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Summary

Digital games are part of our culture and have gained significant attention over the

last decade. The growing capabilities of home computers, gaming consoles and mobile

phones allow current games to visualise 3D virtual worlds, photo-realistic characters

and the inclusion of complex physical simulations. The growing computational power of

those devices enables the usage of complex algorithms while visualising data. Therefore,

opportunities arise for developers of interactive products such as digital games which

introduce new, challenging and exciting elements to the next generation of highly inter-

active software systems. Two of those challenges, which current systems do not address

adequately, are design support for creating Interactive Virtual Agents (IVAs) and more

believable non-player characters for immersive game-play. We start in this thesis by

addressing the agent design support first and then extend the research, addressing the

second challenge. The main contributions of this thesis are:

• The posh-sharp sytem is a framework for the development of game agents. The

platform is modular, extendable, offers multi-platform support and advanced soft-

ware development features such as behaviour inspection and behaviour versioning.

The framework additionally integrates an advanced information exchange mech-

anism supporting loose behaviour coupling.

• The Agile behaviour design methodology integrates agile software development

and agent design. To guide users, the approach presents a work-flow for agent

design and guiding heuristics for their development.

• The action selection augmentation ERGo introduces a “white-box” solution to

altering existing agent frameworks, making their agents less deterministic. It

augments selected behaviours with a bio-mimetic memory to track and adjust

their activation over time.

With the new approach to agent design, the development of deeper agent behaviour

for digital adversaries and advanced tools supporting their design is given. Such mech-

anisms should enable developers to build robust non-player characters that act more

human-like in an efficient and robust manner. Within this thesis, different strategies

are identified to support the design of agents in a more robust manner and to guide

developers. These discussed mechanisms are then evolved to develop and design IVAs.

Because humans are still the best measurement for human-likeness, the evolutionary

cycle involves feedback given by human players.
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Chapter 1

Introduction

In this thesis, we seek to understand and advance the current state of the art in ar-

tificial intelligence (AI) design and development approaches for controlling embodied

agents. To achieve this goal, a comprehensive literature survey was conducted which

is backed up by expert interviews. Based on the findings, a new architecture and

methodology for agent design are proposed—Agile Behaviour Design, discussed in

Chapter 5. To support the design methodology, a new agent framework is proposed to

allow for experimentation and testing of the new methodology. This new agent frame-

work is posh-sharp which integrates novel mechanisms for inspecting and versioning

of behaviours and supported by a new arbitration mechanism—ERGo, discussed in

Chapter 6—which responds significantly better in noisy environments than traditional

approaches.

1.1 Motivation

To pursue the goal of a more robust and supportive agent design environment, while

not arriving at a too abstract answer to render it unusable, a special focus is put on

behaviour-based AI (BBAI) [Maes, 1993; Brooks, 1986] for development and design

of character artificial intelligence. As embodied agents interact in an environment,

digital games are chosen as an interesting and challenging spatial environment for the

character to interact in.

Existing character design tools, methodologies and architectures were analysed to

understand their design process and differences in approaching agent design. Based

on this analysis, the most fitting methodology was selected and enhancements were

proposed to it. Additionally, an entirely new combination of tools is presented which

results in a usable toolbox for authors of digital games in combination with the given
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methodology. The importance of “academic” game design tools is often viewed with

suspicion from the industry. This is not only due to the disparity in expectations on

stability and robustness but also due to the fast turnover in the industry when it comes

to new tools and techniques.

However, there are a variety of reasonable arguments for pursuing this work. The

first being that the architecture this work is built upon, the Parallel-Rooted Ordered

Slip-Stack Hierarchical (POSH) planner [Bryson and Stein, 2001], is largely similar to

the dominant approach BehaviorTree (Bt) introduced by Isla [2005] to the games

industry. Creating a comparative approach makes the knowledge transfer from one

approach to the other easier. The second is that the focus on the agent design process

and tools for developing agents is relatively new to the domain of game AI, which itself

is a relatively young research field in academia as Laird and van Lent [2000] show.

A third important point this work tries to address is the focus on both sides of the

research, the technical architecture and environment as well as the academic research

supporting its merit.

The decision to focus on behaviour-based AI was deliberately made due to the

interesting property of BBAI, namely the disparity between the understanding and

modelling of living entities, such as animals, and the modelling of intelligent artefacts,

such as robots or embodied characters can be studied and observed explicitly. The

purpose of modelling living entities is to stay as close as possible to important char-

acteristics of the original to create a meaningful representation of their features and

abilities. However, when creating intelligent artefacts no such limit exists. To go even

further, being bound by implying artificial limits from living entities might even restrict

the resulting creation in an unnecessary or non-beneficial way.

Using digital games as an environment is advantageous when trying to advance AI

design and IVA as games not only provide an abstraction of physical environments

but are also accessible to a wide audience, thus, making testing and evaluation easier.

Looking closer at one aspect of games, namely the abstraction from a real physical

environment, allows us to remove the problems physical sensors and agents bring with

them and focus on a higher level of development. Using a robot as our target host would

require an additional focus on lower levels of the robotic system to tackle inaccuracy in

sensors or malfunctioning sub-components which generate a high amount of noise on

the lowest layers.

First and foremost, the knowledge gained from creating a toolbox for developing

character design tools for games is not limited to the development of agents for said

environment. This knowledge can be further abstracted, thus, most of the tools can

10



also be used for other environments where artificial agents1 are employed. Applicable

domains for those new tools range from consumer and care robotics such as Paro

[Broekens et al., 2009] to assistant systems.

The next section discusses the current game development process focusing on the

specific parts which are crucial for agent development. This leads to identified critical

points in of the development process in Chapter 1.3.

1.2 How to Build Games and Agents Therein?

To understand and explore the domain of this work—character AI for digital games—let

us start by understanding the broader domain of digital games first.

1.2.1 Game Development

As an initial definition, digital games are highly interactive software systems. The

general assumption on digital games development is that the development process is

similar to that of other software systems, e.g. we treat their development in similar ways

to the development of control software for an elevator. However, most successful game

developers [Bethke, 2003; Keith, 2010] employ approaches mixing traditional software

development with approaches from film or TV production based on the creative aspect

of the resulting product. A closer examination of the game development literature

in industry reveals that there is a widespread assortment of approaches due to the

interdisciplinary nature of the parties involved in the development and production of

a game. There are sparse academic contributions to this domain due to the perceived

accessibility and financial risk of involving research in large scale games projects. There

are, however, two major streams which examine game development:

• From an artistic or creative perspective [O’Donnell, 2012; Zackariasson, 2013]:

This results in processes similar to film and movie productions.

• From a technical perspective: The resulting product is a software product, thus,

the project is treated as one, to manage the completion of the development [Chan-

dler, 2009; Bethke, 2003].

Additionally, there exists a broad range of literature such as the Game Development

Principles by Thorn [2013] which does not reflect on the different aspects of a game

or advances made in software development. Rather, it is creating an inaccurate and

1A definition of what an agent is follows in the next chapter.
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sometimes misleading impression of the development process. An example is the pre-

sentation of a proprietary project management process when guiding the reader rather

than presenting or comparing it to the industry standards.

The first group highlights that game development is not software development but

a more creative process [O’Donnell, 2012]. O’Donnell states that game developers need

to put more focus on the creative side to not be bound by too restricted conventional

software development:

“Although video games are software, they are more than software, and too

often they and their producers remain lumped into the same category as

software developers. Assumptions are made about what compromises a

game and its production process, which continues to hold the video game

industry and the art of game production back from its full potential. [...]

Perhaps most importantly, the gross mislabeling of video games as software

and game development as software development significantly distorts the

creative labour ...” [O’Donnell, 2012, p.30]

Figure 1-1: An Iterative Waterfall process model used in the games industry. The
model contains the three phases: Pre-production, Production and Post-production.
During each phase there is a way to step back to the previous phase to correct mistakes
or include new requirements.

Based on the evolution of the games market and its origins rooted in software

development, all game development approaches have three essential phases in common:
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• Pre-Production: This phase is sometimes split into two parts, concept phase

and pre-production. The split is based on the fact that after the initial idea

brainstorming and game concept, the game design will be proposed or pitched to a

publisher as a new potential project for funding which can result in two outcomes.

If the publisher is interested and supports the proposal, the project receives the

“green light” for funding. This statement of support puts the producer in a

position to continue and officially work on the project. The team is now officially

built, and game designers extend the concept into a game design. If no “green

light” is given, either the project is scrapped, or the concept and proposal will be

re-worked for another publisher.

• Production: During this phase the game design is still tweaked and is used

in turn to develop the game. The game development is split into at least three

phases:

– Alpha—during this phase a first version of the game is implemented.

– Beta—during this phase the game is changed based on the test results of

the Alpha and features are stabilised.

– Gold—the game is completed and thoroughly tested and prepared for dis-

tribution.

• Post-Production: Testing and Q&A is still carried out during this phase to fix

late issues. The game box and packaging, or the online store page are made ready

for distribution; in parallel, the marketing for the product is done. The develop-

ment work is shifted towards Downloadable Content (dlc), if applicable.

This description is based on the classical model of the games industry for large and

expensive projects. Thus, the staged process does not directly reflect on how crowd-

funding projects or projects by independent developers (indie developers) are structured

[Martin and Deuze, 2009]. For some of the latter, the publisher is replaced with a crowd-

funding service such as kickstarter2 or indiegogo3, or the project is self-funded; thus,

the publisher is replaced or completely removed at the pre-production and production

phase.

2Kickstarter is an American-based community funding portal which is actively supporting the de-
velopment of projects including games. A project which aims for funding needs to set a funding goal.
Only if the funding goal is reached, the project will receive support from the community. The portal
is accessible at:https://www.kickstarter.com/

3Indiegogo is similar to Kickstarter, but additional includes pure fund-raising and does not require
a funding goal to be reached to allow the project to continue.The portal is accessible at:https://
www.indiegogo.com
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Figure 1-2: A visual description of the phase overlap [Keith, 2010, p.132] during game
development. Concept and Pre-production in this illustration are separate phases to
illustrate how long adjustments are still made to the design.

Most approaches used in the games industry [Rabin, 2010b; Thorn, 2013; Rubin,

2012; Harbour, 2004] separate the phases as mentioned above and put them in a fixed

sequential order which creates a waterfall-like process model, see Figure 1-1. Based

on extensive experience Keith [2010] promotes a form of software development which

requires a slightly adjusted development process as illustrated in Figure 1-2. Since

the introduction of more agile software development models such as Scrum [Rubin,

2012; Keith, 2010] in the early 2000’s, developers are in a position to be able to adjust

the development and the design process more flexible, in contrast to the conventional

waterfall model. This allows developers to include new features and requirements

dependent on the overall progress of the development, without breaking the process

model.

A comparison of the arguments made by O’Donnell [2012] and Rubin [2012] reveals

that one issue, namely “Game development is not just developing software but also cre-

ating an entertainment medium”, is not properly addressed. This leads to the question

that asks, if it is not more beneficial to investigate alternative development approaches

instead of the standard software development approach. However, O’Donnell does not

provide an actual development model. In contrast to this, Keith includes the com-

munication, design, and testing based on Scrum sprints and milestones into an agile

iterative process.

Let us examine the three phases of game development and the overlap which Keith

[2010] states. During Pre-production, a concept is created for the game including

some of the essential elements which should make the future game unique. Typically,

only a prototype is used to illustrate some the most important ideas. A game design

document is created which will be used during the whole development to track the

progress and divergence from the original idea. The development of the actual product

commonly starts during the production phase. During this phase, the game design
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gets translated into software. Adjustments to the document are made as well, based

on tests and evaluations of parts of the game undertaken by the game designers. This

phase, as already discussed, is also split into at least three sub-phases. These phases

track the development milestones of the game. After each of the three phases, the game

is typically play-tested to gather feedback on playability, bugs and enjoyment of the

product. This testing process is quite expensive as it requires a large amount of time,

data analysis and recruitment of testers from the targeted audience. Testing also bears

the risk of leaking early information or prototypes of the game, problems which can

result in undesired early or negative attention to the game. After the Gold release, the

game will be made ready for distribution. As the game is in its final production state,

no changes are made to it anymore, however, testing and Q&A are still conducted. All

new and upcoming changes are now pushed into a first patch which will be released

either on day one of the release or at a later point. For larger projects the work also

starts to shift towards additional content for the game or towards a follow-up project.

Earlier the comparison of games as traditional software systems was made, suggest-

ing to treat games in a similar way to control software for an elevator. In most of the

aspects of development such as when it comes to writing the software and managing the

overall milestones of the project, this comparison holds. However, due to the amount

of creative input and the inclusion of diverse and qualitative user feedback based on

implicit criteria such as fun or engagement, games require a different form of attention

or process.

1.2.2 Developing Game Agents

The actual game AI development starts in the production phase when a team agrees

on the used technology, such as a game engine or external tools and modules. In some

cases, parts of the AI system could already be developed at the end of pre-production

when an early prototype is built to demonstrate how the game should work. Due to the

conceptual design, game characters can already be part of the game design document

if the designer is focusing on story and non-player characters (NPCs) as well as player

interaction in their design. Thus, the character AI system either needs to be considered

at that point or the AI system needs to be modular and flexible enough to deal with

all, or most, potential requirements. For some projects technology is developed from

scratch, similar to large movie productions.

Harbour provides five points when developing AI for games [Harbour, 2004, p.581]:

1. It is enough to make AI which looks intelligent. [Facade or Impression suffices]

2. Design the AI by putting yourself into its position. [Ego-centric Design]
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3. Apply the simplest feasible technique. [Simplicity]

4. Pre-design the AI and its behaviour. [Modelling behaviour]

5. Use random behaviour as a fallback if no other approach works. [Feasibility]

Taking Harbour’s expert knowledge as a basis, the best potential approach is using

a system the design and programming team are familiar with or which has a shallow

learning curve, is extensible and designer-friendly. This is supported by Rabin [2010b],

he discusses in his Chapter 5.3 what game AI should encompass. He also extends

the rules made by Harbour stating that game AI should be as intelligently looking as

possible but should contain an exploitable logical flaw to challenge the player. Rabin

also stresses the requirement on CPU time game AI is supposed to use—less than 20%

of the time per frame. Another important point is that the AI system should never be

able to affect negatively the development time of the game. Thus, it must be a robust

system which can scale up to the requirements for complex agents.

Due to the different skill sets required for making games the person implementing

the game AI is rarely the person designing the game characters or the narrative of the

game. In larger teams specific game or level designers4 design and develop characters

and how the player interacts with the game. These designs are normally not done

directly in the program code but with the use of other tools, such as storyboards,

use cases, textual descriptions. They add to parts of the game design document and

are used as references for implementation. In some companies, the game character

design is further supported by more visual tools which are either developed in-house or

licensed for development. In this thesis, different system and development approaches

such as BehaviourTree, AutoDesk Cognition, ABODE and Pogamut will be detailed in

Section 2.3. Those systems and approaches can form the core or central parts for new

game AI systems. Additionally, the design process should not limit the creativity of

the designer to an extent where he or she is not able to express the desired behaviour

of a character. Not having sufficient software tools at hand then sometimes results

in paper prototypes or drawn sketches of what the game characters should perform.

The actual process of designing game characters is highly similar to the process of

writing stories for books and movies with the exception that the resulting character

might interact in ways and situations which cannot be specified in a written document.

Games are interactive media which allow the player to decide when and how to interact

with objects. This exploratory freedom introduces dynamics which go beyond what

4Designer in this context are not visual artists Novak [2011, pp.319]. They are closer to writers in
the movie industry than artists or programmers.
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can be expressed in a linear written story. To illustrate the previous point, imagine

following example within an adventure-type game:

A player is always able to perform one out of three basic actions at any

given time: move, interact, doNothing. The player can interact once per

second. The game tries to respond to the state of the player, taking previous

states into account to advance the story. After the first second, the player

could be in one out of three possible states. Taking the previous state of

the player into account, at the end of the next second, the player could be

in any one out of nine possible states. After 10 seconds, the player could

be in any one out of 310 possible states.

This is an over-complicated example underestimating the power of game designers, as

they would not track the progress in such a way. However, similar mechanics exist in

role-playing games where the state is heavily dependent on previous actions resulting

in an enormous amount of options to consider. In books, those options rarely exist

making it easier to create a sound plot as the character is not controlled by the reader.

This process of designing game characters involves specifying all elements relating to

the character and its interaction with either the environment or with other characters,

including the player. Building on the earlier argument of Harbour [2004], there is no

need to develop something if the player does not see or experience it. So complex social

interactions between the NPCs are not required if the player is not around. To have an

underlying model of those interactions which can be simulated and advanced without

using their embodied representation might, however, be a better way of integrating a

richer environment.

After the specification of the desired character behaviour, the programmers im-

plement said behaviour, which in turn is evaluated by the designer. This process is

incremental until the features and behaviours are either as intended by the designer or

close enough to the design to move onto another feature. During the production phase,

features are continuously added and altered by designers and programmers until the

game reaches a state worth testing. The full feature set should be part of the design

document. Though based on the development, new features can still be added during

production.

Once the game is in alpha or beta stage, the game characters will be adjusted again.

This adjustment is based on the user feedback and testing. During those phases, the

whole game will be balanced and modified. This is an important step, both, the

programmer and the designer are too close to the actual implementation to spot some

of the inconsistencies or logical errors. Another purpose is also to move the game from
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its current state closer to what the target audience—the players—find enjoyable. For

the game character, it means that the designer is now able to see how players interact

with their creation and if the plot of the game unfolds as anticipated.

1.3 Identifying Critical Points in Game Development

The previous section described the process involved in designing games and game char-

acters and their position within the global game development phases. By analysing this

process, a list of critical points in the process chain and in AI development becomes

visible.

• Developing or selecting a suitable game AI system can create a critical situation

for the whole game development because this decision is based on the personal

experience of the team during the pre-production and on the initial design deci-

sions. The problem when developing a new system from scratch is, the original

project changes from developing within a given frame to first developing a new

frame and then, as a second step, develop the game within it. This process takes

extra time and resources and to arrive in the end at a stable game environment

and develop the game in time is challenging. The game AI system is usually

one of the most complex systems of a game in terms maximising the amount

of expressiveness of the AI while maintaining the lowest possible computational

footprint. It comes with its own problems which can, in the worst case, affect

the entire game development. Choosing an existing system can also impact the

game development due to unforeseen limitations or requirements to the system

which come up late during the development.

• Providing ways for better inclusion of non-code based design as well as visual

editing or representation of logical components in a robust way requires ex-

tra work. Due to the simplicity of state machines, which will be discussed in

Section 2.1.1, they are the go-to solution for representation and creation of char-

acter behaviour [Rabin, 2010a]. Choosing existing systems such as AutoDesk

Cognition, might also not always be suitable due to the dependencies with the

underlying game AI system or because of licensing issues or the ability to extend

the system in a desired way.

• The deciding on the correct development process model is a crucial task.

A more rigid model such as the Waterfall is prone to problems when late re-

quirements or problems need to be addressed in the development. Most game

developers are transitioning now from classical models such as the Waterfall to
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more agile methods for the development. Nonetheless, the process underlying

the development still requires incremental milestones, based on the three basic

phases. Even in more agile models, which respond better to changing require-

ments such as the model Keith proposed, unclear or uncertain requirements can

produce delays in production as is expected. However, they handle changing

requirements better due to their flexible nature.

• The inclusion of player feedback during the Alpha and Beta phases is a critical

decision point during the development. It can create a large backlash of additional

changes to the game. This process, often discrete instead of continuous, generates

only data points for certain questions and problems of the development at testing

intervals. This is due to the high amount of work needed to integrate testing into

the existing process and due to the time it takes to evaluate the mostly qualitative

feedback of testers. Smaller game projects cannot afford such extensive testing.

Even for larger projects, the test phase is not a simple matter as it scales up in

complexity due to a larger feature set to test.

• Interdisciplinary collaboration adds additional complexity to a project. Each

discipline has its own language and approaches when tackling a problem making

the coordination of efforts more complex. Games are no exception to that as

the work between designers, programmers and artists is crucial for successfully

completing features during development. Most of this work is tackled in a largely

iterative way. The inclusion or alteration of artwork is generally less problematic

as for most game engines fixed pipelines for artwork exist, making the process

less dependent on others. For the inclusion of new game design features or game

agents, the standard approach is mostly programmer-driven. In this case, the

designer is heavily dependent on the programmer. This is based on the assump-

tion that the programmer is including the game character specification and then

the designer needs to validate the implemented behaviour [Snavely, 2004]. This

can create bottlenecks during the development. For complex game characters,

however, this continuous back and forth between designer and programmer can

be quite time-consuming as most designers are not allowed to modify the actual

game code and, as mentioned, require a programmer to integrate changes.

• The design of game characters is based to a major part on creative writing

and storyboarding techniques [Stirling, 2010] borrowed from literature and film

or movie productions. Those techniques were developed with a linear story and

narrative in mind. Digital games, in contrast to written stories, offer a non-

linear space for expressing stories and are more interactive allowing the player
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to explore spaces outside a single designed narrative. This can draw out more

creative potential compared to regular film or books, but it also creates more

pressure on the designer to navigate a player through an experience.

• Another important point is the designer toolbox, a metaphor representing a

set of techniques and tools, which can be used to enrich the behaviour of a game

character. Normally, computational techniques are used by the programmer to

include features requested by the designer. However, the state machine, for ex-

ample, works well on paper or in a simple text-based form to specify certain

behaviours which can be used by a non-programmer as well. Approaches like

flocking behaviour from biology or higher level models of emotions and the ap-

propriate response can be used by designers as well as “white-box” or “black-box”

solutions, depending on the support for adding and editing the behaviour as a

non-programmer.

• The overall level of automation is another potential area which is crucial. Most

of the parameter tuning for game agents is either done manually by the program-

mer based on requests from the game designer, or automated and only active until

the end of testing in the production phase. After finishing production, the auto-

matic adjustments are either disabled or removed completely. However, some of

the parameters are based on the testing phases and could benefit from additional

adaption once the product is shipped [Brandy, 2010]. Those parameters are able

to impact on the game experience, and it is crucial for a game developer not to

create negative experiences for the player.

These critical points are decision points which can have a large effect on the overall

production process. They are by no means intended to reflect wrong or bad decisions

in the development process or the game development but are points where further work

or research is possibly of benefit to game development.

The identification of critical elements was carried out by analysing the available

literature on game production Thorn [2013]; Rabin [2010b]; Harbour [2004]; Novak

[2011]; O’Donnell [2009]; Chandler [2009] and related online resources [Champandard,

2007c; Mark, 2012; Champandard, 2012]. The identified points in game development

are not to be tackled in this work in their entirety. However, key elements will be

addressed in the approach presented in the next section.
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1.4 Motivation for Providing a New Approach to Agent

Design

Understanding how human players approach games and how to guide their play has

been one of the major questions ever since games were first created5. Interpreting the

game’s perceived performance and incrementally adapting them towards the player to

create a better play experience is tedious and time-consuming. The process involves a

tight iterative cycle occupying time for both designers and programmers as discussed

by Snavely [2004]. Even for non-digital board games, a lot of play testing is needed

to balance games. For digital games, this approach is even more complex as artificial

players need to be included into the equation. Game designers now not only have to

deal with balanced game mechanics that work, but also with the previously mentioned

artificial players. Those artificial entities have a large impact on the player’s experience

because they dominate the player interaction with the game in most game genres. One

of our fundamental assumptions of this work is that for better artificial players the

human players themselves need to be understood or modelled better and this is where

the presented work expands existing work on generative agent creation.

Based on the previous section, a number of elements were identified and highlighted

out of them a selected subset will be addressed in this work. The subset was selected

based on its believed merit for novice developers, game designers or developers. This

target group does not use or rely on programming and can be supported with a robust,

scalable approach and an adjusted sound work-flow taking into account interdisciplinary

teamwork.

One of the key elements in this work is to support the creative input of users into

the design and development process. Creative in this context does not refer to purely

artistic expressions [Kelley and Kelley, 2013] but also includes human input in the form

of strategies, plans and exhibited behaviour. Thus, artefacts which are not specified

purely as program code or abstract numerical values. To take forward an argument

made by Snavely [2004] that it is possible to empower designers and integrate them

better in the overall work-flow of game development. He presents an approach using

Microsoft’s Excel spreadsheet tool in combination with a set of Visual Basic scripts

to allow designers to specify character attributes and parameters in tables. This is

based on his experience and observations and on the assumption that for statistical

information or attributes designers already employ an approach which can be presented

through fuzzy set theory (FST) [Zimmermann, 2001], an assumption supported by the

5Analysing human play even in digital games is mostly based on early works on child’s play by
Huizinga [1950].
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work of Zimmermann [2001]. Fuzzy set theory was intended to support modelling,

especially in cases where explicit criteria are not present. Thus, a vague specification

is available, but a precise answer needs to be present in the end. An example should

illustrate this case:

A designer wants to specify the age of different characters roaming a city.

Instead of using precise numbers for the ages of each individual he or she

has specified five young and ten middle-aged people. However, this defi-

nition in natural language when it comes to age is a fuzzy definition with

soft boundaries between the two given age groups. It is easy to say that

somebody who is above 30 years fits into the middle-aged category or that

somebody who is younger than 20 years is young. It is, however, less easy

to categorise people around their 20s.

FST provides for those areas a membership function which offers a way to map

individuals with a certain percentage into the correct group by assigning a value from

[0, 1] to the describing attribute and how precisely they match. This allows the usage

of vague linguistic descriptions to be used in a precise manner.

This notion resonates well with initial states in the game development process

where only rough ideas are known about the criteria of a specific agent. For sport,

management or role-playing games attributes and parameters are essential to gameplay

as they can easily be mapped into values such as strength, or income which makes

the transition from set theory easier. However, according to Snavely, designers are

usually only specifying lists of those attributes which are then included at a later point

by a programmer. He introduces spreadsheets as tools useful for design. By using

a spreadsheet he argues, designers are able to export data in a standardised, stable

format and structure which creates a new pipeline6. This renders the work-flow of

designing and implementing agents from programmer-driven to designer-driven. The

data structure, which the designer can export, can be imported into a game without

creating problems due to a “wrong format” or missing information as this can easily

be handled by the export tool from a spreadsheet.

This supports one of the assumptions of this work, that including designer input in

the forms of imprecise strategies or plans instead of purely mathematical descriptions

will provide a more direct way for designers to interact with the game. The result

should be the removal of tight bottlenecks when game or level designers need to involve

programmers to test their changes in an iterative fashion. Extending now the metaphor

6A pipeline in this context refers to a stable process where the input is specified, and a defined
outcome is generated.

22



of game designers to other groups we can include novice programmers as well into the

scope of our approach.

In this thesis, we take the argument a little bit further, extending it into areas

where it is not just statistical data that can be represented in a spreadsheet. As

observed by O’Donnell [2012], an approach is needed that redistributes the workload

and dependencies between the multi-disciplinary team members more evenly. This

envisioned approach needs to take into account that there should also be a focus on

components which allow the inclusion and alteration of relevant game information in

a robust and secure manner to—at the same time—not allow for the alteration of the

underlying program code. A specific interface and approach including the designers is

needed.

1.5 A New Integrated Process of Agent Design

Motivated by the need for a less programmer-driven approach to agent design in games,

in this thesis, I present an approach which focuses on a clear pipeline between designer

and programmer. This new process model addresses the need for such an approach

discussed by O’Donnell [2012] without ignoring the software aspect of game develop-

ment. In contrast to Snavely [2004], who uses spreadsheets, a more general approach

and methodology to design is needed. Separate tool-chains are advantageous as these

tool-chains create less coupling between software components supporting the robust-

ness and stability of the process similar to the benefit of loose coupling in Software

Design.

Bryson and Stein [2001] introduce an approach for modelling behaviour-based AI

in an iterative fashion, illustrated in more detail in Chapter 2.2.9. Thereby, they

allow for iterative changes to the agent, increasing the capabilities of its intended

behaviour in stages. This approach—Behaviour-Oriented Design (Bod)—aligns to a

large extent with the current game development methodology in games. This thesis

extends the given approach and focuses heavily on the creation of a robust and user-

centred workflow for designer and programmers including new tools to support the

design and development process. The work integrates those additional tools to allow a

simple way to create more flexible and non-deterministic behaviours using a bio-mimetic

plugin. The approach fosters the idea of using evolutionary methods, as demonstrated

in Chapter 6.6, as part of the design process to allow for a better exploitation of the

behaviour space, which follows the argument of Champandard [2012].
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1.5.1 Research Question

How can the design cost for behaviour-based AI be reduced?

Based on this research question, different sub-questions emerge which, if combined,

address the overarching question of design cost reduction for behavioural AI in games

and related areas that require designable agents for specific experiences such as enter-

tainment or education.

Sub-questions:

RQ1 Are there substantial commonalities between agent architectures?

RQ2 What are the requirements for bridging the gap between academic and industrial

games research and agent design?

RQ3 Is it feasible to integrate non-programming knowledge into the design of agents?

RQ4 How can a lay user be supported in designing complex game AI?

RQ5 Human learning is partially based on mimicking—a powerful technique to observe

and reproduce. Can this principle be applied to aid agent design?

1.5.2 Contributions

• Agile Behaviour Design is a new methodology for game AI development which

advances Bod by introducing agile techniques from software development into a

more directed and supporting approach. The new methodology was evaluated

using a new light-weight architecture and supports task-sharing and teamwork

by a stronger separation of individual skills and responsibilities. Furthermore, it

strengthens the scalability of Bod to more complex agents.

• posh-sharp, new agent framework for creating agents for multiple platforms

such as mobile phones or web applications has been developed and evaluated.

The new system, discussed in Chapter 5, allows the development of light-weight

game AI systems and includes extensions such behaviour versioning and behaviour

inspection to increase the robustness of new agent systems and support the de-

velopment of game AI for novice users.The systems addresses a subset of the

identified weaknesses of all surveyed architectures and provides a novel platform

for experimentation.

• ERGo is a new general-purpose, low-cost mechanism for altering the selection

process of goals and behaviours. The new augmentation of behaviour-based AI
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systems such as IVAs introduces a new form of memory into the selection process.

This summatory memory allows a behaviour to take control based on an internal

motivational state or need. ERGo is a new light-weight bio-mimetic mechanism

for creating non-deterministic behaviour that can be designed and addresses the

industrial need for easy to integrate but flexible approaches to selection goals.The

approach is presented in Chapter 6.

• A survey of the state of the art of game AI techniques is presented in Chapter 2.

This survey integrates academic and industrial research on components, archi-

tectures and approaches to IVA into a wholistic view on the topic. The survey

also illustrates how game AI shifted over time not only driven by hardware devel-

opment but also by the availability of new techniques. The result of the survey

was crucial for the identification of weaknesses of current game AI systems and

highlighted the importance of developing a new software process.

• A new genetic programming approach based on recorded input data from human

players is presented. This approach evolves artificial players in a form amendable

for further authoring. This is the first time that an approach offers a “learning

by example”-way of evolving non-trivial, understandable and amendable agents

as executable program code. In contrast to other approaches, designers are able

to play a game, record their interaction and use the approach from Chapter 7

to create agents which can be manually enhanced and edited later on. The

developed approach evolves artificial players using play traces in the form of

Java program code allows for the inspection of possible underlying models of the

player’s motivation or reasoning process. The approach is presented in Chapter 7.

In the final section of this chapter we discuss how this approach was developed and

the story underlying this thesis. It focuses on a time-line discussion of the research

carried out and links to later chapters. The approach itself will be extended and

incrementally built up during this work, resulting in a final presentation and discussion

in Chapter 8.
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1.6 Overview of the Thesis

The thesis is organised in the order in which I structured the approach to analysing

and advancing the design of game AI systems for multi-platform development and

application. The work starts with an initial survey of existing agent architectures and

approaches for designing game AI, which is covered in Chapter 2.

Discussion
(chap. 8)

Requirements
(chap. 3)

Introduction
(chap. 1)

Conclusion
(chap. 9)

Integrating Human Knowledge
(chap. 4)

Advancing Tool Support
(chap. 5)

Augmenting Action Selection
(chap. 6)

Evolutionary Mechanisms
(chap. 7)

A         B     -- work A leads to or informs work B

Background
(chap. 2)

Figure 1-3: The chapter overview ilustrates the organisation of the thesis. The chap-
ters are organised based on their chronological order; earlier chapters motivate later
chapters. Chapter 4 and chapter 5 are however in a cyclic relationship as the first part
of chapter motivates chapter 5 and the later part of chapter 4 builds upon chapter 5. A
similar relationship exists between chapter 5 and chapter 6 as chapter extends chapter 5
and presents a crucial part of posh-sharp.

This is followed in Chapter 3 by an analysis of three IVAs architectures through

repeated interviews with development teams for those architectures. During those in-

terviews important steps uniting and differentiating the three approaches are identified

and discussed and general problems with the design of IVAs are collected.

In Chapter 4, a genuine industrial game AI environment, StarCraft in com-

bination with [BWAPI Development Team, 2010], was chosen for experimenting and

deepening the understanding of commercial game AI systems. StarCraft offers var-

ied opportunities to research different aspects of artificial or computational intelligence

ranging from planning problems [Soemers, 2014; Weber et al., 2010b] and Chapter 4.3

to optimisation problems [Weber et al., 2011; Justesen et al., 2014; Shantia et al., 2011].

It is frequently featured at major game AI meetings.
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Two specific directions are at the centre of focus while carrying out this research:

• The first is how to enhance the planning process to make the development more

robust while maintaining a clearly structured approach that is able to scale well

to different problems and team sizes.

• The second direction is focused on how to enhance

(a) the design of the resulting agents and

(b) to support the planning process of a modular approach during the develop-

ment of an agent.

During this initial phase, the AI architecture jyPOSH is used—a posh [Bryson, 2000b]

version written in jython7. As a starting point for the design, Behaviour-oriented

Design (BOD) by Bryson [2001] is chosen. During this phase, the main objectives are

to observe how the design of a complex game AI is approached and in which way the

methodology needs to be altered to better fit the process.

In Chapter 5, potential elements for advancements in the chosen methodology and

architecture were identified during reviewing the state of the art in the related liter-

ature. These changes are supported by observations made during the development of

the first prototypical AI for StarCraft [Gaudl et al., 2013] as well as the game agent

development undertaken as part of the Bath Computer Science course “Intelligent Con-

trol and Cognitive Systems”. A new version of posh—posh-sharp—addressing a first

set of discovered shortcomings is proposed as a first result. The proposed changes take

the previously mentioned research directions of supporting both the planning and the

design into account integrating knowledge from software design and software engineer-

ing principles. During this phase, a streamlined design of agents is developed applying

software code annotations and code inspection to the new library. Additionally, en-

hancements to the iterative development process are proposed to include a more robust

transition between different versions of the agent code. Alterations to the deployment

of the resulting agent and library will be described which aim to reduce the effect of

user errors by switching to a more robust library distribution format.

Chapter 6 describes an analysis of the underlying behaviour arbitration process

employed by our planner. The arbitration process is what is responsible for selecting

an action the agent should execute, given a corresponding set of sensory inputs. As a

part of this research, the extended ramp goal model (ERGo) was developed. ERGo

7Jython integrates both python and java into a new OOD hybrid. It allows the usage of packages
from both roots. This combines the advantages and, more importantly, the disadvantages of the
individuals root languages.
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continues the idea of a flexible latch when arbitrating between behaviours of equal

importance [Rohlfshagen and Bryson, 2010]. ERGo in contrast to the Latch directly

alters the selection process resulting in a different arbitration process. This new mech-

anism is based on phenomena observable in the mammalian brain when maintaining

or inhibiting behaviours.

Additionally, a mobile game is presented which contains four cognitive agents in-

teracting with the player. Those agents are augmented with the newly proposed

concept—ERGo, demonstrating the feasibility and performance of said approach in

actual practice. The developed game won the IEEE CIS mobile app award in 2014, see

http://cis-mobileapp.deib.polimi.it/plcis/index.php. To build up on the previ-

ous changes, the research is carried out using the new version of the posh planner–

posh-sharp– which extends the previous version.

In Chapter 7, after discussing alterations to the design process and methodology,

extensions to the reactive planner and the impact of fully automatic generation of

reactive plans are more closely investigated. This includes the potential impact on the

design process. In this part, generative systems and approaches are discussed with a

focus on fully autonomous systems versus fully hand-authored design.

By using genetic programming and recorded human play, a new middle way be-

tween those two extremes is proposed. This new approach creates artificial agents by

mimicking human play. The created agents learn to behave like a particular natural

agent from the provided data. This is demonstrated using the platformersAI toolkit

which offers an environment similar to commercial two-dimensional platform games

like SuperMario from Nintendo.

Finally, in Chapter 8, the findings are summed up and contributions of this thesis are

discussed together highlighting the advancements of new design methodology. Thereby,

we discuss possible next steps and open research directions which can result from

continuing this work in specific directions.

The next chapter is a background analysis on existing game development techniques

and agent frameworks. It discusses and compares existing approaches and identifies

weaknesses in industrial and academic approaches to agent design. Those weaknesses

are essential for advancing agent design and derive results which could be utilised by

the games industry and academics alike.
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Chapter 2

Background

This chapter provides the survey of the current state of the art and is intended to be

used as a common ground and a foundation for concepts and methodologies introduced

in this work and which are relevant to game development in general. This is even

more important as this thesis aims to connect academic understanding and concepts

to industrial applications and conventions. Due to the differences in academia and

industry and the fast evolution of the games industry itself some terms are often used

loosely or interpreted differently on either side of this divide.

The chapter is also meant as a primer. It gives insights and starting points and

background literature needed for working on or researching game AI. It illustrates the

current state of the art of AI at the time of writing. This is done all under the special

lens of applicability to games.

The chapter is divided into four sections which emphasise different aspects of game

AI design.

• Section 2.1 introduces fundamental techniques used in games such as decision-

making, spatial-reasoning and evolutionary approaches. They will be referenced

throughout the thesis and are necessary for understanding the underlying frame-

works of all industrial game AI systems.

• Section 2.2 introduces the concept of agents and discusses higher level approaches

for designing them. Having a clear definition of agents is essential to understand-

ing the difficulties of designing them. This section also includes discussions on

three dominant cognitive architectures which have been used in game related

research.
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• Section 2.3 goes beyond concepts and approaches and presents and discusses

existing software tools and of those can support developers and designers when

building agents.

• The final section of the chapter summarises the findings of the survey and the

state of the art of Interactive Virtual Agent (IVA) design.

This thesis focuses on a specific domain, digital games, thus, it is more natural to

illustrate most of the cases with examples close or related to games. Digital games

are computational systems so most of the approaches can also be employed in other

domains such as robotics. Digital games similar to robotic systems have individual,

unique characteristics making them on one side highly interesting on the other side

hard to work with.

Commercial games typically have strict resource limitations. Those depend on the

current hardware platform and the scale of the developed game. This means that

certain techniques are not feasible at some point or, that they made their debut into

practice relatively late in contrast to academic AI. In the field of robotics, issues are

mostly related to mechanics or uncertainty in sensing because robotic research is either

heavily centred around solving mechanical or engineering problems robots face when

interacting with a physical environment. Another reason is that even solving lower level

problems is extremely hard due to the high dimensionality of information available in

the physical world. This indicates that it is currently difficult to implement higher

level reasoning on operating a car when it already requires most of the resources of a

robot—or a car in that case—to identify and approach physical objects such as a road

or a person by using real-time image feeds from the robots visual sensors.

When it comes to digital games and AI, one aspect of games is often overlooked.

Digital games are designed to entertain the user in one way or the other. Thus, the goal

of good game AI should not be to win against the users but to keep them challenged

and entertained. This point is not only of great importance to the commercial product

but brings in a separate degree of complexity into the AI and is often underrated and

understated in research. It is easy to imagine games where the user is always losing

to a superior AI, either because a winning strategy is known and employed by the AI

system or because the AI simply is faster at finding the correct move to make at each

given time. It can be argued that for complex games such as chess or GO1 a winning

strategy is not known and the search space simply is too big [Müller, 2002; Clark and

Storkey, 2014]. For chess the number of possible moves is around 50 at each discrete

1For GO and board of sizes up to 5× 5 the game can be solved [van der Werf et al., 2003]. Thus, a
winning strategy is known, but currently not for boards larger than 7×7. This still holds, even though
artificial players such as AlphaGO are able to beat expert players [Kasparov, 2016].
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Systems that think like a human (C1). Systems that think rationally. (C2)

Systems that act like a human. (C3 ) Systems that act rationally. (C4)

Figure 2-1: The four areas of systems AI, which represent clusters of approaches as
defined by Russell and Norvig [1995] .

time step whereas for Go the number of possible moves initially is 19×19—361 possible

moves. Thus, we need to concentrate on search and optimisation strategies to provide

satisfactory AI systems for games.

However, if we solely focus on advancing search strategies we miss an important pre-

viously mentioned point—games need to be entertaining for different groups of players

as well. It is not enough to provide a highly challenging AI that is able to win against

proficient players. We also need to address the scalability of skill to different player

skills and the modelling aspect of desired behaviour. The last argument is one this

thesis emphasises and works hand in hand with designed skill levels of users. It will be

continued later on when discussing agent design after an introduction to the spectrum

of what in this work is united under the term game AI.

2.1 Fundamental Game AI Techniques

To understand what game AI is, a good starting point is to think first about the

broader area of artificial intelligence. Starting with the standard textbook definition

of AI that was introduced by Russell and Norvig [1995], most AI approaches can be

grouped into two main dimensions. In their definition, the first dimension is defined by

reasoning versus action. The second is rationality versus human-likeness2. From those

two dimensions they categorise approaches towards artificial intelligence into the four

resulting sectors:

Approaches focusing on reasoning are found under the first row, C1 & C2. Those

approaches deal with the non-visible part of a system’s behaviour which is hidden to

the observer. The difference between the two columns being that a rational picks the

best possible solution to a problem out of a pool of given options. In contrast, not

all human decision making is always rational. Human decision making also encom-

passes emotionally driven decisions, handling limited information [Simon, 1972] and

self-deception [Rauwolf et al., 2015] which divert from rational decisions.

The second row in Figure 2-1 describes the exhibited parts of a behaviour, they

are the generated actions visible to an observer. The important difference is, that

2In most cases human-likeness can be replaced with animal-likeness because not all that the field of
AI tries to solve or understand is human reasoning alone.
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the approaches C3 & C4 do not try to model the internal state or reproduce the exact

reasoning process behind a given action but care about creating the appropriate or

desired output. Approach C3 represent the group of systems which act like a human.

Thus, the system is providing actions imitating human behaviour. Rationally acting

systems, however, are not meant to imitate other entities. They act to achieve the best

possible outcome.

Yannakakis [2012] discusses on a high level the history of academic game AI and

related research. This provides a first starting point for identifying fields of interest in

game AI research. However, for this work the presented overview is not detailed enough

and is one-sided, as it only discusses the academic perspective not taking industrial

publications into account.

The remainder of this chapter does not try to repeat or duplicate the effort under-

taken in creating an all-encompassing collection or a high-level overview but to describe

a subset of techniques mentioned by Russell and Norvig [1995] and Yannakakis [2012].

It contains a subset of the current state of the art techniques found and used in dig-

ital games integrating industrial and academic knowledge. This is done to aid the

understanding of this work and its context. Additionally, it is important to note that

the approaches from the game industry are mostly favoured by its developers due to

the strong focus on applicability, ease of implementation and efficiency described in

game specific publications. Prominent publication series are the AI Game Program-

ming Wisdom and the Game Programming Gems series which are long running

and peer-reviewed by professionals.

The following sections first present an overview of decision modelling approaches

in games. Those approaches are ordered by their first appearance in games to illus-

trate how game developers adapted to the changed requirements. This is followed by

a discussion of more computational intense approach for spatially centred search. Spa-

tially centred search is a large part of game AI and also aids the design process when

generating games. After discussing spatial approaches we move to the most expensive

techniques used in games which integrate learning or adaption during the execution

of the game into the software. After discussing what current fundamental game AI

techniques are, we will have a closer look at agents and agent design used in games

which cover higher level approaches that can incorporate those fundamentals.
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2.1.1 Decision Modelling

Ad hoc Rule-Statements

The simplest and most common technique used in games is a rule statement also called

an ad hoc rule-based system. This system is used to create basic reactive AI systems

for games. Instead of using abstract concepts such as the later discussed finite state

machine or systems which can be generalised, this approach uses rules specified in

the programming language of the used system throughout the actual code base. An

example of such rule statements can be found in Figure 2-2. The rules tell the system,

based on current input and memory, what to do. They are usually implemented as

if−else3 or case statements. Ad hoc rules differ fundamentally from rule-based systems

used in academia. They are basic chained logic statements and are not interpreted

or used with an inference engine as in expert systems but executed at run-time. The

rule statements are also not linked to each other which means they are distributed

throughout the whole game and only react when appropriate signals occur. Due to their

simple structure, they are hard to maintain once the logic gets too complex. Problems

can occur when using either multiple nested statements or when the logical statements

contradict each other. As there is no higher level control over them, contradictions or

error in the logic have to be checked manually.

They are initially easy to implement but brittle when adjusted and maintained for

a longer period of time. However, for smaller systems or rapid initial prototyping they

are perfect. Prototypes initially are quite limited and the rules are easy to implement,

making them a good pair. After a prototype, most of the code will not be used in

the later systems so scalability or maintenance issues are not an issue for them. For

small systems, debugging ad hoc rules is simple as we only need to follow the execution

queue of statements. As described earlier, they are logical statements and are directly

embedded in the code. This makes them nearly unusable for designers in the actual

game as they are part of the core system and designer generally have no access to those

parts of a game. In chapter 5.3 a new decision making framework is presented which

addresses this issue of having a simple design approach while separating the underlying

game architecture from the design.

Message-Based Systems

The second approach commonly used is the message system. This system communicates

between different game objects using a messaging infrastructure. The approach is

3Throughout this work inline code will be presented using this font to allow a correlation between
text and example code.
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1 i f ( p l a y e r V i s i b l e ) {
2 i f ( botHeath > 4 0 . 0 f ) {
3 a t t a c k ( ) ;
4 } e l s e {
5 f l e e ( ) ;
6 }
7 } e l s e {
8 e x p l o r e ( ) ;
9 }

Figure 2-2: A simple set of ad hoc rules encoded as nested if-else statements. Code
blocks like this are useful for controlling a bot in a simple game.

relatively fast to implement by following a standard software design pattern for a

listener structure. Message systems scale well to larger systems. However, due to

the asynchronous sending of messages, it is hard to follow the signal flow or to predict

which game objects interact with each other. For larger systems it is even difficult to

follow the execution chain, making them quite hard to debug. Message systems are

powerful in terms of distributing information between different objects. They allow

a component to broadcast a message to multiple other components without directly

addressing them. However, due to the distributed communication, the overhead can

be quite dramatic. They are also harder to iteratively develop and maintain as a

change in protocol requires changes for all Listeners . One of the significant downsides

of message-based systems is that they are again purely programmer-driven and hard

to understand and design by a non-programmer. There is also no easy way to visualise

or edit message-based systems.

Finite State Machines (FSM)

One of the easiest and still widely used standard techniques is the Finite-State Machine

(fsm). Games such as Namco’s PacMan for Arcade cabinets [Montfort and Bogost,

2009] utilised the concept of state transitions and conceptualised states in design as

FSMs [Bourg and Seemann, 2004, p. 165]. However, PacMan was implemented using

tile systems4 which contained all of the actual logic instead of using an implementation

of states and transitions. Due to the usage of lower level languages and the restrictions

on memory, advanced approaches or complex control structures were not possible.

Thus, the game architecture was not differentiating between logic for characters and

4A tile system uses the underlying world representation to contain the control logic. Tile systems
segment the world into fixed sized chunks, normally squares. Instead of having a centralised logic
system which has to memorise world positions, each tile contains a part of the logic allowing the game
to use local reasoning around a tile rather than global reasoning. This approach is highly memory
efficient and works well for local reasoning.
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environment or rendering text on the screen. The original PacMan logic that controlled

the entities in the game—the ghosts—was bound to the underlying tiles of the level—the

before mentioned tile system— and not to individual agents. The process implementing

the game was completely done by a programmer, whereas the initial design was done

on paper.

Fsms offer an intuitive way5 for modelling behaviour by using states and transi-

tions between them. They can be designed on paper by non-programmers and offer

great design freedom as they decouple the design and the implementation of control

logic. Meaning, the designer can layout the intended behaviour of a system initially

without writing a single line of program code. Later on, a programmer can translate

the resulting graph into program code. Figure 2-3 is illustrating an fsm for one of the

entities controlled by the PAC-Man game.

Figure 2-3: A simple finite state machine for one of the four agents in Pac-Man. The
FSM contains four states: “Return To Base”, “Wander”, “Chase” and “Flee”. The
start state is “Return To Base” and there are accepting states as the state machine
should loop through all states until the level is done.

FSMs can be visually represented as directed graphs that can additionally contain

entry or starting states and accepting/holding states. The latter define valid states for exit-

ing the FSM. Thus, the state machine always starts in the entry state and is progressing

through all states and until it stops correctly. An fsm stops correctly when a transition

ends on an accepting state. Due to this graphical approach to structuring logic, they offer

an excellent way to sketch out behaviour for characters. This behaviour design using

5The term intuitive will be used throughout this thesis to describe ease of design and a shallow
learning curve as described by Raskin [1994].
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states and transitions can as well be done on paper. A state only changes from one to

another by using a transition, a directed edge linking two states. In the Pac-Man state

machine, see Figure 2-3, Return to Base is the entry state into the FSM. For the designed

Pac-Man entity—a Ghost—there are no accepting states because the entities start and

stop with the game which leads to a design that does not require a valid end state for

a ghost. The game ends either when the player dies or when a new level is started.

initial state r -r p -p g e

s1 - - - - s2 -
s2 s3 - s4 - - -
s3 - s1 s4 - - -
s4 - - - s2 - s1

Figure 2-4: A transition table for Pac-Man based on the ghost behaviour of Figure 2-3.
The transition criteria are: r (Pac-Man in range), p (Pac-Man has Powerpill), g (ghost
in Base) and e (Ghost eaten). The states used are: s1 (Return to Base), s2 (Wander),
s3 (Chase) and s4 (Flee).

Another common representation form for FSMs are transition tables, see Figure 2-4.

They define transitions from one state to another in a table where each row is setting

transitions for a specific state to another. The larger a state machine gets, the easier

it is to use a transition table. It is additionally beneficial to see missing transitions

as you can check the particular row associated with a state. Once a new transition is

added, each row in the transition table needs to be checked and adjusted. This checking

procedure is a simple task in a small state machine such as the one presented here.

However, both representations—the graph and the transition table—suffer from

similar problems. For large systems, it becomes hard to visualise or grasp the graphs

or tables. Maintenance and modification of an FSM are hard as each transition from

one state to another needs to be checked and updated whenever the intended logic

changes. As one state can have multiple transitions entering or leaving them, all con-

nected transitions need to be updated. So, large late changes of an existing graph are

expensive and prone to produce errors or result in different behaviour. Another issue

with state machine is that it often is encoded as switch statements or if−else blocks in

the actual software. This hard-coding of a decision structure means that it is hard to

check the final realisation for correctness regarding the difference to the written down

specification, at least for a sufficiently complex system.

Fsms are frequently embedded as program code instead of using an external struc-

ture. A designer, in most of those cases, is only specifying the intended behaviour on

paper which is later on implemented by a programmer. This stages process creates a

fragile and complex dependency between programmer and designer for including later
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changes or testing; it involves two people for one task. Even though fsms are easy to

implement and visually check for smaller graphs, it is hard to verify or validate large re-

sulting systems as they mostly resemble non-deterministic Turing Machines and require

more work than simple parameter sweeps.

Due to the growing complexity of the tasks the system has to perform and react to,

hierarchies were introduced into the state machines. This additional level of abstraction

allows for a better modularity of the system. It also made the systems harder to

design on paper as it involves now having nested state machines, meaning multiple

graphs. Brooks [1986] decided to introduce a different technique into his reactive system

and arranged conventional state machines in an layered order in his Subsumption

architecture.

The transition table would now contain links to different entry states in other state

machines and there would always be a need for specifying valid end states for a nested

state machine to trace problems.

Due to their relatively shallow learning curve and their expressive representations,

FSMs are even now a popular technique in current commercial game systems. An

additional bonus is that they are fast to implement, in terms of required programming,

and their additional computational overhead is extremely low. Thus, it is possible to

run and maintain a large set of state machines even under severe resource restrictions.

Fsms have been used as part of game AI systems since some of the earliest games and are

still used in commercial games such as Batman Arkham Asylum by Rocksteady

Studios [Thompson, 2014]. FSMs are suited for small, purely reactive systems, or

ideally subsystems in a larger AI system. They do not support planning, prediction

or memory but offer an intuitive logic representation. The AI approach for Batman

utilised the easy creation and low overhead of state machines to rapidly prototype

specialised behaviour for their game characters [Thompson, 2014]. They designed a

new feature and implemented it normally in under a day. Due to the small size of

those FSMs, they are easy to tweak and adjust for a programmer. As each of the

features was to a large part independent of the rest, this approach allowed for parallel

work on features and iterative development. However, the resulting system is then

heavily dependent on the maturity and robustness of each feature.

Utility-based Modelling

This variation of game AI approaches is based on economics and game theory. The basic

assumption is to optimise a set of behaviours by fitting them to a particular function

or curve, instead of modelling behaviour based on human design. Thus, the goal is

to have behaviours which maximise their utility. The approach to model elements of
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game AI based on optimising certain parameters is not new but according to Mark

[2009], it offers more flexibility to the system and is modular and extensible in contrast

to previous approaches. For games where the performance of an AI can be numerically

evaluated like simulation or management games, this approach fits perfectly. However,

the approach also works for other games such as role-playing games. In those games

the system tries to optimise internal parameters like health in combat situations or

fame when it comes to more global parameters.

Figure 2-5: A sigmoid function used to determine when to release a trigger. At distance
rA the target is in range. At distance r0 it is safe to assume that we cannot miss the
target any more.

The approach, due to its mathematical underpinnings, can be used in large-scale

systems and translates to different disciplines as well. The evaluation of a function is

generally cheap compared to other approaches. As this approach relies on optimising

towards a certain function, it needs to fit the intended, known criteria. Thus, a linear

mapping between an interesting function and parameters of the system needs to be

known beforehand. To illustrate utility-based modelling for game AI imagine following

setting based on a talk by Mark [2010]:

Player A has a water pistol which has a useful range of rA. Beyond that

range, the player cannot hit a target. At range r0 however, it is safe to

assume that the player will definitely hit the target with maximum effect.

Player B moves along a path getting him closer to Player A. Once player

B enters the range of player B, she could potentially shoot the water gun.

However, player B could instantly step out of the range resulting in only
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dealing minimal damage, wet shoes. To maximise the damage and create

an ”interesting” player behaviour player A could utilise a sigmoid function,

or “Logistic Function” [Mark, 2010] see Figure 2-5, to determine when to

shoot the water gun. The function and the usage of the two thresholds

creates a more dynamic way to release the trigger, yet maximised amount

of water damage without specifying a fixed range parameter for when to

release.

