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ABSTRACT
 

Conduction Velocity Selective Recording with
­
Cuff Electrodes in Vivo
­

by Vipin Seetohul. 

The objective is to improve the performance of surgically­implanted peripheral nerve recording 

so that more useful information can be extracted from the neural traffic. The output of such 

systems consists of the mixed responses to both motor and sensory fibres, and to fibres of all 

diameters. Professor John Taylor et al. have invented a method for selective recording which 

allows nerve signals to be classified by conduction velocity (and therefore fibre diameter), in 

addition to improving the signal­to­noise ratio compared to conventional (tripolar) cuff. The 

method uses a Multi­electrode Cuff (MEC) and linear signal processing. It is expected to have 

many applications in neuroprosthetics. 

To show that the system does distinguish signals of different function that are carried in fibres 

of different diameter, it is to be tested by in­vivo experiments in animals. Acute experiments will 

test the understanding with compound action potentials (CAPs) and then naturally­occurring 

neural signals after surgical preparation and under several well­defined experimental conditions. 

This thesis presents the successful application of conduction velocity­selective ENG recording 

system to electrically evoked potentials using the frog sciatic nerve. But when it came to testing 

the recording system on naturally­occurring neural signals from the pig, time constraints and 

equipment malfunction did not allow for successful recordings. However, after extensive re­

designing of the equipment and experiment set­up, a lot has been learnt when it comes to 

mounting a pig’s limb to a test rig and the mechanism behind this tri­segmented limb. The final 

design of the apparatus will surely be a good continuation for further research in this area. 
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GLOSSARY OF TERMS
 

Afferent Fibre. Any of the nerve fibres that convey impulses to a ganglion or to a nerve
­
centre in the brain or spinal cord.
­

AP. Action Potential: The change in membrane potential occurring in nerve, muscle, or other
­
excitable tissue when excitation occurs.
­

ATP. Adenosine Triphosphate: An adenosine­derived nucleotide that supplies large amounts
­
of energy to cells for various biochemical processes, including muscle contraction and sugar
­
metabolism, through its hydrolysis to ADP (Adenosine diphosphate; an ester of adenosine
­
that is converted to ATP for the storage of energy).
­

Axon. The usually long process of a nerve fibre that generally conducts impulses away from
­
the body of the nerve cell.
­

Axon Hillock. The conical area of origin of the axon from the nerve cell body.
­

Cell Body. The part of a neuron containing the nucleus but not incorporating the axon and
­
dendrites. Also called soma.
­

CAP. Compound Action Potential.
­

CNS. Central Nervous System: The portion of the vertebrate nervous system consisting of
­
the brain and spinal cord. Also called cerebrospinal axis.
­

Dendrite. Any of the various branched protoplasmic extensions of a nerve cell that conducts
­
impulses from adjacent cells inward toward the cell body. Also called dendritic process,
­
dendron, neurodendrite, neurodendron.
­

Depolarise. To partially or completely eliminate or counteract the polarization of.
­

DSP. Digital Signal Processing.
­

Ek. Equilibrium potential for Potassium.
­

Ena. Equilibrium potential for Sodium.
­

ECF. Extracellular Fluid
­

Effector. A nerve ending that carries impulses to a muscle, gland, or organ and activates
­
muscle contraction or glandular secretion.
­

Efferent fibre. Directed away from a central organ or section.
­

ENG. Electroneurogram.
­

EPSP. Excitatory post­synaptic potentials: A local change in the depolarization produced in
­
the postsynaptic neuronal membrane in response to an excitatory impulse; summation of
­
these depolarisations can lead to discharge of an impulse by the neuron.
­

FES. Functional Electrical Stimulation.
­

Hyperpolarise. To cause an increase in polarity, as across a cell membrane.
­

ICF. Intracellular Fluid.
­

IPSP. Inhibitory postsynaptic potential: A local change in the degree of hyperpolarisation of
­
the postsynaptic membrane of a neuron in response to the arrival of an inhibitory impulse.
­

MEC. Multi­Electrode Cuff.
­
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Neurotransmitter. Any of the various chemical substances, such as acetylcholine, that 
transmit nerve impulses across a synapse. 

NI DAQ. National Instruments Data Acquisition. 

Node of Ranvier. Regularly spaced gaps in the myelin sheath around an axon or nerve fibre. 
About one micrometer in length, these gaps expose the membrane of the axon to the 
surrounding liquid. 

Organelles. A differentiated structure within a cell, such as a mitochondrion, vacuole, or 
microsome, that performs a specific function. Also called organoid. 

Pk. Permeability coefficient of Potassium. 

Pna . Permeability coefficient of Sodium. 

PNS. Peripheral nervous system, The part of the vertebrate nervous system constituting the 
nerves outside the central nervous system and including the cranial nerves, the spinal nerves, 
and the sympathetic and parasympathetic nervous systems 

SNR. Signal­to­Noise Ratio. 

Soma. The entire body of an organism, exclusive of the germ cells. Also called Cell Body. 

Schwann Cell. Any of the cells that cover the nerve fibres in the peripheral nervous system 
and form the myelin sheath. Also called neurilemma cell. 

Synapse. The junction across which a nerve impulse passes from an axon terminal to a 
neuron, a muscle cell, or a gland cell. 

Therians. Theria is a subclass of mammals that give birth to live young without using a 
shelled egg. This includes both eutherians (placental mammals) and metatherians (marsupials 
and their ancestors). The subclass includes humans that have an ankle specialised for power 
and range of motion. 
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C h a p t e r 1
 

INTRODUCTION
 

1.1 Situation 

Spinal cord injuries can cause permanent loss of sensation and voluntary motor function. This 

can be due to either stroke or accidents for example. Spinal cord injuries are devastating and the 

effects irreversible, leaving parts of the body permanently paralysed. In the absence of spinal 

cord regeneration, functional electrical stimulation (FES) aims at the full or partial restoration of 

lost function by stimulation of the intact nerves below the lesion with electrical impulses. Recent 

research focuses on the stimulation of and recording from peripheral nerves as direct access to 

the spinal cord is associated with high risks of infection and traumatic surgical procedures. This 

current research mainly deals with electroneurogram (ENG) recording. Several recording 

techniques to obtain the neural signal (ENG) have been introduced in the past and these are 

briefly discussed in Chapter 2. The challenge in recording useful signals with any practicable 

technique lies in the very small amplitude of the ENG. The latter is typically on the order of 

only a few microvolts, embedded in noise and interference in the milivolt range. Hence, high 

quality amplification and signal conditioning must take place. This should ideally happen as close 

as possible to the recording site. This functionality is preferably placed onto the recording nerve 

cuff, combining the cuff and signal processing, as discussed in the following chapters. 

Based on the work by Erlanger and Gasser [1] in 1937 on the generation of APs of different 

velocities using dispersion, and later by Rushton [2] in 1951, on the relationship between fibre 

diameter and AP propagation velocity, it is known that neural signals travel at different velocity, 

depending on the type of information they are transmitting. Investigating velocities and the 

direction of propagated APs within a peripheral nerve gives an overview of the fibre type (fibre 

diameter, afferent or efferent fibre) that conducts the APs. From anatomy, it is known that 

nerves of particular diameters are connected to particular organs. So with Velocity Selective 

Recording, more information on the source or destination of the ENG signal can be obtained. 

The theoretical feasibility of a method to investigate propagation velocity profiles using a multi­

contact cuff was discussed by Taylor et al. [3]. It is based on an interlinked arrangement of 

tripolar (or: double­differential) amplifiers that obtain nine signals from eleven contacts of a 

nerve cuff electrode. 
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1.2 Objectives 

The general objectives of this project are: 

1.	­ To test our model of the nerve/electrodes/processing using Compound Action 

Potentials (CAPs), propagating in velocity ranges in vitro. 

2.	­ To show that three distinct naturally occurring nerve signals (cutaneous, joint receptors 

and tendon stretch receptors) in one nerve can be separated in vivo. 

3.	­ To show that the Multi­electrode Cuff (MEC) gives separable signals in long­term use. 

This thesis is structured as follows: The next chapter has an in­depth review of the fundamental 

elements of the nerve anatomy and physiology, explaining the propagation of APs and the 

concept of conduction velocity. The same section will show the array of cuff electrodes that are 

commonly in use and most importantly, the use of MEC in this research to show velocity 

selectivity. Chapter 3 describes the experiments carried out on electrically evoked potentials on 

the frog sciatic nerve to demonstrate the suitability of the ENG amplifier to cleverly pick up 

nerve signals. Having obtained successful results, Chapter 4 elaborates on an attempt to study 

naturally evoked potentials on pig nerves. After some considerable issues with the equipment, 

Chapter 5 reveals the evolution of the initial design to the final working test­rig. Chapter 6 

presents a final set of experiments aimed at investigating the possible causes of noise problems 

that have been polluting the recordings. The last chapter discusses the findings of the research 

thus far 
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C h a p t e r 2
 

LITERATURE REVIEW
 

2.1 Nerve Anatomy and Physiology 

2.1.1 The Neuron 

The Central Nervous System (CNS) consists of the brain and spinal cord. Neurons are the cells 

in the CNS which are responsible for sending messages. They have three major purposes: firstly 

to gather and send information from the senses such as touch, smell or sight., then to send 

appropriate signals to effector cells such as muscles, glands and finally to process all information 

gathered and provide a memory and cognitive ability thus allowing us to take voluntary action 

on information received. 

Figure 2­1 – Diagram of a typical neuron
­

Figure 2­2 – Functional components of the neuron 

A standard multipolar neuron in the CNS has four functional parts: an input component, an 

integrative component, a conductile component, and an output component [4]. Incoming 

signals to a neuron are received at the dendrites and cell body. Dendrites increase the surface 

area available for synapses and are specialised to receive a chemically­mediated message. The cell 

body, containing the nucleus and most of the organelles responsible for maintaining the cell, 

also receives synapses. The neurotransmitter released at synapses acts upon receptor proteins 

and the result is a local change in potential (a synaptic potential), which spreads passively 
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through the dendrites and cell body. Synaptic potentials that depolarise the resting potential are 

excitatory whereas those that hyperpolarise the soma are inhibitory. The soma membrane also 

has voltage­gated ion channels necessary for AP production. Along with the dendrites, the soma 

is specialised for reception of neurotransmitter and generation of synaptic potentials. It can also 

generate APs just like the axon. 

The axon hillock is the junction point of the cell body and axon. It acts as a summation point 

for the excitatory post­synaptic potentials (EPSPs) and inhibitory post­synaptic potentials 

(IPSPs) that have been generated in the dendrites and cell body. If the EPSPs are large enough, 

APs will then be generated at the axon hillock. It has the lowest threshold for AP production 

because of the high density of voltage­gated channels for Na+ and K+. Therefore, this is the 

trigger zone where APs are first generated. 

Neuroglial cells are associated with the axons of neurones. In the CNS these are the 

oligodendrocytes whereas in the peripheral nervous system (PNS) these are the Schwann cells. 

Both of these types of cell can associate with axons in two different ways. This will produce 

either a myelinated or a non­myelinated neurone. 

In the first case the Schwann cell (or oligodendrocyte) wraps its cell membrane around the axon 

a number of times. This forms a segmented sheath around the axon known as the myelin sheath. 

Myelin is a lipid (fatty) substance which is pale in colour and it is this colour which leads to the 

terms white matter and grey matter within the nervous system. The white matter contains 

myelinated axons predominantly whereas the grey matter contains mainly neurone cell bodies 

which are non­myelinated. 

Figure 2­3 – The various stages in the myelinisation of an axon by a Schwann cell. 

The main functions of myelin are to increase the electrical capacitance of neurones and also to 

insulate against any leakage of the bio­electrical nerve impulse. The higher the capacitance and 

the better the insulation the faster the nerve impulse will travel along the neurone. The main 

difference between the Schwann cell and the oligodendrocyte is that the former will myelinate 

only one neurone whereas the latter may associate with a number of axons. 
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The gaps between the segments of the myelin sheath represent the junction between adjacent 

neuroglial cells. They are approximately 1mm. apart along the length of the axon. These tiny 

gaps are known as the nodes of Ranvier. 

Figure 2­4 – Diagram of node of Ranvier 

These nodes play an important role in the physiology of the neurone. At these points there are 

gated sodium ion channels of which there are none in the myelinated areas of the axon. How 

this affects nerve transmission is discussed later. 

In the second type of relationship between the neuroglial cells and the neurones the axon is still 

enveloped in the Schwann cell (or oligodendrocyte) but it does not continue to wrap itself 

around to complete the process of myelinisation [5]. Therefore, myelinated neurones will 

transmit nerve impulses more quickly than non­myelinated neurones. 

It is important that there is a range of speeds at which nerve impulses are transmitted as what 

determines the body's response depends upon the number of impulses being sent and their 

speed of transmission. Neurones can be classified by either structural or functional terms. 

The transmission of nerve impulses around the body depends on two properties which are 

unique to neurons: Excitability and Conductivity. Excitability refers to the fact that nerve cells 

are able to respond to a stimulus. This stimulus may be internal or external. Muscle fibres are 

also able to demonstrate excitability giving them the ability to contract if stimulated. 

Conductivity refers to the property that neurones alone have of transferring their excitability 

along their length and then on to other neurons or even muscle tissue. It is these two properties 

together which allow neurons to deliver appropriate messages to appropriate parts of the body 

as and when required. 

2.1.2 The flow of electrical current along nerves 

The axon can be imagined as a series of little imaginary compartments or units. For each unit, 

current has a choice: it can either leak away across the membrane, or it can carry on to the next 

unit. If a voltage is applied at one end, the further we go down the axon the more current has 

leaked away, thus decreasing the voltage across the membrane exponentially. The behaviour 
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depends both on how good its insulation is (resistance of the axon membrane) and also on how 

much resistance is offered to currents flowing longitudinally through the axoplasm. The 

transverse, insulating, resistance of the membrane for one unit can be called RM, and the 

longitudinal resistance of the axoplasm per unit RL. If we assume that the external medium 

offers only a negligible resistance to current, then all the outer ends of the individual RM can be 

treated as if they were short­circuited together, producing the ladder­like network of resistors 

shown in Fig. 2­5 [6] that is called the equivalent circuit of the nerve fibre. 

Figure 2­5 – Above: Ladder­like equivalent of longitudinal resistance transverse or membrane 
resistance of axon. Below: Expotential decay of Voltage measured at different distances along the 

axon because of leakage through membrane. 

− x / λThus, V is given by V0e , where e is the constant whose value is about 2.718, and λ is a 

parameter called the space constant that describes how quickly the voltage declines as a function 

of the distance x. It turns out that λ is actually equal to
­ LM RR . 

Axons are quite incapable of acting as reliable passive conductors of electricity over distances of 

more than a centimetre or two at most. There are two reasons for this: (1) Materials that nerve 

fibres have to be made of are not ideal. (2) Nerves are remarkably small and the layer of 

insulation is extremely thin. Size has a very important effect on the space constant: the space 

constant is proportional to the square root of the diameter. But there is a limit to how much 

nerves can be improved in this way. 

For most nerves, passive conduction is not a practical possibility. In nerve fibres that have to 

conduct over long distances there are channels in the membrane, called voltage­gated channels 

that open in response to small changes in voltage across the membrane. When they open, they 

trigger off a very large voltage burst, with a fixed size of some 100 mV in amplitude but only 2­3 

ms in duration, and this is what is meant by the AP or spike. 

Vipin Seetohul 6 



 
    

    

   

                   

                   

                    

                   

                    

                 

  

                

                

               

             

                 

                 

                 

    

 

 

        

 
                 

                 

                

             

                 

               

 

2.1.3 Action Potentials 

2.1.3.1 Regeneration 

If an AP is recorded from a single electrical stimulus at different points along a nerve fibre, it is 

found that its amplitude does not decrease at all as a function of distance, but stays at a constant 

value. The size of this AP is not even a function of the size or nature of the stimulus that 

initiated it in the first place. As long as the strength of the stimulus is above a certain threshold 

value (below which no AP is seen at all), neither the amplitude nor the shape or speed of the AP 

is in any way influenced by the nature of the original stimulus, a property known as the all­or­

nothing law. 

In the mechanism of AP propagation, the original stimulus to the fibre causes local currents to 

flow passively through the membrane, causing a spread of potential as in Fig. 2­6 [6]. This 

voltage is sensed by neighbouring regions of the fibre and triggers a mechanism in the 

membrane that generates a larger voltage (thus introducing an amplification of the original 

signal), which in turn sets up local currents that cause a potential change still further down the 

axon and so on, until the potential change has been transmitted from the point of stimulation to 

the end of the axon (Fig. 2­6). This whole cyclical process is known as the local circuit 

mechanism of AP propagation. 

Figure 2­6 – The components of AP propagation. 

Each cycle consists of three distinct stages: The mechanism by which (1) a potential at one point 

results in a passive flow of current and thus in depolarisation of regions further down the axon; 

(2) this depolarisation triggers off some change in the membrane; and (3) this change produces a 

new depolarisation that is much larger than what originally triggered it off. 

There is a change in the membrane that results in amplification of the voltage that triggers it. 

This change consists of a change in permeability of the membrane to certain ions. 
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2.1.3.2 Ionic Concentrations 

The interior of axons is composed of the intracellular fluid (ICF) whereas extracellular fluid 

(ECF) provides the ionic environment in which the axons reside. The most important feature 

between ICF and ECF is that ICF has a higher concentration of potassium than sodium, 

whereas ECF is the opposite. The difference in concentration is maintained in two ways: (1) By 

overall homeostatic mechanisms involving the kidney and the regulation of intake, which 

determine the composition of the ECF; and (2) By mechanisms within cell membranes that 

determine the ICF. The most important of the membrane processes is sodium­potassium ATP­

ase – the sodium pump (Fig. 2­7 [6]). There is an exchange of sodium ions on the inside with 

potassium ions on the outside (three sodium ions for two potassium ions). Such pumps 

consume energy as the ions are moved against their concentration gradient ­ hence the ATP­ase 

activity. 

Figure 2­7 – The 3:2 sodium:potassium pump, using adenosine triphosphate (ATP) to transport 
sodium out of the cell and potassium in, against their respective concentration gradients. 

This pump creates a store of potential energy such that (1) It can be harnessed very much more 

quickly than any conventional chemical store; and (2) It is specifically available at the membrane 

of the cell. Many cells use this energy for transporting other substances through coupled 

transport. Potassium is not used in this way – the axon membrane is considered to be slightly 

permeable to potassium in its resting state, through one or more kinds of potassium leakage 

channels. 

Fig. 2­8 [6] shows how it is possible to have a channel that is specifically permeable to potassium 

and not to sodium, an ion which is also singly positively charged and has a smaller hydrated size. 

Charges associated with the channel proteins attract positive ions, while carboxyl oxygens 

substitute for the water to which the ion is normally wedded: unhydrated sodium, being bigger 

than unhydrated potassium, is then excluded. 
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Figure 2­8 – Postulated molecular structure of one class of potassium channel. 

This is the ionic backdrop against which the axonal membrane operates. Much of its operation 

is common to all cells. They all share physical mechanisms that convert any changes in 

membrane permeability to changes in potential. What is unique about nerve and muscle cells is 

that they also possess special mechanisms by which such changes are in turn triggered by 

changes in potential, thus completing the cycle of three links by which the AP is propagated 

over the membrane surface (see Fig. 2­6). 

