthesis and 

demonstration of inhibitory activity of a series of 3-substituted 

5-aminoisoquinolin-1(2H)-ones,160 attention was directed to the synthesis of the 

4-substituted 5-aminoisoquinolin-1(2H)-ones. These were also of considerable interest 

as potential PARP-1 inhibitors, since an examination of the PARP-1 active site 

indicated that there is a relatively large binding pocket in the region corresponding to 

the 4-position of the isoquinolin-1(2H)-one ring which could potentially be exploited to 

enhance PARP-1 inhibitory potency. 

 

X-Ray crystallographic data on the PARP-1 structure with quinazolinones136 and 

phthalazinones121 bound seemed to suggest that benzyl groups were well tolerated in 

that region and that they generally improve inhibitory activity by binding to hydrophobic 

pockets.118 Identification of a novel series of meta-substituted 4-benzyl-2H-phthalazin-

1-ones as PARP-1 inhibitors with IC50 in the low nanomolar range also supported 4-

substitution.143,144 We therefore hypothesised that substitution in the four position of 5-

AIQ with lipophilic substituents may further improve its potency through an increased 

interaction with the active site. There is evidence to suggest putative water-mediated 

hydrogen-bond interactions between Glu988 of the active site and the amino group of 

4-amino-1,8-naphthalimide (22).121 This amino group corresponds, approximately, to 

the 5-position of 5-AIQ. The 5-amino group enables 5-AIQ to be easily converted into 

the water-soluble hydrochloride salt, consequently giving it excellent in vivo potency, 

and this will be retained in the design. This has, therefore, led to the investigation of a 

series of 4-substituted isoquinolin-1(2H)-one hydrochlorides. 
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The specific objectives are: 

1. To introduce small alkyl substituents, such as methyl and ethyl to the 4-position 

of 5-AIQ. 

2. To introduce bulkier groups like benzyl, 4-methylbenzyl 4-methoxybenzyl and 3-

succinimidobenzyl- to the 4-position of 5-AIQ. 

3. To study the modes of cyclisation of methyl 2-(substituted)alkynyl-3-

nitrobenzoates with different electrophiles (ICl, PhSeCl, HgSO4) to form 3-

substituted-5-nitroisocoumarins. 

4. To test these novel target compounds for their water solubility and in vitro 

PARP-1 inhibitory potency. 
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3.1 3-Substituted 5-aminoisoquinolin-1(2H)-ones  

 

3.1.1 Retrosynthetic analysis 

 

The first targets for chemical synthesis were 3-substituted 5-aminoisoquinolin-1-ones, 

which should be accessible through the corresponding 3-substituted-5-

nitroisocoumarins. A retrosynthetic analysis for the 3-substituted target is illustrated in 

Scheme 4. The retrosynthetic approach involved two functional group interconversions 

(FGI) on the target molecule. Both the conversions, i.e. reduction of the nitro group to 

amine (e.g. via catalytic hydrogenation or acid/metal reduction) and the conversion of 

isocoumarin to isoquinolin-1(2H)-one (e.g. via boiling with ammonia-saturated 

2-methoxyethanol), are reasonable and well-established reactions. 
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Scheme 4. Retrosynthetic analysis of the 3- substituted 5-aminoisoquinolin-1-ones. 

 
Disconnection at the C-O bond of the isocoumarin leads to 2-alkynylbenzoates (69) as 

starting materials. Synthesis of aryl alkynes is most reliably and conveniently achieved 

using organometallic approaches. A number of aryl-alkyne coupling methods have 

been developed over the past few decades. The Castro-Stephens reaction involves 

direct introduction of sp2 carbon to alkynes by the reaction of Cu acetylides with aryl 

and alkenyl halides to form arylalkynes and alkenylalkynes.161 Heck and Cassar 

reported direct coupling of terminal alkynes catalysed by a phosphine-Pd(0) complex in 

the presence of amines.162,163 Sonogashira coupling uses copper iodide as co-catalyst 

i.e. Pd(0)-CuI-catalysed reaction.164,165 Coupling reactions with metallated alkynes such 
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as zinc and tin acetylides, under palladium catalysis are known as Negishi and Stille 

reactions, respectively. Among this wide array of coupling reactions, the Sonogashira 

coupling reaction was chosen for the synthesis of the aryl alkyne, since it has been 

used in the synthesis of a wide range of heterocyclic compounds and is generally 

considered to be superior to other currently known protocols. It is also highly versatile, 

has great tolerance for nearly all types of functional groups and mild conditions are 

usually employed.166 The Sonogashira reaction cross-couples an aryl or vinyl halide 

(electrophile) with a terminal alkyne (nucleophile) under palladium catalysis. This 

catalytic process requires the use of a palladium(0) complex, and is performed in the 

presence of an aliphatic amine (base) and copper(I) iodide as a co-catalyst. (Scheme 

5) 

 

      

X

X = I, Br, Cl

OR X

Pd(0), CuI
alkylamine

R
R

OR
R

    

 
Scheme 5. Reaction conditions for the Sonogashira coupling reaction. 

 
The general order of reactivity of the organic halide is in line with the reactivity of the 

leaving group. Hence an iodoarene generally affords shorter reaction times and higher 

yield compared to its bromo or chloro counterparts.166 Based on these observations, a 

C-C disconnection of (69) (Scheme 4) led back to two starting materials: methyl 

2-iodo-3-nitrobenzoate (71) and the substituted ethyne (70). Sonogashira coupling 

suffers from two serious competitive side-reactions, namely homocoupling and 

decomposition of alkynes.166 The most direct route to the synthesis of arylalkyne (69) is 

to cross-couple the iodo-ester (71) with ethyne gas. However, the product (72), would 

be more acidic than ethyne itself, thus competing for coupling reaction with halide (71) 

and ultimately leading to the formation of 1,2-disubstituted alkyne (73) (Scheme 6). To 

overcome this difficulty, an indirect route involving protection and deprotection of the 

ethynyl group is, therefore, necessary. The trimethylsilyl (TMS) group is commonly 

used for this purpose. CuI and Pd(0) also catalyse oxidative homocoupling of terminal 

alkynes in an O2 atmosphere (Glaser reaction). Hence, carrying out the reaction in an 

atmosphere of N2 or argon is necessary. 
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Scheme 6. Potential Formation of 1,2-disubstituted alkyne from Sonogashira homocoupling 

reaction. 

 
3.1.2 Synthesis of methyl 2-iodo-3-nitrobenzoate 

 
The iodo-ester methyl 2-iodo-3-nitrobenzoate (71), starting material for the preparation 

of the target compounds, is not commercially available and the synthesis as shown in 

Scheme 7 is now well established. Culhane et al167 first described the synthesis of 

2-iodo-3-nitrobenzoic acid (76) by the decarboxylative iodination of 3-nitrophthalic acid. 

The starting material 3-nitrophthalic acid (74) has both the required carboxylic acid 

(1-position) and nitro functions (3-position) positioned meta to each other. The first 

stage in the synthesis was to decarboxylate 3-nitrophthalic acid with mercury(II) 

acetate, followed by electrophilic iodination with a mixture of iodine and potassium 

iodide. Interestingly, only the desired 2-iodo-acid (76) was formed without any of the 

possible by-products arising from iodination at the 1-position suggesting that 

mercuration has occurred regiospecifically at the 2-position. Presumably the reaction 

proceeded through a free radical mechanism via an aryl-mercury intermediate, 

2-hydroxymercuri-3-nitrobenzoic acid (75). The second stage involved 

H2SO4-catalysed esterification of the iodo-acid and this reaction proceeded smoothly 

affording the methyl ester (71) in excellent yield (95%). This compound serves as an 

important precursor for the Sonogashira coupling reaction. 

 

Scheme 7. Synthesis of methyl 2-iodo-3-nitrobenzoate. 
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3.1.3 Sonogashira coupling reaction 

 

Sonogashira coupling was performed between methyl 2-iodo-3-nitrobenzoate (71) and 

trimethylsilylacetylene (TMSA) (77), in the presence of a catalytic amount of 

bis(triphenylphosphine)palladium(II) chloride [(Ph3P)2PdCl2] (78) and copper(I) iodide in 

diisopropylamine (DIPA) and dry THF. The mixture was stirred at 45  oC for 72 h under 

argon. The catalyst, used in this reaction, (Ph3P)2PdCl2, was prepared separately by 

heating a mixture of palladium(II) chloride and two equivalents of triphenylphosphine in 

DMF at 80 oC for 24 h (Scheme 10). Although the coordinatively unsaturated Pd(0) is 

the catalytically active species, it is often more convenient to use Pd(II) derivatives, 

such as palladium(II) acetate [Pd(OAc)2] and bis(acetonitrile)palladium(II) chloride 

[(MeCN)2PdCl2]. Palladium(II) complexes are generally more stable than their 

palladium(0) counterparts. They are also generally more soluble in organic solvents. 

The copper(I) salt functions as an important co-catalyst that facilitates the substitution 

reaction. Coupling catalysed by Pd(0) and CuI proceeds via in situ generation of Cu 

acetylides. The aliphatic amine diisopropylamine serves as a reducing agent to 

generate Pd(0) from the Pd(II) precatalyst and is sometimes used as a solvent.166 

 

The reaction mechanism as proposed by Sonogashira166 suggests that the substitution 

reaction occurs via a catalytic cycle which consists of three main steps (Scheme 8): 

1. Oxidative addition 

2. Transmetallation  

3. Elimination 
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Scheme 8. Proposed mechanism for Sonogashira coupling between methyl 2-iodo-3-

nitrobenzoate (71) and trimethylsilylacetylene. 

 
Under the reaction conditions, (Ph3P)2PdCl2 was rapidly reduced in situ to give the 

catalytic species (Ph3P)2Pd(0). Oxidative addition of this Pd(0) complex with the methyl 

2-iodo-3-nitrobenzoate (71) gives a Pd(II) intermediate (78). It is speculated that an 

alkynylcopper species (79), is generated as a result of a π-alkyne-copper complex 

formed in situ from a reaction between TMSA and the copper(I) iodide, thus making the 

alkyne proton more acidic for easier abstraction (Scheme 9). Finally coupling of the two 

organic ligands and reductive elimination gave the desired methyl 

3-nitro-2-(2-trimethylsilylethynyl) benzoate (80) in 28% yield. The reaction also gave 

methyl 3-nitrobenzoate (81) as a dehalogenated side product (14% yield). This was 

formed from decomposition of the intermediate arylpalladium, which had failed to 

couple with the alkyne, i.e. replacement of iodine with hydrogen during the coupling 

process.  
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Scheme 9. Formation of alkynyl copper species. 

 
The long reaction time (72 h), modest yield of the desired alkyne (80) (28%) and side 

product (81) (14%) could be associated with the use of sterically hindered halides (71) 

where both ortho positions were substituted with bulky groups. 
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Scheme 10. Sonogashira coupling of methyl 2-iodo-3-nitrobenzoate with TMSA and 

subsequent desilylation of methyl 3-nitro-2-(2-trimethylsilylethynyl)benzoate. 

 
Attempted desilylation of methyl 3-nitro-2-(2-trimethylsilylethynyl)benzoate (80) under a 

variety of basic conditions (e.g., potassium carbonate/methanol) caused extensive 

decomposition.160 The classical tetrabutylammonium fluoride (TBAF) ion-mediated 

desilylation gave only a maximum yield of 9% of desilylated product.160 Removal of 

trimethylsilyl protection from alkynes with silver(I) nitrate is widely reported to be 

efficient if cyanide ion is added to break up the initially formed alkynylsilver(I).168,169 

Orsini et al170 have recently developed a selective desilylation of 1-trimethylsilyl-2-

alkylalkynes with silver(I) triflate in a biphasic solvent system at room temperature. 
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Adapting this method to desilylate (80), prolonged heating with silver(I) triflate in a 

mixture of methanol, water and dichloromethane gave good yields (>70%) of the 

required alkyne (82). We attribute the need for the higher temperature and much longer 

reaction times to the highly electron-deficient nature of the starting trimethylsilylalkyne. 
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Scheme 11. Desilylation of methyl 3-nitro-2-(2-trimethylsilylethynyl)benzoate with silver(I) 

triflate. 

 
The first step in the mechanism is the formation of a π-complex between the silver 

triflate and (80).171 This coordination activates the TMS group towards nucleophilic 

attack by either the counterion (-OTf) or a nucleophilic solvent which leads to cleavage 

of the C–Si bond and in situ formation of silver acetylide and a silyl-triflate species. In 

protic solvents, the latter is hydrolysed leading to a better proton source (HOTf), strong 

enough to hydrolyse the alkynyl silver species (83). Silver ion released completes the 

catalytic cycle (Scheme 11).  

 
Having successfully coupled TMSA to the iodo-ester, the corresponding reaction with 

phenylacetylene was investigated. The Sonogashira coupling reaction between (71) 

and phenylacetylene (84) (the least expensive and exceptionally reactive alkyne) under 

the same reaction conditions as with TMSA gave the coupling product, methyl 

3-nitro-2-(2-phenylethynyl)benzoate (85), in very good yield (51%) and the reaction 
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was completed in a much shorter period of time (48 h). As in the previous reaction, the 

dehalogenated side product (81) was also isolated (38%) (Scheme 12). The reaction 

also gave 1,4-diphenylbutadiyne (86) as a by-product, the product of Glaser-like 

homodimerisation of the starting alkyne. 

NO2

I

OMe

O
(Ph3P)2PdCl2
CuI

DIPA
THF

Ph
NO2

OMe

O

NO2

OMe

O

(71) (85) (81) (86)

 

Scheme 12. Sonogashira coupling of methyl 2-iodo-3-nitrobenzoate with phenylacetylene.  

 
3.1.4 Study of the modes of cyclisation of methyl 2-alkynyl-3-nitrobenzoates 

 
Several groups have reported the cyclisation of 2-alkynylbenzoic acids and 2-

alkynylbenzoate esters under electrophilic conditions, although no examples have a 

substituent at the 3-position of the benzoate. There is debate about whether the 

reaction goes 5-exo-dig (giving ylidenephthalides 88) or 6-endo-dig (giving 

isocoumarins 89), as shown in Scheme 13 (R3 = H); both are favoured under Baldwin’s 

Guidelines.172  

O
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R2R3

O

O

R2R3

O

O

R3

R2

5-exo-dig 6-endo-dig
(87)

(89)(88)  

Scheme 13. Possible alternative cyclisation modes of 2-alkynylbenzoic acids (87) (R1 = OH) 

and 2-alkynylbenzoate esters (R1 = OMe) via 5-exo-dig (giving 88) and 6-endo-dig (giving 89) 

routes. R2 = alkyl, aryl. R3 = H. 
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Treatment of methyl 2-arylethynylbenzoates with Hg(II) under acidic conditions is 

reported to give intermediate mercurials, from which 3-arylisocoumarins can be 

isolated by reduction with NaBH4.
173,174 Similarly, reaction of the same starting 

materials with hydrogen iodide, electrophilic iodine reagents, bromine, sulfenyl 

chlorides and selenyl chlorides gave 3-arylisocoumarins and their 4-iodo, 4-bromo, 4-

arylthio and 4-arylselenyl derivatives, respectively.175-178 Dihydrofuroisocoumarins have 

also been synthesised by Ag(I)-promoted 6-endo-dig cyclisation of the corresponding 

arylalkynylbenzoate esters.179 In contrast, methyl 2-ethynylbenzoate undergoes 5-exo-

dig cyclisation with iodine178 and Ag(I)-mediated cyclisation of 2-alkynylbenzoic acids 

affords the corresponding ylidinephthalides.180 Under basic conditions (LiOH), methyl 2-

(pent-1-ynyl)benzoate undergoes exclusive 6-endo-dig cyclisation whereas methyl 2-

(3-hydroxypent-1-ynyl)benzoate gives a mixture of products from both cyclisation 

modes.181 Cherry et al.182 have shown very recently that treatment of 2-iodobenzoic 

acid with allenylstannanes under Pd-catalysed Stille conditions also gives 

isocoumarins, through 6-endo-dig cyclisation of the intermediate 2-(3-substituted-

allenyl)benzoic acids.  

 

3.1.5 Castro-Stephens coupling reaction 

 
Stephens and Castro,161 during the synthesis of arylalkynes from iodoarenes and CuI-

acetylides, claimed that treatment of 2-iodobenzoic acid (90) with Cu-C≡C-Ph gave 3-

phenylisocoumarin (91) by Cu-catalysed 6-endo-dig cyclisation of the intermediate 2-

phenylethynylbenzoic acid (Scheme 14). However this claim was later withdrawn184 

with the correction of the characterisation of the product to be the benzylidenephthalide 

(92) resulting from 5-exo-dig cyclisation. 

 
Woon et al160 carried out the reaction of 2-iodo-3-nitrobenzoic acid (76) with copper(I) 

phenylacetylide in boiling pyridine under nitrogen and characterised the only cyclisation 

product to be 5-nitro-3-phenylisocoumarin (93) (Scheme 15). It was firmly established 

that Cu-catalysed cyclisation of the 2-(arylalkynyl)-3-nitrobenzoic acids (76) followed 6-

endo-dig mode of cyclisation as (93) was the only product formed. It may be significant 

that the presence of a highly electron-withdrawing nitro group in the 

2-iodo-3-nitrobenzoic acid (76) might favour the formation of isocoumarin (93) rather 

than phthalide (94). 
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Scheme 14: Reaction of 2-iodobenzoic acid with copper(I)phenylacetylide to yield 3-

benzylidene phthalide instead of the isomeric 3-phenylisocoumarin.161,183 
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Scheme 15: Reaction of 2-iodo-3-nitrobenzoic acid with copper(I) phenylacetylide to yield 5-

nitro-3-phenylisocoumarin instead of 3-benzylidene-4-nitrophthalide.160 

 
3.1.6 Investigations into electrophile driven cyclisations of methyl 2-alkynyl–3-

nitrobenzoates 

 
Given the dichotomy of reports of the outcome of the 

cyclisations, in the Castro-Stephens tandem version, 

we initiated a short study on whether the mode of 

cyclisation would be influenced by the presence of the 

nitro group ortho to the alkyne. This strongly electron-

withdrawing group should influence the electron 

distribution in the alkyne and was predicted to favour 

6-endo-dig cyclisation by making the alkyne carbon 

further from the nitroarene more electrophilic (Figure 

R'

O

R"N
O O

Figure 14: Proposed influence

of the or tho nitro group on the

electron-distribution in the
alkyne in 2-alkynyl-3-nitro

benzoic acids and 2-alkynyl-3-

nitrobenzoate esters. R' = H or
alkyl, R'' = H, silyl, alkyl, aryl.
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14). Each of the three methyl 2-alkynyl-3-nitrobenzoates (85), (80) and (82) (carrying 

the diverse substituents Ph, SiMe3 and H, respectively) was treated with three different 

electrophiles (HgSO4/H2SO4, ICl and PhSeCl), to investigate whether or not cyclisation 

would occur and whether such cyclisation would be 5-exo or 6-endo (Scheme 18).  

 
3.1.6.1 Hg(II)-mediated cyclisations  

 
It was reported earlier that treatment of (85) with mercury(II) sulfate under acidic 

conditions afforded an almost quantitative yield of a single product, the isocoumarin 

(93), which was identical to the material prepared by the Castro–Stephens one-pot 

method.160 (Scheme 16) 
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Scheme 16: Mercury-mediated ring-closure of methyl 3-nitro-2-(2-phenylethynyl)benzoate. 

 

Similar treatment of the analogous trimethylsilylalkyne (80), however, gave only methyl 

2-acetyl-3-nitrobenzoate (95), in modest yield after chromatography. The same ketone 

was also isolated from the reaction of (82) with mercury(II) sulfate and acid; the NMR 

spectrum also indicated the presence of a trace of the isomeric pseudoester (96).184  
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Scheme 17: Proposed routes for the formation of (95) and (96) through 5-exo attack of the 

neighbouring ester carbonyl oxygen. 

 
The mechanism of the reaction involves the formation of 2-acetyl-3-nitrobenzoate (95) 

from both (80) and (82). This is achieved by attack of an oxygen nucleophile on the 

alkyne carbon nearest to the benzene ring, in contrast to the formation of 

5-nitro-3-phenylisocoumarin (93) from (85), which must arise from 6-endo attack of the 

ester carbonyl oxygen on the carbon remote from the substituted ring. The alkyne here 

is polarised in the opposite sense. Scheme 17 shows a mechanism for this change in 

reactivity. By analogy with the mechanism of the silver(I)-mediated desilylations,170,171 

we propose that transmetallation of (80) occurs to form an alkynylmercury species, 

such as (97). This intermediate could also be formed by direct metallation of (82). In 

intermediate (97) the polarisation of the alkyne is caused by coordination to mercury. It 

is likely that this is more than the opposite polarisation induced by the two ortho-

electron-withdrawing substituents (nitro, carbonyl) on the benzene ring. The ester 

carbonyl oxygen is located on the same side for 5-exo nucleophilic attack, giving 

intermediate (98). Hydrolysis would then afford the major product, the ketone (95). It is 

not clear whether the minor side-product (96) is formed from (95) or directly from 

intermediate (98). 
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Scheme 18:  Electrophile-driven cyclisations of methyl 2-alkynyl-3-nitrobenzoates. 

 
3.1.6.2 ICl- mediated cyclisations  

 
The set of three alkynes (80), (82) and (85) was also treated with the electrophilic 

iodine reagent iodine monochloride at ambient temperature in dichloromethane. Only 

the phenylalkyne (85) gave an identifiable product, affording 4-iodo-5-nitro-3-

phenylisocoumarin (99) in good yield (81%) (Scheme 18).  
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Scheme 19. Proposed mechanism for the putative formation of phthalide (103) and 4-iodo-5-

nitro-3-phenylisocoumarin (99). 

 

It was believed that heteroannulation proceeded via the mechanism outlined in 

Scheme 19. The first step presumably involves the formation of the bridged iodonium 

complex (100) via electrophilic addition of I+ to the alkyne. This was followed by 

nucleophilic attack by the oxygen of the carbonyl group. Finally facile removal of the 

methyl group via SN2 displacement by the chloride anion present in the reaction 

mixture generates the 4-iodo-5-nitro-3-phenylisocoumarin (99) and one molecule of 

MeCl. Theoretically, there are two possible ways in which cyclisation can occur. The 

carbonyl oxygen may either attack in a 5-exo-dig manner (Path A) to give a 

5-membered side product, 3-(iodo(phenyl)methylene)-4-nitrophthalide (103), or it may 

undergo 6-endo-dig ring closure (Path B) to give the desired 4-iodo-

5-nitro-3-phenylisocoumarin (99). According to Baldwin’s guidelines for ring closure,172 
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both reactions are favourable because both carbons of the acetylene have two π* 

orbitals, one of which must always lie in the plane of the new ring, making it very easy 

for the lone pair on the carbonyl oxygen to overlap with. Hence a mixture of phthalide 

and isocoumarin was expected from the reaction.  

 

Only isocoumarin (99) was obtained from this iodocyclisation. No benzofuranone 

product was observed to arise by this process. Obviously, 6-endo cyclisation is more 

facile than 5-exo cyclisation. The presence of a neighbouring powerfully electron-

withdrawing nitro group possibly made carbon B more electron deficient compared to 

carbon A, thus greatly favouring 6-endo-dig over 5-exo-dig ring closure, and accounting 

for the lack of formation of any 5-membered phthalide product (103). The structure of 

(99) was confirmed as being the isocoumarin product of 6-endo cyclisation by two 

methods. 

• Firstly, the IR spectrum showed absorption at 1732 cm-1, which lies in the 

range 1730–1750 cm-1 for six-membered ring lactones but not in the 

corresponding range for five-membered ring lactones (1760–1780 cm-1). 

•  Secondly, palladium-catalysed reductive deiodination of (99) with triethyl 

ammonium formate (by the general method of Rossi et al.178) gave an excellent 

yield of 5-nitro-3-phenylisocoumarin (93), identical to samples prepared by the 

one-pot Castro–Stephens method and the Hg(II)-mediated cyclisation of (85).  

 
No isocoumarins or isobenzofuranones were identified in the NMR spectra of the crude 

mixtures of products formed from the treatment of ICl with trimethylsilylalkyne (80) or 

from the monosubstituted alkyne (82). An interesting feature of the iodocyclisation 

reaction is the fact that the iodoisocoumarins generated could be further elaborated by 

using various palladium-catalysed processes (Sonogashira, Heck or Suzuki coupling 

reactions) to introduce substituents at the 4-position of the isocoumarin. Hence this 

reaction could prove a useful tool for the synthesis of 3,4-disubstituted 

5-aminoisoquinolin-1(2H)-ones.  

 
3.1.6.3 PhSeCl-mediated cyclisations  

 

The reactions of the electrophile phenylselenyl chloride with the alkynes (80), (82) and 

(85) were investigated (Scheme 18). The monosubstituted alkyne (82) did not undergo 

cyclisation as no isocoumarins or isobenzofuranones could be identified as products of 

the reaction. However, the disubstituted alkynes (80) and (85) formed the 

corresponding 4-phenylselenylisocoumarins (104) and (105) in moderate-to-good 
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yields, through 6-endo cyclisation. Again, the IR spectra indicated 6-membered ring 

lactones, with bands at 1733 cm-1 for both isocoumarins. Since suitable methods for 

reductive removal of phenylselenyl group were lacking, we could not carry out the 

comparison with (93) synthesised previously by three independent routes. An X-ray 

crystal structure determination was carried out for 5-nitro-3-phenyl-4-

phenylselenylisocoumarin (105). Large bright orange-red crystals were formed from 

ethyl acetate. The structure and X-ray crystallographic numbering scheme are shown 

in Figure 15. 

 
The most striking observation in this crystal structure is the intermolecular and 

intramolecular π-stacking of all three benzene rings in the molecule. Figure A shows 

four molecules in two parallel stacks, viewed from the axis of the stacking. The nature 

of the stacking is shown in the side view in Figure B, with the C–Ph and SePh rings 

stacked intramolecularly; these then stack intermolecularly with the carbocyclic ring of 

the isocoumarins. This isocoumarin also displays interesting conformational features 

within the molecule, as shown in Figure 16. 

 

 

Figure 15. The structure and X-ray crystal structure of 5-nitro-3-phenyl-4-

phenylselenylisocoumarin (105) with crystallographic numbering.  

 

The three adjacent substituents, phenyl, phenylselenyl and nitro, at the 3-, 4- and 5-

positions, respectively, occupy very crowded regions of space. In particular, there is a 

severe peri interaction between the nitro and phenylselenyl groups. The nitro group is 

twisted out of the plane–plane subtended by atoms C2–C8 and C10 of the 

isocoumarin, by 36.9 o. Because of the severe steric crowding the pyranone ring of the 

isocoumarin is forced out of the plane described above, such that C-1 lies some 0.19 Å 

above same. This effect is demonstrated even more clearly by the position of the 

O

O

SeNO2

(105)
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selenium atom at 0.93 Å above this mean plane, as depicted in Figure C (wherein the 

structure is viewed from the plane of the benzene ring) and in Figure D (in which the 

structure is viewed along the Se–C bond vector). The 3-phenyl substituent is twisted 

out of the isocoumarin mean plane by 36.5°. The presence of the adjacent bulky 

phenylselenyl is presumably responsible for this greater lack of coplanarity.  

 

The gross structure is dominated by interdigitating intra- and intermolecular stacking of 

the aromatic rings. The intermolecular centroid–centroid distance between the aromatic 

rings is 3.8 Å, while the comparable intermolecular aromatic–aromatic distances 

average 4.1 Å. This latter value reflects the fact that the π-stacking is offset in the 

intermolecular case. 

 

 

 

Figure 16 A: Axial view of intermolecular and intramolecular π-stacking in the crystal of (105). 

B: Side view of intermolecular and intramolecular π-stacking of two molecules. C: View of single 

molecule of (105) in the plane of the isocoumarin carbocyclic ring. D: View of single molecule of 

(105) along the Se–C bond. Grey = C, white = H, blue = N, red = O and orange = Se. 

A B 

C D 
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3.1.7 Conclusions 

 

Cyclisations of methyl 2-alkynyl-3-nitrobenzoates with various electrophiles were 

studied. Cyclisations of methyl 3-nitro-2-phenylethynylbenzoate (85) with iodine 

monochloride and with phenylselenyl chloride followed the 6-endo route to give the 

isocoumarins (99) and (105), respectively, as did cyclisation of methyl 3-nitro-2-

trimethylsilylethynylbenzoate (80) with phenylselenyl chloride, affording the 

isocoumarins (104). This change in regiochemistry of cyclisation is presumably due to 

the nitro group inducing polarisation of the alkyne, making the remote sp-carbon more 

electrophilic (Figure 14). Similarly, Hg(II)-catalysed cyclisation of methyl 2-

phenylalkynyl-3-nitrobenzoate (85) was reported to proceed in the 6-endo mode to give 

2-nitro-3-phenylisocoumarin (93). This too demonstrates the directing influence of the 

electron-withdrawing nitro group on the electrophilicity of the alkyne. Thus the 

regiochemistry of these cyclisations is also likely to be under the control of the nitro 

group. In contrast, the formation of methyl 2-acetyl-3-nitrobenzoate (95) by treatment of 

(80) and (82) with Hg(II) suggests that a 5-exo cyclisation may have been driven by the 

change in electron-distribution caused by the formation of an intermediate 

alkynylmercury complex. 

 

These studies extend the understanding of electrophile-driven cyclisations of 2-

alkynylbenzoic acids and 2-alkynylbenzoate esters to the previously unreported cases 

where a powerful electron-withdrawing group is present, influencing the electron-

distribution of the alkyne. This understanding will be useful in predicting modes of 

cyclisation in the synthesis of more complex isocoumarins. 
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3.2 Route I: 4-Substituted 5-aminoisoquinolin-1(2H)-ones by reductive cyclisation 

of Phenylacetonitrile 

 

3.2.1 Retrosynthetic analysis 

 

The first series of target compounds investigated were the 4-substituted 

5-aminoisoquinolin-1(2H)-ones. In designing our synthetic strategies, efforts were 

made to ensure sufficient versatility to allow for a great variety of substituents (alkyl and 

aryl substituents of various electronic and steric nature) to be attached at the 4-position 

via a common synthetic route. Ideally; diversification should occur at a late stage of 

synthesis to avoid inefficient repetition of synthetic steps.  

 

Retrosynthetic analysis for the 4-substituted targets is illustrated in Scheme 20. We 

approached our retrosynthesis by first performing functional group interconversion 

(FGI) on the target molecule (106). Reduction of the nitro group to an amine via 

catalytic hydrogenation or acid/metal reduction is a highly efficient and reliable reaction. 

Though the nitro group, being highly electron-withdrawing, is likely to reduce the 

reactivity of the carbocyclic ring towards electrophilic attack and should, in most cases, 

be disconnected first, we reasoned that incorporation of nitro group at the beginning of 

synthesis will avoid the need for subsequent regioselective nitration of the 4-substituted 

isocoumarin or isoquinolin-1(2H)-one ring. Disconnection at the C-N bond of the ring of 

(107) focusses on the cyclisation between an imine and an ester. DIBAL-H, well known 

for its selectivity for reducing nitriles, is used to reduce the nitrile function to imine.185,186 

 

Disconnection at the C-C bond of (108) led to methyl 2-cyanomethyl-3-nitrobenzoate 

(109). At this point, the desired substituents could be introduced via alkylation of the 

methylene carbon of compound (109). This could be achieved quite simply, for 

instance via initial deprotonation with a hindered base such as lithium 

hexamethyldisilazide (LHMDS), followed by reaction with an appropriate alkylating 

agent such as iodomethane. The alkylation process is considered as a reliable and 

standard process to introduce appropriate substituents. Synthesis of (109) from (110) 

requires a functional group interconversion (FGI) and is achieved by nucleophilic 

substitution with tetraethylammonium cyanide. The precursor is formed from radical 

bromination of the ester (111) which, in turn, could be synthesised via acid-catalysed 

esterification of the carboxylic acid (112). 
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Scheme 20. Retrosynthetic analysis of the 4-substituted 5-aminoisoquinolin-1-ones via 

reduction of a phenylacetonitrile.  

 
In the project on PARP-1 inhibitors, new synthetic approaches to 5-aminoisoquinolin-1-

ones were investigated.160 In one of the synthetic routes to 5-aminoisoquinolin-1-one 

the 2-N and 3-C were introduced at a higher oxidation level, as a cyanide group.187 This 

route not only provides a novel, reliable and simple route for the preparation of 5-AIQ 

(Scheme 21) but also represents a promising synthetic strategy for the synthesis of the 

4-substituted 5-aminoisoquinolin-1-ones. This could be achieved by introducing the 

desired substituents via alkylation of the methylene carbon of compound (109) and 

subsequent ring closure of (108) with DIBAL-H to form the 4-substituted 5-

nitroisoquinolin-1(2H)-ones.  

 

2-Methyl 3-nitrobenzoic acid (112) was used as the precursor. The first step was 

esterification of the acid via an acid-catalysed esterification process. Radical 

bromination of the aryl methyl was achieved with bromine and dibenzoyl peroxide in 

boiling carbon tetrachloride under irradiation with a tungsten lamp. This gave the 

monobrominated product, methyl 2-bromomethyl-3-nitrobenzoate (110), in good yield. 
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Scheme 21. Synthesis of 5-aminoisoquinolin-1(2H)-one. 

 
Displacement of the bromo group with cyanide was carried out by nucleophilic 

substitution with Et4N
+CN- in acetonitrile at room temperature affording the nitrile (109) 

in good yield. The nitrile was then reduced selectively with DIBAL-H at -78°C, 

generating the intermediate imine (115) which cyclised to give 5-nitroisoquinolin-1-one 

(113) in moderate yield. Presumably, during aqueous acid work-up, the transitional 

imine (or the tautomeric enamine) underwent rapid intramolecular cyclisation to (113) 

before reduction of the neighbouring methyl ester could occur (Scheme 22). 

 

 

Scheme 22. Proposed mechanism for the reductive cyclisation of methyl 2-cyanomethyl-3- 

nitrobenzoate (109). 
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3.2.2 Investigations into reductive cyclisations catalysed by DIBAL-H 

 

The DIBAL-H reductions of two analogues of (114) with bulky substituents at either the 

ester or methylene position were studied to explore the generality of this route. The 

benzyl group was chosen to increase the steric bulk at the methylene position while an 

isopropyl ester was used instead of a methyl ester. The acidity of methylene protons 

adjacent to the nitrile group allowed introduction of the benzyl group. As these 

methylene protons were adjacent to the two electron-withdrawing groups, one of them 

could be removed using the non-nucleophilic base lithium hexamethyldisilazide 

(LHMDS). This, on quenching with benzyl bromide, afforded (116) (Scheme 23). 

Reduction with DIBAL-H at -78 °C, did not form 5-nitro-4-benzylisoquinolin-1(2H)-one 

(118) as predicted but afforded only the aldehyde 2-(2-formyl-6-nitrophenyl)-3-

phenylpropanenitrile (117), arising from reduction of the ester while leaving the nitrile 

unaltered. To form the desired product (118) DIBAL-H has to reduce the nitrile function 

first to an imine, which on subsequent intramolecular nucleophilic attack of the ester 

undergoes cyclisation. 
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Scheme 23. Formation of 2-(2-formyl-6-nitrophenyl)-3-phenylpropanenitrile (117). 

 
In compound (116) approach of the DIBAL-H to the nitrile is obstructed by the adjacent 

benzyl group, leading to reduction at the ester only, giving (117) via formation of the 

tetrahedral intermediate (119) which is stable even at -70°C (Scheme 24). This 

intermediate collapses to the aldehyde on aqueous work-up. 
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Scheme 24. Proposed mechanism for formation of 2-(2-formyl-6-nitrophenyl)-3-

phenylpropanenitrile (117). 

 

Studies using the isopropyl ester to increase steric bulk at the ester were conducted 

earlier in our laboratory.187 It was expected that steric bulk at the ester would slow 

down reduction of the ester, allowing the nitrile more time to react. The isopropyl 

ester188 was brominated and converted to the nitrile (120). Reduction with DIBAL-H, 

however, gave the isoquinoline (123) as the sole identifiable product, formed from 

reduction of both the ester and the nitrile. This indicates, surprisingly, that increasing 

the steric bulk of the ester makes it more prone to reduction. Careful examination of the 

mechanism reveals that for (120), step 1 is fast, giving (121) but approach of the 

nucleophile in step 2 is slowed by the steric bulk of the Pri, allowing time for reduction 

of the ester (step 3), leading to aldehyde (122) and cyclisation to 5-nitroisoquinoline 

(123) (scheme 25). 
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Scheme 25. Proposed route for the formation of 5-nitroisoqunioline (123).187 
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This route could thus only be used for the synthesis of 5-AIQ (114) (scheme 21). The 

severe effects of steric bulk mitigate against the general utility of this reductive 

cyclisation using DIBAL-H. Since reductive cyclisation of nitrile is the most critical step 

in the proposed route, difficulties in this step called for alternative routes to be 

developed.  
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3.3 Route II: 4-Substituted 5-aminoisoquinolin-1(2H)-ones via Pd-catalysed 

couplings of 4-bromoisoquinolin-1-ones 

 

3.3.1 Retrosynthetic analysis 
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Scheme 26. Retrosynthetic analysis of the 4-substituted 5-aminoisoquinolin-1-ones via Pd-

catalysed couplings of 4-bromoisoquinolin-1-ones. 

 

Retrosynthetic analysis of our 4-substituted target (106) gave the pathway illustrated in 

Scheme 26. The target molecule could be synthesised by two routes. Route 1 requires 

the formation of 4-substituted 5-nitroisoquinolin-1-ones (107) achieved using 

organometallic approaches on 4-bromo-5-nitroisoquinolin-1-one (124). Route 2 

suggested synthesis of the target molecule directly by organometallic approaches 

using Pd(0) coupling reactions on 5-amino-4-bromoisoquinolin-1-one (125), followed by 

functional group interconversion to 4-bromo-5-nitroisoquinolin-1-one (124). In Route 2 

reduction of the nitro group to amine (via hydrogenolysis or acid/metal reduction) is 



 83 

performed prior to Pd(0)-catalysed coupling reactions. This is done in order to minimise 

any steric hindrance that may be arising from sterically bulky groups like bromo and 

nitro placed adjacent to each other. The 4-bromo group is of great value in 

organometallic synthesis as a means through which a diverse range of substituents 

may be introduced at the 4-position via appropriate organometallic reagents, such as 

organoboranes (Suzuki coupling reaction), organostannanes (Stille coupling 

reaction) or organoacetylenes (Sonogashira coupling reaction). We believe that a 

series of 4-substituted targets are synthetically accessible through these pathways.  

 
Both the Routes (1 and 2) converge at this stage to 4-bromo-5-nitroisoquinolin-1-one 

(124), synthesis of which could be achieved by bromination of 5-nitroisoquinolin-1-one 

(113). Synthesis of the latter requires functional group interconversion of isocoumarin 

to isoquinolin-1(2H)-one (e.g. by treatment with boiling ammonia-saturated 

2-methoxyethanol). This is well-established reaction that is highly reliable and efficient. 

The challenge, then, was to devise a synthetic strategy for the construction of the 

isocoumarin (126). Disconnection at the C-O bond of the isocoumarin as shown, i.e. 

ring opening is rational because the reverse lactonisation process is a very fast 

reaction, easily accomplished, for instance, through the use of an acid catalyst. The 

synthesis of 5-nitroisocoumarin (126) (Scheme 27) is now well established,86 through 

condensation of methyl 2-methyl-3-nitrobenzoate (111) with dimethylformamide 

dimethylacetal (128), followed by hydrolysis of the intermediate methyl E-2-(2-

dimethylaminoethenyl)-3-nitrobenzoate (127) and cyclisation catalysed by wet silica. 

 

 

 
Scheme 27. Chemical synthesis of 5-nitroisocoumarin via condensation of compound (111) 

with DMFDMA. 

 
It was reported earlier that condensation of methyl 2-methyl-3-nitrobenzoate with, 

DMFDMA at high temperature (150 oC) gave the enamine methyl E-2-(2-

dimethylaminoethenyl)-3-nitrobenzoate (127) (Scheme 27).86 Immediate passage of 

this crude enamine through undried silica gel (column chromatography) not only 

provides sufficient acid catalysis to hydrolyse the enamine and to cyclise the 
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intermediate enol to 5-nitroisocoumarin, but also purifies the product, all in one elegant 

step. Alternatively (route 2) the enamine is hydrolysed to the aldehyde which later 

displaces the methoxy group to form (126). 

 

 
Scheme 28. Proposed mechanism for the condensation reaction between methyl 2-methyl-3-

nitrobenzoate (111) and DMFDMA (128). 

 
Heating with ammonia at high temperature154,150 is one of the simplest procedures 

reported in the literature for the conversion of isocoumarins to isoquinolin-1-ones. Thus 
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5-nitroisocoumarin (126) was treated with boiling ammonia-saturated 2-methoxyethanol 

and this afforded 5-nitroisoquinolin-1-one (113) in good yield (89%).  

 
3.3.2 Iodination / bromination at 4-position of 5-nitroisoquinolin-1-one  

 
The 4-position of 5-nitroisoquinolin-1-one (113) is believed to be more nucleophilic, 

compared to the 3-position, due to a mesomeric electron-donating effect of the ring 

nitrogen. Such a difference in 

nucleophilicity, and thus reactivity, 

towards electrophiles between the 3- 

and 4-position can be exploited to 

attach an electrophile selectively, such 

as iodine or bromine, at the 4-position. 

Alternatively, the pyridine ring of isoquinolin-1-one also act as N-acyl enamine thus 

contributing to the nucleophilicity of 4-position (Figure 17). 

 
The iodination of 5-nitroisoquinolin-1-one (113) with a solution of iodine in acetic acid 

was undertaken. However, the reaction mixture remained unchanged even after stirring 

for 24 h with heating to 100 oC. Employment of more electrophilic conditions, such as 

N-iodosuccinimide in acetic acid, also failed to effect halogenation. Treatment of 

5-nitroisoquinolin-1-one (113) with iodine in the presence of silver trifluoroacetate in 

Et2O/THF/CHCl3 also gave the starting material unchanged.189,190 A switch to the use of 

brominating reagents (bromine being more reactive compared to iodine) was therefore 

considered. Bromination of 5-nitroisoquinolin-1-one (113) with N-bromosuccinimide in 

glacial acetic acid furnished a mixture of 4-bromo-5-nitroisoquinolin-1-one (124) and 4-

bromo-5-nitro-1-oxo-1,2,3,4-tetrahydroisoquinolin-3-yl acetate (129). The latter when 

heated to melt gave a mixture of 4-brominated (124) and debrominated (113) 

compounds in the ratio of 2:3. However, the low yield (30%) and lack of reproducibility 

of the reaction discouraged further attempts of bromination with N-bromosuccinimide. 
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Scheme 29. Different chemical approaches for iodination / bromination at the 4-position of 

5-nitroisoquinolin-1-one. 

 
Horning et al191 described various electrophilic substitutions on N-alkylated isoquinolin-

1-ones and emphasised the fact that electrophilic attack of the hetero ring would be 

confined to one carbon atom i.e. to C-4. In this study, bromination of 2-methyl-5-

nitroisoquinolin-1-one (132) was carried out with the addition of one molecular 

equivalent of bromine in acetic acid to a solution of (132) in same solvent. This 

reaction, on aqueous work-up, gave a 1:1 mixture of two monobromo compounds: 4-

bromo-2-methyl-5-nitroisoquinolin-1-one (133) and 4-bromo-3-hydroxy-2-methyl-5-

nitro-3,4-dihydroisoquinolin-1-one (134) (Scheme 30). The bromohydrin compound 

(134) was converted to (133) when heated to its melting point. 
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Scheme 30. Bromination of 2-methyl-5-nitroisoquinolin-1-one (132) using bromine in acetic 

acid.191 

 
All of Horning’s reactions used N-alkylated isoquinolin-1-ones. However, we decided to 

use isoquinolin-1-one as such as required by our project. Accordingly, we carried out 

bromination of 5-nitroisoquinolin-1-one (113) using one molecular equivalent of 

bromine in acetic acid, which on aqueous work-up gave a 1:1 mixture of 4-bromo-5-

nitroisoquinolin-1-one (124) and 4-bromo-3-hydroxy-5-nitro-3,4-dihydroisoquinolin-1-

one (130). Analogously to the above mentioned reaction, the bromohydrin compound 

(130) was converted to the desired (124) when heated to its melting point (Scheme 29). 

The overall yield of the reaction was a moderate 53%. 

 
Attempts to brominate 5-nitroisocoumarin (126) in the same way gave a dibrominated 

compound, 3,4-dibromo-5-nitroisocoumarin (131). 

 
3.3.3 Sonogashira, Suzuki or Stille coupling reactions 

 
With the 4-bromo-5-nitroisoquinolin-1-one (124) in hand, a series of Pd(0)-catalysed 

cross-couplings were attempted to introduce substituents at the 4-position. The first 

reaction attempted was a Sonogashira coupling reaction performed between 4-bromo-

5-nitroisoquinolin-1-one (124) and phenylacetylene (84), in the presence of a catalytic 

amount of (Ph3P)2PdCl2 (78) and copper(I) iodide in diisopropylamine (DIPA) and dry 

THF (standard Sonogashira conditions). The mixture was stirred at 45 oC under argon 

for 24 hours. However, the expected coupling reaction did not occur. Only the 

debrominated material (113) was isolated. Use of a sterically hindered halide such as 

(124) (with nitro and bromo group peri to each other) could possibly account for the 

inability to undergo coupling with phenylacetylene (84). Buchwald et al.192 performed a 

series of Suzuki-Miyaura coupling reactions with very hindered aryl halides using 2-

(2′,6′-dimethoxybiphenyl)-dicyclohexylphosphine (SPhos) (135) as a ligand. Following 

this example, the coupling reaction of 4-bromo-5-nitroisoquinolin-1-one (124) was 

studied with phenylboronic acid in DMF using the combination of Pd(OAc)2 and SPhos 

as catalyst system in the presence of K3PO4 base. The mixture was stirred at 100 oC 
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under argon for 24 h. Coupling failed to proceed and gave some unidentified complex 

mixture. Finally Stille cross-coupling reaction was attempted on 4-bromo-5-

nitroisoquinolin-1-one (124) to introduce a smaller methyl substituent. Reaction of (124) 

with tetramethyltin [(CH3)4Sn] in N-methylpyrrolidin-2-one (NMP) in the presence of 

tetrakis(triphenylphosphine)palladium [Pd(Ph3P)4] in an inert atmosphere was carried 

out at 80 oC for 20 h.193 The reaction failed to proceed. A switch to tetraethyltin 

[(C2H5)4Sn] and refluxing at a higher temperature (100 oC) did not alter the outcome. 

