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Summary 
 

Mutation rate variability has been widely observed across mammalian genomes but 

the underlying causes are not yet fully understood. This thesis attempts to explain 

this variation, as assayed by the substitution rate of putatively neutral sites, across 

rodent genomes at three scales: genic, inter-autosomal and between chromosome 

types. It was shown that the method commonly employed to estimate the extent of 

male-bias in the mutation rate is flawed, suggesting that inter-chromosomal variation 

in mutation rates is not solely due to differences in the number of replications they 

undergo in each germ-line. Two novel models were proposed that incorporated an 

additional recombination-associated parameter to explain why, contrary to the theory 

of male-driven evolution, the autosomes evolve faster than the Y-chromosome. As 

number of replications could not fully account for mutational variability at any scale, 

the impact of the time during S-phase when replication occurs was explored. 

Differential timing of replication was shown to explain both inter-genic and some 

inter-autosomal variation in intronic substitution rates, with later replicating 

sequences evolving faster. However, controlling for different replication times failed 

to account for why number of replications could not explain differences in 

chromosomal divergence. Further, GC rich sequences were found to evolve slowly 

because they tend to replicate early. Finally, late replicating genes were found to 

have high recombination rates in females but low recombination rates in males. 

These previously unidentified relationships could explain why, owing to sex-specific 

covariance with replication timing, the strength of covariance between 

recombination rate and divergence was underestimated in males and overestimated 

in females. It might also explain why female recombination rates, unlike those in 

males, do not covary with GC content. 
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Chapter 1. Introduction  
 

Heritable mutations, those that arise in the germ-line, are essential to evolution, 

giving rise to the variation on which natural selection can act. Understanding where, 

when and why new mutations arise is therefore fundamental to many aspects of 

scientific enquiry: it informs our understanding of the underlying molecular 

mechanisms giving rise to new mutations; it enables accurate use of molecular 

clocks to determine phylogenetic relationships between species; it allows us to 

identify regions of the genome that might be more susceptible to new mutations and 

therefore to predict any disease effects that might result from this; it provides the 

comparison against which we identify the strength and direction of selection; and it 

can show us how the genome responds to such an influx of variation. How do these 

mutations arise and are some regions of the genome, particularly mammalian 

genomes, more susceptible to mutation than others? 

 

1.1 Male driven evolution 

 

Haldane (1947) was the first to propose that mutations might arise due to faulty 

copying of genes at cell division. He suggested that this might explain the 

discrepancy he observed in the mutation rate between males and females, given that 

spermatogonia continue to divide throughout an adult male’s life, whereas in 

females, oocytes are almost formed by birth. This gives rise to a different number of 

cell divisions, and as we now know, DNA replications, between the two sexes. His 

proposed higher mutation rate in males than in females has since been termed ‘male 

driven evolution’. Quantification of this hypothesis was made possible by Miyata 

and colleagues (1987b). They combined Kimura’s (1968) proposal that the majority 

of mutations are selectively neutral and that the rate of molecular evolution must 

therefore be equal to the mutation rate, with a simple observation: that different 

types of chromosome differ in the frequencies that they spend in each germ-line - the 

Y chromosome being restricted to males; the X chromosome being twice as likely to 

be in a female than a male and the autosomes on average spending equal amounts of 

time in each germ-line. Given this, different chromosomal types would be exposed 

to the higher mutational input of the male germ-line and the lower mutational input 
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of the female germ-line with different frequencies and should therefore evolve at 

different rates. By comparing the per nucleotide rate of neutral evolution of any two 

types of chromosome, Miyata et al. (1987b) proposed a series of equations that 

enabled the ratio of male to female mutation rates, and thus the extent of male bias in 

the mutation rate, to be determined. Where no sex-bias was found, this ratio, termed 

α, would be equal to 1 whereas α > 1 would be indicative of a male bias. In the first 

application of this model to a comparison between human and rodents, they found 

that male specific Y-linked sequence did indeed evolve faster than that of the 

autosomes, and in turn that autosomal sequence evolved faster than sequences 

located on the X chromosome (Miyata et al., 1987b, Miyata et al., 1987a). 

 

Haldane’s hypothesis was based on differences between the two sexes in the number 

of DNA replications that occur in the germ-line. As spermatogonia must be 

maintained for longer in species that reproduce later in life, this would therefore 

predict that species with a longer generation time should have a stronger male bias to 

the mutation rate. Using Miyata et al.’s (1987b) equations, subsequent work 

attempted to test this prediction by calculating the extent of male bias in the mutation 

rate in a number of species. Early work, based on comparisons of small amounts of 

often homologous sequences, found that estimates of α were consistent with what 

might be expected given the generation time (between birth and reproduction) with a 

stronger male bias in primates (Makova and Li, 2002, Shimmin et al., 1993) 

compared to rodents (Sandstedt and Tucker, 2005, Chang et al., 1994) or flies (Bauer 

and Aquadro, 1997). 

 

The theory of male driven evolution has become one of the dominant explanations 

for the origin of new mutations (Ellegren, 2007, Crow, 1997), with new work in the 

field tending to focus on estimating α in non-model species (e.g. Ellegren and 

Fridolfsson, 2003, Berlin et al., 2006, Nakagome et al., 2008), relating α to life 

history characteristics (Sayres et al., 2011) or extending the hypothesis to include 

mutations types other than point mutations (Makova et al., 2004, Sundström et al., 

2003). However, even as Miyata et al. (1987b) formulated their equations, variability 

in the mutation rate was being detected at different scales across genomes. Wolfe, 

Sharpe and Li (1989) found that synonymous substitution rates at four-fold 
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degenerate sites varied across rodent genes, an observation that has been confirmed 

by many studies (e.g. Bernardi et al., 1993, Wolfe and Sharp, 1993, Matassi et al., 

1999). Later, Gaffney and Keightley (2005) showed that in rodent genomes, the 

scale of mutational variability was likely to be sub-chromosomal, probably around 

1Mb. On a broader scale, different autosomes have been found to have significantly 

different rates of evolution in both primates and rodents (Malcom et al., 2003, 

Lercher et al., 2001). This mutational variability cannot be explained by differences 

in the number of DNA replications occurring in the male and female germ-lines, 

since across the autosomes this should be the same.  

 

This autosomal variability raises an important concern: If the model can not explain 

the observed regionality of mutation rates, then this must call into question the 

accuracy of the model itself and suggest that its underlying hypothesis, that random 

errors during DNA replication are the dominant cause of mutational variability, may 

be incorrect. 

 

Miyata et al.’s (1987b) model has also been called into question by conflicting 

estimates of α generated by numerous studies, where different chromosomal 

comparisons of different sequence types have been employed. In rodents, for 

example, α derived from X to autosomal comparisons of synonymous sites have 

ranged from 3.5 (Malcom et al., 2003) to ∞ (Wolfe and Sharp, 1993, McVean and 

Hurst, 1997) whereas X to Y comparisons of intronic sites have given estimates of α 

around 2 (Sandstedt and Tucker, 2005, Chang et al., 1994, Chang and Li, 1995). Y 

to autosomal comparisons have yielded estimates of α ≈ 1 (McVean and Hurst, 

1997). In the first study to apply all three of Miyata et al.’s (1987) equations in a 

single analysis, Smith and Hurst (1999) failed to retrieve a single value of α. 

Depending on the type of sequence used to determine rates of evolution, estimates 

varied with αXA = 8.96 – ∞, αXY = 1.79 – 2.99 and αYA = 0.71 – 1.95. 

 

That more new mutations are generated in males than in the female germ-line has 

further been called into question by medical evidence. For dominant autosomal 

disorders, when unaffected parents have an affected child, the ratio of paternal to 

maternal origins of the new mutation can be used to estimate α. Studies involving 
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multiple endocrine neoplasia (MEN), achondroplasia and Apert syndrome have 

shown an exclusively paternal origin for the disease causing mutation, giving α of ∞, 

consistent with the male driven evolution hypothesis (see Hurst and Ellegren, 1998 

and references therein). However, for Hirschsprung disease, a disorder that involves 

the same gene as MEN, all three characterised mutations have been found to be 

maternal in origin (again see references within Hurst and Ellegren, 1998). 

Intriguingly, a recent study by Conrad et al. (2011) sequenced the complete genomes 

of each member of two families and found that the direction of a sex bias was 

dependent on the family, with 92% of de novo mutations arising in the paternal 

germ-line in one family, but 64% being of maternal origin in the other. 

 

Molecular examinations of the male-derived mutations giving rise to these diseases 

has also cast doubt on the role of additional spermatogonial replications in giving 

rise to male driven evolution. Goriely et al. (2003) examined the most common 

disease causing mutation giving rise to Apert syndrome, those at nucleotide 755 in 

the FGFR2 gene, and showed that mutation events were in fact relative infrequent, 

but that the strong male bias associated with Apert syndrome could instead be 

attributed to a selective advantage to the spermatogonial cells in which the mutations 

arose. They suggested that this might be owing to a gain of function in the encoded 

protein that, in the cellular context of the testis, is advantageous, despite later being 

harmful to the developing embryo. The group later showed that mutations at the 755 

nucleotide, particularly rare double substitutions at the same site, conferred a 

proliferative advantage that resulted in a clonal expansion of mutation carrying cells 

in the testis relative to neighbouring wild type cells. As mutation rates at adjacent 

nucleotides were found to be low, this suggested that their results could not be 

attributed to a mutational hotspot (Goriely et al, 2005). Consistent with these 

findings, Qin et al. (2007) used a novel approach to determine the stage of 

spermatogenesis at which mutations predominantly arise. By examining the spatial 

distribution across the testis of the C755G mutation in the FGFR2 gene, they also 

showed that the high incidence of paternal mutations at this site was not owing to a 

mutational hotspot. Instead, rather than just replacing themselves with one copy per 

mitotic cell division (the other cell going on to differentiate into a mature gamete), 

the adult self-renewing spermatogonial cells carrying the mutation occasionally 



12 

produced two SrAP cells. These studies would suggest that, certainly for Apert 

syndrome, evidence in favour of a male mutation bias may have been misinterpreted. 

It is worth speculating that a similar selective advantage, such as the genome 

containing a novel mutation being less likely to be diverted to the polar body, might 

explain the female bias found for Hirschsprung disease. 

 

Another possible explanation for the apparent male bias to the mutation rate was 

suggested by McVean and Hurst (1997), who argued that selection against weakly 

deleterious recessive mutations on the X chromosome, when exposed in males, could 

potentially reduce the rate of X-linked evolution. Comparison of either the 

autosomal or Y-linked rate of evolution with the reduced X-linked rate would 

therefore give results suggestive of an elevated male mutation rate. Consistent with 

their hypothesis, McVean and Hurst found that the Y-linked synonymous 

substitution rate did not differ significantly from that of the autosomes. Note 

however, that this hypothesis does not necessarily suggest Miyata et al.’s (1987b) 

model is flawed, but rather that it has been incorrectly applied: the use of sites under 

selection to estimate substitution rates does not provide an accurate measure of the 

mutation rate. 

 

Why else might the evidence not universally support the theory of male driven 

evolution? Fundamentally, the hypothesis is based on the concept that the majority 

of new heritable mutations arise as errors during DNA replication in the germ-line. 

However, a number of other covariates of mutation rates have been identified. 

 

1.2 GC content  

 

GC content, the proportion of G and C bases relative to A and T bases, is known to 

vary across mammalian genomes giving rise to the well documented isochore 

structure (Bernardi et al., 1985). This variation affects both coding and non-coding 

sites over scales ranging from kilobases to megabases. A number of explanations for 

this variation have been proposed. Variability in the efficiency of DNA repair or the 

mutability of different sequences are known, but these are not thought to operate 

over the scales required to give rise to the broad scale isochore structure, nor give 
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rise to patterns of isochore decline observed in mammals (Duret et al., 2002). 

Alternatively, natural selection owing to thermal stability (Bernardi, 2000) or amino 

acid composition (D’Onofrio et al., 1991) has been suggested, although these 

explanations have largely been ruled out as they are not supported by the origin of 

isochore structure relative to that of homeothermy (Belle et al., 2002) or why GC 

content should vary in non-coding sequences respectively (Eyre-Walker and Hurst, 

2001). As will be discussed later in this chapter, the current favoured explanation is 

that of recombination-associated biased gene conversion. 

 

That G and C are approximately twice as mutable than A and T was suggested some 

time ago (Gojobori et al., 1982, Bulmer, 1986). However, whether there is a 

relationship between GC content and mutation rates and if so, what the nature of this 

relationship might be, has been the subject of contentious debate that has yet to be 

resolved. When Wolfe et al. (1989) identified mutational variation at four-fold 

degenerate sites, they found that it covaried positively with GC content in regions of 

the genome with high GC content, but that in AT rich regions, a negative covariance 

was found. This decline in substitution rates with increasing GC content in AT rich 

regions was confirmed for KS (Filipski, 1987, Ticher and Graur, 1989). However, 

later studies (e.g. Bernardi et al., 1993) failed to recover any relationship between 

GC4 and KS. The recovery of an inverted v- or u-shaped relationship (Gu and Li, 

1994) prompted further debate.  

 

In an attempt to explain these discrepant relationships, Hurst and Williams (2000) 

applied a number of methodologies to the issue in rodents. Using a preferred 

maximum likelihood analysis they found a positive covariance between GC4 and KS 

that was best explained by a shallow u-shaped quadratic, but no relationship when 

the analysis was restricted to K4. When different statistical models were applied they 

either failed to recover any relationship or found that the u-shape became inverted as 

had previously been reported. The positive covariance between GC4 and K4 has 

subsequently been confirmed (Lercher and Hurst, 2002), though here the better fit of 

a quadratic model was not tested. A comprehensive analysis between human and 

mouse (Hardison et al., 2003) extended the issue outside of coding regions and again 

recovered the u-shaped relationship between GC content and substitution rates at 
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both four-fold degenerate sites and in ancestral repeats. More recently, Tyekucheva 

et al. (2008) studied ancestral repeats in primates and again recovered a pronounced 

u-shaped covariance between GC and neutral rates, showing that a quadratic fitted 

the relationship better than a linear regression. 

 

Many of the studies that recovered the u-shaped relationship between GC content 

and rates of neutral evolution have considered the impact of highly mutable CpGs. 

Mutation rates at CpG sites are elevated 10-fold, driven mostly by an elevation in the 

transition rate, though transversion rates also increase (Hodgkinson and Eyre-

Walker, 2011). This effect is largely due to methylation of CpGs in mammals, the 

methylated C being more susceptible to deamination to thymine. Hellmann et al. 

(2005) suggested that the curved nature of the relationship in GC rich regions 

reflects an underlying quadratic relationship between GC content and the probability 

of finding a CpG site, that is to say that as GC content increases, it becomes 

increasing likely that such sites will form the highly mutable CpG residues. In GC 

rich regions, any increase in mutation rate with increasing GC content might 

therefore be attributable to CpG sites. Consistent with this, removal of CpG sites 

resulted in the loss of a relationship between GC content and neutral rates in regions 

of high GC content, whereas the negative relationship remained where GC content 

was lower (Tyekucheva et al., 2008). Hurst and Williams (2000) also showed that 

that some of the positive part of the relationship could be controlled by an excess of 

CpG to TpG or GpC to GpA mutations in GC rich regions.  

 

1.3 Replication time 

 

In their 1989 paper, Wolfe et al. (1989) suggested the possibility that changes in the 

dinucleotide pool during S-phase might affect mutation, given that it was known that 

the eukaryotic genome does not replicate synchronously. Until 2008, this hypothesis 

had remained untested. The ability to test this hypothesis was made possible by the 

production of genome-wide replication timing maps of increasing resolution, 

particularly in mammalian genomes (MacAlpine and Bell, 2005, Woodfine et al., 

2004). Several methods to do this exist, one of which involves the use of a culture of 

asynchronously cycling cells that is pulse labelled with 5-bromodeoxyuridine 
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(BrdU). These cells are then sorted by flow cytometry into S-phase fractions based 

on DNA content, after which the BrdU-labelled DNA is immunoprecipitated from 

each fraction and amplified. The early and late fractions are then differentially 

labelled and co-hybridized to a whole genome microarray. Relative replication times 

are calculated as a log2 ratio of early-to-late replication (e.g. Hiratani et al., 2008).  

 

Despite conservation of origin binding proteins higher eukaryotes, unlike yeast, do 

not contain conserved autonomously replicating sequences where replication 

originates. However, during G1 phase in all eukaryotes, prereplication (preRC) 

complexes assemble at multiple origins of replication so that they are licensed - 

capable of initiating DNA replication. Not all of these origins are activated during S-

phase and those that do are not activated synchronously. Timing of replication of a 

given sequence is therefore a function both of distance from an active origin and the 

time that the origin was activated. The order in which these origins are activated is 

not random. Instead, replication is organised into clearly defined regions of similarly 

timed replication. Origins firing synchronously tend to cluster, forming discrete 

replication foci and in turn these foci or ‘replicons’ may form larger domains of 

similarly timed replication that range from a few kilobases to several megabases in 

size (Hiratani et al., 2008).  

 

These replicons and domains are relatively stable, with foci that initially replicated at 

a single time point continuing to do so in subsequent S-phases down a cell line 

(Jackson and Pombo, 1998). Both sharp and gradual transitions between replication 

domains have been reported (Woodfine et al., 2004, Farkash-Amar et al., 2008), but 

in both cases transitions probably lack origins and their boundaries are shared 

between unrelated cell lines (Woodfine et al., 2004, Hiratani et al., 2008). 

Replication timing in mammals has been shown to correlate between different cell 

lines (Woodfine et al., 2004), although recent higher resolution studies have shown 

that as much as 20% of the genome’s replication timing is subject to change upon 

cell differentiation, upon which new domains were again conserved between 

unrelated cell lines of a similar cell type, suggesting that replication timing is 

characteristic of a specific cell type (Hiratani et al., 2004, Hiratani et al., 2008). 

Indeed, the strength of this relationship is so strong that once mapped, replication 
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timing appears to be a unique identifier that can be used to predict cell type (Ryba et 

al., 2011). Using similar cell types, homologous genes in human and mouse have 

been found to replicate at similar times, despite sequence divergence, 

rearrangements, and even when other features such as GC content and transcription 

differed (Yaffe et al., 2010, Farkash-Amar et al., 2008). Together, these findings 

suggest that, within mammals at least, replication timing is a relatively stable 

genomic feature that is conserved during evolution.  

 

Since their discovery, replication domains have been found to have a number of 

important characteristics, though whether these are determinants of or stem from 

differences in replication timing remains a subject of investigation. Early replication 

timing has been associated with high GC content, high gene density, gene 

expression, low LINE repeat sequence density and, in humans, high Alu repeat 

density (Woodfine et al., 2004). However, as these features also tend to covary with 

each other, the extent to which replication time is involved is not yet certain.  

 

GC content has long been associated with differences in replication timing 

(Schmegner et al., 2007, Costantini and Bernardi, 2008) and remains its strongest 

covariate (Woodfine et al., 2004). This relationship is not, however, static, with the 

aforementioned changes during cell differentiation tending to bring replication 

timing into alignment with isochore structure, such that previously early replicating 

AT rich regions become late replicating and vice versa (Hiratani et al., 2008). 

 

The nature of the relationship between timing of replication and gene expression has 

been the subject of much research. Links between the two appear to be restricted to 

higher eukaryotes, none being found in yeast (Raghuraman et al., 2001) but being 

found in Drosophila (Schübeler et al., 2002, MacAlpine and Bell, 2005) and 

mammals (Woodfine et al., 2004, Hiratani et al., 2008, Farkash-Amar and Simon, 

2009). In multicellular species, housekeeping genes that are expressed ubiquitously 

are known to replicate early in mammals whereas those that are tissue specific tend 

to replicate late except where expressed (Holmquist, 1987, Farkash-Amar et al., 

2008, Selig et al., 1992). Further, genes that alter their replication timing from early 

to late S-phase tend to be down-regulated, whereas those becoming early replicating 
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have a tendency to increase their expression levels (Hiratani et al., 2008). There are, 

however, exceptions to this rule that suggest a more complex relationship, with 

repressed genes replicating early and expressed genes replicating late (Gilbert, 2002, 

Farkash-Amar et al., 2008). This is not restricted to mammals - in Drosophila, 30% 

of early replicating genes are inactive and 30% of active genes are late replicating 

(Schwaiger et al., 2009). 

  

In humans, the probability of expression, that is, whether or not a gene is expressed 

at all, is a stronger covariate of replication timing than absolute level of expression 

(Woodfine et al., 2004). Consistent with this, replication timing in mouse has been 

found to be related to RNA polymerase promoter occupancy, with genes that are 

primed for but not being actively transcribed replicating early (Farkash-Amar et al., 

2008). Further, genes involved in stress response and apoptosis, which are likely to 

be inactive but require rapid transcription, replicate early (Farkash-Amar et al., 

2008). These results tend to suggest that genes primed for expression but not 

undergoing active transcription replicate early. Combined with comparisons of 

pluripotent to differentiated cells, this model suggests that much of the genome 

initially replicates early, with many genes primed for possible expression. Then, as 

differentiation occurs, expression of subsets of genes that are no longer required is 

shut down and they move to later replication times in the terminally differentiated 

cells (Hiratani et al., 2008). Notably, the relationship between expression and 

replication timing does not extend to a subset of genes with strong promoters, 

enabling late replicating genes to be upregulated. 

 

The causal relationship between expression and replication timing was initially 

thought to be due to transcriptionally silent genes being inaccessible to replication 

factors, thus delaying replication. However, evidence now favours a model whereby 

replication timing determines chromatin structure, this being formed at the 

replication fork, and that chromatin structure then determines transcriptional 

potential (Farkash-Amar et al., 2008). Changes in replication timing might therefore 

facilitate changes in chromatin structure and subsequently expression potential. This 

would be supported by the observation that chromatin permissive for expression 

replicates early, but heterochromatin tends to be one of the last types of DNA to 
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replicate (Gilbert, 2002). Further, while the human β-globin gene is usually inactive 

and late replicating, but early replicating when it is expressed, experimental silencing 

of the gene whilst maintaining the open chromatin state results in early replication 

(see Schwaiger et al., 2009). Again though, there are exceptions, with bivalent 

genes, those exhibiting co-occupation of active and inactive histone modifications, 

always replicating early and their resolution not being linked to changes in 

replication timing. 

 

Temporal variation in replication has also been linked to spatial variation, with early 

replication tending to occur in the centre of the nucleus whereas DNA located at the 

nuclear periphery replicates later (Dimitrova and Gilbert, 1999). Again, this feature 

of replication appears to be conserved, with discrete foci that replicate together 

continuing to occupy discrete chromosomal domains during interphase of subsequent 

cell generations (Jackson and Pombo, 1998). Again too, changes in replication time 

during differentiation have been associated with spatial changes, with genes moving 

either towards or away from the nuclear periphery (Hiratani et al., 2008).  

 

When Wolfe et al. (1989) initially suggested that replication timing might be a 

determinant of mutation rates, they speculated that this might be due to changes in 

the composition of the dinucleotide pool during S-phase, although they incorrectly 

supposed an increase in GC content in later replicating DNA. Intracellular 

concentrations of deoxyribonucleoside triphosphates (dNTPs) are tightly controlled 

and regulated. At the G1/S-phase border dNTP pools start to increase and continue 

to expand during S-phase. When S-phase is completed, production of dNTPs is shut 

off and a residual pool left for DNA repair outside of S-phase (Mathews, 2006). In 

mammals, this mirrors changes in the speed of replication, which starts slowly, 

increases to a linear rate a third of the way through S-phase, during which most of 

genome is replicated, before possibly starting to slow (Woodfine et al., 2004, 

Farkash-Amar et al., 2008). 

 

Critical to replication, changes in dNTP availability have been shown to influence 

the speed of fork progression in early, but not late, S-phase (Malínsky et al., 2001) 

and origin activation in mammals (Anglana et al., 2003). Reduction in dNTP 
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concentration below critical levels has been linked with replication arrest (Koç et al., 

2004) and, when dNTP pools are depleted, initiation of the S-phase check point 

(Kumar et al., 2010). In nearly all organisms studied, dNTP pools are asymmetric 

with an excess of dATP and dTTP and an under-representation of dGTP, the latter 

comprising only 5-10% of the pool (Mathews, 2006). There is also evidence of 

spatial variation: while dCTP is compartmentalised and is subject to the greatest 

nuclear increases in concentration during S-phase, dTTP exists in a single 

equilibrated pool (Leeds et al., 1985, but see Kumar et al., 2011, Xu et al., 1995). 

 

It is generally assumed that dNTP concentrations have evolved to maximise 

replication fidelity. Consistent with this, perturbation of relative concentrations to 

either equimolar conditions or extreme imbalances has been shown to be mutagenic 

(Martomo and Mathews, 2002, Kumar et al., 2011, Kumar et al., 2010). Similarly, a 

balanced accumulation of dNTPs is also mutagenic, possibly due to a reduction in 

proof reading due to saturation of the DNA polymerase by dNTPs (Martomo and 

Mathews, 2002). Mechanisms by which an excess of dNTPs are thought to lead to 

mutations include competition between dNTPs resulting in mismatches, with the 

nature of the mutation being dependent on the direction of the imbalance; 

frameshifts due to realignments of sequence after excess dNTPs form a correct 

pairing at a slipped site; and excess dNTPs driving chain extension past mismatched 

sites before the polymerase is able to detect and correct the error (Mathews, 2006). 

However, while imbalances in dNTP pools are known to occur in cancerous cells, it 

is not yet known whether imbalances and their associated mutagenic effects are a 

feature of normally functioning cells. 

 

1.4 Recombination 

 

Recombination rates are known not be uniform across the genome. In addition to a 

broad scale elevation in recombination rate towards telomeres and suppression at 

centromeres, finer scale variation also exists. Most recombination events are 

concentrated in short regions, termed ‘recombination hotspots’. In mammals, 

recombination hotspots are estimated to be 1-2 Kb in size and tend to occur at 50-

100 Kb intervals (Myers et al., 2006). Numerous recombination hotspots have now 
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been well characterised in a number of species (Jeffreys and Neumann, 2009, Wu et 

al., 2010). In addition to variation in recombination rates within a given genome, 

variation also exists between species (Ptak et al., 2005, Jensen-Seaman et al., 2004), 

between genders (Paigen et al., 2008, Kong et al., 2002, Jensen-Seaman et al., 2004) 

and even between individuals of the same species (Dumont et al., 2011, Coop et al., 

2008). 

 

Understanding the causes of this recombination rate variation demands knowledge of 

the underlying mechanisms that determine where recombination occurs. Substantial 

progress has been made in this field over recent years, with the discovery both of a 

degenerate 13 bp consensus sequence enriched in over 40% of human recombination 

hotspots (Myers et al., 2008), and of a chromatin modifying protein, PRDM9, that is 

predicted to bind to these motifs (Baudat et al., 2010, Myers et al., 2010, Parvanov et 

al., 2008). This protein results in the trimethylation of lysine 4 in histone H3, which 

in yeast and mice has been found to define the sites at which double strand breaks 

are formed during normal meiosis (Borde et al., 2009, Buard et al., 2009) – these 

double strand breaks being required to initiate chiasma. Studies have shown that the 

mouse ortholog of PRDM9, a zinc finger protein, is not only expressed during 

meiotic prophase but that knock out strains fail to repair double strand breaks (DSB) 

and are infertile (Myers et al., 2010, Parvanov et al., 2010), strongly supporting its 

role in recombination. 

 

Further evidence in support of this model comes from its ability to explain the 

observed variation in recombination rate. PRDM9 has been found to evolve 

extremely rapidly between human and chimpanzee, and across a number of 

mammals, explaining why similar consensus motifs do not induce recombination in 

different species (McVean and Myers, 2010, Oliver et al., 2009). Further, variation 

in the number of PRDM9 zinc finger domains between different mouse strains, 

together with amino acid substitutions at key DNA binding sites, would explain 

variation between their genetic maps (Parvanov et al., 2010). Variation in PRDM9 

has also been observed within humans, with a variant found in humans of European 

ancestry not being associated with the common motif (Baudat et al., 2010). 

Similarly, the probability of a crossover in recombination hotspots active in people 
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of West African ancestry, but inactive in Europeans, appears to be controlled by the 

PRDM9 allelic variant and enrichment for the associated binding motif within the 

hotspot (Hinch et al., 2011). This rapid evolution of PRDM9 might reflect a need to 

adapt to disruptions of the consensus motif via biased gene conversion, leading to 

hotspot loss (Myers et al., 2010). 

