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2 Abstract 

 

 

The ionosphere is a dynamic and ionized medium. Specification of the ionospheric electron 

density is important for radio systems operating up to a few GHz. Such systems include 

communication, navigation and surveillance operations. Computerized Ionospheric 

Tomography (CIT) is a technique that allows specification of the electron density in the 

ionosphere.  CIT, unlike medical tomography, has geometric limitations such as uneven and 

sparse distribution of ground-based receivers and limited-angle observations. The inversion is 

therefore underdetermined and to overcome the geometric limitations of the problem, 

regularization techniques need to be used. 

In this thesis the horizontal variation of the ionosphere is represented using wavelet basis 

functions. Wavelets are chosen because the ground based ionospheric instrumentation is 

unevenly distributed and hence there is an expectation that the resolution of the tomographic 

image will change across a large region of interest.  Wavelets are able to represent structures 

with different scale and position efficiently, which is known as Multi Resolution Analysis 

(MRA). The theory of sparse regularization allows the usage of a small number of basis 

functions with minimum loss of information. Furthermore, sparsity through wavelets can 

better differentiate between noise and actual information. This is advantageous because it 

increases the efficacy to resolve the structures of the ionosphere at different spatial horizontal 

scale sizes. The basis set is also extended to incorporate time dependence in the tomographic 

images by means of three-dimensional wavelets.  

The methods have been tested using both simulated and real observations from the Global 

Navigation Satellite System (GNSS). The simulation was necessary in order to have a 

controllable environment where the ability to resolve different scale structures would be 

tested. The further analysis of the methods required also the use of real observations. They 

tested the technique under conditions of temporal dynamics that would be more difficult to 

reproduce with simulations, which often tend to be valid in quiet ionospheric behaviours. 

Improvements in the detection and reconstruction of ionospheric structures were illustrated 

with sparse regularization. The comparison was performed against two standard methods. The 

first one was based on spherical harmonics in space, whilst the second relied on a time-

dependent smoothing regularization.  
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In simulation, wavelets showed the possibility to resolve small-scale structures better than 

spherical harmonics and illustrated the potential of creating ionospheric maps at high 

resolution. In reality, GNSS satellite orbits allow satellite to receiver datasets that traverse the 

ionosphere at a few hundred km per second and hence a long time window of typically half an 

hour may be required to provide observations.  The assumption of an unchanging ionosphere 

is only valid at some locations under very quiet geomagnetic conditions and at certain times of 

day.  For this reason the theory was extended to include time dependence in the wavelet 

method. This was obtained by considering two approaches: a time-smooth regularization and 

three-dimensional wavelets. The wavelet method was illustrated on a European dataset and 

demonstrated some improvements in the reconstructions of the main trough.  

In conclusion wavelets and sparse regularization were demonstrated to be a valid alternative 

to more standard methods. 
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1 Chapter 1 

Introduction 

The ionosphere is an ionized medium that is the result of the interaction between the Earth’s 

atmosphere and the Sun’s activity, and extends from about 70 km up to 500 km in altitude. A 

broad spectrum of radiation is emitted continuously from the Sun and is absorbed in the 

atmosphere where the plasma originates. Plasma is a fundamental state of the matter and is 

populated by ions and electrons. The Sun emits also charged particles in the form of the solar 

wind. Those particles reach the Earth’s magnetic field where they travel along the magnetic 

field lines. Those particles are then injected directly into the atmosphere. This represents a 

secondary source of ionization denoted as particle precipitation. Similarly to clouds, the 

electrons form structures in the ionosphere, which evolve continuously in time and space, 

according to season and the Sun’s activity.  

The study of the ionosphere has become very important because of its interactions with radio-

wave signals. Services affected by ionospheric phenomena are broad and include satellite 

operations, aviation (communication and navigation), electric power distribution and Trans-

Atlantic radio communications [Hargreaves, 1995]. The vulnerability and disruption of those 

services depend on ionospheric activity and the possibility to estimate its behaviour. However, 

the prediction of the evolution of the ionosphere is very difficult and often almost impossible 

to calculate. 

Computerized Ionospheric tomography (CIT) is a technique that allows the state of the 

ionosphere to be estimated and studied in terms of electron density and to produce 4-

Dimensional electron density maps. Techniques that implement CIT algorithms rely on 

measurements of integrated electron density (or Total Electron Content, TEC), which are 

generally obtained from ground or satellite-based receivers that measure the signal from 

GNSS satellites. The measurements are calculated from the delay of the received GNSS signal 

and converted to TEC. Contrary to other problems like, for example, medical tomography, 

CIT is very challenging. The difficulties are caused by the uneven distribution of data and 

limited-angle measurements. Their coverage, in fact, tends to be sparse and receivers can also 

occur in clusters of different size. Those limitations make the ability to resolve the horizontal 

structure of the ionosphere through CIT challenging. For those reasons, regularization 

techniques need to be employed in order to guarantee a stable solution. 
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A common regularization in CIT applies a smoothing factor in time and space. This produces 

reasonable results but can sometimes lose the information of the structures in the ionosphere, 

which could appear smoothed and less defined. This can be a problem since sharp TEC 

gradients can cause disruption to the GNSS signal. An erroneous solution would be to run a 

high resolution reconstruction. In fact, this would make the CIT problem highly undetermined 

and the reconstruction unreliable. Because the structures in the ionosphere occur in different 

positions and with different scale/sizes, better performances could be achieved if the CIT 

algorithm would be implemented in view of those structures instead of smoothness, which 

still remains an important parameter in regions where data are not available. Furthermore, the 

possibility to adapt the solution according to the data coverage would be of particular interest. 

In fact, small-scale structures can be potentially resolved in regions with good data coverage. 

This thesis develops, applies and tests new methods based on wavelet decomposition, which 

are compared with more standard ones (generally based on a smooth regularization term or 

spherical harmonics) by using simulated and real data. The thesis was developed on the basis 

of three main concepts:  

 Wavelets. The ionospheric structures appear at different scale and positions. This 

supported the idea of using wavelet basis function as they are also defined in terms of 

scale and position. 

 Multi-Resolution Analysis (MRA). The decomposition of the ionosphere through 

wavelet basis functions is better exploited with MRA. It consists on a multiscale 

approximation of the structures that can be resolved with CIT. Because of the problem 

of lack of data, it is not possible to have a good definition of the ionospheric 

structures everywhere. Therefore, it is important that where data are limited, the 

solution provides a smooth reconstruction. On the other hand, where data are 

available the solution should attempt to reconstruct the real scale of the structure.  

 Sparse Regularization. An interesting property of wavelets is given by their ability to 

represent a signal (in this case the structures of the ionosphere) in a compact or sparse 

way. It means that the information about the state of the ionosphere can be 

reconstructed through CIT in terms of just a few coefficients. This implies that a 

better distinction can be made between the actual information and noisy artefacts that 

could corrupt ionospheric reconstructions. 

This wavelet-based approach is new in CIT and, therefore, has never been applied before. The 

objectives of this thesis comprise the investigation of new methods that could overcome the 

limitations imposed by data coverage and limitations imposed by smoothing methods. In 

particular, the objectives of the thesis can be summarised as: 
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 Replacing spherical harmonics with wavelets to accommodate MRA horizontally. 

 Implementing a 3-Dimensional method based on sparse regularization, wavelets and 

MRA. 

 Extending the sparse regularization method to a 4-Dimensional one that includes the 

time-dependent component of the ionosphere.  

 Testing the performance of discrete Meyer and Daubechies 4 wavelet families. 

 Assessing the ability of the methods to resolve different scale structures of the 

ionosphere.   

Below, a brief summary of the content of each chapter of the thesis is described. Chapter 2 

provides the background knowledge about the ionosphere and its behaviour. The interaction 

of the electromagnetic wave is also described, by focusing on the Global Navigation Satellite 

System (GNSS) signals. Then, the derivation of TEC from the GNSS signal and the origin of 

the measurements biases are explained. The same chapter includes a description of the main 

instruments that were used to validate the CIT reconstructions with real data. 

Chapter 3 contains the description of the evolution of CIT starting from the first experiments 

by Austen [J. R. Austen et al., 1986]. It also illustrates the state of the art in CIT and a list of 

the different algorithms that were implemented by various Universities or research centres 

during past years. 

The definition of the mathematical problem for CIT is given in Chapter 4. It describes the 

mathematical notation and a general solution for tomography based on Tikhonov 

regularization. It also defines the vertical and horizontal basis functions that were used to 

describe the vertical and horizontal variation of the ionosphere. Then, it focuses on the 

definition of wavelets and MRA. 

The new methods implemented in this thesis are explained in Chapter 5. It revises different 

regularization terms including the sparse regularization that was implemented with the Fast 

Iterative Shrinkage-Thresholding Algorithm (FISTA) [Amir Beck and Marc Teboulle, 2009].  

Then, the Total Variation (TV) algorithm [A. Beck and M. Teboulle, 2009] is also explained. 

The latter is used to reduce the artefacts in high resolution CIT reconstruction by preserving 

the edges of the structures. 

The first results on sparse regularization using wavelets are presented in Chapter 6. The 

results compare two wavelets (discrete Meyer and Daubechies 4) with spherical harmonics, 

which are implemented with a standard version of Tikhonov regularization. The analysis is 

performed in terms of robustness of the methods and ability to recover the measurement 

biases and structures by using simulated data. The methods are intended for 3-dimensional 
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reconstruction of the ionosphere and some results are also shown using real data. Furthermore, 

the chapter points out the difficulties obtained when sparse regularization is used for high 

resolution tomography and illustrates the advantages of the TV algorithm. 

The time-dependency of the ionosphere is described in Chapter 7. The sparse regularization 

method is extended to a 4-dimensional reconstruction of the ionosphere, where the fourth 

dimension is time. The chapter compares MIDAS with two implementations of the sparse 

regularization. The first one consists in using three-dimensional wavelets (in space and time), 

whilst the second uses two-dimensional wavelets in space and an additional smoothing term 

for the time dimension. The analysis is performed using real data. 

Finally, conclusions and future works are described in Chapter 8. 

The Multi-Instrument Data Analysis System (MIDAS) was used as the framework within 

which the methods and experiments described in this thesis were developed. MIDAS is a 

software package developed at the University of Bath for tomography. Although it has been 

used mainly for ionospheric purposes, it includes capabilities that widen to other fields like 

medical tomography. 
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2 Chapter 2 

Ionosphere: principles and measurements 

Introduction 

This chapter outlines the principles of the ionosphere and its interaction with radio-waves. 

Some well-established instruments that can be used to measure the ionosphere are also 

described 

In particular Section 2.1 gives a simple description of the main processes that generate the 

ionosphere. The structure of the ionosphere and how it interacts with radio waves are 

described in Section 2.2. Section 2.3 introduces the techniques that can be used for sounding 

the ionosphere, which include details of the Global Positioning System (GPS) signal that 

provides the main measurements used in this thesis. Those measurements will then be used in 

Chapter 3 to describe the imaging of the ionosphere by means of tomographic algorithms. 

Conclusions are in Section 2.4. 

2.1 The Ionosphere 

The first evidence for the existence of a conductive medium in the upper region of the 

atmosphere came with Marconi’s experiment in 1901 where a radio signal was transmitted 

from Cornwall (UK) to Newfoundland (Canada). The existence of this conductive medium 

was suggested by Kennelly and, later, by Heaviside. They argued that because of the Earth’s 

curvature, the radio signal must have been reflected from another ionized medium. In 1926, R. 

Watson-Watt coined the name ionosphere and since 1936 it came into common use 

[Hargreaves, 1995].   

The sun emits radiation in a wide wavelength range that penetrates the atmosphere and is 

absorbed by the neutral species of the atmosphere with different intensities according to 

altitude, latitude and longitude. The main radiations involved in the ionosphere are the X-Ray 

and Extreme Ultra-Violet (EUV) bands. They are the principal source of ionization that 

shapes the ionosphere in different layers (where different wavelengths are absorbed).  Another 

source of ionization is given by energetic particles. The sun continuously releases those 

particles with the solar wind. The interaction of the solar wind with the Earth’s geomagnetic 

field can allow some of the particles to penetrate into the atmosphere, causing a process 

known as impact ionization. Although their impact in the formation of the ionosphere is 

minimal at middle latitudes, they can become the main source of ionization at high latitude. In 
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fact, at the poles the magnetic field lines converge perpendicularly to the Earth driving those 

particles directly in the ionosphere [Barclay, 2003]. 

The presence in the ionosphere of those neutral species is important in the formation of the 

ions. The Chapman model [Chapman, 1931] is a good example to explain the basic 

ionosphere formation. This model explains the daily variation in the ionosphere given a quiet 

solar activity at low and middle latitudes. It considers the ionization rate dependent on the 

neutral densities and radiation intensity coming from the Sun (see Figure 2.1). Therefore, the 

generation of ions is associated to only the photoionization process by means of the EUV 

radiation. 

 

Figure 2.1. The ion production rate can be seen as the combination of the radiation intensity (from the sun) 

and the neutral densities of the species in the atmosphere. 

The actual processes that drive the ionospheric behaviour are actually more complicated than 

the ones described in the Chapman model. Nevertheless, it remains an important tool to 

explain the basic theory of the ionosphere. The ions and electrons formed from the solar 

radiation react and recombine with the other gaseous (neutral) species to produce further ions 

[Hargreaves, 1995]. These photochemical processes produce a dynamical equilibrium that 

depends on the production and loss rate of the electrons and ions. Three main processes are 

involved [Barclay, 2003]: 

 Photoionization. The neutral gases are ionized by the EUV photons producing ions 

plus electrons. 

 Collision. The collision between ions and neutral molecules produce an energy which 

ionizes the molecules through a charge exchange reaction. 

 Recombination. Ions and electrons recombine. 
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The importance of these processes and the effect of their combination varies with altitude. 

This generates the typical layered structure of the ionosphere. Three main layers can be 

recognized on an electron density profile: 

 D-Layer (60-90 km). The neutral atmosphere in this layer is denser than in the other 

layers, and the electron collision frequency is therefore higher and consequently the 

recombination. 

 E-Layer (105-160 km). This is, with the F1-Layer, well described by the Chapman 

model, where the photochemical processes of production and loss get involved. 

 F-Layer (160-300 km). It is divided in two sub-layers, F1 (160-180 km) and F2 (180-

300 km). The F1 still follows the Chapman model quite well in a quiet period (i.e. it 

can be well explained with the photochemical reactions), but the F2 does not 

generally. It is the layer with the highest electron density concentration and where the 

electron peak is located (F2-peak). The strong photoionization and the low neutral 

density make the loss process slower prolonging the life of the electrons. 

During the day, the electron density reaches its maximum and decreases to its minimum 

density at night and just before sunrise. The amount of electron density, and the relative day-

night fluctuation, is also dependent on the solar activity, which can be indicated in terms of 

sun-spot numbers. Sunspots are measured from the Sun surface and look like dark spots due 

to their lower temperature. During maximum solar activity the electron density tends to be 

generally higher than during minimum solar activity. Furthermore, during the night the E-

Layer, which is present when the ionization process caused by the sun is stronger, disappears 

and the F2 electron density peak (NmF2) rises up. The season also influences ionospheric 

activity, making the NmF2 generally higher during the equinoxes and lower in the summer 

[Hargreaves, 1995]. 

The geographical variation of the ionosphere is illustrated in Figure 2.2. The image shows the 

vertical Total Electron Density (VTEC), which is defined as the integrated electron content 

along the vertical in each point of the map. The values showed in the maps are in TEC units 

(TECU); 1 TECU corresponds to the integrated electron content in 1 metre square cross-

section along the ray path and is measured in 10
16

 electrons per metres squared.  
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Figure 2.2. Run of the IRI2012 empirical model on the day of 5 October 2014 at 21:00 UT. The map shows 

the TEC obtained from the empirical model. Values are in TECU. 

The image was obtained by a run of the International reference Ionosphere (version 2012) 

empirical model for the day of 5 October 2014 at 21:00 UT. It can be noticed the presence of 

large-scale features like enhancements, depletions and troughs in terms of TEC variation. 

Sometimes smaller scale structures can originate. Those structures can cause events in the 

signal like diffraction/interference. These events can occur when the electromagnetic wave 

travels in proximity of the edges of an irregularity. The scale of the irregularity can vary from 

100 to 1000 metres and their effect can persist for few seconds or several minutes [Davies, 

1990]. 

2.1.1 Principles of signal propagation in the ionosphere 

A radio signal transmitted through the ionosphere experiences episodes of 

refraction/diffraction. Those phenomena are the cause of distortion and retardation in the 

signal. This section will outline the principles of a signal propagating in a medium such as the 

ionosphere.  This section is based on the references found in [Davies, 1990] 

A signal propagating in a medium will travel with a propagation speed 𝑣 which depends on 

the medium itself and can be expressed in terms of its refractive index 𝜇 as [Kaplan and 

Hegarty, 2006] 

 𝜇 =
𝑐

𝑣
 (2.1) 

where 𝑐 is the speed of light. Thus, a variation of the refractive index causes a delay in the 

signal with respect to vacuum where the velocity is the speed of light and the refractive index 
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is unitary. In addition to the retardation, the refractive index can also cause an attenuation, 

which is considered by introducing an imaginary refractive index part 𝜒 

 𝜂 = 𝜇 − 𝑖𝜒 (2.2) 

The refractive index of the atmosphere changes with the altitude and the effects on the signal 

can be identified as coming mainly from the troposphere and ionosphere affecting the signal 

in different ways. The troposphere introduces a non-dispersive delay (i.e. the refractive index 

doesn’t depend on the frequency) and takes into account variables like the pressure, 

temperature and water vapour. By contrast, the ionosphere is a charged medium which affects 

the signal with effects like scintillation and retardation. It is also a dispersive medium causing 

different frequencies to travel at a different speed [Barclay, 2003]. It is the medium that 

introduces the biggest delay and perturbation at Very High Frequency (VHF) and Ultra High 

Frequency (UHF). Furthermore it is well known that, in order to pass through the ionosphere, 

a signal needs to have a carrier frequency higher than a threshold. This threshold depends on 

the launch angle and the electron concentration at the F2 peak. The free electrons absorb the 

energy of the signal and, if the density of the electrons is relatively low (i.e. there are not 

many collisions between neutrals and charged particles, namely collision frequency), they 

release that energy at the same frequency and the signal still propagates. Where, instead, the 

density is very high, the increased number of collisions makes the electrons lose more energy, 

compromising the propagation (e.g. causing a delay in the received signal from the satellite). 

The energy released in both cases is not directional, but is spread in different directions 

causing attenuation and multipath. 

The refractive index is divided in phase 𝜇𝑝ℎ and group 𝜇𝑔𝑟 refractive indices. This is due to 

the different effects that the ionosphere (as a medium) impinges on the phase and envelope of 

the signal. When the signal crosses the ionosphere the phase velocity of the signal increases 

[Davies, 1990] but, because the following relationship holds 

 
𝑣𝑝ℎ

𝜆
=

𝑐

𝜆0
 (2.3) 

where 𝑐 is the speed of light, 𝜆0 the characteristic wavelength in the vacuum and 𝜆 the 

wavelength of the signal, it means that the wavelength of the signal becomes longer. The fact 

that the phase velocity increases can be seen as a fast advancement of the phase and this effect 

is generally referred as phase advance. 

The group refractive index 𝜇𝑔𝑟, instead, is responsible for the propagation delay of the signal 

intended as a wave packet (i.e. made up of different frequencies). The relationship between 

the phase and group refractive index is given by 
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 𝜇𝑔𝑟 =
𝑑(𝜔𝜇𝑝ℎ)

𝑑𝜔
 (2.4) 

where 𝜔 is the angular frequency associated with 𝜆. By knowing the velocities and the 

refractive indices it is possible to calculate the group and phase paths (in distance unit) 

[Davies, 1990]. The group path 𝑃𝑔𝑟 represents the distance or spatial delay (with the 

ionospheric delay included) of the wave packet traveling along the ray path 𝑆 and is given by 

 𝑃𝑔𝑟 = ∫𝜇𝑔𝑟 cos 𝛼 𝑑𝑠
𝑆

 (2.5) 

In the same way it is possible to define the phase path 𝑃𝑝ℎ as the distance in free space that 

can produce the same phase variation as the one obtained along the ray path 𝑆, i.e. 

 𝑃𝑝ℎ = ∫𝜇𝑝ℎ cos 𝛼 𝑑𝑠
𝑆

 (2.6) 

The angle 𝛼 represents the angle between the ray and the direction of phase propagation. By 

considering the angle 𝛼 very small (i.e. isotropic medium [Davies, 1990]), the cosine term in 

Equations (2.5) and (2.6) can be neglected. 

The real signal path 𝑃𝑆 is simply calculated as 

 𝑃𝑆 = ∫𝑑𝑠
𝑆

 (2.7) 

In the case of a signal propagating through the ionosphere, the extra-delay 𝑑𝐼 introduced by 

the medium can be obtained by subtracting the real path with the group or phase path 

 𝑑𝐼 = 𝑃𝑆 − 𝑃 = ∫(1 − 𝜇)𝑑𝑠
𝑆

 (2.8) 

where 𝑃 represents both the group or phase path and, in the same way, 𝜇 the equivalent group 

and phase refractive index for the ionosphere. The distance 𝑑𝐼 has a different interpretation 

from the real path 𝑃𝑆 and it is associated with the expected distance that can explain the 

traveling time (as measured from phase or envelope). 

2.2 GPS, from the origins to the application 

The beginning of experimental studies of radio signal propagation through the ionosphere and 

orbit determination by means of Doppler measurements came with the launch of Sputnik I on 

4 October 1957 by the Soviet Union. The launch of Sputnik defined a new era of the space 

race in particular between Soviet Union and United States. Despite the concerns of the period 
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about the implications in the Cold War, this first artificial Earth satellite ever orbiting in space 

led to important scientific and technological discoveries and advancements that provided the 

basis for the development of the current positioning systems like the U.S. GPS, the European 

system GALILEO, and the Russian GLObal Navigation Satellite System (GLONASS), which 

are generally classified under the common name of Global Navigation Satellite Systems 

(GNSSs). 

The GPS was developed by the U.S. Department of Defense (DoD) and became operational in 

June of 1995 with 24 satellites then extended to 32. The GPS system provides positioning and 

timing services for civilian and military applications. 

The GPS provides the fundamental measurement for the tomographic methods used for the 

imaging of the ionosphere in this thesis. This Section describes Transit, the predecessor of 

GPS. Transit data are used in conjunction with GPS data in Chapter 5. Then, the GPS signal 

structure and how it can be used to probe the ionosphere are also described. Other instruments 

(used in this thesis) that sound the ionosphere are also illustrated. 

2.2.1 Transit, the ancestor of GPS 

The Navy Navigation Satellite System (NNSS), also known informally as Transit, was an all-

weather global navigation system designed by the Applied Physics Laboratory (APL) 

including user equipment and ground control system [Danchik, 1998]. Its operational use 

lasted for almost 32 years and provided the most reliable and precise system for positioning at 

that time. The system was continuously improved during the years and all the achievements 

and results of the mission were essential to the space science and technology of the current 

years.  

Frank T. McClure (APL) in the spring of 1958 started the transit program on the basis of the 

Doppler tracking discoveries by William H. Guier and George C. Weiffenbach at Johns 

Hopkins University (JHU) and APL, i.e. that the Sputnik orbit could be determined by the 

measurement of the Doppler (by chance the only measurement they had available) of the 

received signal [Guier and Weiffenbach, 1997]. This led to the definition of the navigation 

problem: if the position of the satellite were accurately known, then Doppler from the signal 

could tell an observer on the ground his unknown position
1
.  

The origin of the development of Transit came from the need to fulfil the requirements of an 

accurate and precise position for the navigation system of Nuclear-Powered Ballistic Missile 

Submarines (SSBNs) of the U.S. Navy. The position was required to be available several 

                                                      
1
 From https://directory.eoportal.org/web/eoportal/satellite-missions/t/transit 
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times during the day and with an accuracy of 0.1 nmi (about 185.2 metres). Furthermore the 

user was required to use passive receivers and to obtain data in real time [Danchik, 1998].  

The Transit satellite system was made public in 1967 by the Vice President Hubert Humphrey 

and released for commercial use by ships and friendly nations. However, the system became 

widely used after the development of a low-cost receiver made in the early 1970. 

2.2.2 GPS signal propagation 

A GPS receiver provides a measure of the time the signal transmitted from a satellite 𝑘 needs 

to travel to a receiver 𝑝. The GPS system has two fully operative signals which can be used, at 

two frequencies indicated as L1 (1.5 GHz) and L2 (1.2 GHz). Each satellite transmits a well-

known digital code (pseudorandom noise code, PRN) whose replica, at the receiver, is used to 

estimate the travel time. This time measurement is called pseudorange 𝑃 or carrier phase 𝛷 

according to whether the code or the phase of the carrier signal is used. By crossing the 

atmosphere the signal is distorted and delayed by a series of effects which, at one particular 

frequency, can be modelled according to the following equations 

 𝑃 = 𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) + 𝑑𝐼 + 𝑑𝑇 + 𝑑𝑀 + 𝜖𝑝
𝑟 + 𝜖𝑝

𝑠 (2.9) 

 𝛷 = 𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) − 𝑑𝐼 + 𝑑𝑇 + 𝑑𝑀 + 𝜆𝑁 + 𝜖𝛷
𝑟 + 𝜖𝛷

𝑠   (2.10) 

where 𝜌 is the true range, which only depends on the geometry of the problem, 𝑑𝑡 and 𝑑𝑇 are 

the receiver and satellite clock biases, 𝑑𝐼 and 𝑑𝑇 are the errors introduced by the ionosphere 

and troposphere, 𝑑𝑀 is the error due to the multipath, and 𝜖𝑝
𝑟 and 𝜖𝑝

𝑠 are the hardware 

dispersive components (which depend on the frequency) in the pseudorange measurement 

including the noise. In the same way, 𝜖𝛷
𝑟  and 𝜖𝛷

𝑠  corresponds to the hardware dispersive 

components for the carrier phase. The term 𝑁, instead, is the integer ambiguity in the phase 

cycle measurement. 𝑁 introduces a delay (in distance unit) that is proportional to the 

wavelength 𝜆 of the signal. 

The two different signs that appear in the 𝑑𝐼 terms in the above equations are due to the fact 

that the pseudorange suffers a positive group-delay, while in the carrier phase this effect, 

which has approximately the same magnitude, is negative and it is referred as phase-advance. 

Because of the very efficient demodulation technique, it is possible to handle very weak GPS 

signals, even when they are below the noise level. When the signal is detected the code is 

generally perfectly reconstructed. Furthermore, the effects due to the frequency bias and 

spread are also very well compensated by a tracking loop filter. For this reason the next 

section will focus on the delay only while all the attenuation effects will not be considered. 
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It will be seen in the next section that by double differencing the GPS signal at the L1 and L2 

frequencies it is possible to isolate the ionospheric term. This term is important as it can be 

related directly to the electron density of the ionosphere. In ionospheric tomography this term 

is the main observable that allows reconstructing three dimensional images of the ionosphere. 

2.2.3 TEC measurements from GPS 

From the ionospheric point of view the electron density is the main observable that can be 

exploited to describe the ionospheric effects on the signal. The GPS signal can be used to 

retrieve the estimation of the slant Total Electron Content (sTEC) between the satellite and 

receiver, which is defined as the integrated electron content along the ray path and is 

measured in TECU. 

Due to the frequency-dependence of the ionospheric effects, it is possible to estimate the term 

𝑑𝐼 of (2.9) and (2.10) by differencing the GPS signal at the two frequencies L1 and L2. This 

allows having an estimation of sTEC (along the satellite-receiver path) that can be used to 

compensate the ionospheric delay in case of positioning or timing applications. In other 

applications like ionospheric tomography, this estimation is used as input data from which the 

three-dimensional electron density can be computed (see Chapter 3 for a more comprehensive 

description of ionospheric tomography). 

The non-dispersive components can be cancelled by taking the difference at the two 

frequencies L1 and L2 of Equation (2.9) and Equation (2.10), obtaining [Mannucci et al., 

1999] 

 𝑃𝐼 = 𝑃𝐿2 − 𝑃𝐿1 = (𝑑𝐼,𝐿2 − 𝑑𝐼,𝐿1) + 𝑏𝑃
𝑟 + 𝑏𝑃

𝑠  (2.11) 

 𝛷𝐼 = 𝛷𝐿1 − 𝛷𝐿2 = (𝑑𝐼,𝐿2 − 𝑑𝐼,𝐿1) + 𝑏𝛷
𝑟 + 𝑏𝛷

𝑠  (2.12) 

where 𝑏𝑃
𝑟, 𝑏𝑃

𝑠 , 𝑏𝛷
𝑟  and 𝑏𝛷

𝑠  are the dispersive component residuals related to receiver (r) and 

satellite (s), which cannot be removed by differencing. The integer ambiguities 𝜆1𝑁1 and 

𝜆2𝑁2 have been included in 𝑏𝛷
𝑠 . The dispersive multipath-residual biases in 𝑃𝐼 contribute as a 

significant noise component [Jakowski, 1996] which makes the sTEC estimations less 

accurate. A more accurate estimation of the ionospheric term can be done from the carrier 

phase. Unfortunately this has the disadvantage that a calibration is required as will be seen 

later. 

The refractive index in the ionosphere can be modelled through the Appleton equation. It 

models the phase refractive index in the ionosphere 𝜇𝐼 depending on the collision frequency 

(between the electrons and neutrals) and Earth’s magnetic field [Barclay, 2003] and the 

electron content 
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𝜇𝐼
2 = (𝜇𝑝ℎ − 𝑖𝜒𝑝ℎ)

2
= 

= 1 −
𝑋

1 − 𝑖𝑍 −
𝑌𝑇

2

2(1 − 𝑋 − 𝑖𝑍)
± √

𝑌𝑇
4

4(1 − 𝑋 − 𝑖𝑍)2 + 𝑌𝑍
2

 (2.13) 

where the real part of the refractive index 𝜇𝑝ℎ takes into account the retardation and the 

bending of the signal, while the imaginary part, 𝜒𝑝ℎ, accounts for the absorption. 𝑋, 𝑌, and 𝑍 

describe respectively the electron density, geomagnetic field and collision frequency effects 

and the subscripts 𝑇 and 𝑍 are depicting the transverse and longitudinal components of the 

geomagnetic field with reference to the wave normal direction. The equation above is 

particularly difficult to use, so for practical use further assumptions/simplifications are used. 

If the influence of the geomagnetic field is ignored and the collision frequency is neglected, 

Equation (2.13) becomes 

 𝜇𝑝ℎ
2 = 1 − 𝑋 = 1 −

𝑒2

4𝜋2휀0𝑚𝑒𝑓2
𝑛 = 1 − 𝑘

𝑛

𝑓2
 (2.14) 

where 𝑓 is the signal frequency, 𝑛 is the electron density, 휀0 is the permittivity of free space, 

𝑚𝑒 is the mass of the electron, 𝑒 is the charge of the electron and 𝑘 is defined as 

 𝑘 =
𝑒2

4𝜋2휀0𝑚𝑒
= 80.6 (2.15) 

where the units are 𝑚3𝐻𝑍
2. It can be noted from Equation (2.14) that the phase refractive index 

must be between 0 and 1. Therefore, the condition 𝑘 𝑛 𝑓2⁄ > 1 must hold, which corresponds 

to 𝑓 > 𝑓𝑁 where the plasma frequency 𝑓𝑁 is defined as 

 𝑓𝑁 =
𝑛𝑒2

4𝜋휀0𝑚𝑒
 (2.16) 

The case 𝑓 == 𝑓𝑁 corresponds to the vertical reflection of a electromagnetic wave. 

Finally, the phase refractive index can be obtained from the phase refractive index with the 

following approximation based on the binomial expansion series can be used 

 𝜇𝑝ℎ = √1 − 𝑘
𝑛

𝑓2
≅ 1 − 𝑘

𝑛

2𝑓2
 (2.17) 

Equation (2.17) relates the electron density 𝑛 to the phase refractive index 𝜇𝑝ℎ which will be 

used in Equation (2.11) and Equation (2.12). According to the simplification this 

approximation is valid for a solar minimum period without disturbed conditions and is 
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especially suitable for middle latitudes. Higher order effects can be included and become 

important for high-precision applications (e.g. Precise Point Positioning, PPP) but this is not 

part of this dissertation. A review of higher order ionospheric effects can be found in [Petrie 

et al., 2011]. 

Therefore, according to Equation (2.4) the group refractive index can be obtained from the 

phase refractive index as 

 𝜇𝑔𝑟 ≅
𝑑

𝑑𝜔
(𝜔 (1 − 𝑘

𝑛

2𝑓2
)) = 1 + 𝑘

𝑛

2𝑓2
 (2.18) 

The ionospheric delay can now be calculated as (Equation (2.8)) 

 𝑑𝐼 = ∫ (1 − 𝜇𝑔𝑟)𝑑𝑠 =  𝑘
𝑇𝐸𝐶

2𝑓2
=

40.3

𝑓2
𝑇𝐸𝐶 =  

1

𝑓2
𝐼

𝑅𝑋

𝑇𝑋

 (2.19) 

where 𝐼 = 40.3 𝑇𝐸𝐶. This puts a direct proportionality between the observable 𝑑𝐼 and the 

total electron content (TEC), obtained from Equation (2.18) by integrating the electron content 

𝑛𝑒 between the satellite TX and the receiver RX along the ray path 𝑠 as 

 𝑇𝐸𝐶 = ∫ 𝑛 𝑑𝑠

𝑅𝑋

𝑇𝑋

 (2.20) 

The ionospheric delay in the carrier phase can be calculated in the same way. It can be noticed 

that, with the above approximations, the only difference lies in the sign, which is negative for 

the carrier phase. For this reason the phase term 𝑑𝐼 is usually referred as phase advance. 

