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Summary  
This thesis describes a new method to evaluate the value of wind power combined with 

domestic demand response. The thesis gives a brief overview of current domestic 

demand management programmes, and highlights the demand response and its 

current application. Such technology has conventionally been used for different 

purposes, such as frequency regulation, and to minimize the spot electricity prices in 

the market. The aim is to show whether such technology may become useful to make 

the renewables, and in particular wind power more interesting for investors.  

 

An assessment framework based on generation scheduling is developed to quantify 

the value of wind power. A further important aspect of value of wind power is the 

impact of intermittency on overall reliability of the system. This necessitates increasing 

the spinning reserve level which will increase the production cost. The changes in the 

spinning reserve level has been investigated in this thesis and it has been shown that 

how different forecasting errors may change the overall value of a windfarm over its 

lifetime.  

 

One of the most important aspects of a system containing demand response, is the 

availability of demand response. A load modelling package is developed to show the 

potential for demand response in a real system from domestic sector. 

 

With every increasing the concerns with regard to future of generation mix in Britain, 

this work has proposed over 72 scenarios for the future of generation mix in Britain and 

the impact of demand response to increase the value of wind power in 2020 has been 

investigated. The assessment framework is enhanced by showing that how the value of 

wind power combined with domestic demand response may change by changes in 

emission price, and cost of demand response. This will show the degree of feasibility of 

such system in which demand response is treated like a commodity.  
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1. Introduction 
1.1 Research Motivation  

 
Water and energy are the primary drivers for human life and world development. 

Therefore, the importance of security of supply of these primary life support resources can 

not be ignored. The UK has adequate water resources to maintain the security of water 

supply. However the concept is different for energy, mainly heating and power. The 

country has moved from relatively self-sufficiency in energy to the position of major net 

importer, and the current high international energy prices and recent high-profile supply 

interruptions, have brought the risks inherent in this position into very sharp focus.  

 

Security of supply of energy is currently a major issue for the UK’s electricity sector since 

the majority of the fuels to generate electricity such as coal and gas are being imported. 
Lack of storage facilities also worsens this problem as it makes the price of generating 

electricity sensitive to wholesale energy prices.  Hence, the government has placed the 

issue of security of supply at the heart of its ongoing review of national energy policy.  

Classically, in the electricity industry, security of supply has been maintained by securing 

enough generation capacities with diverse fuel inputs. The Oil crisis in 1970’s and the 

global fear of major disturbances in fossil-fuel supply as a result of it, the difficulties 

dealing with uneconomic deep-pit coal extraction in the UK, and became a trigger to study 

and work on alternative sources of meeting the increasing demand for energy and reduce 

the dependency on fossil fuels to minimize the risks for security of supply.  

 

More recently, concern over the potential impact of global warming is forcing greater 

changes.  A 'World Summit' was held at Rio de Janeiro, Brazil in 1992 at which the United 

Nations Framework Convention of Climate Change (UNFCCC) was set up. It was followed 

by a series of intensive global negotiations in which more than 160 nations took part, 

culminating in the Kyoto Protocol in 1997. Under this agreement, the developed nations, 

apart from USA, committed themselves to an average reduction of 5.2% from 1990 levels 

in six greenhouse gases1 over the period 2008 to 2012. The European Union has agreed 

to an overall reduction of 8% within its member states. In practice, this will be achieved 

through agreed targets per country, with the UK agreeing a reduction target of 12.5%. In 

addition, the UK Government has a manifesto commitment to reducing UK CO2 emissions 

                                                 
1 These include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons 
(PFCs), and sulphur hexafluoride (SF6). 
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by 20% and 34% from 1990 levels by 2010 and 2020 respectively. The long term 

objective is to reduce carbon emissions to 60% by 2050.  

 

Renewable energy sources can provide clean and sustainable energy for the energy 

sector. Since there are different types of renewables, more or less available in all the 

countries, deriving the energy from renewables is possible for all power sectors.  In the 

UK, for example a government target has been set to aim to achieve 10% of electricity 

generation from renewable resources by 2010 and 20% by 2020.  

 

However a major issue in integrating the renewable sources (in particular wind power) is 

their intermittent and unpredictable supply. In order to use it, it has to be backed up by 

other non-intermittent generation sources or energy storage units. Several methods have 

been considered to achieve a smoother output from a wind power plant such as backing 

up the renewables with conventional plant, introducing new storage devices to avoid 

utilizing conventional plant to back up renewable plant, etc.  But they are all too expensive 

or inefficient options to use on a large scale. This makes the renewable sources 

expensive to operate, decreases their revenue, and makes them unattractive for investors.  

 

After the arised  1970’s the oil crisis, one of the programmes set up to better control or 

manage energy consumption was Demand Side Management (DSM). DSM programmes 

generally involve consumers changing their energy use habits and using energy-efficient 

appliances, equipment, and buildings. Dynamic demand management in which 

consumers can respond to different signals such as price in real time is being exercised in 

many power systems. Current dynamic demand management programmes in the GB 

power system include consumer’s response to price of electricity known as Real Time 

Pricing (RTP), frequency deviations known as Frequency Response (FR), or in very 

limited scale to the need for reserve in the system such as Short Term Operating Reserve 

(STOR) or Fast Reserve (FR).   

 
1.2 Problem Statement and Objectives 
 
The electricity industry has been formed on the assumption of unresponsiveness and 

inelastic demand particularly in the short-term. The resulting development of the electrical 

power system took into account this assumption as nearly all control methods, and 

monitoring mechanisms were implemented on the supply side. This results in the need for 

matching the supply side with demand side to balance the demand and supply. As a result, 
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the market structure and physical nature of the system excludes active and real-time 

participation by consumers; particularly domestic consumers.  

 

Although electricity demand, in all sectors is elastic, in long-term; the higher the price of 

electricity is, the lower the consumption will be. However domestic electricity consumers 

do not have the opportunity to respond to changes in electricity prices due to a lack of 

communication between consumers and utilities; resulting in lack of short-term and real-

time elasticity. Electricity spot markets generally determine prices by the hour. Consumers, 

in contrast, are charged based on their aggregated monthly usage by a flat rate tariff. The 

hourly prices are mapped to an estimated aggregate demand profile for various types of 

consumers. The methodologies for determining the load profiles of consumers are 

imprecise. Yet all customers are required to pay based upon the estimated profile, 

regardless of how poorly it corresponds to their actual usage, even Time of Use (ToU) 

pricing methods can just shift the consumption from peak period to off-peak hours and it is 

unable to respond to price variations in the market in real-time. 

 

Increasing the penetration of renewable power generation in the system will increase the 

need for reserve, and back-up power from non-intermittent sources. These two factors will 

increase the price of electricity generation up to a point which may make the renewables 

cost ineffective. To maximize the benefits of renewables, having a firm and non 

intermittent power output is needed which has led to designing many hybrid systems.  

 

In DSM programmes which involve direct load control, reductions in energy demand at the 

end user’s premises can release electricity generation, transmission and distribution 

capacity, for a short period until supplying the reduced demand can be met efficiently and 

securely. In fact demand provides negative capacity to the system, which can be used at 

anytime required. Currently large loads; greater than 3MW are providing such negative 

capacity for frequency regulation purposes, and over 50MW loads can participate in 

providing FR and STOR. 

  

The domestic sector can also provide such capacity if aggregated and have the additional 

benefit that it is widely available in the system in contrast with large industrial loads which 

are located in certain areas. Furthermore, by increasing the penetration of renewables, 

domestic demand response can provide the back-up power for power deficits of 

intermittent generation resulting in higher value for renewables. Domestic demand in the 

GB power system has not been established yet, due to lack of knowledge regarding the 

domestic loads and their aggregated effect, lack of precise analysis on the benefits which 
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could be derived from domestic demand response in comparison with the price that has to 

be paid to maintain domestic demand response.  

 

This project aims to find a solution to provide demand response from the domestic sector 

and evaluate the impact of domestic loads to respond to the wind power variations to 

increase the value of wind power.  Therefore key objectives are:  

 

• To quantify the responsiveness level in the domestic sector available to participate in 

dynamic demand  management; 

• To design an algorithm to facilitate participation of the domestic sector in dynamic 

demand management;  

• To address the benefits such as reduced production cost, reduced emissions, and 

increased value of wind power by the participating domestic sector in dynamic demand 

management, and 

• To assess the feasibility of using dynamic demand management with different incentive 

levels for the participants.  

 
1.2 Contributions 

 
The main contributions of this work are as follows:  

• To communicate and discuss the various benefits of the successful implementation of 

demand response; 

• To develop a deeper understanding of the impact of increasing the wind power 

penetration on the system in terms of operational characteristics such as production 

cost and emissions;   

• To show the need for extra spinning reserve level associated with the wind power 

penetration in the system which is required to maintain the same level of reliability; and 

the impact of extra spinning reserve level on value of wind power;   

• To present a framework for studying the nature of loads and the potential of the 

domestic demand to become responsive;  

• To demonstrate the potential of the domestic demand response to increase the value 

of wind power;  

• To show the feasibility of using domestic demand response with different incentive 

levels;  

• To show the impact of different emission prices on the feasibility of using various levels 

of domestic demand response.    
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1.3 Structure of the Document 
 
The organization for this thesis is now discussed. Chapter 2 first reviews sustainability in 

the current energy environment, and the need for such system and different means of 

providing a sustainable electrical energy supply system, and the implications for 

sustainability legislations in the UK. The barriers to integrate  renewable sources are also 

studied along with DSM programmes, including their history, objectives, and different 

types of DSM programmes are followed by their limitations in a system to mitigate the 

intermittency issues of renewables. In chapter 3 the value of wind power is explained and 

an assessment framework based on generation scheduling problem is designed to assess 

the value of wind power at different locations in the grid. It will be shown that in order to 

assess the true value of wind power, it is necessary to consider the increased level of 

spinning reserve requirement due to intermittent generation in the system. In chapter 4, a 

probabilistic spinning reserve calculation tool is designed and shows the impact of 

different wind penetration levels, and different forecasting horizons, on the required 

spinning reserve level. In chapter 5, the feasibility of demand response is assessed 

through taking into account different prices for demand response, and different 

contribution levels of demand response. Chapter 6 details the load modelling in domestic 

sector in order to study the responsiveness level among domestic consumers in an area 

with some known information such as total population and different types of consumers. 

Previous methods of studying the electrical load profile are reviewed and it is shown that 

the proposed method can help in studying the degree of responsiveness among domestic 

appliances by modelling the end-use appliances through bottom-up load modelling. 

Chapter 7 proposes 72 hypotheses in a form of 6 main scenarios, to reflect the future of 

generation mix in the GB power system in 2020. The results in this section show the 

impact of different parameters such as location and capacity of windfarms, different 

penetration of nuclear power and demand growth on production costs, greenhouse gas 

emissions, spinning reserve requirement and network losses. In chapter 8 the impact of 

demand response in the GB power system is investigated. It is shown that how demand 

response can increase the efficiency of power generation, reduce the production costs 

and emissions, and increase the value of wind. It is also shown how with different carbon 

prices in the future, the added value of wind due to demand response may change 
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Chapter 2 .Sustainability in the Electricity Industry 
In this chapter the concept of sustainability in the electricity industry is studied through 

explaining the importance of sustainability and need for sustainable energy, and 

sustainability legislations in the UK with regard to the process of electricity generation and 

consumption. Different tools for achieving a sustainable process on the generation side 

including various forms of renewable sources are introduced, and the measures which 

have been taken in demand side known as demand side management programmes, are 

also explained.    

 

2.1 Need for Sustainable Energy 
Energy is vital to human development and it is impossible to for example operate a factory, 

run a shop, deliver goods to consumers or grow crops without some form of energy. 

Access to modern energy services not only contributes to economic growth and 

household incomes but also to the improved quality of life that comes with better 

education and health services. Unless access to energy is improved, many of the world’s 

poorest countries will remain trapped in a circle of poverty, social instability and under 

development. If we are to significantly improve access to energy worldwide and maintain a 

secure energy system all forms of energy will be needed. This includes coal, gas, oil, 

nuclear, hydro and renewables. 

 

Energy is essential for development and what we mean by sustainable development 

according to Brundtland Commission (1987) is “development that meets the needs of the 

present generation without compromising the ability of future generations to meet their 

own needs”. In the context of sustainable development, there are three domains which 

interact with each other and any decision based on sustainability issues covers these 

three domains [1-2]:  

 

1. environment: atmosphere, hydrosphere, land, biota, minerals; 

2. society: population, lifestyle, culture, social;   and     
3. economy: agriculture, households, industry, transport, services 
And no sustainable development plan is sustainable, unless it does not affect the three 

mentioned domains in long term. The implication is that unsustainable production and 

consumption by today's society will degrade the environmental, social, and economic 

basis for tomorrow's society, whereas sustainability involves ensuring that future 

generations will have the means to achieve a quality of life equal to or better than today's. 

 

8 | P a g e  
 



Chapter 2                                                                          Sustainability in the Electricity Industry 

Over the next 30 years, it is estimated that global energy demand will increase by almost 

60% [3]. Two thirds of the increase will come from developing countries – by 2030 they 

will account for almost half of total energy demand. However, many of the world’s poorest 

people will still be deprived of modern energy in 30 years time. Electrification rate in 

developing countries is expected to rise from 66% in 2002 to 78% in 2030 but the total 

number of people without electricity will fall only slightly, from 1.6 billion to just under 1.4 

billion in 2030 due to population growth [4]. 

 

 The process of production and consumption of electricity is converting a form of energy, 

which could be either fossil fuel or non-fossil fuel, to a new form, and transporting the 

electricity to end use consumers where all electrical loads are located. Most of the energy 

sources which electricity is being generated from are fossil fuels; such as coal, oil and gas 

with the availability of abundant, affordable and geographically disperse but limited 

reserves. Fossil fuels are able to provide affordable energy worldwide i.e. 40% of total 

energy comes from coal and 24% of total electricity being consumed in the world is 

generated from coal. Coal, like all other sources of energy, has a number of 

environmental impacts, from both coal mining and coal use. Coal mining raises a number 

of environmental challenges, including soil erosion, dust, noise and water pollution, and 

impacts on local biodiversity and using coal involves spreading  greenhouse gas1 (GHG) 

emissions into the atmosphere. Figure 2.1 shows the CO2 emissions produced by different 

type of plants which use fossil fuels. There are other issues associated with using fossil 

fuels; long term and short term supply; at current production levels, proven coal reserves 

are estimated to last 147 years. In contrast, proven oil and gas reserves are equivalent to 

around 41 and 63 years respectively at current production levels [5]. Over 68% of oil and 

67% of gas reserves are concentrated in the Middle East and Russia and with starting the 

oil crisis in 1970s and current political issues in that area causes more concerns in terms 

of long-term security or resource availability; and short-term security associated with 

supply disruptions of the primary fuel or of the electricity generated. 

                                                 
1 The six main greenhouse gases are carbon dioxide(CO2), nitrous oxide(N2O), sulphur oxide (SO2), methane (CH4), 
hydro-fluorocarbons (HFCs), sulphur hexafluoride (SF6) and per-fluorocarbons(PFCs).  
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Fig. 2.1. CO2 emission produced by power plants (Kg/MWh) during power generation [47] 

 

Generation of electricity is not the only side of the process of using providing the electricity 

which is can not be always sustainable, the transmission, distribution and consumption 

are nor perfect and cause huge amount of energy losses in transmission lines, and 

network components, and with different consumption patterns among consumers with 

some inefficient appliances; hence even more energy must be transformed in the form of 

electricity to meet demand. It results in an unsustainable cycle which could even deprive 

many people of electricity at the moment as well in the future. Figure 2.2 shows the 

number of people without electricity in developing countries [5].  

 
Fig. 2.2. Number of people without electricity in developing countries (in million) [5] 

 

To tackle the previously mentioned problems which all result from  operating an 

unsustainable cycle of electricity generation, most of the countries in the world have some 

plans to alter their production, transmission and consumption patterns in the future. 

Implementing renewable sources as significant in production levels (For every 1GW of 

fossil fuel fired electricity generation capacity displaced by an equivalent amount of 
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renewable electricity, carbon emissions would be around 0.7MtC to 1.5MtC lower [6]) or 

substituting power lines with new system such as HVDC to reduce the losses in 

transmission level and wide Demand Side Management (DSM) programmes such as 

energy conservation to change the consumption pattern are those programmes which 

could benefit the energy industry and make a more sustainable cycle of generating and 

using the electricity.  

 

2.2 Sustainable Energy Legislations in the UK 
The Kyoto Protocol is perhaps one of the most famous international agreements set by 

United Nation to tackle the climate changes. The European Union Emission Trading 

Scheme (EU ETS) is the largest multi-national, greenhouse gas emissions trading 

scheme in the world and is a main pillar of EU climate policy. In addition to these policies 

and regulations each country depending on its situation and development plans has 

unique plans to reduce emissions, depending on the situation of the country in terms of 

energy level (purely consumer or producer). The UK is currently considered both an 

energy producer and consumer, however when North Sea oil and gas resources are 

exhausted; UK will become a pure importer of fossil fuels from other countries.  

 

The latest version of the Energy White paper published by the Department for Business, 

Enterprise and Regulatory Reform2 in 2007 gives the future plans of the UK energy sector 

to have a sustainable energy cycle. It sets out four energy policy goal [7]: 

 
1. To put the country on a path to cutting the UK’s carbon dioxide emissions; the main 

contributor to global warming by some 60% by about 2050, with real progress by 2020; 

2. To maintain the reliability of energy supplies; 

3. To promote competitive markets in the UK and beyond, helping to raise the rate of 

sustainable economic growth and to improve our productivity; and 

4.  To ensure that every home is adequately and affordably heated to reduce the issue of 

fuel poverty. 

 

Part 1 and 2 of these four policy goals directly suggested that more renewables will be 

used in the electricity industry as they are key means of tackling environmental issues and 

mitigating the reliability issues resulting from relying on fossil fuels to generate electricity. 

The current legislation in terms of renewables is to see renewables growth as a proportion 

of the electricity supply to 10% by 2010, with an aspiration for this level to double by 2020. 

                                                 
2 Department for Business, Enterprise and Regulatory Reform (DBRR) is formerly known as Department of Trade and 
Industry (DTI) 
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By the end of year 2005 4.3% of total electricity had been generated in the UK was 

coming from renewables. Figure 2.3 shows the 2006 UK electricity generation mix in 

percentage of installed MW capacity.  Figure 2.4 shows the 2006 UK electricity generation 

mix in percentage of generated MWh from different fuel sources.  
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Fig 2.3. Electricity generation mix in the GB power system (MW installed capacity) [7] 
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Fig. 2.4. UK electricity generated from different fuels in 2008 (MWh) [7] 

 

The UK’s total generation capacity is about 76GW with annual consumption of about 

350TWh (terawatt hours) and winter peak demand of about 60GW. This level of capacity 
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is roughly 20% higher than the expected level of peak demand [8]. The composition of the 

UK’s existing generation mix is largely a result of the considerable number of new gas-

fired power stations built during the second half of the 1990s  known as the “dash for gas” 

when the economics of new gas power stations were particularly compelling. In 1990s 

when the electricity market in the UK became privatized, and because of competition 

between generation companies, consumers could benefit from lower electricity prices due 

to the excess of generation capacity. Consequently, few new power stations have been 

built during the early to mid-2000s. The pressure to close  conventional power stations 

because of environmental impact is resulting from EU legislations known as “Large 

Combustion Plant Directive“ (LCPD), which aims to reduce sulphur dioxide (SO2) and 

nitrogen oxide (N2O) emissions and dust from all combustion power plants with a thermal 

output of greater than 50 MW [9]. Current generation mix in the UK indicates one third of 

the UK’s total carbon emission or 47 MtC per year. New combustion plant must meet the 

Emission Limit Values (ELVs) given in the LCPD. For 'existing' plants (i.e. those in 

operation pre-1987), Member States can choose to meet the obligations by either 

complying with ELVs for NOx, SO2, and particles or Operating within a 'National Plan'. 

That would set an annual national level of emissions calculated by applying the ELV 

approach to existing plants, on the basis of those plants' average actual operating hours, 

fuel used and thermal input, over the 5 years to 2000 [10].  

By closing some conventional plants due to public and environmental concerns other 

sources of electricity generation will participate more in this process. Despite the fact that 

the current legislation obliges generating 10% of total electricity from renewables but 

because of infrastructure issues in the UK power system it is estimated that by 2016 only 

8% of total electricity generation mix will come from renewables. Figure 2.5 shows an 

estimation of the UK electricity generation mix by 2016 [11-12].  
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Fig. 2.5. UK electricity generation mix by 20163 (electrical energy produced) [11-12] 

2.3 Renewable Energy Sources in the UK 
Several sources of energy are known as renewable energies. In 2008, over 19.6TWh of 

electrical energy was generated from renewable sources.  

Renewables in general have the following characteristics:  

1. Clean environmentally-friendly; no direct emission from them; 

2. High pay-back ratio (
EnergyproducetoConsumedEnergy

producedEnergy ) ; 

3. Almost unlimited and free source of energy available; 

4. Location dependency; 

5. Intermittent nature (particularly for wind); 

6. Some types of renewables have energy storage capacity; 

7. Shorter time to build in comparison with conventional plants. 

                                                 
3 There are different scenarios for the future of the UK generation mix. This graph is based on the assumption of economy 
growth.  
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Fig. 2.6. Make up of renewable electricity generation in the UK in 2008  

(in percentage of total 19.6TWh) [7] 

 

2.3.1 Hydro:  

Hydropower makes use of the energy from moving water, usually by channelling water at 

high pressure from the top to the bottom of a dam or by making use of river flows to drive 

an electricity generator. The energy is obtained from the sun, which evaporates water 

from the sea and deposits it over land, giving it potential energy in the form of height. 

Although large-scale hydro using dams is still being developed around the world, UK 

developments will focus on small-scale, ‘run of river’ projects due to their lower 

environmental impact and smaller spatial requirement. 

 

Hydropower is the world's No.1 source of renewable energy and produces approximately 

17% of the world's electricity and approximately 40% of the UK's renewable energy is 

provided by hydropower. Hydro beats all other electricity generating technologies with a 

pay-back ratio of 300; this is ten times more than oil-fired power stations and is the only 

type of carbon-free renewables which could be stored [13]. Another advantage of hydro 

units is deregulated market is their operational characteristics which gives them more 

opportunities, as they have a very low inter-temporal4 cost [14].  

                                                 
4 Inter-temporal costs included start up/shut down cost and ramping cost.  
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The issues with regard to hydro units include hazard to wild life posed by hydroelectricity 

which is the interference with the natural habitat of flora and fauna particularly migratory 

fish,  fear of dam burst, and visual impacts.  

 

2.3.2 Tidal and Wave: 
Despite very large resources, tidal energy has not been successfully exploited on a wide 

scale. Tidal produced electricity is generated by making use of tidal water flows. It can be 

done by constructing a tidal barrage in an estuary and operating this like a conventional 

hydro dam – however, the environmental impacts are often prohibitive. Alternatively, 

turbines can be placed underwater in the tidal stream – these produce power from both in 

and out flows. Other variations are also possible. Tidal power is gaining increased interest 

in the UK, with a number of projects at demonstration and testing stage. 

 

Waves transmit large volumes of energy from windy conditions far out to sea to the shore. 

Here the energy can be used to generate electricity and a variety of technologies are 

being developed to do this. The potential of wave energy in the UK is large due to our 

extensive coastline. 

 

The Severn Estuary in Bristol Channel could provide 4.4% of the UK electricity supply 

(17TWh) from the second greatest tidal range resource in the world, generating electricity 

for over 120 years regardless of environmental impacts 5  which are barriers against 

development of this project. One of the advantages of tidal power for the UK is that it is 

distributed almost evenly geographically [15].  

 

2.3.3 Wind: 
Wind energy is widely dispersed. It is greatest in high latitude locations and has been 

used for centuries in windmills of various forms for grinding grain or pumping water. 

Modern wind turbines are available for both large and small scale electricity generation, 

and huge technological advances have been seen over the past 20 years. 

 

As UK is one of the windiest countries in Europe a high proportion of electricity could be 

generated through wind. Together, wind, wave and tidal power could supply 21% of the 

country’s projected electricity supplies by 2020, resulting in over £16 billion of investment 

in the UK project life cycle [16]. Because UK is an island, access to off shore wind farms 

which are located somewhere in the middle of water where wind energy level is higher 

                                                 
5 It is estimated that developing Severn Estuary project may lead to loss of up to 75% of the existing inter tidal habitats, 
which are internationally protected [15].  
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than on shore, it can benefit from high energy available to be achieved from offshore wind 

farms as well.  Currently 3679.39 MW installed wind capacity exist in the UK, this capacity 

will reduce the CO , SO  and NO  emissions 4157858, 96694 and 29008 tonnes per 

annum. 3081.2 MW of this capacity comes from 208 onshore windfarms and 498.2 MW 

from 8 offshore windfarms [16]. Figure 2.7 shows the all windfarms located onshore and 

offshore in the UK.  

2 2 x

 
Fig. 2.7. Windfarms location in the UK in 2008 [16]. 

 

However there are some problems associated with windfarms; a single large coal-fired 

power station occupies about 1 square km of land, whereas a wind farm of equivalent 

output would measure over 500 sq. km Noise, visual intrusion, hazards to wildlife and 

interference with TV, radio and radar are drawbacks of having windfarms in the society.   

 
2.3.4 Biomass:  
There are three types of indigenous biomass fuel:  

1. Forestry materials, where the fuel is a by product of other forestry activities;  

2. Energy crops, such as Short Rotation Coppice (SRC) willow or miscanthus, where 

the crop is grown specifically for energy generation purposes; and  

3. Agricultural residues, such as straw or chicken litter.  

Biomass can also be imported, mainly in the form of pelleted sawdust which is already an 

internationally traded commodity. Biomass fuels likewise water can also be stored and 
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have energy storage capacity. Alsobiomass fuels are being considered and used for 

Renewable-Combined Heat and Power (RCHP) systems [17]. Using biomass fuels in 

particular wood has both negative and positive impacts on environment. Quantifying the 

benefits for environment is hard in the UK but with the experience of countries such as 

Austria and Sweden shows that net impact will be positive [18].   

 

2.3.5. Solar Power  
Sunlight is the world’s largest energy source (170,000TWth) and the amount that can be 

easily accessed with current existing technologies exceeds the world’s primary energy 

consumption. Different technologies have been developed up to now in order to utilize 

solar power. They include Photovoltaic (PV), Solar Thermal Electric (STE), Passive Solar 

Design, and Active Solar.   

 

Solar PV uses solar cells, usually made from silicon to produce electricity directly from 

sunlight. The technology is currently quite expensive, although solar PV costs have fallen 

dramatically over time and further falls and technological improvements should be 

possible. Direct sunlight is not necessary and the cells can produce electricity even during 

cloudy conditions (at a reduced rate). Future applications for solar PV in the UK are likely 

to centre on building integrated solutions, such as cladding and roofing.  

 

The main use of solar power is not limited to just generating the electricity; those places 

where solar panels are installed can benefit from water heating through solar power as 

solar panels can be fitted to absorb heat from the Sun; the technology called Solar-

thermal and has been used primarily for domestic purposes, although industrial and 

commercial applications also exist. Solar thermal is exploited extensively in countries such 

as Cyprus and China, but so far has had limited penetration in the UK. It is now being 

given more encouragement. A solar thermal collector can provide around 60% of a 

household’s hot water requirement over the year in UK conditions [19].  

 

2.3.6. Geothermal  
There are two main use of geothermal energy; geothermal heat pump for heating the 

buildings and electricity production. For electricity production; as aquifers does occur 

naturally in the UK the only possible way to produce electricity from geothermal energy is 

a technology called “Hot Dry Rock” where two holes with about 10km deep is drilled into 

the earth’s crust the rock structure between them is fractured, then cool water is pumped 

down one hole and hot water extracted from the other. The temperature difference is then 

used to drive a steam turbine, as in conventional power stations, although, in view of the 
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relatively low temperature differentials, a fluid other than steam would probably be used. 

In the UK, Cornwall contains much of the theoretical potential geothermal energy resource.  

  
Fig. 2.8. The geothermal heat pump.  

 

2.4 Barriers to Implementing Renewable Power  
Implementing renewables into the current network involves some studies to assess 

whether or not the network has enough capacity to accommodate new source of power. 

Besides, huge investment in building new plant is needed to satisfy the increasing 

demand for electricity. In principle this demand could be met by any source of power; 

either renewable or non-renewable. When the decision for choosing renewable plant 

because of its advantages over conventional plants is considered, the intermittent nature 

of renewables makes it very difficult to direct the investment straight away to choose 

renewables. Extra power in the power system needs to be always available to be 

dispatched from different locations due to demand uncertainty and for contingencies. This 

concept needs to be expanded when renewable are added into the system; extra power 

needs to be available for dispatching also in case of loss of output power from intermittent 

plant. This forces the network planners to always backup intermittent plant with other 

sources such as power storage.  

 

This is not the only problem with regarding to renewables, as mentioned before network 

needs to be expanded to accommodate more power. However one of the advantages of 

embedded generation is to reduce the power flow in branches by serving the local 

demand. Renewables because of their dependency on the availability of natural sources 

of energy must be installed in specific locations which could be either far from existing 

transmission lines and the current network power transportation components may not be 
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able to accommodate extra power. Investment in expanding the network may be difficult 

to justify as network planner can not guarantee the utilization level of proposed network by 

renewable plant because of renewable output variability. There are therefore some 

barriers to increasing the penetration of renewables [20- 23]: 

 

2.4.1. Technical Issues:  
Renewable power generation when compared with conventional power generation has 

a greater dependency on specific locations where the main source of energy is 

available. In the case of wind power, windfarms must be installed in the windy regions 

to maximize the energy output of the windfarm. The transmission access to these 

locations may be restricted and therefore extracting the energy output of renewables is 

an issue which may be a barrier for increasing the penetration renewables.  

 

Transmission and busbar limited capacity (due to power flow limit, fault current growth, 

and voltage rise) of existing transmission and distribution assets may require further 

reinforcement if renewables are to be connected to existing nodes. Such 

reinforcement due to increasing the intermittent generation, incurs additional costs 

especially in terms of the connection cost for use of system and may lead to a 

renewable project being uneconomic.  

 

 

Another important issue with regard to intermittency of renewables is the need for the 

back-up power. To compensate for the power output variations of renewables in 

particular wind power, conventional plants must always be available on stand-by to 

compensate for such fluctuations. This has a drawback in efficiency of conventional 

plants.  

 

2.4.2. Market issues:  
Renewable plant usually has zero fuel cost and zero emissions, therefore when 

bidding in the market its power output will always be dispatched. This can result in 

reducing the exercising the market by large power generation companies. However, 

intermittency and diffuse nature of wind power makes it very difficult to participate in 

the electricity Market without a back-up power which is usually a conventional source.  

 

These issues will persuade the renewables industry to look for more advanced 

technologies to eliminate the problems associated with installing more renewable power.  
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2.5. Demand Side Management  
In early 1970’s at the beginning of the energy crisis most nations realized how reliant on 

fossil fuels they were c and this level of dependency on such unsecure sources of fossil 

fuels which are mostly imported from other countries, will make their economy and social 

welfare vulnerable. In energy terms there was not a well established programme or policy 

at even national level to reduce the dependency on fossil fuels. The solution to this issue 

was to some extent known; using other sources of energy such as renewables or 

managing the consumption pattern. Both these two options have been very seriously 

considered and studied but for different purposes; first for to switch to renewable energies 

for generation and second option is to switch to different mode of consumption in demand 

side.  

 

Demand Side Management (DSM) has a number of potential benefits to utilities, including 

reduced costs of electricity, increased security of supply at times of network stress, 

deferred network investment, and simplified outage management. In addition, DSM can 

also deliver important non-financial benefits, such as carbon savings, through reduced 

reliance on more polluting generating plant and increased energy efficiency as customers 

become more aware of their usage patterns. As demand for electricity is indirect, 

consumers actually demand the services provided by the electricity rather than the 

electricity itself. Controlling energy based demand can allow for increased efficiency by 

reducing peak loads without loss of end use service quality. Therefore DSM programmes 

have been widely focused on how to manage the consumption pattern of electrical 

appliances by minimizing the negative impact on consumers [24].  

 

2.5.1 DSM Objectives 
The demand side in an electricity network consists of different types of consumers; 

domestic, commercial, industrial. Many nations have electrified aspects of their agriculture 

and transportation and these two sectors are also included in demand side. Each one has 

some specific type of loads with different time activation (load profile) which makes a 

diversity of load categories in the network.  

 

Reliability of electrical networks is the most important aspect of most works which have 

been done in this field and as it depends to two major factor; security and supply 

adequacy; supplying these loads is very important in order to increase the reliability. 

Some of the loads are categorised as critical loads which must be supplied with minimum 

interruption as any interruption may lead to  severe costs on safety consequences and 

safety risks.  
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However meeting these criteria as well as running the system efficiently without 

participation of demand is almost impossible. This method of controling and managing the 

electricity utilization is known as demand side management (DSM). DSM includes a broad 

range of tools for changing electricity load shape, for reasons which include the following 

[25]:  

 

1. Reducing price volatility/flattening spot prices; 

2. Improving system reliability and reducing the risk of black-outs; 

3. Reducing network congestion; 

4. Delaying construction of additional generation, and/or grid and network upgrading; 

5. Reducing greenhouse gas emissions;  

6. Improving market efficiency by enhancing consumers’ ability to respond to changing 

prices; and 

7.   Energy conservation through both behavioural and operational changes.  

 

Demand side management consists of different ways to change the electricity 

consumption pattern in all sectors; commercial, domestic, industrial, transport sector etc. 

Most load based DSM programmes aim to achieve goals such as peak clipping, strategic 

conservation, strategic load growth, valley filling, load shifting and flexible load shape as 

illustrated in fig. 2.9.   
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Fig. 2.9 Demand side management addresses all the basic load-shape objectives  

 

1. Peak clipping – reducing the demand during short usage peaks;  

2. Valley filling – increasing the demand during the off-peak period;  

3. Load Shifting - combines the benefits of peak clipping and valley filling by moving 

existing loads from on-peak hours to off-peak hours;  

4. Strategic conservation – decreasing the overall load demand by increasing the 

efficiency of energy use;  

5. Strategic load growth - increased electric energy use either to replace inefficient 

fossil-fuel equipment or to improve customer productivity and quality of life; and  

6. Flexible load shape – specific contracts with possibilities to flexibly control customers’ 

equipment  
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Apart from the technical and economic advantages of implementing the DSM programs, 

the environmental effect of DSM is also important and must be taken into account. The 

Kyoto protocol is one of the agreements that requires most countries to reduce their CO2 

emissions. Those power plants which need to burn fossil fuels to generate electricity are 

of the major sources of air pollution. By reducing the need to build new plant by supplying 

loads from emission-free sources like wind as well as promoting new emission reduction 

policies such as  “Emission Cap and Trade” will allow the Kyoto protocol to be achieved.  

 

Renewable energies have an intermittent nature therefore utilities can not rely solely on 

them without having the backup from a non-intermittent source. DSM programs will help 

the utilities to  supply more loads from intermittent generation especially if some energy 

storage devices can be included in the system, even at consumer level.  

 
2.5.2 DSM Methods:  
DSM programs provide cost incentives to consumers for   over some control of when 

energy is supplied to the distributer which allows better and more effective utilization of 

generation resources. Most analyses of electric power systems (both economic and 

technical) assume that demand is highly inelastic. This is based on experience from the 

regulated industry where the system was designed to meet demand, costs are socialized, 

and prices are time invariant.  

 

 

DSM 

Load 
management

Electrification Customer 
generation 

Adjustment in 
Balancing 

Strategic 
conservation

 

2.5.2.1 Load management 
Load management (LM) is one of the DSM method which aims to control the actual load 

either directly or indirectly. It is better known than any other DSM Method. The advantage 

of LM is to mitigate cost of peak power and adding capacity to the network, in other words 

the principles of LM is that the consumer profits by scheduling more and more 

consumption to off-peak periods. Load management (LM) can be done in two ways:  

Direct load control i.e. switching on/off different loads by using artificial intelligence 

devices, and Indirect load control i.e. changing the tariff according to time/day 
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2.5.2.1.1 Direct Load Management [26-27]:  
These methods directly control the load; either by restricting its consumption such as 

using switchover meters, or backing up the loads with energy storage devices such as 

batteries to supply demand if the power in the network is not enough to meet the load. 

The methods which have been studied included:  

1. ripple controllers; 

2. switchover meters; 

3. voltage reduction; 

4. using batteries to supply electricity especially in peak hours; 

5. using storage devices (heat and cool); and 

6. Using artificial intelligence to control some loads, i.e. lightning which can be controlled 

by lightening sensors like a photocell or motion cell. 

 

2.5.2.1.2 Indirect Load Management [28-29]:  
Indirect load control usually works by setting up a scheme aim to persuade consumers to 

control their power consumption. This control could be maintained by either offering an 

incentive programme or an obligatory.  They include:  

 

1. Setting up new and various tariffs; i.e. Economy 7 and Economy 10 in the UK and 

G12 in Poland; 

2. Performing different programmes such as heat storage and electrical energy storage; 

3. Setting up a minimum standards of efficiency for electrical appliances and;  

4. Setting up cost penalties for consumers who consume more power than expected. 

 

2.5.2.2. Strategic Conservation: 
By improving energy conservation a noticeable amount of load can be reduced. Strategic 

conservation methods are usually long-term schemes which authorities set in order to 

reduce the energy losses and often involve some educational programmes to inform the 

public about governments strategies on energy saving.  

 

25 | P a g e  
 



Chapter 2                                                                          Sustainability in the Electricity Industry 

Improving the energy efficiency level of appliances in the domestic sector, or promoting 

energy saving light bulbs along with incentivising them are good examples of strategic 

conversion schemes. Figure 2.10 shows the popularity of different strategic conversion 

techniques among end-use consumers.  

Effective 
Lightning
54%

Replacement of 
Existing Devices

19%

Multiple Tariff
12%

Others
15%

 
Fig. 2.10 Options to increase effectiveness of energy consumption chosen by consumers 

[30].  

 

Strategic energy conservation programmes for commercial and industrial sectors are often 

mandatory, or by setting penalties and incentives such as reducing the fixed charge 

component in an electricity bill oblige the industries to improve or change their electrical 

appliances to better consume the energy. These programmes often involve substantial 

investment in performing this improvement and the benefits of that saving must be clear 

for the consumer to go ahead. These programmes include [30]: 

 

1. Replace inefficient motors; 

2. Change lighting system; 

3. Use gas heaters instead of electric heaters; 

4. Correcting the power factor; and 

5. Improving manufacturing process.  

 

2.5.2.3. Electrification: 
Electrification is another aspect of DSM. Because of the diversity of consumers and loads 

connected to the network it is very important to have a combination of different consumers 
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with different load patterns. This will result in having a less volatile, flatter demand curve  

which reduces the peak load demand. Although the base load will increase this may be 

supplied by more base load power plants which are usually cheaper to run in comparison 

with peaker units. Also electrification increases the revenue for the utilities but does 

required them invest supply more loads because of load diversity. For instance, if there 

are 10 houses, each with 10kW peak, only about 10,000kW needs to be reserved due to 

load diversity. 
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Fig. 2.11 Two types of demand patterns and their aggregated effect.   

 

2.5.2.4. Customer Generation (Standby Generation): 
Generation of electricity using customer-owned equipment on a customer's premises 

intended to primarily offset a customer's electricity use and sell the surplus to the national 

grid. In general customer generation (on-site generation) has the following benefits: 

1. "Back-up" or emergency generation designed to be used during utility power outages;  

2. "Co-generation," or combined heat and power applications, used by customers that 

have consistently high need for steam or another form of thermal energy;  

3. Generation to be used during "peak demand," when it may be less costly to operate a 

generator than to buy power from customers;   

4. "Environmentally friendly" generation used by customers who want to reduce pollution;  

5. Generation to be used to improve reliability or power quality when operational needs 

exceed the level of service that a utility can provide.  
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The following forms of electricity generation have been considered for customer 

generation [31]:  

1. Photovoltaic (solar) panels ; 

2. Small scale hydro; 

3. Combined heat and power; 

4. Biomass such as pig waste; and 

5. Small scale wind. 

Micro-generation will be one of the best options for the UK in 2050 both in terms of 

amount of load which can be supplied by micro generation (estimated 9% of total UK 

electricity requirements). This will reduce domestic sector CO2 by 3%; because of the 

efficiency of providing near the point of consumption which reduces the losses in 

transmission of gas and electricity. Micro-generation units can be either standalone or 

grid-connected. The second form; grid-connected is more likely to be used in the UK. This 

concept is now known as micro-grids. In literature micro-grid is a small power supply 

network to provide energy for a small community.   

 

In 2004, 82000 micro-generation units were installed in the UK and very currently in 2007 

it was estimated that if consumers could generate around 2000kWh per year the surplus 

electricity likely to be generated would pay for the cost of the meter.  

 
2.5.2.5. Adjustment in Electricity Market 
In the UK, One of the key selling points for the development of the New Electricity Trading 

Arrangements6 (NETA) was the introduction of a two-sided market where an appropriate 

level of supply and demand interaction would take place. The interaction between supply 

and demand will take place in the future markets and in the balancing mechanism, where 

participants could elect to offer services directly to the system operator. Supply and 

demand in this market set the price and price changes time to time [32]. 

 

Electricity utilities at each scheduling period must balance the demand and supply in the 

system. The balancing mechanism in a deregulated energy market can be done through 

either supplying more electricity or reducing the demand. Currently the Short Term 

Operating Reserve (STOR) can be provided by contracting the deferrable loads. This 

                                                 
6 In April 2005 the NETA arrangements were extended to include Scotland leading to a UK wide market. These new 
arrangements are called BETTA (British Electricity Transmission and Trading Arrangements). 
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scheme that requires a bulk load (minimum 3MW) becomes available in less than 240 

minutes for a minimum duration of 2 hours upon instruction by National Grid [33].  

The government report on the response to Clause 18 of the Climate Change and 

Sustainable Energy Act in August 2007 has considered other options such as dynamic 

demand for balancing services.  

 

Because of the competition in a deregulated electricity market which will result in cheaper 

electricity and also security of supply to loads, electricity companies have a wide range of 

programmes to involve consumers in the balancing mechanism. For example, load may 

play the role of negative demand whenever meeting the total loads could be 

uneconomical or would reduce the security of the power system.  

 

2.5.3. Issues with DSM Programmes:  
A key issue in DSM is the recovery of costs and lost revenues resulting from intervention 

in the customers' end-use of electricity. As DSM programmes aim to reduce the need for 

generation capacity they are considered in Least Cost Planning (LCP) strategies in which 

the cheapest overall cost of delivering energy services is assessed. In some 

circumstances it can be shown that it is cheaper to save energy in end-use than to 

generate the equivalent energy. When energy efficiency is improved, the electricity 

company avoids fuel consumption in generation, avoids utilizing expensive units to meet 

the peak demand, network losses and some administration charges, and may also avoid 

costly network or generation reinforcement.  

 

However, an electricity company that introduces energy efficiency measures will lose 

some revenue, so that energy efficiency and generation cannot be considered on equal 

terms. In this case to make the DSM justifiable the network planners extend the LCP to 

associated benefits which could be derived from DSM; such as reduction in environmental 

pollutants and avoided cost of reinforcement of the network. When considering these 

external benefits those strategies which were not cost-effective by LCP may become more 

justifiable. In fact a new strategy known as Integrated Resource Planning (IRP) has been  

developed which considers associated benefits of DSM for the electricity company [34]. 

For example, in the US the peak load can be lowered 30,000MW nationally and by 

reducing this amount of peak load, society could avoid the burning of 680 billion cubic feet 

of gas (BCF) of gas per year and could avoid producing 31,000 tons of NOx emissions 

[35].  

Reliability of the network is also an important objective which can be achieved by 

implementing the DSM programmes. DSM programmes can help to meet both reliability 
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parameters (security and adequacy) by providing available resource from demand, and 

more flexible energy consumption pattern.  

 

Performing most of the DSM programmes usually are costly and the benefits resulting 

from it should be quantified well in advance before starting any project relating to it. 

Communication is one of the most essential requirements especially in direct load 

management and can increase the cost of introducing DSM to a network [36]. Most of 

these programmes only have a long-term benefit for both the network and consumers. In 

a deregulated electricity market where competitiveness can reduce the cost, demand side 

management programmes are often offered to reduce the cost of tariff.  

 

2.5.4 Current DSM methods Limitations  
There are market related and technical issues in current DSM programmes. Firstly from 

the market’s point of view, current DSM programmes aim to manage the load by either 

smoothing the load curve or if necessary reducing the demand to make the most efficient 

use of energy resources. In fact the assumption is made on the supply side nothing is 

going to be volatile which demand is supposed to respond to it. This assumption was true 

before the deregulation of electricity market, but now electricity is being traded over time 

at a different price. So far one of the drawbacks of current DSM methods is their inability 

to mitigate electricity spot prices.  

 

Figure 2.12 shows the System Buy Price (SBP); which is the price paid by suppliers and 

generators. As we can see at the time of system peak SBP increases. However, in terms 

of domestic consumers billing, they are charged at a flat rate, regardless of all these price 

fluctuations [37].   

30 | P a g e  
 



Chapter 2                                                                          Sustainability in the Electricity Industry 

 
 Fig. 2.12. System Buy Price (SBP) and electricity demand [37]  

 

Secondly if technical issues are considered it must be noted that in any power system 

power balance must be maintained on a cycle-by-cycle basis. Extra cost has always been 

imposed by utilities because of error in demand forecasting, which has never been 100% 

accurately predicted.  Future electricity networks tend to have more penetration of 

renewables and in renewable networks this uncertainty is further pushed by intermittency 

in the power output of renewable units.   

 

There are several solutions to mitigate intermittency issues; but current DSM programmes 

will not mitigate this issue as none of them has the ability to respond dynamically to power 

fluctuations, i.e. if we consider demand shifting; it aims to shift the load to reduce the peak 

demand but in an intermittent system there is no guarantee that even by shifting the 

demand to off-peak hours it could be securely supplied.  

 

The possible way to implement DSM in future power systems is to have the technology to 

enable demand to respond to these fluctuations in power delivery and spot prices. At the 

moment the methodology available to make use of demand response requires huge bulk 

load with considerable amount of commitment. The current methods in fact do not 

consider aggregated effect of small loads.  

 

Currently the only technology available to do this is Tele-switching the load through radio 

transmitters, telephone line, TV, internet or well established ripple controllers. Smart-

metering scheme in the UK aim to mitigate some of these issues in particular market 
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issues where consumers will be billed remotely and depending on the time of 

consumption. Smart meters are not designed to provide the facilities to mitigate the 

intermittency in supplying power in the network, but as they provide bilateral 

communication between the system and loads this facility could be added to them.  

 

2.5.5 Demand Response: 
This section summarizes dynamic demand response (DR) resources, types and design 

principles for gaining customer participation, and creating customer and market value for 

demand response resources. Since this technology is being employed by many utilities 

across the world, a summary thet extent of demand response application in different 

countries is also presented as well as emphasis on utilization of demand response in the 

GB power system.  

 

2.5.5.1 Definition of Demand Response  
The United States Federal Energy Regulatory Commission has suggested a definition for 

responsive demand: “Changes in electric usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over time, or to 

incentive payments designed to induce lower electricity use at times of high wholesale 

market prices or when system reliability is jeopardized”. This definition only covers the 

economy based products of demand response, whilst demand response has far more 

important aspects which can not be defined by such definition. Therefore in this thesis 

demand response in the electricity industry is defined as a technology which enables 

loads to respond to the supply, transmission and distribution side. Demand 

response includes direct load control such as residential air conditioners, partial or 

curtailable load reductions, and complete load interruptions. It also includes indirect load 

control, known as dynamic price response includes Real-Time Pricing (RTP), Coincident 

Peak Pricing (COP) or known as Critical Peak Pricing (CPP), and demand bidding or 

buyback programs [38].  

 

Figure 2.13 shows the demand response’s architecture. It is observable from this figure 

that demand may respond to different signals, such as market activities, information sent 

by system operator regarding the balance of supply-demand and operation condition of 

transmission system, information sent by distribution system operator regarding the 

distribution system condition, or even to power output of an on-site generator such as 

wind turbine.  
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Fig. 2.13 Architecture of demand response [48] 

 

Those loads which will be used as a resource in a demand response programme, will be 

connected to the main grid through a module which will detect the signals received from 

the sender module. This will disconnect the load from the grid, and after either a certain 

time period, or after the re-connect signal is received, the load is again connected. Figure 

2.14 shows the domestic demand response’s module installed on a washing machine.  
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Fig. 2.14 Domestic demand response module installed on a washing machine 

 

Demand response benefits primarily as resource savings that improves the efficiency of 

electricity generation and supply. The benefits of demand response can be classified in 

terms of whether they accrue directly to participants or to some or all groups of electricity 

consumers [38]. These benefits include:  

1. Consumer electricity-bill savings: reduced electricity bill and incentives earned by 

customers that adjust load in response to current supply costs or other incentives. 

2. Bills savings for other customers: reduced market price volatility and lower wholesale 

market prices that result from demand response translate into reduced supply costs to 

retailers and eventually make their way to almost all retail customers as bill savings. 

3. Reliability benefits: reductions in the likelihood and consequences of forced outages 

that impose financial costs and inconvenience on customers. 

4. Market performance: demand response acts as a deterrent to the exercise of market 

power by generators; 

5. Improved choice: customers have more options for managing their electricity costs; and 

6. System security: system operators are provided with more flexible resources to meet 

contingencies. 

 

2.5.5.2 Applications of Demand Response 
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The purpose of demand response is to provide the means of providing some response 

from the demand side to supply side and this is used for different purposes, but in general 

they can be classified into two main groups: economy, and reliability purposes [39, 40].  

 
2.5.5.2.1 Economy Based Products 
Economy based products are usually offered by electricity suppliers, and they are mainly 

voluntary, and not regulatory. Economy based products measure the consumer’s electricity 

production dynamically, and the price they offer is neither flat rate, nor a fixed price 

depending on time of use in a period. It is basically a price which changes dynamically. 

These tariffs mainly reflects the actually price of electricity in the wholesale market.  

 

The benefits of economy based products of demand response is illustrated using figure 

2.15 which shows the changes in supply price for different demand levels. The price of 

electricity at different demand levels, and at different times is different. But changes in the 

price of electricity are always influenced by changes in demand level, and the higher the 

demand is, the higher the price of electricity will be observed in supply side. This is due to 

change in the generation dispatch pattern which increases the cost of electricity generation. 

In figure 2.15 it is observable that price C1 is seen when demand is D1. A typical dynamic 

demand response programme monitors the changes in demand from D2 to D1, and at the 

same time, bills the consumer depending on the price which is observable in supply side. 

A consumer may choose to have a control mechanism to limit its consumption (does not 

let the demand reaches to D1) if the price of electricity generation increases.  

 
Figure 2.15 Demand level versus supply price 
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The benefit for both consumer and supplier will result in a different cost between the price 

C1 and C2 which may be shared between supplier and consumer. Consumers will benefit 

either through receiving payment for the duration that they have been disconnected and 

the capacity they had made available, or through savings made on not paying higher price 

for the electricity.   

 

2.5.5.2.2 Reliability Based Products  
Demand Response may also be used as a reliability resource in the system. Reliability 

based products unlike economy based products are usually mandatory, that is, the 

contract incorporates the requirement that the demand response resource be made 

available upon request.  Reliability products may be used for different purposes such as; 

frequency regulation, balancing services, spinning reserve and operating reserve, and 

reliability margin reserve.  

   

2.5.5.3. Current Use of Demand Response  
2.5.5.3.1. North-America (USA and Canada): 
As of 2007, the North American Independent System Operators (ISOs) and Regional 

Transmission Operators (RTOs) include the Alberta Electric System Operator (AESO); 

California Independent System Operator Corporation (CAISO); Electricity Reliability 

Council of Texas (ERCOT); Ontario’s Independent Electricity System Operator (IESO); 

Midwest Independent System Operator (MISO), ISO New England (ISO-NE); New 

Brunswick System Operator (NBSO); New York Independent System Operator (NYISO); 

PJM Interconnection (PJM); and Southwest Power Pool (SPP). The map of ISOs and 

RTOs is shown in figure 2.16.  
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Figure 2.16 Map of North America’s (ISOs) and (RTOs) 

 
Demand response in the 10 North American ISO and RTO markets serves several critical 

roles in the management of the regional power grids. Almost all RTOs and ISOs offer 

demand response packages to eligible consumers (depending on type and size). More 

than 23,000 (MW) of demand response are now participating in North American ISO and 

RTO markets, representing 4.5% of their combined electricity demand. Researchers have 

found that demand response of about 5% to 15% of peak demand should result in an 

efficient balance between building new supply resources and reducing demand. A 

summary of current programmes offered by them include [41]:   
 

• Southern California Edison (SCE) offers a range of demand response products 

including: 

- Capacity Biding Programme (CBP) which is a flexible bidding program where 

participants are paid a monthly incentive to reduce load to a pre-determined 

amount during CBP events with day-of or day-ahead notification. Customers 

may also participate through an aggregator.  