2.1.3.3 The dependence of potential on ionic permeabilities 

Considering a system of two compartments, A and B, where initially A contains a strong 

solution of potassium chloride, and B a weak one; and suppose that the membrane separating 

them, initially impermeable, suddenly becomes permeable to potassium ions. There will be a 

tendency for potassium ions to diffuse through the membrane down the concentration gradient 

between A and B. Because the ions carry a positive charge, compartment B will become more 

positive with respect to A as they migrate in this way, setting up an electrical gradient that will 

tend to oppose the entry of further ions from A. Eventually, there will come a point at which 

the concentration gradient from A to B will be exactly equal and opposite to the electrical 

gradient from B to A, and the system will be in equilibrium, as there will be no net flow of ions 

across the membrane. 

The resultant electrical potential between A and B is called the equilibrium potential for 

potassium, EK. To work out how big this potential will be, the energy involved in moving one 

potassium ion from A to B is considered. The work done in moving it against the electrical 

gradient will be given by its charge, e, multiplied by the potential difference, EK. Because the 

system is in equilibrium, this work must be exactly equal to the energy gained in moving down 

the concentration gradient as such: 

[K ]AkT ln [ ]BK 

where T is the absolute temperature and k is Boltzmann's constant. So, we can write: 
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[K ]AeEk = kT ln [ ]BK 

or
­

kT [K ] RT [K ] [K ]A A AEk = ln = ln ≈ 58log10 ln mV (At 20o C) 
e [ ] K F [ ] KK [ ] B B B 

(In the alternative form, derived from consideration of a mole rather than a single ion, R is the 

gas constant, and F is Faraday's constant, equal to Ne.) This relationship (the Nernst equation) is 

true for any ion in equilibrium across a membrane to which it is freely (and solely) permeable, 

with the proviso that if the charge on the ion is not +1 (as, for instance, in the case of Cl­ or 

Ca++), we need to include this ionic charge z as well: 

kT [X ]AE = ln x 
ze [ ]X B 

Only a tiny number of ions need to cross the membrane to set up such equilibrium, so that the 

concentrations of the ions on each side remain effectively unchanged, and the equilibrium 

potential is set up virtually instantaneously after a sudden permeability change of this kind. 

The limitation of the Nernst equation is that it represents a highly idealised and hypothetical 

state of affairs. Real membranes are in fact, permeable to more than one ion at any given time. 

Considering a situation where, as before, we have two compartments, with a high concentration 

of sodium on one side and high concentration of potassium on the other, but this time the 

membrane being permeable to both ions. The overall potential, V, is not just a function of the 

concentration differences of the ions, but it also depends on just how permeable the membrane 

is to each of them. So the overall potential must also depend on the permeabilities of the two 

ions, termed PK and PNa. These are called permeability coefficients and represent the ease with 

which the ion can pass through the barrier for a given concentration ratio. 

Because of the P, the resultant equation for the voltage, V ­ the Goldman constant field 

equation – differs from the Nernst equation such that it has terms for both ions that are 

multiplied by their respective P. In the limit, if one of the permeabilities is reduced to zero, it 

turns into the Nernst equation. 

kT Pk [K ]A + PNa [Na]AE = ln 
P [ ] B + [Na Be k K PNa ]

EK and ENa represent extreme values of the range that V can take up: it cannot get more 

positive than ENa or more negative than EK. These voltages are essentially fixed provided the 

cells are in good condition, because the concentrations are fixed, the temperature is fixed and 

the other elements in the Nernst equation (k, e) are universal physical constants. So the actual 
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voltage, V, at any moment must lie somewhere between them. The Goldman equation shows 

that V behaves as if it were under the influence of two forces: PK pulls it towards EK, and PNa 

pulls it towards ENa. Where it ends up depends on the balance between the two. In other words, 

changes in permeability cause changes in potential. 

2.1.3.4 The resting potential 

The reason why the resting potential is close to EK but not actually at it is that, although at rest 

the permeability for potassium is much higher than for sodium, sodium permeability is not, in 

fact, zero: the ratio of the permeabilities is about 100:1, in frog muscle at least. As a result, the 

resting potential is pulled a little more positive than would be expected for potassium alone, and 

the Goldman equation gives a pretty accurate prediction of the resting potential. 

In the model it was assumed that chloride ions were unable to diffuse across, so it was justified 

in omitting them from the constant field equation. But experiments show that real nerve and 

muscle membranes have significant chloride permeabilities. Nevertheless, two reasons why this 

ion can, for the moment, be safely neglected; (1) In practice, the Nernst potential for chloride is 

usually very close to the equilibrium potential of the nerve membrane, so that changes in its 

permeability have negligible effects on the resting potential. Potassium and chloride are free to 

move together as KCl until the Nernst potentials for both chloride and potassium are equal: that 

is, until [K]out/[K]in=[Cl]in/[Cl]out. Because internal [Cl] is so much smaller than [K], a shift of 

a given quantity of KCI has an enormously greater effect on the chloride ratio than on the 

potassium ratio (because the external concentrations remain essentially unchanged). Thus 

chloride adjusts itself to a resting potential that is essentially determined by potassium. (2) 

During the AP, no significant alterations in chloride permeability occur; this is in sharp contrast 

to what happens to sodium and potassium. However, in synaptic mechanisms, there are certain 

occasions on which chloride cannot be neglected at all and, indeed, most inhibitory synapses 

actually work through changes in chloride permeability. 

2.1.3.5 The action potential 

If a microelectrode is inserted inside a muscle fibre or squid axon and is stimulated to get an AP, 

it is found that the potential of the inside relative to the outside suddenly reverses from (in the 

squid) its resting ­50 mV to a peak of some +40 mV, and then rapidly declines back to the 

resting potential again (Fig. 2­9 [6]). This is the monophasic AP. 
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Figure 2­9 – Intracellular recording of AP in squid giant axon.
­

The peak of the AP is dependent on ENa. If the concentration of external sodium is altered, 

although the resting potential does not vary much the height of the AP is altered: the lower the 

external sodium concentration, the smaller the AP, until eventually it is abolished altogether. 

The peak of the AP therefore depends critically on the ratio of [Na]out:[Na]in, in other words, on 

the Nernst potential for sodium. So, the natural explanation is that the AP is caused by a brief 

increase in PNa driving the membrane potential towards ENa. 

One idea explaining the increase of PNa at the start of the AP is that the depolarisation of the 

membrane by local currents from the previous bit of nerve membrane might actually cause the 

increase in PNa. There would then be positive feedback ­ depolarisation gives increase in PNa, 

which in turn causes more. 

Increased Depolarisation ΔV
 
sodium increase 

permeability sodium 

causes permeability 

depolarisation 

ΔPNa 

2.1.3.6 Structure of voltage­gated channels 

Changes in permeability in response to step depolarisations obey mathematical laws. For 

instance, the rise of potassium permeability obeys the same kind of dynamics as a fourth­order 

reaction. In chemistry, an nth­order reaction is one in which n molecules have to come together 

for the reaction to occur. If the probability of any one of them arriving is p, the probability of 

the whole reaction occurring is going to be pn. High­order reactions have a number of 

characteristics: for instance, they tend to be more temperature dependent than low­order ones, 

because p often proportional to T, so any effect of temperature is amplified by the fourth power. 

They also tend to be slower than comparable reactions of lower order: p4 is necessarily smaller 

than p3 or p2 or p. In fact, by looking at the time course of a reaction after suddenly doing 

something that increases p, we can tell from its shape what order the system is. 

Hodgkin and Huxley [7] assumed that the probability, p, depended on the voltage at any 

moment; the potassium channels were normally blocked by four independent particles. When 
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the membrane is depolarised, there is an increased probability that any particular particle moves 

out of the way; but to unblock the channel, all four have to move out ­ hence the fourth order. 

The recovery is more rapid because it only takes one blocker to flip back for the channel to be 

blocked once again. The sodium channel can be modelled in a similar way, but with two 

important differences: (1) It obeys third­order rather than fourth­order dynamics (which is why 

sodium permeability rises more quickly), (2) Once open it spontaneously closes again, entering 

the inactivated state. 

A model is thus of three blocking particles that move aside when the membrane is depolarised, 

together with a fourth that does the opposite, moving in to inactivate the channel. A sodium 

channel is a single protein that does, indeed, consist of exactly four domains, all very similar, 

composed of six alpha­helixes spanning the membrane. One of the alpha­helixes has a number 

of positively charged residues and constitutes the voltage­sensitive part of the complex; another 

part, called the pore loop, makes the channel selective for sodium rather than for other ions. 

The four domains arrange themselves in the membrane as shown in Fig. 2­10 [6] and when 

depolarised, they tend to twist in such a way as to open the channel. 

Figure 2­10 – Left: Possible structure of a sodium channel. Right: Opening of the channel as a 
result of small rotations of each domain. 

2.1.3.7 Summary of electrical propagation of the Action Potential (AP) 

A local depolarisation of a section of nerve gives rise, at first, to an increase in PNa that causes 

the membrane to become still more depolarised as the potential moves towards ENa. Meanwhile, 

PK starts to rise and the sodium permeability to fall, causing the potential to start to drop back 

towards the resting value. This, in turn, tends to shut off both the sodium and potassium 

channels; but because of the delayed response of potassium permeability, there is a period 

during which PK is greater than in the resting state, and the membrane is hyperpolarised; 

eventually, the resting potential is regained. Meanwhile, the currents generated by this process 

have spread to neighbouring regions of the fibre, causing them to depolarise and thus initiating, 

at a distance, the same sequence of changes all over again. In this way the whole pattern of 

potential and permeability changes is propagated down the fibre (Fig. 2­11 [6]). 
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Figure 2.11 – Above: ‘Snapshot’ of a nerve axon with an AP travelling from left to right. The red 
holes represent the approximate relative density of open sodium channels, the black holes of 
potassium channels. Below: The flow of current and distribution of potential along its length. 

2.1.4 Threshold Properties 

The fundamental concept that underpins practically everything nerves do is the fact that there 

are two feedback loops in the nerve membrane, one for sodium and one for potassium. With 

potassium, a depolarisation causes an increase in PK, which then tends to oppose the 

depolarisation by bringing the membrane potential nearer to EK ­ a good example of a negative 

feedback system that tends to stabilise the membrane near its resting potential. The case of 

sodium is the exact opposite: here, depolarisation again causes an increase in permeability, but 

this tends to depolarise the membrane still further – there is positive instead of negative 

feedback. 

Considering Sodium – If the membrane is depolarised, sodium permeability rises, and from the 

Goldman equation, if sodium permeability rises, this will further depolarise the membrane. So 

we have positive feedback – this is what underlies the membrane's regeneration of APs whose 

amplitudes have dropped because of the losses caused by passive conduction. But uncontrolled 

positive feedback can be problematic. 

In nerves the positive feedback of the sodium loop is tempered by the negative feedback of the 

potassium loop. Here, a depolarisation ­ as with sodium ­ causes increased potassium 

permeability, but the difference is that when PK rises, the nerve becomes less depolarised rather 

than more depolarised. Potassium has a stabilizing effect. So what matters in nerve is the balance 

between sodium response and the influence of potassium, whether overall the feedback is 

positive or negative. However, in the resting state, at the resting potential, the potassium effect is 

actually stronger than the sodium effect; there is therefore net negative rather than positive 

feedback, at least for small displacements of potential. But with bigger depolarisations, there 

comes a point at which the response to sodium overtakes the response to potassium, so that 

there is net positive feedback, and this is what sets the fibre off and generates an AP. So the 

threshold is therefore the point at which the two effects are just balanced. Any factor that 

favours the potassium mechanism rather than the sodium one will tend to raise the membrane 

threshold. Two important instances of this occur in the refractory period and in 

accommodation. 
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2.1.4.1 Refractory period 

If a nerve is stimulated with a pair of shocks while gradually reducing the interval of time 

between them, there comes a point when the threshold for the second shock begins to rise 

relative to that for the first. If the stimuli of the intervals is kept decreasing the nerve cannot be 

activated at all a second time regardless of the size of current used (Fig. 2­12 [6]). This period 

during which it is impossible to stimulate the nerve for a second time is known as the absolute 

refractory period. The period during which it can be stimulated, but only by using a larger 

current than usual, is called the relative refractory period. The latter corresponds quite well with 

the period just after the peak of the AP during which PK is still raised relative to its resting level, 

thus tending to stabilise the membrane potential. 

Figure 2­12 – Refractoriness of nerve. 

The absolute refractory period is due to a property of the sodium channels. After the peak of 

the AP has passed, there is a period of recovery during which the sodium mechanism is 

unresponsive, making the membrane absolutely stable to stimuli of any size. The existence of 

the refractory period is of considerable functional importance, because this is what prevents the 

AP from being conducted in both directions at once. Because the local currents flow almost 

equally both ahead of the AP and behind it, it is essential that the region over which it has just 

passed should not be reactivated all over again; its refractoriness prevents this happening. 

2.1.4.2 Accommodation 

Sodium is more responsive than potassium. One consequence of this is that rapid 

depolarisations are more effective at stimulating the nerve fibre than slow ones, because they get 

at sodium, as it were, before potassium has time to rise. This is termed accommodation. 

This can be explained in terms of the balance between the sodium and potassium mechanisms. 

There is only a short period during which the sodium mechanism dominates: time is on the side 

of stability. Considering the stimulation of a nerve with a staircase­like sequence of little ones 

rather than one large step of depolarisation (Fig. 2­13 [6]); PK increases cumulatively with each 
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new step whereas PNa does not, because it is only transient. Furthermore, the transient increase 

in PNa will steadily decline with increasing depolarisation because of the steadily increasing 

degree of sodium channel inactivation. Thus, the more gradually a nerve fibre is depolarised, the 

more the sodium/potassium balance is pushed in favour of potassium, and the further it needs 

to be depolarised in order to reach the threshold. If it is depolarised slowly enough, there will 

come a point at which PNa is never great enough relative to PK for the nerve to fire at all, and the 

membrane will therefore completely accommodate. 

Figure 2­13 – Accommodation. Left: Threshold for generating an AP (arrows). Right: The 
changes in PK and PNa in response to a clamped step of voltage. 

2.1.4.3 The all­or­nothing law 

When recording APs, it is noticed that their size is not affected by the size of the stimulus that 

causes them. This is the true for of any system that relies on propagation through regeneration 

via positive feedback. Any system with positive feedback will tend to behave in a manner 

approximating to all­or­nothing behaviour. In nerves, the all­or­nothing law is not strictly 

obeyed if one records close to the point of stimulation ­ within a space constant or two ­

because the stimulus energy then contributes in part to what is recorded. But as the AP is 

propagated further away from its origin, this contribution becomes increasingly negligible, and it 

eventually settles down to its standard form. Thus, the basic cause of all­or­nothing behaviour is 

the regenerative process that produces APs. A common misconception is that it is caused by the 

all­or­nothingness of the individual channels. 

This law is of fundamental significance in the nervous system, and has functional implications. It 

clearly imposes very severe limitations on the kinds of messages that nerves can convey, 

prohibiting direct transmission of graded quantitative information (of the kind conveyed, for 

example, by the varying concentration of a hormone in the blood), the only messages permitted 

being of the binary 'yes/no' variety. In the case of nerve axons, the length over which they are 

required to conduct is greater than the space constant that many thousands of such stages of 

amplification would be required; each Node of Ranvier is, in effect, a booster of this kind. 

All amplifiers, however good their quality, suffer from two defects: they introduce noise and 

they create distortion. Noise includes both the hiss that arises inevitably in any electrical system ­

including neurons ­ from the random movements of the electrons or ions in its conductors, and 

also disturbances picked up from external sources of interference. The noise generated by each 
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amplifier will be amplified all the way down the line and added to that of the others, making the 

final output very much noisier than if there were only one amplifier. Distortion arises through 

inaccuracies in the linearity of the amplification. This, too, becomes exaggerated if a number of 

amplifiers are connected in series. Thus, accurate transmission of quantitative information 

becomes almost impossible: the system almost automatically becomes all­or­nothing in 

character, because signals either vanish or become saturatingly huge. 

The only kind of system that is capable of transmitting messages reliably over distances that are 

much bigger than the space constant is precisely what has been found in the nerve axon itself: a 

series of regenerative amplifiers (the voltage­sensitive sodium channels) exhibiting a threshold 

that prevents the fibre from producing spurious signals in response to its own noise. There is no 

advantage in such a system for conduction over shorter distances, and in practice it is found that 

short neurons (as, for example, the bipolar cells of the retina) never use APs, but rely on the 

much simpler and more informative method of passively propagated electronic potentials. 

2.1.5 Conduction velocity 

The sequence of events by which one active region of nerve can trigger off a similar pattern of 

activity in another one at a distance from it by means of local currents has been discussed. 

Conduction velocity is a matter of how far and how quickly these currents spread, and of how 

long it takes for them to be regenerated. 

The space constant, λ, is a measure of how far currents spread; how far we can go before a 

voltage that has been applied drops to 1/e of its original value. 

With really bad cables like nerve fibres, passive conduction is very slow indeed ­ sometimes less 

than 1 m/s. Passive conduction is so slow because of the electrical property of the membrane 

called capacitance. Any two conductors separated by a layer of insulation act as a capacitor. The 

larger the opposed areas of the conductors, and the thinner the insulating layer between them, 

the larger the capacitance (measured in Farads) will be. In the case of nerve fibres, the 

membrane is both a good insulator and extremely thin, and makes an excellent capacitor: it has a 

capacitance, CM, of about l �F/cm2. The equivalent circuit can be redrawn in the form shown in 

Fig. 2­14 [6]. 

In the past, several methods have been described to estimate neural AP conduction velocity and 

to discriminate between motor and sensory signals by measuring the delay between two sites. 

For example, those methods included direct delay measurement [8], arrays of matched filters [9, 

10], or correlation techniques [11]. However, in all these signals, only two neural signals are 

amplified. 
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Figure 2­14 – Above: Voltage response of a resistor and of a resistor and capacitor in parallel 
showing the slow rise of voltage in the second case. Below: Modification of the equivalent 

circuit to include membrane capacitance, CM, as well as resistance, RM. 

If a current, I, is suddenly passed through a resistor, RM, on its own, the voltage across it 

immediately reaches the value V=IRM. But with a capacitor as well, it now takes time for the 

voltage to reach this value, because part of the current must be used to charge up the capacitor 

to the new level. On injecting a step of current of this kind, the voltage rises only slowly to its 

final value of IRM, with a time course that is exponential and given by V=IRM(1 – e­t/τ). Here τ is 

the time constant of the circuit (the time taken for the discrepancy, I RM – V, to fall by a factor 

e), and is equal in this case to RMCM. For many nerve fibres, this time constant is of the order of 

a few milliseconds, setting a limit on the rapidity with which the membrane can generate 

voltages in response to local currents. 

A voltage generated at a particular point on the membrane declines exponentially as a function 

of distance, with a space constant. The space constant and time constant together give a 

measure of the speed with which an electrical disturbance is propagated passively along the 

axon. This speed is equal to λ/τ, which has the dimensions of velocity. 

The difference between having an active rather than passive conduction: Passive conduction 

involves just λ and τ; active conduction is actually slower than passive because of the extra time, 

T, needed to regenerate the AP from threshold to full size. The formula for the velocity needs to 

be modified a bit to take this into account: , λ/(τ+T) is needed instead of λ/τ. T is mostly due to 

the time it takes for the sodium permeability to respond to the change in potential, and normally 

is very short, so that T is small in comparison with τ. 