Utility modelling provides a low learning curve for programmers because it comes

down to implementing given mathematical formulas, and a low complexity in modelling

decisions which can be numerically evaluated. The technique is quite popular in early

phases of game development. Schmidt [2015] use a utility-based system for modelling

their NPCs’ decision process. A main motivation underlying their design decision is

that different enemies should feel distinctly different when playing against them. They

give the following example for their utility approach:

A skeleton can perform three actions when engaging with a player unit:

• The skeleton can “Chop”—a melee action to injure the opponent. If

there is a low chance of landing a hit the utility to perform that action

is low. [utility 3]

• It can “Split Shield”—a melee action to destroy the opponent’s shield.

If the opponent has no shield, there is no need to perform that action

and its utility is zero. If the opponent has a shield and it can be

destroyed using the current weapon, the utility is high. [utility 9]

• The monster can “Shieldwall” to protect against the opponent’s attack.

This action receives an average utility to guard the character. [utility

5]

To decide now which action to take, the utility of each separate action is

calculated based on an internal mechanism, independent of other actions.

As a final step, the action with the highest utility is chosen. In our example,

the skeleton would take the “Split Shield” action—as it has the highest

utility—to destroy the shield of the player.

The advantage of this approach over a decision tree, ad-hoc rules or a finite state

machine is that each action and its related utility is separate from others. Thus, new

actions and their calculation functions can be added or old ones removed without desta-

bilising the AI system itself. A fundamental issue, however, as discussed by Schmidt
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[2015] in his blog entry is balancing or “designing” of perceived behaviours. This pro-

cess is time-consuming. The initial approach is to select a function representing an

idea of a certain utility. After implementation and testing, the function needs to be

adjusted to address the difference between the actually exhibited behaviour and the

intended one.

Taking available functions from economics and those illustrated by Mark [2010]

into account, the outcome of the optimisation still needs to be as intended by the game

designer. This is one of the biggest issues with this approach. Using a utility-based

system to design AI requires knowing and identifying appropriate functions for different

scenarios. Additionally, the approach relies to a large extent on the programmer.

Leaving the designer only to suggest functions but not being able to integrate or test

them as they need to be integrated by the programmer and tested while with both

team members are present.

Game BehaviourTree (BT)

There are currently many definitions relating to the term BehaviorTree (Bt). The

two most dominant definitions of the term are those of Isla [2005]; Champandard

and Dunstan [2013] and Dromey [2003]. The first definition deals with the design

of behaviour-based agents for game AI and originates from the games industry. The

second definition dealing with software engineering and design requirements will be

discussed in the next section.

In 2002 BehaviorTree was first used by Isla in the game Halo [Isla, 2005] and

later advanced by Champandard [Champandard, 2003, 2007d,a; Champandard and

Dunstan, 2013]. Having previously worked on c4 [Isla et al., 2001],which will be de-

scribed later on, Isla moved into commercial game development. He initially described

BehaviorTree as a hierarchical FSM or more specifically as a directed acyclic graph

(DAG) for game behaviours. For the initial draft of what is now called a first genera-

tion BehaviourTree, he implied four principles: customisation, explicitness, hackability

and iterative development. Those reflect the focus of what was required to employ the

method into the Halo game. A first generation BT is presented in Figure 2-6.

Customisation reflects the concept of adjusting the decision-making process based

on the desired output. In his initial design of the DAG and as a fallback the leaf nodes

executed actions whereas the non-leaf nodes use customised code to make a decision

regarding which subtree to follow. He proposes a two-step model. As a first step, the

parent makes a decision on which child to execute. As a second step, the children

can alter the outcome of the result by competing for execution. As this deliberation

process of selecting a subtree is quite expensive and, games require tight control over the
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resources, Isla modified the original design for the decision making by moving further

away from a simple graph structure.

Figure 2-6: A directed acyclic graph (DAG) representing a first generation Be-
haviourTree (BT). The BT is based on Isla [2005] but does not contain Be-
haviourTags,Impulses or Stimulus Behaviours.

The new decision process also moved closer to the later described agent architec-

tures including the c4 system [Isla et al., 2001], except that it still focuses heavily on

maintaining a very low CPU load. As not all nodes are always relevant to the current

execution of the tree, because some internal condition is not met, they are marked not

relevant in the current cycle. This process can majorly impact the run-time of a game

as it involved each node along the path through the graph. The relevance function can

contain elements such as the status of an object that is useful to the given behaviour.

An example would be that there is no need to use the sub-trees for driving the vehicle

when the player is in the driver’s seat and able to drive herself. The previously de-

scribed conditions specified the foundation for an initial description of Bt. After this

first version, the approach was altered to integrate the following node elements as an

advancement:

• priority-list: A priority list of children which are executed highest priority first.

If a child cannot execute, the next one in the list tries to execute until one can

execute. For subsequent ticks, higher priority children can interrupt a running

lower priority one.

• sequential: The children are visited in sequential order until the last child is

visited and then the parent node is finished. Only relevant nodes are checked.

• sequential-loop: The children are visited in sequential order, same as above.
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However, once the last element is reached the list is looped again and the parent

is not finished.

• probabilistic: Picks a random relevant child that is relevant in the current

context.

• one-off: Picks a child randomly or uses its priority order but never picks the

same child twice.

The most favoured element in this list, the priority list, presented in talks at the

AIGameDev conference6, was kept unchanged in later versions of Bt as well. By

having a closer look, option four and five are relatively vague in their description. If

child nodes have a probability of success assigned, the Bt needs to track those changes

and alter them. For large trees and frequent updates this process is costly. The one-off

type reduces the number of children available for execution, resulting potentially in an

empty list at some point. If this situation occurs at a vital time during the interaction

with a player, the resulting behaviour will most likely be detectable by the user as

flawed.

As a separate mechanism to alter the execution of actions, Impulses are proposed,

which can link to different parts of the tree. Impulses are similar to pointers and there

are two ways of using them within a BT. It either is used to alter and switch whole parts

of the executed tree or it can be used as a lightweight logging and debugging mechanism.

Combined with BehaviorTags, Impulses offer a way to hack the execution order

while being able to track those changes. Tags are bit vectors attached to behaviours

and allow the developer to track impulses and relevant behaviours. They offer a way to

reduce the number of relevancy checks because relevancy is only checked after the tag

check is successful. Another interesting presented concept is that the tags can be used

to en- or disable large parts of the Bt based on a single bit check. This en- and disabling

of sub-trees is similar to internet protocol sub-network (IP subnet) masks which hide

and structure areas on a network. If the mask is attached to the tree structure, it can

present different views of the BT.

The last two concepts contained in Bt are Stimulus Behaviours and Custom

Behaviours. They define non-leaf nodes which can be inserted into a fixed position in

the tree at a later time. The idea behind this is to reduce the number of checks necessary

when traversing the tree. The Stimulus Behaviours and Custom Behaviours

describe behaviours which are rarely used. Thus, they do not need to be continuously

active or even present in the tree. The stimulus behaviours are added for a given

6The conference changed in 2015 its title to nucleai and scope, integrating now different tracks,
including academic ones.
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amount of time by an event handler to respond to certain stimulus, e.g. a special event

has happened and the player is now able to perform a particular action. The custom

behaviours, however, as the name suggests, are added based on some customised call in

the logic. Thus, they offer more flexibility to the design. Introducing those two concepts

additionally made the execution of the tree more complex and hard to follow for large

trees. Isla never explicitly mentions memory as part of the BT. For the Halo AI, he

discusses the implementation of a memory system. The memory system, however, is

not part of the described Bt approach.

As Bts are used by game designers, Isla focuses on providing guidelines to support

its usage. He assumes two characteristics of game designers:

• Designers think in terms of triggers—events or situations which drive the agent.

• They prefer to use priorities instead of using numerical values. This, however,

contradicts the view of Snavely [2004] who supports the usage of spreadsheets

and statistical or fuzzy set design behaviour.

To edit the Bt he also reduces the amount of information which should be visible/ed-

itable by them. Thus, he creates a designer view of the tree which allows only specific

parameters to be changed but not the graph itself. Through the usage of templates

and an ontology he additionally reduces the number of parameters which need to be

adjusted in the BT. As an illustration, imagine a basic unit which contains most of

the behaviours and attributes. A more specialised unit shares most of the parameters.

However, it has a set of Custom Behaviours just accessible to it.

When designing the Bt architecture Isla initially focused on four principles: cus-

tomisation, explicitness, hack-ability, and iterative development. As the graph struc-

ture can be visualised and all elements are in place during design time explicitness of

the resulting behaviour is given, but this is also true for state machines which offer

a similar observable representation. The resulting graph itself is also more organised

than a state machine due to the usage of hierarchies and prioritisation. This reduces

the number of edges the graph contains in contrast to a state machine. Offering a

way to customise and hack the decision-making process is important to game program-

mers. The Bt supports those by using Custom Behaviours and Impulses. However,

those two features alter the path through the graph drastically, which might impact

the understanding for larger graphs. Due to the usage of a hierarchical graph which

allows adding of nodes but follows a path from root node to a given leaf node itera-

tive development is easier than using potentially cyclic graphs such as state machines.

However, the name Bt is slightly confusing as the used structure is not a tree struc-

ture as a child node potentially can have two parent nodes. In contrast to a state
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machine, behaviours are reused throughout the tree as shown in Figure 2-6 where the

Guard behaviour is re-used in several points.

Figure 2-7: A second generation BehaviourTree (BT). The Bt features a parallel node
for Retreat, selector nodes for Root and Presearch and sequence nodes for the remaining
non-leaf nodes. Due to the complexity of Decorators and their impact on understanding
the structures, they are left out of this example.

Champandard and Dunstan [2013] extended the Bt into what is known as Bt

version 2 by providing a fixed set of primitives and a more formalised approach. They

introduce two types of nodes: leaf nodes which are actions and conditions and non-

leaf nodes—deciders—which represent and shape the control structure. They provide

great flexibility and a first standardised structure of what Bts are now. A visual

representation of a second generation Bt can be seen in Figure 2-7. Additionally,

all nodes have a set of standard return statements (succeed, fail, running, error) which

dependent on the result can alter the execution of the parent node. However, in different

implementations [dkollmann, 2011; Kulawardana, 2011; Johansen, 2013; Hamed, 2012]

return statements are handled differently, thus, they are not further discussed here.

Actions are leaf nodes which execute behaviours such as jumping, firing and so on.

Conditions check sensory information from the agents and are used in connection with

sequences to block parts of the tree. The deciders are:

• A sequence node executes all children in a fixed sequence. Once a child completes

its execution, the next child in the sequence executes. If all children are finished,

the parent node is finished as well. If a child fails, the sequence fails as well.

• A parallel node executes child nodes in parallel, thus they are run at the same
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time. It is possible to specify how many child nodes need to succeed or fail for

the parent node to succeed or fail. The usage of parallel nodes does not rely on

threading as most “current-gen” game systems only feature a small number of

cores. Thus, time sharing or scheduling is often used to coordinate between them.

• The selector is similar to the prioritised list from version 1. It combines all of

the features of the prioritised list into this single node type, making it the most

versatile type in BT. Champandard [2007d] however suggests the probability or

priority selectors are standard case. The probabilities and priorities are to be

adjusted by a designer but not the elements.

• The decorator offers a way to augment existing nodes, even at run-time, chang-

ing their return value or how they are executed. They provide an additional

dimension in customisation to the editor of a tree. However, they increase the

complexity of the tree behaviour drastically.

Given those initial node types, game developers started developing visual tools to

utilise this mechanism, switching from HFSMs to Bts. The most prominent tools im-

plementing Bt are presented in Chapter 2.3. By including a fixed set of primitives

the usage of Bt has been made easier as they provide a selection of items to choose

from instead of following only an approach and each team reinvents their own struc-

ture. Additionally, the elements were created with ease of use and behaviour design in

mind. They provide a common infrastructure to exchange information and advance the

approach as a whole. However, much focus of Bt creation is on programmers. They

are responsible for creating a valid and robust working tree as discussed by Anguelov

[2014]. The trees can be modified and customised by designers. However, they only

have access through a limited interface. Anguelov [2014] argues for a shift in attention

and a better inclusion of designers into the process of creating and modifying Bts.

Extensions: To include more responsive mechanisms into systems, described by

Wooldridge [2009] as multi-agent systems, Bojic et al. [2011] decides on a lightweight

approach and re-implemented Bt as introduced by Champandard [2007d], instead of

using FSMs or more heavyweight approaches. The resulting system was designed for

the JADE agent system by implementing a Java Bt system on top of JADE tasks.

However, the result does not include novel contributions to Bt or behaviour arbitration

itself. It focuses mainly on replacing the currently used model—a state machine—with

a mechanism being able to scale better, as well being easier to observe its behaviour.

Additionally, as Bt is only a technical mechanism to realise behaviour arbitration,

Bojic et al. [2011] argues that it is hard to realise state-machine like behaviour with a
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Bt alone. Their potential future work was aimed at using a hybrid system to integrate

state machines and Bts into a single system. This argument shows a missed point in

understanding and designing behaviour systems and Bt in the first place. Bts were

introduced to replace large complex state machines and to tackle the complexity of

potentially n2 state transitions. This shift towards Bts replaced the need to control a

large amount of transitions between states. Bts are equivalent in their expressiveness

to FSMs. If Bojic et al. [2011] would have employed a more design focused methodology

instead of just using a systems design technique, it could have presented them with a

way to redesign their agents using BT. This way the methodology could have exposed

the functional equivalence of Bt and FSM.

A similar academic approach to the second generation of Bt, Behaviour-Oriented

Design (Bod) [Bryson and Stein, 2001] in combination with Parallel-Rooted Ordered

Slip-Stack Hierarchical (POSH) [Bryson, 2001; Gaudl et al., 2013]—a lightweight HTN

planner—an approach which will be discussed later on. The approach precedes Bt but

goes beyond a structural framework as it contains a design approach missing in Bt.

Hecker [2009] extends the original definition of Bt by Isla [2005] but provides more

guidance for system design based on interviews of the original team working with Isla

on Halo2. He also introduces restrictions on the tree itself to support the design and

understanding of behaviours. Hecker suggests a monolithic tree contained in a single

file. This is done to promote the understanding of its whole behaviour. By heavily

relying on macros, written in the underlying engine code, he reduces code repetition

in the designed tree. To support more modular and separable engine and Bt code,

he recommends that the tree only uses Bt nodes written using the given macros.

Behaviours are only linked from leaf-nodes using pointers, therefore a pure design tree

is available. In combination with the static, monolithic tree, Hecker can constantly

visualise the tree itself while debugging. To support the development he also enriches

the nodes and the arbitration process with DebugPrintStates and debug hooks which make

it easier for a programmer to grasp the current state of the tree completely at a given

time, during execution.

The approaches presented by Hecker [2009]; Champandard [2008]; Isla [2005] focus

to a large extent on programmers. They are also extremely oriented on developing be-

haviours using programming languages. In his blog Anguelov [2014] critically analyses

Bt from experience and proposes two new advancements, a monitor node allowing the

tree to store state information and a gate node offering access to a static tree field

accessible by all instances of the same tree. Both advancements are driven by the

requirement to instantiate hundreds of Bts for game agents and lead to a Bt flavour

called Synchronized Bt [Anguelov, 2014]. As Anguelov [2014] argues, designers rarely
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have a background in programming and by providing only tools for developing agents

using those means they are excluded largely from active participation. This introduces

a reliance on programmers translating agent designs into the actual behaviour imple-

mentation, thus, removing the original designer one step from it. He envisions a visual

design language based on Bt to support game design. Additionally, Anguelov argues

for a transition from using Bt only for high-level decision making or the usage of mul-

tiple decision-making systems to using Bt as the single system for decision-making and

the inclusion of a finer granularity in the decision process.

Perez et al. [2011], on the other hand, extended the development approach for creat-

ing game agents for the platformerAI toolkit, a two-dimensional game experimentation

environment which is discussed later, by using an evolutionary approach and removing

the manual designer. Instead of a designer or programmer writing the agent code they

employ Grammatical Evolution [O’Neil and Ryan, 2003] to evolve Bts. Their approach

focuses on evolving sub-trees which can be re-combined using a constrained grammar.

They elaborate in some detail why constraints are required. Their evolutionary search

algorithm presents large and hard to read Bts. Additionally, the initial node set they

use for the Bt contains only high-level actions which are quite abstract and com-

plex. Those actions are created using a lot of design and computation. For example,

AvoidRightTrap potentially requires the agent to store information about the world and

instantiate actions for multiple runs of the tree. The resulting trees are mostly husks

recombining large chunks of logic only optimising their arrangement. Lim et al. [2010]

use an approach referenced by Perez et al. [2011]. They apply Behavior-Oriented De-

sign [Bryson and Stein, 2001] to create an initial set of Bt agent representations for the

game Defcon. As part of their approach, an evolutionary system is used to optimise

those hand-crafted trees and evolve new ones by applying genetic operators such as

mutation and cross-over to the initial set. They show that a hybrid approach can be

beneficial but finding the right fitness function is difficult as well as evolving agents

in games which require a lot of time to run per generation. Similar to Perez et al.

[2011] the actions are relatively high level. They are computationally quite complex

and the reasoning in the Bt is only done on a macro level. Both approaches provide an

interesting combination and extension of Bt and evolutionary methods. They thereby

utilise the evolutionary method to discover novel strategies—Bt agents—which might

have been overlooked by a designer.

Software Design BehaviorTree (SW-BT)

Before concluding Bt, the second approach coining the term was introduced by Dromey

[2003]. In contrast to the game BT, this method focuses on software design in general
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and not the creation of agents. It also includes a development methodology which

guides the user through the process. The approach is very visual and comes with a rich

graphical notation in combination with a well-defined grammar. In contrast to the game

BT, which is a directed acyclic graph, an SW-Bt is a true tree structure. Each node

always has one parent or none in the case of the root node. The approach was created to

tackle issues in capturing requirements in a single notation. In UML, there would be a

need for different diagrams which according to Dromey do not provide the constructive

support needed. By capturing the functional requirements for a new product from

natural language descriptions in a behaviour tree, it is possible to construct sub-trees

for each requirement.

It is important to note that despite the name and the similarity of the visual rep-

resentation the game and software engineering Bt have nothing else in common and

should not be treated as related.

(a) A single tree node for requirements be-
haviour tree. The node can be used in the
requirement tree (RBT) and design tree
(DBT).

Label & Name Description

A - Requirement Tag tag linking to the original requirement
B - Requirement Status “C” if the requirement is composite,

“+” if the behaviour is implied,
“-” if behaviour is missing in requirement,
“++” if requirement changed subsequently,
“@” marks insertion points,
explicit behaviour does not receive either “+/-”

C - Component Name name of the component
D - State/Condition “[state]” for internal state of the component

“??state??” passes to next node when condition
for state is met

Figure 2-8: Node description of software design behaviour tree (SW-BT) based on
Dromey [2003] which is entirely different from Bt. The nodes are combined into sub-
trees for each requirement and later on merged into a design behaviour tree containing
all functional requirements for a product. A design tree is given in Figure 2-9

The sub-trees for each separate requirement can then be combined in an itera-
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Figure 2-9: A partial tree combining two requirement trees into one partial design tree
by inserting requirement tree R3 into tree R6.

tive process into a design tree containing all requirements using a “Genetic Software

Engineering Method” which Dromey developed. He however completely ignores exist-

ing research on other agile software engineering approaches such as SCRUM or XP,

which already partition the software into smaller chunks collected on a workspace and

recombined dynamically. He claims that:

Conventional software engineering applies the underlying design strategy

of constructing a design that will satisfy its set of functional requirements.

In contrast to this, a clear advantage of the behaviour tree notation is that

it allows us to construct a design out of its set of functional requirements

by integrating the behaviour trees for individual functional requirements

(RBts), one-at-a-time, into an evolving design behaviour tree (DBT). This

tree integration very significantly reduces the complexity of the design pro-

cess and any subsequent change process. [Dromey, 2003, p.2]

In spite of presenting an approach which explicitly contains an underlying strat-

egy for the combination of elements, he states that “conventional engineering” has the
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downside of needing to apply a strategy to derive results. Thus, he states “genetic soft-

ware engineering” (GSE) using behaviour trees is more intuitive and attractive than

conventional approaches. This statement is supported by his emphasis of relying only

on a single notation for the whole process in contrast to UML or other approaches

which combine different notations. When translating the design tree later on into a

component interface diagram he also switches notations. Given a missing evaluation

against other approaches, this claim can only be taken as a personal opinion. Nonethe-

less, his approach for deriving a more robust software design and how to identify broken

or missing requirements is worth investigating after a rigorous evaluation and compar-

ison to other models. Follow-up research exists [Wen and Dromey, 2004] extending

arguments on effectiveness and presenting comparable approaches. Wen and Dromey

[2004] elaborate the existing work without using the argument of Dromey that their

genetic software engineering and the combination of requirements resembles the gene

combination mechanism in DNA.

2.1.2 Spatially Centred Approaches

A large sub-group of games is centred around the concept of a virtual space in which en-

tities have to move and navigate in. Game programmers typically approach the design

of those games by picking approaches which they are either familiar with or are stable,

fast, well presented and have a low learning curve7. The robotics research on spatial

navigation is well established and basic techniques are even taught at undergraduate

level, integrating them into the tools at hand for future programmers. Additionally, spa-

tial centred approaches are of high importance to the case study presented in Chapter 4

as StarCraft is heavily based on spatial reasoning. Understanding spatial reasoning

is one of the fundamental skills of any game programmer and the discussed techniques

present some elements which should be part of any game programmers toolbox. Un-

derstanding these approaches are crucial in games relying on fast spatial navigation or

planning. In chapter 4.3, the design of a Real-Time Strategy (rts) agent is dis-

cussed which requires understanding the difficulty of navigating within spatial games.

This section tries to provide a useful foundation for this discussion.

Defining a Graph In digital games, it is nearly impossible to search efficiently for

paths between two coordinates without using an underlying representation of the world

first. This representation is abstracting or mapping original coordinates to a different

representational space. In most real-time strategy games the underlying representation

7Game programmers generally come from a variety of backgrounds and not necessarily just from
computer science.
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is tile-based, partitioning the map into either squares or hexagons of the same size. In

3D environments, due to the additional dimension, it is either a navigation point di-

rected graph (NavPoint Set) or a navigation mesh (NavMesh) [Snook, 2000]. NavPoints

can be directly mapped to vertices of a graph. For a NavMesh, the approach is slightly

different as the representation consists of connected triangles which are connected by

their edges, see Figure 2-10. In general, each triangle is considered a vertex in the

graph and if two triangles are connected through an edge, the correlating vertexes are

also connected. Triangles can also be connected through an explicit edge to allow for

more fine-grained control over the navigation.

Given a graph G = {V,E,C} with V being a set of nodes and E be-

ing a set of edges. V = {v0, ...vn} contains a finite known set of nodes

which are connected by directed edges E = {e0, ..., em|ea = [va, vb] ∧ a, b ∈
{0, ..., n},m ≤ n2} between them. The direction of an edge ea is from the

first node va in the tuple to the second node vb. C is the set of cost values

for traversing an edge, C = {c0, ..., cm} where ca is the cost to traverse

ea. An undirected graph can be treated as a graph containing edges where

for each edge ea = [va, vb], with an allocated cost of ca, there is an edge

ėa = [vb, va], with an allocated cost ċa, and ca = ċa.

Figure 2-10: A NavMesh, represented in blue, allows an agent to move in a given
environment by using the underlying triangles for navigation instead of a node or grid-
based system. Unity automatically generates the NavMesh based on a given static
geometry for the environment. NavMeshes currently are the standard approach to
navigation infrastructure in games.

Shortest Path

Dijkstra’s shortest path algorithm [Dijkstra, 1959] and A* [Hart et al., 1968] belong

to the foundation of most computer science degrees. Most of the implementation used

today are extended versions of the originally designed algorithms. A* is probably the

51



single most commonly used technique in games when searching for a path between two

points in a graph.

Both shortest path implementations present challenges which make them harder

to use in practice than initially anticipated. Dijkstra’s algorithm is considered greedy

when it comes to the nodes which are checked. It checks all the nodes which are on the

way from source to target. For large environments, this can get quite expensive. Guided

by a heuristic function, A* only searches a smaller subset of nodes on its way; this makes

the approach more appealing as it still finds the optimal route. Fundamentally, both

approaches work well in static environments and need to know the whole environment

to be available for checking the nodes. They both require recalculating the whole

graph when searching for a path or when the environment changes. As games are

highly dynamic, the environment often changes, so a path needs to be recalculated

every time which can become quite costly.

As A* is applicable to graph problems, it can also be used for other pathfinding

problems such as planning a trajectory through space. Orkin [2004] introduces A* in his

planning system to efficiently find a path from a given goal to the needed action, while

exploiting the existing research on optimised heuristics for A*. As the goals change

or the pre-conditions for given actions are inaccessible, re-planning is required which

introduces similar problems as the dynamic environments into the search. Assuming

that the search space for planning is sufficiently large, this recalculation becomes quite

costly.

Koenig et al. [2004] present an analysis and reflection upon that argument drawing

in knowledge about the state of the art techniques and the requirement of robotic

environments and games to recalculate a path in a non-static or changing environment.

They illustrate the weakness of A* based approaches such as their own Lifelong

Planning A* (LPA*). A* is heavily based on heuristics to guide the exploration

around the path from source to target. In contrast to Dijkstra’s shortest path, this

approach visits fewer nodes on a graph making it a fast technique. If the cost c of an

edge changes the whole graph needs to be recalculated as A* has no way of going back

to that node. To not re-plan the entire graph LPA* uses inadmissible heuristics and

memorises previous plan and the plan creation process. To guarantee a fast solution

the search area around the previously calculated path is now explored. This, however,

impacts the resulting path. Koenig et al. [2004] argue that a way around that is the

usage of a truly incremental search approach such as Dynamic A* search (D*).

Stentz [1994] introduce D* as a successor of A* and as an iterative search algo-

rithm able to deal with a changing C for a graph G = {V,E,C}. It works on maps

with partial or no initial information and derives the optimal solution. Functionally,
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it uses the initial information to plan an optimal route and then uses changed infor-

mation (discrepancies from the original cost) to recalculate a new optimal path. This

recalculation is done in a more efficient way than re-planning with A* or using LPA*

and is one of the dominant search approaches in changing environments. Having said

that, in games A* is still heavily used due to insufficient knowledge transfer about the

benefits of more dynamic ways to calculate paths.

Potential Fields

Potential Fields (PFs) are one type of gradient technique which originates from robotics

research [Krogh and Thorpe, 1986; Khatib, 1986; Barraquand and Latombe, 1991;

Konolige, 2000]. It is inspired by physical forces such as gravity or magnetism. Simply

put, the underlying mechanism of the approach is that an entity navigates through an

environment by utilising attracting and repulsing forces. It moves from a high potential

towards the lowest potential, whereas the goal should have the lowest potential in the

environment. Potential fields are appealing to robotics and game development due to

mathematical elegance and simplicity [Ge and Cui, 2000].

(a) Initialisation: A
navigation map con-
taining start location
(blue), target location
(green) and obstacles
(black).

(b) Iteration 2: After
the second expansion
of the goal node.

(c) Iteration 6: After
the sixth expansion of
the goal node.

(d) End of Expansion:
All cells have been as-
signed a cost. All ob-
stacle cells get a cost
larger than the maxi-
mum of all other cells.

Figure 2-11: Figures (a) to (d) show the expansion of a potential field in a 2D map.
During this process, all map cells will be assigned a cost which in turn is used to create
path vectors from cell to cell. These vectors allow an entity starting at a random
location on the map to move down the gradient towards the minimum.

According to Krogh and Thorpe [1986], regular planning approaches to robotic

navigation, such as A* or similar shortest path algorithms, do not incorporate the

vehicle dynamics into the problem. They force the robot to drive through each node

from start to goal along a path which might incorporate sharp angled corners. Those

sharp angles lead to jagged trajectories where the robot has to slow down and speed

up, resulting in non-optimal behaviour. Additionally, non-incremental approaches to

planning require re-planning of the whole path whenever the environment changes.
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They could even be not applicable when traversing unknown terrain. This can lead

to expensive CPU costs resulting in energy inefficient robot control or non-optimal

solutions. A more detailed discussion on that is given by Konolige [2000].

Naive Potential Field Approach: To be able to utilise a potential field, the given

environment needs to be discretised by generating a representative data structure such

as a graph or matrix from it. The coarseness of the representation is a factor to consider

during this step as it is affecting the solution in terms of accuracy. The coarseness

also affects the computation time and the amount of memory used. Typically, the

resolution of the map does not need to be finer than the minimal dimension of the

smallest movable unit in the environment, e.g. the robot or game character for which

the potential fields are used. Thus, a potential, minimal gap between two obstacles is

still sufficiently visible for fitting the entity through. The discretisation can be either

done by introducing a grid structure on top of the terrain or creating a distributed

set of nodes or by applying similar techniques to abstract a non-discrete environment.

After obtaining a data representation of the environment, the next step involves an

update algorithm for its contents.

Expanding potential force algorithm (wavefront approach) [Khatib, 1986]:

1. The goal cell receives an initial cost of c = 0.

2. We set our counter n = 0.

3. We add the goal cell to a new empty list we call wavefront.

4. We select all cells from the wavefront with c = n.

5. We assign their nearest neighbours who are not yet in the wavefront and are not

obstacle cells with a cost value of c = n+ 1 and add them to the wavefront.

6. we increase n: n+ +

7. If we have not visited all cells in the grid we go back to step 4. If all non-obstacle

cells have been visited, we continue.

8. For each obstacle cell in the grid we assign a cost co = ∞, or co = max(ci) + 1

for all non-obstacle cells i in the grid.

In a uniform rectangular grid, this approach computes the minimal Manhattan

distance from a cell to the goal cell [Konolige, 2000]. The resulting grid now represents

a distributed cost with a gradient towards the goal. In a fixed environment we now

can position entities and if they follow the gradient from cell to cell, from highest cost
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to lowest cost reaching a minimum, they will ideally reach the goal. However, this

approach has some known limitation addressed in works by Krogh and Thorpe [1986];

Ge and Cui [2000]; Hagelbäck and Johansson [2008]; Konolige [2000]. As you expand

the cells, it is possible to create local Minima within the grid. Those Minima occur in

concave shaped obstacles and can lead to dead ends for the entity. Additionally, if the

resolution of the grid is high, the computation of it is extremely high as you need to

visit all cells within the grid. With the current description, the impact of the repulsing

forces is quite low as it currently only repulses the entity one step before the object but

in actual settings obstacles might have a repulsing force affecting neighbouring cells as

well to guarantee that the used robot does not collide. This can be done by including

either a Gaussian or linear decreasing gradient expanding beyond the obstacle. Another

major issue of the presented approach is that entities are prone to graze the corners

of objects which can be addressed using the previously mentioned extension of the

repulsive force.

Hybrid Potential Fields: Krogh and Thorpe [1986] present an approach to robotic

navigation. They combine potential fields and high-level planning. Thus, they avoid

the negative impact of local minima on finding the correct solution. The approach is

split into two phases, a high-level planning from start to goal and a second phase which

takes into account only local information to navigate around obstacles and respond to

real-time sensory information. As discussed before, path planning is expensive and

reduces the flexibility of a robot or in the context of this thesis the time each agent

has for reasoning. Thus, Krogh and Thorpe [1986] argue for sparse usage of planning.

He proposes the usage of a coarse map to do rough initial planning using A* and the

generation of a set of critical points which define the initial path towards the goal. The

number of critical points in the set is not specified, but should be kept as minimal

as possible to reduce computation costs. The next step is to relax the position of all

critical points to minimise the cost of travel along them. The cost for a point does not

need to reflect only the distance of travel but can also take the terrain into account or

the closeness to other objects (repulsive force).

The update and relaxation of critical points are a recursive process until no points

have been relaxed on the last cycle. Within one cycle a node can only be relaxed once

and only by one unit. A node can only be moved perpendicular to a line through its

two enveloping nodes.

This can normally be done before the entity has started moving and only needs

updating if drastic map changes happen. Thus, the robot is able to amortise the cost

of those expensive computations over time.
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The second phase is the dynamic steering which takes the real-time sensory infor-

mation into account to create the trajectories towards the goal. The advantage over

other potential field approaches is the potential fields are position and velocity depen-

dent, whereas other approaches are only velocity dependent. Meaning, only cells are

computed which are on the path towards the goal instead of the whole terrain. Thus,

issues relating to local minima and high computational costs for large maps are ad-

dressed as you only look along the relaxed path and intermittent steps. To calculate a

potential P (x, v) for a critical point you use its current position x = [x1, x2] and the

velocity at that location v = [v1, v2] where

P (x, v) = PG(x, v) + PO(x, v) (2.1)

is the potential function for any given critical point in the environment. This is done

by taking the attractive potential towards the next element PG in the critical points set

and the repulsive potential of obstacles PO on its way into account. PG(x, v) is defined

by the minimum time to reach the critical point x from the current position. Further

details on how to efficiently compute PG in a dynamic environment are given by Feng

and Krogh [1986] as it goes beyond the scope of this chapter8. The repulsive potential

of obstacles is defined by

PO(x, v) =
vO

v2
O − 2αxO

(2.2)

where xO,vO and α are: the directional vector towards the visible obstacle, the velocity

towards the obstacle and the maximum steering angle of the entity. To reduce compu-

tational cost, PO is only computed for the obstacle along the current velocity v vector.

The next critical point is chosen once the entity reduces its velocity towards the current

point. If a point is not visible from the currently active critical point, an intermediate

point is inserted into the set. The intermediate is chosen as the corner of the obstacle

blocking the visibility closest to the originally selected point. The result of this real-

time two-phased approach is a computationally tractable approach taking the entities

capabilities to manoeuvre in the given environment into account and minimising the

total cost to arrive at the global goal. Konolige [2000] proposes a nearly identical ap-

proach to Krogh and Thorpe [1986] supporting the applicability to real-time spatial

movement with robots.

In games, the limitations for entities are not as rigid as in real physical environ-

ments. Thus, the presented hybrid approach would not be required for optimising

smooth trajectories. However, creating the impression of physical limitations and rigid

8In games a linear approximation between the current position and the target position given the
current velocity should, however, be sufficient.
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movement with a computationally tractable approach should be appealing as it aids

the desired impression of a given virtual entity.

Bourg and Seemann [2004] and Olsen [2002] introduce potential fields into games

as an attractive computational approach for game unit control that can be applied on

a global scale. The approach does not go beyond what was previously introduced as

naive potential fields. In the case of game AI, these PFs are described as being useful

to attract units to weak and desirable targets while repelling them from stronger more

dangerous forces. Additionally, a single function can be used to provide a large amount

of control, which makes them appealing. By modifying the variables of the repulsive

and attractive gradients for each force, a way can be provided to include learning

and improvement into an AI mechanism. Hagelbäck [2012]; Huang [2011] describe

approaches of using potential fields in digital games with great success. Hagelbäck

and Johansson [2008] introduce their approach to multi-agent control using potential

fields (MAPF) in real-time strategy games (RTS) and achieve results which are able to

compete with A* approaches in path planning. A result which brought them industrial

attention featuring their approach in the AiGameDev tutorial set9. By utilising a

genetic algorithm (GA) to optimise the parameters for different unit types and their

related potential fields Sandberg and Togelius [2011] extend the capabilities of MAPF

offering a way to include offline learning into the game development process.

Potential Fields, in contrast to Shortest Path approaches, offer a low-level control

mechanism for robots and game agents. They do so by giving a visual representation

of the reasoning process to the user. This low-level access and the lower computational

cost makes them appealing to game developers and designers.

Influence Maps

Schwab [2004] introduces Influence Maps (IM) in his collection of game programming

techniques not as a single technique which is directly applicable to game AI but as a

helper technique [Schwab, 2004, pp.373]. Due to its very visual structure and flexible,

straightforward implementation, it is getting more and more popular in game devel-

opment [Tozour, 2001; Sweetser, 2004b; Schwab, 2004; Millington and Funge, 2009b].

Tozour [2001] emphasises in his introduction to influence maps for game programmers,

that IM is not a single technique but a more general approach of how to use spatial

data in games to aid the decision making.

On a basic level, an IM consists of a simple array/matrix structure containing cells

9AiGameDev is organising industrial workshops and conferences and manages an online collection
of techniques which are often used as a first access point for game developers when searching for new
or useful techniques.
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related to information about the game world. Those cells are correlated with spatial

locations from the game world. The primary function of an IM as used in games is

similar to a cluster of place cells from Neuro-Science [Cools, 2012], their purpose being

the storage of information about the world bound to specific locations. In this respect,

both models are quite similar as they bring an abstraction layer between real world

information and decision making by applying content and context dependent filters

to the world. A cell value in the map is, in the simplest form, a numerical value

representation of its influence10. In some cases, it can also be a collection of more

complex attributes which are used to aid the decision-making process. The values of

a cell can represent different types of information: thread level, terrain height levels,

visibility of units, or other terrain factors affecting attack or defence values of units.

Those values can be used to create different layers of the IM, which allow a more

fine-grained analysis. An important feature of the IM is to give access to the relation

of influence between different cells without having to analyse the world each time, a

process that is crucial in decision-making.

Depending on the content of a cell or the complexity of the map, the influence can

also bleed or spread into connected cells. In this, the process is similar to potential

fields. An example would be a wall which cannot be passed. The wall would not spread

its influence to connected cells when it comes to walkable terrain but on a different layer,

like visibility, the wall would spread its influence casting a shadow over connected cells.

Influence maps are often represented as heat maps for visual analysis, which makes

their information easy to understand as you can, for example, represent thread levels

in a colour gradient from green to red. The visual representation can, same as the IM

underneath, be layered to allow for different purposes to be visualised independently

which can aid the design and understanding.

10A better term for influence in most cases would be importance to the agent.
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(a) A simple visual representation of an
influence map. In grey, the spread of
creep, in blue, the available resources and
in green, buildings to protect are shown.
The map is based on figure (b), abstract-
ing the most important information about
the world into it. The actual IM could be
a two-dimensional int array containing int
values for the important elements encoding
their importance to a bot.

(b) StarCraft Zerg central building oozing
creep using a Gaussian-like distribution.
The creep is a visual game mechanic which
can be represented by an influence map.

Figure 2-12: Influence map

Due to its simple structure, the approach can be scaled to different requirements

even 3D and real-time. In the case of 3D environments, positions in the world could

be replaced with navigational mesh cells (NavMesh cells Snook [2000]; Tozour [2001]).

To visualise more complex maps, the mentioned layers can be combined. This is often

done using a weighted sum based on a designer decision of the thought of importance of

specific features. With the weighted sum for each cell, complex attributes are compiled

into a single desired measure that can be visualised in the map as discussed before. The

design of the weighted sum function is, however, non-trivial in most cases. The process

is in some cases more complex than optimising certain parameters; sometimes it also has

to involve user testing. The combined map offers a way to visualise complex relations

about world information. That information can aid finding unique features in the world

such as navigational bottle necks—choke points—or safe zones. The information about

the world in form of an IM are generally used for:

• Terrain analysis in real-time strategy games uses influence maps to determine

which positions are of strategic value or potential danger.

• Path finding can be aided by providing a “good” cost function or heuristic for

the path planning approaches to calculate the best path for an agent. Here dif-

ferent layers of the IM can represent different criteria for what “good” represents

for a designer or a specific agent.
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• Ground control is sometimes used as part of the game mechanic for certain

games to determine which player controls a map region. An example is the creep

spread in StarCraft which can be represented by an IM, see Figure 2-12b.

Figure 2-12a shows a local IM for a Starcraft agent. The map has a relatively

low resolution compared to the resolution of the game. Lower resolution maps can

be beneficial to reduce space and computation time or when only focusing on some

important points of the game environment or when using it only for a given location.

The resolution of a given map may depend on different things like the world size, the

needed accuracy of the influence of a location, or simply the memory limits for the

AI approach. They are an abstract model of the environment incorporating the given

circumstances.

An important aspect of any technique used in games is its impact on the perfor-

mance and the amount of computational power and memory required. If the resolution

of the IM or the number of layers is high and the world map is large, the memory and

CPU cost of maintaining and updating the map is quite high. For standard approaches,

the cost is O(nm), where m is the number of cells in the map and n is the number

layers or attributes. Let us use StarCraft as an illustration. The maximum map

size is m = 256 × 256 = 65536. As StarCraft is played in real-time, this means

for a naive implementation, the map is updated potentially 30 times per second to

incorporate changes. In those cases, it makes a large difference if your IM has 1 or

10 layers/attributes per cell as each additional layer doubles the amount of checks or

updates. Millington and Funge [2009b] discuss this issue as well and present different

influence models to counter the cost of large updates. An important connection they

make is that a single layer of the influence map can also be interpreted as a pixel image.

Thus, image-based approaches to blur and sharpen an image can be used as well. The

blurring of a pixel is similar to spreading the influence to connected cells but works over

the whole image and as it is a matrix operation can be done on dedicated hardware.

This removes some pressure on the CPU.

Influence Maps in contrast to the previously introduced potential fields are not

used to control or navigate units directly. They are more beneficial to providing a

more versatile tool either for designing levels or in understanding weaknesses in their

design. They can also be used to aid the decision-making system or path planning.

Nonetheless, it is important to keep the cost of updating and checking the IM in mind

to not increase the CPU strain. They are often used in games to calculate defence

points, visibility of or by enemies, or where to best set up for ambush points.

Sweetser [2004b] integrates IMs with Neural Networks to replace the weighted

sum—the selection mechanism to weight the attributes and layers. Her approach is
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not focusing on design feedback but on providing the reasoning mechanism of an agent

with an additional abstraction layer instead of using the raw world knowledge. To

control the agent, she uses Neural Networks discussed in Section 2.1.3. On one hand,

the general idea of optimising the calculation of how to combine the different layers

is interesting and can optimise the map cells. On the other hand, the computation

workload and the testing are quite intense. Additionally, the designer has less fine

control over special behaviours directed by this black-boxed map. Nonetheless, the

computation is only intense during the learning phase of the Neural Network and NNs

are a standard approach which works well out of the box. Once the game developers

are satisfied with the resulting combined IM, the Neural Network only needs to be

re-trained if the underlying data set changes. This, however, can happen quite often

during development. New features are constantly being added, leading to the need

for an extra function in the early phases of development. Sweetser [2004b] also argues

that this can be a positive feature as it allows the AI to adapt to specific players after

shipping the game. This statement, however, is questionable, taking the discussion of

Thompson [2014] and the general arguments made at industrial events into account.

Games need to be as stable as possible and game developers would rather not use a

feature that can lead to a potentially negative user experience.

An interesting, yet only focused on designer support, approach is presented by

Tremblay et al. [2013]. In contrast to the previously shown work, Tremblay et al. [2013]

provide a tool to understand and model game levels based on player path analysis. The

tool allows a designer to include a game level and agents within the environment plus

their intended movement patterns. The developed tool then calculates all possible paths

a player can take. For the calculation of possible paths they use Rapidly Exploring

Random Tree (RRT) [Lavalle, 1998] to dynamically integrate the information from the

changed environment such as the moving NPCs into a set of initial expanding graphs.

Instead of simply showing a multitude of paths, they break the paths into smaller

segments and clusters close segments according to their distance. According to the

authors, this produces a heatmap-like representation of the game level. What it does

is deriving an influence map including traces where players are potentially able to go.

The designer is now able to interpret the visual feedback about potential player paths

and can alter NPC positions or the general layout of the level. This allows adjustments

to possible paths. It also allows the designer to see if designed areas in a level are

unreachable or would rarely be visited.
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2.1.3 Evolutionary & Learning Approaches

For most naive developers, the expectation for evolutionary or learning approaches is

that they are useful for replacing the design of games or parts of the game design with

automated search approaches. However, currently the biggest contribution those ap-

proaches can provide is robust optimisation and augmentation of subsystems in games,

as illustrated by Sandberg and Togelius [2011]. Computational Creativity, the field

of AI researching the fully automated generation of games or game elements, is rela-

tively young and focuses on exploring the merits of understanding and automating the

creative process [Boden, 1998; Colton et al., 2012; Cook et al., 2014; Wiggins, 2006].

However, this state of the art research has not managed to arrive in the industrial

sector, with a few exceptions as discussed below. In chapter 7 a new perspective of

using evolutionary techniques is discussed which relies on the foundation of this section

and extends it.

Artificial Neural Networks

The artificial neural network (ANN) approach is based on the attempts to replicate

the neural systems of the brain [Russell and Norvig, 1995, pp.764]. The approach is

based on a model of a single neurone, see figure 2-13, and favours parallel computation

due to distributed computational task of neurone in the network. Neural networks

incarnate of learning and adaptive systems based on the previous arguments. There

are two main types of ANNs, cyclic (recurrent) neural networks (RNN) and acyclic

(feed-forward) neural networks. Feed-forward networks are the go-to solution when

it comes to employing neural networks. They are easy to understand and implement

and allow the modelling of complex functions in a data-driven way. The advantage

and downside of feed-forward networks are their static nature once their training is

done. The standard approach for training feed-forward neural networks is using back-

propagation using a test set of known inputs and outputs until the measured error over

the test data is sufficiently small.

Feed-forward networks and the training using back-propagation allow the developer

to follow the signal and error flow as the network does not contain states and produces

the same output for a given input.

The ability to understand the signal flow decreases drastically with either the size

of the network or when RNNs are used [Russell and Norvig, 1995]. As the size of the

network increases the number of connections between each of the layers increases by

the power of two for a feed-forward network. Recurrent networks are more flexible and

more closely model biological neurones and how they link in the brain to a greater
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(a) A model for a single neuron based on Russell and Norvig
[1995]. The neuron has an input signal aj for each connected
neuron j from an earlier layer and an a connected weight Wj , i
to modify the strength of that signal. The neuron also has a
weighted bias assigned to it which can be used to modify the
activation function g of the neuron.

(b) A feed-forward neural net-
work containing an input layer
with two neurons a hidden layer
with three and an output layer
with two neurons.

Figure 2-13: Figure (a) shows a basic artificial neuron defined by input signals, their
weights, the input function ini, the activation function g(ini) and the output value of
the neuron ai. Figure (b) utilises the artificial neuron on three layers defining a simple
artificial neuronal network.

degree [Russell and Norvig, 1995]. RNNs in contrast to feed-forward networks allow

connections directed to earlier layers. Hopfield networks [Hopfield, 1982] for example,

contain bidirectional connections using the same weight in both directions. RNNs due

to their cyclic structure offer a way of including state or memory into their decision

process. This makes them not only more powerful but also harder to control [Russell

and Norvig, 1995; Millington and Funge, 2009a; Bengio, 2009].

Typically, artificial neural networks are quite shallow, containing only a small num-

ber of hidden layers due to the amount of weight adjustments needed before converging.

With the breakthrough by Hinton in 2006 deeper networks became a possibility. In

contrast to previous approaches training the whole network, Hinton applied a greedy

approach training one layer at a time. This was done using unsupervised learning for

each layer using a Restricted Boltzmann Machine. A deeper analysis into Deep-NN is

given by Bengio [2009].

Industrial publications on Neural Networks [LaMothe, 2000; Millington and Funge,

2009a] usually try to include a full overview of them by presenting the whole field

in a primer. This primer is done with a focus on implementation coupled with a

general concept description. However, this approach over-simplifies in cases, for ex-

ample, LaMothe [2000] presents the recurrent networks developed by Hopfield in the

same context as feed-forward networks including only a walk-through approach for the

underlying algorithm. LaMothe [2000] states that a Hopfield net is an iterative auto-

associative memory but does not clarify the meaning. What Hopfield introduced was a

way to retrieve the correct memory state given a partial or approximated version of it.
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Nonetheless, from an application point, he emphasises on the difficulty of employing

such an approach as it might not return the desired information at a fixed time, a

general concern of RNNs. Instead of providing a full description of all types of ANNs

Sweetser [2004a] gives a lightweight introduction to the concept of artificial neurones

which is nearly identical to the one given by LaMothe [2000]. She then focuses on

providing C-style implementation details for feed-forward neural networks and design

decisions for modelling them. However, those decisions are a step by step list, only

presenting options without sufficient reasons for choosing them.

There are many choices to make when designing your NN. [...] Second, you

need to decide what types of units will be used, such as linear or sigmoid,

by choosing the activation function that you will use. The example in this

article used a type of sigmoid function, namely a logistic function. This

function is commonly used in networks that use backpropagation learning.

[Sweetser, 2004a, p.622]

The given example for the discussed step misses any support for deciding upon

which alternative type of neurone the network should have. Her argument that back-

propagation learning is often used in conjunction with the sigmoid function is true but

does not aid the decision process rendering the steps less helpful. Leaving introductory

contributions to neural networks aside. Comparing her discussion with Millington and

Funge [2009a]; LaMothe [2000] presents a disparity in academic and industrial focus.

Her argumentation does not take actual implementation and restrictions of games into

account which are a constant reminder of industrial focused work.

In current games, the usage of ANNs is similar to the introductory models described

above and the most prominent case of a still learning neural network use inside a

deployed commercial game is the creature in Lionhead’s Black&White [Millington

and Funge, 2009a]. The network is trained by player feedback when rewarding of

punishing the creature for actions performed in the game world. Another example

is the AI controlling racing cars in Codemaster’s Colin McRae Rally 2.0, which

models the parameters of the track and specific cars [Togelius and Lucas, 2005].

Evolutionary Algorithms

Evolutionary Algorithms (EA) extend the metaphor of biological evolution into the

domain of computation systems [Bäck, 1996; Schwefel, 1993]. They thereby borrow

concepts from genetics such as genes, mutation, or recombination to describe a process

of adjusting programs or program parameters in an incremental process. The field of
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EA can be subdivided into four areas to emphasise different aspects of the evolutionary

process. The initial sub-division is based on Bäck et al. [2000].

• Genetic Algorithms (GA) generally use bit vector representations for the indi-

viduals. Thus, functions are enabled or disabled depending on their state in the

vector. Recombination is used as a main operator for creating new individuals

and mutation is only used with a small percentage as a “background” operator

but not as a driving force for the evolution. The selection scheme is probabilistic.

• Genetic Programming (GP) as introduced by Koza [1992]; Poli et al. [2008] is

a form of EC which on the first glance is similar to GA. Recombination is used

as a main operator and mutation is only a secondary operator when evolving

new individuals. The selection process is probabilistic and the elements in the

individuals vector can represent functional elements. However, the vector can

also contain parameters and it is normally not of fixed length containing pointers

which can change location on the vector. Thus, GP evolves functional computer

programs instead of parameters or functional representations. This exploration,

in practice, opens a larger search space than any other EA approach.
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• Evolutionary strategies (ES) generally use real-value vectors to address attributes

or parameters rather than switching only individual functions on and off. They

use normally distributed mutation and recombination as equal operators for cre-

ating new individuals and use deterministic offspring selection, for example using

a rank-based selection.

• Evolutionary programming (EP) works, same as ES, on real-value vectors. It does

not utilise recombination and solely applies mutation as a way of altering indi-

viduals. The selection operator is probabilistic and the approach was originally

developed to evolve FSMs as mentioned by [Bäck et al., 2000, chap. 18].

Underlying all Evolutionary algorithms are similar principles which unite them and

a generic framework can be given in the following form [Bäck et al., 2000, chap. 7]. Using

I as the search space containing all individuals a ∈ I and F : I → R the fitness function

assigning real-valued a fitness value to each a. The size of a population is specified by

µ for parent population and λ for offspring population size. P (t) represents a given

population at time t and consists of individuals of type a. To alter a population

mutation, recombination and selection operators may be utilised each with specific

characteristics Θ.

For all four mentioned EA approaches the actual algorithmic steps within the loop of

evolving new individuals are similar and based upon the biological concepts evolution.

Before starting the evolutionary process, the time t = 0 is set to track the evolution

of the population P (t). The population P (t = 0) is initialised with either random

or predefined individuals P (t = 0) = {a0(t = 0), . . . , aµ(t = 0)}. The initialisation

is a crucial step for each EA and differs on the actual approach. Depending on the

modification criteria Θr, Θm an initial evaluation of the pool is carried out to assign

each individual a a fitness value.

Evolutionary Process:

1. (Recombination)

If this step is applicable a new population is created P ′(t) = recombine(P (t),Θr)

using the parent generation and the specific criteria for creating a new population

P ′(t). Such a criteria could be the percentage of parents which are used for

recombination κ, or if the recombination is using single or multi-point crossover.

2. (Mutation)

If a new population P ′(t) was created in the previous step then a third population

P ′′(t) is created by taking each individual a′(t) ∈ P ′(t) and exposing it to the

possibility of mutation a′′(t) = mutate(a′(t),Θm) putting the exposed individual

66



into P ′′(t) = {a′′0, . . . , a′′λ(t)}. If no recombination took place the approach uses

P (t) instead of P ′(t) to create P ′′(t).

3. (Evaluation)

During this step the population is evaluated by calculating the fitness of each indi-

vidual taking the total number of offspring into account. F (t) = evaluate(P ′′(t), λ)

4. (Selection)

During selection set of offspring is chosen to go into the new generation as λ can

be larger than µ. The new population P (t+ 1) = selection(P ′′(t),Θs) is created

from P ′′(t) and additional criteria are applied Θs according to the used approach.

A criterion could the applying co-variant parsimony pressure Poli and McPhee

[2008] which is used in GP to counter bloat in offspring generations.

5. (Clean Up and Increment) All elements which have not made it into the previous

generation are cleared and approach dependent measures are taken either to save

the fittest individual or insert specific individuals into the new generation by

force. Additionally the generation counter is incremented.

This presented algorithmic approach is basic but is applicable to all EAs and similar

steps are often referred to when creating a new EA system as Poli et al. [2008] suggest

in their field guide. In the industrial literature [Schwab, 2004, chap. 20] discusses EA in

some depth. However, he refers to it as Genetic Algorithms mixing GA,ES and EP. He

presents a basic approach similar to the EA one given above, but supplies C-Style code

examples and more importantly a list of pros and cons for using EA. Statements like

“GAs are stochastic methods and are considered a form of brute-force search.”[Schwab,

2004, p.452] generally do not aid a decision process for choosing GA/EA and create a

negative co-notation for the approach, whereas a thorough exploration of the feature

space is in some cases beneficial. The included points he makes are high level and are

similarly fitting for most learning approaches. Thus, they are too general to be useful

for specific versions of EAs and their applicability.

Lucas [2005] presents an approach using an evolutionary algorithm instead of back-

propagation to modify the weights of the network. The presented approach is moti-

vated by trying to gain insights into what effective approaches for digital games are,

in contrast to existing research on chess and checkers. Thus, exploring reactive neural

networks presented an interesting starting point. An issue emerges when interpreting

the behaviour of evolved networks. To understand the behaviour of the agent controlled

by a ANN the individual weights need to be analysed or the exhibited behaviour within

the game needs to be observed. The first option is in most cases only possible for small
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networks due to the sheer number of weights. The second option is time consuming

and highly interpretive.