- Demand Bidding Program (DBP) which is a voluntary internet-based bidding 

program that offers bill credits with no penalties for reducing power when a 

DBP event is called with day-of or day-ahead notification. 
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- Real Time Pricing (RTP) in which participants are billed for the electricity they 

consume based on hourly prices driven by temperature. Participants may 

choose to make adjustments in their electricity usage based on the hourly 

prices within different temperature ranges (i.e. Extremely Hot, Very Hot, Hot, 

Moderate, Mild Summer Temperatures, High Cost/Low Cost Winter). 

- Agricultural and Pumping Interruptible (API) which is offered to agricultural and 

pumping stations and is an Interruptible rate that offers a monthly credit to 

customers who allow SCE to temporarily interrupt electric service to their 

pumping equipment. 

- Time-of-Use Base Interruptible Program (TOU-BIP) which is a program for 

customers who can reduce their electrical usage to a pre-determined amount, 

also called the Firm Service Level (FSL), within 15- or 30-minutes of notice. In 

return, customers receive a monthly capacity credit. Customers may also 

participate through an aggregator.  

 

• San Diego Gas & Electric offers demand response in the form of RTP, Emergency 

Demand Response Program, and day-ahead option (for balancing purposes) to all 

consumers. 

 

• ISO New England offers demand response in the form of RTP, and day ahead 

response for customers with the peak demand of over 200kW.  

 

• The New York Independent System Operator (NYISO) has two demand response 

programmes: the Emergency Demand Response Program (EDRP) and ICAP Special 

Case Resources (SCR) program. Both programs can be deployed in energy shortage 

situations to maintain the reliability of the bulk power grid. 

- The Emergency Demand Response Programme (EDRP) is designed to reduce 

power usage through the voluntary shutting down of businesses and large power 

users. Companies, mostly industrial and commercial, sign up to take part in the 

EDRP. The companies are paid by the NYISO for reducing energy consumption 

when asked to do so by the NYISO.  

- Special Case Resources is a programme designed to reduce power usage 

through the shutting down of businesses and large power users. Companies, 

mostly industrial and commercial, sign up to become SCRs. The companies must, 

as part of their agreement, curtail power usage, usually by shutting down when 
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asked by the NYISO. In exchange, they are paid in advance for agreeing to cut 

power usage upon request. 

 

2.5.5.3.2. France: ERDF, a subsidiary of EDF, and the largest electricity distribution 

network in the European Union; deals with 33 million customers in France. ERDF 

introduced an optional tariff called “Tempo” for domestic customers with over 9kW peak 

demand, with prices that vary according to the time of day and year [42]. It colour codes 

days according to price (blue for low, white for medium and red for high) and each 

evening, a customer display unit indicates the “colour” of the following day, usually linked 

to the weather. Customers can then reduce their consumption on the highly priced days 

and ERDF can reduce peak demand (it was originally devised as a load-shifting scheme). 

The system also allows customers to take savings made during one period as increased 

comfort in others, without increasing their overall spending make it simpler.  

 

Tempo pricing scheme has not yet been very popular among small domestic consumers, 

as it can only benefit large domestic households with peak over 9kW (large domestic 

consumers). This is due to high standing charge and small domestic consumers who may 

not be able to shift/curtail their consumption may even end up paying more. (37% of 

French households are estimated to have peak demand lower than 3kW) therefore 

ERDF’s tempo program has only 120,000 residential customers. Different tariffs are now 

introduced for participating consumers. Time of Use (TOU) is a new tariff, which measures 

the consumers’ consumption in real time and charges the consumers depending on time 

of consumption.  

 

2.5.5.3.3. Italy: There is a large distributor (ENEL) and many medium-sized distributors 

owned by Municipalities (Rome, Milan, Turin, Brescia, Parma, Verona, Trieste, Bologna, 

etc), and a lot of small local distributors. Demand response in the form of RTP is available 

for consumers with peak capacity of over 12kW [43]. 

 
2.5.5.3.4. Great Britain: National Grid (NG) is the transmission network owner in England 

and Wales and system operator for Great Britain. Demand response is provided by NG for 

frequency regulation and Short-Term Operating Reserve (STOR) in which only 

participants who can provide over 3MW available to NG are eligible to participate. 

Demand response has also been used for Fast Reserve only participant who can provide 

minimum 50MW available to the network are eligible to participate [44]. Participants are 

paid an availability payment (£/MW/h) and utilization payment (£/MWh) [45].  
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2.5.5.4. Domestic Demand Response in GB Power System:  
Although in many other utilities domestic loads have the potential for becoming responsive 

and participate in a range of demand response programmes (mainly RTP), but in the GB 

power system, domestic demand response has not yet been offered to domestic 

consumers. In December 2008, it was announced that a pilot project aims to study the 

impact of domestic demand response (provided through refrigerators) only on 

environment [46].  

 

2.6 Chapter Summary  
With increasing the concerns about energy security and global warming, the subject of 

sustainability is being credited more than ever. Within the context of the electricity industry, 

sustainability has different aspects; from generation to consumption and a sustainable 

system aims to make this cycle sustainable.  

 

This chapter provided a summary of current legislations in the UK to transform the 

process of electricity generation and consumption to a more sustainable process. Several 

different types of renewables were discussed in this chapter, and it was highlighted that 

wind power is the most promising type of renewable electricity generation for the UK since 

wind energy has high level of availability in different parts of this country.  Installing new 

renewable plants is subject to availability of source of energy and capability of the network 

to accommodate extra power. Such criteria do not make them easy to penetrate into the 

current electricity systems.   

 

Demand Side Management programmes rely on two main aspects; technology based 

methods which directly control the demand, and behavioural programmes which by 

education and setting up programmes aim to indirectly make the consumers control their 

electricity demand.  Several types of demand side management programmes were 

discussed in this chapter, and it was shown how current programmes are unable to 

mitigate the issues that act as barriers to integrate renewables. Demand response was 

also highlighted and current applications and users of demand response in different power 

systems were introduced. It was shown how in the GB power system demand response is 

being used as a resource by the network operator.  
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Chapter 3. Economic Assessment of Value of Wind Power  
Availability of wind energy which is different at different locations primarily determines the 

appropriate location for installing windfarms. However grid-location of windfarms must 

always be considered in an attempt to accurately quantify the benefits which can be 

achieved from windfarms during their lifetime operation to the supply network. The value of 

windfarms is significantly affected by their penetration and concentration, and is further 

affected by their location within a network. This is because the location and penetration-

level of wind generation will result in significant impact on power-flow distribution across 

the network. The objective of this chapter is to measure the impact of grid-location of 

windfarms on economic and operational parameters of power system in the lifetime of a 

windfarm project. This chapter first develops an assessment tool to quantify the economic 

and operational impact of wind power in the grid. This is followed by developing different 

scenarios in which different penetrations of wind power are installed at different locations 

in the grid, and it is demonstrated how the value of wind is affected by location and 

network constraints.  

 

3.1 Definition of Value of Wind Power 
Wind energy is developing in almost all European countries, leading the global market 

with 48,545 MW of installed capacity at the end of 2006, representing 65% of the world’s 

total installed capacity. In 2006, wind capacity in Europe grew by 19%, producing 

approximately 100 TWh of electricity, equal to 3.3% of total EU electricity consumption in 

an average wind year [1]. Key drivers of this growth-rate are climate change and 

increasing the security of energy supply. In the UK, government has set out a statutory 

commitment to cut CO2 emissions by 60% from 1990 levels by 2050. The key element to 

achieve this target is displacing conventional plants with renewable energy plants, as 

almost 30% of total CO2 emissions come from electric power stations. Currently more than 

2.4 GWe of wind power has been installed in the UK, with annual CO2 reduction of 

5,439,775 tonnes [2].    

 

Windfarms have the capability to displace some conventional plants, considering 

intermittency and the current level of installed wind capacity (around 6%), the 

displacement level is limited to 35% of total installed capacity. This level is lower in higher 

penetration of wind generation as other issues such as balancing between demand and 

power may limit it down to 20% if wind has 20% penetration level [2].   
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Replacing the conventional plants with wind power generation plants, results in fuel-cost 

saving and emission reduction which may be quantified using the “Value of Wind”. Value 

of the wind can be assessed in very different ways with varying degrees of sophistication. 

It could be simply defined as just the amount of the energy which could be produced from 

a wind generator, nonetheless this is not necessarily an ideal definition as it neglects 

additional costs imposed by the variability of wind power [3]. Reference [4] presents two 

definitions for the value of wind with regard to intermittency. First it is the avoided cost of 

thermal power generators when using wind power. These are the operation costs (mainly 

fuel-costs) of thermal power stations as well as the fuel saved in electric boilers. The 

second definition is much wider, it includes all socio-economic effects of integrating wind 

compared with non-wind cases. For this, the socio-economic surplus (sum of consumer 

and producer surplus) has to be calculated. When looking at the differences in the socio-

economic surplus between reference and wind cases the value of wind to the whole 

market is derived. Higher values of wind will result in a more economic system, reducing 

the payback period of capital cost required to build the windfarm, and creating a less 

polluted environment. Reference [5] evaluates the net benefit of wind in terms of the 

added capacity, reduced emission and fuel saving considering the growth rate of wind 

over the next decades. It also shows the sensitivity of value of wind power to changes in 

fuel price and emission trade costs. Reference [6] has conducted the same study in order 

to evaluate the value of wind in terms of emission and fuel-cost reduction while 

considering the effect of wind prediction based on the Dutch system which has a large 

amount of combined heat and power (CHP), which will result in high reserve for wind. 

CHP, unlike wind does not have stochastic pattern as is it controllable. Their work also 

shows the amount of wasted wind in different wind penetrations because of low demand, 

and it concludes that there are no ramp rate problems regarding wind penetration. 

 

Value of wind is reduced by the fact that wind power is not steady; it is intermittent and 

highly variable so that the wind generator output will often deviate from the committed 

level. In order to increase the value of wind previous researches proposed several 

solutions. Reference [7] suggests integration of hydroelectric generation mixed with wind 

generation because both have a stochastic pattern (hydro is more controllable though). 

This method tends to increase the value of renewables instead of backing up wind plants 

with non-renewable units. References [7], [8] address the role of storage devices to 

mitigate the intermittency and ease the integration of wind energy and increase the value 

of non-fossil fuel plants. References [9], [10] emphasise the importance of an accurate 

wind prediction to increase the value of wind.  
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One of the most influential factors in increasing or decreasing the value of wind, is the 

network capability to accommodate, and transport the power coming from windfarms. The 

network’s capability to carry power varies significantly from one place to another, thus for 

the same windfarm, total energy supplied from wind power at different locations could 

differ considerably [11].  Reference [12] has presented a method similar to the optimal 

power-flow method with a difference where the new method considers minimizing total 

losses depending on the amount of injected power through renewables to determine the 

optimum location of resources in distribution planning. Reference [13] has also aimed to 

find the optimum location of windfarms in order to increase the benefits which could be 

achieved from wind power, with respect to minimizing the transmission lines’ losses by 

considering both active and reactive power losses and proposes an algorithm for voltage 

scheduling in order to reduce the losses.  

 

To summarise, all previous researches in evaluating the value of wind did not consider the 

detailed network modelling and thus the network constraints, and the impact of those 

constraints on the net benefit of wind power. It is shown in this chapter that only 

considering network losses as the only tool to find the optimal location of distributed 

generators does not always result in making the maximum profit from wind power.  This 

chapter presents a framework that evaluates the value of windfarm in terms of fuel-cost 

saving and emission reduction, while considering the impact to the network for different 

penetration levels installed at different locations in the grid. Various levels of wind power 

penetration have been simulated in remote areas, close to load centres, and at 

transmission level. This chapter describes the impact of grid locations of a windfarm on 

network losses, production cost, emissions, security of the system, and hence the value of 

wind.  

 

3.2 Value of Wind Power Parameters 
Electricity generation through any source of energy has two major costs: capital costs 

which includes the cost of building the power plant and connecting it to the grid including 

any network reinforcement; and running costs such as buying fuel, maintenance, 

operation and carbon-capturing.  Before building a plant the cost-effectiveness analysis 

must be performed in order to quantify the payback period and revenue which will be 

made in the lifetime operation of the plant. 

The capital costs associated with windfarms mainly depend on the location where the 

construction is to be done. Commercial on-shore windfarms have lower capital cost 

around £800/KWe in comparison with off-shore windfarms, which cost around £1330/KWe  

to be built [14].  
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Electricity production through wind is not currently the cheapest form of electricity 

generation. At present, each unit of electricity generated by on-shore and off-shore 

windfarms costs around 3.5p/kWh, and 5.6p/kWh respectively [14]. Although windfarms 

have “zero fuel-cost” but because of their low load factor, the amount of energy they can 

produce in their lifetime is lower than in conventional plants. Table 3.1 shows the load 

factor of different types of power plant [15].  

TABLE 3.1. 
Load Factor of Different Power Plants [15] 

Type of Plant 
Load 

Factor Type of Plant Load Factor 
Sewage Gas 90% Waste Combustion 60-90% 
Landfill Gas 70-90% Hydro 30-50% 

Combined Cycle 
Gas  

Turbine (CCGT) 70-85% 
Combined Heat and  

Power  (CHP) 70-90% 
Coal 65-85% Farmyard Waste 90% 

Nuclear Power 65-85% Energy Crops 85% 
Wave Power 25% Wind 25-40% 

 

Therefore while deciding to displace cheaper generation units with windfarms, estimation 

of the benefits which could be translated to cost, is important in order to evaluate the cost-

effectiveness of a project. The benefits associated with wind power are as follows:  

 

3.2.1. Fuel-Cost Saving of Conventional Plants through Wind Power:  

Different fuel-costs are associated with different power generation technologies; fuel-cost 

is zero for wind, hydro, wave and solar, it is positive for oil, gas, coal and nuclear plants 

and it is negative for technologies which generate the electricity from waste.  

Fossil fuel must be supplied to conventional plants, to generate the electricity. Generating 

the electricity from wind will result in less operating the conventional plants, and therefore 

saving on cost of fossil fuels. As fossil fuels have volatile price, the amount of saving 

depends on the fuel price at the time of operating the windfarm. By increasing the wind 

power penetration this saving considerably decreases because of intermittency of wind, 

resulting in more frequent start-up of conventional plants which leads to higher operation 

cost [16].  

 

3.2.2. Emission Reduction: 

As power production through wind has zero emissions therefore the equivalent cost of 

emission reduced by wind power must be included in evaluating the value of windfarm.  
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Major types of emission to air which are usually being displaced by wind power include: 

CO2 emissions; NOx and SOx emissions. The amount of displaced emission is translated 

to price and is added on the value which is given to wind because of saving on fuel-cost. 

A terminology known as “Social Cost of Carbon” in the UK currently determines the cost of 

CO2 emission [17]. The social cost of carbon (SCC) measures the full global cost today of 

an incremental unit of carbon (or equivalent amount of other greenhouse gases) emitted 

now, summing the full global cost of the damage it imposes over the whole of its time in 

the atmosphere. The SCC signals how much society should, in theory, be willing to pay 

now, to avoid the future damage caused by incremental carbon emissions. Currently SCC 

in 2007 is £27 per tonne of CO2.  

 

3.2.3. Added Capacity: 

Reliability in power system depends on two major parameters: security; and adequacy of 

power. By adding generation capacity through windfarms into the system, one condition of 

having a reliable system is met. This also mitigates issues such as security of supply 

which concerns relying on the power from conventional plants which are dependent on 

abundant fossil fuels but with limited reserve.   

 

3.2.4. Saving on Capital Cost of Building Other Plants: 

Another advantage of increasing the penetration of wind power in the system, is to lessen 

the need for building new conventional plants. This will result in saving on the capital costs 

of building new conventional plants. The capital costs, per unit output of wind power are 

normally lower than comparable costs for thermal stations and very much lower than 

hydroelectric plants. This is due to the cost of the extensive civil-engineering works 

involved and to the very long periods of construction of projects such as hydroelectric 

plants and thermal units, during which costs are incurred and interest has to be paid, 

without receipt of any compensating income. Table 3.2 shows the different capital cost of 

conventional and windfarms [14].  

TABLE 3.2. 
Capital Cost of Power Plants (2008) [14] 

Type of Plant Capital cost, £/kW 
Gas (combined cycle) 400 
Coal (pulverised fuel) 800 
Coal-IGCC with CCS 1600 

Nuclear 1770 
Wind--onshore 800 
Wind--offshore 1330 
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Besides, shorter construction time of windfarms than many types of conventional plants 

will reduce the “planning margin” requirement for installed capacity over maximum 

demand. 

 

Wind power has a capacity credit, and the capacity credit is around the mean wind power 

output for small penetrations of wind power in the grid, and drops to a value near the 

minimum wind power generation for larger penetrations. This is because of the 

intermittency of wind, a windfarm with “a” MW capacity does not displace “a” MW 

conventional plant and this level of displacement varies in different power systems [18], 

[19].  

 

3.2.5. Embedded Generation Benefits: 

A small percentage of the energy transferred across the network is lost, due to physical 

processes such as [20]: 

1. Resistive losses in cables 61% of total losses;  

2. Fixed losses: 18% of total losses(consists of corona and iron losses can be around 

24% of total losses in adverse weather); 

3. Substation transformer heating losses: 10% of total losses; and 

4. Generator transformer heating losses: 11% of total energy loss. 

 

If windfarms are integrated into the power system at distribution level, then the additional 

benefit of this integration will be reducing the power-flow across the network, resulting in 

both real and reactive power loss reduction across the network. The calculation of these 

benefits is a complex issue and they vary both regionally and locally. However, these 

benefits may result in costs if penetration of wind energy in remote regions requires 

network reinforcements [20]. 

 

3.3. Assessment Framework of the Value of Wind Power 
A long term generation scheduling process, combined with a reserve calculation tool is 

developed and implemented.  The reserve calculation tool is used to determine the 

reserve requirement with regard to wind forecasting errors. The generation scheduling 

without wind is performed to determine the base-case and while the windfarms’ location 

and penetration are different for each scenario the objectives are:   

1. To determine the optimal wind penetration level,   

2. To study the location of windfarms and determine the best location in the grid which 

enhances the economical and operational values of integrating windfarms.  
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This methodology can be applied to other non-conventional energy sources. The 

proposed methodology consists of the following four steps: 

 

1. Generation mix planning;  

2. Hourly generation scheduling;  

3. Production cost, emissions, security indices, capacity displacement, energy value; and 

4. Lifetime value of wind.  

 

In an attempt to evaluate the value of wind at different locations and with different 

penetrations, the simulations are performed with and without wind. By performing unit-

commitment in the no-wind case, production cost, total CO2 and NOx emissions, as well 

as security violation index have been evaluated as a benchmark. Then by increasing 

windfarms installed capacity and moving certain amount of penetration at each scenario in 

different locations of the network those parameters have been re-evaluated. Windfarms 

for each scenario were located at different busbars; in transmission level and distribution 

level, close to generation units and close to the load.  Fig. 3.1 shows the algorithm of 

calculating the value of wind for one year, and the lifetime value of wind.  

 
Fig. 3.1. The algorithm of calculating the value of wind. 
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3.4 Step 1: Input Data:  

3.4.1. Network: 

The IEEE 30-busbar system was chosen for our study. The system consists of 8 

conventional plants; 4 coal fired plants, 4 open cycle gas fired and a windfarm. Fig. 3.3 

shows the IEEE 30 busbar test system [28].  

 
Fig.3.2. The IEEE 30 busbar used as test system [28]. 

 

3.4.2 Demand Data: 

The demand data including the load profile is derived from [28] for the entire unit-

commitment horizon - one year. The peak demand is 283.4 MW and minimum demand is 

97.3MW. Fig. 3.4 shows the load duration curve for our study. 
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Fig. 3.3. Annual load duration curve [28]. 

 

3.4.3. Generators Data: 

As the purpose of this study is to evaluate the value of wind in a system with conventional 

plants, the generator’s fuel coefficients have been taken from [29] for coal and gas plants. 

Generation fuel-cost coefficients and characteristics are shown in Table 3.3 & 3.4 

respectively.   
TABLE 3.3 

Generators’ Fuel-cost Coefficients [29] 
Unit Type (No) a b c 

Gas  (1) 
Gas  (2)  
Gas  (3) 
Gas   (4) 
Coal  (5) 
Coal  (6) 
Coal  (7) 
Coal  (8) 

0.02
0.01
0.06
0.01
0.06
0.05
0.05
0.04

1.2 
0.8 
4.5 
0.4 
5.2 
2.2 
3.0 
1.8 

80 
50 
60 
55 
23 
22 
30 
44 

 
TABLE 3.4. 

OTHER GENERATORS CHARACTERISTICS[29] 
Unit Min Up 

Time 
Min Down Time Ramp 

rate 
Pmi

n

Pmax Busbar 
No. 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
2 
1 
3 
4 
2 
3 

1 
1 
1 
2 
2 
2 
3 
2 

3 
4 
3 
4 
6 
6 
7 
7 

5 
10 
8 

10 
5 
5 
5 
5 

35 
45 
40 
60 
25 
80 
35 
30 

11 
8 
2 
1 

17 
5 

14 
13 
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3.4.4. Windfarm Data: 

Wind speed data have been obtained from the United Kingdom Meteorological Office (UK-

Met Office) for a period of one year. The data concerns hourly wind speed with a 

resolution of 0.1 m/s for South west of the UK. As one of the objectives of this research is 

to assess the effect of different penetrations on the value of wind, the capacity of the 

added windfarms will be varied. It has been assumed that the windfarms consist of 

different numbers of identical wind turbines; each with 600kW capacity. The wind turbine 

power curve is shown in Fig. 3.5. 

 

The load factor of the windfarm considered in this study is 27% in which its capacity is 

different for each case as shown in table 3.5. The selection of busbars where windfarms 

are to be installed for each scenario is as follows: a scenario in which the windfarm is 

located at transmission level (bus no. 5), or else at distribution level close to loads center 

(bus no. 19), then in remote areas where demand is high (bus no. 30) or where the 

demand is relatively low (bus no. 26).  
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Fig. 3.4. Wind energy conversion characteristic of the considered wind turbines. 

 

 

3.5. Step 2: Generation scheduling problem: 

Variable costs are dependent on the operation pattern of generators. Several technical 

factors must be taken into account to determine the best operation pattern of a set of 

generators in a system. This is defined in Generation Scheduling Problem. Generation 

scheduling problem is an optimization problem which is defined in the following section. 

Generation units in any power systems are scheduled to deliver required amount of power 
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to be consumed by end-use loads. The problem of finding the best operational level of 

each generation unit, in terms of fuel cost and emission level, to serve the load is called 

generation scheduling:  

)])()([(),(
1 ii

N

i
PePcecMin += ∑ =

χ                   (3-1)  

where ),( ecχ is generation scheduling function consists of two main elements of c which is 

the cost function, and e which represents the emission function, for power output of Pi for 

set of N generators.   

 

Generation Scheduling is an optimisation problem which must be solved in order to find a 

solution for any given system. Since this problem includes many constraints which must be 

taken into account, it requires an optimisation method (solver). In this chapter Dynamic 

Programming approach has been used in order to solve this problem [16].  

             

3.5.1.  Production cost; : )( iPc

Different electricity generation technologies exist in power systems; the most common 

ones include thermal plants, hydro-electric generation and windfarms. Each can be 

represented in generation scheduling with a cost function. The production cost of a power 

system consisting of i generators each with individual production cost  expressed 

mainly as a function of its real power output  can be modelled of fuel-cost, start-up cost, 

shut-down cost:  

)( iPc

iP

)()()()( iiiiiii PSDPSTPFCPc ++=                      (3-2) 

 

Thermal plants have a quadratic fuel cost function as shown in (5):  

FCi(Pit)=ai×Pit
2+bi×.Pit+ci                                                      (3-3) 

where   is fuel cost of generator i having power output of in (MW), and , ,  are 

generator’s fuel cost coefficients.  

FCi itP ia ib ic

 

-Start-up cost: 

i
ASD

ii BSeTSST ii ×]1[ )/(−+=                               (3-4) 

 

-Shut-down cost: 

SDit=K×Pi                                                                             (3-5) 
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3.5.2. Emissions: 
Some of the pollutants produced by conventional plants in large quantities are: Sulphur 

Dioxide SO2, Carbon Dioxide CO2, Nitrogen Oxides NOx and Hydrocarbons. Coal fired 

plants also produce fly ash and metal traces.   NOx and CO2 emissions are highly 

nonlinear in P and are difficult to model. This chapter adopts the commonly used [21] 

second-order polynomial function with the exponential part to represent the NOx emissions 

function. Similar expressions are also used for CO2 and particulate emissions. Total 

emission in this chapter is represented by NOx and CO2 and is a function of power outputs, 

expressed by:  

iij P
ijijiijiijiij ePPPe .2 ..)( εδγβα +++=                                                (3.6)  

The total emission from each unit can be calculated as the sum of individual pollutants. iE

∑ =
=

J

j iji eE
1

                                             (3.7) 

Where j is total number of pollutants considered in a dispatch.  

 

3.5.3. Security: 
The Security function consists of three main objectives; the sum of voltage deviations at 

busbars, apparent power-flow violations in branches and reactive power limit violation 

generated by generation units: 

ggbbvv ssss ... τττ ++=                          (3.8) 

 

- Voltage Security Violation              

This is a term which deals with the voltage at bus bars which must always remain 

between a minimum and maximum limit at all generation scheduling blocks.  

 

- Apparent Power-flow                       

Apparent flow (complex power; jQPS += ) in transmission lines is one of the constraints 

which sometimes cause de-committing a unit or keeping its output up to certain level as 

transmission lines are running up to their maximum capacity; a term which is known as 

transmission congestion.  

 

- Reactive Power generated by units             

In power system, voltage collapse usually happens when the reactive power is not enough 

to meet inductive loads such as induction motors etc. Generation units, despite the fact 
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that they require reactive power to generate active power (if induction generators are 

considered), have also a limited capability for generating a certain amount of reactive 

power and exceeding this limit will reduce the security of the system. For a given 

generator shaft power, its reactive output is limited by either field or armature winding 

heating. These thermal capabilities impose limitations on the generator reactive power 

capability, which is normally represented by synchronous generator capability curves, as 

shown in Fig. 3.2 [34].  

 

        
Fig. 3.5. Synchronous generator’s generation capability curve [34]. 

  
Security violation indices are calculated by following equations:  

 
∂

=
∂∑ >−−−= m

M

m m
ideal

mmm
ideal

mv VVVifVVVs
1

2 )()(                                         (3.9) 

∂
=

∂∑ >−−−= k
K

k kkkkkb SSSifSSSs
1

max2max )()(                                           (3.10)  

∂
=

∂∑ >−−−= i
I

i iiiiig QQQifQQQs
1

max2max )()(                                            (3.11) 

where m, k and i are the numbers of bus bars, branches and generating units respectively. 

Vm , Sk and Qi are voltage at bus i, apparent power-flow in branch k and reactive power 

generated by unit i. The ideal superscript denotes the desired value of the respective 

variable and the max superscript denotes the rated value while the  superscript denotes 

the tolerance allowed for the variable, which is the maximum deviation allowed from the 

desired or rated value [16].  

∂

 

3.5.4. Generation Scheduling with Wind Power:  

Wind power provides a degree of sophistication over the generation scheduling problem 

by incorporating the effects of limited predictability and variability. Inaccuracies in wind 
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forecasting, necessitates the use of extra system reserve. To counter these problems, 

some windfarms may be combined with diesel generators or energy storage units such as 

those hybrid systems shown in [15], [22]. Another routine is to use conventional plant, 

such as open cycle gas turbine (OCGT) units, to provide additional reserve but this will 

inevitably limit the competitiveness of wind power. 

 

Wind power in the generation scheduling and economic dispatch problem is usually given 

priority dispatch because of zero fuel-cost and green energy certificate carrier. In this case 

providing the wind is blowing and wind units are operating, thermal units can operate in 

their lower output levels in order to be available to ramp up or down to accommodate the 

variability of the wind which may lead to inefficient use of conventional plant. There may 

also be an increase in the number of start-ups and shut-downs of other units as system 

operators attempt to coordinate the following of the fluctuating load throughout the day 

and the variable output of the wind generation [16].  

 

In this chapter wind is modelled as “negative load” Therefore, load demand is reduced by 

the forecast wind power producing a new load demand. This new load demand is then 

used in the economic dispatch process.  

 

3.5.5.  Generation Scheduling Constraints:        

3.5.5.1. Crew constraint:                                                          
With thermal power plants, particularly starting up and shutting down generation units 

needs a certain number of crews to operate and sometimes because of lack of crews it is 

impossible to start up or shut down more than one unit at a time.  

 

3.5.5.2. Minimum up and down time:               
In some power plants i.e. nuclear, hydrothermal etc., because of economic efficiency and 

technical constraints it is impossible to shut down a unit before the minimal required in-

duty period is reached; again once a unit is turned off it may be impossible to start it up 

and bring it back to the system before a certain minimum number of off-duty hours is 

reached. These units have different characteristics from “Peaker” units; for instance gas 

turbine units which are not usually subject to a minimum up and down time and can start 

up and supply peak demand and shut down straight after peak period with a minimal cost. 
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3.5.5.3. Generator Ramping Up and Down Rate:     
The ability to increase (or decrease) the output power of a generator over a certain time of 

period is called Ramping Rate. Generation units with different capacity will have different 

ramping rates and they must be considered in generation scheduling to ensure the safe 

operation of generation plant due to electricity demand variability. 

 

3.5.5.4. Reliability Must Run Units (RMR):                   
In the power system, generation units that the system operator determines are required to 

be on-line (at certain times) to meet applicable reliability criteria requirements [23], such as 

voltage support or during system maintenances are known as Must Run units. Besides, 

some units are required to be on-line due to other reasons apart from generating the 

electricity; such as hydro-units which may need to operate due to delivering water for 

agriculture.   

 

3.5.5.5. Generator output limits                    
Generation units must be scheduled to operate within their maximum and minimum rated 

output in terms of both active and reactive power: 

(max)(min)(max)(min) iiiiii QGQGQGPGPGPG ≤≤≤≤                                    (3.12) 

 

3.5.5.6. Spinning Reserve and Negative Reserve:        
-Spinning Reserve:              

Available generation capacity in the system must be greater than load demand, network 

losses and required spinning reserve. Spinning reserve is the amount of power always 

available to be dispatched in the system to meet sudden demand increase or being used 

in minor contingencies.  

reservespinninglossesnetworkdemandPiI

i
++≥∑ =1

                                         (3.13) 

reservespinningSPPCSPPI

i iii∑ =
≥−

1
),(                                        (3.14) 

 

-Negative Reserve Requirement            

Negative reserve is to make sure at each scheduling period there are sufficient generation 

units in the system which are running at certain amount and higher than their “minimum 

generation limits”. This is to allow their output to be reduced in cases where demand is 

lower than it was forecasted [24]. Negative reserve in the systems with high penetration of 

wind power is an important subject which has to be maintained particularly when wind 

power is also higher than it was forecasted. If not, then to avoid power surplus, wind 

power curtailment occurs.  
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reserveNegativeNPPCNPPI

i iii∑ =
≥−

1
),(                      (3.15) 

Equation 3.15 indicates the constraint imposed by the negative reserve requirement, 

which requires in the system enough generation capacity to be scheduled in a way to 

provide enough negative reserve required for wind power.  

 

3.5.5.7. Additional Reserve Requirement for Wind Power: 
So far, the additional reserve requirement has not been considered for the wind power 

and total system reserve is calculated deterministically. In reality, the reserve requirement 

must change with changes in the penetration of intermittent generation to maintain the 

same level of reliability [25-27]. 

 

In order to maintain negative reserve, total forecasting error in the system must be 

considered. While wind forecasting error is considered as the main objective, demand 

forecasting error is assumed to be zero for the sake of simplicity, and negative reserve 

has been maintained by taking into account ramp-down of generators in a way that at 

each scheduling period, generators can reduce their output down to maximum error in 

forecasted wind power at that period. To ensure that the scheduled generations during 

period t provide spinning reserve and negative reserve, the following constraints have 

been enforced in the generation scheduling problem at each scheduling period: 

∑ =
−=

I

i
up
iii RampPPCSPP

1
max )]()],([min                                       (3.16) 

∑ =
−=

I

i
down
iii RampPPCNPP

1
min )]()],([min                                       (3.17) 

where and   are maximum and minimum feasible operation for unit i respectively.  max
iP min

iP

 

 

3.6. Step 3: Results and Discussion 

3.6.1. Reduction in Network Losses: 

As mentioned in section III, one of the benefits of distributed generators is their impact of 

reducing the network losses.  The calculated losses in this study are only “resistive losses 

in cables”. Considering the DC power-flow model [31], it is possible to estimate the losses 

for the scheduling period of T by:  

)(
1

2
,1 ∑∑ ==

×=
L

l tll
T

t
FRsLosses                                         (3.18) 

 

The total network losses for computed busbars are plotted in fig. 3.6.  Total energy loss 

across the branches in scenario 1 is around 2.7% of the total generated energy. As more 
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wind capacity is added to the system, total system losses tend to decline.  This reduction 

varies between different nodes. Node 30, which is a remote node with around 10.6 MW 

load tends to benefit the system more in terms of power loss reduction compare with other 

nodes. This is due to reduction in power-flow across the branches to supply the demand 

at this node. This situation is different for node 5, in which by increasing the wind 

penetration, total energy losses tend to reduce slightly although around 94 MW load is 

located at this node. In this node an 80 MW coal plant has already been installed and due 

to economic characteristics of coal plants (cheap to run), in the scheduling problem, this 

plant is operated most of the time and supplies the demand at this node and the surplus of 

load has to be supplied through other plants.  

 

By installing the windfarm at this node, although the total losses will be reduced, this 

reduction will be limited in the case of high penetration of wind power as the power 

generated from wind has to be supplied to other nodes and results in increasing the 

power-flow across the branches.  

 

TABLE 3.5. 

SCENARIO CASES EXPLAINED 

Case no. Wind 
Power 

Penetration

Installed Wind 
Capacity 

(MW) 
1 (base case) 0% 0 

2 3% 10 
3 4.7% 16 
4 7% 26 
5 8.4% 30 
6 10% 35 
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Fig. 3.6. Network losses in MWh, and in percentage of total energy. 

 

3.6.2. Production Cost Saving  

Total production cost which is the sum of total running cost of conventional plants for each 

case is shown in Fig. 3.7. In case no. 1 when there is no wind power in the system highest 

production cost is observable, since only conventional plants are to supply the demand. 

Because no operational cost is associated with windfarms, by adding more wind capacity 

to the system, production cost tends to drop. As can be observed, the degree of reduction 

in production cost in each scenario is different for different locations where the windfarms 

is installed. In case no. 2 where only 10MW wind capacity is added to the system nodes 

26 and 30 face the lower production cost (higher saving). This is because these nodes are 

remote nodes and in the base case it was required that power to be transported from 

other nodes to supply these nodes. That involved higher losses and in some cases 

changes in dispatch pattern, which involved a number of start-ups and shut-downs which 

increase the cost.  

 

By installing 10MW of wind at these nodes, higher efficiency, and a saving on production 

cost is achieved. But when looking at higher penetrations of wind power, it can be seen 

that wind capacity added to the system at nodes 5 and 19 will result in higher savings. For 

node no. 19, since it is located at the distribution level and close to other nodes. By 

installing higher penetrations of wind power, this node and other neighbourhood nodes will 

be supplied mainly by wind power, and it will minimize the power losses. For bus no. 5, 

since this bus has the highest load level with a peak demand of 94.2MW, the higher the 
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penetration of wind is, the higher the savings will that result. However an 80MW coal fired 

plant is installed at this node and the power generated from both this power station and 

windfarm has to be transported to other nodes, it does not reduce the power losses which 

are usually high at distribution level. The total saving is only achieved through savings on 

the coal fire station’s the fuel.  
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Fig. 3.7. Total production cost. 

3.6.3.  Emission Saving:  

Total emission in the network comes from conventional plants and only NOx and CO2 

emissions are considered in this study. Because wind power has an intermittent nature 

and its behaviour is dictated by short-run and long-term climatic conditions. Daily demand 

level varies at different hours of the day and it is being supplied by different generation 

technologies, resulting in different levels of emission during the day [32]. Therefore the 

amount of emission reduced by wind depends on level of wind power and demand. The 

long-term effect of wind power in the network is considered by giving priority dispatch to 

wind power. It means that for every MWh of wind generation produced at a certain hour 

during the day, it is assumed that there will be another MWh of power production that will 

be backed off from conventional plants at that particular hour or demand level. 

 

By increasing the wind penetration and locating the windfarms in different locations, total 

emissions against various wind penetration levels are calculated. The results are shown in 

Figs. 3.8 and 3.9. In general by increasing the wind penetration, it is expected to see a 

reduction in emission levels because of the energy produced by conventional plants being 

displaced by wind power. This reduction level varies at different locations where the 

windfarm is installed because of the network’s impact.  
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Fig. 3.8. Total CO2 emission. 
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Fig. 3.9. Total NOx emission. 
 
 
 

3.6.4. Impact on Security:  

Security constraints are either MW-related or Voltage/MVar related:  

1. lines mw or MVA flow rating;  

2. power-flow limits (MW flow limit);  

3. voltage limits at busbars;  

4. reactive power of generators; and 

5. transformer tap-changer positions (MVAR).  

 

One of the key constraints in locating windfarms in the grid is network limitations in 

accommodating and transferring power on branches. Therefore one of our objectives is 
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considering thermal limits of transmission lines. Another objective is the amount of 

reactive power from generation units to maintain voltage profiles. System operators in the 

world have different criteria to allow voltage deviations. In the UK, under normal system 

conditions, both peak or off peak load conditions, the voltages need to be maintained 

between 94% and 106% of the nominal value.  

 

In our study the aim is to lessen the security objectives as well as minimizing the fuel-cost 

and emissions of thermal plants. Each security objective has a minimum and maximum 

allowed amount of deviation, and the aim is to minimize these deviations, such as the 

maximum and minimum allowed voltage at each busbar. It must be noted that these 

values will change at each scheduling session and the final security violation index is the 

total amount of the security violation indices for the scheduling horizon in our simulation 

the scheduling horizon; 8760 hours or one year.  

 

It can be observed from Fig. 3.10 that when the windfarm is connected to busbar no.5 the 

security violation increases by increasing the wind penetration unlike other cases. The 

reason for that is that by installing windfarm at busbar no.5 voltage on other buses will 

deviate more from their nominal value. One reason behind increasing the total security 

violation index for a scenario in which windfarm is installed at bus no. 5 is its impact on 

voltage profile of other busbars which is investigated in fig. 3.11. Installing the windfarm at 

this busbar results in a worse voltage profile at other busbars with higher deviations, while 

at other busbars increasing the wind power penetration minimizes the voltage deviation 

and improves the voltage profile in all busbars.   

 

Fig. 3.12 and 3.13 compare two different cases when windfarm is connected to busbar 

no.30 and no.5. Fig. 3.12 shows that by installing windfarm in busbar no. 30 and by 

increasing the wind power penetration, voltage deviation tends to be minimized, resulting 

in increased overall security of the network. However as it can be observed from Fig. 3.13, 

by installing the windfarm in busbar no. 5 because the busbar itself is a weak busbar, the 

voltage rise happens at this busbar by increasing the wind penetration and voltage at 

other parts of the network also deviates more which will result in a less secure network.     
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Fig..3.10. Security violation index. 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 2 3 4 5 6

St
an
rd
 D
ev
ia
ti
on

 o
f  
Vo

lr
ag
e 
at
 B
us
ba
rs
 p
.u
. 

Case No. 

Bus No. 26 Bus No. 19

Bus No. 5 Bus No. 30

 
Fig. 3. 11. Standard Deviation of Voltage at Busbars for different cases.  
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Fig. 3.12. Busbar voltage deviation when windfarm is installed at busbar no. 30  
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Fig. 3.13. Busbar voltage deviation when windfarm is installed at busbar no. 5  

 
3.7  Step 4: Translating Emission Level to Cost:  
To calculate value of wind at each location, the benefits associated with wind needs to be 

considered. The value is based on the fuel-cost saving of wind as well as cost savings 

from emission. To translate the emission levels to cost, the CO2 emissions (and CO2 

equivalent of NOx) is multiplied by SCC, to derive the £/tonne cost equivalent of emission 

[33]. 
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3.8. Step 5: Value of Wind Power:  

Fig. 3.14 shows the value of wind in the system for different penetration at various 

locations over a year. The value of wind is reduced by increasing the wind penetration 

shown in graph, wind in the system may result in utilizing thermal plants in their lower 

output rate which is not usually the efficient mode of operation of a conventional plant. 

Another impact of increasing wind penetration is more frequent shut-down and start-up of 

thermal units which causes increasing the cost of thermal plants. Equation (3.19) shows 

the calculation method of the value of wind, where C is the total production cost and 

emission cost for each scenario.  
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Fig. 3. 14. Annual value of wind for different cases. 

 
3.9 Step 6: Projection of Wind Power Penetration Over 20 Years:  
As increasing the wind power penetration occurs over a time scale of a few years, the 

value per MW of wind tends to decrease during the time. It is supposed that in 2010 there 

is 10MW installed wind capacity in the network. If the target for wind power over the next 

20 years is reaching the 35MW installed wind capacity by 2030 by a constant growth rate, 

over these 20 years at different times there is different penetration level of wind in the 

network. If wind power is to reach a capacity of “Cl”, and the current capacity is “Dl”, then 

the number of years n it takes to grow from “Dl” to for a given growth rate “r” can be 

determined from (3.25):  
nrDlCl )1( +×=                                                                                       (3.20) 
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Fig. 3. 15. Wind power capacity growth rate over 20 years. 

 

TABLE 3.6. 

WIND PENETRATION AND CAPACITY IN 20 YEARS 

Year 
Installed Capacity 

(MW) 
Penetration 

% 
2010 10 3% 
2015 13.67 4.10% 
2020 18.70 5.60% 
2025 25.50 7.70% 
2030 35.00 10% 

 

 

Fig. 3.15 and table 3.6 show the wind power installed capacity over a period of 20 years 

from 2010 to 2030.   The break-even point in studying the life time value of wind is defined 

as the point where the total revenue in the present value received from operating the 

windfarm within the grid equals the capital cost associated with the windfarm.  Fig. 3.16 

shows the value of a 10MW windfarm over its life time when the level of wind penetration 

is continuously increasing.  

 

3.10 Step 7: Lifetime Value of Wind Power:  
In order to calculate the payback period, it is necessary to calculate the value of wind 

power over windfarm’s lifetime. The cost of capital is often used as the discount rate; the 

rate at which the projected value of wind power will be discounted to give a present value. 

To calculate the present value of wind power for each year, knowledge of the future 

discount rate is required. Since this value changes over time, in this paper the historic 

interest rate in the UK is used, and the average interest rate of 6% represents the average 
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interest rate in the past 20 years and is assumed to calculate the value of wind each year 

[35].  

Therefore:   
n

n kDPVFV )1( +×=                     (3.21) 

∑
=

=
N

n
nFVrevenueTotal

0

                                 (3.22) 

From Fig. 3.17 (numeric results are attached in appendix (B) it is observable that location 

of a windfarm can significantly affect on the actual profit generated by wind power. These 

benefits have been translated into the revenue produced by wind through supplying the 

demand. It is shown that the shortest pay-back period for a 10MW windfarm by 

considering fuel-cost and emission saving can be achieved by installing the windfarm at 

busbar no. 19. This lies between 7 and 9 years after starting the operation of this 

windfarm where the total revenue will cover the capital cost. Any revenue produced after 

this point is considered as the profit gained from this windfarm. The worst scenario is 

when the windfarm is installed at busbar no. 5 in which the pay-back period is almost 20 

years which is equal to almost the lifetime of wind.      
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Fig. 3.16. Value of wind over 20 Year. 
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Fig. 3.17. Break-even predicted for the windfarm. 

 

3.11 Chapter Summary 
 
This chapter investigated how the benefit of wind generation related with the location of 

windfarms and the level of penetration. The value of wind power drives from reducing the 

fuel-cost of conventional plants and reducing their emission pollutants. The value of wind 

may also increase by different generation mixes in the network, such as an increase in 

gas-fired units and a reduction in coal-fired units. In this case further reduced emissions 

arise due to increasing wind penetration.  

 

The main findings of this chapter include:  

•   Traditionally, only network energy losses have been considered as a measure to 

find the optimum location; lower losses indicate a better location provided 

appropriate availability of wind energy exists. Generally, energy losses can be 

reduced in the network by installing windfarms next to the load centres. They will 

reduce supply requirements from more distant resources, thereby by reducing 

transmission losses which are effectively wasted supply.  

But it was shown that although the overall network losses are different for different 

grid-location of windfarms, it should not be solely used as an indicator for suitability 

of the grid-location. When the aim is to find the best location, the impact of the 

location depends on where the windfarm is installed relation to the electricity 

generation side must also be taken into account. These effects include:  
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o The impact on total number of shut-down and start-up of conventional 

plants due to change in the dispatch pattern.  

o The impact on marginal cost of electricity generated by conventional plants 

whilst the location of windfarms may change the power dispatch, hence 

changing the total production cost.  

•   The grid location of windfarms has an impact on the payback period of the capital 

costs invested to build the windfarms. Capital costs can be recovered over 

different time scales; therefore the amount of profit that can be made after the 

break-even point depends on the location of the windfarm.  Hence, the benefit of 

windfarms must be studied in different time horizons:  

o In the short-term by placing the windfarms at appropriate locations in the 

grid, the day-to-day running of power system will be with less deviation of 

security parameters and these parameters have an impact on reliability of 

the system.  

o Long-term benefits included the ability of the current network to supply 

increasing demand without network re-enforcement. The degree of these 

benefits significantly varies from location to location where a windfarm is 

connected to. 
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Chapter 4. Impact of Spinning Reserve on Value of Wind Power  
In order to study the true value of wind power, the additional spinning reserve requirement 

due to increasing the value of wind power in the system must be studied as was 

discussed in the previous chapter. This chapter first studies the impact of increasing the 

need for spinning reserve as a result of intermittent generation. A probabilistic spinning 

reserve calculation is developed to calculate the level of spinning reserve needed in a 

system with intermittent generation to maintain the same level of reliability.  

 

4.1. Spinning Reserve’s Role in Value of Wind Power 
Intermittency and the varying pattern of wind power creates difficulty in utilizing it in the 

same way as conventional plants. This has an impact on the reliability of power system 

and necessitates subsequent changes in conventional methods of operating the power 

system such as providing additional reserve to cater for variations in wind power output. 

Providing additional power reserve will increase the trading cost of wind power and reduce 

its value down to a level which may make the use of wind power uneconomic. 

Probabilistic approaches have been considered for spinning reserve calculations because 

they reflect the random behaviour of system components and are consistent with 

operating risk levels since they provide a realistic evaluation of the risk by incorporating 

the stochastic nature of system components. In this chapter, the effect of different levels 

of spinning reserve on the value of wind power is investigated.  

 

One of the major factors in the assessment of value of a windfarm is to calculate the 

additional spinning reserve requirement due to the existence of intermittent power 

generation source in the system. The extra reserve has to be calculated accurately in 

order to calculate the value of wind power with less uncertainty. The methodology to 

calculate the spinning reserve presented in this paper is factored into the assessment 

framework [7] in calculating the value of wind. It compares different approaches in 

calculating spinning reserve (deterministic /probabilistic), the resulting differences in the 

level of spinning reserve and their impact on value of wind. The changes in value of wind 

arise from changes in the production cost and efficiency of power plants when spinning 

reserve level reflects the unpredictability of intermittent generation.  

 

 
 
4.2 Spinning Reserve Requirement for Wind Power 
Scheduling sufficient level of spinning reserve in a power system is required to maintain 

enough available generation capacity which may be at risk due to generator outage, load 

and wind forecasting error. Several methods have been used in the past to indicate the 
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required level of reserve.  Deterministic criteria are implemented by most market 

operators to decide the required amount of spinning reserve. A certain percent of the 

hourly-load or capacity of the largest on-line unit is normally used as the spinning reserve 

requirement [1]. Since the intrinsic reliability of each scheduled generator, demand and 

wind pattern all have a stochastic pattern, the problem with deterministic approaches is 

that they do not take into account the stochastic nature of the problem. Therefore 

probabilistic approaches have been developed for calculating the spinning reserve [2- 4]. 

 

In order to calculate the spinning reserve using probabilistic approaches, it is essential to 

derive the total system risk which indicates the probability of not being able to serve 

certain amount of demand due to component failure. This can be done through the 

calculation of a Capacity Outage Probability Table (COPT). The information obtained from 

COPT indicates the risk of losing certain level of demand due to failure of a single or 

multiple generators. Load and wind forecasting errors can also be integrated in this to also 

show the demand loss not only due to not having sufficient capacity to serve the demand 

but also due to unpredicted deviation of wind power and sudden demand changes. 

Method presented in [5] has taken into account the wind and demand forecasting errors 

and show the spinning reserve requirement with increasing wind penetrations. Once the 

risk level of a system at different load levels is found, the system operator must contract 

enough generation capacity which can be made available within certain time to cater for 

these risks. The level of required capacity is determined by system reliability standards; i.e. 

not more than 8 hours/year Loss of Load Expectation (LOLE) in Northern Ireland is set of 

EirGrid [6] or availability of 99.9% which is widely acceptable in the Great Britain power 

system set by National Grid [7].  

 

 
Fig 4.1.  (a) Direct Estimation of Spinning Reserve from Generation Risk, 

 (b) Estimation of Spinning Reserve from loss of load resulting from total system risk. 
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Finding the right level of reserve which corresponds to acceptable reliability level, while 

considering economical aspects is the main task in calculating the spinning reserve 

through probabilistic methods. This was first considered in [12] by considering generator 

failure rate. The spinning reserve requirement was adjusted in order to maintain the 

required level of reliability at all scheduling periods. In this method shown in figure 4.1.a, 

generation risk directly determines the level of spinning reserve requirement which is 

calculated in this paper through committing enough units to provide an acceptable level of 

reliability.  

 

In [8] probabilistic reserve calculation based on statistical approximations is developed. 

This method finds the approximate level of spinning reserve which corresponds to 

appropriate LOLP. The problem with this approach is the selection of an appropriate risk 

criterion and lack of a tool to quantify the socioeconomic cost of outages because it 

measures only the probability that the load exceeds the generating capacity but does not 

quantify the extent of the disconnections that might result from such deficits.  

 

A cost benefit approach is presented in [12]. This approach consists in post-processing 

the unit commitment schedule to compute the level of risk of consumer disconnection at 

each hour. It first gets estimation for spinning reserve level and if this risk is not within a 

certain range of a pre-specified target for some periods, the SR requirement is adjusted 

for these periods and the UC is run again. Then in order to optimize the level of spinning 

reserve, the Value of Lost Load (VOLL) is compared with the cost of providing spinning 

reserve and the optimal level is determined once cost associated with providing a level of 

spinning reserve is equal to value of lost load. This method is suitable to quantify the 

required level of spinning reserve. However the optimization tool requires information 

regarding the VOLL, which is extremely difficult to obtain without conducting surveys and 

makes it difficult to apply this model to any power system.  In [9], a method estimating 

spinning reserve based on LOLP and Expected Energy Not Supplied (EENS) is 

developed to optimize the required level of spinning reserve. In this approach not only the 

spinning reserve must satisfy the LOLP, but also by imposing the second constrain, EENS, 

the appropriate level of reserve is quantified. In [13] a similar method based on LOLP and 

Expected Load Not Supplied (ELNS) is developed for calculating spinning reserve. The 

problem with both methods in [12] and [13] is the arbitrary selection of reliability metrics, 

and these methods only considered limited number of outages; two in these methods. 