    

Scheme 31. Different organometallic cross-coupling reactions for introduction of substituents at 

the 4- position of 5-nitroisoquinolin-1-one (124) and 5-aminoisoquinolin-1-one (125). 

 

It was reasoned that the presence of the bulkier nitro group at the 5-position of (124) 

was hindering 4-bromo-5-nitroisoquinolin-1-one (124) to participate in any of the Pd(0) 

catalysed cross-coupling reactions. To overcome this problem, it was decided to carry 

out the reduction of the nitro group to the more slender amino group first and then 

perform the organometallic cross-coupling reactions. Thus, 4-bromo-

5-nitroisoquinolin-1-one (124) was reduced with tin(II) chloride by heating at 70 oC in 

ethanol to give 4-bromo-5-aminoisoquinolin-1-one (125) in 54% yield.150 Tin(II) chloride 
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was used to avoid any reductive debromination of the C-Br bond observed on 

treatment with Pd/C hydrogenations.  

 
Analogously, the same set of reactions (Sonogashira and Stille) was repeated with 

(125). Sonogashira reaction performed under standard conditions gave a mixture of 

unidentifiable products. Since no starting material was isolated we could speculate that 

product formed may not be stable under the conditions of the reaction. The Stille 

reaction was attempted with tetraethyltin in NMP in the presence of Pd(PPh3)4 in an 

inert atmosphere at 100 oC for 20 h. Among the products isolated were unreacted 4-

bromo-5-aminoisoquinolin-1-one (124) and traces of debrominated compound (114).  

 
No apparent reasons could be concluded for the failure of 4-bromo-

5-aminoisoquinolin-1-one (125) to undergo Pd(0) catalysed cross-coupling reactions. 

The inability to perform the organometallic cross-coupling reactions with both 4-bromo-

5-nitroisoquinolin-1-one (124) and less hindered 4-bromo-5-aminoisoquinolin-1-one 

(125) meant that this route was no longer viable. 
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3.4 Route III: 4-Substituted 5-aminoisoquinolin-1(2H)-ones via intramolecular 

Heck coupling 

 

3.4.1 Retrosynthesis 
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Scheme 32. Retrosynthetic analysis of the 4-substituted 5-aminoisoquinolin-1-ones.  

 
The retrosynthetic analysis for the target molecule (106) is illustrated in Scheme 32. As 

usual, retrosynthesis began by first performing functional group interconversion (FGI) 

on the target molecule and this led to the corresponding 5-nitroisoquinolin-1-one (107). 

This conversion, i.e. the reduction of the nitro group to amine (via hydrogenolysis or 

acid/metal reduction), is highly reliable and efficient. Formation of (107) involved 

removal of the protecting group G (allyl or benzhydryl) on nitrogen, which is introduced 

in order to facilitate the molecule adopting the correct reacting conformation about the 

amide C-N bond to allow cyclisation by intramolecular Heck coupling. Synthesis of 

(136) is achieved by an intramolecular Heck coupling / double bond migration of a 2-

iodo-3-nitro-N-(alk-2-enyl)benzamide (137) as the key C-C bond-forming step in 

assembling the isoquinolinone. The C-N amide bond disconnection of (137) led to 

secondary amine (138), with an N-protecting group and substitution at the alkene, and 

2-iodo-3-nitrobenzoyl chloride (139). The latter could be prepared from reaction of 2-

iodo-3-nitrobenzoic acid (76) with thionyl chloride catalysed by DMF. The synthesis of 

(76) is outlined in section 3.1.2. 
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3.4.2 Synthesis of 2-iodo-3-nitrobenzoyl chloride  

 
2-Iodo-3-nitrobenzoic acid (76) was converted into the acid chloride by treatment with 

thionyl chloride in the presence of catalytic DMF.  

 

Scheme 33. Proposed mechanism for the SOCl2-DMF-mediated synthesis of 2-iodo-3-

nitrobenzoyl chloride (139) 

 
The initial step in the mechanism is the formation of the reactive intermediate (140) by 

nucleophilic substitution of Cl− (formed from reaction between SOCl2 and DMF) at the 

carbonyl group (Scheme 33). The reactive intermediate is highly electrophilic and 

reacts rapidly with the carboxylic acid (76), producing another intermediate which 

intercepts Cl− to give the 2-iodo-3-nitrobenzoyl chloride (139) and regenerate DMF. 
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3.4.3 Formation of tertiary amides  

 
In a secondary amide, the lowest energy 

conformation is likely to be trans. As shown in 

Figure 18, in the case of N-allyl-2-iodo-3-nitro-

benzamide, the conformation required for 

intramolecular Heck coupling would thus be the 

higher energy cis-amide conformer (143). In the 

tertiary amide (141), with two N-allyl groups, one 

allyl group should always be in close proximity to the aryl ring. It was predicted that the 

other allyl group could be removed from the nitrogen later. 

 

Attempts to synthesise the tertiary amide (141) involved coupling reactions of 2-iodo-3-

nitrobenzoyl chloride (139) with the appropriate amine. With N,N-diallylamine in the 

presence of two equivalents of triethylamine, (139) afforded N,N-di(prop-2-enyl)-2-iodo-

3-nitrobenzamide (141) in good yield (75%) (Scheme 34). 
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Scheme 34. Preparation of N,N-di(prop-2-enyl)-2-iodo-3-nitrobenzamide (141). 

 
An MM2 energy minimisation for this compound (141), however, suggested that the 

amide carbonyl should be approximately orthogonal to the benzene ring (Figure 19), 

owing to steric interactions with the large adjacent iodine. This would make the 

molecule chiral, with the asymmetric centre located in the centre of the Ar-C bond. This 

chirality means that not only are the two allyl groups inequivalent (owing to restricted 

amide C-N bond rotation) but the two aliphatic methylenes are also each in chiral 

environments. This was evident in the 1H NMR spectrum, which showed different 

chemical shifts for the hydrogens of the two allyl side chains and that each CH2 proton 

was diastereotopic. 
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Figure 18: Different conformations of
N-allyl-2-iodo-3-nitrobenzamide (143).
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Figure 19: MM2-energy minimized model of N,N-di(prop-2-enyl)-2-iodo-3-nitrobenzamide (141) 

 

 

 

Scheme 35. Synthesis of N-diphenylmethyl-2-iodo-3-nitro-N-(3-phenylprop-2-enyl) benzamide 

(148). 

 
While cyclisation of N,N-di(prop-2-enyl)-2-iodo-3-nitrobenzamide (141) was expected to 

afford a 4-methyl substituent, a parallel effort was also directed to introduce a benzyl 

group into the 4-position of 5-aminoisoquinolin-1(2H)-one. For this synthesis a 

benzhydryl group was selected (bulkiness and predicted ease of removal) to restrict the 

rotation around the C-N bond, and to have a ring forming allyl group in close vicinity to 

the 2-position of the arene. To prepare the required secondary amine, 

aminodiphenylmethane (144) was condensed with cinnamaldehyde (145) in toluene in 

a Dean-Stark apparatus until the calculated amount of water had separated.194 The 

product, (E)-diphenyl-N-(3-phenylprop-2-enylidene) methanamine (146) was formed in 

good yield (97%). Selective reduction of the imine of (146) with excess sodium 



 94 

borohydride in MeOH also gave a good yield (95%) of the secondary amine (E)-N-

diphenylmethyl-3-phenylprop-2-en-1-amine (147). This, on coupling with 2-iodo-3-

nitrobenzoyl chloride (139), formed the Heck cyclisation precursor (E)-N-

diphenylmethyl-2-iodo-3-nitro-N-(3-phenylprop-2-enyl)benzamide (148) in moderate 

yield (54%) (Scheme 35).    

 

 

 

 

 

 

 

 

 

 

Figure 20. MM2-energy minimized models of (E)-N-diphenylmethyl-2-iodo-3-nitro-N-(3- 

phenylprop-2-enyl)benzamide (148).  

 

The structure of (148) was characterised by 1H NMR, 13C NMR, HMQC, HMBC, MS 

and CHN analyses. The MM2 molecular modelling studies of this compound (148) 

showed two low energy rotamers arising from rotation about C-N bond (Figure 20). 

Both rotamers are also chiral. Model A shows intramolecular stacking of 2-iodo-3-

nitrobenzyl ring and 3-phenylprop-2-enyl rings. Model B is the result of flipping over the 

3-phenylprop-2-enyl ring. The dihedral angle calculated C(15)-N(13)-C(7) was 175 Å. 

The 1H NMR spectra of (148) also indicated the presence of two rotamers resulting 

from different conformations of side chains in space. The NMR spectrum showed a 3:4 

mixture of rotamers α and β about the amide double bond and magnetic inequivalence 

of the diastereotopic CH2 protons in each rotamer. Figure 21 shows assignment of 1H 

NMR signals for N-3-phenylprop-2-enyl chain of (148). It is evident that propenyl 2-H 

and 3-H were in trans configuration as shown by the coupling constant J = 16.0 Hz. 

Interestingly the chemical shift for CH2 protons of α rotamer was at δ 3.91, whereas for 

the β rotamer the chemical shifts were different for the geminal protons (multiplet at δ 

3.93 and double doublet at δ 4.81 with J value of 14.5 and 5.5). This was assigned with 

the help of two-dimensional HMQC (1H-13C COSY) spectrum (Figure 22). 
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I

 

 

Figure 21. Assignment of 1H NMR signals for N-3-phenylprop-2-enyl chain of (148) and its  

deuterated analogue (158). 
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Figure 22.
 1H-13C COSY spectrum of (E)-N-diphenylmethyl-2-iodo-3-nitro-N-(3-phenylprop-2-

enyl)benzamide (148) 

 
3.4.4 C=C Bond migration and intramolecular Heck cyclisations 

 
The Heck reaction has shown to be very useful for the preparation of especially 

disubstituted olefins. This is a versatile carbon-carbon bond-forming reaction which 

allows desirable functionalities to be attached across alkenes. In this palladium- 

catalysed reaction, the carbon–carbon bond is formed from a vinyl functionality and an 

aryl and (or) alkyl halide or triflate. The intramolecular Heck coupling reaction is also 

palladium-catalysed and couples an alkene with the halide in the same molecule to 

form a new cyclic alkene. This reaction has been well-established as a powerful tool for 

the construction of polycyclic structures and quarternary carbon stereocentres. The first 

intramolecular Heck reaction was reported by Mori and Ban in 1977.195 This reaction is 

catalysed by Pd(0) complexes of phosphines such as Pd(PPh3)4 and Pd(II) complexes 

like Pd2(dba)3 and Pd(OAc)2. The base used could be a mild one like Et3N, NaOAc or 

aqueous Na2CO3. Coordinating and polar solvents, such as DMF, MeCN, NMP and 
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DMSO are preferred.166 Palladium complexes are also known to catalyse the migration 

of C=C double bonds in allyl systems (e.g. removal of Alloc protecting groups). Thus it 

was planned that reaction of the N-allyl-2-iodobenzamides (141 and 148) with Pd 

catalysts would first allow migration of the double bond into conjugation with the amide 

nitrogen, and then Heck cyclisation to furnish 4-substituted 5-nitroisoquinolin-1-ones.  

 

Initial experiments used catalytic amounts (5 mol%) of Pd(PPh3)4 with Et3N in refluxing 

MeCN (80 oC) or EtCN (100 °C) (Scheme 36). Treatment of N,N-di(prop-2-enyl)-2-iodo-

3-nitro-benzamide (141) with Pd(PPh3)4 and Et3N in refluxing MeCN for 48 h gave the 

Heck-cyclised isomers 2-(prop-2-enyl)-4-methyl-5-nitroisoquinolin-1(2H)-one (149) and 

2-(prop-2-enyl)-4-methylene-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (150) in good 

total yield (79%). The former (required) isomer results from C=C migration followed by 

cyclisation, whereas the latter is formed by Heck coupling without prior C=C migration. 

These isomers were not separable by column chromatography. The 1H NMR spectrum 

of the mixture revealed that the populations of (149) and (150) were in the ratio of 1:2. 

The required isomer (149) was the minor product of this reaction and could not be 

isolated for further reactions (N-deallylation and reduction of the 5-nitro functional 

group) to synthesise 5-amino-4-methylisoquinolin-1(2H)-one. Figure 23 shows 1H-1H 

COSY spectrum of (149) and (150). The propenyl 2-H of both compounds formed cross 

peaks between propenyl 1-H and propenyl 3-H, thus making assignment of protons for 

the propenyl side chain possible.  

 

Scheme 36. Intramolecular Heck cyclisations of N,N-di(prop-2-enyl)-2-iodo-3-nitrobenzamide 

(141) and (E) N-diphenylmethyl-2-iodo-3-nitro-N-(3-phenylprop-2-enyl) benzamide (148). 
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Figure 23.
 1H-1H COSY spectrum of 1:2 mixture of 2-(prop-2-enyl)-4-methyl-5-nitroisoquinolin-

1(2H)-one and (149) and 2-(prop-2-enyl)-4-methylene-5-nitro-3,4-dihydroisoquinolin-1(2H)-one 

(150).  

 
Similarly, intramolecular Heck coupling of the other iodobenzamide aryl iodide, (E)-N-

diphenylmethyl-2-iodo-3-nitro-N-(3-phenylprop-2-enyl)benzamide (148) with Pd(PPh3)4 

and Et3N in refluxing EtCN for 48 h afforded the isomers 2-diphenylmethyl-5-nitro-4-

phenylmethylisoquinolin-1(2H)-one (151) and (Z)-4-benzylidene-2-diphenylmethyl-5-

nitro-3,4-dihydroisoquinolin-1(2H)-one (152) in moderate total yield (41%). Use of EtCN 

allows heating at higher temperature. i.e 100 oC. Again, these compounds could not be 

separated using column chromatography. A series of NMR experiments (NOESY, 

COSY, HMQC, HMBC) allowed the assignment of signals corresponding to each 
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isomer. These isomers were found to be present in the ratio of 1:3. As seen in the 

spectra in Figure 24, signals for protons on the two phenyl rings of benzhydryl group 

were overlapping and were difficult to assign. From the 1H-1H COSY spectrum, it was 

evident that there was ortho-coupling between 8-H and 7-H (adjacent protons on the 

ring) and between 6-H and 7-H in both the compounds. Cross peaks were observed 

due to long range coupling of 3-H and 4-CH2 protons in (151) and 3-H2 and 4-CH in 

(152). 

  
Surprisingly, when the cyclisations of (148) were repeated under the same conditions 

but for 2 h, the overall yield was unchanged but the ratio of isomers changed markedly 

as (152) was formed as the major product while desired (151) was formed only in 

traces. This observation suggested that Heck cyclisation may have preceded migration 

of the C=C in the formation of (151).  

 
The Heck reaction mechanism involves the following four steps196 (Scheme 37). 

1. oxidative addition 

2. carbopalladation 

3. β-hydride elimination or dehydropalladation 

4. reductive elimination 

Palladium (0) in Pd(PPh3)4 undergoes oxidative addition with suitable substrates such 

as halides resulting in the active catalytic unit, i.e. coordinatively unsaturated, 14-

electron species PdL2 palladium(II) complex. This would seem reasonable since PdL2 

is electron-rich and nucleophilic in character and has vacant sites so that the organic 

electrophile R1X can undergo oxidative addition to give the R1PdXL2 (153) intermediate 

in which the R group (aryl or vinyl) is σ-bonded to the Pd(II). The resulting σ alkyl bond 

in such complexes is very reactive, especially towards carbon-carbon π bonds. Thus an 

alkene in the reacting system will lead to coordination followed by migratory insertion 

into the palladium-carbon σ bond. This process is called carbopalladation as carbon 

and palladium are attached to the ends of the alkene system. In this step, ligand 

dissociates to allow coordination of the alkene and associate to provide a stable 

product (154). Dehydropalladation or β-hydride elimination from this molecule results in 

the product alkene and catalytically inactive HPdXL2 species. A base then regenerates 

the palladium(0) catalyst by reductive elimination of HX. 
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Figure 24.
 1HNMR and 1H-1H COSY spectra of 1:3 mixture of 2-diphenylmethyl-5-nitro-4-

benzylisoquinolin-1(2H)-one (151) and (Z)-4-benzylidene-2-diphenylmethyl-5-nitro-3,4-

dihydroisoquinolin-1(2H)-one (152).
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Scheme 37. Proposed general mechanism for the Heck reaction 

 

The major problem observed in this intramolecular Heck cyclisation is the efficiency of 

the palladium-catalysed migration of the carbon-carbon double bond along the alkyl 

chain. In the mechanism proposed the order of the two steps (Heck cyclisation, C=C 

migration was unclear (Scheme 38). The reaction follows Route A if there is no double 

bond migration resulting in exocyclic 4-alkylidine-5-nitro-3,4-dihydroisoquinolin-1-one 

(155) as the product. In the case of double bond migration, the reaction proceeds 

according to Route B, thus forming the desired endocyclic 4-alkyl-5-nitroisoquinolin-1-

one (156). 

 

However, it is known that, in many cases, further reaction of the initial products, i.e. 

isomerisation of double bonds, occurs to form thermodynamically more favoured 

alkenes. To check if migration of the double bond may occur after Heck cyclisation a 

mixture of isomers 2-(prop-2-enyl)-4-methyl-5-nitroisoquinolin-1(2H)-one (149) and 2-

(prop-2-enyl)-4-methylene-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (150) in the ratio 

(1:2) was exposed to the initial reaction conditions. Examination of the products by 

NMR revealed that there was no change in the ratio of isomers, suggesting either that 

product isomers were not interconvertible or that the 1:2 ratio of compounds with 

endocyclic or exocyclic C=C was the ratio at equilibrium. 
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Scheme 38. Mechanism proposed for the formation of 4-alkyl-5-nitroisoquinolinones and 4-

alkylidine-5-nitro-3,4-dihydroisoquinolinones by intramolecular Heck cyclisation. 

 
3.4.5 Deuterium tracing study 

 
These contrasting observations prompted an isotopic labelling study to study the order 

of the two steps (Heck coupling, C=C migration) in the reaction. Deuterium was 

introduced in a NaBD4 reduction of (146) in MeOH. The resulting (E)-N-diphenylmethyl-

1-deutero-3-phenylprop-2-en-1-amine (157) was coupled with 2-iodo-3-nitrobenzoyl 

chloride (139) in CH2Cl2 in the presence of Et3N. (E)-N-Diphenylmethyl-2-iodo-3-nitro-

N-(1-deutero-3-phenylprop-2-enyl)benzamide (158) was formed in moderate yield 

(61%) (Scheme 39). Analogously to (148), the 1H NMR spectrum of (158) indicated the 

presence of two rotamers about the amide C-N bond (α:β 2:3). However, (158) is 

racemic with respect to the CHD centre, which was reflected in the spectrum (Figure 

21). 
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Scheme 39. Deuterium labelling reactions to give (E)-N-diphenylmethyl-2-iodo-3-nitro-N-(1-

deutero-3-phenylprop-2-enyl)benzamide (158). 
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Double bond migration / Heck reaction of (158) with Pd(Ph3P)4 and Et3N in refluxing 

MeCN for 2 h gave an equimolar mixture of isotopomers (162) and (151) (minor 

products) and a single isotopomer (161) (major product).  
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Scheme 40. Heck cyclisation of (E)-N-diphenylmethyl-2-iodo-3-nitro-N-(1-deutero-3-

phenylprop-2-enyl)benzamide. 

 
It was reasoned that a change of solvent to MeCN (b.p. 80 oC) might slow down the 

reaction and isolation of unreacted mono-D isotopomer would be possible to study 

probable double bond isomerisation and the isotopic composition of unreacted starting 

material (to help detect any kinetic deuterium isotope effect in the double bond 

migration). Reaction was stopped before completion and again the same trend 

(equimolar mixture of isotopomers (162) and (151) (minor products) and a single 

isotopomer (161) (major product)) of products was observed along with some 

unreacted starting material. All recovered starting material (158) carried one deuterium 

at the original position, showing that molecules were committed to cyclisation once they 

had reacted initially with Pd. All the 4-benzylidine-2,3-dihydroisoquinolone product 

contained one deuterium located at position-3 (161), with no material which either 

contained no deuterium or had migrated (which would have been located at PhCD=). 

Failure to isolate any of the double-bond migrated mono-D isotopomer (164) suggests 

that C=C migration in the starting material is slow relative to ring-closure under these 
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conditions. In the mechanism outlined in Scheme 40, (Z)-4-benzylidene-2-

diphenylmethyl-3-deutero-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (161) was formed 

following route A (no double bond migration). If the C=C migration takes place and the 

reaction follows route B, then there are three possible intermediates: (159) formed by 

migration of H, (160) formed by migration of D and (163) formed by loss of deuterium 

and introduction of “migrated” H from a different source were predicted. None of the 

above intermediates were isolated.  

 

Cyclisations of these intermediates were expected to give (162) (164) and (151), 

respectively. However, formation of an equimolar mixture of isotopomers 2-

diphenylmethyl-3-deutero-5-nitro-4-phenylmethylisoquinolin-1(2H)-one (162) and 2-

diphenylmethyl-5-nitro-4-phenylmethylisoquinolin-1(2H)-one (151) suggested that 

reaction proceeds via the intermediates (159) and (163) only. Thus deuterium does not 

appear to migrate, possibly owing to a large kinetic deuterium isotope effect. Formation 

of (151) from (163) indicates loss of deuterium during the process and introduction of H 

from a different source. Failure to form any of (164) rules out the migration of 

deuterium. 

 

One of the measures taken to slow down the Heck cyclisation is to replace iodine with 

the less reactive leaving group bromine. It was expected that replacement of iodine 

with bromine and use of MeCN as solvent will slow the reaction, and isolation of 

intermediates would be more straightforward. This approach may also allow more time 

for double bond migration to occur before cyclisation. The synthetic route for the 

preparation of the aryl bromide, (E)-2-bromo-N-diphenylmethyl-3-nitro-N-(1-deutero-3-

phenylprop-2-enyl) benzamide is presented in Scheme 41. 2-Bromo-3-nitrobenzoic 

acid (165) was satisfactorily synthesised through mercuration (mercury(II) acetate) and 

bromination (sodium bromide/bromine) of 3-nitrophthalic acid and this gave a white 

solid in good yield (66%). 2-Bromo-3-nitrobenzoyl chloride (166) was prepared from 

(165) by treatment with thionyl chloride in the presence of catalytic DMF. This, on 

coupling with (E)-N-diphenylmethyl-1-deutero-3-phenylprop-2-en-1-amine (157) in 

CH2Cl2 in the presence of Et3N, gave (E)-2-bromo-N-diphenylmethyl-3-nitro-N-(1-

deutero-3-phenylprop-2-enyl) benzamide (167) in moderate yield (54%). Again, the 

NMR spectrum showed a 2:3 mixture of rotamers α and β about the amide bond. 
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Scheme 41. Synthetic route for the preparation and double-bond migration / Heck cyclisation of 

(E)-2-bromo-N-diphenylmethyl-3-nitro-N-(1-deutero-3-phenylprop-2-enyl) benzamide (163). 

 
Intramolecular Heck reaction of (167) was carried out with Pd(Ph3P)4 and Et3N in 

refluxing MeCN. After 48 h, along with the unreacted starting material (167), an 

equimolar mixture of isotopomers (162) and (151) (minor products) and a single 

isotopomer (161) (major product) were isolated. The repeated failure to isolate the 

double-bond-migrated mono-D isotopomer intermediate despite the formation of 

double-bond-migrated products of cyclisation (151) / (162) was most puzzling. This 

observation is again consistent with the migration of the C=C after Heck cyclisation, i.e. 

the Br is not sufficiently slower in coupling to allow migration before coupling. Attempts 

to remove the benzhydryl group on nitrogen of (Z)-4-benzylidene-2-diphenylmethyl-5-

nitro-3,4-dihydroisoquinolin-1(2H)-one (152) using trifluoroacetic acid were 

unsuccessful.  
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3.4.6 Synthesis of secondary amides  

 
As explained in section 3.4.3 it was reasoned that secondary amides should be 

disfavoured for intramolecular Heck coupling. However, owing to the complications 

involved with removal of the protecting groups (allyl and benzhydryl) in tertiary amides, 

it was decided to investigate secondary amides instead of tertiary amides. Thus, the 

synthesis of secondary amides was undertaken. The first one to be synthesised was 2-

iodo-3-nitro-N-(prop-2-enyl)benzamide (143), which was prepared by coupling prop-2-

en-1-amine with 2-iodo-3-nitrobenzoyl chloride (139) in the presence of two equivalents 

of Et3N at room temperature for 2 h (Scheme 42). The product was isolated in good 

yield (71%). An interesting by-product 3-nitro-N-(prop-2-enyl)-2-(prop-2-

enylamino)benzamide (168) was also isolated (10%) from the reaction.  
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Scheme 42. Preparation of 2-iodo-3-nitro-N-(prop-2-enyl)benzamide (143). 

 
Compound (168) was formed as a result of SNAr (nucleophilic aromatic substitution) 

reaction of the very activated 2-iodo-3-nitro-N-(prop-2-enyl)benzamide (143). In this 

addition-elimination mechanism (Scheme 43), the electron-withdrawing nitro and 

carbonyl functional groups positioned ortho to the halide leaving group activate the ring 

towards nucleophilic attack. Prop-2-en-1-amine acts as a nucleophile and displaces 

iodine, a good leaving group, on the aromatic ring.  
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Scheme 43. SNAr addition-elimination mechanism proposed to form (168).  
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The 1H NMR spectrum of (168) showed broad singlets for each NH, one at δ 6.82 

corresponding to the NH attached to the benzene ring, and another further downfield at 

δ 7.72 for the NH of the carboxamide. The structure of (168) was confirmed by X-ray 

crystallographic analysis (Figure 25). Interestingly, despite the presence of 

neighbouring nitro and secondary amide groups, no intramolecular hydrogen-bonding 

interactions were observed from the amine N-H in the crystal structure of (168). 

Intermolecular hydrogen-bonding was observed between the carbonyl oxygen and 

carboxamide N-H of the neighbouring molecule. 

 

 

 

Figure 25. X-ray crystal structure of 3-nitro-N-(prop-2-enyl)-2-(prop-2-enylamino)benzamide 

(168) with crystallographic numbering. 

 
3.4.7 Alternative approach to 4-substituted 5-aminoisoquinolin-1-ones via a 

Pinner reaction  

 
With the secondary amide (143) in hand, slight modification of the synthetic approach 

to 4-substituted-5-aminoisoquinolin-1-ones was attempted. In this newly proposed 

route (Scheme 44), introduction of a methyl group on the carbonyl oxygen was 

attempted to avoid problems of rotation about the carboxamide bond. Once this was 

done, Heck cyclisation on (E)-methyl N-allyl-2-iodo-3-nitrobenzimidate (169) was 

expected to furnish 1-methoxy-4-methyl-5-nitroisoquinoline. Demethylation with HBr / 

HOAc or with trimethylsilyl iodide would give 4-substituted-5-nitro isoquinolin-1-one 

(107) which, on reduction with tin(II) chloride, would give the target (106).  
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Scheme 44. Proposed alternative synthetic approach to target (106) via a Pinner reaction. 

 

Methylation was attempted on the secondary amide (143) using the powerful 

methylating agent and hard electrophile methyl trifluoromethanesulfonate (MeOTf) in 

CH2Cl2. The reaction did not proceed as expected. Change of solvent to dioxane did 

not alter the outcome. In a further experiment the anion was generated with the strong 

non-nucleophilic base LHMDS but failed to react with the MeOTf. Attempts with 

trimethyloxonium tetrafluoroborate and TMSOTf followed the same outcome. The 

inability to synthesise (E)-methyl N-allyl-2-iodo-3-nitrobenzimidate (169) prompted us to 

look for alternative routes. This led us to explore the Pinner reaction where a nitrile is 

converted to the hydrochloric acid salt of an imino ester or an alkyl imidate, on reaction 

with alcohol under acid catalysis. To carry out this reaction, 2-iodo-3-nitrobenzonitrile 

(171) was needed. This was easily achieved in excellent yield from acid chloride (139), 

via dehydration of its corresponding amide (170), as shown in Scheme 44. The Pinner 

reaction is the partial solvolysis of a nitrile to yield an iminoether (Scheme 45). N-

Alkylation with 3-bromoprop-1-ene should furnish (E)-methyl N-allyl-2-iodo-3-

nitrobenzimidate (169).  
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Scheme 45. General mechanism proposed for Pinner reaction 

 

Surprisingly, treatment of the 2-iodo-3-nitrobenzonitrile (171) with gaseous HCl in 

anhydrous MeOH did not furnish the imidate salt as expected. Only the starting 

material was recovered from the reaction. Change of acid to stronger trifluoroacetic 

acid also gave the same result. Failure to synthesise (E)-methyl N-allyl-2-iodo-3-

nitrobenzimidate (169) meant that the route outlined in Scheme 44 was no longer 

viable. 

 

3.4.8 Synthesis and Heck cyclisations of prop-2-enyl-2-iodo-3-nitrobenzoate  

 

In our continuing efforts to optimise the reaction conditions for Heck cyclisation we 

decided to synthesise the ester prop-2-enyl-2-iodo-3-nitrobenzoate (173) and conduct 

the intramolecular cyclisation on this ester, which should not suffer from conformational 

problems. The ester (173) was easily synthesised by reaction of acid chloride (139) 

with prop-2-en-1-ol in CH2Cl2 in good yield (64%) (Scheme 46). Intramolecular Heck 

cyclisation under the initial conditions (Pd(Ph3P)4, Et3N in refluxing EtCN for 2 d gave 

the starting material unchanged. Change of solvent to DMF and base to N,N-diiso-

propylethylamine (DIPEA) and refluxing at 150  oC for 24 h resulted in formation of N,N-

dimethyl-3-nitrobenzamide (174) as sole product. DMF at high temperatures (150 oC) 

for a long time (24 h) breaks down to dimethylamine and carbon monoxide. Under such 

strong reducing conditions deiodination takes place and the dimethylamine displaces 

the ester thus forming (174). 



 110 

Heck
cyclisation

Pd(PPh3)4
 Et3N
EtCN

O

O

I

NO2

O

Cl

I

NO2

OH

+

(139) (173)

CH2Cl2

Et3N O

O

NO2 CH3

Heck
cyclisation

Pd(PPh3)4
 DIPEA
DMF

O

N

NO2

Me

Me

(174)

O

O

NO2 CH2

+

 

Scheme 46. Synthesis and Heck cyclisations of prop-2-enyl-2-iodo-3-nitrobenzoate (173). 

 
3.4.9 Secondary amides and improved conditions for Heck cyclisations 

 
As discussed in section 3.4.6, synthesis of secondary amides was required to carry out 

the intramolecular Heck cyclisation. 2-Iodo-3-nitro-N-(prop-2-enyl)benzamide (143) was 

prepared by coupling prop-2-en-1-amine with 2-iodo-3-nitrobenzoyl chloride (139) in 

the presence of Et3N (Scheme 42). The Heck reaction of this secondary amide (143) 

with (Pd(Ph3P)4, Et3N, boiling EtCN, 24 h) gave the dehalogenated amide 3-nitro-N-

(prop-2-enyl)benzamide (175), the C=C migrated and dehalogenated amide (E)-3-nitro-

N-(prop-1-enyl)benzamide (176) and an inseparable mixture of the target 4-methyl-5-

nitroisoquinolin-1(2H)-one (177) and 4-methylene-5-nitro-3,4-dihydroisoquinolin-1(2H)-

one (178) in 1:1 ratio (Scheme 47). 

 
Larock et al197 reported the synthesis of various other nitrogen heterocycles via 

palladium-catalysed intramolecular Heck cyclisation and stated that 2% Pd(OAc)2 in the 

presence of Bu4NCl (phase-transfer catalyst), DMF and appropriate base (Na2CO3, 

NaOAc or Et3N) forms excellent catalytic systems. Keeping this finding in mind, in an 

alternative approach, Pd(Ph3P)4, Et3N and Bu4NCl were used in DMF at various 

temperatures to cyclise (143).  

• At 50 oC after 48 h, the reaction was not complete. However, (177) and (178) 

were formed in 1:1 ratio along with dehalogenated amide (175).  

• At 100 oC after 48 h, the ratio of (177) to (178) was the more favourable 2.5:1. 

The reaction was not complete as some of the starting material was also 

isolated along with dehalogenated amide (175). 
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• At 150 oC after 16 h, the reaction was complete, with target 4-methyl-5-

nitroisoquinolin-1(2H)-one (177) as the sole product in 66% yield. In this 

reaction, Pd(Ph3P)4, Et3N and Bu4NCl in DMF were mixed in the flask which 

was placed in a preheated oil bath at 150 oC. The compound to be cyclised 

(143) was added later. This was done since these reactions indicated that C=C 

migration required higher temperatures and that deiodination occurs even at 

low temperatures. 

 

 

Scheme 47. Various reaction conditions attempted for the synthesis of 4-Methyl-5-

nitroisoquinolin-1(2H)-one (177). Numbers on the arrows indicate the reaction conditions and 

temperatures used in individual reactions as entered in table 14. 

 

Table 14. Different reaction conditions employed for Heck cyclisation of (143). 

Entry Reaction conditions 
Temperature 

in 
 o
C 

Products 
Ratio of 

(172) to (173) 

1 
5 mol% Pd(Ph3P)4, EtCN,  Et3N 

(2 equiv.) 
100 

(175), (176), 

(177), (178) 
1:1 

2 
2 mol% Pd(Ph3P)4, DMF, Bu4NCl 

(1 equiv.) Et3N (2 equiv.) 
50 

(175), (177), 

(178) 
1:1 

3 
2 mol% Pd(Ph3P)4, DMF, Bu4NCl 

(1 equiv.) Et3N (2 equiv.) 
100 

(175), (177), 

(178) 
2.5:1 

4 
2 mol% Pd(Ph3P)4, DMF, Bu4NCl 

(1 equiv.) Et3N (2 equiv.) 
150 (fast 
heating) 

(177)  
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Dehalogenation to form (175) was a commonly observed phenomenon in Pd-catalysed 

couplings and is a result of decomposition of the intermediate aryl palladium, which had 

failed to undergo cyclisation and subsequent protonation.198 It was observed that 2 

mol% Pd(Ph3P)4, Bu4NCl (1 equiv.) and Et3N (2 equiv.) in DMF refluxing at 150 oC is 

the best reaction condition, and it was decided to follow the same for further 

intramolecular Heck cyclisations.  

 
3.4.10 Double bond isomerisation study 

 
Recently, some ruthenium and rhodium complexes were reported to catalyse the 

isomerisation of N-allylamides to the corresponding 1-propenyl derivatives.199,200 

Following this protocol, double-bond isomerisation of 2-iodo-3-nitro-N-(prop-2-

enyl)benzamide (143) was carried out using 0.5% RuClH(CO)(PPh3)3 in benzene at 80
 

oC for 3 h. The double-bond-migrated product (E)-2-iodo-3-nitro-N-(prop-1-

enyl)benzamide (179) was formed in excellent yield (96%) (Scheme 48). The reaction 

could be described as being E-selective as the Z-enamide was detected only in traces. 

This is the result of a specific coordination of the metal atom by the substrates and 

products of double-bond migration.200  
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Scheme 48. Double bond isomerisation of 2-iodo-3-nitro-N-(prop-2-enyl)benzamide (143) to 

(E)-2-iodo-3-nitro-N-(prop-1-enyl)benzamide (179) and attempted Heck cyclisation of (179). 

 
To test whether this prior C=C bond migration might enhance the formation of 4-

methyl-5-nitroisoquinolin-1(2H)-one (177), Heck cyclisation was carried out according 

to the modified conditions (2 mol% Pd(Ph3P)4, Bu4NCl (1 equiv.) and Et3N (2 equiv.) in 

DMF refluxing at 150 oC). Curiously, (179) failed to cyclise under Pd-catalysis; the 

dehalogenated amide (176) and 3-nitrobenzamide (180) were among the products 
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isolated (Scheme 48). The reaction when repeated at 100 oC, resulted in isolation of 

unreacted starting material along with (176) and (180). Formation of dehalogenated 

amide (176) could be explained as a result of decomposition of the intermediate aryl 

palladium, which had failed to undergo cyclisation and subsequent protonation. 

Compound 3-nitrobenzamide (180) might have formed by decomposition of amide 

(176). Interestingly, the much anticipated cyclised compound (177) was not formed. 

 
Now that optimum conditions for Heck cyclisation had been established, the tertiary 

amides (141) and (148) were investigated using the same protocol. The tertiary amides 

(141) and (148) also gave greater proportions of the desired 4-substituted isoquinolin-

1-one isomer under the modified conditions. Compound (141) gave (149) and (150) 

(8:1) and (148) gave (151) and (152) (3:1). 

 
Repetitions of Heck cyclisations of (143) in larger scales (0.25 g) under the modified 

conditions were found to give 78% of inseparable mixtures of 4-methyl-5-nitro-

isoquinolin-1(2H)-one (177) isomer along with the undesired, 4-methylene-5-nitro-3,4-

dihydroisoquinolin-1(2H)-one (178) in 5:1 ratio. The deiodinated amide (175) was 

formed in 19% yield. This led us to conclude that these tandem double bond migration / 

Heck cyclisations under the modified conditions may be scale-sensitive.  

 
Further exploring this reaction, we decided to introduce a Boc protecting group on the 

amide nitrogen of (143). This was done keeping in mind the bulky nature of Boc group 

in the tertiary imide which might direct the ring-forming allyl group to be in close vicinity 

to the 2-iodo group, thus increasing the rotamer population favoured for the Heck 

cyclisation. The Boc group should also improve solubility. This was accomplished by 

using (Boc)2O, and DMAP in the presence of Et3N in good yield (92%). The Heck 

cyclisation of tert-butyl N-prop-2-enyl-N-(2-iodo-3-nitrobenzoyl)carbamate (181) 

resulted in (177) and (178) in the ratio of 1:1 (Scheme 49). It was thought that thermal 

loss of N-Boc occurred only after cyclisation as the ratio of (177) and (178) was not 5:1 

as in the previous experiment, where the Boc group was absent. 



 114 

+(177) (178)

O

NH

I

NO2

(143)

Pd(Ph3P)4, Et3N

 DMF, Bu4NCl

O

N

I

NO2

O

O

CH3

CH3

CH3
(Boc)2O, Et3N

 DMAP
1:1

(181)

 

Scheme 49. Introduction of N-Boc protection and Heck cyclisation of (181). 

 
Having successfully synthesised 4-methyl-5-nitroisoquinolin-1(2H)-one (177), attempts 

were then made to reduce selectively the nitro function via catalytic hydrogenation with 

10% palladium on charcoal (Pd/C) and hydrogen in the presence of few drops of conc. 

HCl in ethanol (Scheme 50). The product, 5-amino-4-methylisoquinolin-1(2H)-one 

hydrochloride (182) was isolated in excellent yield (70%) as buff crystals. Thus, the first 

4-substituted analogue of 5-AIQ had been synthesised. 
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Scheme 50. Reduction of nitro function of (177) to form 5-amino-4-methylisoquinolin-1(2H)-one 

hydrochloride (182).  

 
3.4.11 Synthesis of 5-amino-4-benzylisoquinolin-1(2H)-one 

 

Following the successful synthesis of 5-amino-4-methylisoquinolin-1(2H)-one 

hydrochloride (182), attention was now focussed towards introducing a benzyl group at 

the 4-position. For this, it was necessary to couple (E)-3-phenylprop-2-en-1-amine 

(185) with 2-iodo-3-nitrobenzoyl chloride (139). Since compound (185) was not 

commercially available, the preliminary aim was to synthesise this primary amine. 

Nucleophilic substitution of (E)-(3-bromoprop-1-enyl)benzene with the potassium salt of 

trifluoroacetamide which was prepared in situ from trifluoroacetamide and potassium t-

butoxide in dry THF, gave (E)-N-(3-phenylprop-2-enyl)2,2,2-trifluoroacetamide (184) 

(33%).201 A lower yield of (7%) highly lipophilic ion-pair of (E)-3-phenylprop-2-enylamine 

trifluoroacetate salt (183) was also isolated. The N-trifluoroacetyl (N-TFA) group was 
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considered as it is easily removed by nucleophiles (ammonia, sodium carbonate) to 

generate the primary amines. The trifluoroacetamide (184) was cleaved either by 

ammonia in methanol or by reduction with sodium borohydride in ethanol to furnish (E)-

3-phenylprop-2-enylamine (185). This primary amine, on coupling with the acid chloride 

(139), afforded (E)-2-iodo-3-nitro-N-(3-phenylprop-2-enyl)benzamide (186) in good 

yield (74%) as yellow crystals (Scheme 51).  
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Scheme 51. Synthetic route to 4-benzyl-5-nitroisoquinolin-1(2H)-one (187). 

 
Double bond migration / Heck cyclisation of (186) was carried out under the previously 

optimised conditions (Pd(Ph3P)4, Et3N, Bu4NCl, DMF, 150 oC quick heating) for 48 h. 

Products isolated included a separable mixture of isomers 4-benzyl-5-nitroisoquinolin-

1(2H)-one (187) (17%) and (Z)-4-benzylidene-5-nitro-3,4-dihydroisoquinolin-1(2H)-one 

(188) (14%), along with the dehalogenated products (E)-3-nitro-N-(3-phenylprop-2-

enyl)benzamide (189) (11%) and traces of 3-nitro benzamide (180). About 14% of (E)-

3-amino-2-chloro-N-(3-phenylprop-2-enyl)benzamide (190) was also isolated as yellow 

crystals (Scheme 51). It appears that chloride from Bu4NCl replaced the iodine by SNAr 
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reaction (Scheme 52) and reduction of the nitro group might have occurred under Pd-

catalysis. 
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Scheme 52. SNAr addition-elimination mechanism proposed to form (191).  
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Scheme 53. Reduction of nitro functional groups of (187) and (188) using (H2/Pd/C) catalyst. 

 

Attempts to carry out selective reduction of the nitro group of (187) using 10% 

palladium on charcoal (Pd/C) and hydrogen in the presence of few drops of conc. HCl 

in EtOH gave the desired amine (192) with some unidentified impurities. Repeated 

attempts at recrystallisation (EtOH) to purify the product (192) failed. It was speculated 

that use of HCl prompts the cyclisation between the 5-amino group and the methylene 

group at the 4-position thus forming a compound like (195) which was taken to be the 

impurity. Hence, the reduction of (187) was carried out without conc. HCl and gave the 

desired amine (192) in 51% yield as a buff powder (Scheme 53). It was found that 
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Pd/C/H2 catalytic system reduces the double bond at the 3,4 position of (192) along 

with the nitro group as traces of 5-amino-4-benzyl-3,4-dihydroisoquinolin-1(2H)-one 

(193) were also identified in 1H NMR spectra of (192). Interestingly, reduction of (188) 

with Pd/C/H2 furnished an inseparable mixture of (193) and (192) in 4:1 ratio and none 

of the anticipated compound (194) was isolated. Formation of (192) from (188) is 

possible only by the migration of the exocyclic double bond into the ring. It is not clear 

whether the double bond migration occurs before reduction of the nitro group or after. 

 
3.4.12 Attempted synthesis of 5-amino-4-ethylisoquinolin-1(2H)-one  

 
Following the success in synthesis of (192) it was decided to extend the same 

methodology to synthesise the 5-amino-4-ethylisoquinolin-1(2H)-one. Since the 

compound but-2-en-1-amine (200) was not commercially available we needed to 

synthesise the same. At first thepotassium salt of trifluoroacetamide, which was 

prepared in situ from trifluoroacetamide and potassium t-butoxide in dry THF, was 

made to react with 1-bromobut-2-ene (available as mixture of E- and Z- isomers (5:1)). 

A yield of 33% of inseparable E- and Z-isomers of N-(but-2-enyl)-2,2,2-

trifluoroacetamide was obtained in the ratio 3:1 and 6% of the disubstituted E- and Z-

isomers of N,N-di(but-2-enyl)-2,2,2-trifluoroacetamide (197) and (198) in 4:1 ratio along 

with traces of EZ-compound (199). The mixture of E- and Z-trifluoroacetamides (195) 

and (196) was hydrolysed using alkali (10% aq. NaOH) to give a mixture of (E) and (Z) 

but-2-en-1-amines (200) and (201). This compound was not isolated for analysis as its 

boiling point was too low. It was used in the coupling without further purification. This, 

on coupling with the acid chloride (139) furnished an inseparable mixture of E- and Z-

isomers of N-(but-2-enyl)-2-iodo-3-nitrobenzamide (202) and (203) in the ratio 5:1 

(72%) as yellow crystals.  