 

In contrast to variation between species and individuals, the variation in the 

distribution of recombination hotspots between genders has not yet been attributed 

directly to diversity in the PRDM9 protein. It has long been known that the female 

genetic map is longer than that of males – 1.7 times as long in humans and 1.3 times 

as long in mice (Kong et al., 2002, Shifman et al., 2006, Broman et al., 1998). This 

has been attributed to the formation of a longer synaptonemal complex in females 

(Tease and Hulten, 2004). There is also broad scale variation along chromosomes, 

with recombination events tending to be more strongly localised in males compared 

to a relatively even distribution in females. Male recombination rates also tend to 

increase towards the telomeres whereas recombination rates are higher around the 

centromeres in females (Paigen et al., 2008, Kong et al., 2002). Gender differences 

also exist in the fine scale location of recombination hotspots (Kong et al., 2010). 

However, a recent update of the genetic map of mouse has shown that gender 

differences, while still visible, were not as extreme as previously thought (Cox et al., 

2009). One possible mechanistic explanation for these differences is that females 

have a more compact chromatin structure during the pachytene stage of meiosis and 

that this then results in a shorter genomic interference distance (Petkov et al., 2007). 

 

Alternatively, a selective explanation has been proposed for the evolution of 

heterochiasmy, the gender differences in overall recombination rate. This suggests 

that recombination might be avoided in order to prevent breaking epistatic 

interactions between linked loci that selection has brought together. Such genes are 

particularly likely to be expressed during the haploid stage of either germ-line. As 

the haploid phase of the female germ-line is virtually non-existent – the final meiotic 

division taking place post fertilisation – this selective pressure would be stronger in 

the male germ-line, resulting in the lower recombination rate generally observed in 

males compared to females (Lenormand, 2003, Lenormand and Dutheil, 2005). 
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However, an argument could also be made for increased recombination in such 

regions. This would bring together new combinations of alleles that may be 

beneficial when linked in a highly competitive environment, such as sperm 

competition in males. In contrast, this hypothesis would predict an elevated 

recombination rate in males, or at least at genomic locations containing genes 

involved in sperm production, motility and fertilization (Lenormand, 2003, 

Lenormand and Dutheil, 2005). Different epistatic interactions between males and 

females would also explain why imprinted genes have elevated recombination rates 

(Lercher and Hurst, 2003). 

 

Magni (1963) was the first to propose that meiotic recombination might be 

mutagenic. Since then, a number of studies have found a relationship between 

neutral rates of evolution and meiotic recombination. Lercher and Hurst (2002) 

suggested that recombination is mutagenic, based on observed elevated SNP 

diversity in regions of the human genome with high recombination rates. 

Observations of this type can also be attributed to hitchhiking or background 

selection, both of which require proximity to an allele under selection. However, 

there is also a covariance of SNP density and recombination in non-coding sequence, 

thought not to be under such selective effects (Lercher and Hurst, 2002). This would 

account for why Nachman (2001) failed to recover a similar relationship, since this 

analysis was restricted to sequence in close proximity to exons. A positive 

correlation between recombination and K4 was also observed (Lercher and Hurst, 

2002). This latter relationship was also detected at a 1Mb scale by Hardison et al. 

(2003), who also showed that recombination positively covaried with evolutionary 

rates in transposable elements. More recently, Tyekucheva et al. (2008) found that 

the human neutral rate in ancestral repeats covaries with male-, but not female-

specific recombination rates.  

 

Strong evidence for a recombinational-mutagenic effect comes from the 

pseudoautosomal region that, during the obligatory pairing of the X and Y 

chromosomes during male meiosis, is the only part of the Y chromosome to undergo 

inter-chromosomal recombination. As such, the pseudoautosomal region experiences 

rates of recombination that are 7 to 10 fold higher during male meiosis than when 
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recombination can occur along the length of the X chromosome during female 

meiosis (Soriano et al., 1987, Perry and Ashworth, 1999, Lien et al., 2000). This 

region has been shown to evolve extremely rapidly. Genes that are pseudoautosomal 

in humans but autosomal in rodents have been found to evolve faster (Ellison et al., 

1996). Similarly, intronic sequences in the pseudoautosomal region of the human p-

arm were found to evolve significantly faster than the genomic average. In contrast, 

intronic divergence in the q-linked pseudoautosomal region, which does not 

experience the same elevated recombination rate, did not differ significantly from 

the rest of the genome (Filatov and Gerrard, 2003). 

 

A particular example is that of the Fxy gene. This gene moved to straddle the 

boundary of the pseudoautosomal region in laboratory mice so that 3 of the 10 exons 

are now located in the pseudoautosomal region, the rest remaining X-specific. 

Comparison with rat and other mice species, where the entire gene remains X-

specific, has shown a huge acceleration in synonymous substitution rates that are 

170-fold higher in the highly recombining pseudoautosomal exons compared to 

those which are only exposed to lower rates of recombination in females (Perry and 

Ashworth, 1999). Evidence has not however been universal. Like the mouse Fxy 

gene, the human and great ape XG gene straddles the p-pseudoautosomal region 

boundary. A study by Yi et al. (2004) showed that despite an elevated recombination 

rate, the rate of evolution of pseudoautosomal XG introns did not differ from those 

that are X-specific. Galtier (2004) proposed that a shift in the position of the 

boundary, such that in the ancestor of the great apes the entire XG gene was 

pseudoautosomal, might explain this discrepancy. This would also explain why 

Filatov (2004) was able to detect a gradient of increasing intronic substitution rates 

extending from the human pseudoautosomal boundary to towards the telomere. 

 

One potential mechanism that has been proposed to explain this apparent mutational 

effect of recombination is that double strand breaks are mutagenic (Lercher and 

Hurst, 2002). After double strand breaks are initiated, DNA is degraded and then re-

synthesised around the break (Figure 1.1). Unlike DNA replication, during DSB 

repair DNA synthesis is performed by low fidelity DNA polymerases (Rattray and 

Strathern, 2003, Strathern et al., 1995). In Drosophila however, not all DSBs result 
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in cross-overs, instead being resolved by alternative mechanisms such as synthesis-

dependent strand annealing (Figure 1.1) or other methods of resolving Holliday 

junctions. It has been shown that in Drosophila, where crossing over is restricted 

extensive gene conversion tends to occur instead (Andolfatto and Wall, 2003, 

Langley et al., 2000). Given this Kulathinal et al. (2008) proposed that DSB repair, 

rather than crossing-over, is mutagenic, hence divergence in Drosophila often failing 

to correspond with genetic maps (Begun and Aquadro, 1992), these being measures 

of cross-over. 

 

Nearly all studies examining the relationship between recombination and rates of 

evolution have found a positive relationship between recombination and GC content 

(e.g. Kong et al., 2002, Williams and Hurst, 2000, Eyre-Walker, 1993). Further, that 

recombination is driving GC content, rather than vice versa, comes from 

observations that recombination rate covarys more strongly with the GC content to 

which a sequence is evolving, rather than its current GC content (Meunier and Duret, 

2004, Duret and Arndt, 2008). This has been attributed to the action of GC biased 

gene conversion (gBGC), which in turn is now the favoured explanation for the 

evolution of isochores (Romiguier et al., 2010, Duret and Galtier, 2009). 

 

Gene conversion is the non-reciprocal copying of one homologous DNA sequence 

onto another and forms part of the meiotic recombination process (Figure 1.1). When 

the two parental chromosomes are heterozygous, mismatches form within the 

heteroduplexed gene conversion tract. Repair of these mismatches either reverts the 

mismatch to the original state or renders the chromosomes identical at the formally 

heterozygous site resulting in non-Mendelian segregation. In the case of the latter, if 

there is an equal probability of repair in either direction, on average the entire 

gamete pool remains unbiased. However, biases in the repair of T:G mismatches 

result in the formation of a higher proportion of G:C than A:T gametes. This neutral 

process generates a form of meiotic drive that gives GC alleles a transmission 

advantage over AT alleles (Figure 1.1). The main evidence for the mechanistic basis 

of this bias comes from a small number of studies that examined repair of G:T, A:C, 

C:T, A:G mismatches introduced into the SV40 viral genome in simian cells. The 

highest rate of repair was for G:T mismatches which tended to be corrected to G:C 
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(Brown and Jiricny, 1988). It is thought that this biased repair process might have 

evolved to correct G:T mismatches arising from cytosine deamination (Brown and 

Jiricny, 1987). 

 
Figure 1.1: Alternative methods of repairing double strand breaks (DSBs) lead to 
GC biased gene conversion. Following resection, strand invasion is then resolved 
either by the synthesis dependent strand-annealing pathway or one of the double 
strand break repair pathways. Heteroduplexes form in all pathways, although some 
of these might only exist transiently, and where sites are heterozygous, mismatches 
occur in these regions. For most mismatches, such as the C:T mismatch shown here, 
mismatch repair either restores the original site or gene conversion to the other allele 
occurs. However, in the case of the G:T mismatch, repair is biased towards a G:C 
over A:T. This results in a transmission distortion in favour of GC alleles. Note that 
this diagram does not show complex gene conversion tracts. Information presented 
obtained from Chen et al. (2007), Duret and Galtier (2009) and Hurles (2001). 
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Returning again to the pseudoautosomal region, gBGC can account for why the 

pseudoautosomal portion of the domestic mouse Fxy gene has, in addition to the 

elevated substitution rate already described, a higher GC content than orthologous 

X-specific sequence (Perry and Ashworth, 1999). Again though, as for substitution 

rates, Yi et al. (2004) found that GC content did not differ between the 

pseudoautomal and X-specific parts of the XG gene, though notably both were 

elevated above the overall X-specific level. According to Galtier, this provides 

evidence in favour of recombination effect via gBGC. Movement into such a region 

would expose a sequence to the strong influence of a gBGC fixation effect, as 

observed in the mouse Fxy gene. In contrast, neutral mutation effects are much 

weaker, hence after removal of a sequence from strong recombinational 

environment, GC rich sequences are slower to return to GC content predicted by 

neutral effects alone (Galtier, 2004). 

 

Could then the relationship between recombination and neutral rates of evolution be 

due to gBGC? Certainly, before a sequence reaches its stationary GC content, gBGC 

should result in an increased substitution rate. The rate at which recombination rates 

evolve might mean that this is a continuing process across the entire genome. 

Consistent with this, clusters of A/T (weak) to G/C (strong) human substitutions, but 

not SNPs, have been found to be common close to telomeres and covary more 

strongly with male than female recombination rates (Dreszer et al., 2007, Berglund 

et al., 2009). One explanation for why the latter might be is that recombination in 

males tends to be more clustered and evolve faster than in females. Further, the 

impact of gBGC might be so strong that it can overcome natural selection, 

promoting the fixation of deleterious AT→GC mutations or preventing 

advantageous GC→AT mutations from reaching fixation (Galtier et al., 2009, 

Berglund et al., 2009). For example, the human and short-tailed mouse versions of 

the Fxy protein differ by only six amino acids. However, since divergence from its 

rodent relative, the laboratory mouse Fxy protein has accumulated 28 amino acid 

changes, all of which are within the pseudoautosomal portion of the gene and all 

caused by AT→GC substitutions. Given the conservation across other species, these 

changes are unlikely to be adaptive (Galtier and Duret, 2007). However, evidence 
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from the pseudoautosomal region is not unanimous in support of a gBGC-associated 

substitution effect. Filatov (2004) suggested that the relationship between 

substitution rate and recombination in the pseudoautosomal region could not be due 

to gBGC alone. His examination of only A↔T or G↔C substitutions, those that 

could not be attributed gBGC, still resulted in a substitution rate gradient extending 

into the pseudoautosomal region. 

 

1.5 Other sources of mutational variation 

 

A number of other potential sources of mutational variation have been examined that 

will briefly be described here. As has been mentioned, features of replication timing 

and recombination are strongly associated with chromatin structure. This too has 

been examined as a possible covariate of mutation rates. Prendergast et al. (2007) 

found that in humans, intergenic and intronic divergence was highest in closed 

chromatin. They speculate that this might reflect higher rates of DNA damage, 

impaired DNA lesion detection or reduced DNA repair. However, Chen et al. (2010) 

later showed that the effect was in fact attributed to the later replication timing of 

heterochromatic regions. Whether chromatin structure is indeed a covariate, let alone 

casual, of mutation rate variability therefore remains unclear. 

 

Mutational variability is also known to covary with indel occurrence. This is usually 

attributed to indirect relationships between either mutability of the sequence or 

strength of selection against all types of mutation (Hardison et al., 2003). However, 

that elevated substitution rates are particular to the orthologous sequence containing 

the indel, and that the scale of the effect, is proportional to indel size is suggestive of 

a causal relationship (Tian et al., 2008). It has been suggested that heterozygosity for 

the indel is mutagenic, disrupting pairing during meiosis, although notably the effect 

has not yet been associated with recombination hotspots in primates or yeast. 

Whatever the mechanism, the trend appears to be universal across eukaryotes, 

having been observed in primates, rodents, flies, rice and yeast (Tian et al., 2008). 

 

Finally, gene expression has also been suggested as a possible source of novel 

mutations. Some evidence for this is indirect, with an observed clustering of genes 
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with both similar rates of evolution and similar levels of expression. For example, in 

both rodents and primates, introns of the same gene and linked genes have been 

found to evolve at more similar rates than expected by chance (Lercher et al., 2004). 

Evidence for a link between transcription and mutation comes also from strand 

asymmetry in base composition, where there is an excess of G over C and T over A 

on the coding strand of broadly expressed genes (Green et al., 2003, Majewski, 

2003). That this coding strand excess of G and T is significantly higher in 

transcribed than in flanking untranscribed sequence (Green et al., 2003, Mugal et al., 

2009) and shows clear transitions between equal and skewed base composition at the 

5' end of transcribed DNA (Touchon et al., 2003, Touchon et al., 2004, Polak and 

Arndt, 2008) is strongly suggestive of a transcription associated effect. The cause of 

this strand asymmetry is thought result from the coding strand being transiently 

exposed in a single stranded state during transcription and as such, more susceptible 

to mutations such as depurination or deamination. Transcription-coupled repair then 

acts on the non-coding strand to repair the resulting mismatch.  

 

1.6 Thesis aims 

 

This thesis focuses on genome-wide mutational variability in the murid rodents 

mouse (Mus musculus) and rat (Rattus norvegicus). Chapter 2 aims to re-examine the 

primary explanation for the variation in rates of evolution between different types of 

chromosomes - the theory of male driven evolution. It expands on a previous study, 

making use of newly available Y-linked sequence, to explicitly test Miyata et al.’s 

(1987b) model. The chapter shows that Miyata et al.’s (1987b) model was unable to 

explain the data as, contrary to the prediction of the male driven evolution, the 

autosomal rate of intronic and exonic evolution exceeded that of the Y chromosome. 

Given previously observed relationships between recombination rate and divergence, 

the chapter also proposes a novel model that incorporates a recombination-associated 

substitution rate parameter. 

 

An assumption of Miyata et al.’s (1987b) model is that, per replication, novel 

mutations are evenly distributed across the genome. Based on the discussed 

variability in replication during S-phase, Chapter 3 tests this assumption and shows 
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that intronic sequences that replicate at different times evolve at different rates. 

However, it is also shown that controlling for timing of replication is not able to 

account for the discrepancy in Miyata et al.’s (1987b) model shown in Chapter 2. It 

is also suggested that GC rich sequences might have low rates of evolution because 

they replicate early, rather than early replicating sequences evolving slowly because 

they are GC rich. 

 

As discussed, early replication and high rates of recombination have both been 

associated with high GC content. Timing of replication and recombination rate might 

therefore be expected to covary. Chapter 4 tests this hypothesis and explores the 

relative impact that replication timing and sex-specific recombination rates have on 

both intronic divergence and GC content. The analyses show that late replicating 

domains tend to have high recombination rates in females but low recombination 

rates in males. As these trends are antagonistic, the relationship between 

recombination rate and divergence has been moderately underestimated for male 

recombination and slightly overestimated for female recombination, owing to 

covariance with replication timing. It also explains why male recombination is 

strongly correlated with GC content but female recombination is not, with GC 

promotion by biased gene conversion during female recombination being countered 

by the antagonistic effect of later replicating sequence tending to increase AT 

content. 
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2.1 Introduction 

 

Following Haldane’s (1947) proposal that most mutations in humans are male 

derived, it has been conventional wisdom that this male excess is owing to a 

difference in numbers of germ-line replications (Crow, 1997a, Crow, 1997b, Hurst 

and Ellegren, 1998, Ellegren, 2007, Li et al., 2002). In males, spermatogenesis is an 

ongoing process throughout a male’s life, whereas in females, the number of 

divisions prior to oocyte production is fixed. Under the presumption of a male bias 

owing to replication number differences, Miyata et al. (1987) proposed a simple 

means to assay the extent of male-bias. They argued that the rate of evolution of 

putatively neutral sites on X, Y and autosomes should reflect the amount of time 

spent in the male germ-line by the three chromosomal classes: The Y chromosome 

should evolve the fastest being exclusively in males, followed by the autosomes that 

are, on average, in males half of the time, followed by the X chromosome which 

spends only one third of its time in males. 

 

More formally, Miyata et al. (1987) proposed that if the mutation rate in females is µ 

and the ratio of male-to-female germ-line replication events (prior to generation of a 

successful gamete) is α, then if germ-line replication is the source of all differences 
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in substitution rate of sequence not under selection, the evolutionary rate (K) of 

sequences of class N (Y, X or autosomal) would be:  

! 

K
Y

="µ,  (1) 

! 

K
Autosome

=
"µ + µ

2
,   (2) 

! 

K
X

=
"µ + 2µ

3
   (3) 

By considering the ratios of any two classes at a time (KX/KAutosome, KY/KAutosome or 

KY/KX), it is possible to estimate α. 

 

Typically, by employing just one of the three possible comparisons, various authors 

have attempted to assess the extent of male bias in various taxa (eg. Shimmin et al., 

1993, Chang et al., 1994, Makova and Li, 2002, Sandstedt and Tucker, 2005, 

Goetting-Minesky and Makova, 2006, Bachtrog, 2008). It is commonly argued 

(Makova and Li, 2002) that results are broadly consistent with expectations, in that 

species with relatively long-lived males (hence, a greater discrepancy between the 

number of male and female replications) have higher values of α. For humans, the 

estimate is typically around six (Shimmin et al., 1993, Taylor et al., 2006, Chang et 

al., 1996), for rodents around two (Chang et al., 1994, Sandstedt and Tucker, 2005) 

and for flies around one (Bauer and Aquadro, 1997). 

 

The case is, however, by no means decided. First, direct observations of male-bias 

derived from medical evidence, rather than molecular evolutionary inferred 

estimates, do not agree with one another (Hurst and Ellegren, 1998, Hurst, 2006). In 

part, this reflects the fact that very high estimates of α appear to be confounded by 

male germ-line selection favouring certain mutations (Goriely et al., 2003, Goriely et 

al., 2005, Qin et al., 2007, Choi et al., 2008). Although these very strong male-biases 

were initially taken as strong support for the replication hypothesis (Li et al., 2002), 

they no longer arbitrate on the issue. Why some studies (e.g. Yin et al., 1996) might 

show a female bias, while the direction of the bias is family specific in others 

(Conrad et al., 2011) is unresolved. 
 

The molecular evolutionary comparisons also have a number of unresolved issues. 

Z-W chromosomal comparisons in birds, for example, tend to give estimates 
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(Bartosch-Härlid et al., 2003) that are rather high given the short life spans of the 

species (α ~ 5) (Hurst and Ellegren, 1998). In Drosophila, one study claims there is 

a bias of the same magnitude claimed for rodents (Bachtrog, 2008). In mammals 

there is also now strong evidence for within-autosome (Matassi et al., 1999, Lercher 

et al., 2001, Malcom et al., 2003) and between-autosome (Lercher et al., 2001, 

Malcom et al., 2003) variation in rates that cannot be accounted for by differences in 

the number of replications, this being the same across all autosomes.  

 

Although it has been claimed that differences in the rate of evolution of different 

chromosomal classes can be explained by the male mutation bias alone (Axelsson et 

al., 2004), others have argued that mutations arising in non-replicating DNA also 

contribute substantially to rates of evolution (Huttley et al., 2000). Further, 

substitution rates are known to be effected by transcription (Green et al., 2003, 

Majewski, 2003, Lercher et al., 2004), location within an inversion (Navarro and 

Barton, 2003), GC content (Smith and Hurst, 1999b, Hurst and Williams, 2000) and 

recombination (Perry and Ashworth, 1999, Dreszer et al., 2007, Bussell et al., 2006, 

Rattray et al., 2001, Lercher and Hurst, 2002, Hellmann et al., 2003). However, the 

quantitative effect of these processes, if any, on Miyata et al.’s (1987) model has not 

yet been explored. 

 

This chapter aims to provide an examination of the model proposed by Miyata et al. 

(1987). There is a simple test of whether replication alone is the source of the 

differences in evolutionary rate between X, Y and autosome. If the model is correct, 

then Equations 1 to 3 must hold. If so, all of the possible pair-wise comparisons (X-

Autosome, Y-Autosome and Y-X) should provide the same estimate for α. If they do 

not, then the “replication-number alone” method fails and application of Miyata et 

al.’s (1987) commonly employed method must be questioned.  

 

In rodents, some prior evidence suggests that the value of α is dependent on which 

chromosomal classes were employed (Smith and Hurst, 1999a). However, sample 

sizes were too limited to make definitive statements and substitution rates at exonic 

silent sites were used. As it is now known (Chamary et al., 2006) that selection can 

act on synonymous mutations in mammals (although estimates of KS are very similar 
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to Ki – the intronic rate), it was worthwhile repeating this analysis using a larger 

sample of well-aligned intronic sequence as well as employing synonymous rates.  

 

2.2 Methods 

 

2.2.1 Sequences 

Mouse (Mus musculus) and rat (Rattus norvegicus) autosomal and X-linked 

sequences were downloaded from the University of California Santa Cruz (UCSC) 

Genome Bioinformatics database (Karolchik et al., 2004, www.genome.ucsc.edu). 

Mouse exonic and intronic sequences were obtained from the February 2006 and 

July 2007 builds respectively, whereas rat exonic and intronic sequences were both 

obtained from the November 2004 build. Exonic sequences were concatenated by 

gene and filtered so that only those containing complete codons, correct start and 

termination codons, no premature stops, or ambiguous bases were retained. All 

sequences pertaining to genes that failed this test were removed from the data set. 

 

The completed genome sequence of the Brown Norway rat did not include the Y 

chromosome (Gibbs et al., 2004). In order to provide the Y-linked sequence 

necessary for this analysis, Dr Swaminathan sequenced two rat Y-linked bacterial 

artificial chromosomes (BACs) plus some additional Y-linked cDNAs, the latter 

intended to expand the inventory for analysis of synonymous substitution rates. The 

methodologies used for this sequencing are detailed in Pink et al. (2009, Appendix 

2). Although copious amounts of sequence were produced, outside of the coding 

regions it proved impossible for Dr Swaminathan to unambiguously define 

orthology. The analysis of BAC derived sequence was therefore confined to well-

aligned genic sequences.  

 

This rat Y-linked sequencing gave rise to the full intronic sequences of Ube1y and 

Eif2s3y and a partial intronic sequence of Jarid1d. The last intron of Zfy was 

obtained from accession file X58934. A blastn search of rat Y-linked sequences 

against the mouse genome identified orthologous Y-linked mouse genes, for which 

intronic sequences were downloaded from the UCSC Genome Bioinformatics 

database (Karolchik et al., 2004). In addition, full coding sequences of rat Ube1y and 
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Eif2s3y and partial coding sequences of Ddx3y (alias Dby), Uty and Jarid1d (alias 

Smcy) were obtained. Extraction and re-formatting of these Y-linked sequences 

ready for analysis was performed by Dr Swaminathan and Dr Batada. 

 

The correct reading frame of the partial exonic sequences was established as that free 

from internal stop codons. The full coding sequence of rat Sry and partial coding 

sequence of rat Zfy were obtained from accession files NM_012772 and X75172 

respectively. Rat Y-linked sequences were subjected to a blastn search against the 

mouse genome to identify orthologous mouse Y-linked coding sequence, for which 

sequences were obtained from GenBank. Full details of the sequences used are given 

in Table 2.1.  

 
Intronic Exonic  

Sequence Rat ID Mouse ID Sequence Rat ID Mouse ID 

Ube1y Full NA 
17060 bp 

NM_011667 
19411 bp Full 

FJ775730 
NM_001167666 

3177 bp 

NM_011667 
3980 bp 

Eif2s3y Full NA 
5889 bp 

NM_012011 
6225 bp Full 

FJ775731 
FJ775732 
1419 bp 

NM_012011 
1801 bp 

Ddx3y - - - Partial 
FJ775727 

NM_001167665 
1207 bp 

NM_012008 
3767 bp 

Uty - - - Partial FJ775728 
3283 bp 

NM_009484 
3823 bp 

Jarid1d Partial NA 
13065 bp 

NM_011419 
13265 bp Partial FJ775729 

2910 bp 
NM_011419 

5478 bp 

Sry - - - Full NM_012772 
510 bp 

NM_011564 
1188 bp 

Zfy Last intron X58934 
994 bp 

NM_009570 
913 bp Partial X75172 

1173 bp 
NM_009571 

2794 bp 
Table 2.1: Sources and lengths of all Y-linked sequences used for the analyses. 

 

2.2.2 Ortholog identification  

From an initial set of Mouse Genome Informatics (MGI)-defined mouse-rat 

orthologs (Eppig et al., 2007), downloaded from http://www.informatics.jax.org in 

February 2007, autosomal and X-linked orthologs were further strictly defined by 

reference to exon number and phase, mouse and rat having to be the same, and by 

genomic location, chromosomal class having to be known and of the same type. 

Intronic orthologs were further filtered to retain only those where the difference in 

coding sequence lengths was less than 5% of the mean coding sequence length. 
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Orthologous Y-linked genes were identified from blastn search of rat sequence 

against the mouse genome as previously described. 

 

2.2.3 Alignments 

40,168 orthologous introns were aligned individually using LAGAN (Brudno et al., 

2003), with exons identified by reference to mouse and/or rat cDNA in the case of 

new Y-linked sequence or by RefSeq annotation in the case of X-linked and 

autosomal genes. 

 

By reference to a set of hand-aligned mouse-rat introns, Chamary and Hurst (2004) 

determined that there should be no more than 0.84 indels per base pair of alignment 

and that the alignment length should be no greater than 1.16 times the length of the 

longest sequence. In all, 1,915 introns were eliminated due to failing to meet these 

criteria. Rates of evolution of autosomal introns derived from the LAGAN alignment 

(Ki = 0.1666) were in agreement with those previously obtained from introns aligned 

both manually (Ki = 0.1533) and using a maximum likelihood protocol (Ki = 0.1791) 

(Chamary and Hurst, 2004). 

 

Coding sequences were concatenated by gene and their translations aligned using 

MUSCLE (Edgar, 2004) under default parameters, from which the nucleotide 

alignment was reconstructed. Exonic alignments of less than 300 sites, equivalent to 

100 amino acids assuming no indels, were excluded from the analysis to control for 

bias introduced due to the influence of short sequences, these tending to be found in 

highly expressed and thus highly conserved genes (Castillo-Davis et al., 2002, 

Drummond et al., 2005). 

 

2.2.4 Filter for introns with hidden exons or other constrained domains 

Given the possibility of alternative splicing, it was possible, if not likely, that some 

of the above introns may have contained hidden exons, or indeed other residues 

under selection such as binding or regulatory domains. As introns containing regions 

under purifying selection and those experiencing low mutation rates would both 

exhibit low levels of divergence, it was not possible to use this alone as a criteria by 
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which non-neutrally evolving introns could be identified: the removal of introns with 

low levels of divergence would have introduced bias into the data set. 

 

An alternative method to filter out these introns asked whether, within an intron, 

substitutions and conserved residues were clustered or randomly scattered through 

the intron. The premise was that if a hidden exon or a protein-binding domain was 

present, such regions should be relatively free of substitutions, so longer runs of 

conserved residues would be found, compared to what would be expected in the 

absence of such domains. 