From the Equations (2.11) and (2.12) it is possible to write [Mannucci et al., 1999] 

 𝑃𝐼 = 𝑃𝐿2 − 𝑃𝐿1 = 𝐼 (1
𝑓𝐿2

2⁄ − 1
𝑓𝐿1

2⁄ ) + 𝑏𝑃
𝑟 + 𝑏𝑃

𝑠  (2.21) 

 

ΦI = Φ𝐿1 − ΦL2 = 

= 𝐼 (1
𝑓𝐿2

2⁄ − 1
𝑓𝐿1

2⁄ ) + (𝜆𝐿1𝑁𝐿1 − 𝜆𝐿2 𝑁𝐿2) + 𝑏𝛷
𝑟 + 𝑏𝛷

𝑠  
(2.22) 

The two equations (2.21) and (2.22) measure the same ionospheric delay, but, because the 

integer phase ambiguities 𝜆𝐿1𝑁𝐿1 and 𝜆𝐿2 𝑁𝐿2 cannot be compensated in the carrier phase, 

they still remain unknown in the equation. For this reason the differential carrier phase doesn’t 

provide an absolute value for the TEC like the differential pseudorange could potentially do. 

They are however used together to calibrate the measurement. However, the pseudorange 

tends to be  noisier while the carrier phase is generally more stable especially at low elevation 
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angles where the multipath effect starts to become important. Instead, observations of 

differential phase can be generally considered noise free from the point of view of the 

instrument which inherently smooths over noise, but the measurement arc between a single 

receiver and satellite is uncalibrated or biased. 

The dispersive pseudorange errors can be reduced by smoothing the difference between the 

pseudorange and the shifted version of the carrier phase (which is cleaner but has an 

ambiguity term) in a least square sense [Jakowski et al., 2001]. 

Daily calibration to the differential pseudorange code is necessary to take into account 

variations of the differential biases in the clocks [Mannucci et al., 1999]. Those solutions to 

calibrate the GPS-based ionospheric measurements are discussed in different publications 

(e.g. [Mannucci et al., 1999] and [Jakowski, 1996]) and are based on a combination of both 𝑃𝐼 

and 𝛷𝐼. Note that within a short time interval and until the signal loses its lock, the integer 

ambiguity and the residual terms can be considered constant. This can be used to help 

calibrate sTEC as described before.  However, it is also possible to calibrate the observations 

by mean of tomographic tools in the inversion process. This has been shown to have 

advantages [Dear and Mitchell, 2006], particularly in cases where the hardware biases vary 

over time. This calibration method will be discussed in Chapter 5. 

2.3 Instruments used for validation 

In this thesis two other instruments are used to validate the results, a satellite mounting the 

Planar Langmuir Probe and an incoherent scatter radar. 

The CHAllenging Minisatellite Payload (CHAMP) is a German small satellite mission whose 

primary scientific purposes were related to gravity field, magnetic field and the 

atmosphere/ionosphere. Because of its polar low-Earth orbit (between about 300 and 450 km), 

it is a suitable instrument for studying the F-region of the ionosphere with in situ 

instrumentation [Reigber et al., 2002]. 

The Incoherent Scatter (IS) radar has been operated since the beginning of 1960s [W E 

Gordon, 1958]. Its measurements, obtained from the scattering of the transmitted signal 

through plasma irregularities in the ionosphere, provided important information about both the 

bottom and top side ionospheric composition. The radar allowed extending the range of 

measurements that between 1930 and 1960 came mainly from ionosondes and were limited to 

the bottom-side of the ionosphere only. 
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2.3.1 CHAMP 

 

 

Figure 2.3. CHAMP. 

The CHAMP mission was originally proposed by GeoForschungsZentrum (GFZ) and the 

former German Space Agency DARA (now DLR) with the partnership of the National and 

Space Administration (NASA), the Centre National des Études Spatiales (CNES), and the Air 

Force Research Laboratories (AFRL). 

The mission started on 15 July 2000 when CHAMP was launched with a Russian COSMOS 

launch vehicle into an almost circular, near-polar orbit. Its initial altitude was around 450 km 

and the inclination about 87.3 degrees.  

The payloads of the satellite can be grouped according to their mission target:  

 Gravity. The new generation GPS receiver TRSR-2 (by NASA) for the tracking of 

low orbit satellites and GPS constellation and high-precision orbit determination, and 

the electrostatic STAR accelerometer (by CNES), a high-precision three-axes 

accelerometer for measuring the surface forces accelerations. 

 Magnetics. The fluxgate magnetometer (by DTU) that together with the laser retro 

reflector (by GFZ) was used to probe the vector components of the Earth’s magnetic 

field. The overhauser Magnetometer (by LETI) was used to provide an absolute in-

flight calibration capability for the fluxgate magnetometer. 

 Atmosphere/Ionosphere. The same instrumentations for the magnetic and gravity field 

contributed to the characterisation of the state and dynamics of the neutral atmosphere 

and ionosphere and the GPS receiver could be used for GPS radio-occultation 

measurements. In addition, the digital ion drift meter (by AFRL) was used to make in-

situ measurements of the ion distribution and its moment within the ionosphere. 

Quantities like electron density, and temperature can be then derived from its 

measurements. 
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The anticipated life of the mission was estimated as 5 years, when CHAMP would have 

decayed its altitude to 300km. In fact the highly successful mission lasted until 19 September 

2010 when it was officially concluded. 

The Digital Ion Drift Meter (DIDM) payload has been used in Chapter 6 and Chapter 7 to 

produce the validation of the ionospheric reconstructions. For this reason it will be briefly 

described below. The DIDM was developed by Amptek, Bedford, MA USA, for AFRL with 

the aim to detect the angle of arrival of thermal plasma ions [Cooke et al., 2003] from which 

the ion distribution and its moments can be retrieved. 

 

 

Figure 2.4: Picture of the Digital Ion Drift Meter (DIDM)2. 

The DIDM can operate in two different modes: 

 Drift Meter (DM). Its principle of operation consists in a pin-hole camera that images 

the ion distribution on a Micro-Channel Plate (MCP). The MCP converts the ions into 

a pulse of about 10
6
 electrons. Then, the pulse position is located by means of an 

anode consisting in a 16x128 pixels array. The distribution of the ions in the velocity 

space can be determined by accumulating the ions that impact into the plate. Different 

ions parameters, such as drift angle, temperature and density, can be recovered by 

matching a tabulated set of expectations. 

 Retarding Potential (RPA). It energises the ions that enter through the pin-hole 

camera to the MCP. Therefore, it determines the energy of the incoming ions as well 

as their velocity, assuming the ion mass to be that of oxygen. 

In addition, the DIDM mounts also the Planar Langmuir Probe (PLP), which provides 

auxiliary data used to interpret the ion drift measurements and to monitor the spacecraft 

potential, ion density and electron temperature. 

                                                      
2
 Credits: http://op.gfzpotsdam.de/champ/systems/index_SYSTEMS.html. 
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Two sensors were originally designed in order to provide simultaneous DM and RPA 

measurements but also higher measurement rates and redundancy. They were positioned 10 

degrees apart in respect to the nominal flight direction. This configuration allowed improving 

the angular coverage for the horizontal ion drift. Unfortunately, after the first power-up it was 

noticed there was a failure in one of the sensors and one single sensor was used eventually. 

This affected the performances and the statistical quality of the data. Because of this, the 

initial precision for the ion drift measurement of 25-50 m/sec was reduced to 130 m/sec.  

2.3.2 Incoherent scatter radar 

The physical basis of the incoherent scatter (IS) radar was suggested in 1906 when J.J. 

Thomson showed that the electron can scatter an incident electromagnetic radiation with an 

equivalent radar cross section 𝜎 equal to [Thomson, 1906] 

 𝜎 = 4𝜋(𝑟𝑒 sin 𝛾)2 (2.23) 

where 𝛾 is the angle between the direction of the incident wave and the observer direction 

[Beynon and Williams, 1978] and 𝑟𝑒 is the effective radius of the electron defined as 

[Hargreaves, 1995] 

 𝑟𝑒 =
𝑒2

4𝜋휀0𝑚𝑒𝑐2
 (2.24) 

where 𝑒 and 𝑚𝑒 are the charge and mass of the electron respectively, 휀0 is the permittivity of 

free space and 𝑐 is the speed of light in vacuum. 

Unfortunately, the technology available in that period was not sufficient to detect the weak 

signal originated by the scattering defined by Equation (2.23) and they had to wait until the 

technological advancements driven by the Second World War to overcome those limitations 

and to achieve the required instrument sensitivity [Hargreaves, 1995]. In 1958 it was 

suggested that even though free electrons scatter radio waves weakly in an ionized medium, a 

powerful radar with a large enough antenna could detect the incoherent backscatter from the 

free electrons in and above the earth's ionosphere [W E Gordon, 1958]. Furthermore, both 

density and temperature of the electrons could be measured as a function of height. In the 

same paper a simple theory of scattering was also proposed. Given a transmitted signal of 

wave vector 𝒌 defined as 

 |𝒌| =
2𝜋

𝜆
 (2.25) 

and supposing the plasma composed of thermal electrons, distributed randomly with a 

constant average density equivalent to a mean spacing of 𝛿 and providing that |𝒌| ≪ 2𝜋 𝛿⁄ , 
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then the electrons are totally independent of each other. In the ionosphere, at an altitude of 

100-2000 km, the value of 𝛿 is always less than 10
-3

 m [Beynon and Williams, 1978], which 

easily satisfies the previous condition of 𝜆 ≫ 𝛿. Due to the random motion of the electrons the 

scattering would experience random phases. This would make the scattering completely 

incoherent and suggested that the total scattered power was proportional to 𝜎𝑛𝑒(ℎ), i.e. given 

the power the electron density 𝑛𝑒(ℎ) at different altitudes ℎ could be calculated. In order to 

avoid coherent scattering 𝜆 should be chosen smaller than the smallest irregularity of the 

ionosphere. Structures with size smaller than 10 m are known to occur for example in aurora 

zones, which makes the upper limit for  𝜆 equal to 1 metre. Gordon, in the same paper, 

predicted that due to the random thermal motion of the electrons, the spectrum of the received 

signal would have experienced a wide range of Doppler shifts, whose half-power bandwidth 

Δ𝑓 was equivalent to 

 Δ𝑓 = 4(𝜅𝑇𝑒 𝑚𝑒𝜆2⁄ )1 2⁄  (2.26) 

where 𝜅 is the Boltzmann constant,  𝑇𝑒 the electron temperature, 𝑚𝑒 the electron mass and 𝜆 

the signal wavelength. 

The same year, Bowles showed the first results of actual observations of echos using a new 

high-power transmitted built at Long Branch, Illinois (US). The results were presented in an 

early unpublished report of the National Bureau of Standards on 18 September 1959 and then 

published in [Bowles, 1961]. 

The results of the experiment showed a spectrum that was ten times smaller than the one 

predicted by Gordon. It was clear at this stage that a new theory needed to be developed. 

The new theory of scattering is more complicated than a simple incoherent scattering by free 

electrons and describes a quasi-coherent scattering by thermally induced electron-ion acoustic 

waves but, for some reasons, the name Incoherent Scatter (IS) radar was maintained. Those 

and the following comments are from [Beynon and Williams, 1978]. 

The new theory considers the electrostatic interaction between ions and electrons. The ions 

tend to be attracted towards electrons while their thermal velocities and their mutual repulsion 

tend to disperse them. The extension of influence of the ions is represented by the Debye 

length [Davies, 1990] 

 𝐷 = (
휀0𝑘𝑇𝑒

𝑒2𝑛
)

2

 (2.27) 
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where 휀0 is the permittivity of free space, 𝜅 the Boltzmann’s constant, 𝑇𝑒 the electron 

temperature, 𝑒 the charge of an electron and 𝑛 the electron density. 

The Debye length gives an indication of the region of influence of an ion. If the wavelength of 

the radar is smaller than 𝐷, the scattering can be considered incoherent and depending on the 

thermal random motion of the free-electrons in the ionosphere. In this case the spectrum 

would agree to the one predicted by Gordon. For a radar application, the wavelength is usually 

bigger than 𝐷. In this case the scattering is strongly controlled by the surrounding ions. The 

random thermal motion of the electrons produces pressure gradients that generate longitudinal 

waves known as electro-acoustic (or plasma) waves and, because of the electrostatic coupling, 

also ion-acoustic waves. Furthermore, the increase of electron (or ion) density produces an 

increment in the local net charge of the ionosphere. Thus, additional electrostatic forces are 

generated that need to be added to the forces due to pressure gradients. The scattered signal 

that is observed by the radar is, therefore, caused by the fluctuation of those waves. 

The ion-acoustic and electro-acoustic waves can travel upward or downward. That causes a 

Doppler frequency shift equal to 

 Δ𝑓 = ±2
𝑉

𝜆
= ±

𝑉

Λ
= ±𝐹(Λ) (2.28) 

Where Λ = λ 2⁄ , 𝐹(Λ) is the frequency of the wave and 𝑉 the velocity of the wave. 

Considering the existence of two waves, it follows that the spectrum of the scattered signal 

will consist of four components (upward and downward) depending on the ion-acoustic 

𝐹+(Λ) and electro-acoustic 𝐹−(Λ) waves 

 𝐹+(Λ) =
1

Λ
(

𝑘𝑇𝑖

𝑚𝑖
(1 +

𝑇𝑒

𝑇𝑖
))

0.5

 (2.29) 

 𝐹−(Λ) = 𝑓𝑝 (1 +
12𝜋2𝐷2

Λ2 )

0.5

 (2.30) 

where 𝑇𝑖 and 𝑇𝑒 are the ion and electron temperature respectively, 𝑚𝑖 is the ion mass and 𝑓𝑝 is 

the plasma frequency. 

The overall spectrum (Figure 2.5) is composed of a broad range of frequencies and its shape is 

controlled by an attenuation mechanism known as the Landau damping mechanism. It 

describes the transfer of energy that occurs when the charged particles move in the same 

direction as the wave. It causes attenuation or enhancement of the wave and acceleration or 
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deceleration of the particle according to whatever the wave is respectively faster or slower 

than the particle. 

 

Figure 2.5. Ion spectrum and plasma lines [Beynon and Williams, 1978] (© IOP Publishing.  Reproduced 

with permission.  All rights reserved). 

The spectrum of Figure 2.5 is composed of four spectral lines, which depend on the two 

waves travelling in two different directions. The ion-acoustic wave travels with a velocity that 

is generally slightly higher than the ions and the wave is, therefore, attenuated. This causes the 

two spectral lines to merge together giving the characteristic “double-hump” shape. The ion 

spectrum is then broadened due to the thermal motion of the ions. The steepness of the 

spectrum and the height of the peaks of the spectral lines increase as the ratio 𝑇𝑒 𝑇𝑖⁄  becomes 

bigger. The electron-acoustic waves, instead, travel with a speed that is generally much 

greater than the electrons. The attenuation of the wave is therefore very little and the two 

spectral lines remain sharp. If there is an influx of suprathermal electrons, the spectral lines 

are enhanced and still remain sharp. 

The IS spectrum represented in Figure 2.5  is centred at the transmitted frequency of the radar. 

For incoherent-scatter experiments the radar frequency is chosen as 𝜆 ≫ 𝐷. In normal 

circumstances the bulk of the scattered power is in the ion spectrum but if there is an influx of 

suprathermal electrons or the plasma is excited by a strong incident radio wave (e.g. 

ionospheric heating), then the plasma lines can be enhanced and become more prominent. 

The parameters that can be directly measured by a radar, supposing an adequate signal-to-

noise ratio, are: 

 Electron density. 

 Electron and ion temperature. 

 Ion mass. 
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 Plasma drift velocity. 

 Ion-neutral collision frequency. 

 Electric currents. 

Several other parameters can be determined from the ones listed above like wind speed or 

temperature of the neutral atmosphere but some can require a-priori assumptions.  

2.4 Summary 

This chapter outlined the main characteristics and principles of the ionosphere in relation to 

radio propagation and gives an idea of the complexity of such a medium.  

The characterization of the ionosphere is usually done (at least for the purposes of this thesis) 

according to the electron density.  

GPS dual frequency signals can be used to observe the integrated electron density (or TEC) 

along the satellite-receiver ray path.  This measurement technique is fundamental to the 

research in this thesis. It is, in fact, used in ionospheric tomography in order to reconstruct 

four-dimensional electron density maps of the state of the ionosphere (see Chapter 4 for more 

details). 

The electron density can also be observed using incoherent scatter radar and in situ plasma 

observations. These observations are important in this thesis for verification of results.  
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3 Chapter 3 

State of the art 

Introduction 

This chapter illustrates the literature review for Computerized Ionospheric Tomography 

(CIT). Starting from the first experiments on simulated data from Austin et al. (Texas), the 

main progresses that brought CIT to the current advancement are recalled in Section 3.1. Early 

validations and results are in Section 3.2. The available methods developed by different 

institutions are presented in Section 3.3 while conclusions are in Section 3.4.  

3.1 Origins and evolution of ionospheric tomography 

This section provides the literature review of CIT with comments on the main achievements 

and aspects. In order to do this, a brief introduction to the problem that is solved by CIT must 

be given. More details on the solution of the problem can be found in Chapter 4. 

In a classical CIT approach the ionosphere is divided into a grid where each voxel (a three 

dimensional pixel) is not necessarily equidistant from each other one or has the same size. 

Figure 3.1 shows two satellites transmitting a signal that is received at the ground stations (the 

three square black boxes). The measurement is indicative of the electron content integrated 

along the line of sight between satellites and receivers (sTEC). Each ray is then used to 

retrieve the electron content 𝒏 of the cell it crosses (the grey pixels in the grid for the thicker 

ray path). 

 

Figure 3.1. A simplified picture of the tomography scan scenario. The satellites transmit a signal received by 

the ground station. Each signal carries an information about the TEC integrated along the ray path and it is 

used to calculate the electron content along the ray path (represented by the grey pixels in the grid for one 

particular ray).  

The problem, namely forward problem, is usually written as 

 𝒛 = 𝐀𝒏 (3.1) 
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where 𝒛 is the receiver measurement and 𝐀 a matrix that takes into account the geometry of 

the problem and links the unknown (i.e. the electron content 𝒏 of the ionosphere) with 𝒛. The 

inversion of the matrix 𝐀 results in 𝒏, i.e. the unknown that needs to be estimated. What 

appears like a simple operation has actually a very complicated solution. The errors of the 

instruments due to the ionosphere plus the problem of the limited number of ground stations, 

make the solution typically not unique and unstable. The solution requires a great effort and 

involves knowledge from different research fields like medical imaging, physics and maths. 

Usually, because of the instability of the inversion where data are missing, it is crucial to 

include some external aids or assumption in order to reconstruct as truthful as possible the 

ionospheric scenario observed through the instruments (refer to Chapter 5 for a better 

explanation of the regularization term used to stabilize the inversion). The assumptions of 

stationarity of the medium and geometric limitations such as incomplete data coverage have 

been addressed in the last years and improvements have been obtained [G S Bust and 

Mitchell, 2008]. However, those limitations are important to consider in ionospheric 

tomography in order to correctly interpret the reconstructions. 

The reconstruction techniques in CT can be divided in three main groups (from [Leitinger, 

1996]): 

 Radon-derivating methods. The first studies of the inverse problem and its solutions 

were proposed by Radon [1917]. The method didn’t find any practical application 

until 1956 where it was first applied to radio astronomy [Bracewell, 1956]. Starting 

from the invention of the X-ray computerized tomography scanner [Newbold, 1972], 

the Radon transform has been used mainly for medical purposes in diagnostic 

radiology. The Algebraic Reconstruction Technique (ART) is the first application of 

Kaczmarz’s method to Radon’s integral equation [Natterer, 2001] and has derived the 

Simultaneous Iterative Reconstruction Technique (SIRT), which is a derivative 

version of the original ART. Both are an iterative method where the current version of 

the solution is used to calculate the next iteration according to the following equation 

 𝒏𝑘+1 = 𝒏𝑘 + 𝜚𝑘

𝑧𝑖 − ∑ 𝐴𝑖𝑗𝑛𝑗
𝐽
𝑗=1

∑ 𝐴𝑖𝑗𝐴𝑖𝑗
𝐽
𝑗=1

𝑨𝑖 (3.2) 

where 𝑨𝑖 is the i-th row of the matrix 𝐀, 𝐽 is the total number of rays used for the 

reconstruction and 𝑖 and 𝑗 are the indices for the row and columns respectively. The 

parameter 𝜚 is used to make the solution convergent. The ART and SIRT derive the 

correction for the next iteration from the root mean square (RMS) error difference 

between the observed data 𝒛 and the reconstructed version 𝒏𝑘(here supposed to be a 
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row vector) at the step 𝑘. Both the solutions tend to introduce strong gradients and the 

initial guess shape is usually lost along the iterative process and, because of the ray-

by-ray approach, each ray equation will introduce an error in the pixel just altered by 

the previous equation originating a “salt and pepper” noise. This effect is stronger in 

ART than in SIRT, which is an averaged and then smoothed version. The 

Simultaneous Algebraic Reconstruction Technique combines, instead, the main 

positive characteristics of ART and SIRT and adds a simultaneous correction for all 

the rays in a single step.  

Another technique is the Multiplicative Algebraic Reconstruction Technique (MART) 

which uses the RMS and maintains the shape of the initial guess. It is part of the 

maximum-entropy algorithms i.e. part of the reconstructing theory from incomplete 

data according to probabilistic information. For these and other reasons it is, among 

the Radon techniques, the most used. 

 Model Parameter Fitting. Part of this method is discussed in this thesis. It solves the 

problem by means of the least-squares fitting and using tuning parameters in order to 

stabilize the solution and make it more data or model-like. The model can come from 

a physics model (data-assimilation) or can be just a minimization of the sharpest 

gradients in order to reduce the noise due to incomplete data. These methods often use 

basis functions in order to decompose the vertical profile and the horizontal variation. 

These basis functions help to reduce the dimensionality of the problem and to catch 

the actual variation of the structures isolating, as a consequence, the noise or artefacts. 

A common technique to create some basis functions is the Truncated Singular Value 

Decomposition (TSVD). It is basically used to stabilize the reconstruction avoiding 

the bigger coefficients which could lead to artefacts and instability [Kunitake et al., 

1995]. Another new approach are wavelets. They haven’t still found a practical 

application and only the classic Haar [Amerian et al., 2010] and B-Spline [Durmaz 

and Karslioğlu, 2011; M. Schmidt et al., 2008; Zeilhofer et al., 2009] basis have been 

so far tested. 

 Fourier Reconstruction. It is based on the Fourier Slice Theorem but hasn’t found any 

practical application [Leitinger, 1996]. 

Computerized Tomography (CT) is the process of reconstructing an image from a series of its 

projections [Jeffrey R. Austen et al., 1988] and was formerly used principally in medical 

research [Hounsfield, 1975] with X-ray tomography and, later, to study ocean structures too 

[Munk and Wunsch, 1979]. In 1986 the first feasibility study about using medical tomographic 

algorithms for CIT purposes was proposed by J. R. Austen et al. [1986]. They presented a 

simulation study in order to demonstrate the potential of the technique. By using the SIRT 
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algorithm they reconstructed the VTEC comparing artificial structures also in presence of 

noise. The author used a triangular vertical density profile as initial condition for the 

algorithm. The profile peak was chosen to be close to that used in the simulation. The 

algorithm was based on work by [Censor, 1983], which was preferred for problems with 

limited angle geometry as in CIT. 

In 1988 a more exhaustive study was presented, demonstrating a good correlation between the 

model and the reconstruction [Jeffrey R. Austen et al., 1988]. They compared ART and SIRT 

algorithms in order to reproduce a 2-Dimensional picture of the ionosphere through a model 

of the ionosphere evaluating different initial guesses, noise in the data and number of 

iterations. All the techniques proposed were derived from medical applications. MART was 

used to show the potentiality of such an algorithm in ionospheric tomography where data are 

incomplete [T.D. Raymund et al., 1990]. MART, in fact, was considered an algorithm suitable 

for problems with incomplete data and was proposed by R Gordon et al. [1970]. The model to 

simulate the observations was obtained from IS radar measurements and an initial guess set 

from back projection methods combined with Chapman profiles [Hargreaves, 1995]. The 

work suggested the necessity of introducing a priori information in tomography especially for 

the vertical profile.  

Due to the substantial differences between the medical and ionospheric scenarios a series of 

analyses were done. In fact the principal difference is that, whereas in medical application 

each experiment benefits from dedicated equipment, which implies the best set of 

measurements, in the ionospheric applications there are a series of limitations due to the large 

scale of the problem, measurement restrictions and a non-static medium. For this reason the 

bigger difference between the ionospheric tomography and the X-ray tomography lies in the 

receivers [H Na and Lee, 1992]. Because of the limitations due to the nature of the 

ionospheric experiment, application of a CT technique could lead to limited resolution in the 

reconstructed image. A discussion of these and further limitations are given in [Yeh and 

Raymund, 1991], where three experimental limitations were considered by using radio beacon 

data: 

 View angle limitations. The number of available rays, and therefore the number of 

available observations used for the CIT inversion, is in general limited. The curvature 

of the Earth, in fact, in addition to the measurements at low grazing angles, where the 

signal is particular weak because of a stronger refraction effect, reduce the number of 

available rays which can be used in the reconstruction. 
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 Receiver density limitations. The TEC variation is sampled by the receiving antennas 

in the ground stations. The reconstructed information of the ionosphere could be 

reduced in the case of an under-sampling condition.  

 Finite receiver limitations. In practical considerations the numbers of ground stations 

are finite. This affects the resolution in the reconstructed image and, as argued in the 

paper, the vertical resolution is usually worse than the horizontal one. This problem 

leads to solutions like using vertical basis functions to constrain the solution to be 

better defined in the vertical direction. 

In addition to this, the paper addressed the need to implement a time-dependent algorithm that 

could take into account the temporal variation of the ionosphere during the data collection 

period. The solution to this problem was proposed in a later work [C.N. Mitchell and Spencer, 

2003]. 

Another transformation, rather than the Radon ones, was proposed in [Afraimovich et al., 

1992]. With simulated data, a one dimensional linear algebraic matrix inversion based on least 

squares minimization was implemented. It was called weighted and damped least squares and 

was adapted from acoustic tomography [Menke, 1989]. The optimal reconstruction (the result 

from the inversion) made use of the available data from the observed measurements and the a 

priori information where observations were missing. It used empirical orthonormal functions 

for the vertical profiles and a power law spectrum, based on a reduced set of Fourier basis 

functions, to extrapolate the horizontal variations of the ionosphere (the same approach with 

Fourier basis functions was illustrated in [H Na and Biswas, 1994]). This method was 

extended to two dimensional functions by [T. D. Raymund, 1994] with vertical empirical 

models, which, however, was argued to include enough information in the reconstruction 

process but sufficient for only the large smooth features. They solved, in fact, for the least 

square error by exploiting the orthogonal decomposition algorithm described in [H Na and 

Lee, 1991] making the solution constrained in the space spanned by the model. This resolved 

the not uniqueness solution and opened the way toward optimized solutions (see Section 3.3) 

still based on the minimization of the least square error. The algorithm was intended for large-

scale features but it was argued that the residual TEC error described the features different 

from the background and that other basis functions would better reconstruct smaller scale 

features. 

It was clear at this stage the importance of including a priori information into the 

reconstruction algorithms where data are missing or where the reliability is diminished, 

especially for the vertical profiles [T.D. Raymund et al., 1990]. In 1993 two algorithms were 

developed that incorporated a priori information for resolution enhancements [H R Na, 1993]: 
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the orthogonal decomposition algorithm and the direct Fourier method with bi-directional 

extrapolation. The former used Legendre polynomials in both directions of the two 

dimensional grid. It indicated the advantages of using separable basis functions for the vertical 

(such as IRI) and the horizontal dimensions. The second method was a Fourier domain 

reconstruction, which didn’t depend on the vertical profile distribution, and tried to maximize 

the amount of known information from both the dimensions in the Fourier domain. In [Sutton 

and Na, 1994] it was argued that a priori information must be used to minimize the 

incomplete data and to handle the very poor vertical resolution. They used vertical basis 

functions derived from singular value decompositions from the original data to restrict the 

solution to lie in any particular most probable solution but limited by the a priori information. 

This choice of basis functions gave a good degree of freedom in the solution and a good 

enhancement was shown compared to the case where no a priori information was included. 

Fougere [1995] used a set of linear combinations of orthonormal basis functions coming from 

Chapman profiles. These profiles were used to create horizontal rays to enhance the inversion 

results especially in the vertical. He used a maximum entropy method as a good choice to 

maximize the overall available information. Good results were obtained on inverting a 

synthetic ionosphere derived from Gaussians. In 1997 a three-dimensional grid was used to 

show the potential of reconstructing a three-dimensional picture of the ionosphere [Kuklinski, 

1997]. The experiment used data that simulated a chain of 50 NNSS (see Chapter 2) receivers 

spread over United States collecting data from a single NNSS satellite pass. 

3.2 Early validation results and further improvements 

This section aims to present the first validations of tomographic techniques by using real data. 

The sequence of the experiments thereafter illustrated follows the comprehensive review 

paper by G S Bust and Mitchell [2008]. 

The first application of tomographic reconstruction techniques with real data was conducted 

by the M.V. Lomonosov Moscow State University group [Andreeva et al., 1990]. They 

implemented an iterative algorithm and collected signals from navigation satellites from three 

ground stations placed in Murmansk, Kem and Moscow in March and April 1990. The results 

showed two dimensional pictures with two depletions and some complex structures with high 

gradients. The same year, TEC data collected from a set of U.K. stations were used to 

reconstruct an image of the ionosphere on the night of the 15th December. They used the 

series expansion method, namely SIRT, and an initial guess obtained from Chapman layers 

estimated on a monthly mean data from 1968 to 1970 (solar maximum). The reconstruction 

looked reasonable and confirmed the potential of the technique. A similar experiment was 

proposed from the University of Wales, Aberystwyth [S. E. Pryse and Kersley, 1992]. A chain 
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of two receivers located in Kiruna (Sweden) and Oulu (Finland), collected TEC measurements 

during a satellite pass on 4 September 1986. This experiment was the first to use the European 

Incoherent SCATter (EISCAT) radar as an independent instrument to validate the 

tomographic reconstructions. The CIT images, in agreement with the radar scan, showed a 

northward gradient of the electron density. On December 1990 a special campaign was carried 

out in United Kingdom. In this occasion a chain made up of four receivers located in Lerwick, 

Aberdeen, Hawick and Aberystwyth were used to record TEC from eight consecutive satellite 

passes [S.E. Pryse et al., 1993]. The different images obtained from tomographic 

reconstructions were in good agreement with the 𝑓𝑜𝐹2 measured from an ionosonde and 

illustrated the expected behaviour of the mid-latitude trough.  

Another experiment used EISCAT as the independent instrument for validation [Kersley et 

al., 1993]. The radar ran in a specific meridional mode designed for the comparison with CIT 

reconstructions. The Ionospheric Reference Model (IRI) was used to create the background 

for the ionosphere by ingesting also ionosonde data. Results showed a notable improvement in 

the reconstructed maps. This experiment illustrated the importance to include ionosonde data 

in the reconstruction in order to improve the poor capability of the methods in resolving 

vertical profiles. 

An important step forward was obtained when phase difference techniques were employed in 

place of calibrated TEC values [Kunitsyn et al., 1994a; Kunitsyn et al., 1994b]. The idea, 

already introduced by [Leitinger et al., 1975] was here proposed with some experiments. In 

those works phase differences between adjacent raypaths were demonstrated to be more 

sensitive in the reconstruction of localized electron density gradients than methods based on 

calibrated TEC values. In fact, their results suggested that the offset for the calibration of TEC 

was particularly difficult to estimate in presence of strong gradients of electron density. 

In a joint Russian-American campaign two different approaches (one from the American and 

one from the Russian group) were analysed [Foster et al., 1994]. The experiment used four 

different receivers located in the eastern United States and Canada. Data were recorded from 

NNSS satellites and the Russian Cicada satellites during a midlatitude geomagnetic storm. 

The American group employed the method describes by [T. D. Raymund, 1994] and 

implemented the ionospheric background model as described in [Daniell, 1991]. The Russian 

group, instead, utilized a horizontally stratified ionosphere as model background. The results 

were compared with the Millstone Hill incoherent scatter radar and showed the possibility of 

imaging the changes of the ionospheric structures during the storm by the two methods. 

Further improvements were then introduced in CIT techniques and demonstrated with 

experimental validations. [Markkanen et al., 1995] presented a new method where different 
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peak heights were introduced in the reconstruction process based on the Bayesian approach. 

The method was tested on simulated and experimental data from the Cicada satellites. The 

EISCAT radar was used to compare the reconstructions. The radar was reasonably in 

agreement with the tomographic reconstructions but the ambiguity on resolving ionospheric 

vertical profiles was not solved. Kunitake et al. [1995] presented an extended version of 

Singular Value Decomposition (SVD) used to reconstruct the state of the ionosphere over 

Japan. The method involved the truncation of the smallest SVD coefficients in order to reduce 

instabilities and noise from the data. The comparison with ionosondes and oblique sounders 

showed a good improvement of the results by the truncated SVD method. In [C.N. Mitchell et 

al., 1995] a chain of four receivers was used to image field-aligned irregularities of the 

ionosphere over Scandinavia. The MART algorithm was used and the results were compared 

with the EISCAT radar. The images showed a latitudinally narrow trough with a boundary 

blob on its poleward wall. 