 
The mixture of E- and Z-isomers of (202) and (203) was subjected to Heck cyclisation 

under optimised conditions (Pd(Ph3P)4, Et3N, Bu4NCl, DMF, 150 oC quick heating,) for 

48 h. Curiously, the above mixture failed to cyclise under Pd-catalysis as none of the 

anticipated product 5-nitro-4-ethylisoquinolin-1(2H)-one (208) or the isomer (209) were 

formed. However 21% of E- and Z-isomers of the dehalogenated amide (204) and 

(205) in 4:1 ratio and 15% of E- and Z-isomers of 3-amino-N-(but-2-enyl)-2-

chlorobenzamide (206) and (207) in 4:1 ratio were the only products isolated (Scheme 

52). Compound (206) is believed to be formed as a result of SNAr addition-elimination 

reaction and reduction of nitro group under Pd-catalysis. Again the order of these two 

reactions was not clear. To avoid the formation of this type of compound and to 
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optimise the yield of desired cyclised products it was decided at this stage to use Bu4NI 

as phase transfer catalyst, instead of Bu4NCl, so that the SNAr reaction would be futile. 
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Scheme 54. Attempted synthesis of 5-nitro-4-ethylisoquinolin-1(2H)-one (208) via Heck 

cyclisation  

 
Failure to cyclise E- and Z-isomers of (202) and (203) was puzzling since we were 

successful in introducing the analogous methyl and benzyl groups to the 4-position of 

5-aminoisoquinolin-1-one. 
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3.4.13 Synthesis of 5-amino-4-(4-methylbenzyl)isoquinolin-1(2H)-one and 5-

amino-4-(4-methoxybenzyl)isoquinolin-1(2H)-one 

 
One of the main aims of the project was to introduce benzyl and substituted benzyl 

groups into the 4-position of 5-aminoisoquinolin-1(2H)-one. We were successful in 

synthesising 5-amino-4-benzylisoquinolin-1(2H)-one (192). Now attention was turned 

towards synthesising 5-amino-4-(4-methylbenzyl)isoquinolin-1(2H)-one and 5-amino-4-

(4-methoxybenzyl)isoquinolin-1(2H)-one. 

 
To accomplish this, it was necessary to synthesise substituted cinnamylamines such as 

3-(4-methylphenyl)prop-2-en-1-amine and 3-(4-methoxyphenyl)prop-2-en-1-amine. Ar-

substituted 3-phenylprop-2-enylamines could be synthesised by Heck coupling of 

substituted aryl halides and 2-allylisoindoline-1,3-dione, and subsequent deprotection 

of the product with hydrazine hydrate to generate the amines.202 Keeping in view the 

diversity of the aromatic residues that could be used in this coupling this method was 

investigated for the synthesis of 3-(4-methylphenyl)prop-2-en-1-amine and 3-(4-

methoxyphenyl)prop-2-en-1-amines. In this Pd(OAc)2-catalysed reaction, 2-

allylisoindoline-1,3-dione was coupled to an aromatic halide in the presence of Et3N in 

acetonitrile. The amines were generated by refluxing with hydrazine hydrate in ethanol.  

 
Synthesis of the precursor 2-allylisoindoline-1,3-dione was necessary as it was not 

commercially unavailable. Boiling phthalic anhydride with prop-2-en-1-amine in acetic 

acid and aqueous work-up and recrystallisation (EtOAc) gave 87% of (210) as white 

needles. The aryl halides, 4-iodotoluene and 4-iodoanisole were used to introduce 4-

methylbenzyl and 4-methoxybenzyl substituents on 5-aminoisoquinolin-1-one, 

respectively. The next step involved Pd(OAc)2 (1 mol %)-catalysed Heck coupling of 

(210) to 4-iodotoluene and 1-iodo-4-methoxybenzene, respectively, with two 

equivalents of Et3N, which also served as solvent for 16 h.. The mechanism of this 

reaction is as shown in section 3.4.4 (Scheme 37). In both cases, the trans (E) 

stereoisomer was the only product detected and isolated. The resulting (E)-2-(3-(4-

methylphenyl)prop-2-enyl)isoindoline-1,3-dione (211) and (E)-2-(3-(4-methoxyphenyl) 

prop-2-enyl)isoindoline-1,3-dione (212) were refluxed with one equivalent of hydrazine 

hydrate in EtOH. Alkaline workup and extraction with Et2O and CH2Cl2 afforded the 

amines (213) (65%) and (214) (89%), respectively as yellow oils (Scheme 55). These 

primary amines, on coupling with the acid chloride (139), afforded (215) (82%) and 

(216) (75%), respectively, ready for attempts to carry out tandem double bond 

migration / intramolecular Heck coupling.  
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Scheme 55. Synthesis of 3-(4-methylphenyl)prop-2-en-1-amine (213) and 3-(4-

methoxyphenyl)prop-2-en-1-amine (214). 

 
As discussed earlier in Section 3.4.12, to avoid the formation of SNAr reaction product 

(chloride from Bu4NCl replacing the iodine) and to optimise the yield of desired cyclised 

products, it was decided to use Bu4NI as phase transfer-catalyst, instead of Bu4NCl. 

Double bond migration / Heck cyclisation of (215) and (216) was carried out under the 

previously optimised conditions (Pd(Ph3P)4, Et3N, Bu4NI, DMF, 150 oC quick heating) 

for 48 h (Scheme 56). Products isolated from Heck cyclisation of (215) included an 

inseparable mixture of (217) and (218) in the ratio (3:1) (17 mg, 16%). Formation of 

dehalogenated amide (E)-N-(3-(4-methylphenyl)prop-2-enyl)-3-nitro benzamide (217) 

could be explained as a result of decomposition of the intermediate aryl palladium, 

which had failed to undergo cyclisation and subsequent protonation. However, 

reduction of double bond in the side chain to form N-(3-(4-methylphenyl)propyl)-3-

nitrobenzamide (218) might have occurred under Pd-catalysis. The reaction also 

yielded separable mixture of isomers 4-(4-methylbenzyl)-5-nitroisoquinolin-1(2H)-one 

(219) (15%) and (Z)-4-(4-methylbenzylidene)-5-nitro-3,4-dihydroisoquinolin-1(2H)-one 

4-benzyl-5-nitroisoquinolin-1(2H)-one (220) (13%) and traces of 3-nitrobenzamide 

(180).  

 
Selective reduction of the nitro group of (219) using 10% palladium on charcoal (Pd/C) 

and hydrogen in EtOH gave an inseparable mixture of the desired amine 5-amino-4-(4-

methylbenzyl)isoquinolin-1(2H)-one (221) and 5-amino-4-(4-methylbenzyl)-3,4-

dihydroisoquinolin-1(2H)-one (222) in the ratio 10:3 (51%). Reduction of the nitro group 
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of (220) under same conditions as above gave an inseparable mixture (222) and (221) 

in the ratio 11:9 (42%). 
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Scheme 56. Synthesis and Heck coupling of (E)-2-iodo-3-nitro-N-(3-(4-methylphenyl)prop-2-

enyl)benzamide (215) and (E)-2-iodo-N-(3-(4-methoxyphenyl)prop-2-enyl)-3-nitrobenzamide 

 (216). 

 

Products isolated from Heck cyclisation of (E)-2-iodo-N-(3-(4-methoxyphenyl)prop-2-

enyl)-3-nitrobenzamide (216) included an inseparable mixture of dehalogenated amide 

(223) and double-bond reduced dehalogenated amide (224) in the ratio 2:3 (19%). Also 

isolated were separable mixture of cyclised isomers 4-(4-methoxybenzyl)-5-

nitroisoquinolin-1(2H)-one (225) (17%) and (Z)-4-(4-methoxybenzylidene)-5-nitro-3,4-
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dihydroisoquinolin-1(2H)-one (226) (15%). Reduction of the nitro group of (225) using 

10% palladium on charcoal (Pd/C) and hydrogen in EtOH afforded an inseparable 

mixture of the desired amine 5-amino-4-(4-methoxybenzyl)isoquinolin-1(2H)-one (227) 

and 5-amino-4-(4-methoxybenzyl)-3,4-dihydroisoquinolin-1(2H)-one (228) in the ratio 

1:2 (53%). Reduction of the nitro group of (226) was not attempted, owing to shortage 

of material. 

 
3.4.14 Synthesis of 5-1-(3-((5-nitro-1-oxo-1,2-dihydroisoquinolin-4-

yl)methyl)phenyl)pyrrolidine-2,5-dione 

 
In the continuing quest to introduce substituted benzyl groups, it was decided to 

introduce the bulkier 3-succinimidobenzyl as a substituent into the 4-position of 5-

aminoisoquinolin-1(2H)-one. Initial experiments included synthesis of 1-(3-

iodophenyl)pyrrolidine-2,5-dione (230) from heating succinic anhydride and 3-

iodoaniline at 190 oC for 6 h. Experiment was carried out with slow increase of 

temperature. At 150 oC formation of 4-(3-iodophenylamino)-4-oxobutanoic acid (229) 

was identified. Further increase in temperature to 190 oC afforded (230) (74%) as buff 

crystals. In the Pd(OAc)2-catalysed  reaction, two equivalents of Et3N served as both 

base and solvent. 2-Allylisoindoline-1,3-dione was coupled to (230) in Et3N for 24 h to 

furnish (E)-2-(3-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-enyl)isoindoline-1,3-dione 

(231) (86%). However, the usual method of generating amines by refluxing with 

hydrazine hydrate in ethanol failed to occur as none of the amine (232) was formed as 

hydrazine attacked the succinimide ring (Scheme 57). 

 

In the process of synthesising (E)-1-(3-(3-aminoprop-1-enyl)phenyl)pyrrolidine-2,5-

dione (232), firstly tert-butyl N-(prop-2-enyl)carbamate (233) (83%) was prepared by 

coupling prop-2-en-1-amine with di(tert-butyl) dicarbonate in CH2Cl2 for 3 h. Heck 

coupling of substituted aryl halide (230) and (233) using Pd(OAc)2 (1 mol %) and two 

equivalents of Et3N, under nitrogen for 48 h gave an inseparable mixture of (234) and 

the undesired regioisomer (235) in 4:1 ratio (Scheme 58). 
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Scheme 57. Attempted synthesis of (E)-1-(3-(3-aminoprop-1-enyl)phenyl)pyrrolidine-2,5-dione 

(232)  

 
Removal of the Boc group using trifluoroacetic acid in CH2Cl2 did not give the 

anticipated amine but instead gave a mixture of unidentified products. Passage of dry 

HCl to the solution of (234) and (235) in CH2Cl2 generated the mixture of amines (236) 

and (237) as hydrochloride salts (detected by TLC). This compound was not isolated 

for analysis and in its crude form was coupled with acid chloride (139) to furnish an 

inseparable mixture of (E)-N-(3-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-enyl)-3-

nitrobenzamide (238) and N-(2-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-enyl)-3-

nitrobenzamide (239) (4:1) in 32% yield.  

 
Double bond migration / Heck cyclisation of mixture of (238) and (239) was carried out 

under the previously used conditions (Pd(Ph3P)4, Et3N, Bu4NI, DMF, 150   oC quick 

heating) for 48 h. Products isolated included an inseparable mixture of dehalogenated 

amide (240) and the regioisomer (241) (4:1) (18%) along with inseparable mixture of 

cyclised 1-(3-((5-nitro-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl)phenyl)pyrrolidine-2,5-

dione (242) and (Z)-1-(3-((5-nitro-1-oxo-2,3-dihydroisoquinolin-4(1H)ylidene)methyl)-

phenyl) pyrrolidine-2,5-dione (243) in 21% yield. Reduction of the nitro groups of (242) 

and (243) were not attempted, owing to shortage of material. 
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Scheme 58. Synthesis and Heck coupling of (E)-N-(3-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-

enyl)-3-nitrobenzamide (238)  

 

In conclusion, Pd-catalysed cyclisation of tertiary amides N,N-diallyl-2-iodo-3-

nitrobenzamide (141) and N-benzhydryl-N-cinnamyl-2-iodo-3-nitrobenzamide (148) 

gave two isomeric products, the 4-alkyl-5-nitroisoquinolin-1-ones (149) and (151) and 

the 4-alkyl-5-nitro-3,4-dihydroisoquinolin-1-ones (150) and (152). The corresponding 

secondary amide N-allyl-2-iodo-3-nitrobenzamide (143) cyclised efficiently to give (177) 

and (178). Pd-catalysed cyclisations of a series of secondary N-cinnamyl 2-iodo-3-

nitrobenzamides were also investigated. Catalytic hydrogenation was used to convert 

the 5-nitro groups of the 4-substituted isoquinolin-1-ones to provide the target 5-

aminoisoquinolin-1-ones.  
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4. Biological Evaluation 
 
4.1 PARP-1 inhibition assays  

 
The standard assay for monitoring PARP-1 activity involves the use of radiolabeled 

NAD+ (32P- or 3H).203,204 An ELISA assay uses an antibody to ADP-ribose205 and two 

recently described assays utilise206,207 biotinylated NAD+. The use of radioactive and/or 

specialized reagents (such as biotinylated NAD+ and antibodies) in these assays can 

make them expensive when screening large compound collections for PARP inhibition. 

In addition, these assays often involve either the separation of ADP-ribose polymer 

product from the NAD+ substrate or the addition of specialized streptavidin-conjugated 

scintillation proximity assay beads. Thus, the search for an inexpensive and convenient 

method for identifying PARP-1 inhibitors led us to a novel colorimetric PARP-1 assay 

developed by Trevigen Inc. (Gaithersburg, USA). The assay is non-radioactive and 

utilises 96- well plates for rapid screening for PARP inhibition. This assay is ideal for 

screening of PARP-1 inhibitors for in vitro activity.  

 
This assay is based on the fact that PARP-1 enzyme, during the heteromodification 

process, catalyses poly(ADP-ribosyl)ation of histone proteins in response to damaged 

DNA. At first the test inhibitor is pre-incubated with the PARP-1 enzyme on a 96 strip-

well plate coated with histone acceptor proteins for a brief period of time. A PARP-

cocktail reagent, containing biotinylated NAD+ (6-biotin-17-nicotinamide-adenine-

dinucleotide) (Figure 26) and activated DNA, is added to the wells to initiate the 

reaction. Upon activation, PARP-1 cleaves biotinylated NAD+ into nicotinamide and 

biotinylated (ADP-ribose) and synthesises biotinylated (ADP-ribose) polymers 

covalently attached to the acceptor histone proteins. The extent of biotin incorporation 

is measured using a conjugated streptavidin detection system. The PARP-1 inhibitory 

activity of the inhibitors is assessed on the basis of their inhibition of biotinyl-(ADP-

ribose) incorporation. The presence of biotinylated poly(ADP-ribose) generated by 

PARP-1 during the ribosylation of histone proteins coated on the 96-well plate was 

detected using streptavidin horseradish peroxidase (Strep-HRP) and TACS 

Sapphire™. The TACS Sapphire™ substrate generates a soluble blue colour in the 

presence of Strep-HRP with a maximum absorbance of 630 nm. The development of 

the colourimetric reaction was terminated by addition of 0.2 M hydrochloric acid, 

generating a yellow colour with an absorption maximum at 450 nm. 
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Figure 26. Structure of biotinylated NAD+. 

 
4.1.1 PARP-1 calibration curve 

 
Firstly, a standard curve using different amounts of PARP-1 enzyme was prepared for 

the biotinylated poly(ADP-ribose) polymerisation reaction. As shown in Figure 27, a 

linear relationship exists between the absorbance at 450 nm and the concentration of 

the PARP-1 enzyme. From the standard curve, it was established that 0.8 units of 

PARP-1 enzyme was sufficient to give an absorbance reading in the range of 2.0-2.5 in 

the absence of any inhibitor. A negative control without PARP enzyme was included to 

determine the background absorbance.  
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Figure 27. PARP-1 calibration curve. Data are the mean of three replicants and are reported as 

mean ± standard error of the mean (SEM). 
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4.1.2 PARP-1 inhibitory activity of 4-substituted 5-aminoisoquinolin-1-ones 

 

Various 4-substituted 5-aminoisoquinolin-1(2H)-ones synthesised in this project were 

evaluated for in vitro activity using the colourimetric PARP assay system. 5-AIQ was 

used as the benchmark inhibitor and was evaluated in the assay for comparison 

purposes. In this evaluation, seven different concentrations (100, 30, 10, 3, 1, 0.3, 0.1 

µM) of each inhibitor, in a range surrounding the likely IC50 value, were used. Figure 28 

shows a colourimetric assay plate used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Colourimetric readout of PARP-1 activity assay with inhibitors 4-benzyl-5-

aminoisoquinolin-1(2H)-one (lane 1-3), 5-amino-4-benzyl-3,4-dihydroisoquinolin-1(2H)-one 

(lane 4-6), 4-bromo-5-aminoisoquinolin-1(2H)-one (lane 7-9), 5-AIQ (lane 10-12). Bottom row: 

wells 1-6 negative control without PARP enzyme, wells 7-12 positive control without PARP 

inhibitor.  

 

For each inhibitor, three determinations of activity were performed at each 

concentration. The IC50 value of the inhibitor was then estimated graphically from a plot 

of log10 [inhibitor] versus absorbance. These assays were highly sensitive and 

reproducible, with standard error of mean (SEM) of less than 20% for most compounds 

tested (Table 15). Figure 29 shows the PARP-1 inhibition curves of 4-methyl 
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5-aminoisoquinolin-1(2H)-one (182). The complete results for the evaluation of 

4-substituted 5-aminoisoquinolin-1(2H)-ones are given in the Appendices. 

 

 Figure 29. PARP-1 inhibition curve for 4-methyl 5-aminoisoquinolin-1(2H)-one (182).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 15. The IC50 values of the various 4-substituted 5-aminoisoquinolin-1(2H)-ones. aData are 

the mean of three experiments and are reported as mean ± standard error of the mean (SEM). 

 

Compound 
number 

IC50 (µM) Log IC50 (µM)
a 

29d (5-AIQ) 
 

1.8 0.26 ± 0.14 

(182)  0.25 -0.6 ± 0.28 
 

(125)  1.0 -0.02 ± 0.06 
 

(192)  0.5 -0.34 ± 0.11 
 

(193)  2.8 0.45 ± 0.08 
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The inhibition calculated for 4-methyl 5-aminoisoquinolin-1(2H)-one (182) was 0.25 µM. 

It is evident from this result that (182) is an excellent PARP-1 inhibitor and is 7 times 

more potent than 5-AIQ (IC50=1.8 µM) under the colourimetric assay conditions. 

Similarly, 4-benzyl-5-aminoisoquinolin-1(2H)-one (192) also exhibited excellent PARP-

1 inhibitory activity with IC50= 0.5 µM. It is also interesting to note that 5-amino-4-

benzyl-3,4-dihydroisoquinolin-1(2H)-one (193) the saturated analogue of (192) was 

less potent with respect to 5-AIQ as demonstrated by its IC50 2.8 µM. 4-Bromo-5-

aminoisoquinolin-1(2H)-one (125), one of the intermediates in the synthesis also 

demonstrated good inhibitory properties with an IC50 value of 1.0 µM. 

 

It is proposed that the 4-substituted 5-aminoisoquinolin-1-one inhibitors bind to the 

nicotinamide sub-site of the NAD+-binding domain of PARP-1 (Figure 30). The 

carboxamide moiety of the inhibitor forms three important hydrogen bonds with the 

enzyme active site. The inhibitor carbonyl moiety accepts two hydrogen bonds, one 

from the amino-acid residue Ser904, and the other from the Gly863 N-H. The third 

hydrogen bond is formed between the Gly863 carbonyl oxygen and the carboxamide 

N-H. 

 

 

 

Figure 30. Proposed enzyme-inhibitor interactions between the PARP-1 active site and 4-

substituted 5-AIQs. 

 

In this study the effects of bulky aromatic substituents at the 4-position were 

investigated, which will interact with the hydrophobic residues in the binding pocket. 

The colourimetric PARP-1 assay identified four compounds with PARP-1 inhibitory 

activity equal or better than the lead compound 5-AIQ. In general, besides having a 

good water-solubility profile, most of the 4-substituted 5-aminoisoquinolin-1(2H)-ones 

exhibited excellent PARP-1 inhibitory potency with IC50 values in the low micromolar 

range. It appeared that the presence of a methyl substituent confers a slightly greater 

enhancement in PARP-1 inhibitory activity It is also interesting to note that the 



 130 

introduction of a bromo group at the 4-position resulted in enhanced potency. This 

could be due to bromo being isosteric with methyl group. Bulky aryl substituents also 

enhanced the potency of the parent compound. Thus, compounds with bulky aromatic 

substituents at the 4-position were well tolerated.  
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5. Conclusions 
 

Various approaches to the synthesis of novel classes of PARP-1 inhibitor, 3-substituted 

and 4-substituted 5-aminoisoquinolin-1(2H) ones were investigated, building on the 

pharmacophore of 5-AIQ. One approach to the 3-substituted compounds was 

successful and a novel and versatile synthetic route has been developed to a series of 

water-soluble target compounds, bearing varying substituents at the 4-position. 

 

Initially cyclisations of methyl 2-alkynyl-3-nitrobenzoates with various electrophiles 

were studied. Cyclisations of methyl 3-nitro-2-phenylethynylbenzoate (85) with iodine 

monochloride and with phenylselenyl chloride followed the 6-endo route to give the 

isocoumarins (99) and (105) respectively. Similarly, cyclisation of methyl 3-nitro-2-

trimethylsilylethynylbenzoate (80) with phenylselenyl chloride afforded the isocoumarin 

(104). This isocoumarin is highly crowded, carrying a nitro group at the 5-position, a 

phenylselenyl group at the 4-position and a phenyl at the 3-position; this severe 

crowding was evident in an X-ray crystal structure, which showed significant out-of-

plane distortion of the heterocyclic ring and extensive intramolecular and intermolecular 

π-stacking of the benzene rings. This demonstrates the directing influence of the 

electron-withdrawing nitro group on the electrophilicity of the alkyne. The observed 6-

endo regiochemistry could be due to the 3-nitro group inducing polarisation of the 

alkyne, making the remote sp-carbon remote from the aryl ring more electrophilic. 

However, the formation of methyl 2-acetyl-3-nitrobenzoate (95) by treatment of (80) 

and (82) with Hg(II) was exceptional and suggests that a 5-exo cyclisation took place 

by the change in electron-distribution caused by the formation of an intermediate 

alkynylmercury σ-complex. 4-Iodo-5-nitro-3-phenylisocoumarin (99), the product of 

iodocyclisation, could be exploited for the synthesis of 3- and 4-substituted 5-AIQs 

through various organometallic approaches. 

 

In the first route to the 4-substituted 5-AIQ analogues, efforts to introduce a benzyl 

group into the 4-position of 5-aminoisoquinolin-1(2H)-one were unsuccessful, as 

cyclisation of methyl 2-(1-cyano-2-phenylethyl)-3-nitrobenzoate (116), through selective 

reduction of the nitrile using DIBAL-H, failed to occur. Approach of DIBAL-H to the 

nitrile was sterically obstructed, leading to reduction of the ester to give 2-(2-formyl-6-

nitrophenyl)-3-phenylpropanenitrile (117). The second route relied on Pd-catalysed 

couplings of 4-bromoisoquinolin-1-one to synthesise the target molecule. Bromination 

of 5-nitroisoquinolin-1(2H)-one was achieved to give 4-bromo-5-nitroisoquinolin-1-one 

(124) but Pd-catalysed cross-couplings (Stille, Sonogashira, Suzuki-Miyaura) were 
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unsuccessful. Reduction of the hindering nitro group of (124) to amino furnished 5-

amino-4-bromoisoquinolin-1-one (125) which also failed to participate in any of the 

Pd(0) catalysed cross-coupling reactions.  

 

Much interesting chemistry was developed in the third route, which aimed at 

synthesising 4-substituted 5-aminoisoquinolin-1(2H)-ones via intramolecular Heck 

coupling of N-(alk-2-enyl)-2-iodo-3-nitrobenzamides. Pd-Catalysed cyclisation of 

tertiary amides N,N-diallyl-2-iodo-3-nitrobenzamide (141) and N-benzhydryl-N-

cinnamyl-2-iodo-3-nitrobenzamide (148) gave two isomeric products, the 4-alkyl-5-

nitroisoquinolin-1-ones (149) and (151) and the 4-alkyl-5-nitro-3,4-dihydroisoquinolin-1-

ones (150) and (152). The latter were derived from direct Heck cyclisation without prior 

C=C bond migration, while the former, required Pd-catalysed migration of the double 

bond into conjugation with the amide nitrogen before or after cyclisation. In deuterium 

labelling studies, failure to isolate any of the double-bond migrated mono-D isotopomer 

intermediate despite the formation of double-bond-migrated products of cyclisation 

(151) / (162) suggests that C=C migration occurs after Heck cyclisation, but the 

products were not interconvertable. The corresponding secondary amide N-allyl-2-iodo-

3-nitrobenzamide (143) cyclised efficiently to give (177) and (178). The ratios of the 

isomeric products varied with the reaction conditions. The optimum conditions for the 

reaction was found to be Pd(Ph3P)4, Et3N, Bu4NI, DMF with quick heating (150 oC). 

Double-bond isomerisation of (143) was achieved by treatment with RuClH(CO)(PPh3)3 

giving the N-prop-1-enyl amide, which when subjected to the Pd-catalysed cyclisation 

conditions, gave only the uncyclised reductively deiodinated material (176). Pd-

catalysed cyclisations of a series of secondary N-cinnamyl 2-iodo-3-nitrobenzamides 

were also explored. The 4-unsubstituted cinnamylamine was prepared by displacement 

of the bromine of cinnamyl bromide with the anion derived from trifluoroacetamide, 

followed by cleavage of the amide by hydrolysis or reductively with sodium 

borohydride. The 4-substituted cinnamyl amines were synthesised by Heck coupling of 

a protected allylamine to the appropriate iodoarene to form the N-cinnamylphthalimides 

followed by hydrazinolysis. 3-Succimimidocinnamylamine (236) was prepared by Heck 

coupling of N-Boc-allylamine with N-(3-iodophenyl)succinimide (230), followed by 

deprotection. Pd-catalysed cyclisation of (186) afforded a chromatographically 

separable mixture of 4-benzyl-5-nitroisoquinolin-1-one (187) and the 4-benzylidene-5-

nitro-3,4-dihydroisoquinolin-1-one isomer (188). N-(substituted cinnamyl)benzamides 

(215), (216) and (238) also gave 4-(substituted benzyl)isoquinolin-1-ones (219), (225), 

(242) and the 4-(4-substituted benzylidene)-3,4-dihydroisoquinolin-1-ones (220), (226),. 

(243). Catalytic hydrogenation was used to convert the 5-nitro groups of the 4-
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substituted isoquinolin-1-ones to provide the target 5-aminoisoquinolin-1-ones. 5-

Amino-4-methylisoquinolin-1(2H)-one hydrochloride (182) was isolated in excellent 

yield. The 4-benzyl analogue (187), furnished the 5-amino-4-benzylisoquinolin-1-one 

(192) contaminated with a small trace of the over-reduced 5-amino-4-benzyl-3,4-

dihydroisoquinolin-1-one (193). Interestingly, 4-benzylidene-3,4-dihydroisoquinolin-1-

one gave (193) along with (192), suggesting possible C=C bond migration on the Pd 

metal surface. Unfortunately, it was not possible to reduce the nitro groups of (219), 

(220) and (225) cleanly, as product mixtures always comprised inseparable mixtures of 

the corresponding 5-aminoisoquinolin-1-ones and over-reduced products. 

 

Biochemical evaluation of this series of compounds showed excellent in vitro inhibitory 

activity against human recombinant PARP-1, with IC50 values in the low micromolar 

range. Most of the 4-substituents were well received by the active site and they 

resulted in a significant enhancement of PARP-1 inhibitory potency with respect to 5-

AIQ (IC50=1.8 µM). This was particularly evident for 5-amino-4-methylisoquinolin-1(2H)-

one hydrochloride (182) (IC50 = 0.25 µM), 4-benzyl-5-aminoisoquinolin-1(2H)-one (192) 

(IC50= 0.5 µM) and the intermediate 4-bromo-5-aminoisoquinolin-1(2H)-one (125) 

(IC50= 1.0 µM), which were among the most potent members of this series. 

 

Pd-catalysed cyclisation for the future preparation of a range of 4-substituted-5-

nitroisoquinolin-1-ones leading to analogues of the potent water-soluble PARP-1 

inhibitor, 5-AIQ was achieved. Future work would involve the synthesis of further 3- and 

4-substituted 5-AIQs. Greatly encouraged by promising biological data, our main focus 

is to evaluate the inhibitors for their in vivo activity in various disease models. 
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6. Experimental 

 

General Procedures 

 

Melting points were determined using a Reichert-Jung Thermo Galen Kofler block and 

are uncorrected. IR spectra were recorded on a Perkin-Elmer RXI FT-IR spectrometer, 

either as a KBr disc (KBr) or as a liquid (film). νmax values are given in cm
-1. Thin layer 

chromatography (TLC) was performed on silica gel 60 F254 -coated aluminium sheets 

(Merck) and visualised under UV light (365nm) or stained with phosphomolybdic acid 

or ninhydrin. Flash column chromatography was performed using silica gel 60 (0.040-

0.063 mm, Merck) as the stationary phase. NMR spectra were acquired on a Jeol-Delta 

GX 270 (270.05 MHz 1H; 67.80 MHz 13C) or Varian Mercury EX 400 (399.65 MHz 1H; 

100.4 MHz 13C; 376.05 MHz 19F) or Varian Unity Inova 600 MHz spectrometers. 

Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane for 

samples in CDCl3, (CD3)2SO, CD3OD and (CD3)2CO. Multiplicities are indicated by s 

(singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Where 

indicated, 2-D experiments were used to assign 13C NMR signals. Mass spectra were 

obtained by either Electron Impact (EI), Electrospray (ESI) or Fast Atom Bombardment 

(FAB) (with 3-nitrobenzyl alcohol as the matrix) at the University of Bath Mass 

Spectrometry Service using a VG 7070 Mass Spectrometer, the University of Bath 

Department of Pharmacy and Pharmacology High Resolution Mass Spectrometry 

Service using a Bruker microTOF spectrometer and the EPSRC Mass Spectrometry 

Service, Swansea. Microanalysis was carried out at the University of Bath 

Microanalysis Service and School of Pharmacy, University of London, Microanalysis 

Service. 

 

All reagents for chemical synthesis were purchased from Sigma-Aldrich and Alfa Aesar 

and were used without further purification. Experiments were conducted at ambient 

temperature, unless otherwise stated. Where experiments were repeated, only one 

description is provided. Solutions in organic solvents were dried using anhydrous 

MgSO4 and solvents were evaporated under reduced pressure using a Büchi rotary 

evaporator. THF was freshly distilled under nitrogen from sodium/benzophenone and 

diisopropylamine, Et3N, acetonitrile and propanenitrile were distilled from calcium 

hydride.  
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2-Hydroxymercuri-3-nitrobenzoic acid (75) 

2-Iodo-3-nitrobenzoic acid (76) 

 

NO2

O

Hg
O

O

NO2

I

OH

 

 

3-Nitrobenzene-1,2-dicarboxylic acid 74 (10.55 g, 50.0 mmol) in hot aq. NaOH (10%, 

40 mL) was added to Hg(OAc)2 (17.5 g, 55 mmol) in hot AcOH (2.5 mL) and H2O (35 

mL). The mixture was heated at 120 oC for 70 h, then filtered. The precipitate was 

washed (H2O, then EtOH) and dried to give 2-hydroxymercuri-3-nitrobenzoic acid 75 

(18.12 g, 99%) as a cream solid. To a refluxing solution of 75 (18.12 g, 50 mmol) in aq. 

NaOH (3.5%, 250 mL) was slowly added, with vigorous stirring, aq. HCl (2 M, 6 mL) 

and the solution was allowed to cool to room temperature. AcOH (3 mL) was then 

added. The precipitate dissolved upon addition of KI (9.5 g, 57 mmol) and I2 (14.5 g, 57 

mmol) in H2O (15 mL). The solution was boiled under reflux for 24 h, cooled and 

neutralised with aq. NaOH before being filtered and acidified with aq. HCl (9 M). The 

precipitate was filtered, dried and recrystallised (EtOH) to give 76 (7.69 g, 53%) as 

yellow crystals: Rf = 0.61 (CH2Cl2:MeOH:AcOH 9:1:0.1); mp 203-204 oC (lit.160 mp 204-

205 oC); IR νmax (KBr) 1375 & 1540 (NO2), 1712 (C=O), 2520-3050 (OH) cm-1; 1H NMR 

(CD3)2SO δ 7.66 (1 H, t, J = 7.8 Hz, 5-H), 7.79 (1 H, dd, J = 7.7, 1.5 Hz, 4-H), 7.92 (1 

H, dd, J = 7.9, 1.7 Hz, 6-H). 

 

Methyl 2-iodo-3-nitrobenzoate (71) 

 

OMe

O

I

NO2  

 

Compound 76 (4.0 g, 14 mmol) in MeOH (120 ml) and H2SO4 (3 ml) was boiled under 

reflux for 48 h, then poured into ice-H2O (300 ml). The precipitate formed was filtered, 

dried and recrystallised (MeOH) gave 71 (4.0 g, 95%) as yellow crystals. Rf = 0.33 

(hexane:EtOAc 4:1); mp 65-66°C (lit.160 mp 64-66°C); IR νmax (KBr) 1351 & 1533 (NO2), 

1705 (C=O); 1H NMR (CDCl3) δ 3.99 (3 H, s, CH3), 7.54 (1 H, t, J = 7.8 Hz, 5-H), 7.70 

(1 H, dd, J = 7.8, 1.7 Hz, 4-H), 7.77 (1 H, dd, J = 7.8, 1.7 Hz, 6-H). 
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Methyl 3-nitro-2-((trimethylsilyl)ethynyl)benzoate (80) 

Methyl 3-nitrobenzoate (81) 

 

 

 

The Pd catalyst (Ph3P)2PdCl2, used in this reaction was prepared as follows: A mixture 

of PPh3 (0.375 g, 1.4 mmol) and PdCl2 (0.13 g, 0.7 mmol) in DMF (20 mL) was heated 

at 80 oC for 24 h. Filtration and drying yielded (Ph3P)2PdCl2 (0.4 g, 80%) as a yellow 

powder. Methyl 2-iodo-3-nitrobenzoate 71 (3.0 g, 9.8 mmol) in dry THF (120 mL) was 

added to a suspension of (Ph3P)2PdCl2 (0.3 g, 0.4 mmol) and CuI (0.4 g, 2.1 mmol) in 

dry diisopropylamine (40 mL) and the mixture was stirred at 45 oC for 30 min under Ar. 

Trimethylsilylethyne (1.1 g, 11.0 mmol) was added during 30 min and the mixture was 

stirred for another 72 h at 45 oC. Filtration (Celite®), evaporation and chromatography 

(hexane:EtOAc 15:1) gave 80 (0.76 g, 28%) as reddish brown oil: Rf = 0.34 

(hexane:EtOAc 15:1); IR νmax (KBr) 1351 & 1532 (NO2), 1738 (C=O), 2219 (C≡C) cm-1; 
1 H NMR (CDCl3) δ 0.21 (9 H, s, Si(CH3)3), 3.88 (3 H, s, CH3), 7.44 (1 H, t, J = 7.9 Hz, 

5-H), 7.90 (1 H, dd, J = 8.1, 1.5 Hz, 4-H), 7.97 (1 H, dd, J = 7.9, 1.5 Hz, 6-H).  

 

Also isolated by chromatography was 81 (0.24 g, 14%) as yellow crystals: Rf = 0.39 

(hexane:EtOAc 15:1); mp 76-78 oC (lit.160 mp 75-76 oC); IR νmax (KBr) 1352 & 1531 

(NO2), 1720 (C=O) cm-1; 1H NMR (CDCl3) δ 3.94 (3 H, s, CH3), 7.62 (1 H, t, J = 8.0 Hz, 

5-H), 8.32 (1 H, dt, J = 7.6, 1.5, Hz, 4-H), 8.36 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 6-H), 

8.79 (1 H, t, J = 1.7 Hz, 2-H).  

 

Methyl 2-ethynyl-3-nitrobenzoate (82) 

 

HNO2

O

OMe

 

 

To 80 (0.25 g, 0.9 mmol) in acetone (6.5 mL), water (1.5 mL), and CH2Cl2 (11.5 mL) 

was added silver trifluoromethanesulfonate (23 mg, 0.09 mol). The mixture was stirred 

for 7 d. Saturated aq. NH4Cl (2 mL) was added and the mixture was extracted thrice 
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with CH2Cl2. The combined organic layers were dried and filtered. Evaporation and 

chromatography (hexane:EtOAc 6:1) gave 82 (0.13 g, 72%) as pale yellow crystals: Rf 

= 0.4 (hexane:EtOAc 4:1); mp 78-80 oC; IR νmax (KBr) 1351 & 1530 (NO2), 1720 (C=O), 

2112 (C≡C) cm-1; 1H NMR (CDCl3) δ 3.72 (1 H, s, C≡CH), 3.95 (3 H, s, CH3), 7.54 (1 H, 

t, J = 8.0 Hz, 5-H), 7.97 (1 H, dd, J = 8.2, 1.2 Hz, 4-H), 8.06 (1 H, dd, J = 7.9, 1.2 Hz, 6-

H). 

 

Methyl 3-nitro-2-(phenylethynyl)benzoate (85) 

1,4-Diphenylbuta-1,3-diyne (86) 

Methyl 3-nitrobenzoate (81) 

 

 

 

The Pd catalyst, (Ph3P)2PdCl2, used in this reaction was prepared as above. Methyl 2-

iodo-3-nitrobenzoate 71 (3.0 g, 9.8 mmol) in dry THF (120 mL) was added to a 

suspension of (Ph3P)2PdCl2 (0.3 g, 0.4 mmol) and CuI (0.4 g, 2.1 mmol) in dry 

diisopropylamine (40 mL) and the mixture was stirred at 45 oC for 30 min under Ar. 

Phenylacetylene (1.5 g, 15 mmol) was then added during 30 min and the mixture was 

stirred for another 48 h at 45 oC. Filtration (Celite), evaporation and chromatography 

(hexane:CH2Cl2 2:1) gave 85 (1.4 g, 51%) as reddish brown crystals: Rf = 0.78 

(hexane:EtOAc 4:1); mp 58-59 oC (lit.160 mp 59-60 oC); IR νmax (KBr) 1342 & 1526 

(NO2), 1738 (C=O), 2214 (C≡C) cm-1; 1 H NMR  (CDCl3) δ 3.99 (3 H, s, CH3), 7.31-7.40 

(3 H, m, 3’,4’,5’-H3), 7.48 (1 H, t, J = 8.0 Hz, 5-H), 7.54-7.62 (2 H, m, 2’,6’-H2), 8.03 (1 

H, dd, J = 8.1, 1.5 Hz, 4-H), 8.10 (1 H, dd, J = 7.9, 1.5 Hz, 6-H). 

 

 Compound 86 (0.5 g, 25%) was isolated by chromatography: Rf =0.9 (hexane:EtOAc 

4:1); mp 85-86 oC (lit.160 mp 83-84 oC); IR νmax (KBr) 2147 (C≡C) cm
-1; 1H NMR (CDCl3) 

δ 7.32-7.41 (6 H, m, 2 x 3,4,5-H3), 7.56-7.53 (4 H, m, 2 x 2,6-H2). 

 

Also isolated by chromatography was 81 (0.67 g, 38%) as pale yellow crystals with 

data as above. 
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Methyl 2-acetyl–3-nitrobenzoate (95) 

 

NO2

O

OMe

O

Me

 

 

To 80 (0.11 g, 0.4 mmol) and HgSO4 (0.15 g, 0.5 mmol) in acetone (10 mL) and conc. 

H2SO4 (0.1 mL) were boiled under reflux for 48 h, then evaporated to yield a brown 

residue. Extraction (CHCl3), evaporation and chromatography (hexane:EtOAc 4:1) 

gave 95 (25 mg, 27%) as pale buff crystals: Rf = 0.2 (hexane:EtOAc 4:1); mp 81-82 oC 

(lit.208 mp 81 oC); IR (KBr) νmax 1346 & 1539 (NO2), 1700 & 1732 (C=O) cm-1; 1H NMR 

(CDCl3) δ 2.71 (3 H, s, COCH3), 3.93 (3 H, s, OCH3), 7.64 (1 H, t, J = 8.2 Hz, 5-H), 8.33 

(1 H, dd, J = 7.9, 1.2 Hz, 4-H), 8.37 (1 H, dd, J = 7.9, 1.2 Hz, 6-H). 

  

Methyl 2-acetyl-3-nitrobenzoate (95) 

(±)-3-Methoxy-3-methyl-4-nitro isobenzofuran-1(3H)-one (96) 

 

NO2

O

OMe

O

Me
O

O

Me
OMe

NO2  

 

Compound 82 (0.10 g, 0.48 mmol) and HgSO4 (0.17 g, 0.6 mmol) in acetone (10 mL) 

and conc. H2SO4 (0.1 mL) was boiled under reflux for 48 h, then evaporated to yield a 

brown residue. Extraction (CHCl3) and evaporation gave 95 (27 mg, 28%) as buff 

crystals with properties as above. Also identified in trace amounts in the NMR spectrum 

was 96: 1H NMR (CDCl3) δ 2.05 (3 H, s, CH3), 3.22 (3 H, s, OCH3) 7.5-8.5 (3 H, m, Ar 

5,6,7-H3). 
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4-Iodo-5-nitro-3-phenylisocoumarin (99)  

 

O

NO2

O

I

 

 

Compound 85 (0.114 g, 0.37 mmol) in dry CH2Cl2 (4 mL) was stirred with ICl (0.09 g, 

0.55 mmol) in dry CH2Cl2 (1 mL) for 2 h in the dark. The mixture was diluted with Et2O 

(50 mL), washed with aq. sodium thiosulfate solution and dried. Evaporation and 

chromatography (hexane:EtOAc 4:1) gave 99 (0.13 g, 81%) as pale yellow crystals. 

Recrystallisation (EtOAc:hexane) gave yellow powder: Rf = 0.6 (hexane:EtOAc 4:1); mp 

154-156 oC; IR νmax (KBr) 1354 & 1532 (NO2), 1636 (C=C), 1732 (C=O) cm-1; 1H NMR 

(CDCl3) δ 7.46-7.52 (3 H, m, Ph 3’,4’,5’-H3), 7.65 (1 H, t, J = 7.8 Hz, 7-H), 7.70-7.74 (2 

H, m, Ph 2’,6’-H2), 8.07 (1 H, dd, J = 7.8, 1.5 Hz, 6-H), 8.54 (1 H, dd, J = 7.8, 1.5 Hz, 8-

H); 13C NMR δ 61.58 (4-C), 123.47 (9-C), 128.35 (3’,5’-C2), 128.63 (7-C), 130.46 (2’,6’-

C2), 130.92 (4’-C), 131.21 (6-C), 131.95 (10-C), 133.25 (8-C), 134.90 (1-C), 150.06 (5-

C), 158.95 (3-C), 159.55 (1-C); MS (EI) m/z 392 (M - H), 265 (M - HI); Anal. Calcd for 

C15H18INO4: C, 45.83; H, 2.05; N, 3.56; Found: C, 46.1; H, 2.15; N, 3.69.  

 

5-Nitro-3-phenylisocoumarin (93)  

 

 

 

Formic acid (98%) (30 mg, 0.66 mmol) was added to a degassed mixture of 99 (0.13 g, 

0.33 mol), Et3N (0.1 g, 1.0 mmol), Pd(OAc)2 (6.6 mg, 7 µmol) and Ph3P (13.2 mg, 13 

µmol) in dry DMF (10 mL). The mixture was stirred at 60 oC for 4.5 h under Ar before 

being poured into water (50 mL). Extraction (EtOAc), drying, evaporation and 

chromatography (hexane:EtOAc 9:1) gave 93 (69 mg, 78%) as bright yellow crystals: 

Rf = 0.43 (hexane:EtOAc 4:1); mp 141-142 oC (lit.160 mp 142-143 oC); IR νmax (KBr) 1341 

& 1527 (NO2), 1629 (C=C), 1739 (C=O) cm-1; 1H NMR (CDCl3) δ 7.47-7.51 (3 H, m, Ph 

3’,4’,5’-H3), 7.60 (1 H, t, J = 7.8 Hz, 7-H), 7.86 (1 H, s, 4-H), 7.90-7.95 (2 H, m, Ph 2’,6’-

H2), 8.48 (1 H, dd, J = 7.9,1.2 Hz, 6-H), 8.54 (1 H, dd, J = 7.8, 1.5 Hz, 8-H).  
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5-Nitro-4-(phenylselenyl)-3-(trimethylsilyl)isocoumarin (104) 

  

O

SiMe3
NO2

O

Se

 

 

Compound 80 (0.11 g, 0.4 mmol) was stirred with phenylselenyl chloride (0.11 g, 0.6 

mmol) in dry CH2Cl2 (3 mL) for 24 h under N2. The mixture was washed with aq. 

NaHCO3 and dried. Evaporation and chromatography (hexane:EtOAc 4:1) gave 104 

(0.14 g, 82%) as a yellow solid. Recrystallisation (toluene) gave yellow powder: Rf = 

0.62 (hexane:EtOAc 4:1); mp 105-107 oC; IR (KBr) νmax 1370 & 1533 (NO2), 1733 

(C=O) cm-1; 1H NMR (CDCl3) δ 0.34 (9 H, s, SiMe3) 7.00 (2 H, m, SePh 2’,6’-H2) 7.10-

7.17 (3 H, m, SePh 3’,4’,5’-H3), 7.58 (1 H, t, J = 7.8 Hz, 7-H), 7.8 (1 H, dd, J = 7.9, 1.5 

Hz, 6-H), 8.50 (1 H, dd, J = 7.8, 1.4 Hz, 8-H); 13C NMR δ 0.34 (CH3)3, 110.27 (4-C), 

124.04 (9-C), 126.67 (4’-C), 127.84 (2’,6’-C2), 128.83 (7-C), 129.36 (3’,5’,-C2), 130.15 

(6-C), 130.33 (10-C), 132.96 (8-C), 133.73 (1’-C), 147.48 (5-C), 160.47 (1-C), 175.22 

(3-C); MS (FAB+) m/z 419.0095 (M) (C18H17NO4
80Se28Si requires 419.0092), 418 (M - 

H); Anal. Calcd for C18H17NO4SeSi: C, 51.67; H, 4.10; N, 3.35; Found: C, 51.8; H, 4.15; 

N, 3.33.  

 

5-nitro-3-phenyl-4-(phenylselenyl)isocoumarin (105)  

 

7

6
5

8

4

3
O 2

1

1'

6'

5'

4'

3'
2'

NO2

O

Se
1''

2''

3''
5''

4''

6''

 

 

Compound 85 (0.10 g, 0.36 mmol) was stirred with phenylselenyl chloride (0.1 g, 0.53 

mmol) in dry CH2Cl2 (5 mL) for 4 h under N2. The mixture was washed with aq. 