Higher temperatures speed the permeability changes up because they are both high­order 

reactions, but they affect the fourth­order potassium more than the third­order sodium. As a 

result, potassium gradually catches up with sodium and the AP actually gets briefer and smaller 

as the temperature is raised (Fig. 2­15). In some cold­blooded animals, conduction ceases 

altogether if the temperature exceeds some 37oC. 
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Figure 2­15 – Temperature and conduction velocity – Left: Speed of opening of potassium 
channels is more affected by temperature than that of sodium channel. Right: APs travel faster 

at higher temperatures but also get smaller. 

The size of the local currents also depends on the ionic concentrations inside and outside the 

fibre ­ low external sodium, for instance, reduces the velocity of conduction because it makes 

the sodium current smaller ­ and is influenced by local anaesthetics and other pharmacological 

agents acting on the permeability mechanisms. It is also a function of the density of sodium 

channels in the membrane. The nodes of Ranvier have a higher density of sodium channels than 

do ordinary unmyelinated fibres, another factor contributing to the increased conduction 

velocity of myelinated nerves. 

Factors that might influence conduction velocity by acting on λ and τ are: 

(1) Diameter, D, of the fibre – τ is equal to the product of C and RM, both of which depend on 

the surface area of the fibre: if D increases, the surface area increases in proportion. This makes 

the capacitance increase, but it makes the resistance decrease and these two effects cancel out so 

that the time constant does not vary with diameter at all. The space constant varies with the 

square root of the diameter. So, if the velocity is proportional to λ/τ, and τ is constant, then 

velocity will also vary with the square root of D. 

(2) Myelination – Animals rarely have unmyelinated fibres larger than about 1 �m in diameter. 

Myelination is a far better way of increasing the conduction velocity of large fibres than simply 

increasing their size. The effect of myelination is to thicken the layer of insulation round the 

fibre except at the nodes of Ranvier. This has the desirable consequence of increasing RM and 

reducing CM. This increases RM, but, has the opposite effect on C, which gets smaller. Again, the 

two factors cancel out, so that the time constant is no different. But the extra insulation does 

increase the space constant, so as a result conduction is greatly speeded up. The myelin forces 

the external local currents to travel further before they can gain access to the axoplasm through 

the nodes. Myelinated nerve fibres do not show the square­root relationship for velocity and 

diameter, but something nearer a linear relation. The reason is to do with optimisation. 

Realistically, myelin thickness is not constant: there is an optimum thickness for myelin, which 

varies with the diameter, and the effect of this is to make the curve more or less linear rather 

than showing a square­root relation. An important consequence of the linear relation for 
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myelinated fibres as opposed to the square­root one for unmyelinated is that the two curves 

cross, at about 1 �m diameter. The reason why all fibres are not myelinated is that, although 

there is a speed advantage in myelinating larger fibres, it is actually better to leave the smaller 

ones alone, because, for a given overall diameter, the myelin takes up space that impinges on the 

conducting axoplasm. So there is no point in having myelinated fibres smaller than 1 �m in 

diameter or unmyelinated ones larger than this. 

Because in myelinated fibres the active, voltage­sensitive, sodium and potassium channels are 

virtually confined to the nodes, the AP moves quickly from one node of Ranvier to the next, but 

lingers at the node itself while it is being regenerated. This is called salutatory conduction. 

Myelinated nerves would conduct even faster if there were no nodes at all, but some is needed in 

order to make up for the loss of current that still occurs despite the thick layers of myelin. In 

fact, the nodes are separated by the order of a space constant, which provides enough of a safety 

margin that even if one or even two are nodes poisoned the nerve can still just conduct. The 

importance of myelination can be seen in multiple sclerosis, a condition in which the myelin 

gradually degenerates, causing progressive weakness and lack of co­ordination. 

2.1.5.1 The compound action potential (CAP) 

Considering peripheral nerve, there is typically a mixture of myelinated and unmyelinated fibres 

all jumbled up together, conducting at a wide range of speeds. As a result of this mixture of 

speeds, if such a nerve is stimulated at one end and recorded some distance down, a rather 

complicated electrical response called the CAP (the sum of many different AP all occurring at 

different times) is obtained. Under these circumstances, the pattern of peaks in the CAP gives a 

sort of spectrum of the conduction velocities of the fibres in the nerve, though not a very 

quantitative one, because large peaks may simply be due to large fibres rather than to a large 

number of fibres of a particular velocity. Often, the fibres appear to fall into groups based on 

their diameter and therefore their conduction velocity; a common way of classifying fibres is 

into fast, medium and unmyelinated slow, but with further subdivisions of the 'fast' category. 

2.2 Cuff Electrodes 

Cuff electrodes are electrodes which are fitted around a nerve fascicle or a sub­set of nerves and 

do not penetrate the nerve itself. Contemporary cuff electrodes are 1­2 cm long with a 

maximum diameter of few millimetres. These have been used to record the ENG from 

peripheral nerves in various experiments [12­20]. A nerve cuff recording electrode consists of an 

insulating tube typically made of silicone rubber with circumferential metal electrodes placed 

along the inner cuff walls as shown in the figure below. Here the electrode consists of electrode 

contacts embedded within a self­curling cuff. In this case it is designed to be compliant so that it 
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can accommodate to fit accurately around the nerve without the use of sutures to secure it while
­

being well maintained in intimate contact with the nerve. It is self­sizing electrode and can be 

used to effect selective activation of geometric regions of the nerve enclosed by the cuff. It is 

manufactured from biocompatible materials such as medical grade silicon rubber and Platinum 

contacts. Cuff electrodes can also be fabricated using platinum foil electrodes fixed by rubber 

bands on a Teflon coated mandrel dip­coated with silicone [21]. In contrast to geometry, other 

experiments have used spiral nerve electrode cuffs for recordings [22]. 

Figure 2­16 – Self­curling cuff electrode. 

The recording electrodes usually encircle more than 80% of the perimeter of the cuff and the 

internal diameter of the cuff must be at least 20% larger than the diameter of the nerve [23] to 

avoid compression of the nerve bundle and therefore obstruction of the blood supply. Stein [24] 

has shown that tight cuffs reduce slightly the number of large myelinated fibres. He also 

observed that there was an increase in the impedance of the electrodes in the first few weeks 

after implantation but this was attributed to tissue in growth inside the cuff. More details are 

provided in [25]. It was suggested by Hoffer et al. [23] that the cuff length must at least equal to 

the wavelength of the neural signal and about ten times greater than the cuff inner diameter. The 

theory by Winter et al. [26] predicts that there is a maximum in overall amplitude for a particular 

pitch corresponding to an optimal number of electrodes for a given cuff length. 

Geometry of cuff electrodes has been an active area of research – Rahal et al. have discussed the 

effect of nerve cuff geometry in, firstly, interference reduction [27], and in EMG reduction [28], 

while Andreasen et al. considered signal strength versus cuff length [29]. There are different 

ways of arranging electrodes inside the cuff; the monopole was used in early experiments and 

employs a single electrode located centrally inside the cuff. A second remote electrode is placed 

at a distance as reference. This monopolar arrangement produces large signal amplitudes but the 

interference rejection is poor. Differential or bipolar recording decreases the electrode sensitivity 

to external signals. In the bipolar configuration two electrodes are embedded in the cuff and the 

ENG recorded is the potential difference between these electrodes. The amplitude of the 

recording depends strongly on the electrode separation, i.e. the enclosed impedance and also on 

the length of the insulating cuff. An arrangement termed quasi­tripolar arrangement removes the 

cuff length dependency so that the signal amplitude depends on electrode separation alone [30]. 
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The ENG is recorded between two shorted outer electrodes and a centre electrode halfway 

between the outer electrodes as a reference. This arrangement yields the practical advantage of 

interference cancellation. The true­tripolar arrangement implements additional trimming 

capability. In this configuration, three amplifiers are used. The two first­rank amplifiers record 

differentially between the outer electrodes and the centre electrode as the reference. A third 

amplifier sums the output signals of the first­rank amplifiers. The screened true­tripole is an 

extension to the true­tripole with two or more additional end electrodes. Shorting the end­

electrodes reduces the potential difference between the cuff­ends, thus also reducing the field 

inside the cuff. The principle is the same as the quasi­tripole, but the end electrodes can be 

optimised to give maximum field reduction. The effectiveness mainly depends on the area of the 

end electrodes and SNR improvements varying between 18% and 73% were found in studies 

using a rabbit model [31]. Pflaum et al. [32] compare two modes, namely ‘quasi­tripolar’ and 

‘true tripolar’ configurations. Schuettler et al. [33] has attempted to further enhance the neural 

cuff electrode by integrating a multiplexer circuit which was intended to reduce the number of 

necessary interconnection leads to a stimulator. Cable breakage is one of the main reasons for 

implant failure and this method greatly reduces this risk. 

But all of the methods mentioned so far can unfortunately detect one signal only, resulting in a 

huge loss of information. 

2.3 1­D Analytical Model 

The circuit in Fig. 2­17 shows a one­dimensional (1­D) model of a myelinated nerve fibre 

in a cuff. The intra­cellular resistance per section is denoted by ra. This is assumed to be 

uniform in this model. Therefore, Ra, the intra­cellular resistance over the whole cuff can 

be written as: 

R = nr a a 

Figure 2­17 – Circuit model of one myelinated nerve fibre in cuff. [2]
­
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The extra­cellular resistance per section is denoted by re and this is not uniform in this 

model. The extra­cellular resistance over the whole cuff, Re, is: 

n 

R = r e ∑ ei 
i=1 

The cuff is assumed to have nodes at the end, and to be an integer number of inter­nodal 

lengths long. Ra and Re are divided into n sections by (n+1) electrodes. These external end 

nodes are both grounded as it is assumed that the resistance outside the cuff is negligible. 

The voltage generators Vm(i), where 0 ≤ i ≤ n, represent the potential differences across the 

membrane at the Nodes of Ranvier. The potential V(j) at a distance j node from the left hand 

of the cuff is found using the Thévenin equivalent circuit at a point Q at the right hand. The 

Thévenin equivalent voltage at Q can be written as follows, assuming that ra>>rei for all i. 

and that RQ is approximately equal to Re 

j 

r V =∑r (V −V ) (1) a j ei mi mi−1 

i−1 

V 
When re­connected, a current 

Q 
flows out of the network at Q with a fraction 

RQ 

e e R 
≅ 

R 
flowing through the extra­cellular resistance Re. The extra­cellular voltage 

R + R R e a a 

opposite node j is therefore: 

j 

r
j n ∑ ei 

i=1 raV j =∑rei (Vmi −Vmi−1 )−∑rei (Vmi −Vmi−1 ) n 
(2) 

i=1 i=1 ∑rei 
i=1 

This is the case for a monopole electrode mounted in an insulating cuff. So far ra was 

assumed to be uniform but not re. So in the case that re is uniform, the measured monopole 

voltage, Vmp can be expressed as such: 

Re  z0   z0   z0   L  
Vmp (t, z0 ) = 1− Vm ( ) t −Vm  t −  +  Vm  t −  (3) 

Re + Ra  L   v   L   v  

Where the cuff length is L, and a single electrode is located at a distance z = z0.from one 

end, Vm is the TMAP, and v is the conduction velocity. This is the quantitative description 

of a recorded signal Vmp (t, z0 
) due to one axon in a length constriction represented by a 

narrow cuff. Stein and Pearson [34] first derived this expression for the case of 

unmyelinated nerve fibres, and later on Marks and Loeb [35] extended it to the myelinated 

case. Struijk [36] represented it exactly as in Equation (3) and it differs from the Marks and 
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Loeb formulation in the assumption that the internode is not leaking and that therefore the 

transmembrane action potential (TMAP) between the nodes has a linear rather than 

expotential shape. 

Equation (3) expresses the effect of the cuff ends on the response and this highlights the 

importance of the restricted extracellular space. Using three electrodes and a tripole (or 

double­differential amplifier), the voltage at the amplifier output takes the form Vmp1 – 

2Vmp2 + Vmp3. As a result, the cuff end­terms disappear. The tripole output voltage Vtp 

depends only on the instantaneous values of the TMAP opposite the three electrodes, as 

shown in Equation (4). 

 













z z z1 2 3V 

Where, z1, z2 and z3 are electrode positions, with respect to one end. This equation shows 





that, as long as the electrodes are equally spaced, a tripolar signal can be recorded whose 

form is independent of the tripole position within the cuff and which is insensitive to EMG 

interference [3, 28, 36]. This means that if additional electrodes are introduced into the cuff, 

more than one tripolar signal can be recorded. 

2.4 Multi­Electrode Cuff 

The general layout of a Multi­Electrode Cuff (MEC)­based VSR system is shown in Fig. 2­18. In 

such an electrode arrangement, the MEC consists of N tripolar signals, N+1 first­rank 

differential amplifiers, and N+2 electrodes. This set­up makes use of the fact mentioned 

previously, that a true­tripole recording is independent of the tripole position within the cuff, 

resulting in more than one ENG signal that can be generated from the same AP. The delay 

between successive MEC outputs is inversely proportional to the ENG propagation velocity. 

Artificial delays are placed in cascade with the MEC tripole outputs so as to cancel the naturally 

occurring delays. When the outputs are subsequently added, the sum will be a maximum for one 

particular velocity, enabling the ENG velocity to be found [3]. This property enables velocity­

selective recording and improved SNR. A complication in this process is that the amplitude of 

the ENG signals recorded using the nerve cuff method are very small, on the order of a few 

microvolts, with most of the signal power lying in a bandwidth between about 300 Hz and 5 

kHz. Therefore this system, like all nerve cuff­based ENG recording systems, relies critically on 

the availability of low­noise, high­gain amplifiers [37­39]. 
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Figure 2­18 – Multi­electrode cuff (MEC), array of tripole amplifiers and signal processing unit 
for selecting one velocity. [2] 

The paper by Taylor et al. [3] provides an in­depth explanation of a MEC which provides several 

tripolar signals that are then subjected to a signal processing operation. By contrast, Jezernik et 

al. [40] used more complicated signal processing of the signal from a tripolar cuff that involved 

autocorrelation and an artificial neural network. 

2.5 Velocity Selectivity 

From a typical distribution of fibre diameters in the human sural nerve, there is an 

approximately proportional relation between fibre diameter and propagation velocity, with a 

conversion factor of the order of 5m/s per �m [41]. Therefore, even within a single nerve a 

wide distribution of velocities can be encountered. If naturally­occurring nerve signals are to be 

used for the detection of signals that are not dominant in the nerve traffic, it will be essential to 

discriminate between traffic with different propagation velocities and direction. 

It has been proposed that the MEC can be used for the purpose of discriminating between 

traffic with different propagation velocities and directions in the arrangement shown in Fig. 2­18 

[3, 42], similar to a technique used by Merletti et al. [43, 44]. However, Merletti used the array for 

surface EMG recording. This poses a different set of requirements and challenges compared to 

this application. The MEC with equally spaced electrodes allows obtaining recordings of the 

same nerve signal, delayed in time. Consider the following expression: 

T = d/v 

Where ‘T’ is the time delay, ‘d’ is the electrode distance relating to electrode pitch and ‘v’ is the 

finite propagation velocity of the AP. 
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In a cuff length L with equidistant electrodes, the electrode pitch d is described by 

d = L/n 

where n is the number of electrodes. The time delay is visible in the recorded data for several 

overlapping true­tripole recording channels. 

A method for the measurement of propagation velocity is to sum the outputs of the tripole 

amplifiers after introducing artificial time shifts τ. When τ matches T, the AP peaks add 

constructively to give the largest signal, since the correlation between the signals on the different 

channels is maximised. Conversely, when using mismatched delays τ, the correlation decreases 

and the amplitude remains smaller. The time shift that results in the maximal amplitude 

corresponds to T and the sign of τ indicates the direction of propagation. Such an arrangement 

is in effect a velocity­selective filter since τ tunes the arrangement to one matched velocity. 

Experimental evidence for the suitability of this method is provided by Rieger [45, 46] 

2.6 Amplifier System cross­talk testing 

The same amplifier system as that used by Rieger [47] has been used throughout this project. 

Initially, in order to test the resolution and cross­talk of the channels on the ENG recording 

system, a test box was built. This consisted of 10 oscillator circuits, each producing sine waves at 

different frequencies ranging from 1000 Hz to 1180 Hz with 20 Hz increments between each 

channel. 

Figure 2­19 – Schematic of one oscillator circuit. 

The frequency (F) was set for each oscillator circuit using the following equation: 

1.49 
F = , Where RA, RB and C were varied in each case to achieve the required 

(RA + 2RB)× C 

frequency and amplitude. After setting the individual frequencies of the 10 oscillator circuits, 

they were arranged in an aluminium die­cast box on a PCB board as shown in the following 

figure. 
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Figure 2­20 – Schematic of oscillator circuit test box. 
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C h a p t e r 3
 

ELECTRICALLY EVOKED POTENTIALS:
 

FROG EXPERIMENTS
 

3.1 Xenopus 

Xenopus is a genus of frog. The best­known species belonging to this genus is 

Xenopus laevis, a common model organism. Xenopus are a clawed, carnivorous genus of 

African frog. Xenopus are a popular model system for gene and protein expression and 

knockdown studies. Xenopus laevis is the most commonly used species for developmental 

biology studies. The African clawed frog (Xenopus laevis, also known as platanna) is a species of 

South African aquatic frog of the genus Xenopus. It is up to 12 cm long with a flattened head 

and body but no tongue. Its name derives from its three short claws on each of its hind feet, 

which it probably uses to stir up mud to hide it from predators. 

Figure 3­1 – Xenopus Laevis used in these set of experiments. 

3.2 Nerve Stimulation Method 

Typically neural stimulation is performed on peripheral nerves by placing a nerve cuff around a 

nerve trunk. During stimulation APs are initiated at the cathode and propagate in both 

directions along the nerve trunk. The threshold for activation of the nerve fibres inside the 

nerve trunk is inversely proportional to the fibre size. This means that the larger nerve fibres 

have a lower stimulation threshold than the small nerve fibres. This is the opposite of the 

recruitment characteristics needed for low fatigue stimulation of muscle as the smaller nerve 

fibres innervate the slow acting low fatigue motor units and the large fibres innervate the fast 

response fast fatigue motor units in the muscle. Conventional neural stimulation uses 

rectangular biphasic current pulses typically of constant voltage or current. 
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3.3 Velocity­Selective Recording 

This uses exactly the method described in the previous chapter. An AP travelling along a nerve 

that is cuffed with N electrical contacts equally spaced along the insulating cuff generates an 

electrical potential at each of the contacts as a function of time contact position. The resulting 

electrical pattern that can be recorded from the cuff contacts is specific to the velocity and 

direction of the AP propagation (Fig. 3­2). 

Figure 3­2 – Recording pattern generated by two APs travelling at different velocities along a 
nerve in an eleven­contact cuff electrode. 

After amplification of the signals using a tripolar bank of amplifiers, the recorded signals are 

shifted in time against each other by (n­1) x dt and summed to a single signal, where n refers the 

channel number. E.g. channel 1 is not delayed, channel 2 is delayed versus channel 1 by dt, 

channel 3 is delayed by 2 x dt, etc. In the case that dt matched the electrode pitch l divided by the 

AP propagation velocity v, the signals of all channels add up constructively. The amplitude of a 

dt­matched summed signal is up to N – 2 times larger than the amplitude after summing with a 

non­matched time delay (when using a tripolar amplifier configuration). 