3.3 State of art in CIT 

During past years many different CIT algorithms have been proposed to reconstruct the 

ionosphere. GPS ground stations are used to provide observations for the inversion algorithms 

but other kinds of instruments (e.g. ionosondes or radio-occultation measurements) are in 

general assimilated to improve the reconstruction especially for the vertical profile. 

Furthermore, physics or empirical models that describe the main ionospheric behaviour are 

also used to provide an initial background of the ionosphere and to aid the inversion. They 

provide a good set of values which would otherwise be unavailable due to poor coverage of 

receivers (e.g. on the oceans). A physics model can also be used to forecast the future state of 

the ionosphere. The following techniques try to minimize a functional cost where the 

information coming from instruments and models (physics or empirical) are combined and 

weighted according to the reliability of the information, and eventually interpolated. 

The following sections will describe some of the most significant algorithms used to 

reconstruct and predict the ionospheric behaviour. They use a priori information to drive the 

solution of the inversion and make it as close as possible to the truth.   

3.3.1 IDA4D 

The Ionospheric Data Assimilation four-dimensional (IDA4D) was developed by the 

University of Texas at Austin [G Bust et al., 2000; G Bust et al., 2004; G Bust et al., 2007b]. 

It is based on a three Dimensional Variational (3DVAR) data assimilation algorithm described 

by the Naval Research Laboratories (NRL) for meteorological analysis [Daley, 1991; Daley 

and Barker, 1998]. It uses a minimization technique [G Bust et al., 2000] to produce, at each 

time step, an electron density estimation used as an initial guess for the next step. A four-
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dimensional map of the electron density distribution of the ionosphere is eventually produced. 

It can digest sTEC from different instruments like GPS receivers, incoherent scatter profiles, 

DORIS and Beacon data, and additionally include data from spaced based sources like the 

Scintillation and Tomography Receiver in Space (CITRIS), CHAMP and the Constellation 

Observing System for Meteorology, Ionosphere, and Climate (COSMIC) together with radio-

occultation data [G Bust et al., 2007a]. The 3DVAR algorithm implements a Gauss-Markov 

Kalman filter to provide an estimate of the electron density in the next-time (future) of the 

analysis. The 3DVAR tries to minimize, with a least squares metric, the modelled and 

measured observations. The measurements and the models are weighted out in the inversion 

algorithm according to the reliability of each single observation. This determines what 

observation prevails in the reconstruction. 

The electron density is solved with its logarithmic to ensure that the electron density is 

positively defined. At high latitudes, IDA4D ingests high latitude drift velocities obtained 

from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) algorithm [G Bust et 

al., 2007a]. 

3.3.2 MIDAS 

The Multi-Instrument Data Analysis System (MIDAS) is a software package to solve inverse 

problems. It was developed at the University of Bath and evolved in three different versions: 

 MIDAS version 1. It uses horizontal basis functions in the form of the spherical 

harmonics (see for example [Meggs et al., 2005]). Those basis functions were used in 

a three-dimensional time-dependent algorithm [C.N. Mitchell and Spencer, 2003], 

whose inversion was based on Singular Valued Decomposition (SVD). 

 MIDAS version 2. It is implemented with a Kalman filter based technique [Spencer 

and Mitchell, 2007], where the minimization aims to diagonalize a covariance matrix 

that is used to describe the statistic of the state (e.g. the electron density). 

 MIDAS version 3. This is a 4-D data assimilation technique based on the 3DVAR 

technique. The method which has similarities with the linear Gauss-Newton solver 

explained in [Adler et al., 2007], where the a priori information is calculated in order 

to model a sort of smoothness of the image. The Tikhonov regularization is used to 

solve the inversion in MIDAS and is explained in Chapter 4. The method can also 

incorporate basis functions. 

MIDAS was used as the framework within which the methods and experiments described 

in this thesis were developed. Figure 3.2 shows a block diagram of the main components 

of MIDAS and the blocks (purple) that were modified (see Chapter 1) to produce the 

results in this thesis. 
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Figure 3.2. The block diagram illustrates the main components of MIDAS. The blocks modified in this 

thesis are shown in purple. 

RINEX files are processed and converted sTEC observations, which are used to produce TEC 

maps of the ionosphere through the inversion. MIDAS can also include orthonormal functions 

to describe spatial variations in the ionosphere along the vertical and horizontal dimensions 

(see Chapter 4). The vertical basis functions (namely Empirical Orthonormal Functions, 

EOFs) are used to constrain the vertical profile according to a priori information coming from 

an empirical model (e.g. IRI). A regularization term is also used to stabilize the inversion (see 

Chapter 4). 

3.3.3 GAIM (by USU) 

The Global Assimilation of Ionospheric Measurements (GAIM) is a tomographic tool 

developed by the Utah State University (USU) team [Schunk et al., 2004]. GAIM can exploit 

different data sources coming from ground-based locations (e.g. GPS ground station receivers, 

ionosondes) and space-based platforms. It provides both the specification and forecast of the 

Ionosphere state. There are two different versions, GAIM-GM and GAIM-FP [R Schunk et al., 

2005]. 

The GAIM-GM algorithm implements a 3DVAR algorithm which is fed by the electron 

density distribution obtained from the Ionospheric Forecast Model (IFM) [Schunk et al., 

1997]. It takes into account the electrons, the five main ion species that contribute to create the 

ionosphere (namely NO+, O2+, N2+, O+ and H+), electron and ion temperatures and plasma 

drift due to the Earth’s geomagnetic field. The filter implemented in GAIM-GM is a Gauss-

Markov Kalman algorithm [Scherliess et al., 2006; R W Schunk et al., 2005] and it is the same 

as described for IDA4D. It is a recursive least square procedure which gives an improvement, 

from a statistical point of view, by minimizing the differences between all inputs coming from 

observations and physics models. GAIM-GM is a mature algorithm and it has been selected 

for operational use at the Air Force Weather Agency in Ohama, Nebraska. 
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By contrast, GAIM-FP is a full physics data assimilation model. It implements a more 

sophisticated Kalman filter than the Gauss-Markov filter of GAIM-GM. The physics model 

covers a higher altitude range and includes six ion species (the same of GAIM-GM plus He+). 

This model allows improvements in the results by providing a three-dimensional electric field 

(by means of the International Geomagnetic Reference Field, IGRF) that evolves with time, as 

well as other drivers of the ionosphere like neutral wind and particle precipitation [R Schunk 

et al., 2005]. 

3.3.4 GAIM (by USC/JPL) 

The Global Assimilative Ionospheric Model (GAIM) has been developed by the University of 

Southern California (USC) and Jet Propulsory Laboratory (JPL), under the Multidisciplinary 

University Research Initiatives (MURI) program sponsored by the U.S. Department of 

Defence. 

GAIM can ingest different line-of-sight TEC measurements from, for example, ground-based 

GPS receiver networks and space-borne GPS receivers, and ionosondes. It uses a first 

principle ionospheric model, described through hydrodynamic equations, and given in the 

work of Pi et al. [2003], to numerically solve for ion and electron volume densities. 

The algorithm uses two different approaches [Mandrake et al., 2005] based on 3DVAR and 4-

Dimensional Variational (4DVAR) techniques. The former is the same Kalman gain filter 

described for IDA4D [Daley, 1991] where a continuous data assimilation (or 4-D data 

assimilation) is applied by continuously assimilating data and propagating the model. Here an 

approximation of the Kalman filter is applied. As a huge amount of memory is required for 

the full Kalman filter, the covariance matrices are truncated by keeping only a non-zero 

covariance for a given voxel 𝑗, in a correlation volume defined around the same voxel 𝑗 [G 

Hajj et al., 2004]. This makes the estimation of the future time step covariances based on a 

resolution reduced grid. 

The 4DVAR does not solve for the electron density in space but attempts to solve for the 

drivers of the ionosphere such as production rates, temperatures and wind [G Hajj et al., 2004; 

Wang et al., 2004; Xiaoqing et al., 2004]. It aims to estimate the model-drivers that satisfy the 

minimization requirement. 

3.4 Summary 

This chapter presented the most important achievements in CIT during the last 30 years, 

which included the use of Fourier basis functions. 

Because the inversion can produce some artefacts and the data can be affected by some errors, 

a good representation in terms of basis functions has some advantages. If the basis functions 
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are well adapted to the problem, the source space will be more efficiently represented in the 

new domain and all the variability captured. In this way, the real variability of the ionosphere 

can be better separated from the noisy artefacts introduced by the limitations due to the 

geometry of the problem. In applications based on structure analysis it can have remarkable 

advantages. For example, in electron microscopy, where a resolution around a nanometre is 

required, the noise reduction is definitely essential [Frank, 2006]. Although in CIT the 

resolution is limited by time and geometric limitations, such an approach has still the potential 

to reveal better the structures in the ionosphere. Different basis functions than Fourier based 

ones can be used in CIT, and it will be described in Chapter 4. This is the case of wavelet 

basis functions, which allow to better describe regional variations of TEC in the ionosphere by 

exploiting the concept of sparsity. The concept implies the possibility to represent the 

ionosphere with only a considerably small set of wavelet basis functions. Therefore, the 

solution is found by looking for the minimum number of basis functions in order to efficiently 

represent the ionosphere from the information provided by the observations. The method has 

the obvious advantage of better representing the different scale structures of the ionosphere in 

a more efficient way. The theory of sparsity and its applications to CIT have been analysed in 

Chapter 5 and Chapter 7 by using 2-Dimensional and 3-Dimensional wavelets respectively. 
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4 Chapter 4 

Ionospheric tomography 

Introduction 

This chapter describes the general CIT problem, and solutions that will be used as the basis to 

develop the new methods described in Chapter 5. In particular, Section 4.1 defines the CIT 

problem over a lattice and gives the basic mathematical notation. An implementation of the 

solution through Tikhonov regularization is described in Section 4.2. The inclusion of vertical 

and horizontal basis functions to describe the electron density spatial variation of the 

ionosphere is discussed in Section 4.5. The same section also describes the Multi-Resolution 

Analysis (MRA) through wavelets. Finally, Section 4.6 includes the summary with 

conclusions and further discussions. 

4.1 Definition of the problem of ionospheric tomography 

CIT is an inverse geophysical problem. In this section the mathematical description of the 

problem is provided. The forward problem defines the common scenario of a measurement 

intended as the observation of an entity (or source). The inverse problem, instead, defines the 

opposite situation, i.e. the definition of the entity that produced the observation. The latter 

problem is what is solved in tomography. In mathematical notation this means that given a set 

of observed data 𝑧, tomography aims to determine the model parameters or sources 𝑛. In CIT, 

the basic concept is to use data sets from the GPS constellation (different observations can be 

used, such as radars, radio occultation, etc.) to measure the electron content along the signal 

path from different ground stations placed around the Earth. 

The forward problem can be defined as 

 𝑧 = 𝐴(𝑛) (4.1) 

where 𝑧 is the observed data and 𝑛 is  the source data. The operator 𝐴 can be seen as a 

projection of the source into the observation set.  

Therefore, the source data is obtained by inverting the operator 𝐴 

 𝑛 = 𝐴−1(𝑧) (4.2) 

The inversion is a critical process. In fact, the solution must satisfy the conditions of 

uniqueness and stability. The simple concept of using real data confirms from a physics point 
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of view the existence of a unique ionosphere and, therefore, the existence of a unique solution. 

Unfortunately, almost all geophysical problems are ill-posed. This means that the conditions 

listed above are not satisfied; however it does not mean that a physically meaningful solution 

cannot be found [Zhdanov, 2002]. In an ill-posed problem an infinite number of solutions 

exists but only a subset of the whole set contains the most reasonable solutions. 

Focusing on ionospheric tomography, the source 𝑛 corresponds to the electron density of the 

ionosphere, whilst the observed data 𝑧 represents the TEC measured along the receiver and 

the satellite ray path. The receivers can be satellite-based or ground-based. The latter is 

considered in this thesis. In CIT, one of the main problems is the ground stations coverage. In 

fact, the distribution of ground stations around the globe is uneven and sparse, and this causes 

data gaps (e.g. in the Oceans where ground stations cannot be placed) in the observed data, 

which makes the problem underdetermined and, thus, not invertible. 

The ionosphere is usually discretized in a finite number of samples (or voxels, i.e. three-

dimensional pixels). For a three-dimensional ionosphere with dimension L = LV × LHx
× LHy

, 

the discretization is made in a grid according to the following figure 

 

Figure 4.1. The ionosphere is discretized into a 3 dimensional grid with dimensions 𝑳 = 𝐋𝐕 × 𝐋𝐇𝐱
× 𝐋𝐇𝐲

. The 

grid is stored in a column vector 𝒏 whose coefficients are ordered by columns, as seen in the figure. 

Each sample is then stored in a column vector 𝒏 containing all the discretized values of the 

ionosphere grid, i.e. 

 𝒏 = [𝑛1,   𝑛2, …,   𝑛LV+1, …,   𝑛LV×LH𝑦
, …,   𝑛LV×LHx×LHy

]
𝑇
 (4.3) 

where 𝑛𝑖 represents a defined value of electron density in a given voxel of the grid. 
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The observed data 𝒛 are generated from sTEC measurements, whose definition is recalled in 

Equation (4.4). As described in Chapter 2, the sTEC is the electron density integrated along 

the ray path between the satellite and receiver, which can be discretized, for a single ray 𝑟, as 

 TEC(r) = 𝑧r = ∑ 𝑛s ∙ 𝑎rs

𝐿

s=1

 (4.4) 

where 𝑛s is the electron content in the position s of the grid, and 𝑎rs is the length of the s-th 

ray within the voxel s. Therefore, if the operator 𝐴 is linear, Equation (4.1) can be rewritten as 

a product of matrix and vector 

 𝒛 = 𝐀𝒏 (4.5) 

where 𝒛 and 𝒏 are two column vectors of size 𝑀 and 𝐿 respectively, i.e. 

 𝒛 = [𝑧1,   𝑧2,   𝑧3, …,   𝑧𝑀]𝑇 (4.6) 

 𝒏 = [𝑛1,   𝑛2,   𝑛3, …,   𝑛𝐿]𝑇 (4.7) 

Consequently the matrix 𝐀 is a 𝑀 × 𝐿 matrix of the operator 𝐴. Each element of the data 

vector 𝒛 is considered as one measurement coming from one GNSS ray path. Equation (4.5) 

makes the assumption of a straight ray path. This is a good approximation that works well to 

describe the large structures in the ionosphere [Gorbunov et al., 1997]. 

Because of the limited distribution of ground receivers, usually 𝑀 < 𝐿 and the system is 

generally underdetermined.  

4.2 Tikhonov regularization 

An underdetermined problem has an infinite number of solutions. In order to make the 

solution unique, a regularization (or penalty) term is generally included. This term provides 

extra information that guides the solution toward the most reasonable one. 

In order to solve Equation (4.5) an estimated version of the source model �̂� (or pseudo-

inversion) needs to be found. It provides an estimation of the real observed data 𝒛 as 

 �̂� = 𝐀�̂� (4.8) 

where �̂� is the predicted observation which has to be close enough to the real observed data 

vector 𝒛. By defining a metric, it is possible to have a measure of the “distance” between the 

real and predicted data, and trying to reduce it as much as possible. In this way, it is possible 

to evaluate the accuracy of the inverse problem [Zhdanov, 2002]. Any residual in the 

difference between �̂� and 𝒛 can be due to a number of factors such as errors in the 
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measurements, inexact description of the projection operator 𝐀 or, as described here, 

approximation from the regularization term. 

The inversion can be solved by minimizing a cost function (see Appendix A) through a least 

square algorithm that leads to the following equation 

 �̂� = (𝐀T𝐀)
−1

𝐀T𝒛 (4.9) 

where �̂� is the pseudo-inverse solution. Unfortunately, the pseudo-inverse solution is unstable 

because the undetermined problem [Zhdanov, 2002] makes the inversion singular. A solution 

for ill-posed problems was proposed by the Russian mathematician Andrei Tikhonov in 1977. 

He introduced a regularization method that makes an ill-posed problem well-posed. The 

regularization acts on the operator 𝐀 which, instead of considering all the possible values in N 

space, it selects only a subspace which gives more reliable sources and, therefore, solutions. 

As a consequence, the solution is highly dependent on the type of regularization used in the 

inversion. Tikhonov introduced the following parametric functional cost [Tikhonov and 

Arsenin, 1977] 

 𝑓𝜚(𝒏, 𝒛) = ‖𝐀𝒏 − 𝒛‖2 + 𝜚‖𝐖m𝒏‖2 (4.10) 

The solution �̂� is then obtained by minimizing the functional cost 𝑓𝜚(𝒏, 𝒛) with respect to 𝒏 

 �̂� = min
𝒏

𝑓𝜚(𝒏, 𝒛) (4.11) 

which provides the following solution (namely the Regularised Least Square solution, RLS) 

 �̂� = (𝐀T𝐀 + 𝜚 𝐖m
T 𝐖m)

−1
𝐀T𝒛 (4.12) 

where 𝐖m is a weighted matrix (usually diagonal) and 𝜚 is a parameter that sets a trade-off 

between the best fitting and the most reasonable stabilization [Zhdanov, 2002]. A small 𝜚 

value will reduce the regularization effect. Therefore, if the problem is ill-conditioned, the 

solution would become unstable. The instability may give rise to artefacts/noise in the 

solution. As the 𝜚 value gets bigger, the regularization will drive the solution according to the 

definition of 𝐖m. The weighted matrix can be defined as the Jacobian (first-order partial 

derivatives) or Hessian (second-order partial derivatives) matrix. As a consequence, if 𝜚 is too 

big the regularization would smooth the solution to the point that structures would be barely 

visible. 

To help the inversion, an initial guess 𝒏𝟎 can be used (see Appendix A) in the functional cost 

as follows 
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 𝑓𝜆(𝒏, 𝒃) = ‖𝐀𝒏 − 𝒛‖2 + 𝜚‖𝐖m𝒏 − 𝐖m𝒏𝟎‖2 (4.13) 

The vector 𝒏𝟎 brings other information, which normally comes from a physics model, and is 

part of the data assimilation technique which is not discussed in this dissertation. The initial 

guess provides a background of values that are available where the data from the rays are 

missing or not sufficient. Increasing the 𝜚 parameter will force the solution to behave like the 

physics model along with the choice of 𝐖m (i.e. if the derivative matrix is used, the solution 

will behave like the gradient of the model). 

If 𝐖m is the Hessian matrix, by setting the vector 𝒏𝟎 to zero (for example) the minimization 

algorithm will force the solution to have a small rate of change for big values of 𝜚 and, as a 

consequence, the solution would appear smooth and with little detail. This is true in the case 

of standard Tikhonov regularization, where the model is set to zero. However, for 

completeness, the pseudo solution is thereafter described by including the term 𝒏0. In this 

case the final solution will consist in the model 𝒏0 and the complementary information 𝛿�̂� 

extracted from the observations, which was not present in the model. Thus 

 �̂� = 𝒏0 + 𝛿�̂� (4.14) 

where 𝒏0 is the initial guess (or background) and,  

 𝛿�̂� = (𝐀T𝐀 + 𝜚𝐖m
T 𝐖m)

−𝟏
𝐀T(𝒛 − 𝐀𝒏0) (4.15) 

is the information added to the background obtained from the measurements. The inversion in 

this case is calculated on the difference between the observation data and the projection of the 

background, because this residual information is the component missing in the background. 

Since Equation (4.13) could still be unstable because 𝐖m could not be full rank, another 

parameter 𝛼 can be introduced that could further stabilize the inversion 

 𝑓𝜚,𝛼(𝒏, 𝒛) = ‖𝐀𝒏 − 𝒛‖2 + 𝜚‖𝐖m𝒏 − 𝐖m𝒏𝟎‖2 + 𝛼‖𝒏 − 𝒏𝟎‖2 (4.16) 

The tuning parameter 𝛼 sets the result to be like the model in terms of absolute values. 

Usually α is set to a small value, but in general it is chosen such that 𝛼 ≪ 𝜚. 

4.2.1 Performance of Tikhonov regularization by varying its tuning parameters 

The formulation of Equation (4.16) combines two different regularizations terms governed by 

the parameters 𝜚 and 𝛼. These terms depend on the model 𝒏𝟎, but only the first one is defined 

through the matrix 𝐖m. In order to illustrate the effects of these regularizations, two simple 

two-dimensional experiments were set up, which analysed the regularization with partial and 

full data coverage. The Tikhonov regularization was implemented by setting 𝒏𝟎 to zero and 
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𝐖m to the Hessian matrix. A simple two-dimensional ionosphere was simulated on the basis 

of a normalized profile taken from the International Reference Ionospheric (IRI) model shown 

in Figure 4.2. 

 

Figure 4.2. The ionosphere was created according to this normalized profile, and the same profile has been 

used to create the simulated ionosphere. 

The final two-dimensional ionosphere was created by scaling the same profile with different 

values. The resulting simulated ionosphere is shown in Figure 4.3 together with a hypothetical 

arrangement of rays (green rays in the figure). 

 

Figure 4.3. Simulated ionosphere produced for scaled versions of one IRI profile. Two structures with a 

peak around 300 km are present. The green rays represent the ray path between the satellites and the 

receivers. 

This scenario considered an ionosphere with no GPS coverage on certain regions and with a 

total of 15 ray paths. 
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In Figure 4.4 the 𝜚 parameter is moving from 0.1 to 10 in order to show its effect in the 

reconstruction. The α parameter has been set to 0.1. This is a minimum value chosen 

empirically in order to stabilize the inversion and avoid artefacts in the reconstruction. A 

small value of 𝜚 gives a good result in zones where the rays cross the grid. A bigger value of 𝜚 

still produces a good reconstruction where data is available but also smoothen the region 

where there are no rays. This identifies 𝜚 as a non-critical parameter, and its value can be 

chosen arbitrarily according to necessity. It has to be noted that, where the rays are missing, 

the regularization applies a solution which consists of minimizing the rate of change of 

gradient. Therefore, in the data gap zone, the solution tends to be a straight line. As expected, 

the results show the impossibility of discerning the two structures where rays are not present 

and without any reliable initial guess. A big value of 𝜚 results in a solution that minimizes the 

regularization term ‖𝐖m𝒏‖2 where 𝒏𝟎 was set equal to zero. 

  

Figure 4.4. The original TEC profile (blue) is compared with reconstructed TEC (black) by applying a 

regularization with 𝜶 = 𝟎. 𝟏 fixed and 𝝔 = 𝟎. 𝟏 … 𝟏𝟎. It can be noted that, as 𝝔 increases, the regularization 

tends to reduce the rate of change of the electron content. 



43 

 

 

Figure 4.5. The influence of the parameter 𝜶 in the inversion result is shown here. The image has been 

obtained with 𝝔 = 𝟎. 𝟏 and with different values of 𝜶 = 𝟎. 𝟏 … 𝟏. As 𝜶 gets bigger, the inversion minimizes 

the solution trying to better match the electron content with the 𝒏𝟎 profile (e.g. coming from a model). In 

this particular example, 𝒏𝟎 has been considered a zero vector. 

Figure 4.5 represents the same inversion, but with different parameters compared with Figure 

4.4. Here 𝜚 is fixed to the value 0.1, and 𝛼 is varying from 0.1 to 1. Also, in this case the two 

minimum values are chosen in order to avoid singularities, and therefore artefacts, in the 

inversion. As 𝛼 increases, the TEC values tend toward zero (where there are no rays, and, 

thus, information), constraining the solution to the model (set to zero in this scenario). 

The two parameters 𝜚 and α are important for the inversion result. However, it seems that 

results are more sensitive to α, when they are used together. 

The following case shows a more uniform distribution of rays with a simulated ionosphere 

that was created from scaled versions of one IRI profile (Figure 4.6). 
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Figure 4.6. Simulated ionosphere produced for scaled versions of one IRI profile. Different structures with a 

peak around 300 km are present. The green rays represent the ray path between the satellites and the 

receivers. 

Figure 4.7 shows the root mean square (RMS) error between the true ionosphere and the 

reconstructed one for different values of 𝜚 and 𝛼. The tuning parameters 𝜚 and 𝛼 select, from 

all the possible solutions, the one that better represents the problem. The minimum RMS 

value is, in fact, reached with values of 𝜚 and 𝛼 bigger than zero. Better results are obtained 

with the combination of both the tuning parameters. However, since bigger values produce 

results that move away from the optimum one, it is desirable to keep them small. The correct 

choice of these two values is important as they select a compromise between detail and 

artefacts in the reconstruction. Small values produce results with more detail but also 

artefacts, while bigger values produce results with fewer details but less artefacts. 

 

Figure 4.7. The RMS error between the true (simulated) and reconstructed ionosphere is shown for different 

values of 𝝔 and 𝜶. The figure shows the RMS error for: a) 𝝔 and 𝜶 varying betwwen 0 and 40; b) 𝜶 varying 

between 0 and 40 and 𝝔 equals to 3. Generally these curves present a minimum which is selected for a 

particular value of the two tuning coefficients. 
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4.3 The weighting matrix 

The weighting matrix 𝐖m introduced in Equation (4.10) is defined according to the problem, 

and usually corresponds to the Jacobian (first-order partial derivatives) or Hessian (second-

order partial derivatives) matrix. The most used approach attempts to solve the problem by 

searching for the smoothest solution, and this can be considered as an optimal approach 

[Nesterov and Kunitsyn, 2011]. The solution is found by means of the RLS technique that 

consists in the minimization of the functional cost in Equation (4.16), which depends on the 

values of 𝜚 and 𝛼. 

A general solution considers the weighted matrix to be the Hessian matrix. As explained 

before, this is an optimum choice that allows the reduction of potential artefacts caused by the 

limited geometry of the problem and the uneven distribution of ray path coverage. The 

solution becomes smoother as 𝜚 increases as rapid variations of electron density between 

adjacent voxels will not be allowed. 

There is no particular reason to use the Jacobian instead of the Hessian matrix, and usually 

they do not introduce an appreciable difference in the results. However, it must be noted that 

the second derivative is a stronger definition from a mathematical and physics point of view 

than the first derivative. Generally, from the physics aspect, the real world does not have 

discontinuities, and functions are infinitely differentiable. Therefore, the second derivate 

assumption can be considered as a good choice. Other constructions, even if not explicit, exist 

and are explained in Chapter 5. Another application of the regularization is in the definition of 

the time dimension when observations are collected within a long time window. A time-

regularization term can be constructed similarly to the one defined in this chapter for the 

horizontal variation of the electron density of the ionosphere. The application of the 

regularization in time is explained in Chapter 7 with an analysis based on real GPS data. 

4.4 Resolution Matrix 

Section 4.3 showed the possibility to solve the inverse problem and identify a unique solution 

by means of a regularization term. However, the reliability of the reconstruction could be very 

limited, especially in zones where data are completely missing or few. The resolution matrix 

identifies the zones where the inversion has a good reliability and where it has not. It also 

provides a good picture about the data dispersion. 

According to Equation (4.12) the pseudo-inverse solution is 

 �̂� = (𝐀T𝐀 + 𝜚 𝐖m
T 𝐖m)

−1
𝐀T𝒛 (4.17) 

where 
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 𝒛 = 𝐀𝒏 (4.18) 

By inserting Equation (4.18) into Equation (4.17) the definition of the model resolution matrix 

𝐑𝐦 is obtained 

 
�̂� = (𝐀T𝐀 + 𝜚 𝐖m

T 𝐖m)
−1

𝐀T𝒛 = 

(𝐀T𝐀 + 𝜚 𝐖m
T 𝐖m)

−1
𝐀T𝐀 𝒏 = 𝐑𝐦 𝒏 

(4.19) 

where 

 𝐑𝐦 = (𝐀T𝐀 + 𝜚 𝐖m
T 𝐖m)

−1
𝐀T𝐀  (4.20) 

The aim of any inversion technique is to have the pseudo-inverse solution �̂� as close to the 

true solution 𝒏 as possible; which implies that the resolution matrix 𝐑𝐦 has to be an identity 

matrix. The measure of how far the resolution matrix is from being an identity gives 

information about the reliability of the inversion for a well-defined point. The columns of the 

resolution matrix are called Point Spread Functions (PSF) and represent the response of the 

inversion to a delta-like impulse in the model. It describes well the actual resolution of each 

cell. Figure 4.8 (right) represents a pictorial figure of an ideal resolution matrix with all ones 

in the diagonal apart from the sixth column where the values are spread into different pixels. 

The wide shape of the PSF means that the resolution associated to a given cell in the 

ionosphere grid is wider, and hence, its value oversteps the contiguous pixels (Figure 4.8 left). 

In this case, the value of the cell is not representative of the single cell itself, but of a wider 

area making the resolution poorer. 

 

Figure 4.8. The resolution matrix (right) gives information about the reliability of the solution obtained 

through inversion techniques. The columns are called point spread functions (PSF) and are representative of 

the actual resolution of a particular cell in the grid (left). If the PSF is not a delta like function, the value of 

the cell is spread to the neighbours and its resolution is decreased. 

In contrast, the rows of the resolution matrix are known as the Backus-Gilbert (BG) kernel or 

Averaging Kernel (AK). The BG kernel is defined as the operator that projects the true source 
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𝒏 into the approximated solution �̂�. If the rows are delta-like functions, then the approximated 

solution will not be estimated (averaged) by any other value but itself in the true solution. 

Therefore the approximated solution will coincide with the true solution. 

In the same way as the model resolution matrix 𝐑𝐦, it is possible to define the data resolution 

matrix 𝐑𝐝. According to Equation (4.17) the data generated by the pseudo solution �̂� is given 

by 

 �̂� = 𝐀�̂� = 𝐀(𝐀T𝐀 + 𝜆 𝐖m
T 𝐖m)

−1
𝐀T𝒛 = 𝐑𝐝𝒛 (4.21) 

where 

 𝐑𝐝 = 𝐀(𝐀T𝐀 + 𝜆 𝐖m
T 𝐖m)

−1
𝐀T (4.22) 

With the same consideration of the model resolution matrix, if the data resolution matrix is an 

identity, the prediction errors are zero (�̂� = 𝒛) and 𝒛 is completely resolved in �̂�. 

4.5 Basis function decomposition 

The inverse problem has been so far described on a three-dimensional grid where each voxel 

has contributed independently from the others. The regularization term was then applied in 

order to better correlate nearby voxels, for example by smoothing big variations of electron 

densities in the reconstruction. Another approach is the use of basis functions that exploits the 

vertical and the horizontal correlation of structures in the ionosphere. 

The space of the source data 𝒏 can be decomposed into the sum of weighted basis functions 

(Figure 4.9). 

 

Figure 4.9. The signal 𝒏𝒊 can be represented as the sum of different basis functions 𝝓𝒊𝒋 weighted with the 

coefficients 𝒙𝒋. 
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The Fourier transform is an example of how a signal can be decomposed into the sum of 

harmonics with different wavenumbers. The decomposition can be applied to both the vertical 

profiles and the horizontal variations of electron densities. Furthermore, the vertical and 

horizontal basis functions can be coupled together in the set represented by the matrix 𝐊. 

According to Figure 4.9 it is possible to rewrite the problem of Equation (4.5). Assuming 

there are a total of V basis functions, 

 𝒛 = 𝐀𝒏 = 𝐀𝐊𝒙 (4.23) 

where 

 𝐊 = [𝝓𝟏,   𝝓𝟐,   𝝓𝟑, …,   𝝓𝑽] (4.24) 

with 𝐊 ∈ ℝL×V, 𝒙 ∈ ℝV×1, 𝐀 ∈ ℝM×L, and 𝝓𝒊 ∈ ℝL×1 is the i-th basis function. If the basis 

functions satisfy the following identity 

 𝐊T𝐊 = 𝐈 (4.25) 

the basis functions form an orthonormal set. Thus, the solution with the basis function 

decomposition becomes (Appendix A) 

 �̂� = (𝐊T𝐀T𝐀𝐊 + ϱ𝐊T𝐖m
T 𝐖m𝐊 + 𝛼𝐊T𝐊)

−𝟏
𝐊T𝐀T𝒛 (4.26) 

where 𝑥𝑖 represents the i-th coefficient associated with the basis function 𝝓𝒊. 

Good basis functions can extrapolate information from the observed data through the 

inversion and isolate noise (artefacts) from the useful data. In general, for structural analysis 

(where structures are investigated), the damping stage of the coefficients �̂� becomes 

important. A common technique used in inversion problems is the shrinkage function (for 

example [D.L. Donoho, 1992; D. L. Donoho and Johnstone, 1994a; Fodor and Kamath, 

2003]). It allows removing those coefficients that could potentially cause artefacts in the 

reconstruction. More details on the shrinkage function and its implementation in the 

regularization term can be found in Chapter 5. Furthermore, by selecting only a small 

representative set of basis functions it is possible to reduce the size of the problem described 

by Equation (4.23) and, therefore, the related computational problem. This is, for example, the 

case in the vertical Empirical Orthonormal Functions (EOFs) described in the following 

subsection. 

4.5.1 Vertical Basis Functions 

The vertical (along the altitude) resolution from a GPS measurement is usually very poor [T. 

D. Raymund et al., 1994], and it can affect the inversion technique by creating TEC profiles 
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which are not true representations of the ionosphere. A common procedure is to introduce 

some a priori information into the reconstruction algorithm by using orthogonal 

decomposition [Sutton and Na, 1994]. It constrains the vertical distribution of the 

reconstructed profile to a space which depends on the a priori information. Singular Value 

Decomposition (SVD) [Hansen, 1987] is a method that can be used to extrapolate a set of 

vertical basis functions from, for example, the IRI-95 model [Fremouw et al., 1992; Howe et 

al., 1998; C.N. Mitchell and Spencer, 2003]. A minimum of three basis functions can be used 

to define the height of the peak and width of the electron density profile along the altitude. 