 

The filter consisted of a simulation in which varying percentages of diverged bases 

ranging from 10% to 90% (at 10% intervals) were randomly distributed along 

sequences varying in length from 100 to 100,000 bases. For each sequence length 

and percentage divergence modelled, the number of switches in state between 

conserved and diverged bases as one moved down the sequence was counted. For a 

given sequence length and percentage divergence, multiple permutations were run 

ranging from 10,000 permutations for shorter sequences to 100 permutations for 

longer sequences due to computational limitations. The number of switches in state 

for each permutation was ranked, from which the lowest one-sided 95 percentile was 

identified (Figure 2.1). 

 
Figure 2.1: Based on the lowest one-sided 95 percentile, the lowest number of 
switches in state expected between conserved and diverged bases as one moves 
along a sequence, derived from a simulation in which a range of sequence lengths 
were randomly assigned varying percentage of diverged sites. 
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From this lower 95 percentile, a linear model was developed from which the lowest 

number of switches in state per base (z) expected for a given number of aligned 

nucleotides (l) and a given percentage of diverged bases (d) could be predicted by: 

z = -0.005757 + 0.00000026(l) + 0.0192327(d)  

 - 0.000192(d2 ) + 0.0000000136 ((l - 20350)(d - 50)) 

 - 0.00000000014((l - 20350)(d2 - 3166.67)). (4)  

 

The plot of this model in Figure 2.2 shows how closely the linear model predicts the 

simulation shown in Figure 2.1. This method was not expected to be perfect (it was 

likely to miss small hidden exons), but it should have eliminated those introns most 

profoundly affected by hidden exons. 

 
Figure 2.2: The lowest number of switches in state expected for a given number of 
aligned nucleotides and a given percentage of diverged bases, as predicted by a 
linear model.  
 

After elimination of the 30 bp of sequence flanking exon-intron boundaries (known 

to be under selective constraint, Chamary and Hurst, 2004), sites were classified as 

conserved or diverged and then the number of switches in state as one moved down 

the intron was counted. By reference to the linear model, any intron showing a lower 

number of switches than predicted (z) was eliminated. In all, 21,041 (55%) introns 

showed such evidence of selective constraints and were excluded from the analysis. 

Autosomal rates of evolution remained largely unchanged between the purged and 

the unpurged data sets. Note that the filter removed one intron (that of Zfy) 
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previously employed in rodents to estimate the evolutionary rate of the Y 

chromosome. 

 

2.2.5 Assignment of chromosomal location and concatenation of intronic 

sequences 

The first intron of each gene was eliminated from the analysis, these known to be 

unusually slow evolving (Chamary and Hurst, 2004, Keightley and Gaffney, 2003). 

Indels were removed from the remaining intronic alignments. For estimation of 

chromosomal rates, all intronic sequence from a given chromosome, assigned by the 

location of the mouse ortholog, was concatenated. This intronic chromosomal data 

set consisted of 15,625 autosomal introns (16.7 Mb), 349 X-linked introns (450 Kb) 

and 20 Y-linked introns (6,624 bp).  

 

For analysis of the effect of GC content, expression rate and a past history of 

inversions, introns from the same gene were concatenated (comprising 4051 

autosomal, 107 X-linked and 3 Y-linked genes).  

 

Aligned coding sequences for each gene were assigned to the three chromosomal 

classes, again based on the location of the mouse ortholog. This exonic data set was 

comprised of 4,474 autosomal genes (5.8 Mb), 145 X-linked genes (180 Kb) and 7 

Y-linked genes (13662 bp).  

 

2.2.6 Distance estimation 

The rate of intronic divergence (Ki) was estimated and corrected for multiple hits 

according to the model of Tamura and Kumar (TK) (2002), this correcting for 

inhomogeneous evolution. This was used for the main analysis and all analyses at 

the genic level. Several other methods were additionally employed, including those 

of Jukes and Cantor (JC) (1969), Kimura (KM) (1980) and Tamura and Nei (TN) 

(1993). 

 

KS was estimated from exonic alignments using Li’s (1993) protocol, correcting for 

multiple hits according to Kimura’s two parameter model (Kimura, 1980). As 

methods for estimating the synonymous substitution rates are subject to 
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overestimation (McVean and Hurst, 1997), the synonymous rate at 4-fold degenerate 

sites (K4) was also estimated, correcting for multiple hits according to Jukes and 

Cantor (1969), Kimura (1980) and Tamura and Nei (1993). 

 

Exonic chromosomal K estimates were calculated from the average substitution rate 

of genes assigned to each chromosomal class. This was repeated using mean, mean 

weighted by alignment length and median measures of centrality. 

 

Intronic X- and Y-linked substitution rates were determined directly from 

concatenated sequences assigned to each chromosome. Intronic autosomal 

substitution rates were calculated from the average substitution rate of each 

concatenated autosomal alignment. Analyses were repeated using the mean, mean 

weighted by alignment length and median measures of centrality. The main analyses 

utilised comparisons of intronic X- and Y-linked substitution rates to the autosomal 

mean. For analyses at the genic level, chromosomal means weighted by alignment 

length were used.  

 

2.2.7 Estimation of α  

The ratio of chromosomal K for each pairwise comparison (KX to KAutosome, KY to 

KAutosome and KY to KX) were substituted into the equations of Miyata et al. (1987), 

namely 
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in order to calculate the male-to-female mutation rate ratio (α). 

 

2.2.8 Error limits 

95% Confidence intervals were determined via bootstrapping: Within each 

chromosomal class, per-gene synonymous substitution rates derived from coding 

sequences were randomly sampled, with replacement and preserving sample size, 
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from which an average substitution rate for the chromosomal type was determined, 

using each K estimator and measure of centrality previously described. Similarly, 

alignments of the same length as the concatenated intronic chromosomal sequences 

were created by random sampling of aligned intronic base pairs with replacement, 

from which chromosomal substitution rates were calculated using each K estimator 

previously described and average autosomal rates were determined using the three 

alternative measures of centrality. Substitution of these randomly sampled 

chromosomal rates of evolution for any given rate estimator into Equations 5 to 7 

enabled estimation of α for each pair-wise comparison. Likewise for estimates of α, 

r and rm derived from the two novel models. This process was repeated 10,000 times. 

These randomly generated estimates of each parameter were then ranked and the 

values lying at the 95 percentiles (i.e. at the 2.5 percentile and the 97.5 percentile) 

identified. 

 

Significant differences between the rate of evolution of different chromosomal 

classes were determined from 10,000 permutations, whereby for each comparison, 

pairs of bootstrapped estimates were randomly sampled and the number of occasions 

on which either the estimates were equal or the chromosomal class with the higher 

rate was not that originally observed was counted, such that significance was 

calculated as P = (count + 1)/10,001. This method was also used to determine 

whether estimates of α were significantly different.  

 

2.2.9 Recombination rates 

Rat sex-averaged recombination rates over 5 Mb windows were obtained from 

Jensen-Seaman et al. (2004). These rates were derived from the physical position of 

markers placed on a previous build, RGSPC version 3.1 (rn3). To control for 

potential inaccuracies arising from incorrect annotation of these positions, the 

relative proximity of neighbouring genes in the previous build, RGSPC version 3.1, 

and the current build, RGSPC version 3.4 (rn4), were compared. A most 

conservative approach did not allow for any discrepancy between the relative 

positions in each build. Runs of consecutive genes between which there was no 

discrepancy in relative positions were used to identify regions in which the position 

of markers and the subsequent calculation of recombination rates were likely to be 
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accurate. Recombination windows within such regions were retained. Although 

relaxation of the size of the discrepancy allowed did not qualitatively affect the 

results, the most conservative data set was used for all subsequent analyses. 

Autosomal and X-linked genes were assigned positions based on the midpoint 

between the start and end of their coding sequence in build 3.1 and, where data was 

available, these positions were used to assign orthologs a sex-averaged 

recombination rate in rat. Data were analysed in non-overlapping 1Mb windows. 

 

For both autosomal and X-linked genes, a linear regression weighted by alignment 

length was performed on recombination rate as a predictor of substitution rate. 

Comparison of the higher steepness of the autosomal regression compared with that 

of the X was tested for significance using a one-sided t-test, 
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for which degrees of freedom (df) were estimated using the Welch-Satterthwaite 

equation (Welch, 1947, Satterthwaite, 1946), 
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where bN = slope of the regression, sN = standard error of the mean (SEM) and nN = 

sample size of the chromosomal class N. 

 

2.2.10 Regionality of substitution rates 

The substitution rate of individual Y-linked introns was estimated and subjected to 

an analysis of variance (ANOVA) by gene. For each autosomal and X-linked gene, 

the neighbouring 5’ and 3’ orthologs were identified and the mean of their 

substitution rates determined. For these chromosomal classes, a Spearman’s rank 

correlation of a given focal gene’s substitution rate with the mean of its neighbouring 

orthologs was performed. A higher steepness of the autosomal regression of focal 

versus flanking substitution rates compared with that of the X regression was tested 

for significance using the one-sided t-test described previously (Equations 8 and 9, 

section 2.2.9). 
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2.2.11 Rearrangement Index 

Each mouse autosome was assigned a rearrangement index, a measure of the 

probability that the rat orthologs of any two randomly selected genes on a given 

mouse autosome are not both located on the same rat autosome. For a focal mouse 

autosome, two genes were randomly sampled and the location of their rat orthologs 

determined. From 1000 samplings, the number of occasions on which the rat 

orthologs were located on different chromosomes was counted (n). The index of 

rearrangement (RI) was then calculated for the autosome by division of this count by 

the number of repeat samplings (n/1000), such that highly rearranged autosomes 

were assigned higher indices. Note that this rearrangement index did not quantify the 

extent of intra-chromosomal rearrangements such as inversions. A linear regression 

of this index as a predictor of autosomal Ki was then calculated. 

 

2.2.12 Intronic GC content 

As previously described for analyses at the genic level, the same indel free intronic 

alignments that were used to estimate Ki were concatenated by gene. For each genic 

alignment, counts of each base (A, T, C and G) were made from the two aligned 

sequences. The sum of G + C bases from the alignment was then divided by the sum 

of the two sequence lengths, such that the intronic G+C content (GC) was calculated 

as [(G + C) / (A + T + C + G)]. 

 

2.2.13 Calculation of G+T skew – a proxy for germ-line expression rate 

For each intronic alignment concatenated by gene, the proportions of A, T, C and G 

bases in the mouse and the rat sequence were determined. From these base 

compositions, the extent of G+T bias was calculated as the ratio of [(G+T)-

(A+C)]/(G+C+A+T) for each species, from which the mean G+T bias of the two 

species was calculated. This was used as a proxy for germ-line gene expression in all 

subsequent analyses. 

 

2.2.14 Control for a different past history of inversions 

From a visual inspection of whole genome rodent synteny maps, obtained from MGI 

(Eppig et al., 2007) and Nilsson et al. (2001), putatively collinear regions were 

identified as mouse-rat chromosome pairs 2-3, 3-2, 4-5, 7-1, 9-8, 12-6, 16-11 and 18-
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18. Within these regions, inversions were identified from a reversal in the order of 

orthologous genes on one chromosome. Similarly, single gene rearrangements were 

identified from breaks of gene order on either chromosome. Exclusion of 

orthologous genes in either category restricted the autosomal data set to 1558 genes 

located in collinear regions that had not been subject to intra-chromosomal 

rearrangements. 

 

2.3 Results 

 

Two data sets were generated: aligned introns purged of those in which conserved 

residues were clustered (possibly owing to hidden exons) and synonymous rates in 

exons. As it is known that exonic synonymous mutations can be subject to selection 

in mammals (Chamary et al., 2006), the main analyses presented here focus on what 

was probably the safest data set, namely, the filtered introns (Figure 2.3). However, 

the main findings were robust to the use of KS, K4, alternative K estimators and 

alternative measures of centrality, results for which are also given.  

 
Figure 2.3: Boxplot showing the distribution of genic substitution rates, measured at 
intronic sites (Ki), across each mouse chromosome, using the filtered data set.  
 

2.3.1 Estimates of α  are dependent on the chromosomes used 

For the focal intronic data set it was found that rates of evolution were in the order 

KAutosome = 0.1645 (0.1642, 0.1647) > KY = 0.1494 (0.1393, 0.1598) > KX = 0.1385 

(0.1373, 0.1397), with the autosomal rates significantly higher than the Y 

chromosome (P = 0.0031, Figure 2.4, for statistical test, see Methods section 2.2.8).  
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Figure 2.4: Rates of intronic evolution on the X chromosome, Y chromosome and 
each mouse autosome. For each chromosome, Ki estimated from concatenated 
intronic sequences and the 95% confidence intervals are shown. The dashed line is 
the intronic autosomal mean rate of evolution. 
 

The finding that KAutosome > KY > KX was robust to alternative Ki estimators and 

measures of autosomal centrality (Table 2.2). The same was true at synonymous 

sites for both KS and alternative K4 estimators using alternative measures of 

centrality. However, due to the relatively small sample size of the Y-linked data set 

giving rise to wide confidence intervals, differences at synonymous sites were not 

significant (Table 2.3). 
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Chromosome Ki JC Ki KM Ki TN Ki TK 

A (

! 

x) 0.1620 
(0.1618, 0.1622) 

0.1642 
(0.1640, 0.1644) 

0.1645 
(0.1642, 0.1647) 

0.1645 
(0.1642, 0.1647) 

A (

! 

xw ) 0.1614 
(0.1612, 0.1616) 

0.1636 
(0.1634, 0.1638) 

0.1639 
(0.1637, 0.1641) 

0.1639 
(0.1637, 0.1641) 

A (M) 0.1611 
(0.1606, 0.1619) 

0.1633 
(0.1627, 0.1641) 

0.1637 
(0.1631, 0.1645) 

0.1636 
(0.1631, 0.1645) 

X 0.1367 
(0.1355, 0.1379) 

0.1381 
(0.1369, 0.1393) 

0.1385 
(0.1373, 0.1397) 

0.1385 
(0.1373, 0.1397) 

Y 0.1473 
(0.1375, 0.1575) 

0.1487 
(0.1387, 0.1590) 

0.1494 
(0.1393, 0.1599) 

0.1494 
(0.1393, 0.1598) 

Table 2.2: Chromosomal rates of evolution with 95% confidence intervals derived 
from intronic sites using alternative K estimators where JC = Jukes and Cantor; KM 
= Kimura; TN = Tamura and Nei and TK = Tamura and Kumar. Alternative 
measures of autosomal (A) centrality are also given where 

! 

x  = mean; 

! 

xw = weighted 
mean; and M = median. 
 

K 
estimator 

Measure of 
Centrality Autosomal X-Linked Y-Linked 

! 

x  
0.1744 

(0.1728, 0.1760) 
0.1500 

(0.1396, 0.1610) 
0.1577 

(0.1302, 0.1879) 

! 

xw  0.1757 
(0.1741, 0.1773) 

0.1454 
(0.1363, 0.1550) 

0.1515 
(0.1268, 0.1805) KS 

M 0.1722 
(0.1702, 0.1738) 

0.1340 
(0.1277, 0.1424) 

0.1401 
(0.1328, 0.2074) 

! 

x  
0.1713 

(0.1697, 0.1730) 
0.1474 

(0.1378, 0.1575) 
0.1611 

(0.1333, 0.1910) 

! 

xw  0.1736 
(0.1719, 0.1752) 

0.1438 
(0.1348, 0.1532) 

0.1566 
(0.1296, 0.1863) K4 JC 

M 0.1693 
(0.1674, 0.1711) 

0.1418 
(0.1286, 0.1473) 

0.1502 
(0.1255, 0.2114) 

! 

x  
0.1741 

(0.1724, 0.1759) 
0.1497 

(0.1398, 0.1601) 
0.1625 

(0.1337, 0.1928) 

! 

xw  0.1764 
(0.1747, 0.1781) 

0.1459 
(0.1368, 0.1550) 

0.1580 
(0.1313, 0.1873) K4 KM 

M 0.1719 (0.1699, 
0.1736) 

0.1435 
(0.1289, 0.1494) 

0.1517 
(0.1256, 0.2138) 

! 

x  
0.1776 

(0.1759, 0.1794) 
0.1532 

(0.1421, 0.1655) 
0.1668 

(0.1376, 0.1984) 

! 

xw  0.1793 
(0.1776, 0.1811) 

0.1481 
(0.1388, 0.1577) 

0.1611 
(0.1348, 0.1925) 

K4 TN 
 

M 0.1743 
(0.1728, 0.1762) 

0.1441 
(0.1307, 0.1526) 

0.1568 
(0.1325, 0.2230) 

Table 2.3: Substitution rates with 95% confidence intervals at synonymous (KS) and 
four-fold degenerate sites (K4) calculated for each chromosomal class using 
alternative K estimators where JC = Jukes and Cantor; KM = Kimura; and TN = 
Tamura and Nei. Alternative measures of centrality are also given where 

! 

x  = mean; 

! 

xw  = weighted mean; and M = median. 
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As KAutosome > KY, it was no surprise that the three comparators failed to agree on the 

estimate of α, with one supporting a moderate male bias, one a female bias and one 

no or weak male bias (Figure 2.5) These estimates were not mutually compatible (P 

< 0.0001; for statistical test, see Methods section 2.2.8). 

 
Figure 2.5: Estimates of α from three pairwise chromosomal comparisons under the 
germ-line replication model. The lines represent the form of the curve relating to the 
ratio of rates to α for each chromosomal comparison. The 95% confidence intervals 
were determined from 10,000 bootstraps. 
 

Qualitatively, estimates of α derived from each of the three pairwise between-

chromosome comparisons were unaffected by which of the intronic data sets were 

used (Table 2.4). Similarly, a discrepancy in at least two estimates of α (Table 2.5) 

was supported by all synonymous substitution rates, despite the potential for 

selective constraints to act on such sites. That alternative methods of centrality did 

not affect estimation of α was perhaps unsurprising given that, at least for the 

autosomal and X-linked datasets, the distributions of each dataset were similar 

(Figure 2.6). As such, the relative values of each average, on which α is dependent, 

would remain broadly consistent. 
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Ki 
estimator 

Measure of 
autosomal 
centrality 

αXAutosome αYAutosome αYX 

! 

x  
2.7596 

(2.6088, 2.9202) 
0.8339 

(0.7375, 0.9459) 
1.1210 

(1.0077, 1.2481) 

! 

xw  2.6998 
(2.5526, 2.8550) 

0.8391 
(0.7417, 0.9523) 

1.1210 
(1.0077, 1.2481) 

Ki JC 

M 2.6655 
(2.5197, 2.8478) 

0.8422 
(0.7428, 0.9551) 

1.1210 
(1.0077, 1.2481) 

! 

x  
2.8213 

(2.6684, 2.9955) 
0.8276 

(0.7311, 0.9393) 
1.1197 

(1.0054, 1.2485) 

! 

xw  2.7589 
(2.6101, 2.9255) 

0.8329 
(0.7354, 0.9454) 

1.1197 
(1.0054, 1.2485) 

Ki KM 

M 2.7241 
(2.5724, 2.9140) 

0.8359 
(0.7371, 0.9454) 

1.1197 
(1.0054, 1.2485) 

! 

x  
2.8017 

(2.6482, 2.9731) 
0.8320 

(0.7343, 0.9453) 
1.1229 

(1.0076, 1.2530) 

! 

xw  2.7394 
(2.5900, 2.9037) 

0.8373 
(0.7387, 0.9518) 

1.1229 
(1.0076, 1.2530) 

Ki TN 

M 2.7162 
(2.5638, 2.9071) 

0.8393 
(0.7395, 0.9535) 

1.1229 
(1.0076, 1.2530) 

! 

x  
2.8011 

(2.6480, 2.9724) 
0.8320 

(0.7343, 0.9454) 
1.1229 

(1.0076, 1.2528) 

! 

xw  2.7385 
(2.5897, 2.9033) 

0.8374 
(0.7387, 0.9517) 

1.1229 
(1.0076, 1.2528) 

Ki TK 

M 2.7055 
(2.5638, 2.9071) 

0.8403 
(0.7395, 0.9535) 

1.1229 
(1.0076, 1.2528) 

Table 2.4: α and 95% confidence intervals derived from each pairwise comparison 
of intronic substitution rates using alternative K estimators where JC = Jukes and 
Cantor; KM = Kimura; TN = Tamura and Nei and TK = Tamura and Kumar. Results 
using alternative measures of autosomal centrality are also given where 

! 

x  = mean; 

! 

xw  = weighted mean; and M = median. 
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K 
estimator 

Measure of 
Centrality αXAutosome αYAutosome αYX 

! 

x  
2.4503 

(1.5979, 3.9784) 
0.8251 

(0.5963, 1.1617) 
1.0793 

(0.8040, 1.4667) 

! 

xw  3.1418 
(2.0818, 5.1512) 

0.7581 
(0.5646, 1.0588) 

1.0643 
(0.8034, 1.4505) KS 

M 4.9792 
(3.1594, 8.1053) 

0.6858 
(0.6220, 1.5363) 

1.0699 
(0.9212, 2.3134) 

! 

x  
2.4406 

(1.6338, 3.8666) 
0.8877 

(0.6359, 1.2573) 
1.1464 

(0.8524, 1.5662) 

! 

xw  3.1199  
(2.0896, 5.1005) 

0.8220 
(0.5954, 1.1601) 

1.1398 
(0.8482, 1.5487) K4 JC 

M 2.9009 
(2.2346, 6.3506) 

0.7972 
(0.5834, 1.6912) 

1.0916 
(0.8173, 2.0993) 

! 

x  
2.4505 

(1.6362, 3.9359) 
0.8753 

(0.6243, 1.2334) 
1.1342 

(0.8406, 1.5401) 

! 

xw  3.1532 
(2.1170, 5.1530) 

0.8117 
(0.5921, 1.1298) 

1.1303 
(0.8448, 1.5308) K4 KM 

M 2.9654 
(2.1812, 6.6176) 

0.7897 
(0.5704, 1.6755) 

1.0882 
(0.8041, 2.1200) 

! 

x  
2.4054 

(1.5110, 4.0145) 
0.8849 

(0.6315, 1.2612) 
1.1393 

(0.8377, 1.5701) 

! 

xw  3.1910 
(2.1340, 5.2522) 

0.8155 
(0.6038, 1.1575) 

1.1380 
(0.8545, 1.5641) K4 TN 

M 3.1587 
(2.2077, 7.1395) 

0.8179 
(0.6084, 1.7955) 

1.1383 
(0.8590, 2.2640) 

Table 2.5: α and 95% confidence intervals derived from each pairwise comparison 
of synonymous (KS) and four-fold degenerate sites (K4) calculated for each 
chromosomal class using alternative K estimators where JC = Jukes and Cantor; KM 
= Kimura; and TN = Tamura and Nei. Results using alternative measures of 
autosomal centrality are also given where 

! 

x  = mean; 

! 

xw  = weighted mean; and M = 
median. 
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Figure 2.6: Q-Q plots showing comparisons of distributions between autosomal and 
X-linked data at intronic (A), synonymous (B) and four-fold degenerate (C) sites. 
Also shown is a comparison of the distributions of the autosomal intronic and 
synonymous datasets (D). For all plots, solid lines are y=x, representing identical 
distributions. 
 

Why do the three estimates of α not agree? The model of Miyata et al. (1987), used 

to estimate α, assumes that mutational variability is solely determined by variation in 

the number of DNA replications. However, a number of other potential causes of 

substitution rate variability have been proposed, including GC content, expression 

level and differential divergence times due to location within an inversion. The 

potential for these three parameters to account for the discrepant estimates of α was 

therefore investigated. 
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2.3.2 Discrepancies in α  are robust to controls for GC content 

A positive correlation between GC content and mutation rate has previously been 

reported in rodents (Hurst and Williams, 2000). As significant differences exist 

between the GC content of different chromosomal classes (Kruskal-Wallis, P = 

1.648 x 10-10) and between different autosomes (Kruskal-Wallis, P < 2.2 x 10-16), 

might then differences in GC content between the three chromosomal classes have 

accounted for the observed discrepancy in α? 

 

In order to determine whether GC content could have explained the discrepancy in 

estimates of α, it was first asked whether variability in Ki across autosomal genes 

could be attributed to this variation in GC content. A linear regression of GC content 

as a predictor of Ki for autosomal genes (n = 4051 genes), showed a significantly 

weak negative relationship (Ki = 0.19759 - 0.07535 GC, r2 = 0.02303, P = 2.2 x      

10-16; Figure 2.7). However, as r2 was low, this suggested that GC content alone did 

not determine Ki.  

 

 
Figure 2.7: Ki declines significantly, albeit weakly, with increasing GC content 
across 4051 autosomal genes. The line represents the linear least squares regression 
of Ki against intronic GC content. 
 

Given the differences in both GC and Ki between chromosomes, it was then asked 

whether chromosome might have had an effect. The assumptions of an analysis of 
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covariance (ANCOVA) were violated both by a significant interaction (P = 0.0158) 

between GC and autosome and by a different direction of relationship between Ki 

and GC content on each mouse autosome (Figure 2.8). A Kruskal-Wallis test on the 

residuals of each autosomal regression of Ki against GC was therefore performed 

instead. This demonstrated that the amount of residual variation in Ki not explained 

by GC content differed significantly between each of the autosomes (P = 3.06 x     

10-29), suggesting that mouse autosome did have an effect. This was also true when 

weighting the regression by alignment length (P = 5.60 x 10-33). 

 

 
Figure 2.8: The direction of the relationship between GCi and Ki differs on each of 
the 19 mouse autosomes. The lines represent linear least-squares regressions of Ki 
against intronic GC content. Also shown is the line for the X chromosome (dashed). 
 

Nonetheless, to determine whether the relationship between GC content and Ki and 

the differences in GC content of the three chromosomal classes might account for the 

observed discrepancies in α, the three pair-wise estimates of α were recalculated, 

controlling for GC content. To do this a linear least squares regression of autosomal 

Ki as a response of GC content was used to predict KAutosome from GCX, the mean GC 

content of the X-linked data set (Figure 2.9). This predicted KAutosome was then 

substituted into the X to autosomal comparison to derive αXAutosome (Table 2.6). 

Similarly, KAutosome was predicted from GCY, the mean GC content of the Y-linked 

data set (Figure 2.9) and substituted into the Y to autosomal comparison to 
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recalculate αYAutosome (Table 2.6). Finally, from a linear regression of Ki as a response 

of GC content for the X-linked data set, KX was predicted from GCY (Figure 2.9) and 

substituted into the Y to X comparison to recalculate αYX (Table 2.6). This process 

was repeated using a regression weighted by alignment length, using mean GC 

weighted by alignment length for a given chromosomal class as the predictor of Ki 

(Table 2.7). 

 

 
Figure 2.9: Graphical illustration of the method used to control for GC content in 
the estimate of α, where GCX is the mean intronic GC content of the X chromosome 
and GCY is the mean intronic GC content of the Y chromosome. Solid lines represent 
the linear least squares regression of Ki against GC content for the autosomal (red) 
and X-linked (blue) data sets. 
 

Given the weak negative relationship between Ki and GC content and the lack of 

consistency of this relationship across the different chromosomes, it was not 

surprising that controlling for differences in GC content between the three 

chromosomal classes failed to cause α to converge (Table 2.6). This finding was 

qualitatively robust to controls for alignment length (Table 2.7).  
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It could therefore be concluded that although GC content showed a weak 

relationship with K, it was not sufficient to explain the observed disparity in the three 

estimates of α. 

 

Comparison Regression GC predictor Predicted Ki α  
X-Autosome KAutosome = 0.198 – 0.075 GC GCX = 0.426 KAutosome = 0.166 3.142 
Y-Autosome KAutosome = 0.198 – 0.075 GC GCY = 0.378 KAutosome = 0.169 0.808 

Y-X KX = 0.177 – 0.093 GC GCY = 0.378 KX = 0.141 1.107 
Table 2.6: Estimates of α controlling for GC content, derived from a linear 
regression.  
 

Comparison Regression Weighted 
GC predictor Predicted Ki α  

X-Autosome KAutosome = 0.173 – 0.0189 GC GCX = 0.3990 KAutosome = 0.165 2.838 
Y-Autosome KAutosome = 0.173 – 0.0189 GC GCY = 0.3779 KAutosome = 0.166 0.826 

Y-X KX = 0.1864 – 0.1193 GC GCY = 0.3779 KX = 0.141 1.092 
Table 2.7: Estimates of α controlling for GC content and alignment length, derived 
from a weighted linear regression. 
 
2.3.3 Discrepancies in α  are not due to differences in germ-line expression rate 

A negative covariance between expression breadth and K4 has previously been 

observed (Lercher et al., 2004). Unfortunately, the majority of direct measurements 

of germ-line expression level are derived from terminally differentiated germ cells 

and as such these may not be representative of expression throughout the germ-line. 