3.4 Nerve preparation 

Four sciatic nerves were obtained from two decapitated adult Xenopus Laevis frogs. The nerves 

were handled by sutures that were tied to the nerve endings. After explanting, the nerves were 

transferred to the basin of our setup and immersed in amphibian Ringer’s solution at room 

temperature. The nerves had a total length of typically 8 to 9 cm and varied in diameter from 

0.5 mm distally to 2 mm close to the spinal cord. 
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Figure 3­3 – Left: Sciatic nerve still on the frog, Right: Nerve in basin.
­

3.5 Neural Electrodes 

The multiple contact cuff electrodes were produced by employing polyimide thin­film 

technology. These electrodes consist of a 300 nm film of sputtered platinum sandwiched 

between two 5 �m layers of spin­coated polyimide (Pyralin 2611, HD­Microsystems, Bad 

Homburg, Germany). A detailed description of the manufacturing process can be found in [48]. 

The final electrode is 1.5 mm in diameter, 40 mm long and carries eleven 0.5 mm wide, ring­

shaped platinum contacts that are equally distributed along the cuff at a pitch of 3.5 mm (Fig. 3­

4). The stimulation electrodes were fabricated by Dr. Martin Schuettler, at the facilities of 

University College London, in the same way as the recording electrodes. They have a diameter 

of 1.0 mm and carry three ring­shaped platinum contacts (0.2 mm wide) at a longitudinal pitch 

of 5.0 mm. 

A bipolar hook electrode was manufactured from 0.127 mm diameter platinum wire. It was used 

to record the electro neurogram the same way as Erlanger and Gasser [1] described it and was 

used to validate the propagation velocity profiles based on the multi­contact cuff recordings. 

ceramic 
adapter 

cable 

cuff 

Figure 3­4 – The polyimide thin­film cuff electrode has eleven contacts, visible on this
­
photograph as dark vertical lines.
­

Vipin Seetohul 30 



 
    

       

              

                

            

  

        

       

            

        

        

       

       

       

        

      

       

        

 

              

             

      

3.6 Neural Recording and Data Acquisition 

In the initial set of frog experiments, the DAQCard 6062E from National Instruments was 

used. It is a fast, multifunctional card that has 16 single­ended or 8 differential analogue input 

channels, 2 analogue output channels, 2 counters and 8 digital lines. 

Figure 3­5 – NI­DAQ 6062 E­Series PCMCIA Card. 

Specifications: Analogue Input Characteristics 

Number of Channels = 16 single­ended, 16 pseudo­differential, or 8 differential.
­

Type of ADC = Successive approximation.
­

Resolution = 12 Bits, 1 in 4096.
­

Max. Sampling rate = 500 kS/s
­

Specifications: Analogue Input Characteristics
 

Number of Channels = 2 Voltage.
­

Resolution = 12 Bits, 1 in 4096.
­

Voltage Output range= ± 10 V
­

Output Impedance = 0.1 � Max.
­

Current Drive = ± 5 mA Max.
­

The following diagram shows the connector assignments. The pin numbers on the connector on
­

the left hand side correspond to the pin­connector numbers on the CB­68LPR connector,
­

shown on the right hand side
­
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Figure 3­6 – LHS: 68­Pin E­Series Connector Assignment, RHS: CB­68LPR Connector. 

The contacts of the recording cuff were connected directly to the inputs of a custom­built low­

noise neural amplifier bank, a developed version of an ASIC described in [19]. This amplifier 

bank provides ten channels of differential amplifiers with a pass band of 310 Hz to 3.3 kHz, a 

voltage gain of 10,100, and an input­referred voltage noise density of 3.8 nV/√Hz at 1 kHz. The 

hook electrode was connected to an instrumentation amplifier with a gain of 500 and a band 

pass of 17 Hz to 8.8 kHz. The outputs of the amplifiers were fed into a data acquisition system, 

based on a NI DAQCard­6062E (National Instruments, Austin, TX, USA), that allowed 

sampling at 40 kHz and a dynamic range of 12 bit for the ten nerve signals, the stimulation 

signal, and the hook electrode signal. 

The setup was controlled by a laptop computer (Dell Inspiron 9200) via a LabView 7.1 user 

interface (National Instruments). Fig. 3­7 gives a schematic overview of the setup and Fig. 3­8 

gives a view of the LabView 7.1 user interface. 
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Figure 3­7 – Setup for recording electrically evoked CAPs from frog nerve in Ringer’s solution
­
using an eleven contact recording cuff and a hook electrode (for validation purposes).
­

Figure 3­8 – User­interface of the LabView software. 

3.7 Neural Stimulation 

The stimulation was triggered by the LabView program via the NI DAQCard. A custom made 

nerve stimulator was used that generates current controlled, charge balanced, rectangular shaped 

pulses on two latched channels. The stimulating pulse was adjustable in amplitude and pulse 

width, while the amplitude of the charge recovery phase was set to 20 �A. A set of stimulation 

parameters was found that just excited a single population of large fibres, resulting in a simple­

shaped biphasic CAP recording picked up by the hook electrode. Another set of stimulation 

parameters was worked out that resulted in a hook electrode neurogram which suggested the 

presence of at least a second fibre population, slower in propagation than the first one. 

3.8 Data Processing 

The data for this experiment is located in Appendix A. Data processing was carried out offline 

using Matlab R12 (The Mathworks Inc., Natick, MA, USA). The Matlab routine calculated nine 

tripolar signals from the ten outputs of the bipolar amplifiers. Then, the signal of tripole number 
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2 was delayed in time by dt relative to the signal of tripole number 1 and added to it. The signal 

from tripole number 3 was added to this sum after delaying it by 2x dt. Signal number 4 was 

delayed by 3x dt and added, and so on. After summation, the signal was full­wave rectified and 

its maximum voltage peak was detected. A delay profile was generated by plotting the maximum 

voltage peak as a function of the delay time dt. Appendix A contains the Matlab code. 

3.9 Anodal Blocking Theory 

As the pulse currents amplitude is increased, APs may be blocked at the anode; this is called 

'Anodal Blocking'. Anodal blocking only occurs at currents above the stimulation threshold. 

Large fibres have a lower blocking threshold than small fibres. Therefore, anodal blocking 

allows stimulation of small nerve fibres without stimulation of the large fibres (‘selective 

stimulation by fibre size’). The work by Rijkhoff et al. [49] demonstrates this method. However 

for anodal blocking to be successful the pulses have to be removed slowly to prevent re­

excitation of the nerve at the end of the stimulating pulse. 

For successful anodal blocking, a nerve cuff must be used which has minimal external current 

flow. Current flowing outside of the nerve cuff can stimulate the nerve outside of the cuff 

causing the anodal blocking to fail. 

Unlike conventional neural stimulation control of both the pulse amplitude and pulse duration 

are necessary to obtain successful selective stimulation. Control of the amplitude of the reverse 

phase of the stimulating pulse is also needed to prevent APs being generated when the pulse is 

removed. 

3.10 Anodal Blocking Set­up 

The sciatic nerve of Xenopus Laevis frog was explanted over a length of about 8 cm and kept in 

amphibian Ringer’s solution. A tripolar stimulation cuff “A” was placed at the distal end of the 

nerve. This cuff as 1.0 mm in diameter, the electrode contacts where arranged at a pitch of 

5 mm, were 0.2 mm wide and coated with platinum black (impedance at 1 kHz below 1 k�). 

For AC­block experiments, a second cuff “B” of the same type was wrapped around the nerve 

with a distance of about 1 cm to the cuff “A”. For velocity selective recording, a third cuff “C” 

was placed at the proximal end of the nerve. This cuff had a diameter of 1.5 mm and carried 

11 platinum contacts (pitch: 3.5 mm, width: 0.5 mm). This cuff was connected to custom 

designed amplifier chip that provided an array of bipolar amplifiers and filters. As described 

previously in section 3.4, the 10 outputs of this amplifier were similarly monitored by a data 

acquisition (DAQ) system (DAQCard­6062E, National Instruments), which sampled each 

channel at 40 kHz with dynamic range of 12 bit. This data was handled by LabView and saved 
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to disk of the laptop computer. Converting 10 bipolar recording channels to 9 tripolar channels, 

introduction of time delays dt and summation was carried out off­line by Matlab routine. 

Figure 3­9 – Anodal blocking setup. 

3.11 Anodal Blocking Procedure 

At first, only cuff “A” and “C” were installed, the stimulation intensity of a charge­balanced, 

current­controlled pulse was gradually increased while the neural response was monitored by 

cuff “C” and the DAQ system. 

The second experiment involved the third cuff “B”, which was used to inhibit propagation of 

APs excited by cuff “A” travelling towards cuff “C”. While cuff “A” stimulates the nerve on 

super­threshold level, a sinusoidal current (20 kHz) was fed into cuff “B”. This current was 

gradually increased in amplitude while the electrical signals picked up by cuff “C” were 

monitored. 

The third experiment focussed on evaluation of anodal blocking of nerves. Anodal blocking 

pulses are not purely inhibiting nerves but provide a so­called “blocking window” in which only 

small fibres are excited while large fibres are electrically blocked. This window is a function of 

charge. Outside the blocking window either only the large fibres are stimulated or large and 

small fibres. In this experiment, the intensity (charge) of the anodal blocking pulse was gradually 

increased and the neural response was monitored. 

For all experiments, propagation velocity profiles were generated that show the maximum 

amplitude of the rectified signal after time­shifting and summation of the 9 tripolar channels 

over the propagation speed and the related time delay dt. The delay domain is also converted to 

the velocity domain by calculating the velocity v = p/dt. The parameter p represents the 

recording electrode pitch. 
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3.12 Results and Discussion 

3.12.1 Hook Electrode Recordings 

The nerve was stimulated at low intensity with a rectangular pulse shape: 1.3 mA x 100 �s = 

0.13 �C. This caused the hook electrode (Described in Section 3.5) to detect a CAP that has a 

pronounced positive phase followed by a much weaker negative phase. Employing larger 

charges of 1.5 mA x 675 �s = 1.01 �C for stimulation changed the shape of the recorded trace. 

This resulted in the pronounced positive phase to peak later in time. During its decay, another 

positive phase appeared (Fig. 3­10). This behaviour was expected and known in 

electrophysiology as “inverse recruitment”: the stimulation threshold of the fast and large 

diameter fibres is lower than that of the slow and small ones. 

Figure 3­10 – Hook electrode recordings (top) and the stimuli that evoked them (bottom). Solid 
line: only one fast fibre population was excited. Dotted line: Two positive peaks indicate the 

activity of two populations. 

The distance between the anodal contact of the hook electrode and the cathode of the 

stimulation cuff was 68 mm. The onset of stimulation took place at 0.15 ms (according to Fig. 3­

10), the stimulus duration was set to 0.1 ms, which was just above stimulation thresholds of the 

large fibres. The positive slope of the CAP started at 2.075 ms, which gives a latency of 2.075 ms 

– (0.15 ms + 0.1 ms) = 1.825 ms. Therefore, the propagation velocity of this CAP was 68 mm / 

1.825 ms = 37.3 m/s. 

A larger stimulation pulse width was chosen in order to introduce enough charge for additionally 

exciting smaller fibres. The onset of the stimulus was at 0.15 ms, the pulse width was now 

0.675 ms, and the CAP of the first positive phase of the hook electrode recordings begins at 

2.125 ms. Assuming that this first phase was excited by the same charge as in the case described 

earlier, the calculated velocity is 68 mm / (2.125 ms – 0.15 ms – 0.1 ms) = 36.3 m/s. The onset 

of the second phase of the recordings was at 5.325 ms. It took all the charge provided by the 

pulse to excite this fibre population. Therefore the latency is 5.325 ms ­ (0.15 ms + 0.675 ms) = 

4.5 ms. The propagation velocity calculates to 68 mm / 4.5 ms = 15.1 m/s. 

Vipin Seetohul 36 



 
    

       

              

                

               

                  

                  

        

 

            
                

    

 

            
                

    

                

                

                    

                

                 

              

3.12.2 Cuff Electrode Recordings 

The nerve cuff recordings are smaller in amplitude than the hook electrode signals; interference 

and noise are more pronounced. Fig. 3­11 and Fig. 3­12 show the amplified bipolar signals after 

converting them to tripolar signals using Matlab. The y­axis shows the position of the tripole 

along the cuff. The further distant the tripole, the longer the time the signal needs to appear. Fig 

3­12 shows the effect of higher level of stimulation intensity than in Fig 3­11. In this case the 

dispersion of two different CAPs can be seen. 

Figure 3­11 – Tripolar recordings of electrically evoked potentials, recorded with the eleven­

contact cuff. The stimulation intensity was 0.13 �C. The black bar to the right shows the
­

amplitude scale: 50 �V.
­

Figure 3­12 – Tripolar recordings of electrically evoked potentials, recorded with the eleven­
contact cuff. The stimulation intensity was 1.01 �C. The black bar to the right shows the 

amplitude scale: 50 �V. 

As described earlier, processing the cuff data results in a time delay, with peak amplitude profile 

for each of the two stimulation intensities (shown in Fig. 3­13). At low stimulation intensities a 

single distinct peak can be found at a delay of dt = +125 �s. The contact pitch of the cuff 

electrode is 3.5 mm, therefore the propagation velocity of this fibre population is 3.5 mm / 

+125 �s = +28 m/s. The plus sign indicates the direction the recorded nerve signals (away from 

the stimulation electrode towards the recording cuff). At high stimulation charges, we find two 
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peaks, one at +100 �s that corresponds to a velocity of +35 m/s and smaller one at +250 �s, 

which relates to a speed of +14 m/s. 

Figure 3­13 – Two delay profiles corresponding to two different stimulation intensities: grey: 
1.01 �C, white: 0.13 �C. The bars have a width of 25 �s which is the reciprocal value of the 

sampling frequency. 

3.12.3 Electrode Discussion 

Comparing the propagation velocities obtained with the two different methods (cuff and hook), 

it is clear that the results of both are in the range described in the literature for frog nerve at 

room temperature: normally up to about 42 m/s [1]. However, the actual values differ, 

depending on the applied method as shown in Table 3­14. 

Stimulus charge Hook Cuff 

Qstim = 0.13 �C v1 = 37.3 m/s v1 = 28.0 m/s 

v1 = 36.3 m/s v1 = 35.0 m/s 
Qstim = 1.01 �C 

v2 = 15.1 m/s v2 = 14.0 m/s 

Table 3­14 – Predominant propagation velocities observed with two different methods using a 
hook and a cuff electrode. 

Possible errors are inherent to both methods. For the hook method the exact determination of 

timing and distance is crucial, but fine measurement of the distance between the hook and the 

stimulation cathode is difficult and also relating the onset time of a positive slope to the time 

during a long stimulation pulse when the stimulation threshold reached is a matter of guessing. 

The main problem with the cuff method is the minimum delay time dt, which is the reciprocal 

value of the sample frequency. Setting the sampling frequency to 40 kHz leads to a coarse 

resolution of the velocity profile at higher speeds, as shown in Table 3­15. Clearly, the use of a 

DAQCard with a higher sampling rate would remove this difficulty. 
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dt (µs) 25 50 75 100 125 150 175 

v (m/s) 140 70 47 35 28 23 20 

dt (µs) 200 225 250 275 300 325 350 

v (m/s) 18 15 14 13 12 11 10 

Table 3­15 – The time delay dt is restricted to multiples of the sample interval (here: 25 �s) and 
therefore the velocity (v) profile has a low resolution at high speeds. 

Calculating propagation velocities from a hook electrode recording is not only difficult (the 

point of fibre excitation during long pulses has to be guessed) but also cannot be transferred to 

neural prosthetic applications. In those, the nerve traffic is (macroscopically) chaotic and bi­

directional. 

3.12.4 Anodal Blocking Results 

At low stimulation charge of 0.13 �C, only fast fibres (A: 35 m/s) were activated. Increasing the 

charge to 1.01 �C led to an increased activity of fast fibres but also excited slower fibres (B: 

14 m/s), which contribute with a lower amplitude to the velocity profile, shown in Fig. 3­16. 

Figure 3­16 – Velocity profile of nerve electrically stimulated with two intensities. At high 
intensity, two fibre populations (A and B) dominate the profile. 

A different nerve gave a similar profile when stimulated at super­threshold level, as described by 

the dashed line in Fig 3­17. Applying a sinusoidal wave of 10 mA amplitude allows the complete 

block of the propagation of the CAP. Furthermore, a smaller amplitude (4 mA) inhibits 

predominantly fast fibres (A: 35 m/s) while the slower fibres (B: 14 m/s) show increased activity 

compared to the CAP. 
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Figure 3­17 – Velocity profile of a nerve which is received anodal blocking pulses of increasing 
amplitude (charge). 

Anodal blocking was carried out on a third nerve applying pulses of 550 �s width that had an 

exponential decay of a duration of 1 ms. The charge balancing phase was limited to 9 �A. The 

length of this phase depended on the amplitude of the first phase, which was gradually increased 

to 620 �A. Figure 3­18 shows that the stimulation amplitude of 140 �A was outside the blocking 

window, at 430 �A anodal blocking was achieved: The fast fibres (A: 23 m/s) are blocked and 

slow fibres (B: 11 m/s) are firing. Increasing the current to 620 �A led to inhibition of fast and 

slow fibres. 

Figure 3­18 – Velocity profile of a nerve which electrically evoked compound AP is gradually 
blocked using sinusoidal currents amplitude from 1 mA to 10 mA. 

3.12.5 Anodal Blocking Discussion 

All three anodal blocking experiments show that the method of velocity selective recording 

based on MEC is capable of providing information on the distribution of fibre activity. Not only 

the propagation velocity of the fibres was identified, but also the direction of CAP propagation: 

no increased activity can be found in the negative velocity range in Figs. 3­16, 3­17 and 3­18. 

However, the method is limited in resolution (delay dt domain) by the sampling frequency. At 

40 kHz, the smallest dt is 25 �s. This causes the profiles to be coarse for high velocities and 

provides an increasing definition with decreasing velocities. 

The obtained velocity profiles match the report of fibre activities given by literature: Gradually 

increasing an electrical stimulus in intensity, leads to “inverse recruitment”, as shown in 
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Figure 3­16. This stimulus selectively stimulated fast fibres first. AC blocking at low intensities
­

blocks fast fibres but stimulates slower fibres [50]. Anodal blocking also stimulates fast fibres at 

low amplitudes, increasing the amplitude caused inhibition of fast fibres while slower fibres were 

excited [51]. 

3.12.6 Conclusion 

Multi­contact cuff recordings can be interpreted with ease and should work with a bi­directional, 

neural traffic. This is reflected by the results discussed in section 3.12. Using explanted nerves it 

has been demonstrated that this method is applicable to in­vitro setups and provides 

information in the shape of a profile of the conduction velocity of the active fibres as well as 

their direction of propagation. The anodal blocking experiments show that this method of 

velocity selective recording based on a MEC is indeed capable of providing such information. 

This meets one of the objectives of this project, which is to demonstrate real­time velocity­

selective classification. These results therefore validate the work thus far. 

3.12.7 Next Steps 

The next phase of the project takes into consideration naturally evoked potentials by performing 

acute experiments. The proposed animal model to be used in this scenario is the Medial Nerve 

of the Danish Landrace pig. This would allow for nerve lengths of about 9cm to work on. It will 

involve the same procedure as for the frog experiments. The major advantage of experimenting 

on this type of nerve rather than that of the Xenopus is that it is closer to the nerve 

characteristics of humans. However, there will be an attempt at having an improvement on 

smoothness by using a faster data acquisition card that has better spatial resolution, the current 

one being at 0.025ms. 
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C h a p t e r 4
 

NATURALLY EVOKED POTENTIALS:
 

ACUTE PIG EXPERIMENTS
 

4.1 Introduction 

The object of the acute experiments will be to monitor neural afferent signals generated by 

natural sensors using multi­electrode cuffs; to show that three distinct naturally occurring nerve 

signals (cutaneous, joint receptors and tendon stretch receptors) in one nerve can be separated. 