Stanley et al. [2005] present a similar approach to Lucas by evolving neural nets.

The main difference is that they use their approach as a core game mechanic in the

game Nero. In the game, the player is in charge of selecting and evolving artificial

soldiers to fight in teams against other teams. The approach underlying this game is

Neuroevolution of Augmenting Topologies (NEAT) [Stanley and Miikkulainen, 2002].

In contrast to the previously described neural networks, the connections of the hidden

layers, the amount of units in the hidden layer and the structure of the hidden layers

are altered fully automatic. This allows the evolution highly structured and optimised

networks. An interesting concept used in Nero is the human controlled fitness func-

tion. This player controlled function allows online modification and direction of the

evolutionary process.

Other games such as Creatures [Grand et al., 1997] evolve simple neural networks

for control and learning in the virtual world. For example in Creatures a Norn—one

of the creatures inhabiting the world—has a genome associated with it. This genome

allows for recombination and mutation when breeding new creatures based on pairing

desired strains. The ability to create new individuals and to watch them learn skills

from each other are the main aspects of the game. A more research based proof of

concept and comparison work of employing ANNs in game controllers for racing games

is given by Togelius and Lucas [2005]. The resulting automated drivers are far from

being able to compete with human players but show weaknesses and potential in ANNs

and machine learning in general. However, keeping their results in mind, all forms of

machine learning require careful design and sound understanding on the developer’s side

in order to reduce the combinatorial possibilities of the behaviour to be learned. This

is supported by Lucas [2005] who concludes in his work on Ms. Pac-Man that ANNs

might not be the right computational approach for this particular game, a statement

which is rarely mentioned in literature.

Monte Carlo Tree Search (MCTS)

Monte-Carlo TreeSearch (mcts) is a relatively new algorithm introduced by

Coulom [2006] in 2006. It combines the precision of tree search and the explorative

power of Monte Carlo sampling. Thus, being able to balance exploitation of the cur-

rent search with exploration of other search areas. Browne et al. [2012] provide an

exhaustive overview of the state of the art on mcts covering algorithmic description

and application areas including weaknesses and strength of the approach.
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“mcts rests on two fundamental concepts: that the true value of an action

may be approximated using random simulation; and that these values may

be used efficiently the policy towards a best-first strategy.” [Browne et al.,

2012, p.5]

Figure 2-14: A search tree expansion illustrating Monte Carlo Tree Search steps on
a high level. The four main steps are visualised on a graph example which expands
asymmetrically along the nodes giving highest score when following the PT (v) policy.

After providing good results in Computational GO11, mcts gained a large amount

of attention in the research community. Additionally, due to its scalable any-time

approach, allowing the algorithm to be stopped at any time, mcts is still able to

output usable solutions or continue simulations to produce better results over time

[Coulom, 2006].

The vanilla mcts can be described as an iterative approach to expand the search

tree into directions which prove to be promising. The approach starts with an empty

root node containing the current state s0 and adds new child nodes to transition to

new potential states si, where i is bound by the number of simulations. The transitions

from state to state are actions a, similar to transitions in fsms. The most promising or

“urgent” nodes are then further expanded in an iterative manner, creating an unbal-

anced search tree. The terms promising and urgent are defined in the approach by an

11The boardgame GO is a complex turn-based two player game. It is similar to other classical games
such as chess as it requires a player to strategise and plan moves ahead. In contrast to chess, the
state space of GO is larger and more complex, making it a challenging domain for artificial intelligence
research.
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internal criteria for selecting a child. A more detailed description of such a criterion is

given further down. The main approach steps as described by Brown and Nee [2012]

are illustrated in figure 2-14.

Algorithmic description of MCTS:

1. Selection: Traverse the search tree starting at the root to a child node by applying

a given policy PT (v). Stop the traversal once a child node is reached which is

either selected for expansion or is a terminal.

2. Expansion: Add a new child node, if the current node is not a terminal node. A

terminal node in a game setting would finish the game. A child node j represents

a new state sj of the system, achieved by executing an action ak on it its parent

node k.

3. Simulation: A simulation is executed using the current state sj of the system to

evaluate the outcome/reward of the currently selected child j. This is done by

selecting actions according to the policy PD(v) until the simulation is finished.

4. Backpropagation: The result of the simulation is propagated up to the root fol-

lowing the path taken. On its way up all nodes are adjusted by including the

result of the child.

This process yields a result a (the best action to take from s0) after each iteration.

Generally, the more simulations can be run, depending on the quality of the simulation,

the better the resulting action. The advantage of mcts becomes visible when the

feature space of possible actions at each state is large. In those cases approaches like

MiniMax expand the whole tree which is intractable in most digital games.

As described earlier, there are two policies for selection: either which child to

select for traversal, or which move to make once the leaf node in the expanded tree

is reached. In general PD(v) is randomly selecting actions as there are no further

evaluations possible. A currently popular policy for PT (v) is the upper confidence

bounds for trees (UCT) which drives the tree expansion towards a partial search which

balances tree expansion and local exploitation. UCT is based upon UCB1 [Auer et al.,

2002] and is defining a good measure for iterative local search.

UCT = X̄j + 2Cp

√
2 lnn

nj
(2.3)

UCT is given by X̄j ∈ [0, 1] the average reward or score for choosing action aj , n

the total number the parent of node j has been visited, nj the number of times node

j has been visited and Cp a constant affection the amount of exploration. A more
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detailed discussion on the exploration constant and its implication is given by Kocsis

et al. [2006].

Due to its success in GO and its any-time capability GO receives a large amount

of attention in the academic community as described by Browne et al. [2012]. This

attention and its general performance attracted attention in the games industry and

resulting in its application in games with incomplete information such as Magic: The

Gathering [Ward and Cowling, 2009]. The advantage of using mcts in contrast

to other machine learning techniques is that it performs well even when no domain

knowledge is available. Nonetheless, if domain knowledge is provided and good heuristic

can be produced, the approach should perform exceptionally well because the search

space will be explored in a more efficient way. The main difficulty when trying to

use search techniques including mcts in current commercial digital games such as

StarCraft is, how to identify a good trajectory. mcts uses simulation to explore the

space which needs to be available as part of the commercial game, otherwise it is quite

costly. Branavan et al. [2011] present an Monte Carlo search approach using domain

knowledge based approach for the relatively old game Civilisation ii. Thus, exceeding

the capability of domain knowledge free mcts. Their approach incorporates extracted

linguistic knowledge from the game manual encoded in an ANN to support the action

selection process. However, the game state space is enormous—Branavan et al. [2011]

estimate 10188 states— and the simulation steps within such a space take a large amount

of time. Thus, simulation is in this case extremely expensive. This results in a relatively

low simulation count, between 100 and 500 simulations, and an extremely large time gap

before making a move. During their experiments it took between 10 and 120 seconds

before the approach was able to make a reasonable move. The resulting artificial

player was able to win against the included adhoc rule-based AI 78% of the time but

an experiment against a human player would have been impossible taking the decision

making time into account. Nonetheless, the approach shows potential directions for

future work or motivates game developers to include a less costly simulation engine

into their games.

A fruitful approach could be in hybrid systems similar to the GOAP approach

discussed on page 81 where a re-active planner is combined with A*. If mcts would

be used in plan space to come up with solutions to planning problems, the state space

would be more confined and potential domain knowledge could reduce the number of

simulation steps, resulting in an AI able to compete with human players.
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2.1.4 Summary of Approaches to Game AI

The presented survey of approaches common in games may not have covered all exist-

ing game AI systems. However, the focus was put on incorporating the most significant

and influential ones which are not only frequently used but also represent a good sam-

ple of what will be utilised in the foreseeable future. Most of the techniques presented

are address lower level and less complex design and implementation decisions, requiring

only a shallow learning curve and have a broad well-grounded background literature.

Finite state machines are the perfect example because they are the standard modelling

approach for game behaviour due to their visual presentation and their simple imple-

mentations. More sophisticated methods such as the physics-based Potential Fields

are treated as black box add-ins into game systems. They again visualise the decision-

making process well and are computationally less expensive, yet robust. Bt became

popular because it addressed the need for better control over larger behaviour systems,

a situation FSMs could not handle any more. They are used more as a framework

than an actual tool which results in different tool-kits mostly well integrated into a

programmer-oriented toolkit. This results in them also being less design friendly than

the FSMs. However, they are a powerful advanced approach to agent design and

agent frameworks. Commercial productive systems rarely use evolutionary and learn-

ing methods due to their long reasoning times or computational costs on one side. Due

to their steeper learning curve and insufficient coverage of new more scalable and robust

approaches on the other side, most of the used learning approaches in games resemble

vanilla textbook systems. This usage of textbook solutions is due to the divide and

difference in the presentation in industrial and academic knowledge exchange when it

comes to new concepts and methods. mcts is a perfect example of a new approach be-

ing introduced into games. It not only is scalable but it also is presented in an industry

oriented way of the state of the art of academic work.

The next section introduces the term agent and discusses methods and tools which

are high-level approaches to agent design, coming either with their preferred design

methodology or enforcing it implicitly to generate flexible modular advanced agents.

They represent the state of the art work used in games or game-related areas.

2.2 Agents and Agent Design

The previous section discussed underlying concepts essential to building game AI sys-

tems. We first focused on decision-making as a substantial part of creating entities

acting upon information in an environment. We then examined spatial approaches

which offer efficient algorithms that can be used without the need for substantial ad-
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justments. Most games require entities to interact in spatial environments; thus, the

presented approaches provide a fast integration with stable results when applied. Af-

ter examining spatial approaches, evolutionary methods were analysed, showing their

potential to improve systems but also highlighting the difficulties in using them.

In this section, we will introduce and discuss the term agents and its meaning in

game environments. We will look at different architectures and design methodologies

for agents. Thereby we take existing analyses of agent architectures done by Laugier

and Fraichard [2001] Bryson [2000a] on decision systems and robotic architectures and

Langley et al. [2009] on cognitive architecture into account. We specifically focus on

architectures which can be applied to digital games.

To get a better understanding of the different perspectives in building agent systems

and their Decision-Making System (dms), this section contains an important sepa-

ration between approaches which would be classified as light-weight cognitive systems

and systems which are classified as fully cognitive. From Section 2.2.2 to Section 2.2.4,

the presented approaches are more driven by the motivation of generating results and

building applicable working artefacts. Sections 2.2.5 to 2.2.8 approach agents from a

more cognitive perspective, modelling the underlying system and reasoning. They are

driven by the idea to understand and model human or animal cognition in the pursuit

of knowledge about them. By doing so interesting results which are also applicable to

IVAs emerge.

“Psychology has arrived at the possibility of unified theories of cognition—

theories that gain their power by positing a single system of mechanisms

that operate together to produce the full range of human cognition.

I do no say they are here. But they are within reach and we should strive

to attain them.” [Newell, 1994, p.1]

2.2.1 Agent Design

What are agents? How do agents differ from game characters? To understand agents,

we start off with a broad definition and refine to a point suitable for the purpose of

this work. Defined in the broadest way, agents are components acting or re-acting

upon an environment. Thus, agents can range from chemical agents to robots to

human beings. A better distinction is offered by introducing Natural Agents and

Artificial Agents. The first term refers to living organisms such as bacteria or

animals, including humans. The second term refers to acting constructs which have

been created, e.g. chemicals, robots or acting software components. In games, Artificial

Agents range from non-player characters (NPCs) to the sub-system controlling the
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progression of the game.

The most important point when only focusing on games and software systems is that

the broader term Agents is uniting the player/user, the non-player characters and the

software under its definition. Both agent types can act within the game environment

based on its current state. Other definitions, such as the one by Russell and Norvig

[1995], go further into specific directions, detailing in greater depth artificial agents. A

notable differentiation they make is between different levels of activeness and autonomy

of an agent. In our work, it currently suffices only to differentiate between natural

agents—e.g. the player—and artificial agents—either systems controlling one or more

characters or systems in charge of controlling the environment or the flow of the game.

Game characters, in contrast to game agents, do not necessarily classify as individ-

ual agents. Game characters are animate objects in game environments sharing shapes

similar to those of natural agents such as animals. They are similar to game pieces

in chess and other board games where all the agency and action-selection capability is

with the player or the controlling agent and not with the actual game piece. However,

some characters, namely non-player characters (NPCs) are portraying the impression

of agency and are in some cases embodied artificial agents. The differentiation between

agent and character is important when analysing and developing games. Agent design

in most cases relates to the reasoning and action selection whereas character design is

mostly referring to graphical representations of entities.

Burke et al. [2001] position agents in the centre of attention for their work on game

experience by defining Deeper Gaming Experience. To understand its relation

to agents better, we will use a modified version—deeper agent behaviour—which

focuses on situatedness, reactivity, expressiveness, soundness and scalability of the

agent. Each of the elements can be seen as dimensions which form a space for agents

to be placed in.

Based on our definition of agents, we are now able to discuss the process of modelling

or designing artificial agents. For now, we leave the discussion of designing for natural

agents aside and focus on artificial agents. Designing an agent for early games such as

Space Invaders required only the creation of a two-dimensional shape which moves

vertically or horizontally across the screen. Due to the limitations of the hardware and

systems at that time, more sophisticated approaches or agents were not feasible. The

availability of more storage and computational power lifted this restriction as it became

possible to use simple finite state machines (FSMs). FSMs offer a way to model an

agent that has multiple states and transitions to get from one state to another. This

approach was widely used as it is thought to be intuitive [Raskin, 1994] for humans

to break down problems into different states and solve them individually by creating

74



Figure 2-15: A traditional decomposition of robot and single agent systems into func-
tional models presented by Brooks [1991]. Game agents, in this respect, are highly
similar to robotic systems. This is visible when taking a closer look at the c4 architec-
ture, see Section 2.2.7.

transitions.

To create deeper agent behaviour, programmers moved to more sophisticated

techniques such as the discussed Bt. It took until the early 2000’s for the game indus-

try to be able to step beyond state machines and include planning approaches and more

cognitive science inspired approaches. In contrast to that, robotics research was able

to cross those boundaries decades earlier with planning systems such as the Proce-

dural Reasoning System (PRS) [Georgeff and Lansky, 1987] or the Subsumption

architecture, which will be described further down. With the growing complexity of

tasks in less and less restrained spaces, robot reasoning and action selection had to be

fast enough to drive and interact in a reasonable time.

To build robotic systems, as a first step, the roboticists assessed the behaviours the

robots had to perform. From those functional requirements, modules were designed.

Those modules formed first drafts of the new system. In figure 2-15, a traditional

robotic system approach is presented. The signal flow and reasoning process before

making a move was relatively long and could take up several minutes as stated by Mali

[2002]. To introduce shorter response times, reactive systems were introduced, able to

tackle this issue. Games in this respect are highly similar. Game agents are in most

cases acting entities within a given, mostly non-static environment. They underlie

strong resource restrictions and require sophisticated action-selection mechanisms.

The following approaches present architectures and methodologies which can be

used to support the creation of game agents without falling into the same pits as early

robotics projects. The c4 system, discussed in Section 2.2.7 builds upon early robotics

research, building an underlying functional structure similar to the one presented in

figure 2-15. From this traditional architectural view the claim to have shifted their
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system towards a Behaviour-Based AI approach, an approach for reactive robotic ar-

chitectures. Magerko et al. [2004] uses the Soar architecture, which will be described

later on, to build cognitive game agents within a virtual environment focusing on mod-

elling cognitive agents within a game environment.

Belief-Desire-Intentions BDI [Rao and Georgeff, 1991] based agent architectures

are many and are centred around declarative descriptions of single or multi-agent sys-

tems [Wooldridge et al., 1995]. They and expert systems have been omitted from this

work as they focus on a declarative problem description which has not seen applications

in commercial games. However, most of the systems described further down allow the

modelling of agents based on the three main attributes of BDI. The concept of using

beliefs, desires and intentions has been applied numerous time loosely within most

game-based systems. In those loose implementations, beliefs represent facts about the

state of the environment and the agent. Desires represent goals the agent wants to

achieve and intentions are operators/rules applied to the state of the world to achieve

goals. By considering the importance of all three attributes, the design process for

agents can enrich the resulting system as discussed by Rao and Georgeff [1991].

2.2.2 Behaviour-Based Artificial Intelligence

Behaviour-Based AI (BBAI) or to be more precise Behaviour-based robotics was first

described by Brooks [1991] to describe computational models which produce direct

behaviour, such as move(x) which results in a spatial movement. Brooks [1991] identifies

following key characteristics which describe Behaviour-based approaches for robots:

• The robot is situated in a physical environment and has to interact directly with

it.

• The robot is embodied. Thus, it is part of the dynamic system forming the

environment. The robot senses through its body and acts with it.

• The robot is judged based on its performance within the environment and through

interactions in terms of its “intelligence”.

• The “intelligence” of the robot is an emergent property of its actions and how

they are perceived.

BBAI as introduced by Brooks [1986] adds modularity to a fsm system. Multiple

finite state machines are layered, each specialised to a sub task of the problem. Thus,

the resulting agent is easier to develop and program as each layer can be worked on

76



Figure 2-16: The Subsumption architecture presents an alternative approach to agent
architectures. In contrast to traditional design, see figure 2-15, an agent controlled by
the Subsumption architecture has access to all sensory information and uses layered
control between modules of lower and higher competence.

separately. In the original BBAI methodology, the Subsumption architecture, fsms can

only have interactions with one another by modifying the inputs and outputs of other

connected or linked fsm/modules, see figure 2-16. Different layers of control are built

into a simple stack hierarchy, where the higher layers can subsume the roles of the lower

level modules by modifying their outputs appropriately. This is the main idea behind

Subsumption, an AI is built bottom-up with the overall goal on the highest layer of

the system. The original proposition of BBAI made no inclusions for machine learning,

memory or planning. In this form it is a purely reactive architecture, however one more

robust and extendable compared to a basic fsm as discussed by Laugier and Fraichard

[2001]. Later BBAI approaches used representations other than fsms for the different

modules within the Subsumption hierarchy. Those modules include approaches such

as potential fields [Konolige and Myers, 1998; Arkin, 1998], planners [Burke et al., 2001;

Bryson and Stein, 2001] or learning mechanisms [Isla et al., 2001].

Mali [2002] takes a different approach to BBAI, he abstracts the definition, rephras-

ing and extending the four main characteristics. His points are also more in line with

behaviour-based software agents. He states that an agent is situated in an environment

and is able to perceive it, similar to Brooks first point. Instead of being embodied, the

agent posses resources of its own. Those resources in terms of a robot can be an embod-

iment but it can also refer to an encapsulated memory space or sensors which are not
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shared with other agents. Instead of focusing on the emergence of intelligence through

the agents actions, Mali focuses on the emergence of useful behaviour to the agent.

Similar to Brooks, Mali does not support the idea of internal memory beyond state

information as useful or feasible for action selection.

Having no internal representation of the environment, Mali [2002] argues for the

usage of environment markers and behaviour coupling to reduce computational costs.

In nature, marker based approaches also exist. However, they normally go beyond the

simple purpose of outsourcing computation of locations. Territorial markers are also a

means of communication between different agents and carry extra information which

can be extracted from them. Additionally, the approach that Mali [2002] proposes

requires intervention from the environment of other agents to set up or move the marker.

Because of this, the approach seems not feasible in non-closed environments where

additional set up is required. The second proposal is the usage of behaviour coupling

which is similar to joint behaviours introduced by Abl in Section 2.2.8. To restrict

the amount of search in design space and to chain meaningful behaviour, stimuli are

coupled. The approach would be similar to matching preconditions in a planner to

trigger sequences. In Bt a similar mechanism is used which is the sequence node, see

section 2.1.1.

2.2.3 Goal-Driven Autonomy (GDA)

Muñoz-Avila et al. [2010] demonstrate the extension of online planning to the domain

of games. In contrast to classical planning, GDA introduces a way of handling unex-

pected events during the execution of a plan [Molineaux et al., 2010], thus, allowing the

planner to shift attention from one goal to another. It also allowed for re-planning of

actions to pursue the current goal. The approach consists of five different components

illustrated in figure 2-17. The Environment Σ allows a way to derive observations about

itself. This includes changes to its conditions and states. |Sigma contains its current

state sc as well as its previous states. The controller, upon receiving a new plan p,

performs the contained actions on the environment. The performed action is able to

alter the environment visible in future observations. The model of the environment MΣ

in conjunction with the state sc and the current goal gc is presented by the controller

C to the planner. The planner based on this new information generates a new action

plan. The plan p consists of a pair containing a set of actions A, which are to be

executed, and expectations about the state of the environment X. The controller has

also access to goals G which form a set of all currently pending goals, including the

current goal gc. Upon receiving new observations sc, the controller uses the Discrep-

ancy Detector to evaluate the expectations about the environment against the current

78



observations. If discrepancies d are detected, the Explanation Generator hypothesises

on them and proposes an explanation e to the Goal Formulator. The Goal Generator,

at that point, creates a new goal g based on the discrepancies and the explanation for

the Goal Manager. Receiving a new goal g, the Goal Manager selects from the set of

pending goals the one to pursue next. This approach enhances existing reactive plan-

ning approaches as discussed by Ghallab et al. [2004]. It offers a way to shift attention

from one goal to another on an event basis instead of either waiting for a goal to be

finished or re-planned.

Figure 2-17: The Goal-Driven Autonomy model based on Molineaux et al. [2010] illus-
trates five major components: the Environment Σ, the Model of the Environment MΣ,
the planner, the goal list G, and the controller C.

Muñoz-Avila et al. [2010] compare their planning approach to the dominant ap-

proach in Games, Bt [Champandard, 2007d] but make an incorrect assumption about

their capabilities by stating:

“Research on game AI takes a different approach to goal formulation in

which specific states lead directly to behaviors (i.e., sequences of actions).

This approach is implemented using behavior trees, which are prioritized

topological goal structures that have been used in Halo 2 and other high

profile games (Champandard, 2007). Behavior trees, which are restricted

to fully observable environments, require substantial domain engineering

to anticipate all events. GDA can be applied to partially observable en-

vironments by using explanations that provide additional context for goal

formulation.” [Muñoz-Avila et al., 2010, p.466]
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As presented in Section 2.1.1, Bt does not make mention of requiring fully observ-

able environments. Game developers often relax the condition to reduce computation

time but the approach itself does not require a fully observable environment to be im-

plemented. To create a Bt the agent utilising it only needs to access given information

to plan actions. The Bt is agnostic to which information is accessible. The statement

about substantial domain engineering however is partially true but applies to GDA as

well as presented next in the approach by Weber et al. [2010a].

Supporting the idea of a goal-driven approach, Weber et al. [2010a] developed an

agent system—EisBot—implementing the GDA concept for StarCraft. They aimed

for an agent that could reason about its goals and anticipate game events instead

of purely reactive systems which only respond to changes instead of anticipating the

future by maintaining a model. To build their agent, they started with a simplified the

GDA model to better fit their purpose, see figure 2-18a and used the Abl system, see

Section 2.2.8, to build the agent.

(a) Components of the simplified Goal-
Driven Autonomy conceptual model based
on Weber et al. [2010a]

(b) EisBot GDA architecture using Abl
for StarCraft.

Figure 2-18: (a) presents a simplified version of GDA for games incorporating the
environment and its model into one component. (b) shows the EisBot implementation
of the GDA adapting the GDA to fit in line with Abl.

The model they present differs slightly from the original model presented by Mo-

lineaux et al. [2010]. The planner and Goal Manager are merged into one component.

This component receives the goals to activate from the Goal Formulator and also main-

tains pending goals. This differs from the original model as they clearly separated the

two components. The original model also allowed for a separation of data and imple-
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mentation. In contrast to this, the created system presents an interleaved architecture

not separating between them. The planner generates actions for the environment, in

this case the game StarCraft. It also generates action-correlated expectations about

their impact. Those are given to the Discrepancy Detector. Upon receiving a state

update, the detector then, as described by Muñoz-Avila et al. [2010], checks for diverg-

ing expectations. The derived discrepancies are used by the Explanation Generator

which is a simple hand-crafted “if-then” block. This reduces the hypothesis building

to a mere check. However, this approach still allows the anticipation of future events

which supports the need for expert designers. The Goal Generator uses the explanation

either by using again a hand-crafted case block or by selecting among several goals and

forwarding them to the Goal Manager. The manager, as discussed earlier, is part of

the planner and activates all new goals.

In contrast to the work of Muñoz-Avila et al. [2010], EisBot allows parallel execu-

tion and pursuit of more than one goal. The manager part of it is additionally divided

into different sub-groups within the Abl system. They independently track and pur-

sue goals based on the existing game tasks. The EisBot is also heavily dependent of

domain engineering which according to Muñoz-Avila et al. [2010] is not beneficial for

planning systems. They are putting it on similar terms to Bt or other game related

approaches. Nonetheless, EisBot presents a strong approach which can compete with

the original AI implementation of the game as well as moderate human players, as

illustrated in their work. The goal-driven autonomy components within EisBot are

purely implemented in Abl as sub-trees. This makes it hard to extract or replace them.

However, this deep integrating results, as discusses earlier, in a system able to compete

with average human players, yet maintains an amount of modularity and flexibility

outperforming the original agent within the game.

2.2.4 Goal Oriented Planning (GOAP)

Goal-Oriented Planning (Goap) was introduced by Orkin [2004] to address the chal-

lenges in games which outgrow the capabilities of earlier techniques such as finite state

machines or ad hoc rule systems. Orkin argues for a real-time planning system for

games which uses a symbolic representation of strategies and focuses on goals. In his

introduction, he states that with each new game generation the bar for AI in games

will be raised. However, looking at commercial games reveals that this does not seem

to be the case. AI is an important part of games and a game can benefit a lot from

the underlying AI system. Nonetheless, games such as Heavy Rain or World of

Warcraft are not measured by their AI capabilities but by other factors.

Goap features a regressive real-time planning approach built on top of the Planning
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Figure 2-19: The GOAP architecture representing three distinct layers based on their
main purpose.

Domain Definition Language (PDDL). It provides a modular architecture to share

behaviours among NPCs. The goals and actions of the system are atomic, making them

easier to maintain and allow layering and sequencing. A strong point GOAP makes is

the separation of implementation and data to support the workflow of teams working

on shared tasks. Thus, the planning layer and the underlying game implementation do

not mix. Based on its planning origins there is also no explicit link between actions and

goals. During plan time a goal is selected to be pursued and the planner chains actions

based on their preconditions and post-conditions to arrive from the current state at

the goal. GOAP can be considered as a three layer system, see figure 2-19.

The intended workflow to foster behaviour sharing and better development is a two

step process:

• Engineers/Programmers develop a pool of actions and goals. This includes the

specification of their preconditions and post-conditions/effects which are used

by the planner to derive working plans at run-time. The actions and goals are

atomic and encapsulated and dependencies between them are specified in the

pre-conditions.

• Designers are able to assign actions and goals to specific agents using a data file.

They are not able to modify the two atomic types or influence the planner in any

other way.

The driving force behind this shared workflow is that designers should not handle

the micro-management of behaviours. They are supposed to concentrate on the high-
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level design using goals. To be able to react to the game environment its state is

encoded in a fixed size array containing symbolic representations of the most important

properties, for example locations where players are. During planning time, the planner

then searches the game state and action pool. It is hashing actions with its effect type

to reduce the search space. The search is carried out using A* which was introduced

in Section 2.1.2. As planning and search are quite costly a plan is only re-planned if

it has been invalidated or if the currently relevant goal changes. A limitation of the

system discussed by Orkin [2004] is the fixed symbol space used for planning. This

issue is revisited by Orkin [2005].

In the later work, Orkin [2005] demonstrates the application of GOAP to real-time,

first-person games in the commercial product F.E.A.R.. According to the author,

the reasoning part of the AI resembles the c4 system, discussed in Section 2.2.7. In

contrast to c4, the action tuples of c4 are replaced with the previously mentioned

planning system. The planner plans for individual agents but allows only one active

goal at a time. It re-plans and re-considers the pursuit of the current goal after “sensors

detect significant changes in the state of the world” [Orkin, 2005, p.106].

A further elaboration of what a significant change is, is not given and is most likely

case dependent and hand-tuned. Another important advancement is the usage of a

blackboard and working-memory facts (WoMe).

A working memory fact contains a fixed set of attributes which are in turn associated

with a confidence value. The usage of the confidence varies depending on the attribute.

This varying usage makes the design less intuitive. Nonetheless, the confidence relates

to what priority or accuracy an related attribute has. The WoMes are centrally stored

on the blackboard. This allows the agent to access them at any time, a feature fsms

are missing.

The blackboard is used to decouple the execution of the game and the planner/rea-

soner. To execute an action a related blackboard symbol is set. To retrieve sensory

information the blackboard is checked without querying the game. This decoupling

allows the system to schedule heavy tasks to balance the load on the CPU. Expensive

computational task such as a sensor using raycasts are now amortising over time as

they are not called every frame or can occupy resources for multiple frames before their

result is needed. Nonetheless, this introduces inaccurate or outdated information into

the reasoning process so the timing of updates impacts not only the CPU time but also

the expressed performance of the system. Comparing this approach with animal sens-

ing however highlights similarities. Biological senses update also at different times and

sometimes not instantaneous. Below 50ms even trained human ears have difficulties

detecting flaws in audio streams. With current games the system generally runs at 60
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frames per second, allowing the system to update every 16.7ms. Thus, a human ear

cannot differentiate if there is a pause for 3 frames. However, timing and scheduling

a multitude of updates to spread CPU cost is considerably difficult and an ongoing

research area.

Orkin [2005] extends his initial GOAP approach and optimises it within the game

F.E.A.R. Thus, demonstrating a reactive goal-oriented planning approach within a

commercial product. He argues that in-game approaches are only beneficial if they

bring a noticeable improvement. Due to the planner and the large search space, the

team saw one of those improvements, the emergence of game behaviour which was not

programmed but created as agents re-planned actions. This and the ability to react to

unforeseen events make planning approaches interesting for games.

2.2.5 Heavy Cognitive Architectures

Based on the study of human cognition and directed towards unified theories of cog-

nition [Newell, 1994], multiple cognitive architectures emerged since the 1970s. The

two most prominent ones are SOAR and the ACT-R architecture. Both theories are

based on production rules, implement short-term and long-term memory and learning.

In chapter 5, a more light-weight approach to creating agents is presented which is

heavily inspired by the underlying mechanisms of the presented heavy cognitive archi-

tectures. However, this new approach tries to remain as light-weight as possible to

still be applicable to games or resource restricted environments. A strong influence

of cognitive approaches is also visible in chapter 182 where a novel augmentation to

augmenting selection process is presented, based on mechanisms in the mammalian

brain.

Adaptive Control of Thought-Rational (ACT-R)

ACT-R [Anderson, 1993], in contrast to the later described SOAR, has seen no im-

plementation within a digital game system. Nonetheless, the system is highly similar

to SOAR, prominent in the research literature and well known for modelling human

behaviour and human task learning.

ACT-R is organised into a set of modules each responsible for different types of

information. Figure 2-20 presents a high-level view of the ACT-R system. The system

contains modules which are in charge of acting, sensing, goals and declarative long-term

knowledge. Additionally, each of those modules has an associated buffer representing

the state of the module. Those buffers form the system’s short-term memory and

contain declarative knowledge called chunks. Chunks have a type and contain a value
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Figure 2-20: The ACT-R system contains modules which handle different types of
information Anderson et al. [2004]. The buffer is the interface between different modules
and represents the short-term memory of the system.

defined by the type. Their purpose is to communicate information between different

modules through the buffer. The ACT-R system operates by matching productions

against the current short-term memory buffer. Each production has an associated base

activation which is determined by its past usage. The base activation is a key factor

determining which production will be loaded form memory. So, each cycle ACT-R

searches for productions matching the buffers and selects those with the highest utility.

The utility is calculated the cost of loading a production plus its benefit. The benefit

of a production is a numerical value of how desirable the production is, multiplied with

its chance of success, plus some added noise. This process of matching, selecting and

executing productions is continuously repeated whereas the goal is that each cycle only

takes 50ms [Anderson et al., 2004, p.1048].

The system is able to learn by updating the base activation of productions at each

cycle. Thus, productions which are frequently useful are more likely to have a high

utility. The probability of success is updated whenever the corresponding production

is used. This allows for a more correct long-term evaluation not taking drastic changes

in the environment into account. New production can also be learnt through produc-

tion compilation. A process which combines firing rules and replaces constants which

match a solution with variables. A more detailed description of the process is given by
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Anderson et al. [2004].

State, Operator and Result (SOAR)

SOAR is the second full cognitive system which we will have a closer look at. The

system can be divided into four major parts as presented in figure 2-21. Similar to

ACT-R, it is based on production systems and contains short-term and long-term

memory and learning. SOAR contains three types of knowledge:

a Operators store long-term knowledge as production rules. The operators are

organised to cover the current problem space.

b Episodic knowledge is stored in snap-shots of previous states of the working mem-

ory.

c Semantic knowledge stores factual information in the form of individual elements

of working memory for later retrieval.

Productions within SOAR are organised as tasks to satisfy goals. Tasks are contained in

the short-term memory and combine operators and goals. This process is different from

ACT-R where productions are purely selected by their utility and matching the current

state. SOAR uses a problem state and an initial set of operators to traverse the space

from initial state to goal state. From the presented knowledge types, types (b) and (c)

are relatively new to SOAR, allowing the system to learn factual information which

is not in the form of production rules but complex situations in the form of memory

and perceptual snap-shots. Those forms of memory are not present in all versions

of SOAR but represent a way to learn declarative knowledge. They additionally are

quite memory intensive because the system continuously learns whenever encountering

unknown situations.

SOAR approaches a goal within a selected problem space by proposing, selecting

and applying operators to the current states. This is done by the decision system, see

figure 2-21. Because the operators are goal-directed, they perform deliberative acts

aiming to fulfil the agents goals. If no production can be used to fulfil the current goal,

based on the agent’s knowledge, an Impasse happens.

Impasses are one of the ways the system learns new productions through chunking12.

Chunking takes the current state and creates a new intermediate goal to solve the

impasse. For this, the system opens a new problem space and initiates an initial

12Chunking in SOAR is different from ACT-R chunks which is generating confusing statements while
comparing both systems. However, the process is quite different as ACT-R chunks are declarative or
procedural knowledge but SOAR’s chunking generates operators within long-term memory to satisfy a
goal.
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Figure 2-21: SOAR is organised around the short-term memory which is used to apply
operators to the current state of the world. It has an independent decision making
system proposing and selecting operators fitting the current goal.

problem space internal state that is based on the current super-state of the original

problem space. From this state, the dms applies a production altering the state towards

the new goal. If the impasse is solved by arriving at the goal state, a new operator

will be added by combining the productions from within the Impasse problem space

based on their trajectory within the space. If the goal state is not reached, the process

continues recursively opening a hierarchy of sub-goals until the impasse is solved. This

mechanism of Chunking is similar to planning approaches discussed by Ghallab et al.

[2004]. A more in-depth description of the process is given by Laird et al. [1986].

Similar to planning, the Chunking process is quite costly however once a new operator

is learned the cost can amortise over time.

In contrast to ACT-R, SOAR has been used frequently to model and design agents

[Wintermute et al., 2007; Van Lent et al., 1999] and synthetic characters [Laird et al.,

2000; Magerko et al., 2004; Assanie, 2002].

Laird et al. [2000] present a game architecture for creating narrative-driven adven-

ture games. The environment uses Unreal Tournament in combination with SOAR

to develop a game test-bed going beyond the first person shooter agents developed in

earlier projects [Laird, 2001]. Laird integrates SOAR through an abstract interface to

the game and allows the development of a large scale of agents within it. Magerko
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et al. [2004] presents an AI director which augments the decision process of a story.

The approach is similar to the story beat system presented by Mateas and Stern [2002]

but focuses on a fixed hand-authored story which is experienced in a defined sequential

order. Even so the agents are relatively light-weight, the system is able to run over ten

agents at a frame rate of 30 Frames per Second (fps) on a single machine which creates

a character rich environment.

2.2.6 ICARUS

Productions systems are the foundation for Icarus as well as SOAR and ACT-R and

they are a uniting feature for most other full cognitive architectures. Langley et al.

[1991] introduce the architecture and underlying theory of cognition for ICARUS with

the aim of creating a unified theory of cognition [Newell, 1994]. Instead of using chunks

or operators, ICARUS uses concepts and skills to drive the system and the controlled

cognitive agent [Choi et al., 2004]. The system provides short and long-term memory

as well as a learning mechanisms for new skills and concepts. Concepts form the first

part of reasoning and describe environmental situations by either referencing other

concepts, or by taking perceptual information acquired by the system into account.

Skills as the counterpart specify how to achieve goals set by the system. They can be

achieved by decomposing them into sub-goals until primitive actions are reached within

the goal hierarchy. ICARUS uses hierarchies for concepts and skills to create complex

behaviour. Both, skills and concepts work hand in hand to approach cognitive tasks

by splitting information, similar to SOAR and ACT-R, into declarative and procedural

knowledge.

The system operates within an environment by interpreting perceptual informa-

tion and storing those interpretations as descriptions in the short-term memory. The

descriptions represent beliefs about said environment. Figure 2-22 illustrates an inter-

pretation of the ICARUS architecture based on Langley et al. [1991]; Choi et al. [2004].

The ICARUS system consists of four main components:

• Labyrinth is responsible for storing and accessing the long-term memory.

• Argus is the perceptual module which contains one part of the short-term mem-

ory related to sensory information perceived by the agent and the current beliefs.

• Mæander connects the agent to the environment through interaction. It con-

trols and trigger motor modules and it contains the goal buffer which drives the

production rules within the skills.

88



Figure 2-22: The ICARUS architecture can be represented through four different mod-
ules. The long-term memory—Labyrinth —stores both conceptual and skill memory
and the skill retrieval is responsible for loading skills into the short-term memory. The
short-term memory in ICARUS, situated in Argus and Mæander. It consists of the
goal memory which is connected to the motor buffer and the belief memory connected
to the perceptual buffer.

• Dædalus generates plans by connecting skills to satisfy goals. It is also re-

sponsible for learning new skills by connecting lower-level skills and building up

hierarchies to achieve a goal.

The cognitive system uses its internal goals to trigger motor behaviour which affects

the environment. The updates of both buffers form an iterative cycle allowing the agent

to alter the beliefs and act based on them. Thus, the system drives the agent goals which

are motivated by the currently active beliefs. Goals are satisfied by loading appropriate

skills from long-term memory. Those skills are loaded based on their preconditions

which are in turn sets of beliefs about the environment and state of the agent. By

interpreting perceptual information, the system finds matching primitive concepts in

the long-term concept buffer which may be useful. Initially, all affected primitive

concepts are loaded based on the system perception. Lower-level concepts trigger the

loading mechanism of higher level concepts. This process creates a logical chain that

can form a concept hierarchy because all connected children are also loaded. Once the

appropriate high-level concepts are loaded satisfying the goal, the skills preconditions
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are satisfied.

If no path from the current state towards the goal state can be found, a backward

chaining search within the skill buffer is conducted which interleaves skill execution

and search. This process is costly but reduces reaction time compared to a full plan

creation. To make ICARUS more reactive, the system disconnects plan execution

done in Mæander and planning done in Dædalus, making the update-action cycle

asynchronous. An additional difference to SOAR and ACT-R is the continuous update

of concepts whenever they are retrieved. This feature, on one hand, is more time

consuming compared to a separate update and retrieval used in ACT-R or SOAR. On

the other hand, it introduces a hill-climbing approach to constant adaptation in the

environment making the approach more human-like, as argued by Langley et al. [1991].

The agent Choi et al. [2007] developed to demonstrates the capabilities of ICARUS.

It is situated within Urban Combat13 and offer a real-time simulation in a multi-

agent environment which allows players to join as well. To reduce the engineering

burden object recognition and spatial location matching was reduced from a 3D space

to region maps, similar to the previously discussed NavMeshs in Section 2.1.2. Instead

of focusing on learning through numeric adaptation of parameters, Choi et al. [2007]

concentrate on learning skills through abstracting agent actions and matching those

to a template agent behaviour model which represents template skills. Rather than

focusing on human-believable agents which have to be evaluated through user testing

and qualitative studies, they focused on agents learning different settings and task as

the first measure of success for their system. This presents a sensible first step as it

shows the functional soundness of the system. They discuss one flaw of their approach

briefly, the location memory in their Urban Combat agent does not degrade or build

up over time and is perfectly transferred between individual runs of the environment. In

contrast to that, the process of human spatial learning is different, it involves repetition

and reinforcement of knowledge before remembering. The architecture provides the

process needed to address this issue. It would only require modifying the existing

agent which involves more domain specific engineering on the agent side. One point

which is not mentioned is how well ICARUS scales to more complex scenarios or agent

numbers, a shortcoming which has not been addressed even in more recent work.

2.2.7 MIT cX agent architecture

The synthetic characters group at MIT developed the cX system for controlling virtual

characters in game environments as part of their agenda to understand and model

13Urban Combat is a simulation environment based on the commercial game Quake3 and available
at http://ailab.wsu.edu/uct/.
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synthetic characters. The most prominent version discussed by Isla et al. [2001]; Burke

et al. [2001] is version 4—or c4. c4 aims to integrate cognitive, philosophical and

agent research into a single cognitive architecture that is similar to previously discussed

full cognitive architectures. It is based on the reactive Subsumption architecture

which Brooks [1991] introduced, but adheres more to the ideas of behaviour-based AI

[Maes, 1993; Brooks, 1986]. The reactive architecture approach allows for fast response

times and a generally low computational cost of O(n2) [Veres et al., 2011] whereas

BBAI provides a way of structuring the system. The c4 system also integrates working

memory by taking ideas from Rosenbloom et al. [1993] and a prioritisation of tasks.

The main motivation for developing C4 was to create a layered brain architecture for

experimenting in virtual environments which is able to control a “reasonable amount”

of autonomous creatures at a near-real-time rate14.

Figure 2-23: The c4 architecture for game environments as described by Burke et al.
[2001]. c4 contains five layered modules which built upon each other in a similar way
as the subsumption architecture by Brooks [1986].

Figure 2-23 visualises the architecture of c4. It presents the five main modules which

form the system. The modules represent a hierarchical information or signal processing

cycle. The system is implemented by applying a Subsumption style paradigm using

14The systems aimed to run at a 20Hz frame rate which aimed at a less fluent visual representation
but introduced an industry comparative strict guideline.
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high-level modules for reasoning which override decision from low-level modules. Isla

et al. [2001]; Burke et al. [2001] also introduce specialised lower level behaviours for

certain tasks such as specific motor control. Those specialised behaviours are called at

a later stage, shortly before the execution of an action, able to override high-level deci-

sions. This is done within the navigation system which allows adapting and fine tuning

the outgoing behaviour. Burke et al. [2001] introduce this approach as Supersump-

tion. It is meant to allow lower level systems to override higher level ones. Their ap-

proach is defined as an inverse approach to Subsumption as defined by Brooks [1986].

However in the Subsumption architecture, more advanced or complex behaviours are

introduced to override lower level and simpler behaviours. Thus, presenting an iterative

process towards more robust and complex agents. This means that the Supersump-

tion is still aligned with the original Subsumption paradigm as specialised lower level

behaviours are adding only another layer on top of the decision process. Brooks ar-

gues for higher complexity and specialised behaviours to override the decisions made

by lower-level ones which result in a layering approach to increase functionality. It is

an approach sorted by layer complexity. Thus, their definition of Supersumption is

equivalent to Subsumption.

The c4 system, similar to current game AI systems or other cognitive architectures,

uses a blackboard for creating an asynchronous communication and general purpose

storage between the lower level layers of the system which include the navigation and

the higher level reasoning. Nonetheless, the blackboard introduces complex dynamics

and it becomes harder to track and debug the information flow.

One of the major features the c4 introduces is a differentiation between sensing

and perceiving the environment which Burke et al. [2001] claims is inspired by nature.

This is based on their concept of Perceptual Honesty. In virtual environments,

such as games, agents are able to sense or access all information in a non-noisy way.

By introducing their sensory and perception system, c4 receives limitations simulating

natural environments. Thus, even if c4 is sensing a change in the environment, the

controlled agent might not perceive this change due to the perception layer, producing

perceptual “honest” sensory information.

Additionally, perceived data is represented as a Percept Memory Object (PMO)

which can contain different perceived information about the same original data. The

percepts contained in a PMO are structured in an object oriented way using inheritance

and contain an additional probability value. The value specifies how likely it is that

the perceived data is represented by that percept. The combination of probability

and inheritance from OOD allow for a complex and sophisticated but computationally

expensive perception architecture.
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Upon perceiving information about the world the system uses the action selection

mechanism and the working memory to execute actions. Actions in c4 are 5-Tuples

and an action A is represented by

A = [a, trc, oc, sc, iv] (2.4)

where

• PrimitiveAction (a): Determines which action should be activated by writing

it to the blackboard.

• TriggerContext (trc): Triggers reference percepts in memory and a relevance

correlated to triggering the action.

• ObjectContext (oc):On which object should the action be performed. The

object context related to perceptual memory and the attention regarding a specific

entity.

• DoUntilContext (sc):Timers control under which conditions and how long an

action should be active.

• IntrinsicValue (iv):To identify the importance or relavance of an action the

intrinsic value can be used to direct the action selection.

are the described attributes of the Tuple.

The action selection module uses action groups to select which action to execute.

There are two major groups which are used in c4, the attention group and the primary

action group. Additional groups for agents are possible but require an extra coordi-

nation effort as groups are meant to contain mutual exclusive actions. The attention

group is responsible for switching attention towards objects of interest in the environ-

ment. The primary action group is responsible for agent locomotion. For each of the

action groups, there are fundamentally two lists of contained actions. The “startle” list

contains actions which should urgently execute. Thus, as long as elements are in the

startle list, they are executed according to their prioritised order within the list. The

priority is based on the intrinsic value iv and the trigger context trc. If the startle list

is empty, elements of the second list—the default list—can take control and execute.

Elements in the default are chosen using a probability distribution in contrast to the

startle list. The intrinsic value iv in combination with trc and sc is used to create the

probable reward with affects the probability of an action being chosen.
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c4 allows only a small number of actions to be active at a given time. This is

controlled by the number of individual action groups. Actions are evaluated and started

when other actions finish their execution or when following conditions are met:

• An action from the default list is currently active but an element is added to the

startle list. This triggers a switch in activation and favours the element from the

startle list.

• An action receives a boost in attention, at least doubling its evaluated value.

This indicates an important environmental shift and actions get re-evaluated.

The learning within the cognitive system is facilitated in three ways. The first

mechanism is reinforcing action tuple chains. Actions spread their intrinsic value to

actions which lead to the execution of the executed action. This mechanism is moni-

toring the execution of actions modelling potential action chains—actions which start

after a previous action successfully finishes. By spreading iv along those chains prior-

ities within the startle list are reordered. In the default list, this increase in iv leads

to higher changes of execution the actions in a chain as well. The second mechanism

is rewarding association learning. An example would be when a dog sits down after

perceiving the utterance “sit”. If the dog receives a reward the association between the

utterance “sit” and the action “sit down” is reinforced. This is done using statistical

models on the action tuple set and goes hand in hand with their last learning model

which is altering the inheritance model of a percept and the linkage to the primitive

action a of a tuple. When reinforcing the association an existing action tuple can be

altered to reflect a strong association. If the percept “sit down” is an “utterance” and

an existing action tuple is

A1 = [”SIT DOWN”, ”UTTERANCE”,−,−, 50] (2.5)

a new action can be innovated by using the stronger child action from the percept.

Thus, creating

A2 = [”SIT DOWN”, ”sit”,−,−, 50] (2.6)

which switches the percept “utterance” against its child “sit” due to the received reward

from the system. The three described forms of learning within c4 are all driven by user

reinforcement. A similar approach is given in the section on neural networks but is less

sophisticated. In games an approach which learns complex control mechanisms is time-

consuming and sometimes not desirable. For example, learning wrong associations can

impact dramatically on the user experience.

In contrast to most other cognitive architectures, a strong emphasis of c4 is also
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put on the last layer, the motor control. The motor control impacts the exhibited

behaviour and is similar to approaches in robotics which require fine tuning for each

agent. Based on the visual representation, high-level commands such as forward need to

be translated into actual motions which give an impression of natural motion. If the

high-level commands now combine the rotation of the head while moving forward a

complex motion controller is required. This is what the c4 motor system does. A more

detailed description of the motor system is beyond the scope of this work but given by

Downie [2005].

The c4 architecture combines learning, memory, motion control and action selection

into a complex cognitive architecture. Each of the five modules by itself is computa-

tionally complex. Initially Isla et al. [2001]; Burke et al. [2001] state the require-

ment for executing a reasonable amount of complex agents. However, during their

experiments—Sheep—Dog and Clicker—they state that the system is able to han-

dle two agents using a scaled down version of the c4 system in addition to a number of

flocking agents, controlling the sheep. In a later installation—AlphaWolf [Tomlin-

son, 2002]—they are able to support six entities within the environment, representing

a wolf pack. Nonetheless, this installation requires multiple PCs going beyond the

scope of what commercial games can utilise. This result is as expected, taking learn-

ing, memory management and a complex action selection scheme into account while

following the strict restrictions of a game environment. Other critiques on the system

are found in the dissertation of Downie [2005]. Actions within c4 are selected based on

their intrinsic value or whenever drastic changes happen. This mechanism increases the

risk of oscillation between important mutually exclusive actions leading to dithering.

In his dissertation, Downie [2005] states that this can happen quite frequently within

the cX systems. Another issue is the strong interdependence of behaviours such as A

requires B requires C. A problem which can be addressed by decoupling this relation

using a planner or a different approach to agent design. In this context, a planner

could be used to find and match preconditions in a more elegant way than strong de-

pendencies, see section 2.2.4. The c4 system nonetheless impressively combines a large

number of features into a system able to run within a game environment. The system

is additionally not available and maintained making it also due to the usage of Java

not applicable for the inclusion in commercial games. The approach is transferable but

computationally very expensive as discussed earlier.

2.2.8 A Behavior Language (ABL)

Abl is a reactive planning language written in Java. To create a reasoning agent,

the planner constructs an active behaviour tree (ABT) for a given set of agents. The
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approach is based on the planning language and agent architecture Hap by Loyall et al.

[1991]. Based on Hap, Abl extends its foundation in following points:

• The Hap syntax has been changed for Abl to incorporate object-oriented design

features available and supported in Java.

• The system allows for a more generalised integration of agent sensory-motor con-

trol within the planning language. To support this Abl acts’ sub-class the original

senses and actions, providing an interface between the environment and the plan-

ning language.

• The system supports explicitly multi-agent coordination through joint-behaviours

which allows synchronisation of memory and behaviours.

• Atomic behaviours lock the current execution order of a behaviour to guarantee

its sub-behaviours are executed without interleaving other behaviours.

• Abl contains a blackboard memory system. Working memory elements (WME)

are typed data elements which can be accessed from within the planner. Named

memory elements can be used by joint behaviours to directly exchange informa-

tion.

• “Goal Spawning” allows Abl to change the ABt by adding a new independent

goal to a different branch of the tree. This can be seen as triggering a different

independent behaviour which does not affect the current behaviour.

The motivational goal of creating Abl, as stated by Mateas and Stern [2002], was

to go beyond traditional branching narratives from literature and to utilise computa-

tional techniques both as support and creative structure. Abl is a reactive planner

which allows for plan generation and re-organisation of behaviours to fulfil the current

agents’ goal. The language uses behaviours as main plan/tree elements. A behaviour

can be sequential or parallel . Sequential behaviours are internally pursued in a step-

wise process. Parallel behaviours, contrasting sequential behaviours, allow the ABt to

branch and pursue multiple parallel goals or actions. If all behaviours within the ABt

are sequential, the tree would collapse similar to traditional plans into an execution

chain. In addition to the two types of behaviours, behaviours can be joint or atomic, as

discussed above. Joint behaviours and atomic behaviours require stronger conceptual design.

Both synchronize the execution of the ABt to a different degree. Atomic behaviours

cannot be interleaved with other behaviours which requires the execution tree to unite

into one node at this point. Joint behaviours allow for coordination between a speci-

fied set of behaviours, similar to behaviour coupling as discussed by Mali [2002]. Mali
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1 /∗
2 ∗ Find i d l e c o n s t r u c t o r s . ( t i m e o u t )
3 ∗/
4 s e q u e n t i a l b e h a v i o r d e t e c t I d l e C o n s t r u c t o r s ( ) {
5 ProbeWME worker ;
6

7 w i t h ( s u c c e s s t e s t {
8 worker = (ProbeWME t a s k==WORKER CONSTRUCT o r d e r==P l a y e r G u a r d ) }) w a i t ;
9

10 m e n t a l a c t { worker . s e t T a s k (WORKER IDLE) ;}
11

12 s u b g o a l WaitFrames ( 2 4 ) ;
13 }

Figure 2-24: A sequential Abl behaviour from Eisbot [Weber et al., 2011]. The be-
haviour is responsible for detecting idle construction units(Protoss probes) controlled
by the player.

however couples behaviours through sensors and focuses on removing internal memory

whereas Mateas and Stern uses memory and focuses on interleaving behaviours in a

designable way. Both, atomic and joint behaviours result in distinct patterns of nodes

within the tree. Those patterns emerge based on the design of the joint behaviours

communication. A heavy usage of joint or atomic behaviours would lead to essentially

to deterministic, fixed ABts.

Nonetheless, they present an important tool for designing interactions and creating

designer intended situations or interactions between agents. An Abl behaviour can

contain a set of subgoals, WMEs, preconditions, conditions, acts and mental − acts.
Preconditions are used to evaluate if a behaviour can be used in the currently

active context. The ABt in contrast to other reactive planners does not create a

plan through back-chaining from the current goal by using preconditions and post-

conditions of actions/behaviours. In Abl goals are matched to behaviours by identifier

name. Thus, the ABt is created in a forward manner, which is also easier to follow by

tracking the logical order of execution.

The behaviour illustrated in figure 2-24 has no precondition and succeeds or fails

based on the result of its goal behaviour WaitFrames(). The Abl behaviour describes a

sequential behaviour for Eisbot, a StarCraft agent designed by Weber et al. [2011].

It is responsible for detecting idle construction units—Protoss probes. Abl offers a way

to implement a Listener pattern from OOD reducing the need for constantly checking

for a condition. The listener is implemented on line 7 and 8 using the wait function which

blocks the remaining behaviour from executing in combination with the success test .

Once the working memory element worker of the type ProbeWME is a constructor and on
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guard, the behaviour resumes execution and triggers a mental act. The mental act directly

accesses the memory and changes the state of the worker assigning it to rid itself of its

current task and wait for a new one. The behaviour then waits for 24 frames before

succeeding.