However, biases in the repair of point mutations associated with transcription 

coupled repair have been shown to result in an excess of G and T over C and A on 

the coding strand (Green et al., 2003). Importantly, the extent of any bias, indicative 

of the extent of transcription coupled repair (TCR) has been found to positively 

correlate with expression intensity in ubiquitously expressed genes - those more 

likely to be transcribed in the germ-line than tissue specific genes (Majewski, 2003). 

The extent of G+T bias was therefore used as a proxy for germ-line expression to ask 

whether variation in germ-line gene expression could account for the between-

autosomal variation and the disparity in estimates of α. 

 

No significant differences in the extent of G+T bias were found between the three 

chromosomal classes (Kruskal-Wallis, P = 0.8208) or between different autosomes 

(Kruskal-Wallis, P = 0.3020). Further, a linear regression of G+T bias as a predictor 

of Ki for autosomal genes (n = 4051 genes), showed only a weak negative 
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relationship that was not significant (Ki = 0.1627 – 0.0040 expression, r2 = 5.0486 x 

10-5, P = 0.6512), suggesting that gene expression did not determine Ki. 

 

Using the same methodology as applied to GC content, estimates of α were 

recalculated after controlling for differences in G+T bias between the three 

chromosomal classes. Using both unweighted regressions (Table 2.8) and 

regressions weighted by alignment length (Table 2.9) to predict either autosomal or 

X-linked substitution rates as appropriate, the three pairwise estimates of α remained 

discrepant.  

 

Comparison Regression G+T skew 
predictor Predicted Ki α  

X-Autosome KAutosome = 0.163 – 0.004 skew SkewX = 0.049 KAutosome = 0.163 2.78 
Y-Autosome KAutosome = 0.163 – 0.004 skew SkewY = 0.071 KAutosome = 0.162 0.871 

Y-X KX = 0.137 – 0.009 skew SkewY = 0.071 KX = 0.137 1.166 
Table 2.8: Estimates of α controlling for G+T bias, derived from a linear regression. 
Skew is mean G+T bias for the chromosomal class, a proxy for germ-line expression 
level. 

 

Comparison Regression 
Weighted 
G+T skew 
predictor 

Predicted Ki α  

X-Autosome KAutosome = 0.165 – 0.005 skew SkewX = 0.032 KAutosome = 0.165 2.768 
Y-Autosome KAutosome = 0.165 – 0.005 skew SkewY = 0.066 KAutosome = 0.164 0.837 

Y-X KX = 0.139 – 0.001 skew SkewY = 0.066 KX = 0.139 1.123 
Table 2.9: Estimates of α controlling for G+T bias and alignment length, derived 
from a weighted linear regression. Skew is mean G+T bias for the chromosomal 
class, a proxy for germ-line expression. 
 

Given the weak effect of G+T bias on Ki it was unsurprising that controlling for it 

failed to cause α to converge on a single value. Assuming that G+T skew was a 

reliable proxy for germ-line expression level, it could therefore be concluded that 

differential levels of germ-line gene expression between the three chromosomal 

classes did not account for the observed disparity from the results predicted by the 

model of Miyata et al. (1987). 

 

2.3.4 Controlling for a different past history of inversions does not reconcile α  

Do differences between autosomal, X- and Y-linked Ki reflect differences in the 

mutation rate or in divergence times? Miyata et al.’s (1987) model assumes that the 
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autosomal, X and Y chromosomes diverged at the same time and therefore that 

differences in divergence at putatively neutral sites stem from differing mutation 

rates rather than differing times for mutations to accumulate. However, it has been 

argued that intra-chromosomal genomic rearrangements during speciation, notably 

inversions, would prevent recombination and as such, cause sequences in rearranged 

regions to start to diverge earlier (Navarro and Barton, 2003). 

 

Using the sub-sample of 1558 orthologous genes thought not to have been subjected 

to intra-chromosomal rearrangements (see methods 2.2.14), the mean autosomal 

substitution rate, weighted by alignment length, was reduced from KAutosome = 0.1639 

to KAutosome = 0.1609 and substituted into Miyata et al.’s (1987) equations to estimate 

α (Table 2.10).  

 

α  Pairwise 
comparison All autosomal 

genes 
Un-rearranged 

autosomal genes 
X-Autosome 2.7619 2.3956 
Y-Autosome 0.8356 0.8711 

Table 2.10: α derived from autosomal comparisons made using the full autosomal 
data set and after controlling for the effects of a different past history of autosomal 
inversions. 
 

It was not possible to compile a comparable un-rearranged X-linked data set as all 

orthologous genes located on the X chromosome were found to have been subject to 

inversions or single gene rearrangements at some point in their evolutionary history 

(Figure 2.10). As such, the comparison of a reduced KAutosome with an upper estimate 

of KX from the original data set would therefore be expected to give rise to the 

lowest possible estimate of αXA. 

 

Controlling for autosomal intra-chromosomal rearrangements did not cause α to 

converge (Table 2.10). To determine whether these results were an artefact of the 

reduction in autosomal sample size from n = 4051 to n = 1558, a mantel test was 

performed. To do this, autosomal genes were randomly sampled, preserving the 

sample size of the collinear data set. The weighted-mean substitution rate of this 

sample was substituted into Miyata et al.’s (1987) equations for both autosomal 
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pairwise comparisons, also weighting both mean KX and KY by alignment length. 

From 10,000 repeat permutations, it was asked how often the pseudo-α was either 

equivalent to or less than the rearrangement controlled αXAutosome or greater than or 

equal to the rearrangement controlled αYAutosome as appropriate. Finally, from P = 

(count + 1) / (number of replications + 1), both αXAutosome and αYAutosome derived from 

the rearrangement controlled data set were found to be significant (both P = 9.99 x 

10-5).  

 
Figure 2.10: Graphical illustration of the relative positions of orthologous genes on 
the mouse and rat X chromosomes, showing that at least one gene in every pair of 
orthologs must had been subject to an inversion since divergence from the ancestral 
X chromosome. 
 

Given that the most conservative method of controlling for a past history of intra-

chromosomal rearrangement did not cause α derived from autosomal comparisons to 

converge and that this was not an artefact of a reduction in sample size, it could be 

concluded that a disparity in divergence times was unlikely to have accounted for the 

observed discrepancies in α.  

 

2.3.5 Might recombination also be important? 

That autosomes have a higher substitution rate than Y-linked sequence was most 

unexpected. Why might this have been? Although the replication model has 

dominated thinking on between-chromosomal class substitution rates, both neutral 

single nucleotide polymorphism diversity and neutral substitution rates have been 

found to increase across autosomes in correspondence with the local recombination 

rate (Lercher and Hurst, 2002, Hellmann et al., 2003). This may be owing to 
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recombination-induced mutation (Perry and Ashworth, 1999, Rattray et al., 2001, 

Lercher and Hurst, 2002, Hellmann et al., 2003, Bussell et al., 2006) and/or 

recombination-associated biased gene-conversion (e.g. Dreszer et al., 2007 Duret 

and Arndt, 2008, Berglund et al., 2009). A correlation between substitution rate and 

recombination rate is not, however, universally reported. Both Nachman (2001) and 

Spencer et al. (2006) failed to observe a correlation in humans. That there might be 

disagreement between studies is unsurprising given that recombination rate data are 

based on relatively recent crossover events, whereas substitution rates reflect a much 

longer history. However, it is interesting to note that the pseudoautosomal region of 

X and Y, a region known to be highly recombining, also exhibits high substitution 

rates (Perry and Ashworth, 1999, Bussell et al., 2006). This region was not included 

in this analysis. 

 

It was therefore asked whether there was any evidence that in rodents, across 

autosomes, regions with high recombination rates also had high substitution rates. 

This issue was, however, enormously problematic. What one needs to know for any 

sequence is not the current recombination rate alone, but rather the recombination 

rate to which the sequence has been exposed in both lineages over the course of the 

divergence of the two species. This is impossible to know. Although it might 

therefore be better to consider the mean recombination rate of a sequence in mouse 

and in rat, this too was problematic. The mouse lineage has undergone many 

rearrangements (Ramsdell et al., 2008) so the recombinational environment of a 

gene in today’s mouse genome need not correlate in any manner to its 

recombinational environment in mouse since the divergence from rat. At the 

extreme, if a rearrangement was very modern, today’s recombinational environment 

may well be a very poor guide to that which the gene has been exposed over its 

evolutionary history. 

 

A more defendable test was therefore based on evidence that the rat genome might 

be vastly more stable than the mouse (Ramsdell et al., 2008). Under the assumption 

that on the megabase scale, each chromosomal region has a characteristic 

recombination rate (e.g. Paigen et al., 2008), then the recombination rate seen in rat 

might reflect both the recombination rate of a sequence in the rat lineage and that of 
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some early part of the mouse lineage. It was therefore asked whether rat 

recombination rates predicted intronic substitution rates. It was found that they do, 

with a significant relationship between Ki and recombination rate in rat across 

autosomal genes analysed in non-overlapping 1Mb windows (linear regression 

weighted by alignment length r2 = 0.0346, P = 5 x 10-5; Figure 2.11). 

 
Figure 2.11: The relationship between intronic substitution rate and sex-averaged 
recombination rate in rat. The points represent averages of bins containing equal 
numbers of genes, ± standard error of the mean. Autosomal data are in blue, for 
which bin sample sizes are 111-112 genes. X-linked data are in red, for which bin 
sample sizes are 2-3 genes. Weighted regression lines are for all data, not the bin 
means. 
 

The above result would suggest that recombination was positively correlated with 

substitution rates independent of replication events, all autosomes undergoing the 

same number of replications. What would be the consequence of this? Such a model 

could predict that if germ-line replication associated bias, α, were weak (as probably 

seen in rodents but not necessarily in humans, Makova and Li, 2002), the fact that 
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recombination in males is limited to autosomes should increase the autosomal 

substitution rate, possibly exceeding the Y-linked rate. 

 

A simple extension to Miyata et al.’s (1987) model was therefore considered, 

whereby a recombination-associated substitution/mutation effect boosted the rate of 

evolution by an increment of r. Assuming an equal contribution to the recombination 

effect from each sex, Equations 2 and 3 were replaced with  

 

! 

K
Autosome

=
"µ + µ

2
+ r  (10) 

  and 

! 

K
X

=
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3
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3
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respectively while Equation 1 remained as 
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Using data from all three chromosomal classes, these could be solved simultaneously 

to give α and r:  
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From these, it was found that α = 1.7263 (1.5936, 1.8720) and r = 0.5374µ 

(0.4666µ, 0.6143µ). This suggests that additional replication events in males provide 

a boost of 0.7263 and recombination supplies a boost of about the same magnitude, 

probably a little weaker. This finding was robust to the use of alternative Ki 

estimators (Table 2.11), use of synonymous substitution rates (Table 2.12) and 

alternative measures of autosomal centrality (Tables 2.11 and 2.12). 
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Ki 

estimator 
Measure of 
centrality α  r 

! 

x  1.7095 (1.5788, 1.8499) 0.5250µ (0.4554µ, 0.5989µ) 

! 

xw  1.6881 (1.5590, 1.8258) 0.5059µ (0.4373µ, 0.5780µ) Ki JC 
M 1.6758 (1.5509, 1.8198) 0.4949µ (0.4283µ, 0.5737µ) 

! 

x  1.7304 (1.5978, 1.8768) 0.5454µ (0.4745µ, 0.6228µ) 

! 

xw  1.7081 (1.5772, 1.8521) 0.5254µ (0.4558µ, 0.6012µ) Ki KM 
M 1.6956 (1.5677, 1.8447) 0.5143µ (0.4457µ, 0.5961µ) 

! 

x  1.7265 (1.5939, 1.8721) 0.5376µ (0.4668µ, 0.6144µ) 

! 

xw  1.7041 (1.5734, 1.8478) 0.5176µ (0.4479µ, 0.5925µ) Ki TN 
M 1.6958 (1.5674, 1.8448) 0.5102µ (0.4404µ, 0.5921µ) 

! 

x  1.7263 (1.5936, 1.8720) 0.5374µ (0.4666µ, 0.6143µ) 

! 

xw  1.7038 (1.5733, 1.8477) 0.5174µ (0.4479µ, 0.5924µ) Ki TK 
M 1.6920 (1.5674, 1.8447) 0.5068µ (0.4404µ, 0.5919µ) 

Table 2.11: α and r with 95% confidence intervals determined from intronic 
substitution rates, using alternative Ki estimators where JC = Jukes and Cantor; KM 
= Kimura; TN = Tamura and Nei and TK = Tamura and Kumar. Results using 
alternative measures of autosomal centrality are also given where 

! 

x  = mean; 

! 

xw  = 
weighted mean; and M = median. 
 

K 
estimator 

Measure of 
centrality α  r 

! 

x  1.5598 (1.1146, 2.3340) 0.4452µ (0.1776µ, 0.8959µ) 

! 

xw  1.7859 (1.2663, 2.7509) 0.6779µ (0.3404µ, 1.2586µ) KS 
M 2.4323 (1.6788, 4.6484) 1.2734µ (0.4638µ, 2.2351µ) 

! 

x  1.6179 (1.1707, 2.3752) 0.4113µ (0.1593µ, 0.8239µ) 

! 

xw  1.8586 (1.3221, 2.8377) 0.6306µ (0.3068µ, 1.2072µ) K4 JC 
M 1.7304 (1.3197, 3.5832) 0.5853µ (0.1888µ, 1.5807µ) 

! 

x  1.6105 (1.1559, 2.3631) 0.4200µ (0.1690µ, 0.8492µ) 

! 

xw  1.8607 (1.3216, 2.8503) 0.6462µ (0.3268µ, 1.2242µ) K4 KM 
M 1.7497 (1.3157, 3.6466) 0.6078µ (0.1960µ, 1.6524µ) 

! 

x  1.5987 (1.1124, 2.4468) 0.4033µ (0.1296µ, 0.8646µ) 

! 

xw  1.8825 (1.3378, 2.9297) 0.6542µ (0.3242µ, 1.2439µ) K4 TN 
M 1.8711 (1.3422, 3.9070) 0.6438µ (0.1902µ, 1.7707µ) 

Table 2.12: α and r with 95% confidence intervals determined from synonymous 
(KS) and four-fold degenerate sites (K4) using alternative K estimators where JC = 
Jukes and Cantor; KM = Kimura; and TN = Tamura and Nei. Results using 
alternative measures of centrality are also given where 

! 

x  = mean; 

! 

xw  = weighted 
mean; and M = median. 
 

However, this model may not have reflected the whole story. Recent evidence has 

suggested that the effect of recombination on neutral substitution rates and clusters 

of biased substitutions correlates strongly with male recombination rates but not with 
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rates seen in females (Dreszer et al., 2007, Berglund et al., 2009, Webster et al., 

2005, Tyekucheva et al., 2008, Duret and Arndt, 2008, Galtier et al., 2009).  

 

An additional model was therefore considered that excluded female recombination 

(rf = 0), where Equations 1 and 3 remained unaltered as 

 

! 

K
Y

="µ  (1) 

 and  

! 

K
X

=
"µ + 2µ

3
 ,  (3) 

neither of these chromosomal types recombining in males, but Equation 2 replaced 

with 
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2
  (14) 

where rm represented a male recombination-associated substitution/mutation effect, 

to which the autosomes were only exposed to half of the time, whilst in the male 

germline. As neither the X nor the Y chromosome were subjected to a recombination 

associated effect, α could therefore be derived directly from Miyata et al.’s (1987) 

Equation 7:  
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Substitution of Equation 7 into the comparisons of both X to autosome (Equation 3 

divided by Equation 14) and Y to autosome (Equation 1 divided by Equation 14), 

then solving simultaneously, enabled rm to be derived from: 
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By substituting in data from all three chromosomal classes, it was found that α = 

1.1229 (1.0076, 1.2528) and rm = 0.3496µ (0.3182µ, 0.3805µ).  
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Allowance for a possible male only recombination effect therefore suggested a much 

lower replication-associated bias to the substitution rate. If recombination in males 

alone is associated with a substitution bias, then these results suggested that in 

rodents, at least, the effect of replication may have been much overestimated. Again, 

this finding was robust to the use of alternative Ki estimators (Table 2.13), the use of 

synonymous substitution rates (Table 2.14) and alternative measures of autosomal 

centrality (Tables 2.13 and 2.14). 

 

Ki 
estimator 

Measure of 
centrality α  rm 

! 

x  1.1210 (1.0077, 1.2481) 0.3443µ (0.3129µ, 0.3746µ) 

! 

xw  1.1210 (1.0077, 1.2481) 0.3559µ (0.3042µ, 0.3663µ) Ki JC 
M 1.1210 (1.0077, 1.2481) 0.3311µ (0.2998µ, 0.3646µ) 

! 

x  1.1197 (1.0054, 1.2485) 0.3529µ (0.3218µ, 0.3838µ) 

! 

xw  1.1197 (1.0054, 1.2485) 0.3444µ (0.3131µ, 0.3755µ) Ki KM 
M 1.1197 (1.0054, 1.2485) 0.3396µ (0.3083µ, 0.3735µ) 

! 

x  1.1229 (1.0076, 1.1230) 0.3496µ (0.3183µ, 0.3806µ) 

! 

xw  1.1229 (1.0076, 1.1230) 0.3411µ (0.3094µ, 0.3721µ) Ki TN 
M 1.1229 (1.0076, 1.1230) 0.3378µ (0.3058µ, 0.3719µ) 

! 

x  1.1229 (1.0076, 1.2528) 0.3496µ (0.3182µ, 0.3805µ) 

! 

xw  1.1229 (1.0076, 1.2528) 0.3410µ (0.3094µ, 0.3720µ) Ki TK 
M 1.1229 (1.0076, 1.2528) 0.3363µ (0.3058µ, 0.3718µ) 

Table 2.13: α and rm with 95% confidence intervals determined from intronic 
substitution rates using alternative Ki estimators where JC = Jukes and Cantor; KM = 
Kimura; TN = Tamura and Nei and TK = Tamura and Kumar. Results using 
alternative measures of autosomal centrality are also given where 

! 

x  = mean; 

! 

xw  = 
weighted mean; and M = median. 
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K 

estimator 
Measure of 
centrality α  rm 

! 

x  1.0793 (0.8040, 1.4667) 0.3081µ (0.1508µ, 0.4726µ) 

! 

xw  1.0643 (0.8034, 1.4505) 0.4040µ (0.2539µ, 0.5573µ) KS 
M 1.0699 (0.9212, 2.3134) 0.5601µ (0.3169µ, 0.6909µ) 

! 

x  1.1464 (0.8524, 1.5662) 0.2914µ (0.1374µ, 0.4517µ) 

! 

xw  1.1398 (0.8482, 1.5487) 0.3867µ (0.2348µ, 0.5469µ) K4 JC 
M 1.0916 (0.8173, 2.0993) 0.3692µ (0.1588µ, 0.6125µ) 

! 

x  1.1342 (0.8406, 1.5401) 0.2958µ (0.1445µ, 0.4592µ) 

! 

xw  1.1303 (0.8448, 1.5308) 0.3925µ (0.2463µ, 0.5504µ) K4 KM 
M 1.0882 (0.8041, 2.1200) 0.3780µ (0.1638µ, 0.6230µ) 

! 

x  1.1393 (0.8377, 1.5701) 0.2874µ (0.1147µ, 0.4637µ) 

! 

xw  1.1380 (0.8545, 1.5641) 0.3955µ (0.2448µ, 0.5543µ) K4 TN 
M 1.1383 (0.8590, 2.2640) 0.3917µ (0.1598µ, 0.6391µ) 

Table 2.14: α and rm with 95% confidence intervals determined from synonymous 
(KS) and four-fold degenerate sites (K4) using alternative K estimators where JC = 
Jukes and Cantor; KM = Kimura; and TN = Tamura and Nei. Results using 
alternative measures of centrality are also given where 

! 

x  = mean; 

! 

xw  = weighted 
mean; and M = median. 
 

2.4 Discussion 

 

This chapter presented strong evidence that number of replications is not the unique 

determinant of substitution rate differences between the three chromosomal classes 

at putatively neutral sites. Making allowances for the weak effects of differences in 

GC content (Hurst and Williams, 2000), germ-line expression rate (Lercher et al., 

2004) or a past history of inversions (Navarro and Barton, 2003) did not alter this 

conclusion. This is important to know as it suggests that the method of Miyata et al. 

(1987), although commonly employed, is fundamentally incorrect. Whether the 

method is grossly misleading, however, would depend on many parameters. 

 

An unexpectedly elevated autosomal rate of evolution was observed at all sites 

considered. To account for the autosomes evolving on average faster than the Y-

chromosome, two novel models incorporating a recombination-associated mutation 

or substitution effect were proposed. Both of these models assumed a single 

substitution rate across the autosomes. Although, as demonstrated both here and 

elsewhere (Lercher et al., 2001, Malcom et al., 2003), the autosomes differ 

significantly in their putatively neutral substitution rates, this was not necessarily 
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problematic because 1) there is an average autosomal substitution rate and 2) the two 

new models were an extension of Miyata et al.’s (1987) original model which also 

assumed a single autosomal rate of evolution. Both models also assumed that any 

recombination-associated substitution effect would be uniform not just across the 

autosomes but, assuming an equal contribution from each sex, on the X chromosome 

too. The calculation of a single value for r or for rm across the genome might 

therefore have been invalid, not least because the requirement for at least one 

chiasma per chromosome arm means that recombination rates differ between 

chromosomes, with shorter chromosomes tending to have higher recombination rates 

than longer ones (Kong et al., 2002, Jensen-Seaman et al., 2004, Shifman et al., 

2006). As a result of both of these assumptions, neither new model would capture 

inter-atuosomal variation, this instead being compounded in the error terms for the 

estimates.  

 

The model could therefore have been improved by considering each autosome 

separately. Firstly, Miyata et al.’s (1987) original equations (Equations 5 to 7) could 

have been re-applied using 19 different X to autosome comparisons and 19 different 

Y to autosome comparisons. From this it would have been possible to examine the 

variation in different estimates of both αXAutosome and αYAutosome that had previously 

been incorporated into the error terms of a single value, and to ask whether these 

values were mutually compatible both with themselves and between the three 

pairwise estimates of α. This method could then have been extended to the novel 

models (Equations 12, 13, and 15) incorporating a recombination-associated effect to 

determine 19 different values each for α, r and rm. Again this would have enabled 

the variance within each estimate to be determined. Further, it would have been 

informative to ask whether estimates of r and rm positively covaried with autosomal 

recombination rates, as might be expected.  

 

The novel models could then have been extended further by incorporating a 

chromosome specific recombination effect and then asking whether this significantly 

reduced variation in estimates of α, r and rm and reconciled each estimate to a single 

value. To explore how such a modification might be implemented, it is possible to 

examine the more general model, which assumed an equal contribution of 
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recombination from males and females. Note that a similar extension could also be 

applied to the second model that excluded female recombination. In the general 

model, the recombination-associated substitution effect, r, could be modified by a 

parameter, l, specific for each chromosome, such that Equation 1 for the non-

recombining Y chromosome would remain unaltered as  

! 

K
Y
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but Equations 2 and 3 would be replaced with 
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respectively where l is a chromosome-specific weighting for the recombination-

associated effect r. This might be a value such as the recombination rate per base 

pair of chromosome N. Note that for the autosomes, half of the effect of l is 

composed of the male-specific per base pair recombination rate and half is female-

specific, whereas for the X chromosome the impact of l is based only on 

recombination in females, to which it is subjected two thirds of the time whilst in the 

female germline. In theory, these models could be solved simultaneously to 

determine α and r for each autosome, however, implementation of these models is 

left to future work.  

 
Leaving aside these limitations, the results of the original novel models have a 

number of implications. Firstly, if the true replication-number effect is very large 

compared with a potential recombination effect (or whatever causes the disparity), 

then Miyata et al.’s (1987) method is unlikely to greatly mislead. This may well be 

the case in humans where, a priori, if replication is associated with mutation, a male 

bias should be very pronounced. For example, Makova and Li (2002) estimated 

KY/KAutosome to be 1.68 and estimated α to be 5.25. Assuming first a single 

recombination effect, r = 0.5375µ, then it is possible to use this estimate with 

Equations 1 and 10 to estimate α to be 10.89. If only a male-specific recombination 

effect, rm = 0.35µ, is considered, then this estimate can be used in conjunction with 

Equations 1 and 14, to correct α to 7.08. Whether it is legitimate to suppose that any 

recombination effect is the same in rodent and human is unclear, although there is 

some evidence to suggest that, if anything, in humans it may be stronger (Clément 

and Arndt, 2011). However, these corrected estimates of α exceed both the original 



75 

and proposed α = 6 derived from germ-line anatomy. The reason for this 

approximate insensitivity is that, if α, the replication-associated bias, is high, the 

relative impact of male recombination on between-chromosome estimates is 

reduced. Conversely, the evolutionary rates of rodents may be especially instructive, 

as any recombination and replication effects are likely to be more balanced.  

 

The models above also suggest that whether any recombination effect is associated 

with males alone may be very important. Given a lack of understanding of any 

substitution-recombination correlation on a mechanistic basis, it seems impossible to 

arbitrate at this time. The observation that gene conservation predominantly occurs 

in the mitotically dividing spermatogonia (Böhme and Högstrand, 1997) might be 

important, but the regular finding of increased pseudoautosomal evolutionary rates 

(Perry and Ashworth, 1999, Filatov and Gerrard, 2003, but see Yi et al., 2004) is 

more obviously consistent with meiotic events. 

 

There is some weak evidence consistent with a male bias to recombination-

associated substitution bias, but this is not definitive. If male recombination is the 

sole or dominant source of within-autosome heterogeneity in substitution rates, then 

one might have expected to see no or lesser regionality of substitution rates on the X 

chromosome and on the Y chromosome, these never being subject to recombination 

in males. Although data remained limited on the Y chromosome as it has too few 

genes on it, an ANOVA reported no gene effect on substitution rates for Y-linked 

introns (P = 0.5628). For the X chromosome and autosome, the rate of evolution of a 

gene with its immediate chromosomal neighbours (one 5’ and one 3’) could be 

compared. On the X chromosome, there was no correlation (Spearman’s ρ2 = 0.007, 

P = 0.40), whereas on autosomes, there was a correlation an order of magnitude 

higher (Spearman’s ρ2 = 0.054, P = 2.2 x 10-16; Figure 2.12). As expected, the slope 

of the regression line of focal versus flanking for autosomes was steeper than that on 

the X (slope for autosomes = 0.167 ± 0.01 SEM, for X = 0.0472 ± 0.07 SEM, t = 

1.69, df = 107, P < 0.05). These data were consistent with a dominant effect of 

recombination in the male germ-line. However, this test suffered from three 

problems. First, the gene density on the X chromosome was lower than on the 

autosomes, so immediate neighbours on the X from the ortholog sample were less 
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likely to be in the same recombination block. Second, recombination in females is 

more scattered along chromosomes than in males (Paigen et al., 2008), hence any 

female effect on the X need not be visible in a comparison between neighbours, 

while nonetheless a potent force in determining the overall putatively neutral rate of 

evolution of the X. Finally, the number of genes on the X chromosome was 

considerably lower than the autosomal samples size and thus the power of each test 

was not comparable. 

 
Figure 2.12: Comparison of a focal gene’s intronic substitution rate with the mean 
of its 5’ and 3’ nearest neighbours. Data shown are bin averages (± SEM) where, for 
each chromosomal class, bins contain equal numbers of genes, 1000 for the 
autosomes (blue) and 401 for the X chromosome (red). Regression lines are for all 
data, not bin means. 
 

Further, if only male recombination is mutagenic, then one would not have expected 

to see a relationship between recombination rate and substitution rate for X-linked 

genes, as these do not recombine in males. Indeed, although it was found that 

recombination rate in rat can predict the intronic substitution rate on the autosomes, 

no such effect was observed on the X chromosome (weighted linear regression for 

autosomes r2 = 0.0346, P = 5 x 10-5; for X r2 = 0.004, P = 0.8122; Figure 2.11). 

However, given the weakness of the effect, it was unsurprising that a steeper slope 

on the autosomes than on the X was not found (slope for autosomes = 0.0086 ± 
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0.0021 SEM, for X = -0.0026 ± 0.0111 SEM, t = 1.0, df = 13.949, P = 0.167). A 

female recombination effect could not therefore be completely excluded. 