NaHCO3 and dried. Evaporation and chromatography (hexane:EtOAc 7:1) gave 105 

(72 mg, 47%) as orange crystals: Recrystallisation (EtOAc) gave bright orange crystals. 

Rf = 0.8 (hexane:EtOAc 4:1); mp 188-190 oC; IR (KBr) νmax
 1354 & 1533 (NO2), 1733 
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(C=O) cm-1; 1H NMR (CDCl3) δ 6.80 (2 H, m, SePh 2”,6”-H2), 6.95 (2 H, m, SePh 3”,5”-

H2) 7.06 (1 H, tt, J = 7.3, 1.2 Hz, SePh 4”-H), 7.32-7.37 (2 H, m, CPh 3’,5’-H2), 7.38 (1 

H, tt, J = 7.3, 1.5 Hz, CPh 4’-H), 7.58 (2 H, m, CPh 2’,6’-H2), 7.63 (1 H, t, J = 8.0 Hz, 7-

H), 8.14 (1 H, dd, J = 8.0, 1.5 Hz, 6-H), 8.55 (1 H, dd, J = 7.9, 1.5 Hz, 8-H); 
13C NMR δ 

102.24 (4-C), 123.12 (9-C), 127.61 (4”-C, SePh), 127.85 (3’,5’-C2Ph), 128.04 (7-C), 

128.90 (3”,5”-C2, SePh), 130.34 (2’,6’-C2Ph), 130.60 (4’-CPh), 131.05 (6-C), 131.70 (1’-

C, SePh), 132.18 (2”,6”-C2, SePh), 133.26 (1’-CPh), 133.68 (8-C), 134.38 (10-C), 

148.35 (5-C), 159.90 (1-C), 160.65 (3-C); MS (EI) m/z 422 (M), 266 (M – C6H5Se); 

Anal. Calcd for C21H13NO4Se: C, 59.73; H, 3.10; N, 3.32; Found: C, 59.8; H, 3.06; N, 

3.32.  

 

Methyl 2-methyl-3-nitrobenzoate (111) 

 

Me

NO2

OMe

O

 

 

2-Methyl-3-nitrobenzoic acid 112 (10.0 g, 55.2 mmol) in MeOH (200 mL) and conc. 

H2SO4 (1 mL) was boiled under reflux for 48 h, then poured into ice-H2O (300 mL). The 

precipitated ester was filtered, washed (H2O) and recrystallised (MeOH) to give 111 

(10.2 g, 94%) as yellow crystals: Rf = 0.48 (hexane:EtOAc 4:1); mp 63-64 oC (lit.160 mp 

65-66 oC); IR νmax (KBr) 1363 & 1522 (NO2), 1724 (C=O) cm-1; 1H NMR (CDCl3) δ 2.63 

(3 H, s, ArCH3), 3.94 (3 H, s, CO2CH3), 7.38 (1 H, t, J = 8.0 Hz, 5-H), 7.85 (1 H, d, J = 

7.9 Hz, 4-H), 7.99 (1 H, d, J = 7.7 Hz, 6-H). 

 

Methyl 2-bromomethyl-3-nitrobenzoate (110) 

 

NO2

OMe

O

Br

 

 

Br2 (5.9 g, 37 mmol) in CCl4 (15 mL) was added over 30 min to a boiling solution of 111 

(5.75 g, 29.5 mmol) and dibenzoyl peroxide (0.55 g, 2.25 mmol) in CCl4 (50 mL) under 

irradiation using a 150 W lamp. After 20 h, additional Br2 (1.39 g, 8.7 mmol) and 

dibenzoyl peroxide (0.12 g, 0.5 mmol) in CCl4 (5 mL) were added. Heating and 
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irradiation were continued for another 29 h. Evaporation and recrystallisation (MeOH) 

gave 110 (4.69 g, 58%) as pale brown crystals: Rf = 0.42 (hexane:EtOAc 4:1); mp 70-

71 oC (lit.160 mp 68-69 oC); IR νmax (KBr) 1350 & 1528 (NO2), 1722 (C=O) cm-1; 1H NMR 

(CDCl3) δ 4.01 (3 H, s, CH3), 5.17 (2 H, s, CH2), 7.55 (1 H, t, J = 7.9 Hz, 5-H), 7.97 (1 

H, dd, J = 8.1, 1.2 Hz, 4-H), 8.12 (1 H, dd, J = 7.9, 1.5 Hz, 6-H). 

 

Methyl 2-cyanomethyl-3-nitrobenzoate (109) 

 

NO2

OMe

O

CN

 

 

To 110 (5.00 g, 18.21 mmol) in acetonitrile (70 mL) was added Et4N
+ -CN (3.4 g, 22 

mmol) and the mixture was stirred for 4 h. Evaporation and chromatography 

(Et2O:hexane 1:1) yielded 109 (2.77 g, 69%) as white crystals: Rf = 0.6 (hexane:EtOAc 

4:1); mp 94-95 oC (lit.160 mp 93-94 oC); IR νmax (KBr) 1350 & 1531 (NO2), 1708 (C=O), 

2366 (CN) cm-1; 1H NMR (CDCl3) δ 4.01 (3 H, s, CH3), 4.35 (2 H, s, CH2), 7.64 (1 H, t, J 

= 8.0 Hz, 5-H), 8.13 (1 H, dd, J = 8.1, 1.5 Hz, 4-H), 8.28 (1 H, dd, J = 7.9, 1.5 Hz, 6-H). 

 

Methyl (±)-2-(1-cyano-2-phenylethyl)-3-nitrobenzoate (116)  

 

NO2

OMe

O

CN

 

 

To 109 (1.00 g, 4.5 mmol) in dry THF (15 mL) was added lithium 

bis(trimethylsilyl)amide (5.6 mL, 5.6 mmol, 1.0 M in THF) and the mixture was stirred at 

–78 oC for 20 min under N2. Benzyl bromide (1.13 g, 6.5 mmol) was added and solution 

was allowed to warm to room temperature and stirred for further 4 h. Extraction 

(CH2Cl2), washing (5% aq. HCl, H2O), drying and chromatography (toluene) gave 116 

(930 mg, 67%) as a pale brown oil: Rf = 0.25 (toluene); IR (film) νmax 1355 & 1540 

(NO2), 1716 (C=O), 2264 (CN) cm-1; 1H NMR (CDCl3) δ 3.42 (1 H, dd, J = 13.0, 5.4 Hz, 

PhCH), 3.75 (1 H, dd, J = 13.0, 10.2 Hz, PhCH), 4.00 (3 H, s, CH3), 5.07 (1 H, dd, J = 

10.2, 5.4 Hz, CH), 7.28-7.42 (5 H, m, 2’,3’,4’,5’,6’- H5) 7.56 (1 H, t, J = 8.1 Hz, 5-H), 
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7.97 (1 H, dd, J = 8.1, 1.5 Hz, 4-H), 8.08 (1 H, dd, J = 7.9, 1.5 Hz, 6-H); 13C NMR δ 

34.52 (CH), 39.49 (CH2), 53.38 (CH3), 117.88 (CN), 127.57 (4’-C), 128.27 (4-C), 

128.80(2’,6’-C2), 129.19 (2-C), 129.37 (3’,5’-C2), 133.10 (1-C), 134.93 (6-C), 136.56 (1’-

C), 150.71 (3-C), 166.20 (C=O); MS (FAB+) m/z 311.1046 (M + H) (C17H15N2O4 

requires 311.1031). 

 

(±)-2-(2-Formyl-6-nitrophenyl)-3-phenylpropanenitrile (117)  

 

NO2

H

O

CN

 

 

Compound 116 (100 mg, 0.322 mmol) was dissolved in dry CH2Cl2 (5 mL) and the 

solution was stirred at –78 oC for 30 min under N2. DIBAL-H (1.0 M, 0.5 mL, 0.5 mmol) 

was added dropwise and the mixture was stirred for 1 h at -78 oC. The solution was 

then allowed to warm to room temperature. Washing (H2O), drying and 

chromatography (hexane:EtOAc 4:1) gave 117 (40 mg, 44%) as buff crystals: Rf = 0.36 

(hexane:EtOAc); mp 124-125 oC; IR (KBr) νmax 1355 & 1530 (NO2), 1697 (C=O), 2264 

(CN) cm-1; 1H NMR (CDCl3) δ 3.30 (1 H, dd, J = 13.3, 5.5 Hz, PhCH), 3.59 (1 H, dd, J = 

10.1, 13.3 Hz, PhCH), 5.25 (1 H, dd, J = 9.4, 5.5 Hz, CH), 7.43-7.24 (5 H, m, 

2’,3’,4’,5’,6’-H5), 7.76 (1 H, t, J = 7.8, Hz, 5-H), 8.00 (1 H, dd, J = 8.2, 1.5 Hz, 4-H), 8.15 

(1 H, dd, J = 7.8, 1.5 Hz, 6-H), 10.28 (1 H, s, CHO); 13C NMR δ 32.70 (CH), 39.39 

(CH2), 117.65 (CN), 127.83 (4’-C), 128.92 (2’,6’-C2), 129.38 (3’,5’-C2), 129.81 (2-C), 

129.85 (4-C), 130.03 (5-C), 135.03 (1-C), 135.86 (1’-C), 138.32 (6-C), 150.10 (3-C), 

190.18 (C=O); MS (FAB+) m/z 280.0850 (M) (C16H12N2O3 requires 280.0847). 

 

5-Nitroisocoumarin (126) 
 

O

O

NO2  

 

The ester 111 (5.0 g, 25.6 mmol) was heated with dimethylformamide dimethyl acetal 

(2.5 g, 21 mmol) in DMF (30 mL) at 150 oC for 16 h. Evaporation, chromatography 
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(hexane:EtOAc 10:1) gave 126 (1.9 g, 39%) as yellow crystals: mp 170-172 oC (lit.160 

mp 171-172 oC);  Rf = 0.41 (hexane:EtOAc 4:1); IR (KBr) νmax 1332, 1518 (NO2), 1748 

(C=O) cm-1; 1H NMR (CDCl3) δ 7.35 (1 H, dd, J = 6.1, 0.5 Hz, 4-H), 7.43 (1 H, d, J = 6.0 

Hz, 3-H), 7.65 (1 H, t, J = 7.9 Hz, 7-H), 8.48 (1 H, dd, J = 8.2, 1.3 Hz, 6-H), 8.64 (1 H, 

ddd, J = 7.9, 1.5, 0.5 Hz, 8-H). 

 

5-Nitroisoquinolin-1(2H)-one (113) 

 

NH

O

NO2  

 

A solution of 126 (1.7 g, 8.86 mmol) in 2-methoxyethanol (30 mL) was saturated with 

NH3 and boiled under reflux for 2 h. Evaporation and recrystallisation (EtOH) gave 113 

(1.5 g, 89%) as yellow crystals: Rf = 0.29 (hexane:EtOAc 1:2); mp 248-249 oC (lit.160 mp 

247-249 oC); 1H NMR ((CD3)2SO) δ 6.98 (1 H, dd, J = 7.7, 4-H), 7.45 (1 H, dd, J = 7.7, 

1.5 Hz, 3-H), 7.66 (1 H, t, J = 7.9 Hz, 7-H), 8.47 (1 H, dd, J = 7.9, 1.3 Hz, 6-H), 8.59 (1 

H, d, J = 8.0 Hz, 8-H), 11.79 (1 H, br s, NH). 

 

4-Bromo-5-nitroisoquinolin-1-one (124)  

4-Bromo-5-nitro-1-oxo-1,2,3,4-tetrahydroisoquinolin-3-yl acetate (129) 

 

 

 

To a solution of 113 (0.1 g, 0.5 mmol) in AcOH (5 mL) was added equimolar amount of 

N-bromosuccinimide (0.09 g, 0.5 mmol). After 30 min the mixture was poured into ice 

H2O (100 mL) stirred for 10 min. Extraction (EtOAc), washing (aq. NaHCO3, H2O) 

drying, evaporation and chromatography (hexane:EtOAc 4:1) yielded 129 (0.07 g, 

33%) as buff solid: mp 137°C; IR (KBr) νmax 1335 & 1534 (NO2), 1675 (C=O), 3462 

(NH) cm-1; 1H NMR ((CD3)2CO) δ 2.08 (3 H, s, CH3), 5.79 (1 H, d, J = 4.7 Hz, 4-H), 5.95 

(1 H, m, 3-H), 7.82 (1 H, t, J = 7.9 Hz, 7-H), 8.33 (1 H, dd, J = 8.2, 1.5 Hz, 6-H), 8.45 (1 

H, dd, J = 8.0, 1.2 Hz, 8-H).  
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Also isolated was 124 (0.3 g, 21%) as orange crystals: mp 233-235°C; IR (KBr) νmax 

1368 & 1534 (NO2), 1674 (C=O), 3467 (NH) cm-1; 1H NMR ((CD3)2CO) δ 7.73 (1 H, s, 

3-H), 7.77 (1 H, t, J = 7.8 Hz, 7-H), 8.10 (1 H, dd, J = 7.8, 1.6 Hz, 6-H), 8.61 (1 H, dd, J 

= 8.6, 1.9 Hz, 8-H); 13C NMR δ 90.40 (4-C), 127.98 (10-C), 128.25 (7-C), 129.46 (6-C), 

129.88 (9-C), 132.05 (8-C), 135.60 (3-C), 147.25 (5-C), 159.00 (1-C); MS (ESI +ve) 

m/z 267.9478 (M) (C9H5
79BrN2O3 requires 267.9484), 290.9376 (M + Na) 

(C9H5
79BrN2O3Na requires 290.9332), 292.9354 (M + Na) (C9H5

81BrN2O3Na requires 

292.9312), Anal. Calcd. for C9H5BrN2O3: C, 40.18; H, 1.87; N, 10.41; Found: C, 40.60; 

H, 1.61; N, 10.19. 

 

4-Bromo-5-nitroisoquinolin-1(2H)-one (124) 

4-Bromo-3-hydroxy-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (130) 

 

NH

O

BrNO2                

NH

O

BrNO2

OH

 

 

To a solution of 113 (1.5 g, 7.8 mmol) in AcOH (15 mL) was added equimolar amount 

of Br2 (0.21 g, 1.31 mmol) in AcOH (7 mL). After 2 h the mixture was poured into ice 

H2O (100 mL) stirred for 10 min. Extraction (CH2Cl2), drying, evaporation and 

chromatography (hexane:EtOAc 4:1) yielded 124 (0.7 g, 33%) as orange crystals with 

data as above. 

 

Also isolated was 130 (0.7 g, 33%) as buff solid: mp 175-177°C; IR (KBr) νmax 1338 & 

1534 (NO2), 1672 (C=O), 3460 (NH) cm-1; 1H NMR ((CD3)2CO) δ 8.55 (1 H, br s, NH), 

8.30 (1 H, dd, J = 7.7, 1.5 Hz, 8-H), 8.0 (1 H, dd, J = 7.9, 1.5 Hz, 6-H), 7.82 (1 H, t, J = 

7.9 Hz, 7-H), 6.73 (1 H, d, J = 5.9 Hz, 4-H), 5.52 (1 H, t, J = 5.7, 1.2 Hz, 6-H). 13C NMR 

δ 85.87 (4-C), 91.21 (3-C), 128.99 (7-C), 130.21 (6-C), 130.87(9-C), 132.16 (10-C), 

132.79 (8-C), 136.37 (3-C), 151.69 (5-C), 162.16 (1-C). 

 

3,4-Dibromo-5-nitroisocoumarin (131) 

 

O

O

NO2 Br

Br
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To a solution of 126 (0.25 g, 1.31 mmol) in AcOH (2.5 mL) was added equimolar 

amount of Br2 (0.21 g, 1.31 mmol) in AcOH (1 mL). After 2 h the mixture was poured 

into ice H2O (100 mL) stirred for 10 min. Extraction (CH2Cl2), drying, evaporation and 

chromatography (hexane:EtOAc 4:1) yielded 131 (0.24 g, 52%) as white crystals: mp 

116-118 oC; Rf = 0.7 (hexane:EtOAc 4:1); IR (KBr) νmax 1054 (C-O), 1346, 1528 (NO2), 

1761 (C=O) cm-1; 1H NMR (CDCl3) δ 6.32 (1 H, d, J = 1.7 Hz, 4-H), 6.90 (1 H, d, J = 1.7 

Hz, 3-H), 7.80 (1 H, t, J = 8.2 Hz, 7-H), 8.52 (1 H, s, 6-H), 8.64 (1 H, s, 8-H); 13C NMR δ 

38.41 (4-C), 78.21 (3-C), 125.07 (9-C), 130.90 (7-C), 131.31 (8-C), 133.02 (10-C), 

135.65 (6-C), 145.34 (5-C), 158.28 (1-C); MS (ESI +ve) m/z 349.8658 (M + H) 

(C9H6
79Br2NO4 requires 349.8664), 351.8647 (M + H) (C9H6

79Br81BrNO4 requires 

351.8642), 353.8621 (M + H) (C9H6
81Br2NO4 requires 353.8623), 373.8455 (M + Na)  

(C9H6
79Br81BrNO4Na requires 373.8463). 

 

5-Amino-4-bromoisoquinolin-1(2H)-one (125) 

 

NH

O

BrNH2  

 

A mixture of 124 (0.54 g, 2.0 mmol) and SnCl2 (1.21 g, 6.4 mmol) in EtOH (20 mL) was 

heated at 80°C for 4 h, then carefully poured into ice-H2O (75 mL). The resulting 

suspension was made alkaline with aq. NaOH and the precipitate was filtered. 

Extraction of the filtrate (EtOAc), evaporation and chromatography (EtOAc:hexane 4:1) 

gave 125 (0.25 mg, 54%) as brown powder: Rf = 0.33 (EtOAc:hexane 1:4); mp 210-

212°C; IR (KBr) νmax 1661, 1624 (C=O), 3443, 3321 (NH) cm-1; 1H NMR ((CD3)2SO) δ 

5.92 (2 H, br s, NH2), 7.73 (1 H, s, 3-H), 7.02 (1 H, dd, J = 8.2, 1.6 Hz, 6-H), 7.22 (1 H, 

s, 3-H), 7.25 (1 H, t, J = 8.2 Hz, 7-H), 7.54 (1 H, dd, J = 7.8, 1.2 Hz, 8-H), 11.34 (1 H, br 

s, NH); 13C NMR δ 93.10 (4-C), 115.83 (8-C), 119.17 (6-C), 119.42 (10-C), 128.04 (3-

C), 128.44 (9-C), 128.56 (7-C), 144.72 (5-C), 160.83 (1-C); MS (ESI +ve) m/z 238.9815 

(M + H) (C9H8
79

 BrN2O requires 238.9820). 
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2-Iodo-3-nitrobenzoyl chloride (139) 

 

NO2

O

I

Cl

 

 

To 76 (3.0 g, 10.2 mmol) and DMF (0.2 mL) was carefully added SOCl2 (30 mL) and 

the mixture was boiled under reflux for 24 h. Evaporation and recrystallisation (hexane) 

yielded 139 (3.0 g, 94%) as yellow crystals: Rf = 0.88 (EtOAc:hexane 1:4); mp 71-73 oC 

(lit.160 mp 70-71 oC); IR νmax (KBr) 1348 & 1530 (NO2), 1758 (C=O) cm-1; 1H NMR 

(CDCl3) δ 7.64 (1 H, t, J = 7.8 Hz, 5-H), 7.79 (1 H, dd, J = 7.8, 1.6 Hz, 4-H), 7.95 (1 H, 

dd, J = 7.8, 1.6 Hz, 6-H). 

 

N,N-Di(prop-2-enyl)-2-iodo-3-nitrobenzamide (141) 

 

NO2

O

I

N

 

 

To 2-iodo-3-nitrobenzoyl chloride 139 (1.0 g, 3.2 mmol) in CH2Cl2 (5 mL) was added di-

2-propenylamine (0.4 mL, 3.2 mmol) and Et3N (0.64 g, 6.4 mmol) and the mixture was 

stirred for 30 min. Washing (5% aq. HCl, 5% aq. NaHCO3), drying, evaporation and 

chromatography (CH2Cl2:EtOAc 20:1) gave 141 (0.89 g, 75%) as a buff semisolid: Rf = 

0.64 (CH2Cl2:EtOAc 20:1); IR (film) νmax 1360 & 1532 (NO2), 1733 (C=O) cm-1; 1H NMR 

(CDCl3) δ 3.63 (1 H, dd, J = 16.3, 3.9 Hz, propenyl 1-H), 3.76 (2 H, m, 2 x propenyl 1-

H), 4.60 (1H, dd, J = 14.9, 4.3 Hz, propenyl 1-H), 5.12 (1 H, dq, J = 17.2, 1.6 Hz, 

propenyl 3-H), 5.20 (1 H, dq, J = 10.2, 1.2 Hz, propenyl 3-H), 5.30 (1 H, dq, J = 10.6, 

1.2 Hz, propenyl 3-H), 5.35 (1 H, dq, J = 17.2, 1.2 Hz, propenyl 3-H), 5.65 (1 H, m, 

propenyl 2-H), 5.95 (1 H, m, propenyl 2-H), 7.34 (1 H, dd, J = 7.6, 1.5 Hz, 6-H), 7.49 (1 

H, t, J = 7.8 Hz, 5-H), 7.68 (1 H, dd, J = 7.9, 1.5 Hz, 4-H); 13C NMR δ 46.76 (CH2), 

50.16 (CH2), 85.22 (2-C), 118.46 (=CH2), 119.06 (=CH2), 124.63 (4-C), 129.47 (5-C), 

129.75 (6-C), 131.78 (=CH), 131.95 (=CH), 145.88 (1-C), 154.34 (3-C), 169.13 (C=O); 

MS (EI) m/z 371.9958 (M) (C13H13IN2O3 requires 371.9970). 
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(E)-Diphenyl-N-((E)-3-phenylprop-2-enylidene)methanamine (146)  

 

N

 

 

Diphenylmethylamine 144 (6.9 g, 38 mmol) and E-3-phenylpropenal 145 (5.0 g, 38 

mmol) were boiled in toluene (50 mL) in a Dean-Stark apparatus until the calculated 

amount of water had separated (0.7 mL). Evaporation and recrystallisation (Et2O) gave 

146 (11.0 g, 97%) as yellow crystals: mp 115-117 oC (lit.209 mp 116-118 oC); IR (KBr) 

νmax 1444 & 1489 (C=C), 1598 (C=C conjugated) cm
-1; 1H NMR (CDCl3) δ 5.48 (1 H, s, 

Ph2CH), 6.96 (1 H, d, J = 16.1 Hz, propene 3-H), 7.06 (1 H, dd, J = 16.0, 8.1 Hz, 

propene 2-H), 7.20-7.40 (13 H, m, 2 x Ph-H5 + Ph 3’,4’,5’-H3), 7.47 (2 H, dd, J = 9.4, 

1.7 Hz, Ph 2’,6’-H2), 8.18 (1 H, dd, J = 8.2, 0.8 Hz, propene 1-H).  

 

(E)-N-Diphenylmethyl-3-phenylprop-2-en-1-amine (147)  

 

N
31

2
H

 

 

To 146 (6.0 g, 20 mmol) in MeOH (250 mL) warmed to 45 oC was slowly added NaBH4 

(0.77 g, 20 mmol) during 20 min. After evaporation of the solvent the residue was taken 

up in Et2O, washed (5% aq. NaHCO3) and dried.  Evaporation gave 147 (5.8 g, 95%) 

as pale yellow semi-solid. IR (film) νmax 1451 & 1492 (C=C), 1598 (C=C conjugated), 

3332 (NH) cm-1; 1H NMR (CDCl3) δ 1.94 (1 H, br s, N-H), 3.52 (2 H, dd, J = 6.2, 1.0 Hz, 

CH2), 5.07 (1 H, s, Ph2CH), 6.47 (1 H, dt, J = 15.8, 6.0 Hz, propene 2-H), 6.65 (1 H, d, 

J = 15.8 Hz, propene 3-H), 7.34-7.61 (15 H, m, 3 x Ph-H5).  
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(E) N-Diphenylmethyl-2-iodo-3-nitro-N-(3-phenylprop-2-enyl)benzamide (148) 

  

NO2

I

N

O

 

 

To 139 (1.5 g, 4.8 mmol) in CH2Cl2 (10 mL) was added 147 (1.43 g, 4.8 mmol) and 

Et3N (0.97 g, 9.6 mmol) and the mixture was stirred for 30 min. Washing (5% aq. HCl, 

5% aq. NaHCO3) drying, evaporation and chromatography (hexane:EtOAc 4:1) gave 

148 (1.49 g, 54%) as a buff solid: mp 134-136 oC; Rf = 0.38 (hexane:EtOAc 4:1); IR νmax 

(KBr) 1360 & 1530 (NO2), 1636 (C=O) cm-1; The NMR spectra showed a 3:4 mixture of 

rotamers α & β about the amide double bond. 1H NMR αααα (CDCl3) δ 3.91-4.06 (2 H, m, 

CH2), 5.20 (1 H, dt, J = 15.5, 6.5 Hz, =CHCH2), 5.42 (1 H, d, J = 16.0 Hz, =CHPh), 7.31 

(1 H, s, Ph2CH), 6.9-7.65 (18 H, m, 3 x Ph-H5 + 4,5,6-H3); 
13C NMR δ 49.33 (CH2), 

61.21 (Ph2CH), 85.89 (2-C), 123.91 (=CHCH2), 124.34 (4-C), 126.03, 127.16, 127.32, 

127.66, 127.76, 128.26, 128.38, 128.54, 128.84, 129.25, 130.66, 132.73 (=CHPh), 

135.45 (q), 138.16 (q), 138.60 (q), 145.95 (1-C), 154.19 (3-C), 168.80 (C=O); 

 
1H NMR ββββ (CDCl3) δ 3.93-4.05 (1 H, m, H-CH), 4.81 (1 H, dd, J = 14.5, 5.5 Hz, H-CH), 

5.83 (1 H, s, Ph2CH), 5.88 (1 H, d, J = 16.0 Hz =CHPh), 6.0 (1 H, dt, J = 16.0, 6.0 Hz, 

=CHCH2), 6.90-7.65 (18 H, m, 3 x Ph-H5 + 4,5,6-H3); 
13C NMR δ 46.72 (CH2), 66.63 

(Ph2CH), 85.18 (2-C), 123.42 (=CHCH2), 124.49 (4-C), 126.15, 127.08, 127.58, 127.68, 

127.72, 128.16, 128.24, 128.35, 128.63, 128.79, 129.22, 132.36 (=CHPh), 136.63 (q), 

137.51 (q), 139.25 (q), 145.17 (1-C), 154.26 (3-C), 169.42 (C=O); MS (EI) m/z 

575.0821 (M + H) (C29H24IN2O3) requires 575.0826. 

 

2-(prop-2-enyl)-4-methyl-5-nitroisoquinolin-1(2H)-one (149)  

2-(prop-2-enyl)-4-methylene-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (150) 
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To 141 (0.31 g, 0.81 mmol) in dry MeCN (10 mL) was added (Ph3P)4Pd (40.3 mg, 

0.035 mmol) and dry Et3N (0.175 g, 1.72 mmol) and the mixture was heated to reflux 

for 48 h. After evaporation of the solvent the residue was taken in EtOAc, washed (5% 

aq. HCl, 5% aq. NaHCO3) and dried. Evaporation and chromatography (hexane:EtOAc 

4:1) yielded 149 and 150 (0.15 g, 79%) (1:2) as a buff oil. Rf = 0.35 (hexane:EtOAc 

4:1); IR (film) νmax 1365 & 1531 (NO2), 1658 (C=O) cm-1; 1H NMR 149 (CDCl3) δ 2.10 (3 

H, d, J = 1.2 Hz, CH3), 4.60 (2 H, dt, J = 5.7, 1.5 Hz, propenyl 1-H), 5.19 (2 H, m, 

propenyl 3-H), 5.96 (1 H, m, propenyl 2-H), 6.93 (1 H, d, J =1.2 Hz, 3-H), 7.53 (1 H, t, J 

= 7.9 Hz, 7-H), 7.74 (1 H, dd, J = 7.8, 1.5 Hz, 6-H), 8.66 (1 H, dd, J = 7.8, 1.5 Hz, 8-H); 
13C NMR δ 15.81 (CH3), 50.67 (NCH2), 108.36 (4-C), 118.74 (=CH2), 125.95 (7-C), 

127.18 (6-C), 131.86 (8-C), 131.99 (=CH), 132.60 (10-C), 133.18 (3-C), 133.87 (9-C), 

147.33 (5-C), 159.87 (1-C). 

 
1H NMR 150 (CDCl3) δ 4.12 (2 H, s, 3-CH2), 4.20 (2 H, dt, J =5.9, 1.5 Hz, propenyl 1-

H), 5.26 (2 H, m, propenyl 3-H), 5.29 (1 H, s, H of 4=CH2), 5.45 (1 H, s, H of 4=CH2), 

5.81 (1 H, m, propenyl 2-H), 7.47 (1 H, t, J = 7.9 Hz, 7-H), 7.70 (1 H, dd, J = 8.1, 1.5 

Hz, 6-H), 8.31 (1 H, dd, J = 7.8, 1.3 Hz, 8-H); 13C NMR δ 49.33 (NCH2), 52.18 (3-C), 

118.12 (=CH2), 119.39 (4=CH2),, 126.60 (6-C), 128.69 (7-C), 129.13 (10-C), 130.68 (9-

C), 131.55 (4-C), 131.78 (8-C), 131.89 (=CH), 147.51 (5-C), 161.05 (1-C). MS (ESI 

+ve) m/z 245.0916 (M + H) (C13H13N2O3 requires 245.0926), 267.0737 (M + H) 

(C13H12N2NaO3 requires 267.0746). 

  

2-Diphenylmethyl-5-nitro-4-phenylmethylisoquinolin-1(2H)-one (151) 

(Z)-4-Benzylidene-2-diphenylmethyl-5-nitro-3,4-dihydroisoquinolin-1(2H)-one 

(152)  

 

NO2

N

O

NO2

N

O

 

 

To 148 (0.5 g, 0.87 mmol) in dry propanenitrile (15 mL) was added (Ph3P)4Pd (50.3 

mg, 0.044 mmol), dry Et3N (0.17 g, 1.7 mmol) and the mixture was boiled under reflux 

for 48 h. After evaporation of solvent residue was taken up in EtOAc, washed (5% aq. 



 151 

HCl, 5% aq. NaHCO3) and dried. Evaporation and chromatography (hexane:EtOAc 

4:1) yielded an inseparable mixture of 151 and 152 (0.16 g, 41%) (1:3) as yellow 

crystals: IR νmax (KBr) 1347 & 1524 (NO2), 1654 (C=O) cm-1; Rf = 0.35 (hexane:EtOAc 

4:1); 1H NMR 151 (CDCl3) δ 3.75 (2 H, s, CH2), 6.54 (1 H, s, 3-H), 6.86-7.30 (15 H, m, 

3 x Ph-H5), 7.44 (1 H, s, Ph2CH), 7.52 (1 H, t, J = 7.8 Hz, 7-H), 7.79 (1 H, dd, J = 7.5, 

1.4 Hz, 6-H), 8.75 (1 H, dd, J = 8.2, 1.7 Hz, 8-H); 13C NMR δ 35.45 (CH2), 60.72 

(Ph2CH), 112.07 (4-C), 125.96 (7-C), 126.59 (6-C), 128.16, 128.39, 128.62, 128.69, 

129.05, 131.27, 132.76 (8-C), 133.47 (3-C), 133.38, 137.54 (q), 147.88 (5-C), 159.95 

(1-C). 

 

1H NMR 152 (CDCl3) δ 4.24 (2 H, d, J = 1.1 Hz, 3-CH2), 6.82 (1 H, s, =CH), 7.24 (1 H, 

s, Ph2CH), 6.86-7.30 (15 H, m, 3 x Ph-H5), 7.51 (1 H, t, J = 8.2 Hz, 7-H), 7.78 (1 H, dd, 

J = 7.8, 1.3 Hz, 6-H), 8.41 (1 H, dd, J = 7.8, 1.3 Hz, 8-H); 13C NMR δ 43.66 (CH2), 60.77 

(Ph2CH), 124.93 (4-C), 127.14 (6-C), 127.48, 127.56, 128.30 (7-C), 128.38, 128.42, 

128.44, 128.74, 131.15 (10-C), 131.33 (9-C), 134.63 (q), 134.75 (=CH), 137.95 (q), 

147.94 (5-C), 161.52 (1-C). MS (EI) m/z 447.1703 (M + H) (C29H23N2O3 requires 

447.1707.)  

 

(E)-N-Diphenylmethyl-1-deutero-3-phenylprop-2-en-1-amine (157)  

 

N
31

2

D

H

 

 

To 146 (2.0 g, 6.72 mmol) in MeOH (100 mL) warmed to 45 oC was slowly added 

NaBD4 (0.28 g, 6.72 mmol) during 20 min. After evaporation of the solvent the residue 

was taken up in Et2O, washed (5% aq. NaHCO3) and dried.  Evaporation gave 157 (2.0 

g, 99%) as yellow semi-solid: IR (film) νmax 1599 (C=C conjugated), 2248 (C-D), 3325 

(NH) cm-1; 1H NMR (CDCl3) δ 2.09 (1 H, br s, N-H), 3.61 (1 H, br d, J = 6.0 Hz, 1-H), 

5.19 (1 H, s, Ph2CH), 6.57 (1 H, dd, J = 15.8, 6.0 Hz, 2-H), 6.81 (1 H, d, J = 15.8 Hz, 3-

H), 7.41-7.81 (15 H, m, 3 x Ph-H5). 
13C NMR δ 49.61 (t, J = 20.70 Hz, DCH), 66.33 

(Ph2CH), 126.24, 127.04, 127.31, 128.08 (=CCHD), 128.24, 128.49, 130.04, 131.49, 

132.39 (=CPh), 137.05 (q), 137.52 (q), 143.66 (q). 
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(E)-N-Diphenylmethyl-2-iodo-3-nitro-N-(1-deutero-3-phenylprop-2-enyl) 

benzamide (158)  

 

NO2

I

N

O

D

  

 

To 139 (1.5 g, 4.8 mmol) in CH2Cl2 (10 mL) was added 157 (1.44 g, 4.8 mmol) and 

Et3N (0.97 g, 9.6 mmol) and the mixture was stirred for 30 min. Washing (5% aq. HCl, 

5% aq. NaHCO3) drying, evaporation and chromatography (hexane:EtOAc 6:1) gave 

158 (1.69 g, 61%) as light yellow crystals: mp 135-137 oC; Rf = 0.43 (hexane:EtOAc 

6:1); IR νmax (KBr) 1339 & 1529 (NO2), 1634 (C=O) cm-1; The NMR spectra showed a 

2:3 mixture of rotamers α & β about the amide double bond. 1H NMR αααα (CDCl3) δ 3.93 

(1 H, m, H-CD), 5.16 (1 H, dd, J = 16.0, 7.0 Hz, =CHCHD), 5.40 (1 H, d, J = 16.0 Hz, 

=CHPh), 7.29 (1 H, s, Ph2CH), 6.90-7.65 (18 H, m, 3 x Ph-H5 + 4,5,6-H3); 
13C NMR δ 

49.25 (t, J = 20.7 Hz, DCH), 61.34 (Ph2CH), 86.08 (2-C), 124.06 (=CHCH2), 124.56 (4-

C), 126.21, 127.24, 127.26, 127.87, 128.35, 128.46, 128.62, 128.82, 128.84, 129.47, 

132.64, 132.69 (=CHPh), 135.61 (q), 138.28 (q), 138.84 (q), 146.27 (1-C), 154.30 (3-

C), 168.66 (C=O);  

 

1H NMR ββββ (CDCl3) δ 3.90 (1/2 H, m, H-CD), 4.8 (1/2 H, d, J = 5.4 Hz, H-CD), 5.78 (1 H, 

s, Ph2CH), 5.84 (1 H, dd, J = 16.0, 5.0 Hz, =CHPh), 5.96 (1 H, dd, J = 16.0, 7.5 Hz, 

=CHCHD), 6.9-7.65 (18 H, m, 3 x Ph-H5 + 4,5,6-H3); 
13C NMR δ 46.68 (t, J = 20.70 Hz, 

DCH), 66.84 (Ph2CH), 85.43 (2-C), 123.44 (=CHCH2), 124.69 (4-C), 126.21, 126.36, 

127.37, 127.89, 128.48, 128.54, 128.74, 128.89, 129.38, 130.91, 132.95 (=CHPh), 

136.83 (q), 137.68 (q), 139.53 (q), 145.45 (1-C), 154.48 (3-C), 170.03 (C=O); 
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2-Diphenylmethyl-3-deutero-5-nitro-4-phenylmethylisoquinolin-1(2H)-one 

(151)/(162) 

(Z)-4-Benzylidene-2-diphenylmethyl-3-deutero-5-nitro-3,4-dihydroisoquinolin-

1(2H)-one (161)  

 

NO2

N

O

NO2

N

O

D/H D

 

 

To 158 (0.5 g, 0.87 mmol) in dry propanenitrile (15 mL) was added (Ph3P)4Pd (50.3 

mg, 0.0435 mmol) and dry Et3N (0.17 g, 1.74 mmol) and the mixture was heated to 

reflux for 2 h. After evaporation of the solvent the residue was taken up in EtOAc, 

washed (5% aq. HCl, 5% aq. NaHCO3) and dried. Evaporation and chromatography 

(hexane:EtOAc 4:1) yielded a mixture of 151/162 and 161 (1:20) (0.33 g, 85%) as 

yellow crystals: Rf = 0.37 (hexane:EtOAc 4:1); IR νmax (KBr) 1347 & 1523 (NO2), 1654 

(C=O) cm-1; 1H NMR 151/162 (CDCl3) δ 3.73 (2 H, s, CH2), 6.53 (1 H, s, 3-H/D), 6.86-

7.30 (15 H, m, 3 x Ph-H5), 7.42 (1 H, s, Ph2CH), 7.53 (1 H, t, J = 7.9 Hz, 7-H), 7.81(1 H, 

dd, J = 7.7, 1.5 Hz, 6-H), 8.74 (1 H, dd, J = 7.9, 1.4 Hz, 8-H). 

 
1H NMR 161 (CDCl3) δ 4.19 (1 H, s, 3-H/D), 6.80 (1 H, s, =CH), 7.23 (1 H, s, Ph2CH), 

6.86-7.30 (15 H, m, 3 x Ph-H5), 7.52 (1 H, t, J = 8.0 Hz, 7-H), 7.77 (1 H, dd, J = 8.0, 1.2 

Hz, 6-H), 8.39 (1 H, dd, J = 7.9, 1.2 Hz, 8-H); 13C NMR δ 43.43 (t, J = 20.7 Hz, CHD), 

60.73 (Ph2CH), 124.87 (4-C), 127.11 (6-C), 127.52, 127.56, 128.28, 128.34, 128.36, 

128.41, 128.43, 128.64 (q), 128.81, 129.07 (q), 132.01 (8-C), 134.61 (q), 134.74 

(=CH),137.92 (q), 137.95 (q), 147.91 (5-C), 161.48 (1-C). MS (ESI +ve) m/z 470.1527 

(M + Na) (C29H21DN2NaO3 requires 470.1591). 
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2-Hydroxymercuri-3-nitrobenzoic acid (75) 

2-Bromo-3-nitrobenzoic acid (165) 

 

NO2

O

Hg
O

O

NO2

Br

OH

 

 

3-Nitrobenzene-1,2-dicarboxylic acid 74 (21.1 g, 100 mmol) in hot aq. NaOH (10%, 80 

mL) was added to Hg(OAc)2 (35.0 g, 110 mmol) in hot AcOH (5 mL) and H2O (70 mL). 

The mixture was heated at 120 oC for 70 h and then filtered. The precipitate was 

washed (H2O, then EtOH) and dried to give 2-hydroxymercuri-3-nitrobenzoic acid 75 

(30.7 g, 84%) as a cream solid. To a refluxing solution of 75 (30.7 g, 84 mmol) in aq. 

NaOH (3.5%, 500 mL) was slowly added, with vigorous stirring, aq. HCl (2 M, 12 mL) 

and the solution was allowed to cool to room temperature. AcOH (3 mL) was then 

added. The precipitate dissolved upon addition of NaBr (10.0 g, 100 mmol) and Br2 

(15.98 g, 100 mmol) in H2O (20 mL). The solution was boiled under reflux for 24 h, 

cooled and neutralised with aq. NaOH before being filtered and acidified with aq. HCl 

(9 M). The precipitate was filtered, dried and recrystallised (EtOH) to give 165 (13.7 g, 

66%) as buff crystals: Rf = 0.22 (CH2Cl2:MeOH:AcOH 9:1:0.1); mp 185-187 oC (lit.160 

mp 186-188 oC); IR νmax (KBr) 1372 & 1543 (NO2), 1712 (C=O), 2515-3060 (OH) cm-1; 
1H NMR (CD3)2SO δ 7.70 (1 H, t, J = 7.9 Hz, 5-H), 7.94 (1 H, dd, J = 7.9, 1.5 Hz, 4-H), 

8.07 (1 H, dd, J = 8.1, 1.7 Hz, 6-H). 

 

2-Bromo-3-nitrobenzoyl chloride (166) 

 

NO2

O

Br

Cl

 

 

To 165 (1.0 g, 4.5 mmol) and DMF (0.1 mL) was carefully added SOCl2 (10 mL) and 

the mixture was boiled under reflux for 24 h. Evaporation and recrystallisation (Et2O) 

yielded 166 (1.02 g, 86%) as white solid: mp 65-67 oC (lit.210 mp 66-66.5ºC); Rf = 0.13 

(EtOAc:hexane 1:4); IR νmax (KBr) 1345 & 1534 (NO2), 1756 (C=O) cm-1; 1H NMR 

(CD3)2SO δ 7.62 (1 H, t, J = 7.9 Hz, 5-H), 7.87 (1 H, dd, J = 8.1, 1.7 Hz, 4-H), 8.03 (1 

H, dd, J = 8.0, 1.5 Hz, 6-H). 
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2-Bromo(E)-N-Diphenylmethyl-3-nitro-N-(1-deutero-3-phenylprop-2-enyl) 

benzamide (167) 

 

NO2

Br

N

O

D

 

 

To 2-bromo-3-nitrobenzoyl chloride 166 (0.48 g, 1.8 mmol) in CH2Cl2 (10 mL) was 

added 157 (0.54 g, 1.8 mmol) and Et3N (0.36 g, 3.6 mmol) and the mixture was stirred 

for 30 min. Washing (5% aq. HCl, 5% aq. NaHCO3), drying, evaporation and 

chromatography (hexane:EtOAc 4:1) gave 167 (1.49 g, 54%) as buff crystals: mp 114-

116 oC; Rf = 0.25 (hexane:EtOAc 4:1); IR νmax (KBr) 1359 & 1532 (NO2), 1638 (C=O) 

cm-1; The NMR spectra showed a 2:3 mixture of rotamers α & β about the amide 

double bond. 1H NMR αααα (CDCl3) δ 3.93 (1 H, m, H-CD), 5.10 (1 H, dd, J = 15.87, 6.76 

Hz, =CHCHD), 5.41 (1 H, d, J = 15.87 Hz, =CHPh), 7.29 (1 H, s, Ph2CH), 6.80-7.46 (17 

H, m, 3 x Ph-H5 + 5,6-H2), 7.74 (1 H, dd, J = 7.35, 2.1 Hz, 4-H); 
13C NMR δ 48.96 (t, J = 

22.2 Hz, DCH), 61.26 (Ph2CH), 111.79 (2-C), 124.00 (=CHCHD), 125.16 (4-C), 126.11, 

128.04, 128.12, 128.17, 128.44, 128.74, 128.84, 130.14 (6-C), 131.62, 132.60 

(=CHPh), 135.59 (q), 138.79 (q), 139.26 (q), 141.67 (1-C), 152.53 (3-C), 168.22 (C=O); 

 
1H NMR ββββ (CDCl3) δ 3.91 (1/2 H, m, H-CD), 4.75 (1/2 H, d, J = 4.99 Hz, H-CD), 5.81 (1 

H, s, Ph2CH), 5.81-5.88 (2 H, m, =CHPh & =CHCHD), 6.9-7.65 (18 H, m, 3 x Ph-H5 + 

4,5-H2), 6.98 (1 H, dd, J = 8.2, 1.8 Hz, 4-H), 7.71 (1 H, dt, J = 7.9, 1.8 Hz, 6-H); 
13C 

NMR δ 46.33 (t, J = 22.2 Hz, DCH), 66.72 (Ph2CH), 111.49 (2-C), 123.42 (=CHCHD), 

125.29 (4-C), 126.35, 127.88, 128.30, 128.48, 128.57, 128.78, 129.16 (6-C), 130.57, 

132.85 (=CHPh), 136.75 (q), 137.59 (q), 138.24 (q), 141.01 (1-C), 150.61 (3-C), 167.77 

(C=O); MS (EI) m/z 527.0945 (M) (C29H22DN2O3
79Br requires 527.0949), 528.1028 (M + 

H) (C29H23DN2O3
79Br requires 528.1027). 