One direct consequence of this approach is that the number of unknowns in the Equation (4.5) 

is dramatically reduced. This also decreases the computational effort to calculate the 

inversion. The solution can thus be written as  

 𝑛𝑚 = ∑ 𝑘𝑚𝑙 ∙ 𝑥𝑙

𝐿

𝑙=1

 (4.27) 

where 𝑥𝑙 is the 𝑙-th coefficient that weight each vertical basis 𝒌𝑙, and 𝑛𝑚 the m-th element of 

𝒏. In matrix notation it is possible to rewrite the Equation (4.5) by inserting Equation (4.27) as 

 𝒛 = 𝐀𝐊𝐕𝒙 (4.28) 

where 𝐊𝐕 is the matrix containing vertical basis functions. The solution of Equation (4.28) is 

the same as that of Equation (4.26). 

These vertical basis functions are usually obtained from empirical models (e.g. IRI), and, as 

such, are called Empirical Orthonormal Functions (EOFs). In addition to reducing the order of 

the problem, they also compensate for the fact that the matrix 𝐀 is sparse. The source data 𝒏 

are represented by the coefficients 𝒙 of the EOFs, giving a good representation of the whole 

vertical profile even if data are missing. For example, it is sufficient to have a single ray 

crossing the whole two-dimensional grid in order to reconstruct the entire profiles in the same 

grid. It must be noted that the EOFs vary significantly with the day, hour, season and sun 

activity. This variation should be taken into account when global maps are calculated [Erturk 

et al., 2009]. 

4.5.2 Horizontal Basis Functions 

For the ionosphere, vertical basis functions represent a scenario that completely differs from 

the horizontal variation of electron content. Thus, it is useful to define a new set of basis 

which best suit the horizontal behaviour, in addition to the vertical basis functions. 

One classical approach to obtain the horizontal basis function is by means of SVD. 

Historically, the method has been used for image restoration and is useful for reducing noise 
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[Huang and Narendra, 1975]. It is also often used to reduce singularities in an inverse 

problem (for example [Amerian et al., 2010; G A Hajj et al., 1994]). 

Others basis functions are also adopted that take into account factors such as periodicities 

(using spherical harmonics) or localized variations (using wavelets). These are discussed in 

this section. 

4.5.2.1 Spherical harmonics 

Spherical harmonics define a complete set of basis functions over the sphere and consist of a 

Fourier basis for longitude increments at fixed latitudes and a Lagrange polynomial (along the 

latitude) at fixed longitudes. The Fourier basis functions have a long domain and are made up 

of sinusoids. For this reason, they are able to identify periodicity (in terms of wavenumber) 

but fail where the signal has local variation. Due to the direct relationship with the 

wavenumber, the transformed domain is referred to as the wavenumber domain. 

Spherical harmonics basis functions are defined as [Press et al., 2007] 

 𝑌𝑙,𝑚(𝜃, 𝜙) = 𝐾𝑙,𝑚 𝑃𝑙
𝑚(cos 𝜃)𝑒𝑖𝑚𝜙 (4.29) 

where 𝜃 and 𝜙 are the latitude and longitude respectively, 𝑃𝑙
𝑚 is the Legendre polynomial and 

the normalization constant 𝐾𝑙
𝑚 is 

 𝐾𝑙
𝑚 = √

(2𝑙 + 1)(𝑙 − 𝑚)!

4𝜋(𝑙 + 𝑚)!
 (4.30) 

Equation (4.29) define a spherical harmonic in terms of two integer parameters: the order 𝑙 

and the degree 𝑚2, which are related by −𝑙 ≤ 𝑚 ≤ 𝑙. In practice, the order 𝑙 acts similarly to 

a frequency in the spherical domain, which can be limited to a maximum value in order to 

create a band-limited approximation of a signal. 

4.5.2.2 Wavelets 

Wavelets are functions used to decompose a signal into different refined versions in which the 

feature of the signal can be extrapolated. The difference between the spherical harmonics 

transform and wavelets is that, while spherical harmonics can identify the presence of a 

particular wavenumber in a signal, they cannot localize the instance (time or distance) when 

that wavenumber appeared. In contrast, wavelets allow the localization (in time or distance) of 

a particular event, but they are not directly correlated with the wavenumber. 

A wavelet family is defined in terms of dilation 𝑎 and translation 𝑏 of a mother function 𝜓(𝑡) 
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 Ψ𝑎,𝑏(𝑡) =
1

√𝑎
Ψ (

𝑡 − 𝑏

𝑎
) (4.31) 

where the factor 1 √𝑎⁄  is chosen to satisfy the orthonormal constraint 

 〈Ψ, Ψ〉 = 1  (4.32) 

and 〈∙〉 represents the inner product. 

Thus, a signal 𝑔(𝑡) can be decomposed through wavelets according to the following 

transformation 

 𝐺(𝑎, 𝑏) = ∫ 𝑔(𝑡)
+∞

−∞

1

√𝑎
Ψ∗ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡 (4.33) 

Generally, for practical application, the number of Ψ(t) coefficients is reduced to a discrete 

subset by constructing an orthonormal set of discrete basis functions obtained by sampling the 

continuous ones [Mallat, 2008], i.e. 

 𝜓𝑎𝑏(𝑠) = Ψ(2𝑎𝑠 − 𝑏Δ𝑠) (4.34) 

where 𝑠 is a discrete variable, and Δ𝑠 the distance between two contiguous samples 𝑠. The 

continuous scale parameter in Equation (4.34) has been replaced by a dilation scaled by a 

power of two, and the translation by multiples of the distance Δ𝑠 [Frank, 2006]. 

4.5.3 Multi-Resolution Analysis 

The wavelets are suitable basis functions which can be exploited to extract information from a 

signal independently from its structure [Daubechies, 1992]. A further important concept 

regarding wavelets is the multi-resolution analysis (MRA), which is based on defining a 

nested set of vector spaces [Keinert, 2003; Stollnitz et al., 1995]. Here, one signal can be split 

into a series of different levels - each of them with different details and resolution - by using 

wavelet decomposition. Figure 4.10 gives a pictorial representation of the multi-resolution 

concept. A full resolution image (for example with a maximum level 2, L2) is decomposed 

into two versions: level zero (L0) and level one (L1), and the number of the level corresponds 

to the value of 𝑎 in Equation (4.34). The L1 level resolution is reduced by a factor of two in 

comparison to L0, as described in Equation (4.34). 
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Figure 4.10. The multi-resolution decomposition allows decomposing the signal into different levels. Each 

level takes into account different details and resolutions. 

Each level in Figure 4.10 can be seen as a coarser version of the level that comes after. In 

order to reconstruct the signal, the details which have been lost in this process have to be 

restored. Therefore, the wavelet transform has to be capable of separating the “averaged” or 

coarse version of a signal from the detailed part of the same signal. Thus, the wavelet basis 

consists of two sets of basis: the scaling function for the averaged version and the wavelet 

function for the detailed one. 

As mentioned before, the nested subspace is the main concept used in MRA, which is defined 

as an infinite nested sequence of subspaces 𝑉𝑖 with the following properties 

 ⋯ ⊂ 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 ⊂ 𝑉3 ⊂ ⋯ (4.35) 

The sum of all nested subspaces produces the full resolution version. Any subspace 𝑉𝑖 

represents the signal 𝑔 with a different resolution and detail, and any function in 𝑉𝑖+1 is a 

higher resolution approximation of the same function in 𝑉𝑖. In conjunction with subspace 𝑊𝑖 

from the wavelet function, the higher resolution is obtained as follows 

 𝑉𝑖 ⨁ 𝑊𝑖 = 𝑉𝑖+1 (4.36) 

However, since wavelet and scaling subspaces are not distinct, the following identity is still 

valid 

 𝑉𝑖 = 𝑉𝑝⨁ (⨁ 𝑊𝑘

𝑖−1

𝑘=𝑝

) (4.37) 

This implies that 𝑊𝑘 is also a subspace of 𝑉𝑖 for 𝑘 < 𝑖. The level 𝑖 can be obtained by using 

the approximation 𝑉𝑝 together with all the details at finer resolution [Keinert, 2003]. 

Figure 4.11 illustrates the MRA concept for a one dimensional signal. The top graph 

represents the signal 𝑔 at its maximum resolution. Two figures are shown for each level of 

decomposition, the coarse (left) and detailed (right) part. Level 0 is the lowest resolution, 

which can be intended as the averaged value of the whole signal 𝑔. The finer part of the same 
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level is used to reconstruct the signal in its higher resolution version. By increasing the 

resolution the coarse part will also have better detail, while the finer one will have even more 

finer details.  

 

Figure 4.11. A signal 𝒈 (top signal) can be split into different levels of approximation. Each level contains a 

different “version” or approximation of the signal, in terms of details as well as resolution. According to 

wavelet theory, it can be divided into a part which takes into account an averaged behaviour (the two left 

signals), and into a series of other versions which capture the details needed to describe the whole signal (the 

signals on the right). Each level of approximation can be reconstructed by means of the previous levels 

according to the formula 𝐕𝐢 = 𝐕𝟎⨁(⨁ 𝐖𝐤
𝐢−𝟏
𝐤=𝟎 ). 

The MRA is obtained with the Discrete Wavelet Transform (DWT), which is described 

according to scaling and wavelet functions. A common implementation of this is given by the 

following equations 

 𝑔𝑎−1(𝑏) = ∑ ℎ1(𝑘 − 2𝑏) 𝑔𝑎(𝑘)          𝑔𝑎−1(𝑏) ∈ 𝑉𝑎−1

𝑘

 (4.38) 

 𝑑𝑎−1(𝑏) = ∑ ℎ2(𝑘 − 2𝑏) 𝑔𝑎(𝑘)          𝑑𝑎−1(𝑏) ∈ 𝑊𝑎−1

𝑘

 (4.39) 

The transformation consists of the convolution of translated versions (by a factor of 𝑏) 

between the recursion coefficients ℎ1(𝑘) and ℎ2(𝑘) and the signal 𝑔 at the current resolution 

𝑖. The equations above describe the decomposition of the signal 𝑔 into two parts, a lower 

resolution 𝑔𝑎−1 and the details 𝑑𝑎−1. The recursions coefficients are chosen according to the 

wavelet family that is used (e.g. Daubechies 4 or discrete Meyer). This implementation is 

commonly used in signal analysis because it can be implemented efficiently and with little 

computational complexity. For CIT a matrix representation (as in Equation (4.23)) of ℎ1 and 
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ℎ2 is more useful. The same decomposition, in fact, can be written according to Equation 

(4.37) by setting 𝑝 equal to zero [Stollnitz et al., 1995]. 

Therefore, MRA can be expressed through the following equation 

 𝒛 = 𝐀𝒏 = 𝐀𝐊𝐇𝒙 = 𝐀 ∙ [𝝋𝟏,   𝝋𝟐,   𝝋𝟑, …,   𝝋𝑽] ∙ [

𝑥1

𝑥2

⋮
𝑥𝑉

] (4.40) 

where 𝐊𝐇 is the matrix that contains the basis functions that describe the horizontal variation 

in the ionosphere, 𝝋𝟏 is the scaling function, and 𝝋𝒊 for 𝑖 = 2 … 𝑉 are the different translated 

and scaled versions of wavelets. 

4.6 Summary 

This chapter explained the theory of tomography, defined as an inverse problem, and how it 

can be applied to the ionosphere. In particular, the Tikhonov regularization was used to 

stabilize the inverse problem and produce a valid solution. The regularization uses different 

parameters and their effects in the solution were discussed with a simple simulation of a two-

dimensional ionosphere. Furthermore, the concepts of vertical and horizontal basis functions 

and their use in decomposing the ionosphere were explained. Wavelet decomposition was 

then introduced, which allows the compact (or sparse) representation of structures in the 

ionosphere. This is the main concept used in this thesis. Sparsity is used to define a different 

regularization term, which depends on wavelets and their multi-resolution analysis. Chapter 5 

will explain the use of a sparse regularization term together with 2-Dimensional wavelets, 

which will be used in Chapter 6 to describe the horizontal variation of the ionosphere. An 

extension of the method for 4-Dimensional ionospheric reconstructions will be described in 

Chapter 7, where 3-Dimensional wavelets will be used with the third dimension accounting 

for the time variation of the ionosphere. 
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5 Chapter 5 

Sparse regularization techniques 

Introduction 

A key problem in ionospheric tomography is the sparse and inhomogeneous distribution of 

measurements. This is due to the lack of availability of receiver sites and the cost of 

deployment, which results in a set of observations that are non ideal in distribution. This 

chapter describes the theory of sparse regularization, and how it can be applied to the 

ionospheric problem. The algorithms used for the experiments are also discussed. 

The sparsity of ground receivers was formerly addressed in [M. Schmidt et al., 2008]. They 

observed that observations tend to have a clotted-like distribution, and that motivated the 

choice of using B-spline basis functions. B-splines are a family of wavelet basis functions, 

which are known for their properties of scalability, and for their ability to represent localized 

structures in a compact form. This is also known as MRA [Mallat, 2008], which defines the 

ability of the wavelets to describe structures at different scales and positions. In this thesis, 

wavelets were combined with a proper implementation of sparse regularization, fully 

embedded in the CIT algorithm. In fact, as discussed in [D. L. Donoho, 2006], the optimum 

combination of compactness and accuracy in the reconstruction cannot be obtained with 

simple threshold techniques, but requires a proper implementation of sparsity-constrained 

algorithms, which will be explained in this chapter and implemented on real and simulated 

case studies in Chapters 6 and 7. In this way, the sparse distribution of observations can be 

addressed more efficiently, as with the way structures are extrapolated from the observations. 

An efficient representation of the ionosphere in terms of wavelets allows the weakest 

structures to be extracted and better isolated from noise (i.e. artefacts in the reconstructed 

maps). Further advantages can be obtained with MRA: firstly, the uneven distribution of the 

observation can be tackled by the scalability of the wavelets. Secondly, the solution will 

appear as richer in detail as the number of observations allows it. This means that if the 

measurements are good enough in quality and number, the best-case reconstruction will look 

sharp and with a good level of detail. On the contrary, the solution will be represented without 

fine details and by using only the large scale basis functions. This is automatically obtained by 

selecting the most important coefficients that contribute to the reconstruction.  
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The sparse-regularization method with wavelets is believed to be its first implementation in 

CIT. It must be noted that sparse regularization is not limited to wavelets only, and any other 

basis function that can compactly represent the structures can be used. 

Section 5.1 describes the inverse problem by including the biases and defines the final 

notation that will be used in Chapter 6 and Chapter 7. Section 5.2 discusses different 

regularization terms, in particular the sparse regularization. The implementation of the 

regularization technique is presented in Section 5.3, and in Section 5.4 a comparison of these 

different techniques is proposed with some simple examples. Conclusion and final discussion 

are in Section 5.5. 

5.1 The calibration of relative measurements in CIT 

The CIT problem described so far has intentionally neglected the offset that affect GPS 

measurements (see Chapter 2 for more details) in order to not overload the notation and the 

amount of information discussed. Therefore, Equation (3.23) needs to include the offsets 𝒃, 

and becomes 

 𝒛 = 𝐀𝐊𝒙 + 𝐁𝒃 (5.1) 

where 𝐀 is the projection matrix that maps the electron content into measurements 𝒛, and 

depends on the geometry of the problem, and 𝐊 is the matrix containing the vertical and 

horizontal basis functions as described in Chapter 4. The projection matrix 𝐁 maps the offset 

of each ray (observation) into a single offset for each receiver-satellite pair and is defined as 

 𝐁𝑖𝑗 = {
1 if 𝑏𝑗 is the offset of 𝑧𝑖

0 otherwise
 (5.2) 

Therefore, the solution associated to the inverse problem is calculated as 

 (�̂�, �̂�) = min
(𝒙,𝒃)

𝑓(𝒙, 𝒃) (5.3) 

where �̂� and �̂� are the pseudo-solutions of the basis function coefficients and the offsets 

respectively, and 

 𝑓(𝒙, 𝒃) = ‖𝒛 − 𝐀𝐊𝒙 − 𝐁𝒃‖2 + 𝛼 𝒫(𝒙) (5.4) 

The function 𝒫(𝒙) defines the regularization (or penalty) term that makes the inversion a 

well-posed problem. The regularization term is written with the general notation 𝒫(𝒙) in 

order to associate it to different implementations (for example Tikhonov regularization). The 

parameter 𝛼 sets a trade-off between the best fitting and the most reasonable stabilization 

[Zhdanov, 2002]. 
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𝒫(𝒙) is supposed to operate on 𝒙 only and not on the offsets 𝒃, which will not be constrained 

by any assumptions coming from the regularization. The parameter 𝛼 sets a trade-off between 

the best fitting and the most reasonable stabilization [Zhdanov, 2002]. This justifies the 

different notation of �̂� in order to distinguish the approximation from the true 𝒙. 

The functional 𝑓(𝒙, 𝒃) is highly computationally expensive and, therefore, is not practically 

useful. 

By expanding Equation (5.3) and Equation (5.4) it is possible to write (see Appendix B) 

 𝑓(𝒙) = ‖𝒛 − 𝐀𝐊𝒙‖𝐂
2 + 𝛼 𝒫(𝒙) (5.5) 

Where the calibration matrix 𝐂 is formed from Laplacian matrices and is defined as 

 𝐂 = 𝐈 − 𝐁(𝐁𝐓𝐁)
−𝟏

𝐁𝐓 (5.6) 

A similar approach is described in [Spencer and Mitchell, 2011]. The differences are that in 

Equation (5.6) an explicit relationship between the estimated biases �̂� and the reconstruction �̂� 

is provided, which is shown later in Equation (5.8). The solution of Equation (5.5) is 

coincident with the solution that would be obtained from Equation (5.4). 

The solution �̂� is obtained by minimizing Equation (5.5) over 𝒙, given that 𝒫(𝒏) is 

differentiable. Thus, 

 �̂� = (𝐀T𝐊T𝐂𝐀𝐊 + 𝛼 
1

2

𝜕𝒫(𝒙)

𝜕𝒙
)

−1

𝐊T𝐀T𝐂 𝒛 (5.7) 

The offsets �̂� can then be recovered as 

 �̂� = (𝐁T𝐁)
−1

𝐁T(𝒛 − 𝐀𝐊�̂�) (5.8) 

The observations 𝒛 generally have a negligible noise term, but in the presence of ionospheric 

structures and because the ionosphere is not a static medium, there could be small variations 

in sTEC even between nearby ray paths. Therefore, the discretization of the ionosphere into a 

grid is important, which causes the measure ‖𝒛 − 𝐀𝐊𝒙‖2 to never reach zero; allowing a 

representativity error due to the complexity of the medium to be acceptable. The minimization 

of Equation (5.5) aims to have the reconstruction matching the observations (where data are 

available) up to a residual noisy term. Therefore, the regularization term 𝒫(𝒙) becomes the 

most important term, which will be discussed in Section 5.2. 
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5.2 The regularization term 

In this section, the regularization term is described in more detail by focusing in particular on 

the theory of sparse regularization. Recently, the sparse regularization has become an 

interesting alternative to the standard Tikhonov approach (see e.g.[D. L. Donoho et al., 

2006]). This is due to its property of uniqueness of the solution and the advantages that a 

sparse solution implies in fields like data compression, signal extraction and noise removal. 

The theory is explained by using the general definition of the norm to express the measure of 

the quantity that is used in the regularization term. This term is used to stabilize and make the 

solution unique.  

The regularization term 𝒫(𝒙) described in Section 5.1 takes into account a measure that is 

used to regularize the inverse problem associated with Equation (5.5). The regularization term 

can be expressed in different ways. A proper choice of 𝒫(𝒙) makes Equation (5.5) convex, 

which guarantees the existence of a global minimum. In general terms, the regularization can 

be seen as the measure of a distance of the current solution from the one that has minimum 

length. This length or distance can be computed in different ways, with different norms. The 

general definition of norm can be written as 

 ‖𝒂‖𝑝 = (∑‖𝑎𝑖‖𝑝

𝑖

)

1 𝑝⁄

 (5.9) 

where 𝑝 = 0,1,2 … identifies the different ℓ𝑝-norm, and 𝑎𝑖 is an element of the vector 𝒂. 

Special cases are the ℓ0-norm 

 ‖𝒂‖𝟎 = #(𝒊|𝒂𝒊 ≠ 𝟎) (5.10) 

where # represents the number of elements, and the ℓ∞-norm 

 ‖𝒂‖∞ = 𝐦𝐚𝐱
𝒊

(‖𝒂𝒊‖) (5.11) 

5.2.1 𝓵𝟐 regularization (or Tikhonov regularization) 

The most classical approach to regularize the inverse problem associated with Equation (5.5) 

is by using an ℓ2 norm (or Tikhonov regularization)  

 𝒫(𝒙) = ‖𝐏𝐊𝒙‖2
2 (5.12) 

where matrix 𝐏 is used to select only a subspace of the possible solutions and stabilize the 

solution of Equation (5.7) toward a physically acceptable solution. The ℓ2 norm is defined as 

‖𝒂‖2 = √∑ |𝑎𝑖|2
𝑖

2
. The matrix 𝐏 can be simply set to the identity matrix (see, e.g.[C.N. 
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Mitchell and Spencer, 2003]). If the basis functions are orthonormal, the energy in the 

transformed domain is maintained and then Equation (5.12) can be written as 

 𝒫(𝒙) = ‖𝒙‖2
2 (5.13) 

Figure 5.1 represents a two dimensional sketch (based on [D. L. Donoho et al., 2006; Shi et 

al., 2013]) of how the ℓ2 regularization finds the minimum solution 

 

Figure 5.1. A two dimensional pictorial representation of the minimum solution for the 𝓵𝟐 regularization. 

The 𝓵𝟐 ball is a circle that corresponds to the points with the same norm ‖𝒙‖𝟐
𝟐. The grey and thick line 

represents all possible solutions that satisfies ‖𝒛 − 𝐀𝐊𝒙‖𝐂
𝟐 < 𝜹. The unique solution is found at the 

intersection of the circle with the line. 

In two dimensions, the ℓ2 ball corresponds to a circle. It represents all the points with the 

same ℓ2-norm ‖𝒙‖2
2 from Equation (5.13). The tick grey line represents all possible solutions 

which satisfy 

 ‖𝒛 − 𝐀𝐊𝒙‖𝐂
2 < 𝛿 (5.14) 

The black line, instead corresponds to all possible solutions equals to a fixed value of 𝛿 (e.g. 

zero). The final solution is found at the intersection of the black line with the ℓ2 ball, and is 

described with a linear combination of 𝒙𝟏 and 𝒙𝟐. It corresponds to the minimum-length 

solution with the minimum residual. Figure 5.1 supposes that an exact solution is found, i.e. 

the left-hand term of the inequality of Equation (5.14) equals to zero. In this case the solution 

is defined as the vector 𝒙 that satisfies the following problem 

 ‖𝒙‖2
2 subject to ‖𝒛 − 𝐀𝐊𝒙‖𝐂

2 = 𝛿 (5.15) 

Therefore the real solution is illustrated by the black line in Figure 5.1. It must be noticed that 

the definition of the problem as in Equation (5.15) is different from the one defined in 
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Equation (5.14). However, a proper selection of the parameter 𝛼 makes the two problems 

equivalent [Bruckstein et al., 2009]. 

The identity matrix used here is the simplest form that can be used for the matrix 𝐏. Another 

suitable choice is the Laplacian matrix. In this case Equation (5.12) can be written as 

 𝒫(𝒙) = ‖∇2𝐊𝒙‖2
2 (5.16) 

This choice will favour the smoothness in the solution, preventing the solution having rapid 

oscillations.  

5.2.2 𝓵𝟎 regularization (or sparse regularization) 

Another interesting approach for regularization is obtained by promoting the solution to be 

sparse in terms of the number of basis function coefficients. This assumes that the basis 

functions can compactly represent the structures that characterize (in CIT)  the ionosphere. A 

sparse solution, where only relatively few coefficients are the most important, has significant 

advantages. It allows the simplification of the problem, increasing the compression of data, 

and improving the noise removal from the data [Tsaig and Donoho, 2006]. The problem was 

initially studied by a number of authors (for example [Natarajan, 1995] and [Daubechies et 

al., 2004]), where they described how overcomplete dictionaries (a big set of basis functions) 

may be more effective in areas regarding the compression or the extraction of a signal from a 

noisy source [D. L. Donoho et al., 2006]. A dictionary is overcomplete if by removing some 

basis functions (or atoms) the signal is still well-represented with minimum or no distortion. 

That is, the signal can be represented just with a minimum number of basis functions. 

This is equivalent to solving Equation (5.5) with the following regularization term, 

 𝒫(𝒙) = ‖𝒙‖0 (5.17) 

where ‖𝒂‖0 stands for the number of coefficients 𝑎𝑖 that are not zero. By minimizing 

Equation (5.5) with Equation (5.17) not only the solution that produces the best agreement 

with the observations is found, but also the sparsest one at the same time. Unfortunately, the 

regularization of Equation (5.17) does not make the problem convex and, therefore, the 

solution may be affected by local minima. Furthermore, the complexity of this problem was 

also proven to be in general not computationally practical as the solution requires to 

exhaustively search for all the possible combinations of basis functions (the columns in 𝐊) 

that minimize the functional of Equation (5.5) [Natarajan, 1995]. 

5.2.3 𝓵𝟏 regularization for sparse regularization 

The convex relaxation of Equation (5.17) is obtained with the ℓ1 norm, which makes the 

problem described through Equation (5.5) more tractable. This choice comes naturally as it is 
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a somewhat half-way between the ℓ0 and ℓ2 norm. In this case, the regularization term can be 

written as 

 𝒫(𝒙) = ‖𝒙‖1 (5.18) 

where ‖𝒂‖1 = ∑ |𝑎𝑖|𝑖 . It can be shown that the solution obtained through Equation (5.18), 

under certain hypotheses, is as sparse as the solution obtained with Equation (5.17) [D. L. 

Donoho, 2006; Tropp, 2004]. The theory requires that the dictionary 𝐊 is incoherent, i.e. the 

coherence 𝑀 is small, where 

 𝑀 = max
𝑖≠𝑗

‖〈𝚽i, 𝚽j〉‖ (5.19) 

𝚽i represents the i-th column of 𝐊, and 〈. , . 〉 the inner product. Equation (5.19) considers that 

basis functions are normalized to one. Furthermore, 𝒙 needs to be sufficiently sparse. That is, 

in CIT, the ionosphere can be represented sparsely with few basis functions. If those 

conditions are satisfied, then the solution is both the sparsest and the minimal ℓ1 solution [D. 

L. Donoho, 2006], which means that the solution is unique. 

 

 

Figure 5.2. Two dimensional pictorial representation of the minimum solution for the 𝓵𝟏 regularization. The 

𝓵𝟏 ball is a diamond-shape that corresponds to the points with the same norm ‖𝒙‖𝟏. In constrast, the grey 

and thick line represents all possible solutions that satisfies ‖𝒛 − 𝐀𝐊𝒙‖𝐂
𝟐 < 𝜹. The unique solution is found at 

the intersection of the diamond-shape and the line. The intersection is likely to be at the edges of the 

diamond-shape, making the solution sparse. 

Figure 5.2 illustrates why the solution tends to be sparse with ℓ1 regularization (based on [D. 

L. Donoho et al., 2006; Shi et al., 2013]). The ℓ1 space is represented by the diamond-like 

shape. The points lying on the ℓ1 diamond correspond to the values with the same norm ‖𝒙‖1. 
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The grey thick line, instead, corresponds to the points for which the first term ‖𝒛 − 𝐀𝐊𝒙‖𝐂
2 of 

Equation (5.5) is constant and smaller than a certain quantity 𝛿. The black line shows a 

solution with a fixed value of 𝛿 (e.g. zero). Finally, the solution is found at the intersection of 

the black line with the ℓ1 diamond. The solution is described with a linear combination of 𝒙𝟏 

and 𝒙𝟐. However, because of the diamond-shape of the ℓ1 space, only one coefficient is 

needed to represent the solution. This shows, in a very simple way, the potential of the ℓ1 

regularization to produce a sparse solution. It is supposed in Figure 5.2 that an exact solution 

is found, and, as for the ℓ2 regularization, the problem can be defined as in Equation (5.15). 

Compared to Figure 5.1 where the solution is more likely to lie far from the axis, Figure 5.2 

illustrates that, with ℓ1 regularization the solution tends to lie on one of the axes (in this case 

𝒙𝟏); as the intersection occur in one of the edges of the ℓ1 diamond. Thus, the solution is more 

likely to be sparse than the one obtained with the ℓ2 regularization. 

It must be noted that a perfect reconstruction is not always possible. This is mainly due to the 

errors and approximations that affect the measurements. In [D. L. Donoho et al., 2006], it is 

shown that, even if the measurements are affected by errors and therefore the residual norm 

‖𝒛 − 𝐀𝐊𝒙‖𝐂
2 does not reach zero, the ℓ1 regularization still produces a unique solution which 

is also the sparsest one. Furthermore, under appropriate conditions, it is also shown that the 

estimation will contain only basis functions that appear in the ideal sparse representation. The 

error in the estimated solution can then be quantified to be, at worst, proportional to the input 

noise level. 

The theory described in this section assumes that a unique solution exists, and therefore that 

the source is sufficiently sparse in, for example, the wavelet domain. In the case of CIT, this 

may not be easy to demonstrate as a real image of the true ionosphere is unknown. A study 

from [Adcock et al., 2013] tried to investigate this issue from the mathematical point of view. 

Most of the mathematical assumption, in fact, tends to fail or to be difficult to prove for real 

case scenarios. For this purpose, they introduced the concept of asymptotical sparsity, which 

claims that any signal source is asymptotically sparse as the information used to describe it 

increases. This means that, as the resolution (or sampling) increases, the signal becomes 

sparser. Conceptually, a higher resolution allows better definition of finer details. At a certain 

point the signal will not show details smaller than a certain scale. Therefore, at this point, 

increasing the resolution will not improve the reconstruction of the signal, although it will 

increase its sparsity as only a small number of small-scale basis functions will contribute at 

finer scales. This means that the reconstruction will look better as the resolution increases but, 

also, that a lot of measurements are needed to reconstruct the signal at high resolution; which 

may not be feasible in practical cases (e.g. due to costs). Fortunately, the concept of 
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compressing sensing states that, if properly described, the inverse problem can be solved at 

the same resolution using fewer measurements. Further, more important is that the sampling 

of measurements does not need to be uniform and follow the Nyquist theorem. The theories of 

compressing sensing and asymptotical sparsity are not used in this thesis, but some of the 

concepts can be seen in the results shown in the following chapters. Furthermore, these 

theories give a mathematical support that could justify the future use of sparse regularization 

for imaging the ionosphere at high resolution. 

5.2.4 Total Variation 

The ℓ1 norm can be used similarly to the ℓ2 norm to minimize the rate of change of the 

gradient. This is called Total Variation (TV) 

 𝒫(𝒙) = ‖𝒙‖TV (5.20) 

The TV norm is used to minimize the number of variations in the gradient. In the case of a 

two dimensional matrix 𝒙 of size 𝑁 × 𝑁, TV is defined as [Chambolle, 2004] 

 TV = ∑ ‖(∇𝒙)𝑖,𝑗‖
1

1≤𝑖,𝑗≤𝑁

= ∑ ‖((∇𝒙)𝑖,𝑗
1 , (∇𝒙)𝑖,𝑗

2 )‖
1

1≤𝑖,𝑗≤𝑁

 (5.21) 

where 

 

(∇𝒙)𝑖,𝑗
1 = {

𝒙𝑖+1,𝑗 − 𝒙𝑖,𝑗 𝑖𝑓 𝑖 < 𝑁

0 𝑖𝑓 𝑖 = 𝑁

(∇𝒙)𝑖,𝑗
2 = {

𝒙𝑖,𝑗+1 − 𝒙𝑖,𝑗 𝑖𝑓 𝑗 < 𝑁

0 𝑖𝑓 𝑗 = 𝑁

 (5.22) 

This is different from minimizing the Laplacian with the ℓ2 norm, as in this case, the 

minimization will encourage the solution to have sharp gradients rather than promoting a 

smooth solution. In fact, TV is used to extract the signal from noisy data by maintaining the 

edges of the structures. 
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5.3 Implementation of the algorithms 

The previous sections described the different norms that can be used to regularize the problem 

associated with Equation (5.5). In particular the ℓ1 norm was discussed, including the TV 

norm. In this section, the algorithms that were used in this thesis to solve Equation (5.5) are 

described. Different algorithms exist to implement the same inversion techniques with 

different regularizations. As the comparison of the performance of different algorithms is not 

part of this dissertation, only the algorithms actually used in this thesis are described. 

The inverse problem with 𝒫(𝒙) = ‖𝒙‖2
2 is solved by using the MINRES algorithm of 

MATLAB. This is a standard algorithm and more information can be found in [Barrett et al., 

1994; Choi and Saunders, 2014; Paige and Saunders, 1982]. This section focuses on the 

description of the algorithm for sparse regularization. 