 

Two further observations could be made. Any theory to explain why the X, Y and 

autosomes evolve at different rates should also attempt to account for why different 

autosomes evolve at different rates. The suggested recombination model might be 

able to explain one curious observation. A striking correlation (ρ = 0.7488, P < 

0.00009) was found between the probability that two randomly chosen genes on a 

given mouse chromosome have their orthologs on the same chromosome in rat and 

the evolutionary rate of the mouse chromosome (Figure 2.13). Two factors might 

link this observation to recombination. First, one must assume that regions 

associated with high recombination rates have high substitution rates. Such high-

recombination, fast-evolving domains may be expected to be associated with 

genomic rearrangements, first because, at least in some species, rearrangements tend 

to occur in regions of high recombination (Akhunov et al., 2003), and second 

because when chromosomal fusions and translocations occur, they tend to move 

telomeres rendering them non-telomeric (Dreszer et al., 2007). If high rates of 

telomeric recombination are associated with increased substitution rates, fusions of 

such regions should have elevated rates of evolution, as recently reported at the 

fusion point of human chromosome 2 (Dreszer et al., 2007). 

 

Second, if recombination in females has little or no effect on substitution rates but 

male recombination is important then in birds, in which Z chromosomes can 

recombine in males, Z-W comparisons would be expected to produce estimates of α 

that are biased upward. Consistent with this it has been noted (Hurst and Ellegren, 

1998) that given their life span, the Z-W derived estimates of α are sometimes 

unusually high, although this in part may be related to extrapair paternity resulting in 

sexual selection driving increased sperm production and thus more replication events 

in males (Bartosch-Härlid et al., 2003). Comparably, if male recombination is the 

cause of disparity between estimators of α, assuming nothing else particular about 

the X chromosome, X-Y comparisons are probably best to estimate α, as male 

recombination should not influence these predictions. It is probably for this reason 

that X-Y comparisons are those that in the past have more accurately reflected 
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presumed differences in germ-line replication ratios (Li et al., 2002, Sandstedt and 

Tucker, 2005, Goetting-Minesky and Makova, 2006), whereas X-autosome 

comparisons have suggested remarkably high (Smith and Hurst, 1999a), sometimes 

impossible (α > ∞) (McVean and Hurst, 1997) estimates for α. 

 
Figure 2.13: The relationship between extent of inter-chromosome rearrangement 
and rates of intronic evolution of genes on mouse autosomes. As nearly all 
chromosomal rearrangements occur down the mouse lineage (Ramsdell et al., 2008), 
mouse was employed as the focal chromosome set. Spearman’s ρ = 0.749, P = 8.098 
x 10-5. 
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3.1 Introduction 

 

Mutation rates, assayed as the substitution rate at putatively neutral sites, are known 

to vary at different scales across mammalian genomes, but the reasons for this are 

not well resolved. On the same autosome, genes differ in their synonymous 

substitution rate (Wolfe et al., 1989) with genes of similar substitution rate clustering 

(Matassi et al., 1999, Lercher et al., 2001), an effect that is not explained by 

clustering of genes with similar expression profile (highly/broadly expressed genes 

tending to have lower substitution rates, Lercher et al., 2004). Domains of similarity 

in substitution rate appear to be defined by synteny blocks, genes within a block 

having more homogeneity than between blocks (Malcom et al., 2003, Webster et al., 

2004). At a broader level, striking differences have been observed between 

chromosomes. Not only are there differences between X, Y and autosome (Shimmin 

et al., 1993, Chang et al., 1994, Smith and Hurst, 1999, Makova and Li, 2002, 

Sandstedt and Tucker, 2005, Goetting-Minesky and Makova, 2006, Bachtrog, 2008, 

Pink et al., 2009) but there are also differences between autosomes (Lercher et al., 

2001, Ebersberger et al., 2002, Malcom et al., 2003, Gaffney and Keightley, 2005, 

Pink et al., 2009).  

 

Chapter 2 focused on the dominant explanation for differences between X, Y and the 

average autosomal rate, this being thought to reflect different numbers of cell 
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division owing to different times spent in male versus female germ-lines (Crow, 

1997a, Crow, 1997b, Hurst and Ellegren, 1998, Li et al., 2002, Ellegren, 2007). This 

theory, the theory of male-driven evolution (Miyata et al., 1987), assumes that the 

majority of mutations arise as errors during DNA replication. Mutational variability 

should therefore reflect only differences in the number of replications sequences 

undergo. Given that in longer lived species, maintenance of spermatogonia increases 

the number of germ-line cell divisions in males relative to females, the Y 

chromosome, which is restricted to males, might be expected to have a higher 

substitution rate than the autosomes, which are only exposed to additional male 

germ-line replications half of the time. In turn, autosomes should evolve faster than 

the X chromosome, which spends only one-third of its time in the male germ-line.  

 

However, as the evidence presented in Chapter 2 showed, in rodents the number of 

replication events was unable to explain observed differences between chromosomal 

classes, both in exonic synonymous substitution rates and intronic rates (Pink et al., 

2009). For both classes of sequence, estimates of the extent of the male bias (α), 

based on a model presuming that the number of replications is the sole determinant 

of neutral substitution rates, varied significantly depending on which two 

chromosomal classes were considered (X vs. autosomes, X vs. Y, Y vs. autosome). 

Indeed, in strict contradiction of the hypothesis, the autosomes were found to have a 

similar, if not higher substitution rate than the Y chromosome. The findings in 

Chapter 2 also confirmed previous reports of considerable between-autosome 

variability in putatively neutral substitution rates (Matassi et al., 1999, Lercher et al., 

2001, Malcom et al., 2003). Neither this observation nor the discrepant estimates of 

α are consistent with between-chromosomal variability in mutation rates being 

predominantly determined by the number of germ-line cell divisions. While Chapter 

2 proposed a recombination-associated substitution effect as a source of the higher 

autosomal rate of evolution than that of the non-recombining Y chromosome, the 

source of the between-autosomal variability in substitution rates remained 

unresolved. Although a recombination-associated substitution effect could explain 

some part of the between-autosomal gene variation (r2 = 0.035, P = 5 x 10-5, Chapter 

2), it failed to explain any of the between-autosome variation (r2 = 0.0103, P = 0.68). 

 



86 

Given that the number of DNA replications could not account for variability in 

substitution rates between chromosomes or chromosomal classes, what else might 

have an effect? To account for both the observed inter- and intra-autosomal 

variability under the replication model, one must suppose different genomic regions 

are subject to different rates of replication-associated mutations. Indeed, a hitherto 

unexplored assumption of Miyata et al.’s (1987) model is that, per replication, these 

errors are uniformly distributed throughout the genome. There is however, reason to 

believe that this might not be the case. 

 

Recent evidence from primates suggests that later replicating regions of the genome 

have higher rates of neutral divergence and nucleotide diversity than regions 

replicating earlier (Stamatoyannopoulos et al., 2009). Stamatoyannopoulos et al. 

(2009) postulate that the effect may be owing to a slowing or stalling of replication 

late in S-phase, possibly owing to a depletion of the deoxynucleotide triphosphate 

(dNTP) pool or difficulty negotiating heterochromatised templates. They suggest 

that the slower speed of replication would in turn mean that DNA would be 

unwound, in a single stranded format, for longer, leaving it more prone to mutation. 

However, the mechanism is by no means well resolved. Speed of fork progression 

appears to be a dynamic feature of replication related to other factors such as dNTP 

availability (Malínsky et al., 2001, Anglana et al., 2003, Koç et al., 2004) and origin 

density (Conti et al., 2007, Courbet et al., 2008), and it is not yet fully understood 

how these vary temporally across S-phase. Further, perturbations of relative dNTP 

concentrations are themselves directly mutagenic (Martomo and Mathews, 2002, 

Mathews, 2006). Regardless of the mechanistic uncertainties, importantly, 

replication timing tends to be a relatively fixed property of a genomic domain, 

remaining stable from cell cycle to cell cycle (Jackson and Pombo, 1998), with GC-

rich, gene-rich regions tending to replicate earlier than AT-rich, gene-poor or 

heterochromatic regions (Woodfine et al., 2004, Karnani et al., 2007, Hiratani et al., 

2008). Note, however, the exceptions discussed in the introductory chapter (section 

1.3). 

 

This chapter aims to test the validity of the assumption of Miyata et al.’s (1987) 

model, that per replication errors are randomly distributed across the genome. More 
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specifically, it will address a number of questions: is timing of replication also 

related to substitution rates in rodents and can it account for the previously observed 

inter-autosomal variability. Are any differences in replication timing between the 

three chromosomal classes (X, Y and autosome) causative of differences in 

substitution rate, previously thought attributable to differences in the number of 

replications in the two germ-lines and finally, can controls for replication timing 

resolve the previous discrepancies in the model used to estimate the extent of the 

male mutation bias? It has only recently become possible to answer these questions 

due to the novel availability of replication timing data at a 5.8 Kb probe density 

across all three chromosomal classes in mouse (Hiratani et al., 2008), the only 

mammalian species with such data yet available for the Y chromosome. 

 

3.2 Methods 

 

3.2.1 Calculation of intronic substitution rates 

The substitution rate data set curated for the work in Chapter 2 was used for these 

analyses, for which methodologies are described in detail in sections 2.2.1 to 2.2.6. 

However, in contrast to Chapter 2, the analyses presented here utilised only intronic 

substitution rates, for which two alternative data sets were available. The first 

unfiltered data set comprised all alignments that passed the filters described in 

sections 2.2.2 and 2.2.3. The second data set was further purged of all introns 

thought to be evolving under selection, possibly owing to the inclusion of 

unannotated exons within intronic sequence. This test for clusters of conserved 

bases, potentially indicative of hidden functional sites was described in section 2.2.4. 

For both data sets, introns of the same gene were concatenated and the rate of 

intronic divergence (Ki) was estimated and corrected for multiple hits according to 

the model of Tamura and Kumar (2002). 

 

3.2.2 Assignment of chromosomal locations 

Positions of genes on the mouse genome were defined by the terminal 5’ and 3’ bp 

of the coding sequence. These positions were obtained from annotations of the July 

2007 assembly (mm9). As mouse replication timing data were assigned genomic 

coordinates based on the February 2006 assembly (mm8), the stand-alone liftOver 
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utility and associated chain file mm9ToMm8.over.chain, both obtained from UCSC, 

were used to convert positions between builds. 

 

3.2.3 Replication timing data 

Replication timing data for mouse cell lines prior to differentiation, measured at a 

5.8 Kb probe density, were downloaded from http://www.replicationdomiain.org 

(Weddington et al., 2008, Hiratani et al., 2008). Positive values were indicative of 

early replication and negative values were indicative of replication later during S-

phase. Four data sets were available. Three comprised replication times derived from 

embryonic stems cells (ESCs), whereas the fourth set of replication times was 

derived from induced pluripotent stem cells (iPS). Although the three ESC lines 

could be regarded as replicate data sets, the same was not necessarily true of the iPS 

data. Therefore, to justify the inclusion of data derived from iPS cells, for each 

chromosome, a Spearman’s correlation was performed on the raw data for each 

possible pairwise comparison between the four data sets, enabling a comparison of 

the strength of correlations within the ESC data to those between any of the ESC 

data and the iPS data. Correlations in chromosomal replication timing between 

pairwise ESC lines were no stronger than correlations between any of the ESC lines 

and the iPS line (Figure 3.1), confirming the finding by Hiratani et al. (2008) that 

replication profiles of iPS cells were indistinguishable from other ESCs. The four 

cells lines were therefore treated as replicates. 
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Figure 3.1: Distribution of Spearman’s ρ for pairwise correlations of replication 
timing on each chromosome between embryonic stems cells (ESC) lines (dashed 
line) and for each ESC with the induced pluripotent stem cells (iPS) (solid line). All 
spearman’s correlations were significant (P < 0.001). 
 

3.2.4 Assignment of genic and chromosomal replication times 

For each orthologous gene, all replication times obtained from the four cell lines that 

applied to any part of the gene were identified. This was based on an overlap of the 

positions of the probe used to calculate replication times and the limits of the coding 

sequence. A mean of these replication times was then assigned to the gene. From this 

data set of orthologous genes with both substitution rate and replication time data 

available, the median intronic substitution rate and median replication time across all 

genes located on each chromosome were used for analysis at the chromosomal level. 

95% confidence intervals were determined from 1,000 bootstraps. 

 

3.2.5 Controls for germ-line expression 

Strand asymmetry in the rates of some substitution types has resulted in an excess of 

G and T over C and A on the coding strand in mammals (Green et al., 2003, Mugal 

et al., 2009). This asymmetry is higher in transcribed than in flanking intergenic 

sequence (Green et al., 2003, Mugal et al., 2009), and transitions between equal and 

skewed base composition are clearly associated with the start and end points of 

transcription (Touchon et al., 2003, Polak and Arndt, 2008, Touchon et al., 2004). 
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Together, these observations are strongly suggestive of a germ-line transcription-

associated source. Further, the extent of this skew has been found to correlate with 

expression level in ubiquitously expressed genes (Majewski, 2003). As such genes 

are more likely to be expressed in the germ-line than tissue-specific genes, the extent 

of G+T skew was therefore used as a proxy for germ-line expression rate. Unlike the 

methodology applied in Chapter 2, here G+T skew was only calculated for mouse as 

it was to be analysed alongside mouse replication timings. For all intronic sequence 

for a mouse gene, the numbers of A, T, C and G were determined, and the extent of 

G+T skew was calculated as the ratio [(G + T) – (A + C)]/(G + C + T + A) 

(Majewski, 2003).  

 

3.2.6 Rearrangement index 

Using the method described in Chapter 2 (section 2.2.11), each mouse autosome was 

assigned a rearrangement index (RI), a measure of the probability that the rat 

orthologs of any two randomly selected genes on a given mouse autosome are not 

both located on the same rat autosome. This method was applied to both data sets, 

namely the final samples of orthologous genes for either the filtered or unfiltered 

data set as appropriate. Chromosomes having undergone extensive between-

autosomal rearrangements were assigned high rearrangement indices, whereas low 

rearrangement indices were assigned to autosomes that have remained relatively 

collinear since their common ancestor with rat. Full details of sample sizes, counts 

and rearrangement indices are supplied in Table 3.1.  
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Number of  
orthologous mouse 

genes 

Number of times 
orthologs of sampled 

mouse pairs were located 
on different rat 

autosomes 

Rearrangement Index Autosome 

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 
1 331 294 5522 5394 0.5522 0.5394 
2 416 356 1095 1029 0.1095 0.1029 
3 259 230 0 0 0 0 
4 330 288 0 0 0 0 
5 351 297 6177 6284 0.6177 0.6284 
6 317 272 0 0 0 0 
7 384 334 0 0 0 0 
8 287 255 5187 5279 0.5187 0.5279 
9 315 275 0 0 0 0 
10 222 185 5849 5712 0.5849 0.5712 
11 412 361 2010 2142 0.201 0.2142 
12 164 135 0 0 0 0 
13 200 175 4859 4923 0.4859 0.4923 
14 189 164 3128 2926 0.3128 0.2926 
15 185 156 2342 2392 0.2342 0.2392 
16 159 125 2718 2139 0.2718 0.2139 
17 214 182 8006 8113 0.8006 0.8113 
18 130 112 567 485 0.0567 0.0485 
19 195 182 0 0 0 0 

Table 3.1: Data used to calculate re-arrangement indices for the unfiltered and 
filtered data sets. 
 

3.2.7 Calculation of partial spearman correlations 

Partial Spearman’s correlations between x and y, controlling for z (ρxy.z), were 

calculated as follows: 

! 

"xy.z =
"xy # "xz( ) "yz( )
1# "xz

2( ) 1# "yz
2( )

      (18) 

where ρxy are Spearman’s correlations between the two variables indicated by the 

subscript. Significance was determined by randomly reassigning y to each gene, 

without replacement, and then re-calculating the partial Spearman’s correlation 

(ρxy.z). This process was repeated 1000 times and the number of occasions (n) on 

which the strength of the randomised ρxy.z exceeded that of the original, was used to 

calculate P as P = (n + 1) / (1000 + 1). 
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3.3 Results 

 

Two data sets were generated: one subject to a filter for introns thought to contain 

clusters of sites under selective constraints and a second data set not subject to this 

filter. As the findings did not, for the most part, qualitatively differ between the two 

data sets, the main results presented here are from the more conservative, filtered 

data set. This comprised 4,378 autosomal genes (18.7 Mb), 133 X-linked genes (622 

Kb) and 3 Y-linked genes (5.5 Kb). The unfiltered data set comprised 5,060 

autosomal genes (79.3 Mb), 150 X-linked genes (2 Mb) and 4 Y-linked genes (20.7 

Kb). Where findings qualitatively differed between the two data sets, results for both 

data sets are given. 

 
3.3.1 Replication time correlates with intronic rates of evolution 

First it was asked whether, at the genic level, timing of replication was related to 

putatively neutral substitution rates. Confirming the previously reported trend seen in 

primates (Stamatoyannopoulos et al., 2009), in rodents there was a significant 

relationship between timing of replication and intronic substitution rates across both 

autosomal genes (for the filtered data Spearman’s ρ = -0.0901, P = 2.3 x 10-9; 

Figure 3.2, for the unfiltered data Spearman’s ρ = -0.077, P = 3.6 x 10-8) and X-

linked genes (for the filtered data Spearman’s ρ = -0.2188, P = 0.0114; for the 

unfiltered data Spearman’s ρ = -0.2417, P = 0.0029). Note that due to the structure 

of the data, late-replicating sequences were assigned negative timing values, so an 

increase in any variable during S-phase yielded a negative correlation. For figures, 

data were plotted on a reversed x axis so as to visually show this increase over time. 

Using the regression Ki = -0.00440(replication time) + 0.1717 to predict Ki from the 

replication times of the first and last genes to replicate, an expected 10.5% increase 

in rates of evolution during S-phase was observed. However, using the unfiltered 

data set, for which the regression was Ki = -0.00335(replication time) + 0.1742, the 

magnitude of this increase was reduced to just 7.5%, possibly owing to increased 

noise in the data set. Both of these values were considerably lower than the 22% 

increase in divergence reported across primate temporal replication states 

(Stamatoyannopoulos et al., 2009). 
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Figure 3.2: Intronic substitution rates increase with later timing of replication across 
autosomal genes. Spearman’s ρ = -0.0901, P = 2.3 x 10-9. Also shown are bin 
averages (± 1 SEM) for equally sized bins. The linear least squares regression line is 
for all data, not bin means. Note that the y-axis scale results in some outlying data 
points lying outside the plot area. 
 

3.3.2 GC content did not explain why early replicating genes evolve slowly 

Parenthetically, it was interesting to note that the replication time effect ran opposite 

to a nucleotide-level mutability effect. Consistent with previous work (Woodfine et 

al., 2004, Hiratani et al., 2008), a significant, strong correlation between GC content 

and replication timing across autosomal genes was observed, such that GC-rich 

sequences replicate early, whereas sequences that are GC-poor replicate late 

(Spearman’s ρ = 0.3153, P < 2.2 x 10-16). GC-rich sequences should therefore evolve 

slowly owing to replication timing effects. Indeed, a significant, albeit weak, 

negative relationship (Spearman’s ρ = -0.0525, P = 0.00051) was observed. 

However, it should be noted that this relationship was sensitive to the data set used 

(for the unfiltered data set Spearman’s ρ = -0.0206, P = 0.1437). By contrast, 

synonymous substitution rates have been found to covary positively with GC content 

(Hurst and Williams, 2000) and further, CpG dinucleotides are known to be mutable 

especially when methylated (Coulondre et al., 1978). 
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Given that GC-rich sequences were found to replicate early and be somewhat slow 

evolving, might this then have accounted for the relationship between replication 

timing and intronic substitution rates? It was found that it could: when GC content 

was accounted for the strength of the relationship between replication time and 

intronic substitution rate was somewhat weaker but remained significant (partial 

Spearman’s ρ = -0.0777, P = 0.0010), suggesting that this effect was not modulated 

by GC content. Conversely, most of the relationship between GC and intronic 

substitution rates was explained by GC-rich sequences being early replicating (ρ2 = 

0.003 for uncontrolled analysis, P = 0.0005; ρ2 = 0.0006 for the partial correlation 

controlling for replication timing, P = 0.042). 

 

3.3.3 Expression rates do not explain lower rates of evolution of early 

replicating genes 

In mammals, early replication has been associated with gene expression (Holmquist, 

1987, Woodfine et al., 2004). It might therefore have been the case that the lower 

substitution rate observed in earlier replicating genes could have been explained by 

features relating to gene expression. Consistent with this hypothesis a significant 

correlation between replication time and germ-line expression rate, as assayed by 

nucleotide skew (Spearman’s ρ = 0.0969, P = 1.3 x 10-10) was observed, with highly 

expressed genes replicating earlier. However, it was unclear whether such genes 

might a priori have been expected to have lower rates of evolution, not least because 

previous evidence has been conflicting. At synonymous sites, the strength of the 

relationship has ranged from weakly negative (Lercher et al., 2004) to non-existent 

(Duret and Mouchiroud, 2000) and although a significant correlation between 

intronic rates of evolution and several measures of expression rate has previously 

been reported in humans (Webster et al., 2004), it was not possible to replicate this 

with the rodent data used here (Spearman’s ρ = 0.0209, P = 0.166). It was therefore 

unsurprising that using a partial correlation, a significant correlation between 

replication time and substitution rate remained when controlling for germline 

expression rate (partial Spearman’s ρ = -0.0926, P = 0.0010). From this it was 

concluded that the lower substitution rate of earlier replicating genes was not 

attributable to higher levels of germline gene expression. 
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3.3.4 Differential timing of replication, in part, explains inter-autosomal 

variation in substitution rates 

The theory of male-driven evolution (Miyata et al., 1987) suggests that if the 

majority of mutations arise as errors during DNA replication, then at the 

chromosomal level variation in substitution rates should be predominantly 

determined by differences in the number of replications in each germ-line, more 

occurring in males than in females of longer lived species. This theory would 

therefore predict that the autosomes should all evolve at the same rate as, on average, 

they pass through each germ-line with equal frequencies. However, as discussed in 

Chapter 2, significant differences in rates of autosomal evolution (Malcom et al., 

2003, Gaffney and Keightley, 2005, Pink et al., 2009) suggest that the number of 

replications is not the sole determinant of autosomal mutation rates.  

 

Given that genic rates of evolution were found to increase as replication progressed 

through S-phase, it was therefore asked whether this effect extended to the inter-

chromosomal level. First, it was asked whether, on average, the sampled genic 

sequence located on different autosomes replicated at different times. It was found 

that they did, with considerable heterogeneity between autosomes in their genic 

replication timing (Kruskal-Wallis, P < 2.2 x 10-16; Figure 3.3). 

 

It was then asked whether these differences in replication time between autosomes 

were related to differences in autosomal substitution rates. There was a correlation 

between replication timing of autosomes and their intronic substitution rate, but 

whether this was significant depended somewhat on exactly how the data were 

handled (ρmax = -0.547, ρmin = -0.216, Pmin = 0.017, Pmax = 0.373; Table 3.2).  

 



96 

 
Figure 3.3 Median chromosomal replication times (± 95% confidence intervals) for 
each of the 19 mouse autosomes and the two sex chromosomes. The horizontal line 
represents the median across all autosomal genes. There are, on average, significant 
differences in the timing of replication of different autosomes (Kruskal-Wallis, P < 
2.2 x 10-16) and between the three chromosomal classes, X, Y and autosome 
(Kruskal-Wallis, P < 2.2 x 10-16). 
 

Method of calculating autosomal averages Data set Mean of each autosome Median of each autosome 

Unfiltered Spearman’s ρ = -0.3702 
P = 0.1194 

Spearman’s ρ = -0.2158 
P = 0.3733 

Filtered Spearman’s ρ = -0.5474 
P = 0.0168 

Spearman’s ρ = -0.4002 
P = 0.0896 

Table 3.2: Spearman’s correlations between autosomal replicating timing and 
intronic substitution rate using alternative data sets and methods of calculating 
autosomal averages.  
 

Overall, a 4.5% difference in mean rates of intronic evolution between the earliest 

and latest replicating autosomes was observed, though again this was reduced to only 

2.3% when the unfiltered data set was used (based on linear regressions Ki = -

0.01603(replication time) + 0.1852 for the filtered data and Ki = -0.00757(replication 

time) + 0.1791 for the unfiltered data). However, as observed in Chapter 2, for 

unknown reasons highly rearranged mouse autosomes have high substitution rates 
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compared to those that have not undergone substantial inter-chromosomal 

rearrangements (Pink et al., 2009). Given the strength of this relationship (r2 = 

0.6063, P = 0.0001; Figure 3.4a), it should be considered alongside any other 

parameter under investigation as a cause of between-autosome variation in 

substitution rates, in this instance, timing of replication. Note that extent of inter-

autosomal rearrangement is not related to current chromosomal length (Spearman’s 

ρ = -0.045, P = 0.852). 

 

It was therefore asked whether replication timing and amount of inter-chromosomal 

rearrangement were independent parameters. As no correlation was found between 

the two variables (Spearman’s ρ = 0.0288, P = 0.907) and in a linear model in which 

both were predictors of autosomal substitution rates, there was no significant 

interaction term (P = 0.3495, Table 3.3), it was concluded that this was indeed the 

case.  

 

Call: lm(formula = Ki ~ RT + RI + RT * RI) 
Residuals: 

Min 1Q Median 3Q Max 
-7.856e-03 -1.089 x 10-3 -1.398 x 10-5 2.073 x 10-3 3.645 x 10-3 

Coefficients: 
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.187014 0.009483 19.720 3.87 x 10-12 
RT -0.021051 0.008045 -2.617 0.0194 
RI -0.012124 0.029481 -0.411 0.6867 

RT:RI 0.024401 0.025268 0.966 0.3495 
Residual standard error: 0.003084 on 15 degrees of freedom 
Multiple R-squared: 0.7474, Adjusted R-squared: 0.6968 
F-statistic: 14.79 on 3 and 15 DF, p-value: 9.434 x 10-05 

Table 3.3: Full R output for a linear model in which rearrangement index (RI) and 
replication timing (RT) were predictors of autosomal intronic substitution rates (Ki). 
The filtered dataset and autosomal medians were used. Note that the interaction is 
not significant, P = 0.3495. 
 

Excluding an interaction from the linear model, it was then found that together 

rearrangement and replication timing could explain a striking 60-70% of between-

autosomal variation in substitution rates (for the filtered data r2 = 0.732, P = 2.689 x 

10-5, Table 3.4; for the unfiltered data r2 = 0.6208, P = 4.274 x 10-4, Table 3.5).  
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Call: lm(formula = Ki ~ RI + RT) 
Residuals: 

Min 1Q Median 3Q Max 
-0.0081298 -0.0011638 0.0005467 0.0018111 0.0040737 

Coefficients: 
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.180657 0.006812 26.522 1.19 x 10-14 
RT -0.015578 0.005699 -2.734 0.0147 
RI 0.016225 0.002715 5.976 1.94 x 10-5 

Residual standard error: 0.003078 on 16 degrees of freedom 
Multiple R-squared: 0.7317, Adjusted R-squared: 0.6981 
F-statistic: 21.81 on 2 and 16 DF, p-value: 2.689 x 10-5 

Table 3.4: Full R output for a linear model in which rearrangement index (RI) and 
replication timing (RT) were predictors of autosomal intronic substitution rates (Ki). 
The filtered dataset and autosomal medians were used. 
 

Call: lm(formula = Ki ~ RT + RI) 
Residuals: 

Min 1Q Median 3Q Max 
-0.0080829 -0.0021338 0.0007564 0.0020046 0.0062293 

Coefficients: 
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.176702 0.007657 23.076 1.04 x 10-13 
RT -0.008902 0.006450 -1.380 0.186518 
RI 0.015768 0.003165 4.982 0.000136 

Residual standard error: 0.003566 on 16 degrees of freedom 
Multiple R-squared: 0.6208, Adjusted R-squared: 0.5734 
F-statistic: 13.1 on 2 and 16 DF, p-value: 0.0004274 

Table 3.5: Full R output for a linear model in which rearrangement index (RI) and 
replication timing (RT) were predictors of autosomal intronic substitution rates (Ki). 
The unfiltered dataset and autosomal medians were used. 
 

Although both parameters contributed significantly to this relationship in the filtered 

data, rearrangement appeared to be the dominant predictor (P = 1.94 x 10-5 for 

rearrangement compared with P = 0.0147 for replication timing; Table 3.4). This 

could also be seen by considering how well replication time predicted the residuals 

of the plot of rearrangement index against autosomal intronic rates (Figure 3.4b). 