 156 

2-Iodo-3-nitro-N-(prop-2-enyl)benzamide (143)  

3-Nitro-N-(prop-2-enyl)-2-(prop-2-enylamino)benzamide (168) 

 

O

NH

I

NO2

N

NO2

O

HN

H

 

 

To 139 (1.65 g, 5.3 mmol) in CH2Cl2 (20 mL) was added prop-2-en-1-amine (0.25 mL, 

5.3 mmol) and Et3N (1.07 g, 10.6 mmol) and the mixture was stirred for 1 h. Washing 

(5% aq. HCl, 5% aq. NaHCO3), drying, evaporation and chromatography 

(CH2Cl2:EtOAc 4:1) gave 143 (1.25 g, 71%) as yellow crystals: mp 108-110 oC; Rf = 

0.20 (hexane:EtOAc 4:1); IR (KBr) νmax 1349 & 1529 (NO2), 1588 & 1643 (C=O), 3077 

& 3264 (NH) cm-1; 1H NMR (CDCl3) δ 3.95 (2 H, dt, J = 5.9, 1.5 Hz, CH2), 5.11 (1 H, dq, 

J = 10.4, 1.3 Hz, H of =CH2), 5.25 (1 H, dq, J = 17.1, 1.5 Hz, H of =CH2), 5.77-5.91 (1 

H, m, =CH), 6.28 (1 H, br s, NH), 7.41 (1 H, dd, J = 7.7, 1.8 Hz, 4-H), 7.49 (1 H, t, J = 

7.5 Hz, 5-H), 7.62 (1 H, dd, J = 7.7, 1.8 Hz, 6-H); 13C NMR δ 42.48 (CH2), 84.86 (2-C), 

117.42 (=CH2), 125.00 (6-C), 129.40 (5-C), 130.30 (4-C), 132.99 (=CH), 146.03 (1-C), 

154.75 (3-C), 168.24 (C=O); MS (FAB+) m/z 331.9677 (M) (C10H9IN2O3 requires 

371.9657); Anal. Calcd for C10H9IN2O3: C, 36.17; H, 2.73; N, 8.44; Found: C, 36.6; H, 

2.85; N, 8.36.  

 

Also isolated by chromatography was 168 (0.14 g, 10%) as bright yellow crystals: mp 

54-57 oC; Rf = 0.45 (hexane:EtOAc 4:1); IR (KBr) νmax 1345 & 1516 (NO2), 1578 & 1639 

(C=O), 3334 & 3468 (NH) cm-1; 1H NMR δ (CDCl3) 3.75 (2 H, s, CH2), 4.01 (2 H, tt, J = 

6.0, 1.4 Hz, CH2), 5.13-5.25 (4 H, m, 2 x =CH2), 5.78-5.92 (2 H, m, 2 ×××× H-C=C), 6.77 (1 

H, t, J = 8.2 Hz, 5-H), 6.82 (1 H, br s, NH), 7.66 (1 H, dd, J = 7.4, 1.7 Hz, 4-H), 7.72 (1 

H, br s, NH), 8.10 (1 H, dd, J = 8.2, 1.7 Hz, 6-H); 13C NMR δ 42.41 (O=CNCH2), 50.24 

(NCH2), 117.21 (5-C), 117.31 (=CH2), 117.40 (=CH2), 126.31 (2-C), 128.63 (6-C), 

133.30 (=CH), 133.72 (=CH), 136.30 (4-C), 137.23 (1-C), 143.58 (3-C), 167.37 (C=O). 
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2-Iodo-3-nitrobenzamide (170) 
 

NO2

I

NH2

O

 

 

A solution of ethereal NH3 was produced by slow addition of K2CO3 to mixture of Et2O 

(200 mL) and conc. aq. NH3 (20 mL). The top ethereal layer was then carefully 

transferred to 139 (3.0 g, 9.6 mmol) in Et2O (10 mL). The mixture was stirred at room 

temperature for 1 h, then evaporated to yield 170 (2.6 g, 93%) as yellow crystals: mp 

221-223 oC (lit.160 mp 220-221 oC); Rf = 0..38 (hexane:EtOAc 1:4); IR νmax (KBr) 1365 & 

1524 (NO2), 1628 & 1653 (C=O), 3178 & 3359 (NH2) cm
-1; 1H NMR ((CD3)2SO) δ 7.53 

(1 H, dd, J = 7.9, 1.8 Hz, 6-H), 7.61 (1 H, t, J = 7.9 Hz, 5-H), 7.72 (1 H, br s, NH), 7.84 

(1 H, dd, J = 7.9, 1.8 Hz, 4-H), 8.00 (1 H, br s, NH). 

 

2-Iodo-3-nitrobenzonitrile (171) 

 

NO2

I

CN

 

 

To 170 (3.0 g, 10.3 mmol) in THF (50 mL) was carefully added SOCl2 (17 mL) and 

refluxed for 24 h. Ice H2O (100 mL) was then added and the mixture made alkaline with 

cold aq. NaOH (10%, 100 mL). Extraction (CHCl3), washing (saturated NaHCO3, then 

H2O), drying and evaporation gave 171 (1.65 g, 59%) as yellow crystals: mp 145-147 

oC (lit.160 mp 147-148 oC); Rf = 0.92 (hexane:EtOAc 1:4); IR νmax (KBr) 1358 & 1530 

(NO2), 2233 (CN) cm
-1; 1H NMR ((CD3)2SO) δ 7.80 (1 H, t, J = 8.0 Hz, 5-H), 8.12 (1 H, 

dd, J = 7.2, 1.5 Hz, 6-H), 8.18 (1 H, dd, J = 8.1, 1.6 Hz, 4-H). 

 

Prop-2-enyl-2-iodo-3-nitrobenzoate (173) 

 

O

O

I

NO2  
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To 139 (1.51 g, 4.8 mmol) in CH2Cl2 (10 mL) was added prop-2-en-1-ol (0.33 mL, 4.8 

mmol) and Et3N (0.97 g, 9.6 mmol) and the mixture was stirred for 2 h. Washing (5% 

aq. HCl, 5% aq. NaHCO3), drying, evaporation and chromatography (Petroleum 

ether:EtOAc 4:1) gave 173 (1.02 g, 64%) as brown liquid: Rf = 0.59 (Petroleum 

ether:EtOAc 4:1); IR (film) νmax 1359 & 1533 (NO2), 1588 & 1731 (C=O) cm-1; 1H NMR 

CDCl3 δ 4.82 (2 H, dt, J = 6.0, 1.4 Hz, CH2), 5.27-5.31 (1 H, dq, J = 10.4, 1.3 Hz, H of 

=CH2), 5.38-5.43 (1 H, dq, J = 17.1, 1.4 Hz, H of =CH2), 5.95-6.04 (1 H, m, H-C=C), 

7.50 (1 H, t, J = 7.9 Hz, 5-H), 7.63 (1 H, dd, J = 7.9, 1.6 Hz, 4-H), 7.74 (1 H, dd, J = 7.9, 

1.6 Hz, 6-H); 13C NMR δ 66.85 (CH2), 85.22 (2-C), 119.49 (=CH2), 125.91 (5-C), 129.16 

(4-C), 130.98 (=CH), 132.07 (6-C), 139.97 (1-C), 155.81 (3-C), 165.77 (C=O); MS (EI) 

m/z 332.9497 (M) (C10H8INO4 requires 332.9498). 

 

4-Methyl-5-nitroisoquinolin-1(2H)-one (177) 

4-Methylene-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (178) 

3-Nitro-N-(prop-2-enyl)benzamide (175) 

 

NH

O

CH3NO2           

NH

O

CH2NO2             NO2

N
H

O

 

 

To 143 (200 mg, 0.6 mmol) in dry DMF (0.7 mL) was added (Ph3P)4Pd (14.0 mg, 2 

mol%), dry Et3N (0.2 mL, 1.5 mmol) and tetrabutylammonium chloride (170 mg, 0.6 

mmol) and the mixture was heated to 100 oC for 48 h. After evaporation of the solvent 

the residue was taken up in CHCl3, washed (5% aq. HCl, 5% aq. NaHCO3) and dried. 

Evaporation and chromatography (hexane:EtOAc 2:1) yielded 177 (40 mg, 33%) as 

buff powder: mp 209-211 oC; Rf = 0.15 (hexane:EtOAc 2:1); IR νmax (KBr) 1350 & 1529 

(NO2), 1639 (C=O), 3448 & 3173 (NH) cm-1; 1H NMR (CDCl3) δ 2.16 (3 H, s, CH3), 7.05 

(1 H, s, 3-H), 7.52 (1 H, t, J = 7.9 Hz, 7-H), 7.82 (1 H, dd, J = 7.8, 1.4 Hz, 6-H), 8.68 (1 

H, dd, J = 7.8, 1.4 Hz, 8-H), 10.72 (1 H, br s, NH); 13C NMR δ 15.80 (CH3), 109.03 (4-

C), 126.08 (7-C), 127.79 (6-C), 127.87 (10-C), 129.47 (3-C), 129.74 (9-C), 131.37 (8-

C), 147.50 (5-C), 161.83 (1-C); MS (ESI +ve) m/z 205.0608 (M + H) (C10H9N2O3 

requires 205.0613). 

 

Also isolated from chromatography was an inseparable mixture of 177 & 178 (2.5:1) 

(30 mg, 25%) as brown semi-solid: Rf = 0.14 (hexane:EtOAc 2:1); 1H NMR 178 (CDCl3) 

δ 4.22 (2 H, d, J = 1.2 Hz, CH2), 5.34 (1 H, s, =CH), 5.50 (1 H, s, =CH), 7.06 (1 H, br s, 
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NH), 7.52 (1 H, t, J = 8.2 Hz, 7-H), 7.76 (1 H, dd, J = 8.2, 1.4 Hz, 6-H), 8.32 (1 H, dd, J 

= 8.2, 1.4 Hz, 8-H); 13C NMR δ 47.45 (NCH2), 119.57 (=CH2), 127.19 (6-C), 128.81 (7-

C), 129.77 (10-C), 129.76 (9-C), 131.46 (8-C), 131.51 (4-C), 147.92 (5-C), 163.25 (1-

C). 

 

Compound 175 was also isolated (16 mg, 13%) as yellow semi-solid: Rf = 0.44 

(hexane:EtOAc 2:1); IR νmax (film) 1350 & 1528 (NO2), 1639 (C=O), 3349 & 3468 (NH) 

cm-1; 1H NMR (CDCl3) δ 4.09 (2 H, t, J = 5.9 Hz, CH2), 5.20 (1 H, dt, J = 10.1, 1.6 Hz, 

propenyl 3-H), 5.27 (1 H, dd, J = 17.2, 1.9 Hz, propenyl 3-H), 5.86-5.96 (1 H, m, 

propenyl 2-H), 6.73 (1 H, br s, NH), 7.62 (1 H, t, J = 8.2 Hz, 5-H), 8.15 (1 H, dd, J = 7.8, 

1.6 Hz, 6-H), 8.33 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-H), 8.60 (1 H, t, J = 1.9 Hz, 2-H); 

13C NMR δ 42.70 (NCH2), 117.23 (=CH2), 121.77 (2-C), 126.04 (4-C), 129.82 (5-C), 

130.29 (6-C), 133.44 (=CH), 135.96 (1-C), 148.06 (3-C), 164.97 (C=O); MS (ESI +ve) 

m/z 207.077 (M + H) (C10H11N2O3 requires 207.0764). 

 

Reaction was repeated with 143 (200 mg, 0.6 mmol) in dry EtCN (5 mL), (Ph3P)4Pd 

(34.66 mg, 5 mol%) and dry Et3N (0.17 mL, 1.2 mmol) at 100 oC for 24 h. After 

evaporation of the solvent the residue was taken up in CHCl3, washed (5% aq. HCl, 5% 

aq. NaHCO3) and dried. Evaporation and chromatography (hexane:EtOAc 4:1) yielded 

1:1 mixture of 177 & 178 (71 mg, 58%), 175 (32 mg, 23%) and traces of (176). 

 

Same reaction was repeated with 143 (200 mg, 0.6 mmol) in dry DMF (1.0 mL), 

(Ph3P)4Pd (14.0 mg, 2 mol%), dry DMF (1 mL) and tetrabutylammonium chloride (170 

mg, 0.6 mmol) at 50 oC for 48 h. After evaporation of the solvent the residue was taken 

up in CHCl3, washed (5% aq. HCl, 5% aq. NaHCO3) and dried. Evaporation and 

chromatography (hexane:EtOAc 2:1) yielded 1:1 mixture of 177 & 178 (40 mg, 54%) 

and 175 (20 mg, 27%).  

 

Reaction was repeated with 143 (100 mg, 0.3 mmol) in dry DMF (0.5 mL), (Ph3P)4Pd 

(7.0 mg, 2 mol%), dry Et3N (0.1 mL, 0.6 mmol) and tetrabutylammonium chloride (84 

mg, 0.6 mmol) at 150 oC for 16h. After evaporation of the solvent the residue was taken 

up in CHCl3, washed (5% aq. HCl, 5% aq. NaHCO3) and dried. Evaporation and 

chromatography (hexane:EtOAc 4:1) yielded 177 (40 mg, 65%) as buff powder with 

data as above. 
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(E)-2-Iodo-3-nitro-N-(prop-1-enyl)benzamide (179) 

 

O

NH

I

NO2  

 

Compound 143 (0.1 g, 0.3 mmol) in 0.2 mL of anhydrous benzene and 

[RuClH(CO)(PPh3)3] (1.42 mg, 0.5 %mol) were heated at 80 oC for 3 h under Ar. After 

cooling to room temperature 25 mL of EtOAc is added and the mixture was cooled to 0 

oC. The precipitated ruthenium compounds and PPh3 were filtered off. Evaporation of 

the filterate and chromatography (hexane:EtOAc 4:1) gave 179 (0.96 g, 96%) as pale 

white coloured solid: mp 169-172 oC; IR (KBr) νmax 1349 & 1528 (NO2), 1586 & 1644 

(C=O), 3067 & 3245 (NH) cm-1;  1H NMR δ (CDCl3) 1.76 (3 H, dd, J = 6.76, 1.8 Hz, 

CH3), 5.37 (1 H, m, =CH-CH3), 6.83-6.92 (1 H, tq, J = 10.52, 1.8 Hz, =CH-NH), 7.20 (1 

H, br s, NH), 7.51-7.56 (2 H, m, 5,6-H2), 7.69 (1 H, m, 4-H); 13C NMR δ 14.94 (CH3), 

84.89 (2-C), 110.99 (=C-CH3), 122.50 (=C-NH), 125.44 (4-C), 129.55 (6-C), 130.65 (5-

C), 130.83 (1-C), 154.99 (3-C), 164.91 (C=O); MS (EI) m/z 331.9672 (M) (C10H9IN2O3 

requires 331.9658). 

 

(E)-3-Nitro-N-(prop-1-enyl)benzamide (176) 

3-Nitrobenzamide (180) 

 

NO2

N
H

O

          NO2

NH2

O

 

 

To 179 (200 mg, 0.6 mmol) in dry DMF (1 mL) was added (Ph3P)4Pd (17.3 mg, 2 

mol%), dry Et3N (0.2 mL, 1.5 mmol) and tetrabutylammonium chloride (210 mg, 0.6 

mmol) and the mixture was heated to reflux for 7 d. After evaporation of the solvent the 

residue was taken up in CHCl3, washed (5% aq. HCl, 5% aq. NaHCO3) and dried. 

Evaporation and chromatography (hexane:EtOAc 2:1) yielded 176 (42 mg, 52%) as a 

buff semi-solid: Rf = 0.87 (hexane:EtOAc 2:1); IR νmax (film) 1350 & 1528 (NO2), 1638 & 

1654 (C=O), 3078 & 3306 (NH) cm-1; 1H NMR (CDCl3) δ 1.76 (3 H, dd, J = 6.6, 1.6 Hz, 

CH3), 5.36-5.45 (1 H, m, propenyl 2-H), 6.91-6.97 (1 H, m, propenyl 1-H), 7.66 (1 H, t, J 
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= 8.2 Hz, 5-H), 7.70 (1 H, br s, NH), 8.17 (1 H, dt, J = 7.8, 1.2 Hz, 6-H), 8.36 (1 H, ddd, 

J = 8.2, 2.4, 1.2 Hz, 4-H), 8.60 (1 H, t, J = 1.9 Hz, 2-H); 13C NMR δ 14.99 (CH3), 110.47 

(C-CH3), 121.65 (2-C), 123.04 (C-NH), 126.35 (4-C), 130.04 (5-C), 133.33 (6-C), 

135.44 (1-C), 148.50 (3-C), 161.64 (C=O); MS (ESI +ve) m/z 229.0579 (M + Na) 

(C10H10N2O3Na requires 229.0589). 

 

Also identified in trace amounts in the NMR spectrum were 180. IR νmax (KBr) 1350 & 

1530 (NO2), 1624 & 1689 (C=O), 3178 & 3451 (NH2) cm
-1; 1H NMR (CDCl3) δ, 6.07 (1 

H, br s, NH), 6.34 (1 H, br s, NH), 7.68 (1 H, t, J = 7.9 Hz, 5-H), 8.18 (1 H, ddd, J = 7.9, 

2.7, 1.2 Hz, 4-H), 8.39 (1 H, ddd, J = 8.4, 2.4, 1.2 Hz, 6-H), 8.65 (1 H, t, J = 2.0 Hz, 2-

H). 

 

tert-Butyl N-prop-2-enyl(2-iodo-3-nitrobenzoyl)carbamate (181) 

 

O

N

I

NO2

O

O

CH3

CH3

CH3

 

 

Di(tert-butyl)dicarbonate (0.1 g, 0.45 mmol) was slowly added to an ice-cold solution of 

143 (0.1 g, 0.3 mmol). Et3N (0.062 mL, 0.45 mmol) and 4-(dimethyl amino)pyridine (7.4 

mg, 0.06 mmol) were added and the mixture was stirred for 3 h. Evaporation gave 181 

(0.12 g, 92%) as yellow semi-solid: Rf = 0.77 (hexane:EtOAc 4:1); IR (film) νmax 1347 & 

1535 (NO2), 1672 & 1739 (C=O), 1245 (C-O) cm-1; 1H NMR (CDCl3) δ 1.19 (9 H, s, 

(CH3)3), 4.46 (2 H, d, J = 5.5 Hz, CH2), 5.11-5.23 (1 H, dd, J = 10.2, 1.4 Hz, H of =CH2), 

5.27-5.35 (1 H, dq, J = 17.1, 1.4 Hz, H of =CH2), 5.87-6.02 (1 H, m, =CH), 7.27 (1 H, 

dd, J = 7.4, 1.4 Hz, 4-H), 7.49 (1 H, t, J = 7.7 Hz, 5-H), 7.66 (1 H, dd, J = 8.0, 1.3 Hz, 6-

H); 13C NMR δ 27.46 (CH3)3, 46.66 (NCH2), 83.95 (2-C), 84.45 (C-CH3)3), 117.94 

(=CH2), 124.05 (4-C), 128.86 (6-C), 129.10 (5-C), 132.05 (=CH), 148.45 (1-C), 151.04 

(O-C=O), 154.16 (3-C), 169.64 (C=O); MS (ESI +ve) m/z 455.0048 (M+Na) 

(C15H17IN2NaO5 requires 455.0080). 
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5-Amino-4-methylisoquinolin-1(2H)-one hydrochloride (182) 

 

 

To a solution of 177 (58 mg, 0.28 mmol) in ethanol (5 mL) and conc. HCl (0.2 mL), a 

slurry of 10% palladium on charcoal (0.1 g) in ethanol (2 mL) was added. The mixture 

was stirred under H2 for 2 h. The suspension was then flltered through Celite
. The 

Celite pad and residue were suspended in water (100 mL) and heated. The hot 

suspension was filtered through a second Celite pad. Concentration of the filterate and 

drying gave 182 (42 mg, 70%) as buff crystals: mp 227-229 oC; IR νmax (KBr) 1654 

(C=O), 3421 (NH) cm-1; 1H NMR (D2O) δ 2.37 (3 H, s, CH3), 6.94 (1 H, s, 3-H), 7.42 (1 

H, t, J = 8.2 Hz, 7-H), 7.63 (1 H, d, J = 7.8 Hz, 6-H), 8.14 (1 H, d, J = 8.2 Hz, 8-H); 13C 

NMR δ 18.41 (CH3), 110.74 (4-C), 126.89 (5-C), 127.04 (9-C), 127.24 (7-C), 128.48 (8-

C), 128.64 (3-C), 129.55 (6-C), 132.52 (10-C), 162.72 (1-C); MS (ESI +ve) m/z 

175.0866 (M + H) (C10H11N2O1 requires 175.0871). 

 

(E)-N-(3-phenylprop-2-enyl)2,2,2-trifluoroacetamide (184) 

(E)-3-Phenylprop-2-enylamine triflouroacetate salt (183) 

 

N
H

CF3

O

NH3 CF3CO2

 

 

To 2,2,2-trifluoroacetamide (2.86 g, 25.4 mmol) in dry THF (25 mL), potassium t-

butoxide (2.84 g, 25.4 mmol) was added slowly. After 30 min, (E)-(3-bromoprop-1-

enyl)benzene (5.00g, 25.4 mmol) was added and the mixture was stirred for 2 h. After 

the evaporation of the solvent, the residue was taken up in CH2Cl2, washed (H2O) and 

dried. Evaporation and chromatography (hexane:EtOAc 4:1) yielded 184 (1.89 g, 33%) 

as white powder: mp 101-103 oC; (lit.212 mp 100-102 oC) Rf = 0.34 (hexane:EtOAc 4:1); 

IR (KBr) νmax 1179 (C-F), 1556 & 1704 (C=O), 3116 & 3299 (NH) cm-1; 1H NMR (CDCl3) 

δ 4.13 (2 H, t, J = 6.5 Hz, CH2), 6.17 (1 H, dt, J = 15.4, 6.9 Hz, =CH-CH2), 6.52 (1 H, br 

s, NH), 6.60 (1 H, d, J = 15.4 Hz, =CH-Ph), 7.25-7.37 (5 H, m, 2’,3’,4’,5’,6’-H5);
 13C 

NMR δ 41.91 (CH2), 117.22 (CF3, q, J = 288.3 Hz), 122.62 (=C-CH2), 126.48 (2,6-C2), 
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128.24 (4-C), 128.68 (3,5-C2), 134.18 (=C-Ph), 135.78 (1-C), 157.23 (C=O, q, J = 37.6 

Hz); 19F NMR (CDCl3) δ -75.81 (3 F, s, CF3). 

 

Also isolated by chromatography was 183 (0.44 g, 7%) as yellow semisolid. Rf = 0.18 

(hexane:EtOAc 4:1); IR νmax (film) 1196 (C-F), 1674 & 1731 (C=O), 3197 & 3365 (NH) 

cm-1; 1H NMR (CDCl3) δ 4.32 (2 H, dd, J = 5.7, 1.4 Hz, CH2), 6.37 (1 H, dt, J = 15.9, 

5.7 Hz, =CH-CH2), 6.48 (3 H, br s, NH3), 6.57 (1 H, d, J = 16.1 Hz, =CH-Ph), 7.25-7.39 

(5 H, m, 2’,3’,4’,5’,6’-H5);
 19F NMR (CDCl3) δ -76.22 (3 F, s, CF3). 

 

(E)-3-phenylprop-2-enylamine (185) 

 

NH2

 

 

Method A: 

 

To 184 (1.2 g, 5.2 mmol) in EtOH (15 mL), was added conc. aq. NH3 (1 mL) and the 

mixture was stirred for 4 d. The evaporation residue, in CH2Cl2, was washed (H2O) and 

dried. Evaporation and chromatography (CH2Cl2:MeOH 10:1) yielded 185 (0.616 g, 

88%) as a pale yellow oil: Rf = 0.55 (CH2Cl2:MeOH 10:1); IR (film) νmax 1450 & 1494 

(C=C), 1598 (C=C conjugated), 3390 (NH) cm-1; 1H NMR (CDCl3) δ 3.47 (2 H, d, J = 6.7 

Hz, CH2), 6.10 (1 H, dt, J = 15.8, 6.9 Hz, =CH-CH2), 6.39 (2 H, br s, NH2), 6.54 (1 H, d, 

J = 15.8 Hz, =CH-Ph), 7.20-7.31 (5 H, m, 2’,3’,4’,5’,6’-H5); 

 

Method B: 

 

NaBH4 (1.06 g, 28.2 mmol) was added to 184 (0.81 g, 3.52 g) in EtOH (10 mL) and the 

mixture was stirred for 16 h. The evaporation residue, in CH2Cl2, was washed (H2O) 

and dried to give 185 (0.422 g, 90%) as a pale yellow oil with properties as above. 

 

(E)-2-iodo-3-nitro-N-(3-phenylprop-2-enyl)benzamide (186) 

 

NO2

I

N
H

O
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To 139 (1.55 g, 5.0 mmol) in CH2Cl2 (20 mL) was added 185 (0.66 g, 5.0 mmol) and 

Et3N (1.4 mL, 10 mmol) and the mixture was stirred for 2 h. Washing (5% aq. HCl, 5% 

aq. NaHCO3), drying, evaporation and chromatography (hexane:EtOAc 4:1) gave 186 

(1.51 g, 74%) as yellow crystal:. mp 146-148 oC; Rf = 0.38 (hexane:EtOAc 2:1); IR 

(KBr) νmax 1377 & 1537 (NO2), 1645 (C=O), 3066 & 3263 (NH) cm-1; 1H NMR (CDCl3) δ 

4.22 (2 H, t, J = 6.3 Hz, CH2), 6.08 (1 H, br s, NH), 6.26 (1 H, dt, J = 15.9, 6.3 Hz, =CH-

CH2), 6.64 (1 H, d, J = 15.6 Hz, =CH-Ph), 7.22-7.36 (5 H, m, 2’,3’,4’,5’,6’-H5), 7.42-7.50 

(2 H, m, 5,6-H2), 7.63 (1 H, m, 4-H); 13C NMR δ 42.24 (CH2), 84.91 (2-C), 124.05 (=C-

CH2), 125.14 (4-C), 126.40 (2’,6’-C2), 127.97 (4’-C), 128.65 (3’,5’-C2), 129.46 (6-C), 

130.35 (5-C), 133.23 (=C-Ph), 136.15 (1’-C), 146.06 (1-C), 154.85 (3-C), 168.24 

(C=O); MS (ESI +ve) m/z 409.0035 (M + H) (C16H14IN2O3 requires 409.0049); Anal. 

Calcd for C16H13IN2O3: C, 47.08; H, 3.21; N, 6.86; Found: C, 47.58; H, 3.19; N, 6.93. 

 

4-Benzyl-5-nitroisoquinolin-1(2H)-one (187) 

(Z)-4-Benzylidene-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (188) 

(E)-3-nitro-N-(3-phenylprop-2-enyl)benzamide (189) 

3-Amino-2-chloro-N-(3-phenylprop-2-enyl)benzamide (190) 

         

 

 

To 186 (100 mg, 0.25 mmol) in dry DMF (0.5 mL) was added (Ph3P)4Pd (6.0 mg, 2 

mol%), dry Et3N (0.09 mL, 0.625 mmol) and tetrabutylammonium chloride (70 mg, 0.25 

mmol) and the mixture was heated to reflux for 48 h. After evaporation of the solvent 

the residue was taken up in CHCl3, washed (5% aq. HCl, 5% aq. NaHCO3) and dried. 

Evaporation and chromatography (hexane:EtOAc 2:1) yielded 187 (12 mg, 17%) as a 

yellow solid. mp 108-110°C; Rf = 0.63 (hexane:EtOAc 2:1); IR (KBr) νmax 1345 & 1530 

(NO2), 1638 (C=O), 3283 & 3468 (NH) cm-1; 1H NMR (CDCl3) δ 4.24 (2 H, t, J = 6.7 Hz, 

CH2), 6.25 (1 H, dt, J = 15.6, 6.3 Hz, =CH-CH2), 6.57 (1 H, d, J = 16.0 Hz, =CH-Ph), 

7.06 (1 H, t, J = 5.5 Hz, NH), 7.20-7.33 (5 H, m, 2’,3’,4’,5’,6’-H5), 7.57 (1 H, t, J = 7.8 

Hz, 5-H), 8.20 (1 H, dd, J = 7.8, 1.6 Hz, 6-H), 8.29 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-H), 

8.63 (1 H, t, J = 1.6 Hz, 2-H); 13C NMR δ 42.38 (CH2), 121.81 (2-C), 124.56 (=C-CH2), 

125.98 (4-C), 126.29 (2’,6’-C2), 127.84 (4’-C), 128.54 (3’,5’-C2), 129.73 (5-C), 132.78 
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(=C-Ph), 133.33 (6-C), 135.84 (1-C), 136.14 (1’-C), 147.98 (3-C), 165.00 (C=O); MS 

(ESI +ve) m/z 283.1077 (M + H) (C16H15N2O3 requires 283.1083). 

 

Also isolated from chromatography was 188 (10 mg, 14%) as yellow semisolid. Rf = 0.2 

(hexane:EtOAc 2:1); IR (film) νmax 1644 (C=O), 3061 & 3340 (NH) cm-1; 1H NMR 

(CDCl3) δ 4.20 (2 H, s, NH2), 4.22-4.24 (2 H, m, CH2), 6.11 (1 H, br s, NH), 6.26 (1 H, 

dt, J = 15.7, 6.3 Hz, =CH-CH2), 6.58 (1 H, d, J = 16.0 Hz, =CH-Ph), 6.80 (1 H, dd, J = 

8.2, 1.6 Hz, 4-H), 6.88 (1 H, dd, J = 7.8, 1.6 Hz, 6-H), 7.07 (1 H, t, J = 7.8 Hz, 5-H), 

7.23-7.37 (5 H, m, 2’,3’,4’,5’,6’-H5); 
13C NMR δ 41.97 (CH2), 115.36 (2-C), 116.99 (4-C), 

118.28 (6-C), 124.95 (=CH-CH2), 126.38 (2’,6’-C2), 127.52 (4’-C), 127.76 (5-C), 128.58 

(3’,5’-C2), 132.44 (=CH-Ph), 136.37 (1-C), 136.42 (1’-C), 143.64 (3-C),  167.29 (C=O); 

MS (ESI +ve) m/z 287.0946 (M + H) (C16H16ClN2O requires 287.0951). 

 

Compound 189 (8 mg, 11%) was also isolated from above reaction as orange solid:. 

mp 210-212°C; Rf = 0.19 (hexane:EtOAc 2:1); IR (KBr) νmax 1354 & 1530 (NO2), 1636 

(C=O), 3287 & 3472 (NH) cm-1; 1H NMR (CDCl3) δ 3.88 (2 H, s, CH2), 6.75 (1 H, s, 3-

H), 7.11 (2 H, d, J = 7.0 Hz, 2’,6’-H2), 7.23-7.31 (3 H, m, 3’,4’,5’-H3), 7.56 (1 H, t, J = 

7.8 Hz, 7-H), 7.82 (1 H, dd, J = 7.8, 1.2 Hz, 6-H), 8.68 (1 H, dd, J = 7.8, 1.2 Hz, 8-H), 

11.07 (1 H, br s, NH); 13C NMR δ 35.45 (CH2), 113.27 (4-C), 126.11 (7-C), 126.94 (4’-

C), 127.94 (9-C), 128.71 (6-C) 128.81 (3’,5’-C2), 129.39 (2’,6’-C2), 129.59 (10-C), 

130.93 (3-C), 131.85 (8-C), 137.71 (1’-C), 147.65 (5-C), 161.89 (1-C); MS (ESI +ve) 

m/z 281.0921 (M + H) (C16H13N2O3 requires 281.0926). 

 

Compound 190 (10 mg, 14%) was also isolated from above reaction as yellow solid. 

mp 183-185°C; Rf = 0.17 (hexane:EtOAc 2:1); IR (KBr) νmax 1634 (C=O), 3270 & 3458 

(NH) cm-1; 1H NMR (CDCl3) δ 4.50 (2 H, q, J = 1.37 Hz, 3-CH2), 6.74 (1 H, br s, NH), 

6.79 (1 H, s, =CH), 7.18 (2 H, d, J = 7.2 Hz, 2’,6’-H2), 7.30-7.41 (3 H, m, 3’,4’,5’-H3), 

7.50 (1 H, t, J = 7.9 Hz, 7-H), 7.82 (1 H, dd, J = 8.2, 1.4 Hz, 6-H), 8.30 (1-H, dd, J = 

7.9, 1.4 Hz, 8-H);13C NMR δ 41.99 (3-C), 124.34 (4-C), 127.65 (6-C), 128.34 (7-C), 

128.58 (3’,4’,5’-C3), 129.14 (2’,6’-C2), 130.31 (9-C), 131.21 (8-C), 131.66 (10-C), 

134.72 (=CH), 134.80 (1’-C), 148.39 (5-C), 162.89 (1-C); Anal. Calcd for C16H12N2O3: 

C, 68.56; H, 4.32; N, 9.99; Found: C, 68.43; H, 4.07; N, 9.99. MS (ESI +ve) m/z 

287.0946 (M + H) (C16H16
35ClN2O requires 287.0951).  
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5-Amino-4-benzylisoquinolin-1(2H)-one (192) 

 

NH2

NH

O

 

 

To 187 (20 mg, 0.07 mmol) in EtOH (5 mL), a slurry of 10% palladium on charcoal (50 

mg) in EtOH (2 mL) was added. The mixture was stirred under H2 for 1 h. The 

suspension was then flltered through Celite. The Celite pad and residue were 

suspended in ethanol (100 mL) and heated. The hot suspension was filtered through a 

second Celite pad. Concentration of the filtrate and drying gave 192 (9 mg, 51%) as 

buff powder; mp 121-123°C; Rf = 0.3 (EtOAc:hexane 4:1); IR (KBr) νmax 1623 (C=O), 

3337 & 3407 (NH) cm-1; 1H NMR (CDCl3) δ 4.32 (2 H, s, CH2), 6.87 (1 H, d, J = 7.4 Hz, 

6-H), 6.9 (1 H, s, 3-H), 7.22 (1 H, t, J = 7.4 Hz, 7-H), 7.25-7.35 (5 H, m, 2’,3’,4’,5’,6’-H5), 

8.02 (1 H, d, J = 7.8 Hz, 8-H), 11.51 (1 H, br s, NH); 13C NMR δ 38.39 (CH2), 113.34 (4-

C), 119.11 (8-C), 120.92 (6-C), 126.64 (10-C), 126.93 (4’-C) 127.23 (3-C), 127.43 (7-

C), 128.09 (2’,6’-C2), 128.16 (9-C), 129.16 (3’,5’-C2), 140.05 (1’-C), 143.50 (5-C), 

163.99 (1-C); MS (ESI +ve) m/z 251.1179 (M + H) (C16H15N2O requires 251.1184). 

 

(±) 5-Amino-4-benzyl-3,4-dihydroisoquinolin-1(2H)-one (193) 

 

NH2

NH

O

 

 

To 188 (35 mg, 0.12 mmol) in EtOH (5 mL), a slurry of 10% palladium on charcoal (50 

mg) in EtOH (2 mL) was added. The mixture was stirred under H2 for 1 h. The 

suspension was then flltered through Celite. The Celite pad and residue were 

suspended in ethanol (100 mL) and heated. The hot suspension was filtered through a 

second Celite pad. Concentration of the filterate and drying gave 193 (24 mg, 68%) as 

a buff powder; mp 169-170°C; Rf = 0.6 (EtOAc:hexane 4:1); IR (film) νmax 1586 & 1660 

(C=O), 3238 & 3344 (NH) cm-1; 1H NMR (CDCl3) δ 2.92 (2 H, d, J = 3.52 Hz, PhCH2), 
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2.99 (1 H, dd, J = 9.4, 3.5 Hz, 4-H), 3.35 (1 H, ddd, J = 12.5, 5.1, 1.2 Hz, 3-H), 3.61 (1 

H, dd, J = 12.5, 3.9 Hz, 3-H), 6.64 (1 H, br s, NH), 6.82 (1 H, dd, J = 7.8, 1.2 Hz, 6-H), 

7.16 (2 H, d, J = 7.4 Hz, 2’,6’-H2), 7.18 (1 H, t, J = 7.8 Hz, 7-H), 7.20-7.35 (3 H, m, 

3’,4’,5’-H3), 7.62 (1 H, dd, J = 7.8, 1.2 Hz, 8-H); 
13C NMR δ 35.08 (4-C), 37.55 (CH2Ph), 

42.82 (3-C). 119.25 (8-C), 119.94 (6-C), 126.66 (4’-C), 127.71 (10-C), 127.61 (7-C) 

128.71 (9-C), 128.75 (3’,5’-C2), 129.03 (2’,6’-C2), 139.29 (1’-C), 142.81 (5-C), 166.67 

(1-C); MS (ESI +ve) m/z 253.1328 (M + H) (C16H17N2O requires 253.1335). 

 

(E)-N-(But-2-enyl)-2,2,2-trifluoroacetamide (195) 

(Z)-N-(But-2-enyl)-2,2,2-trifluoroacetamide (196) 

N,N-Di((E)-but-2-enyl)-2,2,2-trifluoroacetamide (197) 

N,N-Di((Z)-but-2-enyl)-2,2,2-trifluoroacetamide (198) 

 

N CF3

O

N CF3

O

N
H

CF3

O

N
H

CF3

O

 

 

To 2,2,2-trifluoroacetamide (2.06 g, 18.2 mmol) in dry THF (10 mL), tBuO-K+ (2.05 g, 

18.2 mmol) was added slowly. After 30 min, 1-bromobut-2-ene (mixture of E and Z 

isomers (5:1)) (2.5 g, 18.34 mmol) was added and the mixture was stirred for 2 h. After 

the evaporation of the solvent, the residue was taken up in EtOAc and washed (H2O) 

and dried. Evaporation and chromatography (hexane:EtOAc 10:1) yielded mixture of 

195 & 196 (3:1) (1.02 g, 33%) as colourless oil: Rf = 0.37 (hexane:EtOAc 10:1); IR 

(film) νmax 1179 (C-F), 1556 & 1704 (C=O), 3098 & 3306 (NH) cm-1; 195 1H NMR 

(CDCl3) δ 1.65 (3 H, dd, J = 6.9, 1.5 Hz, CH3), 3.83 (2 H, m, CH2), 5.36-5.45 (1 H, m, J 

= CH-CH2), 5.62-5.70 (1 H, m, =CH-CH3), 7.07 (1 H, br s, NH);
 13C NMR δ 17.43 (CH3), 

41.67 (CH2), 117.24 (CF3, q, J = 287.5 Hz), 124.42 (=C-CH2), 130.24 (=C-CH3), 157.33 

(C=O, q, J = 36.8 Hz); 19F NMR (CDCl3) δ -76.15 (3 F, s, CF3); 

196 1H NMR (CDCl3) δ 1.65 (3 H, dd, J = 6.9, 1.5 Hz, CH2), 3.94 (2 H, t, J = 6.4 Hz 

CH2), 5.36-5.45 (1 H, m, =CH-CH2), 5.62-5.70 (1 H, m, =CH-CH3), 7.07 (1 H, br s, NH);
 

13C NMR δ 12.69 (CH3), 36.54 (CH2), 117.24 (CF3, q, J = 287.5 Hz), 123.62 (=C-CH2), 

129.29 (=C-CH3), 156.96 (C=O, q, J = 36.8 Hz); 19F NMR (CDCl3) δ -76.17 (3 F, s, 

CF3). 
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Also isolated from chromatography was mixture of 197 & 198 (4:1) (0.23 g, 6%). Rf = 

0.75 (hexane:EtOAc 10:1) as colourless oil: IR (film) νmax 1142, 1203 (C-F), 1693 

(C=O) cm-1; 1H NMR 197 (CDCl3) δ 1.59-1.67 (3 H, m, CH3), 3.81-3.85 (2 H, m, CH2), 

5.25-5.36 (1 H, m, =CH-CH2), 5.55-5.68 (1 H, m, =CH-CH3);
 13C NMR δ 17.39 (2 x 

CH3), 46.89 (CH2), 48.02 (CH2), 117.91 (CF3, q, J = 288.3 Hz), 123.66 (=C-CH2), 

124.53 (=C-CH2), 130.54 (=C-CH3), 130.93 (=C-CH3), 156.03 (C=O, q, J = 35.27 Hz); 
19F NMR (CDCl3) δ -68.99 (3 F, s, CF3).  

 

198 (CDCl3) δ 1.59-1.67 (3 H, m, CH3), 3.93-3.98 (2 H, m, CH2), 5.25-5.36 (1 H, m, 

=CH-CH2), 5.55-5.68 (1 H, m, =CH-CH3);
 13C NMR δ 12.72 (2 x CH3), 41.69 (CH2), 

42.70 (CH2), 117.91 (CF3, q, J = 288.3 Hz), 123.35 (=C-CH2), 123.75 (=C-CH2), 129.08 

(=C-CH3), 129.11 (=C-CH3), 156.03 (C=O, q, J = 35.27 Hz); 19F NMR (CDCl3) δ -68.95 

(3 F, s, CF3). 

 

(E)-But-2-en-1-amine (200) 

(Z)-But-2-en-1-amine (201) 

 

 

 

A mixture of 195 & 196 (0.83 g, 5.0 mmol) was stirred with 10% aq. NaOH (5 mL) for 3 

h. Extraction (Et2O) and drying (K2CO3) yielded mixture of 200 & 201 which was used 

in the next step without further purification. 

 

(E)-N-(But-2-enyl)-2-iodo-3-nitrobenzamide (202) 

(Z)-N-(But-2-enyl)-2-iodo-3-nitrobenzamide (203) 

 

NO2

I

N
H

O

 

 

To 139 (1.55 g, 5.0 mmol) in Et2O (20 mL) was added mixture of 200 & 201 (0.36 g, 5.0 

mmol) in Et2O and Et3N (1.4 mL, 10 mmol) and the mixture was stirred for 2 h. 

Washing (5% aq. HCl, 5% aq. NaHCO3), drying, evaporation and chromatography 

(hexane:EtOAc 3:2) gave mixture of 202 & 203 (5:1) (1.25 g, 72%) as yellow crystals: 

NO2

I

N
H

O
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Rf = 0.25 (hexane:EtOAc 2:1); IR (KBr) νmax 1348 & 1526 (NO2), 1589 & 1648 (C=O), 

3258 & 3467 (NH) cm-1; 1H NMR (CDCl3) δ 1.67 (3 H, dd, J = 6.5, 1.4 Hz, CH3), 3.81 (2 

H, tq, J = 5.64, 1.4 Hz, CH2), 5.53 (1 H, m, =CH-CH2), 5.67 (1 H, m, =CH-CH3),  7.51 (1 

H, dd, J = 7.6, 1.4 Hz, 6-H), 7.61 (1 H, t, J = 7.9 Hz, 5-H), 7.85 (1 H, dd, J = 7.9, 

1.4 Hz, 4-H), 8.67(1 H, t, J = 5.3 Hz, NH); 13C NMR δ 17.57 (CH2), 40.84 (CH3), 86.71 

(2-C), 123.89 (4-C), 126.73 (=C-CH2), 127.26 (=C-CH3), 129.68 (5-C), 130.21 (6-C), 

146.48 (1-C), 155.21 (3-C), 167.89 (C=O); MS (ESI +ve) m/z 346.9887 (M + H) 

(C11H12IN2O3 requires 346.9893). Anal. Calcd for C11H11IN2O3: C, 38.17; H, 3.20; N, 

8.09; Found: C, 38.50; H, 3.17; N, 8.16. 
 

1H NMR 203 (CDCl3) δ 1.67 (3 H, m, CH3), 3.89 (2 H, t, J = 5.4 Hz, CH2), 5.46-5.60 (1 

H, m, =CH-CH2),  5.62-5.72 (1 H, m, =CH-CH3),  7.65 (1 H, t, J = 7.6 Hz, 5-H), 7.71 (1 

H, dd, J = 7.6, 1.7 Hz, 6-H), 8.08 (1 H, dd, J = 7.9, 1.4 Hz, 4-H), 8.78 (1 H, m, NH); 13C 

NMR δ 12.94 (CH2), 36.19 (CH3), 79.21 (2-C), 125.37 (4-C), 126.27 (=C-CH2), 127.18 

(=C-CH3), 128.66 (5-C), 131.98 (6-C), 139.44 (1-C), 148.63 (3-C), 164.47 (C=O).  

 

(E)-N-(But-2-enyl)-3-nitrobenzamide (204) 

(Z)-N-(But-2-enyl)-3-nitrobenzamide (205) 

(E)-3-Amino-N-(but-2-enyl)-2-chlorobenzamide (206) 

(Z)-3-Amino-N-(but-2-enyl)-2-chlorobenzamide (207) 

 

 

 

To 202 & 203 (100 mg, 0.3 mmol) in dry DMF (0.5 mL) was added (Ph3P)4Pd (7 mg, 2 

mol%), dry Et3N (0.1 mL, 0.75 mmol) and tetrabutylammonium chloride (84 mg, 0.3 

mmol) and the mixture was heated to reflux for 48 h. After evaporation of the solvent, 

the residue was taken up in CHCl3, washed (5% aq. HCl, 5% aq. NaHCO3) and dried. 

Evaporation and chromatography (hexane:EtOAc 2:1) yielded mixture of 204 & 205 (14 

mg, 21%) as yellow semi-solid: Rf = 0.7 (hexane:EtOAc 2:1); IR νmax (film) 1349 & 1529 

(NO2), 1641 (C=O), 3306 (NH) cm-1; 1H NMR 204 (CDCl3) δ 1.71 (3 H, d, J = 6.3 Hz, 

CH3), 4.01 (2 H, t, J = 6.7 Hz, CH2), 5.55 (1 H, m, =CH-CH2), 5.73 (1 H, m, =CH-CH3),  

6.28 (1 H, br s, NH), 7.63 (1 H, t, J = 7.8 Hz, 5-H), 8.14 (1 H, dd, J = 7.8, 1.4 Hz, 6-H), 

8.33 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-H), 8.57 (1 H, t, J = 1.6 Hz, 2-H); 13C NMR δ 

17.73 (CH3), 42.29 (CH2), 121.63 (2-C), 125.08 (=C-CH3), 126.02 (4-C), 129.76 (=C-
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CH2), 129.86 (5-C), 133.27 (6-C), 136.14 (1-C), 148.11 (3-C), 164.72 (C=O); MS (ESI 

+ve) m/z 221.0921 (M + H) (C11H13N2O3 requires 221.0926). 