The work of Haugland et al. [12, 13, 16, 17] encompass the investigation of cutaneous nerve 

recordings. In the series of experiments, nerve cuff electrodes will be used within the frontal 

limbs of the pig to demonstrate that the nerves can indeed be triggered at different levels to 

produce distinct velocities. This would demonstrate real­time velocity­selective classification and 

recording with multiple­electrode cuff (MEC) electrodes. Eventually it would be ideal to further 

investigate Chronic measurements – Hansen et al. have shown that signals from cuff electrodes 

can be used chronically as inputs for neuroprostheses. 

In the proposed experiments, the pigs foot will be flexed or extended in order to stretch the 

forearm muscles and produce 'spindle' and 'Golgi tendon organ' responses. Whether we want to 

flex or extend will depend on which nerve is recorded from; during these initial experiments, the 

flexor muscles will be stretched when the median nerve is recorded. However, the apparatus 

should be 'flexible' enough so as to stretch the extensor muscles and record from the radial 

nerve as well. For the first set of experiments, the wrist extension motion (which acts to stretch 

the flexor muscle) will be used. The same routine of recording as done so far will be applied to 

different scenarios as described by the following 3 category of experiments: 

Experiment 1: Trials with only the cutaneous stimulation applied (Cutaneous receptors 

targeted). There will be NO motion at the wrist; 

Experiment 2: Trials with only the wrist rotation (and hence stretch of the wrist muscles – 

Stretch receptors targeted). A change in angle will cause the muscles to contact, hence causing 

the nerves to fire. This targets muscle afferents only. 

Experiment 3: Trials with both stimuli applied at the same time (Both Cutaneous and Stretch 

receptors targeted). 

At the end of the experiments, it should be possible to look for the superposition of the two 

response contributions. This can provide information as to the ability of the cuff to separate the 

Vipin Seetohul 42 



 
    

               

               

               

                

    

     

 

        

 
                  

                 

                 

              

                  

                 

cutaneous afferent activity from the muscle afferent activity. An approach would be to have two 

arbitrary waveform generators, one for each motor, and a means of synchronizing them. These 

waveforms will be recorded along with the output data for later evaluation of the nerve 

responses. The waveforms have to be smooth since the afferent receptors will respond to any 

'cogginess' in the waveforms. 

4.2 Danish Landrace 

Figure 4­1 – A typical Danish Landrace pig. 

The species of pig used in our experiments was the Danish Landrace. The latter is a medium to 

large breed that has a distinct physical appearance. They are white in colour, have a rather fine 

hair coat, long snouts and heavy drooping ears. They have long bodies, deep smooth sides, and a 

noticeable lack of excess fat and wrinkles. The following picture, reproduced from [52], depicts 

the top and side views of the limb nerve anatomy. The portion of nerve we are interested in 

working on is the medial nerve, highlighted in yellow and labelled as ‘27’ in Fig. 4­2. 
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Figure 4­2 – Topographical view of the pig’s limb; LHS: Lateral view, RHS: Anterior view 

4.3 Data Acquisition: National Instruments 

As mentioned previously, in order to improve on smoothness of the recording quality, a 

faster data acquisition card that has better spatial resolution has been purchased and the 

main differences are shown in the following table: 

General DAQCard­6062E USB­6251 
Price £795 £895 
Bus Type PCMCIA USB 
Product Family E Series M Series 

Analog Input 
Number of Channels 
Sample Rate 

16 SE/8 DI 
500 kS/s 

16 SE/8 DI 
1.25 MS/s 
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Resolution 12 bits 16 bits 
Maximum Voltage Range ­10..+10 V ­10..+10 V 
Number of Ranges 4 7 
On­Board Memory 2048 S 4095 S 

Analog Output 
Number of Channels 
Update Rate 
Resolution 
Maximum Voltage Range 

2 
0.85 MS/s 

12 bits 
­10..10 mV 

2 
2.8 MS/s 

16 bits 
­10..+10 V 

Digital I/O 
Number of Channels 
Timing 
Maximum Input Range 
Maximum Output Range 
Programmable Input Filters 
Output Current Flow 
Current Drive (Channel/Total) 
Programmable Power­Up States 
Pattern I/O 

8 DIO 
Static 
0..5 V 
0..5 V 

No 
Sinking, Sourcing 
24 mA/192 mA 

No 
No 

24 DIO 
Hardware timed (< 10 MHz) 

0..5 V 
0..5 V 
Yes 

Sinking, Sourcing 
25 mA/448 mA 

Yes 
Yes 

Counter/Timers 
Number of Counter/Timers 
Resolution 
Maximum Source Frequency 
Maximum Range 
Timebase Stability 
GPS Synchronization 
Pulse Generation 
Buffered Operations 
Debouncing/Glitch Removal 

2 
24 bits 

20 MHz 
0..5 V 

100 ppm 
No 
Yes 
Yes 
No 

2 
32 bits 

80 MHz 
0..5 V 

50 ppm 
No 
Yes 
Yes 
Yes 

Physical Specifications 
Length 
Width 
Height 

8.56 cm 
5.4 cm 
0.5 cm 

26.67 cm 
17.09 cm 
4.45 cm 

Table 4­3 – Difference in DAQ Specifications. 

4.4 Motor Variables 

The controlled variables of any given motor can be classified as such: 

1. Speed Control. 

The function of the speed servo amplifier is to keep the prescribed motor speed constant and 

independent of load changes. To achieve this, the set value (desired speed) is continuously 

compared with the actual value (actual speed) in the control electronics of the servo amplifier. 

The controller difference determined in this way is used by the controller to regulate the power 

stage of the servo amplifier in such a manner that the motor reduces the controller difference. 

This represents a closed speed regulating circuit. 
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2. Position control.
­

The positioning control ensures a match between the currently measured positions with a target 

position, by providing the motor with the corresponding correction values, as with a speed 

controller. The position data are obtained from the digital encoder. 

3. Current control 

The current control provides the motor with a current proportional to the set value. 

Accordingly, the motor torque changes proportionally to the set value. The current controller 

also improves the dynamics of a superior positioning or speed control circuit. 

Figure 4­4 – Block Diagram of Maxon Motor Control: Feedback. 

The requirements of the motor in our experiments were expected to be such that: 

1.	­ The output shaft must be able to move the pig's ankle. The lever arm for this should be 

about 10cm up to 15cm to have a safety margin. 

2.	­ 10N of force should be sufficient to rotate the ankle against the passive joint stiffness. 

Any greater torque capabilities would be welcome if ever the ankle were to be rotated 

against an active contraction. 

3.	­ The velocity of the rotation should be about 25 degree per second in order to get a 

reasonable neural discharge from the muscle receptors. 

Lower gear ratios for the motor will allow greater torques to be produced. This is more useful 

than greater rotational speeds considering the possibility of rotating the ankle against some 

muscle contraction in future experiments. Higher rotational velocities will result in a larger 

amplitude neural discharge ­ but if the velocity selective recoding paradigm only works with high 

velocity joint motions, then the concept will not be useful clinically. 

If we design for a torque of 10 N at a lever arm length of up to 15 cm, then this is 10N x 0.15m 

= 1500 mNm which is needed after the gear train. 
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Other considerations are the amount of power that the motor would require. 

We require a controller that needs about 12 to 24 volts and less than about 10 amps because 

otherwise the motor servo amp will be very bulky and expensive. 

4.5 Maxon EC Motor 

Maxon EC motors are electronically commutated DC motors. Designed as internal 

motors, their shafts turn with no detent thanks to an ironless winding. This offers benefits such 

as high dynamism, low inductance and high efficiency and reliability. 

The existing Maxon motor available for the project had for specification 12 Volts and 10 Amps 

(120 Watts – Maxon EC 40 – Part number 167177 on the Maxon catalogue). A brushless motor 

is highly appropriate for the nature of our experiments to avoid the possibility of the motor 

brushes generating electrical noise that would contaminate the nerve recordings. 

Figure 4­5 – Maxon motor mechanism. 

Unfortunately, it was discovered that there was an incompatibility between the existing motor 

controller and the EC 40 motor and the motor didn't come with a rotary position encoder and a 

set of gears. Therefore the solution was to buy the appropriate power supply, a gear head, an 

encoder and controller. 

4.5.1 Maxon Planetary Gearhead 

Based on the specifications of the Maxon EC 40 motor, the available gearhead that meets our 

requirements is the Planetary Gearhead GP42C (Part number 203131 on the Maxon 

catalogue). This has a gear ratio of 230:1. 
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4.5.2 Maxon HEDL Encoder 

The motor is equipped with a digital encoder that provides a certain number of pulses per 

revolution. The turning direction is detected with the square pulses of channels A and B offset 

by 90 electric degrees. 

Figure 4­6 – Block Diagram of Maxon Motor Control: Encoders. 

Encoders can be generally categorised into optical (photoelectric), magnetic encoders, and 

mechanical contact types. There are two basic types of encoders: rotary and linear. The technical 

principles behind them are somehow similar. 

Linear and rotary encoders operate on the principle of the photo­electrical scanning of very fine 

gratings. The so­called scanning unit in an encoder consists of a light source, a condenser lens 

for collimating the light beam, the scanning reticle with the index gratings, and silicon 

photovoltaic cells. When the scale is moved relative to the scanning unit, the lines of the scale 

coincide alternately with the lines or spaces in the index grating. The periodic fluctuation of light 

intensity is converted by photovoltaic cells into electrical signals. These signals result form the 

averaging of a large number of lines. The output signals are two sinusoidal signals that are then 

interpolated or digitized as necessary. 

The output signals of incremental rotary encoders are evaluated by an electronic counter in 

which the measured value is determined by counting ‘increments’. 

The encoders provide a simple square signal for further processing in the control system. Its 

impulses can be counted for exact positioning or determining speed. Channels A and B pick up 

phase shifted signals, which are compared with one another to determine the rotation direction. 

A ‘home’ pulse (index channel I) then provides zero crossing and is used as a reference point for 

precise determination of rotation angle. The line driver produces complementary signals A, B, I 

which help to eliminate any interference on long signal lines. In addition, this electronic driver 

installed in the encoder improves signal quality with steeper signal edges. 
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Figure 4­7 – Representation of the output signal of a digital encoder. 

Encoders are normally positioned and coupled to the rear of the servomotor or to the screw and 

opposite to the drive via a backlash­free precision coupling. The spindle or motor shaft is 

directly connected to the shaft of the rotary encoder. The scanning unit is connected to the 

encoder shaft by ball bearings, however, without a rigid connection to the housing. Instead, a 

coupling is located between these components and compensates for alignment errors between 

both shafts. 

An incremental rotary encoder with integral couplings is being used in our set­up, the HEDL 

5540 from Maxon (Part number 110516 on the Maxon catalogue). This specific one has 500 

counts per turn and 3 channels. 

Figure 4­8 – Maxon HEDL Encoder 

4.5.3 Maxon EPOS Controller 

Maxon motor EPOS 24/5 (Part number 275512 on the Maxon catalogue) is a small­sized, fully 

digital smart motion controller. The sinusoidal current commutation by space vector control 

offers to drive brushless EC motors with minimal torque ripple and low noise. The integrated 

position­, velocity­ and current control functionality cleverly suits our positioning application. 

The EPOS 24/5 is preferably commanded and controlled as a slave node through a serial data 

bus, the CANopen network. The CAN bus is an efficient data bus, very common in all fields of 

automation and motion control. The unit is operated through a RS­232 communication port. 
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Figure 4­9 – Wiring for maxon DC motor with integrated motor/encoder ribbon cable. 

4.5.4 Maxon Software 

Figure 4­10 – Maxon software views: LHS: Position Mode, RHS: Velocity Mode 

Maxon provides its own software manipulate the controller and DC motor performance. 

However, we need the motor movement and the solenoid/load­cell setup to be working 

simultaneously. This instigated the creation of our own software on LabView to have one 

window controlling all hardware functions. 

4.6 Omron Power Supply 

The power supply (available to buy from the university workshop) that could safely drive the 

Maxon EC motor was the Omron S8PS­600­24C. This has a power rating of 600W, output 

voltage of 24 V and would accommodate an output current of 27 A. This particular model has 

an interesting overload protection feature; if an excessive current flows for 5 s or more, the 

output will be turned OFF and simultaneously a protection –ON alarm indicator will be lit. 
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Figure 4­11 – Omron power supply
­

4.7 Solenoid & Load­Cell Set­up 

The solenoid has just 2 wires. The direction of the current determines the direction of motion 

and the amplitude of the current determines the excursion. The motor controller can be thought 

of as a big servo amplifier and a voltage ramp command can be generated by the computer 

analogue output board. That command will be compared with the position feedback signal to 

generate the error signal which is what must be ultimately passed to the motor output stage by 

the controller. The position feedback signal is a voltage provided by a linear potentiometer that 

will be mechanically coupled to the solenoid motor to measure its excursion. 

The load cell is just to provide information about the force that is applied to the toe pad. When 

using a position ramp, the ramp slope (velocity) can be varied and the peak response of the 

nerve should be a linear function of the indentation velocity of the toe pad. This will produce a 

graph for analysis of the recovered nerve activity signal. If the nerve signal doesn't behave in 

this way then we will then suspect that recorded signal is not PURE cutaneous. 

After the plateau of the toe indentation ramp is reached, there will be a certain force being 

applied to the toe pad. This will result in a tonic (steady state) nerve activity from the cutaneous 

receptors. This steady state nerve activity level will be a linear function of the force applied. By 

measuring the force applied graphs can be produced for different excursions and hence different 

levels of steady state force. 

For the solenoid motor, a look up table could be used if the solenoid is not linear. The further 

the shaft extend (against a spring return) the more current is necessary to get to move out 

further. So its characteristics can be plotted and an excursion v/s voltage table can be made (The 

voltage conversion comes from the DC resistance of the solenoid coil). The computer can then 

look at the instantaneous desired excursion (position on the voltage command ramp) and 
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determine from the look up table what voltage is needed to get there. That voltage is then fed to 

the solenoid motor servo amplifier, which determines the correction needed to get there from 

the present position. 

For the solenoid device current must be regulated because that controls the force. Then an 

error signal is produced by comparing the voltage output of a calibrated load cell to the desired 

force. This force can be a particular level or it can be a ramp for instance or modulated in any 

other way. So for force control from the solenoid, a ramp voltage to feed the servo amp is 

needed (which converts the input voltage to a current). 

The load cell is just a 4 legged strain gage bridge. So it has two leads for DC power and two 

leads to be lead to a bridge amplifier circuit. A voltage controlled source to power the load cell 

is needed, since the regulation of its excitation is critical to allow calibration. Generally about 2 

or 3 volts is called for and the sensitivity of the load cell can be increased by increasing the 

excitation voltage. But this is limited by any self heating that takes place in the load cell. 

The pig’s foot will be flexed or extended in order to stretch the forearm muscles and produce 

'spindle' and 'Golgi tendon organ' responses. Whether we want to flex or extend will depend on 

which nerve is recorded from; the plan is to stretch the flexor muscles when the median nerve is 

recorded. But the apparatus could be 'flexible' so the extensor muscles can be stretched and 

recordings made from the radial nerve as well. Having two nerve recording cuffs one on the 

median nerve and one on the radial nerve could allow the joint to be controlled since we would 

then ideally have a pair of sensors ­ one to signal flexion and the other to signal extension. For 

the first study, wrist extension motion alone (which acts to stretch the flexor muscle) is planned. 

The load cell is in series (mechanically speaking) with the solenoid and the pig toe pad. The 

sensor sends a signal indicating the compressive force against the toe pad. 

The solenoid should be programmed to make ramp and hold force profiles. A range of 

velocities such as 1 N/s to maybe 25 N/s is needed. This will produce some output from the 

cutaneous receptors in the toe pad. The transient afferent activity will be a linear relation with 

the velocity during the ramp portion. The tonic (DC) part of the activity will be much smaller 

but will be a function of the magnitude of the compression. 

Some trials will be run with only the cutaneous stimulation applied; the next batch of trials will 

consist of only the wrist rotation (and hence stretch of the wrist muscles; and finally, the last set 

of trials with both stimuli applied at the same time. The simultaneous activity could also include 

a static level of toe contact with a dynamic rotation of the wrist and vice versa. 
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Once this is achieved, we need to then look for the superposition of the two response 

contributions. This can provide information as to the ability of the cuff to separate the 

cutaneous afferent activity from the muscle afferent activity. The ultimate target is to find a way 

to synchronize the activity of the solenoid and the rotation motor. Furthermore, the muscle 

spindles are very sensitive, so any rotation movement at all will cause them to discharge. A 

mechanical locking of the rotation axis would be a solution. A few holes drilled into the rotation 

shaft at 30 deg intervals on the shaft and a pin (A tapered pin – To eliminate any play) to push 

into the hole would be an easy solution. 

The load cell is the force sensor in the solenoid servo system. A signal is input for the force 

profile that we want the toe pad contactor to follow. This will be a sine wave, a ramp or a 

sigmoid, depending on the sensor polarity we either add or subtract the command signal and the 

sensor signal to get the error signal that is feed to the amplifier that drives the solenoid (we need 

to make sure to not make a positive feedback condition). The frequency should be maybe 1 Hz 

up to 5 Hz. When using a ramp and hold profile the ramp should last between 0.2s to 0.5s then 

about 2 sec plateau to be able to look at the static discharge from the cutaneous receptors and 

then relax the skin indentation again with a ramp in 0.2 to 0.5s. But the nerve activity during a 

sustained indentation of the skin will be very small compared to the activity that will be present 

during the phasic part of the stimulus. 

Extra weight is bad since it limits the bandwidth of the solenoid. When handling the load cell, 

care should be taken not to subject it to off axis loads, and not to exceed the maximum axial 

load as well as else it will be destroyed. 

4.7.1 Solenoid Details 

The solenoid used in our experiments, made by Saia­Burgess, is the STA 26 x 52 Ledex Tubular 

Push­Solenoid, with a flat surface plunger without anti­rotation flat (Order number STA 

195227­126 at Saia­Burgess). The solenoid itself weighs 190.8 g, 33.74 g of which is the plunger 

alone. This will be an important factor when discussing the design of the rig at a later stage. This 

specific model is usually intended for on/off operation such as lock/latch operations, and has a 

holding force of 52.58 N at 20°C. Therefore, appropriate modifications had to be made to suit 

our purpose. In order to physically fit the solenoid and load­cell together, the end of the shaft of 

the solenoid core had to be threaded. 
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Figure 4­12 – Saia­Burgess Solenoid: LHS: Solenoid model, RHS: Plunger modification.
­

Size 
Solenoid 
Type 

Package 
Dimension 

(mm) Max 
Stroke 
(mm) 

Force (N) at Nominal Stroke 
and Specified Duty Cycle 

Dia. Length 100% 50% 25% 10% 

STA 
26 x 52 Push 26 52 17.8 

2.22 
– 

3.34 

4.45 
– 

8.37 

8.90 
– 

12.9 

17.9 
– 

23.14 

Table 4­13 – Solenoid specifications.
­

The performance of this solenoid is summarised in the following table and chart:
­

Maximum duty cycle 100% 50% 25% 10% 

Max ON time when 
pulsed continuously (Sec) 

∞ 360 32 8 

Max ON time for single 
pulse (Sec) ∞ 470 120 32 

Watts (@ 20°C) 10 20 40 100 
Ampere turns (@ 20°C) 1166 1649 2332 3688 
Resistance # Turns VDC (Nom) VDC (Nom) VDC (Nom) VDC (Nom) 

8.44 1128 9.2 13.0 18.4 29.0 

Table 4­14 – Solenoid performance.
­

Figure 4­15 – Solenoid performance with flat face plunger.
­

However, if there were the possibility of acquiring a new solenoid, one with a 60° plunger would 

have been more convenient for such a set­up. The main reason being that the latter works away from 

the fast­rising end of the force­distance characteristic, as shown in the following chart. The 

distance over which the force is experienced is relatively bigger, giving us a longer stroke. 
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Figure 4­16 – Solenoid performance with 60° plunger. 