Note however that significance was dependent on the data set used and method used 

to calculate autosomal centrality (Table 3.6). Similarly, although the significance of 

replication timing as a co-predictor of autosomal substitution rates in the unfiltered 

data was sensitive to how autosomal averages were calculated (P = 0.0299 for 

means, Table 3.7; P = 0.1865 for medians, Table 3.5), given that significant 
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relationships were observed in most of the analyses suggested that replication timing 

should be considered as a covariate in future analyses investigating the causes of 

variation in autosomal rates of evolution. 

 

 
 
Figure 3.4: (a) The intronic substitution rates of the 19 (labelled) mouse autosomes 
are significantly predicted by the amount of rearrangement the autosome has 
undergone (r2 = 0.606, P = 0.0001, least squares linear regression line shown) and 
timing of replication (residuals test r2 = 0.318, P = 0.0119, darker points being 
indicative of later replication timings). Note the tendency for later replicating 
autosomes to sit above the line and early replicating ones to sit below. This is further 
illustrated in (b), a plot of the residuals for (a) against replication time. 
 
 

Measure of autosomal 
centrality Data set 

Means Medians 

Filtered r2 = 0.4411 
P = 0.0019 

r2 = 0.3183 
P = 0.0119 

Unfiltered r2 = 0.2619 
P = 0.0251 

r2 = 0.1062 
P = 0.1733 

Table 3.6: Residual variation in autosomal Ki that could not explained by extent of 
rearrangement was subsequently predicted by replication timing using a linear 
regression. Results of this second regression are given using alternative data sets and 
measures of autosomal centrality. 
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Call: lm(formula = Ki ~ RT + RI) 
Residuals: 

Min 1Q Median 3Q Max 
-0.0069884 -0.0017083 0.0008158 0.0018587 0.0041317 

Coefficients: 
 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.172652 0.002180 79.216 < 2 x 10-16 
RT -0.005312 0.002229 -2.383 0.0299 
RI 0.015180 0.002733 5.554 4.36 x 10-5 

Residual standard error: 0.003081 on 16 degrees of freedom 
Multiple R-squared: 0.6938, Adjusted R-squared: 0.6555 
F-statistic: 18.12 on 2 and 16 DF, p-value: 7.732 x 10-5 

Table 3.7: Full R output for a linear model in which rearrangement index (RI) and 
replication timing (RT) were predictors of autosomal intronic substitution rates (Ki). 
The unfiltered dataset and autosomal means were used. 
 

3.3.5 Average replication time of X, Y and autosomal genes were different but 

controlling for replication time did not account for discrepancies in estimates of 
α  

As shown in Chapter 2, contrary to the predictions of the theory of male-driven 

evolution, Y-linked introns had a rate of evolution that was at most on a par with 

those of the autosomes, if not somewhat lower (Pink et al., 2009). This was also true 

considering synonymous sites (McVean and Hurst, 1997, Smith and Hurst, 1999, 

Pink et al., 2009). More generally, estimates of α, the degree of male bias, derived 

using the method of Miyata et al. (1987), were not mutually compatible when using 

data from the three possible pairwise comparisons (X and autosomes, Y and 

autosomes and X and Y). Given that later replication timing elevated substitution 

rates both at the genic and the autosomal level, these discrepancies might have been 

accounted for if the autosomes replicated later during S-phase than the sex 

chromosomes. Did then autosomal, X- and Y-linked genes replicate at different 

times and were autosomal genes on average late replicating compared with those on 

the Y? 

 

It was found that genes located on each of the three chromosomal classes did 

replicate, on average, at significantly different times (Kruskal-Wallis test, P < 2.2 x 

10-16 for both data sets). Contrary to the above hypothesis however, autosomal genes 

replicated earliest during S-phase, followed by X-linked genes, with Y-linked genes 

replicating later in S-phase (median replication times for the filtered data set: 
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Autosomes = 1.224, X = 0.747, Y = -0.223, Figure 3.3; Median replication times for 

the unfiltered data set: Autosomes = 1.225, X = 0.762, Y = -0.276.). 

 

It is worth noting that the small sample of Y-linked genes were derived from two 

BACS and, as such, are positioned close together and therefore subject to similar 

regional effects, including replication time. It was therefore feasible that the 

difference in replication time observed across the three chromosomal class samples 

might have arisen from the Y-linked sample being located in a particularly late-

replicating domain. However, the distribution of replication times of the sample 

genes relative to all probes for a given chromosome (Figure 3.5) showed that this 

was not the case, with sample genes being clustered in earlier replicating sequences 

on all chromosomes.  

 
Figure 3.5: Boxplot showing the distribution of replication times across each 
chromosome. For each chromosome the unfilled box on the left represents 
replication times across all probes and the grey box on the right represents the 
replication times of sample genes. For all chromosomes, sample genes are clustered 
in early replicating sequence. 
 

Given the above result, it was to be expected that the addition of replication time as a 

covariate would not resolve discrepant estimates of α. Y-linked genes should have a 

very fast rate of evolution both because they undergo more replication events and 

because they are relatively late replicating. To understand the quantitative impact of 
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replication time on estimates of α, a covariate controlled analysis of a form 

described in Chapter 2, section 2.3.2 was performed. 

 

In order to control for replication time in estimation of the extent of male bias in the 

mutation rate, a single replication time was imposed across all three chromosomal 

classes and the magnitude of α calculated using the predicted rate of evolution of 

each chromosomal class at this time. Because the limited sample size available for 

the Y chromosome prevented use of a regression of Y-linked genes, the mean 

replication time across Y-linked genes was used to predict both autosomal and X-

linked Ki. This was done using the equation for the least squares linear regression 

line of replication time as a predictor of Ki across all autosomal and X-linked genes 

respectively. The ratio of KY to the predicted estimate of KAutosome was then inserted 

into the equation of Miyata et al. (1987) to determine αYAutosome from (KY/KAutosome)/(2 

– (KY/KAutosome)). Similarly, the ratio of KY to the predicted KX was used to calculate 

αYX from (2(KY/KX))/(3 – (KY/KX)). Finally, the predicted estimate of KAutosome relative 

to the predicted KX was used to calculate αXAutosome from 3(KX/KAutosome) – 4)/(2 – 

3(KX/KAutosome)). As expected, it was found that controlling for replication time failed 

to reconcile α to a single estimate (Table 3.8). 

 
α  Class  

Comparison Regression Predicted Ki Original Control 
for RT 

X to 
Autosome 

KAutosome = 0.1717 - 0.0044(RTY) 
KX = 0.1458 - 0.0113(RTY) 

KAutosome = 0.172 
KX = 0.1466 2.9160 2.5887 

Y to 
Autosome KAutosome = 0.1717 - 0.0044(RTY) KAutosome = 0.172 0.9087 0.8646 

Filtered 
dataset 

Y to X KX = 0.1458 - 0.0113(RTY) KX = 0.1466 1.2218 1.1380 

X to 
Autosome 

KAutosome = 0.1742 - 0.0033(RTY) 
KX = 0.1532 - 0.0096(RTY) 

KAutosome = 0.1747 
KX = 0.1546 2.3313 2.0489 

Y to 
Autosome KAutosome = 0.1742 - 0.0033(RTY) KAutosome = 0.1747 0.9669 0.9291 

U
nfiltered 
dataset 

Y to X KX = 0.1532 - 0.0096(RTY) KX = 0.1546 1.2160 1.1381 

Table 3.8: Estimates of α controlling for a single timing of replication, where RT is 
replication time and K the intronic substitution rate of X, Y or autosomes as 
indicated by the subscript. For the unfiltered data set, RTY = -0.154; for the filtered 
data set, RTY = -0.073. 
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3.4 Discussion 

 

Current theory suggests that at the genome-wide level, errors introduced during 

DNA replication are the primary source of new mutations. An assumption of this 

theory is that the number of replications is the key determinant of variation in rates 

of evolution. However, it was shown here that, across autosomal genes where the 

number of replications is the same, the timing of replication is a significant predictor 

of rates of evolution. Further, it was shown that replication timing, in conjunction 

with rearrangement, is a significant predictor of autosomal rates of evolution and that 

together, these two parameters could explain around 70% of between-autosomal 

variation in substitution rates. 

 

However, although it was found that on average the sex chromosomes replicate later 

than the autosomes, they did not exhibit the elevated rates of evolution that might 

have been expected if a later timing of replication is associated with a higher input of 

substitutions. In fact, given that the Y chromosome undergoes an increased number 

of germ-line cell divisions relative to the autosomes and that Y-linked genes 

replicate, on average, later during S-phase, it might have been expected their rate of 

evolution was substantially greater than that of autosomal genes. However, this was 

not found, with the Y-linked genes, if anything, evolving possibly slower than 

autosomal genes (KAutosome = 0.1676 > KY = 0.1595, although significance and 

magnitude were sensitive to the filters applied to the data set). It was therefore 

unsurprising that controlling for differences in replication time across the three 

chromosomal classes failed to cause the three estimates of α to converge. In Chapter 

2, it was suggested that an effect of recombination promoting neutral substitutions 

(either owing to direct mutational effects or owing to biased gene-conversion-like 

processes) might be an important modulator of substitution rates (Pink et al., 2009). 

That the sampled Y-linked genes were located on the non-recombining Y-specific 

region of the Y chromosome and that these evolve slower than expected both when 

considering replication time and number, only further reinforced the paradox. 

 

This result aside, these results had one potential important corollary. At the genic 

level, replication timing appeared to be an important determinant of substitution 
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rates in both rodents (as shown here) and in primates (Stamatoyannopoulos et al., 

2009). If this relationship also holds true in other species, then prior estimates of α 

that utilise small sample sizes are almost inevitably going to be quantitatively 

inaccurate. To be more precise, for estimates of α to be inaccurate all that would be 

needed is that the replication timing of the sequence from one comparator 

chromosomal class to be different from that of the other. This would be particularly 

acute for α derived from the X-to-autosomal comparison as this comparison is 

extremely sensitive to the ratio of rates of evolution (Figure 2.5). Even small 

inaccuracies in the measurement of substitution rates on either of these chromosomal 

classes, stemming from a biased sample with respect to position and consequently 

replication time, would therefore be amplified in inaccurate estimation of α. The 

problem is potentially even more profound for analyses that compare one Y-linked 

gene with its X-linked homolog, where, given tiny sample sizes, a major difference 

in replication timing of the two genes could greatly skew any estimate. If, as shown 

here, Y-linked sequences generally replicate later than those on the X chromosome, 

and if this in turn accelerates their evolutionary rate, the finding that Y-linked 

sequences are fast evolving relative to those on the X chromosome is to be expected, 

regardless of any differences in the number of replication events. Therefore, the 

general expectation is that estimates of the magnitude of the male mutation bias 

derived from an X to Y comparison, employing the equation of Miyata et al. (1987), 

are likely to provide overestimates.  

 

These observations might also explain why the synteny block appears to represent a 

unit of homogeneity in mutation rate variation (Malcom et al., 2003, Webster et al., 

2004). Replication domains, large regions of similarly timed replication clusters, can 

range from hundreds of kilobases (Karnani et al., 2007) to several megabases 

(Hiratani et al., 2008). In contrast, the scale of mutational variation has been 

demonstrated to be no larger than 1Mb (Gaffney and Keightley, 2005). It is therefore 

possible that genomic rearrangements might have moved regions of similarly timed 

replication with associated similarity in substitution rates, into a genomic landscape 

differing in replication time and therefore substitution rate (Yaffe et al., 2010). An 

early replicating block of sequence with a slow rate of evolution, for example, could 

move into a domain of fast evolving sequence or vice versa. If the event was 
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relatively recent, or if the domains brought their replication timing with them as 

appears to be the case (Yaffe et al., 2010), heterogeneity between synteny blocks 

would result. 

 

The analysis here comes with at least one important caveat. It is possible that the 

replication timing data used in this analysis did not accurately reflect replication 

timings in the germ-line. The data used, possibly superior to the somatic data used 

by Stamatoyannopoulos et al. (2009), comprised replication times derived from 

pluripotent cells as a proxy for germ-line replication times. Given that correlations 

were observed between timing of replication and other genomic features was 

suggestive that the data used did reflect germ-line replication times. However, it is 

known that differentiation is related to temporal changes in replication for as much 

as 20% of the genome (Hiratani et al., 2008). Although the relationship between 

replication timing and gene expression is not fully understood, it has been suggested 

that in ESCs, lineage-specific genes may be transcriptionally silent but retain RNA 

polymerase promoter occupancy and as such replicate early. Upon differentiation, 

the transcriptional potential of these silent lineage-specific genes is removed and 

replication occurs later (Azuara et al., 2006, Farkash-Amar et al., 2008). During the 

process of gametogenesis, it is therefore likely that some regions of the genome, 

particularly those containing transcriptionally silent genes, would undergo such 

shifts in replication time. Such changes would not necessarily be conserved between 

oogenesis and spermatogenesis nor be distributed uniformly across the three 

chromosomal classes. Incorrect assignment of germ-line replication times to any of 

the three chromosomal classes would therefore affect relationships with substitution 

rates and controls for the estimation of α. 

 

These analyses also suppose that replication time effects have the same mutational 

effect on X, Y and autosome. Might it be that the sex chromosomes are exposed to a 

different replication environment during S-phase? Although the formation of the XY 

body in the male germ-line might represent one such condition, this is unlikely to 

have an effect because it forms during meiotic prophase, after DNA replication has 

been completed, and could not therefore differentially influence the effect of 

replication timing on substitution rates between the chromosomal classes. 
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Alternatively, such an effect might be female specific, involving X inactivation 

whereby, on average half of the time, one X chromosome is subject to transient 

germ-line X inactivation and subsequently replicates late during S-phase. However, 

this too cannot account for the slow Y-linked rate of evolution, relative to that of the 

autosomes, because neither of these two chromosomal classes would be affected. 

 

Assuming these caveats to be of minor importance, the results presented here 

provide evidence in support of replication timing as a source of genomic variation in 

substitution rates and can potentially explain the previously enigmatic variation in 

substitution rates between synteny blocks. Although these effects only deepen the 

mystery of why Y-linked sequence in rodents is not especially fast evolving, more 

generally it opens up the possibility that all prior calculations of the extent of the 

male mutation bias, assuming as they do that number of replication events alone is 

the important determinant, are likely to be wrong. The extent to which prior 

estimates have misled will depend on the magnitude of the replication timing effect 

and the difference in timing between the sequences employed. In addition to the 

possible influence of recombination on differences between X, Y and autosomes, 

raised in Chapter 2, in the absence of corrective data, these results provide a further 

reason to strongly caution against the use of Miyata et al.’s (1987) equations. Further 

they argue against the use of single genes or clustered genes in estimation of the 

impact of the number of germ-line divisions on the mutation rate in male and female 

germ-lines without adequate control for replication time effects. 
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4.1 Introduction 

 

Numerous studies, including those in Chapter 2, have now shown that neutral sites in 

mammals evolve faster in domains of high recombination (Pink et al., 2009, Lercher 

and Hurst, 2002, Tyekucheva et al., 2008, Hellmann et al., 2003, Perry and 

Ashworth, 1999). That the strength of the correlations reported tends to be weak 

likely reflects inexact measures of recombination rate, which have been shown to be 

fast evolving (Ptak et al., 2005, Dumont et al., 2011). Two possible explanations for 

this relationship have been proposed: First, it has been suggested that the 

recombination process is mutagenic (Magni and Von Borstel, 1962, Magni, 1963, 

Strathern et al., 1995). Alternatively, even if recombination is not mutagenic, biased 

gene conversion can promote the fixation of neutral mutations and can increase rates 

of evolution that are not at equilibrium (Piganeau et al., 2002). Due to biases in the 

mismatch repair process (Marais, 2003), the latter process tends to favour fixation of 

G/C over A/T and thus has also been suggested as a mechanism for the origin or 

maintenance of isochores (Meunier and Duret, 2004, Duret and Galtier, 2009 and 

references therein). 

 

Comparably, as shown in Chapter 3, rates of evolution have been shown to increase 

across S-phase (Pink and Hurst, 2010, Stamatoyannopoulos et al., 2009, Chen et al., 

2010), while GC rich sequences tend to be early replicating (Pink and Hurst, 2010, 
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Woodfine et al., 2004, Costantini and Bernardi, 2008). Given this, GC rich 

sequences might therefore be expected to evolve slowly. Indeed, the analyses in 

Chapters 2 and 3 showed this to be the case with negative relationships between GC 

content and intronic rates of evolution. Chapter 3 also demonstrated that the 

relationship between replication time and intronic rates of evolution was not owing 

to GC content, but that the lower intronic substitution rates of GC rich sequences 

could be explained by GC rich sequences being early replicating, and thus slow 

evolving. 

 

What has not yet been established is the extent to which these two variables, 

replication timing and recombination rate, are independent predictors of neutral rates 

of evolution. Given that a priori GC rich sequences tend to be a) early replicating 

and b) highly recombining, it might be expected that recombination rates are highest 

when replication is earliest in the cell cycle. Given that early replication is associated 

with low rates of evolution, whereas recombination is associated with higher 

substitution rates, the two factors might therefore cancel each other out. This raises 

the possibility that the magnitude of the impact of both replication time and of 

recombination rate on rates of evolution might have been underestimated when 

either factor is considered in isolation, even if the underlying effects are relatively 

strong, owing to masking effects. If so, this would necessitate a need to control one 

for the other. As this question was not addressed in Chapter 3, it is instead examined 

here, both at the genic level and also with regard to the enigmatic between-autosome 

variation in neutral rates (Pink et al., 2009, Lercher et al., 2001, Malcom et al., 

2003). 

 

An increasing body of evidence suggests that the effect of recombination on weak-

to-strong (A/T to G/C) substitutions correlates more strongly with rates in males than 

in females (Dreszer et al., 2007, Duret and Arndt, 2008, Tyekucheva et al., 2008, 

Webster et al., 2005, Berglund et al., 2009, Galtier et al., 2009). The reasons why 

this might be have not yet been elucidated, although a mechanistic difference in 

meiotic recombination has been suggested (Galtier et al., 2009). Given the potential 

importance of sex-specific recombination rates, this study considered not just sex-
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averaged recombination rates but repeated all analyses using both male- and female-

specific recombination rates. 

 

With the inclusion of sex-specific recombination rates, this analysis differed from 

that of Chen et al. (2010) who argued that the effect of replication timing on neutral 

evolutionary rates is not explained by recombination. This group, however, only 

examined sex-averaged rates. This analysis also differed from that of Clément and 

Arndt (2011) who noticed that GC content in rodents is well predicted by male-

specific recombination rates but not by female-specific ones and therefore chose to 

ignore further consideration of female recombination as a potentially important 

cause of GC content.  

 

The use of rodent replication time and recombination rate data is not straightforward. 

These data are typically not supplied as genic tracks from major repositories, but as 

supplementary or standalone files containing raw data values pertaining to SNP or 

array probe positions. As such, these data sets are often not updated to current 

assemblies of the genome and so assignment of position-based data to genes requires 

careful consideration. The analyses presented here utilise data sets curated under 

what might be considered improved methodologies, representing improvements over 

those used in previous chapters. As such, the scope of this chapter was expanded to 

test whether both prior and novel conclusions are robust to changes in methodology. 

 

4.2 Methods 

 

4.2.1 Estimating intronic substitution rates 

Using the same methodologies as applied in Chapters 2 and 3, a new autosomal 

intronic substitution rate data set was generated for these analyses. These methods 

are described in detail in sections 2.2.1 to 2.2.6, including the filter for clusters of 

conserved bases, potentially indicative of hidden functional sites, described in 

section 2.2.4. Introns of the same gene were concatenated, the rate of intronic 

divergence (Ki) estimated and corrected for multiple hits according to the model of 

Tamura and Kumar (2002). The autosomal distributions of these new data are shown 

in Figure 4.1.  
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Figure 4.1: Boxplot showing the distribution of genic substitution rates, measured at 
intronic sites (Ki), across each autosome. Note that one outlier for chromosome 10 
(Ki = 0.918) is not shown.  
 

4.2.2 Estimating GC content 

Mouse GC content was calculated directly from genomic sequences at intronic sites 

using both unmasked sequences and repeat masked sequences – the latter to control 

for the possible influence of AT rich transposable element insertions. Genomic 

sequence files for the mouse genome mm9 (NCBI build 37, July 2007) were 

obtained from the UCSC table browser located at http://genome.ucsc.edu/ (Karolchik 

et al., 2004). A second duplicate set of gene sequences were downloaded with repeat 

sequences masked to N. Dubious RefSeqs that either were present in more than one 

copy, were found to be located on random or multiple chromosomes, that were not 

located on a single strand, or that were intron-less were identified and removed from 

the analysis. Coding sequences that either did not begin and end with correct start 

and termination codons, that consisted of incomplete codons or that contained 

premature stop codons were identified and all intronic sequences for these RefSeqs 

were purged from the analysis. For both repeat masked and unmasked intronic 

sequences, 30 bp were removed from both ends of each intron to control for the 

possible influence of conserved splice sites (Touchon et al., 2004). First introns were 

also removed, these known to be unusually slow evolving (Keightley and Gaffney, 
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2003, Chamary and Hurst, 2004). Remaining intronic sequences were then 

concatenated by RefSeq. Counts of each base (A, T, C, G and N) were then made 

from which GC content (GC) was calculated as [(G + C) / (A + T + G + C)]. 

 

4.2.3 The rearrangement index 

The methodology used to calculate each autosome’s rearrangement index (RI) using 

the newly curated substitution rate data set was the same as that used in Chapters 2 

and 3, described in detail in section 2.2.11. However, in contrast to these analyses 

the number of bootstrap randomisations used for each autosome was increased to 

10,000. 

 

4.2.4 Assaying replication time 

Replication times in Mus musculus were determined by Hiratani et al. (2008). As 

described in Chapter 3, four replication timing data sets were available. Three were 

derived from separate embryonic stem cell lines (ECSs). Inclusion of a fourth data 

set derived from induced pluripotent stem cells (iPS) was justified in Chapter 3 (Pink 

and Hurst, 2010) and so was again included. These data sets were downloaded in 

files RD_TT2ESCave_Sm300_081128.txt, RD_iPSave_Sm300_081128.txt, 

RD_D3ESCave_Sm300_081128.txt and RD_46CESCave_Sm300_081128.txt from 

the ReplicationDomain website (Weddington et al., 2008). Array probe positions 

were converted from mouse build mm8 (NCBI build 36) to build mm9 (NCBI build 

37) using the stand alone UCSC liftOver tool and associated chain file 

mm8ToMm9.over.chain. This method was considered preferable to that used for the 

analyses in Chapter 3 as it allowed for possible cases whereby an individual 

marker’s position had been relocated from within a gene to inter-genic sequence or 

vice-versa. All probes located within the limits of the coding sequence of a RefSeq 

were then identified. Of the 21,471 RefSeqs, 14,881 were assigned sufficient 

replication times to be able to test for normality of distribution for the RefSeq. 

Kolmogorov-Smirnov tests showed that replication times of 5,126 RefSeqs (35.5% 

of those tested) were normally distributed while 9,755 (65.6% of those tested) had 

skewed distributions. Median replication times were therefore assigned to each 

RefSeq. It should be noted that use of mean replication times did not qualitatively 

alter the findings (see Supplementary Tables 4.1, 4.2 and 4.3). 
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4.2.5 Methods to estimate the local recombination rate 

In contrast to the analyses in Chapter 2 that utilised recombination rates in rat, here 

recombination rates in mouse were used. This enabled comparison of the relative 

contributions of recombination and replication time to rates of evolution in a single 

species. The genetic map used was originally determined by Shifman et al. (2006), 

derived from a large heterogeneous mouse population descended from eight inbred 

strains. Cox et al. (2009), having identified two methodological problems with the 

Shifman genetic map, subsequently updated this data set and incorporated SSLP 

markers from other genetic maps to generate a revised standard genetic map for the 

mouse. The map consists of 10,195 SNPS at an average density of 258 Kb (99% of 

SNP intervals <500 Kb, 81.2% <250 Kb) and is based on 3,546 meioses. This 

revised genetic map was therefore used for this analysis. The genetic map was 

downloaded from http://cgd.jax.org/mousemapconverter/Revised_HSmap_SNPs.csv 

- Mouse Map Data (Base Pair to centimorgan mapping). SNP positions had already 

been updated to the current mouse build mm9 (NCBI build 37). In addition to the 

SNP ID, the chromosome and physical base pair position of the SNP, this file 

contained three genetic maps: a male-specific map, a female-specific map and a sex-

averaged map. Assignment of recombination rates to RefSeqs was performed using a 

number of alternative methodologies: 

 

4.2.5.1 Chromosomal recombination rates are generally calculated from the most 

proximal and distant markers. Doing so captures all recombination events 

along the chromosome. Application of a similar methodology to individual 

RefSeqs involved identification of the two flanking SNPs. The physical and 

genetic positions of these markers could then be used to calculate the 

recombination rate of the intervening region in which the RefSeq was located 

(Figure 4.2). The median distance between the edge of a gene and the 

flanking marker was 155346.5 bp, indicating that this methodology estimated 

genic recombination rates over an approximate 300 Kb window. 

 

4.2.5.2 Human recombination rates, such as the deCODE, Marshfield and Genethon 

genetic maps, are available as additional tracks on the UCSC genome 



116 

browser. These are essentially weighted averages, whereby the 

recombination rate between immediately flanking markers is calculated and, 

assuming a linear genetic distance between markers, each base within the 

interval is assigned the recombination rate. 1Mb windows are then assigned 

recombination rates based on the average rate of the bases contained within 

the window. A similar method was therefore applied to genes, albeit without 

smoothing over 1Mb windows. RefSeqs were assigned mean recombination 

rates weighted by the base pair overlap of the marker interval with the gene 

(Figure 4.2). This was, in effect, the same as assigning each base pair within 

the gene a recombination rate and then taking a mean across all base pairs. A 

‘weighted median’ was also calculated by assigning each base pair within the 

gene a recombination rate and then taking a median across all base pairs, 

since the per-base pair recombination rates of over 1000 genes had skewed 

distributions. 

 

4.2.5.3 A method similar to that applied to the assignment of replication times to 

each RefSeq was also used. Here, for each chromosome the recombination 

rate between every neighbouring pair of SNPs was calculated. Each SNP 

interval that overlapped with a given RefSeq was identified and the average 

mean and median recombination rate of these intervals was taken (Figure 

4.2). Note that for genes that lacked internal SNPs, this resulted in the same 

genic recombination rate as for method 4.2.5.1.  
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Figure 4.2: Representation of the methods used to calculate gene-focused 
recombination rates (methods 4.2.5.1, 4.2.5.2 and 4.2.5.3). Note that this diagram is 
for descriptive purposes only and is not to scale. For simplicity, only calculations for 
mean rates are shown. The grey region is a gene. Vertical black lines represent four 
SNP markers with physical (Mb) and genetic (cM) positions. Blue arrows represent 
the base pairs of the gene overlapping with each intervening interval. In red are 
recombination rates (rx) between pairs of neighbouring markers. 
 

4.2.5.4 To reduce noise, smoothing techniques were also applied. Two methods of 

smoothing were used and in each case, both means and medians were used, 

thus giving four smoothed rates. Firstly, all markers within a 2Mb window of 

the flanking interval were identified (1Mb in each direction from the 5’ 

SNP). Recombination rates between each pair of markers were calculated, 

again assuming a linear genetic distance between markers. The average 

recombination rate of all these marker intervals was taken and assigned to the 

focal interval (denoted average-smoothed1 in the text). Secondly, in addition 

to the focal interval, these 2Mb averaged recombination rates were assigned 

to every interval within the 2Mb window. Once this process had been 

repeated using all intervals as a focal point for the 2Mb smoothing, the 

average of all smoothed rates assigned to a window was taken (denoted 

average-smoothed2 in the text). Finally, these four smoothed rates were 

assigned to genes using the same technique as described in method 4.2.5.3 

(Figure 4.3). 



118 

 
Figure 4.3: Representation of methods used to calculate smoothed recombination 
rates (method 4.2.5.4). Note that this diagram is for descriptive purposes only and is 
not to scale. For simplicity, only calculations for mean rates are shown. The grey 
region is a gene. Vertical black lines are SNP markers. In red are recombination rates 
between pairs of neighbouring markers (rx). Dashed blue lines represent 1Mb 
windows either side of a focal SNP. Solid blue arrows represent all intervals within 
this window, over which recombination rates are averaged (wx, smoothing method 
1). For three intervals, averages of all window averages covering the interval are 
shown (ix, smoothing method 2). 
 