Besides, since the spinning reserve is to cater for not only the generation outages, but 

also system forecasting errors, these two methods are unable to assess the sensitivity of 

the spinning reserve level to system forecasting errors.  
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In this chapter a probabilistic spinning reserve scheduling is developed. Then by using a 

security approach model; shown in figure 4.1.b ,which represents the risk index of each 

operating state for each generation scheduling block, and by comparing state’s capacity 

risk index and ELNS to reference risk index determined by system operator, the level of 

spinning reserve is quantified. The security function approach is a method which indicates 

the total risk of the system and allows setting the maximum tolerateable risk.  The benefits 

of this method include applicability of this method to any power system where generation 

risk is different hence the reliability metrics’ standards may differ, ability to both quantify 

the LOLP, ELNS and EENS to quantify the socioeconomic costs associated with spinning 

reserve. As well as assessing the sensitivity of the spinning reserve level to system 

forecasting errors. The last one is particularly a matter of interest since with increasing the 

intermittent generation sources in power system the issue of spinning reserve 

quantification is becoming more and more important.  

  

4.3. Security Function Approach 
4.3.1. Security Function Index  
The security function approach was first proposed in 1970 [10], the primary principle is 

quantifying the total system’s risk and aiming for keeping the risk below the maximum 

tolerateable risk. Security function index is defined by (4.1):  )(tS

)()()( tqttS i
I

i i∑= ρ                                 (4.1) 

where )(tiρ  is the probability that the system is in operative state  at time , and  is 

the probability that state  constitutes a system failure at time . An operative state is a 

particular operating configuration of the system consisting of certain generators running, 

certain generators unavailable, and certain generators on standby. Since in generation 

scheduling the state of generation units changes from time to time to meet the economic, 

environmental and constraints of the system, the operating state’s probability, 

i t )(tqi

i t

)(tiρ  will 

also change. Therefore the application of this method requires calculation of )(tiρ for all 

possible states in the system. In has also been mentioned in [10] that to estimate the 

states’ probability, the calculations must also be extended to other components than 

generation units; i.e. transmission lines availability at time .  t

 

To quantify the total system risk resulting from the by failure rate of power plants and its 

impact on security function, it is assumed that the probability of generation failure is 

independent from failure rate of other components such as transmission lines etc. and it is 

the only failure which spinning reserve must be catered for. Therefore: 
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)(tiρ =                                      (4.2) )(tG
iρ

 

By making this assumption while the size of state i is reduced, and  can also be 

considered as a binary number (

)(tqi

tκ ), which is 1 when results in loss of load, and 0 if 

no loss of load occurs. Consequently:  

)(tG
iρ

∑=
I

i
G
it ttS )()( ρκ                                    (4.3) 

 

where is the state probability related to generation units which can be calculated for 

each scheduling period. State’s probability of failure depends on failure rate of 

individual generation units.  

)(tG
iρ

)(tG
iρ

 

4.3.2.  Generator’s Risk Evaluation  
A basic generating unit parameter used in creating the COPT is the Forced Outage Rate 

(FOR). This parameter provides an estimate of the probability of a unit being out of 

service (due to a failure) at some distant time in the future. A two-state generating unit 

model is shown in fig 4.2, and the FOR is given by (4.4): 

 

 
Fig 4.2. Two State Model of a Generator 

μλ
λ
+

=FOR                                   (4.4) 

Where Where: 

λ is the failure rate of the generating unit (failure/year) 

μ is the repair rate of the generating unit. (repair/ year) 

 

The FOR indicates the failure rate of a generator in the steady state sometime in the 

future and is not time dependent. The Outage Replacement Rate (ORR) is the failure rate 

parameter which is a function of time. Time in short-term assessment of generators’ 

reliability is called Lead Time, or the time after failure of a generator which no other unit 

can be brought up online, or in fact the shortest start-up of a unit which can be brought up 

online [1]. Therefore:  
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Te )( μλ

μλ
λ

μλ
λυ +−

+
−

+
=                           (4.5)

  

where υ is the ORR, and  is the lead time. In a large power system containing fast start 

units with start-up time of less than 1 hour, and considering the fact that in the lead time 

no repair can be made to bring the failed unit back to operation, then:  

T

 

Tλυ =                              (4.6) 

  

Therefore  

......)1()1()(
2

2

1

1 +−+−= ∏∏
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g
n

N

n
n

gg
n

N

n
n

gG
i t υυυυρ                        (4.7) 

 

where N is total number of generation units which are operating to serve the demand. 

Since the capacity of generation units in the system is different and each generator’s 

output is a certain (but likely to be different) level, therefore the failure rate of each state 

form N generators can also be shown in a way that their failure will result in loss of load. 

This is shown in figure 4.3.  
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Fig 4.3.  System risk and magnitude of loss of load for N generators. )(tS
 

Figure2 shows the system risk at state (i) from N generation units which are operating in 

the system to serve the total demand. Point (0) shows when all generation units at time (t) 

are available, therefore:  

∏ −=
N

n

G
n

G )1()0( υρ                              (4.8) 

and  

∑ =
=

N

n nPP
1)0(                                (4.9) 

 

Points (a-e) on this graph show the region on the capacity risk function where losing 

certain capacities i.e. “a” Megawatts, will not result in loss of load:  

demandea
N

ean
n n PPP ≥− −

−≠
=∑ 1                                      (4.10) 
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81 | P a g e  
 



Chapter 4                                                    Impact of Spinning Reserve on Value of Wind Power 

∑∏ =

≠
=

+−=
a

n
G
n

N

bn
n

G
n

G
b

G
b 0

1

)1( ρυυρ ,  

∑∏ =

≠
=

+−=
b

n
G
n

N

cn
n

G
n

G
c

G
c 0

1

)1( ρυυρ  ,…                    (4.11) 

 

Point (f) shows on the x axis, is the risk index of the system in which losing the capacity (f) 

will result in loss of load. The risk of the system and the magnitude of the loss of load are 

)( fρ  and respectively.  Point (g) on the x axis shows the capacity risk)( fP )(gρ , where 

losing the capacity (g) which is greater than capacity (f) will result in loss of load with the 

magnitude of .  )(gP

 

demand
e

fn n
N
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n n PPP ∑∑ =≠
= 〈−1                     (4.12) 
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f 0

1

)1( ρυυρ                    (4.13) 

 

As can be observed from figure 4.2, the system risk is higher when capacity (g) is lost 

compared with the situation where capacity (f) is lost, so the magnitude of loss of load. In 

power systems, system operators determine the maximum capacity risk which can be 

tolerated. The maximum allowed capacity risk resulting from generation units is called . 

Therefore spinning reserve is required for probabilities which result in loss of load (

G
refρ

tκ =1), 

but the level of reserve can be optimized subject to meet the condition (4.14): 

 
G
refnew

G
n t ρρ =)(                                (4.14) 

 

where is the system risk when spinning reserve is provided to cover the loss of 

load caused by failures with probabilities below and equal to . Accordingly, once the 

system risk is found for certain load level, in order to estimate the spinning reserve 

requirement, by using the system risk function, the probability of  has to pointed and 

the corresponding loss of load level  is the spinning reserve requirement.  

new
G
n t)(ρ

G
refρ

G
refρ

)(refP
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4.3.3. Spinning Reserve Level Estimation from System Risk  
It is reasonable to assume that the system risk function, from point (f) to point (g) is a first-

degree polynomial function of one variable. This assumption is correct because no other 

capacities can be lost as a result of an outage (only full outage of a generation units is 

considered in this paper). Therefore the relationship between capacity risk and system 

risk for the capacities (f) to (g) is written in (4.15). Once the system risk function is found, it 

is easy to find the loss of load function. Loss of load function is also a function of capacity 

risk and since in this method we have only considered the generator capacity outage as a 

risk in the system, it can be another way of representing total system risk in megawatt of 

load which is lost due to losing certain level of capacity. Hence:  

 

t
G
ntt tptS βακ += )()( ,  n= (f) to (g)                                  (4.15)  

and 

∑ =
−=

n

n ndemandi PPtLOL
1

)(                    (4.16) 

then 

t
G
ntti tptELNS βακ += )()( ,  n= (f) to (g)                 (4.17)

 

 

here tκ  is a binary number which is 1 when results in loss of load, )(tG
nρ tα and tβw  are 

lculat s

(4.18) 

 

rom (4.18) the required spinning reserve for state (i) can be calculated. This spinning 

.4 Impact of System Forecasting Errors  

city deficits resulting form generation unit 

security function coefficients and must be ca ed. Therefore the spinning re erve 

requirement to satisfy the capacity risk index can be calculated from (4.18): 

tnew
G
ntt

G
refii ttELNStSR βρακρ +== )(]),([)(                

F

reserve level (in Megawatts) satisfies the system risk standard and compensates for all 

loss of loads occurs as a results of capacity outages equal and below the capacity outage 

risk standard.  

 

4
4.4.1 Wind and Demand Forecasting Error:  

Spinning reserve is required not only for capa

outage, but also to cater for wind and demand forecasting errors. Wind and demand 

forecasting errors have an impact on the level of spinning reserve requirement, and the 

more accurate the forecasting is, the less spinning reserve is required to cater for these 

forecasting errors. Since these two errors are independent from each other and in order to 
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have a generalized error to represent the total system error, then total system error can be 

given by (4.19):  

 

22
demandwind σσσ +=                           (4.19) 

 

here  and are wind and demand forecasting “Percentage Relative Errors” w  windσ demandσ

respectively. Percentage relative errors can be transformed to “Absolute Errors” to show 

the magnitude of error which must be used in system risk index function using (4.20):  

 

x
r

a
100(%) ×

=
σσ                              (4.20) 

 

here  aσ  w is absolute error, (%)rσ is the percentage relative error, and x is the measured 

.4.2 Spinning Reserve’s Sensitivity to Forecasting Errors: 

resented in (4.18) to total 

) Generation Capacity; and  

wer comes from a generation source, it has the same characteristics as 

value which in our study is real-time demand and wind. The consumers’ demand pattern 

has a highly repetitive nature of the daily load profile; and demand forecasting errors are 

not especially sensitive to the forecast horizon and are usually proportional to the size of 

the load at any given hour. But since wind forecasting error depends on the forecasting 

time horizon; closer to the scheduling time, less forecasting error will result. Therefore the 

impact of forecasting horizon must also be considered to determine the right level of wind 

forecasting error.  

 

4

 The aim is to quantify the sensitivity of the method which was p

system error. The element used in (4.18) to calculate the spinning reserve is dependent to 

two main factors:  

 

1

2) Demand.  

Since wind po

other generation sources such as outage rate as well as a new element associated with 

wind power which is its forecasting error. In order to make the calculations easier to 

implement, the wind is modeled as negative load and subtracted from demand, therefore 

the sensitivity is assessed to only one element; which it is called in this paper “new 

demand”.  
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Fig 4.4. The magnitude of loss of load resulted by N generators by considering system 

forecasting errors. 
 

Figure 4.4 shows the capacity risk of the system similar to figure 4.3. But in this graph 

there are two line patterns; the line with arrow at both ends, shows the previous ELNS 

function where no forecasting error was present. It is observable that required spinning 

reserve level corresponding to appropriate level of risk is shown at point “ref”. The single 

line shows the ELNS function by considering forecasting errors which will result in higher 

levels of ELNS with losing same capacities. In previous section capacity (e) would not 

result in any deficit to cause loss of load, but when system forecasting errors are taken 

into account, losing the capacity (e) will result in some loss of load; .   In order to 

perform the sensitivity analysis, demand is modeled at each time interval, and wind is also 

modeled based on the forecasted level, and according to the wind forecasting horizon 

total demand ‘s variations is used to assess the spinning reserve’s sensitivity to the 

system errors.  

)(eP

 

)()()( tPtPtP winddemand
new

demand −=                      (4.21) 
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where  is new system demand , minus total wind level )  at time (t) 

in megawatts. In (4.18) 

)(tPnew
demand )(tPdemand (tPwind

tκ  is 1 whenever losing the capacity (n) results in loss of load. 

Then by performing the sensitivity analysis to changes in , the changes in 

required level of  spinning reserve is quantified. Consequently:  
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Therefore it is essential to quantify the sensitivity of the polynomial function which 

represents the system risk function to “new demand variations” .  )(tPnew
demand∂

 

4.5 Numerical Simulation  
4.5.1. Combining Spinning Reserve Evaluation and Value of Wind Power 
Assessment   
The proposed method is applied on IEEE 30 busbar network with 8 thermal generators 

[14]. Conventional generators’ outage rates are taken from [15]. A generation scheduling 

program was initially developed in C++ and solved with dynamic programming, to 

evaluate the total generation cost and emission level, for a given demand, set generators 

and network data. This has been modified in this chapter to include probabilistic spinning 

reserve assessment, and calculate the value of wind power. The algorithm for calculating 

the value of wind power is presented in fig. 4.5. The algorithm of calculating the value of 

wind power is similar to the developed algorithm in chapter 3. The only difference is that in 

the new algorithm in this chapter generators’ outage rate data must be fed into the 

simulation process as well as other input data. Besides, before running the generation 

scheduling, the required level of spinning reserve must be calculated; using the developed 

method in this chapter.  

Different scenarios are considered; the first scenario in which only conventional plants are 

to supply the demand and spinning reserve is quantified as a base case while respecting 

the impact of demand forecasting error. In this case total production cost is also calculated 

to be used as a benchmark for value of wind calculation.  As increase in the wind power 

penetration occurs in a time horizon of few years, the value per MW of wind tends to 

decrease during the time. It is supposed that in 2010 there is 10MW installed wind 

capacity in the network. If the target for wind power over the next 20 years is reaching the 
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35MW installed wind capacity by 2030 by a constant growth rate, over these 20 years at 

different times there is different penetration level of wind in the network. If wind power is to 

reach a capacity of “Cl”, and the current capacity is “Dl”, then the number of years n it 

takes to grow from “Dl” to for a given growth rate “r” can be determined from (4.23):  

 
nrDlCl )1( +×=                                                                             (4.23) 
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Fig.  4.6. Wind power capacity growth rate over 20 years. 

 

Break-even point in studying the life time value of wind is defined as the point where total 

revenue in present value of revenue received from the energy sell from the windfarm 

equals to the capital cost associated with the windfarm.  Equation (24) shows the 

calculation method of value of wind, where C is total production cost and emission cost for 

each scenario.  

 

YearMWWindP
windwithCwindNoC

WindofValue /
£

)(
)()( −

=                       (4.24) 

 

where is the total operational cost of the system to meet the forecasted demand 

including production cost and emission penalties in £, and 

C
P is the installed capacity of 

wind power in MW. In fact, the total cost of each scenario 2 in which wind power exists is 

subtracted from scenarios 1 which only contains thermal plants, and divided by total wind 

power capacity which exists over the lifetime of a 10MW windfarms according to fig 4.6 .   
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Fig.  4.5. The Algorithm of Calculating the Value of Wind Power while Considering the 

Impact of Additional Spinning Reserve Requirement  

4.5.2.  Step 1: Generator and Demand Data:  

In the test system, the total conventional generation capacity is 350MW and peak demand 

is 293MW. Table 4.1 shows the capacity and failure rate generators’ data and peak 

demand.  

TABLE 4.1 
Generators’ Capacity and failure Rate and Peak Demand [6 & 7] 

Unit No Unit Type  Failure Rate ; λ  Installed Capacity (MW) 
1 Coal 0.4 35 
2 Coal 0.3 45 
3 Coal 0.4 40 
4 Coal 0.4 80 
5 Gas 0.2 25 
6 Gas 0.2 60 
7 Gas 0.2 35 
8 Gas 0.2 30 
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293  Peak Demand (MW) 

 

4.5.3. Wind Data:  

The most important characteristic of wind power is its fluctuations. For optimized power 

plant scheduling and power balancing, an accurate forecast of the wind power generation 

for the whole control area is needed. The relevant time horizon depends on the technical 

and regulatory framework; such as the types of conventional power plants in the system 

and in deregulated markets the bilateral markets and the trading gate closure times. The 

current practice in the GB power system is to forecast the wind on day ahead, 8 hours 

ahead, 4 hours ahead, and 2 hours ahead where an accurate wind speed will be 

forecasted. Figure 6 shows the wind forecast relative error at different time horizons 

based on the study which was conducted before [11].   

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7

W
in
d 
Fo
re
ca
st
 R
el
at
iv
e 
Er
ro
r 

Forecasting Horizon (hr) 

 
Fig. 4.7.  Wind Forecast Relative Error at different time horizons [11] 

 

4.6. Step 2: Calculation of Spinning  Reserve Level and Value of Wind 
Power 

Results presented in this section include spinning reserve level for different wind 

penetrations, and the value of wind over its lifetime. The spinning reserve calculation is 

based on the probabilistic approach described in section III, taking into account of 

generation failure, generation shortfalls, demand and wind forecasting errors. Results 

highlight the impact of wind forecasting error on both required spinning reserve level and 

value of wind power.   
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4.6.1. Spinning Reserve Level 

4.6.1.1. Scenario 1 (impact of load forecasting error):  
In this section, spinning reserve is only scheduled to cater for generation deficits resulting 

from generation outage and load forecasting error. The impact of load forecasting error is 

significant on the level of reserve requirement; without any load forecasting error the 

LOLP is 5.2% with EENS equal to 5.62MWh. Both LOLP and EENS increase while load 

forecasting error is considered they will be as high as 6.91% and 6.61MWh for LOLP and 

EENS respectively. This will determine the level of reserve requirement to compensate for 

these errors. This is shown in fig. 8.  
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Fig. 4.8.  EENS, LOLP VS Power reserve. 

 

4.6.1.2. Scenario 2 (impact of load and wind forecasting errors):  
In this scenario, spinning reserve must be provided to cater for both demand and wind 

forecasting errors. Demand forecasting error is assumed to be 1% for scenario 2, wind 

forecasting error varies for different cases.   

 

The uncertainty level increases by increasing the wind penetration on the system which 

requires scheduling higher level of spinning reserve. Figure 4.9-4.11 confirm that this is 

the case. It is observable from fig. 4.9 that EENS level has low sensitivity to increasing the 

forecasting error, but as it is shown in fig. 10 when wind capacity in the system has 

reached 20MW, EENS becomes more sensitive to forecasting horizon which corresponds 

the forecasting error. In fig. 11, the magnitude of EENS is highly sensitive to forecasting 

error; resulting in higher level of spinning reserve requirement.  
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Fig. 4.9.  EENS VS Power reserve for  wind capacity of 5MW. 
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Fig. 4.10.  EENS VS Power reserve for  wind capacity of 20MW.
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Fig. 4.11.  EENS VS Power reserve for  wind capacity of 35MW. 
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Fig. 4.12.  Power reserve for various wind capacities with different forecasting error 

 

4.6.2. Step 3: Impact on Value of Wind Power:  

Value of wind power is calculated using scenario 1 as a benchmark, in which only thermal 

generators exist to show the benefits of wind power in terms of saving on fuel cost, and on 

emission levels of thermal plants. Different levels of spinning reserve have an impact on 

total costs of the system, and hence the value of wind is affected by the spinning reserve 

requirement level. Fig. 13 shows the value of wind using deterministic (the blue graph) 

and probabilistic approaches. The deterministic approach assigns the level of spinning 

reserve in relation to the level of demand, but has no bearing to the wind penetration level. 

Due to the lack of consideration of the latter, the calculated spinning reserve level will be 
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lower. Using the probabilistic approach which reflects the additional risk level from 

intermittent wind generation, the system will result in higher spinning reserve levels which 

increases the total costs and reduces the value of wind power. It is shown in fig. 4.13 that 

wind forecasting has an impact on value of wind power. Higher accuracy in forecasting the 

wind, results in lower spinning reserve requirement, and hence reduced total system costs 

and higher value of wind power.  
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Fig. 4.13.  Value of Wind with different Spinning Reserves 

 

The break-even point in studying the life-time value of wind is defined as the point where 

the total revenue from wind energy sell in present value received, equals to the capital 

cost associated with the installation, maintenance and operation of windfarm.  Fig 4.14 

shows the value of a 10MW windfarm over its life-time when the level of wind penetration 

is continuously increasing based on the growth rate projected in fig 4. 6. Fig 4.14 shows 

the break-even point predicted for this 10MW windfarm installed at different locations, 

while the benefits of wind included fossil fuel-cost saving as well as reducing the CO2 

emissions. From fig 4.14 it is observable that spinning reserve calculation method can 

significantly affect on the actual profit generated by wind power. These benefits have been 

translated into the revenue produced by wind through supplying the demand. It is also 

obvious that by increasing the forecasting horizon, the lifetime value of wind reduces, and 

more time would be required to recover the capital cost. 
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Fig 4.14.  Break-even predicted for the Windfarm with Different Spinning Reserve 

Calculation Methods  

 

Increasing the spinning reserve requirement increases the total cost of the system due to 

increasing the number of start-up and shut-down, and increase in marginal fuel cost of 

some generators due to not operating in their best operating range.  

 

4.6.3. Impact on Operation of Generators  
4.6.3.1. Increasing the number of start-up and shut-down: 
We considered operating constraints and start-up and shut-down costs that typically 

appear in the unit commitment problem. Available generation capacity at each scheduling 

period must be equal to demand, losses and spinning reserve. Sometimes due to 

generator, or network constraints, it is required to shut-down a thermal unit, or start-up 

another plant to meet this constraint. By doing so, additional costs are incurred. Our 

results show that by increasing spinning reserve requirement, the number of start-ups and 

shut-down of generators increases as it is show in fig 4. 15. It shows that in lower spinning 

reserve levels (which was derived using deterministic approach), the number of star-up 

and shut-down of generators is lower. Increasing the forecasting horizon will increase the 

spinning reserve requirement which results in higher number of start-up and shut-down.  
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Fig 4.15.  Number of Start-up and Shut-down of Thermal Plants.   

   

4.6.3.2. Increase in marginal fuel cost and emission level 
 Available capacity to maintain spinning reserve is provided through power plant operating 

at a reduced load to meet spinning reserve requirements, or plants which can be brought 

up online with a short instruction such as pump-hydro, or interruptible loads.  In this study 

only thermal plants are used as sources of providing the spinning reserve. Thermal plants 

usually have higher efficiency and lower emission output per MW when they are being 

operated at their maximum output. Lower marginal fuel cost is achieved if thermal plants 

operate at their higher capacities as is shown in the CO2 output and fuel cost curve of 

thermal plants used in this paper in fig 4.16 and 4.17 respectively.  
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Fig 4. 16.  CO2 output curve of power plants  
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Fig 4. 17.  Fuel cost curve of power plants   

 

To maintain the spinning reserve power plants operating at a reduced loading will have 

higher marginal fuel cost and CO2 output level. Comparing two cases of operation of one 

of the gas fired plants for 168 hours shown in fig 4. 18 and 19; where wind forecasting 

error is 2% and 10% respectively, shows that increasing the reserve requirement due to 

higher wind forecasting error results in higher marginal fuel cost of thermal plants. 
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Fig 4. 18.  Marginal Fuel Cost of Gas (4) plant with 2% Wind Forecasting Error   
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Fig 4.19.  Marginal Fuel Cost of Gas (4) plant with 10% Wind Forecasting Error   

 
4.7 Chapter Summary  
While increasing the wind power penetration in power systems across the world is matter 

of interest due to benefits associated with utilizing wind power, but intermittency of wind 

power create difficulty in utilizing the wind power in a same way as conventional plants. 

Such nature has impact on reliability of power system and necessitates subsequent 

changes in conventional methods of operating the power system such as providing 

additional spinning reserve to cater for variations in wind power output. Providing 

additional spinning reserve may increase the trading cost of wind power and reduce its 

values down to a level which may make it less viable. The main findings of this chapter 

include:  

•   A methodology to calculate the spinning reserve for a given system with 

intermittent generation is developed. This calculations based on this method 

reflects the actual risk on the system imposed by:  

o Demand forecasting error;  

o Wind forecasting error; and 

o Conventional generators outage rate.    

  and the benefits of this method include:  

•   Different levels of spinning reserve requirement have impact on the life-time value 

of wind power. This is mainly due to changes in the operation pattern of thermal 

generators by changing their efficiency level (the higher the spinning reserve 

requirement, the lower the efficiency of thermal plants). Changes in the marginal 

fuel cost, and emission output of thermal plants are two important elements which 

change the overall cost in the system.  
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Chapter 5. Increasing the Value of Wind Power with Demand 
Response  
In this chapter an algorithm is presented to increase the value of wind power with demand 

response. Demand response is used to reduce the power output fluctuations of wind 

power, and reduce the need for back-up power from non-renewable sources. The savings 

made will increase the value of wind power. These savings are resulted from reduced fuel 

cost of conventional plants, and emission output since the overall efficiency of power 

generation will be increased whilst wind power output is less fluctuating and more steady. 

It is also shown that the degree of benefits of demand response depends on the price 

which has to be paid for the demand to respond to wind power output.  

 

5.1  Impact of Demand Side Management Programmes:  
In this section the benefits of current domestic demand side management programmes 

(excluding demand response) in terms of saving on operational costs, emissions and 

increasing the security of the system are shown. As mentioned in chapter 2, shifting the 

demand has been considered in many countries in the world as one of the DSM 

programmes in order to reduce the total peak demand. This programme consists of some 

technical and regulatory incentives which facilitate shifting a proportion of demand from 

peak hours to off-peak hours. This will improve utilization of existing generation and 

transmission capacity, and by reducing the system peak, it will result in a more secure and 

reliable network. Figure 5.1 shows a typical demand curve for the GB power system [1], 

with two peaks which usually happens at morning and in the evening. By shifting a 

proportion of load which consumes power from these two periods to off peak periods, the 

above benefits will result.  
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Fig. 5.1 Different Domestic Power Consumption Patterns [1]  

 

Total load in the system is 283.4MW. It has been assumed that 80MW of total load is 

domestic and 16% of total domestic load is committed to Economy 71.  Load profiles 

represent the UK domestic load profiles and have been derived from Elexon co [1]. 
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Fig. 5.2 Single rate Load profile [1] 

                                                 
1 Currently (2009) in the UK 16% of domestic consumers who are supplied by major suppliers are participating in Economy 
7 scheme which led to an increased domestic night time load giving a more balanced use of the electricity network across 
the day. More recently there has been a preference for gas central heating rather than electric heating, which has meant 
that many customers who are on Economy 7 tariffs no longer have a large night time load. 
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Fig. 5.3 Economy 7 load profile [1] 

 

5.1.1. Production Cost Savings: 
The total generation cost; which is the total running cost of conventional plant, significantly 

differs in the presence of demand shifting. Without shifting the demand as total peak of 

the system is higher, it required gas units to provide extra power to for short period of time 

to serve the loads. These units are very expensive to run and the difference in cost at 

each case is mainly because of reducing the need for running these units. Table 5.1 

shows the result of our simulation for each case. We have considered several cases; first 

when there is no demand side management program implemented and the results show 

generation cost is £38,533,600. By having 16% multi-tariff demand, the generation cost 

will be reduced by 1.3% down to £38,032,663. 1.3% drop in production cost in a network 

with total 283.4 MW demand may not be noticeable but in a real network this reduction is 

significant.  

 

5.1.2. Emission Reduction:  
Emissions which all come from conventional units are calculated in this simulation. As 

expected in the worst scenario where there is no demand management in the network, the 

highest level of emission is seen. Demand side managements significantly reduce the 

emissions as is seen in table below, 5862 tones of CO2 emissions could be reduced just 

by multi tariff demand. This is due to less operation of power plants at the time of system 

peak to meet the demand. These plants (usually OCGT) are thermal plants which emit 
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environmental pollutants and by reducing the peak demand the operation of such pollutant 

plants will also be minimized.  

 
Table 5.1. 

Comparison between Different Cases 
Case Production 

Cost £ 
Security 

Index 
Emission 
Tonnes 

Single rate £38533600 1456 1145300 
16% Domestic Economy 7 £38332663 1394.8 1139438 

 
5.1.3. Impact on Security: 
As mentioned before, the security violation index takes into account three factors; the 

voltage in busbars, reactive power of generators and active power flow over transmission 

lines. if any of these factors varies outside prescribed limits, it makes the unit commitment 

and economic dispatch decisions unacceptable. Even under the limits these objectives 

may violate from their nominal points. We have allowed voltage on busbars to be 

considered if they are between 1.06pu and 0.94pu of the nominal value. Finally by 

considering the loading level of transmission lines, voltage on busbars and generators 

maximum reactive power the security violation indices have been calculated and the total 

security violation index is the sum of these indices. It is clear according to eq.3.14-3.16 in 

section 3.3.2.3 that smaller security index represents more secure network. For security 

constrained unit commitment usually pre contingency and post contingency analysis also 

add up on top of the security index. The results for security index show it is 1456. By 

having 16% multi-tariff demand, it will be down to 1394.8. 

 
5.1.4. Value of wind Power: 

By increasing the wind penetration as the power injected to the network through wind will 

reduce the need for running conventional plants, therefore total production cost is cheaper 

in general with increasing the wind penetration. However this is not always the case as 

network constraints such as busbar voltage rise where windfarms are installed, and the 

unit commitment decisions may change and total production may increase. On the other 

hand with increasing the wind penetrations the need for back-up power may also 

increases. This increase may happen at certain penetration levels where demand still 

needs to be met by other plants or at certain locations where transmission system 

connected to the network is not able to transport the power that comes from renewables. 

By shifting the demand, total peak of the system will drop; therefore issues such as the 

transmission congestion because of overloading branches may happen less.  
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Table 5.2 shows the value of wind power in two different cases. In the previous section 

the value of wind power for a system with 16% demand with economy 7 tariff compared 

with total demand with single rate profile has increased by 21%. This shows the 

contribution demand side management in increasing the value of wind power.  

 
Table 5.2  

Value of Wind Power for Different Cases 
Case Value of Wind    

£/MW/Year 

Single Rate with 10% Wind Penetration £112154.85 

16% Economy 7 with 10% Wind £136,547.02 

 
5.2 Current Benefits of Demand Response 
Although electricity generated by windfarms remains too expensive to compete with 

thermal power sources in most grid-connected applications, there is a growing niche of 

environmentally-friendly applications which will expand as the cost of windfarm power 

falls. As more wind power is added to the current system, the desirable mode of operation 

is to have dispatchable power, not only wind power works as a fuel saver. Intermittency of 

wind requires combining windfarms with non-intermittent sources such as diesel, or gas-

fired plant to compensate for wind’s intermittency. Demand response is the largest 

underutilized resource in the UK. Demand response provides a number of opportunities 

for improving the planning and operation of power system. With current demand response 

methods, several objectives have been achieved. Those objectives include:  

 

• Reducing price volatility/flattening spot prices; 

• Improving system security and reducing the risk of black-outs; 

• Reducing network congestion; 

• Delaying construction of additional generation, and/or grid and network upgrading 

(network reinforcement deferral); 

• Reducing greenhouse gas emissions; 

• Improving market efficiency by enhancing consumers’ ability to respond to changing 

Prices. 

 

The rest of this chapter studies the economic viability of combining windfarms with 

demand response to compensate for fluctuations in wind power output. An assessment 

framework is developed in this chapter based on generation scheduling to assess the 

demand response benefits both in terms of operation of windfarms, and as a reliability 

resource to provide additional spinning reserve requirement for wind power.   
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5.3 Supply Cost  & Demand Response in a System with Wind Power:   

The continuous balance between demand and supply has conventionally been maintained 

by generators which respond to demand variations. Deregulation has provided the 

opportunity for demand to change this pattern by responding to generation side once 

instructed through different signals, such as a price signal whenever the marginal price of 

electricity is increasing; known as price responsive demand or sensitive to frequency 

deviations for frequency regulation purposes.  

 

Price responsive demand as shown in fig. 5.4, reduces the marginal cost of the electricity 

production; or in fact the price that will be seen in the market. Two demand curves D1 and 

D2, represent the original demand level, and the reduced demand due to demand 

response respectively.  

 

Since different generation technologies provide the different levels of power to supply the 

demand, the marginal cost of electricity depends on the cost of electricity generation from 

different sources. Power Plants which have lower production cost supply the base-load, 

therefore increasing the base-load is desirable for efficient operation of power system. 

This is usually done through non-dynamic demand response (such as economy 7 

scheme) which shifts the demand from peak periods, to off-peak periods.  
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Fig. 5.4. Marginal Cost of Electricity for different compensation levels of demand response 

 

5.3.1 Cost of Providing Wind Power  
Windfarms have zero fuel cost, and are represented by (5.1):   

)(
2
1)( 3

bgtpwit NNVCAP ××××= η               (5.1) 

where  is power output of wind turbine  in (MW),  witP

η  is air density,  

A is the rotor swept area exposed to the wind (m2), 

pC  is coefficient of performance,  

tV  is wind speed in kilometers/hr at time t represented by a time-series,  

gN and are  generator and gearbox/bearings efficiency respectively.  bN
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Increasing the wind penetration in the system has two impacts on marginal price of 

electricity. Firstly since wind has zero fuel cost, at the time of system peak it can reduce 

the marginal price of electricity generation only if wind is blowing and no other constraints 

are to dispatch the electricity generated from windfarms. It is shown in fig. 5.5 that wind 

power’s presence in the system will move the graph to the right and increases the base-

load generation.  

 

On the other hand, it may increase the marginal price by putting additional burden on the 

system operator to provide back-up power for deviations in the output of windfarms, and 

spinning reserve. Therefore increasing the base-load power will not always be achieved at 

the same level of the injected wind power into the system and trading cost of wind power 

includes mainly the cost of providing additional reserve for wind power which is the cost of 

additional spinning reserve requirement for wind power. Hybrid windfarms which have 

dispatchable power, cost of back-up power (either through storing the electrical energy or 

from a non-intermittent source) in case of a hybrid windfarm:  

 )()()( wit
wi

wit BPC
P
SRSRCPC +

∂
∂

×=                 (5.2) 

where is trading cost of wind power,  )( witPC

)(SRC  is the cost of spinning reserve in (£),  

wiP
SR
∂
∂

 is the increased level of spinning reserve due to wind power ,  and 

)( witBPC is the cost of back-up power in (£).  

 
5.3.2 Cost of Demand Response  

Demand; is made of controllable and non-controllable loads and both have to be 

forecasted. Demand is usually represented by time-series for the whole generation 

scheduling horizon. Demand response participants are usually paid an availability 

payment based on the capacity they make available (£/MW), and utilization payment 

which depends on the energy provided through demand response (£/MWh). Therefore the 

cost function representing demand response can be written as:  

tD

).(.)( tDRDRDRC itiiii ×+= τμ                                    (5.3) 

where is cost function of demand response (£/MWh),  )(DRC

iDR  is capacity provided by customer group i ,  

itDR is total capacity utilized at time t , and  
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iμ  and iτ  are payment for customer group i in (£).  

 

 
Fig. 5.5. Marginal Cost of Electricity for different compensation levels of demand response 

in presence of wind power 

 

A demand response system integrated with windfarm system can compensate for 

fluctuations in the power output of the wind turbine and raise the fuel saving potential. 

Such system must have response to wind power’s fluctuations therefore total electricity 

production cost from a windfarm can be written as:  

),()(),( itiwitwit UDRCPCDRPC +=                (5.4) 

              (5.5) ititiiiwitwit UtDRDRPCDRPC ).(.)(),( ×++= τμ
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the binary number is “1” whenever respond to wind’s fluctuation is required. Therefore 

cost of demand which is contracted by windfarm’s operator has to be paid availability fee 

and utilization fee whenever response to wind power output is required. Since demand 

response can also participate in spinning reserve market, therefore cost of additional 

spinning reserve due to increasing the wind power can also be assessed with demand 

response.  

itU

 

5.3.3 Total Cost Function for a System Including Demand Response: 

Therefore the total running cost for a system including demand response then can be 

written as:  

                   (5.6) ∑ ∑
= =

++++
I

i

T

t
iwititiiiiii DRCPCUPSDPSTPFC

1 1
)()())()()((

The revenue that a generator will make over its lifetime must be equal to total variable 

cost and capital cost, plus a profit for the generator owner. The equation (5.6) is the main 

objective function used in this paper to study the impact of demand response on the value 

of wind power. It includes the running costs associated with the thermal plants, cost of 

providing the wind power, and cost of demand response.   
 

 

5.4  Methodology of Increasing the Value of Wind Power with Demand 
Response:  
The methodology used to investigate the role of demand response to increase the value 

of wind is shown in the algorithm of figure 5.6. Demand and wind data are forecasted, and 

responsiveness level is assessed. Thermal generators are scheduled to supply the 

demand and wind is modelled as negative load. The aim is to achieve firm power output 

from the windfarm studied, therefore demand will respond to wind power whenever it 

drops below its net capacity. Since the aim of demand response is only shifting the 

demand, therefore the amount of demand reduced to compensate for wind power 

fluctuations will be re-connected after 1 hr. Cost associated with demand response varies 

for different scenarios to show the degree of feasibility of demand response to increase 

the value of wind power. As a base case demand was considered with zero 

responsiveness level. Then by introducing the responsive demand results were compared 

to the base case in order to quantify the benefits of responsive demand. Our study 

objective included:  

 

• Fuel cost of thermal plants and spinning reserve cost;  
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• CO2 emission of thermal plants; and 

• Value of wind power.  

 
Fig. 5.6. The Algorithm of Calculating the Value of Wind Power with Demand Response 

5.4.1. Step 1: Assessing Responsiveness Level  

In order to design a system to enable demand responds to wind power fluctuations, it is 

essential to have the knowledge of available demand response level. The available 

demand response is the proportion of demand which can be disconnected in order to 

compensate for wind power deficits. In this chapter it is assumed that there is sufficient 

demand response level up to 100% compensation level for wind power. This will then be 

further investigated in chapter 6 in which the potential for demand response will be 

studied.  
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5.4.2. Step 2: Calculation of Required Responsiveness Level:  

Calculation of level of required responsive demand depends on the level of compensation. 

In order word, it is important to determine how much wind power fluctuation has to be 

minimized (through increasing the level of demand response). In order to study the impact 

of different demand response levels on value of wind power, the compensation level from 

0% (no demand response) to 100% (a firm wind power output) is considered in this 

chapter.   
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Fig. 5.7. Wind power output for a typical 48-hour period  
and different levels of demand response. 

 
5.4.3. Step 3: Determination of Recovery time:   

Any load which is disconnected from the system has to be recovered within certain time. 

This will ensure that all loads will be supplied and only demand will be shifted to benefit 

the revenue earned by a windfarm. In this thesis a recovery time of 1hour is set for all 

loads which are being disconnected.   

 

5.5. Benefits from Demand Response  
5.5.1. Economic Demand Response:  
Wind power is usually given priority dispatch (due to green energy certificate which will be 

achieved from wind power). Therefore, as long as there is no constraint to extract the 

power from windfarm, wind power output will be dispatched. Whenever the power output 

of the windfarm drops, demand respond will respond to it. The savings which can be 

made from this combination varies over time and depends on marginal cost of electricity 

generated from thermal plants, and marginal emissions. Since loads which are shed to 
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compensate for wind power variations must be paid, therefore a cost-benefit assessment 

model is developed to investigate different prices offered by demand response, and 

different compensation levels to wind power output.    

 

The payment for demand response is based upon the actual response energy provided in 

the generation scheduling window in (£/MWh). This price varies so the impact of demand 

response and the degree of feasibleness can be studied.  

Once the required economic demand response is assessed, and scheduled to be 

curtailed, then it has been assumed that same level of demand will have to be recovered 

in the next generation scheduling block; therefore the curtailment time for each group of 

loads is limited to half an hour. Therefore:  

 

)()( 1
'

−+−= tttt DRDRDD                (5.7) 

where ' is the new demand which has to be scheduled at time t,  
tD

tD is the forecasted demand,  

tDR is required demand response at time t, and  

1−tDR is the curtailed demand response at previous scheduling block.  

 

5.5.2. Reliability Demand Response:   
Reliability demand response is provided for additional spinning reserve requirement for 

wind power. Increased level of spinning reserve is assessed for wind power, and only for 

increased level of spinning reserve requirement, demand response is contracted. The 

payment for this service is usually based on number of hours demand is available and 

again this fee varies to see the impact of different prices for spinning reserve from 

demand response.   

 

Therefore the spinning reserve requirement for each scheduling block will only be the 

required spinning reserve for generation outages and demand forecasting error. Figure 

5.8 shows the increasing level of spinning reserve due to increasing the wind power in the 

system based on probabilistic approach to calculate the spinning reserve similar to what 

was proposed in previous chapter.   
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Fig. 5.8. Spinning Reserve Requirement for Wind Power. 

 

5.6. Results and Discussions :  
 

5.6.1. Production Cost: 
Total generation cost, which is total running cost of thermal plants, is assessed on 

different demand response utilization prices, with different compensation levels for wind 

power deficits.  Since demand response participants must be paid in order to compensate 

for wind power deficits, more energy required for wind power deviations, more revenue 

will be lost. At the same time, more energy derived from wind power (hybrid wind power-

demand response) will reduce the fuel cost of thermal plants.  

 

It is observable from fig. 5.9 that at low demand response prices, increasing the 

compensation level from demand response will reduce the total production cost. This is 

because the energy required to change the fluctuating wind power profile to a firmer 

output profile can be achieved at lower price. Therefore higher the compensation level is, 

lower the production cost will result as marginal demand response price is cheaper than 

marginal production cost of thermal plants which were required to supply the demand in 

presence of a fluctuating with power. The saving made is mainly due to reduced start-up 

and shut-down costs of thermal plants which is achieved due to less fluctuation of power 

derived from wind-demand response hybrid model.  
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Fig. 5.9. Production Cost for different Compensation Levels & Demand Response Prices. 
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Fig. 5.10. Snapshot of Production Cost for different Compensation Levels & Demand 

Response Prices. 

 

It is also observable from fig. 5.9 and 5.10 that at low compensation levels (i.e. 10%) no 

saving can be made even at low prices for demand response. This is because at 

compensation levels (in this study less than 10%), wind power is still a fluctuating source, 

which requires thermal plants as a backup. This is shown in fig. 5.11 in which power 
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duration curve of the windfarm with different compensation levels of demand response is 

presented. 
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Fig. 5.11. Wind Power Output Duration Curve. 

 
It can be seen that at low compensation levels, wind power is still a very fluctuating source 

and thermal plants must regularly start-up and shut-down to balance the demand-supply 

which will result in increasing the marginal cost of power generation by thermal plants as 

shown in fig. 5.12.  

 

Increasing the compensation level will change the wind power profile to a less intermittent 

and firm profile which requires less back-up from other thermal plants.    
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Fig. 5.12. Marginal Cost of Power Generation by a Gas Fired Plant with and without 

demand response compensation. 
 

5.6.2. Emission Level: 
Wind Power, as a clean source of power has no output emissions. Supplying demand with 

wind power will reduce the need for operating the thermal plants which reduces the total 

emissions significantly as shown in fig. 5.13. By increasing the total energy provided by 

the hybrid wind-demand response model studied in this paper, thermal plants tend to 

reduce their output, therefore total emissions resulted from them will be lower at higher 

compensation levels. It is also observable from fig. 5.13 that the highest reduction rate 

compare with all cases, in which demand response compensates for wind power 

fluctuations, is achieved when 100% compensation level is maintained.  
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Fig. 5.13. Total CO2 Emissions. 

In this case, a firm wind power will not only reduce the operation hours of thermal plants 

and total start-up & shut-downs, but also increases the efficiency of electricity generation 

by thermal plants, which in turn results in reduced marginal emission output of them. 

Marginal emission output of conventional plants, as  is shown in chapter 3 is a second 

order polynomial function of power output and thermal plants (particularly gas fired plants) 

have lower marginal emission output if they are operated at their maximum output, instead 

operating at lower output levels. If thermals plants are to back-up wind power, they may 

either be operated partially loaded and then will have higher marginal emission output, or 

those plants which have a short minimum up/down time will be used to provide extra 

power needed to compensate for wind power which again, results in higher marginal 

output emission since the plants will not be fully loaded.   

 

5.6.3. Impact on Spinning Reserve: 
Responsive demand providing spinning reserve is a financially attractive way to provide 

system response to contingencies. It has both technical and financial benefits, and in this 

chapter the financial benefit of such scheme is investigated. Generation units which must 

maintain the required spinning reserve are to be partially loaded, and this reduces the 

efficiency of electricity generation, since marginal fuel cost and emission of thermal 

generators are lower if they are fully loaded. As shown in fig. 5.14, spinning reserve level 

increases by increasing the wind power capacity in the system. This is due to higher 

uncertainty level in the system as a result of wind forecasting error which was assumed to 

be 16% representing wind forecast for 5-6 hours ahead.  
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Fig. 5.14. Spinning Reserve Requirement for Wind Power with different demand response 

compensation levels. . 

The results show that if all this increased level is to be maintained by generators, the 

spinning reserve cost increases by 4.63% which is due to need for allocating more 

available generation capacity for spinning reserve. If the entire extra spinning reserve 

requirement is to be provided by demand response, then a maximum of 1.6MW of 

demand response must be contracted and paid for 8760 hours of being available. It must 

be noted that the spinning reserve requirement is much lower when demand level is lower 

and the graph in fig. 5.15 shows the spinning reserve requirement at the time of system 

peak. The reduction in spinning reserve cost depends on the contribution level of the 

demand response and the availability fee paid to the demand, the higher the contribution 

level and lower the availability fee is, the lower the spinning cost and vice versa.  

 

In fig. 5.15 the total spinning reserve cost verses different contribution levels of demand 

response to maintain the extra spinning reserve required for wind power is shown for 

different demand response availability prices. In 100% demand response contribution and 

when the availability price of demand response is zero, total spinning reserve cost which 

is £568,930.69 is only for generation outages and demand forecasting error which is 

assumed to be 1%. Reduction in demand response contribution to maintain the extra 

spinning reserve required for wind power, increases the total spinning reserve cost as 

some generators must also maintain the spinning reserve for wind power which increases 

the production cost. When demand response’s contribution is 0%, all the extra spinning 

reserve for wind must be maintained by generators.  

 

Increasing the price of demand response will increase the total spinning reserve cost up to 

a point where demand response’s contribution is not cost-effective. As shown in fig. 5.15 if 

the availability price paid for demand response is higher than £2/MW/h, the spinning 

reserve cost reduces by reduction in the contribution level of demand response, or in 

other word, it is more cost-effective for generators to maintain the total spinning reserve 

required.   
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Fig. 5.15. Spinning Reserve Cost with Demand Response. 

 

5.6.4. Value of Wind Power:  
The value of wind power for each different scenario in which demand response’s 

contribution is different with different prices, is shown in table 5.3. The value of wind 

power, at low demand response prices increases by increasing the compensation level. 

This is due to savings which can be made on fuel cost of conventional plants. The value of 

wind power in case of no contribution from demand response is 112,154.8 £/MW/Year. 

This value tends to increase when demand response is compensating for wind power 

fluctuations. However, by increasing the price paid for demand response, the value of 

wind power tends to reduces until the point that if the demand response’s price is higher 

than £9/MWh, at high compensation levels, this results in negative value for wind power.  

 

Obviousely cost saving on fuel cost of conventional plants and emissions penalties is 

made. However, since the price which has to be paid for demand response to 

compensate for wind power deficits is so high in a year of generation scheduling. 

Therefore the owner of the windfarm will not only make any revenue, but also loses some 

money for compensation purposes as illustrated in fig. 5.16 & 5.17. It is shown that if the 

savings on fuel cost of thermal plants and emission penalties are higher than the price 

which has to be paid for the certain levels of demand response, then higher value of wind 

power will result compare with the case where no demand response is integrated with 

wind power.  
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Table 5.3.Value of Wind Power (£/MW/Year) for 
Different Compensation Levels & Demand Response Prices 

Compensation 
Level 

Demand  
Response Price 

0% 
 
 

20% 
 
 

70% 
 
 

100% 
 
 

0£/MWh 112155 165871 354994 386776 
1£/MWh 112155 157135 324420 343099 
2£/MWh 112155 148400 293846 299422 
3£/MWh 112155 139664 263272 255745 
4£/MWh 112155 130929 232698 212068 
5£/MWh 112155 122194 202124 168390 
6£/MWh 112155 113458 171550 124713 
7£/MWh 112155 104723 140976 81036 
8£/MWh 112155 95987 110402 37359 
9£/MWh 112155 87252 79829 -6318 

10£/MWh 112155 78517 49255 -49995 
11£/MWh 112155 69781 18681 -93672 
12£/MWh 112155 61046 -11893 -137349 
13£/MWh 112155 52310 -42467 -181026 
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Fig.5.16. Value of Wind Power for different Compensation Levels & Demand Response 

Prices. 
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Fig. 5.17. Snapshot of Value of Wind Power for different Compensation Levels & Demand 

Response Prices. 

 

5.6.5. Lifetime Value of Wind Power: 
It is shown in fig. 5.18 in which the demand response’s price is £0/MWh, that the lowest 

payback period will be achieved in less than two years. If 100% compensation level is 

maintained through demand response, compare with a scenario in which no demand 

response is contracted which the payback period is between 9-10 year. 
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Fig. 5.18. Break-even predicted for the hybrid windfarm for different compensation levels 

of demand response when the price of demand response is £0/MWh. 

 

By increasing the price of demand response, higher compensation levels tend to delay the 

payback period, as shown in fig. 5.19-5.23. It is also observable from these figures that 

sometimes, i.e. in fig. 5. 21, different compensations levels (70% and 100%) both result in 

the same payback period. This is because in higher compensation level, although more 
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savings will be achieved from fuel cost and emission penalties of thermal plants, a higher 

price has to be paid to maintain such level of compensation which is equal to lower 

compensation level which lower savings, and lower fee has to be paid to maintain the 

demand response compensation. 
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Fig. 5.19. Break-even predicted for the hybrid windfarm for different compensation levels 

of demand response when the price of demand response is £1/MWh. 
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Fig. 5.20 Break-even predicted for the hybrid windfarm for different compensation levels of 

demand response when the price of demand response is £2/MWh. 

122 | P a g e  
 



Chapter 5                                      Increasing the Value of Wind Power with Demand Response 
 

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Re
ve
nu

e 
(£
)

Number of Years

Capital Cost 0%

20% 50%

70% 100%

 
Fig. 5.21 Break-even predicted for the hybrid windfarm for different compensation levels of 

demand response when the price of demand response is £3/MWh. 
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Fig. 5.22. Break-even predicted for the hybrid windfarm for different compensation levels 

of demand response when the price of demand response is £4/MWh. 
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Fig. 5.23. Break-even predicted for the hybrid windfarm for different compensation levels 

of demand response when the price of demand response is £5/MWh. 
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When the price of demand response is over £6/MWh, the contribution of higher levels of 

demand response in expediting the payback period for a windfarm is actually negative. It 

means that due to the price which has to be paid to have certain levels of compensation 

levels, this will increase the total costs over the lifetime of a windfarm and delays the 

payback period. But still, at lower compensation levels contribution of demand response is 

to reduce the payback period as shown in fig. 5. 24.  
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Fig. 5.24. Break-even predicted for the hybrid windfarm for different compensation levels 

of demand response when the price of demand response is £6/MWh. 

 

If the price of demand response is higher than £7/MWh, higher compensation levels tend 

to delay the payback period even compared with a case where no compensation from 

demand response exists as shown in fig. 5.25. However, if an optimal level of 

compensation level for such price is maintained, then there is still chance for demand 

response to expedite the payback period of a windfarm as shown in fig. 5. 25 and 5.26.  

 

0

5000000

10000000

15000000

20000000

25000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Re
ve
nu

e (
£)

Number of Years

Capital Cost 0%

20% 50%

70% 100%

 
Fig. 5.25. Break-even predicted for the hybrid windfarm for different compensation levels 

of demand response when the price of demand response is £7/MWh. 
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Fig. 5.26. Break-even predicted for the hybrid windfarm for different compensation levels 

of demand response when the price of demand response is £8/MWh. 

 

5.7. Limitation of this Model for a Large System  
In this chapter, an assumption was made that enough demand response is always 

available to respond to wind power variations. Making such assumption for a large and 

real power system is not always correct, since availability of demand response is limited at 

different hours and it is an important factor which must be taken into account.  

 

Demand response availability depends on the proportion of total demand, which is 

contributed by specific types of appliances which can become responsive. Considering 

the random operation behaviour of different appliances, quantifying the demand response 

level is one of the biggest challenges which will be discussed in the next chapter.  

 

 

5.8. Chapter Summary  
Considerable worldwide interest in the potential of demand-side management techniques 

has the potential of reducing balancing costs for system operators and so, as a side 

effect, reducing the additional costs of intermittent renewables as well as reducing the 

emissions. Currently there is considerable interest in exploring the possibilities of high 

penetrations of wind energy into electricity networks and mitigating the barriers to increase 

the wind penetration. This chapter demonstrates the effect of combining demand 

response with wind power on reducing the cost, and emissions where intermittent 

generation has substantial installed generation capacity in the system.  