4.7.2 Load­Cell Details 

The Load Cell used was the Honeywell model made by Sensotec Sensors. It has a full 

scale range of 250 grams, an excitation of 5VDC, an input impedance of 622 �, an output 

impedance of 451 � and a calibration factor of 23.8423 mV/V. 

4.8 Solenoid & Load­Cell Calibration & Testing 

In order to confirm the correctness of the individual characteristics (As provided by the 

manufacturers) of the load­cell and solenoid when connected together, a series of tests were 

carried out. This was to ensure that either component would behave as expected even when 

coupled together. 

4.8.1 Experiment 1: Load­Cell Calibration 

The first task only involved the load­cell on its own. Using small masses of 20 g, the load­cell 

was stacked with 20g increments to about 500g. Plotting this graph proved that the load­cell was 

behaving linearly as expected. 
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Figure 4­17 – Load calibration. 

4.8.2 Experiment 2: Solenoid/Load­Cell against a hard surface 

This experiment involved setting up the solenoid and load­cell against a hard surface and varying 

the voltage on the solenoid while recording the values on the load­cell. The results are shown in 

Fig. 4­19. In this case, we can see that the solenoid seems to be activated at around 5V and a 

somehow linear compression of the load­cell to about 7V. 

Figure 4­18 – Solenoid and load­cell setup.
­
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Figure 4­19 – Solenoid/Load­cell performance against a hard surface. 

4.8.3 Experiment 3: Solenoid/Load­Cell against a soft surface 

Now, to bring the situation closer to what the set­up is intended for, the solenoid/load­cell is set 

up against a soft surface, a not­so­rigid football in this instance, to mimic the toe pad of the pig’s 

limb. 

Figure 4­20 – Hard surface and soft surface comparison.
­
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Figure 4­21 – Hard surface and soft surface comparison. 

This has been plotted along with the performance of the solenoid/load­cell on a hard surface, so 

as to highlight any major difference. Considering the somehow linear portion between 3V and 

6V, the plot with the hard surface had a gradient of ­0.035 compared to ­0.050 for that of the 

ball; Not a big difference. (See Appendix C for more media files) 

4.8.4 Experiment 4: Solenoid/Load­Cell against a kitchen scale 

In the last set on experiments, there was a similar set­up, the only difference being, instead of 

the hard surface or football, a kitchen scale was placed vertically against the solenoid/load­cell 

set­up. This seemed to be a convenient way to read the force generated by the solenoid in 

grams. Fig. 4­22 demonstrates the relevant outcome. The blue line shows the trend when a pulse 

wave is applied to the solenoid. Interpolating the two trends causes the lines to meet at the point 

where the load­cell reads 200g (2N) at an applied force of 0V. This 2N is a pre­load and can be 

adjusted. A pre­load is necessary to ensure that the loop is always closed for the PID to work 

properly. 
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Figure 4­22 – Performance against a kitchen scale in pulsed mode. 

4.9 PID Controller 

In order to operate the solenoid and load­cell in a closed­loop system, a PID controller 

had to be designed. A PID controller is a simple three­term controller. The letters P, I and D 

stand for Proportional, Integral and Derivative respectively. The transfer function of the most 

basic form of PID controller is as such: 

K K s 2 + K	 s + KI D P I( ) = KP + + K DsC s	 = 
s	 s 

where KP = Proportional gain, KI = Integral gain and KD = Derivative gain. In terms of a flow 

diagram, a PID Controller structure can be represented as such: 

Figure 4­23 – General closed loop system. 

The variable e denotes the tracking error, which is sent to the PID controller. The control signal 

u from the controller to the plant is equal to the proportional gain (KP) times the magnitude of 

the error plus the integral gain (KI) times the integral of the error plus the derivative gain (KD) 

times the derivative of the error. 

de 
u = K Pe + KI ∫ edt +KD 

dt 
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In our specific case this theory can be applied as in the following diagram, where the solenoid 

and load­cell can be considered as the ‘plant’, and the control circuit as the ‘controller’. The 

whole process can be monitored using an oscilloscope. 

Figure 4­24 – Solenoid/Load­cell closed loop system. 

The initial design of the control circuit is shown in the following figure. After considering 

numerous publications ([53], [54], [55], [56], [57], [58]) this has been adapted from Meyrath [59] 

so that it is in its most simplistic format. 

Figure 4­25 – PID Circuit. 

Resistors R1, R6, R7 and capacitors C4, C5, C6 are the components that optimise the PID 

performance as described in Table 4­26. When building the PID circuit board, these specific 

resistors and capacitors were made accessible so that repetitive handling would not cause too 

much damage to the whole circuit. The final schematic of the circuit is shown in Fig. 4­27, a 

higher resolution copy of which is found in Appendix C. 
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Components Action 
(R1 + R2)/R3 Proportional gain 
(R5+R6)xC4 Integration time 
(R7+R8)xC5 Differentiation time 

C6 Gives high­frequency roll­off 
R9 Limits differential gain 

Table 4­26 – Summary of PID main component actions.
­

Figure 4­27 – Final PID Schematic. 

4.9.1 PID Controller Tuning and Optimisation 

When considering tuning of a PID controller according to literature ([60], [61], [62], [58], [55]) 

there are four major characteristics of the closed­loop step response that need to be considered. 

They are: (1) Rise Time: the time it takes for the plant output y to rise beyond 90% of the 

desired level for the first time; (2) Overshoot: how much the peak level is higher than the steady 

state, normalized against the steady state; (3) Settling Time: the time it takes for the system to 

converge to its steady state; and (4) Steady­state Error: the difference between the steady­state 

output and the desired output. The effects of increasing each of the controller parameters KP, KI 

and KD can be summarized as shown in the following table: 
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Response Rise Time Overshoot Setting Time S­S Error 
KP Decrease Increase NT Decrease 
KI Decrease Increase Increase Eliminate 
KD NT Decrease Decrease NT 

Table 4­28 – Summary of controller parameters. (NT: No definite trend. Minor change) 

While designing the PID controller, the following steps were taken: (1) After activating the 

system, characteristics of the system that needed improving were noted; (2) KP was used to 

decrease the rise time. (3) KI was used to eliminate the steady­state error; (4) KD was used to 

reduce the overshoot and settling time. 

An interesting method that is commonly used for tuning PID controllers is the Ziegler­Nichols 

tuning rule [63]: Ziegler and Nichols conducted numerous experiments and proposed rules for 

determining values of KP, KI and KD based on the transient step response of a plant. They 

proposed more than one method, but in our case, we limited ourselves to what’s known as the 

first method of Ziegler­Nichols. It applies to plants with neither integrator nor dominant 

complex­conjugate poles, whose unit­step response resemble an S­shaped curve, with no 

overshoot. This S­shaped curve is called the reaction curve. 

Figure 4­29 – Ziegler­Nichols S­shaped curve. 

The S­shaped reaction curve can be characterized by two constants, delay time L and time 

constant T, which are determined by drawing a tangent line at the inflection point of the curve 

and finding the intersections of the tangent line with the time axis and the steady­state level line. 

Using the parameters L and T, we can set the values of KP, KI and KD according to the formula 

shown in the following table: 

Controller KP KI KD 

P 
L 

T 0 0 

PI ( )
L

0.9 T ( 2 )0.27 
L 

T 0 

PID ( )
L

1.2 T ( 2 )0.6 
L 

T 0.6T 

Table 4­30 – Equations to determine KP, KI and KD
­
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These parameters typically gave a response with an overshoot about 25% and good settling time. 

We then started fine­tuning the controller using the basic rules that relate each parameter to the 

response characteristics. Using the previously described method and a lot of trial­and­error, the 

parameters for the PID controller that showed a sharper response are tabulated below and 

finally, some screen­shots of the final PID controller. 

Parameter R1 R2 R3 R5 R6 R7 R8 C4 C5 C6 
Value 40k� 20k� 10k� 1� 100k� 100k� 1� 1nF 1�F 1�F 

Table 4­31 – PID parameters
­

Figure 4­32 – PID screen­shots. 

4.10 Test Rig 

The test rig for this project was originally designed by Professor Ron Riso, acting consultant. 

The main idea was to have the pig lying flat on its back, on a base plate, and its frontal end 

between the vertical posts of the platform. Its left limb would then be held up by an elbow 

fixation which is supported by a vertical post. The rotation shaft will be confined to the pig left 

side, and it is the pig LEFT forelimb that will be rotated at the wrist. So the shaft wants to be 

only as long as needed to position the solenoid apparatus at the left forelimb. The wrist is held 

in place with a wrist fixation which carries on to: a ball­joint on one side (and further to a wrist 
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fixation assembly supported by a vertical post), and to a counter­weight structure on the other 

side. This structure is connected to the rotary motor and also to the solenoid, load­cell and 

contactor. The limb extremity is secured using a nail fixation method. The following drawing 

shows how the motor mount tower is coupled to a platform containing the bearing block. 

Figure 4­33 – Overview of initial test­rig platform with parts K, L, M and N. 

The motor base plate is fixed to the main base plate by using a C­clamp that acts like a 'vise grip' 

pliers. This is quick and allows the motor tower to be slid around to different locations to get an 

alignment with the pig. The length of the balanced beam (Part O) is such that it reaches to the 

left forelimb. It is long enough to extend to about 100mm from the end of the bearing block 

and it can be adjusted to the correct length (by cutting it) once the size of the pig is known. The 

end of the shaft will have the solenoid, load­cell and counterweight components attached. This 

will be quite heavy so the bearing should not be placed too far to the left of the pig. 
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Figure 4­34 – Initial pig wrist fixation bar 

In the original structure, the hardware was mounted on both sides of the pig. The elbow and 

wrist fixation on one side and the rotation motor on the other. With regards to the ball joint, it is 

intended to attach to the shaft shown in the drawing having parts G, H and I. 

Figure 4­35 – Solenoid/Load­cell support 

The following figures show further detailed schematics of the original pieces that make up the 

test rig. In the top view of the elbow clamp, the left and right bars A and B are anchored in 

channels to slide left and right for different width of pig elbows. 

Vipin Seetohul 65 



 
    

 

              

 

              

 

Figure 4­36 – Views of the elbow clamp: Parts A, B, C, and D
­

Figure 4­37 – Views of the elbow clamp: Parts A, B, C, and D
­
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Figure 4­38 – Views of the Motor mount; Parts K, L, M. 

Fig. 4­38 shows the side vie of the support for the rotation motor mount, including base L, 

vertical beam K and rotational beam M. The width and depth of bar M is 30 mm by 30mm. A 

plate will be attached to the top to secure a pair of bearings. 

Once the test rig was put together, it was brought in to the animal labs to try on some pig 

cadavers, just to make sure that the size was adequate to accommodate the animal for the 

planned experiments. Unfortunately this is where the suitability of the design of this test rig was 

being questioned. Appendix D1 shows the original design being tried in the hospital. 
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Figure 4­39 – Pictures of the initial pig fitting on the test rig. 

4.11 LabView 

Since conducting the frog experiments, major modifications had to be made on the LabView 

software in order to integrate tasks such as manipulating the Maxon motor, controlling the 

solenoid/load­cell, video capture of the limb movement, online graph analysis, and finally, 

reviewing graphs of previously saved data files. It should also be worth mentioning that the 

version of the LabView software was upgraded from version 7.1 in the frog experiments to 
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version 8.2 in the pig experiments. The following figures show actual screenshots of the 

‘Velocity Selective Recording Software’ (VSR Software), briefly explaining what it does. 

Figure 4­40 – Screenshot of Page 1 of the VSR Software. 

The default screen of the VSR software is Page 1. In the first column (Record Input/output 

controls), the top section ‘Analogue input channel parameters’ defines the physical channels 

from the National Instrument USB­DAQ from which data will be acquired. This comes in very 

handy if ever we want to monitor one or few specific channels. For example, if one of the 

channels were to be picking up too much noise or maybe even a ring on the cuff electrode were 

to be damaged for instance. The next section down in that column (Analogue output channel 

parameters) defines the physical output channel. The last section in this column, ‘Digital Timing 

Parameters’, set the acquisition quality of the NI USB­DAQ device. Moving on to the top 

section of the next column, ‘EPOS Controls’, this manages the Maxon motor EPOS controller 

connection and also allows the user to define the values of the motor’s range of movement and 

desired velocity. Once a connection is established, this is indicated by the top indicator which 

lights green, and the user presses the ‘Move to position’ button after inputting the desired 

values. The section just below the ‘Move to position’ button has been integrated such that it is a 

feedback system that provides the user with an indication whether the desired speed has been 

obtained and under what velocity and in what time of movement. Finally, the last part of the 

section is dedicated to controlling the solenoid. Here, the user has the option of setting the 

number of pulses desired, its frequency, its amplitude and how long to wait for. It is always 

better to have more data processing option; based on this, a webcam was integrated in the whole 

system whereby whenever a motion was made by the motor, the actual limb movement was 

recorded in ‘.avi’ format. This might be useful in such a scenario where, when a nerve activity 
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were to be recorded, the user would want to find out at what specific angle of the limb motion it 

actually happened. Therefore by comparing time­snaps on the recorded graph and that on the 

movie clip, the exact position of the limb would be known. Moving on to the next column, the 

top waveform graph displays a real­time recording of the data being captured by all the channels. 

The lower window displays the view being seen by the USB­webcam. Finally, the top graph of 

the last column monitors the activity of the solenoid/load­cell and the bottom section sets the 

data­path of where the user intends to store the recording. It has been designed such that any 

given experiment may contain several sweeps, one sweep being one recording session. This is 

also the part of the software that displays any errors at any given time. 

Page 2 of the software gives the user the freedom to place cursors on the plots being recorded 

thus displaying exact values of gaps between peaks of signals for example. The next figure 

shows a screenshot of that page. 

Figure 4­41 – Screenshot of page 2 of the VSR Software. 

Finally, the last screenshot in the VSR Software, Page 3, is displayed in the next figure. On this 

page, the user has the option of reviewing previously recorded signals. In this specific example, 

the figure displays the performance of the solenoid/load­cell PID system. The user has first to 

specify the data path where the recorded file is located. The ‘Update’ button is then pressed. The 

top­left graph displays the whole recorded session; the top­right graph displays the behaviour of 

the Maxon motor movement; the bottom­left graph shows the Fast Fourier Transform (FFT) of 

the acquired signal; and finally, the bottom­right graph shows the performance of the 

solenoid/load­cell. 
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Figure 4­42 – Screenshot of page 3 of the VSR Software.
­

4.12 Anaesthesia 

In consideration of the ethical issues, the appropriate anaesthetics have to be used to minimise 

the pig to suffer. The surgery and administering the anaesthetics is performed by a fully qualified 

surgeon. In experiments of this nature, the standard anaesthesia is Isofluorane, and the typical 

pig condition should be as such: pH = 7.49, pO2 = 25.0, pCO2 = 5.0. An interesting area for 

further investigation is the effects of anaesthetics on nerve conduction. A few publications ([64], 

[65], [66], [67], [68], [69], [70], [71], [72], [73] and [74]) already discuss the topic. Having 

considered the core aspects of the experiment plan, an experimental protocol can be put 

together. 

4.13 Experiment Protocol 

4.13.1 Hypothesis 

The object of the acute experiments is to monitor neural afferent signals generated by natural 

sensors using multi­electrode cuffs; to show that three distinct naturally occurring nerve signals 

(cutaneous, joint receptors and tendon stretch receptors) in one nerve can be separated. In this 

series of experiments nerve cuff electrodes will be used within the frontal limbs of the pig to 

demonstrate that the nerves can indeed be triggered at different levels to produce distinct 

velocities. This would demonstrate real­time velocity­selective classification and recording with 

multiple­electrode cuff (MEC) electrodes. 
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4.13.2 Theory 

A large number of fibres (in each peripheral nerve) carry many neural signals with both afferent 

and efferent traffic. Traditionally, only one signal is available from each cuff and reducing this to 

only one artificial signal represents a huge loss of information. Various types of neural signal are 

carried by fibres of different diameter. According to Rushton et. al., it is possible to extract more 

information from one cuff by fibre diameter­selective recording. This is equivalent to measuring 

the level of activity in the velocity domain, because of the linear relationship between axon 

diameter and action potential (AP) velocity. According to Riso et al and Rahal et al, the use of 

tripoles reduces the sensitivity of the device to contamination from electromyographic (EMG) 

activity in nearby muscles. Taylor et al use an extension to this method, in which the cuff 

contains N tripoles. Their outputs are then summed after the insertion of artificial delays to 

cancel the naturally occurring propagation delays along the cuff. Action Potentials propagating 

at different velocities (including opposite directions) appear at the electrodes with characteristic 

time delays. These naturally occurring time delays can be compensated electronically. Delays and 

summation act as velocity selective filter. There will be a peak at the output corresponding to 

different velocities. 

4.13.3 Surgical Procedure and Preparation 

The animal undergoes the following stages: 

Stage 1: The pig is pre­anaesthetized with Katelar (Ketaminol vet.®, 10mg/kg i.m. Veterinaria 

AG, Switzerland) on arrival to the surgical room, and, prior to its delivery to the hospital, 

Midazolam (Midazolam 0,5mg/kg i.m. Dumex Pharma, Oslo, Norway) is administered as a pre­

anaesthetic on the farm. The pre­anaesthetesia is Zoletil, which is a combination of a 

dissociative anaesthetic agent, tiletamine hypochloride, and a tranquilizer, zolazepam 

hypochloride. In our case, the Zoletil mix has the following composition: 6.25 Rompun, 1.25 

Ketaminol (100 ml / mg) and 2.50 Turbogesic. 1 mL of Zoletil mix is administered per every 10 

Kg. 

Stage 2: Induction (The administration of anaesthetic agents and the establishment of a depth 

of anaesthesia adequate for surgery) of the isoflurane is carried out using Katelar (Ketaminol 

vet.®, 10mg/kg i.m. Veterinaria AG, Switzerland) and Midazolam (Midazolam 0,5mg/kg i.m. 

Dumex Pharma, Oslo, Norway). 

Stage 3: The pig is endotracheally intubated and placed on a thermal mattress. 

Stage 4: The animal is mechanically ventilated using the Servo 900 (Siemens Elema­Scönander, 

Solna, Sweden) and normal blood gas has to be ensured every hour. The ventilator contains 

Isoflurane (gas 1%). This causes loss of feeling or sensation. Although anaesthesia is used for 
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loss of tactile sensibility or of any of the other senses, it is applied especially to loss of the 

sensation of pain, as it is induced to permit performance of surgery. (It is usually used to 

maintain a state of general anesthesia that has been induced with another drug) 

Stage 5: The right carotid artery is cannulated and connected to an external transducer (Baxter, 

California, USA) for blood pressure measurements. Oesophageal temperature and ECG is 

monitored by a Cardiomed­CM­4008 (Cardiomed, Oslo, Norway). 