To work on designing interactive narratives [Mateas, 2003; Mateas and Stern, 2003],

Mateas and Stern developed a design approach using story beats which allows to or-

ganise the dramatic performance within an environment creating coherent plots. Beats

are behaviours arranged around a single dramatic goal. They fall into three categories:

handlers, beat-goals and cross-beat behaviours. The handlers are used to track and

respond to player actions driving the story plot towards the beat goal. In contrast to

other behaviours, handlers are normally persistent . Thus, once they are finished, they

reset and continue to pursue their sub-goal. Cross−beat behaviours present side-stories

which are useful for enriching the experience and the plot but are relatively short and

do not affect the main goal or outcome of the plot. A Beat−goal follows a sequence of

interactions between player and agents to communicate or drive a story. A chain of

beats creates an experience. As beats can be re-ordered or changed based on the user

interaction, different narratives can emerge without the explicit need for an ad hoc

creation of fixed branches between the beats.

Mateas and Stern [2003] discuss the design effort of creating Façade—an interactive

narrative where the player interacts within the social context of a couple on the verge

of breaking up their relationship. The issues and hurdles encountered during this

process are mainly based on the complexity of designing a large enough set of beats

which are consistent. Beats contain hand-authored short sentence-based interactions.

Their future work emphasises the importance of an authoring tool to allow even non-

programmers to design beats and to support the creation process using Abl. An

advantage of using Abl in contrast to fully hand-authored stories is the automatic

alignment of beats into stories. Thus, the author has to concentrate only on beats

instead of the overarching story and how it can branch. The approach is also applicable

for real-time strategy games resulting in a strong artificial agent [Weber et al., 2011,

2010a]. Due to Abl being written in Java and the complexity of the approach it is

mostly used as an external component which works well but requires a separate process

to be run. This makes it harder to include in commercial games.

2.2.9 Behavior-Oriented-Design (BOD)

Bryson and Stein [2001] introduce Bod based on earlier work on behaviour-based

robotics architectures [Bryson and McGonigle, 1998; Bryson, 2000b]. In this earlier

work, they analyse shortcomings of existing architectures, e.g. PRS [Rao and Georgeff,
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1991], and approaches, e.g. Subsumption [Brooks, 1986], and identify a fundamental

issue in intelligent agent research. One of the main driving forces behind Bryson’s

research is the hypothesis that it is difficult to study theories of cognition when the

integration of said theory on top of a given underlying architecture is already difficult.

Thus, an underlying architecture which supports easier design of agents should be able

to facilitate better research on theories of intelligence. As most behaviour-based agents

are using hand-authored behaviours, Bryson and Stein identify the behaviour decompo-

sition as a critical step when developing agents, as well as the absence of a centralised

action selection. Brooks [1991] discussed the need for more reactive approaches in

robotics systems because deliberative planning approaches initially were too slow for

appropriate reactions within an environment and could not handle real-time dynamic

environments. Bryson and Stein extend this approach further but argues for a reactive

planning approach using hierarchical organisation.

In addition to an architectural component, Bod provides a development method-

ology to support the design and flatten the initial learning curve. This is done under

the previously mentioned premise that to develop intelligent agents the architecture

must facilitate the design and aid the developer. The architecture part of Bod uses

its parallel-rooted slip-stack hierarchical planner—posh [Bryson, 2000b]. Nonetheless,

the methodology itself is transferable to other reactive BBAI approaches such as ABL,

see Section 2.2.8, or Bt , see section 2.1.1. To give a more applicable example of

Bod, we will start by looking at posh action selection first and use a posh example

to demonstrate the Bod methodology.

Parallel-rooted Ordered Slip-stack Hierarchical planning

posh planning is a form of reactive planning [Ghallab et al., 2004], which combines

faster response times similar to reactive approaches for BBAI with goal-directed plan-

ning. Traditional deliberative planning plans a full action chain from the current state

of the world until the goal of the agent is reached without taking in any further infor-

mation or alteration to the chain once execution starts. This means the planner has to

take all environmental conditions into account, an impossible task in a dynamic envi-

ronment. Whenever the deliberative plan is disturbed, the agent needs to re-plan the

whole chain making it a computational costly approach. It is also hard to determine

in a deliberative plan when to stop the chain, based on new information. Reactive

planning takes a different approach and only plans for the next action towards the

global goal—taking the local environment and possibilities into account and not focus-

ing on the global setting. On the one hand, this impacts the optimality of the global

plan negatively, resulting often in locally optimal but globally non-optimal behaviour.
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On the other hand, the approach allows the system to react better to environmental

changes, which are intractable in deliberative planning and allow the planner to oper-

ate in a non-deterministic environment. The posh planner makes use of the reactive

planning paradigm and only plans locally, which allows for responsive, yet goal-focused

behaviour, required for deeper agent behaviour. Another important feature is the

usage of the parallel-rooted hierarchy which allows for the quasi-parallel pursuit of be-

haviours and a hierarchical structure to aid the design. Bryson [2000b] illustrates that

her approach of combining a reactive hierarchy not only outperforms a fully reactive

architecture systems Tyrrell [1993] when using Bod, it also shows that a simplification

in the control structure can be achieved using her hierarchical approach.

Posh action selection uses five different element types within its reactive plan struc-

ture and links the resulting plan through its behaviour primitives (actions and senses)

to a behaviour library. A behaviour library is a set of classes based within the posh

library and is responsible for agents’ sensory-motor access and memory. Each be-

haviour class is implemented in the domain specific language, e.g. Java or PYTHON,

and should be self-contained set primitive actions and senses which are accessed when

posh is loaded and instantiates for each agent the behaviour library. In jyPOSH—a

python implementation of posh—the planner has access to object methods through

named lists for perceptual and action primitives, see listing A-1 on page 230.

• Primitive (A—S): Posh provides two types of primitives: action primitives and

sensory primitives. Primitives are leaf nodes inside the plan tree and are imple-

mented within a given behaviour in the behaviour library. Primitives provide

interfaces for the plan to their counterparts in the behaviour library. An action

primitive is a self-contained piece of source code which controls a part of the

agent’s expression in the environment. A sensory, or perceptual, primitive ex-

tends the functionality of action primitives by including additional feedback to

the plan. Sensory primitives are used within the plan goals and preconditions for

determining if a plan element should be pursued.

• Action Pattern (AP): Action patterns are used to reduce the computational com-

plexity of search within the plan space and to allow a coordinated fixed sequen-

tial execution of a set of elements. An action pattern—AP = [α0, . . . , αk]—is an

ordered set of action primitives which does not use internal preconditions or ad-

ditional perceptual information. It provides the simplest plan structure in posh

and allows for the optimised execution of behaviours. An example would be an

agent that always shouts and moves its hand upwards when touching a hot ob-

ject. In this case, there is no need for an additional check in between the two
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action primitives if the agent should always behave in that manner. APs execute

all child elements before returning.

• Competence (C): Competences form the core part of posh plans. A compe-

tence C = [c0, . . . , cj ] is self-contained basic reactive plan (BRP) where cb =

[π, ρ, α, η], b ∈ [0, . . . , j] are Tuples containing π, ρ, α and η: the priority, precon-

dition, child node of C and maximum number of retries. The priority determines

which of the child elements to execute, selecting the one with the highest priority

first. The precondition is a concatenated set of senses which either release or

inhibit the child node α. The child node itself can be another competence or

an action or action pattern. To allow for noisy environments a child node can

fail a number of times, specified using η, before the competence ignores the child

node for remaining time within the current cycle. A competence sequentially ex-

ecutes its hierarchically organised child-nodes where the highest priority node is

the competence goal. A competence fails if no child can execute or if an executed

child fails.

• Drive (D): A drive—D = [π, ρ, α,A, v]—allows for the design and pursuit of a

specific behaviour as it memorises its execution state using the slip-stack [Bryson,

2000b]. The drive collection determines which drive receives attention based on

each drive’s π, the associated priority of a drive. ρ is the releaser, a set of

preconditions using senses to determine if the drive should be pursued. α is

either an action pattern or a competence and A is the parent link to the drive

collection. The last parameter v specifies the frequency which allows posh to

limit the number of executions of the same sub-tree within a given time.

• Drive Collection (DC): The drive collection—DC—is the root node of the plan—

DC = [g,D0, . . . , Di]. It contains a set of drives Da, a ∈ [0 . . . i] and is responsible

for giving attention to the highest priority drive. It also contains a goal which

allows the agent to terminate once it is fulfilled. The goal is the highest priority

element in the set and is the first element evaluated each cycle. To allow the agent

to shift and focus attention, only one drive can be active at any given cycle. Due

to the parallel hierarchical structure, drives and their contained sub-trees can be

in different states of execution which allows for time-slicing and a quasi-parallel

pursuit of multiple behaviours on DC -level.

The plans which are constructed using the described elements are each hand-

authored for a specific agent. However, the plans are written in lisp-like syntax which

allows them to be learned or generated using computation approaches such as genetic
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1 (C get−enemy−f lag ( s e c o n d s 3 0 . 0 ) ( g o a l ( ( h a v e e n e m y f l a g 1 . 0 =)) )
2 ( e l e m e n t s
3 ( ( CE−moveto−flag ( t r i g g e r ( ( s e l e c t e d t a r g e t 1 . 0 =) ) )

moveto−se lected−nav ) )
4 ( ( CE−select−enemy−f lag ( t r i g g e r ( ( h a v e e n e m y f l a g 1 . 0 !=) ) )

s e l e c t e n e m y f l a g ) )
5 )
6 )
7

8 (DC l i f e ( g o a l ( ( game ended 1 . 0 =)) )
9 ( d r i v e s

10 (
11 ( get−enemy−f lag−from−base ( t r i g g e r ( ( e n e m y f l a g r e a c h a b l e 1 . 0 =)) )
12 get−enemy−f lag ( s e c o n d s 0 . 3 ) ) )
13 (
14 ( i n c h ( t r i g g e r ( ( s u c c e e d ) ) ) AP−inch ( s e c o n d s 0 . 3 ) ) )
15 )
16 )

Figure 2-25: A posh plan for Unreal Tournament agents on a capture the flag
map. The plan is controlling a single agent.

programming which work on lisp structures. A reduced plan in source form is given

in listing 2-25 and the full plan is available in listing A-2 in the appendix. The same

plan as in listing 2-25 is additionally visualised in Advanced Behaviour-Oriented Design

Editor (ABODE) and allows for easier visualisation and graphical editing. The sequen-

tial behaviour slicing which emerges using the drive collection, by allowing a drive to

memorise its state and shift attention to another drive, is biologically motivated and

supported by research [Bryson, 2000b].

The combination of behaviour libraries and reactive plans is a strength of the Bod

system, it decouples the plan design and the underlying agent environment-dependent

implementation. In contrast to other cognitive architectures, memory and learning are

not part of posh or Bod’s core system. To reduce the impact on agent performance

both systems are intended to be part of the optimised agent code within the behaviour

library. This makes Bod the most lightweight approach within our comparison, yet

it still allows a Bod agent to contain all parts of a fully cognitive system with agent-

specific behaviours.

Iterative Design using BOD

Behaviour-oriented design extends the concepts of object-oriented design (OOD) into

the domain of agent development. Bod focuses on rapid-prototyping and iterative

development of agents by interacting with behaviour objects. Each behaviour in Bod

is treated as a separate self-contained object which can be accessed through methods.
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Figure 2-26: A visualisation of the posh action plan from listing 2-25 using Abode.
The posh tree starts at the root node—the drive collection—and unfolds for each drive
until it reaches the leaf nodes which are behaviour primitives. The plan contains two
drives, namely get enemy flag and inch.

Similar to OOD, Bod uses inheritance and encapsulation to make the agents more

robust by separating independent parts. A crucial step is the behaviour decomposition

which is the first step in Bod [Bryson and Stein, 2001].

Initial Decomposition

1. Identify and clearly state the high-level task of the agent.

2. Describe activities which the agent should be able to perform in terms of sequences

of actions. Prototype first reactive plans.

3. Derive perceptual and action primitives from those initial plans and sequences.

4. Identify required states and cluster primitives based on shared states into be-

haviours.

5. Derive goals and drives and order them according to their intended priorities.

Prototype drive collections using those drives.

6. Implementation of a first behaviour from the behaviour library.

After the decomposition, we now have an initial posh plan and a first behaviour.

Bryson and Stein [2001] describe the remaining process as non-linear but iterative by

repeatedly coding behaviours, coding plans, testing plans and behaviours and revisiting

the initial specifications. This process is similar to an iterative Waterfall model [Beck,

1999]. To complete the development process Bryson and Stein [2001] argue for a set of

heuristics guiding the development process following the philosophy: “when in doubt,

favor simplicity”.
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BOD Heuristics

• Use the simplest structure first by choosing a primitive over an action pattern

and an action pattern over a competence.

• Reuse competence and action patterns as much as possible instead of writing new

ones. Bod treats all graph elements as objects allowing the developer to reuse

the same node in multiple places by instantiating a clone.

• Decompose actions and senses when only parts are needed and include the de-

composed primitives in the tree to replace the original node.

• When an action pattern requires a cyclic call or only sub-parts are always needed

change the action pattern to a competence.

• When a competence always executes all child nodes, change it to an action pattern

instead to reduce the computational cost.

• If a competence contains two distinct behaviours split it into two.

• Competences generally should only contain between three and seven children to

reduce the complexity of the plan.

• If more than three sensory primitives are needed for a releaser or a goal combine

them into a single primitive to optimise the plan.

• Primitives should execute fast and not require a large amount of computation. If

a larger amount computation is needed, the primitive should be used as a trigger

for the behaviour to compute in the background.

The presented Bod heuristics foster simpler structured plans and integrate most

of the cognitive tasks into the behaviour classes. This allows the planer to execute

and select plan elements faster and the designer to remain in control by not being

overloaded with complex, large plan structures.

2.2.10 Generative Agent Design

Research on generative modelling of agents and generative player modelling has seen a

recent increase in attention [Holmgard et al., 2014; Ortega et al., 2013; Sandberg and

Togelius, 2011; Perez et al., 2011; Grey and Bryson, 2011; Lim et al., 2010]. Generative

approaches to agent design [Holmgard et al., 2014] aim to fully automatically build

models for more competitive or more appealing agents. Some of those generative ap-

proach use utility-based fitness evaluation to achieve better performance. Others are
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based on human data. All of those approaches however use techniques from machine

learning and AI to learn or evolve functionality not available at its creation time and

thereby increase its own or connected agents’ capability. The important components in

most generative approaches are the fitness function and the learning/adaptation mech-

anism, dealing with how the agent adapts its capabilities based on better fitting the

specific conditions.

One way to create new agents is by utilising human generated input. Using data

derived from human interaction with a game—referred to as human play traces—

can allow the game to act on, or react to input created by the player. A human play

trace is an ordered set of event which allow us to understand and recount what the

player experienced in the game environment. Khatib et al. [2011] use a slightly different

approach to acquiring and using human input, in their game “Foldit”, they use human

players as a crowd-sourced search function. Exploring the search space is costly and by

using the crowd-sourced results from player they are able to offload a large part of their

computation. However, their search function greatly affects how well their approach is

able to explore the solution space.

A general disadvantage of training on human data is that the generated model only

learns from the behaviour exhibited in the provided data. Thus, only a small fraction

of behaviours from the pool of possible behaviours may have been presented. If the

data is sparse the prediction of the human play behaviour cannot be guaranteed to be

accurate. Another issue is overfitting the data.

The current approach to counter those issues is to collect as much data as possible

and feed it into the learning system, similar to the training mentioned in Section 2.1.3.

Stanley and Miikkulainen [2002] use neural networks (NN) to create better agents and

enhance games using Neuroevolution. As discussed earlier, this approach allows for the

fully automatic evolution of agents which satisfy the criteria of the player judging their

performance but the results are difficult to generalise to other games or even different

scenarios.

2.2.11 Summarising Agent Design Approaches

In this section the term agent was introduced based on the initial definition by Russell

and Norvig [1995] and extended to describe game agents. Additionally, the differenti-

ation between game characters as only the physical representation and the game agent

was made to reduce confusions. Game agents are the underlying logical components

which control one of many game characters creating the impression of artificial agency.

Game agents are able to sense and act in a given game environment but do not have to

follow the same restrictions as the player, however for deeper agent behaviour cer-
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tain criteria such as situatedness, reactivity, expressiveness, soundness and scalability

of the agent need to be considered upon design. After defining the term agent, different

architectures from less cognitive to fully cognitive systems were examined focusing on

their applicability to games and their approach to developing agents. Based on the

amount of conceptual design and complexity fully cognitive architectures are not able

to handle the requirements of current games whereas more light-weight approaches

lack sophisticated cognitive models. A middle-ground focused on designing complex

agents which are able to work under resource pressure in terms of allowed computation

time and fixed memory is identified as the best available compromise. Most academic

approaches are directed at a special community centred around the origin of the ap-

proach which reduces their impact on industrial work. A commonality of approach

transitioning to the games industry seems to be a robust architecture that scales to the

requirements and has a shallow learning curve; an academic approach matching those

criteria is Bod.

In the next section, we will examine existing tools that support the design and

development of IVA.

2.3 Game AI Design Tools

The previous section introduced the agent concept and presented different approaches

to agent design, from light-weight approaches used in commercial games to more so-

phisticated, fully cognitive architectures such as SOAR. All of those require to different

degrees the usage of programming languages to code agents. In this section, we will

focus on tools supporting the development of agents.

Current software for game AI development and deeper agent behaviour does

not come with robust tool support. Instead, most of the approaches presented in this

chapter are either developed in an existing domain specific languages using Integrated

Development Environments (Ides) for those languages or simply lack any tool support.

Even though the available programming tools are designed for experts, requiring an

initially steep learning curve and are tailored towards programmers, they still lack

enough support. The need for more design support is evident by multiple accounts

throughout literature and industry. Thus, if such an approach exists, the design time

can be reduced, and the quality of robust agents can be increased. Mateas and Stern

[2003] conclude in their work on Abl that the development of their game could have

benefited from a dedicated tool to support the development of stories and the Abl

behaviour tree. Both authors have worked extensively with the system and can be

considered experts. Thus, the issue cannot be related to the initial learning curve of
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novice users. Most of the Abl engine is written in JAVA which comes with established

decent tools such as Eclipse15, Netbeans16, or IntelliJ17. They support a large

variety of features to support writing domain specific program code. All three tools

feature auto-completion of words which reduces the impact of typos. They support

debugging of native applications and the inclusion of test software for unit tests. They

also try to support the user by allowing syntax-highlighting, code-folding and class

overviews.

Still, there is a need for more support. The latter features are language specific and

do not apply to Abl. Mateas and Stern [2003]; Brom et al. [2006] argue the need for

individual design and programming support for their specific approaches. Additionally,

Laird et al. [2000] present their system and focus on the usage of their specific SOAR

environment to be used during development as it offers debugging and introspection

capabilities. Their developed agents are not very complex and do not require additional

advanced features. An industrial application or the usage of SOAR by novice users

would require more support. A similar need is also identified by Orkin [2005] while

working on his goal-oriented planning system and the different layers of abstraction for

designers.

To support authoring and development of agents for games two different directions

exist.

• Provide libraries and tools to reduce the complexity of the design process by

taking care of parts of the design work. This approach is ideally suited for novices

when they get started with development or when the feature is repeatedly required

and needs no further adaptation. For experts, however, fine-tuning parameters

and being able to alter most of the agent is essential which reduces their need for

tools, which take care of functionality for them.

15The Eclipse foundation, https://eclipse.org/, provides a framework for java-based IDE creation.
The most prominent one is the Eclipse Java-IDE which is widely used in industry and academia. Eclipse
provides IDEs for most programming languages and the framework can use used to develop IDEs a
new or special languages. The main focus on the Eclipse framework is modularity which allows easy
recombination in tegration of new modules. The IDEs in the Eclipse framework are open-source and
extentable and are available for all standard desktop operating systems.

16Netbeans is another established IDE for java-based software development and similar to Eclipse fea-
tures support for other languages as well. Netbeans, in contrast to Eclipse is owned by Oracle. Nonethe-
less, the project is open-source and it is it freely available for developers at https://netbeans.org/.
Netbeans is maintained by Oracle and is less modular than Eclipse. It offers a stricter interface for
plugins, which allows Netbeans to maintain or more directed user experience.

17IntelliJ is a propriatory IDE developed by jetbrains, https://www.jetbrains.com. The IDE comes
in two flarours, ultimate which comes with the latest features and dedictaed support and community
which is freely available, does not integrate the latest fixes and only minimal support. The IDE is well
designed and comes with good support for all major languages. Due to its closed development the
usability is central to IntelliJ which makes it a versatile, robust and well maintained IDE.
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• Provide a structured approach to design, similar to the advanced support in Ides

such as Eclipse. Those tools allow for code augmentation, debugging and user-

controlled information hiding. For agent design, it would involve visualising and

augmentation the behaviour and offering different perspectives on the same agent

or the interaction between agents and their reasoning process.

The first support type is available in commercial tools and allows the quick inclusion

of navigation, automatic path-finding and following behaviours. Autodesk Kynapse

[Wallis, 2007]and Presagis AI.implant [Dybsand, 2003] both fall into the first category.

They present tool support for automated path-finding, simple coordination between

entities and simple task assignment. Both approaches are able to handle large amounts

of agents. AI.implant is used in large simulation environments for crowd modelling.

Both approaches are also not free making it hard to use in smaller teams or in teaching

environments as discussed by Gemrot et al. [2009]. Additionally, both approaches

focus on spatial reasoning which is not that important in games such as Façade or

when special requirements need to be met such as a low-performance system or exotic

hardware which may not be supported by those tools.

The second type of tools is aiming to support the process of writing AI parts such

as Skill Studio, Di-Lib and Brainiac Designer. All three tools are aimed at Bt

implementations of AI systems, see Section 2.1.1.

2.3.1 Pogamut

Pogamut is a framework based on plug-ins for either Eclipse or Netbeans, see fig-

ure 2-27. It is built around the Unreal Tournament game environment which, due

to its open interfaces and extendability, offers a robust basis for experimentation and

development of spatially-situated, real-time agents. To allow agents within Unreal

Tournament to be controlled by external means, Kadlec et al. [2007] use the Game-

Bots interface module [Adobbati et al., 2001]. Pogamut is, at the time of writing,

in its third version [Gemrot et al., 2009] and includes different modules for action se-

lection, such as the previously mentioned SOAR, ACT-R and posh, and modules for

developing experimental settings.

Pogamut’s main aim is to provide a freely available environment for rapid proto-

typing of AI, yet, include advanced features such as behaviour debugging, logging and

test-driven development which are normally only found in commercial tools. The tar-

get audience is novice programmers interested in the development of virtual agents as

well as researchers from other backgrounds than computer science. Pogamut’s intended

workflow is described as a Waterfall model.
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Figure 2-27: The Pogamut framework by Gemrot et al. [2009] for Unreal Tourna-
ment. The framework is realised through the netbeans plug-in which adds additional
features such as the spatial agent control in the lower left of the agent introspection in
the upper right part.

Pogamut Work-flow:

• Develop a description of the agent model.

• Implement the agent model within Pogamut by first selecting a decision making

approach: ACT-R, posh, SOAR, or hand-coded in Java or Python.

• Debugging and repairing the implementation is done after a model has been

implemented and the test environment can be started. The debugger provides

support for inspecting the agent and rerunning the agent which allows the user

to identify development and implementation issues.

• Once a reasonable agent has been implemented the parameter can be tuned indi-

vidually during execution of the agent. Pogamut provides code annotation which

allows advanced run-time inspection from within the editor.

• The last phase of the work-flow is setting up experiments for testing the agent.

Pogamut offers functionality to re-run and log experiments many times which

is useful for large scale simulations. Additionally, the system includes a testing

module to support test-driven development.

This work-flow however does not go into the detail of specific agent development

which is crucial for novice users. A big disadvantage for novice users is the complex
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set-up of Pogamut which requires the installation of different software components and

their system privileges. Gemrot et al. [2009] discuss more details of their system but

also state that the system is currently not robust and contains software bugs. A stable

and robust environment is critical for the usage by novice developers as it can impact

their personal motivation and engagement with agent development.

2.3.2 ABODE and POSH

Abode is an editor and visualisation tool for Bod, see figure 2-28. It features a

visual design approach to the underlying lisp-like plan language posh. The editor is

environment agnostic and does not integrate with any other tool which allows a more

flexible approach to its usage. Due to its pure GUI-based programming, mistakes are

either on a logical plan level or when called the posh primitives, e.g. actions and senses.

Figure 2-28: ABODE is a behaviour design editor for Bod and allows graphical mod-
ification of lisp-like posh plans. The editor offers different perspectives on the same
plan structure allowing the user to only view a limited set of nodes to minimise his or
her cognitive load which is a major point of Bryson and Stein [2001] for the work on
Behaviour-Oriented Design.

Abode was designed to support the developmental approach of Behaviour Oriented

Design from the initial drafting of an agent through testing until tuning of specific

behaviours. It features six essential perspectives on an agent plan and a panel on the

right side for modifying a particular node and its position within the plan.

• Overview: This view presents a high-level view with reduced visibility of the

plan. It illustrates the hierarchical organisation of drives in the drive collection
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and the connected competences or action patterns to each drive.

• Logical View: The logical view presents the whole plan in a tree structure. This

view can be quite demanding once a plan reaches a reasonable size and cannot be

visually represented on a single screen. The benefit of this view is to understand

where competences are used and if parts of the tree resemble each other and can

be combined.

• Competences: The view presents the competences separated from the rest of the

graph. By only presenting a single sub-tree the user can on individual behaviour

development and a narrower focus on its specific sub-tree elements for a given

context.

• Action Patterns: The view shows all action patterns in a similar way to the

competences which is useful for identifying duplicated patterns or patterns which

are highly similar and can be merged.

• Source: The source view presents a non-editable version of the underlying lisp-

like plan. It does not feature syntax-highlighting or other text editor features.

• Documentation: The documentation is useful for describing the intended be-

haviour of the plan as well as the setting and the reasoning behind different

decisions.

The general work-flow when using ABODE is to iterate over the drive collection

whenever a new feature should be added and include new actions and senses. Then,

build up more complex structures such as action pattern and competences. Once a

plan file is saved, the required underlying behaviour library, see Section 2.2.9, needs to

be checked regarding the used actions and senses. If the plan uses actions and senses

which are not available in the library, they need to be implemented before the agent

is able to use the designed plan. After finishing designing and saving a plan, it can be

copied and referred to by the posh planner. The editor is stable and is freely available

but does not include advanced features such as a debugger. A similar editor for Bt

would be the Brainiac Designer, see figure 2-30 on page 114.

2.3.3 Visual BT Editors

There exists a large number of different editors and environments for building agents,

however, only a small subset of those is recognised by a larger community of users. The

ones we will have a closer look at next represent the most promising ones found and

accessible at the time of writing. Tools which are only mentioned in research papers
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and are not available for evaluation have been not included because they do not offer

the possibility of a dissemination by others and are less likely to affect advancements

in the field.

Behave is actively maintained and developed by Emil Johansen18 for building

graphical Bts for the Unity2 game engine and has established itself as one of the main

commercial Bt implementations for Unity. Behave is a stable, minimalist, visual

design tool for agent development in Unity and is frequently presented at industrial

conferences and workshops such as AIGameDev-Conf and the Game Developers Con-

ference (GDC). The Bt editor allows the development of BehaviourTrees of the second

generation based on the specification by Champandard [2007a].

Figure 2-29: The Behave Unity plug-in for developing BTs in the Unity game engine.
Behave is fully integrated into the engine and focuses on a simple clean behaviour
representation.

Behave is a commercial product and is focused on smaller industrial development

teams using the Unity game engine. Thus, it is directed towards a specific target group

compared to the later tools. It provides a set of different node types which can be

combined into a tree structure to control a game agent linked to the tree through the

UI. The strength of Behave is its deep integration into Unity, which allows drag-and-

18Emil Johansen is a key figure in the Unity developer community and responsible for the success of
Unity’s standing as a productive and easy to access development tool which is also because of Behave
as one of the first Bt IDEs for Unity.
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drop support of nodes within the tree. Due to the available example projects, tutorials

and the online community, Behave can be used by novice programmers after a short

learning period. Once a tree is created, the leaf nodes need to be implemented in the

underlying domain language to control the agent. This step of integrating the lower

level implementation is supported using either Microsoft’s VisualStudio or Xamarin’s

MonoDevelop in combination with Unity. The linkage between Unity and the software

IDE’s is a major strength of Unity as it allows the usage of Debuggers from within

Unity through both IDE’s.

This approach of first designing a tree and then implementing the underlying prim-

itives is similar to ABODE, where the designed plan needs to have a primitive set of

actions and senses available but is developed independently. Similar to its underlying

approach—BT, Behave does not come with an explicit development methodology or

workflow which requires the integration into any other process. An additional design

methodology would be able to guide the design. Otherwise, the traditional approach in

games is mostly focused on software development approaches familiar to the developer,

leaving the designer as someone who is not actively integrated into the software pro-

duction. With Unity and Behave, the designer will layout the intended behaviour and

might be able to receive a test repository. However, he or she will most of the times not

be able to contribute to the actual working code base. This and similar arguments have

frequently been observed at game developer conference talks given at AIGameDev. As

Behave is integrated within Unity, any change in agent behaviours and the inclusion

of errors affects the overall stability of the whole game which makes modifications and

experiments with different approaches affect the entire team’s workflow.

Skill Studio is another design tool and a free plug-in similar to Behave when

it comes to the intended target audience of Unity developers. In contrast to Behave,

it is open source and available under the Microsoft Public License. The avail-

ability of the sources allows a developer to modify and enhance the framework even

for commercial contexts. It provides an integration into Microsoft’s VisualStudio for

programming and building Bts, but similar to Pogamut it is not stable and features

outdated instructions which make it less appealing to novice users.

At the time of writing, Skill Studio was not adjusted to work properly with the

current Unity version and requires some internal changes; it also is only maintained by

a single person and updated infrequently.

Brainiac Designer, see figure 2-30, is another Bt design tool, closer to ABODE

than Behave, to the extent that it focuses mainly on the graphical design of a Bt

instead of an integration into an existing environment.

Brainiac Designer is stable and easy to use if the user is familiar with BT.
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Figure 2-30: The Brainiac visual BT editor is a free xml based tool for designing and
exporting agent behaviour. It is freely available at: https://brainiac.codeplex.com

Figure 2-31: The DiLib framework allows the development of BT-based agents and
integrates a given C++ behaviour library into its agent framework that can be used
within environments which allow the inclusion of external libraries. It is freely available
at: http://dilib.dimutu.com/

The UI is clean and allows modification of the tree. The strength of the designer is

that it exports the Bt as an XML document which makes it environment agnostic.

Due to the provides source code for it, a different exporter can be written to support

a specific Bt implementation more closely. Calling and linking underlying actions

and perceptual primitives have to be provided within the target environment. Di-Lib

which is illustrated in figure 2-31 integrates deeper into a target system by using C++
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agent behaviour libraries for actions and senses and providing linking tasks (actions)

to specific methods within the library. DiLib also provides a blackboard system and

a Bt debugger which allows real-time visualisation of the tree and the state of tree

nodes. The framework is well maintained but requires an initial understanding of Bt

and is more directed towards designers with a minimal knowledge of programming. It

potentially integrates well into an existing workflow and due to the separation of tree

logic and underlying API, it should be more accessible to designers and programmers,

sharing the work.

Most game-based editors are available for the two dominant development operating

systems, Microsoft’s Windows and Apple’s OSx. Pogamut and Abode also work on

any system supporting Java making them marginally more versatile. The tools sup-

port laying out behaviour in a graphical way which makes the design shift from pure

code-based programming to visual-programming. Visual representation of source code

in tools and the needed support as discussed by Storey et al. [1999] highlights elements

which are also of importance to agent design tools and show that hierarchical repre-

sentation which is given using a Bt editor or ABODE can aid program comprehension

and thereby aid the design of better agents.

In this section we examined different agent design tools ranging from Ides such

as Pogamut to pure visual editors such as ABODE. The presented tools represent a

subset of existing tools but present the most referred to tools by game AI developers.

In the next section the chapter will now draw in the findings of all preceding sections

to create a comprehensive summary of the state of the art in game agent design from

both an industrial and academic perspective.

2.4 Summarising the State of the Art

Looking back at the introduced concepts and techniques, we can now compare the dif-

ferent approaches to agent design. The underlying low-level techniques such as utility

modelling or potential fields are by themselves not able to produce complex, deeper

agent behaviour for current games. Utility modelling is perfect for modelling numer-

ical, measurable attributes which require low abstraction from the actual environment,

such as income or health points and produce high-level priorities for favouring strate-

gies. Nonetheless, utility models need a lot of tuning because they not only contain

description of the highest utility of a task but also parameters for balancing them

to players’ skills. Potential fields, on the other hand, require less manual tuning but

similar to other spatial approach are less useful for non-spatial interactions. Those

techniques represent base level techniques which can be integrated well due to their
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closed systems design. fsms which are also low-level but allow for better abstraction

and additional modelling, they are still the “go-to” approach for simple agent design.

Agent and behaviour-based systems widely use fsms such as the Subsumption archi-

tecture by Brooks [1986]. Even for more complex systems such as the one described

by Bojic et al. [2011], fsms are easier to understand, initially easy to model and well

documented, thus, are therefore used frequently by professionals. Due to the discussed

problem with scaling fsm-based systems, Bts and other hierarchical approaches such

as posh can be employed in larger scale systems. Bt and posh are only supporting

techniques similar to fsms when it comes to designing systems. However, posh in

combination with Bod provides a design methodology and design support in addition

to the software framework.

Mid-level approaches which go beyond development techniques include Bod, Abl,

Goal-Driven Autonomy (gda) and Goap, they allow for complex agent design and pro-

vide a certain degree of guidance for system design. Goap provides a reactive planner

and has shown its application to commercial games. It provides the lightest support

for modelling and requires a solid understanding of programming to develop interactive

behaviours based on the underlying planning language. The approach also lacks design

and novice support, which is a critique affecting more approaches as well. The state-

ments from Section 1.2.1 about shared tasks in programming teams indicates a need for

support as well. In most of the game development environments, designers only have a

limited interface to the system which hinders creative expression drastically [Anguelov,

2014]. Abl, in contrast to that, is intended for programming-literate designers who

want to express themselves through the usage of AI [Mateas, 2003]. The approach is

worth striving for but too demanding to be used in current game development. The

current Abl system itself is also rather hard to use in commercial settings or systems

with a low computational power footprint. Those disparities are due to the require-

ments of the Java virtual machine, the time for re-planning and the development and

set-up procedure. Abl and Goap also present planning approaches without any visual

design support, creating a barrier for non-programmers or when highly complex struc-

tures are developed. There is a high similarity between Goap/FEAR [Champandard,

2007b] and Abl when it comes to deliberating a goal which makes them comparable

regarding potential performance and illustrates that if Abl would exist in an easier to

integrate module it would be more applicable to commercial games.

Out of the above, only Abl, Bod and Pogamut include explicit design approaches

guiding a user to create agents in a specific way. However, the Pogamut design method-

ology does not go beyond a mere list of high-level points and the documentation by

Gemrot et al. [2009] does not guide novice developers appropriately, as essential steps
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of the initial design and how to incrementally address design issues are left open.

Abl, developed with narrative generation in mind, introduces the Beat idiom which

approaches the structure of interaction between the agents and the player in a drama-

focused way. The Beat allows the design of narratives and interactions between agents

and the player in a way which is familiar to writers. The implementation of sequential

and parallel behaviour is not guided and is harder to design once the system reaches a

certain complexity as the behaviour tree underlying Abl can be changed at run-time

by any behaviour. Bod puts a clear focus on the entire design process and presents

guidelines for the segmentation of tasks into atomic elements, used within the archi-

tecture, to build an agent. It is also the most light-weight approach, similar to BT. All

other approaches present implicit design rules which are not transparent and guide the

design whereas Bod tries to minimise and off-load as much complexity as possible into

more manageable autonomous behaviours.

High-level approaches include SOAR, ACT-R, ICARUS and the cX systems of MIT.

Those systems do not scale to large amounts of complex agents but focus on either

highly complex single agent approaches, or smaller amounts of agents which require a

high-powered system. Production rules are the basis for the first three systems which

make the reasoning process understandable, similar to planners where the plan steps can

be made accessible in the form of human-readable source code. Due to the integration

of learning and the modelling of cognitive processes when acquiring information from

the environment and memory, the fully cognitive architectures are hard to integrate

into experiences that can be designed. The systems are complex and require high-

specialised background knowledge, which is also one of the reasons they are cultivated

in static communities. Additionally, writing large amounts of production rules which

form a coherent thought process and anticipate the agents’ reasoning process, once the

developer is supplied with a user, might not be in the interest of game designers when

aiming for a variety of interactions and entities.

In their work on SOAR agents, Laird et al. [2000] make assumptions about the

quality of commercial games such as, “... games such as Adventure, Zork, BladeRunner,

and the Monkey Island series. One weakness of these games is that the behaviour of

non-player AI characters is scripted; so that the interactions with them are stilted and

not compelling.” However, those assumptions are not supported by evidence in the

presented work and do not reflect the commercial and social status of those mentioned

games. As described by Mateas and Stern [2003], games communicate a story which

can be driven by agents. However, the story can also be compelling by itself and well

written scripted characters are a means of expressing that. As long as the difference

between a well-scripted agent and a fully cognitive human-like reasoning agent are not
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detectable there is no benefit in using the second one [Orkin, 2005].

Laird et al. [2000] makes additional assumptions about the complexity of behaviours

for games such as Unreal Tournament or Quake. They identify the lack of social

interaction as the limit for creating compelling bots. However, for fast reaction based

games a lot of work is needed to create sufficiently complex underlying operators first

before being able to develop higher level motives. Mateas and Stern [2003] discuss

the development time for their game which approaches the complexity of commercial

projects and they point out the significant amount of effort it takes to pass the threshold

of reaching commercial-like levels. Generative approaches using evolutionary methods

are hardly used in finished games, either because they require a considerable amount

of prior specialised knowledge or because they are too risky concerning a predictable

outcome. Vanilla approaches given in introductory texts such as the ones by Sweetser

[2004a]; LaMothe [2000] are not sufficient to achieve reasonable performance in com-

mercial environments. During production, some teams use evolutionary systems for

parameter tuning as it provides a robust closed-box approach [Brandy, 2010].

Looking at the stages of game development, an approach using rapid iterations of

prototypes and a flexible structure is mostly used and favoured. Thus, agile methods

such as SCRUM, see Section 1.2.1, are game developers favoured approach.

There exist a couple of open questions in the design of games which require support

and are hardly addressed in given methods. Those questions are related to the designer

inclusion into the development process O’Donnell [2009, 2012], the availability and

usage of better development tools facilitating design Mateas and Stern [2003]; Anguelov

[2014] and a general absence of support for novice users. Visual tool support using

editors is a first starting point but will not be pursued in this thesis because we must

first focus on the underlying structure to support a robust platform before creating

visual tools which enhance the process.

In this chapter, we surveyed the existing literature and techniques on game AI design

and implementation. We started by looking at low-level techniques such as fsms, that

are well-used by designers and programmers, to evolutionary approaches such as neural

networks, which are only usable by programmers and have a steep learning curve. We

then discussed a new definition for game agents and how game developers are aiming

for deeper agent behaviour to keep the user immersion as high as possible. Based

on the new term, we analysed high-level approaches, integrating the discussed low-level

ones into an agent framework. Two points of the presented approaches became visible.

The first, the more sophisticated the underlying approach is, the more CPU is needed

to control sophisticated agents. The second, most of the presented approaches only

provide technical frameworks with no explicit support or method to designing agents.
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The first point leads to the fact that the game industry is focusing on more light-weight

techniques. The second point leads to a reduced impact of academic approaches on

the industry and unnecessarily steep learning curves when approaching agent design

because the implicit design rules of a given approach have to be acquired through trial

and error. This curve is dampened through the usage of tools that were presented in

the last section of this chapter.

This survey identified essential elements needed in game development for supporting

agents development. Based on strict resource limitations light-weight approaches have

been favoured by the industry. More advanced techniques need to be well documented

and contain showcases before they are employed by game developers. This suggests

that the learning curve of using a new approach impacts the decision of selecting ap-

propriate approaches. Because games are developed in multi-disciplinary teams, the

development model needs to support the different tasks instead of simply forcing all

team member to rely on other team members. As discussed in this chapter, most of the

frameworks are programmer centred, to support designers and to guide the develop-

ment, we identified that a new process model is needed which integrates both designers

and programmers. Additionally, due to the complex nature of game development, more

complex encapsulated solutions such as potential fields or evolutionary approaches are

only used if the risk of integrating the approach is low or predictable, for most aca-

demic approaches this risk cannot be predicted because show-cases or demonstrators

rarely exist. In Chapter 5 those elements are realised in a new approach to designing

game AI—Agile Behaviour Design. The novel methodology focuses on shared tasks

and strong guidance for developing sophisticated agents and is demonstrated in two

showcases. To support the robust development, advanced features such as behaviour

inspection have been integrated into a new supportive framework, posh-sharp which

creates an industry compliant light-weight framework.

In the next chapter, we will investigate three frameworks through a set of case

studies and informal expert interviews of authors. Thereby, we identify the implicit

design approaches of each framework and derive a methodology which can be used with

other IVA architectures to analyse their approach to design.
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Chapter 3

Requirements for Agent Tools

In the previous chapter, we surveyed the state of the art in game AI techniques and

approaches for agent design und how it relates to understanding and developing new

methods for robust agent design. The survey spanns from low-level approaches for deci-

sion making and spatial approaches from physics and robotics to high-level frameworks

from Cognitive Science such as ACT-R. This comprehensive view of game AI is needed

to understand the complexity of developing approaches for game agents. As a result of

the survey, we identified essential elements for developing game AI, limitations of the

existing approaches and reasons for the spread of architectures—why only some are

employed outside of their original development community. In this chapter we examine

three prominent Interactive Virtual Agent (IVA) frameworks to further extend our

knowledge on the requirements for IVA development and present case studies which

identify underlying similarities and problems of agent design which are essential to the

development of new tools and approaches for IVAs. This knowledge will be utilised

in Chapter 5 where we propose a new method and framework for agent design that

integrates the findings of this chapter.

3.1 Contribution

This chapter is based on work that was undertaken in cooperation with the Expressive

Intelligence Group at the University of California, Santa Cruz [Grow et al., 2014]. The

central contribution of this work is an analysis of the development and design work-flow

in three distinct architectures for agents. To achieve this, we conducted informal expert

interviews to understand essential approaches for each individual platform and, as a

result, compiled overarching strategies for creating intelligent virtual agents for game

narratives. The two most notable architectures Behaviour-Oriented Design (Bod) and
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Abl, see Section 2.2.9 and Section 2.2.8 respectively, have been discussed before. The

third architecture is FearNot! Affective Mind Architecture (FAtiMA) described in

detail by Dias et al. [2014]. My contribution to original paper was 30%. However, this

chapter is significantly expanding the content and discussion on IVA design.

3.2 Problem Description

IVAs are embodied humanoid characters that are designed to respond richly to user

interaction. They combine work in AI, human-computer-interaction and graphics, as

well as interdisciplinary knowledge from fields such as psychology and performance arts

into a system which interacts with human players. The contained behaviour within

each IVA aims to suffice the deeper agent behaviour criteria. To understand the

construction of agents, let us define the term authoring as a process which encompasses

any asset creation and modification necessary to produce the desired functionality of

IVAs, such as animation, audio, written dialogue, behaviours, goals and other more

specialised decision-making components belonging to a Decision-Making System

(dms).

IVAs share the same authoring burdens as animated characters in movies or fully

scripted cut-scenes in digital environments, such as animation and dialogue assets.

Additionally, IVAs need a dms to handle the interaction with other agents or a user/-

player. This interaction adds another dimension of complexity to authoring. The

combinatoric interaction possibilities, including large internal (to the agent) and ex-

ternal state spaces, make it difficult for an author to reason about and modify a dms

without external help.

Authoring tools are often proposed as a means to help the author manage the

complexity of the authoring process. Chapter 2.2 offers a more detailed view on different

approaches to agent modelling and introduces several tools and platforms which can be

useful for modelling IVAs. For authoring tools to be of any practical use, they must be

flexible enough to allow for specific domain knowledge to be integrated and to customise

a target system towards the project’s needs, including the authoring challenges of a

specific dms. The lack of any cross-system tools for IVAs illustrates this problem.

The editors and tools discussed in the previous chapter focus on some aspect of the

task at hand, still, they are unable to address the full development cycle of creating

IVAs. The closest existing tool is Behave—an integrated graphical BehaviorTree

tool for Unity— but firstly, it is bound to a particular game engine and secondly is not

available for free. Additionally, Behave does not provide a structured design approach
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and is more focused towards programmers than authors. Adding to that, it is also not

separating dms and underlying implementation well which makes the design heavily

dependent on correctly working behaviours, not to break the environment. Pogamut

as a second authoring tool is also tied to a fixed game engine and more specifically to

and is not stable and well-documented enough without investing further work.

To understand the authoring process 11 dms authors across five institutions and

nine different projects in the field of IVAs were surveyed. Out of those, three teams

were chosen for iterative interviews, where a similar pattern of difficult design decisions

was discovered— the pattern is coined the System-Specific Step (sss).

The sss describes the dms-dependent combination of architectural affordance and

authorship in which the authors express their high-level vision for the character into

a decision policy expressed in a particular architecture. After returning to the three

teams with the interpretation of their system’s sss, they confirmed the requirements

the sss places on any authoring tool approach in combination with authoring tool

proposals based on the challenges discovered in the System-Specific Step.

The sss requirements analysis methodology is being proposed as a means by which

programmer-authors may better understand their particular system’s authoring burden

and potential features of authoring tools which would alleviate this burden. Three

case studies of agent architectures have been conducted, comprising of different design

philosophies, teams and levels of complexity as rigorous example test cases of the new

methodology. The driving force behind them, the support of the creation of authoring

tools in similar architectures and enable the authoring of more robust IVAs.

3.2.1 Related Work

For this work, the definition of author is narrowed down to programmer-author; the

designer with an authorial vision who has enough technical knowledge to build or use

sophisticated or programmer-oriented authoring tools. Including a wider audience of

non-programmers would have been desirable to get more general results. Even though,

the studies only used programmer-author it was still possible to take some of the wider

audiences issues with authoring tools into account by incorporating the findings of

Spierling and Szilas [2009]. The process of defining the sss and tools supporting it

involved iterative discussions with the intended authors in order to “make tools that

better match the concepts and practices of our media designers and content creators”

[Spierling and Szilas, 2009].

Even though the content matter of the tools was different, the iterative case studies

regarding design support tools for digital games by Nelson and Mateas [2009] is a com-

pelling structure and is used in the presented AI architecture authoring tool analysis.
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Based on it, a methodology was built and tested with the available subjects using tight

collaboration, which proved key to the success of the carried out analysis.

One of the clearest cases of authoring tool effectiveness was demonstrated by Nar-

ratoria, a tool suite that enables non-technical experts familiar with digital media to

create interactive narratives [Van Velsen, 2008]. Narratoria is comprised primarily of

three separate tools: story graph, script and timeline editors all linked with collective

underlying data structures. While the interaction with the created agents is minimal,

the addition of the Narratoria tool suite to the agent authoring process reduced the

time spent authoring between two similar projects. Narratoria’s divide-and-conquer

approach to authoring tool design, creating each sub-tool with familiar vocabulary and

tropes of its specific genre to better support specialised authors, informed the concep-

tualisation of the sss.

Another related project is AIPaint [Becroft et al., 2011], a BehaviorTree (Bt)

authoring tool for creating spatial navigation rules. However, AIPaint only applies to

spatial reasoning similar to the low-level techniques presented in Section 2.1.2, rather

than social reasoning illustrated in Prom Week by McCoy et al. [2013]. In contrast

to the other Bt editors that were discussed in the last chapter, AIPaint comes with its

own automated approach to designing agents which is based on drawing connections

on a screen and then allow the system to infer meaning from the connected elements.

Due to this narrow design focus on spatial reasoning for a specific game, it is hard to

generalise and has not been included it in the initial analysis in Chapter 2.3.

Learning by demonstration is also an intriguing authoring approach that has been

gaining popularity in recent years [Argall et al., 2009], similar to the generative ap-

proaches discussed in the Chapter 2.2.10. However, attempting to encode complex

human-like decision-making for embodied characters is far beyond the current capabil-

ities of existing systems and requires a considerable amount of training and verification

of the intended behaviour. Finally, as AI research progresses, commercial AI systems

in games also evolve using techniques from research to empower their systems. Due

to the AI challenges in games in recent years Bts, see Section 2.1.1, have become

one of the most dominant industrial approaches to structure and control intelligent

agents in games; two of the conducted case studies employ techniques similar to Bt in

combination with reactive planning.
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3.3 The System-Specific Step
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Figure 3-1: Representing the System-Specific Step for creating an IVA with
Bod,FatiMA and Abl. Each sss specifies which goals the agent needs to achive,
the approach of how the specific system is able to pursue those goals and the elements
the agent executes to achive its goals. The three areas which form the sss can be
found in each of the three systems discussed in this chapter. For posh-sharp they are
illustrated in figure 5-3 on page 177.

For working on IVAs, it has been identified that each system comes with its own,

most of the times implicit, design philosophy, coding style and structures as a primary

authoring challenge. While all share the concept of an authoring burden, how this

burden manifests in each system can be entirely unique. In order to begin easing the

authoring burden for each system, the peculiarities of the authoring burden in specific

instances have to be identified first.

The System-Specific Step is the term for the parts of the authoring process

where the general discussion and design reach their limits and, as the name suggests,

system-specific design constructs are used instead. Any design or production for a

particular system regarding that system’s unique architecture, design constructs, code

objects, or design philosophy is part of the sss of that system. The sss is where all

the gritty intermediate- and expert-level authoring (in design and code) takes place to

make the interactive agents and experiences a reality.

Examples of what authors may do as part of their sss include:

• imagining how an agent will traverse a behaviour representation so the author

can craft interesting decision points
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• construct hierarchical goals so that an agent can plan its way from the beginning

to end of a scenario

• figuring out how the agent can express frustration if its body is busy doing other

actions

The more explicitly and concretely an sss for a system can be defined, the clearer the

problems that an authoring tool may attempt to alleviate.

3.4 Interview Methodology

To explore the authoring process of embodied interactive characters, a series of informal

interviews with five institutions across the globe were conducted to help understand

how reasonably isolated groups approached their personal authoring challenges. In

addition to the six local Abl authors and the team involved in this project, members

of GAIPS Paiva [2013], CADIA University [2013b] and CTATUniversity [2013a] were

surveyed, to explore different approaches and purposes for authoring. Those purposes

include authoring-by-demonstration for educational purposes, as well as creating tools

for various levels of author expertise. These programmer-authors also shared anecdotes

of successes and failures of particular authoring tools, approaches to authoring tools

and agents and techniques for visualisation. The resulting findings backed up claims

made by the field in general, namely that “authoring is challenging and in need of help

via tools”. These support the proposal of the idea of the System-Specific Step (to

describe the different, yet similar, phases of the authoring process and the requirements

they present for any authoring solution) and lead to utilising the sss for the design of

authoring tools using in-depth case studies.

After distilling the information from those interviews, the teams willing and able

to conduct follow-up case studies were re-visited regarding their sss. Each of the three

programmer-designer teams that volunteered for the case studies was given the same

simple scenario, described below. For that purpose, they were asked to transform the

scenario into descriptive pseudo-code for their system, one step removed from actually

programming the scenario. The procedure the teams followed to create the pseudo-code

was simultaneously translated into a rigorous process map1. Details of each step (and

possible sub-steps) in the process were recorded, such as the duration of each step, the

involvement of other people and potential authoring bottlenecks.

The resulting process maps of each case study looked drastically different, and it

proved hard to retrieve time estimates from the interviewed authors. However, it was

1Process mapping involves creating a visual representation of a procedure similar to a flow chart,
making explicit “the means by which work gets done” Madison [2005].
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possible to extract sufficient information to construct a sss for each system and propose

authoring tools to alleviate concrete issues discovered in the process map.

3.5 The Scenario

The scenario that was chosen is a simplified version of the “Lost Interpreter” scenario

recently completed and demonstrated within the immerse project which uses Abl as

its dms [Shapiro et al., 2013]. The scenario involves the player as an armed soldier in

an occupied territory searching for their missing interpreter via a photograph in their

possession. The player must show the image to a cooperative, local civilian, who will

then recognise the person in the photograph and point the player in the direction of the

interpreter. Once the player knows the location, the scenario is successfully completed.

If the civilian is uncooperative, he will not respond to the player’s pleas for help, and

if the player is offensive or breaks the social, cultural norms [Evans, ming], the NPCs

will leave. Thus, the scenario will end unsuccessfully.

This scenario was chosen because it exercises a broad range of capabilities of interac-

tive characters: player involvement, communication between NPC and player, multiple

NPCs with different attitudes, physical objects and multiple outcomes of the scenario.

The scenario was also simple enough so that each team was able to reach a pseudo-code

state of completing their design in a reasonable amount of time (1–3 hours). While

the original immerse scenario required non-verbal communication (gesture and face

expression recognition), that limitation was not enforced on other systems. The spec-

ifications of the scenario were designed to be loose enough to allow each system to

encode the scenario to their system’s advantages without demanding external features

that all systems may not possess.

3.6 Case Studies

The following three programmer-author teams of one, two, and five interview partici-

pants were studied (although there are more developers on each team). Each system

was developed using different ideologies, which will become apparent in the discussion

of their individual sss. The following case studies are listed in order of increasing

complexity of the modelled systems.

3.6.1 Case Study 1: BOD using POSH

Bryson [2001]; Gaudl et al. [2013] follow a particular behaviour authoring methodology

entitled Behaviour-Oriented Design, described in Chapter 2.2.9. Bod combines Object-
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Oriented Design and Behaviour-Based AI [Brooks, 1986] in combination with their

action selection mechanism, the planner to construct agents based on their development

process. Bod focuses on simplicity and iteration, offering a low barrier to entry for

novice authors. This case study encoded the Lost Interpreter scenario in the least

amount of time.

After a scenario is defined, a programmer and designer work together o create a list

of abstract behaviours that need to be performed. It is important to note that there

is no need for a Bod designer to encounter anything more complicated than interfaces

and visual plan structures in their interaction with the system. This allows the designer

and programmer to be the most independent of the three case studies (although they

may be the same person in some projects) [Bryson and Thórisson, 2000]. In this test

case, the abstract behaviour list included seven actions, including a greeting/goodbye

to mark the beginning and end of the interactions, accepting, examining, returning an

item, ignoring the player (for the uncooperative agent), and telling information. The

second step in the process is to build what is ultimately a list of procedure signatures for

the programmer, determining which of these behaviour elements need to be represented

as behaviour primitives (actions and senses), as well as an idle state should all else fail

[Bryson and Stein, 2001].

