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Summary

Diseases have the capacity to not only influence the dynamicsof their hosts, but

also interacting species like predators, prey and competitors. Likewise, interacting

species can influence disease dynamics by altering the host’s dynamics. The combina-

tion of these two effects is often called eco-epidemiology,the interaction of ecology

and epidemiology.

In this thesis, we explore this interplay of infectious diseases and predator–prey

interactions, where the predator is a specialist. We start with an introductory chapter

on modelling eco-epidemiology, with a particular focus on the myriad of different

possible assumptions mathematical models in eco-epidemiology can have. In Chapter

2, we consider the effect predator–prey oscillations have on the endemic criteria for

an infectious disease. In Chapter 3, we find a great variety of complex dynamics

like tristability between endemic and disease-free states, quasi-periodic dynamics and

chaos in a predator–prey model with an infectious disease inthe predator. In Chapter

4, we consider the impact an infectious disease has on a groupdefending prey. Here,

we find that the disease not only can coexist with a predator, it can actually help the

predator survive where it could not in the absence of the disease, in stark contradiction

to the principle of competitive exclusion which states thattwo exploiters should not

coexist on a single resource. Lastly, in Chapter 5, we consider a spatial predator–

prey model with a disease in the prey and focus on how preytaxis (the movement of

predators along prey gradients) can alter various invasionscenarios. Through all these

chapters, there is a common focus on the impact (endogenous)oscillations have in

eco-epidemiology.
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C., Finn, Sîan, Mason and Kris for our leagues of freehand circling, ‘Achtung, die

Kurve!’ and pound shop mini pool. I thank my fellow pub quizzers, who helped

answer the most fundamental pub quiz question, what is your team name? I thank my

fellow maths footballers, a globetrotting bunch whose philosophy is that football is

best played while still drunk from the night before. I thank the Drinks in the Paraders

and Wednesday cakebakers, who have made PhD life a culinary experience with good

conversion.

And finally, I thank my family for being my family. I would not be here without

them.

2



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Published parts of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Introduction: Predators, prey and prevalence 13

1.1 A brief history of eco-epidemiology . . . . . . . . . . . . . . . . . . 13

1.2 Forming an eco-epidemiological model . . . . . . . . . . . . . . . . 15

1.2.1 The underlying ecology . . . . . . . . . . . . . . . . . . . . 16

1.2.2 The underlying epidemiology . . . . . . . . . . . . . . . . . 17

1.2.3 The underlying interaction of ecology and epidemiology . . . 19

1.3 Rescaling: Predators, prey and prevalence . . . . . . . . . . . . . . . 20

1.4 Predators, prey and prevalence: Oscillations . . . . . . . . . . . . . . 21

1.5 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Predator–prey oscillations can shift when diseases become endemic 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Diseased predators . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Diseased prey . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Disease alters density dependent mortality in prey host . . . . 29

2.4.2 Frequency dependent transmission . . . . . . . . . . . . . . . 31

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.A Model formulation and calculation of R0 . . . . . . . . . . . . . . . 35

2.B Disease in both predators and prey . . . . . . . . . . . . . . . . . . 38

3



Contents

3 Complex dynamics in an eco-epidemiological model 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Density dependent transmission (DD model) . . . . . . . . . 46

3.2.2 Frequency dependent transmission (FD model) . . . . . . . . 47

3.3 Steady states and stability . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Various forms of bistability . . . . . . . . . . . . . . . . . . . 49

3.4.3 Torus bifurcations and tristability . . . . . . . . . . . . . . . 51

3.4.4 Period-doubling and chaos . . . . . . . . . . . . . . . . . . . 53

3.4.5 Regime shifts and hystereses . . . . . . . . . . . . . . . . . . 54

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.A Steady states of FD and DD models . . . . . . . . . . . . . . . . . 59

3.A.1 Trivial/semi-trivial steady states . . . . . . . . . . . . . . . . 59

3.A.2 Coexistent steady state(s) . . . . . . . . . . . . . . . . . . . 62

4 Disease in group-defending prey can benefit predators 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 The functional response . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Other model assumptions . . . . . . . . . . . . . . . . . . . 75

4.2.3 Simplified model . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Disease-free predator–prey dynamics . . . . . . . . . . . . . . . . . . 79