 

The main results of this chapter include:  

125 | P a g e  
 



Chapter 5                                      Increasing the Value of Wind Power with Demand Response 
 

• DSM programmes van benefit the system by reducing the fuel costs and emission 

levels. In a system with intermittent generator, DSM programmes (non-dynamic) 

may increase the value of wind power by reducing the thermal generators’ cost 

and increasing the cost-savings through windfarms. The results show that 21% 

increase in the value of wind power may be achieved just by shifting about 16% of 

loads from peak to off-peak periods.  

• Dynamic DSM programmes (demand response) will further increase the value of 

wind power through:  

o Reducing the need for additional spinning reserve for wind power;  

o Reducing the variability of wind power which: 

 Increase energy share of wind power; 

 Reduces the number of start-up and shut-down of thermal plants;  

 Increases the efficiency of power generation which will reduce the 

cost and emissions.  

o The results suggest that cost savings about £150,000/MW demand 

response may be achieved. This excludes the costs associated with 

demand response (such as cost of implantation, etc.).  

• The impact of demand response on value of wind power was studied, and the 

result suggest that demand response may expedite the payback period for a 

windfarm from 10-12 years down to 2-3 years if 100% demand response can be 

maintained. The expedition in breakeven point will be limited when cost of demand 

response is taken into account, and in fact high compensation levels may not be 

feasible.  

• The results indicate that if the cost of demand response is taken into account, the 

degree of feasibility of this technology with regard to value of wind power will be 

limited to demand response prices up to £6/MWh.  

 
5.9. References  
[1] Load profile (used for balancing market) www.elexon.co.uk  
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Chapter 6. Assessment Framework of Responsiveness Level in 
Domestic Sector 
 

In order to combine the wind power and domestic demand response, it is essential to 

study the load profile of different appliances in domestic sector. Therefore to complete our 

assessment framework of studying the value of wind power combined with demand 

response, the load profile of different appliances is studied and a demand response 

evaluation package is developed to study the potential for demand response at different 

locations in the grid. This chapter first investigates the previous methods of estimating the 

load profile particularly in the domestic sector; different techniques and the application of 

current methods are presented, and then by proposing a method which is based on the 

probability of different appliances being used by different types of customer, total load 

profile for E&W is estimated. Then by distinguishing between those appliances which are 

able to become responsive, total domestic demand response potential is calculated. 

 

6.1 Demand Response from Domestic Loads  
Uncertainty and variability are inherent to electric power systems; demand rapidly 

changes and since there is limited control mechanism on it, this could threaten grid 

integrity and stability. Besides, maintaining the security of supply is becoming an 

increasingly strategic issue considering both volatility of wholesale energy prices, and 

limited facilities for electricity generation, transmission and distribution which has resulted 

in suppliers becoming unable to fulfil their contractual obligations.  

 

Demand has been participating in improving the economy, security and reliability of 

energy industry as well as eliminating the negative environmental impacts since the 

beginning of introducing Demand Side Management (DSM) programs in the early 1970s 

as explained in chapter 2. Demand in the domestic sector is the aggregated power 

consumption of households. Domestic Demand Response (DDR) is still the largest 

underutilized resource in the power system. Since the new schemes introduced by 

network operators and electricity supply companies allow small loads to be aggregated 

and provide the same capacity of a large industrial load, attention has been focused on 

DDR more than ever.  

 

The fundamental problem in employing DDR is not having sufficient information about the 

power consumption pattern of small domestic loads. This chapter aims to investigate the 

methods that have been used in the past to model the electrical load profile in domestic 
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sector, and explain the limitations of the current methods to be used for modelling the 

individual appliances for demand side management purposes, and to propose a model 

which can satisfy us in studying the load profile of domestic sector in order to perform 

various demand side management experiments.  

 

To evaluate the amount of load which could become responsive it is important to know the 

load profile of the proposed consumer. If loads are to become responsive like load shifting 

programs the overall satisfaction of consumers should not be affected. Therefore only 

those loads may become responsive which have more elastic and may be shed in 

response to a network operator signal or even autonomously by detecting the network 

variations.  

 

6.2  Load Profile in Domestic Sector 

6.2.1 Definition of Load  

Load can be defined in several ways depending on the requirements of the applications. 

The most important specifications of load data are [1]: 

1. System location (customer site): Load is located in a specific location within the grid;  

2. Customer class: Loads are divided into industrial, commercial, domestic, agriculture 

and services;  

3. Time: load level within a system varies depending on time of year, day of week and 

time of day; 

4. Dimension: kW and φcos . 

6.2.2. Load profile:  
Load Profiles shows the electricity consumption pattern by a group of consumers. A load 

profile gives the Half-Hourly which is known as “Settlement Period” shape of usage across 

a day (Settlement Day).  Apart from the pattern of electricity consumption, other 

information could be derived from load profile of individual or a group of customers. This 

includes:   

1. Peak load values; 

2. Minimum load values; 

3. Total load which could be shifted from peak to off-peak periods;  

6.2.3. Impact of Different Factors on Electricity Load Profile:  

6.2.3.1 Customer factor:   
The amount of energy consumed is very dependent upon the attitude and awareness of 

the energy customers. The consumption pattern in different building types, like 
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households, schools and office buildings, is usually unique for that particular building. 

Therefore customer influence differs depending on what kind of buildings they spend their 

time in. Consumers will have less influence in a building with automatic control than they 

will have in a manually controlled building. Awareness and attitudes towards energy 

consumption are more evident in household consumption than in situations where many 

people may simultaneously have an influence on energy use, such as in office buildings. 

Programs which are designed to control the energy consumption of electrical appliances, 

such as shifting the energy consumption from peak periods to off-peak period have also 

impact on load profile and can be included as part of the customer factor.  

 

6.2.3.2. Weather factor: 
Different climatic parameters influence the load and energy demand such as temperature 

level versus space heating, ventilation and cooling; wind speed and direction versus 

space heating and ventilation; solar irradiance vs. cooling and lighting; hours of daylight 

versus lighting and cloud layer vs. space heating. The climate changes from place to 

place as well as on a yearly basis, making the generation of a common representation of 

the normal climate into a challenging task at any given location. 

 

6.2.3.3. Time factor:  
The amount of load within a system varies with the time depending on human activities 

and other events which may increase or decrease the utilization of electrical loads.  

 

6.2.3.4. Other Electric Loads (Coincidence Factor): 
Some electric loads are influenced by each other; e.g. operating one type of load may 

result in shutting down another one or necessitate operating another load at the same 

time. For example cooker use may correlate with kitchen light and extraction.  

 

6.2.4. Available Data to Model Load Profile: 

To model a customer’s load profile we need to have some information about them. 

Preferably, this information should indicate the consumption pattern of the customer 

during the study period. However this requires installing a electricity meter at the point of 

consumption for every customer who is able to record the consumption level at interval 

points. Some customers (usually non-domestic customers) have such meters but in the 

domestic sector, so far not all the customers have benefited from such meters.  
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In the domestic sector, the electricity meters usually record the energy consumption of a 

customer during a specific period. Therefore, the kWh energy consumption is one of the 

available data which is being used to model the customers load profile. These customers 

are billed on a tariff called Increasing Block Tariff (IBT). IBT sets a cheaper tariff for the 

first A kWh consumption and then a different tariff for anything the consumer used above  

the first A kWh. In some countries the second tariff is higher (to encourage people to save 

the energy) and in some countries it is cheaper (to encourage the people to utilize 

electrical appliances). Flat rate billing is also accepted in many countries such as UK.  

 

The number of people living in each household, their occupation and number of houses in 

each area as well as weather data may be known and can be used to model a customer 

or a group of customers.  

 

6.3. Modelling techniques used for Load Profiling 
Several methods are used to model the energy consumption at different sectors; they can 

be divided into three main groups [8]:  

• Statistical analyses; 

• Energy simulation programs; 

• Intelligent computer systems. 

 

6.3.1. Statistical Analysis: 

The statistical analyses method of load profiling and energy estimation is based on large 

amounts of measured energy consumption data. The probability sample must have a high 

level of statistical data in order to meet the accuracy requirements of the planners. Load 

profiling is mainly based on linear, or multiple regression analysis. A regression analysis 

indicates the mathematical correlation between different variables. This analysis also 

gives an indication of the quality of the correlation between various energy consumption 

measures and climatic parameters, such as load and temperature outside. The 

representation of weather and socio-economical factors is very important in terms of load 

profiling. Customer behaviour such as their income, occupancy and working pattern, 

numbers of household’s occupants etc. all have impact on the load profile of a particular 

household.   

 

Werner in [2] used multiple linear regression analyses on the total district heat 

consumption for six different district heating companies in Sweden for heat load 

estimations. The focus was on the aggregated daily load level and the model was 
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developed based on outdoor temperature, wind velocity, solar radiation, hot tap water 

supply, heat losses in the distribution network, as well as additional workday load. 

 

The Energy-Signature method has been used in [3]. The method is based on linear 

regression analysis of heat consumption versus outdoor temperature, on a daily, weekly 

and monthly basis. The daily district heat consumption versus daily mean temperature, 

along with the daily utilization time, was applied to estimate the building’s design heat load 

on an hourly basis. It has analyzed district heating measurements of 50 buildings, 

including large and small apartment blocks, office buildings, and retirement homes. The 

average heat load profiles for the various building categories were estimated for February 

1991. The maximum specific heat load, both measured and corrected using energy-

signature and utilization time, was presented for all buildings analyzed.  

 

The Conditional Demand Analysis (CDA) has also been based on regression analysis, 

with the regression level on the end-use, not the total energy demand [4]. Different 

appliances (electrical equipment, cooling and heating devices) at the customer level were 

summed to estimate the total energy demand for each particular customer. Energy 

consumption, electrical appliances, demographic features, energy market prices and 

weather data are necessary when applying the CDA method. The method alone was 

relatively inexpensive, but resulted in less precise estimates for the different end-uses. 

 

Multiple regression analyses is applied to estimate household demand for electricity in all 

electric buildings with direct load control in [5]. The load data analyzed were based on 

hourly measurements of residential dwellings’ electricity consumption during a six-month 

period. All measured buildings had installed load control technology. The model 

incorporated variables such as electricity price, daylight, outdoor temperature, and wind 

speed, as well as several dummy variables representing hours, type of day, day of week, 

and month of year, among others.  

 

Probability distribution functions have been used for load estimations in order to calculate 

expected values and standard deviations [6]. This model is based on probability 

distribution functions such as the normal distribution for high load hours and lognormal 

distribution for low load hours in order to derive load profiles for all electric buildings. 

Altogether 46 different load profiles were developed for various customer categories, and 

the model predicts the average hourly electricity load and standard deviation divided into 

month, day type and hour. In [7] the probability distribution approach was also used in 
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order to estimate load profiles for residential, commercial and industrial customers, in 

which the electricity consumption data was assumed to be temperature-independent in all 

electric buildings.  

 

6.3.2. Energy Simulation Programs: 

Energy simulation programs are mainly based on two different modelling techniques; the 

response function method (an analytical method) and the numerical method. Response 

function methods solve linear differential equations that include time invariant parameters, 

while numerical methods use non-linear, time varying equation systems. Even though 

programs based on the response function method are easier to validate in most cases, 

the numerical methods are preferred because they can solve the equations 

simultaneously, handle complex flow path interactions and accommodate time varying 

system parameters [9].  

 

The primary numerical method is a nodal network representation of the building. This 

means that the whole building, or one specific room, is divided into segments where each 

segment is represented by one node. Energy conservation equations are developed for 

each node and the entire nodal network is solved simultaneously. Many simulation 

programs are based on the nodal network model, but the differences lie in the solution 

techniques [9].  

 

6.3.3. Artificial Intelligent Systems: 

The last methodology for load modelling and energy estimations presented here is 

artificial intelligence, where the systems consist of expert systems and artificial neural 

networks. Expert systems “make decisions” based on an interpretation of data and a 

selection among alternatives. Neural networks are trained in relation to a set of data until 

the network recognizes the patterns presented. The artificial neural network may then 

make predictions based on new patterns [10]. The latter system is the most suited for load 

modelling and energy estimations because it is able to handle incomplete data which 

might result from measured energy data and climatic parameters. Neural networks can 

also solve non-linear problems as well as “…exhibit robustness and fault tolerance” [10]. 

Artificial neural networks were applied to identify different electricity load profiles in New 

Zealand homes [11].  A pattern recognition probabilistic neural network (PNN) algorithm 

was used to classify electricity load profiles based on a large number of electricity 

measurements. 
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An example of an energy estimation method based on intelligent computer systems for 

the prediction of energy demand in Canadian households, called the Neural Network 

method (NN), has been presented by Aydinalp [4]. The NN model estimates end-use 

energy consumption in buildings based on three networks; a hot tap water consumption 

network, a space heating network, and an appliance, lighting, and space cooling network. 

This last network included 55 input units alone.  

 

6.4. Proposed Methodology  

6.4.1. Algorithm Description  
The general equation to calculate the total daily power demand that is applicable to all 

end-use appliances is:  
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where:  

tDi  is total power required by component i at time t; 

iN   is the number of appliances of type i ; 

iC   is load type i energy consumption (watt); 

tFi  is the fraction of the connected load of type i in at time t ; 

iE   is the daily energy consumption of load type i.  

As  in particular for domestic sector depend on type of day (weekday, Saturday, 

Sunday) another coefficient”

tFi

α ” needs to be multiplied to the equation (6.2) in order to 

differentiate the energy consumption of each appliance in different days.  Besides, 

which represents the number of appliances of type i depends of socio-economic 

situation of each household. Therefore a comprehensive aggregated demand requires 

considering these modules as well.  

iN

 

Each household is modeled by a set of different appliances connected in parallel and fed 

by the main feeder as shown in fig 6. 1.  Each appliance is connected by a switch which 

consumes energy when the switch is close and will be disconnected when the switch is 

open. Therefore operation of each appliance is dependent on probability of the switch 

connected to it to be open or close.  
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Fig 6.1. Simple Model of Appliances in a House. 

   

The simple equation which denotes the probability that each switch is open or closed is 

shown in (6.4): 

 

∑ ∑= =
×=

C

c tct tcs 1 ,
49:23

00:0: , ρτρ                               (6.3)  

where sρ is the probability of switch s to be closed, , tc ,τ is a binary variable which is 1 

when the customer type C hich has influence on the operation of appliance is at home at 

time t , and 

w

tc,ρ is the probability of operation of appliance type s by customer type c, at 

time t. Therefore sρ  is zero when tc,τ is zero, and is equal to the value of tc,ρ  when tc,τ  is 

1.  

 

There is an exception for fridge-freezers as occupancy of the consumer does not have 

any impact on operation of this type of appliance; ignoring the impact of opening-closing 

the fridge-freezer’s door and sρ is a constant number throughout the day for this type of 

appliance.  The value of tc,τ  for different households is shown in fig 6. 2. Single 

households are assumed to have tc ,τ  similar to class 1, two adults, and two adults with 

children class 2, and other households are assumed to have an occupancy pattern similar 

to class 3.  
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  Time      Time  

a. Class 1                      b. Class 2  

 
Time 

c. Class 3 

Fig 6.2. Different Occupancy Pattern Classes 

 

After entering the input data, by generating the random variables depending on number of 

households in each class, and sorting them depending on the outcome of the generated 

variable that fits into which probability band, the total number of start-ups of appliance n 

will be derived. Then by considering different load profiles of each appliance which dictate 

different duration of operations, the load profile of each appliance starting at its start-up 

point will be derived. After all by aggregating the different load profiles the total load profile 

of each appliance from the starting point which is its start-up point will be derived. This 

algorithm will be looped and continued until all different appliances for all different classes 

of consumers are being modelled, and at the end by aggregating the different consumers’ 

load profiles total load profile of this area will be presented.  

 

Figure 6.3 shows the flowchart of the proposed algorithm to model the load profile. In our 

study 13 main types of appliances in the domestic sector are modelled, as well as 

considering other appliances as miscellaneous appliances. For each appliance, the 

ownership rate of that appliance is considered, i.e. the ownership rate of microwave oven 

in the domestic sector of the UK is 75%. It means that in an area with 100 households, 75 

households will own a microwave oven. It was assumed that the ownership rate of 

different appliances is the same for all different type of consumers.  
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Fig 6.3. The Algorithm of Load Profiling 

 

6.4.2.  Input Data: 

In order to perform such simulations the initial input data which were available and used in 

this study includes the factorslisted in the following sections:   

 

6.4.2.1. Type of Consumer (Including number of consumers, different class, etc.)  
The total number of households, in England and Wales were considered for this study, 

including type of household. From census data, households in E&W are divided into 

seven main groups: single adult, single pensioner, two adults, two pensioners, two adult 

with children, two adult and one pensioner, and three adults. The total number of 

consumers is derived from census data; office of national statistics [12] and the 

households stock of E&W is shown in fig 6. 4.  
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Fig 6.4. Hosuehold Stock in E&W [12]. 

 

6.4.2.2. Type of Appliance:  
Table 1 shows the different types of appliance in the domestic sector [13].  These are the 

main group of domestic appliances depending on their application. Among these types of 

appliances only washing machine, dryer, and dishwasher from wet appliance, fridge and 

freezer from cold appliances, TV and multimedia player from brown appliances, iron, PC 

from miscellaneous appliances, microwave oven, cooker and kettle from cooking 

appliances are modelled in this research.      

 

Table 6.1. List of Domestic Appliances 
Type Members 

Cold  

Applian

ces 

Refrigerators: one door refrigerators with or without frozen 

compartment, fridge-freezers: two door combination refrigerators 

,Upright freezers,  chest freezers 

Wet 

Applian

ces 

Washing machines: any automatic washing machine including the 

washing cycle of washer-dryers, Tumble dryers: all types of dryers 

including the drying cycle of washer-dryers, dishwashers 

Cookin

g 

Applian

ces 

Electric ovens: including grills Electric hobs Microwaves: includes 

combination microwave/grill/convection ovens  Electric kettles: includes 

all types of electric kettle Mixer (Hand mixer or Stand-up mixer) Hot 

drinks makers: coffee and tea makers, Sandwich toasters Pop-up 

toasters Deep fat fryers, Electric frying pans Slow cookers Cooker 

hoods Food preparation appliances: mixers, blenders, processors, 

whisks etc. 

Lighting Incandescent & Fluorescent strip.  
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Applian

ces 

Brown 

Applian

ces 

Televisions, VCRs (video cassette recorders), Non-portable audio 

equipment: hi-fi systems, record players etc Satellite control boxes for 

TVs, cable control boxes for TVs, Portable audio equipment: Cassette 

recorders, radios, clock radios, X-boxes (games etc.)  

Miscell

aneous 

Applian

ces  

Irons: steam irons and dry irons vacuum cleaners DIY equipment: drills, 

torches, battery chargers, Garden equipment: lawn mowers, trimmers, 

hedge trimmers, Other home care equipment: sewing machines, floor 

polishers, lights on extension cords,  Hair styling equipment: hair dryers, 

curling tongs Small personal care appliances: electric toothbrushes, 

electric razors, Electric towel rails, Electric blankets Electric 

instantaneous showers, Central heating pumps, Personal computers, 

Computer printers (LaserJet or  Facsimile machines Answering 

machines Other office equipment: slide projectors, electric typewriters 

etc. 

 

 

6.4.2.3. Ownership Level: 
The study done by Mansouri [13] has evaluated the factors such as ownership level of 

different appliances in the domestic sector of the UK as shown in fig 6. 5. In our simulation 

it was assumed that the ownership rate of different domestic appliances is the same for 

different types of consumers and same for different locations.  
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Fig 6.5: Ownership rate of domestic appliances [13] 

 

6.4.2.4. Probability of Operating Each Appliance: 
Number of operations for different classes of consumers is defined by a probability 

distribution function.  The probability distribution of a discrete random variable of   

which defines the total number of operation of an appliance is a function which gives the 

probability 

X

)( ixρ  that the random variable equals . For each value xi:  X )( ix

 

)()( ii xXx == ρρ                    (6.4) 

Therefore for each appliance, owned by a group of households, a probability distribution 

function is defined to show the approximate probability of operation of that particular 

appliance, for the period of time. Fig 6.6 shows the approximate probability of operating 

an oven in a single adult household for a period between 17:00-22:00.  
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Fig 6.6. Probability of Operation of Appliance. 

  

6.4.2.5. Typical Operation Patterns for Each Appliance: 
An assumption which was made here that appliances’ consumption pattern is limited to 

only four profiles for each appliance. Figure 6.7 shows an example of different profiles 

which were considered for washing machine.   

 

 
Fig 6.7. Different Load Profiles of Washing Machine 

 

6.4.2.6. Energy Management Programme (Economy 7):  
In the UK; Economy 7 is the well-known scheme for domestic consumers and it gives 7 

hours continuous low tariff power [mostly overnight] to consumers. Another scheme is 

called Economy 10 in which 10 hours low tariff is split between day and night time; usually 

2 hours in the morning, 3 hours in the afternoon and 5 hours overnight. In 2008 16% of 
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total domestic consumers were committed to Economy 7 tariff; this is equal to 27% of total 

electrical energy consumed in domestic sector. The commitment level varies across the 

country but in general consumers save money through reducing their consumption during 

the day and shifting their demand to off-peak hours. Figure 6.8 and 6.9 show different 

types of domestic load profile for the autumn season in the UK.  
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Fig 6.8. Domestic non-Restricted Load Profile 
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Fig 6.9. Domestic Economy 7 Load Profile 
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If those consumers who are committed to economy 7 tariff alter their consumption pattern 

in order to maximize their saving, this will have an impact on demand modelling. 

Therefore this has been taken into account by distinguishing the probability of operation of 

some appliances (washing machine, dryer, and dishwasher) for 16% of total domestic 

consumers in England and Wales.  

 

6.5. Results and Discussions: 

6.5.1 Total Demand: 

Total demand for a typical weekday is generated using the algorithm in fig 6.8 and it is 

shown in fig 6.10. By observing the total demand profile which is aggregated of load 

profiles of individual appliances, it is noticeable that the total demand has a peak in the 

morning, in the afternoon and the highest peak in the evening. A typical domestic load 

profile consists of a mixture of consumers will have the same pattern. Different appliances 

contribute in different peaks on the load profile of a household or an area, in particular 

lighting and heating appliances which are not modelled in this exercise. It is because 

these two types of appliances do not necessarily have correlation with type of household, 

and in fact they are significantly dependent on the size of the properties. This information 

at the time of simulation was not available therefore in order to not making a wrong 

assumption, lighting and heating electrical loads are not modelled.  
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6.5.1.1. Morning peak:  
The morning peak is due to operating such appliances as kettles, cookers and electric 

showers in order to get ready for starting a day. As the area which was studied consists of 

a mixture of different consumers, their aggregated consumption of electricity by different 

appliances will create the peak demand in the morning. Different types of consumer will 

have a different effect, but in general as we assumed that all consumers may operate for 

example their kettles in the morning (ownership level of kettle was assumed 100%) 

therefore the morning peak is resulted from operating the appliances such as kettle, 

electric shower and cooker. Figure 6.11 and 6.12 show the typical consumption pattern of 

a two adult and single adult house where both have single morning peak. When these 

profiles are aggregated and because the occurrence of this peak is assumed to be 

random, then such morning peak in fig 6.12 will be resulted.  
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Fig 6.11. Load profile of a two adult household 

143 | P a g e  
 
 



Chapter 6                 Framework for Analysing the Responsiveness Level in Domestic Sector 
 

0

5

10

15

20

25

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Cu
rr
en

t (
A)

Time

Kettle Kettle

TV/Lights

 
Fig 6.12. Load profile of a single adult household 
 

6.5.1.2. Afternoon Peak 
Afternoon peak in domestic sector is resulted from operating the domestic appliances by 

those households who are usually at home during the day. In our simulation occupancy 

pattern for single and multiple pensioner households, multiple adult with children 

households were considered to be morning-day-night occupancy. It means that these 

households consume electricity during the day. Figure 6.13 and 6.14 show the load profile 

of a two adult with dependents and two pensioner households where both have an 

afternoon peak.  
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Fig 6.13. Load profile of a two adult with dependent household 
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Fig 6.14. Load profile of a two pensioner household 

 

6.5.1.3. Evening Peak:  
the evening peak which is usually the highest peak both in the domestic sector and in 

national level  mainly resulted from the lighting load. Street lighting and domestic lighting 

both contribute to the high level of the evening peak. In the domestic sector other 

appliances such as TV, cooker, oven, microwave, dishwasher and drier tend to be 

operated over the evening hours. Therefore, the peak in the domestic sector is an 

aggregated effect of operating several appliances.  

 

In our study, due to unavailability of data about houses we did not model the lighting 

loads. Hence, the evening peak in fig 6.14 is produced by other appliances in all types of 

households.  

 

6.5.1.4. Overall Pattern: 
The total pattern was studied separately over different periods. The overall pattern is also 

comparable with other domestic areas. It is important to note that in our studied area 

where over 45% of households have day occupancy the afternoon peak is noticeable. A 

typical load profile of a domestic area shown in fig 6.15, such peaks and valleys are 

observable. The valley in our result is higher due to not simulating the heating and 

lighting loads.  
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Fig 6.15. Load profile of a domestic area 

 

Besides, each appliance has different power consumption rate. In the UK (and in most of 

the other countries) domestic appliances depending on their average power consumption 

are classified into different groups. A to G, where A is the most energy efficient type of 

that appliance, and F is the most energy consuming type. The total energy consumption of 

a chest-freezer in UK-MARKAL [14, 15] model is between 188.06kWh/annum to 

488.89kWh/annum. Our results shows that a typical fridge-freezer in the domestic sector 

will consume 251.85kWh which is something between the most energy efficient and the 

most energy consuming type of fridge-freezer.  

 

6.5.2. Responsiveness Level: 

Different types of appliances have the potential of becoming responsive. And, if demand 

response if to be provided from the domestic sector, it should not cause inconvenience for 

customers. Only appliances with an operation mode which is passive (like fridge) are 

capable of becoming responsive; and unlike a TV for which any interruption in power 

results in overall dissatisfaction of consumers. Therefore in this exercise fridge and 

freezer, washing machine, drier and dishwasher are the appliances which are considered 

to become responsive. Another important factor when considering the capability of a type 

of appliance to become responsive is the impact of the supply interruption period on the 

service being provided. Fridge-freezer is an appliance which is intended to keep the 

temperature down below a certain levels in order to keep the contents fresh and harmless. 

Figure 6.16 shows the changes in fridge and freezer’s temperature on cyclic operation of 

the fridge.  
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Fig 6.16. Temperature changes in cyclic operation of fridge-freezer [16].  

 

The maximum allowed temperature for domestic fridges is 8 °C. This means that in 

normal operation pattern, the inside temperature of a fridge must remain between 2-8 

between the range of +2°C and +8°C. Current legislations regarding power cuts gives the 

consumers the right to ask for compensation for the damage caused by a power cut 

above a  maximum of two hours. This is investigated by observing fig 6.17 which shows 

the increase in the temperature of a fridge and freezer after switching off considering the 

temperature at the time of power cut was at its maximum level. It shows that the 

temperature of +8°C which results around 130 minutes after the fridge was switched off. 

Therefore if the supply interruption lasts for more than 130 minutes, the contents inside 

the fridge may start going off.  
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Fig 6.17. Fridge and freezer temperature after switch off [16]. 
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Another important conclusion is that demand response provided by fridges can be 

available up to 130 minutes without causing any damage to the fridge and freezer’s 

contents. Total demand response’s potential from domestic sector maintained by fridge 

and freezers, washing machines, dryers, and dishwashers are shown in fig 6.18.  
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Fig 6.18. Total Demand Response’s potential.  

 

It is observable from fig 6.18 that availability demand response varies during a typical day, 

in the evenings and when consumers tend to use their appliances, such availability is 

larger compare with early hours of morning when only fridges and freezers are the only 

sources of maintaining the demand response. The minimum and maximum available 

responsive demand is around 1GW and 10GW respectively. By using the total electrical 

heating loads during the winter period, which is also suitable for making responsive, 

therefore this value could even be higher.     

 

6.6 Chapter Summary  
Responsive demand is currently providing variety of services for power systems. Demand 

response as a product is either utilized as a reliability based product, or for economical 

purposes. In both cases, information regarding the concentration, location and capacity of 

available demand response is required.  

 

This chapter investigated the potential for demand response in the domestic sector of 

England and Wales. The technique used in this chapter to generate the load profile of 
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domestic household’ appliances was based on the probability of operating different 

appliances by different groups of consumer. Since the availability of data for any statistical 

analysis is an essential factor, and because the data required in this technique is widely 

available for different locations in England and Wales, this technique can be used to 

assess the potential of demand in a location to become responsive. It was shown that the 

domestic demand response’s potential is different throughout the day since the 

consumption pattern of different appliances is different.  It was shown that fridge-freezers 

which compose the base load in the domestic sector have the potential of becoming 

responsive since interruptions of up to nearly two hours may not jeopardize the service 

provided by fridge-freezers. 
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Chapter 7. Changes in Generation Mix of the GB Power System in 
2020  
In this chapter a summary of current state of generation mix in the GB power system is 

presented. This is followed by studying the impact of various legislation such as LCPD, 

government’s renewable target, and nuclear power decommissioning which work as a 

driver, and will shape the future generation mix. By considering these drivers for change, 

and under different socio-economic climates, six main scenarios have been developed. 

This enables us to study the impact of different locations for wind power to be studied as 

well as the effect of different installed capacities of nuclear power in each case.   

 

7. 1 Current State:  
Current GB generation mix is split into one-third gas, one-third coal and one-third for other 

fuel types such as nuclear and renewables (including Hydro) as shown in figure 7.1 [1].  

 
Fig.  7.1. Generation mix in the GB (2008) in percentage of total capacity (78GW) [1] 

 

The electrical energy production reflects these same proportions, apart from the fact that 

nuclear is far more dominant in the ‘other’ category. Generation capacity in 2008 is about 

78GW in which 11GW of it is nuclear power. Current capacity of nuclear power supplied 

about 20% of total electrical energy which results in about 34,000,000 tonnes of CO2 

being saved through utilizing nuclear power as shown in figure 7.2.  
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Fig.  7.2. Load Duration Curve and Energy Share of Different Generation Types (2008) [1] 

 

The prospects for building new nuclear plants remain almost as dim now as they have 

been since 1990 until January 2008. The economic advantage of gas-firing over nuclear 

was so strong that there was no credible tax regime - penalizing fossil fuels - that could 

make up much of the economic and financial gap between the technologies [2].  

 

In January 2008 when the government published the White Paper on Nuclear Power, it 

strongly supported building new nuclear power capacities by encouraging the private 

sector to build new capacities. In April 2009, the government announced 11 sites for new 

nuclear rector, making nuclear power back to the central stage.  

 

7.2 Main Drivers for Change in Generation Mix:  
A major challenge for the electricity industry is the fact that in the coming years many 

coal-fired and nuclear power stations are due to close. Significant new investment in 

generating capacity is needed to replace them. At present, the Department for Business, 

Enterprise and Regulatory Reform (BERR) is aware of around 18 GW of potentially new 

conventional generation capacity that is at various stages of development, over 90% of 

which will be gas-fired.  

 

7.2.1.  Impact of Large Combustion Plant Directive (LCPD) [3] and Security of 
Supply:  
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From 2008, GB coal- and oil-fired power stations have been governed by the Large 

Combustion Plant Directive (LCPD). This sets new limits on the amounts of sulphur 

dioxide (SOx), nitrous oxides (NOx) and dust power stations can emit. It is expected that 

around 12GW of coal and oil-fired generation will be decommissioned by 2015-16 as a 

result of the EU’s Large Combustion Plant Directive (LCPD).  

 

One of the main factors being considered in the energy market in 2007-08, that was 

highlighted in government’s energy white paper published in 2007 was “future supply 

security”. The government and numerous analysts pointed to a supply gap by the middle 

of the next decade. It is not yet clear how this gap should be best filled 

.  

From a security of supply perspective, gas still presents potential problems. Now a net 

importer of gas, Britain is dependent on external markets for its gas supply security. And, 

with Britain having gas storage for just 5% of its consumption, compared to around 20% in 

Germany and 16% in France, it is arguably more import-dependent than other member 

states1.  

 

Unlike gas, coal does not present any security risks, with Australia and South Africa being 

secure sources of supply, while the US is also seeing resurgence in coal supply to 

Europe. The major problem with coal is environmental. With around twice the carbon 

content of gas, and with existing boiler technology less efficient than that of gas boilers, 

coal plant produces significantly more carbon dioxide emissions than other generation 

methods. 

 

The coal solution is a two-stage process. The first ideally involves the Government 

supporting supercritical boilers that increase the efficiency of coal-fired plant from around 

38% at present to nearer 45%, with a consequent reduction in emissions. The second 

stage is expediting the commercial development of CCS technology which can remove up 

to 90% of carbon dioxide emissions produced from generation facilities. 

 

                                                 
1 To this end, Britain has sought to align itself with Norway for its gas imports, with the government stressing the 

importance of this relationship at the official opening of the Ormen Lange field last October. It was right to do so. While 
Russia has never failed to deliver on a supply contract to date, recent reports suggest Russia may not be a reliable exporter 
of gas to Europe in the future. If this proves to be the case then there will be more competition for other gas supply sources, 
including Norway. 
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Yet, even if the new nuclear programme proceeds, unless it is changed from a like-for-like 

replacement programme to an increased capacity programme the long-term supply 

security benefit will likely be limited.  

 

Through investing in new clean coal generation capacity, combined with like-for-like new 

nuclear replacement to provide around 20% of supply, and for renewables to ramped up 

to provide 20% of supply, will Britain effectively fill its energy gap and reduce emissions. 

This will result in a balanced generation mix.  

 

 

7.2.2. Nuclear Power Plants Closure  
Total installed capacity of Nuclear Power plants at the end of 2008 is about 11GW. 

Around 7.4 GW of nuclear power plant will have closed by 2020 as stations come to the 

end of their operating lives as shown in figure 7.3 [4-6].  
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Fig. 7.3. Nuclear Power Stations’ Closure [4]. 

 

The UK Government supports a like-for-like replacement of existing nuclear capacity as it 

is decommissioned. With regard to possible location of new Nuclear power stations; if any, 

they will be installed at existing locations where nuclear power stations exist as shown in 

figure 7.4.    
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Fig 7.4.Map of Nuclear Power Stations in the UK [5]. 

 

7.3 Uncertainties and Future Scenarios  
7.3.1. Main Scenarios  
There are several factors such as economic, environmental and regulatory that have an 

impact on the future of electricity generation and consumption. Ault. Et al has presented 

number of technologies which are likely to be important to the development of the 

electricity network in the GB power system over the coming decades under different 

scenarios [7]. The authors by considering the impact of a strong economy or in contrast 

weak economy, or supporting the drivers for saving the energy and environment and so 

on, have proposed different scenarios with different types of generation with different 

capacities. In this chapter the work has extended the four main scenarios proposed by 

Ault in order to develop different sets of meaningful future generation mix. The four main 

scenarios proposed by Ault are: 



Chapter 7                                       Changes in Generation Mix in the GB Power System in 2020 
 

156 | P a g e  
 

7.3.1.1 Business as Usual  (Scenario 1):  
Scenario1 in which it is likely to follow the same trend both in terms of demand growth and 

generation capacity growth while considering government’s targets (20% of energy 

supplied from renewables)  and closing down some nuclear power stations by 2020. The 

peak demand’s will grow by 1.3% and it reaches 72GW, and in order to supply 20% 

energy from renewables the capacity between 22-26GW of wind power will be required.  

 
7.3.1.2 Strong Economy (Scenario 2):  
Scenario 2; where it was assumed that  economy’s growth and drivers for saving the 

environment will result in 2% annual demand growth, and demand will reach 79.73GW 

where total energy will be 459TWh and between 34-37GW of wind power will be required 

to supply the government’s renewable energy target.  

 
7.3.1.3 Economy Downturn (Scenarios 3.1 & 3.2):  
In the case of economic downturn in which the severity is unknown, two scenarios are 

developed. In order to supply certain amount of energy from renewables total capacity of 

wind power between 22-24 GW will be required for scenarios 3.1 and 3.2 respectively.:  

3.1. In scenario 3.1 it is expected that demand will grow but this growth rate is limited to 

0.5%, where peak demand will only reach 64.71GW.  

3.2. Another scenario in which the economic downturn is severer is scenario 3.2 in which 

demand growth will be negative and will reduce by -0.5% which results in a total peak 

demand of 57GW.  

 
7.3.1.4 Ultra Green (Scenarios 4.1& 4.2):   
In this scenario, two main objectives are considered. First demand reduction which result 

in reduced peak demand, and increasing the drivers for green energies.  

4.1. Scenario 4.1 in which more attention is made on green electricity generation, and 

reducing the energy demand, corresponds to a peak demand of 54GW.  

4.2. In Scenario 4.2, demand reduction has not been given much priority and only 

electricity generation technologies are to be renewable, but still demand growth is limited 

to 0.9% which corresponds to 68.36GW.  

 

7.3.2. Generation Mix for Each Scenario:  
New investment to build additional generation capacity should only be made when there is 

a need for capacity – to replace existing capacity upon retirement and/or to meet demand 

growth. In general, there are three possibilities where it would be economic to add new 

capacity: 
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1) When existing capacity is retired. Assuming that there is a capacity balance prior 

to retirement, failure to replace existing plant upon retirement would lead to capacity 

imbalance. 

 

2) As demand grows, there is a need for investment in new generation in order to 

maintain capacity balance. 

 

3) When the energy policy encourages certain types of generation technologies that 

are currently absent or in a small proportion  

 

To develop a more detailed energy mix within each scenario, first demand growth for each 

scenario was considered in 2020 and total energy which must be supplied from different 

types of plant. Then by taking into account the government’s target to provide 20% of 

energy from renewables, total energy share of renewable plants was derived as shown in 

figure 7.5.  

 

 
Fig. 7.5. Calculation of total energy for each scenario 

 

Since the majority of the renewable sources in the GB power system are hydro, wind and 

biomass, and because the prospects of increasing the installed capacity of other 

renewable plants than wind is not very promising, the total required wind energy to supply 

the proportion of renewable energy target was derived for each scenario. Considering 

wind’s capacity factor is different at different locations, for each scenario the required level 

of installed capacity of wind is affected by two main factors:  

 

1. Windfarm’s location at North or South 

2. Windfarms’s location at off-shore or on-shore.  
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In figure 7.6 the calculation of total renewable energy for each scenario from demand 

growth rate is shown, while demand growth rate is different for each main scenario, 

therefore the total renewable energy which is required to supply such a demand is 

different for each scenario.  

 
Fig. 7.6. Calculation of total renewable energy for each scenario from demand growth 

rate. 

 

In figure 7.7 it is shown  how  20% renewable energy contribution can be translated to 

installed capacity of renewable plants. Since the potential sites for hydro plants have all 

already been utilized, therefore the majority of this 20% contribution must come from by 

wind and biomass.  

 
Fig. 7.7. Calculation of total Installed capacity of wind for each scenario. 

 

The prospects for biomass is still unclear and literatures suggests that there will not be 

huge potential for biomass plants at least by 2020 due to risks associated with biomass 

[8].  Therefore as it can be seen in figures 7.7 and 7.8 the total installed capacity of wind 
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power depending on their location. Figure 7.9 and table 7.10 are the summary of the 

future proposed scenarios.  

 

 
Fig. 7.8. Location of Windfarms for each scenario. 
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Fig.  7.9. Generation Mix, Peak Demand and Generation Margin for different scenarios 
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Fig.  7.10. Load Duration Curve for different scenarios. 

 

Table 7.1Capacities of Generation Technologies in different Scenarios and  

Associated Peak Demand in GW 

  
Scenario 

1 
Scenario 

2 
Scenario 

3-1 
Scenario 

3-2 
Scenario 

4-1 
Scenario 

4-2 Current 
Interconnector 3 3 3 3 3 3 7.07 
OCGT 1.8 3 2 2 2 2 0.59 
CCGT 46 38 29 29 29 29 25.53 
Biomass 3 5 3 3 3 3 0.05 
CHP 6 13 3 3 3 3 1.73 
Hydro 1.3 2 1 1 1 1 1.03 
Nuclear 3.8 3.8 3.8 3.8 3.8 3.8 11.01 
coal 22 19 24 24 22 22 28.91 
Off-shore 
Wind 0.14 
On-Shore 
Wind 

22 
 

34 
 

22 
 

20 
 

23 
 

25 
 1.60 

Oil  0 0 0 0 0 0 3.50 
Pump Storage 3 3 3 3 3 3 7.30 
Total 111.9 123.8 93.8 97.6 97.8 95.5 78.4 
        
Peak  70.14 79.73 64.71 57 54 68.36 61.30 

 

 

7.3.3. Developing Sub-Scenarios (Windfarms’ Location) 
Another important factor considered in this project is the location and type of wind power 

for each scenario. Therefore the impact of location of windfarms can also be studied. 

Table 7.2 and figure 7.11 show the total installed capacity of wind power at different 

locations in percentage of targeted wind power. But the final table which shows the 

average production cost has included all sub-scenarios.  
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Table 7.2 Sub-scenarios explained. 
  North South 

  On-Shore Off-shore On-Shore Off-shore 

Sub Scenario 1 16% 24% 24% 36% 

Sub Scenario 2 24% 16% 36% 24% 

Sub Scenario 3 24% 36% 16% 24% 

Sub Scenario 4 24% 36% 24% 16% 
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Fig. 7.11. Wind Power in percentage of total installed capacity at different locations. 

 

Therefore for each scenario a different level of installed capacity of wind depending on the 

location of windfarms is required. Therefore some    

 

7.3.4. Developing Cases (Nuclear Power Plants Replacement)  
Since there are many uncertainties regarding replacement of decommissioned nuclear 

power stations, three cases are developed in order to take into account the replacement 

rate of nuclear power stations:  

 

1. Case 1: No Nuclear Power station will be built and only decommissioning of nuclear 

power will be considered (base case of all scenarios).  

2.  Case 2: By 2020, half of the total capacity of nuclear power stations which are 

decommissioned will be replaced by new capacities in the same locations.  

3. Case 3:  By 2020 total capacity of nuclear power stations which are 

decommissioned will be replaced by new capacities in the same locations.  
 

This helps to study the role which nuclear power has in each scenario. The process of 

building our generation mix hypothesis is explained in the diagram below. Each main 

scenario will be studied through four sub-scenarios which represent the location of 
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windfarms, and each sub-scenario will be studied through three cases for nuclear power 

replacement. In total 72 generation mix hypotheses were studied. 

 

 
Fig. 7.12 Algorithm of Generating Different Hypotheses. 

 

 

7.4 Test System (The GB Network) 
To assess the optimal energy mix for 2020, a reduced GB power system is reduced, 

generation and demand are located in reduced network and the reduced model is 

validated by checking the power flows in the main branches compare with the actual 

network. This along with relevant data and information is presented in this chapter.  

 

7.4.1. Network Model:  

By the end of 2008/09 the power system in GB will be made up of 167 large power 

stations, the 400kV and 275kV transmission system (and 132kV transmission system in 

Scotland) and 14 distribution systems. The existing system consists of 681 nodes, and 

1145 branches [9].  

 

In order to perform our studies, we have reduced the existing system down to 53 nodes, 

and 62 lines and the power flows were compared and validated with the original system. 

To reduce the current system down to 53 nodes, we started from low voltage nodes and 

transferred loads, generation and reactive shunts compensators to higher voltage nodes. 

While reducing the system, “T”eed or higher meshed nodes were not reduced. The 

system was reduced to a 29-node system to represent England and Wales (E&W) 
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including 33 lines, 21 transformers and 20 reactive shunt compensators. Then in order to 

include the nodes in Scotland we reduced the system in Scotland, and connected the 

reduced E&W system to the reduced system in Scotland by considering existing 

“interconnectors” between E&W network to Scotland. The power-flow results are shown in 

figure 7.13 along with the reduced GB network in figure 7.14. Tables 7.3 and 7.4 show the 

name of the nodes, and total generation and demand lumped into these nodes 

respectively.  
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Fig.  7.13. Power-Flow across the Branches for Reduced and Original GB Network. 
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Fig.  7.14. The reduced GB Transmission System 
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TABLE 7.3 

Reduced Network Explained 
Node No. Node Name Node No. Node Name 
1 Dounreay 20 Willington 
2 Beauly 21 Rugeley 
3 Kintroe 22 Ironbridge 
4 Errochty 23 Legacy 
5 Tealing 24 Bustleholm 
6 Inverkip 25 Hamshall 
7 Longannet 26 Nechells 
8 Strathaven 27 Coventry 
9 Cockenzie 28 Berkswell 
10 Harker 29 Feckenham 
11 StellaWest 30 Cowley 
12 Norton 31 Oldburry 
13 Creyke Beck 32 Kitwell 
14 Penwortham 33 Melksham 
15 Daines 34 Bishops Wood 
16 Cellerhead 35 Bushbury 
17 Drakelow 36 Willenhall 
18 Cottam 37 Penn 
19 Ractliffe 38 Ocker Hill 

 

TABLE 7.4 
Peak Load and Installed Generation Capacity at each Node in the Reduced Network 

Peak Load Generation Capacity Node  
Name P Q P Q 
Berkswell 2593 1179 0 1931 
Bishops wood 2999 1349 0 3862 
Bushbury 1577558 661 0 1287 
Bustleholm 2592 841 0 215 
Cellerhead 4832 2077 0 3218 
Cockenzie 0 0 0 0 
Coventry 337532 1316 0 1931 
Cowley 13062 118 18495 18237 
Creyke Beck 0 0 5009 5367677 
Daines 848 0 2339 2682 
Drakelow 1075 4047507 0 1609 
Feckenham 1390 5896081 0 3218 
Hamshall 2968 1102462 0 0 
Harker 0 0 17389 17389 
Ironbridge 2267 851 1034 1073 
Kitwell 2550 828 0 0 
Legacy 605 0 0 9977 
Melksham 6002 -659 9146 8908543 
Nechells 2921 1395 0 0 
Norton 0 0 3360 0 
Ocker Hill 8680308 436 0 0 
Oldburry 758 345 0 0 
Penn 2062 907 13674 13946 
Ractliffe 887 330 554253 5471 
Rugeley 1248 525 1092 1180 
StellaWest 0 0 451 451 
Willenhall 787 332 0 0 
Willington 2982 1332 467 2038 

 

7.4.2. Current Location of Power Plants:  

Currently there are over 150 power stations in the GB system providing 78GW of installed 

capacity. To project the future scenarios when capacity, type and location of generation 

units are different, several literature sources were studied and the predicted location and 
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capacity of each plant was derived from those literature sources.  The generation 

emission and fuel cost coefficients were also derived from several references [10 and 11] 

and were modified according to another reference [12] in order to reflect the actual 

marginal cost, and emissions of different types of power generation. In order to study the 

impact of these generators at current state on our reduced model, the generator plants 

are lumped to specific nodes (depending on the location of the plant) as shown in fig. 

7.15.  
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Fig. 7.15. Lumped Generation Capacity (current scenario) in reduced model. 

 
7.4.3  Location and Capacity of Power Plants in Future Scenarios:  
 

The information regarding the power plants’ capacity at each location is presented in 

tables 7.5-7.10. It can be seen from these tables that different generation technologies 

have different capacities in each scenario. In some nodes, the size of a generation type is 

very large i.e. 12.43GW CCGT connected to Cowley.  This is because on the reduced 

network, this node represents total generation capacity connected to several nodes which 

are all lumped to this node.  
 

Table 7.5. Location of Power Plants for Scenario 1. 
 

 Strath
aven 

cocke
nzie 

Har
ker 

Stella
West 

Nort
on 

Penwor
tham 

Creyka 
Beck 

Dai
nes 

Melks
ham 

Cow
ley 

Ironbri
dge 

Rug
eley 

Willin
gton 

Racti
liffe 

Intercon-
nector 116 0 0 0 0 0 0 0 0 2884 0 0 0 116 
OCGT 0 31 0 0 0 0 0 0 1024 746 0 0 0 0 
CCGT 

0 3013 8263 0 3806 453 7810 0 7278 
1243

9 0 0 0 0 
Biomass 177 0 0 0 0 0 2823 0 0 0 0 0 0 177 

CHP 0 916 3140 0 0 557 0 0 568 0 0 0 819 0 
Hydro 600 700 0 0 0 0 0 0 0 0 0 0 0 600 

Nuclear 750 0 374 0 376 749 0 305 393 336 0 0 0 750 
coal 730 1459 6215 266 0 6215 0 0 1301 3279 610 645 0 730 
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Off-shore 
Wind 

On-Shore 
Wind 

 
22-26GW (location varies depending on the sub-scenarios) 

 
 

Oil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pump 

Storage 
680 464 0 0 0 0 0 1856 0 0 0 0 0 680 

 
 

Table 7.6. Location of Power Plants for Scenario 2. 
 Strath

aven 
cocke
nzie 

Har
ker 

Stella
West 

Nort
on 

Penwor
tham 

Creyka 
Beck 

Dai
nes 

Melks
ham 

Cow
ley 

Ironbri
dge 

Rug
eley 

Willin
gton 

Racti
liffe 

Intercon-
nector 116 0 0 0 0 0 0 0 0 2884 0 0 0 116 
OCGT 0 51 0 0 0 0 0 0 1706 1243 0 0 0 0 
CCGT 

0 2489 6826 0 3144 374 6452 0 6012 
1027

5 0 0 0 0 
Biomass 295 0 0 0 0 0 4705 0 0 0 0 0 0 295 

CHP 0 1985 6804 0 0 1207 0 0 1230 0 0 0 1775 0 
Hydro 923 1077 0 0 0 0 0 0 0 0 0 0 0 923 

Nuclear 750 0 374 0 376 749 0 305 393 336 0 0 0 750 
coal 630 1260 5368 230 0 5368 0 0 1124 2831 527 557 0 630 

Off-shore 
Wind 

On-Shore 
Wind 

 
32-34GW (location varies depending on the sub-scenarios) 

 
 

Oil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pump 

Storage 
680 464 0 0 0 0 0 1856 0 0 0 0 0 680 

 

Table 7.7. Location of Power Plants for Scenario 3-1. 
 Strath

aven 
cocke
nzie 

Har
ker 

Stella
West 

Nort
on 

Penwor
tham 

Creyka 
Beck 

Dai
nes 

Melks
ham 

Cow
ley 

Ironbri
dge 

Rug
eley 

Willin
gton 

Racti
liffe 

Intercon-
nector 116 0 0 0 0 0 0 0 0 2884 0 0 116 0 
OCGT 0 34 0 0 0 0 0 0 1137 829 0 0 0 34 
CCGT 0 1900 5209 0 2400 285 4924 0 4588 7842 0 0 0 1900 

Biomass 177 0 0 0 0 0 2823 0 0 0 0 0 177 0 
CHP 0 458 1570 0 0 278 0 0 284 0 0 0 0 458 
Hydro 461 539 0 0 0 0 0 0 0 0 0 0 461 539 

Nuclear 750 0 374 0 376 749 0 305 393 336 0 0 750 0 
coal 796 1592 6780 290 0 6780 0 0 1420 3577 666 703 796 1592 

Off-shore 
Wind 

On-Shore 
Wind 

 
20--24GW (location varies depending on the sub-scenarios) 

 
 

Oil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pump 

Storage 
680 464 0 0 0 0 0 1856 0 0 0 0 680 464 

 

Table 7.8. Location of Power Plants for Scenario 3-2. 
 Strath

aven 
cocke
nzie 

Har
ker 

Stella
West 

Nort
on 

Penwor
tham 

Creyka 
Beck 

Dai
nes 

Melks
ham 

Cow
ley 

Ironbri
dge 

Rug
eley 

Willin
gton 

Racti
liffe 

Intercon-
nector 116 0 0 0 0 0 0 0 0 2884 0 0 0 0 
OCGT 0 37 0 0 0 0 0 0 1251 912 0 0 0 0 
CCGT 0 1913 5245 0 2416 287 4958 0 4620 7896 0 0 0 1865 

Biomass 177 0 0 0 0 0 2823 0 0 0 0 0 0 0 
CHP 0 458 1570 0 0 278 0 0 284 0 0 0 410 0 
Hydro 600 700 0 0 0 0 0 0 0 0 0 0 0 0 

Nuclear 750 0 374 0 376 749 0 305 393 336 0 0 0 517 
coal 799 1598 6808 291 0 6808 0 0 1426 3592 669 706 0 1402 

Off-shore 
Wind 

On-Shore 
Wind 

 
32-34GW (location varies depending on the sub-scenarios) 

 
 

Oil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pump 

Storage 
680 464 0 0 0 0 0 1856 0 0 0 0 0 0 

 

Table 7.9. Location of Power Plants for Scenario 4-1. 
 Strath

aven 
cocke
nzie 

Har
ker 

Stella
West 

Nort
on 

Penwor
tham 

Creyka 
Beck 

Dai
nes 

Melks
ham 

Cow
ley 

Ironbri
dge 

Rug
eley 

Willin
gton 

Racti
liffe 

Intercon-
nector 116 0 0 0 0 0 0 0 0 2884 0 0 0 0 
OCGT 0 34 0 0 0 0 0 0 1137 829 0 0 0 0 
CCGT 0 1900 5209 0 2400 285 4924 0 4588 7842 0 0 0 1852 

Biomass 177 0 0 0 0 0 2823 0 0 0 0 0 0 0 
CHP 0 458 1570 0 0 278 0 0 284 0 0 0 410 0 
Hydro 461 539 0 0 0 0 0 0 0 0 0 0 0 0 

Nuclear 750 0 374 0 376 749 0 305 393 336 0 0 0 517 
coal 730 1459 6215 266 0 6215 0 0 1301 3279 610 645 0 1280 

Off-shore 
Wind 

On-Shore 
Wind 

 
23-26GW (location varies depending on the sub-scenarios) 

 

Oil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pump 680 464 0 0 0 0 0 1856 0 0 0 0 0 0 
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Storage 

 

Table 7.10. Location of Power Plants for Scenario 4-2. 
 Strath

aven 
cocke
nzie 

Har
ker 

Stella
West 

Nort
on 

Penwor
tham 

Creyka 
Beck 

Dai
nes 

Melks
ham 

Cow
ley 

Ironbri
dge 

Rug
eley 

Willin
gton 

Racti
liffe 

Intercon-
nector 116 0 0 0 0 0 0 0 0 2884 0 0 0 0 
OCGT 0 37 0 0 0 0 0 0 1251 912 0 0 0 0 
CCGT 0 1913 5245 0 2416 287 4958 0 4620 7896 0 0 0 1865 

Biomass 177 0 0 0 0 0 2823 0 0 0 0 0 0 0 
CHP 0 458 1570 0 0 278 0 0 284 0 0 0 410 0 
Hydro 600 700 0 0 0 0 0 0 0 0 0 0 0 0 

Nuclear 750 0 374 0 376 749 0 305 393 336 0 0 0 517 
coal 730 1459 6215 266 0 6215 0 0 1301 3279 610 645 0 1280 

Off-shore 
Wind 

On-Shore 
Wind 

 
23-26GW (location varies depending on the sub-scenarios) 

 

Oil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pump 

Storage 
680 464 0 0 0 0 0 1856 0 0 0 0 0 0 

 

Generators’ data include their production cost and total emissions. The generators’ fuel 

cost function is defined by a set of quadratic equations as shown in chapter 3, section 2.1 

and same for emission function which is defined by the equations shown in 3.2.2. The fuel 

cost and CO2 coefficients used for the GB power system are included in appendix A. In 

order to validate the coefficients used in this section, the production cost and total 

emission output of different plants were compared with references [12& 13] which shows 

they conform to suggested average production cost and emission output of different types 

of power plants as shown in fig. 7.16 and 7.17. 
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Fig.  7.16. Production cost of different generation technologies (p/KWh) [12& 13] 
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Fig.  7.17. Emission (CO2) produced by different generation types (Kg/MWh) [12 &13] 

 

7.4.4. Demand Data: 

Locational demand growth are derived from national grid’s seven year statement, where 

the future nodal demand growth are forecasted for the next 7 years was used to project 

the demand growth for each scenario for 2020 [14]. It is assumed that load profile 

(pattern) for all four scenarios are similar to the current load profile of the GB system as 

shown in fig. 7.18. 
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 Fig. 7.18. Typical Load Profiles for Different Months in the GB System [14] 
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7.4.5. Wind Data:  
In order to describe the variation of wind speeds at different locations and use different 

wind data for different wind-farms installed at different locations. In GB, the windiest 

locations are those that are situated closer to the shores and mountains. Coastal winds 

have less exposure to the drag and mountains can cause the wind to blow faster as the 

air mass is forced to travel over or around the mountain. In the GB, up north in Scotland 

and closer to coats, the wind potential is greater. The GB wind map is shown in fig. 7.19.  