The programmer then codes the actions and senses as functions in the domain

specific language, which will connect to the targeted system in the future (as it is at

this step required to test functionality and flow of the dynamic plan). The target system

can either be an animation engine or the interface to robotic actuators; the primitive

actions and senses provide an abstraction layer between the dms and the target system

(as with all systems in this case study). In parallel, the designer can use the primitives

(actions and sensors) created by the programmer to design the dynamic plan using

Abode2, a graphical design tool for Parallel-Rooted Ordered Slip-Stack Hierarchical

(POSH) plans, to construct the posh-tree.

SSS Elements

i Start Minimally: Even though the scenario is relatively simple, it is important

to begin with a minimal number of behaviours, actions, and sensors to create

a working vertical slice. The scenario began with only four primitives as a first

version of the plan of the core behaviours. In both Abl and Bod, authors created

empty primitive stubs in their behaviour trees to structure the experience as a

2The latest version of Advanced Behaviour-Oriented Design Editor (ABODE) is Abode-star which
was extended during this PhD to reduce the cognitive load of its users. The system is freely available
at: https://github.com/suegy/abode-star
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Figure 3-2: Representing the System-Specific Step for creating an IVA with
Bod,FAtiMA, and Abl.

first minimal step before proceeding to fill in the stubs. Starting with a small

number of action primitives supports the author when focusing on the task at

hand and allows for incremental changes. It also allows the faster testing and

having a robust set of actions before moving to a more advanced agent.

ii Decompose Iteratively: Actions only link methods from the underlying be-

haviour library to action nodes in the posh plan, this separation supports a more

agile workflow. A key feature of the Bod authoring methodology is this agility:

not only can programmers iteratively tackle the stubs created in sss Element i,

but the designer and programmer freely move between the phases of the design

process to build up missing primitives that were not in the minimal first list. In

the case study, the programmer was creating idle and item-handling primitives

while the designer realised they had not accounted for the norm−offense response.

In Abl, each author’s focus is on one agent at a time, and one step in the per-

formance at a time, to systematically build the whole experience.

iii Minimise and Encapsulate: While not a part of this scenario, an experienced

Bod designer uses the Bod metrics to keep the complexity of the plan at bay,

e.g. if more than three sensors are needed to trigger a drive or competence,

the logic held within the tree is getting too complex. Thus, a complex trigger

should be created instead. The application of the heuristics enforces a constant

minimisation of the plan which leads to a reduction in plan complexity and in turn

to a process of simplifying the logic (and computational resources) controlled by

the tree. Not following the metrics is a common mistake most novice Bod/posh

128



authors make, resulting in a tangled mess of restricting sensors that are difficult

to debug and behaviour libraries limited to a narrow subset of scenarios. This

last sss element is the most unique when comparing against other approaches.

Figure 3-3: A posh plan developed during the interviews and encoded using Abode-
star.

Authoring Support Strategies

The Bod/posh case study is unique in that it is the only system with an explicit

authoring approach as well as a graphical design tool, (Abode-star). Due to the

shallow learning curve, getting the system to work is not difficult, but creating and

maintaining complex agents provides challenges in need of more robust tools. Thus,

the focus of the authoring support strategies will primarily address sss Element iii, as

the first two are well-supported via the Bod methodology and the current architecture.

There is no integration of testing and debugging approach for Bod and posh,

a problem that all the other architectures which have been analysed in this chapter

also share. Support for syntax checking and live behaviour debugging would shorten

the programmer’s development cycle considerably while iterating on more challenging

behaviours (sss Element ii). Most crucial, however, is a mechanism to facilitate better

behaviour sharing and reuse between and within projects. The larger a Bod and posh

behaviour library is, the more likely that novice users tend to develop their own library
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instead of reusing existing components. This produces large amounts of redundant code

which results in a degrading quality of the system at some point based on the cognitive

overload it requires to grasp the whole library. A new module that manages existing

and comparable, encapsulated behaviour libraries, and prompts users to submit their

new simplified behaviours for future reuse, would also increase the reuse and power of

Bod and posh enormously.

3.6.2 Case Study 2: FAtiMA

FAtiMA [Dias and Paiva, 2011] is a new multi-agent architecture in which each agent

has an emotional state and plans about the future towards a specific goal. A process

which can be weighted according to the relative importance that plans and emotional

state have. Different characters can have separate personality files in which these

weights are defined. Authoring in FAtiMA is done by editing several separate XML

files. To understand the difference between Abl and FAtiMA, Gomes and Jhala

[2013] gives a comparison of the two systems regarding the expressiveness for modelling

conflict between characters.

When presented with the requirements of the Lost Interpreter scenario, interviewed

FAtiMA authors started by considering the motivations of the NPCs. Since the be-

haviours of agents in FAtiMA are goal driven, the experts proposed that an NPC must

be motivated by an altruistic goal to decide to help the player. A possible example of

such a goal would be:

1 <A c t i v e P u r s u i t G o a l name=” Help ( [ c h a r a c t e r ] ) ”>
2 <P r e C o n d i t i o n s>
3 <RecentEvent o c c u r r e d=” True ” s u b j e c t=” [ c h a r a c t e r ] ”
4 a c t i o n=” RequestHe lp ” t a r g e t=” [ SELF ] ” />
5 <P r o p e r t y name=” [ t a r g e t ] ( i s P e r s o n ) ”
6 o p e r a t o r=”=” v a l u e=” True ”/>
7 </ P r e C o n d i t i o n s>
8 <S u c c e s s C o n d i t i o n s>
9 <P r o p e r t y name=” [ c h a r a c t e r ] ( wasHelped ) ”

10 o p e r a t o r=”=” v a l u e=” True ”/>
11 </ S u c c e s s C o n d i t i o n s>
12 <F a i l u r e C o n d i t i o n s></ F a i l u r e C o n d i t i o n s>
13 </ A c t i v e P u r s u i t G o a l>

Figure 3-4: The ActivePursuitGoal specifies the conditions which are required by the
agent to trigger that the agent wasHelped.
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Additionally, it was pointed out that there needed to be a motivation not to help, in

order to model the uncooperative NPC’s behaviour. The interviewed authors chose to

represent the uncooperative NPC as fearing harm from the armed player as a separate

goal:

1 < I n t e r e s t G o a l name=” P r o t e c t S e l f ( ) ”>
2 <P r o t e c t i o n C o n s t r a i n t s>
3 <P r o p e r t y o p e r a t o r=”=”
4 name=” [ SELF ] ( harmed ) ”
5 v a l u e=” F a l s e ”/>
6 </ P r o t e c t i o n C o n s t r a i n t s>
7 </ I n t e r e s t G o a l>

Figure 3-5: The InterestGoals specifies if a character should protect itself based on if
he or she was harmed.

For the goal to be useful, there must be an NPC action that is required for helping

behaviour, but at the same time might lead it in harms way. For instance, the NPC

might consider the possibility of being harmed when taking the picture from the player.

1 <A c t i o n name=”Take−from−M i l i t a r y ( [ m i l i t a r y ] , [ o b j e c t ] ) ”>
2 <P r e C o n d i t i o n s>
3 <P r o p e r t y name=” [AGENT ] ( whith InReach , [ o b j e c t ] ) ”
4 o p e r a t o r=”=” v a l u e=” True ”/>
5 <P r o p e r t y name=” [ m i l i t a r y ] ( i s M i l i t a r y ) ”
6 o p e r a t o r=”=” v a l u e=” True ”/>
7 </ P r e C o n d i t i o n s>
8 <E f f e c t s>
9 <E f f e c t p r o b a b i l i t y=” 1 . 0 ”>

10 <P r o p e r t y name=” [AGENT ] ( has , [ o b j e c t ] ) ”
11 o p e r a t o r=”=” v a l u e=” True ”/>
12 </ E f f e c t>
13 <E f f e c t p r o b a b i l i t y=” 0 . 1 ”>
14 <P r o p e r t y name=” [AGENT ] ( harmed ) ”
15 o p e r a t o r=”=” v a l u e=” True ”/>
16 </ E f f e c t>
17 </ E f f e c t s>
18 </ A c t i o n>

Figure 3-6: Take-from-Military specifies more complex conditions which need to be
met before the characters takes an object form the player.

Thus, if the agent considers a plan in which they may be harmed, it will trigger a

Fear emotion. Next, the authors defined actions that the agents could take along the

path to reaching the help goal, such as taking the photo, examining it, or speaking,

which is where the authoring process in Bod and Abl began.
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SSS Elements

Based on a second FAtiMA authoring team further insights into its underlying process

were gained after iteratively discovering the sss elements with the first team. Their

responses have been included in the following sections alongside those of the original

FAtiMA scenario authoring team.

iv Goals First: FAtiMA goal primitives must be defined first, with the necessary

actions being derived from them. This is driven by FAtiMA’s dependence on

goals for the cognitive appraisal emotion model to work. For each branching

strategy that the agent could take (respond to request/ not respond), there needed

to be a motivation, hence a driving goal. The second FAtiMA team worked with

goals and actions simultaneously, which was inconsistent with the first team. Part

of the second team’s reasoning was that in planning, with the appropriate set of

actions, the agent should be able to deal with a wide range of situations, and

thus goals. It can be speculated that this different approach may be related to

the different authoring experience and scenario complexity between both teams.

v Find Decision Points: During the interviews it was noticeable that the inter-

viewed authors divided the scenario into sections whose boundaries corresponded

to moments in which the civilians had to make a decision. As every decision point

must also be motivated by a goal. This approach helped to author the previous

sss element as well. Authors also found that temporal ordering of decisions could

be enforced by creating goal preconditions that referenced recent events. The

second FAtiMA team agreed with the analysis of the first team. Thinking the

decision point sequences through helped define goals for both teams.

vi Goal Weighting and Tuning: The cooperative and uncooperative civilians

in the scenario choose to take different actions when deciding to help. This

decision process was made by using different numerical weights for the Help([

character ]) and ProtectSelf () goals. By giving more importance to a particular

goal in the character’s personality file, the interviewed authors made sure that

each agent made the appropriate decision at the previously described decision

points. These goal weights completely control how different agents take different

paths throughout the performance. This process supports previous comments by

FAtiMA authors (including the second FAtiMA team) that weight tuning is by

far the most time-consuming process of complex FAtiMA authoring Bernardini

and Porayska-Pomsta [2013].
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vii Intent Goals for Future Consequences: While not part of this particular

authoring scenario, a useful authoring anecdote was encountered that sparked

discussion of this additional FAtiMA sss. Goals have two types: ActivePursuit

and Intent . For ActivePursuit goals, the agent creates plans to achieve them. Intent

goals define constraints that should try to be enforced. In the process of under-

standing those approaches [Gomes and Jhala, 2013], one author tried to create

two ActivePursuit goals that an agent simultaneously attempted to achieve. How-

ever, after referencing an expert FAtiMA author, the author found that FAtiMA

is only able to pursue one ActivePursuit goal at a time. This initial misinterpreta-

tion of the system lead to a re-write of their entire goal structure. The second

FAtiMA team did not agree that this was an important part of their process, as

their authors reported to be able to choose easily between either goal types.

Authoring Support Strategies

Authoring support strategies for the two sss elements were discussed that were backed

by both teams: v and vi. For sss element v, an interface is proposed where authors

can create example sequences of events schematically. Afterwards, the tool is intended

to prompt the user at which points a given agent has to make decisions. For each of

these points, the author can create corresponding goals3.

All three case studies have points in their authoring process where quick iterations

of different scenarios would be incredibly helpful in speeding up the process. FAtiMA

exhibits the most obvious case of tweaking, as all of its content adjustments can be

narrowed to values in a handful of specific files. The authors speculated that launching

multiple simultaneous configurations of a scenario with FAtiMA agents encoded with

different personality weights (possibly in real-time), choosing the most appealing pre-

sented version, and iteratively repeating this step could demonstratively narrow down

on a target.

3.6.3 Case Study 3: ABL

Abl, presented in Chapter 2.2.8, was designed with a focus on the creation of expressive

IVAs and provides a reactive planning language for structuring and creating them with

a high degree of interactivity [Mateas and Stern, 2002]. The primary structure primitive

in Abl is the behaviour, which can sub-goal other behaviours in sequence or in parallel

and contains preconditions that gate whether or not it can currently be executed. The

Active Behaviour Tree (ABT) encodes the current intention structure of the agent,

3The author could also add possible actions, which based on sss element iv would motivate different
agent strategies.
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with the leaves of the tree as candidate, executable steps. Working Memory Elements

(WMEs) hold information intended to be shared throughout the ABT, such as whether

an NPC is holding an item. It is important to note, all the interviewed Abl authors

are involved with the immerse project, and Abl language-specific and IMMERSE

project-specific constructs will be specified. Bod and FAtiMA offload this extra layer

of control, but it represents the core of how all the abstract behaviours outlined earlier

were encoded in Abl.

As with Bod, the Abl authors approach a scenario by first creating a list of abstract

behaviours which are stubbed into the ABT in a rough sequential structure. At a high

level, the authors each tackle a specific behaviour and work iteratively with each other

to bring it to completion. Abl authors thus also employ the sss Elements i and ii

described above. However, the details of the iterative steps for Abl allow for possible

alternatives more focused on Abl potentially leading to further sss elements.

For any behaviour that an NPC may direct towards a human player, there is the

need of separate behaviour sub-trees, created for making the NPC perform and wait for

the signal that the player has taken the action. The following demonstrates an example

from the scenario, illustrating the give object () behaviour if it was used between two

NPCs (note that the give object () behaviour assumes it was triggered by a request object

() behaviour or that the target will accept the offered object unconditionally):

1 s e q u e n t i a l b e h a v i o r g i v e o b j e c t ( S t r i n g myName , S t r i n g targetName , S t r i n g
objectName ) {

2 // The p r e c o n d i t i o n g r a b s t h e t a r g e t ’ s PhysicalWME
3 p r e c o n d i t i o n { characterPhys ica lWME = ( PhysicalAgentWME )
4 ( characterPhys ica lWME . g e t I d ( ) . e q u a l s ( targetName ) ) }
5 L o c a t i o n c h a r a c t e r P t ;
6 Socia lSignalWME s o c i a l S i g n a l ;
7 // grab t h e p h y s i c a l l o c a t i o n o f t h e t a r g e t
8 m e n t a l a c t { c h a r a c t e r P t = characterPhys ica lWME . g e t L o c a t i o n ( ) ; }
9 // NPC o f f e r s t h e o b j e c t i t i s h o l d i n g

10 s u b g o a l headTrack (myName , targetName ) ;
11 s u b g o a l t u r n T o F a c i n g P o i n t (myName , c h a r a c t e r P t ) ;
12 s u b g o a l p e r f o r m A n i m a t i o n (myName , targetName , a n i m a t i o n O f f e r O b j e c t ) ;
13 m e n t a l a c t { s o c i a l S i g n a l = new Socia lSignalWME (

s o c i a l I n t e r p r e t a t i o n E x t e n d H a n d , myName , targetName ) ;
14 B e h a v i n g E n t i t y . g e t B e h a v i n g E n t i t y ( ) .addWME( s o c i a l S i g n a l ) ;}
15 // w a i t f o r t h e p e r s o n who w i l l t a k e t h e o b j e c t to s e t t h i s f l a g
16 w i t h ( s u c c e s s t e s t { ( s o c i a l S i g n a l . g e t C h o s e n I n t e r p r e t a t i o n ( ) != n u l l )

} ) w a i t ;
17 // Make t he photo d i s a p p e a r from my hand , t h e a c t i o n o f t a k i n g t h e

photo s e t s i t i n t h e t a r g e t ’ s hand
18 a c t a t t a c h O b j e c t (myName , objectName , f a l s e ) ; }

Figure 3-7: A sequential Abl behaviour for requesting an object.
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• The context of how the behaviour will be triggered: In this scenario, the

author knows that the request object () behaviour triggers give object (). It contains

no logic for having the offered object rejected. This behaviour also only handles

removing the object from the character’s hand and assumes another behaviour

handles the object’s fate.

• Relevant signals and WMEs: The previous behaviour was authored assum-

ing that the characterPhysicalWME contains locational information, that there is a

socialSignalWME ready to handle the socialInterpretationExtendHand interpretation, and

that there are constants such as the cExchangeObjectDistance previously defined and

calibrated for the world. If any of these are lacking, or the author does not know

about them, the author must search the existing code or create them.

• Expected animations: Head tracking, eye gaze, and holding out the offered

object are the animations used in this behaviour. The logic behind procedurally

animating them is handled elsewhere, and if it were not, the author would have

to create it.

• Possible Interruptions: The most crucial step to making these behaviours

robust is handling interruptions, which the above behaviour fails to do. In the

success test , if the NPC never acknowledges the socialSignal or the player never

comes in range, the NPC will hang with their hand held out forever. If a timeout

was added to holding out their hand, it is unclear what the NPC should do about

the unrequited object offering, or how it should handle the lost request object ()

context. These are all considerations the author must address when aiming for

robust behaviours.

SSS Elements

viii Define Coding Idioms: Unlike Bod and FAtiMA, which make strong archi-

tectural commitments to specific agent authoring idioms, Abl is a more general

reactive planning language similar to STRIPS planning described by Ghallab

et al. [2004]. Within Abl different Abl idioms can be implemented such as the

task managers described by McCoy and Mateas [2008]; Weber et al. [2010a] or

the goal ideom by Weber et al. [2010a]. Before novice and intermediate program-

mers can make progress, an expert Abl programmer must first define the coding

idioms used to structure the agent (see Weber et al. [2010c] for another example

of Abl idioms). These idioms define approaches for organising clusters of be-

haviours to achieve goals. For the immerse project, the Social Interaction Units
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(SIUs) idiom has been developed to organise clusters of behaviours around goals

driving specific social interactions. Those goals are similar to beats described in

Chapter 2.2.8. The interviewed Abl authors all made use of the SIU idiom when

working on the “Lost Interpreter”.

ix NPC and Player Considerations: Although the example behaviour above, as

well as the architecture, is separated from a particular implementation, the code

must intimately consider implementation details. There is an enormous amount

of state information and ABT possibilities the author must be aware of such as

how the behaviour will be triggered in the performance or whether NPC or PC

characters will be performing or responding to a behaviour. Bod and FAtiMA

offload this extra layer of control, but it represents the core of how all the abstract

behaviours outlined earlier were encoded in Abl.

x Consider Interruptions: In the given scenario, if the system detects the player

offering the photo, it will trigger the sequence of Abl behaviours by the coop-

erative NPC: take object (photo), examine object(photo), and point to ( interpreter ). If the

system detects the player requesting the photo back any time after examine object(

photo), the ABT will trigger the NPC to give back the photo regardless of whether

it is in the middle of another behaviour such as pointing. From a designer’s per-

spective, it makes sense that someone may extend the photo in return with one

hand and point with another. The author of point to () must be made aware that

the behaviour may have to multi-task with other behaviours and take precau-

tions to perform it appropriately. If the synchronisation of those behaviours is

not done properly, the animation of the IVA will contain artefacts which are not

appealing. Blending character animations is not a trivial problem and is still a

focus of animation research.

3.7 Authoring Support Strategies

Abl’s sss were discussed with novice, intermediate, and expert authors of the Abl

approach, and their processes all shared the same structure described in detail above.

However, novices and early intermediate authors needed expert guidance to understand

that the above considerations existed, where to look for them in the code or how to

create aspects of them if they were missing. Once example behaviours have been

created, authors routinely copy-paste huge sections of code. This process is highly

similar to the approaches of professional developers when utilising advanced game AI

techniques such as artificial neural networks, potential fields or as the most prominent
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example A*; they initially use those textbook examples and, later on, modify them

according to their needs. Industrial publications contain typically large parts of source

code examples going beyond simple pseudo code for exactly the same reason.

In contrast to the visual representation of Bod’s dynamic plan, the Active Be-

haviour Tree (ABT) in Abl is in constant flux, making it hard to visualise without

presenting just a non-representative snapshot. The main reason for a changing ABT is

the possibility of spawning new goals or the ability of the planner to add change the

current behaviour to better match the current goal. This approach is similar to GOAP

by Orkin [2005] and presents similar challenges to authors, increased cognitive load

when designing behaviours. Thus, Orkin offers designers only the option to add loca-

tions and specific goals for those to reduce the design complexity which is not sufficient

for Abl authors. Currently, Abl authors use debug log print statements of the cur-

rent system state and trial-and-error experiments to determine the correctness of their

implementation which is insufficient for complex agents as some behaviours might be

only visible at specific points in time. More sophisticated debugging techniques exist in

the form of an Abl debugger (a process that executes alongside the ABT at run-time),

but the debugger was not used by any participant.

Expert authors report the debugger to be unstable, hard to use and set up. This

indicates possible reasons for why it has not been used further. The debugger was devel-

oped by Weber et al. [2010b] during an Abl StarCraft agent project. The debugger

requires the developer to attach the debugging process to the currently active agent

which is a non-trivial task, requiring special privileges on the computer. Therefore, the

initial step to employ the debugger is already a hurdle for novice users.

Bod authors using jyPOSH have a working behaviour tree editor Abode support-

ing the design of behaviours by presenting the agent tree during development visually.

However, Abode does not provide inspection during run-time which reduces its use-

fulness after the posh plan is developed. Additionally, jyPOSH requires a complex

setup which confused novice users. Similar to Abl, Bod and posh do not provide

debugging support or any designed feedback during the execution of the agent. Novice

developers included debug statements into the underlying behaviour library to trace

the execution of primitives. Another negative point identified by novice users is the

handling of errors. Due to the usage of bindings between Java and Python within

the arbitration process, jyPOSH returns cryptic error statements and memory dumps

which are unusable by non-expert developers. A better feedback and debugging sup-

port are essential in industrial applications as described in Chapter 2.1.1 where each

tree node in a Bt returns a statement of success, fail, or error and the tree can be

visualised showing that state.
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3.8 Summarising the System-Specific Step

In this chapter, the sss requirements methodology is proposed as a means by which

programmer-authors may better understand their IVA architecture’s authoring burden

and make progress toward alleviating it. The methodology was evolved through a series

of interviews conducted with a set of disparate and independent groups performing IVA

authoring research. After that, case studies of three teams authoring a single simple

scenario were performed where their authoring process was process-mapped, extracted

and elaborated. As part of this, their sss and its elements, in combination with pro-

posed authoring strategies that might alleviate their authoring burdens were analysed.

As a result, the three teams found the sss to be a valuable tool in analysing their

system, and each group plans on implementing their previously proposed authoring

strategies.

In the appendix C.1 an additional overview is provided which presents a reduced

presentation of all sss elements found across the case studies. Instead of looking at all

sss in we will focus on a sub-set affecting Bod which will be discussed now.

Although the sss concept contains the phrase “System-Specific” in its name, it

was found that certain sss elements are shared between certain systems. A starting

hypothesis of this work was that not all IVA authoring architectures are completely

isolated from another, and based on the similarity and overlap of the sss this hypothesis

could be supported by the findings.

This hypothesis is additionally backed by the structural similarities of act-r, soar

and icarus discussed in Chapter 2.2.5. Those three architectures for modelling cogni-

tive agents are based on the same principle of a unified theory of cognition and even

though they are differently implemented, they share common structural elements such

as central places for long and short-term memory or modules for perception which in-

teract with the memory. It seems this is also true for most IVA systems which encode

similar implicit rules for designing agents and vary only for certain specific aspects

of the design. We believe that the sss approach not only aids other architectures to

discover their individual sss elements but that those architectures are able to reuse

the sss elements and the corresponding authoring support strategies that have been

outlined.

For Bod the sss i to iii are explicitly given by Bryson [2000b], supporting authors

more than other approaches when approaching the design of new agents. This explicit

guideline is supporting the initial learning curve of novice users and strengthening

their understanding of the design steps. However, the sss v and x are not explicitly

given in the approach and were identified using the sss method. Nonetheless, the
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design approach for Bod states that a high-level task should be specified initially,

which is then decomposed, thus implicitly encoding sss v. However, novice developers

tend to focus on reaching local goals rather than global goals as demonstrated by

Partington and Bryson [2005]. Partington and Bryson [2005] specify goals only for

individual sub-tree which ignores more global concerns, whereas Abl authors have to

focus on global and local goals at the same time. The Abl approach requires a global

understanding of the situation which, for complex agents, is demanding but essential for

developing sophisticated IVA. For Bod a local focus is initially enough for developing

the first iterations of the agent but is essential for moving towards more sophisticated

agents. Concerning sss x, interrupts are in Abl handled by the planner to some degree.

Handling interrupts is essential in avoiding behaviour dithering, a common problem in

dynamic systems and agents. Rohlfshagen and Bryson [2010] present an approach for

Bod to handle dithering using a method that generalises to different scenarios but

there is no mechanism on a design level to support it.

Generally, Bod does provide more support when designing light-weight agents in

comparison to Abl and FAtiMA, but misses advanced functionality to support a more

robust development of more complex agents. To write plans which are of similar size

to Abl plans, editing support is needed similar to those of Integrated Development

Environments (Ides) for programming languages. Once an agent in Bod reaches a

certain complexity debugging support, robust handling of errors and the underlying

library becomes essential. The setup of jyPOSH presents a hurdle to novice users

as it requires special privileges. For larger projects, such as IMMERSE, teams of

developers have to work on shared tasks including the design of IVAs, Bod currently

does not support the distribution of work due to its light-weight nature but further

improvements could address this. In Chapter 5 a novel approach based on Bod and

posh is presented which addresses the discussed issues and aims at addressing the

need for a more robust design method by providing mechanisms that support team

collaboration and task sharing as well as robust behaviour development.

The next chapter demonstrates the application of a light-weight architecture to

an extremely complex problem domain—Real-Time Strategy (rts) games. This

demanding domain requires planning on multiple levels of abstraction maintaining long-

term goals and reacting to changes in real-time. This case study is a proof of concept

for using light-weight approaches in such domains and is essential to understanding lim-

itations and requirements for agent design architectures. In addition to the case study,

the chapter also presents an approach to integrate existing encoded human knowl-

edge into the underlying logic of game agents, offering a new approach for developing

sophisticated agents without the need for programming.
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Chapter 4

Integrating Human Knowledge

into Game AI

In the previous chapter, we examined three Interactive Virtual Agent (IVA) frame-

works, Behaviour-Oriented Design (Bod), FearNot! Affective Mind Architecture

(FAtiMA) and Abl. Based on a series of interviews with developing teams of each

platform, unifying elements in the three approaches were identified and the System-

Specific Step (sss) methodology for identifying requirements has been proposed. The

sss allows a developer to identify the implicit assumptions and process underlying their

framework. Once brought to light, this knowledge aids the understanding of weaknesses

in the initial process and affects the learning curve for novice developers positively due

to the extraction of now explicit rules of development.

In this chapter, we will discuss one case study for developing agents for a highly

demanding AI domain—Real-Time Strategy (rts). The case study will highlight

the possibility of using a light-weight architecture in combination with a development

methodology to develop sophisticated agents in a robust manner. An approach of

how to build agents based on existing encoded strategies in game forums is discussed

next, presenting details towards a more complex agent that implements this knowledge

in a form resembling the forum notation. This demonstrates the inclusion of expert

knowledge from non-programmers into the core part of the game logic with the aim to

allow even novice programmers to develop sophisticated game agents.

4.1 Contribution

This chapter is based on a paper presented at FDG2013 by Gaudl et al. [2013]. Davies

[2012] developed an initial base for the agent design of the discussed StarCraft agent
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as part of his final bachelor project. The initial agent design is complemented by my

literature review as well as my own analysis and extension of the initial design of

the agent. The chapter presents a case study of developing a complex StarCraft

agent and a further proof of concept extension to it. During a period in 2012, the work

conducted by me and Simon Davies on the paper was extending his original approach to

be able to compete at the annual StarCraft competition run by the Computational

Intelligence in Games (CIG)1. This project supported the present chapter and the

overall understanding of complex StarCraft agents. I then derived design steps based

on Bod that can be captured using sss which was introduced in the last chapter. After

the initial project was concluded, I extended the work further, developing a template

agent and interface layer for BroodWars API (bwapi) and StarCraft. Thereby,

I extended the initial design/approach and altered it drastically and developed a new

way of integrating hand-authored strategies which are available for proven strategies.

My contribution to this work is 80%.

4.2 Problem Description

For most tasks or problems in real life and in the virtual one, the computationally or

cognitive most expensive part of completing a task successfully is the search process

of finding an optimal or at least sufficiently good solution. This process is sometimes

combined with an additional criterion, finding the right solution in a given time.

In nature, it often is not beneficial to come up with solutions which are too late

because the penalties for deciding late are quite often drastic. For example, an antelope

is deciding which direction to take to escape from a predator. If the antelope is waiting

too long, it will simply be too late to escape, and it will die. Even though this happens

quite often in nature, it is not in the interest of the animal that is trying to escape. For

some artificial systems, similar restrictions to finding a sufficient solution apply, e.g.

collision detection or avoidance systems need to discover solutions before a collision

happens.

This time restriction means, that the Decision-Making System (dms) needs to

be aware and able to handle and scale to restrictions such as time-bound solutions. Nat-

ural agents normally do this implicitly, however, modelling a system to take dynamic

time constraints into account is quite complex.

The actual application of the solution to the problem is typically less expensive.

This is true under the assumption that the execution of the solution does not require

extra computational or cognitive resources, e.g. fine motor skills or complex, intricate

1http://www.ieee-cig.org/
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action sequences. If those are needed, the problem can be treated as a second-order

problem which needs an additional meta-solution, the integration of the lower level

solution for the execution.

How to reduce the search time? One obvious answer to that question is to out-

source or pre-compute the search. This answer initially sounds like nothing more than

a cheap trick but in most cases where the search space is vast, including external

knowledge is beneficial.

When picking a domain such as games, for games with a low impact of random

events, such as Noughts and Crosses or Go–played on smaller game boards—a winning

strategy exists and is known [Müller, 2002]. Which means, that the intense computa-

tional task of searching through the entire game space to find a trajectory from the

current state to a good solution is solved. Thus, the best possible choice at each step

can be taken by the system by calculating a path along that trajectory. This strat-

egy can then be programmed into an AI system controlling an artificial player. By

including this knowledge derived by an external mechanism, the actual time to find the

solution is negligible. For Noughts and Crosses most adult players can fully understand

and solve the game which results in most of the cases in a draw game. The resulting

experience is most likely less entertaining once the strategy is known.

For more complex games, however, the game space is not fully known or explored

and winning strategies are not known or do not exist. For chess, it is currently believed

that a winning strategy exists, but the strategy is not known. For some of those complex

games, we do however have large collections of recorded games. In chess, some of those

are sorted and selected for specific collections referred to as opening books for the start

of a game or end game books for the opposite. Those books are simply put an encoded

form of recorded sets of plays from a particular state to another given state. They are

used in chess to help predict a possible outcome of a game. To reduce the game space in

chess, a player applies the knowledge from an opening book to direct the game towards

a more favourable state. The navigation between the states is done by comparing the

current state of the board to existing states in the book and selecting moves which are

on a path to the desired state. The knowledge of those books is essential–if not crucial–

to chess. Most if not all advanced chess players apply it to their playing. By doing so,

they can reduce the risk of running into a game state which is less favourable. This also

shifts the original tactical play of chess from the board level, which essentially is the

ability to predict possible moves of the opponent for multiple moves, onto a meta-level

of knowing the more current or larger book. For chess AI, the size of the available

opening book and its contained games plus the planning depth between transitions of
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existing games determines how good the system is [van der Werf et al., 2003; Müller,

2002]. This defines depth as the number of predictions of possible opponent moves

and their appropriate responses. If the chess AI is scaled to a particular user, most of

the time those parameters are modified to achieve a level of skill compatible with the

competing human player.

Before the recent success of chess AI in the early 2000’s, it was often argued that it

is possible to exploit a weakness in the size of the opening book by making a move in

a chess game which the computer did not know–a move with a piece that was not con-

tained in its opening book. This exploit was considered potentially beneficial; it allowed

the player to get the upper hand on the computer. However, taking into account those

recent successes in the chess competitions and the amount of skill it needs to achieve

even a draw let alone win, this argument now no longer holds. What remains, in that

case, are two hard problems. The first of which is efficiently searching within the space

confined in the opening books for openings with a state similar or preferably identical

to the one on the board. The second is, proposing a chess move leading to the desired

outcome either by picking one of the found games in the opening book and guiding

the current match or by calculating a new move leading back to a desired contained

game in the opening book. These problems by themselves are computationally quite

demanding but not part of this work. However, the idea of creating a good artificial

player by employing encoded pre-existing gameplay or knowledge about the game into

the AI system will be the primary focus for the remainder of this chapter and a large

focus of this thesis.

Moving from analogue games like Noughts & Crosses, chess or GO, to digital games

additionally changes the problem space in some ways. Not only are digital games a lot

younger, which means that the space of existing successful strategies is less explored.

Most of the time, they are also even more complex than traditional board games bring-

ing in elements of real-time interaction, large-scale game boards, a larger chance impact

or a multitude of different game pieces. However, digital games bear one similarity to

traditional board games. It is most of the times possible to encode human knowledge

into the AI system of a game which is similar to the existing opening books in chess.

By doing so, it is possible in the same way as for chess to reduce the computational

time for finding a good move. For most games such strategy collections or opening

books are not recorded explicitly either because the games contain too much freedom,

making it hard to specify a strategy, or the games never achieved sufficient popularity.
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Real-Time Strategy rts games are a sub domain of digital games.They are quite

similar to traditional tactical board games such as chess. A prominent game in this

genre is StarCraft which was released in 1998 by Blizzard Entertainment2. It at-

tracted a huge player community due to its well-balanced, complex gameplay and its

focus on tactical and skill-based play. StarCraft, focuses on strategic real-time

player-versus-player (PvP) gameplay in a futuristic setting. Due to the good balance

of the available in-game parties the players can choose from, it has become famous in

e-sports [Taylor, 2012] and attracted significant media attention.

The game provides a complex environment with many interaction possibilities; those

involve players having to manage a multitude of different tasks simultaneously. Star-

Craft also requires players to be able to react to changes in the game world in real-

time while in parallel controlling and keeping track of long-term goals. This forces the

player to differentiate between micro-management of short term goals and units while

maintaining long-term management of an advantage over the other players. The given

setting introduces many challenges regarding pro and re-activeness of an agent, plan-

ning, and abstraction, modularity and robustness of game AI implementations. Due

to StarCraft’s popularity in the player community, extensive collections of strate-

gies and recorded matches are available online. Based on the skill-based gameplay

required by players and its popularity in the media, StarCraft created continued

interest spreading into the research community which lead annual competitions on

StarCraft at major AI/CI conferences and meetings.

4.3 StarCraft AI Design

In this chapter, the possibility of offloading the computational or cognitive expensive

task of finding a good trajectory through the solution space of possible approaches

to a problem will be evaluated. To research the feasibility of this idea the presented

case study moves away from the encoded knowledge in opening books used in chess to

encoding human knowledge in digital games, in this case, StarCraft.

The work builds upon the planning and agent design approaches presented in Chap-

ter 2.2 and extends on the previous hypothesis that the most crucial task in finding a

good solution to a problem is narrowing down the search space. Let us refine it further

to account for digital games:

“It is possible to create a flexible, well-performing game AI agent only

by utilising existing human player strategies on top of a basic behaviour

layer.”

2http://us.blizzard.com/en-us/games/sc/
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Behaviour-Oriented Design was chosen for the agent design, described in detail

in Chapter 2.2.9 because of its modular and light-weight architecture and the design

support it offers when creating new agents. Unlike approaches that attempt to use a

single method for all of the agent’s behaviour (e.g. Potential Fields, see Chapter 2.1.2

or FSMs see Chapter 2.1.1), Bod fosters the usage of specialised low-level approaches

and combines them using the high-level planning system.

Supporting human design when developing an AI system is an important task be-

cause in most of those systems human designers and software engineers are still required

to do most of the hard work when coping with the combinatorial explosion of available

options [Bryson and Stein, 2001]. Additionally, the iterative design heuristics provided

by Bod aid developers to find a more intuitive and better way to solve a problem,

whether with their modules or by integrating external ones responsible for activities

such as learning or black-box approaches such as Neural Networks. A more in-depth

description of Bod is given in Chapter 2.2.9.

4.4 Related Work

StarCraft has been a centre of research attention for nearly a decade now and there

are numerous publications using it to test, develop and evaluate AI approaches. Most

of the research was motivated by the repeated “Call to Arms” of Buro [2003]; Buro

and Churchill [2012]. In those calls, Buro motivates that rts games offer an ideal test-

bed for developing different AI approaches while testing within complex, demanding

environments which focused on StarCraft after the release of bwapi3.

The most similar approach to the one presented in this chapter is Goal-Driven

Autonomy used with Abl by Weber et al. [2010a]. Weber’s approach is to some extent

based on earlier work for another real-time strategy game [McCoy and Mateas, 2008],

wargus4. Weber’s approach models different managers for high-level tasks in Abl and

uses a Java wrapper in combination with bwapi to implement the agent. As discussed in

Chapter 2.2.8, Abl uses a reactive planner to achieve different agent goals by chaining

them together based on their preconditions. Using this approach it is possible to

create different behaviours which at run-time are able to interact with each other,

thus, generating the final behaviour expression of an agent. The resulting StarCraft

3bwapi offers an interface to access and change data within StarCraft. Thereby, it allows the
inclusion of external code to represent artificial agents within the game. The API allows two
modes which either offer the inclusion of an agent through a TCP/IP connection or through di-
rect memory access when using a dynamic library file (“DLL”). More information are available at:
https://github.com/bwapi/bwapi

4Wargus is real-time strategy game based on the mechanics of the game WarCraft by Blizzard.
More details are available at: http://wargus.sourceforge.net
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agent performs well and was able to compete with novice human players. By separating

different activities into different managers, Weber can split the required focus on the

whole agent and the task at hand into smaller pieces. This de-coupling of different tasks

reduces the complexity of the agent. He implements each of those managers as parallel

behavior components which pursue individual goals. The whole agent is hand-coded

but the resulting behaviour emerges through the recombination done by the planner.

During this work, Weber developed a debug-tree visualiser to manage and understand

the Abl behaviour tree. As the design was programmer-driven, this indicates and

supports the hypothesis that tool support and visual representation are important for

complex agent design.

Other approaches such as Evolutionary Potential Fields (EMAPF) [Hagelbäck,

2012; Hagelbäck and Johansson, 2008], offer a different perspective on agent design by

using a force-based model to attract or repulse units; a more thorough discussion of

potential fields is given in the literature review, Chapter 2.1.2. In their work, Hagelbäck

and Johansson use a hard-coded build strategy for the agent derived by experimenta-

tion and focuses on dynamic unit control. Through the use of potential fields, they are

able to dynamically respond to the opponent in a fluent and visually understandable

way. In their implementation, each opponent unit has an attractive force based on its

benefit to the player’s score. The utility is based on the unit health and its potential

harm to the player. Once a unit controlled by the PF has fired the polarity of the at-

tractive force changes and repulses. This creates a wave-like movement of the PF units

which resembles schooling fish [Couzin et al., 2011] to a degree. Using PFs, however,

requires parameter tuning for a multitude of gravitational forces for which they used

an evolutionary approach. Evolutionary approaches offer, similar to artificial neural

networks, a robust but time-consuming way for parameter adjustment. In cases where

training time and data is available they exceed other approaches, however, training time

and data are normally limited in games and especially in early game development, see

Chapter 1.2.1.

Another approach which is gaining more attention in recent years is Monte-Carlo

TreeSearch. Soemers [2014] developed an agent for StarCraft using Monte-

Carlo TreeSearch (mcts) to select appropriate moves. mcts is using random

sampling in combination with simulated annealing, see Chapter 2.1.3. Similar to the

previously discussed EMAPF, the downside of using any evolutionary approach applies

to mcts as well. However due to the simulated annealing and the usage of a special

cost function (UCT [Browne et al., 2012]) , it is possible to reduce the number of

simulations and only pursue moves which are beneficial to the agent’s utility. Due to

the large state-space of possible moves an agent can make the approach is not applicable

146



for any live competition before learning.

There also exist earlier works on rts games before the community moved to Star-

Craft such as Sorts by Wintermute et al. [2007] or work on Wargus by McCoy

and Mateas [2008]. In their work, Wintermute et al. implement artificial agents for

Open Real-Time Strategy (orts)5 using the SOAR cognitive architecture covered

in Chapter 2.2.5. For their implementation they combine Finite-State Machine s (fsms)

for controlling low-level behaviours and only use SOAR on a high abstraction level to

arbitrate between a small subset of goals. The implementation of all behaviours, as

with the Abl agent, is hand-authored and in the case of Sorts the production rules

were designed to follow simple strategic plans. However, the usage of orts as a research

tool brought issues with itself which are discussed by Wintermute et al. [2007], namely

the full access in the game sources resorted in the agent was being able to crash or

interfere with other agents, making competitions more problematic than beneficial.

4.5 Case Study: BOD applied to Real-Time Strategy Games

In this case study, the feasibility of developing a light-weight cognitive agent will be

demonstrated by following the Bod design methodology to build a modular agent for a

highly demanding Real-Time Strategy game environment. Thereby the key aspects

of Bod will be demonstrated, namely the focus on object-oriented behaviour design,

reusability and a well-guided approach to more robust agent design. Bod has been

previously used to create agents for by Partington and Bryson [2005] to demonstrate

that the approach can handle real-time control in a fast-paced 3D game.

4.5.1 StarCraft

For this case study, a first prototype AI for StarCraft was designed to play the

Hivemind of the Zerg, one of three different races of the game. It is pitted against a

variety of other AI systems including the commercial agent the game was originally

shipped with and several available AIs over the Internet.

To aid the understanding of the problem space, we first take at closer look at the

game. Figure 4-1 illustrates the player’s view of the game for a Zerg player. The

screenshot shows the starting position right after beginning a match. A mini-map is

given on the lower left which allows the player to quickly access locations or keep a

general overview of the game. The agent has access to the same amount of information

5orts is a programming environment for developing real-time strategy AI and testing it. It is
open-source and allows offline or online game sessions. More information are available at: https:

//skatgame.net/mburo/orts
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Figure 4-1: The StarCraft interface showing the central building of the Zerg race—
the Hatchery. The area surrounding the Hatchery is covered with creep offering ad-
ditional bonuses to Zerg units of the controlling player. The crystals on the left side
are one of the resources the player can gather. Next to the crystals are four units of
the player—drones—which are responsible for gathering and building. The flying unit
to the right—the Overlord—is responsible for scouting, detecting hidden enemies and
building up supply.

and is able to control, same as the player, each unit separately. Controlling individual

agents and shifting their focus is an important skill of professional players. Approaches

such as EMAPF handle individual assignments with ease in contrast to human players.

However, even mediocre human players are still better than any current AI approach at

handling multiple levels of abstraction, control and strategic decisions. This difference

in ability when comparing mediocre players and well advanced AI techniques renders

StarCraft one of the most challenging areas of game AI research.

The related work in Section 4.4 highlighted similar approaches to problems within

the field of game AI and for StarCraft in particular which allows us to position Bod

in relation to them. While machine learning techniques and evolutionary methods

can be powerful tools, they cannot solve large problems in tractable amounts of time.

For StarCraft, those approaches require more computational resources or training

than initially available, making their inclusion in the commercial environment more

challenging. Additionally, Bod focuses on a design methodology incrementally working

on hand-authored plans. This makes the Bod approach similar to Abl or the SOAR
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agent. It allows the developer greater control over the resulting behaviour of an AI

system. But in contrast to Abl a visual designer can be used—Advanced Behaviour-

Oriented Design Editor (ABODE)—in combination with a stronger separation of plans

and underlying implementation which Orkin [2005]; Hecker [2009] argue is an important

feature to aid the understanding of the whole agent.

4.5.2 System Architecture

To develop an agent, the first task is to set up a domain specific agent system by

integrating Parallel-Rooted Ordered Slip-Stack Hierarchical (POSH) into the game.

The resulting agent will utilise a basic high-level strategy similar to the one presented

in Figure 4-2 using Abode.

Figure 4-2: Initial posh plan from inside the Abode Editor for the Zerg Hivemind
which builds drones, mines Crystal and builds Zerlings after creating a SpawningPool.

The system comprises of the game in client-server mode which uses bwapi6 on the

server side to communicate to bwapi client connected to the agent, see Figure 4-3.

6bwapi offers an interface to access and change data within StarCraft. Thereby, it allows the
inclusion of external code to represent artificial agents within the game. The API allows two
modes which either offer the inclusion of an agent through a TCP/IP connection or through di-
rect memory access when using a dynamic library file (“DLL”). More information are available at:
https://github.com/bwapi/bwapi
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To create the Bod agent, jyPOSH is used, a jython implementation of the Behaviour-

Oriented Design action selection mechanism. bwapi is written in C + +, to access it

the Java Native Interface wrapper for bwapi called jnibwapi is utilised to com-

municate to the game. The result of using JNIBWAPI in combination with jyPOSH

is that the behaviour libraries can be written in Java and Python.

Figure 4-3: The architecture model for the StarCraft Bod AI. The architecture is
separated into three elements the action selection done by posh on the left. The middle
part represents the behaviour primitives, e.g. actions and senses. The rightmost block
shows the actual game and the interface which allows the deployment of strategies.

These new behaviours can then be linked to the planner which arbitrates between

the behaviours and selects appropriate actions based on the state of the plan. The

overall architecture is split into two processes which run independently. The process

which contains the game and bwapi is advancing the game at 25Frames per Second (fps)

and communicates asynchronously with the agent. The agent is formed in the second

process which contains JNIbwapi as a communication layer, the behaviour layer which

contains the posh action primitives which are called from the action selection module

of jyPOSH as shown in Figure 4-3. The behaviour layer contains the short term

memory of the agent responsible for tracking the state changes within the game. The

action selection module is formed once the planner loads the posh plan and advances

it each cycle.

Once the system architecture had been laid out, the next step was to create a basic

agent that performed most of the basic tasks required to play a game of StarCraft. To do

this, the first goal was to implement an agent that would only build the basic offensive

unit, the Zergling, as quickly as possible, and then attack. This is a basic strategy that

has been used by players to attempt to win games quickly without having to have a

long-term strategy, see Figure 4-6.

JNIBWAPI makes use of the capabilities of BWAPI where it acts as a proxy. Here

BWAPI runs as a server, and the AI connects to this to control StarCraft. This

allows the flexibility to run external applications such as JyPOSH. An alternative

approach would have been developing the agent as a dynamic library which can be
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1 /∗∗ B u i l d s a p a i r o f z e r g l i n g s from any l a r v a e ∗∗/
2 p u b l i c b o o l e a n s p a w n Z e r g l i n g ( ) {
3 f o r ( U n i t u n i t : bwapi . getMyUnits ( ) ) {
4 i f ( u n i t . getTypeID ( ) == UnitTypes . Z e r g L a r v a . o r d i n a l ( ) ) {
5 i f ( r e s o u r c e M a n a g e r . g e t M i n e r a l C o u n t ( ) >= 50 && r e s o u r c e M a n a g e r .

g e t S u p p l y A v a i l a b l e ( ) >= 1 && b u i l d i n g M a n a g e r . hasSpawningPool (
t r u e ) ) {

6 bwapi . morph ( u n i t . get ID ( ) , Uni tTypes . Z e r g Z e r g l i n g . o r d i n a l ( ) ) ;
7 r e t u r n t r u e ;
8 }
9 }

10 }
11 r e t u r n f a l s e ;
12 }

Figure 4-4: The primitive action “spawnZergling” used in jyPOSH. When designing a
behaviour class a methods which is referenced by the posh behaviour as primitive can
be accessed by the planner during plan execution without having to explicitly know the
underlying behaviour. Using this approach it is possible to have a strong separation
between planner and underlying behaviour library. Methods linked to action primitives
only return true or false .

directly inserted into the game process. Using python or java within the internal

process is more difficult and requires additional changes which would require changes

to the jyPOSH system. The EISbot developed by Weber et al. [2010a] also uses the

client-server mode in combination with JNIBWAPI to allow Abl to run independently

of the game process.

Taking a closer look at the implementation of the agent, the action primitive given

in Figure 4-4 demonstrates the usage of the jyPOSH system. The system allows

behaviours to be implemented in either Java or Python; the given action encapsulates

internal logic to determine if it is applicable, making it independent of the remaining

pool of behaviour primitives. To spawn a Zergling unit within StarCraft the action

checks if enough resources are available: mineralCount ≥ 50, SupplyAvailable ≥ 1

and if the player can create now units. The approach is similar to the precondition

checks on plan level. However, those additional checks are intended to guarantee safe

execution of a primitive by introducing redundancy.

Once all of the behaviours were implemented and tested, the JNIBWAPI behaviour

code was integrated with posh via Python behaviour modules. These behaviour mod-

ules are part of the action selection module in Figure 4-3 and warp the Java methods

to be used by posh to determine which methods are senses or actions. The process of

assigning methods to methods in controlled by two lists within a jyPOSH behaviour

and needs to be manually added when designing the behaviour class. However, all
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of the logic and behaviour for the AI is either in the posh action plan or the Java

behaviour modules. Both can be designed and written independently as long as the

planner is able to match primitives to methods. The structure of the behaviour classes

was taken from the EISbot layout [Weber et al., 2010a] as a first starting point.

4.5.3 Iterative Development

Figure 4-5: Extending the previous plan from Figure 4-2 to include the Zergling-Rush
strategy. It will send a large group of Units to the enemy base as early as possible in
the game.

The Bod architecture provides developers with a structure and a process to quickly

develop an AI system provided that the posh mechanism can be connected to the

behaviour modules. Bod’s design methodology and process also inform developers

how to approach AI problems [Bryson, 2003]. In contrast to the standard waterfall

model, development of AI following Bod is an iterative process that focuses on having

a flexible set of requirements, and heuristics to re-evaluate the system’s decomposition

as behaviours and plans are implemented and tested. The plans presented in Figure 4-

2 and 4-5 were created using Abode, introduced and discussed in Chapter 2.3.2, in

a visual programming fashion. The editor allows node collapsing which increases the

overall readability of the plan because it allows the user to reduce the amount of visible

sub-trees present in the tree view. This feature was developed during this project and

its need by developers is supported by claims from Chapter 3 with the purpose to aid

the understanding of complex behaviours through tool support. The new functionality

allows attention to be concentrated on specific parts of the tree while keeping the

structure clear.
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Bod facilitates the extension of existing behaviours by adding new elements such

as being able to use new unit types, thus, complex behaviour can be iteratively devel-

oped and step-wise tested. Due to the separation of the behaviour libraries from the

posh plans, the underlying implementation can be adjusted and independently devel-

oped creating an interface-like structure. As soon as a behaviour library is developed,

different strategies or players can be quickly implemented by shifting priorities within

the reactive plan. Furthermore, an advantage of using hierarchical plans is that they

are very extensible—new drive elements can be added without any major changes to

an existing posh plan. This easy extensibility is one of the reasons BehaviorTree

replaced fsms as the standard approach to structuring game AI because when extend-

ing a fsm a vast amount of state transitions need to be checked (potentially n2 for n

states). Before starting with development the decomposition steps and heuristics which

form the development methodology of Bod will be re-iterated, a detailed discussion

can be found in Chapter 2.2.9.

BOD Decomposition

1. Identify high-level task of agent

2. Describe activities in sequences of actions; prototype plans

3. Derive action primitives, senses/actions from prototype plans

4. Identify required states; cluster primitives into behaviours

5. Derive goals, drives and order them; prototype drive collection

6. Implement first behaviour from behaviour library

After the decomposition, an initial posh plan and a first behaviour is coded. The

remaining process is the iterative development of writing and enhancing behaviours,

enhancing plans and testing them against the environment focusing on rapid develop-

ment. To guide the iterative changes and process, Bryson and Stein [2001] propose

additional heuristics aiding the design following the philosophy: “when in doubt, favor

simplicity”.
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BOD Heuristics

• Simple structures: choose a primitive over an action pattern and an action

pattern over a competence

• Reuse: competence and action patterns can be instantiated multiple times

• Decompose: when primitives are too complex

[decompose into smaller primitives and chain them]

• Complexity-I: competences should have three to seven children

[split competence]

• Complexity-II: trigger chains should not be longer than three senses

[merge into new sense]

• Execution: the tree elements should execute quickly

[use actions only as triggers]

In applying Bod, the first step is to specify at a high-level what the agent is intended

to do. To start with the simplest complete strategy—Zergling-Rush—Zerglings have

to overwhelm the opponent as early as possible in the game. Based on this more

complex strategies can be developed by building on the first one, including re-using

its components. The iterative process of starting with a basic strategy is well suited

for all complex development processes because the tests and progress of the intended

behaviour/outcome can be traced throughout the iterations and unwanted behaviour

can be traced back to when it was first included.

To implement a first strategy for the Zerg, several different primitives—actions and

senses—have to be coded. The second step after selecting the high-level agenda is

to decompose the strategy into sequences of actions needed to build up the strategy

which includes building units and sending them somewhere. From there, the required

primitives to achieve the sequences need to be identified, e.g. selecting a unit or sensing

an opponent unit. For that purpose, an initial top-down analysis is performed to derive

the required action sequences for the intended strategy.

Top-Down Analysis:

1. To attack using Zerglings, the AI has to build a mass of those units first and then

attack the opponents base.

↪→ build mass of Zerglings

2. To attack the opponents base, the AI has to know its location.

↪→ scout the map
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3. To build a Zergling, a spawning pool is needed and enough resources have to be

available.

↪→ build spawning pool

↪→ ensure enough resources

4. To ensure sufficient resources, they have to gather.

↪→ send drones to gather resources

It is important to remember always to aim for the simplest possible approach first

as argued by Bryson [2001]. From the top-down analysis two lists of actions ( min-

eral count, support count, larvae count, has spawning pool, know opponent base) and

senses (harvest resources, build spawning pool, scout map, build zerglings, attack enemy)

can be constructed.

build-supply
(C)w(supply_availablew2<=)

build-overlords
Competence

building_overlords
(mineral_countw100w>=)w(larvae_countw0w>)

attack-enemy
(AP)w(has_completed_spawning_pool)

(found_enemy_base)

attack-enemy-with-zerglings
ActionwPattern

attack_zerglings

build-forces
(C)w(has_completed_spawning_pool)

build-forces-competence
Competence

try_spawn_zerglings
(has_completed_spawning_pool)ww

(mineral_countw50w>)

find-enemy
(C)w(found_enemy_basew0w=)

scouting
Competence

scout-overlord
(scouting_overlordw0w=)

scout-drone
(has_spawning_pool)

(scouting_dronew0w=)

get-spawning-pool
(C)w(mineral_countw200w>=)

(has_spawning_poolw=w0)

build-pool
Competence

build-spawning-pool
(AP)(mineral_countw200w>)

build_spawning_pool

keep-building-drones
(C)w(alife)

drone-production
Competence

try-spawn-drone
(drone_countw5w>)

(mineral_countw50>)

Figure 4-6: A complete posh plan to attack with a units. The plan extends the previous
plan and additionally includes defensive behaviour.