Stage 6: The pig is kept hydrated by administration of Lactated Ringer’s solution 

(10ml/kg/hour) through an ear vein. Saline constituents: 1 L contains 5 ml Rentanyl + 5 ml 

Esmeron (Esmeron is indicated as an adjunct to general anaesthesia to facilitate tracheal 

intubation during routine and rapid sequence induction, to provide skeletal muscle relaxation, 

during surgery. Esmeron is also indicated as an adjunct in the intensive care unit (ICU) to 

facilitate intubation and mechanical ventilation). Infusion is preformed over 3­4 hrs. 

Stage 7: A bladder catheter (12 French, Rüsch, Kernen, Germany) has to be inserted to keep 

the bladder empty. 

Stage 8: The Zoletil mix is administered after 4hrs (1 mL/10 Kg) 

Stage 9: Finally, at the end of the experiments, it is terminated by an overdose of Pentobarbital 

iv.[75] 

4.13.4 Equipment Used 

•	 Motor platform mounted with a rotary motor (Maxon EC Motor), solenoid (Saia­

Burgess) and load­cell. 

•	 Multiple­electrode cuff (MEC). 

•	 Box containing custom designed Amplifier 

•	 National Instruments Data Acquisition card (NI DAQ ­ USB6251) ­ Sampling of each 

channel at 40 kHz with a dynamic range of 16 bit at 1.25MS/s. 

•	 Dell Inspiron 9200 Laptop. (MS Windows XP SP2, Intel Pentium M Processor, 1.70GHz, 1.0GB 

RAM, ATI Mobility Radeon 9700 Series.) 

•	 Matlab and NI LabView for the processing and display of results 

4.13.5 Experimental Set­up: Pig 

The pig is placed on the platform such that: 

•	 It has its back flat on the base plate and its frontal end is next to the rotary motor. 

•	 Has its left limb held up by screw fixation to the upper limb. The rotation shaft will be 

confined to the pig left side, and it is the pig LEFT forelimb that will be rotated at the 
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wrist. So the shaft wants to be only as long as needed to position the solenoid apparatus 

at the left forelimb. 

•	 Has its wrist held in place with a wrist fixation which carries on to: a ball­joint on one 

side (and further to a wrist fixation assembly supported by a vertical post), and to a 

counter­weight structure on the other side. This structure is connected to the rotary 

motor and also to the solenoid, load­cell and contactor. The limb extremity is secured 

using a nail fixation method. 

4.13.6 Experimental Set­up: Cuff and Electronics 

Once the medial nerve has been located after much care (Any mishandling will cause swelling 

and this would make it difficult to fit the cuff around), a MEC is placed at the proximal end of 

the nerve. This cuff carries 11 platinum contacts (pitch: 3.5 mm, width: 0.5 mm). This cuff is 

connected to custom designed amplifier chip that provides an array of bipolar amplifiers and 

filters. The 10 outputs of this amplifier are monitored by a data acquisition (DAQ) system (NI 

DAQ ­ USB6251), which samples each channel at 40 kHz with dynamic range of 16 bit at 

1.25MS/s. 

4.13.7 Monitoring and Data Capture 

The data from the DAQ is handled by LabView and is saved to the hard­disk of the Dell laptop. 

The conversion of 10 bipolar recording channels to 9 tripolar channels, introduction of time 

delays dt and summation is carried out off­line by Matlab routine. The format of the VSR 

software has been designed such that it is very user­friendly and self explanatory. Following the 

labels will take the user through the required parameters 

Figure 4­43 – Main window of the VSR Software.
­
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4.13.8 Experiments 

The pigs foot will be flexed and extended in order to stretch the forearm muscles and produce 

'spindle' and 'Golgi tendon organ' responses. Whether we want to flex or extend will depend on 

which nerve is recorded from; during these initial experiments, the flexor muscles will be 

stretched when the medial nerve is recorded. 

For the first set of experiments, the wrist extension motion (which acts to stretch the flexor 

muscle) will be used. The same routine of recording as mentioned previously will be applied to 

different scenarios as described by the following 3 category of experiments: 

4.13.8.1 Experiment 1 

Summary: Trials with only the cutaneous stimulation applied (Cutaneous receptors targeted). 

There will be NO motion at the wrist; the servo rotation motor will be maintained at fixed 

position by making an active brake using the motor in position servo mode. The muscle spindles 

are very sensitive, so any rotation movement or servo­jitter will cause them to discharge: 

• Pig rested on platform and under anaesthetics. 

• Limb in place and secured. 

• Computer and software initialised and ready – All required parameters to be keyed in. 

• Cuff electrode ‘stand­by’, ready to be inserted. 

• Medial nerve exposed. (Surgeon’s steps to cut open the limb) 

• Place multi­electrode cuff and re­seal the wound. 

• Press ‘Move to position’ 

Repeat previous step for clockwise and anti­clockwise motion (The software automatically 

changes rotational direction every time the ‘Move to position’ is pressed. 

4.13.8.2 Experiment 2 

Summary: Trials with only the wrist rotation (and hence stretch of the wrist muscles – Stretch 

receptors targeted). The rotation will be performed at 3 different velocities. A change in angle 

will cause the muscles to contact, hence causing the nerves to fire. This targets muscle afferents 

only. Steps: 

• Reset software (and make sure limb is in place and secured for wrist rotation only. 

• Start recording and Activate motor rotation at velocity 1. 

• Stop recording and return limb to initial position. 

• Start recording and Activate motor rotation at velocity 2. 

• Again, stop recording and return limb to initial position 
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•	 Start recording and Activate motor rotation at velocity 3. 

•	 Finally, stop recording and return limb to initial position. 

4.13.8.3 Experiment 3 

Summary: Trials with both stimuli applied at the same time (Both Cutaneous and Stretch 

receptors targeted). Same force­time profile as in Experiment 1, motion of the wrist is allowed. 

The wrist servo makes a controlled­velocity motion while the contactor makes a controlled 

force. Steps: 

•	 Reset software and make sure limb is in place and secured. 

•	 Make sure software has the correct parameters; (1) Set of parameters A at velocity 1 (2) 

Set of parameters A at velocity 2, (3) Set of parameters A at velocity 3, (4) Set of 

parameters B at velocity 1 (5) Set of parameters B at velocity 2, (6) Set of parameters B 

at velocity 3, (7) Set of parameters C at velocity 1 (8) Set of parameters C at velocity 2, 

(9) Set of parameters C at velocity 3, 

•	 Start the recording VI and initiate both the motor and the solenoid with condition (1) 

•	 Reset Software and load parameters of condition (2) 

•	 Start the recording VI and initiate both the motor and the solenoid as in condition (2) 

•	 Repeat this sequence until condition (9). 

•	 At the end of the experiments, the cuff electrode is removed and the normal surgical 

procedures are performed on the pig. 

4.13.8.4 Experiment Summary 

Solenoid + Load Cell Rotary Motor 
Experiment 1 ON OFF 
Experiment 2 OFF ON 
Experiment 3 ON ON 

Table 4­44 – Experiment Summary. 

4.14 Discussion 

Running through the protocol on the first experiments was very insightful as to the outcome of 

the design of the test rig. To start off with, fixing the limb itself to the motor proved 

problematic due to the cumbersome sizes of the metal parts. Furthermore, activating the motor 

with the limb in such conditions clearly showed signs of physical damage to the pig’s anatomy 

(the first experiment consisted of testing the rig with a dead animal – so no harm was caused to 

any animal). Another aspect of the set­up that was of concern was the amount of noise being 

picked up in the animal lab. The next steps of the project was definitely to (1) Investigate 

changes to the test rig so that it is more accommodating to the pig’s anatomy (2) Find ways of 

minimising the effects of noise on the amplifier system. 
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C h a p t e r 5 

EXPERIMENTAL SET­UP MODIFICATIONS 

5.1 Test Rig – Design 1 

In order to tackle the problems encountered by the test rig, a series of modifications had to be 

made. In the first design, emphasis was placed on enhancing the rotation freedom of the limb 

and also reducing the amount of metal densities present in the rig. 

Figure 5­1 – Crank shaft location
­
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The point of rotation in the wrist varies. Even if the apparatus is positioned such that the shaft 

lies at a given point of rotation, after an angular movement, this point shifts, causing a 

displacement of the limb off the platform. The crank shaft was assumed to tackle this problem. 

One way of reducing the bulkiness of the wrist fixation was to replace the dense aluminium 

beams by a thinner u­shaped plate. The following figure shows a stick­model of the limb while 

it is being flexed. 

Figure 5­2 – Stick­model of the limb. 

One end of the crank shaft is connected to the motor while the other is connected to the end of 

a rectangular beam. It will be this beam that will support the u­shaped plate that bears the 

solenoid and load­cell. The figure below shows this set­up in more detail. 

Figure 5­3 – Crank shaft and u­shaped plate connection.
­
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Moving on to the fixed part of the limb, two thin plates bearing multiple holes are joint to the 

platform by hinges as shown in the following figures. These allow for variation of pig sizes as 

well as maintaining a rigid joint. (See Appendix D2) 

Figure5­4 – Upper limb fixation. 

While setting up the limb as in the figure above, it was seen that by putting a metal shoe round 

the foot and contacting so much skin and hair as, there might be a lot of uncontrolled cutaneous 

stimulation that would dilute the response from the toe pad stimulation. Also, the added 'plate' 

shown on the inside of the joint would have to be less noxious, and regardless, its presence is 

feared to further add to the cutaneous input. However, some good did turn out of this design. It 

was found that fixing the upper limb to the platform is not a good idea at all. This is where the 

theory of the tri­segmented limb was read about. Details are to follow in the next section. The 

other interesting fact was that using bone screws were not too messy after all. As a result, this 

could well be used to rotate the wrist rather than the metal shoe that seemed to cause a lot of 

cutaneous stimulation. (Appendix D3 for more media files) 

Vipin Seetohul 79 



 
    

 

               

     

                 

              

       

 

           

               

                

             

              

                

               

Figure 5­5 – Effect of using a screw on the bone. (Also see Appendix E1) 

5.2 Tri­Segmented Limbs 

A recent paper in the literature that seems to have given proper consideration to the aspects of 

the mammalian tri­segmented limbs is that of Fischer and Blickhan [76]. They have reviewed 

aspects of the tri­segmented limb in locomotion. 

Figure 5­6 – The tri­segmented limb of mammals. Reproduced from [76] 

In Therians (See Glossary of terms), the main locomotory action of the forelimb does not 

strictly take place in a joint. The scapular pivot is dynamically guided by the trunk and 

shoulder muscles and cannot be located precisely by anatomy. It most probably moves 

within an instantaneous center of rotation, as for the human scapula. Harmonious motion of 

the body is achieved by a clear separation of a segment (femur, scapula, lower spine) rotated 

in the most proximal center (hip joint, scapular pivot, anterior lumbar spine) and more distal 
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telescoping segments. Measurements done by Fischer et al. of vertical oscillations of the



scapular pivot show that the shoulder and elbow joint do their job in modulating external 

irregularities. Neglecting the wrist joint contributions to progression, the shoulder and elbow 

joints share the remaining percentage of progression at rates varying between species and to 

a minor and irregular degree between gaits within species. In an attempt to confirm this 

theory, we tried some movement with pig’s limb. The limb was truncated just above the 

elbow joint so that a piece of the upper arm was still sticking out. To make its movement 

more visually noticeable, a piece of plastic rod was stuck in the upper bone as the latter 

would have been in the first place. The following figure indicates how flexing the wrist 

causes the upper arm to move by a good 30°­35° angle and Appendix E2 contains all the 

media file on this experiment. 

Figure 5­7 – Effect of flexing the wrist on the upper arm. (See Appendix E2)
­
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This confirms our previous suspicions and when graphically superimposed on a pig lying on its
­

back, it is seen in the next figure how flexing the wrist might cause the frontal part of the pig to 

be raised off the table. If the lower limb (in red) is kept fixed and the wrist is flexed, the upper 

arm (in blue) is also flexed accordingly. This explains the problem previously encountered that 

was thought to be rigor mortis, in the initial experiments when the original rig was being tested. 

Figure 5­8 – Graphical representation of the effects of wrist flexion. 

5.3 Test Rig – Design 2 

This design introduced bone screws as an alternative to the nail fixation. Furthermore, in light of 

the effects of moving a tri­segmented limb, the fixation of the lower limb was abolished. The 

bone­screw fixation in the lower arm is all that is needed to rotate the foot. In the previous 

design, placing a thin metal strap against one of the nails (on the toe that will be stimulated) and 

securing the strap with a small sheet metal type of screw would generate way too much of 

cutaneous excitation. There would also be some contamination from skin stretch around the 

joint during the rotation, but that activity cannot be eliminated if the joint is to be moved. The 

only way to eliminate this activity is to remove the skin; but this is not a good idea since there 

would be a lot of pain fibres discharging from the injury, and more importantly, the pig would 

not be studied again. 

It was initially thought that the use of the bone screws would have two possible issues (1) It 

would only serve for an acute experiment, and (2) The limb will have to be opened and the 

muscles separated so that the screws can be located in the bone without making holes through 

the muscles and incurring all of the tissue damage and bleeding that that would entail. The 
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screws would need to be located between the muscles so that the forelimb muscles do not 

abraid on the screws (and the screw shafts would need to be machined smooth except for the 

tips to further guard against tissue abrasion). Conversely, when this method was being 

investigated, it was found that the targeted location for the bone screws did not have any muscle 

present between the skin and the bone. The skin did not even have to be opened too much; a 

50mm incision on the skin at the location of each screw was enough. The screws used were self­

tapping therefore requiring no drilling in the bone. The only important aspect was to get the 

screws in the middle of the inner­bone of the limb. The pig’s lower arm is a fusion of two 

bones. Placing the screws right in­between of the two bones is not a good idea as this is where 

the bone is more vulnerable. The ideal location is as shown in Fig. 5­14 at the tip of the scalpel. 

Figure 5­9 – Side View: Bone screw wrist fixation.
­

Figure 5­10 – Top View: Bone screw wrist fixation.
­
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Figure 5­11 – LHS: Cylinders used as spacers between the metal block and the bone. RHS:
­
Screw and spacer in place on the metal block.
­

The cylindrical spacer fits firmly between the metal block and the bone itself. This way, any 

motion made by the motor will be as accurate as possible, with the limb moving harmoniously 

with the metal block. (See Appendix E3) 

Figure 5­12 – Location of incisions for placing bone screws and spacers. 

As seen above, making an incision in the wrist of the pig is rather clean, with no bleeding. The 

cuts are as small as possible for it to heal conveniently in any chronic experimentation requiring 

bone screws. 
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Figure 5­13 – Effect of bone screws on the bone itself 

While investigating the effect or damage, if any, of the bone screw on the bone, it was found 

that the specific screws available to us were not only accurate, but also had this self­tapping 

action into the bone. The above picture was taken after a series of experimentation on the limb. 

The skin was removed for illustrative purposes only. It can be seen that even after several forced 

limb movement by a powerful motor, removing the screws did not cause any physical damage to 

the surrounding bone structure. 

The next picture has been included to depict the location of the screws with respect to the joint 

between the wrist and the upper arm. The reason for stripping the skin off this specific limb was 

to learn a bit more of the structure of the pig’s limb. One important factor that had to be taken 

into consideration was the length of screw to be allowed into the bone; we needed it to be well 

into the bone for the strongest grip, but also to a minimum so that it doest extrude at the other 

end. Therefore, to measure the ideal length of screw to penetrate the bone, the skin was stripped 

off and as the screw was being inserted, the bone was being felt with one’s finger to check for 

any extrusion. Again, thinking ahead for future experiments, we would want to cause as little 

discomfort to the animal as possible. 
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Figure 5­14 – Target location of bone screw. 

In the following two pictures, the whole wrist fixation setting is depicted. Again, the strip of skin 

in this specific case has been removed solely for illustrative purposes. 

Figure 5­15 – Front View: Bone screw wrist fixation.
­
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Figure 5­16 – Side View: Bone screw wrist fixation. 

After establishing the main point of contact for rotating the limb, we had to figure out how to 

mount the solenoid and load­cell onto the limb. Replacing the bulky metal blocks with thin, but 

rigid aluminium was a good step, but this proved to have some further issues with regards to the 

solenoid positioning. 

Figure 5­17 – Position of the solenoid/load­cell in the wrist fixation set­up. 

As can be seen from the above picture, when the pig is lying in its natural position on its back, 

which happens to be the initial position of the set of movements planned, the solenoid can be 

seen to be too far into the side of the pig. When this was tried in the laboratory, the solenoid 

was clearly being obstructed. This issue definitely needed tackling. 
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5.4 Test Rig – Design 3 

Considering the issues seen previously, in the first instance this design reduced the length of the 

crank shaft and added a support on the other side of the limb using a ball­bearing attached to a 

vertical support. Finally, the solenoid mechanism was modified. 

Figure 5­18 – Resting position of the pig. 

The above picture shows the size of Danish Landrace obtained for this specific experiment, 

carried out at the Foulum Facility in the north of Denmark. The first step was to align the motor 

to the same level as that of the joint between the wrist and the lower arm. 

Figure 5­19 – Equipment set­up. 

The equipment was set­up as shown in the above pictures, with the DAQ box, amplifier box, 

and PID controller located within close range as per the protocol. It was seen that when using 

the full crank shaft as mentioned previously, the natural freedom of motion of the limb added to 

that of the crank shaft, giving the limb an uncontrolled trajectory. In order to correct this, 

various ways were thought of to make the trajectory as controlled as possible, as well as allowing 

the limb to move in its own natural way. The next photo shows a messy set­up of one solution 

reached. This came down to shortening the crank shaft. 
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Figure 5­20 – An attempt to disable one of the joint of the crank shaft. 

The resulting crank shaft set­up is as shown next. This followed further trials to investigate the 

limb motion. 

Figure 5­21 – Shortened crank shaft. 

However, the set­up still did not show a perfect controlled movement. This still gave the limb 

total freedom of motion in all directions. It has been deducted that even if the most natural limb 

trajectory was required, it would have to be restricted to freedom in one plane only; that parallel 

to the pigs side. Therefore, the whole crank shaft idea has to be replaced with a universal system 

that allows the point of rotation of the motor shaft to be able to be adjusted according to the 

pig’s limb anatomy. 
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Figure 5­22 – Simplified crank shaft in action. 

With regards to modifying the solenoid attachment, after several designs and prototypes, the 

following was achieved. Instead of having the solenoid mechanically coupled behind the load­

cell, it was designed such that it would be out of the way and in front. Again, this was achieved 

using thin rigid aluminium plates. This means that, now, the only feature present between the 

pig’s torso and the metal block used for the wrist fixation, is the solenoid only. 

Figure 5­23 – Final design of the solenoid/load­cell set­up.
­
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The only precaution to be taken using this set­up is that, after placing this ‘metal shoe’ over the 

pig’s wrist, we need to make sure that the solenoid and load­cell are always aligned in a straight 

line. Once this is tackled, the bolts responsible for this alignment can be tightened and the set­up 

is finally ready for the whole duration of the experiment. Initially, there was also a concern about 

the friction that would be involved. But this was not too serious of a problem as we are only 

interested in the force applied with respect to time, and not power consumption of the solenoid. 

Furthermore, some friction might be useful in providing some damping to the unwanted 

oscillations. The next photos show the set­up of the final design of the solenoid/load­cell. 

Figure 5­24 – Wrist fixation including the final design of the solenoid/load­cell.
­

Figure 5­25 – Wrist fixation overview. 

In the overview of the set­up in Fig. 5­25 above, the horizontal rod present on the right hand 

side of the solenoid was temporarily included to keep the limb motion in one plane. This added 

support on the other side of the metal block fixated to the wrist used a ball­bearing on a rod that 

was secured to a vertical support. 