4.4 Results: Frequency dependent transmission . . . . . . . . . . . . . . 81

4.4.1 Coexistence between disease and predator . . . . . . . . . . . 81

4.4.2 Loss of stability of the prey–only steady state . . . . . . . . . 81

4.4.3 Stabilisation of limit cycles . . . . . . . . . . . . . . . . . . 82

4.4.4 Disease reversing global bifurcation . . . . . . . . . . . . . . 82

4.4.5 Overall pattern . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Results: Density dependent transmission . . . . . . . . . . . . . . . 83

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.A Steady state analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.A.1 Disease-free model . . . . . . . . . . . . . . . . . . . . . . . 89

4.A.2 Frequency dependent model . . . . . . . . . . . . . . . . . . 89

4



Contents

4.A.3 Density dependent model . . . . . . . . . . . . . . . . . . . 89

4.B Phase plane analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Preytaxis and travelling waves in an eco-epidemiological model 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Non-spatial dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 Predator invasion in the absence of infected prey . . . . . . . 106

5.5.2 Predator invasion in the presence of infected prey . . . . . . . 108

5.5.3 Disease invasion in the absence of predators . . . . . . . . . 109

5.5.4 Disease invasion in the presence of predators . . . . . . . . . 110

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6.1 Preytaxis and model assumptions . . . . . . . . . . . . . . . 114

5.A Analytic wavespeeds . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.A.1 Predator invasion in the absence of infected prey . . . . . . . 117

5.A.2 Predator invasion in the presence of infected prey . . . . . . . 118

5.A.3 Disease invasion in the absence of predators . . . . . . . . . 119

5.A.4 Disease invasion in the presence of predators . . . . . . . . . 119

5.B Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Overall conclusion 136

6.1 Future work and extensions . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Final summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 142

5



List of Figures

1-1 Rescaling the diseased-prey and diseased-predator model can reduce

intraguild predation to (a) exploitative competition and (b) food chain

models, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2-1 Time-averaged bifurcation diagrams for the diseased-predators model

of (a) prevalence and (b) predator density, with respect to transmissi-

bility, β . Here, the disease is not endemic despiteR0 > 1. . . . . . . . 39

2-2 Time-averaged bifurcation diagrams for the diseased-predators model

of (a) prevalence and (b) prey density, with respect to transmissibility,

β . Here, the disease is endemic despiteR0 < 1. . . . . . . . . . . . . 40

2-3 Density dependent mortality: plots ofR0 as a function of host density. 41

2-4 Disease in both predator and prey: State space diagrams where (a) the

disease is not endemic despiteR∗
0 > 1 and (b) the disease is endemic

despiteR∗
0 < 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-1 Bifurcation diagrams of (a) the FD model and (b),(c),(d) the DD model,

demonstrating the progression (with increasing transmissibility) from

disease-free oscillations to endemic oscillations to an endemic equilib-

rium and, in (a) only, to disease-induced extinction of the predators. . 61

3-2 Bistability between two limit cycles in the DD model. (a) demonstrates

that bistability occurs for values ofβ between the two turning points

of limit cycles, whereas (b) zooms in on the turning points ofthe limit

cycles. There is also similar bistability in the FD model. . .. . . . . 64

6



List of Figures

3-3 The birth of bistability: (a) is a two-parameter bifurcation diagram

with varying transmissibility (β ) and disease-induced death rate (µ),

demonstrating that the bistability is the result of a cusp bifurcation of

turning points of limit cycles. (b) is a sketched bifurcation diagrams

with respect to transmissibility (β ) for increasing disease-induced death

rate (µ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3-4 Bifurcation diagrams of (a) maximum prey density (N) and (b) maxi-

mum prevalence, with respect to transmissibility (β ). It demonstrates

tristability and torus bifurcations in the DD model. . . . . . .. . . . 66

3-5 (a) Phase portrait illustrating tristability in the DD model and (b) a

time profile of the coexistent torus with respect to prey density (N). . . 67
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Chapter 1

Introduction: Predators, prey and

prevalence

Each chapter has its own introduction and discussion, in which the context of each

chapter is discussed. However, none of the chapters go into great detail about mathe-

matical models in eco-epidemiology as a whole. We will give this overall picture for

predator–prey interactions, where the predator is a specialist, as we only consider such

predator–prey interactions within this thesis. This will be done by first highlighting

and contextualising many of the key works of eco-epidemiology, a brief history if you

will. After this, we will give a picture of the breadth of different models available in

eco-epidemiology by going through various assumptions that can be made in the pro-

cess of developing an eco-epidemiological model; to provide context to the choice of

models in this thesis and the choice of models out there. Following this, we will briefly

discuss the usefulness of the model rescaling used often in this thesis. Lastly, we will

give an overview of the contents of this thesis.