 

 
Fig.7.19. GB wind Map [15]. 
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The wind variation for a typical site is usually described using the so-called Weibull 

distribution. The Weibull distribution describes the probability of the wind speed blowing at 

specific speed and it is usually measured annually for each site. Figures 7.20-7.22 show 

different Weibull distributions for South, North and off-shore respectively [15]. 
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Fig.  7.20. Weibull distributions for Wind Speed in South of GB Network 
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Fig.  7.21. Weibull distributions for Wind Speed in North of GB Network 
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Fig.  7.22. Weibull distributions for Wind Speed in off-shore of GB Network 
 

 

7.5 Results and Discussions  
7.5.1. Presentation of Results  
This chapter proposed 72 hypotheses which are analyzed. Since such a high number of 

hypotheses gives a large number of outputs, it makes it extremely difficult to show the 

outputs in a conventional way (by simply using an independent variable versus a 

dependent variable) to understand and lead to a final result. Besides, results in this 

chapter are dependent to each other, i.e. it is not feasible to show the results for case no. 

1 without including all different sub-scenarios. The full dispatch results are attached in 

appendix B.   

 

Box plots or box-whisker plots give a good graphical image of the concentration of the 

data.  They also show how far from most of the data the extreme values are.  Since in this 

chapter it is desirable to compare the output parameters for different scenarios with each 

other, using the box plot is the most appropriate form of presenting the results.  

 

The box plot as shown in fig. 7.23 is constructed from five values:  

• The smallest value;  

• The largest value; 

• The first quartile;  

• The third quartile; and  

•  The median.  
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Fig.7.23. A Box Plot and its Components to Show the Results 

 

7.5.2. Effect of Wind Power:  
7.5.2.1. Effect of Location of Windfarms: 
7.5.2.1.1. Impact on Production Cost:  
In fig. 7.24, regardless of in which scenario, or which level of nuclear power plant exists in 

the systems, the production cost for different locations of wind power is shown. On 

average, sub-scenario 1 shows the cheapest production cost, which corresponds to a 

situation where more wind power is connected to South part of the GB system, and 

windfarms are mainly off-shore. The most expensive will result, when the majority of 

windfarms are connected to North, and they are mainly on-shore and have lower load 

factor.  

 

The difference in production cost observed in sub scenarios is mainly due to different 

generation mixes which exists under different scenarios. i.e. in sub-scenario1  of scenario 

1, three different cases of nuclear power penetration exist which result in production cost 

between £22.2 to £22.9/MWh. Similar cases for scenario 2 result in production costs in a 

different range of £19.23 to £21.03/MWh. Other generation technologies such as coal, gas 

and other types of renewable have different penetration level, and production cost. Thus, 

a range of production costs are observed for each sub-scenario. 
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Fig. 7.24 Production Cost for Different Sub-scenarios  

representing windfarms’ location  
 
 

7.5.2.1.2. Impact on Emission Level:  
A similar result is observable for the average emission level for different locations where 

windfarms are connected. Since windfarms connected to South will have a higher load 

factor particularly if they are off-shore, they will displace pollutant conventional plants at 

various levels. The highest and lowest displacement level will result in sub-scenario 1 and 

4 respectively, which corresponds to the lowest and highest emission levels as shown in 

fig. 7.25.  

 

Similar to production cost; for each sub-scenario a range of emission outputs are 

observed. The difference in emission level observed in sub scenarios is mainly due to 

different generation mixes which exists under different scenarios. i.e. in sub-scenario1  of 

scenario 1, three different cases of nuclear power penetration exist which result in 

emission level between 283kg/MWh  to 314kg/MWh. This is also because different sets of 

generation mix under each scenario exist. The impact of wind power in displacing some 

emissions from conventional plants depends on the what type of emission-free plants 

exists in the system so wind power can reduce their operation time, hence reducing the 

emissions.    
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Fig. 7.25 Emission level for Different Sub-scenarios representing windfarms’ location.  

 

7.5.2.1.3. Impact on Network Losses:  
In future generation mix scenarios, with any load level, since the density of load is higher 

in England, the most appropriate location to connect the windfarms to the system is 

South. This will result in reduced power losses across the network, reduced bottleneck in 

the interconnector between England and Scotland which reduces the contribution of wind 

power as shown in fig. 7.26.   
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Fig. 7.26 Network Losses for Different Sub-scenarios representing windfarms’ location.  

 

It is observable from fig. 7.26 that the maximum network losses seen in sub scenario 3 is 

the lowest observed number compared with other sub scenarios, although the average 
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losses in this sub scenario is higher compared with sub scenario 1 and 2. In sub scenario 

3 the majority of windfarms are installed at North, and mainly off-shore. This means that 

the losses due to network constraint will be seen as the energy produced by windfarms 

may not used locally and has to be transported to other parts of the network to feed the 

demand. Since the way that the results are shown is by using box-plot, and in doing so 

the maximum and minimum observed results are shown by considering 95% confidence 

level, the maximum network losses for this sub scenario is only shown by this confidence 

level and the actual losses due to high difference are omitted.  

 

As shown in fig. 7.27, the actual network losses (directly observed from results) will be the 

highest for scenario 2, in which demand growth is assumed to be the highest, and the 

wind power will have the capacity as high as 34GW. This will result in very high level of 

network losses as wind power in other scenarios have much lower capacity; between 20-

26GW. 
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Fig. 7.27 Actual Network Losses Sub Scenario 3.  

 

7.5.2.2. Effect of Wind Power Penetration:  
7.5.2.2.1 Impact on Production Cost:  
The impact of windfarm capacity on total production cost is reducing the production cost 

due to supplying the demand with a zero fuel power generation source. It is shown in fig. 

7.28 that the lowest production cost will result when wind power has the highest 

penetration level; in scenario 2.  
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Fig. 7.28 Production Cost for Different Scenarios representing windfarms’ Capacity. 

 
It is observable from fig. 7.28 that the difference seen in production cost of scenario 2 is 

the highest compared with other scenarios. By investigating this more as shown in fig. 

7.29, the highest production cost is observable for a case in which wind power is mainly 

on-shore and installed at North, whilst the penetration of nuclear power is also the lowest. 

In this scenario due to very high level of demand, the production cost is very sensitive to 

wind power location, and nuclear power penetration level. As illustrated in fig. 7.29 first 

three very high production costs are observed for when wind power is installed at North, 

and nuclear power penetration is the lowest (particularly for the first two high production 

costs).  
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Fig. 7.29 Production Cost for Scenario 2.  
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7.5.2.2.2 Impact on Emission Level:  
It is shown in fig. 7.30 that higher wind power in the system will result in lower emission 

level.  Higher volumes of energy will be supplied from clean sources, thus reducing the 

need for operating more polluting conventional plant.  

 

It is observable from this graph that in each scenario the emission varies depending on 

the level of wind capacity exists in the scenario. i.e. in scenario 2 since there are over 

30GW of wind capacity installed, therefore the lowest level of emission is observable. 

However by doing my investigation in all different scenarios and sub-scenarios it becomes 

obvious that the level of emission is not just dependent on the level of wind power.  
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Fig. 7.30 Emission Level for Different Scenarios representing windfarms’ Capacity.  

 
 

In fig. 7.31 it is shown the level of emissions versus wind power capacity. It is clear from 

this graph that when wind power capacity equals 22GW, the average emission level 

increases compared with the case when wind power capacity is 20GW. This is due to the 

changes in the generation mix observed in different scenarios. Wind power capacity of 

22GW is observable in scenarios 1 and 3-1. In both scenarios coal and CCGT plants have 

higher installed capacity compared with other scenarios.  

 

Demand level is also high in these two scenarios compared with others with an exception 

in scenario 2. Therefore high energy required by loads, and the nature of generation mix 

in these two scenarios results in high level of emissions from conventional plants.  
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This allows drawing the following conclusion that to reduce the environmental impact of 

electricity generation, increasing the capacity of renewables is not solely enough. It is 

important to employ other measure such as demand side management to control the 

demand, and consider the impact of other non-renewable plants on the produced 

emission as a result of electricity generation.  
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Fig. 7.31 Emission Level for Different windfarms’ Capacity.  

 
7.5.3 Effect of Nuclear Power: 
7.5.3.1 Impact on Production Cost:  
The UK government supports a like-for-like replacement of existing nuclear capacity when 

it is decommissioned. Since the replacement level is still uncertain, three main cases for 

nuclear power were investigated; where no nuclear plant is replaced, half of them are 

replaced and all decommissioned nuclear power plants are replaced with new plants.  

 

The benefits associated with having nuclear power in a system with significant wind 

penetration will also be the reduced production cost which is mainly the impact of reduced 

spinning reserve requirement as well as cheaper production cost of nuclear power 

stations.  It is shown in fig. 7.32 that by replacing 50% of total decommissioned nuclear 

power plants, production cost will be reduced on average by 3.5%. This reduction will be 

continued if 100% of decommissioned nuclear power plants are replaced by new 

capacities, but by only 1.9% compared with the previous case.  
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This is because in practice, nuclear power due to its low emission output will have priority 

on dispatch on more pollutant plants such as coal. If more coal power is not dispatched 

due to nuclear power in the system, other plants such as gas fired plants will have higher 

load factor which also have higher marginal production cost.  
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Fig. 7.32 Product Cost for Different Cases representing Nuclear Power’s Capacity.  

 

7.5.3.2 Impact on Emission Level:  
The results suggested that nuclear power because of its low CO2 output which does not 

impose any restrictions on the number of hours which it can operate and due to nature of 

nuclear power plants which are base-load plants, they will operate most of the times and 

will mainly result in reduced emission level. While the impact of increasing the nuclear 

power penetration from 50% to 100% replacement level on production cost is lower 

compared with no nuclear power capacity to 50% replacement, but the impact on 

emission level is significant. It is shown in fig. 7.33 that by replacing the full 

decommissioned capacity, in all scenarios and sub-scenarios the average emission level 

will be reduced by 25% compared with case 1.  
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Fig. 7.33 Emission Level for Different Cases representing Nuclear Power’s Capacity. 

 

7.5.3.3. Impact on Network Losses:  
As shown in fig. 7.34 that the impact of nuclear power capacity replacement on the 

network losses is insignificant. Since the location where nuclear power plants will be 

replaced is near the location where coal fired plants (which will be displaced in power 

dispatch).  A careful observation in fig. 7.34 makes it clear that apart from reduction in the 

average network losses by increasing the nuclear power penetration, the range of network 

losses for all scenarios and sub-scenarios will also be minimized by increasing the nuclear 

power penetration. The reduction in the range of network losses for each case is very 

important since it allows drawing the following conclusion that by increasing the nuclear 

power penetration, no matter what socio-economic policy is being applied to the electricity 

industry, the network losses are likely to be minimized.  
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Fig. 7.34 Network Losses for Different Cases representing  

Nuclear Power’s Capacity.  
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7.5.3.4 Impact on Spinning Reserve Level:  
Another major impact of added capacities of nuclear power stations is their contribution on 

spinning reserve requirement. This is because of higher reliability (lower outage rate) 

which contributes to overall reliability of the generation capacity and reduces the need for 

spinning reserve level. It is shown in fig. 7.35 that while the spinning reserve level for 

different scenarios depends on demand level and wind power penetration level, but 

generally added capacities of nuclear power reduces the need for spinning reserve level. 

By replacing 50% of displaced nuclear power plants, the spinning reserve level will be 

reduced by 4%. If all the decommissioned displaced capacities of nuclear power are to be 

replaced by new capacities, then the spinning reserve level will be reduced by 8% 

compared with the base case.  
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Fig. 7.35 Spinning Reserve Level for Different Cases representing 

 Nuclear Power’s Capacity. 
 

7.6 Optimal Scenarios  
7.6.1. Determination of Optimal Scenarios 
In this chapter total 72 scenarios were proposed and the study objectives such as impact 

on production cost, or emission level were investigated. Now, the question may arise that 

based on the results and study objective which scenarios are the most promising 

scenarios. To answer this question accurately, it is essential to investigate many factors 

which influence the results presented in this section. For instance, it has been assumed 

that certain levels of windfarms will be installed for each scenario. The impact on power 

quality, power system stability etc. have not yet considered and will certainly act as a 
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constraint to achieve such high level of intermittent generation. But in a strategic 

assessment model, taking into account some important factors are usually essential to 

have a model to satisfy the purpose.  

 

In this study, several objectives may be used as important factors, and based on the 

behaviour of each scenario to these factors, the most optimum scenarios to be chosen. 

Some of these factors include:  

1. Production Cost; 

2. Emission Level (and cost of emission); 

3. Cost of Imbalance; 

4. Network Losses; and 

5. Spinning Reserve Level.  

 

Each of these factors if taken into account as the most important factor, will result in 

different solution for the optimal energy mix. i.e. if network losses is used as a dominant 

factor, the first three scenarios which show the lowest network losses are all in scenario 4-

1. But if production cost of each unit of electricity is considered, then this solution will be 

different and scenario 2 will represent the first three lowest production cost. Using network 

losses as a factor will certainly be important if cost of reinforcing the network to reduce the 

network losses and increasing the efficiency is taken into account and is an important 

factor for decision makers. Using spinning reserve level and cost of imbalance for 

example, is certainly a reasonable factor for network operator as it reflects the balancing 

cost of system due to intermittent generation.   

 

Since the objective of this research is to quantify the value of wind power, and the only 

parameters which have been considered in evaluating the value of wind power were 

energy trading potential, and emission reduction capability of windfarms, therefore using 

these two factors as dominant factors to determine the most optimal scenarios is 

reasonable.  

 

Each factor has different weight in determination of the optimal scenarios. If production 

cost, or emission level is studied individually, they result in two different solutions for the 

most optimal scenarios. To take into account these two factors, the main problem which 

has to be tackled is that these two factors have two different units; production cost has 

£/MWh unit, and emission level is presented by kgCO2/MWh. Emission level is presented 

as cost of emission therefore these two factors can be combined together and be used as 

a main factors to determine the most optimal scenarios.  
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As shown in fig. 7.36 these two factors are independent from each other, each has 

different weight when combined together. This is very important for cost of emission, as 

the costs calculated for the emission varies significantly by different costs of carbon.  
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Emission Cost Share 

Actual Cost of 
Electricity 

 
Fig. 7.36 Model for actual Cost of Electricity  

Figure 7.37 shows the impact of combining the production cost and emission cost on total 

cost of electricity whilst carbon price is assumed £11/tonne of carbon. Since we calculate 

the total CO2 output but must include cost of carbon, it is essential to convert the CO2 to 

carbon2.  
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Fig. 7.37 Make up of Actual Cost of Electricity  
[S: Scenario, SS: Sub Scenario, C: Case] 

 

                                                 
2  One kg of CO2 is equal to 0.243 kg of carbon. 
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As shown in this figure, electricity price will include the cost of carbon as 

well as generation cost, this will increase the total electricity price since 

additional cost is imposed to the system.  

 

Table 7.12 shows the first 12 optimal scenarios based on their actual cost of electricity 

whilst the cost of carbon is assumed £11 per tonne. It is obvious from this table that wind 

power is mainly the dominant factor in determination of which scenarios are optimal 

scenarios. This is because according to this table, when wind power has high capacity (as 

shown in scenario 2) and whenever windfarms are installed at south, the actual electricity 

cost is the lowest.  

 

Table 7.11. The first top12 Scenarios based on their Actual Cost of Electricity (Carbon 
Price £11/tonne) 

Rank  
Scenario Sub Scenario3 Case 

Actual Cost 
Electricity (£/MWh) 

1 
Scenario 2 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 22.08 

2 
Scenario 2 Sub_Scenario 2 Case 3 (100% Nuclear Power Replacement) 22.40 

3 Scenario 2 Sub_Scenario 3 Case 3 (100% Nuclear Power Replacement) 23.02 
4 

Scenario 2 Sub_Scenario 1 Case 2 (50% Nuclear Power Replacement) 23.14 
5 

Scenario 2 Sub_Scenario 2 Case 2 (50% Nuclear Power Replacement) 24.26 
6 

Scenario 2 Sub_Scenario 3 Case 2 (50% Nuclear Power Replacement) 24.51 
7 

Scenario 1 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 24.67 
8 

Scenario 2 Sub_Scenario 4 Case 3 (100% Nuclear Power Replacement) 24.86 
9 

Scenario 2 Sub_Scenario 1 Case 1 (No Nuclear Power Replacement) 24.89 
10 

Scenario 4-2 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 24.98 
11 

Scenario 1 Sub_Scenario 1 Case 2 (50% Nuclear Power Replacement) 24.99 
12 

Scenario 1 Sub_Scenario 2 Case 3 (100% Nuclear Power Replacement) 24.99 
 

 

As mentioned, the table 7.11 is based on the carbon price of £11 per tonne. It is important 

to consider the impact of changes in carbon price as the share of emission cost will 

increase in actual cost of electricity and it may change the ranking of these scenarios and 

one scenario which has not been included in the first 12 cheapest scenarios, may be 

included since at high carbon prices, the emission cost may become the dominant factor.  

 

                                                 
3   Sub Scenarios are defined as follows:  

  North South 

  On-Shore Off-shore On-Shore Off-shore 

Sub Scenario 1 16% 24% 24% 36% 

Sub Scenario 2 24% 16% 36% 24% 

Sub Scenario 3 24% 36% 16% 24% 

Sub Scenario 4 24% 36% 24% 16% 
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As shown in table 7.12, if price of carbon is increased up to about £25/tonne, the ranking 

of the most optimal scenarios will change. Although the first 8 scenarios will still be similar 

to the situation where carbon price was £11/tonne, but scenario 4-2 and 1 will show the 

lower electricity price and will be ranked 9 and 11 respectively. The scenarios which show 

“lower” electricity cost compared with others when cost of carbon is increased are 

highlighted by green colour. These scenarios will be ranked higher and those scenarios 

which show “higher” cost are highlighted by yellow colour and will be ranked lower.   

  

Table 7.12. The first Top 12 Scenarios based on their Actual Cost of Electricity (Carbon 
price £25/tonne) 

Rank  
Scenario Sub Scenario Case 

Actual Cost 
Electricity (£/MWh) 

1 
Scenario 2 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 22.83 

2 
Scenario 2 Sub_Scenario 2 Case 3 (100% Nuclear Power Replacement) 23.17 

3 Scenario 2 Sub_Scenario 3 Case 3 (100% Nuclear Power Replacement) 23.84 
4 

Scenario 2 Sub_Scenario 1 Case 2 (50% Nuclear Power Replacement) 24.07 
5 

Scenario 2 Sub_Scenario 2 Case 2 (50% Nuclear Power Replacement) 25.22 
6 

Scenario 2 Sub_Scenario 3 Case 2 (50% Nuclear Power Replacement) 25.47 
7 

Scenario 1 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 25.64 
8 

Scenario 2 Sub_Scenario 4 Case 3 (100% Nuclear Power Replacement) 25.73 
9 

Scenario 4-2 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 25.78 
10 

Scenario 2 Sub_Scenario 1 Case 1 (No Nuclear Power Replacement) 25.91 
11 

Scenario 1 Sub_Scenario 4 Case 3 (100% Nuclear Power Replacement) 25.98 
12 

Scenario 1 Sub_Scenario 1 Case 2 (50% Nuclear Power Replacement) 26.02 
 

7.6.2 Recommendation of Optimal Scenarios 
The scenarios proposed in this chapter aim to reflect the impact of various economy 

situations and policies on generation mix. In this section a set of generation mix which 

show the lowest electricity cost in each scenario are recommended. 

 

Based on the results in this section, table 7.13 shows the cheapest case with emphasis on 

the optimal penetration of nuclear power for each scenario.  In other word, the cheapest 

scenario happens when windfarms are installed at south and with a higher load factor and 

wind power may become the dominant factor.  However, whilst the cheapest case is 

shown, but the fact that this case may not be achievable, due to various regulatory and 

technical constraints such as high cost of network reinforcement is also taken into 

account. Thus, the second and third recommendations are also shown based on different 

locations for the windfarms.  
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As shown in table 7.13, for each scenario three recommendations of generation mixes are 

presented, based on the actual cost of electricity observed. In scenario 1, it is shown that 

wind power is the dominant factor as even if less nuclear power is replaced but windfarms 

can be places at south, the actual cost of electricity will be cheaper compared with a 

situation in which 100% of nuclear power plant replacement is occurred but the windfarms 

have a lower load factor. In scenario 2, it can be said the impact of nuclear power 

replacement and wind power on the actual cost of electricity have both same weight. If all 

nuclear power plants are replaced, the 2nd and 3rd ranks in this scenario can occur even if 

wind power has a lower factor than a sub-scenario in which wind power has high load 

factor and installed at south.  

 

Table 7.13 Recommendation of the Best cases for each Scenario  

for Carbon Price £11/tonne 

Scenario  Rank  Sub Scenario Case 

Actual Cost of 
Electricity  
(£/MWh) 

Emission 
Cost  

Share 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 24.67 
3.07% 

 

2 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 24.9920 
3.22% 

 

Sc
en

ar
io

 1
 

3 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 24.9934 
3.29% 

 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 22.08 
2.67% 

 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 22.40 
2.71% 

 

Sc
en

ar
io

 2
 

3 Sub_Scenario 3 
Case 3 (100% Nuclear Power 

Replacement) 23.02 
2.78% 

 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 25.36 2.74% 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 25.85 3.67% 

Sc
en

ar
io

 3
-1

 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 26.30 
3.36% 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 25.96 2.72% 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 26.14 3.50% 

Sc
en

ar
io

 3
-2

 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 26.41 
3.11% 

 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 25.41 2.59% 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 26.19 3.34% 

Sc
en

ar
io

 4
-1

 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 26.30 
3.07% 

 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 24.98 2.51% 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 25.66 3.43% 

Sc
en

ar
io

 4
-2

 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 25.80 
3.01% 
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The recommendations shown in table 7.13 are based on the carbon price of £11/tonne. It 

is also interesting to investigate the impact of changes in carbon price on the optimal 

cases for each scenario. Thus, table 7.14 repeats the same recommendations but based 

on the new carbon price of £25/tonne. As shown in table 7.14, it is clear that the cheapest 

case is when all nuclear power plants are replaced by new capacities, and windfarms are 

located at south. This is certainly what was expected. But the cases shown in scenario 1 

and 2 are slightly different that other scenarios. In scenario 1, the second ranked case 

occur when windfarms are installed at north (mainly on-shore) and nuclear power 

replacement is at 100% replacement. The production cost calculated for this scenario is 

very close to sub scenario 2 of this case, CCGT plants which are mainly installed at south 

and have higher efficiency levels.  In scenario 2, unlike other scenarios, 2nd and 3rd ranked 

cases occur based on the suitability of the windfarms’ location. In this scenario, it 

becomes clear that due to very high penetration of wind power in the system, wind is the 

dominant factor in determination of the optimal scenarios.  

Table 7.14 Recommendation of the Best cases for each Scenario  

for Carbon Price £25/tonne 

Scenario  Rank  Sub Scenario Case 

Actual Cost of 
Electricity  
(£/MWh) 

Emission 
Cost  

Share 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 25.64 6.71% 

2 Sub_Scenario 4 
Case 3 (100% Nuclear Power 

Replacement) 25.97 7.79% 

Sc
en

ar
io

 1
 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 26.01 

7.03% 
 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 22.83 5.86% 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 23.17 7.23% 

Sc
en

ar
io

 2
 

3 Sub_Scenario 3 
Case 3 (100% Nuclear Power 

Replacement) 23.84 6.75% 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 26.24 6.02% 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 26.87 7.97% 

Sc
en

ar
io

 3
-1

 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 27.43 

7.32% 
 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 26.86 5.98% 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 27.06 7.62% 

Sc
en

ar
io

 3
-2

 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 27.46 

6.79% 
 

1 Sub_Scenario 1 
Case 3 (100% Nuclear Power 

Replacement) 26.25 5.70% 

2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 27.06 7.27% 

Sc
en

ar
io

 4
-1

 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 27.33 

6.71% 
 

Sc
e

na
ri

o 
4- 2 1 Sub_Scenario 1 

Case 3 (100% Nuclear Power 
Replacement) 25.78 5.53% 
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2 Sub_Scenario 2 
Case 3 (100% Nuclear Power 

Replacement) 26.54 7.47% 

3 Sub_Scenario 1 
Case 2 (50% Nuclear Power 

Replacement) 26.79 

6.60% 
 

 
 

 

7.7 Chapter Summary  
This chapter established the assessment framework that can be used to evaluate the 

merit against each potential future scenario. The relative merit of each scenario is 

assessed through comparing the production cost, emissions, system reserve requirement, 

total network losses, and contribution of such generation technology on the security of 

supply.  

 

The main findings of this chapter include:  

 

• The results in this chapter show that increasing the wind power penetration in the 

GB power system will increase the need for spinning reserve. The level of increase 

depends on type of generators, generation mix pattern as well as demand level. 

The level is not solely related to installed capacity of wind power. For the same 

installed capacity of wind power in different generation mix patterns, spinning 

reserve requirement is different. 

 

• In the GB power system, since load centres are located at South (England) and 

on-shore wind resources are mainly at North (Scotland) the bottleneck in the 

interconnector between England and Scotland will significantly impact on the value 

of wind power. This is because of the need for extra power in the south at times 

when the bottleneck happens. Providing such power will reduce the efficiency of 

power generation both for generators located in Scotland since they may be forced 

to operate at lower output levels, and for generators in England since they may be 

required to start-up and operate with less efficient patterns.  

 

• Off-shore windfarms can become a major source of electricity generation in the GB 

power system more than ever if they are connected to grid in England. This will 

reduce the interconnector’s bottleneck, and give wind power the opportunity to 

displace higher capacities of conventional plants. It was shown in this chapter that 

how the location of windfarms has impact on out study objectives such as 

production cost and emission level. It was also shown that whilst the location of 
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windfarms is a major factor in changing the network losses, it will result in 

changing the energy share of other power generation technologies.  

 
• In the absence of nuclear power, coal fired and CCGT power plants will become 

the main base-load plants. The emission level of such plants is high compared 

with nuclear power, such displacement may result in not meeting the emission 

reduction target set by the government unless more aggressive targets are set for 

the industries as a whole.  

 
• Nuclear power combined with wind power can provide a high level of resilience for 

the electricity generation industry. The impact of such combination on production 

cost, and emission level is also very promising. The magnitude of benefits from 

differing contribution from nuclear power will be established for varying wind 

penetration and location as future work.  

 

• With regard to the optimal scenarios, it can be concluded that in presence of 

uncertainty about the future of generation mix, different scenarios may be the 

optimal scenarios depending on the weight of influencing factors. It was shown in 

this chapter that if production cost and emission cost are considered as the main 

influencing factors, the share of each factor differs depending on the cost of 

carbon. Changes in the cost of carbon will be responded differently by different 

scenarios, depending on how sensitive they are to changes in the cost of carbon. 

In order word, if lower the emission level is observed in a scenario, although it may 

result in a high electricity cost due to high fuel costs, but by increasing the carbon 

price, this scenario may show a relatively lower electricity price. Therefore, 

determination of which scenarios are the optimal scenarios is something which has 

to be done whilst changing the carbon prices are also taken into account.  
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Chapter 8. Feasibility of Demand Response in the GB Power 
System 
This chapter presents the role of demand response in a large power system with 

significant wind power penetration. In order to do so, the value of wind power in the GB 

power system is estimated under different scenarios which were discussed in the previous 

chapter. Once the value of wind power is known, the role of demand response in changing 

this value by compensating for wind power deficits can be quantified. Different demand 

response levels are investigated, whilst taking into account different prices which have to 

be paid for demand response. It is also shown that how different emission prices have 

Impact on feasibility of demand response.   

 

8.1 Value of Wind Power in the GB Power System 
In Chapter 7, different hypotheses were considered in which wind power has different 

capacities. The value of wind power in a large system can be estimated in terms of 

operational savings (in fuel costs and emission costs) in two ways:  

1. By calculating the value of individual windfarms.  

2. By calculating the value of wind power as aggregated values of all windfarms 

connected to various locations in the grid.  

 

In order to calculate the value of individual windfarms, it is essential to consider the 

energy trading opportunity of each windfarm by taking into account the wind profile of 

each windfarm. If the lifetime value of a windfarm is to be calculated then the cost of 

building individual windfarms is required. This method on a small system was investigated 

in chapter 3.  

 

In a large system, the dispatch process is done centrally (considering a monopoly power 

system); therefore, the value of wind from the dispatcher’s point of view is the total cost 

savings in the dispatch process as a result of the existence of all windfarms in the system 

and the value of wind can be calculated as aggregated values of all windfarms.   

 

In order to do so, two sets of variables; emission level and production costs are required 

for each scenario. For the base case in each scenario it is required to calculate to total 

production costs and emission when no wind power exists. Then by comparing the wind 

case, and calculating the different in these costs, the value of wind power can be 

calculated.  
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As there are many variables for all different scenario, sub-scenario and cases, and since 

the objective of this chapter is to show the impact of demand response, only the results for 

the base case (case no. 1) and sub-scenario 3 for all scenarios are presented. Table 8.1 

shows the value of wind for the base case (case no. 1) and sub-scenario 3 for different 

scenarios where no demand response is present.  

 

Table 8.1.Value of Wind Power for all Scenarios (£/MW/Year) 

Scenario Sub-Scenario Case no. 

Wind 
Capacity 

(MW) 
Value of Wind 
(£/MW/Year ) 

Scenario 1 Sub_Scenario3 
Case 1 (No Nuclear Power 

Replacement) 22000 96821 

Scenario 2 Sub_Scenario3 
Case 1 (No Nuclear Power 

Replacement) 34000 84708 

Scenario 3-1 Sub_Scenario3 
Case 1 (No Nuclear Power 

Replacement) 22000 96153 

Scenario 3-2 Sub_Scenario3 
Case 1 (No Nuclear Power 

Replacement) 20000 95568 

Scenario 4-1 Sub_Scenario3 
Case 1 (No Nuclear Power 

Replacement) 23000 79757 

Scenario 4-2 Sub_Scenario3 
Case 1 (No Nuclear Power 

Replacement) 25000 83458 
  

Since production cost and total emission level for each scenario is different, therefore the 

value of wind power calculated for each scenario is different. The highest value of wind is 

observable in scenario 3-1. This is because of the high level of emission level which is 

produced by thermal plant; and in particular coal plant. In this scenario in the base case 

(with no wind power) over a year of generation scheduling around 478kg CO2 / MWh is 

being produced by conventional plants.  By adding wind power in the system, this level 

will be minimized down to 382 Kg CO2 / MWh, resulting in higher value for wind power. 

The impact on production cost (mainly fuel cost) of electricity by conventional plants is 

also significant. In this scenario the production cost for no wind case is around £10.7bn. 

Although by introducing the wind power, cost of imbalance will be added to the system 

which is around £48.6m, but the fuel saving resulted by wind power will reduce the 

production cost down to £10bn resulting in around £700m saving.  

 

This will be followed by scenario 3-2 in which again, conventional plant has high 

penetration, however due to lower demand level contribution of wind power to reduce the 

operation of the conventional plants is limited. In scenario 1 since CCGT plant has a very 

high penetration level, they will be the dominant thermal power generator in the system. 

Having less emission level compare with coal plant, will give them priority dispatch. 

Therefore by having the wind power in the system, although the clean wind energy will 

displace some conventional plant and reduces the emission level, but since this value is 

not as high as previous scenarios, the value of wind will be lower by nearly 
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£585/MW/Year.  Although this value may seem to be very small, but in lifetime 

assessment of value of wind power, small changes in the value of wind power may 

expedite the payback period by few years as shown in chapter 3.  

 

The lowest value of wind power is observable in scenario 4-1 in which it was assumed 

that due to economy down-turn, demand will have negative growth rate and peak demand 

will be as low as 54GW. In this scenario, since the low demand can be met by 

conventional plant with relatively low emission level, wind power may not displace high 

capacities of conventional plant. By adding the wind power into the system, the issue of 

intermittency still requires operation of some conventional plant for back-up purposes and 

maintaining spinning reserve which results in higher marginal emission output and fuel 

cost levels. Therefore, the value of wind will be lower due to limited savings which can be 

made on emission and fuel cost by adding wind power.  

 

8.2 Demand Response to Increase the Value of Wind Power  
In a large system where windfarms are located at different locations, designing a demand 

response to wind power system has to take into account the constraints which may be 

imposed by network. In other word, dispatching the demand response depends on the 

available demand response capacity at each location, as well as the network and 

generation constraints. These calculations will become extremely difficult when response 

to not only one windfarm, but also to the aggregated effect of the all windfarms in the 

system is to be studied. Therefore in order to reduce the complexity, the following 

assumption is made that the total demand response’s availability in the system which is 

calculated can respond to the aggregated output the windfarms in the system. Such 

system monitors the outputs of all windfarms. So the network operator can also reduce 

the “total” demand on the system.  

 

The diagram in figure 8.1 shows the algorithm designed for utilization of demand response 

in a large system in this thesis. The required information from demand side includes total 

demand level from all different demand sectors, and the demand response potential. In 

supply side, total fuel costs of generators, as well as their emission output need to be 

quantified. The information required from windfarms include their total output, and 

forecasting error to compensate for the additional spinning reserve requirement, and level 

of compensation level required from demand response. It is also essential to derive the 

emission price since the savings made from increasing the output of windfarms has the 

carbon emission element.   
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Fig. 8.1 Architecture of demand response to wind power in a large system  

 

8.2.1. Impact on Value of Wind Power  
The savings produced by demand response to wind power can be included into the value 

of wind power, and be accommodated within the initial calculated value of wind power in 

section 8.1.  

 

The demand response for different scenarios has a different impact on the value of wind 

power. As mentioned before, scenario 1 and scenario 4-1 will benefit more than any other 

scenario from demand response to wind power. In scenario 1, due to high capacity of coal 

fired and CCGT plants, and the high penalty costs incurred due to high emission output of 

these types of plant, when demand response is integrated with wind power, a 

considerable amount of emission will be saved. This will result in very high changes in the 

value of wind power as shown in fig. 8.2.  
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In Scenario 4-1, since wind power has a very high penetration level, and reducing the 

intermittency of such high capacity of wind power with demand response increases the 

value of wind power.   
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Fig. 8.2 Changes in value of wind power with different demand response levels 

 

Figure  8.3 and table 8.2 shows the value of wind power for all the different scenarios 

when the carbon price was assumed to be £25 per tonne of carbon. The value of wind 

power increases by increasing the demand response level in the system since wind power 

is less intermittent and less fluctuating. This increase at low demand response levels is 

relatively high compared with the high level cases. This is because of the degree of limited 

savings which could be achieved making the wind power less fluctuating.  

 
Table 8.2.Value of Wind Power (£/MW/Year)  

with different Demand Response Levels  
Demand 

Response 
Level 

Scenario 
1 

Scenario 
2 

Scenario 
3-1 

Scenario 
3-2 

Scenario 
4-1 

Scenario 
4-2 

0% 96821.33 84708.5 96153.37 95568.41 79757.78 83458.34 
20% 103126 89147.63 101614 100914.4 83988.87 88472 
50% 120646.4 101558.2 116767 115745.6 95729.44 102405.4 
70% 126090.3 105393.8 121481.3 120360.8 99382.25 106734.6 

100% 128778 107181.4 123839.8 122675.1 101210.5 108870.8 
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Fig. 8.3 Value of wind power with different demand response levels 

 

The most important aspect of incorporating the demand response in a real large system, 

is to quantify the available level of demand response. This was done in the previous 

chapter, and it was shown that what proportion of demand can become responsive. This 

may limit the contribution level of demand response, i.e. it may be impossible to 

compensate for 100% wind power output deficiency in a large system. At the same time, 

in practice, 100% contribution from demand response will never be required, since not all 

the windfarms’ power output will be 0% of their rated power output.  

 

In Chapter 6 it was shown that maximum available demand response from England and 

Wales at the time of system peak is about 22GW, and at the time of when the lowest 

demand level is observed is around 10GW. The problem with demand response to wind 

power is that it does not coincide with time of system peak; demand response will be 

required whenever wind power output has deficit. Therefore if demand response which is 

to be contracted for wind power comes from domestic sector, the levels higher than 

10GW can never be guaranteed, and levels over 22GW can not be provided.  

 

In table 8.3 it is shown that the maximum capacity of demand response required to 

provide certain levels of responsiveness. It is obvious that 20% demand response level 

can be guaranteed for all different scenarios, and in scenario 2, 70% and 100% 

responsiveness may never be provided since the total capacity of demand response 

required is higher that the total capacity of demand response which could be provided.  
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Table 8.3. Maximum Demand Response Level Required 

for Each Scenario in MW 
Demand 

Response 
Level 

Scenario 
1 

Scenario 
2 

Scenario 
3-1 

Scenario 
3-2 

Scenario 
4-1 

Scenario 
4-2 

0% 0.00 0.00 0.00 0.00 0.00 0.00 
20% 4391.35 6786.78 4390.88 3991.75 4591.75 4991.00 
50% 10978.37 16966.94 10977.21 9979.37 11479.37 12477.50 
70% 15369.71 23753.72 15368.09 13971.12 16071.12 17468.51 

100% 19761.06 30540.49 19758.97 17962.87 20662.87 22459.51 
 
8.2.2. Discussion on Savings on Production Cost and Emissions due to Demand 
Response  
In chapter 5, it was shown how demand response can increase the value of wind power. 

By combining the wind power with demand response, the savings which are produced due 

to the existence of intermittent generation will be maximized through reducing the 

negative impact of intermittency of wind power which incurs additional operational cost. 

Demand response’s impact in a large system is to reduce total production cost, and 

emission level while it responds to wind power fluctuations.  Table 8.4 shows the savings 

in production cost and emission level in different scenario at different demand response 

levels in £ per MWh of demand response.  

Table 8.4 Cost saving with different demand response levels  

 Demand Response Level  0% 20% 50% 70% 100% 

Saving on Production Cost 0 10819 18153 16593 13058 

Sc
en

ar
io

 1
 

Saving on Emission Cost  0 1128 1269 1248 1492 

Saving on Production Cost 0 9581 16374 15128 12076 

Sc
en

ar
io

 2
 

Saving on Emission Cost 0 849 973 967 1172 

Saving on Production Cost 0 7680 12675 11472 8907 

Sc
en

ar
io

 3
-1

 

Saving on Emission Cost 0 830 919 894 1054 

Saving on Production Cost 0 5518 9121 8261 6422 

Sc
en

ar
io

 3
-2

 

Saving on Emission Cost 0 600 665 648 765 

Saving on Production Cost 0 6769 11699 10878 8756 

Sc
en

ar
io

 4
-1

 

Saving on Emission Cost 0 732 849 849 1038 

Saving on Production Cost 0 8279 14293 13282 10683 

Sc
en

ar
io

 4
-2

 

Saving on Emission Cost 0 862 998 997 1219 
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It is observable from table 8.4 that at different responsiveness levels, the savings which 

are produced due to demand response is different. An interesting characteristic of these 

graphs is the difference in the peak value occurrence. In other word the maximum 

contribution of demand response in each scenario will occur at different responsiveness 

level.  At low responsiveness levels, the wind profile used in this study is still highly 

variable and fluctuating; and therefore issues such as poor efficiency of generators still 

exists. It is also shown that the degree of benefits will be reduced at very high levels close 

to 100% demand response level. This is because the benefit of demand response in 

increasing the efficiency of power generation is limited to make the wind power output less 

intermittent. At very high demand response levels, although wind power is fluctuating less, 

other characteristics and constraints of the power system still exist. In this study, demand 

response is only responding to wind power fluctuations. The disconnected demand 

response level for each block will have to be recovered (re-connected) in the next block. 

This is due to limitation on total number of hours that each group of load could be 

disconnected. Therefore, demand variations which may require start-up of a conventional 

plant, network thermal limits which may result in change in dispatch pattern will not be 

diminished while demand response only responds to wind power variations.  

 

This has been investigated in fig. 8.4 to 8.7 where it is shown the impact of different 

demand response levels on marginal price of different generation technologies associated 

with the number of hours they generate the electricity within certain price ranges. These 

graphs, known as radar graphs are suitable to show the variations of a single variable. 

What shown on this graph is an in fact total hour of operation of a power plant whilst its 

marginal price of electricity is between two different prices; i.e. between £0-£1/MWh, or 

£2-£3/MWh. For any given power plant, it is desirable to reduce the total high price hours, 

and increase the total low price hours. By injecting the wind power into the system, it is 

also important that overall hours of operation also drop.   

 

It is shown in fig. 8.4 that when no demand response exists in the system, marginal price 

of electricity generated by coal plants is as high as £17-£18/MWh for a very short period. 

Generally coal power stations are being operated at their higher output levels, since at 

that point the efficiency of power generation is maximized. Plants with such characteristics 

are not always being operated at their maximum output due to several constraints 

mentioned above. By increasing the demand response level in the system, coal fired 

plants will be generating electricity with less cost for higher number of hours compared 

with the base case where no demand response existed. At high levels of demand 

response, coal fired stations will operate much more efficiently, as no such high price 
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spike is observable and plants will generate electricity at lower price for a higher number 

of hours.   
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Fig. 8.4 Marginal price of electricity generated by coal plants. 

 

The impact of different demand response levels on CCGT plants is investigated in fig. 8.5. 

Similar to coal fired plants, the impact of different demand response levels on CCGT 

plants is reducing the number of hours that marginal price of electricity generation is high, 

and increasing the number of hours that electricity can be generated with lower marginal 

price.  

 

When no demand response exists in the system, the highest price observed by CCGT 

plants is between £31-£32/MWh. The highest price observed for the case when 30% 

demand response exists in the system is £28-£29/MWh. This clearly shows the 

contribution of demand response on increasing the efficiency of power generation by 

conventional plants when wind power exists in the system.  
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Fig. 8.5 Marginal price of electricity generated by CCGT plants. 

 

The impact of different demand response levels on OCGT plants is investigated in fig. 8.6.  

Apart from reducing the price spikes by demand response, demand response will result in 

a considerably reduced number of operation hours of OCGT plants in general. OCGT 

plants had a high ramp-up and ramp-down rate, and short start-up time, and are utilized 

as peaker plants .With increasing the intermittent generation, and to cater for the power 

fluctuations of intermittent plants, these plants may have to be operated more often. This 

will result in higher cost since OCGT plants have much higher marginal electricity 

generation price compared with other thermal plants.  

 

The highest price of electricity generated by OCGT plants when no demand response 

exists in the system is £56-£57/MWh. When 30% demand response level exists in the 

system the highest observed price will be reduced down to £41-£42/MWh which shows 

the contribution of demand response in increasing the efficiency of power generation by 

OCGT plants.  

201 | P a g e  
 



Chapter 8                                           Feasibility of Demand Response in the GB Power System 
 

0

20

40

60

80

100

120

140

(£ 0 to £ 1 )/MWh
(£ 1 to £ 2 )/MWh(£ 2 to £ 3 )/MWh

(£ 3 to £ 4 )/MWh
(£ 4 to £ 5 )/MWh

(£ 5 to £ 6 )/MWh

(£ 6 to £ 7 )/MWh

(£ 7 to £ 8 )/MWh

(£ 8 to £ 9 )/MWh

(£ 9 to £ 10 )/MWh

(£ 10 to £ 11 )/MWh

(£ 11 to £ 12 )/MWh

(£ 12 to £ 13 )/MWh

(£ 13 to £ 14 )/MWh

(£ 14 to £ 15 )/MWh

(£ 15 to £ 16 )/MWh

(£ 16 to £ 17 )/MWh

(£ 17 to £ 18 )/MWh

(£ 18 to £ 19 )/MWh

(£ 19 to £ 20 )/MWh

(£ 20 to £ 21 )/MWh

(£ 21 to £ 22 )/MWh

(£ 22 to £ 23 )/MWh

(£ 23 to £ 24 )/MWh

(£ 24 to £ 25 )/MWh

(£ 25 to £ 26 )/MWh
(£ 26 to £ 27 )/MWh

(£ 27 to £ 28 )/MWh(£ 28 to £ 29 )/MWh
(£ 29 to £ 30 )/MWh

(£ 30 to £ 31 )/MWh(£ 31 to £ 32 )/MWh
(£ 32 to £ 33 )/MWh

(£ 33 to £ 34 )/MWh

(£ 34 to £ 35 )/MWh

(£ 35 to £ 36 )/MWh

(£ 36 to £ 37 )/MWh

(£ 37 to £ 38 )/MWh

(£ 38 to £ 39 )/MWh

(£ 39 to £ 40 )/MWh

(£ 40 to £ 41 )/MWh

(£ 41 to £ 42 )/MWh

(£ 42 to £ 43 )/MWh

(£ 43 to £ 44 )/MWh

(£ 44 to £ 45 )/MWh

(£ 45 to £ 46 )/MWh

(£ 46 to £ 47 )/MWh

(£ 47 to £ 48 )/MWh

(£ 48 to £ 49 )/MWh

(£ 49 to £ 50 )/MWh

(£ 50 to £ 51 )/MWh

(£ 51 to £ 52 )/MWh

(£ 52 to £ 53 )/MWh

(£ 53 to £ 54 )/MWh

(£ 54 to £ 55 )/MWh
(£ 55 to £ 56 )/MWh

(£ 56 to £ 57 )/MWh

OCGT  (No Demand Response  )

OCGT  (30% Demand Response  )

OCGT (70% Demand Response)

 
Fig. 8.6 Marginal price of electricity generated by OCGT plants. 

 

Demand response particularly reduces the operation hours of OCGT plants, as well as 

reducing the price spikes due to higher efficiency of power generation. This will be 

investigated in the next part.   OCGT power plants have relatively low capital costs and 

relatively flexible operations, but these plants are exposed to uncertainty in gas prices 

which form the largest part of risk with regard to revenue. As shown in fig. 8.6, demand 

response can minimize the price volatility as well as reducing the marginal cost of OCGT 

plants. This will reduces the risks associated with such plants for investors.  

 

The impact of demand response on nuclear power is not much on marginal price of 

electricity generated by them as shown in fig. 8.7. This is because nuclear power stations 

generally have a very low ramp-rate and very high start-up and shut-down times, and are 

mainly being operated as base-load plant with quite a constant power output level. 

However, our results show that since the base load generation will increase with demand 

response to wind power, such a system will provide the opportunity for nuclear power 

plants to operate higher number of hours due to the low carbon electrical energy they can 

generate.   
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Fig. 8.7 Marginal price of electricity generated by nuclear plants. 

 
 

It is also interesting to investigate the impact of the demand response on total operation 

hours of different power plants. As shown in fig. 8.8, demand response changes the total 

hours of operation of different power plants. The impact on peaker plants such as OCGT 

is significant reduced up hours. This is because the variation of wind power output is 

minimized; therefore the need to utilize OCGT plants will be reduced.  

 

Base load plants which also have a low emission output such as nuclear power plants will 

see an increased operation hours. Therefore it can be said that demand response 

combined with wind power increases the base-load power generation. This is because 

less intermittent power in the system in fact reduces the variability of the total demand is 

seen by a base-load plant and allows supply of load with these types of power plants.   
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Fig. 8.8 Total hours of operation of different plants (average)  

 
Overall, demand response increases the efficiency of power generation by thermal plants. 

This in turn will result in reducing the marginal electricity price generated by thermal 

plants. Figure 8.9 shows the average price of electricity generated by different thermal 

plants in a year of generation scheduling.   

 

The average price of electricity generated by different plants depends on both total 

operation hours, and their marginal price of generation at each generation scheduling 

block. As shown in fig. 8.9 the demand response reduces the average price of electricity 

generated by some plants. The impact of the demand response is higher on OCGT plants 

as shown. The reason for that is that because very high penetration of wind power is 

proposed in the studied scenarios which result in badly operation of OCGT plants. Whilst 

demand response minimizes the need for responding the OCGT plants to wind power 

variations, it results in cheaper production cost of electricity generation by OCGT plants 

since the efficiency of power generation is increased.  
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Fig. 8.9 Average price of electricity generated by different plants. 

 

The added value to each plant can be quantified in terms of reduced or increased 

operational hours, and magnitude of change in its marginal production cost. It was shown 

that why the operational hours of an OCGT plant will be reduced, as well as its marginal 

cost. The OCGT plants are mainly act as peaker plants for sudden changes in demand 

level, or in an intermittent system with wind power for wind power deficit compensation. If 

it is argued, that demand response is beneficial to the system by mainly reducing the cost 

of OCGT plants, it might be an obvious argument. 