In the case of ℓ1 regularization, i.e. 𝒫(𝒙) = ‖𝒙‖1, the Fast Iterative Shrinkage-Thresholding 

Algorithm (FISTA) was used. This is an elegant implementation that requires a single 

parameter 𝛾 and it was proposed in [A. Beck and M. Teboulle, 2009]. It is based on the 

Iterative Shrinkage-Thresholding Algorithm (ISTA) algorithm [Daubechies et al., 2004] but 

with a proven faster convergence rate. It is an iterative gradient descendent algorithm where 

the main step is given by a nonlinear soft-threshold or shrinkage operator 𝜂𝛾 [D.L. Donoho, 

1992; D. L. Donoho and Johnstone, 1994b] 

 𝜂𝛾(�̂�𝑖) = {
0 𝑖𝑓 |�̂�𝑖| ≤ 𝛾 

𝑠𝑔𝑛(�̂�𝑖)(|�̂�𝑖| − 𝛾) 𝑖𝑓 |�̂�𝑖| > 𝛾
 (5.23) 

The shrinkage is used to remove coefficients that are too small and considered to be under the 

level of uncertainty given by 𝛾. In the case of Gaussian noise it has been demonstrated that the 

optimum threshold is given by [D. L. Donoho and Johnstone, 1994a; Leadbetter et al., 1983]  

 𝛾𝑂𝑝𝑡 = 𝜖√2 log 𝑁 (5.24) 

where 𝜖 represents the noise level and 𝑁 the length of the signal. In general, the parameter 𝛾 

sets the trade-off between the best fitting and the sparsest solution. 
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The algorithm for FISTA is reported below [Amir Beck and Marc Teboulle, 2009; Loris et al., 

2010] 

0. Set 𝜏 to 1 max (eig(𝐊T𝐀T𝐀𝐊))⁄  

1. Set 𝑡1 = 1, 𝒚1 = 𝒙0 (initial estimation) 

2. For 𝑗 ≥ 1  

3. 𝒙𝑗 =  𝑝𝜏(𝒚𝑗) 

4. Select the solution that minimize (𝑓(𝒙𝑗), 𝑓(𝒙𝑗−1)) 

5. 𝒕𝑗+1 =
1+√1+4𝒕𝑗

2

2
 

6. 𝒚𝑗+1 = 𝒚𝑗 + (
𝒕𝒋−1

𝒕𝑗+1
) (𝒙𝑗 − 𝒙𝑗−1) 

where 𝜏 is used to set the threshold in the shrinkage operator, and  

 𝑝𝜏(𝒚𝑗) = 𝜂𝛼𝜏 (𝒚𝑗 + 𝜏𝐊T𝐀T(𝒛 − 𝐀𝐊𝒚𝑗)) (5.25) 

The last method that is discussed is the Total Variation (TV). The same authors of FISTA 

described an algorithm to implement the TV [A. Beck and M. Teboulle, 2009]. As for FISTA, 

this is a gradient-based algorithm with a proven global rate of convergence and a simple 

implementation. It requires, as for FISTA, a single parameter 𝛼. The correct value of 𝛼 is the 

one that reduces noisy oscillations (typical in inverse problems), but leaves or enhances the 

gradients in the reconstruction. The algorithm is based on FISTA, with the difference that at 

each 𝑗-th iteration, the subproblem 𝑝𝜏 is solved with the Fast Gradient Projection (FGP) 

algorithm  

 𝑝𝜏(𝒚𝑛) = FGP(𝒃, 𝛾) = FGP (𝒚𝑛 −
2

𝜏
𝐊T𝐀T(𝐀𝐊𝒚𝑛 − 𝒛),

2𝛼

𝜏
) (5.26) 

The FGP algorithm is reported below 

1. Algorithm for FPG(𝒃, 𝛾) 

2. Set (𝒓1, 𝒔𝑠) = (𝒑0, 𝒒0) = 𝟎 and 𝒕1 = 1 

3. For 𝑗 ≥ 1  

4. (𝒑𝑗, 𝒒𝑗) = 𝑃𝑃 [(𝒓𝑗, 𝒔𝑗) +
1

8𝛾
ℒ𝑇 (𝒃 − 𝛾ℒ(𝒓𝑗, 𝒔𝑗))] 

5. 𝒕𝑗+1 =
1+√1+4𝒕𝑗

2

2
 

6. (𝒓𝑗+1, 𝒔𝑗+1) = (𝒑𝑗, 𝒒𝑗) + (
𝒕𝑘−1

𝒕𝑘+1
) (𝒑𝑗 − 𝒑𝑗−1, 𝒒𝑗 − 𝒒𝑗−1) 

7. Set 𝒙 =  𝒃 − 𝛾ℒ(𝒓𝑗, 𝒔𝑗) 

The projection 𝑃𝑃 defines the mapping of the pairs (𝒑, 𝒒) into the set with pairs (𝒓, 𝒔) that 

satisfies 

 ‖𝑟𝑖𝑗‖ ≤ 1 ∀𝑖, 𝑗 (5.27) 
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 ‖𝑠𝑖𝑗‖ ≤ 1 ∀𝑖, 𝑗 (5.28) 

The projection described in the equations above can be easily implemented as 

 𝑟𝑖𝑗 =
𝑝𝑖𝑗

max{1, ‖𝑝𝑖𝑗‖}
 (5.29) 

 𝑠𝑖𝑗 =
𝑞𝑖𝑗

max{1, ‖𝑞𝑖𝑗‖}
 (5.30) 

 

5.4 Comparison of the algorithms 

This section discusses the performance of the different algorithms described previously. A 

simple one dimensional case is used to test the efficiency of the algorithms in the scenarios of 

noisy and small number of observations. The uneven distribution and small number of 

observations are simulated by random undersampling of the signal. A Gaussian noise term is 

then added. 

Figure 5.3 shows the artificial signal 𝒏 used to simulate the observations 𝒛. 

 

Figure 5.3. Artificial signal used to compare the different regularization terms described in this chapter. 

The observations 𝒛 are obtained by 

 𝒛 = 𝐇𝒏 + 𝜺 (5.31) 

where 𝐇 is the projection matrix that is created by emulating a simple blurring effect defined 

by a Gaussian-shaped function, and 𝜺 is the noise vector described by a Gaussian distribution 

with zero mean and a standard deviation of two. 

The matrix 𝐊 of the basis functions is created by using the wavelet families Daubechies 4 

(DB4) and Haar (HA). The inverse problem is defined as the minimization of 
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 �̂� = min
𝒙

(𝐹(𝒙)) (5.32) 

 𝐹(𝒙) = ‖𝒛 − 𝐀𝐊𝒙‖𝐂
2 + 𝛼 𝒫(𝒙) (5.33) 

where 𝒙 is the vector containing the coefficients of the basis functions. It is defined as 

𝒙 = 𝐊T𝒏. 

Some observations in 𝒛 are then removed to represent a simple simulation of some limitations 

that are common in ionospheric tomography, in particular the uneven distribution of 

observations. 

As mentioned before, two different families of wavelet basis functions are used: DB4 and HA. 

The different characteristics of these two wavelets give an insight of the importance of 

choosing the basis functions. Haar basis functions, for example, have sharp edges and little 

support. Therefore, they are suitable for representing strong gradients and very localized 

structures. In contrast, DB4 have a smoother shape with a slightly larger support which make 

them more suitable for representing structures with a gradual variation. In some aspect, DB4 

is closer to the real world, where the variations are described continuously in time. 

Figure 5.4 shows the reconstruction obtained with the ℓ2 regularization. The solution looks 

smooth and the global trend of the profile is reconstructed. The purple sections in the image 

show the regions with no data coverage. 

 

Figure 5.4. The reconstruction obtained with the 𝓵𝟐 regularization (black) and the original signal (red) is 

shown in this figure. The regions with no data coverage are indicated in purple. 

The ℓ1 regularization reconstruction is illustrated in Figure 5.5. It was generated from two 

different basis functions: DB4 (black line) and Haar (green line). 
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Figure 5.5. The reconstruction obtained with the 𝓵𝟏 regularization using DB4 (black) and Haar (green) and 

the original signal (red) is shown in this figure. The regions with no data coverage are indicated in purple. 

It can be observed that some of the variations are better recovered, especially in regions where 

data is missing. Furthermore, the position of the second structure is also better reconstructed. 

Thus, sparse regularization seems to better exploit the information than the ℓ2 regularization, 

even for a small region such as the range 348-350 of the x-axis. This is due to the localization 

property of the wavelets and explains why the edge of the second structure is better recovered. 

As we can be seen, HA produces a more staircase-like reconstruction than by using DB4. 

The same case study was tested with TV regularization. The TV algorithm depends strongly 

on the initial estimation of the solution 𝒙0 that is passed as input. Therefore, earlier 

estimations obtained from the ℓ1 and ℓ2 cases were used as input for TV. Figure 5.6 and 

Figure 5.7 show the reconstructions obtained with TV. The same threshold was used for 𝛼 as 

with the previous reconstructions. 

 

Figure 5.6. The reconstruction obtained with TV regularization (black) and the original signal (red) is 

shown in this figure. The estimation from the 𝓵𝟐-regularized solution was used as input for the TV 

algorithm. The regions with no data coverage are indicated in purple. 
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Figure 5.7. The reconstruction obtained with TV regularization (black and green) and the original signal 

(red) is shown in this figure. The estimations from the 𝓵𝟏-regularized solution using DB4 (black) and Haar 

(green) were used as input for the TV algorithm. The regions with no data coverage are indicated in purple. 

It can be seen from the figures that the small oscillations are removed and the gradients are 

better recovered. Figure 5.6 shows an incorrect estimation of the position of the second 

structure. This is due to the ℓ2-regularized solution that did not estimate the same position 

correctly.  

In general, TV regularization works particularly well when the signal to be recovered has 

strong gradients. However, it tends to create a staircase-like reconstruction. The effect of TV 

regularization in the case of Haar basis function is minimum. Indeed, the reconstruction using 

Haar can, in some ways, be seen as a TV regularization. 

It must be noted that, the inverse problem in a real ionospheric scenario is actually more 

complicated that the one described in this simple one-dimensional case study. The aim of the 

comparison was to show the advantages of sparse and TV regularization over the standard 

Tikhonov regularization. In a real ionospheric scenario, many limitations are imposed by the 

geometry of the rays and ground receiver distribution. The observations are themselves an 

estimation of the real quantities that we aim to measure. Furthermore, the need of a priori 

information to estimate the vertical profiles of the electron density in regions with no data 

coverage makes also the real CIT problem very difficult to solve. Nevertheless, knowing the 

performance of sparse and TV regularization in a controlled environment can help the 

interpretation of the results shown in a real ionospheric case study. 

5.5 Summary 

This chapter presented the mathematical notations used to describe different regularization 

terms that were used to stabilize the inversion. In particular, the sparse and Total Variation 

(TV) regularizations were described as well as the solution to calibrate sTEC observations 

within the operation of inversion. The algorithms and their implementations were also shown, 
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together with a comparison on a simple one dimensional case. The results indicate sparse 

regularization as a valid alternative to the standard ℓ2 regularization. Furthermore, the TV 

regularization showed the potential to better recover the gradients of the structures. The 

implementation of sparse regularization on CIT is discussed in Chapter 6 using simulated 

data, and in Chapter 7 using real data. TV regularization is discussed in Chapter 6.
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6 Chapter 6 

Simulation and first results 

Introduction 

Computerized Ionospheric tomography (CIT) has become in last decades an important tool for 

understanding and studying the ionosphere, its behaviour and its effects on radio propagation. 

Plasma structures can disrupt radiowave signals and, in the case of GNSS can reduce the 

accuracy of the pseudorange measurements. The plasma density is generally measured in 

terms of sTEC from double frequency measurements of the pseudoranges (see Chapter 2).  

A series of limitations (e.g. limited angle geometry of the observations) and the uneven and 

sparse distribution of the observations on the Earth make CIT an underdetermined problem. 

These limitations are described, for example, in [Yeh and Raymund, 1991] and [H Na and Lee, 

1992], while the uneven distribution of the observations is addressed in [Michael Schmidt, 

2007]. Therefore, the regularization is needed to reduce artefacts and noise in the 

reconstruction due to lack of data. 

In this chapter two methods for the imaging of the ionosphere are described. They are based 

on two different regularization techniques. In particular, the benefits of the multi-resolution 

analysis, implemented through wavelets with the sparse regularization, are illustrated in 

comparison with a standard approach based on Tikhonov regularization. The two different 

approaches are in some way tied with the basis functions that are used to describe the 

horizontal variation of the ionospheric structures. In particular, wavelet basis functions are 

used for sparse regularization, whilst spherical harmonics are used for Tikhonov 

regularization. Spherical harmonics are a standard choice in ionospheric tomography (see for 

example [C.N. Mitchell and Spencer, 2003]). More details about the regularization terms can 

be found in Chapter 5. The vertical distribution of the electron density needs, instead, a 

different representation. For this purpose, EOFs are employed to represent the vertical profile 

of the electron density. EOFs are used to compensate the lack of vertical information due to 

the geometry of the observations and to produce a physically meaningful electron density 

profile in the reconstruction (see Chapter 4 for further details). 

At the time of this thesis, sparse regularization has not been used in ionospheric tomography 

yet. Nevertheless, results from other fields make this technique particularly interesting 

(e.g.[Loris et al., 2010; Simons et al., 2011]). Instead, wavelet basis functions like Haar 
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[Amerian et al., 2010] and B-splines [Durmaz and Karslioğlu, 2011; M. Schmidt et al., 2008; 

Zeilhofer et al., 2009] have been used to describe the horizontal variation in space of the 

electron density. Although those basis functions can provide a compact representation of the 

ionosphere, the concept of sparsity has not been explicitly used to regularize the solution. 

Therefore, wavelets were used more for their ability to localize structures, leaving the 

sparseness that they may lead to completely unexploited. 

Indeed, sparseness seems to be the key point of all the multi-resolution analysis using wavelet 

basis functions. The efficacy of the multi-resolution analysis with sparse regularization 

depends on the assumption that the horizontal variation in the ionosphere can be compactly 

represented with wavelets. It can be a difficult task to prove as a real global picture of the 

ionosphere cannot be taken, but through simulation of the process with a realistic ionospheric 

model, the algorithm can be demonstrated to work efficiently. 

A sparse representation leads to a compact representation. Therefore, it has obvious 

advantages in terms of data space as few coefficients need to be stored. Instead, in the 

following experiments, the noise removal [Tsaig and Donoho, 2006] and the ability to handle 

better the uneven data distribution [Michael Schmidt, 2007] are the main aspects that will be 

investigated. 

Sections 6.1 and 6.2 recall and comment on the main theoretical results used in the case 

studies of this chapter about inversion and basis functions. Section 6.3 shows the results from 

a simulated ionosphere. The sparse regularization is compared with a standard method 

(Tikhonov regularization) and the concepts of robustness, multi-resolution, and offsets 

retrieval are also addressed. A real case study is presented in Section 6.4. Section 6.5, instead, 

extends the method to High Resolution Computerized Ionospheric Tomography (HRCIT) and 

proposes a method based on TV in order to reduce artefacts in the reconstruction. The same 

section discuss also about limitation on doing HRCIT. Finally, conclusions are in Section 6.6. 

The results discussed in this chapter were published in [Panicciari et al., 2014a; Panicciari et 

al., 2014b; Panicciari et al., 2015]. 

6.1 Inversion 

In this section the main results of inversion theory are recalled. For more information see 

Chapter 4 and Chapter 5. 

In ionospheric tomography the observations for CIT are collected from ground based 

receivers. Those observations are in the form of sTEC and can be generally considered noise-

free from the point of view of the instrument. Instead, an offset term, due to the ambiguity to 
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determine an absolute measure for the delay, needs to be taken into account. Given the vector 

𝒛 containing the collection of the whole observations within a time window, the forward 

problem can be defined as 

 𝒛 = 𝐀𝒏 + 𝐁𝒃 (6.1) 

The problem of Equation (6.1) is defined on a 3-dimensional grid spacing in altitude, latitude 

and longitude and it is known as a forward-problem where 𝐀 is the projection matrix that 

maps the electron content 𝒏 into measurements 𝒛, and depends on the geometry of the 

problem. The offset vector 𝒃 is also included, together with its projection matrix 𝐁. 

The inversion of Equation (6.1) is defined as the minimization of the following functional cost 

 𝑓(𝒏) = ‖𝒛 − 𝐀𝒏‖𝐂
2 + 𝛼 𝒫(𝒏) (6.2) 

where 𝒫(𝒏) is the regularization term, which is used to stabilize the inversion, and  𝐂 is the 

matrix that is used to calibrate it, and it is defined as 

 𝐂 = 𝐈 − 𝐁(𝐁𝐓𝐁)
−𝟏

𝐁𝐓 (6.3) 

The parameter 𝛼 is used to set the threshold between the best quality smoothed approximation 

and the best data-fitting. More details can be found in Chapter 5. The calibration matrix 𝐂 is 

applied similarly to [C.N. Mitchell and Spencer, 2003; Spencer and Mitchell, 2011], with the 

difference that in this case an explicit relationship between the estimated offsets �̂� and the 

reconstruction �̂� is also provided and is given by 

 �̂� = (𝐁T𝐁)
−1

𝐁T(𝒛 − 𝐀�̂�) (6.4) 

6.2 Basis functions in ionospheric tomography 

In CIT the variation of the electron density is usually decomposed in vertical and horizontal. 

This is due to the different processes that describe the dynamics of the vertical and the 

horizontal spatial distribution of the electron density. Furthermore, the sampling of the 

ionosphere is mainly along the horizontal space, whilst vertically, the sampling is restricted by 

the satellite-receiver geometry. Therefore, two different basis function sets are used to 

describe a-priori information for the electron density profile and to represent the horizontal 

structures of the ionosphere. 

The vertical profile is constrained with Empirical Orthogonal Functions (EOFs). They are 

obtained by applying the Singular Value Decomposition (SVD) to a series of Chapman 
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profiles [Hargreaves, 1995]. The EOFs become the set of basis functions that describe the 

vertical variation.  

The horizontal variation of the ionosphere is described, instead, through another set of basis 

functions. Therefore, the electron density 𝒏 is expressed as 

 𝒏 = 𝐊𝒙 (6.5) 

where 𝒙 contains the coefficients of the basis functions described through the matrix 𝐊. In this 

case the matrix 𝐊 contains already the combination of horizontal and vertical basis functions. 

Two different horizontal basis function sets were considered: spherical harmonics and 

wavelets. Spherical harmonics can be used to describe the periodicities of the ionosphere and 

are a standard choice due to the possibility to describe them over a sphere. Wavelets, instead, 

are used for their ability to represent localized structures at different scales and, in particular, 

for their property of sparse representation. Many families of wavelets exist. For the purpose of 

this experiment only the orthogonal wavelets were considered. Therefore, two different 

families were chosen, that is Daubechies 4 and discrete Meyer. Those wavelets are a good 

example of two wavelets with different support and sharpness/smoothness. These basis 

functions are defined into a grid spanning in latitude and longitude and, while spherical 

harmonics can be represented on a sphere, wavelets cannot and must be defined into a grid. 

 

Figure 6.1. a) discretised Meyer basis function for a particular scale and translation; b) Daubechies 4 basis 

function with the same scale and translation as a); c) a Fourier sinusoid component of the spherical 

harmonic basis functions. Basis functions are shown normalized to one and are interpolated for ease of 

viewing. 
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Figure 6.1 shows a one dimensional example of the basis functions (normalized to one) that 

will be used in the experiment proposed in this section. Figure 6.1a and Figure 6.1b illustrate 

two wavelets at the same scale and position for discrete Meyer (DM) and Daubechies 4 

(DB4). They have a spatial compact support that makes them particularly useful to resolve 

localized structures. Figure 6.1c shows a single harmonic (normalized to one) that has to be 

multiplied with the Lagrange polynomial (along latitude) to produce a Spherical Harmonic 

(SH). They have a longer spatial support and work well to describe periodicities in the 

ionosphere. 

6.2.1 Two regularization techniques 

The regularization term is the main focus in this chapter. It allows defining the uniqueness and 

stability of the solution.  

Different regularizations exist to stabilize Equation (6.2) and make the solution unique and 

physically meaningful. The main goal is finding the best representation of the ionosphere that 

matches the observations and at the same time obviates the lack of data, which is common in 

CIT (e.g. in the oceans between continents). CIT is a difficult problem due to the nonlinear 

processes that describe the ionospheric evolution and its dependence with the Sun and 

geomagnetic activity. The observations used to solve the CIT problem are affected by 

uncertainties due to approximations in determining the sTEC (see Chapter 2). Furthermore, 

the observations are also affected by offsets that make them a relative measurement rather 

than absolute. Therefore, the regularization needs to be sufficiently strong to stabilize and 

make the solution unique but, at the same time, it needs to reproduce a physically meaningful 

ionosphere as well as a good estimate of the offsets. If all those aspects are satisfied, the 

regularization and its implementation can be considered suitable for the ionospheric scenario. 

The minimiser of Equation (6.2) describes the best representation that can be obtained, and its 

properties will strongly depend on the chosen regularization term. In this chapter two different 

regularizations based on sparsity (or ℓ1 regularization) and Tikhonov (or ℓ2 regularization) 

will be used. They both aim to create a sufficiently detailed solution by maintaining as much 

information as possible from the observations. The difference lies in the information that can 

be extracted from the observations through basis functions and, therefore, on the efficiency on 

resolving different scale structures. As stated in the previous section, wavelets are good to 

localize structures, while spherical harmonics work well with periodicities. 

The inverse problem of Equation (6.2) is solved by using two different regularizations. The ℓ2 

regularization term, referred to as the classical approach, is described as 
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 𝒫2(𝒙) = ‖𝐊𝒙‖2
2 (6.6) 

where 𝐊 is the matrix containing the basis functions and 𝒙 is the column vector of the 

coefficients of the basis functions. 

The sparse regularization term, instead, is written as 

 𝒫1(𝒙) = ‖𝒙‖1 (6.7) 

Another kind of regularization, namely spectral filtering, and not explicitly expressed in the 

equations above, comes from the selection of the number of basis functions. It is possible to 

select a smaller set of the whole basis function set in order to exclude the coefficients that 

contribute to the finer representation of the structures in the ionosphere. This has the 

advantage to remove the coefficients that may contribute with oscillation or high frequency 

artefact (especially for high resolution tomography) but also to reduce the dimensionality of 

the problem given by the minimization of Equation (6.2). In fact, it allows reducing the 

number of coefficients to estimate and, therefore, to introduce a further stabilization. This 

approach can work with SH, and permits to obtain a good estimation of the smooth structures 

of the ionosphere. The exclusion of the high frequency basis functions, in fact, reduces the 

finer variations that can be resolved and, therefore, reduces also the resolution of the 

reconstruction. With wavelets this approach is also used in order to have a comparison with 

SH. 

6.3 A simulated case study 

This section illustrates the performances of the sparse regularization applied to a simulated 

case study. The sparse regularization is compared with the Tikhonov regularization. Both 

methods rely on basis functions to describe the horizontal variation of the ionospheric electron 

density. In particular, wavelet basis functions are used for the sparse regularization, whilst SH 

are used for the Tikhonov regularization. The nature of SH allows describing better the 

periodicities rather than the localized structures. Instead, wavelets are basis functions that can 

better represent localized structures at different scales.  

The grid of Figure 6.2 was selected, which spans from North America to Europe. This is a 

good example to show the limitation imposed, in this case by the ocean, on the density of the 

receivers. A grid of dimension 64x64 voxels in longitude and latitude, and 22 voxels in 

altitude was selected. It produces a voxel of dimension around 1x2 degrees in latitude and 

longitude and 50km in altitude.  
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6.3.1 Data 

CIT relies on good data coverage, which is obtained from ground based receivers. They 

provide a measurement of the delay between the satellite and the receiver which is then 

converted in sTEC. The geometry of the observations is generally described through a 

geometry matrix 𝐀, which depends on the receiver and satellite positions. 

For the experiment, the observations 𝒛 were obtained from the electron density vector 𝒏, 

which was simulated with the latest version of the International Reference Ionosphere 

(IRI2012) model [Bilitza et al., 2014] 

 𝒛 = 𝐀𝒏 (6.8) 

Some structures were then added in order to test the efficiency of the algorithm to resolve 

them. The observations were considered uncalibrated. This was obtained by adding a different 

constant offset to each receiver-satellite pair and the observations were collected within a time 

window of 8 minutes with a sample rate of 30 seconds. The representativity error was taken 

into account by adding a term to the observations distributed as a Gaussian noise. This term 

also takes into account any non-dispersive residual term (see Chapter 2). The assumption of 

static ionosphere was used; hence the simulated ionosphere was not changed within the 8 

minutes when data were collected. 

Figure 6.2 shows the Vertical Total Electron Content (VTEC) map that was used as truth 

while Figure 6.3 illustrates the number of rays that were used in the reconstruction (black dots 

are the ground stations). The number of rays is obtained by summing the intersections along 

the altitude within voxels of the grid. The VTEC is calculated by integrating the electron 

content in a certain latitude and longitude location along the altitude. The ray coverage strictly 

depends on the density of ground stations, data (sTEC) sampling rate and, in our case, the 

time window within which the reconstruction has been run. The selection of the grid is also 

important as a finer grid will increase the number of voxels that are not intercepted by a ray 

and the number of coefficients to estimate.  

Some structures were located where data coverage is particularly low. In those locations the 

reconstruction will struggle to recover the actual value independently from the regularization 

that has been used. The behaviour of the algorithm in those zones will strongly depend on the 

regularization term. 
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Figure 6.2. Simulated ionosphere with structures added to IRI2012. Values are in TECU (1016 electrons per 

m-2). 

 

Figure 6.3. Number of rays with ground stations (black dots). 

6.3.2 Results from the simulated ionosphere 

The reconstructions are shown in Figure 6.4 for low resolution and Figure 6.5 for high 

resolution. Each figure shows the behaviour of the algorithm using different basis functions: 

SH (top), DM (middle) and DB4 (bottom). In order to highlight the regularization effects 

where only data coverage was present, a mask (left) to the reconstruction (right) was applied. 

In fact, each regularization technique will handle the absence of data in different ways and the 

mask helps to focus on other aspects more related to the ability to extract the information of 

the ionospheric structures from the observations where data are available. 

At low resolution the reconstruction looks reasonable for both methods. The structures appear 

smoothed and with little detail (Figure 6.4a-c). SH seems to produce some oscillations outside 

the data coverage (Figure 6.4d), mainly in the Atlantic Ocean. This is due to the sinusoidal 
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nature of SH that makes the representation of localized structures problematic. Wavelets do 

not produce oscillations and the reconstruction looks reasonably smoothed for this resolution 

(Figure 6.4e-f), but there are some edge effects, especially for DM, between Canada and 

Greenland. Furthermore, DB4 unlike DM tends to fill the data gap in the Ocean (Figure 6.4f). 

 

Figure 6.4. Reconstructions obtained at low resolution with masked out VTEC values where there is no ray 

coverage for: a) spherical harmonics; b) discrete Meyer; c) Daubechies 4; and without the mask for d) 

spherical harmonics; e) discrete Meyer; f) Daubechies 4. Values are in TECU (1016 electrons per m-2). 

As the resolution increases (and therefore the number of coefficients to estimate) the inversion 

needs in general a stronger regularization. This is shown in Figure 6.5. With SH the 

regularization damps many coefficients down but it seems to resolve well some of the 

structures (North UK and US) where good data coverage is present (Figure 6.5a). However 

the reconstruction presents the ring oscillation phenomenon that is an indication of the 

limitation of the method when a high number of basis functions are used (Figure 6.5d). The 

stronger regularization has reduced most of the coefficients, and the VTEC is in general 

underestimated. In fact, a VTEC of 40 in central Europe was expected but the reconstruction 

shows a VTEC less than 30. Where data are not available the regularization forces the VTEC 

to go rapidly toward zero. With wavelets the sparse regularization aims to minimize the 

number of non-zero coefficients. Therefore the smallest basis functions are contributing with 

the largest (smoother) ones to add detail to the reconstruction only where good data coverage 
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is available (this concept is regarded as multi-resolution, which will be explained later). 

Where data is not enough to resolve a small structure the solution will be approximated with a 

bigger and smoothed wavelet. By looking at the VTEC values, wavelets are recovering the 

value of 40 VTEC units in Europe (Figure 6.5b-c). This is mainly due to the fact that the 

regularization term, by exploiting the localization properties of wavelets, is adding the 

smallest basis only if they detect a significant enhancement over the threshold 𝛼 of Equation 

(6.2). In general the VTEC variation is well recovered with wavelets and they seem to 

produce the best estimation of the ionosphere. 

 

Figure 6.5. Reconstructions obtained at high resolution with masked out VTEC values where there is no ray 

coverage for: a) spherical harmonics; b) discrete Meyer; c) Daubechies 4; and without the mask for d) 

spherical harmonics; e) discrete Meyer; f) Daubechies 4. Values are in TECU (1016 electrons per m-2). 

For each reconstruction the Root Mean Square (RMS) error of the VTEC between the true and 

the reconstructed ionosphere was calculated. The RMS error is taking into account only the 

VTEC values where there is ray coverage. Values where there is no ray are, in fact, less 

meaningful for this statistic.  

The RMS error and the number of basis functions for each reconstruction is shown in Table 6-1 for low 

resolution and  

Table 6-2 for high resolution. The number of basis functions is shown in percentage and in 

absolute values within the brackets. The increasing of RMS error with resolution is caused by 
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the attempt of the basis functions to describe the small variations in sTEC due to non-uniform 

data coverage (especially in north Norway). Wavelets need less than 50% of basis functions at 

low resolution and even less at high resolution. This is due to the small scale wavelets that 

contribute only where there are enhancements with comparable scale in the ionosphere. This 

concept is in agreement with the asymptotical sparsity concept from [Adcock et al., 2013], 

which states that as the resolution increases the sparsity in real signals increases as well. 

Furthermore, the small number of basis functions help to stabilize the inversion as only fewer 

coefficients have to be estimated. 

Table 6-1. RMS error (values are in TECU) of the VTEC map obtained with spherical harmonics and 

wavelets at low resolutions. Only the VTEC coefficients where there is ray coverage were considered. The 

percentage of basis functions with non-zero coefficients is also shown and, within brackets, the number in 

absolute value. 

Low Resolution 

Spherical 
Harmonics 

Discrete Meyer Daubechies 4 

RMS 
error 

(TECU) 

Basis 
number 

RMS 
error 

(TECU) 

Basis 
number 

RMS 
error 

(TECU) 

Basis 
number 

10.87 
100% 
(1089) 

6.66 
36% 
(92) 

7.48 
41% 
(106) 

 

 

Table 6-2. RMS error (values are in TECU) of the VTEC map obtained with spherical harmonics and 

wavelets at high resolutions. Only the VTEC coefficients where there is ray coverage were considered. The 

percentage of basis functions with non-zero coefficients is also shown and, within brackets, the number in 

absolute value. 

High Resolution 

Spherical 
Harmonics 

Discrete Meyer Daubechies 4 

RMS 
error 

(TECU) 

Basis 
number 

RMS 
error 

(TECU) 

Basis 
number 

RMS 
error 

(TECU) 

Basis 
number 

19.32 
100% 
(16641) 

8.5 
8% 
(317) 

8.59 
11% 
(467) 

 

In this case study, Discrete Mayer basis functions seem to behave better than Daubechies 4 in 

terms of RMS error. Other case studies may have a different wavelet working better in terms 
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of reconstruction. In this case discrete Meyer will be considered as wavelet basis functions 

from here on. 

6.3.2.1 Robustness of sparse regularization technique 

Wavelets can remove better the noisy terms in the reconstruction thanks to the multi-

resolution properties which allows representing the structures of the ionosphere according to 

their scale and position. This noisy term is given by the non-dispersive residual term described 

in Chapter 2 and, in particular, by the representativity error. This last source of error comes 

from the fact that the ionosphere is a dynamic medium, where different scale structures evolve 

continuously with time according to complicated physics laws in a complex environment. 

Therefore, a discretization of the ionosphere into a grid forces different TEC observations to 

represent the same value of electron density within the same voxel. Furthermore, the 

collection of the observations within a time window (in order to increase the data coverage) 

emphasizes this problem. A simple sketch of this concept is illustrated in Figure 6.6 where a 

voxel is crossed by three rays giving three different TEC measurements. This difference can 

be seen as noisy variation when a single electron density value needs to be estimated within 

that voxel. 

 

Figure 6.6. A pictorial representation of the representativity error. The sketch shows the ambiguity given by 

the discretization of the ionosphere over a grid. Three different rays cross the voxel and bring three 

different information from the ionosphere (an ionospheric structure is represented in purple). Since only 

one value of electron density can be estimated per voxel, the discrepancy of the measurement from those 

three rays is called representativity error. 

As a consequence each voxel will contain an averaged value of the real electron density 

obtained by the observations crossing the same voxel. The ambiguity could be reduced if the 

resolution of the grid is increased. Unfortunately, the data coverage would put its limitation as 

the number of intersections of the rays with each voxel decreases as the resolution increases. 

This would make the problem more unstable and difficult to solve. 

Enhancement 

in electron 

density 
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Figure 6.7 shows low resolution reconstructions using SH (Figure 6.7a-b) and DM (Figure 

6.7c-d). TEC values are shown only where data coverage is defined. In this way, the issue of 

robustness is better examined rather than the issue of data coverage. It has been shown as both 

the methods successfully reconstructed a smooth ionosphere without the Gaussian noise term 

although SH (Figure 6.7a) tended to underestimate TEC value in Europe and America. On the 

contrary, DM (Figure 6.7c) better estimated the TEC value and produced the better 

reconstruction. With the Gaussian noise term the reconstruction is similar to the previous case 

for both SH (Figure 6.7b) and DM (Figure 6.7d) but DM produces a better image in terms of 

RMS error. The RMS error obtained from Figure 6.7 is shown in Table 6-3 together with the 

percentage of number of basis functions with non-zero coefficients. 