 

205 1H NMR (CDCl3) δ 1.71 (3 H, d, J = 6.3 Hz, CH3), 4.12 (2 H, t, J = 6.4 Hz, CH2), 

5.55 (1 H, m, =CH-CH2), 5.73 (1 H, m, =CH-CH3),  6.28 (1 H, br s, NH), 7.63 (1 H, t, J = 

7.8 Hz, 5-H), 8.14 (1 H, dd, J = 7.8, 1.4 Hz, 6-H), 8.33 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-

H), 8.57 (1 H, t, J = 1.6 Hz, 2-H); 13C NMR δ 17.73 (CH3), 36.79 (CH2), 121.63 (2-C), 

125.08 (=C-CH3), 126.02 (4-C), 129.76 (=C-CH2), 129.86 (5-C), 133.27 (6-C), 136.14 

(1-C), 148.11 (3-C), 164.72 (C=O). 

 

Also isolated from chromatography was mixture of 206 & 207 (10 mg, 15%) as brown 

powder: IR (film) νmax 1628 (C=O), 3232 & 3464 (NH) cm-1; Rf = 0.25 (hexane:EtOAc 

2:1); 1H NMR 206 (CDCl3) δ 1.72 (3 H, dd, J = 6.3, 1.2 Hz, CH3), 3.99 (2 H, t, J = 6.3 

Hz, CH2), 4.17 (2 H, br s, NH2), 5.54 (1 H, m, =CH-CH2), 5.70 (1 H, m, =CH-CH3), 5.86 

(1 H, br s, NH), 6.80 (1 H, dd, J = 8.2, 1.6 Hz, 4-H), 6.88 (1 H, dd, J = 7.8, 1.2 Hz, 6-H), 

7.07 (1 H, t, J = 7.8 Hz, 5-H); 13C NMR δ 17.73 (CH3) 3 (CH2), 115.50 (2-C), 116.85 (4-

C), 118.32 (6-C), 126.36 (=CH-CH2), 127.48 (5-C), 128.93 (=CH-CH3), 136.63 (1-C), 

143.59 (3-C), 167.07 (C=O); MS (ESI +ve) m/z 225.0789 (M + H) (C11H14
35ClN2O 

requires 225.0795). 

 

207 1H NMR (CDCl3) δ 1.71 (3 H, d, J = 6.3 Hz, CH3), 4.09 (2 H, t, J = 6.3 Hz, CH2), 

5.55 (1 H, m, =CH-CH2), 5.73 (1 H, m, =CH-CH3),  6.28 (1 H, br s, NH), 7.63 (1 H, t, J = 

7.8 Hz, 5-H), 8.14 (1 H, dd, J = 7.8, 1.4 Hz, 6-H), 8.33 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-

H), 8.57 (1 H, t, J = 1.6 Hz, 2-H); 13C NMR δ 17.73 (CH3), 36.80 (CH2), 121.63 (2-C), 

125.08 (=C-CH3), 126.02 (4-C), 129.76 (=C-CH2), 129.86 (5-C), 133.27 (6-C), 136.14 

(1-C), 148.11 (3-C), 164.72 (C=O). 

 
N-Allylphthalimide (210) 

 

N

O

O  

To a solution of prop-2-en-1-amine (5.70 g, 100 mmol) in acetic acid (30 mL) phthalic 

anhydride (14.8 g, 100 mmol) was added with stirring, then the mixture was boiled 

under reflux for 2 h. It was poured to water (300 mL) and the precipitate formed was 

filtered and dried in vacuo over KOH pellets. Recrystallisation (EtOAc) afforded 210 
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(18.72 g, 87%) as white needles. mp 66-67 oC (lit.213 mp 68-69 oC); IR (KBr) νmax 1701 

(C=O) cm-1; 1H NMR δ 4.26-4.29 (2 H, dt, J = 5.5, 1.4 Hz, N-CH2), 5.15-5.19 (1 H, dq, J 

= 10.5, 1.1 Hz, H of =CH2) 5.19-5.27 (1 H, dq, J = 17.6, 1.1 Hz, H of =CH2), 5.8-5.94 (1 

H, ddt, J = 17.1, 10.2, 1.1 Hz =CH), 7.73-7.67 (2 H, m, 3,6-H2), 7.80-7.87 (2 H, m, 4,5-

H2);  

 

(E)-2-(3-(4-methylphenyl)prop-2-enyl)isoindoline-1,3-dione (211) 
 

N

O

O
CH3

 

To 210 (0.2 g, 1.06 mmol), 4-iodotoluene (0.22 g, 1.06 mmol) and Et3N (0.3 mL, 2.12 

mmol) in a flask Pd(OAc)2 (2.5 mg, 1 mol%) was added. Th e flask was flushed with 

nitrogen and the mixture was boiled under reflux at for 24 h. The solid residue was 

dissolved in EtOAc (20 mL). Washing (5% aq. HCl, 5% aq. NaHCO3), drying, 

evaporation and chromatography (hexane:EtOAc 2:1) gave 211 (0.24 g, 82%) as pale 

buff solid. Rf = 0.4 (hexane:EtOAc 4:1); mp 164-166 oC (lit.214 mp 165-166 oC); IR (KBr) 

νmax 1704 (C=O) cm-1; 1H NMR δ 2.29 (3 H, s, CH3), 4.42 (2 H, dd, J = 6.6, 1.1 Hz, CH2) 

6.19 (1 H, dt, J = 16.0, 6.3 Hz, =CH-CH2), 6.64 (1 H, d, J = 16.0 Hz, =CH-Ph), 7.08 (2 

H, d, J = 8.0 Hz, 2,6-H2), 7.24 (2 H, d, J = 8.0 Hz, 3,5-H2), 7.68-7.72 (2 H, m, 3,6-H2), 

7.83-7.86 (2 H, m, 4,5-H2).  

 

(E)-2-(3-(4-methoxyphenyl)prop-2-enyl)isoindoline-1,3-dione (212) 

 

N

O

O
OCH3

 

 

Pd(OAc)2 (12.5 mg, 1 mol%) was added to 210 (1.0 g, 5.3 mmol), 1-iodo-4-

methoxybenzene (1.3 g, 5.3 mmol) and Et3N (1.5 mL, 10.6 mmol). The flask was 

flushed with nitrogen and the mixture was boiled under reflux for 16 h. The evaporation 

residue was dissolved in EtOAc (50 mL). Washing (5% aq. HCl, 5% aq. NaHCO3), 

drying, evaporation gave 212 (1.45 g, 94%) as yellow solid: mp 137-139 oC (lit.215 mp 

139-140 oC); Rf = 0.5 (hexane:EtOAc 2:1); IR (KBr) νmax 1704 (C=O) cm-1; 1H NMR 

(CDCl3) δ 3.77 (3 H, s, CH3), 4.39 (2 H, dd, J = 6.6, 1.1 Hz, CH2) 6.13 (1 H, dt, J = 15.9, 

6.6 Hz, =CH-CH2), 6.56 (1 H, d, J = 16.0 Hz, =CH-Ph), 6.8 (2 H, d, J = 8.0 Hz, 3’,5’-H2), 
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7.28 (2 H, d, J = 8.0 Hz, 2’,6’-H2), 7.67-7.72 (2 H, m, 3,6-H2), 7.80-7.87 (2 H, m, 4,5-

H2). 

 

(E)-3-(4-methylphenyl)prop-2-en-1-amine (213) 
 

NH2

H3C  

Compound 211 (0.27 g, 1.0 mmol) and hydrazine hydrate (32.0 mg, 1.0 mmol) were 

boiled under reflux in EtOH (10 mL) for 3 h. The solid was filtered, washed with 

ethanol, and then suspended in water to which 1 mL of 50% aq. NaOH solution was 

added. The mixture was extracted with Et2O (2 x 10 mL) and CH2Cl2 (10 mL). Washing 

(H2O), drying (MgSO4) and evaporation yielded 213 (0.15 g, 65%) as yellow oil: Rf = 0.1 

(hexane:EtOAc 1:1); IR (film) νmax 3460 (NH) cm
-1; 1H NMR δ 2.32 (3 H, s, CH3), 3.43 (2 

H, d, J = 5.8 Hz, CH2) 6.19-6.29 (1 H, dt, J = 16.0, 6.0 Hz, =CH-CH2), 6.48 (1 H, d, J = 

15.9 Hz, =CH-Ph), 7.08 (2 H, d, J = 8.0 Hz, 2,6-H2), 7.24 (2 H, d, J = 7.9 Hz, 3,5-H2). 

 

(E)-3-(4-methoxyphenyl)prop-2-en-1-amine (214) 

 

NH2

H3CO  

Compound 212 (3.07 g, 10.5 mmol) and hydrazine hydrate (0.34 g, 10.5 mmol) were 

boiled under reflux in ethanol (25 mL) for 3 h. The solid was filtered, washed with 

ethanol, and then suspended in water to which 1 mL of 50% aq. NaOH was added. The 

mixture was extracted with Et2O (2 x 25 mL) and CH2Cl2 (25 mL). Washing (H2O), 

drying (MgSO4) and evaporation yielded 214 (1.5 g, 89%) as a yellow oil: Rf = 0.2 

(EtOAc:hexane 2:1); IR (film) νmax 1253, 1518 (C=C), 3460 (NH) cm
-1;  1H NMR (CDCl3) 

δ 1.35 (2 H, br s, NH2), 3.44 (2 H, dd, J = 5.8, 1.4 Hz, CH2), 3.79 (3 H, s, CH3), 6.16 (1 

H, dt, J = 16.0, 5.8 Hz, =CH-CH2), 6.45 (1 H, d, J = 15.7 Hz, =CH-Ph), 6.86 (2 H, d, J = 

8.8 Hz, 3,5-H2), 7.31 (2 H, d, J = 8.8 Hz, 2,6-H2). 

 

(E)-2-iodo-3-nitro-N-(3-(4-methylphenyl)prop-2-enyl)benzamide (215) 

 

NO2

I

N
H

O

CH3
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To 139 (0.55 g, 1.8 mmol) in CH2Cl2 (10 mL) was added 213 (0.26 g, 1.8 mmol) and 

Et3N (0.5 mL, 3.6 mmol) and the mixture was stirred for 2 h. Washing (5% aq. HCl, 5% 

aq. NaHCO3), drying, evaporation and chromatography (hexane:EtOAc 4:1) gave 215 

(0.61 g, 82%) as yellow crystals: mp 159-162 oC; Rf = 0.4 (hexane:EtOAc 2:1); IR (KBr) 

νmax 1361 & 1530 (NO2), 1589 & 1644 (C=O), 3268 & 3468 (NH) cm-1; 1H NMR δ 

(CDCl3) 2.34 (3 H, s, CH3), 4.23 (2 H, t, J = 5.9 Hz, CH2), 5.99 (1 H, br s, NH), 6.23 (1 

H, dt, J = 16.0, 6.6 Hz, =CH-CH2), 6.63 (1 H, d, J = 16.0 Hz, =CH-Ph), 7.14 (2 H, d, J = 

7.8 Hz, 3’,5’-H2), 7.27 (2 H, d, J = 7.8 Hz, 2’,6’-H2), 7.52 (2 H, m, 5,6-H5), 7.68 (1 H, m, 

4-H); 13C NMR δ 21.21 (CH3), 42.34 (CH2), 84.94 (2-C), 124.94 (=C-CH2), 125.15 (4-C), 

126.32 (2’,6’-C2), 129.35 (3’,5’-C2), 129.47 (5-C), 130.37 (6-C), 133.27 (=C-Ph), 133.36 

(1’-C), 137.93 (4’-C), 146.13 (1-C), 154.89 (3-C), 168.19 (C=O); Anal. Calcd for 

C17H15IN2O3: C, 48.36; H, 3.58; N, 6.63; Found: C, 47.84; H, 3.37; N, 6.54. 

 

(E)-2-iodo-N-(3-(4-methoxyphenyl)prop-2-enyl)-3-nitrobenzamide (216) 

 

NO2

I

N
H

O

OCH3

 

 

To 139 (3.12 g, 10.0 mmol) in CH2Cl2 (25 mL) was added 214 (1.65 g, 10.0 mmol) and 

Et3N (2.8 mL, 20 mmol) and the mixture was stirred for 4 h. Washing (5% aq. HCl, 5% 

aq. NaHCO3), drying, evaporation and chromatography (hexane:EtOAc 4:1) gave 216 

(3.3 g, 75%) as yellow crystals: mp 124-127 oC; Rf = 0.35 (hexane:EtOAc 2:1); IR (KBr) 

νmax 1348 & 1529 (NO2), 1588 & 1640 (C=O), 3259 & 3468 (NH) cm-1; 1H NMR (CDCl3) 

δ 3.79 (3 H, s, CH3), 4.21 (2 H, t, J = 6.65 Hz, CH2), 6.01 (1 H, br s, NH), 6.11 (1 H, dt, 

J = 16.0, 6.6 Hz, =CH-CH2), 6.59 (1 H, d, J = 16.0 Hz, =CH-Ph), 6.83 (2 H, d, J = 8.6 

Hz, 3’,5’-H2), 7.28 (2 H, d, J = 8.9 Hz, 2’,6’-H2), 7.50 (2 H, m, 5,6-H2), 7.65 (1 H, m, 4-

H); 13C NMR δ 42.40 (CH2), 55.28 (CH3), 84.94 (C-2), 114.02 (3’,5’-C2), 121.68 (=C-

CH2), 125.13 (4-C), 127.62 (2’,6’-C2), 128.88 (1’-C),  129.45 (5-C), 130.36 (6-C), 

132.91 (=C-Ph), 146.12 (1-C), 154.86 (3-C), 159.44 (4’-C), 168.19 (C=O); Anal. Calcd 

for C17H15IN2O4: C, 46.59; H, 3.45; N, 6.39; Found: C, 46.48; H, 3.33; N, 6.31. 
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(E)-N-(3-(4-methylphenyl)prop-2-enyl)-3-nitro benzamide (217) 

N-(3-(4-methylphenyl)propyl)-3-nitro-benzamide (218) 

4-(4-Methylbenzyl)-5-nitroisoquinolin-1(2H)-one (219) 

(Z)-4-(4-Methylbenzylidene)-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (220) 

 

             

 
To 215 (150 mg, 0.35 mmol) in dry DMF (0.7 mL) was added (Ph3P)4Pd (8.2 mg, 2 

mol%), dry Et3N (0.09 mL, 0.89 mmol) and tetrabutylammonium chloride (99 mg, 0.35 

mmol) and the mixture was heated to reflux for 48 h. After evaporation of the solvent, 

the residue was taken up in CHCl3, washed (5% aq. HCl, 5% aq. NaHCO3) and dried. 

Evaporation and chromatography (hexane:EtOAc 2:1) yielded an inseparable mixture 

of 217 & 218 (3:1) (17 mg, 16%) as yellow semi-solid: Rf = 0.7 (hexane:EtOAc 2:1); IR 

(film) νmax 1350 & 1524 (NO2), 1641 (C=O), 3312 & 3467 (NH) cm-1; 1H NMR 217 

(CDCl3) δ 2.33 (3 H, s, CH3), 4.23 (2 H, t, J = 6.3 Hz, CH2), 6.24 (1 H, dt, J = 15.6, 6.6 

Hz, =CH-CH2), 6.55 (1 H, d, J = 16.0 Hz, =CH-Ph), 6.6 (1 H, br s, NH), 7.10 (2 H, m, 

3’,5’-H2), 7.26 (2 H, d, J = 7.8 Hz, 2’,6’-H2), 7.64 (1 H, t, J = 8.2 Hz, 5-H), 8.18 (1 H, d, J 

= 8.2, 1.6 Hz, 6-H), 8.34 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-H), 8.63 (1 H, t, J = 1.9 Hz, 2-

H); 13C NMR δ 21.18 (CH3), 42.50 (CH2), 121.75 (2-C), 123.38 (=C-CH2), 126.06 (4-C), 

126.28 (2’,6’-C2), 129.31 (3’,5’-C2), 129.85 (5-C), 133.11 (=C-Ph), 133.29 (6-C), 135.73 

(1’-C), 135.97 (1-C), 137.85 (4’-C), 148.10 (3-C), 164.86 (C=O); MS (ESI +ve) m/z 

297.1240 (M + H) (C17H17N2O3 requires 297.1239). 

 
218 1H NMR (CDCl3) δ 1.96 (2 H, q, J = 7.0 Hz, CH2CH2CH2), 2.29 (3 H, s, CH3), 2.71 

(2 H, t, J = 7.4 Hz, CH2Ph), 3.54 (2 H, q, J = 6.6 Hz, NCH2), 7.10 (2 H, m, 3’,5’-H2), 

7.26 (2 H, d, J = 8.2 Hz, 2’,6’-H2), 7.60 (1 H, t, J = 7.8 Hz, 5-H), 7.98 (1 H, dt, J = 7.4, 

1.9 Hz, 6-H), 8.30 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-H), 8.44 (1 H, t, J = 1.9 Hz, 2-H), 

8.54 (1 H, br s, NH); 13C NMR δ 20.94 (CH3), 30.81 (CH2CH2CH2), 33.19 (CH2Ph), 
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40.26 (N-CH2), 121.54 (2-C), 125.88 (4-C), 126.28 (2’,6’-C2), 129.31 (3’,5’-C2), 129.68 

(5-C), 133.36 (6-C), 135.02 (1’-C), 136.11 (1-C), 138.14 (4’-C), 148.10 (3-C), 164.86 

(C=O); MS (ESI +ve) m/z 321.1207 (M + Na) (C17H18N2NaO3 requires 321.1215). 

 
Also isolated was 219 (16 mg, 15%) as an orange powder: mp 186-188 oC; Rf = 0.29 

(hexane:EtOAc 2:1); IR (KBr) νmax 1367 & 1526 (NO2), 1660 (C=O), 3118 & 3392 (NH) 

cm-1; 1H NMR (CDCl3) δ 2.33 (3 H, s, CH3), 3.82 (2 H, s, CH2), 6.75 (1 H, s, 3-H), 6.98 

(2 H, d, J = 7.9 Hz, 3’,5’-H2), 7.10 (2 H, d, J = 7.9 Hz, 2’,6’-H2), 7.54 (1 H, t, J = 7.9 Hz, 

7-H), 7.83 (1 H, dd, J = 7.9, 1.1 Hz, 6-H), 8.67 (1 H, d, J = 7.9, 1.1 Hz, 8-H), 11.32 (1 H, 

br s, NH); 13C NMR δ 21.07 (CH3), 34.98 (CH2), 113.56 (4-C), 126.01 (7-C), 127.85 (9-

C), 128.67 (6-C) 129.26 (3’,5’-C2), 129.49 (2’,6’-C2), 126.62 (10-C), 130.91 (3-C), 

131.77 (8-C), 134.54 (1’-C), 136.51 (4’-C), 147.63 (5-C), 162.03 (1-C); MS (ESI +ve) 

m/z 295.1077 (M + H) (C17H15N2O3 requires 295.1083). 

 

Compound 220 (14 mg, 13%) was also collected as a yellow solid: mp 152-154°C; Rf = 

0.25 (hexane:EtOAc 2:1); IR (KBr) νmax 1352 & 1529 (NO2), 1662 (C=O), 3042 (NH) 

cm-1 ; 1H NMR (CDCl3) δ 2.30 (1 H, s, CH3), 4.50 (2 H, d, J = 1.6 Hz, 3-CH2), 6.75 (1 H, 

s, =CH), 6.84 (1 H, br s, NH), 7.09 (2 H, d, J = 7.8 Hz, 2’,6’-H2), 7.20 (2 H, m, 3’,5’-H2), 

7.50 (1 H, t, J = 8.2 Hz, 7-H), 7.80 (1 H, dd, J = 8.1, 1.2 Hz, 6-H), 8.30 (1-H, dd, J = 

7.8, 1.2 Hz, 8-H); 13C NMR δ 21.32 (CH3),  42.04 (CH2), 123.51 (4-C), 127.64 (6-C), 

128.15 (7-C), 129.15 (2’,6’-C2), 129.25 (3’,5’-C2), 130.24 (9-C), 131.14 (8-C), 131.85 

(10-C), 132.01 (4’-C), 134.83 (=CH), 138.74 (1’-C), 148.41 (5-C), 162.96 (1-C); MS 

(ESI +ve) m/z 295.1066 (M + H) (C17H15N2O3 requires 295.1083). 

 

5-Amino-4-(4-methylbenzyl)isoquinolin-1(2H)-one (221) 

(±) 5-Amino-4-(4-methylbenzyl)-3,4-dihydroisoquinolin-1(2H)-one (222) 

 

NH2

NH

O

CH3            

NH2

NH

O

CH3  

 

To 219 (24 mg, 0.08 mmol) in EtOH (5 mL), a slurry of 10% palladium on charcoal (50 

mg) in EtOH (2 mL) was added. The mixture was stirred under H2 for 1 h. The 

suspension was then filtered through Celite. The Celite pad and residue were 
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suspended in ethanol (100 mL) and heated. The hot suspension was filtered through a 

second Celite pad. Concentration of the filtrate and drying gave an inseparable 

mixture of 221 & 222 (10:3) (11 mg, 51%) as a buff powder: Rf = 0.4 (EtOAc:hexane 

2:1); IR (KBr) νmax 1591 & 1654 (C=O), 3357 (NH) cm-1; 221 1H NMR (CDCl3) δ 2.31 (3 

H, s, CH3), 4.25 (2 H, s, CH2), 6.82 (1 H, dd, J = 7.8, 1.2 Hz, 6-H), 6.86 (1 H, s, 3-H), 

7.05-7.14 (4 H, m, 2’,3’,5’,6’-H4), 7.28 (1 H, t, J = 7.8 Hz, 7-H), 7.97 (1 H, d, J = 7.0 Hz, 

8-H), 11.29 (1 H, br s, NH); 13C NMR δ 20.99 (CH3), 38.02 (CH2), 113.57 (4-C), 119.05 

(8-C), 120.83 (6-C), 126.61 (10-C), 127.02 (3-C), 127.40 (7-C), 127.96 (2’,6’-C2), 

128.16 (9-C), 129.85 (3’,5’-C2), 136.58 (4’-C), 136.89 (1’-C), 143.55 (5-C), 163.91 (1-

C); MS (ESI +ve) m/z 265.1334 (M + H) (C17H17N2O requires 265.1351). 

  

222 1H NMR (CDCl3) δ 2.32 (3 H, s, CH3), 2.89 (2 H, d, J = 6.26 Hz, PhCH2), 2.96 (1 H, 

m, 4-H), 3.35 (1 H, dd, J = 12.5, 4.3 Hz, 3-H), 3.61 (1 H, dd, J = 12.5, 3.9 Hz, 3-H), 

6.72 (1 H, br s, NH), 6.81 (1 H, dd, J = 7.8, 1.2 Hz, 6-H), 7.16 (2 H, d, J = 8.2 Hz, 2’,6’-

H2), 7.18 (1 H, t, J = 7.8 Hz, 7-H), 7.20-7.35 (3 H, m, 3’,4’,5’-H3), 7.59 (1 H, dd, J = 7.8, 

1.2 Hz, 8-H); 13C NMR δ 21.05 (CH3), 35.17 (4-C), 37.13 (CH2Ph), 42.84 (3-C). 119.29 

(8-C), 119.97 (6-C), 127.58 (7-C), 128.71 (10-C), 128.83 (9-C) 128.91 (2,6-C2), 129.44 

(3’,5’-C2), 136.17 (4’-C), 136.17 (1’-C), 142.81 (5-C), 167.00 (1-C); MS (ESI +ve) m/z 

289.1311 (M + Na), 267.1491 (M + H) (C17H19N2O requires 265.1492).  

 

Reaction was repeated with 220 (25 mg, 0.08 mmol) in EtOH (5 mL), gave an 

inseparable mixture of 222 & 221 (11:9) (10 mg, 42%) as a buff solid with properties as 

above. 

 

(E)-N-(3-(4-Methoxyphenyl)prop-2-enyl)-3-nitrobenzamide (223) 

N-(3-(4-Methoxyphenyl)propyl)-3-nitrobenzamide (224) 

4-(4-Methoxybenzyl)-5-nitroisoquinolin-1(2H)-one (225) 

(Z)-4-(4-Methoxybenzylidene)-5-nitro-3,4-dihydroisoquinolin-1(2H)-one (226) 
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To 216 (150 mg, 0.34 mmol) in dry DMF (0.7 mL) was added (Ph3P)4Pd (8.0 mg, 2 

mol%), dry Et3N (0.12 mL, 0.86 mmol) and tetrabutylammonium chloride (95.0 mg, 0.34 

mmol) and the mixture was heated to reflux for 48 h. After evaporation of the solvent, 

the residue was taken up in CHCl3, washed (5% aq. HCl, 5% aq. NaHCO3) and dried. 

Evaporation and chromatography (hexane:EtOAc 2:1) yielded an inseparable mixture 

of 223 & 224 (2:3) (20 mg, 19%) as a yellow semi-solid: Rf = 0.4 (hexane:EtOAc 2:1); 

IR (film) νmax 1357 & 1539 (NO2), 1637 (C=O), 3095 & 3300 (NH) cm-1; 223 1H NMR 

(CDCl3) δ 3.76 (3 H, s, CH3), 4.17 (2 H, t, J = 6.7 Hz, CH2), 6.07 (1 H, dt, J = 16.0, 6.3 

Hz, =CH-CH2), 6.48 (1 H, d, J = 16.0 Hz, =CH-Ph), 6.79 (2 H, d, J = 8.6 Hz, 3’,5’-H2), 

7.21 (2 H, d, J = 9.0 Hz, 2’,6’-H2), 7.33 (1 H, br s, NH), 7.56 (1 H, t, J = 8.2 Hz, 5-H), 

8.18 (1 H, dt, J = 8.2, 1.6 Hz, 6-H), 8.27 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-H), 8.64 (1 H, 

t, J = 1.9 Hz, 2-H); 13C NMR δ 42.44 (CH2), 55.14 (CH3), 113.88 (3’,5’-C2), 121.88 (2-C), 

122.24 (=C-CH2), 125.84 (4-C), 127.42 (2’,6’-C2), 128.88 (1’-C), 129.61 (5-C), 132.16 

(=C-Ph), 133.29 (6-C), 135.88 (1-C), 147.91 (3-C), 159.20 (4’-C), 164.99 (C=O); MS 

(ESI +ve) m/z 335.0996 (M + Na) (C17H16N2NaO4 requires 335.1008). 

 

224 Rf = 0.4 (hexane:EtOAc 2:1); 1H NMR (CDCl3) δ 1.90 (2 H, q, J = 7.4 Hz, 

CH2CH2CH2), 2.63 (2 H, t, J = 7.4 Hz, CH2Ph), 3.48 (2 H, m, NCH2), 3.76 (3 H, s, CH3), 

6.90 (1 H, t, J = 5.4 Hz, NH), 6.79 (2 H, J = 8.6 Hz, 3’,5’-H2), 7.06 (2 H, d, J = 8.9 Hz, 

2’,6’-H2), 7.50 (1 H, t, J = 7.8 Hz, 5-H), 8.02 (1 H, dt, J = 7.8, 1.2 Hz, 6-H), 8.23 (1 H, 

ddd, J = 8.2, 2.4, 1.2 Hz, 4-H), 8.48 (1 H, t, J = 1.9 Hz, 2-H); 13C NMR δ 30.85 

(CH2CH2), 32.45 (CH2Ph), 40.09 (N-CH2), 55.08 (CH3), 113.78 (3’,5’-C2), 121.64 (2-C), 

125.70 (4-C), 129.10 (2’,6’-C2), 129.52 (5-C), 133.19 (1’-C), 133.11 (6-C), 136.03 (1-C), 

147.83 (3-C), 157.76 (4’-C), 165.05 (C=O); MS (ESI +ve) m/z 315.1320 (M + H) 

(C17H19N2O4 requires 315.1345), 337.1136 (M + Na). 
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Also isolated was 225 (18 mg, 17%) as an orange powder: mp 121-124 oC; IR (KBr) 

νmax 1367 & 1527 (NO2), 1604, 1661 (C=O), 3042 & 3119 (NH) cm-1; 1H NMR (CDCl3) δ 

3.79 (3 H, s, CH3), 3.81 (2 H, s, CH2), 6.76 (1 H, s, 3-H), 6.82 (2 H, d, J = 8.6 Hz, 3’,5’-

H2), 7.02 (2 H, d, J = 8.6 Hz, 2’,6’-H2), 7.52 (1 H, t, J = 7.8 Hz, 7-H), 7.83 (1 H, dd, J = 

7.8, 1.2 Hz, 6-H), 8.65 (1 H, dd, J = 7.8, 1.6 Hz, 8-H), 11.68 (1 H, br s, NH); 13C NMR δ 

34.52 (CH3), 55.23 (CH2), 113.77 (4’-C), 114.18 (3’,5’-C2), 125.98 (7-C), 127.81 (9-C), 

128.66 (6-C) 129.52 (10-C), 129.60 (4-C), 130.41(2’,6’-C2), 130.93 (3-C), 131.75 (8-C), 

147.61 (5-C), 158.47 (1’-C), 162.21 (1-C); MS (ESI +ve) m/z 311.1026 (M + H) 

(C17H15N2O4 requires 311.1032). 

 

Compound 226 (16 mg, 15%) was also collected as a yellow solid: mp 203-204°C; 1H 

NMR (CDCl3) δ 3.83 (3 H, s, CH3), 4.52 (2 H, s, CH2), 6.24 (1 H, br s, NH), 6.72 (1 H, s, 

=CH), 6.92 (2 H, d, J = 8.9 Hz, 3’,5’-H2), 7.12 (2 H, d, J = 8.2 Hz, 2’,6’-H2), 7.52 (1 H, t, 

J = 8.2 Hz, 7-H), 7.80 (1 H, dd, J = 8.2, 1.2 Hz, 6-H), 8.31 (1 H, dd, J = 7.8, 1.2 Hz, 8-

H); 13C NMR δ 42.14 (CH2), 55.37 (CH3), 114.00 (3’,5’-C2), 122.58 (4-C), 127.48 (4’-C), 

127.67 (6-C), 128.02 (7-C) 130.15 (9-C), 130.73 (2’,6’-C2) 131.21 (8-C), 131.95 (10-C), 

134.56 (=CH), 148.43 (5-C), 159.83 (1’-C), 162.63 (1-C); MS (ESI +ve) m/z 311.1001 

(M + H) (C17H15N2O4 requires 311.1032). 

 

5-Amino-4-(4-methoxybenzyl)isoquinolin-1(2H)-one (227) 

(±) 5-Amino-4-(4-methoxybenzyl)-3,4-dihydroisoquinolin-1(2H)-one (228) 

 

NH2

NH

O

OCH3           

NH2

NH

O

OCH3  

 

To 225 (25 mg, 0.08 mmol) in EtOH (5 mL), a slurry of 10% palladium on charcoal (50 

mg) in EtOH (2 mL) was added. The mixture was stirred under H2 for 1 h. The 

suspension was then flltered through Celite. The Celite pad and residue were 

suspended in ethanol (100 mL) and heated. The hot suspension was filtered through a 

second Celite pad. Concentration of the filtrate and drying gave an inseparable 

mixture of 227 & 228 (1:2) (12 mg, 53%) as a buff powder: Rf = 0.42 (EtOAc:hexane 

2:1); 227 IR (KBr) νmax 1605, 1661 (C=O), 3357 (NH) cm-1; 1H NMR (CDCl3) δ 3.78 (3 

H, s, CH3), 4.23 (2 H, s, CH2), 6.79 (1 H, s, 3-H), 6.82-7.15 (5 H, m, 2’,3’,5’,6’,6-H5), 
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7.30 (1 H, t, J = 7.8 Hz, 7-H), 8.00 (1 H, d, J = 7.4 Hz, 8-H), 10.6 (1 H, br s, NH); 13C 

NMR δ 35.11 (CH3), 36.81 (CH2), 113.65 (4-C), 114.54 (3’,5’-C2), 119.13, 126.47, 

126.47, 126.76, 127.32, 127.45, 129.11 (2’,6’-C2), 131.82, 131.82 (1’-C), 143.55 (5-C), 

158.56 (1-C); MS (ESI +ve) m/z (M + Na) 303.1094, 281.1270 (M + H) (C17H17N2O2 

requires 281.1290).  

  

228 1H NMR (CDCl3) δ 2.89 (2 H, m, PhCH2), 2.96 (1 H, m, 4-H), 3.37 (1 H, dd, J = 

12.5, 4.3 Hz, 3-H), 3.62 (1 H, dd, J = 12.5, 3.9 Hz, 3-H), 3.80 (3 H, s, CH3), 6.23 (1 H, 

br s, NH), 7.20-7.35 (5 H, m, 2’,3’,5’,6’,6-H5), 7.20 (1 H, t, J = 7.8 Hz, 7-H), 7.61 (1 H, d, 

J = 7.8 Hz, 8-H); 13C NMR δ 35.11 (4-C), 36.81 (CH2Ph), 42.98 (CH2), 55.28 (CH3), 

114.14 (3’,5’-C2), 119.98, 127.32, 127.59, 128.74, 129.11, 130.00 (2’,6’-C2), 131.26, 

142.85 (1’-C), 158.38 (5-C), 166.51 (1-C); MS (ESI +ve) m/z (M + Na) 305.1245, 

283.1418 (M + H) (C17H19N2O2 requires 283.1447).  

 

4-(3-Iodophenylamino)-4-oxobutanoic acid (229) 

 

O

OH

O
H
NI

 

 

Succinic anhydride (1.0 g, 10.0 mmol) and 3-iodoaniline (2.19 g, 10 mmol) were heated 

slowly to 190 oC. At 150 oC 229 was identified as a buff powder: mp 154-156 oC; Rf = 

0.12 (CH2Cl2:EtOAc 2:1); IR (KBr) νmax 1656 & 1696 (C=O), 3289 (NH), 3023 (OH) cm-

1; 1H NMR ((CD3)2SO) δ 2.48-2.64 (4 H, m, 2 ×××× CH2), 7.08 (1 H, t, J = 8.2 Hz, 5-H), 7.38 

(1 H, dd, J = 7.8, 1.6 Hz, 4-H), 7.48 (1 H, dd, J = 8.2, 1.2 Hz, 6-H), 8.10 (1 H, t, J = 1.9 

Hz, 2-H), 10.06 (1 H, s, OH), 12.15 (1 H, br s, NH); 13C NMR δ 28.68 (CH2CONH), 

31.05 (CH2COH), 94.67 (3-C), 118.06 (6-C), 127.07 (2-C), 130.82 (5-C), 131.48 (4-C), 

140.70 (1-C), 170.45 (C=ONH), 173.83 (C=O). 

 

1-(3-Iodophenyl)pyrrolidine-2,5-dione (230) 

 

I N

O

O
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Succinic anhydride (1.0 g, 10.0 mmol) and 3-iodoaniline (2.19 g, 10 mmol) were heated 

at 190 oC for 6 h. Recrystallisation (EtOAc) afforded 230 (2.23 g, 74%) as buff crystals: 

mp 167-169 oC; Rf = 0.7 (CH2Cl2:EtOAc 2:1); IR (KBr) νmax 1423 & 1473 (C=C), 1714 

(C=O) cm-1; 1H NMR (CDCl3) δ 2.82 (4 H, s, 2 ×××× CH2), 7.19 (1 H, t, J = 8.2 Hz, 5-H), 

7.28 (1 H, dt, J = 7.8, 1.2 Hz, 6-H), 7.71 (1 H, t, J = 1.9 Hz, 2-H), 7.73 (1 H, dt, J = 7.8, 

1.6 Hz, 4-H); 13C NMR δ 28.35 (2 ×××× CH2), 93.69 (3-C), 125.79 (6-C), 130.52 (5-C), 

132.84 (1-C), 135.23 (2-C), 137.65 (4-C), 175.70 (2 ×××× C=O); MS (ESI +ve) m/z 

301.9658 (M + H) (C10H8NO2 requires 301.9678). 

 

(E)-2-(3-(3-(2,5-Dioxopyrrolidin-1-yl)phenyl)prop-2-enyl)isoindoline-1,3-dione 

(231) 

 

N

O

O

N

O

O

 

 

To 210 (0.20 g, 1.1 mmol), 230 (0.32 g, 1.1 mmol) and Et3N (0.3 mL, 2.1 mmol), 

Pd(OAc)2 (2.5 mg, 1 mol%) was added. The flask was flushed with nitrogen and the 

mixture was boiled under reflux at 90 oC for 24 h. The solid residue was dissolved in 

EtOAc (20 mL). Washing (5% aq. HCl, 5% aq. NaHCO3), drying, evaporation gave 231 

(0.33 g, 86%) as a buff powder: mp 210-212°C; Rf = 0.2 (hexane:EtOAc 1:1); IR (KBr) 

νmax 1698 & 1711 (C=O) cm-1; 1H NMR (CDCl3) δ 2.8 (4 H, s, 2 ×××× CH2), 4.44 (2 H, d, J = 

6.3 Hz, CH2), 6.27 (1 H, dt, J = 16.0, 6.3 Hz, =CH-CH2), 6.66 (1 H, d, J = 15.7 Hz, =CH-

Ph), 7.12-7.41 (4 H, m, 2,4,5,6-H4), 7.71-7.74 (2 H, m, 3,6-H2), 7.83-7.87 (2 H, m, 4,5-

H2); 
13C NMR δ 28.36 (2 x CH2), 39.39 (CH2), 123.30 (3,6-C2), 124.16 (=CH-CH2), 

124.44 (2’-C), 125.72 (5’-C), 126.74 (6’-C), 129.31 (4’-C), 132.03 (3’-C), 132.13 (8,9-

C2), 132.48 (=CH-Ph), 133.99 (4,5-C2), 137.52 (1’-C), 167.84 (2 ×××× C=O of Pth), 176.06 

(2 ×××× C=O); MS (ESI +ve) m/z 361.1183 (M + H) (C21H17N2O4 requires 361.1188). 

 

tert-Butyl N-(prop-2-enyl)carbamate (233) 

 

O N
H

O

H3C

CH3

CH3  
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Prop-2-en-1-amine (0.75 mL, 10.0 mmol) was slowly added to an ice-cold solution of 

di(tert-butyl) dicarbonate (2.18 g, 10.0 mmol) in CH2Cl2 (5 mL) and the mixture was 

stirred for 3 h. Evaporation gave 233 (1.3 g, 83%) as colourless prisms: mp 33-35 oC 

(lit.9 mp 35-36 oC); Rf = 0.8 (hexane:EtOAc 1:1); IR (KBr) νmax 1169 (C-O), 1531 & 1684 

(C=O), 2980 & 3354 (NH) cm-1; 1H NMR (CDCl3) δ 1.42 (9 H, s, (CH3)3), 3.72 (2 H, t, J 

= 5.2 Hz, propenyl 1-H2), 4.60 (1 H, br s, NH), 5.05 (1 H, dq, J = 10.2, 1.6 Hz, propenyl 

3-H), 5.19 (1 H, dq, J = 17.1, 1.7 Hz, propenyl 3-H), 5.80 (1 H, m, propenyl 2-H).  

 

(E)-tert-Butyl 3-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-enylcarbamate (234) 

tert-Butyl 2-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-enylcarbamate (235) 

 

O N
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O
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O

O
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CH3

CH3
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To 233 (1.57 g, 10.0 mmol), 230 (3.0 g, 10.0 mmol) and Et3N (2.8 mL, 20 mmol), 

Pd(OAc)2 (22.5 mg, 1 mol%) was added. The flask was flushed with nitrogen and the 

mixture was boiled under reflux for 48 h. The solid residue was dissolved in CHCl3 (50 

mL). Washing (5% aq. HCl, 5% aq. NaHCO3), drying, evaporation gave an inseparable 

mixture of 234 & 235 (4:1) (1.2 g, 32%) as a buff semi-solid: Rf = 0.24 (CH2Cl2:EtOAc 

3:2); IR (film) νmax 1180 (C-O), 1709 (C=O), 3370, 2978 (NH) cm-1; 234 1H NMR 

(CDCl3) δ 1.44 (9 H, s, (CH3)3), 2.87 (4 H, s, 2 x CH2), 3.88 (2 H, m, CH2), 4.71 (1 H, br 

s, NH), 6.22 (1 H, dt, J = 16.0, 5.9 Hz, =CH-CH2), 6.5 (1 H, d, J = 16.0 Hz, =CH-Ph), 

7.13 (1 H, dt, J = 7.4, 1.6 Hz, 6-H), 7.24 (1 H, s, 2-H), 7.36 (1 H, dd, J = 7.8, 1.6 Hz, 4-

H), 7.41 (1 H, t, J = 7.8 Hz, 5-H); 13C NMR δ 28.34 (2 x CH2), 28.37 (CH3)3, 42.47 

(CH2), 79.48 (C-CH3)3), 124.29 (2-C), 125.37 (4-C), 126.55 (6-C), 127.89 (=CHCH2), 

129.32 (5-C), 130.14 (=CHPh), 132.13 (3-C), 138.01 (1-C), 155.68 (C=O), 176.15 (2 x 

C=O); MS (ESI +ve) m/z 331.1652 (M + H) (C18H23N2O4 requires 331.1658). 

 

235 1H NMR (CDCl3) δ 1.43 (9 H, s, (CH3)3), 2.87 (4 H, s, 2 x CH2), 4.15 (2 H, d, J = 5.4 

Hz, CH2), 4.5 (1 H, br s, NH), 5.26 (1 H, s, =CH), 5.43 (1 H, s, =CH), 7.13-7.41 (4 H, m, 

2,4,5,6-H4); 
13C NMR δ 28.16 (2 x CH2), 28.22 (CH3)3, 44.14 (CH2), 79.48 (C-CH3)3), 

114.39 (=CH2), 124.38 (2-C), 125.88 (4-C), 126.36 (6-C), 129.40 (5-C), 129.46 

(C=CH2), 129.87 (3-C), 132.03 (1-C), 155.68 (C=O), 176.04 (2 x C=O). 
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(E)-1-(3-(3-aminoprop-1-enyl)phenyl)pyrrolidine-2,5-dione (236) 

1-(3-(3-aminoprop-1-en-2-yl)phenyl)pyrrolidine-2,5-dione (237) 

 

 

 
To the mixture 234 & 235 (1.2 g, 3.6 mmol) in CH2Cl2 (15 mL), dry HCl gas was passed 

for 30 min. The product mixture of 236 & 237 was used in the next step without further 

purification. 

 

(E)-N-(3-(3-(2,5-Dioxopyrrolidin-1-yl)phenyl)prop-2-enyl)-2-iodo-3-nitrobenzamide 

(238) 

N-(2-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-enyl)-2-iodo-3-nitrobenzamide 

(239) 
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To 139 (1.5 g, 5.0 mmol) in CH2Cl2 (15 mL) was added mixture of 236 & 237 (1.65 g, 

5.0 mmol) and Et3N (1.5 mL, 10 mmol) and the mixture was stirred for 6 h. Washing 

(5% aq. HCl, 5% aq. NaHCO3), drying, evaporation and chromatography 

(hexane:EtOAc 4:1) gave a mixture of 238 & 239 (0.8 g, 32%) as yellow crystals: IR 

(KBr) νmax 1391, 1534 (NO2), 1702, 1631 (C=O), 3467, 3313 (NH) cm-1; 238 1H NMR 

((CD3)2SO) δ 2.78 (4 H, s, 2 x CH2), 4.06 (2 H, t, J = 5.5 Hz, CH2), 6.38 (1 H, dt, J = 

15.7, 5.87 Hz, =CH-CH2), 6.69 (1 H, d, J = 16.04 Hz, =CH-Ph), 7.12 (1 H, dt, J = 7.43, 

1.6 Hz, 6’-H), 7.33 (1 H, d, J = 1.6 Hz, 2’-H), 7.45 (1 H, t, J = 7.43 Hz, 5’-H), 7.49 (1 H, 

dt, J = 7.8, 1.6 Hz, 4’-H), 7.59 (1 H, dd, J = 7.8, 1.6 Hz, 4-H), 7.64 (1 H, t, J = 7.8 Hz, 5-

H), 7.85 (1 H, dd, J = 7.8, 1.6 Hz, 6-H), 8.88 (1 H, t, J = 5.5 Hz, NH); 13C NMR δ 28.55 

(2 x CH2), 40.89 (CH2), 86.77 (2-C), 124.03 (4-C), 124.83 (2’-C), 126.09 (6’-C), 126.21 

(4’-C), 127.42 (=CHCH2), 129.19 (5’-C), 129.57 (=CHPh), 129.77 (6-C), 130.34 (5-C), 

133.19 (1’-C), 137.44 (3’-C), 146.39 (1-C), 155.26 (3-C), 168.13 (C=O), 177.60 (2 x 

C=O); MS (ESI +ve) m/z 506.0207 (M + H) (C20H17IN3O5 requires 506.0213). 

 



 183 

239 1H NMR ((CD3)2SO) δ 2.82 (4 H, s, 2 x CH2), 4.48 (2 H, d, J = 5.0 Hz, CH2), 5.38 (1 

H, s, =CH2), 5.40 (1 H, s, =CH2), 7.01-7.73 (5 H, m, 2’,4’,5’,6’,5-H5), 8.19 (1 H, m, 4-H), 

8.28 (1 H, m, 6-H).; 13C NMR δ 27.38 (2 x CH2), 51.63 (CH2), 121.02, 127.43, 129.47, 

129.54, 129.81, 131.99, 132.04, 132.14, 132.52, 133.37, 142.66 (q),149.00 (3-C), 

162.00 (C=O), 171.16 (2 x C=O). 