1.1 A brief history of eco-epidemiology

For this thesis we will consider eco-epidemiology models that contain a predator–prey

interaction, where the predator is a specialist. Consequently, this brief history will

focus on such systems. For a more detailed review of the interaction between predator–

prey interactions and parasite dynamics, see Hatcher and Dunn (2011, Chapter 3).

The first example of modelling the interaction between disease and ecological dy-

namics we know of is Anderson and May (1986). In this paper, a broad variety of

simple eco-epidemiological models were considered (although quite briefly). A con-

13



Chapter 1. Introduction: Predators, prey and prevalence

ventional Lotka–Volterra model (linear growth of prey, linear death rates for predators,

linear functional and numerical responses) was used for thedisease-free predator–prey

system (logistic growth for prey is also considered). The disease has density dependent

transmission, infected hosts experience additional mortality and do not reproduce. For

diseases in prey, they found that predators and disease could not coexist unless infected

prey reproduce or predators select more infected prey over susceptible prey (Anderson

and May, 1986, Table 6). This is akin to the principle of competitive exclusion (Hardin,

1960), where two consumers can not coexist on one prey resource (we will go over this

in greater detail in Chapter 4). For diseases in predators, they found that the disease can

persist as long as the prey population can sustain a large enough predator population,

a result akin to those in food chains (Oksanen et al, 1981).

Following this, the next prominent eco-epidemiological paper was Hadeler and

Freedman (1989). In this paper, the predator–prey system isof Rosenzweig–MacArthur

type (logistic growth of prey, linear death rates for predators, Holling type II functional

and numerical responses). Here, the disease infects both the predators and the prey and

can only be transmitted trophically, i.e. predators are infected by consuming infected

prey and prey are infected by proximity to infected predators (by assuming environ-

mental transmission can be approximated by density dependent transmission). This

model is a significant jump from Anderson and May (1986), and is investigated in

much detail. There are many parasites that are transmitted trophically up the food

chain, with the apex predator transmitting the parasite back to the environment, often

via the predator’s faeces (including many nematodes, trematodes, cesodes and acan-

thocephalans, Lafferty, 1999).

Anderson and May (1986) and Hadeler and Freedman (1989) are the two key eco-

epidemiological papers. Most other papers follow on from atleast one of these two

papers.

During the 1990s, a handful of papers on eco-epidemiology started to filter through.

An early pioneer is Ezio Venturino, who along with collaborators, has provided many

papers in eco-epidemiology (Venturino, 1994, 2002, 2010, 2011a,b; Stiefs et al, 2009;

Haque and Venturino, 2006, 2007; Haque et al, 2009; Sarwardiet al, 2011; Ferreri

and Venturino, 2013). In particular, Venturino (1994) considers disease in the prey,

whereas Venturino (2002)1 considers a disease in the predators.

1Venturino (2002) was submitted in 1992, so definitely meritsbeing discussed as an early paper
considering a disease in the predator.
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By the end of the 1990s the termeco-epidemiology2 was first used for the com-

bination of infectious disease and ecological dynamics (Chattopadhyay and Arino,

1999). A few years later, several papers in eco-epidemiology started to appear (Xiao

and Chen, 2001b,a; Han et al, 2001; Chattopadhyay and Bairagi, 2001; Chattopadhyay

and Pal, 2002; Chattopadhyay et al, 2003; Xiao and Van Den Bosch, 2003; Hethcote

et al, 2004).

Many early works on eco-epidemiology focused on plankton systems (earlier Bel-

trami and Carroll, 1994; Chattopadhyay and Pal, 2002; Malchowet al, 2004). Follow-

ing on from these plankton papers, two dynasties on eco-epidemiology were formed.