Having derived the first set of behaviour primitives, it is now possible to cluster

them in behaviours as is appropriate to their state dependencies. Keeping in mind the

basic principles of OOD such as clustering those elements which create classes having

a high internal cohesion and a low external one, it is possible to iteratively create a be-

haviour library. For this case study, it seemed reasonable to create different behaviours

for managing structures, building units, combat and exploration & observation. The

structure resembles the high-level managers used by Weber et al. [2010a] which indicate

the existence of different high-level task groupings within the game and the design need

to separate those. Those behaviours for the jyPOSH agent were written in Java, see

155



the action primitive spawnZergling in Figure 4-4. Once the first behaviours have been

developed, a posh action plan is created to execute them. The plan determines when

the AI should call each behaviour to perform an action, in Figure 4-6 an easy-print

version of the complete plan is given.

New behaviours were introduced and tested one or two at a time until the plan

was robust enough to deal with a full strategy for StarCraft. The iterative process

facilitated by Bod allows for building a solid and human-understandable foundation

for a first strategy. In Figure 4-5 the extended plan is presented which introduces the

Zerg-Rush Drive, one of the most prominent early game strategies. The Drive uses the

Zergling-Rush Competence as a first step. A follow-up step would be the extension of

this plan to allow switching between different Rush tactics by including competences

for these. These would need to be prioritised differently according to the assessed stage

of the game. Mechanisms for varying priorities include code reuse with multiple drive

entry points [Partington, 2005] or setting drives to the same priority and having them

guarded by mutually exclusive triggers.

Now, a first simple strategy is available which reacts according to the information

available in the game and sends in periodic time frames swarms of Zerglings to the

enemy base. This strategy works well against human players once or twice before they

realise how to counter it. After testing this plan, one will encounter that if the strategy

plays against itself, an obvious flaw is present—the absence of a defence mechanism.

Following this process, a very visual and easily traceable design of the bot is intro-

duced which allows the designer more control over the resulting behaviour by increasing

the complexity of the aimed behaviour step-wise. The next posh elements that were

developed were those that dealt with the upgrading of units. Then behaviours were

added for research, unit production and finally attacking with basic units. The final

plan that resulted can be found in Figure 4-6 which creates units when needed, scouts

for the opponent, researches unit upgrades and attacks.

As a next step, the underlying primitives can be independently updated without

the need to touch the posh plan. The plan can be improved separately; adding more

behaviours for creating different types of units. This is of the strength of Bod over

approaches with a stronger coupling of action selection mechanisms and underlying

behaviour library such as the agents used with EMAPF [Hagelbäck, 2012].
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4.5.4 Results

After finishing the first fully working prototype, the StarCraft agent was tested on

the Azalea7 map against the original StarCraft Bots provided by the game, playing

adversary races (Protoss, Terran and Zerg) in random mode. The Bod agent performed

reasonably well in the first tests winning 32 out of 50 matches, see Table 4.1. The

follow-up test against the Artificial Intelligence Using Randomness (AIUR)8 Protoss

bot proved to be a more difficult challenge; the AIUR agent winning 7 out of 10 against

Bod. After analysing the performance of the agent, Bod bot competes en par when it

is not attacked by a rush early in the game, indicating more room for further iterative

development for closing the gap between the developed prototype and other available

bots.

The major advantage of approaching complex agent design using Bod is the focus on

rapid prototyping and continuous working versions of the agent which is incrementally

made more sophisticated through continuous testing of the implementation.

Race Matches Wins BOD StdDev Opponent StdDev Difference
count count Score Score Score

AVG AVG

Protoss 17 7 19546 35729 43294 18916 -70.75%
Terran 18 12 56651 26077 35696 15380 37.11%
Zerg 15 13 47961 19218 24333 7974 50.64%

Total 50 32 48257 27680 30523 17594 43.56%

Table 4.1: Results from 50 matches of the Behaviour Oriented Design bot presented in
Figure 4-6 against the Blizzard AI set to random race on the Azalea Map.

4.5.5 Summarising the Results

Real-time game character development requires either leaving sufficient space for expert

human authoring or incorporating large amounts of time and computational resources

for automatic adjustments of the agent. This case study focused on the first of those two

cases as it allows later adaptation once new requirements emerge due to user feedback.

This underscores the overwhelming importance of systems AI, even where algo-

rithmic AI like machine learning can be exploited to solve regular sub-problems. The

clean and visually easy-to-grasp AI produced demonstrates a proof of feasibility. The

7The Azalea map is a community-developed map developed for tournaments between professional
StarCraft players, see http://wiki.teamliquid.net/starcraft/Azalea

8AIUR:http://code.google.com/p/aiurproject/
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usage of a separation of underlying mechanics and behavioural logic allows indepen-

dent development of both systems. The visual presentation of the plan itself can be a

powerful tool because it offers a different perspective on the behaviour. Using features

like node collapsing, the plan editor and visualisation tool Abode also minimises cog-

nitive load when dealing with large plans. The test runs using the original commercial

agents of StarCraft show good potential—though the developed AI was a prototype

representing one of the less-advanced but recognised strategies.

Based on these first results of the prototype, further work on the StarCraft AI

using Bod seems feasible to allow a closer comparison to more advanced strategies

and implementation, e.g. Weber et al. [2010b,a]. First steps would be the inclusion

of a more sophisticated strategy such as the Mutalisk-Rush and fixing the identified

early-game defence problem.

During this development, similarities between Bod and other approaches became

apparent. While the BehaviorTree approach introduced by Isla [2005] is widely used

in the games industry the highly similar approach posh has not seen industrial applica-

tions. In the Chapter 2.1.1 we are able to discuss BehaviorTree (Bt) in more detail

and draw more detailed comparisons between the most dominant approach in game AI

in Chapter 2.4. Similar findings are present in the results of the analysis of different de-

sign approaches in Chapter 3 where the need to enhance tool support is identified,.e.g.

enhance Abode to provide real-time debugging, offering the AI designer useful feed-

back and statistics on the developed plan. Other directions which are clearly visible are

the inclusion of lower-level approaches such as potential fields, neural networks or mcts

in the context of Bod behaviours which might benefit from providing the high-level

posh control with a greater level of flexibility. However, the more external approaches

are involved, the more complex the resulting agent systems gets and thus, the more

tool support and process structure is needed to guide the developer.

4.6 Advanced Planning for StarCraft

Within the first case study, a prototype able to beat the commercial AI in 64% of

the matches has been presented. The developed strategy followed a top-down analysis

of implementing a Zerg Rush, see Figure 4-6. Several arguments such as the existing

weakness of the presented approach and the low sophistication leave room for improve-

ment. In this section an extension of the presented argument for supporting game AI

is discussed aiming towards deeper agent behaviour.
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1 9 − Spawning Pool
2 8 − Drone
3 9 − E x t r a c t o r
4 8 − O v e r l o r d
5 8 − Drone
6 @100% E x t r a c t o r − send 3 Drones to mine gas
7 @100% Spawning Pool − 6 Z e r g l i n g s
8 @88 Gas − t a k e Drones o f f o f gas one by one , g i v i n g you 104 gas & R e s e a r c h

Speed .
9 Pump Z e r g l i n g s , a f t e r f i r s t O v e r l o r d g e t more Z e r g l i n g s .

Figure 4-7: An encoded strategy for StarCraft. The strategy is called
“ThreeHatchZergling-9Pool” and is intended as an early game strategy to throw
off the opponent. More details on the strategy are available at: http://

wiki.teamliquid.net/starcraft/3 Hatch Zergling (vs. Protoss)

4.6.1 Encoding User Knowledge

By using encoded strategies from StarCraft user forums and offering a means to

translate those in a way the players are familiar with, an approach for designing a

modular real-time strategy AI for StarCraft that is more novice friendly can be

derived. In the user forums such as Liquidpedia9, players discuss match strategies

using a loose protocol which describes decision points and strategies. Such an example

notation is given in Figure 4-7.

The protocol can be interpreted as production rules which are organised in a stack-

like order. In Figure 4-7 a production is given by 9 − Spawning Pool. In this production,

the first number defines the amount of supply that is used by the player followed by the

unit to build. supply is an implicit resource which determines the number of game units

the player is able to control. supply in contrast to the other two resources, Gas and

Chrystal, can not be gathered or mined but is gained when upgrading buildings or

specific units. After the amount of supply is given the task is assigned, in this case, to

build a Spawning Pool. Once a rule has been applied, it is moved off the stack, executing

the next rule. The second type of rule is based on goal completion identified with an @,

such as gathering a certain amount of resources in @88Gas, on line 8 or that research

of a building reached a certain completion rate, e.g. @100% Extractor.

Such high-level strategies can also be encoded as a nested condition block using if

−else rules. Nonetheless, the usage of a more flexible system such as a reactive planner

allows for better responses to dynamic changes in the environment such as the strategy

being not applicable anymore or how to respond the when a currently active goal

9Liquidpedia is an online community centred around rts games, discussions about employed strate-
gies and professional competitions, see http://wiki.teamliquid.net/starcraft
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cannot be pursued anymore. Additionally, the control and task assignment of when

and how to attack the opponent can rarely be contained in those simple rules. It is

hard to formalise productions in rules in sufficient detail while maintaining a small

rules collection. In most cases, the users specify additional properties such as when

to attack as verbose text blocks due to a missing way of expressing them in another

form. A possible hypothesis is that Behaviour-Oriented Design can provide such an

expressive form.

Figure 4-8: The ThreeHatchHydra posh plan for the extended StarCraft agent. The
presented plan only visualises the 11 Drives which form the agent and their contained
competences. The full plan is available in the appendix B-1. The drive elements are
clustered based on their priority. However, drives of equal priority form groups which
are surrounded by dotted lines, e.g. harvest and repair .

4.6.2 Extending beyond individual strategies

In the case study the development, implementation and evaluation of the Bod agent

was driven by the top-down analysis of the Zergling rush. An altogether different

starting-point would have been the usage of the protocol to derive the needed primitives

and high-level goals used by the planner.

Based on the previous hypothesis that an approach similar to the forum users’

protocol can be designed, a new implementation of the Bod agent for StarCraft is

presented. Taking into account the System-Specific Step requirement from Chap-

ter 3 and integrating the analysis from Chapter 2.4, a new action selection mechanism,
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1 9 − O v e r l o r d
2 9 − 3 Drones
3 12 − Hatchery ( at n a t u r a l )
4 11 − Spawning p o o l
5 10 − 4 Drones
6 14 − Hatchery
7 @100% Spawning p o o l − 4 Z e r g l i n g s
8 15 E x t r a c t o r
9 16 − O v e r l o r d

10 @50 Gas − H y d r a l i s k Den
11 @100% H y d r a l i s k Den − H y d r a l i s k speed upgrade , 2nd e x t r a c t o r
12 26 − s t a r t mass ing H y d r a l i s k s
13 @100% H y d r a l i s k speed upgrade − H y d r a l i s k r a n g e upgrade , t a k e 2 Drones o f

2nd E x t r a c t o r
14 @90% H y d r a l i s k Range − Move out

Figure 4-9: An encoded strategy for StarCraft. The strategy is called
“ThreeHatchHydra” and is intended for a Zerg-Protoss pairing. More de-
tails on the strategy are available at: http://wiki.teamliquid.net/starcraft/
3 Hatch Hydralisk (vs. Protoss)

posh-sharp, is introduced in Chapter 5. This new mechanism allows the implemen-

tation of agents in a more directed way utilising Bod.

As a second prototype, a more sophisticated strategy has been selected—the Three

Hatch Hydra. This strategy performs well in mid-games and is on par with strate-

gies often occurring at competitions. Using as a starting-point the protocol given

in Figure 4-9, a top-down approach can be described in much more detail and well

guided while remaining true to the original recorded strategy. Bod in combination

with Abode allows for a nearly one-to-one translation of the protocol into a partial

plan. When integrating the conceptual ideas of manager into the plan, it is possible

to derive posh Drives which resemble manager responsibility. Yet, in contrast to the

manager concept used by Weber et al. [2011], there is no need to cluster the underlying

behaviour layer in a way which does not resemble their functional similarity. As an

example, the building manager might need access to units but it should not create

linkage to the other manager because it would render the modules highly cohesive.

The new posh plan, see Figure 4-8, contains the user plan given in Figure 4-9 as a

competence which is used by the Drive for building a base. This structure allows the

agent to arbitrate between different “desired” Drives resulting in a more flexible agent.

The “build” competence for the ThreeHatchHydra plan from Figure 4-9 is imple-

mented in Abode in Figure 4-10. This competence is the derivative of integrating

the full protocol as is and contains nine elements responsible for triggering the correct

sub-tree at the right time. The present behaviour goes against the Bod metrics and
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Figure 4-10: The full build Competence of the ThreeHatchHydra strategy which by
design following the top-down analysis resembles Figure 4-9.

indicates the need for refactoring it into smaller competences, however, the hypothesis

of being able to represent plans in a format familiar to the forum users illustrates the

flexibility of the presented approach. Once, a sufficiently large behaviour library for

posh exists it is possible to re-build most of the strategies from the forum without the

need for touching the underlying code.

Additionally, the separation of logic and implementation has been strengthened by

utilising a new mechanism in posh-sharp for inspecting behaviours and making their

actions and senses accessible, as shown in Figure 4-11.

Figure 4-11 demonstrates one of the action primitives which can be used by posh-

sharp and the planner to select a location on the game map for a spawning pool.

The action also illustrates the strong separation paradigm removing the need to spec-

ify action primitives by hand, the new mechanism will be introduced in Chapter 5.

Each behaviour class is independent of other behaviours to allow easier transitions

between different implementation. A newly introduced idiom in posh-sharp is the

Behaviour Bridge, the Interface (). Instead of using a global blackboard as done in other

approaches such as Goal-Oriented Planning (Goap) [Orkin, 2005], each behaviour has

an independent short-term memory but the Behaviour Bridge shares access to the

most desired elements by providing a central access point. In contrast to other posh

behaviours, the Interface () as the name suggests “hides” its implementation from the
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1 /// <summary>
2 /// S e l e c t s u i t a b l e l o c a t i o n f o r t h e spawning p o o l
3 /// </summary>
4 /// <r e t u r n s ></r e t u r n s >
5 [ E x e c u t a b l e A c t i o n ( ” P o s i t i o n S p w n P l ” , 1 . 0 f ) ]
6 p u b l i c b o o l P o s i t i o n S p w n P l ( )
7 {
8 i f ( ! I n t e r f a c e ( ) . b a s e L o c a t i o n s . Conta insKey ( ( i n t ) I n t e r f a c e ( ) .

c u r r e n t B u i l d S i t e ) )
9 r e t u r n f a l s e ;

10 // TODO: t h i s needs to be changed to a b e t t e r l o c a t i o n around
t h e base t a k i n g e x i t s and r e s o u r c e s i n t o account

11 T i l e P o s i t i o n b u i l d P o s i t i o n = I n t e r f a c e ( ) . b a s e L o c a t i o n s [ ( i n t )
I n t e r f a c e ( ) . c u r r e n t B u i l d S i t e ] ;

12 b u i l d e r = I n t e r f a c e ( ) . G e t B u i l d e r ( b u i l d P o s i t i o n ) ;
13

14 b u i l d P o s i t i o n = P o s s i b l e B u i l d L o c a t i o n ( b u i l d P o s i t i o n , 1 , 1 ,
100 , b u i l d e r , bwapi . U n i t T y p e s Z e r g S p a w n i n g P o o l ) ;

15 b u i l d L o c a t i o n = b u i l d P o s i t i o n ;
16

17 i f ( b u i l d P o s i t i o n i s T i l e P o s i t i o n )
18 {
19 move ( new P o s i t i o n ( b u i l d P o s i t i o n ) , b u i l d e r ) ;
20 r e t u r n t r u e ;
21 }
22 r e t u r n f a l s e ;
23 }

Figure 4-11: A behaviour primitive of the BuildingControl behaviour. The action
is responsible for selecting the correct location of a SpawningPool . The posh-sharp
annotation [ExecutableAction(”PositionSpwnPl”,1.0f) ] allows a more robust configuration of
actions and senses than jyPOSH by allowing the plan to link to different methods and
use the name provided by the annotation to link to a given action or sense.

other classes and is shared at instantiation time of the agent with all posh behaviours

that are generated for the agent. Thereby, the resulting agent behaviours can be modi-

fied independently allowing each behaviour to communicate throughout the agent with

other behaviours loosely. The Behaviour Bridge itself does not actively participate in

the agent’s behaviour expressions, however, it allows a double-blind access to crucial

perceptual information.
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4.7 Concluding Real-Time Strategy AI Contributions

In this chapter, a cognitive approach—Behaviour-Oriented Design—to Real-Time

Strategy games was discussed and demonstrated in a case study. Based on the results,

the Bod methodology offers sufficient capabilities to handle complex, highly-demanding

environments while still being a light-weight cognitive planner. The approach from

the case study was compared to a classical baseline approach—the commercial AI

contained in the game. The designed agent in the case study was able to win against

the commercial AI in over 60% of the matches which indicate a promising approach to

investigate further.

Approaches such as EisBot by Weber et al. [2011] utilise a more powerful planning

mechanism to control the agent. They put much work into the underlying behaviour

library and the manager classes. However, adjusting the strategy to shift towards

different known strategies is hard as all the behaviours are hand-coded and the Abl

planner creates the resulting Abl tree based on the current goals. Other approaches

such as Evolutionary Potential Fields are promising but they are unable to handle large

scale coordination and strategy design. Similar to neural networks, EMAPFs are used

as black box solutions which restrict the design space.

After discussing the case study, a new approach using human encoded strategies

was discussed encoding strategies from StarCraft user forums into sophisticated

agents. The approach offers a robust and flexible interface for altering the strategy

even by novice users based on the similarity to the original encoding. The resulting

agent is more complex and contains a human competitive strategy. The advanced

planning approach demonstrates capabilities that go beyond simple plans by developing

large plans for game agents. This approach demonstrates a first application of human

knowledge in the form of strategic build plans that allow even novice users to develop

advanced agents using a visual editing of posh plans.

In the next chapter, a new design methodology—Agile Behaviour Design is pre-

sented which extends its predecessor Bod to accommodate the requirements for devel-

oping complex game agents in an industrial environment. In addition to the methodol-

ogy, the chapter also includes a new agent framework accompanying the methodology

for robust agent development in highly restrictive environments such as the web or

smartphones.

164



Chapter 5

Advancing Tool Supported

Action Selection

In the previous chapter, two approaches were presented for developing agents in the

highly demanding domain of Real-Time Strategy (rts) games. Whereas the first

demonstrates the general application of Behaviour-Oriented Design (Bod), the second

approach demonstrates a highly complex agent, integrating human encoded expert

knowledge into the core of the game AI logic. Due to the loose coupling of the plan

and implementation by having separate representations and the strong resemblance of

the agent plan and the original strategy, it is possible to enable novice developers to

create sophisticated agents, even when not being able to program.

In this chapter, a new methodology for agent development is proposed extending

the existing approach Bod. This new process is designed to support work habits in

industrial environments and multi-disciplinary teams. To aid the new methodology and

to address the identified issues in current approaches from Chapter 3 such as missing

debug support, complex set-ups and implicit design rules, a new agent framework—

posh-sharp—is proposed. This new framework was implemented in C# and contains

sample code for different game environments. It is available online under: https:

//github.com/suegy/posh-sharp. The framework allows the development of agents

for highly restrictive environments such as mobile phones or web browsers and includes

advanced features from current software development.

5.1 Contribution

This chapter contains a proposal for creating a new real-time game AI approach that

extends and alters an existing, established methodology for creating behaviour-based
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AI—Bod. The proposal draws on the System-Specific Step (sss) and the analysis

of StarCraft bot design based on the Eisbot by Weber et al. [2011], the EMAPF

bot from Hagelbäck [2012] and the two agents described in Chapter 4. To complement

the new approach, I developed the posh-sharp framework including a new version

of Parallel-Rooted Ordered Slip-Stack Hierarchical (POSH) action selection which ad-

dresses issues in the existing Bod architecture of posh action selection and focuses on

easy integration and maintainability.

In Chapter 3 the sss is derived by analysing existing architectures and their usage by

experts. A sophisticated agent for a rts games and its implementation is elaborated in

Chapter 4.3 which requires planning and strategising on multiple levels of abstraction.

Based on the findings during both processes it is possible to present advancements which

address some of the core platform issues identified in the system in this chapter.This

chapter does not include published content and my contribution to it is 100%.

5.2 Agile Behaviour Design for Games

Chapter 1.2.1 presents a scrum variant for games introduced by Keith [2010]. This

variant of scrum aims to support the development process of creative products such

as games better compared to traditional software development processes. The process

itself is agile by design and allows alterations and new features to be introduced late

in the project. “scrum for games” contains four phases (concept, pre-production,

production, post-production) which have defined milestone points that are generated

at the start of the project but can be shifted slightly based on the project’s needs.

The Bod methodology describes an iterative process working in similar ways to

agile processes such as scrum but the steps to arrive at the desired outcome are not

aimed at developing larger AI systems containing a vast amount of Competences and

behaviours focusing on in-time development. Thus, to make the process more control-

lable, integrating design steps from Keith [2010] can enhance the process while making

it similar to the one already used in game development which allows for an easier

transition from the currently used method.

The phases of game development impact the creative freedom of a designer and

influence the system design, the more mature the system becomes, the more restrictive

it becomes in terms of possible deviations from the initial design. Thus, features need

to be known as early as possible and should not emerge continuously due to iterative

changes to the system.
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Game Development

• Pre-Production: This phase combines the concept phase (which is sometimes

a separate phase) and the development of early prototypes which are presented

to a producer. The concept and the prototype offer a great freedom but do not

have to reflect the final product. This phase focuses on strong design and the

architecture and approach for the game are selected.

• Production: During this phase, the game design is still altered and work on the

game commences, a step which could also involve adjusting or developing a game

engine. This phase has three internal milestones: Alpha, Beta and Gold, which

reflect the maturity of the game. As part of this phase, the design document

from the accepted concept gets realised and the more the game matures, the

more rigid the design deviations become. However, after each reaching Alpha

phase, the game will be tested and based on the results of the testing major

re-work is required. The same applies to the Beta milestone. However, changes

to the underlying system are harder to realise, thus, the game design itself gets

adapted. A more flexible system would allow for more freedom in terms of design.

• Post-Production: During this phase, only minor changes are made to the game

to address bugs. However, if additional releases such as Downloadable Con-

tents (dlcs) are planned, the system can be made more flexible again to inte-

grate new features. This opening up of the system increases the design freedom

again.

The original approach to Bod is a top-down analysis of a desired behaviour com-

bined with a bottom-up generation of plans and the behaviour library. The top-down

analysis starts with the definition of a high-level task the agent wants to achieve, an

undertaking possible for generating a single agent in a well-defined environment by an

expert. During the analysis of the sss and the introduction of the approach to devel-

opers from other approaches, in this case Abl, the decomposition and plan generation

was found to be a challenging process. Similar observations were also made during

the Intelligent Control and Cognitive Systems course where student as part of their

coursework on creating Interactive Virtual Agents (IVAs) are using Bod. Novice users

tend to generate either flat shallow plans or deep narrow plans, restricting the resulting

agents immensely. This also applies to other approaches such as BehaviorTree (Bt).

When using Bod, for early iterations, iterating over the plan and creating new

behaviour primitives does not result in the desired decoupling of programmer and

designer as the complete behaviour library and plan structure is in flux.
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BOD—Initial Decomposition

1. Identify and clearly state the high-level task of the agent.

2. Describe activities which the agent should be able to perform in terms of sequences

of actions. Prototype first reactive plans.

3. Derive perceptual and action primitives from those initial plans and sequences.

4. Identify required states and cluster primitives based on shared states into be-

haviours.

5. Derive goals and drives and order them according to their intended priorities.

Prototype drive collections using those drives.

6. Implementation of a first behaviour from the behaviour library.

The original Bod decomposition based on Bryson [2001] results in a minimal plan

that is often not sufficing the original intended goal of the agent but a boiled down

version only showing a proof of concept implementation [Partington and Bryson, 2005].

In their application, Partington and Bryson [2005] described the initial task of an

agent to capture the enemy flag from the opponent base. After the decomposition,

as described above, a list of action sequences exist and a plan which contained only a

small number of drives and actions. The resulting agent is able to perform a basic task

such a moving in a direction but not sufficing the original goal.

From this initial prototype, the plan incrementally turns more complex by adding

new elements. While increasing the complexity of the plan, the first decomposition and

primitives list get adjusted as unforeseen options now need to be considered. However,

this process requires revisiting the underlying behaviour library, a process which creates

strong coupling between designer and programmer. Additionally, the process requires

reconsidering the intended high-level task leading many times to re-interpreting the

existing plan each time.

Instead, it is possible to start the process with a different intention by taking the

scrum process into account when designing an agent. Scrum is an agile software de-

velopment process integrating iterative development and testing while maintaining as

much as possible the time predictability from other development processes such as the

Waterfall model. Scrum partitions the project into smaller Sprints that take a fixed

time and each Sprint deals with a defined set of features. At the end of a Sprint,

the entire system is supposed to be able to execute the features developed during the

Sprint, including those that have been newly integrated. The features are collected on

a feature board which presents all features in ordered lists (product backlog, Sprint
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selection, in-progress, in-review, completed) of completed, in-progress and to be im-

plemented elements. Scrum starts with an initial full specification of the system and

continuous stable versions of the product while incrementally adding features from a

feature board. The important part is the feature board; it is created and laid out to

schedule the work and progress of all features. The work on the product starts after all

features for the final product have been laid out. After a feature has been integrated,

the full system needs to be in a stable state again. The current Bod is similar but as

shown by Partington and Bryson [2005], the starting point is a minimal plan and thus

a minimal set of action primitives.

Agile Process Steps

• Due to the modularity of posh the scrum approach suits Bod perfectly. After

the initial decomposition, instead of creating a small prototype plan and start

working on a first behaviour we can take a different route.

• The first goal is to have a full plan for the agent containing all intended drives

and primitives according to the specification. This step is time-consuming and

cognitive challenging. The resulting plan should suffice the agent task. This

step should be done in one go and should not stop at a high-level description

in terms of drives and a small set of Competences but instead, should include

intended sensory and action primitives from the decomposition. This part of the

development is a pure design stage without the need for programmer involvement.

• The initial design is evaluated with a programmer, taking into consideration

actions and sense primitives. As a guideline actions and senses should describe

activities such as moveToTarget or seeEnemy. The initial design is adjusted based on

programmer feedback to integrate and adjust naming of underlying primitives.

• Behaviour stubs are generated in a rough class structure, creating hollow prim-

itives in posh behaviours for all actions and senses contained in the plan. This

stage is hidden from the designer and is a pure programmer task which is easy

to implement.

• All empty action primitives should contain a default return state representing

failing actions. The only action which needs to be implemented at this point is

the fallback action which is controlled by the lowest priority drive in the plan.

This action should represent an idle state requiring nearly no resource or complex

implementation.
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• When designing the plan it is important to keep in mind that senses are triggered

upon meeting a condition. Thus, when the conditions are not fulfilled for a single

sense the trigger does not release the related drive or competence as all senses

within a trigger are joined by a logical and. Using this knowledge, it is possible

to deactivate parts of the posh tree similar to the bitmasks used by Isla [2005]

see Chapter 2.1.1. To achieve this, the designer integrates as the first sense in

the Trigger a success sense which on the underlying behaviour side only returns

true. As a condition check, this sense compares against false which leads the sense

always to fail. The condition check needs to be specified on the designer’s side.

Once a sub-tree has been implemented the success trigger is removed.

• After obtaining a first feature-complete plan, the work on the underlying be-

haviour primitives can be adjusted to work on individual features. Thus, the

feature board can be ordered by clustering actions and senses under specific fea-

tures. The alteration to the feature board can be done by grouping actions and

senses according to their position in the hierarchical tree. A feature on the board

then relates to all actions and senses contained in a specific competence. This

supports the identification of redundant Competences or functionality that can

be reused by identifying similar usage of actions and senses within competences.

• On the feature board, the relating features should be ordered according to their

correlating drives to focus on completing drives one at a time. This clustering of

features allows programmers to shift entire feature blocks up and down on the

feature board without impacting other sub-trees. As an example, let us look at

the competence in Figure 4-10 on page 162.

• If the behaviour designer decides to alter the plan at this point, a large number

of actions and senses are already stubbed within the hollow behaviour set. This

given structure allows the designer to work independently on the design while

programmers can implement the stubs, one at a time. Following this approach

requires fewer inclusions of new underlying primitives than following a simple

incremental approach; it also distributes the work better between designer and

programmer by initially close coordination in the first phase and a looser coupling

later on.

• Once a new feature is integrated, the sub-trees can be activated by removing the

locking sense. This removal automatically unlocks more and more of the designed

agent behaviour. Ideally, the work is directed from bottom to top through the

posh plan following the idea of the Subsumption design of Brooks [1986]. This
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will enable higher level drives after lower level ones have been implemented and

tested increasing the complexity of the agent according to the designed priorities.

This altered approach was used to develop the StarCraft agent presented in

Chapter 4.6 and is utilised in the Android game Stealthier POSH1. Maintaining a

prioritised feature set which relates to the sub-trees (Competences or Drives) proved in

those two early case studies beneficial and reflects the work on commercial games better

due to the usage of a feature board. The board allows to track the development progress

and allows for more independent work of designer and programmer. Additionally, it

removes the burden of numerous changes to the behaviour library early in the project

or restricting the designer from working purely on the plan without being able to test

it. Unimplemented actions return the default false state so even partial competence

respond adequately.

5.2.1 Handling Complexity

With increased size of an agent, the complexity of the underlying behaviour library

and the plan structure grows as well. If the system is based on FSMs, the complexity

would, in the average case, increase exponentially which would render any system at a

certain complexity unusable for human editing. This is based on the assumption that

the high connectivity of states and the required checking of state transitions between

them reduces the understanding of the system and the ability to maintain it. With

approaches such as Bt and posh, the complexity grows only in the worst case expo-

nentially, in the average case, the complexity increase is lower. To manage this growth,

several support mechanisms were identified. One mechanism is planning systems such

as Goal-Oriented Planning (Goap) [Orkin, 2005], they require expert knowledge of the

plan to predict the outcome but reduce the interdependence of nodes and the amount

of manual checking transitions. posh as a lightweight planner allows local design by

modifying existing Competences due to the ability to nest Competences and the hi-

erarchical structure of the drive collection. As Competences are re-used and handled

by the planner, the amount of connections which need to be adjusted is similarly low

compared to other reactive planners. In combination with the proposed agile Bod it

is possible to work on smaller sections of an agent by focusing on Drives and Compe-

tences while the dependencies between designer and programmer are reduced. Using

the previous approach of default trigger states, sub-trees unlock based on the progress

of their underlying implementation. This cascaded unlocking of the tree and the re-

sulting behaviour allows for a better version control of the behaviour library because it

1The game is available on the Android app store or using the following link: https://

play.google.com/store/apps/details?id=com.fairrats.POSH
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is more directed towards realising connected sub-trees. Additionally, the current posh

editor Advanced Behaviour-Oriented Design Editor (ABODE) supports this process

by collapsing currently not interesting tree nodes; a feature also present in most of the

Bt editors presented in Chapter 2.3. The combination of working on sub-trees and

the feature board based on scrum directs the agent implementation to focus on con-

nected pieces. In combination with the posh-sharp reactive planner and the therefore

reduced dependencies between tree nodes, the new approach should provide sufficient

support for working on more complex systems.

To go beyond the support of jyPOSH posh-sharp is providing additional software

design support.

5.3 POSH-SHARP

To enhance the support of game AI development, a new arbitration architecture is

proposed which alters the structure of the existing jyPOSH system and contains four

major enhancements: multi-platform integration, behaviour inspection, behaviour ver-

sioning and the Behaviour Bridge.

The new system switches the implementation language from Java&Python to Mi-

crosoft’s C#—a platform-independent language which in contrast to Oracle’s Java is

fully open-source. Additionally, a resulting agent can be better integrated into most

commercial products based on the usage of a new deployment model of the system—

the dynamic libraries (DLL). The posh-sharp DLLs allow a developer to integrate the

posh behaviour arbitration system into any system which supports external libraries.

The strength of this method in contrast to jyPOSH is the removal of the dependency

on a JAVA virtual machine or a Python installation. This reduces the configuration

time and potential problems with incompatibilities or wrong setups. posh-sharp was

designed to work on computationally less powerful devices such as smartphones or

in the web-browser emphasising the lightweight nature of posh. To guarantee this

posh-sharp is mono 2.0 compliant2. The posh-sharp architecture is separated into

different distinct modules to allow the developer, similar to the node collapsing in

plans, to focus on smaller pieces of source-code and fewer files. The previous jyPOSH

system required a complex setup and required the developer to maintain a complex

folder structure which contained all sources for posh and the behaviour library. To

support and extend the separation of logic and implementation most languages use

some form of container format. In JAVA modules are clustered and distributed in Jar

2The Mono project provides a free C# platform-independent library supported by Microsoft. Mono
2.0 is the language level used for mobile devices and in the Unity game engine is used for full cross-
platform compatibility. Mono is available at: http://www.mono-project.com
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files and in Python egg files. This helps reduce the burden of a programmer to maintain

a manageable code base.

5.3.1 POSH-SHARP Modules

• The launcher is the smallest module. It is responsible for selecting which plan

to load, to tell the planner to construct a posh tree based on a serialised plan and

finally to connect the core to the environment. The launcher receives upon start

a set of parameters containing an agent definition and link to the environment.

The launcher then calls the core and specifies which agent is connected to which

plan. It additionally makes the behaviour library in the form of dlls accessible

to the core. The launcher is platform dependent and is available for Mac and

Windows and can be re-compiled based on the project’s needs. For the Unity

game engine3 a specific launcher exists and integrates fully into the game engine.

Figure 5-1: The posh-sharp module structure. The system consists of the core dll, the
launcher executable, a set of plan files and behaviour library dlls. A minimal system
contains four files and does not require a special setup on a host machine.

• The core module is platform independent and can be used “as-is” as it does

not rely on other modules, see Figure 5-1. As a first step, the core instantiates a

posh agent responsible for enveloping the posh tree and the connected behaviour

objects with their contained short-term memory. After creating an agent shell,

3Unity is a fully featured commercial game engine which supports the cross-platform development
of games and is available at: http://unity3d.com/
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the planner uses the serialised plan file to instantiate a posh tree for the agent.

For that, it inspects the behaviour libraries and instantiates all behaviours for

the agent which contain primitives required by the serialised plan. This process

is done for each agent. After all agents embed a live posh tree, the core links the

agent to the environment exposing the sensory primitives to receive information

and the action primitives to interact with it. The core also contains a monitor

for each agent that allows live debugging and tracing of agent behaviour.

• A behaviour library is a self-contained set of behaviour classes wrapped in a

dynamic library file (DLL). They are coded by a programmer and implement

the functionality used in conjunction with a posh plan. The behaviour classes

contain posh action and senses, as illustrated in Figure 5-2. The advantage over

jyPOSH is that the core automatically inspects all behaviours and loads only

those who are correctly annotated. Thus, there is no need to specify a list of

actions and senses within the header of a behaviour. Additionally, behaviour

primitives can be “versioned”, a new feature in posh-sharp which offers the

programmer a way to develop an agent incrementally without overriding and

deleting working functionality.

• The last component of posh is the plan library which contains a collection of posh

plans. The posh-sharp plans are identical to the jyPOSH plans allowing users

to migrate their plans to different systems. The plans are in a Lisp-like syntax

and can be interpreted as serialised posh trees that are used by the planner.

5.3.2 Behaviour Inspection & Primitive Versioning

In previous versions of posh, behaviours had to contain lists of string names referencing

behaviour primitives to be used upon loading the class. Additionally, all behaviours had

to be in a behaviour library folder in source format. This behaviour folder was inside the

same folder hierarchy as the posh system, also as source files. This project structure

forces developers to maintain and manage more files than necessary, it reduces the

visibility of own behaviours and increases the chance of modifying or removing essential

parts of posh unwillingly. Posh-sharp introduces the packaged posh core, combining

the planner and the entire structure of the system into an 111kB sized dynamic library

file. Behaviour files are also compiled into behaviour library DLLs which is supported

by free tools such as Xamarin’s Monodevelop4. Upon starting posh-sharp, the core

receives as a parameter a list of dynamic libraries which should be inspected.

4Monodevelop is an open-source Mono/C# IDE available at: http://www.monodevelop.com/
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Once the posh plan is loaded, posh-sharp inspects all libraries and loads all that

contain annotated primitives which are referred to by the currently active serialised

plan. Using dynamic libraries reduces the number of files developers and users have to

handle and reduces the risk of erroneous handling of files.

1 [ E x e c u t a b l e A c t i o n ( ” a c h a r g e ” , 0 . 0 1 f ) ]
2 p u b l i c v o i d R e c h a r g i n g ( )
3 {
4 // Set an a p p r o p r i a t e speed f o r t h e NavMeshAgent .
5 Loom . QueueOnMainThread ( ( ) =>
6 {
7 i f ( nav . speed != p a t r o l S p e e d )
8 nav . speed = p a t r o l S p e e d ;
9

10 // Set t h e d e s t i n a t i o n to t h e c h a r g i n g WayPoint .
11 n a v D e s t i n a t i o n = c h a r g i n g . c h a r g e r L o c a t i o n . p o s i t i o n ;
12

13 i f ( nav . d e s t i n a t i o n != n a v D e s t i n a t i o n )
14 {
15 nav . d e s t i n a t i o n = n a v D e s t i n a t i o n ;
16 nav . Resume ( ) ;
17 }
18 // I f n e a r t h e n e x t waypo int o r t h e r e i s no d e s t i n a t i o n . . .
19 i f ( nav . r e m a i n i n g D i s t a n c e < nav . s t o p p i n g D i s t a n c e && nextToCharger )
20 {
21 nav . Stop ( ) ;
22 // a s y n c h r o n c h a r g e b a t t e r i e s
23 Loom . RunAsync ( ( ) =>
24 {
25 c h a r g i n g . Charg ing ( ) ;
26 }) ;
27 }
28 }) ;
29 }

Figure 5-2: A behaviour primitive for recharging a robot within the Stealthier posh
Android game. The action uses a NavMesh to determine the position of the agent
and then charger the robot once the agent is close enough to the charger. To al-
low for threading a scheduler (Loom) is used to outsource specific tasks into Unity’s
internal update thread. The action is set to version 0.01 which allows later actions
to override the behaviour and the action links to the plan name a chargeMore details
on the game are available at: https://play.google.com/store/apps/details?id=
com.fairrats.POSH

The behaviour inspection uses the specific posh annotations to identify primi-

tives within a behaviour library file. There are two standards annotation classes

ExecutableAction and ExecutableSense, both augment a method and attach a name refer-

enced and search for by the player and a version number. In Figure 5-2 an example

action from the Stealthier posh Android game is given. The primitive is called by

175



the planner when the robot agent needs to recharge the battery and uses a NavMesh5

to identify if the agent is spatially close to a charger. As described in Chapter 2.2.9,

primitives should be as independent as possible and use their perception. In this case

checking the internal state of the NavMesh. By removing the need for specifying the

string name of a method in a specific list, a potential risk of mistakes is removed

from the development process. The usage of the extra name tag allows the usage of

names which would otherwise break the naming convention of C# and allows for more

descriptive and customised names.

The behaviour primitive versioning uses the second parameter of the annotation.

The planner in default mode always selects at run-time the primitive with the highest

version number. This mechanism allows the planner to exchange primitives during

execution if needed. Dynamic primitive switching is a complex process and needs

further investigation and feedback from the user community. However, the overloading

of existing primitives at design-time is a powerful process which allows developers to

extend functionality by following the idea of Brook’s Subsumption idiom.

5.3.3 Memory & Encapsulation

Similar to architectures such as ACT-R and Soar, posh-sharp provides a centralised

way to store and access perceptual information about the environment. Game envi-

ronments have strong restrictions on computation, thus, polling sensors which require

computation or perform continuous checks should be as rarely used as possible. The

usage of a fair amount of polling sensors reduces the time the agent has to undertake

the actual reasoning. The Behaviour Bridge illustrated in Figure 5-3 provides a cen-

tralised access to perceptual information acquired from the game environment. Each

individual behaviour is able to access and share this information and use it internally.

In a sense the Behaviour Bridge is to some degree similar in its function to the cor-

pus callosum in the mammalian brain. It offers an interface between parts which are

spatially separated due to their distance in the brain and provides a fast and efficient

means of information exchange. It is designed around the software Listener Pattern,

making game information available to all subscribed behaviours. When removed or

damaged most of the brain still functions, however, some functions are then erroneous

or slower. The same applies to the Behaviour Bridge as it allows information exchange

but does not undertake actual communication or computation.

Memory, same as in other posh versions, is contained within individual behaviours.

There is a strong argument for self-contained behaviours and their internal memory

5NavMeshs have been discussed in Chapter 2.1.2 as a way of structuring virtual environments more
efficiently.

176



Figure 5-3: The posh-sharp architecture once the modules have been integrated into
an environment, e.g. the integration with a game engine such as Unity.

which is, that their usage supports lower inter-dependencies between behaviours and

fosters the modularisation & exchange of behaviours. posh-sharp supports this ex-

change through behaviour library files which offer easy exchange by swapping out in-

dividual dynamic library files. Thus, a general focus on a specific class in a library

outside the core could break the entire agent.

A global blackboard as part of the architecture is currently not supported by posh-

sharp, even though the integration would be easy using the Behaviour Bridge. The

usage of a blackboard or long-term memory, similar to the memory types by Orkin

[2005] or the Working Memory Elements of Abl, introduces extra complexity into the

design process which is may not be desirable for a light-weight novice-oriented archi-

tecture. Behaviour designers using a blackboard need to take potential memory into

account when designing behaviours. This means that the memory emerges and changes

over the course of the experience, requiring additional careful design and anticipation

of behaviours interacting with it.

Instead of a global blackboard which offers reading and writing complex informa-

tion from it, posh-sharpprovides the Behaviour Bridge. Using the Behaviour Bridge,

posh-sharp provides a centralised way for perceptual information to be exchanged

and accessed as proposed in Figure 5-3. The bridge stores similar to the cX system,

see Chapter 2.2.7, perceptual information about the agent and the state of the envi-

ronment. That information is not available at the planning level and is currently only

intended to remove redundant, or reduce the amount of costly calls to the environ-

ment. The bridge, in contrast to a blackboard, only provides access to a domain and

problem-specific set of information and no general purpose memory which could be
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realised through a hashmap-type data structure. The main strength of the bridge is

that it inserts its interface into all instantiated behaviours and offers an uncluttered

interface to shared information. Additionally, the approach does not incorporate the

idea of perceptual honestly as described by Burke et al. [2001] and implemented in the

cX system. Thus, the system allows full access to the environmental information and

the designer and programmer can decide which information to use. The focus with

posh-sharp is on being a flexible, light-weight architecture and hiding information

should not be handled in the agent system but designed carefully.

In the next chapter, we will have a closer look at another form of memory which

was developed to support interest and motivation modelling for Behaviour-Based AI,

see Chapter 2.2.2.

5.3.4 Monitoring Execution

In Chapter 3.6 users of three IVA architectures described the need for logging and

debugging functionality which is absent or needs enhancement in their respective sys-

tems; this also includes the previous posh systems.The usage of such functionality

would, according to the users, aid the understanding of the execution flow and sup-

port the identification of potential problems, both on the design level and the program

level. The problem described by the users is that when developing complex agents,

the agent is not always crashing or stopping when problems occur. With increasing

complexity it becomes harder to tell apart intended behaviour from faulty one6. Ad-

ditionally, the usage of a software debugger, included in most Integrated Development

Environments (Ides), is not always ideal because it pauses the application for inspec-

tion which is undesirable for understanding IVAs. To identify mistakes during the

execution, posh-sharp offers live logging using a logging interface deeply integrated

into the posh-sharp core. The logging uses an internal event listener which receives

events from each posh element that is executed. The events contain a time code and

the result of triggering the element. From the developer, this procedure is completely

hidden to reduce the amount of visible code they have to touch and memorise. Nonethe-

less, they can access the log manager and add extra information which gets stored in

the log. To allow the easy extension of different developer needs, the log management

can be altered using a pre-compile statement for the core. This allows currently to

switch between two modes of logging. The full log support using log4Net7 or no

6This issue leads game developers to be cautious when using new approaches or approaches which
allow for learning.

7Apache’s Log4Net provides a standardised, configurable monitor support in the form of a modular
logging architecture. Using XML based configuration files it is possible to set up monitor logs handling
even large amounts of data. Log4Net is a dynamic library for the Microsoft .Net architecture. It is

178



logging which is useful for distributing the core with a final product when recording

large amounts of data is undesirable.

The log structure uses a millisecond time-code and logs the entire execution in the

following form for all agents ai:

S(t) = [t] L ai.plan(DC(t, ai))− return(e(t, ai))

plan(DC(t, ai)) = top(Dactive, ai) = e(t, ai)

The drive collection (DC) has only one drive active (Dactive)for each agent ai at any

given time and the Drives maintain an execution stack over multiple cycles. L identifies

the log mode which is currently active the modes include: INFO, DEBUG, ERROR.

To limit the stack in size Bryson [2001] introduced the slip-stack. At each cycle,

the slip-stack removes the current element (top(stack, agent)) from the execution stack

and executes it, replacing it with its child, which upon revisiting the drive in the next

cycle continues with the child node instead of checking the parent again. This method

reduces the traversal of the tree nodes drastically and fixes the upper bound of the

stack. posh-sharp integrates the same concept but instead of maintaining a stack an

internal tree representation is kept and the execution shifts further down the tree when

a drive is called.

As the plan unfolds and elements get revisited the log incrementally represents the

execution chain of the posh tree such as the first line will be the check of the goal for the

drive collection, the second line contains the check for the highest priority drive and so

on. The action and sense primitives are referenced in the log by their canonical method

name including the class namespace. This allows for the identification of methods

including their annotation name and version number.

The time resolution of the logs can be adjusted based on the developer’s needs

but to monitor a real-time plan for games, it grows quite quickly due to the fast call

times within the tree. A log for the extended StarCraft from Chapter 4.6 reaches a

reasonable size89 in minutes. To be able to analyse multiple runs of an long execution,

posh-sharp writes a continuous-rolling log10 to manage the individual file sizes better,

and it additionally creates a parallel “current” log file which is replaced each time posh-

sharp get launched again.

The new logging mechanism has a low computational footprint allowing it to log

available at: https://logging.apache.org/log4net/
8For StarCraft, the game updates the environment with 25Frames per Second (fps). The planner,

at each update, performs multiple cycles which result in the same number of log lines.This results in
around 50MB after 5 minutes of logging.

9An example log can be found in appendix in Figure D-1, page 237.
10A rolling file log creates a list of files by adding a numerical identifier to the original file name once

a file reaches a certain size.
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large amounts of data without impacting the performance. It offers a way to understand

the arbitration process by going through the logs line by line. Due to the standardised

format, the processing of the logs can be automated or streamed to other applications

for a live representation of the agent’s reasoning process. The Stealthierposh game

offers a way to visualise the reasoning process by outputting the goals of all agents in

the log format on screen11. This visualisation and other forms of using the log provide

potential directions for future research.

5.4 Concluding Advanced Authoring Support

This chapter presented a novel, project-oriented alteration to the existing Behaviour-

Oriented Design by Bryson [2000b]. The focus of the new methodology is to provide

better separation of design and programming and to support the development of ar-

tificial agents in teams of multi-disciplinary authors. The two case studies and the

feedback retrieved from interviewed authors discussed in Chapter 3 create the basis for

the newly introduced process steps of the methodology. This new process allows design-

ers and programmers to distribute their work better while still following keeping the

project progress in mind. Agile Behaviour Design reduces the dependencies of the

different user groups. To further aid the development and to focus on multi-platform de-

velopment a new arbitration architecture was proposed—posh-sharp—which extends

Bryson’s original concept of poshand extends it by four new features: multi-platform

integration, behaviour inspection, behaviour versioning and the Behaviour Bridge. The

architecture similar to the original concept of posh still follows the idea of providing a

light-weight, flexible and modular approach to designing cognitive agents but increases

the usability of the software by reducing potential problem points.

11An illustration of the visual logging mechanism in StealthierPOSH is available in Figure D-3,
page 239.
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POSH-SHARP Contributions:

• posh required the developer to maintain a large number of source files in nested

folders. posh-sharp introduced the behaviour library DLL, the core library and

the launcher, which reduces the number of files to three and creates an easier to

maintain project.

[simplification]

• posh-sharp automatically inspects library files extracting all behaviours and

behaviour primitives requested by an agent. This reduces the impact of typos or

wrongly associated/non-existing primitives in behaviours.

[robust primitive loading]

• posh-sharp introduces a modular logging and debugging mechanism which al-

lows a developer to trace the flow of information through the posh graph. This

supports the mentioned need of the interviewed authors and can be used to aid

the understanding of the action selection mechanism.

• The setup of posh on developer machines has been simplified tremendously by

not requiring any external libraries or APIs to be installed. The setup of jyPOSH

is affecting the usability of posh to a large extend and aligns with the observed

trend in the industry to favour approaches which are easy to setup and use.

• The internal mechanisms such as the Behaviour Bridge and the behaviour ver-

sioning increase the capabilities of posh and remove inter-dependencies between

behaviours and support robust incremental to changes to behaviours.

The combination of posh-sharp and Agile Behaviour Design is intended to sup-

port novice developers by guiding their design but it also allows expert developers to

profit from explicit design steps which can be used to verify the progress of a current

project.

In the next chapter, an augmentation for behaviour-based action selection mecha-

nisms is presented. The mechanism was implemented in both posh and posh-sharp

and allows the design of non-deterministic agents. The presented approach can be

generalised to other behaviour arbitration systems and is designed as a “white-box”

solution which requires no initial adjustments but allows inspection.
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Chapter 6

Augmenting Action Selection

Mechanisms

In the previous chapter, a new process model for developing behaviour-based AI for

games was presented—Agile Behaviour Design. The approach extends Behaviour-

Oriented Design (Bod) by Bryson and Stein [2001], it focuses on strengthening the

support for multi-disciplinary teams and industrial development processes, including

a more rigorous separation of tasks. In addition to the new process, a new agent

framework is presented employing Agile Behaviour Design—posh-sharp. The

framework focuses on mobile and platform-independent development and includes the

requested tool support from Chapter 3.

In this chapter, a general augmentation of action selection mechanisms is presented—

the extended ramp goal model. The augmentation was tested in both Parallel-Rooted

Ordered Slip-Stack Hierarchical (POSH) and posh-sharp and evidence for its effec-

tiveness in handling noisy environments and conflicting goals are presented. The im-

portance of handling noisy environments symbolises the impact of unanticipated user

interaction and how well agents can handle situations they were not explicitly designed

for. This ability to deal with noise introduces non-deterministic behaviour which aligns

with deeper agent behaviour, an aim of most Interactive Virtual Agent (IVA) de-

signers.

6.1 Contribution

In this chapter, I demonstrate the application of a biomimetic augmentation to the

selection process of behaviour arbitration systems by integrating research on the Basal

Ganglia into the process. The research was presented at the IEEE Conference on
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Computational Intelligence and Games (CIG) by Gaudl and Bryson [2014] and has

been submitted to the APA Newsletter on Computers and Philosophy. The chapter is

purely based on my research on understanding and augmenting decision-making from

a cognitive perspective. My contribution to this work is 100%.

6.2 Introduction

This chapter presents a mechanism that addresses the issue of responsive and flexible

action selection for behaviour-based AI (BBAI) [Brooks, 1986] or similar approaches

to light-weight modular cognitive architectures. The work specifically addresses sys-

tems dealing with multiple, possibly conflicting, goals such as the ones described in

Chapter 2.2. A special focus is put on a sub-group of those systems that face resource

constraints such that they are not able, or not intended, to use a fully fledged cognitive

architecture such as SOAR [Laird et al., 1987] or ACT-R [Anderson, 1993]. Limited

CPU cycles, restricted memory size, or low power consumption are only a few examples

of the mentioned restrictions. In addition to technical resources such as graphical assets

or special software, other important and expensive resources are authoring, develop-

ment and testing time, especially in industrial contexts. To demonstrate and allow for

a better understanding of the approach, implementation details, as well as the results

of an evaluation carried out in the MASON simulation environment[Luke et al., 2005],

are used to support the approach’s properties.

To clarify the type of problem that is addressed and to give inspiration for its

solution, let us start with an example which could take place in a generic role-playing

or strategy game. Deciding and maintaining logically sound behaviour or deeper

agent behaviour is crucial in games. According to Murray [2004], maintaining the

suspension of disbelief is of great importance to players.

Example Scenario (guard in warehouse):

A player controlling a thief is trying to break into a guarded ware-

house. The guard can perform behaviours associated with three major

goals, patrol, attack and extinguishfire. The player is moving towards

the warehouse and observes the guard patrolling the entrance. The player

moves closer to the warehouse. Trying to lure away the guard, the player

finds a way to set the back door of the warehouse on fire. As soon as the fire

starts, the guard switches to extinguishingfire — this is triggered based

upon the game designers’ concept for her. The player tries to sneak around

the guard but fails as she spots the player while he is moving towards the
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back entrance. The guard switches the active behaviour from patrol to

attack because she spotting the thief. The player now runs away, chased

by the guard. After some fighting, the guard kills the thief/player, then

switches back to patrol as no imminent active threat is visible.

Yet, what happened to the fire the player started? The back door of the warehouse is

still on fire. After attending for a long period of interactions with the player the trigger

signal for extinguishfire was removed from the stack of sensory information for the

guard. A naive solution would be to let the trigger remain on the stack indefinitely and

for this simple example, it seems a feasible option. However, scaling up the problem

to a large set of agents and triggers and not removing stacked triggers is impossible

and even distinguishing which triggers are still of importance is a difficult problem,

requiring additional computational resources.

The main point is, in large design spaces it is hard for a designer to keep track

of all possible scenarios and inter-dependencies of behaviours. Additionally, designing

game agents that behave in a believable and concurrent way is already a complex task.