These alternative methodologies were applied to both the sex-averaged, male-

specific and female-specific data. Every statistical analysis that included 

recombination rate as a parameter was repeated using every method described.  

 

4.2.6 Data set dimensions 

For the analyses presented here, the final data set was purged of all sex-linked 

RefSeqs. In addition, only RefSeqs that had been assigned data for all variables of 

interest - intronic substitution rates (Ki), GC content (GC), timing of replication 

(RT), and recombination rate (RR) - were retained, thus ensuring that the sample 
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size, and therefore statistical power, was comparable across all analyses. The 

resulting data set comprised 3,549 genes.  

 

For all genic data sets, Kolmogorov-Smirnov tests were applied, showing that data 

were skewed and could not be normalised. Similarly, Kolmogorov-Smirnov tests 

performed on data assigned to individual autosomes showed that all data types were 

also skewed. As such, for analyses of between-autosomal variation, the median 

autosomal value for each data type was taken. To these autosomal medians, the 

overall recombination rate between the most proximal and distal markers on the 

chromosome, plus the rearrangement indices were added. Finally, for each data type 

the distributions of the 19 autosomal values were found to be normally distributed, 

thus enabling the use of parametric tests for analyses at the autosomal level. 

 

4.2.7 Calculation of partial spearman correlations 

Partial Spearman’s correlations between x and y, controlling for z (ρxy.z), were 

calculated as previously described in Section 3.2 7.  

 

4.3 Results 

 

4.3.1 Repeat masked GCi used as an approximation of stationary GC 

Recombination has been shown to correlate more strongly with the stationary GC 

content (GC*) than with current GC content (Duret and Arndt, 2008, Duret and 

Galtier, 2009). Calculation of GC* is dependent on polarisation of substitutions 

based on the ancestral state, achieved by reference to an outgroup. At the conception 

of this work, no rodent assembly was considered to have high enough coverage to 

enable this to be done for mouse-rat substitutions and complete non-rodent 

assemblies such as human were considered too distant a relative to enable accurate 

assignment of the ancestral state. However, Clément and Arndt (2011) recently 

suggested that the use of human as an outgroup for mouse-rat substitutions generated 

similar results to those obtained using the current drafts of guinea pig (Cavia 

porcellus) or kangaroo rat (Dipodomys ordii). In light of these findings, calculation 

of GC* should be possible for future analyses.  
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That GC* typically differs from current GC content suggests that mammalian 

genomes are not yet at mutational equilibrium. One reason why this might be is the 

insertion of young transposable elements (TEs) that have atypical GC content. In an 

attempt to remove such sites and therefore provide a closer approximation to GC*, 

GC content was computed using repeat masked intronic sequences, whereby repeats 

with <40% divergence were masked to ‘N’. Repeat masked and unmasked GCi were 

found to strongly covary (Spearman’s ρ = 0.983, P < 2.2 x 10-16; n = 18775;).  

 

Based on the nucleotide composition and differential location of different classes of 

TEs (specifically L1 and Alu insertions), Duret and Hurst (2001) showed that in 

humans, insertion of TEs in AT rich introns would elevate GC content whereas in 

GC rich isochores, insertion of TEs would reduce the intronic GC content. 

Consistent with Duret and Hurst’s (2001) prediction, Figure 4.4 shows that in GC 

poor introns, unmasked sequences did indeed have a higher GC content than repeat 

masked sequences. Similarly, in GC rich introns, the repeat masked GCi was higher 

than that of the unmasked introns. This suggested that repeat masking removed some 

sites that were unlikely to be at mutational equilibrium.  

 
Figure 4.4: Covariance of unmasked and repeat-masked intronic GC content. The 
dashed line represents x = y. The solid line is the orthogonal regression where 
Repeat-masked GCi = -0.095 + 1.196949Unmasked GCi. 
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4.3.2 A sex-specific relationship between replication time and recombination 

rate at the genic level 

Initially, two sets of questions were asked: First, was it robustly found that 

replication time and the local recombination rate both correlate with the intronic 

substitution rate? Second, was it true that recombination and replication time 

covaried as expected? If the second were true then the former results would need to 

be analysed under a covariate controlled model. 

 

With regard to the first issue, the previously observed relationship between 

replication timing and rates of intronic evolution, shown in Chapter 3, was 

confirmed in the new data set (Spearman’s ρ = -0.081, P = 1.35 x 10-6). Note again 

that because of how the replication timing data was structured, an increase in any 

parameter as S-phase proceeds yields a negative correlation and vice versa. The 

relationship between recombination rates and intronic substitution rates was more 

complex, being sensitive to both gender and methodology. In general, all 

recombination rate data sets that involved an element of smoothing resulted in 

stronger correlations with Ki than the gene-focused data sets such as overall rates, 

weighted, base pair and interval averages (Table 4.1, pages 131-132). For smoothed 

rates, the magnitude of the relationship was similar to that observed for replication 

times (for mean-smoothed2 sex-averaged recombination rates Spearman’s ρ = 0.1, P 

= 2.39 x 10-9) whereas for unsmoothed rates, the strength of the relationship was 

approximately half that for replication times (for overall sex-averaged recombination 

rates Spearman’s ρ = 0.045, P = 0.0073).  

 

Interestingly, the relationship between substitution rates and recombination appeared 

to be driven by recombination in females: all female-specific recombination rates 

showing significant positive correlations with Ki, whereas for male-specific 

recombination rates, correlation coefficients for smoothed data sets were 

approximately half the magnitude of those for females and for gene-focused data sets 

no significant relationships were observed (Table 4.1). This was surprising, as weak-

to-strong substitutions associated with GC biased gene conversion (gBGC) in 

primates have been found to covary more strongly with male-specific recombination 



122 

rates (Webster et al., 2005, Dreszer et al., 2007, Tyekucheva et al., 2008, Berglund 

et al., 2009, Duret and Arndt, 2008, Galtier et al., 2009). 

 

As to the second question of whether timing of replication and recombination rates 

covaried, unexpectedly no consistent relationship was observed for sex-averaged 

recombination rates, with both increasing and declining rates associated with 

sequences that replicate later during S-phase (Table 4.1). Closer examination 

suggested that this result reflected differences between males and females (Figure 

4.5). Female recombination rates were consistently found to be higher in regions that 

replicate later during S-phase, irrespective of smoothing (for overall female 

recombination rates Spearman’s ρ = -0.076, P = 6.34 x 10-6, Table 4.1). In contrast, 

genes that replicated later were found to have significantly lower male-specific 

recombination rates for some methodologies (e.g. for mean-smoothed2 male 

recombination rates Spearman’s ρ = 0.138, P = 1.21 x 10-16, Table 4.1) whereas for 

other measures no relationship was observed (e.g. for overall male recombination 

rates Spearman’s ρ = 0.025, P = 0.135, Table 4.1).  

 

 
Figure 4.5: Relationship between replication time and sex-averaged, male-specific 
and female-specific recombination rates. Data shown are mean-smoothed2 data 
binned by median replication time where points are the median of each bin ± 95% 
confidence intervals. 
 

4.3.3 Weak interference between replication timing and sex-specific 

recombination rates in determining intronic substitution rates 

Given this result, it was therefore necessary to ask whether the high substitution rate 

of late replicating sequence was due to it having high recombination rates in females 

and vice versa. Similarly, it was necessary to ask wither the impact of male 
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recombination on rates of evolution have been underestimated as male-specific 

recombination rates were low where the effect of replication was strongest.  

 

Indeed, controlling for female recombination was found to reduce the strength of the 

relationship between Ki and replication time. This was the case for all female-

specific data sets (for the uncontrolled analysis Spearman’s ρ = -0.081, P = 1.35 x 

10-6; controlling for overall female recombination partial Spearman’s ρ = -0.078, P = 

0.001, Table 4.1), although the effect appeared quite modest. Similarly, controlling 

for replication time reduced the strength of the relationship between intronic 

substitution rate and all measures of female-specific recombination rate (for the 

uncontrolled relationship between Ki and overall female recombination, Spearman’s 

ρ = 0.044, P = 0.0090; controlling for replication time partial Spearman’s ρ = 0.038, 

P = 0.013, Table 4.1). 

 

In contrast, the higher male-specific recombination rates of early replicating 

sequences might have masked the impact of replication time on rates of evolution 

and vice versa. When controlling for male recombination the magnitude of the 

relationship between Ki and replication time might therefore have been expected to 

increase. Controlling for gene-focused measures of male recombination did not 

affect the covariance between replication time and Ki (for the uncontrolled analysis 

Spearman’s ρ = -0.081, P = 1.35 x 10-6; controlling for overall male recombination 

partial Spearman’s ρ = -0.081, P = 0.001, Table 4.1). However, a slight increase in 

the strength of this relationship was indeed observed when controlling for smoothed 

measures of male recombination and was greatest for those that had shown the 

strongest positive covariance between recombination rate and replication time 

(controlling for mean-smoothed2 male recombination rates, partial Spearman’s ρ = -

0.09, p = 0.001, Table 4.1). Likewise, the lack of any relationship between Ki and all 

gene-focused measures of male-specific recombination was not affected by controls 

for replication time (P remained >0.05 for all, Table 4.1). However, a slight increase 

in the strength of the relationship between Ki and all smoothed measures of male 

recombination was observed (for the uncontrolled relationship between Ki and mean-

smoothed2 male recombination, Spearman’s ρ = 0.058, P = 0.0005; controlling for 

replication time, partial Spearman’s ρ = 0.07, P = 0.001, Table 4.1). 
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Together, these results suggested that in estimating the impact of either timing of 

replication or recombination on the rate of neutral substitutions it is thus helpful, at 

the genic level, to perform a covariate controlled analysis. However, as the 

correction is small, this isn’t essential.  

 

4.3.4 Autosomal rates of evolution were better predicted by replication time 

than by recombination rate 

The above analyses considered relationships at the genic level, but what about 

variation at the autosomal level? As discussed in Chapter 2, for as yet unidentified 

reasons, more highly rearranged mouse autosomes have been found to have higher 

substitution rates (for the new data set Pearson’s r = 0.761, P = 0.0002; least squares 

linear regression r2 = 0.579, P = 0.0002). As such, the extent of inter-autosomal 

rearrangement should be considered alongside any other parameters under 

investigation as predictors of between-autosomal variation in Ki. To account for this 

a residuals test was therefore used whereby the residuals from the above regression 

were predicted by variation in the parameter of interest. 

 

In Chapter 3 it was shown that although replication time alone was unable to explain 

between-autosomal variation in rates of evolution, it was a significant predictor of 

this residual variation. These findings were confirmed in the new data set: Although 

autosomal substitution rates did not covary with autosomal replication times 

(Pearson’s r = -0.272, P = 0.26), residual variation in median Ki not explained by the 

rearrangement index could be predicted by differences in median timing of 

replication (r2 = 0.237, P = 0.034), whereby earlier replicating autosomes had lower 

substitution rates than predicted by the rearrangement index and later replicating 

autosomes evolved faster than would be predicted by extent of rearrangement. When 

combined in a multiple least squares linear regression, rearrangement index and 

replication time could together explain around 68% of inter-autosomal variation in Ki 

(r2 = 0.679, P = 0.0001) and both parameters were significant predictors in this 

model (P = 4.89 x 10-5 for rearrangement index; P = 0.04 for replication time). 
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When autosomal recombination rates were subjected to a similar analysis, they too 

were found not to covary with autosomal rates of intronic evolution (for overall sex-

averaged recombination rates Pearson’s r = -0.182, P = 0.457, Supplementary Table 

4.2). However, application of the same residuals test showed that unlike replication 

time, residual variation from the regression of Ki against rearrangement index could 

not be accounted for by autosomal recombination rates (for overall sex-averaged 

recombination rates r2 = 0.018, P = 0.581, Supplementary Table 4.3). Further, the 

predictive power of the model to explain autosomal rates of evolution by the 

rearrangement index was only marginally increased by the inclusion of 

recombination rates (r2 = 0.584, P = 0.00090) and recombination rate was not a 

significant predictor in the model (P = 0.00047 for rearrangement index; P = 0.673 

for recombination rate). These findings were all robust to the use of alternative 

methods of assigning autosomal recombination rates and to the use of either male- or 

female-specific recombination rates (Supplementary Table 4.3).  

 

That replication timing was a somewhat stronger covariate of Ki than recombination 

rate, particularly at the autosomal level, might in part have been explained by the 

impact of extensive genomic rearrangements in the mouse lineage (Ramsdell et al., 

2008). As homologous regions have highly conserved replication times, this suggests 

that as sequences move around the genome, they tend to take their replication times 

with them (Chen et al., 2010, Farkash-Amar et al., 2008, Yaffe et al., 2010). In 

contrast, the relocation of rodent centromeres from a metacentric to a telocentric 

location has reduced the number of chromosome arms and, based on the requirement 

for at least one chiasma per arm, reduced the overall recombination rate of each 

autosome (Jensen-Seaman et al., 2004). Further, recombination hotspots are known 

to be short lived (Ptak et al., 2005, Dumont et al., 2011). As such, while substitution 

rates and GC content are the product of processes occurring over long periods of 

time, the current replication time of a given sequences is more likely to reflect that to 

which it has been exposed to ancestrally than is the case for current recombination 

rates. 
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4.3.5 GC content is better predicted by replication timing than by 

recombination rates. 

Current thinking suggests that the isochore structure of mammalian genomes is the 

result of recombination-associated biased gene conversion and that this process has a 

more profound effect in the male than in the female germline. However, early 

replicating sequences are known to be GC rich. Indeed, more generally, a 

relationship between isochore boundaries and replication time boundaries is well 

described both on local and genomic scales (Woodfine et al., 2004, Costantini and 

Bernardi, 2008, Watanabe et al., 2002, Schmegner et al., 2005, Schmegner et al., 

2007). Was then the local GC content better predicted by replication timing than by 

recombination rate and did this help to explain why male recombination, rather than 

female recombination appeared to be relevant?  

 

It was striking that although the strength of the relationship between genic GC 

content and replication time was lower than previously observed (Spearman’s ρ = 

0.293, P = 5.34 x 10-71 versus Spearman’s ρ = 0.315, Chapter 3), early replicating 

sequences being more GC rich, timing of replication was a stronger correlate of GC 

content than were all measures of recombination rate (Spearman’s ρ = 0.067, P = 

6.44 x 10-5 for overall sex-averaged recombination, Table 4.1). Although the 

direction of the genic relationship was robust with highly recombining genes 

consistently having higher GC contents, the strength of the relationship was sensitive 

to gender: male-specific recombination rates being a stronger covariate of GC 

content than female-specific rates (Table 4.1). Methodology was also an important 

factor in determining the nature of the relationship. Gene-focused data sets were 

generally qualitatively similar. In contrast, the method of smoothing generated 

contrasting results: Use of medians to smooth both male and female recombination 

rates negated the significance of the relationship whilst for both genders the 

strongest correlate of GC content was mean-smoothed2 recombination rates (Table 

4.1).  

 

At the autosomal level, the contrast between replication timing and recombination 

rate as predictors was even more pronounced, with higher autosomal GC content 

correlating strongly with earlier autosomal replication (Pearson’s r = 0.832, P = 9.83 
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x 10-6) but showing no covariance with autosomal recombination rates (Pearson’s r = 

0.376, P = 0.112 for overall sex-averaged recombination, Supplementary Table 4.2). 

 

In part, the relative weakness of recombination as a predictor may simply have 

reflected less noise in the estimation of replication time, which has been shown to be 

conserved between species (Farkash-Amar et al., 2008, Chen et al., 2010), than in 

the effective ancestral recombination rate, recombination hotspots known to be fast 

evolving between even closely related species (Ptak et al., 2005, Dumont et al., 

2011). Nonetheless, the above results suggested that the current focus on 

recombination associated biased gene conversion as the driver of isochores in 

mammals may be missing an important contribution from replication timing. 

 

4.3.6 The effect of female recombination on GC has been underestimated owing 

to interference from replication timing. 

The fact that highly recombining domains are GC rich has been taken as evidence 

that GC rich isochores are structured through gBGC (see Duret and Galtier, 2009 

and references therein). Further, it has been suggested that this is a male-driven 

effect, with GC* covarying more strongly with male than with female recombination 

rates (Duret and Arndt, 2008, Berglund et al., 2009, Dreszer et al., 2007, 

Tyekucheva et al., 2008, Webster et al., 2005, Galtier et al., 2009). Indeed, recently 

Clément and Arndt (2011) noticed that GC content in rodents was well predicted by 

male-specific recombination rates but not by female-specific ones. They therefore 

chose to ignore further consideration of female recombination as a potentially 

important cause of GC content. The findings presented here raised an interesting 

possibility: that the gender-specific nature of the impact of gBGC might have been 

due to the differing relationships between recombination and replication timing in 

each sex. If it was supposed that some force promotes AT content in late replicating 

sequence, then if female recombination promotes AT->GC substitutions through 

biased gene conversion, this unknown force would oppose it. As a consequence, 

female recombination would leave a diminished footprint of GC->AT biased 

substitutions than that seen in male meiotic hotspots. 
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As expected by this model, significant relationships between GC content and female 

recombination were considerably increased when replication time was controlled for 

(for the uncontrolled analysis between GC and overall female recombination 

Spearman’s ρ = 0.038, P = 0.025; controlling for replication time partial Spearman’s 

ρ = 0.063, P = 0.001, Table 4.1). Indeed, the strength of the correlation, assayed 

using ρ2, between GC content and female recombination rates was more than 

doubled, from 0.00144 to 0.00397, when controlling for replication timing (Table 

4.1). By contrast, there was no perceptible change in the relationship between GC 

and replication time when controlling for any measure of female recombination (for 

the uncontrolled analysis Spearman’s ρ = 0.293, P = 5.34 x 10-71; controlling for 

overall female recombination partial Spearman’s ρ = 0.296, P = 0.001, Table 4.1). 

 

For the influence of male recombination, if anything the covariate uncontrolled 

analysis would have been expected to over estimate as both early replication timing 

and higher recombination rates were associated with higher GC content. This was 

indeed what was observed and again the effect was greatest when the relationship 

between early replication time and high male recombination rate was strongest: For 

the uncontrolled analysis between GC and replication time, Spearman’s ρ = 0.293, P 

= 5.34 x 10-71; controlling for overall male recombination, partial Spearman’s ρ = 

0.292, P = 0.001; controlling for mean-smoothed2 male recombination, partial 

Spearman’s ρ = 0.278, P = 0.001 (Table 4.1). Similarly, for the uncontrolled analysis 

between GC and overall male recombination, Spearman’s ρ = 0.078, P = 3.33 x 10-6; 

controlling for replication time, partial Spearman’s ρ = 0.074, P = 0.001 and 

likewise for the uncontrolled analysis between GC and mean-smoothed2 male 

recombination, Spearman’s ρ = 0.144, P = 6.96 x 10-18; controlling for replication 

time, partial Spearman’s ρ = 0.109, P = 0.001 (Table 4.1). These effects appear to 

have been relatively modest corrections, suggesting that the correlation between 

male recombination rates and local GC content was not grossly misleading. 

 

4.3.7 Why might methodology have influenced the findings? 

As the previous analyses showed, using the alternatively curated recombination rate 

data sets often gave quantitatively different results. In particular, findings obtained 

from the smoothed versus the gene-focused data sets often qualitatively differed. In 
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such cases, was one result ‘better’ than the other and if so, why? In order to answer 

this question it was necessary to determine both how and why the data sets differed 

from each other and what these differences suggested about the underlying 

biological processes.  

 

Despite the use of a number of alternative curation methods, results from the gene-

focused data sets did not qualitatively differ from each other (Table 4.1, and 

Supplementary Tables 4.1 to 4.3). As shown in Figure 4.6 (page 133), this would 

have been expected given that these methodologies all generated similar, if not the 

same, recombination rate for each gene. This would imply either that there was little 

variation in recombination rates at the genic scale or that the marker density was 

insufficient to detect fine-scale variation in recombination rates. Consistent with the 

latter explanation, 83% of genes in the final data set did not contain a SNP marker 

and therefore all gene-focused recombination rates, whether overall or averaged, 

would have been based on the single recombination rate between the two flanking 

markers.  

 

In contrast, the two mean-smoothed data sets frequently gave stronger and more 

highly significant results than did the two median-smoothed data sets. For many of 

the 2Mb windows across which the smoothing was applied, the distribution of 

recombination rates was skewed and so statistically, the median would have been the 

more appropriate measure of centrality to take. However, as Figure 4.7 (page 134) 

shows, by taking the median recombination rate across each window, as opposed to 

the mean, genic recombination rates were mostly reduced to zero. By doing so, these 

data sets implied either that virtually no genes undergo any recombination events or 

that recombination is a function of a much broader region than genic rates were 

sampled over. As recombination is known to operate at fine scales (Myers et al., 

2006), use of medians therefore failed to capture the recombinational profile of the 

genome. This would explain why comparisons of other factors to these two median-

smoothed data sets often failed to retrieve significant relationships. Overall, these 

results suggest that scale might have been more important than methodology. 
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Returning then to the original question, what did the different results from the gene-

focused and smoothed data sets reveal about the underlying biological processes? 

From Figures 4.6 and 4.7 it is clear that the raw recombination rate data was 

extremely noisy. Assignment of gene-focused recombination rates therefore reflected 

this level of noise. Further, the measures of recombination used here were derived 

from only 4 generations (Shifman et al., 2006) but recombination hotspots have been 

shown to evolve rapidly between closely related species (Ptak et al., 2005) or even 

within species (Dumont et al., 2011) and homologous blocks in murids show no 

correlation in recombination rates (Jensen-Seaman et al., 2004). As such, while a 

gene may currently be located in a recombination hotspot, it is unlikely to have been 

exposed to this recombination rate since speciation. It was therefore unlikely that this 

noise, reflected in the gene-focused data sets, reflected the ancestral recombination 

rate of a gene. Given that when a hotspot goes extinct, a new one tends to appear 

nearby (Myers et al., 2005) mean-smoothed recombination rates might therefore 

have better captured the recombinational history of a given sequence. 

 
Both Ki and GC content are the product of molecular processes occurring at a given 

site over longer periods of time than the life of a recombination hotspot. Figure 4.8 

(page 135) shows that these rates were more consistent along a given chromosome. 

It was therefore unsurprising that for both genomic features mean-smoothed 

recombination rates were a stronger covariate than gene-focused recombination 

rates. Whilst any relationship between timing of replication and recombination was 

likely to be mechanistic in origin and as such might lead to an expectation of a 

stronger covariance with gene-focused than smoothed recombination rates, it was 

clear from Figure 4.8 that replication occurs across distinct Mb sized domains. 

Again, it was therefore unsurprising that the smoothed recombination rates had 

stronger relationships with genic replication times than did the gene-focused rates. 
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4.4 Discussion 

 

This chapter was motivated by the hypothesis that, based on previously reported 

relationships with GC content, early replicating sequences would also be highly 

recombining. As rates of evolution have been found to be lower where replication is 

early, but elevated where recombination is higher, it was therefore asked whether the 

two processes mask each other’s impact on neutral substitution rates. What was 

discovered was that while the use of sex-averaged recombination rates failed to 

support the initial assumption - that replication time and recombination rate covary - 

this masked a more important gender-specific complexity that has implications for 

our understanding of the causes of variation in substitution rate and GC content. 

 

Recent attempts to explain mammalian isochore structure have focused on the role of 

recombination via the mechanism of GC-biased gene conversion. Evidence for this 

comes from observations that recombination rate corresponds more strongly to GC* 

than to current GC, suggesting that recombination is driving GC content (Duret and 

Arndt, 2008, Meunier and Duret, 2004). In contrast, it is not clear whether GC 

content determines replication time or vice versa and there is evidence for both 

possibilities (eg. see Chen et al., 2010, Hiratani et al., 2008). However, the findings 

presented here suggest that replication time appeared to be as, if not more, important 

than recombination in relation to GC content. 

 

The idea that the influence of replication time and recombination on GC content may 

be in opposition is not new. Chen et al. (2010) recently reported a greater increase in 

C:G to A:T substitutions compared to other substitution types as a function of time 

of replication through S-phase, possibly indicative of a decline in mis-match repair 

fidelity as replication proceeds. Although these authors noted that the impact of 

replication timing might therefore counteract the increase in GC arising from gBGC, 

their use of sex-averaged recombination rates failed to identify that this process is 

particular to females. The use here of sex-specific data sheds new light on previous 

observations that gBGC appears to be a male driven phenomena, the impact of 

female-specific gBGC being countered by later replication forcing higher AT 

content. This is important as the stronger covariance of GC* with cross-over rates in 
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males than in females has been taken as evidence against a selectionist explanation 

for isochore evolution (Duret and Galtier, 2009, Duret and Arndt, 2008). Prior 

explanations for the origin and maintenance of isochores might therefore warrant re-

evaluation with necessary controls for replication timing.  

 

As was shown in Chapter 2 for rat, here a significant increase in intronic rates of 

evolution where mouse recombination rates are higher was demonstrated. In 

agreement with estimates in primates (Chen et al., 2010), in rodents this was, at 

most, of about the same magnitude as for replication time, if not weaker. Although it 

was found that the magnitude of this relationship was overestimated in females and 

underestimated in males, the corrections were only modest. It was interesting to note 

that contrary to expectations from primates (Dreszer et al., 2007, Berglund et al., 

2009, Webster et al., 2005, Tyekucheva et al., 2008, Duret and Arndt, 2008, Galtier 

et al., 2009), the overall relationship between Ki and crossover rates appeared to be 

driven by recombination in females. This would suggest that the previous model of a 

male recombination-associated substitution effect to account for elevated and 

heterogeneous autosomal substitution rates proposed in Chapter 2 might require 

updating to include an additional or replacement female-specific recombination 

parameter. Note, however, that allowance for differing male and female 

recombination effects would not have been possible under the novel implemented in 

Chapter 2 as there was insufficient information to solve for α, rm and rf.  

 
These results suggest that in order to fully understand the relationship between 

recombination rate and both GC content and substitution rates, it is first necessary to 

understand how they relate to replication time. Understanding why the relationships 

differ with respect to gender may be key to this understanding. One possibility may 

be sexual dimorphism with respect to replication timing. The data used here was 

derived from male ESC lines but whether these might differ from timings in females 

is not yet known. As highly expressed genes tend to replicate earlier in S-phase, one 

might suppose that differences in germline expression might give rise to such sex-

specificity in replication time and that this in turn may explain these findings. The 

possible antagonism between germline expression and recombination (Necsulea et 

al., 2009, McVicker and Green, 2010) suggests the possibility of a unified model in 
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which differences in germline expression underpin both differences in replication 

timing and recombination. 

 

All the above results and discussion must by necessity come with the sizeable caveat 

that the correlations described do not necessarily imply causation. For example, the 

correlation between GC content and recombination rate might be because a) 

recombination alters GC content (e.g. via gBGC Duret and Galtier, 2009) b) 

recombination is more common in GC rich domains (Marsolier-Kergoat and 

Yeramian, 2009) or c) GC content and recombination covary through a third hidden 

parameter (possibly gene expression). Indeed, recent attempts to explain mammalian 

isochore structure have focused on the role of recombination via the mechanism of 

GC-biased gene conversion (Duret and Galtier, 2009). Evidence for this comes, in 

part, from observations that recombination rate corresponds more strongly to GC* 

(predicted equilibrium GC content) than to current GC, suggesting that 

recombination is driving GC content (Meunier and Duret, 2004, Duret and Arndt, 

2008). Experimental evidence (Brown and Jiricny, 1988) that gene conversion, at 

least in somatic cells, is biased in favour of GC residues over AT ones lends great 

credence to the model. Further, although GC content and timing of replication were 

strongly correlated, it is not yet known which is causative of this relationship, nor 

why, though as previously stated, there is evidence for both possibilities (Chen et al., 

2010, Hiratani et al., 2008). More generally, the strong coupling between isochores 

and replication timing domains (Watanabe et al., 2002, Schmegner et al., 2005, 

Schmegner et al., 2007, Woodfine et al., 2004, Costantini and Bernardi, 2008) 

remains both enigmatic and relatively under-explored.  