 

Therefore, it is important to investigate the overall impact of demand response on 

something which may seem no connection with demand response; such as a base load 

plant like nuclear power. Many argue that demand response; and mare importantly 

dynamic demand response which is investigated in this work, does only shift the load. 

Therefore, smoother load seen by generators, reduces the need for operating the peaker 

plants. This work extended this topic by investigating the demand response’s impact on 

base-load plants.  

 

Figure 8.10 shows the operational cost of nuclear for each case by different demand 

response levels. As illustrated in this figure, total energy supplied by nuclear power 

stations will increase by 2% when demand response can compensate for wind power 

deficits only at 30% level. The energy share of nuclear power is increased by 5%, 
when demand response level is around 70%. Although these values may seem very 
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small, but this can certainly increase the revenue of a nuclear power station considerably 

providing no other constraint limits this level of power transfer.  
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Fig. 8.10 Fuel cost of nuclear power stations versus energy supplied by nuclear power.  

 

Another important role of demand response apart from compensate for wind power 

deficits, is to contribute to overall system reliability. This was discussed in chapter 5 that 

how demand response can provide the additional spinning reserve requirement due to 

increasing the intermittent generation. This will remove the “additional” burden from 

generator to supply the increasing level of spinning reserve. As mentioned before, 

reducing the spinning reserve level, will result in better operation of thermal plants. If the 

cost associated with such improved to be investigated individually, it is essential to 

calculate the total operation cost, with and without demand response to show the degree 

of benefits with demand response as shown in fig. 8.11.  

 

As illustrated in this figure, by supplying the additional spinning reserve requirement 

through demand response, the cost of spinning reserve will be reduced by nearly 4.5%. 

This reduced cost reflects the improved efficiency of thermal plants which previously were 

supposed to provide additional spinning reserve to cover the risk brought to the system by 

intermittent generation, as well as the risk of power plants’ outage. It must be noted that 

no demand response is actually utilized to come up with this cost reduction. The only 

assumption which is made is that the additional spinning reserve requirement due to wind 

power can be maintained by demand response.  
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 Fig. 8.11 Cost of spinning reserve for different demand response levels.  

 

Different types of risks are associated with different power plants. The risks with regard to 

fuel price volatility for gas power plants were mentioned before. But other large plants 

such as coal fired and nuclear power plants are very capital intensive, but the fuel costs 

are relatively low. Coal and uranium have low price volatility. These power stations are 

therefore more exposed to the financial risks of whether they can repay the capital based 

on the volume/price of electricity off-take from these plants. Table 8.5 shows the risks 

facing the investment in energy sector [1]. The contribution of demand response in 

minimizing these risks is also mentioned with regard to the impact on power generation 

based on our study.  

 

Table 8.5 Risks associated with Investment in Power Generation Industry 
 Nature of Risk  Contribution of Demand Response 

Market risks  

• Inadequate price and/or demand to cover 
investment and production costs 
• Increase in input cost 

Power plants such as nuclear will see 
higher load factor. Marginal price of 
electricity will be reduced as efficiency of 
power generation increases. 

Construction 
risk 

• Cost overruns 
• Project completion delays 

The need for building additional capacity 
will be minimized if demand response is 
seen not only as an energy resource, but 
also as a capacity resource.  

Economic 
Risk  Operation risk 

• Insufficient reserves 
• Unsatisfactory plant performance 
• Lack of capacity of operating entities 
• Cost of environmental degradation 

Demand response can provide spinning 
reserve. Efficiency of power generation 
increases, and as a results: Marginal 
emission output and total emission output 
of plants will also be reduced.  

Political 
Risk  Regulatory risk  

• Changes in price controls and  
environmental obligations 

Risk will be minimized by increasing the 
efficiency of power generation, and as a 
result marginal emission output and fuel 
cost will also be minimized.  
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8.3 Sensitivity to Different Emission Prices
The value of wind power calculated in this work is based on the savings made on fuel cost 

of conventional generators and reduced emission levels. Emissions levels are translated 

into cost by taking into account the cost of carbon. Therefore changes in any of the 

elements of demand response such as fuel price, or emission cost will change the value 

of wind power.  

 

Emission prices change from time to time to react to the need for cleaner energy 

generation. The value of a low carbon power generation technology such as nuclear or 

wind power, will change significantly by changing the emission prices. Therefore a 

sensitivity analysis is performed to quantify the degree of changes in the value of wind 

power with different emission prices.  

 

Figure 8.12 shows the value of wind power with different prices of carbon. As expected, 

the higher the cost of carbon, the higher the value of wind power. The most interesting 

thing which is observable in fig. 8.10 is the impact of different carbon prices on different 

scenarios and changes in the ranking order of different scenarios in terms of the value of 

wind power.  

 

In fig. 8.12 in the base case when carbon price is £25, wind power in scenarios 3-1 and 3-

2 has higher value than scenario 1. But by increasing the carbon prices, wind power in 

scenario 1 will have the highest value. This is because it is assumed that fuel prices will 

remain the same, and the emission element in the value of wind power calculation will 

change. Since the amount of emission produced by each scenario is different, therefore 

by changing the emission prices, it will become the dominant factor of change in the value 

of wind power.  
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Fig. 8.12 Value of wind power with different carbon prices. 
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When wind power is combined with demand response, by increasing the price of carbon, 

since the emission reduction done by demand response will have a higher value,  the 

value of wind power increases. As shown in fig. 8.13 for a typical scenario (scenario 1), 

two main elements must be taken into account; demand response level and price of 

carbon. These two elements both have impact on the degree of benefits from demand 

response.   
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Fig. 8.13 Value of wind power combined with demand response with different carbon 

prices in scenario 1. 
 

If all scenarios are to be studied together, to investigate the impact of increasing the 

carbon prices, whilst the demand response level varies, two main observations can be 

made. Firstly, increasing the value of wind power by increasing the cost of carbon as 

discussed before. But another important observation which is shown in fig. 8.14 and table 

8.6 is increasing the range of values of wind power for all scenarios. This means that wind 

power can have significantly different value if price of carbon is high. This in fact means 

that if the revenue which could be earned from a system containing demand response and 

wind power is influenced by high carbon prices, making the decision on what level of 

demand response is suitable required detailed analysis as done in this work.  
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Fig. 8.14 Value of wind power with different carbon prices for different demand response 

levels. 
 

Table 8.6. Value of Wind Power Combined  

with Different levels of Demand Response for Different Carbon Prices.  
Demand 
Response Level Scenario 1 Scenario 2 

Scenario 
3-1 

Scenario 
3-2 

Scenario 
4-1 

Scenario 
4-2 

0% 96821 84709 96153 95568 79758 83458 

20% 103418 89148 101614 100914 83989 88472 

50% 121753 101558 116767 115746 95729 102405 

70% 127450 105394 121481 120361 99382 106735 C
ar

bo
n 

P
ric

e 
£2

5 

100% 130262 107181 123840 122675 101211 108871 
Demand 

Response Level   

0% 110256 95470 112018 111188 92063 97544 

20% 116799 100053 117692 116743 96460 102747 

50% 134704 112697 133189 131913 108467 116986 

70% 140344 116652 138078 136701 112256 121471 C
ar

bo
n 

P
ric

e 
£3

5 

100% 143524 118738 140877 139448 114425 123997 
Demand 

Response Level   

0% 127991 106231 127882 126807 104369 111630 

20% 134772 110959 133769 132572 108930 117022 

50% 153061 123836 149610 148081 121205 131566 

70% 158897 127910 154675 153041 125129 136207 C
ar

bo
n 

P
ric

e 
£4

5 

100% 162568 130294 157913 156221 127640 139124 
Demand 

Response Level   

0% 145725 116992 143747 142426 116674 125715 

C
ar

bo
n 

P
ric

e 
£5

5 

20% 152744 121865 149846 148401 121401 131296 
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50% 171418 134976 166032 164248 133942 146146 

70% 177450 139168 171272 169382 138003 150943 

100% 181613 141851 174950 172995 140855 154250 
Demand 

Response Level   

0% 163459 127753 159611 158045 128979 139801 

20% 170716 132771 165924 164230 133872 145571 

50% 189775 146115 182453 180416 146680 160727 

70% 196003 150426 187869 185722 150877 165679 C
ar

bo
n 

P
ric

e 
£6

5 

100% 200657 153407 191987 189768 154069 169377 
Demand 

Response Level   

0% 181193 138515 175476 173664 141285 153886 

20% 188689 143676 182001 180059 146342 159846 

50% 208132 157254 198875 196584 159417 175307 

70% 214556 161684 204466 202062 163750 180415 C
ar

bo
n 

P
ric

e 
£7

5 

100% 219702 164963 209023 206541 167284 184503 
Demand 

Response Level   

0% 198927 149276 191340 189283 153590 167972 

20% 206661 154582 198079 195887 158813 174121 

50% 226489 168393 215297 212751 172155 189887 

70% 233109 172942 221063 218402 176624 195150 C
ar

bo
n 

P
ric

e 
£8

5 

100% 238747 176520 226060 223314 180499 199629 
 

As shown in table 8.6 apart from increasing the value of wind power with demand 

response by increasing the carbon price, the main change which is observable is in 

ranking order of scenarios. This is due to different emission share in each scenario which 

has impact on value of wind power. For instance, in the base case; when the cost of 

carbon is £25/tonne, scenario 2 shows the higher value of wind power compared with 

scenario 4-1. This is because in scenario 2, the value of wind power is mainly composed 

of savings made on fuel cost due to very high penetration of wind power. However, if cost 

of carbon increases, scenario 4-2 will show higher value of wind power since the savings 

is mainly emission saving in this scenario. This is further investigated in the following 

section.  

 

Another observation in the results reveals which scenario is benefiting more from demand 

response with regard to changes in carbon price. As shown in table 8.6, when price of 

carbon changes by 40% from £25/tonne to £35/tonne, the changes in the value of wind is 

between 12%-17%, and 10%-16% for different scenarios in the base case when demand 

response level is 0% and 20% respectively. By increasing the demand response level, the 

changes in value of wind will be reduced down to 10%-14% compared with previous case 
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when carbon price is cheaper. This shows that by increasing the demand response, 

scenarios based on how much savings can be achieved from emission saving and fuel 

cost saving (different shares) will show different values of wind power. It is also interesting 

to observe that at 0%-20% demand response levels, scenario 1 compared with scenario 2 

will show significant changes in the value of wind power by increasing the carbon price. If 

demand response level is increased and at for example 100% demand response level, 

scenario 2 will show higher changes in the value of wind power compared with scenario 1.   

 

8.4 Impact on Optimal Scenarios  
In chapter 7, 12 scenarios were chosen as optimal scenarios based on their overall cost of 

electricity which includes both fuel cost of thermal plants, and cost of emission output. It is 

interesting to also investigate the impact of demand response on those optimal scenarios. 

As shown in this chapter, demand response can reduce the fuel cost by improving the 

efficiency of power generation, and reduce the number of hours of operation of thermal 

plants. This will also result in reduction in total emission output of thermal plants. 

Therefore, if in a system demand response is also present, it will certainly be a factor 

which could determine which scenarios are optimal, as it is an influencing factor. 

Considering the fact that demand response is a commodity which can be traded, therefore 

it has a price which has to be paid for. Assessment of such price depends on many 

factors. For example, the price of demand response may depend on peak demand, time, 

and different levels among different consumers. Each commodity form, and the 

associated pricing scheme, elicits a different response from participants revealing different 

aspects of their private information. That information is used to reach an allocation. In 

general the greater the information, the more efficient (optimal) can be the allocation. 

However, obtaining more information needs a more complex commodity/ pricing scheme 

[2-4]. To perform the analysis and study the impact of demand response whilst 

considering the cost of demand response, it is assumed that demand response can be 

provided by consumers, and the price which is paid to demand response will be equal for 

all different types of consumers. Although, this assumption is likely to be changed in a real 

market with real participants, but it can reflect the “average” cost of demand response. 

Equation 8.1 shows how average cost of electricity with demand response is calculated.  

EnergyTotal
CECECCFCFCC DRwwDRWDRW

unit
)()( +++++

=                       (8.1) 

where  is the average cost of each unit of electricity;  unitC

wFC  is the fuel cost with wind power;  

WDRFC is the fuel cost with demand response (response to wind power);  
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DRC is the cost of demand response;  

wC is the cost of wind power;  

wCE  is the cost of emission saved with wind power; and 

DRCE is the cost of emission saved with demand response.  

 

It is clear from eq. 8.1 that )( DRDR CFC +  and )( DRw CECE +  show the savings made 

through demand response on fuel cost and emission cost respectively. Savings depend 

on the cost and different levels of demand response. In order to create such assessment 

framework different prices for demand response has been considered.  

 

 Figure 8.15 shows the savings made on fuel costs of conventional plants with different 

demand response levels and different prices of demand response for scenario 1, sub-

scenario 3, case 1. For any given scenario, the fuel costs savings will be similar to what is 

shown in this figure. But the difference is in fact in the points shown on this graph. Three 

points a, b, and c are shown on this graph to indicate the differentiations among different 

scenarios. Point “a” in fact indicates the total savings on fuel cost with demand response 

on the base case. The savings depend on the factors mentioned before and vary between 

different scenarios depending on the generation mix characteristics.  Point “b” will move in 

different scenarios and indicates the degree of benefits of demand response with different 

prices for demand response. This means that each scenario depending on each 

characteristic may benefit differently from different levels of demand response. Therefore 

if demand response in to be implemented for each scenario, different levels of demand 

response may play a different role in different scenarios.  

 

Points shown by “c”, are in fact the points that due to high price which has to be paid to 

certain levels of demand response in each scenario, no savings can be made on fuel 

costs of conventional. However, in evaluation of value of wind power or price of electricity, 

as shown in equation 8.1, although savings made on fuel cost may be negative, but there 

may be still opportunity for demand response to increase the value of wind power if cost of 

emission saved is still higher compared with the case with no demand response. Any 

value below the base case graph (the dark blue representing 0% demand response level) 

is in fact indicating lower saving on production cost compared with a case where no 

demand response exists in the system. Although these values are still positive, but they 

indicate that since the cost of demand response is higher than the savings compared with 

the no demand response case, the value of wind power at higher levels may be reduced.  
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In evaluation of value of wind power, when demand response is added to this problem as 

shown in eq. 8.1, two variables are being affected; production cost and emission cost. 

Increasing the demand response level, reduced the intermittency of wind power, and 

therefore the emission level will reduce as shown before. Thus, according to fig. 8.15, 

although savings on production cost may be lower at higher levels of demand response 

with increasing the cost of demand response, but it may save substantial amount of 

emissions. It is also important the different graphs showing different demand response 

levels, and in particular the dark-blue graph which represents 0% demand response level. 

This graph in fact shows the savings only due to wind power, thus, not sensitive to 

changes in demand response prices.  
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Fig. 8.15 Fuel Cost Savings by Demand Response for typical scenario (Scenario 1).  
 

Table 8.7 shows the ranking of the first three top cases for for demand response price of 

£0/MWh. It can be seen from this table that similar ranking will be resulted by demand 

response if the price of demand response is assumed to be £0/MWh, although the actual 

cost of electricity is reduced due to savings made on fuel cost and emission cost.  

 

By comparing table 8.7 and table 7.12 in previous chapter, it can be seen that all different 

scenarios will see a reduction in their actual cost of electricity due to demand response. In 

terms of ranking the scenarios, some scenarios will be ranked higher compared with 

others, and scenario 4-2 will go down. This is because some scenarios will benefit more 

from the demand response compared with others. By comparing these two tables, a slight 

change in the actual cost of electricity is observable. For example the actual cost of 
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electricity for the first rank will be reduced by 0.96%, whilst this reduction for the second 

rank is only 1% which is in fact the lowest cost reduction observed for 20% demand 

response level. Such low level of demand response in fact is not a real remedy for the 

variability of wind power. At this level, power fluctuations still exist, therefore the problems 

such as high number of start-ups of thermal plants still exists, although slightly improved.  

It must be noted that in the top 12 scenarios, less changes is observable, but if all 72 

scenarios are studied, several changes in term of ranking the scenarios will be seen.  

 

Table 8.7. The first Top 12 Scenarios based on their Actual Cost of Electricity with 

Demand Response 20% and £0/MWh  
Rank  

Scenario Sub Scenario Case 
Actual Cost 

Electricity (£/MWh) 
1 

Scenario 2 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 22.61 
2 

Scenario 2 Sub_Scenario 2 Case 3 (100% Nuclear Power Replacement) 22.94 
3 Scenario 2 Sub_Scenario 3 Case 3 (100% Nuclear Power Replacement) 23.61 
4 

Scenario 2 Sub_Scenario 1 Case 2 (50% Nuclear Power Replacement) 23.84 
5 

Scenario 2 Sub_Scenario 2 Case 2 (50% Nuclear Power Replacement) 24.98 
6 

Scenario 2 Sub_Scenario 3 Case 2 (50% Nuclear Power Replacement) 25.23 
7 

Scenario 1 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 25.39 
8 

Scenario 2 Sub_Scenario 1 Case 1 (No Nuclear Power Replacement) 25.42 
9 

Scenario 2 Sub_Scenario 4 Case 3 (100% Nuclear Power Replacement) 25.48 
10 

Scenario 4-2 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 25.51 
11 

Scenario 1 Sub_Scenario 4 Case 3 (100% Nuclear Power Replacement) 25.71 
12 

Scenario 1 Sub_Scenario 1 Case 2 (50% Nuclear Power Replacement) 25.76 
 

The higher the demand response, the higher the benefits associated with it, only if the 

cost of demand response is assumed to be £0/MWh. This is because wind power in each 

scenario will be less intermittent with demand response. The degree of benefits as shown 

in table 8.8 increases and the actual cost of electricity for all scenarios will be lower. 

However, it can be seen that there is some changes in the ranking of different scenarios, 

although the demand response level is same for all scenarios. Scenario 4-2 will be ranked 

higher compared with the previous table.  

 

As shown in this table, the cost reduction for 70% demand response level is significant. 

The first rank wills how about 3.6% reduced actual cost of electricity, whilst this actual cost 

of electricity reduction trend continues and the highest level of reduced cost is seen for the 

rank 11 in which the actual cost of electricity is reduced by nearly 4.5%. Such high level of 

reduction in the actual cost of electricity in a real system can reflect significant improved 

efficiency of power generation.  
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Table 8.8. The first Top 12 Scenarios based on their Actual Cost of Electricity with 

Demand Response 70% and £0/MWh 

 
Rank  Scenario Sub Scenario Case 

Actual Cost 
Electricity (£/MWh) 

1 
Scenario 2 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 21.77 

2 
Scenario 2 Sub_Scenario 2 Case 3 (100% Nuclear Power Replacement) 22.09 

3 Scenario 2 Sub_Scenario 3 Case 3 (100% Nuclear Power Replacement) 22.74 
4 

Scenario 2 Sub_Scenario 1 Case 2 (50% Nuclear Power Replacement) 22.98 
5 

Scenario 2 Sub_Scenario 2 Case 2 (50% Nuclear Power Replacement) 24.08 
6 

Scenario 2 Sub_Scenario 3 Case 2 (50% Nuclear Power Replacement) 24.32 
7 

Scenario 1 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 24.42 
8 

Scenario 2 Sub_Scenario 1 Case 1 (No Nuclear Power Replacement) 24.50 
9 

Scenario 4-2 Sub_Scenario 1 Case 3 (100% Nuclear Power Replacement) 24.52 
10 

Scenario 2 Sub_Scenario 4 Case 3 (100% Nuclear Power Replacement) 24.54 
11 

Scenario 1 Sub_Scenario 4 Case 3 (100% Nuclear Power Replacement) 24.70 
12 

Scenario 1 Sub_Scenario 1 Case 2 (50% Nuclear Power Replacement) 24.78 
 

If each scenario is studied individually with demand response, it can be see that if no price 

is taken into account for demand response, the rankings for the best case in each 

scenario will not change by different demand response levels as shown in table 8.9. 

However, by comparing this table and table 7.14 in chapter 7 where no demand response 

existed, the changes in the rankings of the cases for each scenario will be seen. This 

highlights the role of demand response in an optimal generation mix problem, which also 

highlights the importance of studying the potential and benefits of demand response in 

any given generation expansion problem.  

 

In this table sub-scenario 4 for scenario 1 will be ranked second. This is slightly different 

compared with other scenarios. In scenario 1, the second ranked case occurs when 

windfarms are installed at north (mainly on-shore) and nuclear power replacement is at 

100% replacement. The production cost calculated for this scenario although is very close 

to sub scenario 2 of this case,  but since demand response will significantly increase the 

energy share of nuclear power, this sub-scenario will show lower actual cost of electricity, 

compared with the case where windfarms have better location but nuclear power 

replacement is lower. This shows that in this hypothesis, nuclear power is the dominant 

factor in determination of the actual cost of electricity. The benefit of demand response is 

to reduce the actual cost of electricity by nearly %5.  
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Table 8.9 Recommendation of the Best cases for each Scenario  

with Demand Response (£0/MWh)  

Actual 
Cost of 

Electricity 

Actual 
Cost of 

Electricity 

Scenario  Rank  
Sub  

Scenario Case (£/MWh) 
Sub  

Scenario Case (£/MWh) 

    20% Demand Response 70% Demand Response 

1 SS 1 C 3 25.39 SS 1 C 3 24.42 

2 SS 4 C 3 25.71 SS 4 C 3 24.70 
Sc

en
ar

io
 1

 

3 SS 1 C 2 25.76 SS 1 C 2 24.78 

1 SS 1 C 3 22.61 SS 1 C 3 21.77 

2 SS 2 C 3 22.94 SS 2 C 3 22.09 

Sc
en

ar
io

 2
 

3 SS 3 C 3 23.61 SS 3 C 3 22.74 

1 SS 1 C 3 25.98 SS 1 C 3 24.99 

2 SS 2 C 3 26.61 SS 2 C 3 25.61 

Sc
en

ar
io

 3
-1

 

3 SS 1 C 2 27.16 SS 1 C 2 26.15 

1 SS 1 C 3 26.59 SS 1 C 3 25.57 

2 SS 2 C 3 26.79 SS 2 C 3 25.76 

Sc
en

ar
io

 3
-2

 

3 SS 1 C 2 27.19 SS 1 C 2 26.17 

1 SS 1 C 3 25.99 SS 1 C 3 24.99 

2 SS 2 C 3 26.79 SS 2 C 3 25.77 

Sc
en

ar
io

 4
-1

 

3 SS 1 C 2 27.07 SS 1 C 2 26.07 

1 SS 1 C 3 25.51 SS 1 C 3 24.52 

2 SS 2 C 3 26.27 SS 2 C 3 25.26 

Sc
en

ar
io

 4
-2

 

3 SS 1 C 2 26.53 SS 1 C 2 25.53 
 

Now if the price of demand response is also included in the assessment framework, the 

benefits associated with demand response will vary depending the price has to be paid for 

certain levels of demand response. Figure 8.16 shows the actual cost of electricity for a 

scenario 1, sub-scenario 1, case 1. This is a typical curve for any given scenario with 

different prices of demand response and different demand response levels. As illustrated 

in this picture, the actual price of electricity will reduce by increasing the demand response 

level whilst the price of demand response is below £7/MWh. By increasing the price of 

demand response, and increasing the demand response levels, the actual price of 

electricity is increasing. The reason behind was discussed in chapter 5.  
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Fig. 8.16 Actual Cost of Electricity by Demand Response for Scenario 1.  
 

This reduction in the actual price of electricity can also be included in the savings resulted 

by wind power, in order to quantify the value of wind power with different demand 

response levels. As shown in fig. 8.17 different range of values for wind power will be 

observed. At low demand response prices, value of wind power will increase. The impact 

of different demand response levels will also be observed in a way that low demand 

response levels will show lower range. This is because even if the price of demand 

response is too high, the losing (instead of saving) is limited to the low level of demand 

response.  
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Fig. 8.17 Value of Wind Power for Scenario 1 with Different Levels of Demand Response 
Whilst the Price of Demand Response Varies between £0/MWh to £26/MWh. 
 

By increasing the demand response level, the range of values observed for value of wind 

power will increase. Since different prices for demand response are included in this graph 
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(£0-£26/MWh) the increase in the range of values observed for the value of wind power is 

due to changes in the “lowest” value for the wind power; not the highest in certain demand 

response prices. In other word, when the price of demand response is too high, the 

highest observed value of wind power will be constant; and in fact is the 0% demand 

response level. In fact after paying £7/MWh for demand response the highest value of 

wind power is constant, whilst the lowest value tends to decrease.  

 

8.5 Chapter Summary  
This chapter provided the results for assessing the value of wind power combined with 

demand response in a large system. The quantification available demand response as a 

resource was performed in chapter 6. The main results of this chapter include:  

 

• Based on the available demand response as a resource, it was shown in this 

chapter that how the value of wind power changes with different degrees of 

demand response. When demand response is combined with wind power, two 

main elements have impact on the value of wind power; degree of responsiveness 

and price which has to be paid for such responsiveness level. 

 

•  Different degree of responsiveness will increase the value of wind power as wind 

power will become smoother. However when the price of demand response which 

increases by increasing the  responsiveness level is taken into account, the 

degree of benefits; or added value of wind power changes. The reason for the 

change in the value of wind power is due to changes in operation pattern of the 

thermal generators which change the objective parameters, such as, changes in 

the marginal price of electricity generation due to more efficient operation of 

thermal generators. It was also shown that how at different emission prices, 

different values for wind power are expected.  

 

• Demand response combined with wind power will also reduce the total emission 

produced by conventional plants. Therefore increasing the price of emission may 

increase the added value of wind power by demand response. This may even 

make the demand response feasible at higher prices which have to be paid to 

maintain certain levels of responsiveness, although the fuel cost saving may be 

negative.  

 

8.6. References  
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Chapter 9. Conclusions  
 

9.1 Summary of the Work in this Thesis  
 

This thesis aimed to create a link between current DSM methods which are particularly 

applied to domestic sector, and power system operation in which wind power is expected 

to have high level of penetration. Since wind power is intermittent, a dynamic demand side 

management method is required to respond to these changes. Among all different DSM 

methods which were investigated, demand response has the capability to respond to any 

signal in real time. Such technology can enable a power system operator to remove the 

burden of both providing the spinning reserve, and back-up power from thermal 

generators, and instead maintain such capacity from demand response. It was shown how 

demand response can increase the value of wind power by providing the extra reserve 

required for wind power, and cater for wind power deficits. 

 

The main findings of this work include:   

 

A. Assessment framework for studying the value of wind power;  

•  Traditionally, only network energy losses have been considered as a measure to 

find the optimum location; lower losses indicate a better location provided 

appropriate availability of wind energy exists. Generally, energy losses can be 

reduced in the network by installing windfarms next to the load centres. They will 

reduce supply requirements from more distant resources, thereby by reducing 

transmission losses which are effectively wasted supply.  

But it was shown that although the overall network losses are different for different 

grid-location of windfarms, it should not be solely used as an indicator for suitability 

of the grid-location. When the aim is to find the best location, the impact of the 

location depends on where the windfarm is installed relation to the electricity 

generation side must also be taken into account. These effects include:  

o The impact on total number of shut-down and start-up of conventional 

plants due to change in the dispatch pattern.  

o The impact on marginal cost of electricity generated by conventional plants 

whilst the location of windfarms may change the power dispatch, hence 

changing the total production cost.  

•   The grid location of windfarms has an impact on the payback period of the capital 

costs invested to build the windfarms. Capital costs can be recovered over 
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different time scales; therefore the amount of profit that can be made after the 

break-even point depends on the location of the windfarm.  Hence, the benefit of 

windfarms must be studied in different time horizons:  

o In the short-term by placing the windfarms at appropriate locations in the 

grid, the day-to-day running of power system will be with less deviation of 

security parameters and these parameters have an impact on reliability of 

the system.  

o Long-term benefits included the ability of the current network to supply 

increasing demand without network re-enforcement. The degree of these 

benefits significantly varies from location to location where a windfarm is 

connected to. 

 

B. Maintaining reliability and increasing the need for spinning reserve:  

•   A methodology to calculate the spinning reserve for a given system with 

intermittent generation is developed. This calculations based on this method 

reflects the actual risk on the system imposed by:  

o Demand forecasting error;  

o Wind forecasting error; and 

o Conventional generators outage rate.    

  and the benefits of this method include:  

•   Different levels of spinning reserve requirement have impact on the life-time 

value of wind power. This is mainly due to changes in the operation pattern of 

thermal generators by changing their efficiency level (the higher the spinning 

reserve requirement, the lower the efficiency of thermal plants). Changes in the 

marginal fuel cost, and emission output of thermal plants are two important 

elements which change the overall cost in the system.  

 

C. Impact of DSM programmes on value of wind power:  

• DSM programmes van benefit the system by reducing the fuel costs and emission 

levels. In a system with intermittent generator, DSM programmes (non-dynamic) 

may increase the value of wind power by reducing the thermal generators’ cost 

and increasing the cost-savings through windfarms. The results show that 21% 

increase in the value of wind power may be achieved just by shifting about 16% of 

loads from peak to off-peak periods.  

• Dynamic DSM programmes (demand response) will further increase the value of 

wind power through:  
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o Reducing the need for additional spinning reserve for wind power;  

o Reducing the variability of wind power which: 

 Increase energy share of wind power; 

 Reduces the number of start-up and shut-down of thermal plants;  

 Increases the efficiency of power generation which will reduce the 

cost and emissions.  

o The results suggest that cost savings about £150,000/MW demand 

response may be achieved. This excludes the costs associated with 

demand response (such as cost of implantation, etc.).  

• The impact of demand response on value of wind power was studied, and the 

result suggest that demand response may expedite the payback period for a 

windfarm from 10-12 years down to 2-3 years if 100% demand response can be 

maintained. The expedition in breakeven point will be limited when cost of demand 

response is taken into account, and in fact high compensation levels may not be 

feasible.  

• The results indicate that if the cost of demand response is taken into account, the 

degree of feasibility of this technology with regard to value of wind power will be 

limited to demand response prices up to £6/MWh.  

 

D. Potential for Domestic Demand Response:  

The technique used in this thesis to generate the load profile of domestic household’ 

appliances was based on the probability of operating different appliances by different 

groups of consumer. Since the availability of data for any statistical analysis is an 

essential factor, and because the data required in this technique is widely available for 

different locations in England and Wales, this technique can be used to assess the 

potential of demand in a location to become responsive. It was shown that the domestic 

demand response’s potential is different throughout the day since the consumption pattern 

of different appliances is different.  It was shown that fridge-freezers which compose the 

base load in the domestic sector have the potential of becoming responsive since 

interruptions of up to nearly two hours may not jeopardize the service provided by fridge-

freezers. 

 

E. Changes in generation Mix and impact on power system operation:  

• The results in this chapter show that increasing the wind power penetration in the 

GB power system will increase the need for spinning reserve. The level of increase 

depends on type of generators, generation mix pattern as well as demand level. 
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The level is not solely related to installed capacity of wind power. For the same 

installed capacity of wind power in different generation mix patterns, spinning 

reserve requirement is different. 

 

• In the GB power system, since load centres are located at South (England) and 

on-shore wind resources are mainly at North (Scotland) the bottleneck in the 

interconnector between England and Scotland will significantly impact on the value 

of wind power. This is because of the need for extra power in the south at times 

when the bottleneck happens. Providing such power will reduce the efficiency of 

power generation both for generators located in Scotland since they may be forced 

to operate at lower output levels, and for generators in England since they may be 

required to start-up and operate with less efficient patterns.  

 

• Off-shore windfarms can become a major source of electricity generation in the GB 

power system more than ever if they are connected to grid in England. This will 

reduce the interconnector’s bottleneck, and give wind power the opportunity to 

displace higher capacities of conventional plants. It was shown in this chapter that 

how the location of windfarms has impact on out study objectives such as 

production cost and emission level. It was also shown that whilst the location of 

windfarms is a major factor in changing the network losses, it will result in 

changing the energy share of other power generation technologies.  

 
• In the absence of nuclear power, coal fired and CCGT power plants will become 

the main base-load plants. The emission level of such plants is high compared 

with nuclear power, such displacement may result in not meeting the emission 

reduction target set by the government unless more aggressive targets are set for 

the industries as a whole.  

 
• Nuclear power combined with wind power can provide a high level of resilience for 

the electricity generation industry. The impact of such combination on production 

cost, and emission level is also very promising. The magnitude of benefits from 

differing contribution from nuclear power will be established for varying wind 

penetration and location as future work.  

 

• With regard to the optimal scenarios, it can be concluded that in presence of 

uncertainty about the future of generation mix, different scenarios may be the 

optimal scenarios depending on the weight of influencing factors. It was shown in 
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this chapter that if production cost and emission cost are considered as the main 

influencing factors, the share of each factor differs depending on the cost of 

carbon. Changes in the cost of carbon will be responded differently by different 

scenarios, depending on how sensitive they are to changes in the cost of carbon. 

In order word, if lower the emission level is observed in a scenario, although it may 

result in a high electricity cost due to high fuel costs, but by increasing the carbon 

price, this scenario may show a relatively lower electricity price. Therefore, 

determination of which scenarios are the optimal scenarios is something which has 

to be done whilst changing the carbon prices are also taken into account.  

 

F. Effect of demand response on value of wind power in a large system:  

• Based on the available demand response as a resource, it was shown in this 

chapter that how the value of wind power changes with different degrees of 

demand response. When demand response is combined with wind power, two 

main elements have impact on the value of wind power; degree of responsiveness 

and price which has to be paid for such responsiveness level. 

 

•  Different degree of responsiveness will increase the value of wind power as wind 

power will become smoother. However when the price of demand response which 

increases by increasing the  responsiveness level is taken into account, the 

degree of benefits; or added value of wind power changes. The reason for the 

change in the value of wind power is due to changes in operation pattern of the 

thermal generators which change the objective parameters, such as, changes in 

the marginal price of electricity generation due to more efficient operation of 

thermal generators. It was also shown that how at different emission prices, 

different values for wind power are expected.  

 

• Demand response combined with wind power will also reduce the total emission 

produced by conventional plants. Therefore increasing the price of emission may 

increase the added value of wind power by demand response. This may even 

make the demand response feasible at higher prices which have to be paid to 

maintain certain levels of responsiveness, although the fuel cost saving may be 

negative.  

 

 

  

225 | P a g e  
 



Chapter 10                                                           Limitations and Suggestions for Further Work 
 

Chapter 10. Limitations and Suggestions for Further Work 
10.1. Limitations  
The rationale for this work stemmed from a need to quantify the benefits of demand 

response combined with wind power to maximize the value of wind power. However, in 

doing so, the technical aspects bringing about benefits have been considered, i.e. 

reducing the number of start-ups and shut-downs, and operation hours of thermal 

generators and reduction in their production cost and emissions, more efficiently operation 

of generators and reducing their marginal fuel costs and emission output, changes in the 

network losses as a result of changes in the power-flow pattern in the network with 

windfarms.  

 

Other costs brought about by demand response has not been taken into account, such as 

the capital cost of demand response, network reinforcements for added security and 

ability to transport the energy from windfarms which are combined with demand response 

to consumers. Besides, the most important factor which has not yet been taken into 

account for implementing such system is studying the impact of such level of demand 

responsiveness on stability of power system. Considering such high level of load which 

has to be disconnected and reconnected within a short period of time, it is essential to 

draw a framework to study the impacts on stability of power system.  

 

10.2 Future Work:  
In this thesis the potential for demand response to cater for energy output deficits of 

windfarms was investigated and the benefits were highlighted. Demand response should 

in theory mimic generation resources providing the same services in terms of response to 

the output of a windfarm. The generators in power system are not only studied as 

electrical energy generation sources just to supply the demand. Regardless of whether or 

not a generator is online, the total capacity of a generator is an important factor to 

maintain the reliability of the power system. The generation expansion problem always 

takes into account the demand growth and retirement of old generation technologies. 

Demand response can be valued as a capacity resource, to delay building new generation 

technologies. This has to be studied in the context of the sustainable generation mix 

problem where the capacity, constraints, costs and characteristics of different generation 

technologies are included.  

 

Studying the benefits of demand response to electrical supply networks was limited to 

investigating the impact of demand response to reduce the total losses in the transmission 
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lines. Such technology can reduce the loading of the transmission and distribution network 

as any required time, as a result of sudden increase in total demand or a fault. This will 

result in transmission and distribution reinforcement deferral as a result of demand 

response which will increase the value of such technology. This has not been taken into 

account in this thesis and has to be studied and such value be combined with energy 

trading value of demand response to draw a realistic picture of the costs and benefits 

associated with demand response.  

 

Another interesting space for further development of this work is to develop the dispatch 

pattern of generators while restrictions such as extremely high carbon prices may require 

generators to cap their total emission output. Whilst the dispatch pattern used in this study 

aims to minimize the total emission, but it does not take into account any regulatory 

constraint on total allowed emission output of generators. If this is to be taken into 

account, it will have impact on availability of generators, production cost, emissions and in 

fact all parameters which were used to calculate the value of wind power will change.  
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Appendix A 
Reduced GB Network  
A.1 Network Data:  
A.1.1 Bus Data:  

Bus 
Name 

Bus Voltage 
(KV) Bus ID 

Bus 
Type 

DRAK4 400 Drakelow 400 0 

PENN2 275 Penn 275 2 

BUSH1 132 Bushbury 132 2 

BUSH2 275 Bushbury 275 0 

DRAK1 132 Drakelow 132 2 

DRAK2J 275 Drakelow 275J 2 

DRAK2K 275 Drakelow 275K 0 

WIEN1 132 Willenhall 132 2 

WILL1 132 Willington 132 2 

WILL2J 275 Willington 275J 0 

WILL4 400 Willington 400 2 

BISW2 275 Bishops Wood 275 2 

KITW2 275 Kitwell 275 2 

OCKH2 275 Ocker Hill 275 2 

OLDB2 275 Oldbury 275 2 

BESW2 275 Berkswell 275 2 

BUST2 275 Bustleholm 275 2 

COVE2 275 Coventry 275 2 

FECK2 275 Feckenham 275 2 

HAMH2 275 Hams Hall 275 2 

NECH2 275 Nechells 275 2 

FECK4 400 Feckenham 400 2 

HAMH4 400 Hams Hall 400 0 

CELL4 400 Cellarhead 400 2 

IRON4 400 Ironbridge 400 2 

RUGE4T 400 Rugeley 400T 2 

LEGA4 400 Legacy 400 2 

DAIN4 400 Daines 400 2 

MELK4 400 Melksham 400 0 

COWL4 400 Cowley 400 2 

RATS4 400 
Ratcliffe-on-Soar 

400 2 

COTT4 400 Cottam 400 3 

CREB4 400 Creyke Beck 400 0 

NORT4 400 Norton 400 0 

NORT2 275 Norton 275 0 

STEW2 275 Stella West 275 2 

STEW4 400 Stella West 400 0 

COCK4 400 Cockenzie 400 2 
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PEWO4 400 Penwortham 400 0 

HARK4 400 Harker 400 0 

HARK2 275 Harker 275 0 

STHA4 400 Strathaven 400 2 

STHA2 275 Strathaven 275 0 

INKI4 400 Inverkip 400 0 

LOAN2 275 Longannet 275 0 

COCK2 275 Cockenzie 275 0 

TEAL2 275 Tealing 275 0 

TEAL1 132 Tealing 132 0 

ERRO1 132 Errochty 132 0 

KINT2 275 Kintore 275 0 

BEAU2 275 Beauly 275 0 

BEAU1 132 Beauly 132 0 

DOUN2 275 Dounreay 275 0 
 

A.1.2 Line Data:  

Bus from  Name Bus To Name R  X B 

BESW2 COVE2 0.000084 0.00075 0.005186 

BESW2 FECK2 0.00014 0.001427 0.010328 

BESW2 HAMH2 9.48E-05 0.000952 0.010848 

BISW2 FECK2 9.18E-05 0.000912 0.00652 

BISW2 KITW2 0.000123 0.00111 0.007576 

BISW2 KITW2 0.000109 0.000989 0.006746 

BISW2 PENN2 0.000121 0.001209 0.009926 

BUSH2 OCKH2 4.99E-05 0.000496 0.049564 

BUSH2 PENN2 9.84E-05 0.000892 0.007439 

BUST2 NECH2 2.09E-05 0.000285 0.083889 

CELL4 DAIN4 9.34E-05 0.001022 0.033629 

CELL4 DAIN4 9.34E-05 0.001022 0.033629 

CELL4 DRAK4 7.76E-05 0.000849 0.027933 

CELL4 DRAK4 7.77E-05 8.5E-05 0.027977 

COVE2 HAMH2 4.64E-05 0.000708 0.00646 

COVE2 WILL2J 0.000212 0.002448 0.019143 

DRAK4 HAMH4 5.03E-05 0.00055 0.018101 

DRAK4 RUGE4T 3.54E-05 0.000387 0.012748 

DRAK4 WILL4 2.89E-05 0.000317 0.010419 

FECK4 HAMH4 7.37E-05 0.000806 0.026532 

FECK4 IRON4 0.000113 0.001234 0.040629 

FECK4 MELK4 0.000185 0.00201 0.0649 

FECK4 COWL4 0.000226 0.002806 0.13518 

HAMH2 NECH2 0.000024 0.000367 0.003347 

HAMH2 OCKH2 0.000144 0.00136 0.012196 

IRON4 LEGA4 0.000106 0.001157 0.038102 
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IRON4 LEGA4 0.000106 0.001157 0.038102 

IRON4 RUGE4T 0.000127 0.001159 0.035491 

KITW2 OCKH2 6.08E-05 0.000552 0.006139 

KITW2 OLDB2 3.57E-05 0.000331 0.008632 

RATS4 WILL4 3.51E-05 0.000398 0.013205 

DRAK4 RATS4 0.000056 0.000613 0.027269 

BUSH2 DRAK2K 0.000168 0.001606 0.011267 

BUSH1 WIEN1 0.000277 0.000568 0 

BUST2 DRAK2J 7.96E-05 0.001215 0.011091 

BUST2 DRAK2J 7.96E-05 0.001214 0.011077 

COTT4 RATS4 5.48E-05 0.001526 0.051707 

COTT4 RATS4 5.48E-05 0.001526 0.051707 

CREB4 COTT4 9.39E-05 0.001457 0.049988 

CREB4 COTT4 9.39E-05 0.001457 0.049988 

CREB4 NORT4 0.000154 0.00228 0.084572 

CREB4 NORT4 0.000154 0.00228 0.084572 

STEW2 NORT2 0.000232 0.00241 0.01764 

STEW2 NORT2 0.000232 0.00241 0.01764 

COCK4 STEW4 0.000178 0.001483 0.004516 

COCK4 STEW4 0.000178 0.001483 0.004516 

PEWO4 DAIN4 0.000139 0.001658 0.058722 

HARK4 PEWO4 0.000286 0.002809 0.088963 

HARK4 PEWO4 0.000286 0.002809 0.088963 

HARK4 STHA4 0.00022 0.002396 0.053253 

STEW2 HARK2 0.000492 0.00343 0.025013 

HARK2 STHA2 0.000177 0.001688 0.003648 

STHA4 INKI4 0.000151 0.001613 0.052296 

STHA2 LOAN2 0.000163 0.002136 0.005842 

STHA2 COCK2 0.000421 0.003456 0.011121 

LOAN2 COCK2 0.000475 0.007695 0.026028 

LOAN2 TEAL2 0.000467 0.004826 0.003968 

TEAL1 ERRO1 0.007179 0.017089 0.008174 

TEAL2 KINT2 0.00122 0.01072 0.011071 

KINT2 BEAU2 0.00182 0.00731 0.009228 

ERRO1 BEAU1 0.01242 0.03143 0.001048 

BEAU2 DOUN2 0.00122 0.00836 0.06892 
 

A.1.3 Transformer Data:  

Bus From 
Name 

Bus From Voltage 
(Kv) 

Bus To  
Name  

Bus To 
Voltage 
(KV) R X B 

FECK4 400 FECK2 275 
1.76E-
05 0.001609 0 

HAMH4 400 NECH2 275 
0.00001
7 0.0016 0 

DRAK4 400 OLDB2 275 
0.00001
7 0.0016 0 

DRAK4 400 PENN2 275 
0.00001
7 0.0016 0 
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IRON4 400 PENN2 275 
0.00001
7 0.0016 0 

OCKH2 275 WIEN1 132 
0.00015
1 0.008333 0 

WILL2J 275 WILL1 132 
0.00029
4 0.012283 0 

WILL2J 275 WILL1 132 
0.00029
4 0.012283 0 

WILL4 400 WILL1 132 
0.00015
3 0.00792 0 

WILL4 400 WILL2J 275 
3.29E-
05 0.002415 0 

WILL4 400 WILL1 132 
3.29E-
05 0.002415 0 

BUSH2 275 BUSH1 132 
0.00015
6 0.007575 0 

BUSH2 275 BUSH1 132 
0.00015
3 0.00775 0 

BUSH2 275 BUSH1 132 0.00016 0.007604 0 

DRAK2J 275 DRAK1 132 
0.00037
8 0.011933 0 

DRAK2J 275 DRAK1 132 0.00035 0.012 0 

DRAK2K 275 DRAK1 132 
0.00030
1 0.013333 0 

DRAK4 400 DRAK2J 275 
2.13E-
05 0.001604 0 

DRAK4 400 DRAK2J 275 
2.13E-
05 0.001604 0 

DRAK4 400 DRAK2K 275 
2.17E-
05 0.001608 0 

NORT4 400 NORT2 275 
1.72E-
05 0.001508 0 

NORT4 400 NORT2 275 
1.17E-
05 0.001592 0 

STEW4 400 STEW2 275 
0.00002
3 0.001646 0 

STEW4 400 STEW2 275 
1.18E-
05 0.00156 0 

HARK4 400 HARK2 275 
0.00001
8 0.001706 0 

STHA4 400 STHA2 275 
0.00001
8 0.001706 0 

TEAL2 275 TEAL1 132 0.00041 0.01189 0 

BEAU2 275 BEAU1 132 0.0003 0.01218 0 

BEAU2 275 BEAU1 132 0.0005 0.01221 0 

BEAU2 275 BEAU1 132 0.0005 0.01225 0 
 
A.1.4 Generators’ Data:  

Bus 
Name 

Status 
1=Available. 
0=Outage 

Voltage 
(KV) 

Power 
MW 

Reactive-Power 
MVar 

Reactive-Power 
MVar(absorption) 

PENN2 1 275 12747 13000 0 

BUSH1 1 132 0 1200 0 

DRAK2J 1 275 0 1500 -750 

WILL1 1 132 228 400 0 

WILL4 1 400 207.7 1500 -750 

BISW2 1 275 0 1800 0 

BESW2 1 275 0 1800 0 

BUST2 1 275 0 200 0 

COVE2 1 275 0 1800 0 

FECK2 1 275 0 1500 -750 
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FECK4 1 400 0 1500 -750 

CELL4 1 400 0 3000 -150 

IRON4 1 400 964 1000 0 

RUGE4T 1 400 1018 1100 0 

LEGA4 1 400 0 9300 -2850 

DAIN4 1 400 2180 2500 -1000 

MELK4 1 400 8525.9 8300 -3000 

COWL4 1 400 17241 17000 -3000 

RATS4 1 400 5167.4 5100 0 

CREB4 1 400 4669 5000 0 

STEW2 1 275 420 420 0 

STHA4 1 400 0 0 0 

COCK4 1 400 0 0 0 

NORT2 1 275 3132 0 0 

HARK4 1 400 16210 16210 0 
 
A.1.5 Reactive Shunt Devices: 

Bus Name Voltage (KV) Reactive Power(MVar) 
Status 1=Available. 
0=Outage 

PENN2 275 61.35 1 

BUSH1 132 72.48 1 

DRAK1 132 726 1 

WIEN1 132 217.8 1 

WILL1 132 34.53 1 

WILL4 400 80 1 

BISW2 275 45.53 1 

KITW2 275 12.82 1 

OCKH2 275 166.26 1 

OLDB2 275 103.22 1 

BESW2 275 234.81 1 

BUST2 275 11.46 1 

COVE2 275 132 1 

FECK2 275 54.31 1 

HAMH2 275 212.49 1 

NECH2 275 15.78 1 

CELL4 400 24.36 1 

IRON4 400 582.74 1 

RUGE4T 400 91.71 1 

RATS4 400 204.51 1 
 
A.1.6 Load Data: 

Bus Name Bus Voltage Active Load (MW) Reactive Load (MVar) 

PENN2 275 2061.527 906.6898 

BUSH1 132 1573.756 660.5869 

DRAK1 132 1075.078 403.4751 
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WIEN1 132 786.5452 331.6679 

WILL1 132 2982.336 1332.075 

BISW2 275 2999.24 1348.898 

KITW2 275 2550.384 828.1818 

OCKH2 275 863.8031 435.9577 

OLDB2 275 758.291 345.1368 

BESW2 275 2592.767 1179.334 

BUST2 275 2591.611 840.9517 

COVE2 275 3373.532 1315.931 

FECK2 275 1389.58 583.9608 

HAMH2 275 1458.833 613.5668 

NECH2 275 2920.859 1395.313 

HAMH4 400 1508.831 489.7794 

CELL4 400 4831.754 2076.829 

IRON4 400 2267.477 851.0601 

RUGE4T 400 1247.908 525.4343 

LEGA4 400 604.9505 0 

DAIN4 400 847.6525 0 

MELK4 400 6001.853 -658.658 

COWL4 400 13062.03 117.6175 

RATS4 400 886.5402 330.2968 
 
A.2. Base Case Conventional Generation Data 
A.2.1 Generation Type and Location 

 Generation  
Type 

Node  
Number OCGT CCGT CHP Nuclear coal Oil  

Elvanfoot       

Nuclear (1), (2), 
(3), (4) 
4*602.5MW 

Coal (1), (2) 
2*576MW   

Eccles Gas (1) 
Gas (4) and Gas (5) 
2* 762MW  CHP(1)   

Coal (3), (4), 
(5), (6) 
4*576MW   

Harker   

Gas (6) , Gas (7),Gas (8) , Gas 
(9),Gas (10), Gas (11), Gas (12) 
7*597MW CHP(2) 

Nuclear (5), (6) 
2*601.5MW 

Coal (7-26) 
20*490.7MW   

StellaWest         Coal (27)   

Norton   

Gas (13) , Gas (14),Gas (15) , 
Gas (16),Gas (17) 
5*385MW   

Nuclear (7), (8)  
2*603MW     

Penwortham   Gas (18) CHP(3) 
Nuclear (9), (10)  
4*601.5MW 

Coal (28-33) 
6*613.3MW   

Creyka Beck   

Gas (19) , Gas (20),Gas (21) , 
Gas (22),Gas (23) 
5*790MW         

Daines       

Nuclear (11), 
(12) 
2*490MW     

Melksham Gas (2) 
Gas (24) , Gas (25),Gas (26) 
3*1227MW CHP(4) 

Nuclear (13), 
(14) 
2*630.5MW 

Coal (34-39) 
5*411MW Oil (1) 

Cowley Gas (3) 

Gas (27) , Gas (28),Gas (29),Gas 
(30) , Gas (31),Gas (32) 
6*1048.5MW   

Nuclear (15), 
(16)  
2*540.5MW 

Coal (40-49) 
10*517.7MW 

Oil (2-5) 
4*615MW 

Ironbridge         
Coal (50), (51) 
2*482MW   
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Rugeley         
Coal (52), (53) 
2*509MW   

Willington     CHP(5)       

Ractiliffe   
Gas (33), Gas (34) 
 2* 743MW   

Nuclear (17), 
(18) 
2*830,2MW 

Coal (54-57) 
4*505.25MW   

 
A.2.2  Generation Fuel Cost and Emission Coefficients  

  Fuel Cost Coefficients CO2 Emission Coefficients 

  a b c α  β  γ  δ  ε  

Gas(1) OCGT 0.07832 130 400.6849 -0.05094 0.04586 0.000008 8 0.778 

Gas(2) OCGT 0.07832 130 400.6849 -0.05094 0.04586 0.000008 8 0.778 

Gas(3) OCGT 0.07832 130 400.6849 -0.05094 0.04586 0.000008 8 0.778 

Gas(4) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(5) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(6) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(7) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(8) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(9) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(10) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(11) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(12) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(13) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(14) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(15) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(16) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(17) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(18) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(19) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(20) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(21) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(22) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(23) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(24) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(25) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(26) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(27) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(28) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(29) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(30) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(31) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(32) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(33) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