 

Figure 6.7. Low resolution reconstructions without Gaussian noise term for: a) spherical harmonics; c) 

discrete Meyer; and with Gaussian noise term for: b) spherical harmonics; d) discrete Meyer. Vertical TEC 

values where there is no ray coverage are masked out. 

At high resolution (Figure 6.8) the number of coefficients increases and a stronger 

regularization is generally needed. The small structures in America are better resolved at this 

resolution in the case without the Gaussian noise term for both SH (Figure 6.8a) and DM 

(Figure 6.8c). Nevertheless, the reconstruction with SH looks noisy and strongly 

underestimates TEC values, mainly in Europe.  DM (Figure 6.8c) resolves well the small scale 

structures and still produces the best reconstruction in terms of RMS error (Table 6-3). The 

Gaussian noise term introduces an error in the reconstructions which reduces the amount of 

information that can be extracted from the observations. It can be noticed as at this resolution 

SH (Figure 6.8b) struggles to reconstruct the image of the ionosphere and what can be seen is 

mainly noise. Instead, DM (Figure 6.8c) still produces a good approximation even though a 

small part of information is lost (see the RMS error in Table 6-3). 
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Figure 6.8. High resolution reconstructions without Gaussian noise term for: a) spherical harmonics; c) 

discrete Meyer; and with Gaussian noise term for: b) spherical harmonics; d) discrete Meyer. Vertical TEC 

values where there is no ray coverage are masked out. 

In conclusion, DM reconstruction shows a better robustness to noise. This is mainly due to the 

sparse regularization which aims to minimize the number of nonzero coefficients. The sparse 

regularization, in fact, selects a subset of the most significant coefficients. Those coefficients 

will contain the most important part of the information (or energy) [D. L. Donoho and 

Johnstone, 1994b]. In general, it would not be possible to make the same considerations if the 

energy was evenly distributed among all the coefficients, like in the case of SH. 

Table 6-3. RMS error of reconstructed ionosphere for spherical harmonics and discrete Meyer with and 

without the Gaussian noise term. The percentage of basis functions with non-zero coefficients is shown and, 

within brackets, the number in absolute value. 

 Low Resolution High Resolution 

 
Discrete Meyer 

Spherical 
Harmonics 

Discrete Meyer 
Spherical 

Harmonics 

Noise 
RMS 
error 

Basis 
number 

RMS 
error 

Basis 
number 

RMS 
error 

Basis 
number 

RMS 
error 

Basis 
number 

No 6.6 36% (92) 10.9 
100% 
(1089) 

8.4 9% (355) 19.3 
100% 

(16641) 

Yes 7.7 
30.8% 
(79) 

12.5 
100% 
(1089) 

9.5 
7.4% 
(304) 

28.7 
100% 

(16641) 
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6.3.2.2 Offsets estimation using ionospheric tomography 

As described in Chapter 2, the estimation of the offsets is another important aspect for CIT. 

The sTEC observation is obtained from a differential phase measurement of the GPS signal 

delay. This measurement contains offsets that are not known a priori and that need to be 

estimated. Two solutions can be considered. One of them consists to estimate the offsets 

before the inversion. The second solution is to implement the calibration within the inversion 

process and let the minimization algorithm find the best approximation of the offsets that 

produce the best representation of the ionosphere. The method that involves the calibration 

within the inversion has been implemented through Equation (6.2). 

For each satellite-receiver pair an offset was introduced in the sTEC measurement. The offsets 

were then calculated with Equation (6.4) from the reconstruction. The offsets are shown in 

Figure 6.9 for the low resolution reconstructions (Figure 6.4). The figure shows the scatter 

plot of the original offsets (x-axis) and the estimated ones (y-axis), for each receiver, obtained 

from the reconstructions using SH (Figure 6.9a) and DM (Figure 6.9b). The plots show that 

the estimated offsets of each receiver are very well recovered at low resolution. 

 

Figure 6.9. Scatter plot of the estimated offsets (y-axis) versus the true offsets (x-axis) with a) spherical 

harmonics and b) discrete Meyer at low resolution. 

Figure 6.10 shows the scatter plot of the original offsets (x-axis) and the estimated ones (y-

axis) for each receiver, obtained from the high resolution reconstruction using SH and DM 

basis functions. At high resolution the offsets are still well estimated from wavelets (Figure 

6.10b) while they seem to be biased with SH (Figure 6.10a). There is in general an 

overestimation of the offsets that increases as the regularization coefficient 𝛼 increases 

(Equation (6.2)). This is due to the fact that when 𝛼 increases, the difference between the 

observations and the estimation in Equation (6.4) increases as well making the offsets bigger. 

This is probably due to the absence of regularization into the estimated offsets.  
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Figure 6.10. Scatter plot of the estimated offsets (y-axis) versus the true offsets (x-axis) with a) spherical 

harmonics and b) discrete Meyer at high resolution. 

Previous works [Chartier et al., 2012; Dear and Mitchell, 2006] implicitly used a calibration 

matrix similar to the one defined in Equation (6.2) to estimate the offsets from regional 

ionospheric reconstructions. They compared estimated offsets from tomographic 

reconstructions using an independent data set from the Center for Orbit Determination in 

Europe (CODE). Both the previous works showed a good match of the estimated offsets with 

CODE and did not exhibit any bias. The main differences from the work in this paper lie in 

the aim to reproduce high resolution maps from global ionospheric reconstructions. This 

involves the estimation of a higher number of coefficients and dealing with more uneven data 

distribution and data gaps (e.g. oceans). Consequently, a stronger regularization is needed. 

Therefore, the choice of the regularization becomes of primary importance if good data fitting 

is desired in the reconstruction with minimum artefacts. 

6.3.2.3 Multi-resolution map from wavelet decomposition 

As introduced earlier, another concept that can be exploited with wavelets is the multi-

resolution analysis. A similar concept but with B-spline basis functions was already used in 

[Michael Schmidt, 2007]. Wavelets allow the detection of structures according to their scale 

and position. Small scale basis functions are therefore selected to represent small variations, 

otherwise only the basis functions with bigger scales are used. The ability of the algorithm to 

recognize small variations depends on the data availability and, therefore, the resolution (here 

intended as the smallest scale that can be resolved in a certain position in the map) will 

depend on data. 
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Figure 6.11. Multi-Resolution (MR) Map for the high resolution case with discrete Meyer basis functions. 

Each box represents the scale of the basis function and its position. 

Figure 6.11 aims to explain multi-resolution with DM basis functions and gives also a visual 

interpretation of sparseness. Each square box indicates where the wavelet is centred in the 

map and the size that the wavelet is contributing with (i.e. the scale of the wavelet, which was 

selected of the same level for each box). This is valid only in principle as a wavelet can be 

defined in a longer domain than the one defined by the square. The algorithm selects smaller 

scale basis functions where data coverage is good, trying, as a consequence, to match better 

the observations. In regions where data are not available or not enough, only the biggest scale 

wavelets are selected and therefore the solution will look smoother. This is not possible to 

obtain with SH as they are longer functions and are defined over the whole globe. It is 

interesting to notice how small scale wavelets are not used if there is not a comparable (to the 

scale of the wavelet) enhancement from the data. This is the case in East and South Europe 

where, even if good data coverage is provided, only big scale wavelets are used. 

6.3.2.4 Model-aided inversion, the best scenario 

A model-aided inversion was implemented by imaging the residual after removing from the 

observations a background model of the ionosphere. This is called Three-Dimensional 

Variational (3DVar) data assimilation and assumes the knowledge of a priori information 

about the state of the ionosphere. This is generally obtained with an empirical model (like 

IRI2012) or a first principle physics model. The 3DVar was implemented with the assumption 

that an almost perfect knowledge of the ionosphere was provided. This was obtained by 

setting the background model 𝑛0 to IRI2012 (without the added structures) and considered the 

residual 𝛿𝑛 

 𝛿𝒏 = 𝒏 − 𝒏𝟎 (6.9) 
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This residual is associated with a residual 𝛿𝒛 in the measurements 𝒛 calculated as 

 𝛿𝒛 = 𝒛 − 𝐀𝒏𝟎 (6.10) 

Therefore, the problem in Equation (6.2) becomes 

 𝐹(𝛿𝒙) = ‖𝛿𝒛 − 𝐀𝐊𝛿𝒙‖𝐂
2 + 𝛼 𝒫(𝛿𝒙) (6.11) 

where 𝛿𝒙 = (𝐊T𝐊)
−𝟏

𝐊T𝛿𝒏. Hence, the inverse problem is applied to Equation (6.11), which 

will calculate the residual information that the a-priori model could not reproduce (in this case 

the structures added to IRI2012). The final reconstruction is obtained by summing the 

estimated 𝛿�̂� to the background model 𝑛0. To make the problem more difficult a Gaussian 

noise term was added to 𝒛 as in the previous section. The reconstruction (plus background 

model) is shown in Figure 6.12a and Figure 6.12ab, for SH and DM. 

As expected both methods work well. The only remarkable difference is that SH basis 

functions (Figure 6.12a) are picking up some noisy coefficients which result in a noisier 

reconstruction than with DM (Figure 6.12b). Table 3 summarizes the RMS error obtained for 

these reconstructions. 

 

Figure 6.12. Model-aided reconstruction obtained with a) spherical harmonics and b) discrete Meyer at high 

resolution. A noise term (zero-mean Gaussian with 1TEC unit of standard deviation) was added to the 

observations. 

By perfectly removing the background the algorithms need to resolve only few structures at 

different scale. This scenario can be considered as the best case in comparison with the worst 

case of the previous subsection where the model was not used. Actually, a perfect knowledge 

of the ionosphere cannot be ever obtained and, therefore, a background model cannot aid the 

reconstruction as in the above example. This mismatching with the truth means that the 

algorithm with an approximated background model will have performances between the worst 

and best case. 
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Table 6-4. RMS error (values are in TECU) of the VTEC map obtained with a 3DVar scheme using 

spherical harmonics and discrete Meyer with a noise term added to the observations. Only the VTEC 

coefficients where there is ray coverage were considered. The percentage of basis functions with non-zero 

coefficients is also shown and within brackets the number in absolute value. 

Spherical 
Harmonics 

Discrete Meyer 

RMS 
error 

(TECU) 

Basis 
number 

RMS 
error 

(TECU) 

Basis 
number 

9.26 
100% 
(16641) 

8.66 
7.3% 
(300) 

 

6.4 A real data case study 

The aim of this section is to apply the method used in Section 6.3 to a real case scenario. A 

more detailed analysis will be presented in Chapter 7 with 4D reconstructions where also the 

time will be taken into account.  

The same grid described in the simulation section was used in this real case scenario using 

ground based receivers. In addition to the standard GPS receiver network (from UNAVCO 

and IGS) Navy Navigation Satellite System (NNSS) data was also included. This data set 

[Watermann et al., 2002] consists of three Coherent Ionospheric Doppler Receivers (CIDRs), 

developed at Applied Research Laboratories at the University of Texas (Austin) and capable 

of observing the signal from TRANSIT system
3
. The reconstruction is then validated by 

means of the Incoherent Scatter Radar (ISR) that was operating in Sondrestrom (Greenland) 

during the same day of the experiment
4
. 

6.4.1 Data 

CIT uses sTEC measurements from ground based receivers to reconstruct the state of the 

ionosphere. In this experiment, data is based on a chain of TRANSIT receivers across 

Greenland together with GPS receivers. They recorded data during the day of the 30th 

September 2000, where data were collected within a time window of 9 minutes, with a sample 

rate of 30 seconds. 

Figure 6.13 shows the receivers, TRANSIT (red) and GPS (blue), used for the reconstruction 

together with the ray coverage. The TRANSIT satellite (ID18362) pass (purple) is also shown. 

The location of the ISR is illustrated with a black circle, and the scan path is indicated with a 

black solid line. 

                                                      
3
 TRANSIT data were originally collected as part of a NSF project (ATM# 9813864). 

4
 ISR observations were supported by the NSF Cooperative Agreement AGS-0836152. 
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Figure 6.13. Number of rays and GPS ground stations (blue), TRANSIT ground stations (red), TRANSIT 

satellite pass (purple) and radar scan path (black). 

6.4.2 Results from real data case study 

A grid of dimension 64x64x22 voxels was selected in longitude, latitude and altitude. It 

corresponds to a maximum resolution of about 1x2 degrees in latitude and longitude and 

50km in altitude. 

EOFs from Chapman profiles [Chapman, 1931] were used to constrain the vertical profile to 

be physically meaningful. In contrast, DM wavelets and SH basis functions were used to 

describe the horizontal variation of ionospheric structures. The results obtained with DM were 

compared with SH basis functions at two different resolutions (by selecting subsets of 

horizontal basis functions). An ISR scan was also used as validation. 

Figure 6.14 shows the reconstruction obtained with SH (top) and DM (bottom) at low 

resolutions. Values are in 10
16

 electrons/m
2
. The resolution has been set by selecting a subset 

of basis functions and discarding the high frequency components. For each reconstruction a 

mask was also applied (Figure 6.14 a-b) in order to focus the attention only on the regions 

where there was data coverage. 
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Figure 6.14. Reconstructions obtained at low resolution with masked out VTEC values where there is no ray 

coverage for: a) spherical harmonics; b) discrete Meyer; and without the mask for c) spherical harmonics; 

d) discrete Meyer. Values are in TECU (1016 electrons per m-2). 

The low resolution reconstruction is shown in Figure 6.14 a-b where there is data coverage for 

SH and DM, respectively. They both show a reasonable reconstruction with structures that 

appear smooth and with little detail. Figure 6.14c-d shows the reconstruction in the whole 

grid. As can be noticed SH (Figure 6.14c) produces some oscillations that generate false 

structures (e.g. in the ocean gap between Africa and US) where there is not data coverage. 

Generally, the structures tend to be smoothed and with edges that are poorly defined (as will 

be shown later). DM (Figure 6.14d), instead, produces some edge effects which create artefact 

in regions with no data coverage as with SH. 

Figure 6.15 shows the reconstruction for SH and DM at higher resolution. The number of 

coefficients is significantly increased and SH needs a stronger regularization. The stronger 

regularization damps many coefficients down and the reconstruction loses its smoothness 

(Figure 6.15c) in comparison to the low resolution one (Figure 6.14c). A ring oscillation 

phenomenon is also present due to the high number of basis functions to be estimated. This 

does not happen for DM. There are some lengthened structures (Figure 6.14d) by using DM 

(between Greenland and Norway), which are mainly due to the particular data coverage 

(Figure 6.13). In general, better performances can be obtained with a higher number of ground 

stations. The correctness of the results cannot be easily verified using real data due to the 

limited number of instruments that can be used for validation. For this reason, the reliability of 

the methods described here has been tested in a controlled environment using simulated data 

in the previous Sections. It is also interesting to notice that DM reconstructs a structure 

located at south of Greenland, which is not present using SH. 
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Figure 6.15. Reconstructions obtained at high resolution with masked out VTEC values where there is no 

ray coverage for: a) spherical harmonics; b) discrete Meyer; and without the mask for c) spherical 

harmonics; d) discrete Meyer. Values are in TECU (1016 electrons per m-2). 

The sparse regularization aims to reconstruct the state of the ionosphere with the minimum 

number of basis functions. This makes the inversion stable, maintaining most of the 

information that was available at low resolution but better defining the edges of the 

reconstruction. This can be shown by comparing the reconstruction with the ISR scan that was 

available during the same time interval. 

Figure 6.16 shows a southward longitudinal ISR scan starting at 03:21:20UT on 30th 

September 2000. The scan has a duration of less than 4 minutes and values are shown in 10
11

 

particles/m
3
. An enhancement can be seen towards the North while a depletion is evident in 

the South. In particular, a trough is present at the latitude of about 64 degrees. 
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Figure 6.16. Southward longitudinal Incoherent Scatter (IS) radar scan starting at 03:21:20UT on 30th 

September 2000. Values of electron density are in 1011 particles/m3. 

Figure 6.17 a-d show the electron density (10
11

 particles/m
3
) of the reconstruction along the 

radar scan path for SH (top) and DM (bottom), and for low (left) and high resolution (right). 

The radar scan plane is aligned with the geomagnetic field lines and is tilted by about 27 

degrees in the anticlockwise direction with respect to the reconstruction plane. The latter 

reconstruction is instead aligned to the geographic coordinate system. 

At low resolution SH produces a smooth profile (Figure 6.17a), as DM similarly does (Figure 

6.17b). At higher resolution the depletion starts to be better defined and visible for SH (Figure 

6.17c). Both SH (Figure 6.17c) and DM (Figure 6.17d) show the same trough as well as the 

tail of another structure (south) as indicated in the radar (Figure 6.16) although the trough 

edges are more well-defined for DM (Figure 6.17d). Furthermore, DM did better in resolving 

the structure at south of Greenland (Figure 6.15d). 
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Figure 6.17. Cross sections from low resolution tomographic reconstructions for: a) spherical harmonics; b) 

discrete Meyer; and from high resolution tomographic reconstructions for: c) spherical harmonics; d) 

discrete Meyer. Values of electron density are in 1011 particles/m3. 

6.5 High resolution with wavelets 

The maps reconstructed in the previous sections used a grid with a resolution of 1-2 degrees in 

latitude and longitude. This resolution can be considered as the lowest bound of a compromise 

(between artefacts and reliability in the reconstruction), generally used in MIDAS, of 2-4 

degrees. Sparse regularization with wavelets still suffers from lack of data when the resolution 

increases. This is illustrated in the following experiment with real data during the day of 02 

January 2010 at 00:50UT and with a resolution of 0.5 degrees in latitude and longitude. A 

method to reduce the appearance of artefacts is then proposed based on TV regularization (see 

Chapter 5). 

The experiment used GPS data from ground based receivers over a grid centred in South 

America (Figure 6.18) and used data collected from CHAMP to validate the reconstruction. 

The reconstruction collected data within a time window of 8 minutes with a data rate of 30 

seconds. 

Figure 6.18 shows the number of observations (normalized to 1) together with the satellite 

CHAMP pass (purple). 
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Figure 6.18. Normalized number of rays from GPS ground stations. It is also shown in purple the satellite 

CHAMP pass. 

The reconstruction is illustrated in Figure 6.19 calculated with sparse regularization and DM 

wavelets. The map shows TEC values only where data was available. 

 

Figure 6.19. Reconstruction during the day of 02 January 2010 at 00:50UT. The map shows TEC calculated 

with sparse regularization and DM wavelets. TEC is shown only where there is data coverage. 

The reconstruction looks very noisy. The presence of artefacts can be noticed all over the 

map. The reconstruction was validated by selecting the reconstructed electron density at the 

same altitude and position of CHAMP. The satellite CHAMP provides a localized 

measurement that is not easy to compare with the reconstruction. In fact, CHAMP is able to 

detect finer variations that would not be possible to calculate with CIT. Furthermore, the 

limitation given by the poor vertical resolution and the vertical resolution of 50 km may cause 

dissimilarities in the comparison. For those reasons, the average value was removed from 

CHAMP and the reconstructed profiles. This seemed to be sufficient in order to make the two 
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methods comparable. Figure 6.20 shows the normalized reconstructed profile (blue) calculated 

at the same CHAMP position (red). 

 

Figure 6.20. Normalized electron density obtained from the reconstructed map (blue/circle) at the same 

altitude and position of CHAMP (red/cross) with sparse regularization and DM wavelets. 

The image shows reconstructed profile with some noisy variation in terms of normalized 

electron density. Not all the structures have been reconstructed. This was caused by the little 

data coverage, which was particularly low between -20 and -8 degrees in latitude. The 

reconstructed profile shows also an enhancement between 20 and 43 degrees in latitude that 

CHAMP did not detected. The presence of noise (or artefacts) can make the detection of sharp 

edges of the structures difficult. Sharp gradients, in fact, may cause disturbances in the signal 

propagation and their correct location is an important aspect when a high reliability in the 

navigation and communications system service is required. 

TV techniques can help in preserving important details in the reconstruction such as edges of 

ionospheric structures. TV is used in combination with sparse regularization that uses wavelet 

decomposition to promote sparsity in the reconstruction. Sparse regularization was used, in 

fact,  to compensate for the non-uniform data coverage and provided the input (initial 

solution) for the TV algorithm. This implementation is new in CIT. The reconstructed map 

with TV is illustrated in Figure 6.21. 
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Figure 6.21. Reconstruction during the day of 02 January 2010 at 00:50UT. The map shows TEC calculated 

with TV regularization using the sparse regularization reconstruction as input. TEC is shown only where 

there is data coverage. 

It can be noticed as the image looks clearer and the noisy artefacts have disappeared. 

However, the main information seems to be preserved. The following picture shows the 

validation with CHAMP. 

 

Figure 6.22. Normalized electron density obtained from the reconstructed map (blue/circle) at the same 

altitude and position of CHAMP (red/cross) with TV regularization. 

The image shows a profile with fewer artefacts than in Figure 6.20. There is also a decrease of 

the peak at 0 degrees in latitude, which was caused by the TV regularization. In order to 

remove the artefacts, in fact, part of the information needed to be removed. However, the 

technique managed to efficiently separate the noise from the actual structures. 
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6.6 Summary 

This chapter showed the first application of sparse regularization to CIT. The method was 

applied on both simulated and real data and compared with a standard method. Sparse 

regularization has been shown to be a valid alternative to the more standard method based on 

Tikhonov regularization and is particularly suitable with wavelets.  

Sparse regularization allows better noise removal and is a more stable regularization when the 

number of coefficients to estimate increases considerably. Tomographic reconstructions 

obtained with Spherical Harmonics (SH) and two different wavelets, Daubechies 4 (DB4) and 

Discrete Meyer (DM) were shown in a worst and best case. The best case was obtained by 

selecting a background model which exactly represented the smoothed ionosphere, whilst the 

worst case was without any background model. In both cases wavelets were shown to produce 

the best reconstruction in terms of the Root Mean Square (RMS) error (where data were 

available) and lack of oscillations (artefacts). An important characteristic in this new approach 

is the ability of wavelets to handle the uneven distribution of the observations and produce a 

sparse solution. This was explained through the multiresolution map showing how the 

resolution is adapted to the data coverage and the ionospheric structures observed by the 

measurements. 

The method has been tested to estimate the offsets of the observations and, even though it was 

applied to the specific case of the CIT, it can be used for general inverse problems where 

unknown offsets must be estimated. The method gave good performances in recovering the 

offsets, but a useful remark is that there is a tendency to overestimate them as the 

regularization parameter 𝛼 increases. This effect is stronger with SH than DM and especially 

at high resolution. In fact, as the resolution increases the number of coefficients to estimate 

grows considerably. Therefore, CIT has to deal with instabilities in the reconstruction. For 

those reasons the choice of the regularization becomes of primary importance. 

Sparse regularization aims to minimize the number of basis functions that are needed for the 

reconstruction. Therefore, the algorithm estimates only the coefficients of a smaller subset of 

the entire set of basis functions; which in an underdetermined problem like in CIT becomes of 

particular attractiveness. The reconstructions illustrated with real data demonstrate sparse 

regularization as a valid alternative to Tikhonov regularization. Furthermore, sparse 

regularization seemed to preserve the information when the total number of coefficients to 

estimate increases. A further comparison of the reconstructions with the IS radar, showed the 

ability of wavelets to better resolve structures in the ionosphere in comparison with the 

standard method. This is a good result that confirms wavelets and sparse regularization as a 

promising approach to detect the different scale structures of the ionosphere. 
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Further improvements can be achieved with different wavelet constructions. In addition, prior 

knowledge of the scales of structures that can be expected at different locations might help in 

the case of non-uniform or a small number of observations, to produce a smoother ionospheric 

reconstruction. 

Sparse regularization was used to reconstruct high resolution ionospheric maps. The results 

showed the limitation of this method for HRCIT caused by the limited number of 

observations. It also proposed a method to overcome such limitation, which was based on TV 

regularization. This regularization allowed the removal of the artefacts and, at the same time, 

the enhancement of the structure edges. Nevertheless, some limitations of such a high 

resolution must be considered. Firstly, there is the possibility that time variations of sTEC in 

the observations could be mapped into a space variation. This can be particularly true for fast-

moving ionospheric structures. On the other side, the presence of inter-crossing rays can be 

sufficient to reduce that risk, especially during quiet ionospheric conditions. However, the 

reliability of high resolution maps requires more data and a better knowledge of the time 

dependencies of the structures in the ionosphere. 
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7 Chapter 7 

New time-dependent algorithm using sparse regularization 

Introduction 

The overall aim in this chapter is to demonstrate the application of different time dependent 

wavelet-based approaches using experimental observations.  For this, a case study is chosen 

over the region of Europe, where there are sufficient observations to implement the technique. 

A major feature of the mid-to-high latitude ionosphere is the main trough; a large-scale 

depletion in electron density that is limited in latitudinal extent but is elongated in longitude. 

The trough is routinely observed from Europe in the evening and nightime and therefore it 

was possible to select several suitable test cases.  Independent validations of the results were 

possible using observations from the CHAMP satellite.  

Since the 1960s, the mid-latitude trough has been analysed and the extensive observational 

evidence makes it a good candidate to test the sparse regularization method. The capability of 

the current version of MIDAS to retrieve the trough is well established. In this research here, 

sparse regularization is implemented in MIDAS [C.N. Mitchell and Spencer, 2003]. 

Therefore, the aim of this chapter is to establish the viability of the new method described in 

Chapter 6. This method relies on the wavelet decomposition and for this reason it will be 

referred as the wavelets method. The method described in Chapter 6 is extended over time and 

two different solutions are investigated. The first one uses a smooth regularization over time 

(but still sparse over the spatial scale), whilst the second one implements 3-Dimensional 

wavelets in order to fully exploit the sparsity (and MRA) also in time. This would potentially 

allow having a sharper representation of the TEC variation over time. 

Those new enhanced methods are also compared with the previous method available at the 

University of Bath contained with the MIDAS software algorithms (e.g. see [C.N. Mitchell 

and Spencer, 2003; Spencer and Mitchell, 2011]). 

In Section 7.1 a brief review of the mid-latitude trough is presented. The new reconstruction 

methods, based on time-sparse and time-smooth regularization, are explained in Section 7.2. 

There, the modification to the regularization term (in order to take into account the time), an 

essential element for real data, is also explained in Section 7.2.1. Due to the differences in the 

measurements provided by CHAMP (electron density) and CIT (TEC), a normalization 

formulation has been proposed in Section 7.2.2 that allows a meaningful comparison of the 
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results. Data and ray coverage are briefly discussed in Section 7.3. Results and analysis are in 

Section 7.5, whilst the conclusions are in Section 7.6. 

7.1 Review of imaging the mid-latitude trough 

The mid latitude trough is one of the major features of the ionosphere. It originates from the 

polar circulation [Moffett and Quegan, 1983], which causes the ionosphere to appear depleted 

in regions between mid-latitude and high-latitude. The mid-latitude trough, also referred to as 

the main trough, has been studied since the 1960’s where it was known as the Canadian 

border effect since it appeared in many cases between the Canadian and USA border 

[Hargreaves, 1995]. It has an effect on the propagation of HF radio waves because of the 

strong gradients in the electron densities and the strong irregularities, which are often present 

at the edges of the trough.  

The trough has been primarily observed as a night-time phenomenon and typically can 

develop at latitudes between 60 and 70 degrees geomagnetic. It can be identified through its 

depletion width (usually of some degrees) and its poleward and equatorward walls. The 

trough can appear in both hemispheres and in any season, even though it is observed mainly in 

winter [Rodger, 2008]. It is less common during summer where it is most likely to show 

around midnight [Moffett and Quegan, 1983]. 

The trough is a dynamic feature of the ionosphere that appears to move gradually towards 

lower latitudes [Jones et al., 1997; Moffett and Quegan, 1983; S. E. Pryse et al., 1998] 

throughout the evening. During an ionospheric storm, the trough is displaced strongly 

equatorward. It is, generally, a quite broad structure that tends to be sharper on the poleward 

side. The position of the trough can be roughly estimated with the following equation 

[Hargreaves, 1995]. 

 Δ = 65.2° − 2.1Kp − 0.5t (7.1) 

where Δ corresponds to the latitude of the minimum, Kp the planetary 3-hour-range index of 

magnetic activity, and t is the time from the local midnight (positive after and negative 

before) in hours. 

An early attempt at measuring the trough using tomography was performed by [S.E. Pryse et 

al., 1993] from the University of Wales. They showed 2D electron density reconstructions 

obtained through tomographic techniques from eight consecutive satellites passes. By using a 

comparison with the electron density peak, measured from the ionosonde, they demonstrated 

the expected behaviour of the mid-latitude trough and confirmed the potential of CIT to image 

large-scale ionospheric structures. 
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Another experiment [C.N. Mitchell et al., 1995] used the EISCAT radar as independent 

instrument to verify the electron density estimated with 2D tomographic reconstructions. The 

reconstructions showed a narrow trough under very quiet geomagnetic conditions with a 

structure in its poleward wall. They demonstrated the accuracy of the method on retrieving the 

trough and the applicability of tomographic techniques to develop an ionospheric model of the 

main trough. Similarly, in Kersley et al. (1997) the capability of tomography for investigating 

and modelling the trough was shown by a series of images from tomographic reconstructions 

at both UK and Scandinavian latitudes. 

In [C. N. Mitchell et al., 1999] a large database of 2D images obtained from tomographic 

reconstructions showed the improvement obtained by including a seasonal term in modelling 

the trough position. 

A more recent investigation of the trough was conducted by Voiculescu et al. [2006]. They 

produced a statistical analysis of the trough from 700 images obtained from 2D tomographic 

reconstructions. They found that the Interplanetary Magnetic Field (IMF) plays a role in the 

occurrence of the trough at different geomagnetic activities and, therefore, confirmed once 

again the ability of tomography on imaging the trough.  

Here, the interest in the trough is to use its presence in CIT images to validate the new 

observation techniques. Given the new advancements introduced by the spare regularization 

method (Chapter 6) the aim is to test those new capabilities on resolving the trough with 4D 

tomographic reconstructions. 

7.2 Method 

Chapter 2 contains a review of the processing of GNSS data to obtain slant TEC. The main 

limitation is that the data are essentially relative, along a particular satellite to receiver arc.  

That is to say that there is very little error in the relative slant TEC observations, whereby the 

error is essentially due to the calibration of the offsets. 

There are two approaches to the calibration. The first is to calibrate the differential code bias 

estimates by making use of external information. This in turn then adds an error to the TEC 

and could result in artificial structures being imposed on the image. An alternative approach is 

to calibrate within the imaging process and this necessitates the move to a 4D inversion with 

regularization, as is implemented in MIDAS. This is what is outlined here, with the further 

modification of the incorporation of wavelets in the space and time domain.  

Given a dynamic linear system described through the matrix 𝐀, inversion methods aim to 

retrieve the best estimation of the states 𝒏 of the system by using a set of observations 𝒛. In 
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practice, the states are estimated by knowing only their perturbation caused by the system 𝐀. 

Generally, the observations are smaller than the states, i.e. the information is little and the 

system underdetermined. In CIT, the states 𝒏 are the electron densities and the observations 𝒛 

the slant TECs. They are related through the following equation, also called the forward 

equation: 

 𝒛 = 𝐀𝒏 = 𝐀𝐊𝒙 (7.2) 

where 𝐀 is the matrix that defines the effects of the ionosphere into the observation, and 

depends on the geometry of the problem defined by the satellite and receiver positions, and 𝐊 

the matrix containing the basis functions corresponding to the coefficients of the transformed 

states 𝒙 

 𝒏 = 𝐊𝒙 (7.3) 

As stated before, the number of observations are considerably smaller when compared to the 

number of the variables that need to be estimated. Therefore, the inverse form of Equation 

(7.2) needs to be regularized with the term 𝑄(𝒙). The estimated solution �̂� (to be 

distinguished from the real solution 𝒙) of the inverse problem can be written as the 

minimization of the functional cost 𝐹(𝒙) 

 �̂� = 𝐦𝐢𝐧
𝒙

𝑓(𝒙) (7.4) 

where 

 𝑓(𝒙) = ‖𝒛 − 𝐀𝐊𝒙‖𝐂
2 +  𝑄(𝒙) (7.5) 

where 𝑄(𝒙) represents the regularization terms used to make the inversion operation more 

stable and 𝐂 the calibration matrix. A standard implementation of 𝑄(𝒙) is given by the 

Hessian matrix (see [Spencer and Mitchell, 2011]), which will encourage the solution to be 

smooth. A more detailed description of the inverse problem can be found in Chapters 3 and 4. 

7.2.1 Sparsity meets time 

As seen in Chapter 5, the concept of sparsity is exploited through a regularization factor 𝑄(𝒙), 

which appears as a term in the functional 𝐹(𝒙) of Equation (7.5). This term can be described 

in different ways. The formulation that is of most relevance for this thesis corresponds to the 

ℓ1 or sparse regularization: 

 𝑄(𝒙) = 𝛼‖𝒙‖1 (7.6) 

where the term 𝛼 corresponds to the trade-off between a regularized dependent solution and a 

more data dependent solution. Equation (7.6) is used to promote sparsity in the solution, i.e. 

the solution �̂� will have many coefficients equal to zero and most of the energy will be 

contained in a few coefficients. 
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This formulation was used in Chapter 6 to analyse the performance of this new method on 

simulated data. In that analysis the observations were collected inside a time window of 10 

minutes. Within this duration the ionosphere was assumed to be static, i.e. to not change with 

time. This assumption is held when simulated data are used since a perfect simulation of all 

the dynamics of the ionosphere cannot be expected and, moreover, there is also a better 

control of the environment. With real data the conditions change.  