The following photos would better demonstrate the solenoid set­up: 
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Figure 5­26 – LHS: Position of the load­cell on the toe­pad. RHS: Limb extended.
­

Figure 5­27 – Suitability of the new solenoid/load­cell set­up on a flexed limb. 

One of the primary aims of modifying the test rig was to facilitate the implantation of the 

electrode and thus ease the experimentation process. This has successfully been achieved as 

plenty of room was made available for the surgeon to conveniently work on the pig’s limb. This 

can be shown in the next picture. It is also interesting to point out at this instance, when a 

freshly euthanised pig was being worked on, that there is absolutely no bleeding at the bone­

screw locations. The rig is just one step away from being fully functional. The final step of the 

modification is explained in the next section. All of the media files showing the evolution of 

Design 3 are located in Appendix F. 

Vipin Seetohul 92 



 
    

  

     

               

             

                  

                    

         

  

         

 

Figure 5­28 – Implant location. 

5.5 Test Rig – Design 4 (Final design) 

Going back to the graphical representation of the pig’s tri­segmented forelimb, the following 

picture shows the location of the bones when the animal is on its feet. The green part represents 

the scapula, the upper arm in blue, lower arm in red and the hand in white. The final design of 

the test rig will be explained using these definitions. 

Figure 5­29 – Front View: Bone screw wrist fixation.
­
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In the next diagram, the most likely positions of the wrist joint when flexed and extended are 

shown. It is also shown that, when extended, this specific point could also be at a higher 

position, depending on the size of the pig obtained on the day of the experiment. 

Figure 5­30 – Wrist positions when flexed and extended. 

Based on this theory that the point of rotation could be anywhere within the surrounding area of 

the wrist joint in that plane, we have come up with an idea of having a metal plate with several 

pre­drilled locations. This way, based on the size of pig received on the day of the experiment, 

the user can first of all have a feel of the wrist movement by manually moving it around, and 

once the approximate location of the most ideal point of rotation is found, the plate is bolted in 

place, and the experiment can proceed as per the protocol. 

The following pictures show the final test rig set­up in action. In this specific experiment, the 

wound does seem a bit bloody reason being the surgeon had to fiddle with the cuff from time to 

time as a few rings on the cuff were not picking any signals and also a lot of noise was being 

picked up by the amplifier. At the time, the surgeon thought it worse to flush the cuff and the 

exposed nerve with warm saline solution as one possible problem could have been a bad 

connection. Other than this, this test rig design did solve all the mechanical issues we had 

initially 
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Figure 5­31 – Final design of the test rig in action.
­

Figure 5­32 – Final design showing the connection of the motor shaft to the metal plate.
­

Figure 5­33 – Final design showing the connection of the wrist fixation to the metal plate.
­
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Figure 5­34 – Detailed drawing of the new components of the rotation system. 

Furthermore, additional tests were carried out to ensure that the solenoid/load­cell set­up did 

work fine while simultaneously running the main Maxon motor. The following graphs show 

some results obtained during these specific experiments 

The following figures consist of a set of two graphs each. The top shows the shape of the square 

profile of the solenoid motion in red line along with the resulting amplitude in white, measured 

by the load­cell. The lower graph shows the acceleration curve of the Maxon motor within the 

same timeframe. 

To start off, the solenoid was activated without a pre­load. This can be seen on the first graph as 

both the red and the white plots starting off at zero. For both clockwise (Fig. 5­35) and ant­

clockwise (Fig. 5­36) rotation of the Maxon motor, the solenoid and load­cell seem to be 

working in accordance to each other. In our experiments, a clockwise motion by the motor 

causes flexion of the limb, meaning the extensor muscle group is being stretched; On the other 
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hand, an anticlockwise motion causes extension of the limb, resulting in the flexor group being 

stretched. 

Figure 5­35 – Graph showing the effect of flexion of the limb on the solenoid.
­

Figure 5­36 – Graph showing the effect of extension of the limb on the solenoid.
­
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The next step was to investigate the addition of a pre­load. The whole purpose of the pre­load is 

to prevent the loop from being broken. During one of the tests, the solenoid experienced a 

sudden jitter in the profile. This was found to occur in the event that the gap between the 

contactor and the skin was about 1 cm or more apart. While investigating the most suitable gaps, 

it was found that the gap between the contactor and the toe pad should be no bigger than 0.5 

cm. This is because if the shaft of the solenoid is extended too much, this means that there is 

not enough material for the magnetic field to grasp on, and with reference to the section on the 

solenoid performance chart (Fig. 4­15), it is seen that the further the extension of the shaft, the 

weaker is the experienced force. This explains the sudden jitter halfway through the trend line. 

Figure 5­37 – Solenoid profile when leaving a gap bigger than 1cm between the toe pad and the 
load­cell contactor. 

On the other hand, leaving a gap of just 5mm caused the pattern of the profile to be followed 

conveniently and relatively accurately for a home­made PID controller. The rise­time, fall­time 

and amplitude all corresponded to the desired ramp profile of the solenoid. Appendix G has all 

the data for this experiment. 

Figure 5­38 – Solenoid profile when leaving a gap of 0.5cm between the toe pad and the load­

cell contactor.
­
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5.6 Amplifier Box 

In order to solve the noise issue, a systematic approach was adopted by firstly investigating the 

equipment at hand: the amplifier box. The latter was originally built such that it required the cuff 

electrode to be attached to a connector (Connector 2 in Fig. 5­40) with 12­pins at the electrode 

end and 16­pins at the other end. This was in turn connected to another connector (Connector 

1 in Fig. 5­40) that had 16­pins on one end and a 15­pins male D­Connector at the other. The 

amplifier box therefore had a female D­Connector to accommodate the cuff. The D­Connector 

was then directly wired to the ENG amplifier which was in turn fed to the screw terminals of a 

CB­68LPR National Instruments board with the mass termination of the board leading to the 

NI­USB 6251 DAQ module. Further details of the amplifier box are described in [3, 38, 45, 47, 

77­79]. The pins on the ENG amplifier chip were allocated as in the following diagram. On the 

‘cuff side’ of the chip, the pins were connected to the 11 channels (Ch) of the cuff and the DAQ 

side of the chip was wired to the Analogue Inputs (Ai) of the CB­68LPR board. 
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Figure 5­39 – Pins allocation on the ENG chip. 

The set­up was such that the chip was connected to the cuff electrode by means of connectors,
­

with a female D­connector on the amplifier box. This could be problematic and possibly be the
­
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cause of the noise pick­up, and as a result the micro­volts being measured would just be lost in 

the way. Appendix J has the data supporting this argument. 
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Figure 5­40 – Connector arrangement. 

A possible solution was to eliminate the two connectors and connect the cuff electrode directly 

to the chip by means of a shielded cable. The connector to the cuff was custom­made to 

accommodate the size of electrodes available for the experiments. The following pictures show 

the new amplifier box after the necessary modifications.  

  

Figure 5­41 – New Amplifier box. 
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Figure 5­42 – Wiring access for the solenoid/load­cell.
­

Figure 5­43 – Unity gain buffer connection.
­

Figure 5­44 – Modified connections of the new cuff connector to the amplifier.
­
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Figure 5­45 – Final cuff connector. 

While carrying out some further tests (as in the set­up shown below), it was found that the 

output impedance of the ENG amplifier was around 10K� and this has a large effect on the 

cross­talk between channels. A unity gain buffer was therefore implemented between the 

amplifier chip and the USB data acquisition box. 

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 

35
 

17
 

Figure 5­46 – Setup for test on output impedance of ENG amplifier. 

5.7 Equipment shielding. 

The next source of noise that could be polluting our recorded signals is that from the motor and 

the lengthy power cables driving much current from the power supply all the way to the motor. 

One way of dealing with this issue was to fit all wiring around the motor with Knitted Wire 

Mesh Gaskets. These show excellent shielding effectiveness against harmful 

electromagnetic/radio frequency interferences. 
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Figure 5­47 – Knitted wire mesh gasket. 

A systematic approach was adopted whereby surrounding equipment was switched on and off 

so as to locate any interference source. When it came down to the Maxon motor, it was seen 

that having the motor off did have a huge impact on the recordings. Hence, to reduce the noise 

level due to the motor, it was directly shielded with aluminium­foil sheets, which was in turn 

grounded. Unfortunately this was still insufficient to clearly pick up Action Potentials from the 

recorded data. The next approach to this problem was to consider the cuff itself. Having a 

broken/loose connection in the electrode could possibly affect the rest of the signals. For this 

investigation, worms were used as they are simple organisms that would anatomically fit the cuff 

just as would a medial nerve and most importantly because it consists of nerves running along 

its whole length. See Appendix H. 

Figure 5­48 – Maxon motor wrapped with tin­foil.
­
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C h a p t e r 6
 

WORM EXPERIMENTS
 

6.1 Introduction 

The work in this chapter had to be carried out in order to test the consistency of the cuff 

electrodes. It was feared that the rings of the electrodes might have been mishandled and 

possibly damaged in the process of placing them around the designated nerve. Earthworms were 

considered appropriate as a cheaper and more easily available medium for the tests rather than 

pig nerves. Earthworms been used for decades to investigate neuro­muscular systems ([80­85] 

for example). They have a segmented, compartmentalized, cylindrical body and range in length 

from several centimetres to nearly 3.3 m. 

Figure 6­1 – Functional components of the worm. 

The nervous system coordinates the movements of the worm and sends impulses received from 

sense organs to parts of the body. There is a very small nerve centre from which runs two 

nerves that form a connecting collar around the pharynx and join to become a long ventral 

nerve cord. There also are enlarged nerve centres, called ganglia, in each segment. Three pairs of 

nerves, in turn, branch from each ganglion. The latter are well coordinated with each other since 

they interact in order to control muscle contractions in each segment that are responsible for 

locomotion. Thanks to this responsive nervous system, earthworms are sensitive to touch, light, 

moisture, chemicals, temperature, and vibrations. The earthworm's brain consists of paired 

ganglia in the head end. When an impulse is detected by receptor cells in the skin, a pair of 

nerves in each of the earthworm's segments carries the signal to the brain and smaller ganglia in 

each segment, where the signals are analyzed. The central nervous system then transmits 

impulses on nerves that coordinate muscle action, causing the earthworm to move. 

The earthworm nerve cord has three giant fibres, a median giant and two lateral giants. The 

median giant receives sensory input from the anterior portion of the worm while the lateral 
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giants receive sensory input from the posterior part. As a depolarization occurs at a point, the 

adjacent membrane is depolarized. This results in the voltage­gated ion channels in that region 

opening. Sodium enters the nerve cell, causing further depolarization. When the initial stimulus 

is above threshold for the membrane, an action potential occurs, taking the membrane to the 

sodium equilibrium potential. The driving force on potassium has been increased and it now 

exits the membrane and the sodium channels are inactivated, resulting in a brief under­shoot 

followed by a return to the resting potential. At the time of the action potential, the voltage in 

the axon will spread in a passive manner to the surrounding area. The voltage present at a point 

x on the axon is given by the equation 

− x 
Vx = V0 × e λ 

So a λ length of the axon will be above threshold, causing action potentials in this area of the 

axon. This action continues in a domino effect down the length of the axon. Axons with a larger 

diameter have a lower internal resistance which gives them a lower length constant (λ = square 

root of the quotient of membrane resistance with the sum of internal and external resistance). 

We therefore expect the conductance velocity to be faster for a larger diameter axon. 

6.2 Worm Tests 

The worm was anaesthetised using ethanol solution and then pinned to a dissecting block with 

the lighter side facing up. Additional media files for the worm experiments are located in 

Appendix K 

Figure 6­2 – Worm experiment set­up.
­

At one end, a stimulator was used to generate current controlled, charge balanced, rectangular
­

shaped pulses on two latched channels. The stimulating pulse was adjustable in amplitude and
­

pulse width. A set of stimulation parameters was found that just excited a single population of
­
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large fibres, resulting in a simple­shaped biphasic CAP recording picked up by the recording cuff 

electrode. Another set of stimulation parameters was worked out that resulted in a neurogram 

which suggested the presence of at least a second fibre population, slower in propagation than 

the first one. We saw two separate action potentials. The first action potential represents the median 

giant axon and the second represents the lateral axons. Once again, this proves that multi­contact 

cuff recordings can be interpreted with ease. Using worms as nerve models, it has been 

demonstrated that this method is applicable to such setups and provides information in the 

shape of a profile of the conduction velocity of the active fibres as well as their direction of 

propagation. 

Figure 6­3 – Worm action potentials. 

6.3 Cuff Electrode Tests 

In our quest to narrow down the source of the noise problem, some tests were performed on 

the 4 cuff electrodes that were available for the experiments. In order to test their reliability, they 

were first used in the labs and then compared to their performance in the hospital environment. 

The cuffs were tagged with numbers 1­4 and an impedance meter (IM002­02 SMI2001) was 

used to measure impedance between every ring on each cuff. (This impedance meter generates a 

sine wave of 65 nA at 1024 Hz). The following graph shows the performance of each cuff. 
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Figure 6­4 – Cuff Impedance measurement. 

After being used on the past experiments, Cuffs 3 and 4 still seem to be usable, provided that 

the end electrode on Cuff 4 is neglected. Cuffs 1 & 2 were the smaller ones at 2mm internal 

diameter (ID) and cuffs 3 & 4 were the bigger ones with 4mm ID. Furthermore, Cuff 3 was 

tested as being the good one and was therefore used during the final experiments. However 

some impedance measurements were performed before and after implantation, and it was found 

that, after placing the cuff on the nerve, signals on rings 0, 1 and 2 were actually lost in the 

process. This was later confirmed during the recording session, as these 3 channels were picking 

up an awful lot of noise and getting saturated as a result. 
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Figure 6­5 – Impedance on Cuff 3. 

The lack of alternative cuffs with different internal diameters did cause a problem. In the final 

experiment, the median nerve was much smaller than the cuff, even though the pig was a fairly 

large one (the biggest so far). This could be tricky in the sense that the surface area of the nerve 

being in contact with the cuff electrodes is minimal. 

Figure 6­6 – Cuff 3 placed on the Median nerve. 

The following picture shows a cuff lying freely in a bath of saline and it can be seen how this 

ribbon is twisted and consequently influenced by the position of the cuff on one side, and the 

blue connector on the other. 
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Figure 6­7 – Twisted ribbon. 

Considering the cuff as a whole, the ribbon is the only part of the entire cuff that is shorter and 

thinner than the rest (9mm x 1mm). So the amount of material (friction and mass to be 

considered) on either side of this strip does have an effect on its behaviour. This strip is more 

prone to damage and should therefore be made much stronger in future designs. 

Figure 6­8 – Detailed drawing of a cuff electrode. 

In order to screen the cuffs for any physical damage, it was analysed using a digital microscope. 

For example, Cuff 1 was considered, which according to the impedance analysis, suffered some 

damage, except for rings 0 to 3. So when examining this particular cuff, we tried to find any 

broken paths that would probably explain the remaining rings. Some unusual findings did crop 

up; one of the paths seemed to have been fixed with some solder as seen below: 

Vipin Seetohul 109 



 
    

 

           

                  

                 

    

  

            

                

                       

                 

                

                       

                     

            

Figure 6­9 – Solder found along a strip in the cuff. 

Further down on the same print, the material seen on one of the track seemed much less than 

that on others. This could well be a photo­illusion, but if not, it would definitely explain the 

irregularity of the cuff. 

Figure 6­10 – Lack of material along a strip in the cuff. 

When analysing ring 1 of the cuff, some cracks were also noticed. Surprisingly enough, ring 1 

was one of the good ones in that cuff. So it might well be that it is only a matter of seconds after 

further manipulation that the ring might go bad. Along the surface of the ring itself, some cracks 

are also seen and this might well have been caused by continuous handling (opening and closing 

of the cuff to place it on and remove it from a nerve). But what is hard to explain at this point is 

the lack of material in the region which is so close to the part where the ring is connected to the 

track that going out of the cuff to the thin ribbon. 
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Figure 6­11 – Lack of conducting material on one ring. 

The same picture zoomed on the crack clearly shows how the performance of one ring of the 

cuff is dependant on the quality of material linking the ring to the rest of the ribbon. See 

Appendix I for more photos. 

Point that links the 
ring to the track along 
the rest of the cuff. 

Figure 6­12 – Zoomed view showing lack of conducting material.
­
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C h a p t e r 7
 

CONCLUSIONS & FUTURE WORKS
 

The main purpose of the this research was to test the model of the nerve/electrodes/processing 

using Compound Action Potentials (CAPs), propagating in velocity ranges in vitro, and to 

furthermore show that three distinct naturally occurring nerve signals (cutaneous, joint receptors 

and tendon stretch receptors) in one nerve can be separated in vivo. 

This thesis did indeed present the successful application of conduction velocity­selective ENG 

recording system to electrically evoked potentials using the frog sciatic nerve in­vitro, as 

described in Chapter 3. However, when it came to testing the recording system on naturally­

occurring neural signals from the pig’s median nerve, time constraints along with equipment 

malfunction did not allow for successful recordings. It all started off with the unsuitability of the 

initial rig to accommodate the pig’s limb as per the intended protocol. This in turn delayed the 

subsequent experiments and this time was instead dedicated in developing new designs for the 

test rig. However, after extensive re­designing of the equipment and experiment set­up, a lot has 

been learnt when it comes to mounting a pig’s limb to a test rig and the mechanism behind this 

tri­segmented limb. Chapter 5 covered the evolution of the initial rig design to the final working 

product. 

Unfortunately, the rig was just one of the problems encountered; the recorded data was being 

polluted with interfering noise and more time had to be dedicated to finding this source. 

Chapters 5 and 6 covered the attempts of solving this issue by investigating the other electrical 

components present in these experiments: the amplifier box, the motors and the cuffs. These 

investigations involved worm experiments whereby the multi electrode cuff was placed on 

worms to record signals generated by a stimulator at one end of the worm. 

The final design of the apparatus will surely be a good continuation for further research in this 

area. Before such a system can successfully be used in conjunction with neuroprosthesis in 

chronic pig experiments, a large amount of work remains to be completed. The following points 

are issues that need to be addressed: 

•	 Further experiments on the noise performance of the MEC need to be conducted. This 

should take into consideration all surrounding equipment of the surgical environment – 

motors, laptops, PID controllers, shielding solutions, etc. 

•	 Additional understanding of the mechanism of the pig’s limb and an improvement of 

the limb fixation technique. 

•	 Improvement on the mechanical strength of the cuff electrodes. 
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C h a p t e r 8
 

APPENDICES
 

The Appendices mainly consist of media files and different software versions along with the 

data collected during the various experiments that have been carried out. These are supplied on 

2 separate DVDs labelled ‘Disc 1’ and ‘Disc 2’. 

Appendix A: London Frog Experiments ­ August 2005 

Appendix B: Aalborg Pig Experiments ­ September 2005 

Appendix C: PID Controller ­ March 2007 

Appendix D: Pig Fitting 

Appendix E: Bone Tests 

Appendix F: Foulum Pig Experiments ­ July 2007 

Appendix G: Solenoid­Loadcell Experiments ­ July 2007 

Appendix H: Aalborg Pig Experiments ­ October 2007 

Appendix I: Microscope Media ­ October 2007 

Appendix J: Cuff Connector Experiments ­ November 2007 

Appendix K: Worm Experiments ­ December 2007 

Appendix L: Corel Version 12 Files 

Appendix M: Random Software Used 
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