Gas(34) CCGT 0.052672 43.6615 231.521 -0.07134 0.02133 0.000003 6 0.551 

CHP(1) 0.004895 11.8495 665.1094 -0.05555 0.05151 0.00005 6.667 0.551 

CHP(2) 0.004895 11.8495 665.1094 -0.05555 0.05151 0.00005 6.667 0.551 
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CHP(3) 0.004895 11.8495 665.1094 -0.05555 0.05151 0.00005 6.667 0.551 

CHP(4) 0.004895 11.8495 665.1094 -0.05555 0.05151 0.00005 6.667 0.551 

CHP(5) 0.004895 11.8495 665.1094 -0.05555 0.05151 0.00005 6.667 0.551 

Nuclear(1) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Nuclear(2) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Nuclear(3) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Nuclear(4) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(5) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(6) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(7) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(8) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(9) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Nuclear(10) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Nuclear(11) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Nuclear(12) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Nuclear(13) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(14) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(15) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(16) 0.000213 4.4231 395.3749 N/A N/A N/A N/A N/A 

Nuclear(17) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Nuclear(18) 0.000276 5.645147 217.887 N/A N/A N/A N/A N/A 

Coal(1) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(2) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(3) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(4) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(5) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(6) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(7) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(8) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(9) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(10) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(11) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(12) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(13) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(14) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(15) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(16) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(17) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(18) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(19) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(20) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(21) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(22) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(23) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 
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Coal(24) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(25) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(26) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(27) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(28) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(29) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(30) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(31) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(32) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(33) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(34) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(35) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(36) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(37) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(38) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(39) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(40) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(41) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(42) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(43) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(44) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(45) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(46) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(47) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(48) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(49) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(50) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(51) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(52) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(53) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(54) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(55) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(56) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Coal(57) 0.014142 16.0811 212.3076 -0.02094 0.07389 0.00001 9 0.836 

Oil(1) 0.328412 56.564 86.3852 -0.05554 0.0649 0.0002 2.857 0.974 

Oil(2) 0.328412 56.564 86.3852 -0.05554 0.0649 0.0002 2.857 0.974 

Oil(3) 0.328412 56.564 86.3852 -0.05554 0.0649 0.0002 2.857 0.974 

Oil(4) 0.328412 56.564 86.3852 -0.05554 0.0649 0.0002 2.857 0.974 

Oil(5) 0.328412 56.564 86.3852 -0.05554 0.0649 0.0002 2.857 0.974 
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Appendix B   
B. Value of Wind Power Results (for Chapter 3)  

Year 
Bus No. 30 

(£) 
Bus No. 5 

(£) 
Bus No. 19 

(£) 
Bus No. 26 

(£) 
Capital Cost 

(£) 

1 2319108.31 1281867 1467371 2052911.34 8000000 
2 3381165.6 1868909 2139367 2993063.6 8000000 
3 4383106.44 2422723 2773326 3879999.7 8000000 
4 5328333.65 2945189 3371400 4716731.86 8000000 
5 6220057.44 3438082 3935621 5506101.83 8000000 
6 7061306.29 3903074 4467905 6250790.48 8000000 
7 7854937.28 4341747 4970060 6953326.94 8000000 
8 8603645.76 4755589 5443791 7616097.18 8000000 
9 9309974.52 5146006 5890707 8241352.13 8000000 

10 9976322.41 5514324 6312326 8831215.29 8000000 
11 10604952.5 5861793 6710079 9387689.97 8000000 
12 11197999.7 6189595 7085318 9912666.08 8000000 
13 11757478.3 6498842 7439318 10407926.6 8000000 
14 12285288.2 6790584 7773279 10875153.4 8000000 
15 12783222.1 7065813 8088337 11315933.5 8000000 
16 13252971.1 7325462 8385562 11731763.8 8000000 
17 13696130.5 7570415 8665962 12124056.4 8000000 
18 14114205.4 7801502 8930491 12494143.9 8000000 
19 14508615.7 8019508 9180047 12843283 8000000 
20 14880700.8 8225175 9415476 13172659.5 8000000 
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C. Generation Scheduling Results for the Reduced GB System  

Scenario  Sub Scenario  Case No. 
Production 
Cost (£/MWh) 

Emissions  
(Kg CO2/MWh) 

Annual 
Losses 
(MWh) 

Spinning 
Reserve  (at 
the time of 
System Peak 
in MW) 

Scenario 1 Sub_Scenario1 

Case 1 (No 
Nuclear Power 
Replacement) 22.9 314.38 3084655 3154.93 

Scenario 1 Sub_Scenario1 

Case 2 (50% 
Nuclear Power 
Replacement) 22.38 301.06 3011243 2911.09 

Scenario 1 Sub_Scenario1 

Case 3 (100% 
Nuclear Power 
Replacement) 22.22 283.44 2994568 2793.71 

Scenario 1 Sub_Scenario 2 

Case 1 (No 
Nuclear Power 
Replacement) 23.21 352.16 3131675 3154.93 

Scenario 1 Sub_Scenario 2 

Case 2 (50% 
Nuclear Power 
Replacement) 22.66 320.37 3077245 2911.09 

Scenario 1 Sub_Scenario 2 

Case 3 (100% 
Nuclear Power 
Replacement) 22.32 307.79 3035648 2793.71 

Scenario 1 Sub_Scenario3 

Case 1 (No 
Nuclear Power 
Replacement) 24.95 364.45 3303455 3154.93 

Scenario 1 Sub_Scenario3 

Case 2 (50% 
Nuclear Power 
Replacement) 23.4 331.99 3104566 2911.09 

Scenario 1 Sub_Scenario3 

Case 3 (100% 
Nuclear Power 
Replacement) 22.84 298.76 3101435 2793.71 

Scenario 1 Sub_Scenario 4 

Case 1 (No 
Nuclear Power 
Replacement) 25.05 375.45 3393678 3154.93 

Scenario 1 Sub_Scenario 4 

Case 2 (50% 
Nuclear Power 
Replacement) 23.95 329.96 3250466 2911.09 

Scenario 1 Sub_Scenario 4 

Case 3 (100% 
Nuclear Power 
Replacement) 23.34 218.31 3171979 2793.71 

Scenario 2 Sub_Scenario1 

Case 1 (No 
Nuclear Power 
Replacement) 21.03 298.18 3560000 3511.12 

Scenario 2 Sub_Scenario1 

Case 2 (50% 
Nuclear Power 
Replacement) 19.62 272.19 3492000 3450.06 

Scenario 2 Sub_Scenario1 

Case 3 (100% 
Nuclear Power 
Replacement) 19.23 220.28 3434000 3271.57 

Scenario 2 Sub_Scenario 2 

Case 1 (No 
Nuclear Power 
Replacement) 21.55 318.64 3695000 3511.12 

Scenario 2 Sub_Scenario 2 

Case 2 (50% 
Nuclear Power 
Replacement) 20.64 280.12 3597000 3450.06 

Scenario 2 Sub_Scenario 2 

Case 3 (100% 
Nuclear Power 
Replacement) 19.46 227.08 3480000 3271.57 

Scenario 2 Sub_Scenario3 

Case 1 (No 
Nuclear Power 
Replacement) 26.17 324.78 3911453 3511.12 

Scenario 2 Sub_Scenario3 

Case 2 (50% 
Nuclear Power 
Replacement) 20.86 282.12 3760000 3450.06 

Scenario 2 Sub_Scenario3 

Case 3 (100% 
Nuclear Power 
Replacement) 19.92 239.87 3694000 3271.57 

Scenario 2 Sub_Scenario 4 

Case 1 (No 
Nuclear Power 
Replacement) 26.95 334.78 3934000 3511.12 
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Scenario 2 Sub_Scenario 4 

Case 2 (50% 
Nuclear Power 
Replacement) 23.68 302.12 3871000 3450.06 

Scenario 2 Sub_Scenario 4 

Case 3 (100% 
Nuclear Power 
Replacement) 21.54 256.5 3776000 3271.57 

Scenario 3-1 Sub_Scenario1 

Case 1 (No 
Nuclear Power 
Replacement) 23.19 352.53 2832000 2307.62 

Scenario 3-1 Sub_Scenario1 

Case 2 (50% 
Nuclear Power 
Replacement) 23.09 330.75 2775000 2273.88 

Scenario 3-1 Sub_Scenario1 

Case 3 (100% 
Nuclear Power 
Replacement) 22.83 260.03 2765000 2227.4 

Scenario 3-1 Sub_Scenario 2 

Case 1 (No 
Nuclear Power 
Replacement) 23.51 372.53 2913000 2307.62 

Scenario 3-1 Sub_Scenario 2 

Case 2 (50% 
Nuclear Power 
Replacement) 23.4 340.75 2860000 2273.88 

Scenario 3-1 Sub_Scenario 2 

Case 3 (100% 
Nuclear Power 
Replacement) 22.94 300.03 2847000 2227.4 

Scenario 3-1 Sub_Scenario3 

Case 1 (No 
Nuclear Power 
Replacement) 25.27 382.53 3039990 2307.62 

Scenario 3-1 Sub_Scenario3 

Case 2 (50% 
Nuclear Power 
Replacement) 24.8 335.75 2982000 2273.88 

Scenario 3-1 Sub_Scenario3 

Case 3 (100% 
Nuclear Power 
Replacement) 24.08 285.33 2963000 2227.4 

Scenario 3-1 Sub_Scenario 4 

Case 1 (No 
Nuclear Power 
Replacement) 25.5 356.47 3132000 2307.62 

Scenario 3-1 Sub_Scenario 4 

Case 2 (50% 
Nuclear Power 
Replacement) 24.92 335.58 3100000 2273.88 

Scenario 3-1 Sub_Scenario 4 

Case 3 (100% 
Nuclear Power 
Replacement) 24.28 305.96 3085000 2227.4 

Scenario 3-2 Sub_Scenario1 

Case 1 (No 
Nuclear Power 
Replacement) 23.44 326.78 2619000 1995.03 

Scenario 3-2 Sub_Scenario1 

Case 2 (50% 
Nuclear Power 
Replacement) 23.4 307.16 2612000 1892.99 

Scenario 3-2 Sub_Scenario1 

Case 3 (100% 
Nuclear Power 
Replacement) 23.37 264.55 2612000 1849.66 

Scenario 3-2 Sub_Scenario 2 

Case 1 (No 
Nuclear Power 
Replacement) 23.74 356.78 2712000 1995.03 

Scenario 3-2 Sub_Scenario 2 

Case 2 (50% 
Nuclear Power 
Replacement) 23.66 317.16 2707000 1892.99 

Scenario 3-2 Sub_Scenario 2 

Case 3 (100% 
Nuclear Power 
Replacement) 23.5 269.65 2705000 1849.66 

Scenario 3-2 Sub_Scenario3 

Case 1 (No 
Nuclear Power 
Replacement) 25.39 386.78 2837324 1995.03 

Scenario 3-2 Sub_Scenario3 

Case 2 (50% 
Nuclear Power 
Replacement) 25.03 327.15 2820000 1892.99 

Scenario 3-2 Sub_Scenario3 

Case 3 (100% 
Nuclear Power 
Replacement) 24.72 274.65 2810000 1849.66 

Scenario 3-2 Sub_Scenario 4 

Case 1 (No 
Nuclear Power 
Replacement) 25.74 396.96 2851000 1995.03 

Scenario 3-2 Sub_Scenario 4 
Case 2 (50% 
Nuclear Power 25.21 347.74 2837324 1892.99 
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Replacement) 

Scenario 3-2 Sub_Scenario 4 

Case 3 (100% 
Nuclear Power 
Replacement) 24.87 294.54 2832000 1849.66 

Scenario 4-1 Sub_Scenario1 

Case 1 (No 
Nuclear Power 
Replacement) 23.31 320.66 2486000 1903.91 

Scenario 4-1 Sub_Scenario1 

Case 2 (50% 
Nuclear Power 
Replacement) 23.02 302.05 2477000 1832.97 

Scenario 4-1 Sub_Scenario1 

Case 3 (100% 
Nuclear Power 
Replacement) 22.73 246.47 2480000 1749.07 

Scenario 4-1 Sub_Scenario 2 

Case 1 (No 
Nuclear Power 
Replacement) 23.58 340.66 2574000 1903.91 

Scenario 4-1 Sub_Scenario 2 

Case 2 (50% 
Nuclear Power 
Replacement) 23.51 322.05 2553000 1832.97 

Scenario 4-1 Sub_Scenario 2 

Case 3 (100% 
Nuclear Power 
Replacement) 23.4 256.47 2539000 1749.07 

Scenario 4-1 Sub_Scenario3 

Case 1 (No 
Nuclear Power 
Replacement) 24.45 370.66 2654924 1903.91 

Scenario 4-1 Sub_Scenario3 

Case 2 (50% 
Nuclear Power 
Replacement) 24.23 322.6 2629000 1832.97 

Scenario 4-1 Sub_Scenario3 

Case 3 (100% 
Nuclear Power 
Replacement) 24.12 266.37 2613000 1749.07 

Scenario 4-1 Sub_Scenario 4 

Case 1 (No 
Nuclear Power 
Replacement) 24.71 380.66 2689000 1903.91 

Scenario 4-1 Sub_Scenario 4 

Case 2 (50% 
Nuclear Power 
Replacement) 24.62 352.6 2665000 1832.97 

Scenario 4-1 Sub_Scenario 4 

Case 3 (100% 
Nuclear Power 
Replacement) 24.57 296.37 2660000 1749.07 

Scenario 4-2 Sub_Scenario1 

Case 1 (No 
Nuclear Power 
Replacement) 23.41 334.69 2750000 2239.6 

Scenario 4-2 Sub_Scenario1 

Case 2 (50% 
Nuclear Power 
Replacement) 23.02 290.98 2735000 2149.56 

Scenario 4-2 Sub_Scenario1 

Case 3 (100% 
Nuclear Power 
Replacement) 22.73 234.84 2713000 2058.61 

Scenario 4-2 Sub_Scenario 2 

Case 1 (No 
Nuclear Power 
Replacement) 23.58 345.23 2936000 2239.6 

Scenario 4-2 Sub_Scenario 2 

Case 2 (50% 
Nuclear Power 
Replacement) 23.44 303.33 2905000 2149.56 

Scenario 4-2 Sub_Scenario 2 

Case 3 (100% 
Nuclear Power 
Replacement) 23.18 258.87 2900000 2058.61 

Scenario 4-2 Sub_Scenario3 

Case 1 (No 
Nuclear Power 
Replacement) 25 364.69 3161589 2239.6 

Scenario 4-2 Sub_Scenario3 

Case 2 (50% 
Nuclear Power 
Replacement) 24.08 308.7 3076000 2149.56 

Scenario 4-2 Sub_Scenario3 

Case 3 (100% 
Nuclear Power 
Replacement) 23.91 264.23 3040000 2058.61 

Scenario 4-2 Sub_Scenario 4 

Case 1 (No 
Nuclear Power 
Replacement) 25.4 378.76 3234000 2239.6 

Scenario 4-2 Sub_Scenario 4 

Case 2 (50% 
Nuclear Power 
Replacement) 24.24 324.73 3208000 2149.56 
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Scenario 4-2 Sub_Scenario 4 

Case 3 (100% 
Nuclear Power 
Replacement) 24.02 289.45 3189000 2058.61 
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Appendix D   
D. 1 Different Load Profiles of Domestic Appliances  
(Time is in Minutes)  
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D.1.11. Home Entertainment (DVD Player, X-Box etc,) 
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D.1.13. Miscellenous Appliances  
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Appendix E   
E. 1 Flowchart of the Package  
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New Control Methods in Demand Side Management to Improve the Security of Supply in the 

UK’s Electricity Network 

 
Vandad Hamidi, Furong Li 
 
University of Bath.Bath.UK                                                                                               
 
 

ABSTRACT 
 
Distribution networks across the UK are expected to connect substantial embedded generation in near future as .One of 
the key means to combat climate change. The majority of embedded generation are expected to be renewables that have 
intermittent nature with poor persistence. This would pose serious problem to the   security and quality  of  supply  that  
distribution  network  operators  (DNOs)  have  license obligation    to  comply, (distribution network operators do not 
generally hold reserve, but take load shedding as the consequential action of not sufficient reserve).   Existing   
solutions   include:  1)   Backing up   intermittent generation by partially loaded plant or storage devices, they tend to be 
expensive and well research; 2) better managing demand so that they can follow changing patterns of generation. 
Demand side management is an old topic, traditionally they are used to smooth demand curve to maximise the 
efficiency of conventional generation where they can be controllable and predictable.  As the characteristic of future 
generation changes, new demand side mechanism needs to be sought, allowing the demand to follow the intermittent 
generation and is the subject of this research. The paper firstly looks into the potential demand manipulation that can be 
achieved from existing control mechanism and its associated value to the security of supply The paper then investigates 
the potential contribution to network security from greater demand side management and the requirement for additional 
control mechanism to achieve the full potential d benefit.  Finally, the benefits to the system security will be quantified 
to a system with varying degree of intermittent generation 
 
Keywords: Responsive Load, Spinning Reserve, Demand Side Management, Operational Reserve 
 
 

1. Introduction: 
 
The UK’s strategy is to generate 10% of electrical 
energy from renewables and 10GWe of CHP by 2010. 
Besides, UK is committed to reduce the CO2 emissions 
down to 20% by 2010. Distribution Generations (DG) 
have an important role to achieve these goals in the UK, 
although the present structure of networks circumscribes 
implementing DGs;   Having an adequate amount of 
power reserve is a must in all electricity networks to 
keep the system always stable and running to supply the 
loads with less interruption. 
Besides, by Demand Side Management Programmes 
network operators can improve the quality of supply, 
reliability and eliminate the issues regarding to peak 
load and unnecessary load shedding especially in 
domestic sector which is responsible for 29% of total 
electricity consumption of the UK.  
On the other hand maintaining the security of supply 
depends on several parameters. Spinning reserve has an 
important role is providing security for the system as it 
is an online source of generation which can be used with 
less delay (less then 10 seconds) and in case of 
contingency like dropping the frequency as a result of 
sudden and unexpected increase in load level or lose of 
a generation unit. Spinning reserve can be used up to 10 
minutes until supplement reserve becomes available.  

Classically, spinning reserve comes from an online 
source of generation which is not loaded fully. This 
leads to three consequences: 1) a plant may not operate 
at their most efficient settings; 2) a considerable revenue 
will be lost which otherwise could be sold in the energy 
market; 3) Requirements in reserve in a system with 
significant intermittent generation will grow, which will 
require more expensive and controllable generation to 
back up.  
Recently some researchers believe that by shedding 
some types of load for a short while, not only they do 
not make any inconvenience for consumers but also 
they can provide adequate amount of extra required 
power to keep the entire the electricity network stable. 
These loads could be those which their operation cycle 
does not have a visible effect such as air conditioning 
systems or fridges, in fact Passive Loads.  
Demand Side Management as a means of providing 
system reserve is a less attractive options.  Contracts for 
demand reduction at peak times are normally set up 
between network operators and large industrial 
customers.  For domestic consumers, economic 7 and 10 
are the main options to shift energy consumption from 
the peak hours to off-peak hours through economic 
incentives.  This of course is driven by consumer 
demand patterns, whereby, peak demands tend to be on 
the day time and trough demands tend to be at night.  To 
incentive consumers to consume more at night and less 
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on the day, DNOs set cheap tariff for night and 
expensive tariff for days. Therefore this research paper 
focuses on  
 
 
 

2. Demand Side Management Programmes: 
 
There are various DSM programmes have been widely 
introduced and used in most of the countries. In the UK 
there are several types of DSM programmes have been 
implemented since 1970’s oil crises which caused a big 
concern in terms of Energy Security in the world, 
particularly in Europe. DSM consists of several 
programmes which aim to control the loads in a way to 
benefit both consumers and utilities without any 
inconvenience for consumers. Domestic sector in the 
UK is responsible for about 29% of total Electricity 
consumption. This energy is being consumed in several 
ways. Figure 1 compares the domestic sector end-use 
consumption modes.  
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Figure1. Domestic Sector End-use Consumption in 
the UK[2] 

 
Space heating in the UK because of the typical climate 
of the country is the most consumer of total energy in 
domestic sector. For sake of this, most of the DSM 
programmes have focused on space heating throughout 
several schemes which load management if the most 
famous one.  
Load Management (LM) is one of the DSM 
programmes that have been widely exercised in most of 
the countries as it directly controls the load. The 
principle of LM is that the user profit increases during 
off-peak period, therefore controllable loads are vital in 
LM. They are included programmes such as multi tariff 
energy (known as Economy 7 and Economy 10 in the 
UK) which by shifting the loads from peak hours to off 
peak hours aim to clip the peak load in daily demand 
curve. DTI’s 2006 figures show that a standard credit 
Economy 7 customer with a non-home supplier, on 
average, paid £23 less than a customer who had not 
changed supplier.  Equivalent savings for direct debit 
customers were £39. 
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Figure2.Most Popular LM Programmes in Domestic 

Sector 
 
There are other LM programmes also which effect 
differently but ultimately they improve the load 
characters such as flexibility and load factor which are 
in benefit of both consumers and network utilities. By 
improving load factor network is less in need of 
temporary sources of power either comes from sources 
of reserve or from temporary generation units which are 
much more expensive than normal power as the 
difference between the peak load and base load is less 
therefore generation units which are committed to 
supply the demand can work in a continues cycle with 
less sudden increase in amount of delivered power.  
Figure2 shows the most popular load management 
programmes in domestic areas.  
In this paper southwest of the UK domestic areas have 
been considered for the research. In this area with 
25,492 domestic consumers; total electricity 
consumption is 116,811GWh which in comparison with 
industry and commercial sector with 118,832GWh is 
slightly less.  
Like most other parts of the UK peak load usually 
happens in winter time because of high demand of 
heating loads. On this research passive loads are 
considered as controllable loads because by putting 
control on them they will not cause any inconvenience 
for consumers.  
Electric Space Heating accounts just over 30% of total 
energy consumption in domestic sector. Demand side 
management programmes which have considered water 
heating or space heating systems are not very new. 
Ripple control systems have been introduced in 1960’s-
1980’s and still have widely been used to control water 
heating systems. Because of energy storage capacity of 
water turning off it does not make any inconvenience 
for consumer to participate in demand side 
management. These types of loads are considered as 
passive loads in terms of Demand Side Management.  
Another aspect of using the passive loads is to extend 
their use not only to manage the power consumption in 
a way that both utilities and consumers can benefit from 
it, but also to use the load as a backup in the network 
instead of some extra generations (spinning reserve) 
which are supposed to be for security of the network in 
case of contingency. In the following chapters we will 
see how load can be used as spinning reserve in the 
system; the main focus will be on renewable based 
generation 
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3. Power Reserve in the System: 

 
There are several types of Power Reserve available in 
the network. Each of them has specific application, such 
as compensating demand prediction errors and serving 
the loads in case of losing a unit etc. They are included: 
(1) Regulatory reserve (frequency response partners) [7] 
(2) Spinning reserve 
(3) Contingency reserve (Operating Reserve) 
Spinning reserve has several definitions but in general 
spinning reserve Service may be provided by generating 
units that are on-line and loaded at less than maximum 
output, ready to serve additional demand and which can 
be fully applied in ten minutes. Classically spinning 
reserve is calculated during unit commitment (UC). 
Spinning reserve is often required to be a certain 
percentage of the load or be capable of making up the 
loss of the largest generator while sometimes these 
reserve requirements have been calculated as a function 
of the probability of not having sufficient generation to 
meet the load. Table.1 presents some different equations 
which are used in different places to estimate amount of 
spinning reserve. 
The rate of Spinning Reserve / Average Demand is an 
indicator of reliability of the network as it shows how 
much energy is available   

 
Figure3: An example for Frequency drop and the 

frequency recovery in the network [4] 
 

 
Table1. Calculation of Spinning Reserve [5] 

 

 
Figure 3.Operation of different reserves in the Network [4] 
 

4. Spinning reserve in the UK: 
 
National Grid Company (NGC) is responsible to 
provide adequate amount of reserve for the system from 
different sources. The Spinning Reserve is among 
necessary services which NGC is obliged to provide 
along with black start [5]. The participants in providing 
reserve are free to provide the reserve either from 
generation units or through shedding the demand.   
Roughly about 1.5GW spinning reserve is usually 
planned for the system depending on time/day which 
usually is higher during winter. The power providers are 
being paid £/MWh they supply power, however the rate 
of Spinning Reserve varies during the day. Figure  
 
The NGC’s minimum   standard for units participating 
in providing spinning reserve (known as Fast Reserve) 
is [3]: 

1. Flexibility of the units providing reserve by a 
short notice either by generating power or 
reducing demand within 2 minutes short notice 

2. Minimum intractable block 50MW or 
combination of  more than one block equal to 
70MW 

3. Delivery rate of 25MW/min and commitment 
of minimum 15 minutes.  

 
Besides, the location of units participating in providing 
fats reserve is also considerable although it has not been 
noted as a requirement.  
Meeting such requirements is a must and failure to meet 
these requirements means the bidder will not be 
considered as a candidate to participate in fast reserve 
market.   
5. Responsive Loads as a source of Reserve: 
 
I.e. an average ownership rate of refrigerator units in the 
UK domestic areas is 1.7%. It means in each house on 
average there are more than one unit of refrigerator. If 
an average power consumption of a fridge is assumed 
150W in operation mode (about 140W on defrosting 
mode; depending on type of device) therefore by having 
about 205W passive load in each household which 
comes from refrigeration units in total in an area like 
Bath and North East Somerset about 15.68MW passive 
load exists. Not only refrigerator units can be classified 
as passive load, devices such as electric heater, air 
conditioning, washing machine, dryer etc. they are all 
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have the capability of being controlled either 
automatically or be called by network operator in event 
of need of shedding the load. By extending this 
assumption into the UK electricity network in which 
more than 116,811GWh power is being consumed just 
in domestic sector, where in that day about 640MWh 
fast response (Spinning Reserve) has been scheduled by 
National Grid, then by having responsive loads roughly 
6% of total of demand (just from refrigeration units, 
assumed all are in duty cycle) is always available to be 
shed and work instead of having spinning reserve in the 
system. [2] 
Figure 4 shows daily requirement of fast reserve in our 
exampled day (16th December 2005). Fast reserve 
requirement is currently being scheduled for all the days 
in the month on the same daily basis. This requirement 
covers weekdays, Saturdays, Sundays and Bank 
Holidays in December. 
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Figure4. Fast Reserve requirement in December 2005 
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Figure5. Total Demand, Domestic Demand, 

Domestic Responsive Load and Fast Reserve 
required on our example day. 
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Figure6. Domestic Responsive Load and Fast 

Reserve required on our example day. 

Figure6 clearly shows that spinning reserve 
requirements can be covered by either shifting 
responsive loads or shedding them in case of need to 
utilize spinning reserve. This estimation may be just a 
bit far from reality as the power consumption in 
domestic area does not necessary follow the total 
demand curve therefore the amount of available 
responsive load does is not always a certain percentage 
of total demand. But this estimation is necessary for the 
first instance as the total domestic power consumption 
pattern is unknown at the moment. 
By extending this topic responsive loads can have a 
capacity credit like generation units, depending on 
regions and the amount which each unit can contribute 
as an ancillary source of reserve in the system:  
 

demandresponsiveTotalaDt
CapacityLoadresponsiveS

DSaDt
DemandFlexibleregionalCaRR

DemandregionalCaDD
HouseholdperLoadFlexibleaverageaR

HouseholdperDemandaverageaD
LoadFlexibleTotalR

DemandTotalD
ConsumersofNumberTotalC

=
=

×=
×=
×=

=
=

=
=
=

 

 
Responsive Load Capacity could be a unique number 
for each household, district, town etc.  
By knowing this number network operators can 
determine the possible amount of demand which could 
be shed in case of needing extra power. Therefore aDt  is 
a function of R and ND which demonstrates the total 
amount of responsive load at any time. aDt  could be 
vary time to time according to the demand profile of the 
network. It can also be vary if loads can set to be in a 
way to respond in just specific times, i.e. just in peak 
hours then the consumers can make sure they will not be 
called to shed their loads in off peak hours. can 
actually have 2 different values; (1) one is the general 
amount of its contribution in 24hours which indicates 
the contribution to Spinning Reserve and (2) another 
rate can be its Sectional Value which presents the 
capability of demand to be reduced during peak hours to 
avoid using ancillary sources of generation for just a 
few hours. The Sectional Value becomes more 
important in networks with significant amount of 
renewable generation where utilities make more effort 
to be relied on present sources are generation rather than 
importing power from non-renewable sources. In next 
section we will assess the ability of responsive loads to 
provide enough reserve for the system. 

S
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6. Responsive Loads in Renewable Generation 

System: 
 
As the UK’s strategy is to generate 10% of total 
electricity from renewable sources by 2010 and because 
of intermittency nature of these sources, the operation 
reserve and spinning reserve margin of the system may 
change depending on rate of penetration of these 
sources although the believe is on no change in spinning 
reserve by 10% penetration of renewable source and just 
36MW additional regulation to maintain the frequency 
at no-wind level [1]; i.e. in the future we should expect 
to see more small wind farms participating in supplying 
the loads. However at the moment because of existing 
conventional system we are always relied on other 
sources as a backup to supply the loads in case of any 
failure or sudden increase in load etc. but in the future 
we expect to be relied more on renewable sources rather 
than non-renewables.   
Thereby responsive loads can make their most of their 
efficiency in renewable systems which fast responding 
to failure or lose of any units can be maintained by 
reducing  the demand very fast and as serving the loads 
can be optimized according to level of available 
generation. The nature of the responsive load’s 
contribution in maintaining reserve is slightly different 
than before and it will be achieved by a mixture of 
responsive loads and energy storage units; during low 
output of generation units such as when wind’s speed is 
slow in wind turbine units responsive loads can make a 
big contribution on supplying loads for longer period of 
time from renewable sources without starting to use 
energy storage devices.  
Responsive loads in renewable systems by clipping the 
extra demand at the times when generation rate is not 
enough to supply the total load will improve the 
reliability of the system; in fact they make the system 
less needful to ancillary sources of power in intermittent 
based generation networks.  
Responsive loads as a means of reserve have some 
advantages over generation units providing reserve; i.e. 
a big constraint in providing spinning reserve from 
generation units is ramping rate. Participant units such 
as pump hydro units have all different ramping rates; it 
means they have different level of providing spinning 
reserve in MW per minute, times 10 minutes. Although 
NGC have the minimum ramping rate level of 
25MW/Min but not all the existing generation units can 
participate in providing fast reserve.  
Responsive loads are faster to response in comparison 
with ordinary fast reserve. There will not be any limit in 
terms of speed of shedding the passive loads as long as 
committed loads act appropriately. The problems such 

as synchronising and network transmission limits will 
be eliminated as well.  
 
7. Requirements of Implementing Responsive Loads: 
  
To implement the responsive load an accurate analysis 
of load profile is essential at the first instance to find the 
resources which are capable as responsive load at each 
period of time i.e. in summer we can not rely on heating 
systems which are usually turned off naturally. This can 
work like unit commitment and there should be a same 
programme which can determine availability of 
responsive loads. Because most of the passive loads 
have the nature of smooth power consumption therefore 
we can expect that the determined amount of their 
contribution.  

∫
=

=

59:23

00:00

.
t

t

dtDr MWh Responsive Demand available for Utilization 

    
Responsive loads are in fact non-spinning sources of 
reserve for the system that must comply same  
Because responsive loads are in fact specific types of 
loads which can response to power variations therefore 
analysing the load curve roughly will give us a 
prediction of how much responsive load is available in 
entire system. Besides, online monitoring of the system 
seems to be an essential task to have accurate 
information of real time condition of reserve loads. 
Therefore communication between load and system 
should be designed. 
Also there should be some financial incentives for 
consumers who take part in Demand Response 
programme. It can be done through guaranteed money 
back to them or subtracting from their electricity bill for 
the hours that they are supposed to shed their loads. 
Another way to bring the consumer’s interest to this 
programme is to establish a market such as the present 
reserve market operated by NGC in which load owners 
can  offer the time and volume of the load that are 
happy to shed. [3] 
Fast reserve in the system must have some 
characteristics that responsive loads need to have to be 
able to be recognised as a source of reserve; flexibility 
of spinning reserve is a must and it means that at any 
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time that system needs extra power it must be provided 
by responsive loads. This obligates all the loads to 
respond to system’s call for shed in a reasonable time. It 
will happen only if a reliable communication system 
between network operator and load exists. This scenario 
is become more important in networks with high 
capacity of intermittent generation as the output of the 
network is changeable depending on intermittent 
sources such as wind, therefore network operator-
demand communication may happen several times a 
day.  
 

8. Constraints: 
Shedding the loads for a long period is not a possible 
option as it brings trouble for consumers; imagine air-
conditioning loads can not be turned off for a long time 
as it might be very hot. Besides, by a small financial 
incentive consumers are not happy to shed their loads as 
the profit and convenience that they loose might be 
more than they get by participating in this programme.  
Another big constraint is controlling so many loads 
which need to be tripped at the same time and it may 
work as a huge transient in the system and make the 
system unstable.  
On the other hand the cost of lost load is another issue 
as by shedding the load we will loose the revenue which 
used to come from supplying the loads, however the 
cost evaluation is complex as not only the lost load must 
be considered, but also the cost of the communication 
and devices which need to be installed is also must be 
considered. 
 

Conclusion: 
By controlling some types of loads in the system the 
amount of reserve which usually is provided by 
generation units can be provided by shedding the loads 
which will not cause any inconvenience for consumers. 
By extending this into the whole system a kind of 
market can be provided for responsive demand which 
can work like the reserve market in which the 
participants can declare the amount that they are willing 
to provide as a responsive load.  
 

Future Work: 
The evaluation of responsive load and the amount which 
can change the load factor is the topic which will be 
focused on in the future as well as assessing the 
reduction in the cost by reducing the committed units in 
supplying the load and providing reserve.  
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Abstract— The purpose of this paper is to assess the current level 
of demand responsiveness among domestic loads.  The paper first 
studies different load profiles of domestic consumers which are 
composed of power consumption of end-use appliances. 
Afterwards, it differentiates those loads which could become 
responsive and evaluates the aggregated effect of these loads and 
the margin which could be derived from them. The area which 
has been considered is a residential area; consists of results have 
been demonstrated on a real residential network in southwest of 
the UK; small residential area in city of Bath.  
 
Index Terms-- Responsive Demand, Dynamic Demand, Load 
Profile, Demand Side Management. 

 INTRODUCTION 
Along with restructuring the electricity market in the UK 

and government’s aim to draw 20% of total electricity from 
renewables together with reducing the carbon dioxide 
emissions down to 26-32% by 2020, demand side has been 
given a superior likelihood to contribute in attaining this 
target. Maintaining the security of supply is also becoming 
increasingly strategic issue considering both volatility of 
wholesale energy prices, and limited facilities for electricity 
generation, transmission and distribution which has resulted 
that suppliers becoming unable to fulfill their contractual 
obligations.  

Domestic sector in the UK is responsible for nearly one 
third of electricity consumption and the related emissions into 
the atmosphere resulted by electric power stations.  In the UK, 
the domestic sector is the largest contributor to winter peak 
demand, and growing domestic electricity demand is straining 
the available power generation and transmission 
infrastructure, and meeting the peak demands in winter is 
increasingly expensive and high price spikes is seen as shown 
in figure 1 [1].    
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Figure 1. Wholesale Price of Electricity at different Demand Levels 

Demand has been participating in improving economy, 
security and reliability of electricity industry as well as 
eliminating the environmental concerns since the beginning of 
introducing Demand Side Management (DSM) programs in 
the early 1970’s. Dynamic Demand (Responsive Demand) is 
one of the DSM methods which is intended to be utilized 
while supplying the load is either restricted because of a 
network constraints or demand has exceeded over the 
available power. Section 18 of the Climate Change and 
Sustainable Energy Act [2], requires the government to report 
on responsive demand technologies and determines whether it 
is appropriate to take further action to use responsive demand 
technologies or not.  Services which are currently provided 
through responsive demand require communication between 
load and network in order to dispatch negative load upon to 
network request to provide services such as spinning reserve 
[3], frequency control [4], Short-Term Operating Reserve 
(STOR) [5].    

The negative aspect of current schemes for employing 
responsive demand is that they all consider large consumers 
which upon to instruction of network operator are able to 
reduce huge bulk of load (i.e. minimum 3MW for STOR) and 
in fact small domestic demand are not able to participate in 
these programmes, nonetheless domestic sector accounts for 
29% of total electricity consumed in the UK and loads in this 
sector have the capability to become responsive and if the 
collective-effect of responsive demand derived from 
residential consumers be considered it may have more 
advantages than current methods in particular in the UK as 
residential consumers are mostly located in high density areas 
and  many issues as a result of concentration of domestic 
demand such as need for distribution network reinforcement, 
may be rectified by considering aggregated effect of 
responsive demand in domestic sector.  

The biggest barrier in utilizing the domestic demand 
response is lack of information regarding the consumers’ 
behaviour and consumption pattern. Small domestic 
appliances have a random operation pattern depending on the 
type of consumer. Studying the individual consumers’ load 
profile is also not feasible due to the small demand level 
among domestic consumers. Therefore, it is required to have a 
generalized tool which is applicable to a group of consumers. 
Since the aim is not to forecast the demand, but to assess the 
potential for demand responsiveness, such generalized tool if 
takes the factors which have impact on consumption pattern 
results in satisfactory outcome.   

 In this paper a generalized tool to assess the 
responsiveness level among domestic consumers is presented. 
Electricity tariffs which have impact on consumption pattern 
of domestic consumers are taken into account and different 
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load profiles for different groups of consumers are studied. 
Then by distinguishing those loads which have the potential to 
become responsive through numerical example on domestic 
sector, total responsiveness level is assessed.  

This structure of this paper is as follows: section two 
studies different load profiles in the UK and shows the impact 
of different electricity tariffs on the load profile of domestic 
consumers. In section three, the load profiles of domestic 
consumers are studied by breaking them down into the load 
profile of end-use appliances.  In section four the 
responsiveness is explained and aggregated amount of all the 
loads which could become responsive is modelled. Finally by 
presenting a numerical example in a small residential area 
with different type of load profiles, total amount of load which 
could become responsive is quantified.  

 LOAD PROFILE IN THE UK 
Load profile shows the consumption pattern of power and 

is one of the unique characteristics of each consumer because 
of the dissimilarity need for power in terms of time, level 
depending on several factors; such as number of people living 
in each house; their job, age and education level, type of 
house, climate conditions etc. In the UK, 8 different standard 
load profiles have been introduced by Elexon. They are 
included:  

1. Profile Class 1 Domestic Unrestricted Customers; 
2. Profile Class 2 Domestic Economy 7 Customers; 
3. Profile Class 3 Non-Domestic Unrestricted Customers;  
4. Profile Class 4 Non-Domestic Economy 7 Customers; 
5. Profile Class 5 Non-Domestic Maximum Demand 

(MD) Customers with a Peak Load Factor (LF) of less 
than 20%;  

6. Profile Class 6 Non-Domestic Maximum Demand 
Customers with a Peak Load Factor between 20% and 
30%; 

7. Profile Class 7 Non-Domestic Maximum Demand 
Customers with a Peak Load Factor between 30% and 
40%;  

8. Profile Class 8 Non-Domestic Maximum Demand 
Customers with a Peak Load Factor over 40%.   

 
Power consumption in particular among domestic 

consumers is either non-restricted or committed to some sort 
of demand management. DSM programmes aim to modify the 
load profiles of consumers in order to increase the efficiency 
and reliability of power systems. Some programmes directly 
change the load profile by installing the devices which control 
the power consumption of appliances such as using artificial 
intelligence based load control for domestic lighting. Other 
programmes may commit consumers to control their power 
consumption in return of financial incentives; Time-of-Use 
(ToU) tariffs which offers cheaper rate for power consumption 
during a period. ToU tariffs for households were first 
introduced in 1965 and led to a very important development of 
electric storage water heaters and the corresponding growth of 
off-peak consumption [6].  In the UK; Economy 7 is the well-
known scheme for domestic consumers and it gives 7 hours 
continuous low tariff power (mostly overnight) to consumers. 

Another scheme is called Economy 10 in which 10 hours low 
tariff is split between day and time; usually 2 hours in the 
morning, 3 hours in the afternoon and 5 hours overnight.  

In 2006 16% of total domestic consumers were committed 
to Economy 7 tariff; this is equal to 27% of total electrical 
energy consumed in domestic sector [7]. The commitment 
level varies across the country but in general consumers save 
money through reducing their consumption during the day and 
shift their demand in off-peak hours. Figure 2 and 3 show 
different types of domestic load profile for the autumn season 
in the UK.  
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Figure 2. Domestic Unrestricted Load Profile 
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Figure 3. Domestic Economy 7 Load Profile 

3. DOMESTIC END-USE ELECTRICITY CONSUMPTION 
Total electrical energy consumed is aggregated individual 

appliances power consumption. Domestic appliances are 
divided into different groups; cold and wet appliances, brown 
appliances, cooking and lighting and miscellaneous appliances 
[8]. Table I shows the domestic electrical appliances and 
figure 4 corresponds to total electricity consumed by domestic 
appliances in million tones of oil [9].    

 
TABLE I.  DOMESTIC LOAD GROUPS 

Type 
 

Members 
 

Cold  Appliances  
 
 
 

Refrigerators: one door refrigerators with or 
without frozen compartment, fridge-
freezers: two door combination 
refrigerators ,Upright freezers,  chest 
freezers 

Wet Appliances Washing machines: any automatic washing 
machine including the washing cycle of 
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washer-dryers, Tumble dryers: all types of 
dryers including the drying cycle of 
washer-dryers, dishwashers 

Cooking 
Appliances 

Electric ovens: including grills Electric 
hobs Microwaves: includes combination 
microwave/grill/convection ovens  Electric 
kettles: includes all types of electric kettle 
Mixer (Hand mixer or Stand-up mixer) Hot 
drinks makers: coffee and tea makers, 
Sandwich toasters Pop-up toasters Deep fat 
fryers, Electric frying pans Slow cookers 
Cooker hoods Food preparation appliances: 
mixers, blenders, processors, whisks etc. 

Lighting 
Appliances 

Incandescent: 100W, 60W and 40W, 
Tungsten halogen: an average wattage of 
30W Fluorescent strip: an average wattage 
of 63WCFL (compact fluorescent light 
bulb): an average wattage of 15.3W 

Brown 
Appliances 

Televisions, VCRs (video cassette 
recorders), Non-portable audio equipment: 
hi-fi systems, record players etc Satellite 
control boxes for TVs, Cable control boxes 
for TVs, Portable audio equipment: 
Cassette recorders, radios, clock radios, X-
boxes (games etc.)  

Miscellaneous 
Appliances  

Irons: steam irons and dry irons Vacuum 
cleaners DIY equipment: drills, torches, 
battery chargers, Garden equipment: lawn 
mowers, trimmers, hedge trimmers, Other 
home care equipment: sewing machines, 
floor polishers, lights on extension cords,  
Hair styling equipment: hair dryers, curling 
tongs Small personal care appliances: 
electric toothbrushes, electric razors, 
Electric towel rails, Electric blankets 
Electric instantaneous showers, Central 
heating pumps, Personal computers, 
Computer printers,  slide projectors, electric 
typewriters etc. 
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823
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Figure 4. Domestic End-use Electricity Consumption in 2005  

(Million tonnes of oil equivalent)  
 

Each household depending on factors influencing on 
overall power consumption has different load profile. These 
factors known as behavioural factors included:  geographical 
location of houses, socio-economic factor includes 
employment, age, education, size and type of the houses, 

number of occupants etc. Mansouri et all in [8] has 
demonstrated these behavioral factors which change the load 
profile in the UK. Ownership rate is the total number of 
appliances divided by the number of households owning at 
least one of each device. Ownership level of different 
domestic appliances in the UK in typical is shown in figure 5 
[9]. This graph indicates that on average most of the domestic 
consumers in the UK own at least one “Iron”, however this 
may change for a household with 9 members living together.  
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Figure 5: Ownership rate of domestic appliances 

 
The general equation to calculate the total daily power 

demand that is applicable to all end-use appliances is:  
 

tiit FiCNDi ××=                  (1) 

∑ =

=
=

59:23

00:0
. t

t tDiEi α                   (2) 

where:  
tDi  is total power required by component i at time t; 

iN   is the number of appliances of type i ; 

iC   is load type i energy consumption (watt); 

tFi  is the fraction of the connected load of type i in at time t ; 
Ei   is the daily energy consumption of load type i.  

As  in particular for domestic sector depend on type of 
day (weekday, Saturday, Sunday) another coefficient”

tFi
α ” 

needs to be multiplied to the equation (2) in order to 
differentiate the energy consumption of each appliance in 
different days.  Besides, which represents the number of 
appliances of type i depends of socio-economic situation of 
each household. Therefore a comprehensive aggregated 
demand requires considering these modules as well.  

iN

Time-of-use tariff programs change the mode of operation 
of domestic electrical appliances; they mainly influence on 
space heating and water heating as shifting the time of 
operation of these two end-use appliances does not cause 
inconvenience and overall satisfaction of consumers is not 
affected. Figure 6& 7 shows the end-use power consumption 
in domestic unrestricted and domestic-economy 7.  
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Figure 6: Domestic non-restricted End-use Power Consumption  
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 Figure 7: Domestic Economy 7 End-use Power Consumption 

4. RESPONSIVE DEMAND 
Responsive Demand (Dynamic Demand) refers to the 

reduction of customer energy usage at times of peak usage or 
contingency in order to help address system reliability, reflect 
market conditions and pricing, and support optimization or 
deferral. Demand response programs may also include 
dynamic pricing/tariffs, price-responsive demand bidding, 
contractually obligated and voluntary curtailment, and direct 
load control/cycling.  Responsive demand as one of the DSM 
programmes has been used in power system since 1960’s 
where ripple controllers had been installed with the intention 
of reducing the energy consumption of water heating units as 
one of the direct load management methods [10]. Recently 
new type of responsive demand has been introduced to 
provide ancillary services such as spinning reserve.  

There are two major categories of responsive demand [11]:   
1.  Price-based demand; such as response real-time 

pricing (RTP), critical-peak pricing (CPP) and time-of-use 
(TOU) tariffs, give customers time-varying rates that reflect 
the value and cost of electricity in different time periods.  

2. Incentive-based demand response programs pay 
participating customers to reduce their loads at times 
requested by the program sponsor, triggered either by a grid 
reliability problem or high electricity prices. 

To evaluate the amount of load which could become 
responsive it is important to know the load profile of the 
proposed consumer. If load are to become responsive like load 
shifting programs the overall satisfaction of consumers should 
not be affected, therefore only those loads may become 
responsive which have more elasticity and may be shed in 
response to network operator or even autonomously  by 
detecting the network variations. These loads named “Passive 
Loads” may include Heating, Wet and Cold appliances. 

Depending on the tariff method which customers are being 
billed the amount of responsiveness varies. Figure 8 shows the 
amount of available load which could become responsiveness 
in percentage of total demand at each hour.   
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Figure 8: Available Load with Responsiveness Capability  

5. NUMERICAL EXAMPLE IN DOMESTIC SECTOR 
This paper aims to show how in a network with different 

load tariffs, the level of responsiveness may change. The 
proposed network is a small area in the city of Bath; in the 
Southwest of the UK. The area which has been studied is 
mainly residential including a major educational centre which 
includes halls of residence. In table II the area’s data has been 
demonstrated [12]. Our study to calculate the level of 
responsiveness has only considered the domestic sector of this 
area despite the fact that industrial and commercial consumers 
may have also opportunity to make some of their loads 
responsive.  

TABLE II. BATH AND NORTH EAST SOMERSET AREA MIDDLE SUPER 
OUTPUT ARE (SOA)12 DATA  

Total Population 9,435 
Number of Households 3,459 

Number of non-restricted domestic 
meters 

3267 

Number of domestic Economy 7 
meters 

625 

Number of industrial/commercial 
meters 

434 

 
To calculate the total demand it is important to distinguish 

two different load tariffs as total level of responsiveness is 
different in each case, sum of responsiveness level is 
quantifies by multiplying number of meters which represent 
Economy 7 tariff consumers by the responsiveness level of 
this profile, plus multiplying number of meters which 
represent non-restricted consumers by the responsiveness 
level of this profile and divide it by total number of domestic 
consumers: 

NT
reNernNnRD tttt

t
)()( ×+×

=            (3) 

where  
tRD  is total level of responsiveness at time t;  

tNn is the number of non-restricted consumers;  

tNe is the number of Economy 7 consumers;  

trn is the level of responsiveness for non-restricted consumer 
at time t;  

tre  is the level of responsiveness for Economy 7 consumer at 
time t;  
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NT is total number of domestic consumer.  
Figure 9 shows the total level of responsiveness in this area 
among domestic loads.  
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Figure 9: Total Level of Responsiveness  

 
It is observable from figure 9 that responsiveness level 

does not necessarily correspond to the overall demand level at 
different times. In fact, it is dependent on different types of 
appliances which are used. Total responsiveness level over 
night is higher compare with other times, since major 
electrical appliances at these times are night storage heaters, 
and fridges which both can become responsive.  

Such information can be used by different utilities.  An 
electricity supplier can contract domestic demand response to 
lessen the need for purchasing the electricity at high prices 
from the market, and in return offer incentives to the domestic 
participants. A distribution network operator may also 
contract domestic demand response to minimize the stress on 
distribution networks by reducing the sudden increase in 
demand, and in the long-term it may alleviate the need for 
network reinforcement as a result of demand growth. If 
domestic demand response is offered to large number of 
consumers, this could benefit the network operator in 
balancing the demand and supply process. In contingencies 
such as losing a generator, or fault on a transmission line, 
dispatch pattern and power transit from different zones will 
have to be changed to maintain the stability of the system. In 
many occasions load shedding occurs as network or 
generators are unable to supply the current demand level. 
Since domestic demand response can be used instantly and is 
available at different zones, maintaining demand-supply 
balance will be possible through reducing the demand from a 
group of domestic consumers while the interruption in the 
overall service will be minimized.  

6.

7. 

 CONCLUSIONS 
Responsive demand is currently providing variety of 

services for power systems. Demand response as a product is 
either utilized as a reliability based product, or for economical 
purposes. In both cases, information regarding the 
concentration, location and capacity of available demand 
response is required. This technology has been employed in 
many power systems across the world, and industrial loads are 
the major participants. Domestic consumers have not 
benefited from this technology, neither the network, as 

quantifying the level of responsiveness for domestic 
consumers requires performing load profile assessment for 
individual customers and aggregate the total load profile of a 
group of consumers. As domestic demand level for individual 
consumers is very small compare with large industrial loads, 
such assessment requires having generic load profiles of 
different appliances so the calculations are simpler. This paper 
proposed a generic approach to quantifying the level of 
responsiveness among domestic consumers. Load profile of 
different appliances owned by a group of consumers are 
derived and depending on their electricity tariff which 
influences the operation pattern of different appliances, total 
load profile is modelled. It was shown that demand response 
can be provided by certain types of domestic appliances. 
Hence, it is required to study those appliances to see what 
proportion of demand can become responsive.  
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Abstract –In this paper, the impacts of domestic re-

sponsive demand on increasing the security, reducing the 
emissions and production cost in an intermittent system is 
presented. Additional benefits such as value of wind and 
reducing the need for investment in expanding the net-
work is also demonstrated. The quantification was evalu-
ated on the IEEE 30 busbar system through Security Con-
straint Unit Commitment (SCUC). 

Keywords: Responsive Demand, Renewable Energy, 
Security Constrained Unit Commitment, Demand Side 
Management 

1 NOMENCLATURE 
),,( secC  Objective function (cost, emission and security)

  
I Number of generation unit 

i
 Scheduled power for unit i p

l
 Power losses in the network p

Dp  Power Demand 

r
 Power Reserve p

Si Security violation 
sα  Scaling security factor 
cα  Scaling cost factor 
eα  Scaling emission factor 
sτ  Boolean variable for security 
cτ  Boolean variable for production cost 
eτ  Boolean variable for emission 

FCi  Fuel cost 
MCi Maintenance cost 
STi  Start up cost 
SDi  Shut down cost 
BMi Base maintenance cost 
IMi   Incremental cost 

iα , iβ ,c Cost coefficients 
TSi   Turbine start up cost 
BSi Boiler start up cost 
MSi Start up maintenance cost 
Di Number of hours down 
ASi Boiler cool down coefficient 
K Incremental shutdown cost 
α , β ,γ ,δ ,ε Emission coefficients 
Sv Voltage security violation 
Sg Generator reactive power security violation 

vτ  Voltage Boolean variable 
bτ  Branch flow Boolean variable 
gτ  Generator re-power Boolean variable 

CSPPi      Capacity Limit of Unit i to provide Spinning  

 

           Reserve 
SPi          Maximum contribution of unit i to spinning    

                reserve 
Sb Branch power flow security violation 

2 INTRODUCTION  
With increasing fuel prices and environmental con-

cerns, the government in the UK has obliged energy 
suppliers to obtain a specific and annually increasing 
percentage of the electricity they supply from renewable 
sources. This is known as Renewable Obligation (RO) 
target and the target is 10% for 2010, and subsequently 
rising to 15.4% for 2015–2016 [1]. Since the cost of 
wind turbine generators and therefore wind generation 
cost have been reduced to a great extent and the UK is 
one of the windiest countries in Europe, integration of 
windfarms is economically and environmentally attrac-
tive in windy regions and there is widespread public 
support for them. Therefore the prospectus for wind 
industry will be that they may become among major 
power production means in near future [2].  