Horst Malchow, together with collaborators Frank Hilker, Ivo Siekmann and Michael

Sieber, have made much work in eco-epidemiology (Malchow etal, 2004, 2005; Hilker

and Malchow, 2006; Hilker et al, 2006; Hilker and Schmitz, 2008; Oliveira and Hilker,

2010; Siekmann et al, 2008, 2010; Siekmann, 2013; Sieber et al, 2007; Sieber and

Hilker, 2011; Sieber et al, 2013).

The other ‘dynasty’ seems to have been established around Joydev Chattopadhyay,

with collaborators Nandulal Bairagi, Mainul Haque and others (Chattopadhyay and

Arino, 1999; Chattopadhyay and Bairagi, 2001; Chattopadhyay and Pal, 2002; Chat-

topadhyay et al, 2003; Singh et al, 2004; Haque and Venturino, 2006; Bairagi et al,

2007; Greenhalgh and Haque, 2007; Haque and Venturino, 2007; Upadhyay et al,

2008; Haque et al, 2009; Haque, 2010; Das et al, 2011; Haque etal, 2011; Sarwardi

et al, 2011; Chatterjee et al, 2012; Das and Chattopadhyay, 2012)

Although outside of the remit of this thesis, there are also some important works

that considers a generalist predator on host–disease systems, i.e. there are no predator

dynamics (including Hudson et al, 1992; Packer et al, 2003; Hall et al, 2005; Holt

and Roy, 2007). In particular, Packer et al (2003) suggested that predators can ‘keep

the herds healthy’, which has helped shape the discussion onthe possible benefits

predators can have on limiting the prevalence of diseases inprey.

1.2 Forming an eco-epidemiological model

Throughout this thesis, we will focus on systems where diseases affect a predator–

prey interaction, overlooking other forms of ecological interactions like competition

or mutualism. Likewise, we will largely consider closed systems for simplicity, over-

2Eco-epidemiologywas previously used in Susser and Susser (1996) where they describe the appli-
cation of ‘ecologism’ (which seems to be synonymous with heterogeneity, as opposed to ‘universalism’
or homogeneity) to diseases in general (not limited to infectious diseases). This use of the word would
not lead to confusion.
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looking outside interference like additional food sourcesfor predators or a constant

spillover of disease from a reservoir species. On top of this, we largely consider only

ODE models (Chapter 5 being an exception, where PDEs with one spatial dimension

are considered). However, even with these simplifying starting assumptions, there are

still many choices needed in making an eco-epidemiologicalmodel. This section will

discuss these many different options.

Before we proceed, it is worthwhile noting that eco-epidemiological models are

rather complicated, as they need to incorporate at least three variables (predator, prey

and disease). This brings in many challenges. For example, with complicated models,

they are often difficult to analyse and, more importantly, toevaluate to some interesting

conclusion. One vital question, which is often overlooked,is whether these results

only apply to a specific model or are these results applicableto many other models.

Without attempts to generalise results, we will be forever working on a sequence of

special cases.

1.2.1 The underlying ecology

There are several key questions for modelling the underlying disease–free predator–

prey dynamics:

• What are the prey dynamics in the absence of predators? Do theyexperience

density dependence? What type of density dependence (e.g. compensatory,

depensatory/Allee effect)?

• Do predators attack susceptible prey? What is the predators’functional re-

sponse?

• What are the predators’ underlying dynamics?

Most models assume that the prey grow logistically in the absence of disease and

predators, although models do exist where prey grow linearly, most notably the basic

model in Anderson and May (1986) and the models in Venturino (1994). One matter

up for discussion is whether logistic growth is caused by density dependent mortality

or by density dependence in the birth rate. This distinctionmatters more when consid-

ering multiple interacting prey classes like with an infection in the prey, which we will

discuss later.

Logistic growth is a form of compensatory density dependence, i.e. the prey’s per

capita growth rate decreases as prey density increases. However, there is the possibility
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of including depensatory density dependence (also known asan Allee effect). This

means that there are some prey densities (typically small densities, where difficulties

finding mates limits the per capita growth) where increasingprey density increases the

per capita growth rates. Allee effects are a fairly common assumption in ecological

models, but they have rarely been considered in eco-epidemiological models.

Following the underlying prey dynamics, we then need to choose what effect a

predator has on it. There are models where predators do not attack susceptible prey;

in which case, predators can not survive in the absence of thedisease in the prey.