 

(E)-N-(3-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-enyl)-3-nitrobenzamide (240) 

N-(2-(3-(2,5-dioxopyrrolidin-1-yl)phenyl)prop-2-enyl)-3-nitrobenzamide (241) 

1-(3-((5-nitro-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl)phenyl)pyrrolidine-2,5-

dione (242) 

(Z)-1-(3-((5-nitro-1-oxo-2,3-dihydroisoquinolin-4(1H)ylidene)methyl)phenyl) 

pyrrolidine-2,5-dione (243) 
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To mixture of 238 & 239 (100 mg, 0.2 mmol) in dry DMF (0.5 mL) was added 

(Ph3P)4Pd (4.6 mg, 2 mol%), dry Et3N (0.07 mL, 0.5 mmol) and tetrabutylammonium 

iodide (73.1 mg, 0.2 mmol) and the mixture was heated to reflux for 48 h. After 

evaporation of the solvent the residue was taken up in CHCl3, washed (5% aq. HCl, 5% 

aq. NaHCO3) and dried. Evaporation and chromatography (hexane:EtOAc 4:1) yielded 

an inseparable mixture of 240 & 241 (4:1) (14 mg, 18%) as yellow semi-solid: Rf = 0.5 

(hexane:EtOAc 2:1); IR (film) νmax 1350, 1528 (NO2), 1658, 1709 (C=O), 3078, 3351 

(NH) cm-1; 240 1H NMR (CDCl3) δ 2.87 (4 H, s, 2 x CH2), 4.17 (2 H, t, J = 6.3 Hz, CH2), 

6.20 (1 H, dt, J = 16.0, 6.26 Hz, =CH-CH2), 6.69 (1 H, d, J = 16.04 Hz, =CH-Ph), 7.10 

(1 H, dt, J = 8.2, 1.6 Hz, 6’-H), 7.19 (1 H, t, J = 1.9 Hz, 2’-H), 7.27 (1 H, d, J = 8.2 Hz, 

4’-H), 7.49 (1 H, dt, J = 7.8, 1.6 Hz, 5’-H), 7.59 (1 H, t, J = 7.8 Hz, 5-H), 8.20 (1 H, dt, J 

= 7.8, 1.6 Hz, 6-H), 8.29 (1 H, ddd, J = 8.2, 2.4, 1.2 Hz, 4-H), 8.66 (1 H, t, J = 1.9 Hz, 2-

H); 13C NMR δ 28.38 (2 x CH2), 42.20 (CH2), 121.92 (2’-C), 124.22 (4-C), 125.62 (2-C), 
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125.98 (6’-C), 126.36 (4’-C), 126.56 (=CHCH2), 129.35 (5’-C), 129.67 (=CHPh), 131.37 

(6-C), 131.89 (5-C), 133.51 (1’-C), 135.70 (3’-C), 137.60 (1-C), 147.99 (3-C), 164.96 

(C=O), 176.36 (2 x C=O); MS (ESI +ve) m/z 380.1246 (M + H) (C20H18N3O5 requires 

380.1240). 

 

241 1H NMR (CDCl3) δ 2.88 (4 H, s, 2 x CH2), 4.48 (2 H, d, J = 5. Hz, CH2), 5.36 (1 H, 

s, =CH2), 5.49 (1 H, s, =CH2), 7.08-7.63 (5 H, m, 2’,4’,5’,6’,5-H5), 8.19 (1 H, m, 6-H), 

8.28 (1 H, m, 4-H), 8.56 (1 H, s, 2-H); 13C NMR δ 28.38 (2 x CH2), 50.66 (CH2), 122.02, 

128.45, 128.57, 129.41, 129.61, 131.99, 132.04, 132.14, 132.52, 133.37, 142.66 

(q),149.00 (3-C), 165.00 (C=O), 171.26 (2 x C=O). 

 

Also isolated was an inseparable mixture of 242 & 243 (1:1) (16 mg, 21%). IR (film) 

νmax 1350, 1528 (NO2), 1658, 1709 (C=O), 3078, 3351 (NH) cm-1; 1H NMR (CDCl3) δ 

2.85 (4 H, s, 2 x CH2), 4.48 (2 H, s, 4-CH2), 7.04 (1 H, s, 3-H),  7.15-7.43 (4 H, m, 

2’,4’,5’,6’,-H4), 7.53 (1 H, t, J = 7.8 Hz, 7-H), 7.81 (1 H, dd, J = 8.2, 1.2 Hz, 6-H), 8.65 (1 

H, dd, J = 7.8, 1.6 Hz, 8-H), 10.34 (1 H, br s, NH); 13C NMR δ 28.38 (CH3), 35.15 (CH2),  

60.39, 125.02, 126.19, 126.97, 128.64, 129.17, 129.60, 131.37, 132.22, 132.04, 

139.11, 148.27, 161.20 (C=O), 176.15 (2 x C=O). 

 

226 (16 mg, 15%) was also collected as a yellow solid: mp 203-204°C; 1H NMR 

(CDCl3) δ 2.91 (4 H, s, 2 x CH2), 4.49 (2 H, s, 3-CH2), 6.14 (1 H, br s, NH), 6.78 (1 H, s, 

4C=CH), 7.15 (1 H, m, 2’-H), 7.22 (1 H, m, 4’-H),7.32 (1 H, m, 6’-H), 7.51 (1 H, t, J = 

7.8 Hz, 5’-H), 7.54 (1 H, t, J = 7.8 Hz, 7-H), 7.83 (1 H, dd, J = 8.2, 1.2 Hz, 6-H), 8.33 (1 

H, dd, J = 7.8, 1.2 Hz, 8-H); 13C NMR δ 30.93 (CH2), 41.82 (CH3), 59.27, 125.91, 

126.29, 127.65, 128.69, 129.45, 129.72, 131.037, 131.97, 133.14, 135.78, 147.51, 

162.67 (C=O), 176.02 (2 x C=O). 
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Experimental Details for Chapter 4.0. 

 

PARP-1 Colourimetric Assay 

 

Materials and Method 

 

Inhibitor constants were determined using the Universal colourimetric PARP assay kit 

(Trevigen). The assays were performed in 96 strip-well plates pre-coated with histones. 

Firstly, PARP inhibitor stock solutions (50 mM) were prepared by dissolving them in 

DMSO. These were diluted with 1 x PARP buffer to seven different concentrations at 5 

x stock solution such that the final concentrations in the assay were 100, 30, 10, 3, 1, 

0.3, and 0.1 µM. The final concentration of DMSO in the assay was less than 0.2 % 

(v/v). A positive control (PARP enzyme with no inhibitor) and negative control (no 

PARP enzyme) were included in each assay. The PARP enzyme was diluted to 0.8 

units / 15 µl with 1 x PARP buffer. Diluted PARP inhibitor (40 µL) was mixed with 

diluted PARP enzyme (60 µL), centrifuged and incubated for 10 min at ambient 

temperature. Then 25 µL of each solution was distributed into wells in triplicate. To 

initiate the reaction 25 µL of PARP cocktail [(10 x PARP cocktail, 10 x Activated DNA, 1 

x PARP buffer (1:1:8) (v/v/v)] was added to each well using a multi-channel pipettor. In 

all cases the final reaction volume was 50 µL. The reaction was allowed to proceed for 

1 h at ambient temperature. Plates were washed four times with PBS + 0.1 % (v/v) 

triton X-100 (200 �L). Then 50 �L Strep-HRP (1000 fold with 1 x Strep dilutent) was 

added to each well with a multi-channel pipettor, and the plate was incubated for 30 

min at ambient temperature. . Plates were again washed four times with PBS + 0.1 % 

(v/v) triton X-100 (200 �L). TACS Sapphire colourimetric substrate (50 �L / well) was 

added with a multi-channel pipettor and the plates were incubated in the dark for 30 

min. Absorbance at 630 nm was measured using a Versamax microplate reader with 

SoftMax Pro 4.7.1 software. The colourimetric reaction was stopped by adding 0.2 M 

HCl (50 µL / well), and the absorbance was measured at 450 nm. 

 

Data were analysed using GraphPad Prism 2.01 software. The IC50 values were 

calculated by plotting log10 [inhibitor] versus absorbance for the three independent 

determinations. Quoted IC50 values are mean for the three replicant curves.  



 186 

7. References 

 

1. Madhusudan, S.; Middleton, M. R. The emerging role of DNA repair proteins as 

predictive, prognostic and therapeutic targets in cancer. Cancer Treat. Rev. 

2005, 31, 603-617. 

2. Sancar, A.; Lindsey-Boltz, L. A.; Unsal-Kacmaz, K.; Linn, S. Molecular 

mechanisms of mammalian DNA repair and the DNA damage checkpoints. 

Annu. Rev. Biochem. 2004, 73, 39-85. 

3. Hoeijmakers, J. H. J. Genome maintenance mechanisms for preventing cancer. 

Nature 2001, 411, 366-374. 

4. Frosina, G. Tumor suppression by DNA base excision repair. Mini-Reviews in 

Med. Chem. 2007, 7, 727-743. 

5. Christmann, M.; Tomicic, M. T.; Roos, W. P.; Kaina, B. Mechanisms of human 

DNA repair: an update. Toxicology 2003, 193, 3-34. 

6. Plummer, E. R. Inhibition of poly(ADP-ribose) polymerase in cancer. Curr. Opin. 

Pharmacol. 2006, 6, 364-368. 

7. Wang, Z. DNA damage-induced mutagenesis: a novel target for cancer 

prevention. Mol. Interv. 2001, 1, 269-281. 

8. Madhusudan, S.; Hickson, I. D. DNA repair inhibition: a selective tumour 

targeting strategy. Trends in Mol. Med. 2005, 11, 503-511. 

9. Schreiber, V.; Dantzer, F.; Ame, J. C.; de Murcia, G. Poly(ADP-ribose): novel 

functions for an old molecule. Nature Rev. Mol. Cell Biol. 2006, 7, 517-528. 

10. Kameshita, I.; Matsuda, Z.; Taniguchi, T.; Shizuta, Y. Poly (ADP-Ribose) 

synthetase. Separation and identification of three proteolytic fragments as the 

substrate-binding domain, the DNA-binding domain, and the automodification 

domain. J. Biol. Chem., 1984, 259, 4770-4776.  

11. Nguewa, P. A.; Fuertes, M. A.; Valladares, B.; Alonso, C.; Perez, J. M. 

Poly(ADP-ribose)polymerases: Homology, structural domains and functions. 

Novel therapeutical applications. Prog. Biophys. Mol. Biol. 2005, 88, 143-172. 

12. Cosi, C. New inhibitors of poly(ADP-ribose) polymerase and their potential 

therapeutic targets. Expert. Opin. Ther. Patents 2002, 12, 1047-1071. 

13. De Murcia, G.; Ménissier-de Murcia, J. Poly(ADP-ribose) polymerase: a 

molecular nick-sensor. Trends Biochem. Sci., 1994, 19, 172-176. 

14. Ruf, A.; Ménissier-de Murcia, J.; De Murcia, G.; Schulz, G. F. Structure of the 

catalytic fragment of poly(ADP-ribose) polymerase from chicken. Proc. Natl. 

Acad. Sci. USA. 1996, 93, 7481-7485. 



 187 

15. Ame, J. C.; Rolli, V.; Schreiber, V.; Niedergang, C.; Apiou, F.; Decker, P.; 

Muller, S.; Hoger, T.; Menissier-de Murcia, J.; de Murcia, G. PARP-2, A novel 

mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. 

Chem. 1999, 274, 17860-17868. 

16. Augustin, A.; Spenlehauer, C.; Dumond, H.; Menissier-De Murcia, J.; Piel, M.; 

Schmit, A. C.; Apiou, F.; Vonesch, J. L.; Kock, M.; Bornens, M.; De Murcia, G. 

PARP-3 localizes preferentially to the daughter centriole and interferes with the 

G1/S cell cycle progression. J. Cell. Sci. 2003, 116, 1551-1562. 

17. Kickhoefer, V. A.; Siva, A. C.; Kedersha, N. L.; Inman, E. M.; Ruland, C.; 

Streuli, M.; Rome, L. H. The 193-kD vault protein, VPARP, is a novel poly(ADP-

ribose) polymerase. J. Cell. Biol. 1999, 146, 917-928. 

18. Smith, S.; Giriat, I.; Schmitt, A.; de Lange, T. Tankyrase, a poly(ADP-ribose) 

polymerase at human telomeres. Science 1998, 282, 1484-1487. 

19. Chang, P.; Coughlin, M.; Mitchison, T. J. Tankyrase-1 polymerization of 

poly(ADP-ribose) is required for spindle structure and function. Nature Cell Biol. 

2005, 7, 1133–1139. 

20. Gao, G.; Guo, X.; Goff, S. P. Inhibition of retroviral RNA production by ZAP, a 

CCCH-type zinc finger protein. Science, 2002, 297, 1703–1706. 

21. Ladurner, A. G. Inactivating chromosomes: a macro domain that minimizes 

transcription. Mol. Cell. 2003, 12, 1-3. 

22. Karras, G. I.; Kustatscher, G.; Buhecha, H. R.; Allen, M. D.; Pugieux, C.; Sait, 

F.; Bycroft, M.; Ladurner, A. G. The macro domain is an ADP-ribose binding 

module. Embo. J. 2005, 24, 1911-1920. 

23. Chou, H. Y.; Chou, H. T; Lee, S. C. Cdk-dependent activation of poly(ADP-

ribose)polymerase member 10 (PARP-10). J. Biol. Chem. 2006, 281, 15201–

15207. 

24. Diefenbach, J.; Bürkle, A. Introduction to poly(ADP-ribose) metabolism. Cell. 

Mol. Life Sci. 2005, 62, 721-730.  

25. Chol Ha, H.; Snyder, S. H. Poly(ADP-ribose) polymerase-1 in the nervous 

system. Neurobiol. Disease 2000, 7, 225-239. 

26. Hassa, P. O.; Haenni, S. S.; Elser, M.; Hottiger, M. O. Nuclear ADP-ribosylation 

reactions in mammalian cells: where are we today and where are we going? 

Microbiol. Mol. Biol. Rev. 2006, 70, 789-829. 

27. Shall, S. ADP-ribosylation reactions. Biochimie 1995, 77, 313-318. 

28. D’Amours, D.; Desnovers, S.; D’Silva, I.; Poirier, G. G. Poly(ADP-ribosylation 

reactions in the regulation of nuclear functions. Biochem. J. 1999, 342, 249-

268. 



 188 

29. Griffin, R. J.; Curtin, N. J.; Newell, D. R.; Golding, B. T.; Durkacz, B. W.; 

Calvert, A. H. The role of inhibitors of poly(ADP-ribose) polymerase as 

resistance-modifying agents in cancer therapy. Biochimie. 1995, 77, 408-422. 

30. De Murcia, G.; Huletsky, A.; Lammare, D.; Gaudreau, A.; Pouyet, J.; Daune, M.; 

Poirier, G. G. Modulation of chromatin superstructure induced by poly(ADP-

ribose) synthesis and degradation. J. Biol. Chem. 1986, 261, 7011-7017. 

31. Uchida, K.; Hanai, S.; Ishikawa, K.; Ozawa, Y.; Uchida, M.; Sugimura, T.; Miwa, 

M. Cloning of cDNA encoding Drosophilia poly(ADP-ribose) polymerase: 

leucine zipper in the auto-modification domain. Proc. Natl. Acad. Sci. USA, 

1993, 90, 3481-3485. 

32. Mendoza-Alvarez, H.; Alvarez-Gonzalez, R. Poly(ADP-ribose)polymerase is a 

catalytic dimer and the automodification reaction is intermolecular. J. Biol. 

Chem., 1993, 268, 22575-22580.  

33. Ratnam, K.; Low, A. J. Current development of clinical inhibitors of poly(ADP-

Ribose) polymerase in oncology. Clin. Cancer. Res. 2007, 13, 1383. 

34. Woon, E. C. Y.; Threadgill, M. D. Poly(ADP-ribose)polymerase inhibition – 

where now? Curr. Med. Chem. 2005, 12, 2373-2392. 

35. Davidovic, L.; Vodenicharov E.; Affar, E. B.; Poirier, G. G. Importance of 

poly(ADP-ribose)glycohydrolase in the control of poly(ADP-ribose) metabolism. 

Exp. Cell Res. 2001, 268, 7-13. 

36. Oka, J.; Ueda, K.; Hayaishi, O.; Komura, H.; Nakanishi, K. ADP-ribosyl protein 

lyase. Purification, properties, and identification of the product. J. Biol. Chem. 

1984, 259, 986-995. 

37. De Murcia, J. M.; Niedergang, C.; Trucco, C.; Ricoul, M.; Dutrillaux, B.; Mark, 

M.; Oliver, F. J.; Masson, M.; Dierich, A.; LeMeur, M.; Walztinger, C.; Chambon, 

P.; De Murcia, G. Requirement of poly(ADP-ribose) polymerase in recovery 

from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. USA 1997, 94, 

7303-7307.  

38. Dantzer, F.; De La Rubia, G.; Menissier-De Murcia, J.; Hostomsky, Z.; De 

Murcia, G.; Schreiber, V. Base excision repair is impaired in mammalian cells 

lacking Poly(ADP-ribose) polymerase-1. Biochemistry 2000, 39, 7559-7569. 

39. Yung, T. M.; Sato, S.; Satoh, M. S. Poly(ADP-ribosyl)ation as a DNA damage-

induced post-translational modification regulating poly(ADP-ribose) polymerase-

1-topoisomerase I interaction. J. Biol. Chem. 2004, 279, 39686-39696. 

40. Virág, L.; Szabó, C. The therapeutic potential of poly(ADP-ribose) polymerase 

inhibitors. Pharmacol. Rev. 2002, 54, 375-429. 



 189 

41. Reale, A.; Matteis, G. D.; Galleazzi, G.; Zampieri, M.; Caiafa, P. Modulation of 

DNMT1 activity by ADP-ribose polymers. Oncogene 2005, 24, 13-19. 

42. Hassa, P. O.; Hottiger, M. O. The functional role of poly(ADP-

ribose)polymerase 1 as novel coactivator of NF-kB in inflammatory disorders. 

Cell. Mol. Life Sci. 2002, 59, 1534–1553. 

43. Genovese, T.; Mazzon, E.; Di Paola, R.; Muia, C.; Threadgill, M. D.; Caputi, A. 

P.; Thiemermann, C.; Cuzzocrea, S. Inhibitors of poly(ADP-ribose) polymerase 

modulate signal transduction pathways and the development of bleomycin-

induced lung injury. J. Pharmacol. Exp. Ther. 2005, 313, 529-538. 

44. Genovese, T.; Mazzon, E.; Muià, C.; Patel, N. S. A.; Threadgill, M. D.; 

Bramanti, P.; De Sarro, A.; Thiemermann, C.; Cuzzocrea, S. Inhibitors of 

poly(ADP-ribose) polymerase modulate signal transduction pathways and 

secondary damage in experimental spinal cord trauma. J. Pharmacol. Exp. 

Ther. 2005, 312, 449-457. 

45. Hao, L. X.; Wang, Y. L.; Cai, L.; Li, Y. Y. Inhibitory effect of 5-

aminoisoquinolinone on PARP activity in colon carcinoma cell line HT-29. 

Chinese J. Cancer Res. 2007, 26, 566-571. 

46. Oliver, J. F.; Menissier-De Murcia, J.; Nacci, C.; Decker, P.; Andriantsitohaina, 

R.; Muller, S.; De la Rubia, G.; Stoclet, C. J; De Murcia, G. Resistance to 

endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-

ribose)polymerase-1 deficient mice. Eur. Mol. Biol. Organ. J. 1999, 18, 4446-

4454. 

47. Carrillo, A.; Monreal, Y.; Ramirez, P.; Marin, L.; Parrilla, P.; Oliver, F. J.; 

Yelamos, J. Transcription regulation of TNF-alpha-early response genes by 

poly(ADP-ribose) polymerase-1 in murine heart endothelial cells. Nucleic Acids 

Res. 2004, 32, 757-766. 

48. Jagtap, P.; Szabó, C. Poly(ADP-Ribose) polymerase and the therapeutic effects 

of its inhibitors. Nature Rev. Drug Discovery 2005, 4, 421-440. 

49. Szabo, C.; Dawson, V. L. Role of poly(ADP-ribose) synthetase in inflammation 

and ischaemia-reperfusion. Trends Pharmacol. Sci. 1998, 19, 287-298. 

50. Berger, N. A. Poly(ADP-ribose) in the cellular response to DNA damage. 

Radiat. Res. 1985, 101, 4-15. 

51. Leist, M.; Single, B.; Castoldi, A. F.; Kuhnle, S.; Nicotera, P. Intracellular 

adenosine triphosphate (ATP) concentration: a switch in the decision between 

apoptosis and necrosis. J. Exp. Med. 1997, 185, 1481-1486. 



 190 

52. Lazebnik, Y. A.; Kaufmann, S. H.; Desnoyers, S.; Poirier, G. G.; Earnshaw, W. 

C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties 

like ICE. Nature 1994, 371, 346-347. 

53. D'Amours, D.; Sallmann, F. R.; Dixit, V. M.; Poirier, G. G. Gain-of-function of 

poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: 

implications for apoptosis. J. Cell Sci. 2001, 114, 3771-3778. 

54. Boulton, S.; Pemberton, L. C.; Porteous, J. K.; Curtin, N. J.; Griffin, R. J.; 

Golding, B. T.; Durkacz, B. W. Potentiation of temozolomide-induced 

cytotoxicity: a comparative study of the biological effects of poly(ADP-ribose) 

polymerase inhibitors. Br. J. Cancer 1995, 72, 849-856. 

55. Tentori, L.; Portarena, I.; Graziani, G. Potential clinical applications of 

poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol. Res. 2002, 45, 73-

85.  

56. Calabrese, C. R.; Almassy, R.; Barton, S.; Batey, M. A.; Calvert, A. H.; Canan-

Koch, S.; Durkacz, B. W.; Hostomsky, Z.; Kumpf, R. A.; Kyle, S.; Li, J.; 

Maegley, K.; Newell, D. R.; Notarianni, E.; Stratford, I. J.; Skalitzky, D.; Thomas, 

H. D.; Wang, L. Z.; Webber, S. E.; Williams, K. J.; Curtin, N. J. Anticancer 

chemosensitization and radiosensitization by the novel poly(ADP-ribose) 

polymerase-1 inhibitor AG14361. J. Natl. Cancer Inst. 2004, 96, 56-67. 

57. Tentori, L.; Graziani, G. Chemopotentiation by PARP inhibitors in cancer 

therapy. Pharmacol. Res. 2005, 52, 25. 

58. Malanga, M.; Althaus, F. R. Poly(ADP-ribose) reactivates stalled DNA 

topoisomerase I and Induces DNA strand break resealing. J. Biol. Chem. 2004, 

279, 5244-5248. 

59. Nduka, N.; Skidmore, C. J.; Shall, S. The enhancement of cytotoxicity of N-

methyl-N-nitrosourea and of gamma radiation by inhibitors of poly(ADP-ribose) 

polymerase. Eur. J. Biochem., 1980, 105, 525-530. 

60. Pacher, P.; Liaudet, L.; Bai, P.; Virág, L.; Mabley, J. G.; Haskó  G.; Szabó, C. 

Activation of poly(ADP-ribose) polymerase contributes to development of 

Doxorubicin-induced heart failure. J. Pharmacol. Exp. Ther. 2002, 300, 862-

867. 

61. Racz, I.; Tory, K.; Gallyas, F.; Berente, Z.; Osz, E.; Jaszlits, L.; Bernath, S.; 

Sumegi, B.; Rabloczky G.; Literati-Nagy, P. BGP-15 - a novel poly(ADP-

ribose)polymerase inhibitor-protects against nephrotoxicity of cisplatin without 

compromising its antitumor activity. Biochem. Pharmacol. 2002, 63, 1099-1111. 

62. Weltin, D.; Holl, V.; Hyun, J. W.; Dufour, P.; Marchal J.; Bischoff, P. effect of 

6(5H)-phenanthridinone, a poly(ADP-ribose) polymerase inhibitor, and ionising 



 191 

radiation on the growth of cultured lymphoma cells. Int. J. Radiat. Biol. 1997, 

72, 685-692. 

63. Farmer, H.; McCabe, N.; Lord, C. J.; Tutt, A. N.; Johnson, D. A.; Richardson, T. 

B.; Santarosa, M.; Dillon, K. J.; Hickson, I.; Knights, C.; Martin, N. M.; Jackson, 

S. P.; Smith, G. C.; Ashworth, A. Targeting the DNA repair defect in BRCA 

mutant cells as a therapeutic strategy. Nature 2005, 434, 917-921. 

64. Plummer, R.; Jones, C; Middleton, M.; Wilson, R.; Evans, J.; Olsen, A.; Curtin, 

N. J, Boddy, A.; McHugh, P.; Newell, D.; Harris, A.; Johnson, P.; Steinfeldt, H.; 

Dewji, R.; Wang, D.; Robson, L.; Calvert, H. Phase I Study of the Poly(ADP-

Ribose) Polymerase Inhibitor, AG014699, in combination with Temozolomide in 

patients with advanced solid tumors. Clin. Cancer Res., 2008, 14, 7917-7923. 

65. Hearse, D. J.; Bolli, R. Reperfusion induced injury: manifestations, 

mechanisms, and clinical relevance. Cardiovasc. Res. 1992, 26, 101-108. 

66. Szabo, C. The pathophysiological role of peroxynitrite in shock, inflammation, 

and ischemia-reperfusion injury. Shock 1996, 6, 79-88. 

67. Schraufstätter, I.; Hyslop, P. A.; Jackson, J. H.; Cochrane, C. G. Oxidant-

induced DNA damage of target cells. J. Clin. Invest. 1988, 82, 1040. 

68. Pieper, A. A.; Verma, A.; Zhang, J.; Snyder, S. H. Poly (ADP-ribose) 

polymerase, nitric oxide and cell death. Trends Pharmacol. Sci. 1999, 20, 171-

181. 

69. Szabo, G.; Liaudet, L.; Hagl, S.; Szabo, C. Poly(ADP-ribose) polymerase 

activation in the reperfused myocardium. Cardiovasc. Res. 2004, 61, 471-480. 

70. Thiemermann, C.; Bowes, J.; Myint, F. P.; Vane, J. R. Inhibition of the activity of 

poly(ADP-ribose) synthetase reduces ischemia-reperfusion injury in the heart 

and skeletal muscle. Proc. Natl. Acad.Sci. USA 1997, 94, 679-683. 

71. Zingarelli, B.; Cuzzocrea, S.; Zsengeller, Z.; Salzman, A. L.; Szabo, C. 

Protection against myocardial ischemia and reperfusion injury by 3-

aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc. 

Res. 1997, 36, 205-215. 

72. Liaudet, L.; Szabo, E.; Timashpolsky, L.; Virag, L.; Cziraki, A.; Szabo, C. 

Suppression of poly (ADP-ribose) polymerase activation by 3-aminobenzamide 

in a rat model of myocardial infarction: long-term morphological and functional 

consequences. Br. J. Pharmacol. 2001, 133, 1424-1430. 

73. Wayman, N.; McDonald, M. C.; Thompson, A. S.; Threadgill, M. D.; 

Thiemermann, C. 5-aminoisoquinolinone, a potent inhibitor of poly (adenosine 

5'-diphosphate ribose) polymerase, reduces myocardial infarct size. Eur. J. 

Pharmacol. 2001, 430, 93-100. 



 192 

74. Skaper, S. D. Poly(ADP-Ribose) polymerase-1 in acute neuronal death and 

inflammation: a strategy for neuroprotection. Ann. N. Y. Acad. Sci. 2003, 993, 

217-228; discussion 287-218. 

75. Eliasson, M. J.; Sampei, K.; Mandir, A. S.; Hurn, P. D.; Traystman, R. J.; Bao, 

J.; Pieper, A.; Wang, Z. Q.; Dawson, T. M.; Snyder, S. H.; Dawson, V. L. 

Poly(ADP-ribose) polymerase gene disruption renders mice resistant to 

cerebral ischemia. Nat. Med. 1997, 3, 1089-1095. 

76. Abdelkarim, G. E.; Gertz, K.; Harms, C.; Katchanov, J.; Dirnagl, U.; Szabo, C.; 

Endres, M. Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-

ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int. J. Mol. 

Med. 2001, 7, 255-260. 

77. Takahashi, K.; Greenberg, J. H.; Jackson, P.; Maclin, K.; Zhang, J. 

Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal 

cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 1997, 17, 1137-1142. 

78. Cuzzocrea, S.; Zingarelli, B.; Costantino,G.; Szabó, A.; Salzman, A.; Caputi, A. 

P.; Szabó, C. Beneficial effects of 3-aminobenzamide, an inhibitor of poly(ADP-

ribose) synthetase in a rat model of splanchnic artery occlusion and 

reperfusion. Br. J. Pharmacol. 1997, 121, 1065-1074. 

79. Mazzon, E.; Dugo, L.; De, S. A.; Li, J. H.; Caputi, A. P.; Zhang, J.; Cuzzocrea, 

S. Beneficial effects of GPI 6150, an inhibitor of poly(ADP-ribose) polymerase in 

a rat model of splanchnic artery occlusion and reperfusion. Shock 2002, 17, 

222-227. 

80. Mota-Filipe, H.; Sepodes, B.; McDonald, M.; Cuzzocrea, S.; Pinto, R.; 

Thiemermann, C. The novel PARP inhibitor 5-aminoisoquinolinone reduces the 

liver injury caused by ischaemia and reperfusion in the rat. Med. Sci. Monit. 

2002, 8, 444-453. 

81. Khandoga, A.; Biberthaler, P.; Enders, G.; Krombach, F. 5-

Aminoisoquinolinone, a novel inhibitor of poly(adenosine disphosphate-ribose) 

polymerase, reduces microvascular liver injury but not mortality rate after 

hepatic ischemia-reperfusion. Crit. Care Med. 2004, 32, 472-477. 

82. Chatterjee, P. K.; Chatterjee, B. E.; Pedersen, H.; Sivarajah, A.; McDonald, M. 

C.; Mota-Filipe, H.; Brown, P. A. J.; Stewart, K. N.; Cuzzocrea, S.; Threadgill, 

M. D.; Thiemermann, C. 5-Aminoisoquinolinone reduces renal injury and 

dysfunction caused by experimental ischemia/reperfusion. Kidney Int. 2004, 65, 

499-509. 



 193 

83. Chiang, S. K. S.; Lam, T. T. Post-Treatment at 12 or 18 hours with 3-

aminobenzamide ameliorates retinal ischemia–reperfusion damage. Invest. 

Ophthal. Vis. Sci. 2000, 41, 3210-3214. 

84. Szabo, G.; Bahrle, S.; Stumpf, N.; Sonnenberg, K.; Szabo, E. E.; Pacher, P.; 

Csont, T.; Schulz, R.; Dengler, T. J.; Liaudet, L.; Jagtap, P. G.; Southan, G. J.; 

Vahl, C. F.; Hagl, S.; Szabo, C. Poly(ADP-Ribose) polymerase inhibition 

reduces reperfusion injury after heart transplantation. Circ. Res. 2002, 90, 100-

106. 

85. Liaudet, L.; Soriano, F. G.; Szabo, E.; Virag, L.; Mabley, J. G.; Salzman, A. L.; 

Szabo, C. Protection against hemorrhagic shock in mice genetically deficient in 

poly(ADP-ribose)polymerase. Proc. Natl. Acad. Sci. USA 2000, 97, 10203-

10208. 

86. McDonald, M. C.; Mota-Filipe, H.; Wright, J. A.; Abdelrahman, M.; Threadgill, M. 

D.; Thompson, A. S.; Thiemermann, C Effects of 5-aminoisoquinolinone, a 

water soluble, potent inhibitor of the activity of poly(ADP-ribose) polymerase on 

the organ injury and dysfunction caused by haemorrhagic shock. Brit. J. 

Pharmacol. 2000, 130, 843-850. 

87. Thiemermann, C. Development of novel, water-soluble inhibitors of poly 

(adenosine 5'-diphosphate ribose) synthetase activity for use in shock and 

ischemia-reperfusion injury. Crit. Care Med. 2002, 30, 1163-1165. 

88. Yamamoto, H.; Okamoto, H. Protection by picolinamide, a novel inhibitor of 

poly(ADP-ribose) synthetase, against both streptozotocin-induced depression of 

proinsulin synthesis and reduction of NAD content in pancreatic islets. Biochem. 

Biophys. Res. Commun. 1980, 95, 474-481. 

89. Uchigata, Y.; Yamamoto, H.; Kawamura, A.; Okamoto, H. Protection by 

superoxide dismutase, catalase, and poly(ADP-ribose) synthetase inhibitors 

against alloxan- and streptozotocin-induced islet DNA strand breaks and 

against the inhibition of proinsulin synthesis. J. Biol. Chem. 1982, 257, 6084-

6088. 

90. Miesel, R.; Kurpisz, M.; Kroger, H. Modulation of inflammatory arthritis by 

inhibition of poly(ADP ribose) polymerase. Inflammation 1995, 19, 379-387. 

91. Jijon, H. B.; Churchill, T.; Malfair, D.; Wessler, A.; Jewell, L. D.; Parsons, H. G.; 

Madsen, K. L. Inhibition of poly(ADP-ribose) polymerase attenuates 

inflammation in a model of chronic colitis. Am. J. Physiol. Gastrointest. Liver 

Physiol. 2000, 279, G641-651. 

92. Cuzzocrea, S.; Mazzon, E.; Paola, R. D.; Genovese, T.; Patel, N. S.; Threadgill, 

M. D.; Bramanti, P.; De Sarro, A.; Thiemermann, C. 5-Aminoisoquinolinone 



 194 

reduces colon injury by experimental colitis. Naunyn Schmiedebergs Arch. 

Pharmacol. 2004, 370, 464-473. 

93. Boulares, A. H.; Zoltoski, A. J.; Sherif, Z. A.; Jolly, P.; Massaro, D.; Smulson, M. 

E. Gene knockout or pharmacological inhibition of poly(ADP-ribose) 

polymerase-1 prevents lung inflammation in a murine model of asthma. Am. J. 

Respir. Cell Mol. Biol. 2003, 28, 322-329. 

94. Liaudet, L.; Pacher, P.; Mabley, J. G.; Virag, L.; Soriano, F. G.; Hasko, G.; 

Szabo, C. Activation of poly(ADP-Ribose) polymerase-1 is a central mechanism 

of lipopolysaccharide-induced acute lung inflammation. Am. J. Respir. Crit. 

Care Med. 2002, 165, 372-377. 

95. Cuzzocrea, S.; McDonald, M. C.; Mazzon, E.; Dugo, L.; Serraino, I.; Threadgill, 

M. D.; Caputi, A. P.; Thiemermann, C. Effects of 5-aminoisoquinolinone, a 

water soluble, potent inhibitor of the activity of poly(ADP-ribose) polymerase, in 

a rodent model of lung injury. Biochem. Pharmacol. 2002, 63, 293-304. 

96. Soriano, F. G.; Virag, L.; Jagtap, P.; Szabo, E.; Mabley, J. G.; Liaudet, L.; 

Marton, A.; Hoyt, D. G.; Murthy, K. G.; Salzman, A. L.; Southan, G. J.; Szabo, 

C. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase 

activation. Nat. Med. 2001, 7, 108-113.  

97. Szabo, C.; Pacher, P.; Zsengeller, Z.; Vaslin, A.; Komjati, K.; Benko, R.; Chen, 

M.; Mabley, J. G.; Kollai, M. Angiotensin II-mediated endothelial dysfunction: 

role of poly(ADP-ribose) polymerase activation. Mol. Med. 2004, 10, 28-35. 

98. Pacher, P.; Mabley, J. G.; Soriano, F. G.; Liaudet, L.; Szabo, C. Activation of 

poly(ADP-ribose) polymerase contributes to the endothelial dysfunction 

associated with hypertension and aging. Int. J. Mol. Med. 2002, 9, 659-664. 

99. Obrosova, I. G.; Li, F.; Abatan, O. I.; Forsell, M. A.; Komjati, K.; Pacher, P.; 

Szabo, C.; Stevens, M. J. Role of poly(ADP-ribose) polymerase activation in 

diabetic neuropathy. Diabetes 2004, 53, 711-720. 

100. Zheng, L.; Szabo, C.; Kern, T. S. Poly(ADP-ribose) polymerase is involved in 

the development of diabetic retinopathy via regulation of nuclear factor-kappaB. 

Diabetes 2004, 53, 2960-2967. 

101. Gäken. J. A.; Tavassoli, M.; Gan, S-U.; Vallian, S.; Giddings, I.; Darling, D. C.; 

Galea-Lauri, J.; Thomas, M. G.; Abedi, H.; Schreiber, V.; Ménissier-de Murcia, 

J.; Collins, M. K. L.; Shall, S.; Farzaneh, F. Efficient retroviral infection of 

mammalian cells is blocked by inhibition of poly(ADP-ribose) activity. J. Virol. 

1996, 70, 3992-4000. 

102. Cole, G. A.; Bauer, G.; Kirsten, E.; Mendeleyev, J.; Bauer, P. I.; Buki, K. G.; 

Hakam, A.; Kun, E. Inhibition of HIV-1 IIIb replication in AA-2 and MT-2 cells in 



 195 

culture by two ligands of poly (ADP-ribose) polymerase: 6-amino-1,2-

benzopyrone and 5-iodo-6-amino-1,2-benzopyrone. Biochem. Biophys. Res. 

Commun., 1991, 180, 504-514. 

103. Cosi, C.; Colpaert, F.; Koek, W.; Degryse, A.; Marien, M. Poly(ADP-ribose) 

polymerase inhibitors protect against MPTP-induced depletions of striatal 

dopamine and cortical noradrenaline in C57B1/6 mice. Brain Res. 1996, 729, 

264-269. 

104. Love, S.; Barber, R.; Wilcock, G. K. Increased poly(ADP-ribosyl)ation of nuclear 

proteins in Alzheimer's disease. Brain 1999, 122, 247-253. 

105. Kroger, H.; Dietrich, A.; Ohde, M.; Lange, R.; Ehrlich, W.; Kurpisz, M. Protection 

from acetaminophen-induced liver damage by the synergistic action of low 

doses of the poly(ADP-ribose) polymerase-inhibitor nicotinamide and the 

antioxidant N-acetylcysteine or the amino acid L-methionine. Gen. Pharmacol. 

1997, 28, 257-263. 

106. Farkas, B.; Magyarlaki, M.; Csete, B.; Nemeth, J.; Rabloczky, G.; Bernath, S.; 

Literati Nagy, P.; Sumegi, B. Reduction of acute photodamage in skin by topical 

application of a novel PARP inhibitor. Biochem. Pharmacol. 2002, 63, 921-932. 

107. Suzuki, Y.; Masini, E.; Mazzocca, C.; Cuzzocrea, S.; Ciampa, A.; Suzuki, H.; 

Bani, D. Inhibition of poly(ADP-ribose) polymerase prevents allergen-induced 

asthma-like reaction in sensitized Guinea pigs. J. Pharmacol. Exp. Ther. 2004, 

311, 1241-1248. 

108. Scott, G. S.; Kean, R. B.; Mikheeva, T.; Fabis, M. J.; Mabley, J. G.; Szabo, C.; 

Hooper, D. C. The therapeutic effects of PJ34 [N-(6-oxo-5,6-

dihydrophenanthridin-2-yl)-N,N-dimethylacetamide.HCl], a selective inhibitor of 

poly(ADP-ribose) polymerase, in experimental allergic encephalomyelitis are 

associated with immunomodulation. J. Pharmacol. Exp. Ther. 2004, 310, 1053-

1061. 

109. Drazen, D. L.; Bilu, D.; Edwards, N.; Nelson, R. J. Disruption of poly (ADP-

ribose) polymerase (PARP) protects against stress-evoked 

immunocompromise. Mol. Med. 2001, 7, 761-766. 

110. Clark, J. B.; Ferris, G. M.; Pinder, S. Inhibition of nuclear NAD nucleosidase and 

poly ADP-ribose polymerase activity from rat liver by nicotinamide and 5'-methyl 

nicotinamide. Biochim. Biophys. Acta. 1971, 238, 82-85. 

111. Shall, S. Experimental manipulation of the specific activity of poly(ADP-ribose) 

polymerase. Biochem. (Tokyo), 1975, 77, 2. 

112. Purnell, M.R.; Whish, W. J. D. Novel inhibitors of poly(ADP-ribose) synthetase. 

Biochem. J. 1980, 185, 775-777. 



 196 

113. Sims, J. L.; Sikorski, G. W.; Catino, D. M.; Berger, S. J.; Berger, N. A. 

Poly(adenosinediphosphoribose) polymerase inhibitors stimulate unscheduled 

deoxyribonucleic acid synthesis in normal human lymphocytes. Biochemistry 

1982, 21, 1813-1821. 

114. Sestili, P.; Balsamini, C.; Spadoni, G.; Cattabeni, F.; Cantoni, O. Analogues of 

benzamide as poly(ADP-ribose)transferase inhibitors: a study on structure 

activity relationships. Pharmacol. Res. Commun. 1988, 20, 613-614. 

115. Sestili, P.; Spadoni, G.; Balsamini, C.; Scovassi, I.; Cattabeni, F.; Duranti, E.; 

Cantoni, O.; Higgins, D.; Thomson, C. Structural requirements for inhibitors of 

poly(ADP-ribose) polymerase. J. Cancer Res. Clin. Oncol. 1990, 116, 615-622. 

116. Shinkin, A. E.; Whish, W. J. D.; Threadgill, M. D.; Synthesis of thiophene 

carboxamides, thieno[3,4-c]pyrimidin-4(3H)-ones and preliminary evaluation as 

inhibitors of poly(ADP-ribose) polymerase (PARP). Bioorg. Med. Chem. 1999, 

7, 297-308. 

117. Banasik, M.; Komura, M.; Shimoyama, M.; Ueda, K. Specific inhibitors of 

poly(ADP-ribose) synthetase and mono(ADP-ribosyl) transferase. J. Biol. 

Chem. 1992, 267, 1569-1575. 

118. Suto, M. J.; Turner, W. R.; Arundel-Suto, C. M.; Werbel, L. M.; Sebolt-Leopold, 

J. S. Dihydroisoquinolinones: the design and synthesis of a new series of potent 

inhibitors of poly(ADP-ribose) polymerase. AntiCancer Drug Des. 1991, 7, 107-

117. 

119. Griffin, R.J.; Pemberton, L. C.; Rhodes, D.; Bleasdale, C.; Bowman, K.; Calvert, 

A. H.; Curtin, N. J.; Durkacz, B. W.; Newell, D. R.; Porteous, J. K.; Golding, B. 

T. Novel potent inhibitors of the DNA repair enzyme poly(ADP-

ribose)polymerase(PARP). Anticancer Drug Des. 1995, 10, 507-514. 

120. Ruf, A.; de Murcia, G.; Schulz, G. E. Inhibitor and NAD+ binding to poly(ADP-

ribose)polymerase as derived from crystal structures and homology modeling. 

Biochemistry 1998, 37, 3893-3900. 

121. Costantino, G.; Macchiarulo, A.; Camaioni, E.; Pellicciari, R. Modeling of 

poly(ADP-ribose)polymerase (PARP) inhibitors. Docking of ligands and 

quantitative structure-activity relationship analysis. J. Med. Chem. 2001, 44, 

3786-3794. 

122. Kinoshita, T.; Nakanishi, I.; Warizaya, M.; Iwashita, A.; Kido, Y.; Hattori, K.; 

Fujii, T. Inhibitor-induced structural change of the active site of human 

poly(ADP-ribose) polymerase. FEBS Lett. 2004, 556, 43-46. 

123. Hattori, K.; Kido, Y.; Yamamoto, H.; Ishida, J.; Kamijo, K.; Murano, K.; Ohkubo, 

M.; Kinoshita, T.; Iwashita, A.; Mihara, K.; Yamazaki, S.; Matsuoka, N.; 



 197 

Teramura, Y.; Miyake, H. Rational approaches to discovery of orally active and 

brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase. J. 

Med. Chem. 2004, 47, 4151-4154. 

124. Zhang, J.; Dawson, V. L.; Dawson, T. M.; Snyder, S. H. Nitric oxide activation of 

poly(ADP-ribose)synthetase in neurotoxicity. Science 1994, 263, 687-689. 

125. Arundel-Suto, C. M.; Scavone, S. V.; Turner, W. R.; Suto, M. J.; Sebolt-

Leopold, J. S. Effect of PD 128763, a new potent inhibitor of poly(ADP-ribose) 

polymerase, on X-ray-induced cellular recovery processes in Chinese hamster 

V79 cells. Radiat. Res. 1991, 126, 367-371. 

126. Mazzon, E.; Serraino, I.; Li, J. H.; Dugo, L.; Caputi, A. P.; Zhang, J.; Cuzzocrea, 

S. GPI 6150, a poly (ADP-ribose) polymerase inhibitor, exhibits an anti-

inflammatory effect in rat models of inflammation. Eur. J. Pharmacol. 2001, 415, 

85-94. 

127. Li, J. H.; Serdyuk, L.; Ferraris, D. V.; Xiao, G.; Tays, K. L.; Kletzly, P. W.; Li, W.; 

Lautar, S.; Zhang, J.; Kalish, V. J. Synthesis of substituted 5[H]phenanthridin-6-

ones as potent poly(ADP-ribose)polymerase-1 (PARP1) inhibitors. Bioorg. Med. 

Chem. Lett. 2001, 11, 1687-1690. 

128. Jagtap, P.; Soriano, F. G.; Virag, L.; Liaudet, L.; Mabley, J.; Szabo, E.; Hasko, 

G.; Marton, A.; Lorigados, C. B.; Gallyas, F., Jr.; Sumegi, B.; Hoyt, D. G.; 

Baloglu, E.; VanDuzer, J.; Salzman, A. L.; Southan, G. J.; Szabo, C. Novel 

phenanthridinone inhibitors of poly (adenosine 5'-diphosphate-ribose) 

synthetase: potent cytoprotective and antishock agents. Crit. Care Med. 2002, 

30, 1071-1082. 

129. Ferraris, D.; Ficco, R. P.; Pahutski, T.; Lautar, S.; Huang, S.; Zhang, J.; Kalish, 

V. Design and synthesis of poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors. 

Part 3: In vitro evaluation of 1,3,4,5-tetrahydro-benzo[c][1,6]- and [c][1,7]-

naphthyridin-6-ones. Bioorg. Med. Chem. Lett. 2003, 13, 2513-2518. 

130. Ferraris, D.; Ko, Y. S.; Pahutski, T.; Ficco, R. P.; Serdyuk, L.; Alemu, C.; 

Bradford, C.; Chiou, T.; Hoover, R.; Huang, S.; Lautar, S.; Liang, S.; Lin, Q.; Lu, 

M. X.; Mooney, M.; Morgan, L.; Qian, Y.; Tran, S.; Williams, L. R.; Wu, Q. Y.; 

Zhang, J.; Zou, Y.; Kalish, V. Design and synthesis of poly ADP-ribose 

polymerase-1 inhibitors. 2. Biological evaluation of aza-5[H]-phenanthridin-6-

ones as potent, aqueous-soluble compounds for the treatment of ischemic 

injuries. J. Med. Chem. 2003, 46, 3138-3151. 