However, the intermittency and diffuse nature of 
wind energy creates difficulty in easily integration of 
them into the network. On the other hand, network 
limits will further push this issue by problems such as 
network congestions in transmission lines or voltage 
rise in busbars in case they may not be fully dimen-
sioned to accommodate additional large scale wind-
farms. These problems necessitate subsequent changes 
in conventional methods of operating the power system 
and additional means such as providing extra reserve or 
backing up wind resources with conventional plants or 
using 1FACTS devices to mitigate transmission conges-
tion.  

Demand Side Management (DSM) programmes 
have been practicing widely almost in all the countries 
since 1960-70’s. The ultimate goal of DSM pro-
grammes is to increase the efficiency of energy con-
sumption in demand side which will benefit both con-
sumers and utilities. DSM consists of several pro-
grammes which all influence over consumer’s energy 
consumption pattern; i.e. in the UK multi-tariff electric-
ity known as Economy 7 and is very well known. Con-
sumers can benefit from cheaper electricity during off-
peak and for electricity utilities meeting the demand 
will be easier as total peak in the network will be re-
duced. Lower peak will result in more reliable power 

                                                           
1 Flexible Alternating Current Transmission System device is used 

to enhance controllability and increase power the transfer capability of 
the network. 
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system, cheaper electricity and it defers early network 
reinforcement.  

Generally DSM programmes are designed to make 
the load more elastic by mechanism such as shifting or 
disconnecting the load in order to [3]:  

1. reduce the peak demand; 
2. fill the demand curve valleys; and 
3. bring strategic load growth. 
 
The problem of current practiced DSM programmes 

is that they are unable to mitigate intermittency issues 
dynamically. Reducing peak load may help to lessen the 
need for utilization of peaker units to serve the demand 
but in case of loosing the total power coming from a 
windfarm, they are not the solution. On the other hand 
as renewables may be integrated mostly in remote dis-
tances at distribution level where network may also be 
limited then need to reinforce the network may also add 
up on top of these to transport the extra power from 
renewables.  

Responsive demand as one of the DSM programmes 
has been in power system since 1960’s where remote 
switching ripple controllers where installed in order to 
reduce the energy consumption of water heating units as 
one of the direct load management methods [4]. Re-
cently new type of responsive demand has been intro-
duced to provide ancillary services such as spinning 
reserve. Responsive demand is a technology which 
enables the demand to respond via communication or 
autonomously and be disconnected from the circuit until 
the system recovers itself either form a contingency or 
power shortage [5]. Price Responsive Demand is also 
another type of responsiveness in which demand can 
respond to generation price variations [7]. Responsive 
demand for large bulk loads is currently being practiced 
by system operators for reserve and frequency regula-
tion purposes [17].   

Previous researches have studied the impact if re-
sponsive demand on power system operation and con-
trol including reducing emission, cost saving, providing 
spinning reserve and frequency regulation [6-10]. How-
ever their studies are based on industrial loads which 
are large bulk loads.  

The contribution of this paper is first to demonstrate 
the potential of demand responsiveness in domestic 
sector among small loads. This evaluation has consid-
ered power consumption pattern of different appliances 
in domestic sector. Then it is shown that how different 
DSM methods can benefit the power system operational 
parameters; fuel cost, emission and security violation 
index, when renewables are penetrated into the system. 
Finally responsive demand dispatching algorithm is 
proposed and the benefits of responsive demand is also 
presented.   

3 RESPONSIVE DEMAND IN DOMESTIC 
SECTOR 

Power consumption in domestic sector in different 
networks has different patterns depending on socio-

economic factors of the society. Other factors such as 
energy management programs also change the demand 
curve shape. But in general domestic sectors tends to 
have two peak demand during the day, one in the morn-
ing when people are getting ready to go to work and 
demand for power is high because of cookery, hot water 
and lighting loads are all being utilized. Another peak 
which is higher usually happens in the evening, when 
people tend to eat dinner, watch TV and more lighting 
loads are consuming energy. The aim of load manage-
ment programmes; such as Economy 7 which offers 
cheaper tariff for electricity to consumers, is to shift a 
proportion of these peak demands to off peak hours.  
Figure 1 shows typical domestic demand with different 
electricity tariffs. It can be observed that Economy 7 
tariff increases the power consumption during the off 
peak periods. This will lead to an increased domestic 
night time load giving a more balanced use of the elec-
tricity network across the day. 
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Figure 1:   Different Domestic Power Consumption Patterns 

Shifting the demand will benefit the power system in 
many aspects; reducing the variable cost of meeting the 
demand and reducing the total system peak which will 
result in meeting the future increasing demand with 
delayed network reinforcement.  

To lessen the impact of sudden power loss resulted 
by intermittent plants, the existing DSM methods which 
have been practicing in domestic sector, may not miti-
gate this problem. The technology which will enable the 
loads to respond to the system incidents such as power 
output fluctuations of renewables, overloading the lines, 
etc. is responsive demand.  

In domestic sector, different types of load have the 
capability of becoming responsive; those with passive 
mode of operation and those which are not time de-
pendant such as fridge or air conditioner. Demand for 
electricity is indirect, consumers actually demand the 
services provided by the electricity rather than the elec-
tricity itself. Therefore passive demands are those which 
minor interruptions in their mode of operation do not 
have any effect on consumers overall satisfaction of 
delivery of the electricity service. 

The first step to implement such demand 
responsiveness is to identify those loads which are 
capable to become responsive.  Figure 2 and 3 show 
different duty cycle of different types of load in 
domestic sector in twodifferent charging tariffs. Figure 
2 represents Economy 7 when peak usually happens in 
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the early hours of the morning and figure 3 shows a 
single tariff system with normal peak time in the 
evening. Table 1 also shows the different groups of load 
in domestic sector.  
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Figure 2:  Multi Tariff Domestic Demand (Economy 7) 
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Figure 3:  Single Tariff Domestic Demand 

 
Type 
 

Members 
 

Cold  Appli-
ances  

Refrigerators and fridge-freezers 

Wet Appli-
ances 

Washing machines, washer-dryers, 
Tumble dryers and dishwashers 

Cooking Ap-
pliances 

Electric ovens: including grills 
Electric hobs, Microwaves, Electric 
kettles, Mixer, Hot drinks makers, 
Sandwich toasters and Pop-up toast-
ers, Deep fat fryers. Slow cookers 
Cooker hoods and Food preparation 
appliances 

Lighting Ap-
pliances 

Incandescent, Tungsten halogen, 
Fluorescent strip including compact 
fluorescent light bulb 

Brown Appli-
ances 

Televisions, VCRs, audio equip-
ment including hi-fi systems, Satel-
lite control boxes for TVs, Cable 
control boxes for TVs, Portable 
audio equipment: Cassette record-
ers, radios, clock radios and X-

boxes. 

Miscellaneous 
Appliances  

Irons: steam irons and dry irons 
Vacuum cleaners DIY equipment: 
drills, torches, battery chargers, 
Garden equipment: lawn mowers, 
trimmers, hedge trimmers, Other 
home care equipment: sewing ma-
chines, floor polishers, lights on 
extension cords,  Hair styling 
equipment: hair dryers, curling 
tongs Small personal care appli-
ances: electric toothbrushes, electric 
razors, Electric towel rails, Electric 
blankets Electric instantaneous 
showers, Central heating pumps, 
Personal computers, Computer 
printers (LaserJet or   
Facsimile machines Answering 
machines Other office equipment: 
slide projectors, electric typewriters 
etc. 

Table 1:  Different Groups of Load in Domestic Sector 

Water heating and space heating are usually 
considered seperetaley as most of the houses use non-
electric heating systems.  In our study, we assumed that 
Cold and wet appliances as well as water heating and 
space heating are those which could be considered to 
become responsive.  

4   ASSESSMENT TOOL 
In this part, we show the operational parameters of a 

power system when renewables have been penetrated 
into the system. Firstly by performing a short-term unit 
commitment we derive the fuel cost, emissions and 
security violation index. Then by performing we intro-
duce Economy 7 tariff and compare our results with a 
case in which no DSM method was used. Finally the 
dispatching algorithm and effect of responsive demand 
is shown.   

The aim of the Security-Constrained Unit Commit-
ment (SCUC) problem is to find the hourly generation, 
reserves and price sensitive load schedule that mini-
mizes the sum of energy costs, reserve costs and the 
negative of revenue from price-sensitive load over a 
twenty-four hour period subject to meeting all the net-
work security constraints such as apparent power flow 
constraints, generator reactive power output constraints 
and voltage in busbars. SCUC is being considered more 
and more recently because Security of supply is one of 
the major concerns of network operators and they have 
license obligation to run the system at certain security 
level at all the time.   
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Security Constrained Unit Commitment aims to 
minimize  and increase the security (through 
minimizing the security violation indexes) in a schedul-
ing period with regarding to Production cost “c” 
,Emissions “e” and Security violation index “s”: 

),,( secC

 
)..)](..)(..[(),,(

1
sssPieeePicccsecCMin N

i
ατατατ ++= ∑=

 (1)    

4.1 Generation Cost: 

Generation cost is a function of fuel cost, total start-up 
cost, shut-down cost and maintenances:  

 
)()()()()( PiSDiPiSTiPiMCiPiFCiPic +++=  (2) 

Fuel cost is  
 

ciPiiPiiPiFCi ++= ..)( 2 βα  (3)  
where iα , iβ , ci are Cost coefficients. 
Maintenance cost is a function of Base maintenance 

cost (BMi), and an incremental cost depending on out-
put power: 

   
PiIMiBMiPiMCi .)( +=  (4)  

Total start-up cost (STi) is a function of turbine start-
up cost TSi and the boiler Start-up cost (BSi) and num-
ber of hours that unit i has been down (Di), and (ASi) is 
the boiler cool down coefficient.  

 
MSiBSieTSiSTi ASiDi +−+= ].1[ )/(  (5) 

Shut-down cost for each unit is a number depending 
on the output power of that unit. K is shut-down incre-
mental cost: 

  
KPiSDit =     (6) 

4.2 Emission: 
Some of the pollutants produced by fossil fired 

plants in large quantities are sulphur dioxide SO2, car-
bon dioxide CO2, nitrogen oxides NOx, hydrocarbons 
and coal fired plants also produce fly ash and metal 
traces. In this paper we have only considered NOx emis-
sions: 

PiePiPiPie .2 ..)( εδγβα +++=      (7) 
where α , β ,γ ,δ , ε are the emission coefficients.   

4.3 Security: 
The Security function consist of 3 main objectives; 

voltage at busbars, apparent power flow in branches and 
reactive power generated by generation units: 

 
sggsbbsvvs ... τττ ++=   (8) 

sv, sb and sg are voltage, apparent power flow and 
generator reactive power security violation indices and 
vτ , bτ and gτ  are the Boolean variable to either include 

these violation indices or not.  
Voltage at busbars must always be set between a 

minimum and maximum limit at all the scheduled gen-

eration period. This could be done through generator 
voltage set point, transformer tap settings or reactive 
power control. The voltage rise due to installed wind-
farms at each busbar depends on the injected power: 

 

 
s

injinj

V
XQRP

V
×+×

=Δ       (9)  

where VΔ represents the voltage deviation due to 
generation unit installed at that bus bur, and & 

are active and reactive power injected from genera-
tion unit and R & X are line resistance and reactance 
and  is the nominal voltage .In SCUS calculations 

there is always a limit for

injP

injQ

sV
VΔ ; i.e. between 1.06 -0.94 

per unit of the nominal rate is the current practiced 
allowed voltage deviation at distribution level in the 
UK.      

Apparent flow (Complex power; ) in trans-
mission lines is one of the constraints which sometimes 
cause decomitting a unit or keeping its output up to 
certain level as transmission lines are running up to 
their maximum capacity; some thing which is known as 
transmission congestion.   

jQPS +=

In power systems voltage collapse usually happens 
when the reactive power is not enough to meet induc-
tive loads such as induction motors etc. Generation 
units generate certain amount of reactive power and 
exceeding this limit will reduce the security of supply.  

      
Figure 4:  Generator Power Output Capability Graph. 

Other constraints:         
Apart from those mentioned objective constraints 

during unit commitment, there are several other con-
straints which must be considered:  

4.4 

4.5 

Crew constraints:                                                          
With thermal power plants, particularly starting up 

and shutting down generation units needs a certain 
number of crews to operate and sometimes because of 
lack of crews,  it is impossible to start up or shut down 
more than one unit at a time.  

Minimum up and down time:     
In some plants i.e. nuclear, hydrothermal etc, be-

cause of economic efficiency and technical constraints it 
is impossible to shut down a unit before a certain dura-
tion of being in duty is reached; again once a unit is 
turned off it may be impossible to start it up and bring it 
back to network before certain number of hours of be-
ing off-duty is reached. These units have different char-
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acteristic than “Peaker” units; for instance gas turbine 
units which usually are not subject to a minimum up 
and down time and can start up and supply peak de-
mand and shut down straight after peak period.  

4.6 

) 

4.7

e-
ma  increase or being used in minor contingencies.  

 

=1
  (11) 

 

e Maximum contribution of unit i 
to sp

.8 

e of an 
event predicting it higher than actual value [11]. 

.9 

be sustained up to the mini-
mum

4.1

such tenanc .  

4.1

e zero fuel cost and green energy certificate 
carr

4.1

l-
cula

De

oviding ancillary services may 
or m

lated Energy Market                                                                 

ces must be subtracted from 
total required reserve [15].  

Generator output limits           
Generation units must be scheduled to operate 

within their maximum and minimum rated output in 
terms of active (PGi) and reactive power (QGi): 

 
maxminmaxmin QGiQGiQGiPGiPGiPGi ≤≤≤≤ (10

 Spinning Reserve       

Total Generated power in the system must meet de-
mand, network losses and required Spinning Reserve. 
Spinning reserve is the amount of power always avail-
able to be dispatched in the system to meet sudden d

nd

reserveSpinningloosesNetworkDemandPiN

i
++≥∑

reserveSpinningSPiPiCSPPiN

i∑ =
≥−

1
),(  (12) 

 CSSPi is Capacity Limit of Unit i to provide Spinning 
Reserve and SPi is th

inning   reserve. 

4 Negative Reserve Requirement  
 Negative reserve is to make sure at each scheduling 
period there are sufficient generation units in the system 
which are running at certain amount higher than their 
minimum generation limits. This is to allow their output 
be reduced in case of loosing the demand in cas

4 Generator Ramping Up and Ramping Down Rate
 The ability to increase (or decrease) the output 
power of a generator in a certain amount of time is 
called Ramping Rate. Generation units have different 
ramping rates and this must be considered in unit com-
mitment. Ramping rate is particularly important for 
those units which are due to be committed to supply 
power reserve (especially spinning reserve) as certain 
amount of reserve is supposed to be generated by these 
units. Network operators i.e. NGC in the UK, have their 
own criteria for selecting units providing spinning re-
serve which in the UK is 25MW/minute within 2 min-
utes of instruction and to 

 of 15 minutes [12].  

0  Reliability Must Run Units (RMR)       
In the power system generation units that the ISO 

determines are required to be on-line [at certain times] 
to meet applicable reliability criteria requirements [13]; 

 as voltage support or during system main es

1 Regulatory Must Run Units (RGMR)          
The main purpose of regulatory must-run units is to 

maintain “fair” competition in a deregulated market. A 

good example of regulatory must-run units is hydro 
power plants. Most of these power plants are multipur-
pose units which were designed both for power genera-
tion and irrigation purposes. Allowing a hydropower 
plant to participate in the competitive market may defeat 
the agricultural purpose [13]. Another example of 
RGMR units exists in places where heat demand is 
added on top of power demand. In order to supply 
enough heat, we must make sure that enough thermal 
units such as Combined Heat and Power (CHP), which 
are designed to provide heat in all heat demand areas, 
are committed at each scheduling period. Renewable 
energies; in particular large windfarms are usually given 
priority dispatch in unit commitment problem, because 
they hav

ier. 

2 Regulatory Must Take Units (RMTU)                               
 In deregulated energy markets there are power pur-

chase agreements (PPA) which occurred prior to the 
deregulation and carried over to the deregulated market. 
Examples of regulatory must-take units are nuclear 
power plants, cogenerations, and PPAs with other enti-
ties such as neighboring countries. It means in UC ca

tions these PPAs also need to be considered [13]. 

4.13 Qualified Unit Providing Ancillary Services in 
regulated Energy Market                                             
Ancillary services usually are provided by specific 

units. In deregulated energy market where price bidding 
exists both for power and ancillary services, not all the 
generation units can participate in providing ancillary 
services. At each period some power utilities which 
normally participate in pr

ay not be available. 

4.14 Balance between Demand and Power in Deregu-

In a deregulated Energy market (DEG), network op-
erators particularly those who provide ancillary services 
such as spinning reserve or operating reserve, are al-
lowed to either supply an extra power into grid or by 
reducing the demand to reduce the need of an extra 
reserve.  This is a new term in DEG which has been 
using in some parts of the world [14]. Therefore by 
committing those companies which are allowed to shed 
the load to unrequire the network to extra power, in fact 
the demand which needs to be supplied is being reduced 
and network parameters must be studied well before 
committing generation units as it may cause voltage rise 
in the system because of extra power which is not being 
consumed. There are also other ways such as pump 
storages, interchange etc. All the power which is due to 
be achieved from these sour

5 TEST SYSTEM 
The IEEE Standard 30 Bus Test System [16] has 

been chosen for our project. Figure 5 shows the pro-
posed network, the main objective of our research is to 
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integrate responsive demand into the system, after run-
ning the simulation without the presence of responsive 
demand, those appliances in domestic sector which 
were capable to become responsive have been selected 
to act as responsive demand and they respond to output 
of wind generators. In the network there are different 
types of generators; coal fired, gas fired and wind gen-
erators. Table 2 shows the generators cost and emis-
sions characteristics and Table 3 shows Minimum Up 
Time (MUT), Minimum Down Time (MDT), Ramp 
rate, Minimum and Maximum power output and loca-
tions of conventional plants.    All generators data apart 
from generator No. 9, 10 and 11 are derived from IEEE 

eliability Test System RTS-96[16]. 
 
R

 
Figure 5:  The IEEE 30 Bus Test System with different types 
of demand 

ding to the network depends on output 
of windfarms. 

 

Unit N a b c 

Total conventional plants capacity is 300MW while 2 
windfarms have 15MW (windfarm No.1 capacity factor 
= 26%) and 20MW (Windfarm No.2 capacity factor = 
29%) installed capacity. Figure 6 shows weekly output 
of two windfarms. As shown in figure 5 in different 
locations different types of demand exist. These 2 wind-
farms were placed on bus number 24 as it is absolutely 
consists of domestic loads. It is assumed that responsive 
demand is only available in domestic sector and their 
mode of respon
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Table 3:  Other Generators Charactristics 
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Figure 6:  Weekly output variations of Wind farms 

6 RESULTS 

6.1 

6.2 

Production Cost 
Total generation cost; which is total running cost of 

conventional plants, is significantly differs in presence 
of responsive demand. Without responsive demand 
whenever wind output drops conventional plants needs 
to supply the demand. As result of intermittency these 
fluctuations may  happen at any time and the magnitude 
and speed of these fluctuations usually obliges network 
operators to utilize those units which could be utilized 
free of constraints such as a long uptime or down time. 
These units are usually OCGTs which are very expen-
sive to run and the difference in cost at each case is 
because of reducing the need for running these units. 
Table 3 shows the result of our simulation for each case. 
We have considered several cases; first when there is no 
demand side management program is implemented and 
the results show generation cost is $85228.3, By having 
16% multi-tariff demand the generation cost will reduce 
by 1.3% down to $84057.69 . 1.3% drop in generation 
cost in a network with total 300MW demand may not be 
noticeable but in a real network this reduction is signifi-
cant. After introducing responsive demand in the net-
work this reduction is more significant and total genera-
tion cost for single rate with responsive demand and 
economy 7 with responsive demand will be respectively 
$84032.73 and $82414.13.  

0 

Security Index 
As mentioned in section 3.3 security violation index 

consists of three main objectives; voltage in busbars, 
reactive power of generators and active power flow Table 2:  Generator Fuel Cost Characteristics 
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over transmission lines. Any of these factors if violates 
over its limits make the unit commitment and economic 
dispatch decisions unacceptable. Even under the limits 
these objectives may violate from their nominal points. 
We have allowed voltage on busbars to be considered if 
they are between 1.09pu and 0.95pu of nominal value. 
At the end by considering the loading level of transmis-
sion lines, voltage on busbars and generators maximum 
reactive power the security violation indices have been 
calculated and the total security violation index is sum 
of these indices. It is clear according to eq.8 in section 
3.3 that smaller security index represents more secure 
network. For security constrained unit commitment 
usually pre contingency and post contingency analysis 
also add up on top of security index. The results for 
security index show it is 29.699, by having 16% multi-
tariff demand2 it will be down to 28.451. After intro-
ducing responsive demand in the network security index 
for single rate with responsive demand and economy 7 
with responsive demand will be respectively 27.940 and 
23.850 representing more secure network.  

6.3 Emissions  
Emissions which all come from conventional units 

are calculated in this simulation. As we expected in the 
worst scenario where there is no demand management 
in the network we see the highest level of emission. 
Demand side managements significantly reduce the 
emissions as it is noticeable in table 4, 1.3 tones of NOx 

emissions could be reduced just by multi tariff demand. 
This amount can be further reduced down to 2.15 tones 
if responsive demand is mixed with economy 7 tariff. 

 Case Produc-
tion Cost 

$ 

Security 
Index 

Emission 
Tones 

Single rate $85228.30 29.699 27.99547 
16%  

Domestic  
Economy 7 

$84457.69 28.451 26. 63810 

Single rate with 
Res. Demand 

$84032.73 27.940 26.05713 

16%  
Domestic 

Economy 7 with 
Res. Demand 

$82414.13 23.850 25.84281 

Table 4:  Power System Operational Parameters Results  

6.4 

                                                          

Value of wind: 
Renewable plants can also help to diversify the en-

ergy supplies and displace conventional plants, consid-
ering intermittency and the current level of installed 
wind capacity (around 6%), the displacement level is 

 
2 Currently (2007) in the UK 16% of domestic consumers who are 
supplied by major suppliers are participating in Economy 7 scheme 
which led to an increased domestic night time load giving a more 
balanced use of the electricity network across the day. More recently 
there has been a preference for gas central heating rather than electric 
heating, which has meant that many customers who are on Economy 7 
tariffs no longer have a large night time load [1].  

limited up to 35% of total installed capacity of wind-
farms. This level is lower in higher penetration of wind 
generation as other issues such as balancing between 
demand and power may limit it down to 20% if wind 
has 20% penetration level [18]. Displacing the conven-
tional plants by wind power, will result in fuel cost 
saving and emission reduction and is known as “Value 
of Wind”. Value of the wind can be assessed in very 
different ways with varying degree of sophistication. It 
could be simply defined as just the amount of the en-
ergy which could be produced from a wind generator, 
nonetheless this is not an ideal model as it neglects 
additional cost imposed by wind variability [19]. Refer-
ence [20] presents two definitions for the value of wind 
with regard to intermittency; first it is the avoided cost 
of thermal power generators when using wind power. 
These are the operating costs (mainly fuel costs) of 
thermal power stations as well as the fuel saved in elec-
tric boilers. Second definition is much wider, it includes 
all socio-economic effects of integrating wind compared 
with non-wind case. For this we must calculate the 
socio-economic surplus (sum of consumer and producer 
surplus). When looking at the differences in the socio-
economic surplus between reference and wind cases, we 
get the value of wind to the whole market. Higher value 
of wind will result in more economic electric power 
system and less polluted environment.  

In this research we have only assumed the avoided 
fuel cost of thermal plants. In order to evaluate this 
value for each MW installed capacity of wind, we use 
the equitation below:   

 

MWWindP
windwithCwindNoCWindofValue $

)(
)()( −

=      (12)   

Where C is total production cost and P represents the 
installed wind capacity in MW.  

By increasing the wind penetration as the power in-
jected to the network through wind will reduce the need 
for running conventional plants, therefore total produc-
tion cost is cheaper in general with increasing the wind 
penetration. However this is not always the case as 
network constraints such as busbar voltage rise where 
windfarms are installed, and the unit commitment deci-
sions may change and total production may increase. 
On the other hand with increasing the wind penetrations 
the need for back-up power may also increase. This 
increase may happen at certain penetration levels where 
local demand still needs to be fed by other plants or at 
certain locations where transmission system connected 
to the network is not able to transport the power comes 
from renewables. This is one of our findings in bus 
No.24.  

There are several mitigations to rectify these prob-
lems as mentioned before in section 2. Our proposed 
method is based on involving demand to respond to 
some objectives:  

 wind generator output variations; 
 busbar Voltage rise or drop; and 
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 power flow congestion known as Transmission 
Congestion. 

These are the areas which demand can respond in a 
way to maximize the utilization of renewables. In this 
project so far we have just considered the wind genera-
tor variations and demand can respond to these varia-
tions, by any mean which demand can be responsive; 
such as communication between loads and network or 
detecting these variations in demand side autono-
mously. However we have only considered shedding 
the load in case wind power output drops below certain 
level. This level is 10MW when 15% of total domestic 
loads will respond to it and in fact negative load will 
increase the value of wind and the amount of available 
responsive demand differs for single and economy 7 
tariffs.  
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Figure 7:  Aggregated Two Windfarms Power Output  
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Figure 8:  The Difference of Windfarms output to 10MW 
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Figure 9:  Amount of Available and Utilized Responsive 
Demand for Single tariff Demand 

The calculation of requited responsive demand is 
done according to following equation:  

tt PwPmRD −=  
where  is required responsive demand at time t, 

is the final goal power which in this paper is set to 

10MW and  is output of intermittent generators at 
the time t.  

tRD
Pm

tPw

Figure 10 shows the algorithm for dispatching the re-
sponsive demand.  

The total generation cost without wind in our system 
was calculated $96444.22. As 35MW of total wind 
capacity is installed in the network value wind for each 
case is calculated according to equation 12. Table 5 
shows the calculated value of wind for each scenario.  
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Figure 10:  Responsive Demand Dispatching Algorithm  

 
Case Value of Wind     

$/MW 

Single Rate with 10% Wind Penetration 320.4 

Economy 7 with 10% Wind 342.4 
Single Rate with Responsive Demand 

and 10% Wind Penetration 
     354.6 

Economy 7 with Responsive Demand 
and 10% Wind Penetration 

400.8 

Table 5:  Value of Wind in Different DSM Programme 

The results show the increase of value of wind in 
presence of demand side management programs. When 
value of wind is greater, it means the network needs to 
use the conventional plants less to serve the demand and 
in fact it is more “Sustainable” electricity generation 
network.  

7 CONCLUSIONS 
Considerable worldwide interest in the potential of 

demand-side management techniques has the potential 
of reducing balancing costs for system operators and so, 
as a side effect, reducing the additional costs of inter-
mittent renewables as well as reducing the emissions.  

Currently there is considerable interest in exploring 
the possibilities of high penetrations of wind energy 
into electricity networks and mitigating the barriers to 
increase the wind penetration.  This paper demonstrates 
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the effect of dynamically participation of demand in 
reducing the cost, emission and increasing the security 
of the power system in a system in which renewables 
have substantial installed generation capacity in the 
system. The study shows that different appliances in 
domestic sector have the capability to become respon-
sive. However as loads in domestic sector are small 
loads, in order to provide such demand responsiveness 
in domestic sector, loads are aggregated and the effects 
of aggregated responsive demand dispatched from do-
mestic loads on power system operational parameters 
have been demonstrated.  

The benefit of dispatching responsive demand from 
domestic sector is not only limited to reducing the total 
cost and emission of the network because reducing the 
need to generate more power. One important benefits of 
providing such demand which could respond dynami-
cally is increasing the security. Security in this paper is 
defined as improving the voltage profile by lessening 
the voltage deviations on busbars, reducing the power 
flow across the network on branches and generators 
capability to generate reactive power. This will post-
poned the need for reinforcement of the network and 
more loads could be supplied without investment to 
expand the network to accommodate them.  

The value of wind shows the economical impacts of 
investing money to build a windfarm and determines 
whether the revenue which comes by operating a wind-
farms will pay back the capital cost of it or not. We also 
showed that value of wind which is the net benefit of 
wind power to the grid could be increased by having 
responsive demand in order to respond to power output 
of windfarms.  
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Responsive Demand in Networks with High 
Penetration of Wind Power 

V.Hamidi, F. Li Member, IEEE, F. Robinson Member ,IEEE 

 
Abstract—The value of renewables is significantly affected by 

their penetration, concentration and location. Value is further 
affected by the responsiveness of demand which will reduce the 
need for back up power through non-renewable sources. By 
increasing the penetration of renewables in power systems, 
demand side participation become more important. Demand Side 
Management (DSM) programs have been studied for a long time 
and among all DSM programs Responsive Demand seems to be 
the most applicable type of DSM for a system with significant 
intermittent generation. It mitigates issues such as required 
reserve, network congestions and higher/lower voltage profiles 
and thus results in less operation cost although little attention has 
been made to quantify the benefits of responsive demand. In this 
paper, the value of wind generation without responsive demand 
is quantified first, by introducing responsiveness in the demand 
side, the reduction in operation cost is calculated and the 
additional benefits are quantified. The quantification was 
evaluated on the IEEE 30 busbar system through Security 
Constraint Unit Commitment (SCUC) and the results indicate 
the benefits of responsive demand on operational and 
environmental characteristics in power system.  
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I. 

 
Index Terms--Dynamic Demand, Value of Wind, Demand Side 
Management, Generation Scheduling, Responsive Demand 

 NOMENCLATURE 
 

),,( secC       Objective function (cost, emission and security)  
I        Number of generation unit 
P        Scheduled power for unit i 
Si        Security violation 

sα        Scaling security factor 
cα        Scaling cost factor 
eα        Scaling emission factor 
sτ        Boolean variable for security 
cτ        Boolean variable for production cost 
eτ        Boolean variable for emission 

FCi        Fuel cost 
MCi        Maintenance cost 
STi        Start up cost 
SDi        Shut down cost 
BMi       Base maintenance cost 
IMi         Incremental cost 

iα , iβ ,c      Cost coefficients 
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TSi         Turbine start up cost 
BSi       Boiler start up cost 
MSi       Start up maintenance cost 
Di        Number of hours down 
ASi       Boiler cool down coefficient 
K        Incremental shutdown cost 
α , β ,γ ,δ ,ε    Emission coefficients 
Sv        Voltage security violation 
Sg        Generator reactive power security  violation 
vτ        Voltage Boolean variable 

bτ        Branch flow Boolean variable 
gτ        Generator re-power Boolean variable 

CSPPi                            Capacity Limit of Unit i to provide Spinning Reserve 
SPi                              Maximum contribution of unit i to spinning   reserve 
Sb        Branch power flow security violation 

II.  INTRODUCTION 

Issues associated with the integration of wind power into 
power system have been characterized as either engineering 
issues, operational issues or planning issues [1, 2, 3 and 4].  

Engineering issues include harmonics, reactive power 
supply and voltage regulation, frequency control, fault level, 
island operation.  

Operational issues include the effect of intermittent power 
output into non-intermittent (conventional) networks, 
operating reserve requirements, unit commitment and 
economic dispatch.   

Planning issues concern the appropriate modeling and 
evaluation of intermittent wind resources compared to 
conventional resources.  
An accurate quantification of the economical benefits of 
renewable generation is of supreme importance considering 
the strategies set out in order to mitigate above issues. Value 
of Renewable Penetration is a term which deals with this 
concept; Holttinen et all in [19] define two definitions for 
value of wind; first it is the avoided cost of thermal power 
when using wind power. These are the operating costs (mainly 
fuel costs) of thermal power as well as the fuel saved in 
electric boilers. Second definition is much wider, it includes 
all socio-economic effects of integrating wind compared with 
non-wind case. For this we must calculate the socio-economic 
surplus (sum of consumer and producer surplus). When 
looking at the differences in the socio-economic surplus 
between reference and wind cases, we get the value of wind to 
the whole market. Higher value of wind will result more 
economic system and less polluted environment. The value of 
wind is reduced by the fact that its power is not firm; it is 
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intermittent so that the wind generator output will often 
deviate from the committed level.  

An accurate wind forecasting can reduce, but not eliminate 
these deviations and will result in higher value of wind [22].  

To increase the value of wind Brooks et all in [20] 
suggests integration of hydroelectric generation mixed with 
wind generation because both have stochastic pattern. Black et 
all [21] have demonstrated the role of storage devices to 
mitigate the intermittency and ease the integration of wind 
energy and increase the value of non-fossil fuel plants.  

As renewable energies must be installed in locations where 
the main source of the energy is available, most of the past 
research projects have been focusing on identifying the best 
geographical location of renewable units and less research has 
been done in dealing with location of renewable plants in the 
grid. It is important because high penetration of renewables in 
the network will further push the transmission tie-lines to their 
power transfer limits and cause problems such as network 
congestion, voltage security or even voltage stability where 
the network is already under stressed due to the uncertainty of 
generation and demand and power market transactions [6] i.e. 
voltage rise happens in rural areas with high penetration of 
renewables and low demand; again this is mainly because of 
the traditional structure of the network which may not 
accommodate additional power [7, 8].  

 
If any renewable unit is to be integrated into any power 

system it needs to be considered in unit commitment problem 
in that system to evaluate the effect of injecting power through 
renewable units on the whole network and to calculate the 
total energy production cost with respect to several objectives; 
cost, emission and security [5]. 

In the process of solving the unit commitment problem, 
intermittent generation units have some constraints; such as 
ramp-rate constraint for generation scheduling and for reserve 
activation like conventional plants as well as their most 
significant character; intermittency. In addition integrating 
high level of renewables has implications for the planning and 
operation of transmission system and sometimes fails to 
extract the full output of renewables because of transmission 
congestion. 

Although, one effect of increasing the proportion of 
embedded generation will be to reduce the flow across the 
interface between the transmission and distribution networks 
and this will tend to delay the need for reinforcement of parts 
of the transmission network, but it is unlikely to remove the 
need for the substations that exist at the interface between the 
transmission and distribution systems (i.e. the Grid Supply 
Points). These will continue to be required to balance the 
fluctuations between generation and demand in that specific 
part of the distribution network from minute to minute.  

The traditional solution to mitigate intermittency is to back 
up renewable units with other sources of power either through 
running units or by energy storage devices. However the only 
solution to mitigate the issues with regarding to the network is 
to invest in network reinforcement.   

Demand Side Management (DSM) Programs have been 
used for a long time for different purposes such as increasing 
the efficiency of the power system and saving the energy. 

Economy 7 and Economy 10 are the most widespread type of 
DSM programs in the UK which by shifting the demand will 
reduce the peak demand and the need for running the peak 
time running units which are usually expensive units will be 
eliminated. The current DSM methods which shift the demand 
could benefit system with renewables but not in terms of 
mitigating the intermittency issues because power fluctuation 
may happen at any time therefore demand shifting methods 
can not solely be a solution for intermittency.  

One of the stand of the art types of DSM; Dynamic 
Demand (Responsive Demand) is being used in US to provide 
ancillary services in particular spinning reserve [9]. Dynamic 
demand is a type of load which is flexible and is ready to be 
shed if a network needs extra power. This type of demand 
usually includes passive loads such as air conditioning, water 
heating and refrigerators which if turned off upon to request 
by the network operator, do not cause difficulty for 
consumers.  

The problem with existing methods is that they only 
consider the benefits which could be achieved in short term in 
terms of improving the efficiency of the power system and 
none of them deeply considers the effects of implementing 
these methods in much wider aspect which usually requires 
more investment and may benefit whole the system in long 
term. Demand is actually the first object of power system and 
all reliability and investment analyses of the network is being 
done by considering the demand as end point of the system 
which must be supplied. Through this method demand could 
be managed to benefit the whole the system such as other 
objectives at the distribution level; i.e. transmission 
congestion which stops network to accommodate more power 
and requires more investment to expand it.  

In an intermittent environment the value of wind is one of 
the most important objectives which needs to be studied well 
before any investment in building and installing windfarms, as 
in terms of cost it basically represents the amount saved per 
MW through adding the new windfarm.  

In this research project we have demonstrated a system 
with both conventional plant and intermittent unit. We run our 
simulation; first without any DSM program and get 
technology specific characteristics of the system such as 
production cost, security and emission and calculate the value 
of wind. Then by introducing Responsive Demand in the 
domestic Sector we aim to shift their consumption to off peak 
and especially when output of windfarms is not adequate and 
compare the outcomes of this case with the previous case.  

 ASSESSMENT FRAME WORK 
Unit commitment is used in this research project as an 

assessment tool to determine the value of wind with and 
without responsive demand.  

The aim of the Security-Constrained Unit Commitment 
(SCUC) problem is to find the hourly generation, reserves and 
price sensitive load schedule that minimizes the sum of energy 
costs, reserve costs and the negative of revenue from price-
sensitive load over a twenty-four hour period subject to 
meeting all the network security constraints such as apparent 
power flow constraints, generator reactive power output 



 

constraints and voltage in busbars. SCUC is being considered 
more and more recently because Security of supply is one of 
the major concerns of network operators.   

Security Constrained Unit Commitment aims to minimize 
 and increase the security (through minimizing the 

security violation indexes) in a scheduling period with 
regarding to Production cost “c” ,Emissions “e” and Security 
violation index “s”: 

),,( secC

A.  Objective function                                                                                      
                                                                                               (1) 
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B.  Generation cost 
)()()()()( PiSDiPiSTiPiMCiPiFCiPic +++=     (2) 

C.  Fuel cost                                                                                           

ciPiiPiiPiFCi ++= ..)( 2 βα                  (3)  

D.  Maintenance cost                                                                              
PiIMiBMiPiMCi .)( +=              (4) 

E.  Start up cost                                                                                      
         (5) MSiBSieTSiSTi ASiDi +−+= ].1[ )/(

F.  Shut down cost                                                                                    

     

KPiSDit =                                                               (6) 

G.  Emission Function                                                                     
             (7) PiePiPiPie .2 ..)( εδγβα +++=

H.  Security Function 
The Security function consist of 3 main objectives; voltage 

as busbars, apparent power flow in branches and reactive 
power generated by generation units: 
 

sggsbbsvvs ... τττ ++=                (8)  

I.  Voltage Security Violation              
This is a term which deals with the voltage at bus bars 

which must always remain between a minimum and maximum 
limit at all the scheduled generation period:  

J.  Apparent Power Flow                       
Apparent flow (Complex power; jQPS += ) in 

transmission lines is one of the constraints which sometimes 
cause decomitting a unit or keeping its output up to certain 
level as transmission lines are running up to their maximum 
capacity; some thing which is known as transmission 
congestion.  

K.  Reactive Power generated by units             
In power systems voltage collapse usually happens when 

the reactive power is not enough to meet inductive loads such 
as induction motors etc. Generation units generate certain 
amount of reactive power and exceeding this limit will reduce 
the security of supply.  

      
Fig  1. Generator Power Output Capability Graph. 

Other constraints:                   )..)](..)(..
Apart from those mentioned objective constraints during 

unit commitment, there are several other constraints which 
must be considered:  

L.  Crew constraints:                                                          
With thermal power plants, particularly starting up and 

shutting down generation units needs a certain number of 
crews to operate and sometimes because of lack of crews it is 
impossible to start up or shut down more than one unit at a 
time.  

M.  Minimum up and down time:               
In some plants i.e. nuclear, hydrothermal etc, because of 

economic efficiency and technical constraints it is impossible 
to shut down a unit before a certain duration of being in duty 
is reached; again once a unit is turned off it may be impossible 
to start it up and bring it back to network before certain 
number of hours of being off-duty is reached. These units 
have different characteristic than “Peaker” units; for instance 
gas turbine units which usually are not subject to a minimum 
up and down time and can start up and supply peak demand 
and shut down straight after peak period.  

N.  Generator output limits                    
Generation units must be scheduled to operate within their 

maximum and minimum rated output in terms of active and 
reactive power: 

 
maxminmaxmin QGiQGiQGiPGiPGiPGi ≤≤≤≤       (9) 

O.  Spinning Reserve                      
Total Generated power in the system must meet demand, 

network losses and required Spinning Reserve. Spinning 
reserve is the amount of power always available to be 
dispatched in the system to meet sudden demand increase or 
being used in minor contingencies.  

reserveSpinningloosesNetworkDemandPiN

i
++≥∑ =1

    (10) 

 
reserveSpinningSPiPiCSPPiN

i∑ =
≥−

1
),(       (11) 

P.  Negative Reserve Requirement            
Negative reserve is to make sure at each scheduling period 

there are sufficient generation units in the system which are 
running at certain amount higher than their minimum 
generation limits. This is to allow their output be reduced in 
case of loosing the demand in case of an event predicting it 
higher than actual value [10]. 

[( cCMin ατατατ ++=),(
1
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Q.  Generator Ramping Up and Ramping Down Rate    
The ability to increase (or decrease) the output power of a 

generator in a certain amount of time is called Ramping Rate. 
Generation units have different ramping rates and this must be 
considered in unit commitment. Ramping rate is particularly 
important for those units which are due to be committed to 
supply power reserve (especially spinning reserve) as certain 
amount of reserve is supposed to be generated by these units. 
Network operators i.e. NGC in the UK, have their own criteria 
for selecting units providing spinning reserve which in the UK 
is 25MW/minute within 2 minutes of instruction and to be 
sustained up to the minimum of 15 minutes [11]. 

R.  Reliability Must Run Units (RMR)                  
In the power system generation units that the ISO 

determines are required to be on-line [at certain times] to meet 
applicable reliability criteria requirements [12]; such as 
voltage support or during system maintenances.  

S.  Regulatory Must Run Units (RGMR)               
The main objective of regulatory must-run units is to 

maintain “fair” competition in a deregulated market. A good 
example of regulatory must-run units is hydro power plants. 
Most of these power plants are multipurpose units which were 
designed both for power generation and irrigation purposes. 
Allowing a hydropower plant to participate in the competitive 
market may defeat the agricultural purpose [12]. Another 
example of RGMR units exists in places where heat demand is 
added on top of electrical demand. In order to supply enough 
heat, we must make sure that enough thermal units (Combined 
Heat and Power CHP) which are supposed to provide heat in 
all heat demand areas are committed at each scheduling 
period.  

T.  Regulatory Must Take Units (RMTU)                                             
 In deregulated energy markets there are power purchase 

agreements (PPA) which occurred prior to the deregulation 
and carried over to the deregulated market. Examples of 
regulatory must-take units are nuclear power plants, 
cogenerations, and PPAs with other entities such as 
neighboring countries. It means in OPF, ED and UC 
calculations these PPAs also need to be considered [12]. 

U.  Qualified Unit Providing Ancillary Services in 
Deregulated Energy Market                                             

As mentioned in (9.5) ancillary services usually come from 
specific units. In deregulated energy market where price 
bidding exists both for power and ancillary services, not all 
the generation units can participate in providing ancillary 
services. At each period some power utilities which normally 
participate in providing ancillary services may or may not be 
available. 

V.  Balance between Demand and Power in Deregulated 
Energy Market                                                                 

In a deregulated Energy market (DEG), network operators 
particularly those who provide ancillary services such as 
spinning reserve or operating reserve, are allowed to either 
supply an extra power into grid or by reducing the demand to 
reduce the need of an extra reserve.  This is a new term in 

DEG which has been using in some parts of the world [13]. 
Therefore by committing those companies which are allowed 
to shed the load to unrequire the network to extra power, in 
fact the demand which needs to be supplied is being reduced 
and network parameters must be studied well before 
committing generation units as it may cause voltage rise in the 
system because of extra power which is not being consumed. 
There are also other ways such as pump storages, interchange 
etc. All the power which is due to be achieved from these 
sources must be subtracted from total required reserve [14].  

 IMPLEMENTATION 
 A. Test System 

The IEEE Standard 30 Bus Test System [15] has been 
chosen for our project. Figure 2 shows the proposed network, 
the main objective of our research is to integrate renewables 
into the system, after running the simulation without the 
presence of any wind farm, 2 wind farms step by step have 
been added to this system in different locations. Table 1 shows 
the generators cost and emissions characteristics and Table 2 
shows Minimum Up Time (MUT), Minimum Down Time 
(MDT), Ramp rate, Minimum and Maximum power output 
and locations of conventional plants.    All generators data 
apart from generator No. 9, 10 and 11 are derived from IEEE 
Reliability Test System RTS-96[15]. Total conventional plants 
capacity is 300MW while 2 windfarms have 15MW 
(windfarm No.1 capacity factor = 26%) and 20MW 
(Windfarm No.2 capacity factor = 29%) installed capacity. 
Figure 3 shows weekly output of two windfarms. 

 

 
Fig  2. The IEEE 30 Bus Test System. 

 
TABLE I 

GENERATOR COST AND NOX EMISSION CHARACTERISTICS 



 

 
TABLE II  

OTHER GENERATOR CHARACTERISTICS 
Unit MUT MDT Ramp 

Rate 
Pmin Pmax Busbar 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3 
2 
3 
3 
1 
2 
2 
2 
0 
0 

2 
2 
2 
2 
1 
1 
2 
1 
0 
0 

5 
4 
7 
6 
6 
5 
7 
4 
4 
4 

10 
10 
8 

10 
5 
2 
5 
5 
0 
0 

35 
45 
40 
60 
25 
30 
35 
30 
10 
15 

11 
5 
2 
1 

19 
14 
8 

13 
23 
30 
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Fig  3. Weekly output variations of Wind farms. 
 
B. Demand Data  

For each period of unit commitment, load forecasting is a 
must and several research projects have been practicing the 
methods which give less error in predicting the demand which 
needs to be supplied [16, 17]. Failure to meet predicted 
demand can lead to shedding the load which can lead to 
severe economical and security issues. Total demand 
characteristic regardless of the specific type of demand varies 
in electric networks. There are several factors available in 
network policies which affect demand such as multi tariff 
charging method; single rate, double rate or Economy 7 (E7) 
and Load Factor (LF). As each sector in the system represents 
different electricity load patterns, then it is necessary to know 
which demand sectors exist in this network and which model 
of demand they are representing.  

In this project 80% of total demand has been assumed to 
be domestic and it has been assumed and proportion of 
domestic weekly demand has a pattern which is shown in 
Figure 4.  

0

50

100

150

200

250

300

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162

Hours

D
em

an
d 

M
W

 
Fig  4. Demand variations during a week. 

 
C. Responsive Demand 

In our test system we have divided the loads into 3 
categories; industrial, commercial and domestic. We assume 
that all responsive loads are available in domestic sector and 
will respond whenever output of windfarms drops. The 
response setting has defined as:  
If Wind Output < 10MW then   reduce the demand by 5% 
If Wind Output < 5MW   then   reduce the demand by 10%   
 

 
 

Fig  5. Aggregate output of Windfarms and effects level of responsive 
demand. 

 
D. Variables 

After scheduling the units to supply demand with zero 
percent penetration of wind power the results have been 
compared with 5%, 6% and 10% installed wind penetration 
connected to the network and by moving this amount of 
capacity across the network the benefit of locating then in 
each bus compared with other cases has been demonstrated. 
by dynamic optimization method, unit commitment (UC) has 
been performed [2]. The following variables have been 
considered and compared together in each case:  
 total system emissions; 
 system production costs;  
 security violation index; 
 value of wind. 

V.  RESULTS 
Generation Scheduling in presence of windfarm was 

performed and results shown below indicates the network 
variables which differ in each case.  
 
A. Production Cost 

Production cost which is assumed total running cost of 
conventional plants is shown in figure 6. Each unit has its own 
running cost and total cost is aggregation of them.  
When we assume that loads in the network respond to wind 
variations, by shedding the demand according to our 
mentioned setting in III we see a big difference in production 



 

cost. This is not just because of supplying less demand; as 
each unit has different production cost and gas units which are 
usually being used to supply load for a short time are very 
expensive to run. When demand drops according to wind 
output reduction, the need for running gas units is minimized 
and as a result total production cost is lower.  
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Fig  6. Total Production cost.
 
B. Total Emission:  

Total emission in the network comes from conventional 
plants which spread NOx and CO2 into atmosphere. We have 
just considered NOx emissions in our study. Again by 
reducing the demand, need for running conventional plants at 
some points are eliminated and total emission is lower.  
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Fig  7. Total Emission. 
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C. Impact on Security: 

Our main interest is impact of responsive demand on 
security index violation of network. Security objectives have 
been defined in II.8. One of the key issues in locating 
windfarms is network limitation in transferring power across 
the network on branches. This is one of our objectives which 
considers thermal limits of transmission lines. Another object 
is required amount of reactive power from generation units. 
Wind units can supply substantial amount of reactive power 
and by reducing the demand when windfarms have less 
energy share in the system, the need for getting more reactive 
power from other plants is eliminated and will result in more 
secure network. In terms of voltage limits in busbars, again by 
reducing the demand, those busbars which are accommodating 
conventional plants will not see much difference in output of 
conventional plants and voltage rise/fall does not happen.  

 

18

18.5

19

19.5

20

20.5

10% Wind Penetration with
Responsive Demand

10% Wind Penetration without
Responsive Demand

Se
cu

ri
ty

 V
io

la
tio

n 
In

de
x

 
Fig  8. Security Violation Index 

 
It must be noted that when security index is lower, it 

represents a more secure network as security objectives have 
less violation from their desired points; i.e. voltage in busbars 
can vary between 0.950-1.09 per unit. Below and beyond 
these points, unit commitment is invalid.  
D. Impact on Value of Wind: 

Value of wind is defined in equation below:  
 

MWWindP
windwithCwindNoCWindofValue $

)(
)()( −

=       (12)   

Where C is total production cost and P represents the installed 
wind capacity in MW.  
Value of wind shows how much money could be saved 
through in supplying the demand per MW installed wind 
capacity. It is clear that by reducing the total generation cost 
(while we assume that we utilize total output of windfarms) 
value of wind increases by 17% in presence of responsive 
demand. This value could be vary by changing the 
methodology of implementing responsive demand and 
consider   

170
180
190
200
210
220
230
240

10% Wind Penetration with
Responsive Demand

10% Wind Penetration without
Responsive Demand

Va
lu

e 
of

 W
in

d 
$/

M
W

 
Fig  9. Value of Wind 

VI.  CONCLUSIONS 
Responsive demand in networks with high penetration of 
intermittent generation can have a positive effect on 
operational, planning and environmental characteristics. It 
provides the opportunity for load growth and enhanced 
robustness with minimal addition growth of the transmission 
system, make greater use of renewable such as wind systems, 
increases energy efficiency and reduce pollution and 
emissions and increases the level of local reliability to ensure 
the necessary power quality standards has met.  

  In this project we assumed that in domestic sector we can 
have such responsive demand which responds to intermittent 
units output variations. Reducing the demand either 
automatically or by communication between network and load 
can benefit the network both in short term by improving the 
transmission capacity and will reduce the need for network 
reinforcement in long term.  However if it requires 
communication between network and demand; then a 
substantial investment may be needed to provide such 
facilities.  

In previous DSM methods shifting the demand has always 
been considered rather than shedding it. But it may not benefit 
systems with high penetration of renewables as much as 
networks with lower penetration as aim of shifting the demand 
is just to reduce the peak demand and reduce the need for 
running peaker power units. But this is not the only issue in 
networks with high penetration of renewables and a solution is 



 

needed to mitigate the output power fluctuations and this is 
the aim of responsive demand which considers shedding the 
demand.  

Whenever shedding the demand is considered as a solution 
to improve the efficiency and reliability it must always be 
noted that evaluating the value of lost load (VOLL) is very 
important and not all types of loads are able to participate in 
responsive demand program.  
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