Chapter 6 demonstrated that inconsistencies between observations, within a particular time 

window, can be partially handled by using wavelet basis functions and the multi-resolution 

analysis. Whilst from the simulation this shows the stability and reliability of the method, 

from the physical point of view this is not realistic enough.  In reality the ionosphere is not 

static with time – it evolves with time. Therefore, the dynamics of the real ionosphere must be 

described in terms of time and spatial evolution. Ignoring the time dependency of the 

dynamics can introduce limitations (in terms of accuracy) in the results, especially since 

observations need to be collected within a large time window in order to compensate for the 

lack of data coverage. Thus, the inversion needs to account also for the time variation. In this 

case, the solution �̂� will be referred as a 4-Dimensional vector, where the fourth dimension is 

the time. 

In practice, the observations are collected by GNSS receivers, at typically 30 second intervals. 

The concept of a window of time (for the complete set of data used in an inversion) and its 

individual element (i.e. frame) within, is introduced here. This is shown in Figure 7.1, where a 

time window made up of three different frames is shown. Each frame collects some 

measurements (in yellow) within a defined time period. Each frame is referred to the central 

time 𝑡0 for the current time and 𝑡−1 and 𝑡+1 for the previous and future time respectively. The 

measurements define the coverage (in each frame) over a hypothetical grid covering the 

continents: Europe, Africa and Asia. The single frame has usually a length of 10 or 15 

minutes and the coverage that it provides is typically unevenly distributed in space. Therefore, 

assuming the window is made up of three frames, the total time will be 30 or 45 minutes. The 

advantage of this approach is that more observations can be included in the inversion, 

improving the overall data coverage. This is shown on the bottom picture of Figure 7.1. As a 

consequence, observations cannot be considered to be static anymore and a time evolution 

needs to be provided.  
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Figure 7.1: Pictorial representation of a time window consisting of three frames. Each frame contains 

observations (in yellow) which are distributed only partially on a hypothetical grid covering the continents 

Europe, Africa and Asia. The combination of the frames produces a better coverage, but the description of 

the time variation of the measurement between one frame to the other must be provided. 

If the time evolution of the ionosphere cannot be expressed with a physical model, a sensible 

constraint of the time dependency of the ionospheric dynamics at each time must be provided.  

Three solutions were considered based on ℓ1 and ℓ2 regularization: 

 Standard MIDAS (SM). It uses a smoothing regularization based on the ℓ2-norm, such 

as 𝜚‖𝐏t𝐊𝒙‖𝟐, where 𝐏𝐭 corresponds to the Hessian matrix (see for example. [Spencer 

and Mitchell, 2011]). 

 Time-smooth with ℓ1 regularization in space (TS). It implements Equation (7.6) to 

define the regularization in space and a time-smoothing regularization term based on 

𝜚‖𝐏t𝐊𝒙‖𝟐. 

 Time-sparse and spatial-sparse ℓ1 regularization (TP). It is implemented by creating 

3-dimensional wavelet basis functions with the sparse regularization of Equation 

(7.6). 

The time-smooth solution was implemented with the ℓ2 regularization for the time variation 

and required a few modifications in the FISTA algorithm. In fact, it was necessary to merge 

the two ℓ1 and ℓ2 regularizations in the same algorithm. In this case, the ℓ2 regularization 

consists in a second regularization factor that minimizes the rate of change of gradient of the 

electron density at each time frame. As a consequence high and rapid changes of electron 

density in time (at the same position) are unlikely. Therefore, Equation (7.6) becomes:  
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 𝑄(𝒙) = 𝛼‖𝒙‖1 + 𝜚‖𝐏𝐭𝐊𝒙‖2
2 (7.7) 

where 𝐏𝐭 corresponds to the Hessian matrix and is defined only for the dimension 

corresponding to the time. In this equation the regularization parameters have been included in 

order to distinguish between 𝛼 for ℓ1 regularization and 𝜚 for ℓ2 regularization. This is 

believed to be the first combination of (spatial)  ℓ1 regularization with (time) ℓ2 regularization 

for ionospheric tomography. 

This TS regularization is implemented in the FISTA algorithm. Details about the algorithm 

can be found in Chapter 5. Instead, the main line of the FISTA algorithm is reported below: 

 𝒙𝑛 = 𝜂𝛼𝜏 (𝒚𝑛 + 𝜏𝐊T𝐀T(𝒛 − 𝐀𝐊𝒚𝑛)) = 𝜂𝛼𝜏 (𝒚𝑛 + 𝜏(𝐊T𝐀T𝒛 − 𝐇𝒚𝑛)) (7.8) 

where 𝐇 = 𝐊T𝐀T𝐀𝐊. At the 𝑛-th iteration, the solution 𝒙𝑛 is obtained by applying the soft-

threshold operator 𝜂𝛼𝜏 to the estimation 𝒚𝑛 plus the residual not yet exploited in the solution. 

The soft-threshold operator can be written as: 

 𝜂𝛾(�̂�𝑖) = {
0 𝑖𝑓 |�̂�𝑖| ≤ 𝛾 

𝑠𝑔𝑛(�̂�𝑖)(|�̂�𝑖| − 𝛾) 𝑖𝑓 |�̂�𝑖| > 𝛾
 (7.9) 

where 𝛾 = 𝛼𝜏 and 𝜏 is equal to 1 max(eig(𝐇))⁄ . 

In order to include the time regularization, the matrix 𝐇 was substituted with the matrix 𝐇t 

(where the subscript t indicates the time-dependency of the matrix): 

 𝐇𝐭 = 𝐇 +  𝜚𝐏𝐭
𝐓𝐏𝒕 (7.10) 

In this way, the projection of the solution into the observation domain will be constrained by 

the smoothing operator 𝐏𝐭 (supposing it corresponds to the Hessian matrix), which operates in 

the time domain. 

In order to minimize the border effects due to the wavelets, in particular on the edges of the 

grid where there is little coverage, a further regularization was introduced to TS (included in 

the same matrix 𝐏𝐭). It forces the solution to be smooth in regions where the data coverage has 

a total number of rays (summed along the vertical) equal to or less than 50. Generally, this 

regularization has a minimum influence on the solution and helps to reduce oscillations in 

particular at the border of the grid. 

7.2.2  Comparing TEC maps with CHAMP electron density profiles 

CIT provides a 4D reconstruction corresponding to the best estimation of the ionosphere at a 

certain time. This estimation depends strongly on the assumptions that are introduced to make 

the problem stable, and the algorithm efficient. One of the tools used to reduce the dimension 

of the problem and resolve the difficulties, due to angle-limited geometry of the rays, are the 

Empirical Orthonormal Functions (EOFs). They can provide a certain degree of freedom on 
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defining the vertical profile in the reconstruction. Nevertheless, their contribution will 

strongly depend on the set of vertical profiles used to create the EOFs through SVD 

decomposition (more information can be found in Chapter 4). Therefore, vertical profiles in 

the reconstruction cannot be considered completely reliable. 

Observations from the CHAMP satellite provide a local measurement of electron density at an 

altitude close to the F2 peak. A direct comparison of CHAMP with CIT electron density maps 

cannot be used directly for the reasons previously explained in Chapter 6. However, the 

solution adopted for this analysis is different from the one in the previous chapter. The 

solution consists in using electron density values (from CHAMP) and TEC values (from CIT 

reconstructions) normalized with their standard deviation. In addition, the average value is 

also removed in order to take any bias out of the analysis. If 𝑣 refers to either electron density 

or TEC, the normalization is obtained as: 

 𝑣𝑛 =
𝑣 − �̅�

𝑠𝑡𝑑(𝑣)
 (7.11) 

where �̅� represents the average value of 𝑣 and 𝑠𝑡𝑑(∙) the standard deviation calculated from 

the profile at the same spatial and time sampling of CHAMP.. 

Normalized TEC and electron density have, therefore, a unitary standard deviation. As a 

consequence the comparison will describe better the presence of a structure/gradient rather 

than its enhancement in terms of density. 

7.3 Data 

Measurements were collected in a grid over Europe from different repositories, such as 

UNAVCO, IGS, and CDDIS. The observations are initially analysed using the MIDAS pre-

processing tool, as detailed in Chapter 2. One of the main purposes of this tool is to convert 

the pseudoranges (provided by RINEX files) into slant TEC observations. 

The grid for CIT reconstructions is shown in Figure 7.2 together with the normalized number 

of available rays for two different times. The number of rays shown in the figure is obtained 

by summing along the vertical the number of rays that intercept the voxels of the grid, which 

are then divided by the maximum value in the grid. 
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Figure 7.2. Normalized number of available rays for two different times. The coverage corresponds to a grid 

over Europe with 2.5 degree resolution in latitude and longitude. 

Figure 7.2 is used to give an indication of the coverage over a grid with a resolution equal to 

2.5 degrees in latitude and longitude. As expected there is a good coverage in Europe, 

Greenland and Iceland. However, little coverage is present on the edges of the grid and in the 

ocean.. 

TEC maps from CIT reconstructions are compared with the electron density measured from 

CHAMP data that were collected with a rate of 5 seconds and are provided by AF Research 

Lab (US). 

7.4 Sensitivity to the regularization parameter 

In this section, the effect of the regularization parameters 𝛼 and 𝜚 on the ionospheric 

reconstructions is discussed. The parameters 𝛼 and 𝜚 are chosen in order to have the best 

compromise between the most reliable reconstruction and the best match with the 

observations. A small value could produce the best match between data and reconstruction 

(Equation (7.5)) but with high probability of producing artefacts. On the other side, a high 

value reduces the probability of having artefacts in the reconstruction in favour of a more 

reliable reconstruction. The effects of this parameter strongly depend on the choice of the 

regularization term 𝑄(𝒙) (Equation (7.5)). The following picture shows three different 

reconstructions for SM (Figure 7.3a-c) and wavelets with TS (Figure 7.3d-i) and TP (Figure 

7.3j-o). The reconstruction was calculated for the day of 23 July 2009 at 23:40 UT with three 

different values of 𝛼 and 𝜚, each ten times bigger. 
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Figure 7.3. Reconstructions obtained with (a-c) standard MIDAS (left), time-smooth regularization with (d-

f) Daubechies 4 and (g-i) discrete Meyer, and time-sparse regularization with (j-l) Daubechies 4 and m-o) 

discrete Meyer. The images show TEC maps of 23 July 2009 at 23:40 UT for three different values of 𝜶 and 

𝝔. 

It is shown that different results are produced in the reconstructions by varying the 𝜚 

parameter in SM. A small value produces more variation (and potentially more artefacts) in 

the reconstructed ionosphere (Figure 7.3a) in comparison to a high value (Figure 7.3c). In 

general an optimal compromise was empirically found when 𝜚 was equal to one. It can be also 

noted that for 𝜚 equals to 1E-1, structures appear at 0 degrees longitude and 82 degrees 

latitude. This structure could be associated with an artefact since it is not present in the other 

reconstructions, even with a smaller regularization parameter. The situation is different for 

wavelets. An 𝛼 equals to 8E-4 produces almost the same structures that were obtained with a 

higher value (𝛼 equals to 8E-3). This is due to the fact that wavelets are representing the 

ionosphere in a simplified form. This means that the information is contained within just a 

few basis functions. The coefficients associated with those basis functions will have high 

values in correspondence with the number of structures. Therefore, increasing the 

regularization parameter 𝛼 will lessen the number of small ionospheric oscillations, due to 

artefacts or noise, from the reconstruction,  but will still keep the main information extracted 

through the basis function. However, the reconstructions with TP seem to be less sensible due 

to the decreasing of the regularization parameter; in particular for 𝛼 equals and less than to 

8E-4. However, for higher values, the regularization is too strong and the wavelet 

reconstructions appear smooth. 
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7.5 Results and analysis 

A set of five case studies were selected by using a grid over Europe during moderate 

geomagnetic activity (Kp index 3) during the second half of 2009. Moderate geomagnetic 

activity was selected to ensure a good chance of seeing a well defined trough over Europe. For 

each case study, TEC maps are shown using reconstructions from using three techniques; 

time-sparse regularization, time-smooth regularization and the standard version of MIDAS. 

For each case study a total of seven reconstructions, 10 minutes apart, were calculated. The 

reconstructed TEC maps are then normalized and compared with the normalized electron 

density as measured from CHAMP, which is used as reference. The normalization, explained 

in Section 7.2, is a necessary operation in order to make two comparable measurements, 

which are otherwise different. However, it must be remembered that the CHAMP satellite 

orbits at an altitude of about 400 km and provide a local measure of the electron density, 

whilst the reconstructions show vertical TEC integrated in the range 70-1000 km. Therefore, 

the operation of integration will obviously average local variations in the profile, which are in 

any case not reproducible because of the use of vertical basis functions (EOFs, see Chapter 4). 

This is not problematic because the comparison aims to test the reconstruction of horizontal 

variations of the ionosphere. Nevertheless, CHAMP remains a good and reliable measure that 

allows, in this chapter, validating of the reconstructed TEC maps over the full range of 

latitudes of the grid. 

Two different wavelet families were used for the sparse regularization, Discrete Meyer (DM) 

and Daubechies 4 (DB4). The regularization parameter 𝜚 was chosen equal to 1 for SM and 

TS. The regularization parameter 𝛼 was set to 0.008 for TS and TP. The maps are 

reconstructed over a grid that is then cropped in latitude and longitude in order to reduce the 

border effects.  

7.5.1 Case Study 1, 22 October 2009 

This first case study shows the evolution of the trough located at around 65 degrees north of 

the UK. The reconstructions are shown in Figure 7.4 for SM (a-c), DB4 (d-f) and DM (g-i) by 

using the time-smooth regularization. The time increments between each reconstruction 

correspond to 30 minutes starting from 01:10 UT of 22 October 2009. The time 01:40 UT was 

chosen at the closest proximity to the mid-latitude trough as seen from CHAMP. 
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Figure 7.4. Reconstructions obtained with (a-c) standard MIDAS, (d-f) Daubechies 4 and (g-i) discrete 

Meyer with time-smooth regularization. The images show TEC maps every 30 minutes starting from 01:10 

UT of 20 October 2009. 

With reference to the reconstructions, the trough starts to evolve from the West-side of the 

Grid and reaches the maximum extension at 01:40 UT. Both MIDAS and wavelets reconstruct 

similar information even if the trough looks shallower with wavelets. There are substantial 

differences between the the three methods over North Europe, in particular at 02:10 UT where 

wavelets still reconstruct some structures. In fact, SM produces the smoothed image followed 

by DM and DB4. In conclusion, wavelets seem to reconstruct more structures than SM, which 

is as expected. Those differences are associated to the different spatial regularization because 

the same regularization in time was used. The bulk of TEC, however, is quite similar between 

SM and DB4, whilst DM produced a lower value in TEC. 
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The TEC maps for the time-sparse algorithm are shown in Figure 7.5. 

 

Figure 7.5. Reconstructions obtained with (a-c) standard MIDAS, (d-f) Daubechies 4 and (g-i) discrete 

Meyer with time-sparse regularization. The images show TEC maps every 30 minutes starting from 01:10 

UT of 20 October 2009. 

In this case the 3D wavelets produce a more structured ionosphere for both DM and DB4. 

This shows that the time-smooth regularization is a strong assumption that consistently 

smooths the TEC in the wavelet-based method and, therefore, SM. This clearly shows that the 

time regularization also has an effect over the spatial scales of the resolved structures. In this 

case the trough looks shallower for SM than for wavelets. This, probably, is caused by the 

time-sparse algorithm that could exploit the compact representation of wavelets more 

efficiently. 
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The following figures show the comparison between CHAMP electron density and the 

reconstructed TEC maps. TEC and electron density are normalized as explained in Section 

7.2. The normalized CHAMP electron density is shown as coloured dots, whose colour is 

proportional to the normalized electron density. The plots on Figure 7.6 show the 

reconstructions at 01:40 UT, which corresponds to the closest time where CHAMP sees the 

trough. The reconstructions were done with DB4 (Figure 7.6a) and DM (Figure 7.6b) by using 

the time-smooth regularization and SM (Figure 7.6c). Figure 7.6d shows, instead, the 

normalized TEC obtained with DB4 (red), DM (orange) and SM (green) compared with 

CHAMP normalized electron density (black). 

The bulk of electron density at low latitudes is well recovered, but the enhancement at 70 

degrees in latitude and the trough at 64 degrees in latitude, have not been reconstructed well 

by SM (Figure 7.6c). Instead, both wavelets (Figure 7.6a-b) have recovered a structure nearby 

to where CHAMP measured an enhancement in electron density, even if DM seems to have 

the best reconstruction (Figure 7.6b). 
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Figure 7.6. Comparison between normalized CHAMP and normalized TEC maps by using a) Daubechies 4; 

b) discrete Meyer; c) MIDAS with the time-smooth algorithm. CHAMP is shown in terms of normalized 

electron density as coloured circles over the reconstruction maps. The colour is proportional to the 

normalized electron density. The bottom plot shows, instead, the normalized electron density (black) and 

normalized TEC for Daubechies 4 (red) and discrete Meyer (orange) and MIDAS (green) along the satellite 

CHAMP pass. The plot shows two axes: the latitude (degrees) and the CHAMP time when the measurement 

was taken. TEC maps are calculated at 01:40 UT of 22 October 2009. 



115 

 

The disagreement between the MIDAS and wavelets methods is due to the different 

regularization. In MIDAS the solution tends to be smoothed, whereas with the wavelets 

method, the solution can exploit the multi-resolution analysis. The reconstruction with 

wavelets seems to be more structured, as opposed to the more smoothed reconstruction from 

MIDAS. In fact, if a strong correlation is found between a certain wavelet’s scale and the 

corresponding ionospheric structure, a high coefficient is expected in the reconstruction. If 

this is related with the concept of sparsity, it can be found that not all the scales of the 

wavelets are used, but only the ones that have a strong similarity with the real structures 

detected from the observations. This motivates the use of a sparse-promoting algorithm (in 

this example applied in space only) to estimate the solution by using wavelets. 

The following figure shows the same reconstructions but with the time-sparse algorithm for 

DB4 (Figure 7.7a) and DM (Figure 7.7b) with SM (Figure 7.7c) as comparison. 
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Figure 7.7. Comparison between normalized CHAMP and normalized TEC maps by using a) Daubechies 4; 

b) discrete Meyer; c) MIDAS with the time-sparse algorithm. CHAMP is shown in terms of normalized 

electron density as coloured circles over the reconstruction maps. The colour is proportional to the 

normalized electron density. The bottom plot shows, instead, the normalized electron density (black) and 

normalized TEC for Daubechies 4 (red) and discrete Meyer (orange) and MIDAS (green) along the satellite 

CHAMP pass. The plot shows two axes: the latitude (degrees) and the CHAMP time when the measurement 

was taken. TEC maps are calculated at 01:40 UT of 22 October 2009. 
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The reconstructions look similar to the previous case and both DB4 and DM seem to do the 

best reconstructions in comparison with CHAMP. The structures resolved by the time-sparse 

algorithm show the most significant differences that can be witnessed over North Europe in 

comparison with the time-smooth algorithm (Figure 7.6). This is due to the 3-dimensional 

wavelets that allow the solution to potentially better capture the structures. This could not be 

obtained with the time-smooth algorithm (Figure 7.6) where the regularization inhibited the 

solution to have sharp variations of TEC over time. 

For each case study a total of 4 reconstructions were available every 10 minutes in order to 

cover the time window used from CHAMP to cross the grid. Those maps were used to extract 

the closest value in time and space to the one measured from CHAMP. In order to get the 

same sampled points, as in CHAMP, two interpolations were performed in space and time 

with a spline polynomial function. Those results are shown in Figure 7.8a for the normalized 

TEC, and Figure 7.8b shows the normalized TEC gradient for the time-smooth regularization. 

 

Figure 7.8. Normalized (a) TEC and (b) TEC gradients interpolated over time and space with a spline 

polynomial function for Daubechies 4 (red), discrete Meyer (orange) and MIDAS (green). The CHAMP 

normalized electron density (black) is also shown. The results were calculated for the 22nd October 2009 

with the time-smooth regularization. 
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Figure 7.8a shows the normalized TEC for DB4 (red), DM (orange) and SM (green). The 

normalized electron density for CHAMP is shown with a black line. It can be noticed that 

wavelets produce the deepest trough, whilst DM produces the best representation of the 

enhancement at 70 degrees in latitude. This can also be seen in the gradients (Figure 7.8b). 

The same results are shown for the time-sparse algorithm in Figure 7.9a and Figure 7.9b for 

the normalized TEC and normalized TEC gradient respectively. In this case there is an 

improvement of the normalized TEC, in particular for DB4. The two wavelets produce the 

best results with the deepest trough (Figure 7.9a) and strongest gradient (Figure 7.9b) as seen 

in CHAMP in comparison to SM. 

 

Figure 7.9. Normalized (a) TEC and (b) TEC gradients interpolated over time and space with a spline 

polynomial function for Daubechies 4 (red), discrete Meyer (orange) and MIDAS (green). The CHAMP 

normalized electron density (black) is also shown. The results were calculated for the 22nd October 2009 

with the time-sparse regularization. 

It is observed that the outer wall at 73 degrees in latitude of the structure centred at 70 degrees 

is not perfectly recovered. This problem is consistent with all the reconstructions produced in 

the proposed five case studies as they share a similar ray coverage map where there is lack of 

data coverage in that area (see Figure 7.2). 
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A summary of the results for this first case study is provided in Table 7-1. The ability to 

measure the advantages of a method over the other one is difficult to show with a single 

metric. For this reason, different metrics, where CHAMP was taken as the reference, were 

used in the table. The root mean squared (RMS) error was used to provide an error of the 

reconstructions in terms of TEC and TEC gradients. 

Unfortunately, the RMS error is well known to have strong limitations to differentiate 

between different types of errors and also to be highly susceptible to large errors, even if they 

are much localized or sporadic. This may be is in favour of the ℓ2 regularization used in SM 

as it aims to minimize the presence of strong variations. On the other hand, wavelets do not 

have this limitation and strong variations are allowed (if they are not detected as artefacts by 

wavelets) depending on data coverage.  

Therefore, the RMS error is a good index that may favour smoothness instead of structured 

details. In the same way, the maximum value of the cross-correlation function (CMAX, 

normalized to 100) was used, which is a good indicator of the similarity between CHAMP and 

the reconstructions but may fail for similar reasons. The Mean Structural Similarity (MSSIS) 

index was also used [Zhou et al., 2004]. The MSSIS index was developed in order to have a 

measure that could better represent the quality of an image using one as reference. The index 

is calculated as an averaged multiplication between three different measures: the mean 

intensity, the signal contrast and the structure comparison. The two different measurements 

that were used for CHAMP and the reconstructions required a normalization of their values in 

order to make them comparable in terms of fluctuation. The normalization was done by 

removing the averaged value and dividing the result by the standard deviation. Therefore, the 

mean intensity and the contrast comparison, which are basically the average value and the 

standard deviation, would be meaningless. For this reason the only structure comparison 𝒔 

was used: 

 𝒔(𝒙, 𝒚) =
𝝈𝒙𝒚 + 𝐶3

𝝈𝒙𝝈𝒚 + 𝐶3
 (7.12) 

where 𝒚 is the reference signal, 𝒙 the signal to be compared, 𝝈𝒙𝒚 the covariance between 𝒙 

and 𝒚, 𝝈𝒙 and 𝝈𝒚 the variance of 𝒙 and 𝒚 and 𝐶3 a constant term that prevent the case when 

𝝈𝒙𝝈𝒚 is zero. The MSSIS index is calculated for each point of the normalized profiles (both 

the reconstructed and CHAMP profiles) by using also a weight based on a Gaussian-shaped 

function with standard deviation 1.5. The MSSIS index is then calculated as: 

 𝑀𝑆𝑆𝐼𝑆 =
1

𝑀
∑ 𝑠𝑗

𝑀

𝑗=1

 (7.13) 
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where 𝑀 corresponds to the number of point in the profiles. 

Table 7-1 shows that there are not particular differences between the methods in terms of 

RMS error. The cross-correlation index (normalized to 100), instead, indicates that the time-

sparse algorithm performs better than the other two, i.e. MIDAS and the time-smooth 

algorithm. This is also confirmed by the MSSIS index for the normalized TEC gradients, 

whilst for the normalized TEC it shows better performances of MIDAS followed by the time-

sparse algorithm. The main interesting point in the table is given by the percentage of basis 

functions used in the reconstruction, which is remarkably small for wavelets reconstructions. 

Table 7-1. RMS error of the VTEC map obtained with MIDAS and wavelets using CHAMP as reference for 

the 22nd October 2009. The maximum cross-correlation values (CMAX, normalized to 100) between the 

reconstructed values and CHAMP, and the MSSIS index are also included. The percentage of basis 

functions with non-zero coefficients is also shown. For each basis function the time-smooth (TS) and time-

sparse (TP) results are illustrated. 

 

Type 
Basis 

Functions 
RMS  
error 

CMAX MSSIS 
Percentage 
number of 

basis 

TE
C

 

 SM No 0.71 78.00 0.42 100.00 

TS 
DB4 

0.65 80.42 0.19 14.50 

TP 0.49 91.27 0.37 25.36 

TS 
DM 

0.67 85.14 0.31 10.27 

TP 0.52 92.60 0.34 14.45 

D
TE

C
 

 SM No 0.48 2.63 0.18 100.00 

TS 
DB4 

0.51 1.31 0.19 14.50 

TP 0.43 7.72 0.38 25.36 

TS 
DM 

0.44 6.26 0.30 10.27 

TP 0.42 7.78 0.40 14.45 

 

7.5.2 Other case studies 

The following section illustrates the results from other four case studies for the days of: 

 20 November 2009 

 05 December 2009 

 14 July 2009 

 23 July 2009 



121 

 

For each day, TEC maps obtained using; SM, the time-smooth and time-sparse (with DB4 and 

DM) techniques are shown. Normalized TEC maps are not shown in this section but can be 

found in Appendix C. The comparison of CHAMP is instead discussed with the normalized 

TEC and normalized TEC gradient profile. Finally, the indices RMS error, CMAX, MSSIS and 

number of basis functions are also reported as in the previous section. 

The following figures show TEC maps calculated every 30 minutes for November 2009 

(Figure 7.10), December 2009 (Figure 7.11) and July 2009 (Figure 7.12 and Figure 7.13). 

Each figure illustrates the reconstructions for SM (a-b), time-smooth regularization with DB4 

(d-f) and DM (g-i) and time-sparse regularization with DB4 (j-l) and DM (m-o). 
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Figure 7.10. Reconstructions obtained with a-c) standard MIDAS (left), time-smooth regularization (centre) with d-f) Daubechies 4 and g-i) discrete Meyer and time-sparse 

regularization (right) with j-l) Daubechies 4 and m-o) discrete Meyer. The images show TEC maps every 30 minutes starting from 00:00 UT of 20 November 2009.  
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Figure 7.11. Reconstructions obtained with a-c) standard MIDAS (left), time-smooth regularization (centre) with d-f) Daubechies 4 and g-i) discrete Meyer and time-sparse 

regularization (right) with j-l) Daubechies 4 and m-o) discrete Meyer. The images show TEC maps every 30 minutes starting from 22:00 UT of 05 December 2009.  
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Figure 7.12. Reconstructions obtained with a-c) standard MIDAS (left), time-smooth regularization (centre) with d-f) Daubechies 4 and g-i) discrete Meyer and time-sparse 

regularization (right) with j-l) Daubechies 4 and m-o) discrete Meyer. The images show TEC maps every 30 minutes starting from 23:30 UT of 14 July 2009.  
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Figure 7.13. Reconstructions obtained with a-c) standard MIDAS (left), time-smooth regularization (centre) with d-f) Daubechies 4 and g-i) discrete Meyer and time-sparse 

regularization (right) with j-l) Daubechies 4 and m-o) discrete Meyer. The images show TEC maps every 30 minutes starting from 22:40 UT of 23 July 2009. 
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It can be seen that for the bulk of TEC in Southern Europe, the three methods generally 

produce similar reconstructions. In Figure 7.10 a TEC enhancement over Greenland can be 

recognized from the three methods. However, wavelets generate more distinctive structures 

close to Iceland and Greenland and a TEC enhancement on the north of Europe. Some 

structures over Greenland are more visible with DB4 although still present in DM, in 

particular at 00:00 UT. The reconstructions from SM exhibit a TEC enhancement at high 

latitudes of the grid that fades quickly in the following half-hour. Wavelets, however, indicate 

a more complex ionosphere with structures that become smoother over a time span of 1 hour. 

Also in this case, wavelets show two troughs; the first one at 62 degrees north and a second 

one located at 68 degrees north and 0 degrees west. This will be more visible on the 

normalized TEC plot in the following analysis. 

Figure 7.11, instead, shows the closest similarity between MIDAS and wavelets. The 

reconstructed scenario is similar to the previous ones with a trough located around 65 degrees 

in close proximity of Norway. However, the evolution of the ionosphere is slower and there 

are no particular differences between the reconstructions at 22:00 UT and 23:00 UT. 

Figure 7.12 and Figure 7.13 illustrate the cases where SM and wavelets reconstruct two 

different scenarios. In particular, Figure 7.12 shows an evolution of the ionosphere where 

wavelets estimate more TEC than SM. This enhancement persists until the end of the 

reconstruction, i.e. at 00:30 UT on 15 July 2009. At that time, in fact, SM has a minimum 

TEC over North Europe, whilst the wavelets reconstruct a TEC enhancement over the 

Northern Scandinavian regions. Similarly, Figure 7.13 shows an initial different scenario 

between SM and wavelets at 22:40 UT that evolves, then, similarly during the next hour. 

However, a trough located at 63 degrees in latitude is clearly more visible with wavelets. 

A proper look at these maps also shows that TP always reconstructs a deeper trough than TS 

and SM. The reason is certainly caused by the different time regularization employed by the 

two wavelet-based methods. As it will be seen later, TS uses a significant higher number of 

basis functions (double or more) than TP. The little difference between TS and TP 

reconstructions, mean that more basis functions are needed by TS in order to reconstruct a 

similar variability in the ionosphere as in TP. Therefore, the smoothness in time has a strong 

impact in the spatial scale of the structures. This can be seen in the following picture. Figure 

7.14 shows the reconstruction for the 23 July 2009 at 23:10 for TS with DB4 (a) and DM (c) 

and for TP with DB4 (b) and DM (d). The regularization parameter was increased to 5E-3 for 

TS to force the solution using the same number of basis functions of TP. 
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Figure 7.14. Reconstruction obtained with time-smooth regularization with a) Daubechies 4 and c) discrete 

Meyer and with time-sparse regularization with b) Daubechies 4 and d) discrete Meyer. The regularization 

parameter was selected differently between the two methods (TS and TP) in order to have a comparable 

number of basis functions used in the reconstruction. 

The figure above shows that the reconstruction looks smoother for TS than TP, when a similar 

number of basis functions are used between the different solutions. This confirms the 

smoothing effect of a time-smooth regularization over the resolved spatial scales in the 

reconstruction. The percentage of basis functions were 11% for DB4 and 7% for DM with TS, 

whilst 18% for DB4 and 11% for DM with TP. 

More basis functions allow the reconstruction of smaller scale structures but with the risk of 

more artefacts and noise. Furthermore, the sparse regularization algorithm relies on the 

compactness of the ionospheric decomposition through wavelets. Therefore, the efficiency of 

the algorithm to resolve different scale structures of the ionosphere can diminish if more basis 

functions are required for the reconstruction. 

Figure 7.15 shows the normalized TEC (a-d) and normalized TEC gradients (e-h) obtained 

from a series of four reconstructions for the time-smooth regularization. Those values were 

then interpolated over time and latitude/longitude in order to get the estimated values at the 

same spatial and temporal sampling of CHAMP. The same information is shown in Figure 

7.16 for the time-sparse regularization. 
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Figure 7.15. Normalized (a-d) TEC and (e-h) TEC gradients interpolated over time and space with a spline 

polynomial function for Daubechies 4 (red), discrete Meyer (orange) and MIDAS (green). The CHAMP 

normalized electron density (black) is also shown. The results were calculated for different days with the 

time-smooth regularization. 

 

 

Figure 7.16. Normalized (a-d) TEC and (e-h) TEC gradients interpolated over time and space with a spline 

polynomial function for Daubechies 4 (red), discrete Meyer (orange) and MIDAS (green). The CHAMP 

normalized electron density (black) is also shown. The results were calculated for different days with the 

time-sparse regularization. 
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It can be seen from Figure 7.15 and Figure 7.16 that SM (green) produces, generally, good 

ionospheric reconstructions in comparison with CHAMP. However, the SM profiles tend to 

be smoother than wavelets (red and orange), and, occasionally, with less details than CHAMP. 

This is more visible in the normalized TEC gradient profiles in Figure 7.15 and Figure 7.16. 

The reconstruction of 19 November 2009 shows the difficulty of SM to estimate the finer 

structures of the poleward wall of the trough (between 65 and 70 degrees in latitude). 

Wavelets (with TS and TP), instead, reconstructed a more structured profile and reproduced 

what could be considered (also according to CHAMP) a second trough at 68 degrees. 

The profile from the reconstruction of the 5 December 2009 shows that SM and wavelets 

(with TS and TP) produce a smooth profile in comparison with CHAMP in terms of 

normalized TEC. Nevertheless, a gradient around 66 degrees in latitude is more visible with 

wavelets than with SM. 

The last two profiles (14 and 23 July 2009) exhibit more similarities between SM and 

wavelets for both TS and TP in terms of normalized TEC and normalized TEC gradients. 

However, wavelets still produce a more structured ionosphere than SM, as shown from the 

normalized TEC gradients. 