Assuming predators do attack susceptible prey, there are many choices of functional

response. Most models consider a linear functional response or the hyperbolic Holling

type II functional response. However, there are many other choices, most notably the

sigmoidal Holling type III functional response and variousratio-dependent functional

responses.

By far, the most common assumption for predators is that the predators’ growth

rate is proportional to the functional response together with a constant per capita death

rate. However, there are other assumptions. For example, wecan include density

dependence, or we could include a carrying capacity dependent on prey density.

For a more thorough discussion on the variety of functional responses, numerical

responses and predator–prey models, see Turchin (2003, Chapter 4).

1.2.2 The underlying epidemiology

There are several different questions when considering thehost-disease dynamics that

need to be addressed:

• Is the infectious agent a macroparasite or a microparasite?

• What stages of infection are there, i.e. is there latency, recovery, immunity?

• How is the disease transmitted? What is the force of infection?

• What are the consequences of infection (ignoring interaction effects)?

The standard assumption for modelling microparasitic infections is by following

the method of splitting the host population into discrete, homogeneous classes (a

method attributed to Kermack and McKendrick, 1927). This means that all individ-

uals within an infected class are equally infected and infectious; there are no ‘shades’

of infection within each class. However, macroparasite modelling can be much more

complicated. With macroparasites, the degree of infectionwithin each host depends on
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the number of parasites the host is carrying. For example, one flea may be a nuisance

but an infestation of fleas is unhealthy. On top of this, macroparasites often have many

life stages. Given this added level of complexity, many macroparasites problems are

modelled as if they are microparasites.

With stages of infection, there is a great deal of choice. By far the most common

assumption within eco-epidemiology is that there are only two host classes, susceptible

and infected, and that once infected, the infection either remains until the host dies

(the disease is an SI disease) or the host may recover from infected to susceptible

(SIS). This contrasts with human epidemiology, where the most common assumption

is for there to be three host classes, susceptible, infectedand recovered, where infected

individuals can recover from infection and establish immunity, which is either lifelong

immunity (SIR), or temporary immunity (SIRS). There are many other types of classes,

the two most noteworthy are the class for those with a latent infection (usually denoted

asE), or the class of free infectious agents (e.g. viruses) in the environment (often

denoted asV).

Infectious disease models normally require some kind of horizontal transmission

(whether direct or via the environment). This transmissiondepends on the force of

infection. There are two main choices for the force of infection, density dependent

transmission (βSI) and frequency dependent transmission (∝ SI
N ), whereS, I andN

are the susceptible host, infectious host and total host densities, respectively. The

former transmission mode is based around the assumption of mass action, where the

number of contacts for disease transmission is proportional to host density, whereas

the latter transmission mode assumes that each infectious host has a constant number

of contacts, independent of host density. Although rare, there are other choices for the

force of infection. For example, Kooi et al (2011) assumed a ‘Holling type II’ force of

infection (which is some generalisation of both the frequency and density dependent

forces of infection); whereas Morozov (2012) suggested, for a disease in the prey only,

a force of infection that also depended on predator density.

On top of horizontal transmission, vertical transmission (i.e. the inheritance of

infection from parent to offspring) is a fairly common assumption.

Infections need consequences to be interesting. Typically, the simplest and most

common assumption is that hosts experience increased mortality or morbidity. This is

in stark contrast to many classic epidemiological models (particularly human models),

where host dynamics are rarely considered; in such models, the downside of infec-

tion is infection itself. However, many models also have that infecteds are sterile or

have reduced fecundity; reduced fecundity is particular common if there is vertical
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transmission.

1.2.3 The underlying interaction of ecology and epidemiology

We have discussed the possible ecological and epidemiological questions. However,

infected hosts may interact differently with other hosts and their predators/prey. This

raises many more questions:

• Who is infected? If both, is the disease trophically transmitted?

• Does infection alter vulnerability to predators?

• Does infection limit a predators’ ability to catch prey?

• Does infection alter ability to compete with conspecifics?