Due to the large size of current games and their underlying control structures, it is

non-trivial to keep track of the maintenance and inhibition of timed actions. In digital

games, it is quite common to allow the AI only to occupy a fixed small number of

cycles per frame as most of the computational resources are needed for the graphic

representation. Including a heavy-weight cognitive system to control multiple agents

into such an environment is in most cases not desirable as the cognitive architecture re-

quires both more CPU time, and also more time to design. Additionally, designing the

specific cognitive agents themselves is generally more time-consuming than the typical

static approach to game characters. For IVA which only need to give the impression of

deeper agent behaviour, cognitive abilities are usually not necessary. In the above

example, a designer—similar to a writer—would create a story about what the guard

should do and how she should react to certain stimuli. Removing this creative process

would either result in a huge impact on the players’ immersion or it would require an

enormous amount of computation to do meaningful story planning. Mateas discusses

this further in his work on Façade and Abl, see Chapter 2.2.8. Game-play designers

specialise in creating human-understandable situations, reactions and characters. De-

spite promising research by Mateas [2002], automating this whole creative process is

currently far beyond the current state-of-the-art in dynamic planning and story gener-

ation. The present main interest of game AI designers and engineers it to have flexible,

modular tools for creating template agents and then modify those to create the desired

outcome [Grow et al., 2014].
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The work presented here is motivated by an analysis of existing agent architectures

and agent modelling environments for autonomous agents in digital games [Grow et al.,

2014], see Chapter 3. Existing cognitive approaches such as SOAR, ACT-R, LIDA

[D’Mello et al., 2006] and CRAM [Beetz et al., 2012] are extremely powerful, allowing

the creation of sophisticated agents. However, due to the high complexity and steep

learning curve, they are seldom used outside of academic demonstrations and simplified

problem spaces. Even where they are used, they are primarily employed in communities

strongly linked to an academic environment, such as military war games. When full

cognitive reasoners or large expert systems are not needed or applicable, lightweight

architectures and models such as Behaviour-Oriented Design by Bryson and Stein [2001]

or purpose specific architectures such as Pogamut [Gemrot et al., 2009], Mateas and

Stern [2002] can be used. Purpose-specific architectures offer an optimised work-flow

for specific settings, reducing development time. Chapter 2 offers a more detailed

discussion of the structure and existing applications of those architectures.

Lightweight systems, due to their lower additional computational cost and lower

learning curve are generally more favoured in the non-academic application1. To date,

these systems have been used most widely in the computer games industry, a substantial

part of the contemporary economy that takes in more money than more traditional

entertainment such as the film industry. Game AI requires agents that are able to act in

real-time, can be instantiated quickly and leave the impression of human-like or animal-

like intelligence. Lightweight cognitive architectures may be used either for individual

agents or for swarms of shallow agents in a variety of digital environments (not only

games), as well as for small autonomous robots such as Aibo or Roomba, or even

substantial numbers of swarming robots [Chaimowicz and Kumar, 2007; Rubenstein

et al., 2014]. Due to the flexible nature of the applied approaches, the resulting system

can be tailored towards a specific scenario, reducing the computational cost drastically.

This contrasts with most cognitive architectures which are intended as general problem

solvers applicable to a wide range of problems. To better facilitate developers and

researchers using lightweight architectures, and to enrich their action selection and

behaviour arbitration mechanisms, biomimetic models have been examined.

The mechanism which is presented in this chapter is based on a ramp function,

similar to the ramp activation found in the mammalian brain cells responsible for goal

switching. The model is based on a system of dopaminergic cells in the Basal Ganglia

of the mammalian brain [Cools, 2012; Brown and Nee, 2012]. The model is designed to

apply to a broad range of systems. In keeping with lightweight architectures, it has a low

1In digital games, for example, the designer is typically not interested in having hundreds of cognitive
agents but just the impression of plausible actions for groups of those IVAs and intuitive means to
design them.
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computational overhead, making it highly versatile. The final model allows for an easy

way to control the maintenance, inhibition and switching of high-level behaviours in

cases where static linear goal structures or predefined behaviour switching is undesirable

for the action selection mechanism.

Action selection is a key element of cognition, and even lightweight models such

as those discussed here can provide new insights. First, evolution also favours lower

costs, so sometimes insights into nature can be gathered from the experience of engi-

neering, despite the differences in implementation between massively parallel biology

and essentially sequential silicon, Bryson [2005].

Even models of consciousness do not necessarily need to be implemented at the

neural level [Franklin et al., 2009; Bryson, 2012]. Second, lightweight architectures

operate at a level of abstraction more similar to the philosophy of mind, so are more

easily comparable. Finally, more agile and accessible AI development allows more

exploration of theories and their consequences.

Here, an emphasis is put on the creation of lightweight yet cognitively-motivated

models to observe and perceive the world in sufficient detail to react or behave naturally.

The approach uses a functional representation to model phenomena which are expressed

in a similar way in the neuronal structures of the mammalian brain. It focuses on the

outcome of modules—both the actual brain structures and the functional modules—and

aims to represent the functional outcome accurately, rather than the actual underlying

structure. As computation resources get more available, in terms of numbers of CPU

cycles the AI is allowed to use, a shift in the usage of approaches towards more closely

representing the underlying structure of the cognitive agent is possible, although nature,

of course, has had billions of years to create powerful structures such as the brain, and

its integral host the human body. In digital agents and robotics, most of the organic

structure evolved by nature is not needed to create similar outcomes. Thus, it is possible

to focus on creating modules which are functionally similar instead of mechanistically

similar.

In the next section, the current research on biomimetic models and their appli-

cability to behaviour arbitration is described, introducing the extended ramp goal

model—ERGo. Details and a code example on how to integrate the approach into

existing arbitration mechanisms are given as guidelines for further development of the

integration of the model into other systems. To support the presented argument, the

results of an evaluation performed in a real-time, game-like simulation environment us-

ing a previously-published system as a baseline for comparison are given. The chapter

concludes with a discussion on the impact of different parameters on the model, next

possible steps and possible extensions to this work.
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6.3 The Extended Ramp Goal Model (ERGo)

In this chapter, we will have a closer look at the biomimetic mechanism and its im-

plications on scalable behaviour arbitration. As a starting point, the motivation for

applying biomimetic concepts to action selection schemes are presented. This motiva-

tion in combination with an analysis of cognitive goal selection and maintenance leads

to the main drive for the ramp function arbitration mechanisms.

6.3.1 Approach: Biomimetic Models

Rohlfshagen and Bryson [2010] introduce Flexible Latching as a mechanism to handle

multiple competing goals. Flexible Latching starts from a simple latch, see Figure 6-1,

which reduces dithering—a rapid switching between goals. When dithering, more time

is spent transitioning between goals than in their useful pursuit and consummation.

Without a latch, a goal executes once the trigger condition is met and stops immediately

after that. A latch thereby acts following the same principles as a hysteresis function.

Figure 6-1: A Flexible Latch using two thresholds—δ and φ—to control dithering. In a
simple latch, a goal can take control from when activation reaches the lower boundary δ
until is reaches the upper boundary φ. Reaching φ, the goal is inhibited until activation
falls below δ again. A flexible latch adds a third threshold, ψ, above which a latch is
recomputed if the agent is interrupted. Rohlfshagen and Bryson [2010] find the best
threshold for ψ to be ψ = δ.

For the sake of an illustration, imagine the following example:

A leaking canister loses water over time. As soon as a low water level—

threshold φ—is reached, the canister is filled up again to that level. If it is

only refilled up to φ whenever the water is below φ, the time between each

re-fill is relatively short. A strict latch now adds another offset δ on top

of the lower threshold. Now, whenever the water reaches φ the remaining

actions are spent to refill the water until is reaches the higher level, threshold

δ.
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Such a latch is useful under the assumption that it takes time to start and complete

an action. The strict latch allows this extra time between δ and φ which can be

spent on alternative actions. Flexible Latching extends the Strict Latching by dealing

with interrupts and re-evaluating whether the current goal should still be pursued.

Rohlfshagen and Bryson [2010] demonstrate this approach to be more efficient than a

simple latch as the agents do not pursue goals that are neither urgent nor convenient

after the interruption.

Now taking a closer look at other selection processes inspired by nature, neural

networks (NN) are the most prominent, flexible selection mechanisms. By using an

artificial neural network (ANN), it is possible to learn and solve selection tasks for

problems where an algorithmic description of the problem is not known or is costly.

ANNs are able to approach general solutions only by providing them with a set of

specific, known input and solution pairs to adapt them towards the solution space.

However, for ANNs the overall action selection or computational process is not trans-

parent, thus tweaking a Neural Network to perform in a certain way is difficult, see

Chapter 2. Also, NNs are typically trained to solve static problems rather than a con-

tinuous problem like action selection or real-time behavioural control with changing

or unseen situations. An example of a commercial game using a neural network is

Black&White by Lionhead, which uses a neural net for training a few aspects of the

player’s pets intelligence.

Taking a look at a single neurone model reveals some interesting mechanisms which

can be exploited in other contexts as well. There exists a variety of activation functions

for neuronal models. Those include the spike or DIRAC function used in Spiking Neural

Networks (SNN), the sigmoid which has a fixed output range between zero and one,

and the ramp function which combines a monotonic increased activation and an instant

activation drop. This last forms the basis of the model presented here.

Biomimetic models like ANNs are an important asset of the computer science tool-

set. They offer useful and scalable solutions for addressing complex issues. Redish

[2012] indicates that the ramp function is favoured for goal arbitration, which will be

detailed in the following section. This finding motivates the present approach as it is

a straightforward and elegant mechanism for augmentation.

6.3.2 Basic activation mechanism

Two defining features of the exhibited ramp-like activation in the brain are a linear

growing activation and a rapid activation drop, see Figure 6-2. The hypothesis that

brains exploit ramp functions to arbitrate between high-level goals is utilised as the

basis for the light-weight arbitration mechanism, ERGo. In contrast to most ramp
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function related selection approaches [Stewart et al., 2012; Velsquez, 1998] that apply

ramp functions in the context of neural networks, the current approach is the first

attempt to use a ramp-like criterion directly in a behaviour-based arbitration process

without using a neural network to control the maintenance. The presented models

use a strictly monotonic activation gain and an instant activation drop when reaching

the success criteria for the goal, this provides a predictable and visual, yet, flexible

mechanism.

A generic behaviour-based action selection mechanism is used to illustrate how the

extended ramp works. For a given set of behaviours2 B = {B1, . . . , Bm},m ∈ N a set

of goals G = {G1, . . . , Gm} and ramps R = {R1, . . . , Rn}, n ∈ N, n ≤ m is introduced.

Ra is the ramp for Ba and Ga is the goal which Ba is trying to satisfy, a ∈ {1, . . . , n}.
The additional behaviours Bb, b ∈ N, b ≤ m − n try to satisfy goals Gb without being

augmented with a ramp. Each time step t Ra adjusts its activation based on the

Boolean activation state αa(t) of the behaviour Ba, the Boolean urgency signal υa(t)

and the stickiness ωa(t) of the behaviour. All ramps share the same increment i and

activity multiplier µ which define the accumulated activation in the following way.

Ra(t) =



Ra(t− 1) ∗ µ if υa(t) = 1

Ra(t− 1) + i if αa(t) = 0

Ra(t = 0) if αa(t) = 1 ∧ ωa(t) = 0

Ra(t− 1) + (i ∗ µ) if αa(t) = 1 ∧ ωa(t) > 0

The influence of an active behaviour on the activation is presented by αa(t) = 1 and

ωa(t) > 0. This results in an activation modified by the activity multiplier µ.

Ra(t) = Ra(t− 1) + (i ∗ µ)

The increased activation is supported by the work of Redish [2012]. He states that the

goal cells in the Basal Ganglia have a higher firing rate when a related goal is pursued.

Even when a behaviour is not active, it still gains activation.

Ra(t) = Ra(t− 1) + i

The combination of these two mechanisms removes most of the requirements of needing

a direct binary switch for the behaviours to arbitrate successfully. This combination

minimises the direct competition between behaviours as well and increases the robust-

ness of the action selection in cases of noisy switching signals.

Thus, the approach contrasts the currently available selection principles in games.

These existing mechanisms heavily use binary triggers because they are initially easy

2Note that we use behaviour here to refer a collection of actions, senses and other cognitive states
necessary for achieving a particular goal. In many architectures, behaviour decomposition is actually
orthogonal to goals—one action can serve multiple goals.
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to implement and understand. Another method which is used and initially looks sim-

ilar to the ramp are utility functions, see Chapter 2.1.1. The main difference between

the approaches is that utility functions in games normally optimise a specific criterion

expressed by an Interactive Virtual Agent whereas the ramp models a cognitive process

internal process. The strength of utility models is that it is possible to pick a different

function and alter it to fit the described behaviour. The inclusion of various mathemat-

ical functions and the analysis of how they perform in a particular situation requires

a large amount of parameter tuning. The ramp is intended to work in opposition to

a complex approaches that require problem specific tuning by providing a minimal,

”as-is”, white box approach with initially no tuning.

Figure 6-2: A single ramp function used for inhibiting a behaviour. A behaviour
controlled by a ramp is only inhibited when another behaviour gains a higher activation
or once its goal is reached. Once the goal is reached, activation instantly drops. The
behaviour completes its goal at time a, with a certain activation b.

To allow the agent to influence whether a behaviour needs to be urgently triggered,

the agent is able to trigger the urgency signal υ. Upon receiving the signal, the ramp

amplifies its activation using the activity multiplier µ—a percentage based influence

on the global action selection. Using µ for urgent execution results in an exponentially

growing activation level. An example for an amplified behaviour is Behaviour3 in

Figure 6-3 which is triggering υ3 at t = 41. For the experiments, µ was set to a value

within the range of 1.0 and 2.0. If µ = 1.0, activation is not affected by the urgency

signal at all. If µ = 2.0, the activation is increasing quadratic. The impact of negative

urgency on agents has not yet been investigated. Negative urgency would be reflected

by 0 < µ < 1.0 and would result in a decay or dampening of the activation level. If

Ba needs to urgently execute, υa is set to true. This indicates the need for a rapid

behavioural change. The result of using the urgency signal υ is inspired by natural

phenomenon inside the mammalian brain, where it takes a small amount of time for

the activation to spread before even urgent actions are executed. However, the time

span between the trigger and the execution of the behaviour is short. In the case of the
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experimental setup, the time span is defined by the unit count of one of the resources

and its amount sinking below δL.

One of the aims of the general behaviour arbitration augmentation—ERGo—is to

simplify the action selection process. To achieve this simplification, the work focuses

on a low coupling of the ramp goal model and the rest of the agent as much as possi-

ble. Additionally the number of parameters which have to be adjusted for a working

integration should be kept as low as possible. Thus, the parameters are limited to

υ, an urgency signal, and µ, which amplifies the activation of our model. Using only

these asynchronous signals, there is no need to include problem-specific components

like agent specific resource properties in the control. This makes ERGo easier to com-

prehend and integrate with other architectures as the properties should generally be

handled directly by the behaviour primitives.

6.3.3 Duration of activation

Action selection requires both recognising when to start a goal, and also how long to

pursue it. In ERGo, a goal and its associated behaviours become active when one goal’s

activation is higher than others. Activation continues building until another threshold

is reached and then it drops to zero (see Figure 6-3). This duration is controlled via the

stickiness ω of goals as part of the mechanism. This was also inspired by mammalian

behaviour when animals feed after a period of reduced available resources; they do not

stop feeding even if their stomach has reached its capacity. This is referred to as binging

[Mathes et al., 2010, 2009]. However, just as with the latch, performing behaviour for

enough time to build up reserves should be viewed as a normal part of action selection.

For an active behaviour Ba, once its goal conditions are met—αa = 1 and the agent

has accumulated enough resources of one type to reach δ—the stickiness is decreased

until is reaches zero. During this time, the behaviour still accumulates activation. In

other words, the agent—even though the goal Ga is met—continues to pursue Ga until

ωa = 0.

Ra(t) = Ra(t− 1) + (i ∗ µ)

The only way to interrupt this is either by having a higher activation due to an ur-

gency signal or due to an environmental interrupt which disturbs the current behaviour

and resets the activation to the lower boundary. Both phenomena are also present in

nature. For example, an animal is feeding and a predator jumps out of cover. If the

current feeding behaviour is not instantly interrupted, the animal would simply die.

The stickiness ω of ERGo is similar to a latch but is encapsulated within ERGo. Its

purpose is to allow the agent to handle environments where resources are sparse. It is
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Figure 6-3: Internal activation levels of three behaviours using ERGo. From time
t = 0 to t = 9 and t = 30 to t = 39 Behaviour1 is active having a higher activation. At
time t = 9 the success criteria for the first behaviour is met and the activation drops
resulting in the activation of the second behaviour. Behaviour2 is active from t = 10
to t = 19 where its goal is reached. As all behaviours have the same inclination, they
automatically schedule into an activation pattern. At t = 41 the urgency signals is trig-
gered for Behaviour3 resulting in an exponential gain of activation and an activation
at t = 47.

part of the internal model and hidden from the agent to allow for an easier integration,

minimising the parameters exposed by the agent with the aim to reduce the cognitive

load of a developer during design time.

For the experiments, the resources of each agent were initialised using a random

value within the bounds of δ and φ. This minimises not only possible direct conflicts at

start-up time, but it also provides more activity and liveliness to the simulation. The

latch is modelled using the internal motivational states of an agent, for example, hunger

or thirst. In contrast, the ramp uses a hidden internal counter of its activation, a signal

for urgent execution of the integrated behaviour, and a signal for when the behaviour

achieved its goal. Those mentioned signals dealt with asynchronously. Thus, ERGo’s

integration does not introduce additional conflicts by waiting for a trigger signal. This

allows us to run the computation of the ramp and its augmentation on even large sets

of behaviours in parallel.

6.3.4 Integration

Following the description of ERGo, the integration of ERGo into a particular agent

model and simulation3 is presented next. The description of the extended ramp so far

has primarily focused on explaining the mechanism of a single ramp. The interaction

between multiple ramps is managed within the execution frame of each augmented

3The simulation itself is discussed in the subsequent section.
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behaviour. Whenever a behaviour tries to gain the control, the system validates if other

behaviours have a higher activation—a mechanism similar to the selection process in

the Basal Ganglia. If those behaviours with a higher activation can execute, they will

suppress the behaviour trying to gain control. Thus, there is always only one behaviour

Bn ∈ B of augmented behaviours active. Due to this restriction, the selection is

always conforming with the rest of the underlying hierarchically ordered action selection

mechanism without overriding the general priority scheme.

To aid the understanding of the selection process the action selection mechanism

by [Bryson and Stein, 2001] is used, discussed in Chapter 2.2.9. Due to the modular

nature of posh, ERGo can be integrated as an additional sub-component into the

action selection mechanism without having to change large portions of existing code

or the general action selection scheme. A similar integration into a prominent game

approach such as BehaviorTree, discussed in Chapter 2.1.1, is possible based on the

similarity of posh and BehaviorTree (Bt). To allow for a better comparison of the

results, the original Flexible Latching code-base by Rohlfshagen and Bryson [2010] has

been modified. By extracting the Latching code from the behaviours, it has become

possible to integrate the resource storage, energy, and its adjustment back into each

of the behaviours. This extraction makes the whole code more transparent without

changing the functionality and exhibited behaviour. A benefit of this refactoring is,

the how and when of resource accumulatation is more visible, see the behavioural action

a drink in Code 6-4. The refactoring was required because beforehand, the behaviour

had no internal representation of its resource state other than the latch which internally

contained the problem specific parameter, thus, “hiding” important information from

the user.

The agent’s action is split into three distinct parts, see figure 6-4. The first part–line

1 to 8–is responsible for environmental interrupts. The simulation environment controls

when and how to trigger those interrupts. If the ramp should reset the activation, it

is calling GoalCell.reset(self) for each augmented behaviour. This reset () results in a

re-evaluation of the internal activation. The second part until line 16 is responsible for

either leaving a food patch when it is empty or telling the agent to feed on the resource

patch.

The last part in Figure 6-4 is referring to the goal criterion which informs an agent

that it is finished accumulating resources and that the ramp could release the activation

now. The release is triggered inside the reached goal method which is reducing the

stickiness and resetting of the ramp once the stickiness is zero.
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1 d e f a d r i n k ( s e l f ) :
2 i f s e l f . i n t e r . s h o u l d i n t e r r u p t ( s e l f . e n e r g y ) :
3 G o a l C e l l . r e s e t ( s e l f )
4 s e l f . p r e v t a r g e t l o c=s e l f . d r i n k t a r g e t . l o c
5 s e l f . t a r g e t=None
6 s e l f . s i g n a l i n t e r r u p t ( )
7 s e l f . i n t e r . i n c r e a s e c o u n t ( )
8 r e t u r n 0
9

10 i f not s e l f . t a r g e t . agent . R e s o u r c e s . s h a s f o o d l e f t ( ) :
11 s e l f . s i g n a l i n t e r r u p t ( )
12 s e l f . t a r g e t=None
13 r e t u r n 0
14

15 s e l f . t a r g e t . agent . R e s o u r c e s . a r e d u c e f o o d l o a d ( )
16 s e l f . e n e r g y += common increment
17

18 i f s e l f . e n e r g y > common upper :
19 s e l f . r e a c h e d g o a l ( )
20 r e t u r n 0
21 r e t u r n 1

Figure 6-4: Python code illustrating the inclusion of ERGo into an existing goal
module.

6.3.5 Summary of Augmenting Behaviour Arbitration

Current research on the Basal Ganglia suggests that a ramp-like activation function con-

trols the goal maintenance in the mammalian brain. In this chapter a new mechanism—

ERGo—which extends the application of the ramp beyond neural networks to more

abstract and light-weight action selection systems. The augmented behaviour is able to

react to sudden changes in the environment. The communication between the extended

ramp and the behaviour is through a well-defined, sparse signal flow. The implemen-

tation is using a low-cost computational model of the ramp and is based on a Python

agent using the posh action selection [Bryson and Stein, 2001].

1 d e f r e a c h e d g o a l ( s e l f ) :
2 i f not s e l f . a c t i v e :
3 r e t u r n
4 i f s e l f . s t i c k y > 0 :
5 s e l f . s t i c k y −= 1
6 e l s e :
7 s e l f . a c t i v a t i o n = s e l f . l o w e r b o u n d

Figure 6-5: ERGo’s reached goal definition, reducing the stickiness if the goal criteria
is met.
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In the next section, the test domain is described where multiple conflicting goals

can arise for an agent. Natural agents, from single cell paramecia to human beings, face

this situation regularly, and so should Interactive Virtual Agent. For example, a small

child indecisive if he should sleep because he is tired or to continue to play because

it is fun. Additional information on the agents’ behaviours is presented to allow for a

better understanding of the domain and the possible actions of an agent.

6.4 Evaluation

Behaviour-Oriented Design was chosen as the light-weight architecture test platform.

BOD allows the description of cognitive agents utilising the parallel-rooted slip-stack

hierarchical (POSH) dynamic plan structures. POSH includes a linear goal structure

where each goal has a fixed priority with respect to the others, although each goal can

be inhibited either by having unmet preconditions or through a system of scheduling.

One reason POSH is well-suited for the selected experiments is that it has already

been fitted with a modification to this structure to allow more biologically-plausible

action selection. This mechanism is Flexible Latching by Rohlfshagen and Bryson

[2010], described earlier in Section 6.3.2. As a simulation environment, the MASON

simulation platform [Luke et al., 2005] is utilised because of the well-defined and easy

to configure Java interface and because it offers and easier comparison to previous work

using MASON.

The simulation environment is modelled after Sim1 used by Rohlfshagen and Bryson

[2010] to reproduce their case study on the Flexible Latch. The world contains two re-

source types, water and food, equidistant from the centre of the map in 150 units. The

world is 600 by 600 units and the agents start at the heart of the map, see Figure 6-6.

Agents can travel two world units in any direction for every tick of the system clock4.

The map is wrapped around the horizontal and vertical edges. If an agent travels only

in one direction, it will create a circular path around the world. Due to the layout

of the map, there is no benefit from moving over the map edges as the distances are

exactly the same. It is also noteworthy to mention that an entity in the simulation is

unable to block a path, resource, or another agent in any way, which would be possible

in nature but introduce unnecessarily complicated dynamics for the task at hand. The

only time agents interact is during grooming.

Each agent constantly uses 0.1 resource units of water and food each tick to survive,

simulating natural metabolic costs and presenting the problem of self-sustenance. The

4To simplify the model, discrete time steps are used instead of real-time calculations which not only
allows more fine-grained control it also makes it possible to speed up the simulations beyond real-time.
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Figure 6-6: Simulation Environment in a Mason agent simulation. The world is 600x600
units. It contains two food and two water sources equidistant from the centre. All
agents spawn at the centre at time t = 0.

amount of energy needed does not change during the simulation even if an agent does

not move. If an agent’s accumulated store of one of the two resources drops to zero,

then the agent dies. All agents are initialised within a lower limit δ and upper boundary

φ for the two resources. Whenever an agent is feeding on one the resources, it gains

energy, 1.1 units of the resource. The gain is set to be larger than the consumption so

that the agent would have a chance of surviving and not continuously lose energy even

while feeding. For the experiment, the gain is set to ten times the metabolic cost.

To allow the agent to track when it urgently needs to feed on a resource, its “intel-

ligence” is made sensitive to when its units of a particular resource drop below δ—an

artificial threshold used for modelling hunger. Whenever the units reach the upper

bound φ, the agent is designed to detect that it has satisfied the need for that re-

source. Once a behaviour is satisfied, it may distribute its time across any other of

its goals. The shortest path between one food and water resource requires an agent

to spend approximately ten units of both resources which are the amount it can gain

from feeding for one tick. For the current experimental setting, the resources are never

depleted. Therefore, the agent only needs to take care of consuming enough food and

water to stay alive and pursue its other goals. A more realistic setting might include

patchy, degenerating resources, but this level of complexity will not be introduced to
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the current preliminary experiments because it would only distract from the current

objective of analysing noisy signals. At any rate, foraging theory is fairly well under-

stood, see Stephens and Krebs [1986]. This chapter focuses the research on lightweight

mechanisms for goal arbitration.

Figure 6-7: A condensed view of a drive collection. It specifies the behaviour of one of
the agents in the simulation and contains four behaviour drives, prioritised from top
to bottom. Drives B1 and B2 have equal priority, meaning they are equally important
and their priority must be arbitrated in some sensible manner so both can be achieved
in response to a direct internal conflict regarding the resources.

In Figure 6-7 a simplified version of a POSH action plan is given. This plan is

used for all agents in the simulation. Each agent has four drives which are prioritised

based on each drive’s position in the action plan. The higher the drive in the plan the

higher its priority. Each drive is designed to satisfy a specific goal of the agent, for

example, Drive B1 represents the need to drink. In POSH, those goals are specified

by internal or external senses, in this case, the sense wantstodrink. There is a special

case which is behaviour B4– the lowest-priority drive. The lowest drive should always

197



be able to execute as it is treated as a fallback as well. If no drive can be executed the

plan terminates and the agent will stop and terminate as well. The behaviours B1 and

B2 have equal priority indicating they are equally important to the agent—both are

required for its survival. At that point, the biomimetic augmentations are introduced to

ensure that both drives are met in an efficient way, with neither dithering nor neglect.

6.5 Results

In the chapter, we looked at the biomimetic mechanism based on research on the

Basal Ganglia—ERGo—for augmenting existing action selection mechanisms. The

experimental settings and the test environment in which the effectiveness of the ERGo

model compared to Flexible Latching were evaluated was presented and discussed to

allow for a better understanding of the results.

Figure 6-8: Comparing the three behaviour augmentations Static Latch, Flexible Latch
and ERGo. Illustrated is the change in invested time for an interrupt progression
i = [0, 1, 2, 3]. As the interrupts increase the Static Latch becomes unable to arbitrate
behaviours appropriately. This results in a high death of agents. ERGo and Flexible
Latch are able to adapt to the interruptions. ERGo agents remain significantly more
alive.

Fifteen independent trials per parameter were run to analyse the influence of each

tested parameter on the augmentation. Additionally, all simulation with the Flexible

Latching model were re-run as well to have a direct comparison on the same system.

Each trial run was allowed 5, 000 ticks, as in most cases the simulation either converged

to a stable state (death of all agents or a stable number of surviving agents) before

that time. With an increased number of trials (50 runs) in contrast to the original

15 trials, the system reaches stable results with a low standard error. At first, both
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approaches—Flexible Latching and ERGo— were analysed in relation to how well

they performed and how well they can handle non-hostile environments. In non-hostile

environments, both models perform well. Due to the random initialisation of the re-

sources for each agent’s internal storage, the standard deviation for all agents can be

quite large. To compensate this deviation, the number of trials was increased to the

previously mentioned 50 trials in comparison to the original 15 trials.

The following evaluation criteria were used to judge the quality of a well-performing

augmentation:

1. time the agent remains alive,

2. time left for individual behaviours beyond those needed for survival,

3. robustness in face of noise and interruptions, and

4. programmability.

For the experiments, the lower threshold was set to δ = 40 and the saturation

threshold to φ = 44.5. First, the augmented agents without interrupts were tested. In

all trials for this setting, all augmented agents remain alive, demonstrated in Figure 6-8

by the first three bars. Both Latches invest a fixed amount of time on the two highest

priorities,drinking and eating, and then spend the remaining time on lower priorities,

grooming and exploring . As exploration does not have any additional requirements com-

pared to grooming, the largest fraction of time is invested in exploring . Grooming and

exploring are not life essential to the agent and grooming has the additional require-

ment of having a grooming partner, thus, ERGo spends far more time in exploration

than both latches and less time in grooming. For future work, it might be interesting

to introduce a need or motivation for the agent to groom. Additionally, this additional

need for grooming would move the simulation closer to actual experiments on social

animal behaviour. The presented result is based on the mechanisms underlying the

Latch where a fixed threshold guarantees that extra time is invested in other actions.

However, ERGo’s stickiness ω applies a more dynamic criterion resulting overall in

more actions to be invested in all goals. Additionally, those actions can be interrupted

more easily which is visible in Figure 6-9 once the interrupts increase.

As the interrupts increase from i = 0 to i = 3, the Static Latch is persisting on

executing actions which are not advantageous. Flexible Latch is able to handle the

interrupts better than Static Latch, visible in the lower death rate. It scales down all

actions equally which puts high pressure on the agent, as the life essential actions are

also reduced. ERGo scales best, demonstrated by urgent behaviours inhibiting others
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from executing when they need to perform instead. Life essential behaviours maintain

the highest priority but lower level goals are still pursued.

Figure 6-9: Comparing the effects of interrupts on the priority hierarchy of behaviours—
demonstrated by comparing total primary and secondary behaviours. The amount of
higher and lower priority behaviours is nearly equal for both Latches allowing an equally
high proportion of lower priority behaviours to be executed. Once interrupts increase,
the Static Latch is unable to remain in a stable state—most agents die. Flexible Latch
and ERGo scale down the number of actions when interrupts increase. However, the
actions for Flexible Latch are decreasing disproportionate compared to ERGo.

Figure 6-8 illustrates how the differentiation between lower and higher priority

behaviours is handled in both, Latches and ERGo. With increased interrupts ERGo

and Flexible Latch scale down but ERGo maintains a similar ratio of higher and lower

prioritised behaviours.

As ERGo responds only to signals by the agent, it does not optimise free time as effi-

ciently as the hand-tuned Flexible Latch. However, the presented approach minimises

the interdependence of particular parts of an agent, thus, increasing the robustness

and programmability of it. For the new model, no problem-dependent parameters were

specified in ERGo with the goal to allow for a better integration into other action

selection mechanisms and the creation of a general purpose augmentation.

The focus of the current experiments was mainly on noise in the decision process

and especially on interrupts. This focus allowed the analysis of how well an agent is

able to handle non-scripted situations, e.g. unpredicted player interactions in a game.

Increasing the interrupts is in some ways similar to players probing or testing an agent

or system by trying to find a way of breaking it. In heavily scripted games or full

information games, the agents are typically not affected by such attacks. However the
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more agency, dynamic planning and uncertainty is introduced into games, the easier it

is to break the agents due to the need to react to different stimuli depending on the

situation.

Figure 6-10: Influence of increasing numbers of interruptions on death rate and exe-
cuted primary actions—eating and drinking—for Flexible Latch and ERGo. Flexible
Latch presents a higher death rate in all settings. For the number of high priority
actions, ERGo and Flexible Latch start equally, around 1000 actions. As interrupts
increase, ERGo performs more high priority actions until 8 interruptions per successful
behaviour .

The results of a further interrupt increase are presented in Figure 6-10. The graphs

illustrate the influence of interrupts by using a linear increment from 0 to 10 and a

final increase to 20 interrupts to understand if some significant changes or converging

behaviour is emerging.

Two interesting observations are possible from the figure. The first is the point

where death rate and primary actions cross for each augmentation. This point indi-

cates a shift in the agent behaviour where on average the agent loses much activity and

liveliness. For Flexible Latching, this point is before one interrupt per goal attempt.

ERGo reaches the same situation at two interrupts. This difference suggests that

ERGo augmented behaviours at least in the observed experiments are more resilient

in terms of interrupts. The second observation supporting the previous suggestion is

that, while ERGo is performing a similar amount of primary actions per simulation,

the death rate is always a considerable amount lower than for Flexible Latching. Addi-

tionally, there is also a larger number of secondary actions ERGo performs. It can be

argued that a change of latch size or the lower threshold δ could compensate for that.
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However, the central point to emphasise here is that hand-tuning can also be done for

ERGo when modifying the stickiness of goals or the activity modifiers.

As soon as disruptions and interrupts were introduced into the agents’ behaviour

maintenance process, the static latch agent has a considerable action drop even by

introducing only one interruption per behaviour. The Flexible Latch instantly cuts to

a third of its actions. With increased noise and hostility of the environment the biggest

advantage of ERGo becomes visible. The whole range of executable behaviours scales

in a way that allows more agents to stay alive, active and lively—demonstrating the

full range of possible behaviours. The ERGo action activity is only dropping by a

tenth compared to the noise free setting. The more interruptions are introduced, the

bigger the impact on the death rate of the latched agents whereas a significantly higher

percentage of the ERGo augmented agents remain alive.

Summarising the results: In this section, experimental results from evaluating the

extended ramp goal model—ERGo—are presented. Those results were compared to a

similar biomimetic approach—Flexible Latching [Rohlfshagen and Bryson, 2010]. The

experiments stressed the ability of both methods to handle noisy action selection based

on interrupts in the selection process. A particular focus was put on environments

where action selection was already difficult. At the beginning of this section the eval-

uation, criteria defining good results were set. Throughout the chapter, we looked at

experimental results indicating that ERGo is able to handle more interrupts keeping

agents longer alive and Figure 6-9 demonstrates that the approach scales well without

sudden quality fall-offs. ERGo is only in the case of grooming behind the Flexible

Latching as this would have forced a specific signal for “enough” grooming, which did

not exist in Flexible Latching. However, ERGo’s integration requires less hand-tuning

and ERGo itself is well encapsulated and more robust, based on its independent in-

ternal ramp and the usage of asynchronous signals. The next section concludes the

experimental results and presents potential areas for further improvement.

For upcoming experiments it would be interesting to have a closer analysis of the

impact of noise and interruptions on ERGo augmented behaviour and verify the pre-

liminary findings. A focus of future research could also be on identifying the effects

of the inclination gain and the exponential modifier for the gain on the robustness of

generic agents.
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6.6 Concluding An Augmentation for Behaviour Arbitra-

tion

The current results indicate that the ramp function outperforms the Flexible Latching

in certain scenarios even when it is not hand-adapted for the particular problem. It

offers some unique features which offer additional potential. The ramp acts only upon

a small set of signals and needs less fine-tuning to perform well. It has an easy-to-

understand visual representation of the maintenance and inhibition process, presenting

what can potentially be called a novice-friendly or intuitive approach to alter the arbi-

tration process. Future work is needed on the influence of finer grained prioritisation

and the control of the ramps precise inclination gain for distinct behaviours. This anal-

ysis could provide valuable insights and show the extent to which the ramp can scale

to a variety of problems.

More generally, the ability of lightweight cognitive architectures and their impor-

tance in a variety of domains has been discussed. Based on the lower computational

overhead and high practical applicability, it seems reasonable to give more attention

to research on advancing those architectures to fully explore more restrictive environ-

ments. This investigation of light-weight augmentations could provide fruitful results,

for example for the games industry, by expanding beyond the current capabilities of

agent design and architectures, but also to robotics, and scientific and philosophical

simulations.

To create a better understanding of challenges in those domains, a development

project was started to apply the developed light-weight augmentation to digital games,

aiming at experiments with perceived behaviour selection and how different users com-

pare selection processes in virtual agents. For this, a first prototypical smartphone

game for Android was developed—StealthierPOSH. The game integrated the re-

sults of Chapter 5 and the new light-weight behaviour augmentation presented in this

chapter.

Architectures like those presented here, including the currently-popular spreading-

activation architectures such as the Global Workspace Theory (GWT) [Baars,

2002; Shanahan, 2006] and LIDA [Franklin and Patterson Jr, 2006] cannot account for

all of action selection [Rohlfshagen and Bryson, 2010]. Bryson [2005] argues that many

details of action selection are handled by other, simpler neurological mechanisms in real

primates, and computer science gives a good reason—combinatorics. Goal selection—

the focus of interest—is a differentiable sub-part of action selection overall, one that

requires competition between all of what may well be a limited set of contenders. The

work presented in this chapter may provide a useful concept suitable for a large variety
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of applications, including perhaps better understanding Nature itself.

In this chapter, we presented a novel approach—ERGo—for augmenting action

selection system. The approach was compared against a similar approach in an agent-

based modelling environment. The augmentation is a “white-box” plugin for existing

systems and requires no initial adjustment to domain specific parameters and has a low

computational overhead. ERGo is intended to handle highly competitive behaviours

in noisy environments and introduces non-deterministic behaviour expression based

on the effects of the summatory release mechanism. It was also included in a mobile

game to demonstrate its low overhead and easy integration allowing developers to

enhance their IVA without intensely reworking their arbitration mechanism or requiring

extra computational resources. Due to its modular integration into posh-sharp as an

optional package it increases the creative potential of posh-sharp without forcing

developers to use it.

In the next section, an approach for evolving agents from human play data is

presented. In contrast to similar approaches, the approach works from a clean slate,

developing non-trivial agents from scratch in the form of executable Java programs.

This approach can be used in a similar way to the ramp, discussed in this chapter can

be used by designers to modify or create new agent behaviour supporting their creative

expression. Additionally, the evolutionary approach uses human play data and, thus,

creates models of the player.
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Chapter 7

Evolutionary Mechanisms for

Agent Design Support

In the previous chapter, an augmentation for action selection mechanisms was pre-

sented which allows agents to respond better to noisy environments or signals. This is

especially important for Interactive Virtual Agent (IVA) in cases where the player is

responding in ways which have not been considered at design time. The augmentation

is intended for agents with multiple competing goals using only a low computational

overhead on top of the existing system.

In this chapter, a novel approach for evolving agents is presented which uses genetic

programming to create agents in the form of executable Java code. In contrast to other

evolutionary or learning approaches such as artificial neural networks, discussed in

Chapter 2.1.3, the agents derived in this work are in human-readable form which allow

further modification and more importantly analysis of the agent. The approach is

intended as a proof of concept showing the possibility of creating complex agents from

human controller input in a “learning from demonstration” way.

7.1 Contribution

In this chapter, I demonstrate the application of Genetic Programming in combination

with raw user input to the control of an IVA. The chapter is based on published work

presented at the 17th Portuguese Conference on Artificial Intelligence by Gaudl et al.

[2015]. The chapter is the result of a collaboration with the University of California,

Santa Cruz. The work integrates for the first time a similarity metric for strings

into a learning game environment. The main contribution is the proof of concept

for developing an evolutionary system which produces human-readable and modifiable
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agent descriptions for games solely based on recorded human input. Thus, allowing the

system to learn executable player representations by example. My contribution to this

work is 80%.

7.2 Introduction

Designing intelligence is a sufficiently complex task that it can itself be aided by the

proper application of AI techniques. In this chapter, a system that mines human be-

haviour to create automatically better Game AI is presented. Genetic programming

(GP), described later, is utilised to generalise from and improve upon human game-

play. Moreover, the resulting representations are amenable to further authoring and

development which is a central point of the entire work by following the direction to

create a more robust development process through tool and methodological support.

When introducing the GP method for evolving IVA, the system uses unfiltered,

recorded human play in the form of button input signals. The system uses the plat-

formersAI toolkit, detailed in Section 7.4, in combination with Java genetic algo-

rithm and genetic programming package (Jgap) as the evolutionary component.

Meffert et al. [2000] developed Jgap as an evolutionary framework for GA and GP ap-

proaches. It is entirely written in Java and offers a mechanism to evolve fully working

Java programs, in our case game agents. When the system is given a set of command

genes (functions used by the agent), a fitness function, a genetic selector and an inter-

face to the target application, it creates an initial set of programs which undergo an

evolutionary process, altering the program pool for each generation. In the case of this

case study, Jgap was extended to generate automatically artificial players by creating

and evolving Java program code which is fed into the platformersAI toolkit and

evaluated using our player-based fitness function.

In the next section, we look at how the system derives from and improves upon the

state of the art. Section 7.4 describes the system and its core components, including

details of the fitness function. The chapter concludes by describing our initial results

and possible future work.

7.3 Background & Related Work

In practice, making a good game is achieved by a good concept and long iterative

cycles in refining mechanics and visuals, a process which is resource consuming. It

requires a large number of human testers to evaluate and judge the qualities of a game.

Thus, analysing tester feedback and incrementally adapting games to achieve better
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play experience is tedious and time-consuming. This process is part of the general game

development which is separated into the three to four subsequent phases discussed in

Chapter 1.2.1. However, the feedback from testers which is needed to make adjustments

is only available at certain times, and it requires rigorous preparation to get valuable

feedback. Additionally, including a large number of testers increases the risk of leaking

details about the game either onto the internet or to competitors, which is highly

undesirable.

At that point, the approach presented in this chapter comes into play by aiming

to minimise human-involved development time, manual adaptation and testing time.

Nonetheless, the primary focus while optimising the existing industrial practice is to

allow the developer to remain in full control of the process and the resulting agents.

7.3.1 Agent Design

Designing IVAs or game agents was initially very limited and involved only the ren-

dering of clusters of pixels on the screen and the coordination of simple deterministic

movement of those clusters. These simple early approaches were based on early hard-

ware limitations; more sophisticated approaches were not feasible. With more powerful

computers, it became possible to integrate more advanced approaches. The original

game PAC-MAN contains a very restricted logic system for controlling the game char-

acters (ghosts) but this concise system allows the developer to understand and grasp

most of the code. Nonetheless, it was still complex enough that during the develop-

ment of the version for the Atari system, new errors were introduced into the logic

as described by Montfort and Bogost [2009]. Current games make the design of the

contained agents more complex and time-consuming, a negative factor in the develop-

ment process discussed by Mateas and Stern [2003] and detailed in Chapter 2.2.1. To

address this issue, more sophisticated approaches such as BehaviorTree (Bt) were

introduced when designing agents.

In 2002, Isla introduced the BehaviorTree for the game Halo, later elaborated

by Champandard [2003]. Bt has become the dominant approach in the industry as it

allows for a very visual structure of agents. The approach developed on Chapter 5.3 is

functionally very similar and also can be visualised and edited in a structurally simple

way. Even though the contained plan in Parallel-Rooted Ordered Slip-Stack Hierar-

chical (POSH) is a directed graph, the tree visualisation and simplification the editor

provides are also favoured by the industry, apparent in the existence of the described

editors in Chapter 2.3. Those approaches are designed to allow game designers and pro-

grammers to develop complex agents. For sophisticated or large agents, a tree design

still contains large nested trees which require manual adjustment during development
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and design. As the game evolves from an early prototype allowing a character to navi-

gate between spaces, new features need to be added to convey the intended behaviour.

A way to support or replace this iterative adjustment and development of agents is

using generative approaches.

7.3.2 Generative Approaches

To generatively develop agents, techniques from artificial neural networks or genetic al-

gorithms are mostly used, see Chapter 2.1.3. Holmgard et al. [2014]; Ortega et al. [2013]

build models to create better and more appealing agents using generative systems. In

turn, the resulting generative agents use machine learning techniques to increase their

capabilities. Using data derived from human interaction with a game—referred to as

human play traces—can allow the game to act on or re-act to input created by the

player. By training on such data, it is possible to derive models able to mimic certain

characteristics of players. One obvious disadvantage of this approach is that the gener-

ated model only learns from the behaviour exhibited in the data provided to it. Thus,

novel behaviours are not accessible because a player never exhibited them. Orkin [2005]

describes the emergence of new behaviour as one of the benefits of their approach, but

the novelty of the result is very limited.

In contrast to other generative agent approaches [Perez et al., 2011; Togelius et al.,

2012; Ortega et al., 2013], the presented work combines features which allow the gen-

eration and development of truly novel agents in a directed manner. The first is the

use of un-authored, recorded player input as direct input into our fitness function,

this allows the specification of agents only by playing. The second feature is that the

agents are actual programs in the form of Java code which can be altered and modi-

fied after evolving into a desired state. This possibility of amending a learning agent

creates a white box solution. While Stanley and Miikkulainen [2002] use artificial neu-

ral networks (ANNs) to create better IVA and enhance games using Neuroevolution,

the developed system utilises genetic programming [Poli et al., 2008] for the creation

and evolution of artificial players in human readable and modifiable form. The most

comparable approach is that of Perez et al. [2011] which uses grammar based evolution

to derive Bts from an initial set and arrangement of sub-trees. Using an initial set of

agents speeds up and directs evolution in a way which reduces the possible space of

solutions. In contrast to their approach, the evolutionary method introduced in this

chapter starts with a clean slate to evolve novel agents from scratch.

To better replicate human behaviour or to model human-plausible behaviour, it

is essential to understand how humans express themselves. Our focus in this chap-

ter is not on understanding the complete reasoning process behind certain expressed
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behaviours. Systems such as ACT-R [Anderson, 1993], SOAR [Laird et al., 1987] or

ICARUS [Langley et al., 1991] are built for that purpose and require a tremendous

amount of initial design and computational power to run agents. We aim to purely

abstract a thin and less complex layer on top a much simpler model. In our particular

case, the work tries to replicate human gameplay behaviour exhibited in digital games.

An assumption of the work is that using raw input data to create ”white-box” agents is

a useful first step and a good starting point to be able to replicate a particular expressed

behaviour given a finite, small set of information about the situation and environment

the expressed behaviour originated in. We use the term superficial to differentiate the

approach from the previously mentioned heavy-weight approaches such as ACT-R and

focus on a more lightweight model of human expressed behaviour modelling.

7.3.3 Genetic Programming

Evolutionary Algorithms (EA) extend the metaphor of biological evolution into the

domain of computation systems [Bäck, 1996; Schwefel, 1993]. They adopt concepts from

genetics such as genes, mutation, or recombination to describe a process of adjusting

programs or program parameters in an incremental process. The field of EA can be

subdivided into four areas discussed in Chapter 2.1.3. Here, Genetic programming is

used in an approach to evolve artificial agents. GP was first introduced by Koza [1992]

as an extension of genetic algorithms.

For explaining the method we can use following terminology: A given GP uses I

as the search space containing all individuals a ∈ I and F : I → R as the fitness

function which assigns a real-valued fitness value to each a. The size of a population

of programs, in our case agents, is specified by µ for the parent population and λ for

the offspring population size. P (t) represents a given population at time t and consists

of individuals of type a. To alter a population mutation, recombination and selection

operators are utilised, each with specific characteristics, Θ.

The GP uses following steps to evolve programs based upon the biological concepts

of evolution. Before starting the evolutionary process, the time t = 0 is set to track

the evolution of the population P (t). The population P (t = 0) is initialised with

either random or predefined individuals P (t = 0) = {a0(t = 0), . . . , aµ(t = 0)}. The

initialisation is a crucial step for each EA and is different for each actual approach.

Depending on the modification criteria Θr, Θm, an initial evaluation of the pool is

carried out to assign each individual a a fitness value. For a genetic programming

approach, Θr is the most important parameter and is dominating the other operators

because recombination is the driving force behind GP. The mutation operator—Θm—

is in GP only used to as a secondary operator to introduce noise and a small random
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effect into the process, Bäck [1996].

Genetic Programming Process:

1. (Recombination)

A new population is created P ′(t) = recombine(P (t),Θr) using the parent gener-

ation and the specific criteria for creating a new population P ′(t). The criteria for

the current work are given in Figure 7.1, where the parent percentage is specified

as well as the recombination pool size, κ as well as the recombination method.

2. (Mutation)

To better explore the solution space and to reduce the chances of getting stuck

in a local optima, P ′′(t) is created by taking each individual a′(t) ∈ P ′(t) and

exposing it to the possibility of mutation a′′(t) = mutate(a′(t),Θm) putting the

exposed individual into P ′′(t) = {a′′0, . . . , a′′λ(t)}. For GP, the mutation probability

is extremely small, in some approaches mutation is not used at all.

3. (Evaluation)

During this step, the population is evaluated by calculating the fitness of each in-

dividual, taking the total number of offspring into account. F (t) = evaluate(P ′′(t), λ)

4. (Selection)

During selection a set of offspring is chosen to go into the new generation as λ

can be larger than µ. The new population P (t + 1) = selection(P ′′(t),Θs) is

created from P ′′(t) and additional criteria are applied Θs according to the used

approach.

5. (Clean Up and Increment)

This step is important in computational systems especially when performance and

memory are restricted. It offers a way to optimise the speed of the approach but

due to the different focus of the current case study is not further explored here.

All elements which have not made it into the previous generation are cleared,

and approach dependent measures are taken either to save the fittest individuals

or insert specific individuals into the new generation by force. Additionally, the

generation counter is incremented.

Most GP approaches use lisp-like structures or decision trees to describe the pro-

grams ai. Based on the re-combination method, those representations are then altered

by taking a number of parent programs and creating a new child. The main difference

to other evolutionary approaches is that the size of a program ai(t) ∈ P (t) is not fixed
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but can change over time allowing a greater exploration of the solution space. Once the

last step in the GP process is reached, the loop starts again until a solution criterion

is reached and the approach either returns the best solution program or a list of the

progressions of all potentially best programs.

7.4 Setting and Environment

Evolutionary algorithms have the potential to solve problems in vast search spaces,

especially if the problems require multi-parameter optimisation [Schwefel, 1993, p.2].

For those problems, humans are typically outperformed by programs according to Smit

and Eiben [2009].

Using genetic algorithms (GA) allows a system to exploit a given program by evolv-

ing the parameters to better fit the solution. As a base, an already given program is

used, which is not changed over the course of the evolution. This also means that the

resulting genotype has a fixed length of chromosomes. Genetic programming (GP), as

discussed earlier, explores the solution space more broadly by altering the structure

and size of a program over time. This broader exploration is ideal for identifying en-

tirely unknown solutions as the genotype has no fixed length. The size of the solution

program tree can vary considerably making it possible to evolve programs describing

more sophisticated approaches to a problem. The downside of using any evolutionary

method is that finding a solution takes time and evolving programs using GP takes

more time compared to pure parameter optimisation because the approach is exploring

the solution space with a less strict focus.

Jgap uses a pool of program chromosomes P and evolves those in the form of de-

cision trees (DTs), see Figure 7-3. For our experiments the platformersAI toolkit

(http://www.platformersai.com) is integrated with Jgap. It consists of a 2D plat-

former game (see Figure 7-1). It is similar to existing commercial products and contains

modules for recording a player, controlling agents and modifying the environment and

rules of the game.

The Problem Space is defined by all actions an agent can perform. Within the

game, agent A has to solve the complex task of selecting the appropriate action each

given frame. The game consists of A traversing a level which is not fully observable.

A level is 256 spatial units long, and A should traverse it left to right. Each level

contains objects which act in a deterministic way. Some of those objects can alter the

player’s score, e.g. coins. Those bonus objects present a secondary objective. The goal

of the game, moving from start to finish, is augmented with the objective of gaining

points. A can get points by collecting objects or jumping onto enemies. In Figure 7-1,
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Figure 7-1: The platformersAI toolkit allows researchers to develop and research
agents for real-time two dimensional platform games. The player is at the centre of the
figure surrounded by a sensory grid overlay. The grid illustrates the agents capability
in sensing the world. The game is resembling the SuperMario game series developed
by Nintendo.

five enemies are visible in the lower half, as well as multiple coins and the player at

the centre of the 20 × 20 grid. To make it comparable to the experience of similar

commercial products, a realistic time frame is used similarly to the one a human would

need to solve a level, 200 time units. The level observability is limited to a 6× 6 grid

centred around the player, cf. Perez et al. [2011].

Agent Control is handled through a 6-bit vector C: left, right, up, down, jump and

shoot|run. The vector is required each frame, simulating an input device. However,

some actions span more than one frame. This is a simple task for a human but quite

complex to learn for an artificial agent. One such example, the high jump, requires the

player to press the jump button for multiple frames. Our system has a gene for each

element of C plus 14 additional genes formed of five gene types: sensory information

about the level or agent, executable actions, logical operators, numbers and structural

genes. All those are combined on creation time into a chromosome represented as a DT

using the grammar underlying the Java language. Structural genes allow the execution

of n genes in a fixed sequence, reducing the combinatorial freedom provided by Java.

Evaluation of Fitness in our system is done using the Gamalyzer-based play trace

metric which determines the fitness of individual chromosomes based on human traces

as an evaluation criterion.
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For finding optimal solutions to a problem, statistical fitness functions offer near-

optimal results when optimality can be defined. For this work the main interest lies

in understanding and modelling human-like or human-believable behaviour in games

to aid the design of deeper agent behaviour IVAs. There is no known algorithm

for measuring how human-like behaviour is; identifying this may even be computa-

tionally intractable. A near-best solution for the problem space of finding the optimal

way through a level was given by Togelius et al. [2010] using the A∗ algorithm. This

approach produces agents that are exceptionally good at winning the level within a

minimum amount of time but at the same time are clearly distinguishable from ac-

tual human players. For games and game designers, a less distinguishable approach is

normally more appealing—based on our initial assumptions.

7.5 Fitness Function

Based on the biological concept of selection, all evolutionary systems require some

form of judgement about the quality of a specific individual—the fitness value of the

entity. Our Player Based Fitness (PBF) uses multiple traces of human, th, and agent,

ta, players to derive a fitness value by judging their similarity. For that purpose, we

integrate the Gamalyzer Metric—a game independent measurement of the difference

between two play traces. It is based on the syntactic edit distance ddis between pairs

of sequences of player inputs introduced by Osborn and Mateas [2014]. It takes pairs

of sequences of events gathered during gameplay along with designer-provided rules for

comparing individual events and yields a numerical value in [0, 1]. Identical traces have

distance ddis = 0 and incomparably different traces ddis = 1.

Gamalyzer finds the least expensive way to turn one play trace into another by

repeatedly deleting an event from the first trace, inserting an event of the second trace

into the first trace, or changing an event of the first trace into an event of the second

trace. The game designer or analyst must also provide a comparison function which

describes the difficulty of changing one event into another.

The other important feature of Gamalyzer, warp window ω, is a constraint that

prevents early parts of the first trace from comparing against late parts of the second.

This is important for correctness (a running leap at the beginning of the level has a

very different connotation from a running leap at the pole at the end of each stage).

For our purpose, only the input commands players use to control the agent are

encoded—the six commands introduced earlier. This allows us to compare against

direct controller input for future studies and to help designers sitting in front of the

controls analysing the resulting character program. The PBFcurrently offers two pa-
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Figure 7-2: The evolved agents’ fitness us-
ing PBF (10000 generations), in red the
fittest individuals, in black the averaged
fitness of all agents per generation.

Table 7.1: GP parameters used in within
the presented work.