The differences between TP and TS are in general very small and are not obvious in the 

profiles. The most noticeable difference is in the last case study (23 July 2009) where TS 

(Figure 7.15d) produces a more structured profile than TP (Figure 7.16d). This is due to the 

highest number of basis functions (as it will be seen later) used by TS. The TS technique 

created a normalized TEC gradient profile whose values seem to overestimate the normalized 

gradients measured by CHAMP (Figure 7.15h), whilst they are still in a reasonable range for 

TP (Figure 7.16h). 

The normalized TEC profile for November, December and 23 July 2009 show a good 

estimation of the gradient of the trough but located a few degrees apart from the position 

measured by CHAMP. This misalignment is present for both MIDAS and wavelets (with TS 

and TP). Therefore, it is probably caused by the discretization of the ionosphere into a grid. 

The resolution of the grid was about 2.5 degrees in both latitude and longitude. Therefore, it is 

expected that a maximum misalignment equal to 2.5 degrees could exists, which corresponds 

to what is shown in the profiles. The same limitation can be extended to wavelets, which are, 

in fact, a discrete representation of the continuous wavelet basis functions. 

The differences between DM (orange) and DB4 (red) are minimal. However, Figure 7.15c and 

Figure 7.15g, and Figure 7.16c and Figure 7.16g illustrate the case where DM and DB4 are 



130 

 

dissimilar. Both images reconstruct the day of 14 July 2009. In this example, DM seems to 

produce a smoother reconstruction than DB4 with both TP and TS. 

The following table summarizes the results obtained from all the case studies and the different 

methods. The table shows four indices calculated from the normalized TEC (or electron 

density) and normalized TEC (or electron density) gradient (DTEC) obtained with the 

reconstructions and CHAMP. The indices are the RMS error, the maximum cross-correlation 

function (CMAX, normalized to 100) and the MSSIS. The percentage number of basis functions 

is also included. Each index represents the average value obtained from the case studies 

previously analysed. The indices for each case study can be found in Appendix D. An average 

of the four indices is also included in the table. The average is performed after a normalization 

of the RMS error and the MSSIS indices. In particular, RMS is normalized as 100 (1 + RMS)⁄ , 

whilst the MSSIS index is multiplied by 100. This ensures that the average is performed on 

values that vary between 0 and 100, and higher is the value and better is the score. 

Table 7-2. The table shows different indices calculated from normalized VTEC maps obtained with 

standard MIDAS (SM) and wavelets using CHAMP as reference. The indices are the RMS error (values are 

in TECU), the maximum cross-correlation values (CMAX, normalized to 100) between the reconstructed 

values and CHAMP and the MSSIS index. The percentage of basis functions with non-zero coefficients is 

also shown. The time-smooth (TS) and time-sparse (TP) results are illustrated for each basis function and 

for different case studies. Each index was calculated by averaging the values obtained for each case study 

(five in total). An average of those (normalized) four indices is also included. 

 

Type 
Basis 

Functions 
RMS  
error 

CMAX MSSIS 
Percentage 
number of 

basis 
Average 

TE
C

 

SM  No 0.59 73.01 0.50 100.00 46.38 

TS 
DB4 

0.67 72.57 0.49 37.39 61.12 

TP 0.68 71.57 0.50 21.85 64.80 

TS 
DM 

0.72 70.48 0.45 31.04 60.61 

TP 0.74 70.29 0.42 12.28 64.35 

D
TE

C
 

 SM No 0.42 5.64 0.35 100.00 27.71 

TS 
DB4 

0.42 8.00 0.33 37.39 43.50 

TP 0.41 8.41 0.35 21.85 48.13 

TS 
DM 

0.41 7.91 0.31 31.04 44.73 

TP 0.41 7.64 0.31 12.28 49.28 
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The above table shows that, as expected from Section 7.5.1, SM produces the best results in 

terms of RMS error, even if the difference with wavelets is relatively small. The same 

consideration can be made with the CMAX index. The MSSIS index, instead, shows more 

similarities between wavelets and SD. On the other hand, it is worth noting the low number of 

basis functions used by wavelets and in particular by DM with TP. This confirms that 

wavelets can represent the same information as SM but with less basis functions. Therefore, 

CIT reconstructions can benefit from sparse regularization methods like FISTA. 

The section of Table 7-2 regarding the gradients shows a completely different scenario. In 

fact, the RMS error is the same between SD and wavelets (with TS and TP) as well as MSSIS 

(with negligible small variations). However, the CMAX index, shows that wavelets better 

reconstruct the gradients in the ionosphere, in particular DB4. 

The average result is illustrated in the last column of Table 7-2. It combines the four 

(normalized) indices (RMS error, CMAX, MSSIS and number of basis functions) and provides 

an averaged indication of the best algorithms in terms of sparsity and reliability (of the 

reconstruction). This average, therefore, will penalize SM as it does not account for sparsity in 

the reconstruction. It can be seen, in fact, as DM produces the best value in terms of average. 

The number of basis functions has been considered as a fundamental parameter in this 

analysis since a more compact representation has numerous advantages in terms of noise (or 

artefact) removal and efficiency of sparse regularization. 

7.6 Summary 

The trough is a well-known feature of the ionosphere that has been extensively studied since 

the 1960s. Because of this, it has been selected to test the new sparse regularization methods 

over the standard one. The new methods rely on the multi-resolution analysis applied through 

wavelets decomposition. Although sparse regularization methods were developed by using 

MIDAS, the name MIDAS or standard MIDAS (SM) has been kept as a reference to the 

current tomographic tools available within the University of Bath only. The new methods are 

instead referred to as time-smooth (TS) and time-sparse (TP) and are linked to the wavelet 

representation. 

Five different experiments have been run. In each of them a comparison between wavelets 

(DB4 and DM) and SM was proposed. The electron density observed from CHAMP was used 

as independent measurements. Because of the different measurements between CHAMP 

(electron density) and tomography (TEC), a normalization formulation was used. 

MIDAS showed a very smooth ionosphere and the enhancements in TEC were better visible 

with wavelets. And this was confirmed by the CHAMP measurements. Wavelets, in fact, were 



132 

 

able to reconstruct a more structured ionosphere, in particular over middle-high latitudes. The 

two different wavelets used in the case studies, DB4 and DM, produced generally similar 

results, in particular with the time-sparse algorithm that proved to have better performances 

than the time-smooth algorithm. The negative effect of the time-smoothing operator over the 

ability to resolve the spatial scale of ionospheric structures was also shown. 

The translation of those results was attempted with the use of four indices: the RMS error, the 

CMAX, the MSSIS and the percentage number of basis functions. However, the interpretation 

of those indices was sometime inconsistent or based on small differences between the 

methods. This caused difficulties in their interpretation and analysis. For this reason, the 

average of the normalized RMS error, the CMAX, the normalized MSSIS and the percentage 

number of basis functions was proposed. However, the overall analysis with CHAMP showed 

that wavelets can reproduce an accurate reconstruction and, potentially, represent better the 

structures of the ionosphere. 

According to the average value of Table 7-2, DM could be considered as the best basis 

function to represent ionospheric structures. It also used the smallest number of basis function 

in the reconstructions, which makes DM more coherent with the ionospheric structures than 

DB4. This makes the sparse regularization algorithm more efficient to detect and to recognize 

real structures from artefacts (or noise). 

The results shown in this chapter gave evidence of the importance of the regularization in 

time. A better knowledge of the dynamics of the ionosphere could probably improve those 

aspects. On the contrary, when no a-priori information is available, the time regularization can 

only rely on the data. Therefore only simple assumptions can be done. And this was the case 

analysed in this chapter. 

Another important aspect was given by the discretization of the grid and basis functions, 

which caused, occasionally, a misalignment between CHAMP and the reconstructions. This 

may suggest that a higher resolution could improve the detection of the edges of ionospheric 

structures. Unfortunately, as discussed in Chapter 6, the data coverage imposes a strong 

limitation on the maximum resolution that could be obtained in CIT.  
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8 Chapter 8 

Conclusions and future work 

In this project the overall aim was to study, implement and test new approaches to image the 

ionosphere with slant TEC measurements through Computerized Ionospheric Tomography 

(CIT). The choice to investigate the use of wavelets was because they had the inherent 

property to accommodate uneven distribution of observations.  The underlying theory behind 

the ideas was outlined in Chapter 5. 

Wavelets were compared with spherical harmonics in order to show the potential to resolve 

better ionospheric structures with wavelets. The method presented in Chapter 5 contained also 

the first implementation of sparse regularization with the ℓ1 norm for ionospheric 

applications. It was tested with simulated data, at low and high resolution and the method used 

2-dimensional wavelets to represent the horizontal variation of TEC. The robustness of the 

method was investigated with different level of representativity errors, which were introduced 

in the simulated data in order to emulate the discretization of the ionosphere on a grid. The 

results showed that the sensitivity of wavelets to this source of error was substantially lower 

than the sensitivity obtained with spherical harmonics, in particular at high resolution. At low 

resolution, in fact, both the methods produced a robust reconstruction. The best performances 

at high resolution were caused by the smaller set of coefficients that wavelets needed to 

estimate, which were around 9% of the total number of basis functions, in comparison to 

spherical harmonics that used 100% of the basis functions in the reconstructions. 

GNSS measurements are uncalibrated and this required a development in line with other 

ionospheric tomography algorithms. What was new here was the approach to combining 

wavelets into a new inversion algorithm that could accommodate relative observations. It was 

important that offsets were estimated correctly - no matter with which method. This aspect 

was simulated in Chapter 6, by introducing a random offset to each satellite-receiver 

measurement pair. As expected the accuracy of the estimation reduced dramatically at high 

resolution with spherical harmonics. The better performances obtained with wavelets were 

caused by their compact representation achieved through sparse regularization, which made 

the inversion more stable than with spherical harmonics. A compact representation, in fact, 

uses only a little number of basis functions to represent the structures of the ionosphere. In 

this case, the stability of the inversion is helped with the employment of the sparse 

regularization, which selects the minimum number of basis functions whose shape has the 
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highest correlation with the ionospheric structures detected from the observations (through a 

mapping operator, see Chapter 4). The amount of basis function is chosen according to a 

threshold parameter.  

This point was shown in Chapter 6 with the Multi-Resolution (MR) map. The MR map is a 

visual representation of the Multi-Resolution Analysis (MRA) property of wavelets, which 

denotes the ability of wavelets to decompose the ionosphere at different scales - each scale is 

associated with a wavelet and its position. This allows the identification of the most 

significant structures (according to a threshold) that compose the ionosphere. The MR map 

illustrated the smallest scale wavelet used for the reconstruction in each point of the grid. The 

map showed an evident correlation between the number of observations and the minimum 

scale of the wavelet that could be used in the reconstruction. The smallest scales, in fact, were 

used mainly in regions with high data coverage. This supported the motivation that wavelets 

can adapt according to data distribution. Furthermore, it was interesting to notice that small 

scale wavelets were not necessarily used where there was good data coverage. Indeed, it also 

depended on the presence of ionospheric structures with scale comparable to the wavelet 

scale. 

Chapter 6 concluded with some demonstration of imaging high-resolution reconstructions. It 

showed the limitations of sparse regularization through wavelets with a resolution grid of only 

0.5 degrees and the need of another method to reduce the artefacts in the reconstruction. In 

that scenario, Total Variation (TV) was used to reduce the artefacts but without losing the 

information about the edges of the structures and assumed the ionosphere to be static. 

However, it must be said that there may be strong limitations with such a high-resolution 

reconstruction. In fact, the boundaries of validity of the assumption of static ionosphere can be 

not clear and difficult to assess and, therefore, more data could be required to ensure a reliable 

reconstruction. 

The ionosphere is a dynamic medium that changes continuously over time. This is an aspect 

that makes CIT considerably more difficult to solve than a standard tomography problem. The 

time-dependency was analysed in Chapter 7 where the method based on wavelets was 

extended to dynamic imaging of the ionosphere in a manner analogous to the MIDAS 

approach. A comparison was made with the current standard version of the Multi-Instrument 

Data Analysis System (MIDAS), developed at the University of Bath, by using real data. 

Results illustrated that a time-smoothing regularization had visible effects on the smoothness 

of the structures in the spatial scale. It also showed that better defined structures can be 

obtained when the smoothness in time is replaced with sparsity in time (i.e. time-sparse 

regularization). This was achieved by implementing 3-dimensional wavelets, where the third 
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dimension was time. The usage of wavelets in time had multiple advantages. Firstly, it 

allowed the usage of MRA also in time with the potential to represent the time-variation of 

TEC more sharply. Furthermore, wavelets in time can produce a more compact representation 

of the ionosphere. Therefore, the sparse regularization method, which relies on the ability to 

represent the ionosphere compactly, can be more robust and effective. 

The reconstructions were validated against CHAMP but normalization was required in order 

to compare TEC with the localized electron density measurement of CHAMP. Unfortunately, 

it must be said that it is very difficult to find a way to compare the improvements given by 

very different methods with a single general index. For this reason, three indices were 

provided for the validation: the Root Mean Square (RMS) error, the maximum cross-

correlation value (Cmax, normalized to 100) and the Mean Structural SIMilarity (MSSIM) 

index. Those indices were used for the normalized TEC and normalized TEC gradient profiles 

but in some cases those indices were discordant. The results, anyway, showed the 

applicability of wavelets in CIT and their potential to better resolve ionospheric structures. 

The five case studies proposed in this chapter confirmed wavelets and sparse regularization as 

a valid alternative to more standard methods (MIDAS). However, there were cases where 

wavelets could reconstruct ionospheric structures better then MIDAS. The results also 

indicated that the Discrete Meyer (DM) wavelet family used the lowest number of basis 

functions to reconstruct the state of the ionosphere in comparison to Daubechies 4 (DB4). A 

better compression (i.e. low number of basis functions used in the reconstruction) can lead to 

better performances of the sparse regularization method. In fact, a good compression is similar 

to say that the shape of the wavelets matches the shape of ionospheric structures and, 

therefore, the information content (in this case represented by TEC) extracted through wavelet 

is more robust to noise (i.e. artefacts). For this reason, DM can be considered a good choice to 

represent the structures of the ionosphere.  

In conclusion, the main contributions in this thesis work can be listed as: 

 Implementation and testing of a wavelet reconstruction and sparse regularization 

method into CIT, which is believed to be the first in ionospheric applications. 

 Implementation of a TV technique to preserve the edges of structures at high 

resolution, which is also new in CIT. 

 Extension to sparse regularization in time with 3-dimensional wavelets.  

 Identification of DM as the best wavelet family for ionospheric purposes, which was 

compared in terms of lowest number of basis functions used in the reconstructions. 

 Incorporation of a ℓ2 regularization term into the FISTA algorithm. It allowed the 

analysis in space caused by a time-smoothing term. It showed an evident spatial 
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smoothing effect of the resolved ionospheric structures, which was reduced with the 

time-sparse term. 

Further research needs to be done in order to reveal the efficacy of the method based on, for 

example, geographical locations. In fact, it is well known that structures are more likely to 

appear in equatorial and high latitude regions. Furthermore, ionospheric perturbations can be 

associated to geomagnetic indices such as Ap and Kp, which can be used to assess and 

identify the conditions where the new wavelet-based methods may be more suitable. Those 

scenarios should be classified according to different ranges of the Kp index, for example 0-3, 

3-6 and 6-9. 

The sparse regularization method relies on basis functions to extract the information of 

ionospheric structures from sTEC observations. Therefore, basis functions play an essential 

role, and the tomographic reconstruction could benefit from different basis functions like 

wavelet packets, contourlets, and curvelets. Further, CIT is a time-dependent problem and 

better results could be obtained with basis functions that can adapt to specific instances of the 

data, which could replace the use of generic basis functions. An example of this is given by 

the K-SVD, a dictionary learning algorithm, based on SVD, for creating a set of basis 

functions for sparse representation [Rubinstein et al., 2010]. 

In future the sparse regularization method can be improved under different aspects: 

 Including vertical profiles using a better model. For example the A New Ionospheric 

Model (ANIMo) [Da Dalt, 2015] could be used to improve the vertical profiles in 

terms of electron density and height peak. 

 Implementing a full Data Assimilation (DA) approach by using sparse regularization 

techniques. A DA approach combines the better definition of the time-dependencies 

of the ionosphere through a model (e.g. ANIMo) with the ability of sparse 

regularization methods to resolve ionospheric structures that a model cannot predict. 

DA relies on a covariance matrix that contains the information of the spatial 

correlation of the structures in the ionosphere. 
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9 Appendix A 

This appendix is intended as an extension of Chapter 4, which provides more details about the 

derivation of the RLS algorithm equations. 

A.1 Regularized Least Squares (RLS) Algorithm 

The ionospheric tomography is an undetermined problem described by Equation (3.9) its 

matrix notation. One solution to the problem is obtained by minimizing the misfit functional 

defined as the ℓ2 norm of the residual error between the predicted and observed data, i.e. 

 𝑓(𝒏) = ‖�̃� − 𝒛‖2 = ‖𝐀𝒏 − 𝒛‖2 = (𝐀𝒏 − 𝒛,   𝐀𝒏 − 𝒛) = (𝐀𝒏 − 𝒛)T(𝐀𝒏 − 𝒛)  (A.1) 

The value which minimizes the functional can be calculated by differentiating Equation (A.1) 

and putting it equals to zero 

 2(𝐀𝒏 − 𝒛)T𝐀 = 𝟎T (A.2) 

obtaining the pseudo-solution of the system Equation (3.9) 

 �̂� = (𝐀T𝐀)
−1

𝐀T𝒛 (A.3) 

The squared matrix (𝐀T𝐀) could be ill conditioned and then make the inversion instable. 

Andrei Tikhonov in 1977 proposed a solution for ill-posed problems. He introduced the 

following parametric functional [Tikhonov and Arsenin, 1977Tikhonov and Arsenin, 1977] 

that has been here extended to the case were an a-priori information 𝒏𝟎 was provided 

 𝑓𝜚(𝒏, 𝒛) = ‖𝐖d𝐀𝒏 − 𝐖d𝒛‖2 + 𝜚‖𝐖m𝒏 − 𝐖m𝒏𝟎‖2 (A.4) 

where 𝐖d and 𝐖m are two weighted matrices and the vector 𝒏𝟎 can be considered as an 

initial guess of the data source vector 𝒏. The solution can be found by minimizing the 

functional of Equation (A.4) i.e. by taking the derivative and sets it equal to zero 

 (𝐀T𝐖d
T𝐖d𝐀 + 𝜚 𝐖m

T 𝐖m)𝒏 − 𝐀T𝐖d
T𝐖d𝒛 − 𝐖m

T 𝐖m𝒏0 = 0 (A.5) 

obtaining the pseudo solution for the data source �̂� 

 �̂� = 𝒏0 + 𝛿�̂� (A.6) 

where 𝒏0 is the initial guess and 𝛿�̂�, obtained by adding and subtracting the term 

𝐀T𝐖d
T𝐖d𝐀𝒏𝟎 in Equation (A.6), is 
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 𝛿�̂� = (𝐀T𝐖d
T𝐖d𝐀 + 𝜚 𝐖m

T 𝐖m)
−1

𝐀T𝐖d
T(𝒛 − 𝐀𝒏0) (A.7) 

i.e. the inversion applied to the difference between the measurement 𝒛 and the predicted 

measurement 𝐀𝒏0. 

By considering the matrix 𝐖d an identity matrix and the initial guess 𝒏0 a zero vector 

elements, the pseudo solution becomes 

 �̂� = (𝐀T𝐀 + 𝜚 𝐖m
T 𝐖m)

−1
𝐀T𝒛 (A.8) 

According to the choice of 𝐖m, the inversion in Equation (A.7) could still be singular, giving 

an unstable solution. An even more robust stabilization can be obtained by considering the 

following functional cost 

 𝑓𝜚,𝛼(𝒏, 𝒃) = ‖𝐀𝒏 − 𝒛‖2 + 𝜚‖𝐖m𝒏 − 𝐖m𝒏𝟎‖2 + 𝛼‖𝒏 − 𝒏𝟎‖2 (A.9) 

where a term‖𝒏 − 𝒏𝟎‖2 has been added to force solution to be like the initial guess according 

to 𝛼. Equation (A.9) can be solved in same way by setting the derivative equal to zero 

obtaining the following solution 

 �̂� = 𝒏0 + 𝛿�̂� (A.10) 

where 𝒏0 is the initial guess and 𝛿�̂� 

 𝛿�̂� = (𝐀T𝐀 + ϱ𝐖m
T 𝐖m + 𝛼𝐈)

−𝟏
𝐀T(𝒛 − 𝐀𝒏0) (A.11) 

If the source data set is decomposed through some basis functions, i.e. 

 𝒃 = 𝐀𝒏 = 𝐀𝐊𝒙 (A.12) 

where 𝐊 is an orthonormal matrix, the RLS solution will try to minimize the following 

functional 

 𝑓𝜚,𝛼(𝒙, 𝒛) = ‖𝐀𝐊𝒙 − 𝒛‖2 + 𝜚‖𝐖m𝐊𝒙 − 𝐖m𝐊𝒙𝟎‖2 + 𝛼‖𝐊𝒙 − 𝐊𝒙𝟎‖2 (A.13) 

By taking the derivative and set it equal to zero it is obtained 

 �̂� = 𝒙0 + 𝛿�̂� (A.14) 

where 

 𝛿�̂� = (𝐊T𝐀T𝐀𝐊 + ϱ𝐊T𝐖m
T 𝐖m𝐊 + 𝛼𝐊T𝐊)

−𝟏
𝐊T𝐀T(𝒛 − 𝐀𝐊𝒙0) (A.15) 
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is the inversion of the difference between the prediction 𝐀𝐊𝒙0 and the observed 𝒃 

measurements. This differential inversion adds to the model the variations which can’t be 

modelled or predicted without taking into account the model itself. 

According to this decomposition the model resolution matrix can be written as 

 (�̂� − 𝒙0) = 𝐑m(𝒙 − 𝒙0) (A.16) 

If the resolution matrix 𝐑m is an identity means that the inversion is adding the true 

information that is missing from the model. 
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10 Appendix B 

This appendix derives the calibration matrix that was described in Chapter 5. 

B.1 The calibration matrix 

The forward problem was defined in Chapter 5 as 

 𝒛 = 𝐀𝐊𝒙 + 𝐁𝒃 (B.1) 

where 𝐀 is the projection matrix, 𝒛 is the observation vector, 𝐊 is the matrix containing the 

vertical and horizontal basis functions, 𝐁 the projection matrix of the offsets 𝒃. 

The inverse problem is defined through the functional 𝑓(𝒙, 𝒃) 

 𝑓(𝒙, 𝒃) = ‖𝒛 − 𝐇𝒙 − 𝐁𝒃‖2 + 𝛼 𝒫(𝒙, 𝒃) (B.2) 

where 𝒫(𝒙, 𝒃) is the regularization term weighted by the parameter 𝛼, and 𝐇 = 𝐀𝐊. 

Equation (B.2) can be rewritten as 

 𝑓(𝒚) = 𝒛𝑻𝒛 + 𝒚𝑻𝑪𝑻𝑪𝒚 − 𝟐𝒛𝑻𝑪𝒚 +  𝛼 𝒫(𝒚) (B.3) 

where 𝒚 = [
𝒙
𝒃

] and 𝑪 = [𝐇 𝐁]. 

The pseudo-solution is then found by minimizing Equation (B.3), i.e. by taking the derivative 

and set it to zero. Thus, 

 [
𝜕𝑓(𝒚)

𝜕𝒚
]

𝑇

= 𝟐𝑪𝑻𝑪�̂� − 𝟐𝑪𝑻𝒛 + 𝛼
𝜕𝒫(�̂�)

𝜕�̂�
= 0 (B.4) 

Equation (B.4) can be rewritten as 

 
𝛼

2

𝜕𝒫(�̂�)

𝜕�̂�
+ [𝐇𝐓𝐇 𝐇𝐓𝐁

𝐁𝐓𝐇 𝐁𝐓𝐁
] [

�̂�
�̂�

] = [𝐇𝐓𝒛
𝐁𝐓𝒛

] (B.5) 

With the assumption that the regularization term does not involve �̂�, Equation B.5 can be 

written as 

 
𝛼

2
[
𝜕𝒫(�̂�)

𝜕�̂�
0

] + [𝐇𝐓𝐇 𝐇𝐓𝐁
𝐁𝐓𝐇 𝐁𝐓𝐁

] [
�̂�
�̂�

] = [𝐇𝐓𝒛
𝐁𝐓𝒛

] (B.6) 

From the second “row” of Equation (B.6) it is possible to calculate the estimated offsets �̂� as 
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 �̂� = (𝐁𝐓𝐁)
−𝟏

𝐁𝐓(𝒛 − 𝐇�̂�) (B.7) 

By substituting Equation (B.7) into the first “row” of Equation (B.6) the following 

formulation is obtained 

 𝐇𝐓 (𝐈 − 𝐁(𝐁𝐓𝐁)
−𝟏

𝐁𝐓) 𝐇�̂� − 𝐇𝐓 (𝐈 − 𝐁(𝐁𝐓𝐁)
−𝟏

𝐁𝐓) 𝐇�̂� +
𝛼

2

𝜕𝒫(�̂�)

𝜕�̂�
= 0 (B.8) 

It is possible to demonstrate that the same solution that would be obtained from Equation 

(B.8) can be retrieved with the following functional 

 𝑓(𝒙) = ‖𝒛 − 𝐇𝒙‖𝐂
2 + 𝛼 𝒫(𝒙) (B.9) 

As for Equation (B.2), the pseudo-solution is calculated by minimizing the functional of 

Equation (B.9), i.e. by taking the derivative and set it equals to zero, which produces the 

following equation 

 𝐇𝐓𝐂𝐇�̂� − 𝐀𝐓𝐂�̂� +
𝛼

2

𝜕𝒫(�̂�)

𝜕�̂�
= 0 (B.10) 

By comparing Equation (B.10) with Equation (B.8) it is possible to determine the calibration 

matrix 𝐂, i.e. 

 𝐂 = 𝐈 − 𝐁(𝐁𝐓𝐁)
−𝟏

𝐁𝐓 (B.11) 
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11 Appendix C 

This appendix shows the reconstructions obtained with the methods described in Chapter 7 in 

terms of normalized TEC. The figures are compared with the normalized electron density as 

measured by CHAMP. 
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C.1 19 November 2009 

 

Figure C.1. Comparison between normalized CHAMP and normalized TEC maps by using a) Daubechies 4; b) discrete Meyer; c) MIDAS with the time-smooth algorithm, and d) 

Daubechies 4; e) discrete Meyer; f) MIDAS with the time-smooth algorithm. CHAMP is shown in terms of normalized electro density as coloured circles over the reconstruction 

maps. The colour is proportional to the normalized electron density. The bottom plot shows, instead, the normalized electron density (black) and normalized TEC for Daubechies 4 

(red) and discrete Meyer (orange) and MIDAS (green) along the satellite CHAMP pass. The plot shows two axes: the latitude (degrees) and the CHAMP time when the measurement 

was taken. TEC maps are calculated at 00:00 UT of 19 November 2009. 
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C.2 05 December 2009 

 

Figure C.2. Comparison between normalized CHAMP and normalized TEC maps by using a) Daubechies 4; b) discrete Meyer; c) MIDAS with the time-smooth algorithm, and d) 

Daubechies 4; e) discrete Meyer; f) MIDAS with the time-smooth algorithm. CHAMP is shown in terms of normalized electro density as coloured circles over the reconstruction 

maps. The colour is proportional to the normalized electron density. The bottom plot shows, instead, the normalized electron density (black) and normalized TEC for Daubechies 4 

(red) and discrete Meyer (orange) and MIDAS (green) along the satellite CHAMP pass. The plot shows two axes: the latitude (degrees) and the CHAMP time when the measurement 

was taken. TEC maps are calculated at 22:30 UT of 05 December 2009. 
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C.3 14 July 2009 

 

Figure C.3. Comparison between normalized CHAMP and normalized TEC maps by using a) Daubechies 4; b) discrete Meyer; c) MIDAS with the time-smooth algorithm, and d) 

Daubechies 4; e) discrete Meyer; f) MIDAS with the time-smooth algorithm. CHAMP is shown in terms of normalized electro density as coloured circles over the reconstruction 

maps. The colour is proportional to the normalized electron density. The bottom plot shows, instead, the normalized electron density (black) and normalized TEC for Daubechies 4 

(red) and discrete Meyer (orange) and MIDAS (green) along the satellite CHAMP pass. The plot shows two axes: the latitude (degrees) and the CHAMP time when the measurement 

was taken. TEC maps are calculated at 00:00 UT of 15 July 2009. 
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C.4 23 July 2009 

 

Figure C.4. Comparison between normalized CHAMP and normalized TEC maps by using a) Daubechies 4; b) discrete Meyer; c) MIDAS with the time-smooth algorithm, and d) 

Daubechies 4; e) discrete Meyer; f) MIDAS with the time-smooth algorithm. CHAMP is shown in terms of normalized electro density as coloured circles over the reconstruction 

maps. The colour is proportional to the normalized electron density. The bottom plot shows, instead, the normalized electron density (black) and normalized TEC for Daubechies 4 

(red) and discrete Meyer (orange) and MIDAS (green) along the satellite CHAMP pass. The plot shows two axes: the latitude (degrees) and the CHAMP time when the measurement 

was taken. TEC maps are calculated at 23:10 UT of 23 July 2009. 
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12 Appendix D 

This appendix shows the tables obtained for the case studies presented in Chapter 7. 

D.1 Normalized TEC compared with CHAMP 

The following table shows the RMS error, the CMAX and MSSIS indices calculated from the 

reconstructed normalized TEC and CHAMP profiles. The percentage number of basis 

functions used for the reconstructions is also indicated. 

Table D-1. The table shows different indices calculated from normalized VTEC maps obtained with MIDAS 

and wavelets using CHAMP as reference. The indices are the RMS error (values are in TECU), the 

maximum cross-correlation values (CMAX, normalized to 100) between the reconstructed values and 

CHAMP and the MSSIS index. The percentage of basis functions with non-zero coefficients is also shown. 

The time-smooth (TS) and time-sparse (TP) results are illustrated for each basis function and for different 

case studies. 

  

Type 
Basis 

Functions 
RMS  
error 

CMAX MSSIS 
Number 
of basis 

(%) 

TE
C

 

20-Nov-09 
  No 0.47 80.27 0.50 100.00 

  
  TS 

DB4 
0.72 71.09 0.65 37.08 

  TP 0.76 66.42 0.63 24.33 

  TS 
DM 

0.88 62.21 0.45 31.08 

  TP 0.82 63.71 0.60 12.66 

05-Dec-09 
  No 0.53 63.00 0.44 100.00 

  
  TS 

DB4 
0.64 59.51 0.48 40.48 

  TP 0.60 63.24 0.42 22.88 

  TS 
DM 

0.66 58.62 0.45 32.22 

  TP 0.68 60.50 0.34 11.93 

14-Jul-09 
  No 0.56 73.71 0.51 100.00 

  
  TS 

DB4 
0.61 81.26 0.56 33.39 

  TP 0.66 73.64 0.50 18.25 

  TS 
DM 

0.69 74.76 0.47 27.72 

  TP 0.77 71.74 0.31 10.89 
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Type 
Basis 

Functions 
RMS  
error 

CMAX MSSIS 
Number 
of basis 

(%) 

TE
C

 
23-Jul-09 

  No 0.70 70.09 0.62 100.00 

  
  TS 

DB4 
0.83 62.91 0.49 34.78 

  TP 0.89 63.30 0.59 18.43 
  TS 

DM 
0.90 59.37 0.44 28.52 

  TP 0.91 62.90 0.51 11.47 

D.2 Normalized TEC gradients compared with CHAMP 

The following table summarizes the results for the normalized TEC and electron density 

gradients in terms of RMS error, correlation index (normalized to 100), MSSIS index and 

percentage of basis functions. 

Table D-2. The table shows different indices calculated from normalized VTEC gradient maps obtained 

with MIDAS and wavelets using CHAMP as reference. The indices are the RMS error (values are in 

TECU), the maximum cross-correlation values (CMAX, normalized to 100) between the reconstructed 

values and CHAMP and the MSSIS index. The percentage of basis functions with non-zero coefficients is 

also shown. The time-smooth (TS) and time-sparse (TP) results are illustrated for each basis function and 

for different case studies. 

 
 

Type 
Basis 

Functions 
RMS  
error 

CMAX MSSIS 
Number 
of basis 

(%) 

D
TE

C
 

20-Nov-09 
  No 0.36 2.64 0.37 100.00 

  
  TS 

DB4 
0.39 5.26 0.39 37.08 

  TP 0.40 5.63 0.41 24.33 

  TS 
DM 

0.40 6.23 0.41 31.08 

  TP 0.39 5.43 0.30 12.66 

05-Dec-09 
  No 0.24 1.90 0.54 100.00 

  
  TS 

DB4 
0.22 3.56 0.44 40.48 

  TP 0.26 2.80 0.26 22.88 

  TS 
DM 

0.23 3.13 0.33 32.22 

  TP 0.28 2.33 0.15 11.93 
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Type 
Basis 

Functions 
RMS  
error 

CMAX MSSIS 
Number 
of basis 

(%) 

 

14-Jul-09 
  No 0.46 6.46 0.26 100.00 

  
  TS 

DB4 
0.43 9.98 0.38 33.39 

  TP 0.43 8.94 0.38 18.25 
  TS 

DM 
0.45 8.36 0.36 27.72 

  TP 0.46 7.49 0.38 10.89 

23-Jul-09 
  No 0.53 14.55 0.37 100.00 

  
  TS 

DB4 
0.59 16.86 0.23 34.78 

  TP 0.53 16.95 0.32 18.43 

  TS 
DM 

0.57 12.69 0.21 28.52 

  TP 0.52 15.15 0.31 11.47 
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