As we have already discussed when comparing Anderson and May(1986) and

Hadeler and Freedman (1989), we can consider a disease that infects prey only, infects

predators only, or a disease that infects both. Broadly speaking, almost every eco-

epidemiological model fits into one of these three cases. However, there are several

papers that don’t quite fit this; for example, several modelsinvolve a disease in the

prey where predators get sick when consuming infected prey (i.e. they have a negative

numerical response with respect to predation on infected prey) but sick predators are

not infectious (for example Chattopadhyay et al, 2003). Likewise, the model in Das

et al (2011) has that there are separate diseases for predator and prey. Only a few

models involve a disease that infects both predator and prey(Hadeler and Freedman,

1989; Han et al, 2001; Fenton and Rands, 2006). But since trophically transmitted

diseases are common (Lafferty, 1999), we feel that trophic transmission should be

explored more in an eco-epidemiological sense.

Infection may weaken prey, making them more susceptible to predation. This is a

common assumption used in many models. For example, red grouse killed by preda-

tors have a larger burden of a parasitic nematode (Hudson et al, 1992). In fact, there

are several models where predators only catch infected prey. On the other hand, preda-

tors may wish to avoid infected prey, either because they mayget infected or sick

too, or the disease makes the infected prey repulsive or unpalatable to predators. Note

that for non-trophically transmitted diseases, the disease usually benefits from the host

surviving for as long as possible, in which case reducing vulnerability to predators

would increase the lifespan of the infection and thus benefitthe disease. Infection may
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also weaken predators, making them less capable at catchingprey. This too is a fairly

common assumption in eco-epidemiological models that haveinfected predators.

The concept of competition between infected and susceptible hosts is largely over-

looked. However, Sieber et al (2013) (as well as the work in this thesis) include density

dependent terms, giving an explicit formulation for phenomena like logistic growth.

This is at the core of a comment in the ecology section; for logistic growth, we should

either assume that births or deaths are density dependent. If births are density de-

pendent, then if there is no vertical transmission, all density dependent terms will be

included in the susceptible population (whereas for vertical transmission, both suscep-

tible and infected classes will have density dependent terms). If it is deaths that are

density dependent, then there should be density dependent terms within both suscepti-

ble and infected populations, independent of vertical transmission.

1.3 Rescaling: Predators, prey and prevalence

Throughout this thesis, we seek to simplify eco-epidemiological models. This is of-

ten done by various simplifying assumptions like infectiondoes not change fertility,

intraspecific competitive strength and so on. On top of this,we will rescale the mod-

els in the hope that terms will cancel. This is a technique that has been used before

(Hilker and Malchow, 2006; Sieber et al, 2007; Hilker and Schmitz, 2008; Haque,

2010; Oliveira and Hilker, 2010; Siekmann et al, 2010; Sieber and Hilker, 2011; Sieber

et al, 2013) and can be powerful if possible. Sieber and Hilker (2011) state that with

indiscriminate predation, eco-epidemiological models can be reduced from intraguild

predation to simpler forms. Throughout this thesis, we willtransform the susceptible-

host (S)–infected-host (I ) formulation to a total-host (S+ I )–prevalence
(

I
S+I

)

formula-

tion. There are benefits to this rescaling; one such benefit isthat disease prevalence and

total host density are usually easier to measure in wild populations. But, more impor-

tantly, with the models considered in this thesis, they do reduce the original intraguild

predation structure to something considerably simpler (Figure 1-1).

For the diseased-prey models considered in Chapters 2, 4 and 5, we can reduce

an intraguild predation structure to an exploitative competition structure (Figure 1-

1(a)); whereas for the diseased-predators models considered in Chapters 2 and 3, we

have reduced an intraguild predation structure to a food chain structure (Figure 1-

1(b)). This means that in the diseased-prey model, one wouldexpect that the infection

and predator could not coexist (in other words, ‘winner takes all’, Siekmann, 2013),

whereas for the diseased-predator model, we expect infection to be sustained only if
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(a) (b)

Figure 1-1: Using disease prevalence instead of infected host density can simplify manyeco-
epidemiological models from an intraguild predation to something simpler. Forexample, (a)
rescaling infected prey can give us an exploitative competition model, whereas (b) rescaling
infected predators can give us a food chain model.

there is enough prey to sustain enough predator population.