131. Pellicciari, R.; Camaioni, E.; Costantino, G.; Marinozzi, M.; Macchiarulo, A.; 

Moroni, F.; Natalini, B. Towards new neuroprotective agents: design and 



 198 

synthesis of 4H-thieno[2,3-c] isoquinolin-5-one derivatives as potent PARP-1 

inhibitors. Farmaco 2003, 58, 851-858. 

132. Chiarugi, A.; Meli, E.; Calvani, M.; Picca, R.; Baronti, R.; Camaioni, E.; 

Costantino, G.; Marinozzi, M.; Pellegrini-Giampietro, D. E.; Pellicciari, R.; 

Moroni, F. Novel isoquinolinone-derived inhibitors of poly(ADP-ribose) 

polymerase-1: pharmacological characterization and neuroprotective effects in 

an in vitro model of cerebral ischemia. J. Pharmacol. Exp. Ther. 2003, 305, 

943-949. 

133. White A. W.; Almassy, R.; Calvert, A. H.; Curtin, N. J.; Griffin, R. J.; Hostomsky, 

Z.; Maegley, K.; Newell, D. R.; Srinivasan, S.; Golding, B. T. Resistance-

modifying agents. Synthesis and biological properties of benzimidazole 

inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J. Med. 

Chem., 2000, 43, 4084-4097. 

134. Skalitzky, D. J.; Marakovits, J. T.; Maegley, K. A.; Ekker, A.; Yu, X. H.; 

Hostomsky, Z.; Webber, S. E.; Eastman, B. W.; Almassy, R.; Li, J.; Curtin, N. J.; 

Newell, D. R.; Calvert, A. H.; Griffin, R. J.; Golding, B. T. Tricyclic 

benzimidazoles as potent poly(ADP-ribose) polymerase-1 inhibitors. J. Med. 

Chem. 2003, 46, 210-213. 

135. Canan Koch, S. S.; Thoresen, L. H.; Tikhe, J. G.; Maegley, K. A.; Almassy, R. 

J.; Li, J.; Yu, X. H.; Zook, S. E.; Kumpf, R. A.; Zhang, C.; Boritzki, T. J.; 

Mansour, R. N.; Zhang, K. E.; Ekker, A.; Calabrese, C. R.; Curtin, N. J.; Kyle, 

S.; Thomas, H. D.; Wang, L. Z.; Calvert, A. H.; Golding, B. T.; Griffin, R. J.; 

Newell, D. R.; Webber, S. E.; Hostomsky, Z. Novel tricyclic poly(ADP-ribose) 

polymerase-1 inhibitors with potent anticancer chemopotentiating activity: 

design, synthesis, and X-ray cocrystal structure. J. Med. Chem. 2002, 45, 4961-

4974. 

136. Griffin, R. J.; Srinivasan, S.; Bowman, K.; Calvert, A. H.; Curtin, N. J.; Newell, 

D. R.; Pemberton, L. C.; Golding, B. T. Resistance-modifying agents. 5. 

Synthesis and biological properties of quinazolinone inhibitors of the DNA repair 

enzyme poly(ADP-ribose) polymerase (PARP). J. Med. Chem. 1998, 41, 5247-

5256. 

137. Hattori, K.; Kido, Y.; Yamamoto, H.; Ishida, J.; Kamijo, K.; Murano, K.; Ohkubo, 

M.; Kinoshita, T.; Iwashita, A.; Mihara, K.; Yamazaki, S.; Matsuoka, N.; 

Teramura, Y.; Miyake, H. Rational approaches to discovery of orally active and 

brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase. J. 

Med. Chem. 2004, 47, 4151-4154. 



 199 

138. Iwashita, A.; Hattori, K.; Yamamoto, H.; Ishida, J.; Kido, Y.; Kamijo, K.; Murano, 

K.; Miyake, H.; Kinoshita, T.; Warizaya, M.; Ohkubo, M.; Matsuoka, N.; Mutoh, 

S. Discovery of quinazolinone and quinoxaline derivatives as potent and 

selective poly(ADP-ribose) polymerase-1/2 inhibitors. FEBS Lett. 2005, 579, 

1389-1393. 

139. Iwashita, A.; Tojo, N.; Matsuura, S.; Yamazaki, S.; Kamijo, K.; Ishida, J.; 

Yamamoto, H.; Hattori, K.; Matsuoka, N.; Mutoh, S. A novel and potent 

poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-

3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal 

damage in in vitro and in vivo models of cerebral ischemia. J. Pharmacol. Exp. 

Ther. 2004, 310, 425-436. 

140. Iwashita, A.; Mihara, K.; Yamazaki, S.; Matsuura, S.; Ishida, J.; Yamamoto, H.; 

Hattori, K.; Matsuoka, N.; Mutoh, S. A new poly(ADP-ribose)polymerase 

inhibitor, FR261529 [2-(4-chlorophenyl)-5-quinoxalinecarboxamide], 

ameliorates methamphetamine-induced dopaminergic neurotoxicity in mice. J. 

Pharmacol. Exp. Ther. 2004, 310, 1114-1124. 

141. Nakajima, H.; Kakui, N.; Ohkuma, K.; Ishikawa, M.; Hasegawa, T. A newly 

synthesized poly(ADP-ribose) polymerase inhibitor, DR2313 [2-methyl-3,5,7,8-

tetrahydrothiopyrano[4,3-d]-pyrimidine-4-one]: pharmacological profiles, 

neuroprotective effects, and therapeutic time window in cerebral ischemia in 

rats. J. Pharmacol. Exp. Ther. 2005, 312, 472-481. 

142. Southan, G. J.; Szabó, C. Poly(ADP-ribose) polymerase inhibitors. Curr. Med. 

Chem. 2003, 10, 321-340. 

143. Loh, V. M., Jr.; Cockcroft, X. L.; Dillon, K. J.; Dixon, L.; Drzewiecki, J.; Eversley, 

P. J.; Gomez, S.; Hoare, J.; Kerrigan, F.; Matthews, I. T.; Menear, K. A.; Martin, 

N. M.; Newton, R. F.; Paul, J.; Smith, G. C.; Vile, J.; Whittle, A. J. 

Phthalazinones. Part 1: The design and synthesis of a novel series of potent 

inhibitors of poly(ADP-ribose)polymerase. Bioorg. Med. Chem. Lett. 2005, 15, 

2235-2238. 

144. Cockcroft, X. L.; Dillon, K. J.; Dixon, L.; Drzewiecki, J.; Kerrigan, F.; Loh, V. M., 

Jr.; Martin, N. M.; Menear, K. A.; Smith, G. C. Phthalazinones 2: Optimisation 

and synthesis of novel potent inhibitors of poly(ADP-ribose)polymerase. Bioorg. 

Med. Chem. Lett. 2006, 16, 1040-1044. 

145. Kamanaka, Y.; Kondo, K.; Ikeda, Y.; Kamoshima, W.; Kitajima, T.; Suzuki, Y.; 

Nakamura, Y.; Umemura, K. Neuroprotective effects of ONO-1924H, an 

inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC12 cells 

and ischemic cerebral damage. Life. Sci. 2004, 76, 151-162. 



 200 

146. Tao, M.; Park, C. H.; Bihovsky, R.; Wells, G. J.; Husten, J.; Ator, M. A.; 

Hudkins, R. L. Synthesis and structure-activity relationships of novel poly(ADP-

ribose) polymerase-1 inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 938-942. 

147. Wells, G. J.; Bihovsky, R.; Hudkins, R. L.; Ator, M. A.; Husten, J. Synthesis and 

structure-activity relationships of novel pyrrolocarbazole lactam analogs as 

potent and cell-permeable inhibitors of poly(ADP-ribose)polymerase-1 (PARP-

1). Bioorg. Med. Chem. Lett. 2006, 16, 1151-1155. 

148. Miknyoczki, S. J.; Jones-Bolin, S.; Pritchard, S.; Hunter, K.; Zhao, H.; Wan, W.; 

Ator, M.; Bihovsky, R.; Hudkins, R.; Chatterjee, S.; Klein-Szanto, A.; Dionne, C.; 

Ruggeri, B. Chemopotentiation of temozolomide, irinotecan, and cisplatin 

activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol. Cancer 

Ther. 2003, 2, 371-382. 

149. Buki, K. G.; Bauer, P. I.; Mendeleyev, J.; Hakam, A.; Kun, E. Destabilization of 

Zn2+ coordination in ADP-ribose transferase (polymerizing) by 6-nitroso-1,2-

benzopyrone coincidental with inactivation of the polymerase but not the DNA 

binding function. FEBS Lett. 1991, 290, 181-185. 

150. Parveen, I.; Naughton, D. P.; Whish, W. J.; Threadgill, M. D. 2-nitroimidazol-5-

ylmethyl as a potential bioreductively activated prodrug system: reductively 

triggered release of the PARP inhibitor 5-bromoisoquinolinone. Bioorg. Med. 

Chem. Lett. 1999, 9, 2031-2036. 

151. Ferrer, S.; Naughton, D. P.; Threadgill, M. D. Studies on the reductively 

triggered release of heterocyclic and steroid drugs from 5-nitrothien-2-ylmethyl 

prodrugs. Tetrahedron 2003, 59, 3437-3444. 

152. Ferrer, S.; Naughton, D. P.; Threadgill, M. D. 1H NMR studies on the reductively 

triggered release of heterocyclic and steroid drugs from 4,7-dioxoindole-3-

methyl prodrugs. Tetrahedron 2003, 59, 3445-3454. 

153. Denny, W. A. Prodrug strategies in cancer therapy. Eur. J. Med. Chem. 2001, 

36, 577-595. 

154. Watson, C. Y.; Whish, W. J. D.; Threadgill, M. D. Synthesis of 3-substituted 

benzamides and 5-substituted isoquinolin-1(2H)-ones and preliminary 

evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP). Bioorg. Med. 

Chem. 1998, 6, 721-734. 

155. Ferrer, S.; Naughton, D. P.; Parveen, I.; Threadgill, M. D. N- and O-Alkylation of 

isoquinolin-1-ones in the Mitsunobu reaction: development of potential drug 

delivery systems. J. Chem. Soc. Perkin Trans. 1 2002, 335-340. 

156. Bauer, P. I.; Mendeleyeva, J.; Kirsten, E.; Comstock, J. A.; Hakam, A.; Buki, K. 

G.; Kun, E. Anti-cancer action of 4-iodo-3-nitrobenzamide in combination with 



 201 

buthionine sulfoximine: inactivation of poly(ADP-ribose) polymerase and tumor 

glycolysis and the appearance of a poly(ADP-ribose) polymerase protease. 

Biochem. Pharmacol. 2002, 63, 455-462. 

157. Sheridan, C. Genentech raises stakes on PARP inhibitors. Nat. Biotechnol. 

2006, 24, 1179-1180. 

158. Ashwood-Smith, M. J. Radioprotective and cryoprotective properties of dimethyl 

sulfoxide in cellular systems. Ann. N Y Acad. Sci. 1967, 141, 45-62. 

159. Banasik, M.; Stedeford, T.; Strosznajder, R. P.; Persad, A. S.; Tanaka, S.; 

Ueda, K. The effects of organic solvents on poly(ADP-ribose) polymerase-1 

activity: implications for neurotoxicity. Acta Neurobiol. Exp. (Wars) 2004, 64, 

467-473. 

160. Woon, E. C. Y. PhD thesis, University of Bath, 2004. 

161. Stephens, R. D.; Castro, C. E. The substitution of aryl iodides with cuprous 

acetylides. A synthesis of tolanes and heterocyclics. J. Org. Chem. 1963, 28, 

3313-3315. 

162. Cassar, L. Synthesis of aryl-substituted and vinyl-substituted acetylene 

derivatives by use of nickel and palladium complexes. J. Organomet. Chem. 

1975, 93, 253-257. 

163. Dieck, H. A.; Heck, F. R. Palladium catalyzed synthesis of aryl, heterocyclic and 

vinylic acetylene derivatives. J. Organomet. Chem. 1975, 93, 259-263. 

164. Sonogashira, K.; Tohda, Y.; Hagihara, N. Convenient synthesis of acetylenes - 

catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes, 

and bromopyridines. Tetrahedron Lett. 1975, 4467-4470. 

165. Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. A Convenient 

synthesis of ethynylarenes and diethynylarenes. Synthesis 1980, 627-630. 

166. Tsuji, J. Palladium reagents and catalysts, eds. F. Diederich and P. J. Stang, 

Wiley-VCH, Weinheim, 2004. ISBN: 9780470850329. 

167. Culhane, P. J. Organic Syntheses 1967, Coll. Vol. 1, 125. 

168. Johnson, W. S.; Yarnell, T. M.; Myers, R. F.; Morton, D. R.; Boots, S. G. 

Biomimetic polyene cyclizations - participation of the (trimethylsilyl)acetylenic 

group and the total synthesis of the d-homosteroid system. J. Org. Chem. 1980, 

45, 1254-1259. 

169. Jackson, W. P.; Ley, S. V. Synthesis of substituted cis-decalins as potential 

insect antifeedants. J. Chem. Soc.-Perkin Transactions 1 1981, 1516-1519. 

170. Orsini, A.; Viterisi, A.; Bodlenner, A.; Weibel, J. M.; Pale, P. A chemoselective 

deprotection of trimethylsilyl acetylenes catalyzed by silver salts. Tetrahedron 

Lett. 2005, 46, 2259-2262. 



 202 

171. Viterisi, A.; Orsini, A.; Weibel, J. M.; Pale, P. A mild access to silver acetylides 

from trimethylsilyl acetylenes. Tetrahedron Lett. 2006, 47, 2779-2781. 

172. Baldwin, J. E. Rules for ring-closure. J. Chem. Soc.-Chem. Commn. 1976, 734-

736. 

173. Nagarajan, A.; Balasubramanian, T. R. Organomercury mediated synthesis of 

isocoumarins. Indian J. Chem., Sect. B 1987, 26, 917-919. 

174. Larock, R. C.; Harrison, L. W. Mercury in organic-chemistry.26. Synthesis of 

heterocycles via intramolecular solvomercuration of aryl acetylenes. J. Am. 

Chem. Soc. 1984, 106, 4218-4227. 

175. Yao, T. L.; Larock, R. C. Synthesis of isocoumarins and alpha-pyrones via 

electrophilic cyclization. J. Org.  Chem. 2003, 68, 5936-5942. 

176. Oliver, M. A.; Gandour, R. D. The identity of 4-bromo-3-phenylisocoumarin - a 

facile preparation by bromolactonization of alkyl 2-(2-phenylethynyl)benzoates. 

J. Org. Chem. 1984, 49, 558-559. 

177. Biagetti, M.; Bellina, F.; Carpita, A.; Stabile, P.; Rossi, R. New procedures for 

the selective synthesis of 2(2H)-pyranone derivatives and 3-aryl-4-

iodoisocoumarins. Tetrahedron 2002, 58, 5023-5038. 

178. Rossi, R.; Carpita, A.; Bellina, F.; Stabile, P.; Mannina, L. Synthesis of 3-

arylisocoumarins, including thunberginols a and b, unsymmetrical 3,4-

disubstituted isocoumarins, and 3-ylidenephthalides via iodolactonization of 

methyl 2-ynylbenzoates or the corresponding carboxylic acids. Tetrahedron 

2003, 59, 2067-2081. 

179. Hesse, S.; Kirsch, G. Synthesis of new furocoumarin analogues via cross-

coupling reaction of triflate. Tetrahedron Lett. 2003, 44, 97-99. 

180. Ogawa, Y.; Maruno, M.; Wakamatsu, T. Silver catalyzed cyclization of alkynoic 

acids efficient synthesis of 3-alkylidenephthalides, gamma-alkylidene 

butenolides, and gamma-alkylidenebutyrolactones. Heterocycles 1995, 41, 

2587-2599. 

181. Bellina, F.; Ciucci, D.; Vergamini, P.; Rossi, R. Regioselective synthesis of 

natural and unnatural (z)-3-(1-alkylidene)phthalides and 3-substituted 

isocoumarins starting from methyl 2-hydroxybenzoates. Tetrahedron 2000, 56, 

2533-2545. 

182. Cherry, K.; Parrain, J. L.; Thibonnet, J.; Duchene, A.; Abarbri, M. Synthesis of 

isocoumarins and alpha-pyrones via tandem stille reaction/heterocyclization. J. 

Org. Chem. 2005, 70, 6669-6675. 

183. Castro, C. E.; Gaughan, E. J.; Owsley, D. C. Indoles, benzofurans, phthalides, 

and tolanes via copper(I) acetylides. J. Org. Chem. 1966, 31, 4071-4078. 



 203 

184. Jones, P. R.; Desio, P. J. Ring-chain tautomerism in o-acylbenzoic acids. A 

comparison of experimental methods and a study of substituent effects J. Org. 

Chem. 1965, 30, 4293-4298. 

185. Watanabe, K.; Kuroda, S.; Yokoi, A.; Ito, K.; Itsuno, S. Enantioselective 

synthesis of optically active homoallylamines by allylboration of n-

diisobutylaluminum imines. J. Organomet. Chem. 1999, 581, 103-107. 

186. Wiklund, P.; Bergman, J. Ring forming reactions of imines of 2-

aminobenzaldehyde and related compounds. Org. Biomol. Chem. 2003, 1, 367-

372. 

187. Woon, E. C. Y.; Dhami, A.; Sunderland, P. T.; Chalkley, D. A.; Threadgill, M. D. 

Reductive cyclisation of 2-cyanomethyl-3-nitrobenzoates. Lett. Org. Chem. 

2006, 3, 619-621. 

188. Wong, S. M.; Shah, B.; Shah, P.; Butt, I. C.; Woon, E. C. Y.; Wright, J. A.; 

Thompson, A. S.; Upton, C.; Threadgill, M. D. A new synthesis of 'push-pull' 

naphthalenes by condensation of nitro-2-methylbenzoate esters with 

dimethylacetamide dimethyl acetal. Tetrahedron Lett. 2002, 43, 2299-2302. 

189. Henry, R. A.; Heller, C. A.; Moore, D. W. Preparation and fluorescence of 

substituted 2-methyl-1-isoquinolones. J. Org. Chem. 1975, 40, 1760-1766. 

190. Matthews, S. E.; Felix, V.; Drew, M. G. B.; Beer, P. D. Halo-derivatised 

calix[4]tubes. Org. Biomol. Chem. 2003, 1, 1232-1239. 

191. Horning, D. E.; Lacasse, G.; Muchowski, J. M. Isocarbostyrils. I. Electrophilic 

substitution reactions. Can. J.  Chem. 1971, 49, 2785-2796. 

192. Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. Catalysts for 

Suzuki-Miyaura coupling processes: Scope and studies of the effect of ligand 

structure. J. Am. Chem. Soc. 2005, 127, 4685-4696. 

193. Vanaerschot, A. A.; Mamos, P.; Weyns, N. J.; Ikeda, S.; Declercq, E.; 

Herdewijn, P. A. Antiviral activity of C-alkylated purine nucleosides obtained by 

cross-coupling with tetraalkyltin reagents. J. Med. Chem. 1993, 36, 2938-2942. 

194. Stűtz, A.; Georgopoulos, A.; Granitzer, W.; Petranyi, G.; Berney, D. Synthesis 

and structure-activity relationships of Naftifine-related allylamine antimycotics. 

J. Med. Chem. 1986, 29, 112-125. 

195. Mori, M.; Chiba, K.; Ban, Y. Reactions and syntheses with organometallic 

compounds .5. New synthesis of indoles and isoquinolines by intramolecular 

palladium-catalyzed reactions of aryl halides with olefinic bonds. Tetrahedron 

Lett. 1977, 1037-1040. 



 204 

196. Crisp, G. T. Variations on a theme - recent developments on the mechanism of 

the Heck reaction and their implications for synthesis. Chem. Soc. Rev. 1998, 

27, 427-436. 

197. Larock, R. C.; Babu, S. Synthesis of nitrogen-heterocycles via palladium-

catalyzed intramolecular cyclization. Tetrahedron Lett. 1987, 28, 5291-5294. 

198. Chen, J.; Zhang, Y.; Yang, L.; Zhang, X.; Liu, J.; Li, L.; Zhang, H. A practical 

palladium catalyzed dehalogenation of aryl halides and alpha-haloketones. 

Tetrahedron 2007, 63, 4266-4270. 

199. Krompiec, S.; Pigulla, M.; Szczepankiewicz, W.; Bieg, T.; Kuznik, N.; 

Leszczynska-Sejda, K.; Kubicki, M.; Borowiak, T. Highly selective synthesis of 

(E)-N-aryl-N-(1-propenyl) ethanamides via isomerization of N-allyl ethanamides 

catalyzed by ruthenium complexes. Tetrahedron Lett. 2001, 42, 7095-7098. 

200. Krompiec, S.; Pigulla, M.; Krompiec, M.; Baj, S.; Mrowiec-Bialon, J.; 

Kasperezyk, J. Highly selective isomerization of N-allylamides and N-

allylamines. Tetrahedron Lett. 2004, 45, 5257-5261. 

201. Harland, P. A.; Hodge, P.; Maughan, W.; Wildsmith, E. Synthesis of primary 

amines via alkylation of the sodium-salt of trifluoroacetamide - an alternative to 

the Gabriel synthesis. Synthesis-Stuttgart 1984, 941-943. 

202. Malek, N. J.; Moorman, A. E. Palladium-catalyzed synthesis of cinnamylamines. 

J. Org. Chem. 1982, 47, 5397-5398. 

203. Schraufstatter, I. U.; Hyslop, P. A.; Hinshaw, D. B.; Spragg, R. G.; Sklar, L. A.; 

Cochrane, C. G. Hydrogen peroxide-induced injury of cells and its prevention by 

inhibitors of poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA 1986, 83, 

4908-4912. 

204. Dillon, K. J.; Smith, G. C.; Martin, N. M. A flash plate assay for the identification 

of PARP-1 inhibitors. J. Biomol. Screen. 2003, 8, 347-352. 

205. Decker, P.; Miranda, E. A.; de Murcia, G.; Muller, S. An improved nonisotopic 

test to screen a large series of new inhibitor molecules of poly(ADP-ribose) 

polymerase activity for therapeutic applications. Clin. Cancer Res. 1999, 5, 

1169-1172. 

206. Brown, J. A.; Marala, R. B. Developement of a high-throughput screening 

amenable assay for human poly(ADP-ribose) polymerase inhibitors. J. 

Pharmacol. Toxicol. Methods 2002, 47, 137-141. 

207. Cheung, A.; Zhang, J. A scintillation proximity assay for poly(ADP-ribose) 

polymerase. Anal. Biochem. 2000, 282, 24-28. 

208. Tirouflet, J. Bull. Soc. Sci. Bretagne 1951, S26, 7. 



 205 

209. Stűtz, A.; Georgopoulos, A.; Granitzer, W.; Petranyi, G.; Berney, D. Synthesis 

and structure-activity relationships of Naftifine-related allylamine antimycotics. 

J. Med. Chem. 1986, 29, 112-125. 

210. Burger, A.; Schmalz, C. A. Some derivatives of phenothiazine II. J. Org. Chem. 

1954, 19, 1841-1846. 

211. Albanese, D.; Benaglia, M.; Landini, D.; Maia, A.; Lupi, V.; Penso, M. Use of a 

quaternary ammonium salt supported on a liposoluble poly(ethylene glycol) 

matrix for laboratory and industrial synthetic applications of phase-transfer 

catalysis. Ind. Eng. Chem. Res. 2002, 41, 4928-4935. 

212.  Abulikemu, A.; Halász, G.; Csámpai, A.; Gömöry, Á.; Rábai J. Improved 

synthesiss of perfluorooctylpropyl amine. J. Fluor. Chem. 2004, 125, 1143-

1146. 

213. Brewbaker, J.; Hart. H. The cyclization of 3-diazoalkenes to pyrazoles. J. Am. 

Chem. Soc. 1969, 91, 711-715. 

214. Meyers, A. I.; Lawson, P.J.; Carver, D. R. Highly stereoselective route to (E)-

allyl amines via vinyltri-n-butylphosphonium salts (Schweizer reaction). J. Org. 

Chem. 1981, 46, 3119 – 3123. 

215. De Amici, M.; De Micheli C.; Misani V. Nitrile oxides in medicinal chemistry - 2. 

synthesis of the two enantiomers of dihydromuscimol. Tetrahedron, 1990, 46, 

1975-1986. 

 

 

 



Appendices 
 

 
Appendix 1. Raw data for PARP-1 colourimetric activity assay 
 
 
5-Aminoisoquinolin-1(2H)-one (29d) 
 

 
 
4-Methyl 5-aminoisoquinolin-1(2H)-one (182)  
 

 
 
4-Benzyl-5-aminoisoquinolin-1(2H)-one (192) 
 

  
 
 
 
 
 
 
 
 
 

Absorbance reading (450nm) Log [µM] 

Data Set A Data Set B Data Set C Mean 

2.0 0.1410 0.1620 0.0900 0.131000 
1.5 0.3290 0.3060 0.2970 0.3106667 
1.0 0.5720 0.5490 0.4340 0.5183334 
0.5 1.0620 0.9940 1.0060 1.020667 
0.0 1.3340 1.3150 1.1480 1.265667 
-0.5 2.0220 2.0330 2.0100 2.021667 
-1.0 2.3310 1.9850 2.1020 2.139333 

Absorbance reading (450nm) Log [µM] 

Data Set A Data Set B Data Set C Mean 

2.0 0.066 0.063 0.062 0.063667 
1.5 0.134 0.138 0.137 0.136333 
1.0 0.381 0.396 0.331 0.369333 
0.5 0.699 0.367 0.705 0.590333 
0.0 0.39 0.389 0.356 0.378333 
-0.5 1.196 1.665 1.217 1.359333 
-1.0 1.79 2.11 1.745 1.881667 

Absorbance reading (450nm) Log [µM] 

Data Set A Data Set B Data Set C Mean 

2.0 0.1209 0.0886 0.112 0.107167 
1.5 0.159 0.1556 0.1487 0.154433 
1.0 0.3051 0.292 0.2789 0.292 
0.5 0.3207 0.4409 0.4444 0.402 
0.0 1.1391 0.7631 0.7179 0.873367 
-0.5 1.6657 1.2028 1.0851 1.317867 
-1.0 2.4658 2.2033 1.2307 1.9666 



5-Amino-4-benzyl-3,4-dihydroisoquinolin-1(2H)-one (193) 
 

 
 
4-Bromo-5-aminoisoquinolin-1(2H)-one (125) 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Absorbance reading (450nm) Log [µM] 

Data Set A Data Set B Data Set C Mean 

2.0 0.1901 0.1843 0.1836 0.186 
1.5 0.455 0.2923 0.2938 0.347033 
1.0 0.5728 0.5934 0.4829 0.5497 
0.5 0.8076 0.9385 1.0543 0.933467 
0.0 1.2561 1.3833 1.5834 1.4076 
-0.5 1.6334 1.48 1.8916 1.668333 
-1.0 2.6138 1.4332 1.6171 1.888033 

Absorbance reading (450nm) Log [µM] 

Data Set A Data Set B Data Set C Mean 

2.0 0.1189 0.0852 0.0775 0.093867 
1.5 0.145 0.1611 0.1321 0.146067 
1.0 0.2206 0.1255 0.2134 0.1865 
0.5 0.3898 0.3184 0.3472 0.3518 
0.0 0.7252 0.7401 0.6362 0.7005 
-0.5 0.7256 1.3807 0.9798 1.0287 
-1.0 1.2314 1.2406 1.2098 1.227267 



Appendix 2. IC50 Data analysis for PARP-1 inhibitors 
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4-Methyl 5-aminoisoquinolin-1(2H)-one (182)  
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4-Benzyl-5-aminoisoquinolin-1(2H)-one (192) 
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5-Amino-4-benzyl-3,4-dihydroisoquinolin-1(2H)-one (193) 
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4-Bromo-5-aminoisoquinolin-1(2H)-one (125) 
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Appendix 3. X-ray crystallography data for compound 105 

Table 1.  Crystal data and structure refinement for 105 
                                                        
 Identification code Compound 105 
 Empirical formula C21 H13 N O4 Se 
 Formula weight 422.28 
 Temperature 150(2) K 
 Wavelength 0.71073 Å 
 Crystal system Monoclinic 
 Space group P21/n 
 Unit cell dimensions a = 11.8050(1)Å α = 90o 
       b = 11.8550(1)Å β = 113.969(1)o 
       c = 13.3860(1)Å γ = 90o 
 Volume 1711.80(2) Å3 
 Z 4 
 Density (calculated) 1.639 Mg/m3 
 Absorption coefficient 2.222 mm-1 
 F(000) 848 
 Crystal size 0.50 x 0.30 x 0.10 mm 
 Theta range for data collection 3.54 to 27.54 o. 
 Index ranges -15<=h<=15; -15<=k<=15; -17<=l<=17 
 Reflections collected 28103 
 Independent reflections 3928 [R(int) = 0.0549] 
 Reflections observed (>2σσσσ) 3671 
 Data Completeness 0.993 
 Absorption correction Semi-empirical from equivalents 
 Max. and min. transmission 0.65 and 0.40 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 3928 / 0 / 245 
 Goodness-of-fit on F2 1.031 
 Final R indices [I>2σσσσ(I)] R1 = 0.0248   wR2 = 0.0627 
 R indices (all data) R1 = 0.0275  wR2 = 0.0643 
 Largest diff. peak and hole 0.380 and -0.568 eÅ-3 
 



 
Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 
(Å2 x 103) for 105. 
                                                                                                                       
  Atom   x   y   z  U(eq) 
                                 
Se(1) 8295(1) -649(1) 8838(1) 18(1) 
O(1) 6563(1) 1337(1) 6090(1) 19(1) 
O(2) 4653(1) 1413(1) 4823(1) 27(1) 
O(3) 6883(1) 308(1) 9881(1) 23(1) 
O(4) 5754(1) -1127(1) 9900(1) 32(1) 
N(1) 6041(1) -373(1) 9420(1) 20(1) 
C(1) 7099(1) 301(1) 7752(1) 16(1) 
C(2) 7433(1) 916(1) 7064(1) 17(1) 
C(3) 5325(2) 1116(1) 5737(1) 19(1) 
C(4) 4914(2) 569(1) 6513(1) 16(1) 
C(5) 3641(2) 417(1) 6193(1) 22(1) 
C(6) 3194(2) -79(2) 6890(1) 25(1) 
C(7) 4023(2) -376(1) 7938(1) 23(1) 
C(8) 5280(2) -207(1) 8252(1) 18(1) 
C(10) 5792(1) 220(1) 7541(1) 16(1) 
C(11) 9071(1) -1265(1) 7943(1) 17(1) 
C(12) 8385(2) -1708(1) 6908(1) 21(1) 
C(13) 9012(2) -2144(1) 6309(1) 26(1) 
C(14) 10295(2) -2163(1) 6740(2) 28(1) 
C(15) 10966(2) -1738(2) 7778(2) 27(1) 
C(16) 10360(2) -1276(1) 8381(1) 21(1) 
C(17) 8695(2) 1214(1) 7180(1) 18(1) 
C(18) 9017(2) 1128(1) 6289(1) 23(1) 
C(19) 10212(2) 1381(2) 6412(2) 29(1) 
C(20) 11086(2) 1742(2) 7414(2) 30(1) 
C(21) 10759(2) 1872(2) 8294(2) 28(1) 
C(22) 9568(2) 1608(1) 8178(1) 23(1) 
                                    
 



Table 3.   Bond lengths [Å] and angles [o] for 105. 
  
Se(1)-C(11) 1.9233(15) Se(1)-C(1) 1.9256(15) 
O(1)-C(3) 1.3663(19) O(1)-C(2) 1.3843(18) 
O(2)-C(3) 1.209(2) O(3)-N(1) 1.2333(19) 
O(4)-N(1) 1.2265(18) N(1)-C(8) 1.466(2) 
C(1)-C(2) 1.353(2) C(1)-C(10) 1.454(2) 
C(2)-C(17) 1.476(2) C(3)-C(4) 1.464(2) 
C(4)-C(5) 1.397(2) C(4)-C(10) 1.407(2) 
C(5)-C(6) 1.376(2) C(6)-C(7) 1.391(2) 
C(7)-C(8) 1.383(2) C(8)-C(10) 1.412(2) 
C(11)-C(16) 1.390(2) C(11)-C(12) 1.393(2) 
C(12)-C(13) 1.393(2) C(13)-C(14) 1.385(3) 
C(14)-C(15) 1.384(3) C(15)-C(16) 1.391(2) 
C(17)-C(18) 1.395(2) C(17)-C(22) 1.395(2) 
C(18)-C(19) 1.385(2) C(19)-C(20) 1.387(3) 
C(20)-C(21) 1.389(3) C(21)-C(22) 1.387(2) 
C(11)-Se(1)-C(1) 98.12(6) C(3)-O(1)-C(2) 122.51(12) 
O(4)-N(1)-O(3) 123.54(14) O(4)-N(1)-C(8) 118.48(14) 
O(3)-N(1)-C(8) 117.77(13) C(2)-C(1)-C(10) 118.90(14) 
C(2)-C(1)-Se(1) 120.10(12) C(10)-C(1)-Se(1) 120.17(11) 
C(1)-C(2)-O(1) 121.67(14) C(1)-C(2)-C(17) 128.22(14) 
O(1)-C(2)-C(17) 110.09(13) O(2)-C(3)-O(1) 117.62(14) 
O(2)-C(3)-C(4) 125.28(16) O(1)-C(3)-C(4) 117.07(13) 
C(5)-C(4)-C(10) 122.36(15) C(5)-C(4)-C(3) 117.67(15) 
C(10)-C(4)-C(3) 119.97(14) C(6)-C(5)-C(4) 120.55(16) 
C(5)-C(6)-C(7) 119.00(15) C(8)-C(7)-C(6) 119.92(15) 
C(7)-C(8)-C(10) 123.17(15) C(7)-C(8)-N(1) 114.93(14) 
C(10)-C(8)-N(1) 121.49(14) C(4)-C(10)-C(8) 114.69(14) 
C(4)-C(10)-C(1) 118.19(14) C(8)-C(10)-C(1) 127.10(14) 
C(16)-C(11)-C(12) 120.73(14) C(16)-C(11)-Se(1) 117.21(12) 
C(12)-C(11)-Se(1) 122.04(12) C(13)-C(12)-C(11) 118.83(16) 
C(14)-C(13)-C(12) 120.87(16) C(15)-C(14)-C(13) 119.69(16) 
C(14)-C(15)-C(16) 120.44(17) C(11)-C(16)-C(15) 119.42(15) 
C(18)-C(17)-C(22) 119.41(15) C(18)-C(17)-C(2) 120.47(15) 
C(22)-C(17)-C(2) 120.10(14) C(19)-C(18)-C(17) 120.04(16) 
C(18)-C(19)-C(20) 120.30(16) C(19)-C(20)-C(21) 119.99(16) 
C(22)-C(21)-C(20) 119.94(17) C(21)-C(22)-C(17) 120.25(16) 
                                                          
                                                            
 



 
Table 4.   Anisotropic displacement parameters (Å2 x 103) for 105.  
                                                                                 
  Atom  U11  U22  U33  U23  U13  U12 
                                                
Se(1) 17(1) 23(1) 16(1) 4(1) 9(1) 5(1) 
O(1) 20(1) 19(1) 18(1) 4(1) 8(1) 2(1) 
O(2) 24(1) 32(1) 21(1) 8(1) 6(1) 5(1) 
O(3) 20(1) 31(1) 20(1) -4(1) 9(1) -3(1) 
O(4) 42(1) 33(1) 27(1) 7(1) 19(1) -6(1) 
N(1) 22(1) 23(1) 20(1) 0(1) 13(1) 0(1) 
C(1) 16(1) 16(1) 15(1) 0(1) 7(1) 2(1) 
C(2) 18(1) 16(1) 17(1) -1(1) 8(1) 2(1) 
C(3) 20(1) 18(1) 19(1) 0(1) 9(1) 3(1) 
C(4) 18(1) 16(1) 17(1) -1(1) 9(1) 2(1) 
C(5) 19(1) 23(1) 22(1) -2(1) 6(1) 2(1) 
C(6) 16(1) 28(1) 30(1) -5(1) 10(1) -2(1) 
C(7) 23(1) 25(1) 26(1) -4(1) 16(1) -5(1) 
C(8) 19(1) 18(1) 18(1) -2(1) 9(1) -1(1) 
C(10) 18(1) 14(1) 17(1) -2(1) 9(1) 0(1) 
C(11) 18(1) 15(1) 19(1) 2(1) 10(1) 2(1) 
C(12) 21(1) 18(1) 22(1) 1(1) 6(1) 0(1) 
C(13) 38(1) 19(1) 22(1) -2(1) 12(1) 0(1) 
C(14) 37(1) 22(1) 35(1) -2(1) 25(1) 3(1) 
C(15) 21(1) 26(1) 38(1) -2(1) 17(1) 1(1) 
C(16) 19(1) 22(1) 24(1) -3(1) 10(1) -1(1) 
C(17) 18(1) 15(1) 23(1) 2(1) 11(1) 0(1) 
C(18) 25(1) 26(1) 22(1) 1(1) 13(1) -1(1) 
C(19) 31(1) 32(1) 34(1) 4(1) 23(1) 0(1) 
C(20) 23(1) 28(1) 45(1) 4(1) 19(1) -4(1) 
C(21) 23(1) 25(1) 33(1) -2(1) 9(1) -7(1) 
C(22) 24(1) 22(1) 24(1) -2(1) 12(1) -2(1) 
  
 
Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2 x 
103) for 105. 

  Atom   x   y   z  U(eq) 
                                 
H(5) 3079 659 5489 27 
H(6) 2332 -217 6658 29 
H(7) 3727 -695 8437 27 
H(12) 7504 -1713 6615 25 
H(13) 8553 -2433 5595 31 
H(14) 10713 -2466 6325 33 
H(15) 11846 -1763 8079 32 
H(16) 10822 -972 9087 26 
H(18) 8416 897 5597 28 
H(19) 10433 1306 5808 35 
H(20) 11909 1901 7499 36 
H(21) 11350 2142 8974 33 
H(22) 9345 1696 8780 27 



 
Appendix 4. X-ray crystallography data for compound 168 

 
Table 1.  Crystal data and structure refinement for 168. 
                                                        
 Identification code Compound 168 
 Empirical formula C13 H14 N3 O3 
 Formula weight 260.27 
 Temperature 150(2) K 
 Wavelength 0.71073 Å 
 Crystal system Monoclinic 
 Space group P21 
 Unit cell dimensions a = 11.1000(5)Å α = 90o 
       b = 5.0730(2)Å β = 101.651(2)o 
       c = 11.9100(6)Å γ = 90o 
 Volume 656.84(5) Å3 
 Z 2 
 Density (calculated) 1.316 Mg/m3 
 Absorption coefficient 0.096 mm-1 
 F(000) 274 
 Crystal size 0.50 x 0.10 x 0.10 mm 
 Theta range for data collection 3.62 to 27.54o 
 Index ranges -14<=h<=14; -6<=k<=6; -15<=l<=15 
 Reflections collected 11607 
 Independent reflections 2887 [R(int) = 0.0555] 
 Reflections observed (>2σ) 2417 
 Data Completeness 0.996 
 Absorption correction Semi-empirical from equivalents 
 Max. and min. transmission 0.99 and 0.90 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 2887 / 1 / 173 
 Goodness-of-fit on F2 1.059 
 Final R indices [I>2σ(I)] R1 = 0.0457   wR2 = 0.1019 
 R indices (all data) R1 = 0.0603  wR2 = 0.1092 
 Absolute structure parameter -1.1(13) 
 Largest diff. peak and hole 0.534 and -0.169 eÅ-3 
  



Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 
(Å2 x 103) for 168. 
                                                             
                                                             
  Atom   x   y   z  U(eq) 
                                 
O(1) 5803(1) -4149(3) 5147(1) 33(1) 
N(1) 6298(2) -2443(3) 5838(2) 31(1) 
C(1) 7100(2) -482(4) 5484(2) 27(1) 
O(2) 6130(2) -2361(4) 6829(1) 49(1) 
N(2) 6550(2) -1728(3) 3462(1) 29(1) 
C(2) 7737(2) 1114(4) 6353(2) 32(1) 
O(3) 8761(1) -225(3) 2569(1) 34(1) 
N(3) 8638(2) 4209(3) 2535(2) 31(1) 
C(3) 8496(2) 3073(4) 6109(2) 34(1) 
C(4) 8639(2) 3395(4) 4984(2) 31(1) 
C(5) 8036(2) 1805(4) 4101(2) 26(1) 
C(6) 7199(2) -182(4) 4316(2) 26(1) 
C(7) 6101(2) -867(4) 2268(2) 31(1) 
C(8) 4924(2) -2297(4) 1816(2) 34(1) 
C(9) 4793(2) -4060(5) 997(2) 41(1) 
C(10) 8480(2) 1842(4) 2994(2) 28(1) 
C(11) 9218(2) 4443(5) 1544(2) 33(1) 
C(12) 8309(2) 4418(6) 432(2) 43(1) 
C(13) 8211(3) 6297(6) -333(2) 56(1) 
                                    
 



Table 3.   Bond lengths [Å] and angles [o] for 168. 
  
O(1)-N(1) 1.243(2) N(1)-O(2) 1.232(2) 
N(1)-C(1) 1.453(3) C(1)-C(2) 1.390(3) 
C(1)-C(6) 1.426(3) N(2)-C(6) 1.368(3) 
N(2)-C(7) 1.475(3) C(2)-C(3) 1.371(3) 
O(3)-C(10) 1.232(2) N(3)-C(10) 1.346(3) 
N(3)-C(11) 1.459(3) C(3)-C(4) 1.391(3) 
C(4)-C(5) 1.385(3) C(5)-C(6) 1.429(3) 
C(5)-C(10) 1.497(3) C(7)-C(8) 1.496(3) 
C(8)-C(9) 1.309(3) C(11)-C(12) 1.494(3) 
C(12)-C(13) 1.308(4)   
     
O(2)-N(1)-O(1) 121.73(17) O(2)-N(1)-C(1) 118.35(18) 
O(1)-N(1)-C(1) 119.92(17) C(2)-C(1)-C(6) 122.43(19) 
C(2)-C(1)-N(1) 115.63(18) C(6)-C(1)-N(1) 121.92(17) 
C(6)-N(2)-C(7) 124.86(17) C(3)-C(2)-C(1) 120.5(2) 
C(10)-N(3)-C(11) 121.10(16) C(2)-C(3)-C(4) 118.9(2) 
C(5)-C(4)-C(3) 122.14(19) C(4)-C(5)-C(6) 120.41(18) 
C(4)-C(5)-C(10) 117.83(17) C(6)-C(5)-C(10) 120.54(17) 
N(2)-C(6)-C(5) 122.34(18) N(2)-C(6)-C(1) 122.09(18) 
C(5)-C(6)-C(1) 115.56(17) N(2)-C(7)-C(8) 107.70(17) 
C(9)-C(8)-C(7) 123.9(2) O(3)-C(10)-N(3) 121.85(18) 
O(3)-C(10)-C(5) 120.46(18) N(3)-C(10)-C(5) 117.52(17) 
N(3)-C(11)-C(12) 112.76(18) C(13)-C(12)-C(11) 123.9(2) 
                                                       
 
                                                            
 



Table 4.   Anisotropic displacement parameters (Å2 x 103) for 168.  
                                                                                 
  Atom  U11  U22  U33  U23  U13  U12 
                                 
O(1) 33(1) 28(1) 39(1) 3(1) 7(1) -4(1) 
N(1) 34(1) 26(1) 35(1) 5(1) 9(1) 3(1) 
C(1) 26(1) 24(1) 32(1) 4(1) 5(1) 4(1) 
O(2) 70(1) 46(1) 38(1) -2(1) 24(1) -14(1) 
N(2) 32(1) 25(1) 29(1) 3(1) 1(1) -2(1) 
C(2) 30(1) 33(1) 32(1) 1(1) 2(1) 3(1) 
O(3) 33(1) 19(1) 52(1) -3(1) 16(1) 1(1) 
N(3) 37(1) 20(1) 41(1) -2(1) 18(1) 2(1) 
C(3) 32(1) 30(1) 37(1) -4(1) -1(1) 2(1) 
C(4) 26(1) 23(1) 43(1) -1(1) 4(1) 0(1) 
C(5) 24(1) 20(1) 35(1) 2(1) 5(1) 4(1) 
C(6) 26(1) 18(1) 33(1) 0(1) 5(1) 4(1) 
C(7) 32(1) 30(1) 31(1) 3(1) 6(1) 1(1) 
C(8) 32(1) 36(1) 35(1) 0(1) 6(1) 0(1) 
C(9) 46(1) 37(1) 38(1) -2(1) 1(1) -5(1) 
C(10) 21(1) 24(1) 39(1) 0(1) 6(1) 0(1) 
C(11) 36(1) 25(1) 40(1) 2(1) 15(1) -1(1) 
C(12) 38(1) 51(2) 41(1) -10(1) 14(1) -7(1) 
C(13) 49(2) 74(2) 45(1) 8(1) 13(1) 7(1) 
    
  
Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2 x 
103) for 168. 
                                  

  
   

  Atom   x   y   z  U(eq) 
                                 
H(2) 7646 846 7121 39 
H(3) 8388 5640 2838 38 
H(3A) 8918 4191 6700 41 
H(4) 9166 4749 4815 37 
H(7A) 6716 -1285 1798 37 
H(7B) 5958 1060 2241 37 
H(8) 4232 -1902 2142 41 
H(9A) 5469 -4496 655 50 
H(9B) 4021 -4903 746 50 
H(11A) 9803 2966 1552 39 
H(11B) 9694 6106 1605 39 
H(12) 7770 2951 272 51 
H(13A) 8737 7790 -197 67 
H(13B) 7613 6168 -1025 67 
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