Parameter Value
Initial Population Size 100
Selection Weighted Roulette

Wheel
Genetic Operators Branch Typing

CrossOver and Sin-
gle Point Mutation

Initial Operator proba-
bilities

0.6 crossover, 0.2 new
chromosomes, 0.01 mu-
tation, fixed

Survival Elitism
Function Set ifelse, not, &&, ||, sub,

IsCoinAt, IsEnemyAt,
IsBreakAbleAt, . . .

Terminal Set Integers [-6,6], ←, →,
↓, IsTall, Jump, Shoot,
Run Wait, CanJump,
CanShoot, . . .

rameters: the chunk size, cpf , and the warp window size, ω. The main advantage over

a pure statistical fitness function is that a designer can feed our system specific play

traces of human players without having to modify implicit values of a fitness score.

To make a stronger emphasis on playing the game well, we create a multiobjective

problem using an aggregation function g to take ∆d—the moved distance—and the fit-

ness fptm for an agent using the player-based metric PBF into account, see formula 7.1.

Using g we were able to put equal focus on the trace metric, fptm ∈ [0 . . . 1] ⊂ R, and

the advancement along the game, ∆d ∈ [0 . . . 256] ⊂ N.

f(a) = g(fptm(ta, th),∆d) (7.1)

7.6 Results & Future Work using GP

Using the experimental configuration and the PBF fitness function makes it possible

to execute, evaluate and compare platformersAI agents against human traces. For

the parameters needed to define the approach, the settings from table 7.1 are used.

As a selection mechanism, the weighted roulette wheel is used and additionally the

fittest individual of a generation is preserved. For the recombination, a single point

tree branch crossover on two selected parent chromosomes is used, and the resulting

child is after recombination exposed to a single point mutation before it is put into the

new generation.
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Figure 7-2 illustrates the convergence of the program pool against the global op-

timum. Good solutions such as the agent in Figure 7-3 are on average reached after

700 generations when an agent finishes the given level. First experiments show that

the approach indeed is able to train on and converge against raw human play traces

without stopping at local optima, visible in the two dents of the averaged fitness (black)

diverging from the fittest individual (red).

Figure 7-3: An evolved agent that is able to pass the level from start to finish. The
agent emerged after 700 generations and is the result of using the human play trace in
combination the PBF metric.

A next step would be to investigate the generated modifiable programs further and

analyse their benefit in understanding players better. However, the current solution

already offers a way to design agents for a game by simply playing it and creating

learning agents from those traces. Other possible directions could be the expansion

of the model underlying Gamalyzer to model specific events within the game rather

than pure input actions. This should provide interesting feedback and offer a better

matching of expressed player behaviour and model generation.

The current agent model consists of an un-weighted tree representation containing

program genes. Currently, subtrees are not taken into consideration when calculating

the fitness of an individual which is common in GP as sub-tree evaluation requires

extra computing time and a specialised approach. By including those weights it would

be possible to narrow down the search space of good solutions for game characters
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dramatically, also potentially reducing the bloat of the DT. So, to enhance the quality

of our reproduction component, it might be a possibility to investigate the applicability

of behavior-programming for GP (BPGP) Krawiec and O’Reilly [2014] into the system.

7.7 Evolutionary Mechanisms Summary

In this chapter, we examined and discussed a proof of concept for creating non-trivial

agents from unfiltered human play data. The approach evolved agents which will able

to complete a game and reproduced similar results to the “original human” player.

Extending this concept, designers are now able to express a certain behaviour in a

game environment while playing and use the presented genetic programming approach

to evolving artificial players, resembling this behaviour. The resulting behaviour can,

later on, be further modified and tuned by programmers. However, designers and

novice users are now able to create first prototypes of intentional agent behaviour

without the need to touch the underlying programming environment. This approach

not only supports the design of robust agents but also the separation of tasks between

programmers and designers.

A further benefit of this approach is to analyse the resulting agent representation,

not with the focus of creating better agents but to understand the user’s motivation

and approaches to the game better. Using such an automated approach based on obser-

vation allows additional insights into possible player models and provide a completely

new direction of future research.

In the next chapter, the results of this thesis are put into relation with the current

state of the art discussed at the beginning of this work. Different aspects of IVA design

are discussed to show research opportunities which became visible during this thesis

but could not be addressed due to the focus on creating a robust, simplified process for

agent development. In the next chapter we compare the literature to the contributions

of this thesis and discuss specific points of the new approaches in wider detail which

opens up new possible research directions for future work.
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Chapter 8

Discussion & Future Work

In the previous chapters, we presented the individual contributions of this thesis in

isolation, addressing different parts of our research question. When we now take a step

back and remember the initial question which motivated this work,

How can the design cost for behaviour-based AI be reduced?

we are able to view the contributions as partial answers that form one answer to our

question. We introduced and discussed:

• Agile Behaviour Design as a new methodology for game AI development by

combining agile elements of software processes and an existing agent design ap-

proach. techniques a more directed and supporting approach.The new method-

ology presents guidelines for developing agents reducing the interdependencies

between team members and strengthening their independence. It also supports

the development of games in industrial contexts by incorporating features from

scrum—an agile process model.

• The posh-sharp agent framework for creating agents allows the development of

light-weight game AI systems and includes extensions such behaviour versioning

and behaviour inspection to increase the robustness of new agent systems and

support the development of game AI for novice users. The approach was de-

veloped with deployablity and mobile device support. The systems addresses a

subset of the identified weaknesses of all surveyed architectures and provides a

novel platform for experimentation.

• A survey of the state of the art of game AI techniques was created as a primer for

future Interactive Virtual Agent (IVA) research and used to identify the potential

points for advancing or creating a new approach. This survey integrates academic
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and industrial research on components, architectures and approaches to IVA into

a wholistic view on the topic.

• To enrich the pool of agent capabilities, ERGo, a low-cost mechanism for altering

the selection process of goals and behaviours, was introduced into posh-sharp.

This novel augmentation is also applicable to other systems due to the low cou-

pling and its “white-box” nature, requiring no domain specific parameters. It

introduces a new form of memory into the selection process, the extended ramp

goal. This summatory memory allows a behaviour to take control using an inter-

nal motivational state or need. ERGo is a light-weight bio-mimetic mechanism

for creating non-deterministic behaviour that can be designed. It addresses the

industrial need for easy to integrate but flexible approaches to goal selection.

• A new GP system using recorded input data from human players is presented

to offer the possibility to evolve artificial players in a form amendable for fur-

ther authoring. The resulting agent design approach allows for a “learning by

example”-way of evolving non-trivial, understandable and amendable agents as

executable program code. The developed approach evolves artificial players us-

ing play traces in the form of Java program code allows for the inspection of

possible underlying models of the player’s motivation or reasoning process.

To relate those contributions back into current game development, let us have a look

at the current development of games again. Game development is a time-consuming

process and current games require a vast amount of resources during their production,

similar to movie productions. A state of the art game such as Grand Theft Auto

V by Rockstar Games required a development budget of over 250 million US Dollars

and took five years of development for a team of approximately 1000 people. During

those five years, the same stages of game development as described in Chapter 1.2.1

were followed, leading through a staged process of development from concept to post-

production. Even for smaller productions, the process of development is similar.

To allow the development of such diverse projects, process models from software

development are currently used to guide the creative process as well as the overarching

development of a game. According to Keith [2010], Scrum is the most suited for digital

game development as it combines the flexible and iterative nature of agile processes

with a guided model to integrated the three stages of software development for games.

A problem in traditional software process models including the one presented by Keith

[2010] is the integration of creative input and design which is needed for game AI

development and more specifically for agent design as artificial agents or IVAs represent

the most complex parts of games in terms of their logical design.
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O’Donnell [2012] argues that a new or adapted process is needed to better facilitate

the creative nature of the game development approach and that “just” a software de-

velopment approach is not enough. Based on the process analysis presented in Chap-

ter 3, essential process steps of IVA architectures and their design approaches were

analysed and the System-Specific Step was developed to capture and describe the

individual differences between the three, Abl, FearNot! Affective Mind Architecture

(FAtiMA) and Behaviour-Oriented Design (Bod). Two of the approaches,Abl and

FAtiMA, do not provide an explicit approach to design or development. However,

both approaches are used by close-knit communities which iteratively learn from more

senior team members. Thus, they employ an implicit development process that is not

explicitly communicated but implicitly inherited. By analysing the development teams,

essential steps for both systems were identified by Grow et al. [2014]. Related weak

points such as missing debug support, missing architectural design knowledge and the

need for visualisation of the executing behaviours became more transparent for each

approach. Grow [2015] extends those findings and proposes additional components to

support the development of Abl IVAs in her advancement proposal. Weber et al.

[2011] includes his own design into the Abl system and introduces managers which

alter the overall design of an Abl behaviour tree by including parallel behaviours for

each manager. This makes the usage hard for novice developers or more design focused

team members as no coherent, explicit concept is present. Based on the literature

survey and the conduced informal interviews common elements between most IVA are

existent which allowed us to propose the System-Specific Step (sss) as a way of

identifying the underlying implicit design rules which are otherwise hidden.

The same methodology can be applied to BehaviorTree, which is a data structure

to design complex dynamic systems. Isla [2005] and Hecker [2009] discuss their usage

and development approach and the difficulties that they encountered when developing

robust, efficient game AI systems. However, they focus their attention on programmers

and omit most of the control for non-programmers reducing their creative expression

to the selection of navigation points in the virtual environment where events should

occur. Anguelov [2014] describes in his argument for a programmer-driven approach

to BehaviorTree (Bt) the need for more expressive tools and a system usable by

designers, as argued for by O’Donnell [2012].

The posh-sharp system we propose is structurally similar to Bt, based on the

underlying structure Parallel-Rooted Ordered Slip-Stack Hierarchical (POSH), and

provides a guided approach to agent design which is missing from Bt. Guidance is

suggested as one of the elements identified using the sss and in the survey which aids

the design and similar to simplicity of the approaches supports industrial applicabil-
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ity. Behaviour-Oriented Design, introduced by Bryson and Stein [2001] for creating

reactive bbai, comes with an explicit development methodology that focuses on fast

prototyping and iterative development. However, the original Bod was designed for

the development of behaviour-based robotics and agent simulations and is mostly used

in academic contexts for developing light-weight agents. Bod is not adjusted for the

requirements of distributed or shared development and time-dependent teamwork. In-

tegrating the knowledge from Chapter 3 and features from Scrum into an extended

version of Bod was tested in two projects presented in Chapter 4. The first is a

StarCraft case study and its extended version using a guided design to arrive at

a sophisticated agent. This process further separated the activities of design and

implementation and guided the scheduling of development based on an overarching

process instead of pure iterative development. The second is the development of a

mobile game integrating the extended ramp model from Chapter 6. Applying the same

methodology to the development across platforms was less problematic as the under-

lying structure—posh-sharp—supports a platform-independent approach. However,

taking the more restricted resources available on a mobile device into account required

changes to the feature board and revisiting existing features whenever performance

was impacted. Nonetheless, the fully layouted behaviour library required less interac-

tion between planning/design layer and underlying behaviour layer than incremental

development.

The original Bod methodology starts with a working version of a simple plan for an

agent expanding it over iterations; the process is described by Partington and Bryson

[2005], illustrating the initially simple plan and incrementally adding more behaviour

primitives and plan elements. To allow for shared work on a project, the interdepen-

dence between its components should be as minimal as possible, thus, revisiting the

underlying layer of a project introduces additional changes in all layers above. The

iterative nature of the original Bod introduces this frequent revisiting and the alter-

ation of elements on all levels, a process which works well only for small teams; larger

projects or projects which introduce dependencies between components and specific

team members require an altered approach. Additionally, Scrum introduces a visual

component, the feature board discussed in Chapter 5, which allows the developer to

emphasise the importance of different development steps. By augmenting Bod and cre-

ating an Agile Behaviour Design, it is possible to reduce the dependence of team

members and guide the design better towards “on-time” development of the game AI

system. The discussed methodology would also, due to the discussed similarity, be

applicable to Bt to create an integrated agile process for game development with their

currently favoured approach. Abl and FAtiMA use implicit development processes
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which require a novice author to extract knowledge from more senior system devel-

opers. This knowledge transfer hinders the spread of Abl and FAtiMA into other

communities. Chapter 3 presented similarities shared between all three IVA systems,

thus, it would be possible to create a new version of Bod or agile behaviour design

to guide the development in those systems reducing the peer-to-peer knowledge transfer

and increasing the overall understanding of the system design.

After an adjusted methodology and guideline were proposed and tested, which

provide a flexible but more game-focused approach for agent development, the identified

issues with the underlying framework were addressed in this work. Weber et al. [2010a]

provides two extensions to Abl in the form of a prototypical debugger and behaviour

tree visualiser. Those extensions align with the feedback gathered by Grow et al.

[2014] in regards to more advanced development support. The integration, stability

and configuration of both extensions seems to be too complex or problematic because

they are not used in later projects, an observation that is supported by the interviewed

Abl authors. This stresses the need not simply for functionality but also for a certain

degree of maturity and robustness of new extensions to be useful.

The complexity of employing an existing approach or system also seems to reflect on

the usage of more fully cognitive agent architectures such as SOAR, ACT-R or ICARUS.

The structure of all three systems is highly similar and the underlying concept of using

production rules to encode knowledge is shared because all three extend the idea of

a unified theory of cognition introduced by Newell [1994]. SOAR and ACT-R have

been actively maintained for over two decades, making them the oldest still actively

developed fully-cognitive systems. Most developed and proposed systems which are

discussed in research on cognitive architectures are not maintained or even available

anymore. This inaccessibility and deprecation of systems make actual comparisons

of benefits of the underlying concepts nearly impossible. ICARUS, a relatively recent

system, is officially still maintained but not freely available, similar to MIT’s cX system,

whereas both SOAR and ACT-R provide current versions.

The usage of all discussed academic platforms is, nonetheless, limited to narrow

encapsulated communities. Reasons could be that the design of sophisticated agents in

those architectures requires a large amount of computational resources as illustrated

by Wintermute et al. [2007]. Wintermute et al. are only able to utilise SOAR for

the high-level selection of goals. Similar issues emerge with the discussed cX system

which requires a computationally powerful system for controlling six agents, discussed

in Chapter 2.2.7. Comparing those architectures and extracting common elements

creates an interesting perspective on them and allows the augmentation of an existing

system to move towards the more cognitive systems. All three systems share to some
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extent a modular structure, or at least, they can be abstracted into one. The usage of

production rules makes it possible for authors to specify procedural knowledge which

can be used by the system. All three systems also alter and modify their procedural

knowledge over time to model learning. This is either done as part of the update cycle

happening roughly every 50ms or whenever a particular block of procedural knowledge

is used. The usage of declarative knowledge in the form of statements is also common

in all three systems. The usage of other forms of declarative knowledge, such as images

or audio, was introduced into SOAR after it had been a part of the ACT-R system and

ICARUS uses memory snapshots to represent any form of declarative knowledge. The

usage and updating of stored knowledge in declarative or procedural form make those

systems quite powerful but also requires a large amount of computational resources.

This requirement for computational resources renders all of the three fully cognitive

systems nearly unusable for the usage of complex agents when resources are limited.

Knowledge is used either for short-term memory of for long-term memory and in all

three system transitions from the first to the second with regular usage.

Games rarely need access to and updating of long-term memory though it would

potentially support deeper agent behaviour behaviour. However, the illusion of

long-term memory in the form of a given set of long-term goals suffices most of the

time and game interactions between a player and the same IVA seldom last for longer

periods of time. Removing the cyclic process of retrieving and updating long-term

memory in the form of large amounts of production rules would make architectures

more light-weight and reduces a large amount of computation. Abl and GOAP are

examples for that. The planner combines and integrates goals which are structured by

a designer but the retrieval process is handled by the system. The F.E.A.R. system

discussed by Champandard [2007b] uses GOAP but the system does not integrate

long-term memory as it goes beyond the scope of agents which only exist for short

amounts of time. In contrast to this, Abl uses an object oriented memory system

(WoMe) resembled by the cX of Burke et al. [2001]. The WoMes can be used for

long-term memory but only present declarative knowledge, procedural knowledge is

not captured by the system as the system does not include an existing approach for

persistent memory between sessions.

Orkin [2005] uses a blackboard to integrate short-term memory into his GOAP

system in a similar fashion to Mateas and Stern [2003] with Abl in Façade. Check-

ing and integrating memory introduces complexity that requires planning, both in the

designer and on the system side. posh-sharp provides two forms of memory inspired

by the cognitive architecture and models of the animal brain. The first one is the

Behaviour Bridge which provides a central channel for sharing knowledge and re-
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ducing the computational overhead of the agent. This concept of a loose coupling and

a central approach information exchange is similar to a blackboard but follows the idea

of a Listener Pattern instead of a storage space. To support a strong separation of

behaviours and to tackle the complexity of connected states, game developers moved

from Finite-State Machine s (fsms) to Bt. posh-sharp extends this idea by having

an independent pool of behaviours for an agent and similar to the corpus callosum in

the mammalian brain a central route for sharing and exchanging information between

components. The second mechanism is similar to how ICARUS and ACT-R handle the

activation of productions.

posh-sharp integrates ERGo—the extended ramp goal model. ERGo is inspired

by goal cells in the basal ganglia and the ramp-like activation process during goal pur-

suit described by Redish [2012]. In contrast to more complex models such as modular

utility models or ICARUS’s production selection process, ERGo augmented behaviours

can be individually selected but require no initial adjustment. An augmented behaviour

accumulates activation until it is able to execute its goal. Using this model a state-like

transition is added to the selection process of a goal which is based on a consistent

model but allows for dynamic non-deterministic behaviour to be designed. The moti-

vation behind the design of a general model for behaviour augmentation was to present

“white-box” modules which can aid the design flow. This is based on the idea un-

derlying the decorators described by Champandard and Dunstan [2013]; Isla [2005];

Anguelov [2014]. Decorators modify the connected tree node and change or augment

its result. Nonetheless, Complex decorators containing state can completely obscure

the Decision-Making System (dms). Thus, a designed augmentation based on the

animal-like pursuit of goals was developed to motivate a more dynamic action selection.

The Agile Behaviour Design offers a more directed process and providing a

memory system to allow for more sophisticated IVAs has been discussed as beneficial

to support more cognitive models. Most Integrated Development Environments (Ides)

further support a programmer by allowing code completion but using a large behaviour

library require additional considerations. Version control was introduced into software

design to track changes during the development but those changes operate on a file level.

posh-sharp introduces behaviour versioning as a way to manage individual behaviour

primitives; this process increases the robustness of a plan by offering the designer

the opportunity to go back to an older version of a primitive or compare how both

primitives work and behave, on a design level. In contrast to traditional refactoring

of methods, behaviour versioning keeps the original behaviour primitive and allows

the programmer to add a second version under a new method name but referring to

the same primitive identifier. The feature extends the principle of traditional software
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version management to a behaviour level on which designers or novice developers are

working and allows them to benefit from a flexible and robust mechanism to compare

different implementations without the need to consult a programmer. The automatic

behaviour loading provided by posh-sharp is the second mechanism which reduces

touching the underlying code. This process is similar to how Abl chains behaviours or

Pogumut handles extra attributes used for inspection but on a more abstract level. A

designer describes elements and later on a programmer implements the element inside

a behaviour class. However, the programmer is able to adjust the underlying code by

switching and versioning primitives using posh annotations. This is completely hidden

from the designer offering a much cleaner interface from the underlying library.

8.1 Future Work

In this thesis, multiple projects were worked on and discussed to create an integrated

approach to more robust agent design and there exists a variety of different paths which

are left untouched or which could be extended. In this section of few of them will be

named and explained based on their merit to the proposed approach to agent design

or IVA development in general.

The new Agile Behaviour Design process extends Bod by integrating features

from other agile processes such as Scrum. The approach has been used in two projects

and has been presented to developers from different systems such as Abl and FAtiMA

a more detailed analysis on novice developers is needed to identify further areas of

improvement both for the application to industry as well as for the application in other

scientific communities. This evaluation can also provide insights for systems such as

SOAR, ACT-R or Abl as they are only applied in close-knit communities and their

impact on a broader audience.

The application of a light-weight cognitive architecture to a complex dynamic prob-

lem such as StarCraft was covered in Chapter 4.3 and an evaluation of the prototyp-

ical but shallow strategy was conducted. As a next step, an analysis of the performance

and design of the extended strategy would create a more measurable comparison against

other state of the art approaches to dms for Real-Time Strategy (rts) games and

allow for the identification of potential points of further improvement.

The extended ramp, introduced in Chapter 6, is a light-weight, general-purpose

augmentation for action selection mechanisms. Future work could involve a detailed

analysis of the underlying inclination gain based on initial priorities of the behaviours.

This analysis would allow a more fine-grained approach to scheduling the arbitration

process than currently available. To support the claim of general applicability, creating
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case studies and including ERGo in different game environments would be advanta-

geous for evaluating the impact of modules which are more generalisable. Analysing

the applicability in different environments would also support the claim for its robust-

ness and give examples of its integration, making it easier for professionals to transfer

the approach to different game development tools once it conforms to an industrial

environment. A first step was taken with the inclusion into the StealthierPOSH

game but a user evaluation of the aimed effect of the system could provide insights into

the understanding and communication of less deterministic decision processes.

The Behaviour Oriented Design methodology in combination with posh-sharp it-

self categorises as a framework for providing a cognitive architecture to implement

cognitive agents. As argued in Chapter 7, which describes a process for evolving game

playing agents for a 2D platform game, the design of novel behaviour which expresses

non-trivial behaviour through its actions is a complex task. By using genetic program-

ming and human-provided input, it was possible to remove most of the tedious work

on tuning and testing of agents. Additionally, the underlying grammar using Java

genetic algorithm and genetic programming package (Jgap) and its deci-

sion tree representation is not restrictive enough for creating sophisticated cognitive

agents within a reasonable time-span. JGAP provides a general purpose environment

for evolving GP systems. However, it does not offer support for grammar-based GP

which allows the inclusion of specialised rules. Additionally, the current fitness evalua-

tor is unable to provide fine-grained feedback on the fitness values at a gene level. Next

steps could involve the optimisation of the evolutionary process taking either the struc-

ture of the decision tree into account when evaluating the fitness by applying research

from Krawiec and O’Reilly [2014] on behaviour programming for genetic programming

or by speeding up the most time-consuming step in the process—the simulation of the

agent within the environment. This last step is interesting because it would allow game

developers to include evolutionary approaches into their system once the evaluation is

fast and light-weight enough to run in the background of a game.

Evolving Bt has been shown to work with some success for small examples Lim

et al. [2010] and the evolution of decision trees for more complex settings based on

pure human feedback has been shown in Chapter 7. The evolutionary process which

we discussed in Chapter 7 allows the development of amendable agents in human-

readable form, while no programming skills are required. However, the inclusion of

an evolutionary process into the a full agent framework such as posh-sharp would

allow a more rigorous examination of its benefits and allow for a better transition into

industrial practice.
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Chapter 9

Conclusion

In this thesis, we addressed the question of reducing the design cost of human authors

when creating behaviour-based AI for games. For that purpose we discussed approaches

to game development, and more specifically game AI and IVA development. Based on

the motivation to identify requirements for a more robust, creative process that better

supports novice developers and designers, informal interviews were conducted. During

those interviews potential points for advancements of current approaches were identi-

fied. The sss is one result of approaching research question RQ1, where we examined

the commonalities between agent frameworks and how to support the understanding

of developing IVAs. sss was discussed in Chapter 3 and presents a unifying element

for most IVA architectures. It unites their analysis under a common schema should be

cindered when building new agents or even new frameworks.

To investigate the requirements and circumstances for approaches to transition from

academia to the games industry we examined the literature and current approaches

(RQ2). The games industry tends to favour light-weight and flexible approaches which

have a shallow learning curve, supported by existing step-wise instructions, showcases

of implementations in games and vanilla textbook solutions. One recent case for a suc-

cessful transition is Monte-Carlo TreeSearch (mcts), discussed in Chapter 2.1.3,

another possible candidate would be Bod. To pursue the question further, Bod was

chosen as a base for improvement, aiming to suffice the previous requirements for a

transition into industrial application. As a result, a new method—Agile Behaviour

Design—was developed including features from a prominent industrial development

model, Scrum. The new approach contains explicit guidance such as, which agent

feature to work on next or how to initially structure the agent. This guidance can aid

novice developers to ease the transition to a new approach and support robust devel-

opment. The approach also addresses a fundamental issue existing in software-driven
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game development, the strong dependence of authors on programmers when designing

IVAs. The issue was addressed by stronger separating the tasks of designing the agent

and implementing the underlying functionality.

To further support authors, a new agent framework based on posh was developed,

integrating the features that emerged during the informal interviews in Chapter 3.

The new framework was applied to the development of a sophisticated StarCraft

agent, demonstrating the Agile Behaviour Design approach in combination with

posh-sharp. Due to the high similarity between posh and in the prominent industrial

approach Bt, the design approach is ideally suited for Bt as well, enabling game

developers to use an explicit methodology when approaching game AI design. posh-

sharp integrates most of the aspects of IVA development by borrowing concepts such

as “goal design”, a planning component, memory and the integration of perception

from fully-cognitive architectures and other IVA architectures. The system employs

further techniques from software development such as dynamic library inspection for

automatic behaviour loading and behaviour versioning address robustness and ease

of use questions formulated in Chapter 3. After adjusting the Behaviour-Oriented

Design process, this new architecture for more robust game AI development was tested

in the two projects, which have been mentioned earlier StealthierPOSH and the

StarCraft agent, and was utilised while developing the foundations for an Unreal

Tournament based coursework.

Based on what is employed in industrial developments and observable from the

literature analysis, the games industry seems to favour less complex approaches, a claim

which is supported by the industrial usage of Bt and older but simpler approaches such

as fsms. This observation feeds into the results of research question RQ2 and is also

biologically plausible and in line with the Bod philosophy of Bryson [2000b] to try the

simplest approach to get the job done first. It is also supported by Bt’s dominance

over other more sophisticated approaches during talks at industrial conferences such as

the Games Developer Conference (GDC) or the AiGameDev Conference. Bt is a data

structure and framework for implementing dms but requires, similar to the previous

approaches, guidance which can be given by Agile Behaviour Design. The approach

has been applied to rts game AI development and the development of a mobile game

proving the flexible nature and multi-platform capabilities of posh-sharp.

The application of StarCraft build orders from user forums, demonstrated in

Chapter 4.6, shows that it is possible to move the design of agents closer to specific

target audiences and present an approach that does not require programming but still

allows for the design of complex agents, addressing question RQ4.

The usage of genetic programming and human input to create non-trivial, amend-
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able, artificial agents has been shown in Chapter 7. This evolutionary approach allows

a designer to feed player data into a cyclic process which creates artificial players based

on the input. The resulting process allows the development of agents in a “learning

from example” fashion without the need for programming but compared to ANNs the

resulting agent exists in a human-readable and amendable form which is suited for

further adjustment and optimisation. This adds possible answers to questions RQ3 to

RQ5.

In this thesis, different aspects and approaches were presented which aid and sup-

port the development of agents for games. The approaches were identified by analysing

potentially critical points in the development of agents through a literature survey

and requirement interviews. The new posh-sharp architecture reduces the number

of errors when including and modifying behaviours and their primitives. It also offers

better support for tracking and iteratively developing behaviours and supports the di-

vision of labour into design and implementation. The extended ramp provides a “white

box” solution for augmenting the selection process and requires minimal adjustments.

Approaching agent design from an evolutionary perspective is not new. However, the

case study using GP demonstrates for the first time the feasibility of using unmodified

gameplay traces to drive the full evolution of agents from a clean slate to non-trivial

behaviour. This demonstrates that genetic programming of game agents can be used

as an option to explore novel directions for agent design. By combining all those ele-

ments and driven by the Agile Behaviour Design new systems can be developed or

existing ones enriched in a more robust and guided way.
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Appendix A

Behaviour-Oriented Design

Figure A-1 presented a reduced version of a pyPOSH Unreal Tournament agent

behaviour. The behaviour is responsible for the agent movement and contains three

different behaviour primitives. The two perceptual primitives know enemy base pos and

know own base pos only return a boolean value in case the agent memorised the location

in question. The action primitive to enemy flag has its own internal perception check and

if the location of the enemy flag. If the location is known to the agent, it uses it tells

the game to move the agent accordingly.
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1 c l a s s Movement ( B e h a v i o u r ) :
2 d e f i n i t ( s e l f , agent ) :
3 B e h a v i o u r . i n i t ( s e l f , agent ,
4 ( ” t o e n e m y f l a g ” ) ,
5 ( ” know enemy base pos ” , ” know own base pos ” ) )
6 s e l f . P o s I n f o = P o s i t i o n s I n f o ( )
7 # s e t up u s e f u l c o n s t a n t s
8 s e l f . PathHomeID = ”PathHome”
9

10 # === SENSES ===
11

12 # r e t u r n s 1 i f we have a l o c a t i o n f o r t h e enemy base
13 d e f know enemy base pos ( s e l f ) :
14 #p r i n t ” i n know enemy base pos s e n s e ”
15 i f s e l f . P o s I n f o . EnemyBasePos == None :
16 r e t u r n 0
17 e l s e :
18 r e t u r n 1
19

20 # r e t u r n s 1 i f we have a l o c a t i o n f o r our own base
21 d e f know own base pos ( s e l f ) :
22 i f s e l f . P o s I n f o . OwnBasePos == None :
23 r e t u r n 0
24 e l s e :
25 r e t u r n 1
26

27

28 # === ACTIONS ===
29

30 # r u n s to t h e enemy f l a g
31 d e f t o e n e m y f l a g ( s e l f ) :
32

33 i f s e l f . P o s I n f o . h a s e n e m y f l a g i n f o e x p i r e d ( ) :
34 s e l f . P o s I n f o . e x p i r e e n e m y f l a g i n f o ( )
35

36 i f s e l f . P o s I n f o . EnemyFlag In fo != {} :
37 s e l f . agent . Bot . se nd me ss ag e ( ”RUNTO” ,
38 {” Target ” : s e l f . P o s I n f o . EnemyFlag In fo [ ” I d ” ] } )
39 r e t u r n 1

Figure A-1: A reduced pyPOSH behaviour from the behaviour library for an Unreal
Tournament agent. The behaviour is controlling an individual agent’s movement
within the environment and contains three behaviour primitives.
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1 ; Th i s f i l e was g e n e r a t e d by A . B .O.D. E .
2 ; Do not add comments to t h i s f i l e d i r e c t l y , as t h e y may be
3 ; l o s t t h e n e x t t ime t h e t o o l i s used .
4 ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 (
6 ( documentat ion ” S t a r C r a f t ThreeHatchHydra ” ”Swen E Gaudl ” ” i n i t i a l p l a n ” )
7 (AP AP−inch ( s e c o n d s 1 . 0 ) ( walk ) )
8 (AP AP−moveing ( minutes 1 . 0 ) ( m o v e t o n a v p o i n t ) )
9 (C wander−map ( s e c o n d s 2 0 . 0 ) ( g o a l ( ( f o c u s i n g t a s k 1 . 0 =)) )

10 ( e l e m e n t s
11 ( ( CE−moveto−navpoint ( t r i g g e r ( ( s e l e c t e d t a r g e t 1 . 0 =) (

r e a c h e d t a r g e t 0 . 0 =)) ) moveto−se lected−nav ) )
12 ( ( CE−f ind−nxt−waypoint ( t r i g g e r ( ( c l o s e n a v p o i n t 1 . 0 =)) )

s e l e c t n a v p o i n t 1) )
13 )
14 )
15 (C get−enemy−f lag ( s e c o n d s 3 0 . 0 ) ( g o a l ( ( h a v e e n e m y f l a g 1 . 0 =)) )
16 ( e l e m e n t s
17 ( ( CE−moveto−flag ( t r i g g e r ( ( s e l e c t e d t a r g e t 1 . 0 =) ( r e a c h e d t a r g e t

0 . 0 =)) ) moveto−se lected−nav ) )
18 ( ( CE−select−enemy−f lag ( t r i g g e r ( ( h a v e e n e m y f l a g 1 . 0 !=) ) )

s e l e c t e n e m y f l a g ) )
19 )
20 )
21 (C r e t r a c e−b a c k ( minutes 1 . 0 ) ( g o a l ( ( a t o w n b a s e 1 . 0 =)) )
22 ( e l e m e n t s
23 ( ( CE− retrace−navpoint ( t r i g g e r ( ( s e l e c t e d t a r g e t 1 . 0 =) (

r e a c h e d t a r g e t 0 . 0 =)) ) moveto−se lected−nav ) )
24 ( ( CE−retrace−home ( t r i g g e r ( ( c l o s e n a v p o i n t 1 . 0 =)) )

r e t r a c e n a v p o i n t ) )
25 )
26 )
27 (C moveto−se lected−nav ( s e c o n d s 1 . 0 ) ( g o a l ( ( r e a c h e d t a r g e t 1 . 0 =)) )
28 ( e l e m e n t s
29 ( ( CE−moveto−navpoint ( t r i g g e r ( ( c l o s e n a v p o i n t 1 . 0 =) ( i s w a l k i n g

1 . 0 !=) ( s e l e c t e d n a v p o i n t r e a c h a b l e 1 . 0 =)) ) m o v e t o n a v p o i n t )
)

30 )
31 )
32 (DC l i f e ( g o a l ( ( game ended 1 . 0 =)) )
33 ( d r i v e s
34 ( ( return−enemy− f lag ( t r i g g e r ( ( h a v e e n e m y f l a g 1 . 0 =)) )

r e t r a c e−b a c k ( s e c o n d s 0 . 3 ) ) )
35 ( ( get−enemy−f lag−from−base ( t r i g g e r ( ( e n e m y f l a g r e a c h a b l e 1 . 0 =)) )

get−enemy−f lag ( s e c o n d s 0 . 3 ) ) )
36 ( ( wander around ( t r i g g e r ( ( f o c u s i n g t a s k 1 . 0 !=) ) ) wander−map (

s e c o n d s 0 . 3 ) ) )
37 ( ( i n c h ( t r i g g e r ( ( s u c c e e d ) ) ) AP−inch ( s e c o n d s 0 . 3 ) ) )
38 )
39 )
40 )

Figure A-2: A posh plan for Unreal Tournament agents on a capture the flag map.
The plan is controlling a single agent.
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Appendix B

StarCraft

In digital games a group of games, namely the strategy games, can benefit from a

similar approach to AI design. The next section discusses the original design of AI for

StarCraft using a dynamic planner whereas Section 4.6 discusses the notion of multiple

strategies and how to transition between them based on the current state.

Figure B-1: The ThreeHatchHydra posh plan for the extended StarCraft agent.
The presented plan visualises the 11 Drives which form the agent and their contained
competences. The drive elements are clustered based on their priority. Continued in
figure B-2
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Figure B-2: The ThreeHatchHydra posh plan is continued from figure B-1. However,
drives of equal priority form groups which are surrounded by doted lines, e.g. harvest

and repair . Continued in figure B-3

Figure B-3: The ThreeHatchHydra posh plan is continued from figure B-2. The
plan contains the full strategy to implement an original strategy from http://

wiki.teamliquid.net/starcraft/3 Hatch Hydralisk (vs. Protoss)
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Appendix C

Requirements

C.1 A Behaviour Language

In Chapter 3.6 the System-Specific Step was derived from analysing three IVA

architectures and different points which are unique in the three inspected systems:

Abl, FAtiMA and Bod were identified. From those common elements individual sss

for each platform and overarching ones were deduced by conducting informal interviews

with a set of 11 developers from different teams. In the following table those points are

drawn together generating an overview over all sss.

The data represented in Tables C-1 & C-2 is derived by analysing information

interview conducted with multiple teams and a major part of April Grow’s research

at the University of California, Santa Cruz. The interviews were either conducted

in person or via skype sessions. During the first phase of the interviews the Lost

Translator scenario was described and then implemented on an abstracted level by

each team. After analysing the individual approaches, the teams were re-visited and

the findings were presented and discussed to validate the findings.
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# Name Summary Systems Authoring Support

i Start Mini-
mally

Having a working vertical slice
early gives programmers and de-
signers a good overview of the
scenario structure

Bod/
posh,
ABL

Current ABODE*
graphical design tool is
sufficient

ii Decompose
Iteratively

Filling in the stubs iteratively
gives designers and programmers
freedom to adjust the structure
without getting in each other’s
way

Bod/
posh,
ABL

Current ABODE*
graphical design tool is
sufficient

iii Minimise
and Encap-
sulate

The Bod/posh tree relies on
simple logic to execute quickly,
so complex sensory preconditions
should be offloaded to behaviours

Bod/
posh

A module that man-
ages encapsulated be-
haviours, keeping them
simple and proposing
them to new authors

iv Goals First The agent’s actions are driven by
goals, so there must always be a
goal structure

FAtiMA,
Bod/
posh

Combined with sss Ele-
ment v

v Find Deci-
sion Points

Necessary scenario-defined deci-
sion points make sub-goals more
apparent to author

FAtiMA Scenario event sequenc-
ing tool with prompts
for goals and actions at
decision points

Figure C-1: A summary of the sss Elements described in the case study from chapter 3
and collected in a compressed form. The table is continued in figure C-2
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# Name Summary Systems Authoring Support

vi Goal
Weight-
ing and
Tuning

Agent’s different behaviours
are driven by different weights,
which is a huge time sink to
debug

FAtiMA Parallel execution and
real-time adjustment/
comparison of values

vii Intent
Goals for
Future
Conse-
quences

Language-specific limitations,
such as only having one ac-
tive goal at a time, hinter
novice-intermediate authors

FAtiMA Better documentation

viii Define Cod-
ing Idioms

As ABL is its own language, an
author must have a strong under-
standing of their chosen idioms
before coding

ABL Too advanced for a tool
to offer much help

ix NPC and
Player Con-
siderations

An author must conceptualise
roles, the contents of the working
memory and ABT, and fine-grain
performance details while build-
ing up their behaviours

ABL Revival of the ABL De-
bugger through modu-
larisation: offline code
analysis of behaviour
structures through id-
ioms

x Consider
Interrup-
tions

Authors must try to make their
behaviours robust against inter-
ruptions and stalling, which com-
plicates the previous sss Element

ABL,
Bod

Revival of the ABL De-
bugger through modu-
larisation: tree visuali-
sation of iterations and
disparate tree sections

Figure C-2: A summary of the sss Elements described in the case study from chapter 3
and collected in a compressed form. The table a continuation from figure C-1.
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Appendix D

Augmenting Action Selection

Mechanisms

In Figure D-1 the first 6.6 seconds of a StarCraft using posh-sharp are represented.

The agent is using the plan presented in Figure B-1 and is using the posh-sharp logging

mechanism to record which elements of the plan are active and what they return. The

log file also contains the initialisation of the agent and is recording the log in DEBUG

mode which contains more information than the INFO or ERROR mode. The log also

shows which behaviour are used and how they are connected to behaviour primitives.

1 [ 343ms ] DEBUG 0 .DP. ThreeHatchHydra − C r e a t e d
2 [ 343ms ] DEBUG 0 .SDC . ThreeHatchHydra − C r e a t e d
3 [ 343ms ] DEBUG 0 − R e s e t t i n g t h e b e h a v i o u r s
4 [ 343ms ] DEBUG 0 − R e s e t t i n g b e h a v i o u r POSH StarCraftBot .

b e h a v i o u r s . U n i t C o n t r o l
5 [ 343ms ] DEBUG 0 − R e s e t t i n g b e h a v i o u r POSH StarCraftBot .

b e h a v i o u r s . S t r a t e g y C o n t r o l
6 [ 343ms ] DEBUG 0 − R e s e t t i n g b e h a v i o u r POSH StarCraftBot .

b e h a v i o u r s . CombatControl
7 [ 343ms ] DEBUG 0 − R e s e t t i n g b e h a v i o u r POSH StarCraftBot . Core
8 [ 6599ms ] DEBUG 0 − R e s e t t i n g b e h a v i o u r POSH StarCraftBot .

b e h a v i o u r s . B u i l d i n g C o n t r o l
9 [ 6599ms ] DEBUG 0 − R e s e t t i n g b e h a v i o u r POSH StarCraftBot .

b e h a v i o u r s . R e s o u r c e C o n t r o l
10 [ 6599ms ] DEBUG 0 − Wait ing f o r b e h a v i o u r s r e a d y
11 [ 6599ms ] DEBUG 0 − B e h a v i o u r s r e a d y
12 [ 6599ms ] DEBUG 0 − R e s e t s u c c e s s f u l
13 [ 6599ms ] DEBUG 0 − S t a r t i n g r e a l−t ime l o o p
14 [ 6599ms ] DEBUG 0 − Wait ing f o r b e h a v i o u r s r e a d y

Figure D-1: The first part of a log4Net log for the posh-sharp StarCraft agent. The
log contains the initialisation and the first 6 seconds of a match. The log in continued
in figure D-2.
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1 [ 6599ms ] DEBUG 0 − B e h a v i o u r s r e a d y
2 [ 6599ms ] DEBUG 0 − P r o c e s s i n g D r i v e C o l l e c t i o n
3 [ 6599ms ] DEBUG 0 .SDC . ThreeHatchHydra − F i r e d
4 [ 6599ms ] DEBUG 0 .T . POSH StarCraftBot . b e h a v i o u r s . S t r a t e g y C o n t r o l .

GameRunning − F i r i n g
5 [ 6599ms ] DEBUG 0 . Sense . GameRunning − F i r i n g
6 [ 6599ms ] DEBUG 0 .T . POSH StarCraftBot . b e h a v i o u r s . S t r a t e g y C o n t r o l .

GameRunning − Sense POSH StarCraftBot . b e h a v i o u r s . S t r a t e g y C o n t r o l .
GameRunning f a i l e d

7 [ 6599ms ] DEBUG 0 .DP. ThreeHatchHydra − F i r e d
8 [ 6615ms ] DEBUG 0 .T . POSH StarCraftBot . b e h a v i o u r s . S t r a t e g y C o n t r o l .

GameRunning − F i r i n g
9 [ 6615ms ] DEBUG 0 . Sense . GameRunning − F i r i n g

10 [ 6615ms ] DEBUG 0 .DE . s t r a t e g i z e − F i r e d
11 [ 6615ms ] DEBUG 0 . C . s t r a t e g y S e l e c t i o n − F i r e d
12 [ 6615ms ] DEBUG 0 .T . POSH StarCraftBot . Core . S u c c e s s − F i r i n g
13 [ 6615ms ] DEBUG 0 . Sense . S u c c e s s − F i r i n g
14 [ 6615ms ] DEBUG 0 .T . POSH StarCraftBot . Core . S u c c e s s − Sense

POSH StarCraftBot . Core . S u c c e s s f a i l e d
15 [ 6615ms ] DEBUG 0 .CP . s t r a t e g y S e l e c t i o n − F i r e d
16 [ 6615ms ] DEBUG 0 .T . POSH StarCraftBot . b e h a v i o u r s . S t r a t e g y C o n t r o l .

EnemyRace − F i r i n g
17 [ 6615ms ] DEBUG 0 . Sense . EnemyRace − F i r i n g

Figure D-2: The second part of a log4Net log for the posh-sharp StarCraft agent.
The log contains the initialisation and the first 6 seconds of a match.

Figure D-3 demonstrates how the log file is visualised in INFO mode on an android

device. presenting only the actions and which agent is triggering them. The log up-

dates whenever an agent is firing a primitive and uses a scrolling representation—the

information is added at the top and the last lines of the output is removed.
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Figure D-3: The StealthierPOSH Android game illustrating the usage of the logging mechanism on the upper left side of
the screenshot. The output contains 10 lines which update every seconds by adding new content ad the top and fading out old
information at the bottom.
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Glossary

Abl “A Behavior Language”, or short ABL (pronounced “able”) is a re-active planning

language written in Java my Michael Mateas. It is most commonly known for

being the AI system for Façade [Mateas and Stern, 2003].. 74, 76, 77, 91–94, 102,

103, 112, 117, 120, 121, 123–125, 127, 129–136, 141–145, 147, 160, 163, 173, 180,

215–218, 220, 230

Abode The advanced behaviour-oritended design editor, or short Abode alows a

visual development of posh plans. It is a stand-alone Java-based editor, accessible

at https://github.com/suegy/abode-star.. 97, 98, 105, 106, 111, 123, 133,

145, 148, 154, 156, 157, 167

balance Balancing refers to the adjustment of difficulty, most of the times driven by

feedback from testers of the target audience. If a game is well-balanced, players

express the differences between forces or the difficulty of the game is appropriate..

14

bwapi bwapi offers an interface to access and change data within StarCraft. Thereby,

it allows the inclusion of external code to represent artificial agents within the

game. The API allows two modes which either offer the inclusion of an agent

through a TCP/IP connection or through direct memory access when using

a dynamic library file (“DLL”). More information are available at: https://

github.com/bwapi/bwapi. 137, 141, 145, 146

deeper agent behaviour Deeper agent behaviour combines different aspects of what

essentially is intended to describe more appealing or immersive agent behaviour

for games. It is based on the definition of Deeper Gaming Experience by Burke

et al. [2001]. Deeper agent behaviour combines:

• Situated: Agents are able to make decisions based on partial world knowl-

edge.
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• Reactive: Agents are able to respond in an appropriate amount of time to

sudden changes in the Environment.

• Expressive: Agents have personalities and are able to represent them in

interactions with environment and player.

• Sound: The player is able to attribute a “Theory of Mind” to the agent

according to its actions.

• Scalable: The computational impact of the deeper agent behaviour has to

be minimal to scale to many agents.

Each of the elements can be seen as dimensions which form a space for agents

to be placed in. The original motivation for Deeper Gaming Experience is aimed

at directing new research towards better designable agents, which this adjusted

definition follows. . 1, 70, 95, 101, 102, 111, 114, 117, 154, 178–180, 209, 218

dms A computational component of an agent which simulates or emulates the process

of a natural agents process making decisions. The process is also referred to as

action selection with the contrast that action selection mostly refers to exibited

behaviour and decion making is the internal process.. 69, 83, 117, 118, 121, 123,

137, 219, 220, 223

Eclipse The Eclipse foundation, https://eclipse.org/, provides a framework for

java-based IDE creation. The most prominent one is the Eclipse Java-IDE which

is widely used in industry and academia. Eclipse provides IDEs for most program-

ming languages and the framework can use used to develop IDEs a new or special

languages. The main focus on the Eclipse framework is modularity which allows

easy recombination in tegration of new modules. The IDEs in the Eclipse frame-

work are open-source and extentable and are available for all standard desktop

operating systems. . 102–104

fps Frames per second, or short FPS, is a performance measure within game environ-

ments. The framerate gives a measure of how fluent the game runs on the used

hardware. Typically, at a frame rate of 60FPS the user cannot see any distur-

bances of the game perframance. With older hardware and games the boundary

was 30FPS to create a fluent impression of the visual representation.. 83, 146,

175

GameBots GameBots are a engine side interface developed by Adobbati et al. [2001].

The interface offers a serverside port to modify and communicate with objects
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within the Unreal Tournament game. Thereby, it offer a string-based com-

munication protocol which communicates changes to and from the game in an

asynchronous way.. 104

human-like Choi et al. [2007] defines human-like behaviour by following three main

principles. An agent is human-like if it is using a similar processing structure as

a human. The available sensory-motor system should be the same as a human

would have access to. And human and agent share the same basic knowledge

abouth the environment including the agents embodiment.. 85

immerse IMMERSE is a DARPA projected within the Strategic Social Interaction

Modules program. The project goal is to develop a Unity-based training en-

vironment for soldiers to learn and reinforce “best-practice” skills when inter-

acting with foreign cultures. The project is using autonomous characters and

social stories which the users can experience to explore possible outcomes of

his or her actions. The project is carried out by the Expressive Intelligence

Group at the University of California. A more detailed description is available

at: https://users.soe.ucsc.edu/~mccoyjo/.. 121, 122, 129, 131

IntelliJ IntelliJ is a propriatory IDE developed by jetbrains, https://www.jetbrains.com.

The IDE comes in two flarours, ultimate which comes with the latest features

and dedictaed support and community which is freely available, does not inte-

grate the latest fixes and only minimal support. The IDE is well designed and

comes with good support for all major languages. Due to its closed development

the usability is central to IntelliJ which makes it a versatile, robust and well

maintained IDE. . 102

Jgap Jgap is a java-based evolutionary framework for developing and applying genetic

algorithms and genetic programs to a variety of problems and more specifically

it allows the inclusion of the evolutionary process into other java programs. It

is developed and maintained by Meffert et al. [2000] and is open-source. Jgap

provides a mechanism for evolving agents when given a set of command genes, a

fitness function, a genetic selector and an interface to the target application.It is

available at: jgap.sourceforge.net/. 202, 207, 221

log4Net Apache’s Log4Net provides a standardised, configurable monitor support in

the form of a modular logging architecture. Using XML based configuration

files it is possible to set up monitor logs handling even large amounts of data.
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Log4Net is a dynamic library for the Microsoft .Net architecture. It is available

at: https://logging.apache.org/log4net/. 174

Microsoft Public License The Ms-PL is similar to other copyleft software licenses

and is available at https://opensource.org/licenses/MS-PL. It allows the

usage and distribution of the software but is less restrictive than the Gnu General

Public License, see http://www.gnu.org/licenses/gpl-3.0.en.html.. 109

Netbeans Netbeans is another established IDE for java-based software development

and similar to Eclipse features support for other languages as well. Netbeans, in

contrast to Eclipse is owned by Oracle. Nonetheless, the project is open-source

and it is it freely available for developers at https://netbeans.org/. Netbeans

is maintained by Oracle and is less modular than Eclipse. It offers a stricter

interface for plugins, which allows Netbeans to maintain or more directed user

experience.. 102, 104

orts orts is a programming environment for developing real-time strategy AI and

testing it. It is open-source and allows offline or online game sessions. More

information are available at: https://skatgame.net/mburo/orts. 143

play trace Play traces are logged representations of interactions of a player within a

given environment. Pay traces are beneficial for understand and analysing human

player interaction within a game. The general understanding is that play traces go

beyond simple player statistics but are more directed towards allowing develeopers

either to replay what the player has done within the game environment or within

some amalysis tool. . 22, 100, 214

posh posh planning is a form of reactive planning [Ghallab et al., 2004], which offer

faster planning times for agents. In contrast to traditional deliberative planning,

the planner only plans the next action on the agents trajectory towards its global

goal. posh uses a parallel-rooted plan structure to introduce hierarchies and

parallel execution into the plan which provides a compromise between responsive

behaviour and goal directedness. . 7, 23, 24, 43, 95–99, 104–107, 111, 112, 123–

126, 133, 135, 145–149, 151, 152, 154, 156–158, 160, 162, 165–172, 174–178, 189,

190, 203, 215, 220, 222, 223, 227–229, 231

posh-sharp The posh-sharp planner extends the original posh system by integrating

advanced modules for augmenting the selection and arbitration process. The

architecture was developed for cross-platform agent development and works on
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smartphones and in the browser. It is based on Microsoft’s C# language and

freely available in binary and source form at: https://github.com/suegy/posh-

sharp. 1, 6, 21, 24, 115, 161, 168–170, 172–178, 200, 213, 215, 216, 218–221, 223,

224, 233, 234

Quake Quake is a commercial game series which released the first game in 1996. The

games are developed by id Software and are fast paced. The game series focuses

on a reaction driven play style and are considered one of the fastest first person

shooters requiring the player to jump and evade other players while taking out

other opponents. The games focus more on one-2-one encounters than on longer

tactical play.. 86, 113

StarCraft StarCraft is a real-time strategy game developed and releaseb by Bliz-

zard in 1998. The game became known for its well balanced game play and con-

tinues to attracted attention based on this. The game features three main races

which have a unique skill set and require different strategies. Due to a freely

available interface the game additionally became famous in the research commu-

nity as it allows experimentation which advanced computational approaches in

a challenging real-time environment. More information are available at: http:

//us.blizzard.com/en-us/games/sc/. 23, 47, 56, 57, 67, 76, 93, 133, 136, 137,

140–144, 146, 147, 152–157, 160, 161, 167, 175, 216, 220, 223, 228, 233, 234

Unreal Tournament Unreal Tournament (UT) is a commercial game series devel-

oped by EPIC. The games provides through a series of interfaces ways to inte-

grate external libraries or inputs making them highly appealing to research due

to their stable and expandable game infrastructure. The original games are first-

person shooter requiring teams of players to combat each other. The games are

more tactic driven than other games such as Quake.. 83, 98, 104, 105, 113, 223,

225–227, 238

wargus Wargus is real-time strategy game based on the mechanics of the game War-

Craft by Blizzard. More details are available at: http://wargus.sourceforge.net.

141
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Acronyms

Bod Behaviour-Oriented Design. 20, 21, 43, 94, 95, 97–100, 102, 105, 106, 112, 113,

116, 120, 122–125, 127, 129, 131–137, 141, 143, 144, 146, 148–150, 152–157, 159–

165, 167, 178, 215–217, 220, 222, 223, 230–232

Bt BehaviorTree. 7, 37–46, 68, 70, 74–77, 92, 93, 95, 104, 107–111, 119, 133, 154,

163, 167, 168, 189, 203, 204, 215, 216, 219, 221, 223

CIG Computational Intelligence in Games. 137

dlc Downloadable Content. 10, 163

FAtiMA FearNot! Affective Mind Architecture. 117, 124, 125, 127–129, 131, 132,

135, 136, 215, 216, 220, 230–232

fsm Finite-State Machine. 31–34, 65, 72, 73, 79, 111, 112, 114, 143, 149, 219, 223

gda Goal-Driven Autonomy. 112

Goap Goal-Oriented Planning. 77, 112, 158, 167

GWT Global Workspace Theory. 199

Ide Integrated Development Environment. 102, 103, 111, 135, 174, 219

IVA Interactive Virtual Agent. 1, 7, 21–23, 27, 69, 102, 115–119, 129, 133–136, 163,

174, 178, 180, 181, 200–204, 209, 212–215, 217–220, 222, 223, 230

mcts Monte-Carlo TreeSearch. 64–68, 142, 154, 222

rts Real-Time Strategy. 135, 136, 140, 141, 143, 154, 161, 162, 220, 223

sss System-Specific Step. 118–125, 127–130, 132–137, 161–163, 215, 222, 230–232
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mut 2–a platform for fast development of virtual agents behaviour. In Proceedings

of CGAMES’2007, volume 7. Citeseer.

Kasparov, G. (2016). Game changers. New Scientist, 229(3063):26–27.

Keith, C. (2010). Agile Game Development with Scrum. Addison-Wesley Signature

Series (Cohn). Pearson Education.

Kelley, T. and Kelley, D. (2013). Creative confidence: Unleashing the creative potential

within us all. Crown Business.

Khatib, F., Cooper, S., Tyka, M. D., Xu, K., Makedon, I., and Baker, D. (2011).

Algorithm discovery by protein folding game players. In vol. 108 no. 47, editor,

Proceedings of the National Academy of Sciences of the United States of America,

volume 108, pages 18949–18953.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.

The international journal of robotics research, 5(1):90–98.
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