1.4 Predators, prey and prevalence: Oscillations

Oscillations in eco-epidemiology have been often overlooked. A typical eco-epidemio-

logical paper consists of equilibrium-based analysis, i.e. find the steady states and

then find their stability. This is important work, necessaryfor analysing an eco-

epidemiological model. However, many eco-epidemiological models contain oscil-

lations. These oscillations are usually not analysed; theyare normally only demon-

strated by the use of time profiles and phase portraits. Notable exceptions are Hilker

and Schmitz (2008) and Kooi et al (2011), where they use bifurcation diagrams to

demonstrate various bifurcations in the limit cycles as well as the equilibria.

1.5 Overview of Thesis

This thesis consists of four main chapters, each chapter tackles a different, but com-

plementary, aspect of eco-epidemiology.

In Chapter 2, we will focus on the impact predator–prey oscillations can have on

the endemic criteria for diseases to establish within a predator or prey host. Here we

establish that the endemic criteria for a disease with density dependent transmission is

dependent on the time-averaged host density of the predator–prey oscillations, which

is generally not the same as the host density at the (unstable) predator–prey equilib-
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rium, leading to the concept ofR0, the time-averaged basic reproductive number. For

frequency dependent transmission, there is no difference in endemic criteria.

In Chapter 3, we will investigate the diseased-predator model from Chapter 2 fur-

ther, as well as a related, established model (Hilker and Schmitz, 2008), finding a vari-

ety of complex dynamics, some of which have not been found in eco-epidemiological

models before. In fact, many of the phenomena have rarely been found in ecological

and epidemiological models. These results are summarised in Table 3.1.

In Chapter 4, we consider a diseased-prey model similar to oneof the models in

Chapter 2, but this model considers group-defending prey. This chapter focuses on

the coexistence of predators and disease in the prey (a pointoverlooked in Chapter 2).

In particular, we look at cases where predators actually benefit from the presence of

the disease. These cases involve the disease restricting prey densities to levels where

group defence is weaker.

Lastly, Chapter 5 considers a spatiotemporal diseased-preymodel with preytaxis,

the movement of predators along prey gradients. Here we willinvestigate the conse-

quence preytaxis has on disease and predator invasions, with a keen eye on the effect

preytaxis has on the travelling wave and its wavespeed. We find that positive preytaxis

can speed up predator invasions, whereas negative preytaxis may induce spatiotempo-

ral oscillations/chaos not expected from the non-spatial dynamics. For disease inva-

sions, there are scenarios where preytaxis can increase theinfection wave’s wavespeed,

but the wave can never be slowed down by preytaxis.

Overall, this thesis expands the field of eco-epidemiology,especially with respect

to the various effects and bifurcations that (endogenous) oscillatory dynamics may

have, whether it be the different endemic criteria in Chapter2, the various bifurcations

and resulting dynamics in Chapter 3, the homoclinic destruction of the coexistent limit

cycle in Chapter 4, or the spatiotemporal oscillations foundin Chapter 5. Although

there have been many papers concerning eco-epidemiology, very few consider the im-

pact predator–prey oscillations can have on the wider eco-epidemiological system.

It is well worth noting that this thesis is completely theoretical. No data is used

and no explicit biological system considered for making these models. This was done

in attempts to provide general arguments, which help find important and interesting

qualitative results and identifying the key parameters.
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Chapter 2

Predator–prey oscillations can shift

when diseases become endemic1

Abstract

In epidemiology, knowing when a disease is endemic is important. This is usually done

by finding the basic reproductive number,R0, using equilibrium-based calculations.

However, oscillatory dynamics are common in nature. Here, we model a disease with

density dependent transmission in an oscillating predator–prey system. The condition

for disease persistence in predator–prey cycles is based onthe time-average density

of the host and not the equilibrium density. Consequently, the time-averaged basic

reproductive numberR0 is what determines whether a disease is endemic, and not the

equilibrium-based basic reproductive numberR∗
0. These findings undermine anyR0

analysis based solely on steady states when predator–prey oscillations exist for density

dependent diseases.