 

If replication timing is important and causative of isochores then in principle this 

could be resolved via experimental assays. For example, one hypothesis to explain 

the high substitution rate in late replicating sequence is that it is caused by error 

prone translesion synthesis (Lang and Murray, 2011). If translesion synthesis in 

mammals is biased towards the incorporation of A and T, thereby making late 

replicating sequence more AT rich, this could then, in principle, explain isochore 

evolution. This prediction could be examined in mammalian cell lines. Any model 

suggesting that replication timing causes isochores would also predict that GC rich 
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sequence, forced by deletion of early and strong replication origins to become late 

replicating, should start to accumulate A and T. 

 

To conclude, these findings demonstrate the importance of using sex-specific data 

when investigating drivers of genome evolution such as substitution rates or GC 

content. As both isochore structure and the process of gBGC is weaker in rodents 

than primates (Clément and Arndt, 2011), it is recommended that the question of 

whether replication timing is indeed masking a hitherto unidentified relationship 

between gBGC and female recombination is subsequently explored in primates. 
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Chapter 5. Discussion 

 

This thesis has presented evidence that the number of DNA replications is not the 

sole determinant of mutation rate variability across rodent genomes. In particular, it 

was shown that, contrary to the predictions of the theory of male driven evolution, 

the Y chromosome was not the fastest evolving chromosomal type. Novel models 

that incorporated an additional recombination parameter were proposed to account 

for the elevated autosomal rate of evolution. In violation of the assumption that 

replication-associated errors occur randomly across the genome, mutation rates were 

shown to be elevated in genes that replicate later during S-phase. A previously 

unidentified sex-specific covariance between replication timing and recombination 

rate was shown that resulted in a moderate underestimation of the relationship 

between recombination rate and divergence in males and a slight overestimation of 

this relationship in females. Similarly, it was shown that although recombination and 

early replication both act in the same direction with respect to GC content in males, 

the opposite is true in females. In the latter, later replication possibly acts to increase 

AT content, but the high recombination rates experienced by the same sequences 

counters this increase by elevating GC content. Finally, significant inter-autosomal 

variability in rodent divergence was confirmed, with highly rearranged autosomes 

tending to evolve faster. Although replication timing was able to explain some of the 

autosomal variation in rates, it could not account for why the late replicating Y-

chromosome did not evolve faster.  

 

The unexpectedly slow evolving Y-chromosome was an interesting finding, but one 

that requires confirmation both in other types of sequence and in different groups. If 

true, then explanations for this low rate of evolution are required. This thesis 

proposed that Y-linked sequence is not exposed to the recombination-associated 

substitutions, which autosomal and X-linked sequences accumulate. Alternatively, it 

might be expected that selection would favour enhanced repair in the male germline 

to deal with the higher mutational input. There is some evidence that proteins 

involved in the repair of double strand breaks localise to the XY body (Handel, 

2004) and that in the zygote homologous recombination is more active in the 

paternal pronucleus (Derijck et al., 2008). However, whether these directly repair 
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replication errors incurred during maintenance of spermatogonia is not known. 

Further research into the specific nature and efficiency of repair in each germ-line 

would be extremely informative. Secondly, why the impact of later replication on 

divergence does not appear to extend to Y-linked sequence is unclear. Finally, a 

rapidly evolving Y chromosome is generally considered evidence of a higher 

mutational input from older fathers. If this is not the case then the prevailing theory, 

which has public health implications, needs revising. 

 

The novel models proposed in this thesis require further investigation and the 

Drosophilids represent an ideal group in which to do this. As flies have a short 

generation time, the expectation under Miyata et al.’s (1987) original model would 

be that neutral sequence on all types of chromosome should evolve at the same rate, 

giving α = 1 (Bauer and Aquadro, 1997). This should make it relatively simple to 

identify the impact of recombination on chromosomal substitution rates. As male 

Drosophila are achiasmate, the first novel model (Equations 10 and 11, Section 

2.3.5) that incorporates a general recombination-associated substitution effect would 

not differ from a model that incorporated only a female-specific recombination 

parameter. Under this model, the X-chromosome would be exposed to 

recombination-associated substitutions two thirds of the time, compared to the 

autosomes that would only be exposed to this effect half of the time. The non-

recombining Y chromosome would therefore evolve slowest. In contrast, if only 

male recombination is important, then the second novel model (Equation 14, Section 

2.3.5) would not differ from Miyata et al.’s (1987) model (Equation 2, Section 2.1), 

since the recombination effect would be equal to zero. Here then, the different 

chromosomal types should evolve at the same rate, as none would receive a 

recombination-associated boost to the substitution rate. An additional advantage of 

this work would be the opportunity to re-examine a report suggesting that despite the 

short generation time of flies, α = 2 (Bachtrog, 2008). There are concerns over the 

methodologies employed in this study that failed to control for ancestral 

polymorphisms, hence the desire to repeat the work using a more accurate approach. 

Whilst care must also be taken to avoid sites potentially under selection, thus 

restricting the analysis to exon cores (Warnecke and Hurst, 2007, Warnecke et al., 

2008) and short introns (Halligan and Keightley, 2006, Parsch et al., 2010), the 
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availability of replication timing data (see Appendix 1) would enable substitutions 

arising from this (Weber et al., 2012) to be controlled for. 

 

Aside from the issue of the slow evolving Y-chromosome, this thesis showed that 

Miyata et al.’s (1987) model could not be used to estimate the extent of male bias in 

the mutation rate. One possible explanation for this is that the model may have been 

incorrectly applied. Although Miyata et al.’s (1987) model assumed that the 

mutation rate was accurately measured, this might not have been the case. It is now 

well established that synonymous sites do not evolve neutrally, owing to the need to 

specify mRNA secondary structure (Chamary and Hurst, 2005, Stoletzki, 2008), 

preserve splice enhancer or suppressor sites (Parmley et al., 2006), ensure accurate 

translation (Parmley and Huynen, 2009, Zhou et al., 2009) or possibly owing to use 

of preferred codons (Chamary and Hurst, 2004, Waldman et al., 2011). However, for 

this to explain the discrepancy from the expected results using the exonic data set, 

synonymous sites on the Y chromosome would have to be under stronger or more 

efficient purifying selection than those on the autosomes. One possible difference is 

that new mutations on an autosome are less likely to be phenotypically exposed than 

those on the haploid Y chromosome. By contrast, as it has a low effective population 

size, weakly deleterious mutations should be fixed on the Y chromosome at a higher 

rate, all else being equal. Further, purifying selection on synonymous sites does not 

explain why the same result was retrieved from the intronic data set, especially as 

filters were applied to remove any sites potentially under selective constraints. 

Despite this, it is possible that some introns containing functional sequence might 

have escaped these filters so that substitution rates were derived from sites that were 

not evolving neutrally. It is also important to consider that if gBGC does indeed 

impact on substitution rates, then there are potentially no sites not subject to 

selection or fixation biases in the genome. This would prevent the use of molecular 

divergence as an accurate measurement of the mutation rate. 

 

A further issue relating to the application of Miyata et al.’s (1987) model is that, due 

to concerns over the ability to accurately assign CpG dinucleotides from pairwise 

alignments (Gaffney and Keightley, 2008) the analyses presented in this thesis were 

based on all sites rather than evaluating substitution rates at CpG and non-CpG sites 
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separately. Mutations at CpGs occur independently of replication and as such, are 

not expected to demonstrate a male effect. Indeed, Taylor et al. (2006) provide 

evidence consistent with this in primates with αXAutosome ~ 6 at non-CpG sites reduced 

to αXAutosome ~ 2 at CpG sites, although assignment of CpGs was subject to the same 

estimation error using pairwise alignments described by Gaffney and Keightley 

(2008). The inclusion of CpG sites in the analyses presented in this thesis might 

account for some of the discrepancy in estimates of α: α estimated from each of the 

three pairwise comparisons appeared also to be discrepant in the human-chimpanzee 

comparison when all sites were used, but removal of CpG sites resulted in some 

degree of convergence (Taylor et al., 2006, supplementary information). Note, 

however, that the implications of these results for the accuracy of Miyata et al.’s 

model were not recognised and so significance of the effect was not tested.  

 

It is perhaps also worth noting here that the negative relationship between Ki and GCi 

identified in this thesis adds to the debate about the nature of the relationship 

between GC content and divergence. Previous observations of a positive relationship 

have generally been derived from exonic four-fold degenerate sites (Hurst and 

Williams, 2000). There are at least two reasons to suppose that the data from introns 

might be more reliable. First, third sites are potentially under selective constraints, as 

discussed (but see Duret and Hurst, 2001). Second, and possibly more importantly, 

owing to the structure of the genetic code, three quarters of 4-fold degenerate codons 

have a C or G at the second site (G or C at second site: TCN, CGN, GCN, GGN, 

ACN, CCN; A or T at second site: GTN, CTN). Consequently the third site 

dinucleotide context of four-fold degenerate codons is far from random, causing 

possibly higher rates of CpG mutation when third site GC content is high. Whether 

the relationship between Ki and GCi is indeed linear, as assumed here, or follows a 

curved distribution, is left to future work. 

 

Even if correctly applied, Miyata et al.’s (1987) model is still likely to be flawed, 

assuming as it does one dominant source of new mutations. As explored throughout 

this thesis, a number of other determinants of substitution rates have been identified. 

In particular it was shown that intronic divergence could be explained by differences 

in replication timing across the rodent genome, providing strong evidence that 
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replication associated mutations do not occur randomly across the genome per 

replication event, as the model inherently assumes. Why early replicating sequence 

evolves slower than those which replicate later is not yet fully understood, although 

in yeast, there is compelling evidence for one hypothesis (Lang and Murray, 2011). 

Unrepaired lesions persisting from G1 phase impede progress of replicative 

polymerases, resulting in a de-coupling of leading and lagging strand synthesis and 

the formation of single stranded gaps. Early in S-phase, the largely non-mutagenic 

method of template switching is employed to fill in these gaps. However, in a ‘last 

ditch’ attempt to repair single stranded DNA late in S-phase, slow and error prone 

translesion polymerases are used. Consistent with this hypothesis, deletion of Rev1 

in yeast, a translesion polymerase not expressed until late S-phase (Waters and 

Walker, 2006), resulted in disruption of translesion synthesis and nearly a five-fold 

reduction in the mutation rate of fast evolving late replicating sequence (Lang and 

Murray, 2011). It would be valuable to know both whether the same is true in 

mammalian cells and also whether other repair systems show temporal changes 

across the cell cycle, with error prone mechanisms more active in late S and G2 

phase. Whatever the mechanism, the trend for late replication sequence to have high 

neutral substitution rates appears to be taxonomically common (Stamatoyannopoulos 

et al., 2009, Chen et al., 2010, Weber et al., 2012, Flynn et al., 2010, Lang and 

Murray, 2011). 

 

All studies appear to be in general agreement about the approximate magnitude of 

the difference between early and late replicating sequence. The 10.5% increase in 

rodent divergence as replication timing proceeds over S-phase is on a par with that 

recovered in rodents from a subsequent study (16%) (Chen et al., 2010). Why the 

difference in primates (22-28%) (Stamatoyannopoulos et al., 2009, Chen et al., 

2010) is a little greater is not clear. The difference in Drosophilids is in agreement 

with that seen in rodents (~10% increase in diversity, intronic divergence and dS). 

That the latter rises to ~30% when removing genes subject to strong codon usage 

bias (Weber et al., 2012) suggests that the lower estimates may well be effected by 

the influence of selection. Indeed, in genes with very strong codon bias, the 

difference diminishes to well under 10% and becomes non-significant (Weber et al., 

2012).  
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Alternatively Chen et al. (2010) suggest the low increase in rodent divergence may 

stem from substitution saturation as they find a 30% increase in mouse diversity in 

later S-phase. There may also be a statistical element to the discrepancy with 

Stamatoyannopoulos et al.’s (2009) study as this was based on four large bins (see 

Sémon et al., 2005). To date, none of the studies examining this issue in mammals 

have used coding sequence, so future work is required to determine if the effect is 

stronger at synonymous sites, as observed in Drosophila species, or whether the 

latter is owing to intronic sites in these species being subject to stronger purifying 

selection than core synonymous sites.  

 

That early replication has been associated with low rates of evolution and, to some 

extent, gene expression, might have further implications. It has been observed 

(Chuang and Li, 2004) that genes involved in essential processes tend to be located 

in genomic regions with low mutation rates, whereas those involved in extracellular 

processes tend to evolve faster at four-fold degenerate sites. This has been 

interpreted either as selection for gene location with respect to regional variations in 

the mutation rate or local adaptation of the mutation rate depending on whether new 

mutations might be deleterious or advantageous (Chuang and Li, 2004). However, 

the strength of selection acting on the local mutation rate or on a relocation event 

must be incredibly weak, as the mutation rate is extremely low and the absolute 

difference between hot and cold spots is relatively modest (see Hodgkinson and 

Eyre-Walker, 2011). Whether these gene categories tend to be early or late 

replicating and whether this might instead explain their rates of evolution would 

present an interesting avenue of future research. 

 

That late replicating domains tend to have high recombination rates in females but 

low recombination rates in males and the impact that this relationship has both on 

divergence and GC content is important, in particular as it provides a potential 

explanation as to why male, but not female recombination rates have previously been 

found to covary with clusters of substitutions associated with gBGC (e.g. Berglund 

et al., 2009, Dreszer et al., 2007). However, this work leaves unresolved the major 

question as to why this relationship differs between the two genders. As previously 
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discussed, differences in chromatin structure have been suggested as an underlying 

cause of gender differences in recombination (Petkov et al., 2007). Further, elevated 

rates of recombination have been observed in imprinted and randomly monoallelic 

genes compared to those with biallelic expression, suggestive of an adverse 

relationship between transcription and recombination (Necsulea et al., 2009). 

Similarly, chromatin structure and expression are strong, though not perfect, 

covariates of replication timing (see Farkash-Amar and Simon, 2009 and references 

therein).  

 

It is therefore possible to speculate that differences in expression and chromatin 

structure between the two germ-lines might explain the observations presented in 

this thesis. Consistent with this hypothesis, a recent report identified that in meiotic 

tissues, high gene expression was related to low rates of crossover. Further, the 

strength of this relationship appeared to be somewhat stronger in tissues derived 

from the female than the male germline (McVicker and Green, 2010). Future work 

exploring this issue would benefit from additional replication timing data determined 

both from males and from germline cells. However, it is likely to be complicated by 

difficulties in obtaining relevant expression data. This is a complex issue as most 

germline expression sets are derived from terminally differentiated germ cells and as 

such may contain transcripts from post-meiotic expression (Vibranovski et al., 

2010), be biased in favour of transcripts that have been stored in the cytoplasm 

(Schäfer et al., 1995), or contain transcripts not directly expressed by the gamete, but 

passed to it from nurse cells (Pepling and Spradling, 1998). 

 

Another unexplained observation presented in this thesis is that highly rearranged 

mouse autosomes tend to evolve faster at intronic sites. It is interesting to note that a 

similar trend has been observed in mitochondrial genomes (Xu et al., 2006, Shao et 

al., 2003). Why this might be is unknown and therefore requires further 

investigation. Although divergence in replication timing has been observed at fusion 

breakpoints (Yaffe et al., 2010), it is unlikely that this would explain the observed 

relationship. Fusions tend to occur between domains of similarly timed replication, 

these tending to physically interact in the nucleus. In the rare scenarios where early- 

and late-replicating domains fuse, early replication invades the late domain, thus 
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advancing the latter’s replication time and subsequently slowing its rate of evolution. 

However, it is interesting to note that rearrangements, perhaps unsurprisingly, tend 

to occur between closely interacting regions of the genome occupying the same 

nuclear compartment (e.g. Yaffe et al., 2010, Wijchers and de Laat, 2011). As more 

is learnt about the spatial distribution within the nucleus of both the genome and of 

factors such as repair machinery that associate with it, it will be interesting to see 

how this impacts on the evolution of other genomic features. For example, 

replication timing may be a proxy for nuclear location. 

 

With the benefit of hindsight, it is worth asking whether the analyses presented in 

this thesis could have been improved. For example, were rodents the best group to 

examine these issues in? The availability of additional mouse Y-linked sequence 

enabled a rigorous re-testing of Miyata’s model over that performed previously 

(Smith and Hurst, 1999). This, together with the opportunity to determine whether 

the relationship between replication timing and evolutionary rates extended beyond 

primates, would defend the choice of rodents. In contrast, lengthening of the 

chromosomal arms, in part due to relocation of the centromere from a metacentric to 

acrocentric position in rodents, has resulted in a reduced rate of meiotic 

recombination. This is thought to be responsible for a decline in isochore structure in 

rodents, the so-called ‘minor shift’ (Clément and Arndt, 2011, but see Duret et al., 

2006). Moreover, although gBGC has been shown to operate in rodents, its impact 

on GC content is weaker than in primates (Clément and Arndt, 2011). Therefore, 

rodents may not have been the ideal species in which to explore the interaction 

between replication timing and recombination rates with regard to GC content. 

Future work in species such as primates, which have a stronger isochore structure 

and more prominent gBGC, may find stronger effects. 
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Appendix 1. A Tale of Two Data Sets: Curation of 

Drosophila melanogaster Replication Times 
 

Unpublished. Data set used for analyses published as: 

 

Late replicating domains have higher divergence and diversity in Drosophila 

melanogaster. 

 

Claudia C. Weber, Catherine J. Pink, and Laurence D. Hurst 

 

Molecular Biology and Evolution (2012). 29(2), 873-882 

 

As described in Chapters 3 and 4, earlier replicating sequences have been shown to 

have lower substitution rates both in primates (Stamatoyannopoulos et al., 2009, 

Chen et al., 2010) and in rodents (Pink and Hurst, 2010), but the same had not yet 

been demonstrated in any non-mammalian metazoans. As flies show variation in 

replication timing (MacAlpine et al., 2004), they represented an ideal species in 

which to address this issue. The impact of replication timing on both synonymous 

and intronic divergence plus diversity was therefore analysed in Drosophilids 

(Weber et al., 2012). This analysis required curation of a data set of replication 

timing values for Drosophila melanogaster. The methods used to generate this data 

set are presented here and demonstrate the importance of careful handing of data 

obtained from publicly accessible repositories.  

 
Replication times in D.melanogaster were measured by Dirk Schübeler’s group at 

the Friedrich Miescher Institute for Biomedical Research using the same methods as 

David Gilbert’s group (e.g. see Gilbert, 2010) applied to mouse, which were 

described in Chapter 1. Again, this generated a data set of log2 ratios of early to late 

replicating fractions, where positive values were indicative of earlier replication and 

negative values indicate later replication. Array probes were located at 35 bp 

intervals along the genome (Schwaiger et al., 2009). Of the cell types for which 

replication timing data was measured, embryonic derived Kc cells were considered 

to be the closest cell type to the germline and were therefore chosen for the analysis. 
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Schwaiger et al. made their data available in two locations: The NCBI Gene 

Expression Omnibus (GEO), series GSE13328, data set GSE336362, file 

GSM336362_Kc_replication_timing.txt (hereafter called the GEO data set); and the 

Replication Domain database, file RD_KcRT_Schwaiger2009.txt (hereafter called 

the Replication Domain data set).  

 

Although putatively the same data set, it was immediately apparent that the two 

sources differed in the formatting of the data, notably the number and naming of 

columns and the number of rows. This prompted a more detailed examination of 

each data set, which revealed that whilst all 3,159,411 probes in the GEO data set 

were found to occur uniquely, of the 3,159,096 probes in the Replication Domain 

data set, 24,662 were found to be duplicates, whereby two or more array probes were 

found to have the same chromosome and start positions. Of these duplicates, 20,189 

probes had the same replication timing value, but 4,473 differed in their replication 

times. To determine why the two putatively identical data sets differed in this way, 

the authors of both sources were contacted.  

 

Both Dr Schwaiger, who deposited the original data on GEO, and Dr Hiratani of 

Replication Domain explained what the data in the columns of the two data sets 

represented. Further, Dr Hiratani kindly supplied copies of all emails pertaining to 

the publication of the data on the Replication Domain website. He was also able to 

account for the different sample sizes of each data set, explaining that he had 

removed 315 probes that did not have a chromosomal location, leaving 3,159,096 

rows. However, although Dr Schwaiger advised that GEO data set was based on 

assembly dm3, Dr Hiratani believed that the data had only been lifted to assembly 

dm3 for publication on the Replication Domain database, and that the GEO data set 

might therefore be based on assembly dm2. Suggestions made by the authors that 

might account for the duplicates in the Replication Domain data set included either 

that the curators of the Replication Domain database may have averaged replication 

times over genes or windows, or that the original authors had masked repeat 

sequences in the GEO data set but that these sequences might remain in the 

Replication Domain data set. That the aforementioned emails confirmed that no 

additional smoothing or averaging or replication times had been performed by the 
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Replication Domain database, and made no mention of repeat masking, suggested 

that neither of these possibilities would explain the observed discrepancies. 

 

Given that both data sets were allegedly based on assembly dm3 and, excepting 315 

rows, should be identical, what then explained the discrepancy between the two data 

sets and which should have been used for the analysis? To attempt to answer this, 

chromosomal nomenclature was examined. The D.melanogaster genome contains 

heterochromatic regions. For naming purposes in assembly dm2 these regions were 

grouped together for each chromosome eg. chr2h. By assembly dm3, all of these 

regions had been assigned to individual chromosome arms and the naming 

convention updated to reflect this eg. chr2LHet and chr2RHet. Note also the change 

from ‘h’ to ‘Het’. Examination of the two data sets showed that chromosomes in the 

GEO data set followed the former convention, suggesting that it was based on 

assembly dm2, whereas the Replication Domain data set used the latter chromosome 

names, indicating that probe positions were located on assembly dm3. Dr Schwaiger 

agreed that this was indeed the case, and that, contrary to previous communications 

and to the array based information supplied on the NCBI GEO database, the GEO 

data set was likely to have been based on assembly dm2. 

 

The substitution rates used by Weber et al. (2012) in their main analyses were in part 

based on D.melanogaster exonic sequences extracted from file dmel-all-CDS-

r5.33.fasta, available as a precomputed file from FlyBase. As these sequences were 

based on FlyBase release R5.33, it was therefore necessary to further convert the 

replication timing data to assembly 5, so that replication times could be correctly 

assigned to genes based on overlaps of genomic locations on a common assembly. 

 

Due to the ambiguity associated with the initial source files, an attempt was made to 

regenerate the Replication Domain data set by converting the GEO data set from 

assembly dm2 to assembly dm3, to confirm that these data sets were indeed based on 

the suspected assemblies. The only conversion tool available to do this was the 

UCSC liftOver tool and associated chain file dm2ToDm3.over.chain. Lifting each 

probe position individually and a bulk lift with correct error handling both gave the 

same results. However, comparison of the lifted GEO data with the Replication 
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domain data revealed that 3,159,105 probe positions had been lifted but that only 

306 probes generated errors, fewer than the 315 probes that Dr Hiratani had 

previously had to remove from the ReplicationDomain data set. It was possible that 

updates to the chain file since the data was originally lifted might explain why fewer 

errors were generated for the current lift. Further, only 3,127,385 probe positions 

were found to be common to each data set and of these, only 3,127,366 also had the 

same replication time, the remaining 19 common probes differing in their replication 

times. Whether these discrepancies might similarly stem from updates to the chain 

file or from another cause could not be determined. 

 

Due to the differences identified between the lifted GEO data set and the Replication 

Domain data set, it was decided that complete re-curation of the original GEO data 

set was likely to yield more reliable results and that the re-lifted GEO data set should 

therefore be further converted to positions on assembly 5. 

 

No UCSC liftOver chain file was yet available for lifting D.melanogaster positions 

to assemblies later than dm3, necessitating the use the FlyBase coordinate converter, 

which can convert positions between assemblies dm3, dm4 and 5 (Tweedie et al., 

2009). Unlike the UCSC liftOver tool, no standalone command line driven version 

of the FlyBase coordinate converter was available so it was necessary to use the web 

based tool. As the website was not able to cope with the full data set, batches of 

200,000 probe positions from assembly dm3 were reformatted, uploaded to the 

FlyBase coordinate converter and then their position in assembly 5 extracted from 

the resulting output file. However, a limitation of this process was that despite the 

FlyBase website providing assembly 5 positions for genes located in 

heterochromoatic regions, the coordinate converter unfortunately did not accept 

either heterochromatic or unknown chromosomal locations. As such, genes located 

in heterochromatic regions would not therefore be assigned replication times.  

 

Examination of data lifted to assembly 5 revealed that of the 3,159,411 original 

probes, 148,178 failed to be converted to assembly 5. These were purged from the 

final data set. Of the 3,011,233 probes whose positions had been updated to 

assembly 5, 3,002,432 were found to occur uniquely at a given positions. The 
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remaining 8,801 probes were identified as duplicates, whereby a genomic location 

on assembly 5 had been assigned to more than one probe. At each of these positions, 

replication times were compared. In 7,258 cases, the replication time did not differ 

between the duplicate probes, in which case only a single probe (a total of 3,629 

probes) was retained in the final data set.  

 

In the remaining 1,543 cases, replication times were found to differ between probes 

assigned to a single position. Here, replication times for each pair were plotted. 

Identical replication times for two duplicate probes would fall along the line y=x. 

Where replication times differed, orthogonal residuals from y=x would therefore 

provide a quantitative measure of the deviation from equality. These were calculated 

directly by application of Pythagoras' theorem to the right-angled isosceles triangle 

formed between the data point for the pair of probes and the line y=x. The orthogonal 

residual for each pair of probes was calculated as: 

! 

r =
(y " x)

2
+ (y " x)

2

2
  (19) 

where r is the orthogonal residual, x is the replication time of the first probe and y is 

the replication time of the second probe, shown graphically in Figure A1.1. 

 

From the distribution of these residuals (Figure A1.2) an upper limit of 0.069 was 

imposed. For the 88 pairs or triplets of probes where the orthogonal residual 

exceeded 0.069 (Figure A1.3), both probes were purged from the final data set. In 

the 1,362 cases where orthogonal residuals were ≤ 0.069 (Figure A1.3), a mean of 

the two replication times was taken and assigned to a single probe at that position 

(Figure A1.3), thus retaining 681 probes. The final data set based on assembly 5 

therefore contained 3,006,742 probes. The plots in Figure A1.4 compare the profile 

of these curated replication times along each chromosome in assembly 5 with the 

equivalent replication timing profiles based on assembly dm3, published on the 

Replication Domain database. 
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Figure A1.1: Graphical representation of the method used to calculate orthogonal 
residuals of points from the line y=x. In this simplified case, the replication times of 
the two probes are 1 and 9. The point (x=1 and y=9) sits at the right-angled corner of 
an isosceles triangle, with two sides both equal to y–x. The orthogonal residual, 
shown in red, is equal to half of the hypotenuse, shown in blue. 
 

 
Figure A1.2: Distribution of orthogonal residuals of duplicate replication times from 
y=x. Dashed line at 0.069 represents the maximum permitted residual used to filter 
duplicate replication times.  
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Figure A1.3: Plot of different replication times assigned to single probe positions. 
Dashed line is y=x. Closed black dots represent probes with orthogonal residuals ≤ 
0.069 for which a mean replication time was taken and assigned to the position. 
Open grey circles represent probes with orthogonal residuals > 0.069, in which cases 
both probes were purged from the final data set.  
 

Finally, replication times were assigned to genes based on identification of all probes 

located within a given gene. Where more than one replication time was identified for 

a given gene, these were tested for normality of distribution, 23% of which were 

found to be skewed. As such, the median of all replication times that applied to a 

given gene was taken. The distributions of these 22,689 genes, together with their 

assigned genic replication times (Figure A1.4) suggest that genes are sampled from 

both early and late replicating domains. 

 

To conclude, curation of this data set of replication timing in D.melanogaster 

demonstrates why careful consideration of the assembly on which data sets are 

generated and the nature of data obtained from external sources is required. The 

increasing availability of genome-wide data for an expanding range of genome 

features, coupled with updated genome assemblies, particularly for newly sequenced 

species, mean that these types of issues are likely to be encountered more frequently 

in the future. Findings obtained from analyses of a range of genome features should 

therefore be treated with caution if such issues have not been addressed in the 
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methodologies. It is interesting to note that the UCSC repository has recently added 

additional flags to its genome browser indicating which tracks have been lifted from 

previous assemblies.  

 

Figure A1.4: Distribution of replication times along D.melanogaster chromosomes. 
For each pair of plots, the top image is taken from Replication Domain and 
represents timings based on assembly dm3. The bottom image is generated from the 
curated data set based on assembly 5. The grey shaded region shows probe 
replication times. Red dots indicate the position of genes along the chromosome. The 
blue line shows the replication time assigned to these genes. 
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