2.1 Introduction

In epidemiology, the classical method of determining whether a disease will be en-

demic or die out is by finding the basic reproductive numberR0. The basic repro-

ductive number is understood as the number of secondary infections from an infected

individual, during its infectious period, in an otherwise purely susceptible host popula-

tion (although more general definitions are available, see Bacäer and Ait Dads, 2012;

1This chapter has previously been published in Journal of Theoretical Biology (Bate and Hilker,
2013b) with kind permission from Elsevier. The published version is available on Science Direct.
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Inaba, 2012). If the basic reproductive number is less than one, the disease will not

survive, whereas if the basic reproductive number is greater than one, the disease will

spread. Typically, this is calculated based on a constant population. However, not all

populations are at equilibrium.

Oscillatory dynamics have recently become the focus of manyepidemiologists

studying both human and wildlife diseases. Although endogenous oscillations like

predator–prey oscillations are mentioned occasionally (for example Greenman and

Norman, 2007), the investigations that follow are invariably on exogenous oscillations

caused by external forcing. These exogenous oscillations include periodic or stochastic

forcing caused by seasonality, multi-annual periodic events like El Niño and anthro-

pogenic interventions (Altizer et al, 2006; Greenman and Norman, 2007). Of these,

seasonality is probably the most prominent. For example, Grassly and Fraser (2006)

state that there are four types of causes of seasonality in human infectious diseases: (a)

survival of pathogen outside host; (b) host behaviour; (c) host immune function; (d)

abundance of vectors and non-human hosts.

Within this body of work, it has been shown that some exogenous oscillations

can shift the endemic threshold (Greenman and Norman, 2007;Bacäer and Abdurah-

man, 2008; Nakata and Kuniya, 2010, for example). However, populations frequently

cycle as the result of endogenous mechanisms. Density-dependence, delay effects

and ecological interactions are probably the most prominent of numerous examples

(Turchin, 2003). Predator–prey oscillations are particularly iconic, and the field of

eco-epidemiology has begun studying the impact diseases have on ecological relation-

ships like predator–prey interactions (and vice versa). Sofar, it has largely been as-

sumed that the criteria for the disease becoming endemic is the same for predator–prey

equilibria and oscillations. For example, papers based on Rosenzweig–MacArthur dy-

namics have ignored the possibility that they are different(for example Chattopadhyay

and Arino, 1999; Chattopadhyay et al, 2003; Haque and Chattopadhyay, 2007; Bairagi

et al, 2007). However, Hadeler and Freedman (1989) noted that the endemic thresh-

olds are different for equilibria and oscillations, but they did not explain why. This

phenomenon has only recently been rediscovered by Kooi et al(2011), where they

briefly noted that the endemic thresholds are not the same, but they did not explain

why either. In short, the consequences of oscillatory dynamics caused by predator–

prey oscillations on disease establishment have not been thoroughly investigated and

have often been overlooked.

In this chapter, we find that the basic reproductive number for a disease is differ-

ent from the value derived from the (unstable) equilibrium when the host is involved
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in predator–prey oscillations. This is the result of the basic reproductive number be-

ing based on the time average of the predator–prey oscillations and not on the corre-

sponding predator–prey equilibrium. Two eco-epidemiological models are developed

to demonstrate these results. One considers an SI disease inthe predators, whereas

the other considers an SI disease in the prey. In both models,transmission is density

dependent, although we later consider the frequency dependent case as well.

Throughout this chapter, we will refer to the equilibrium-based basic reproductive

number asR∗
0 and the time-averaged basic reproductive number asR0. These ‘decora-

tions’ allow us to distinguish these numbers from the actualbasic reproductive number,

R0, which will be the barometer in whichR∗
0 andR0 are compared to. More precisely,

it is the threshold property ofR0 thatR∗
0 andR0 are compared to, i.e the disease-free

state is stable forR0 < 1 and is unstable forR0 > 1.

2.2 The models

The models used are based on the Rosenzweig–MacArthur model,i.e. logistic growth

of prey, Holling type II functional response and exponential decay of the predator

without prey. Hence, the underlying scaled predator–prey model is:

dN
dt

= rN(1−N)− NP
h+N

, (2.1)

dP
dt

=
NP

h+N
−mP, (2.2)

whereN is the prey density andP is the predator density,r is the per-capita growth

rate for the prey (when rare),m is the per-capita natural death rate for the predator, and

h is the half-saturation density for the Holling type II functional response.

We will assume that there is an SI disease with density dependent transmission.

This means the disease will split the host population into a susceptible population (S)

and an infected population (I ). There is one model where the disease infects preda-

tors and an analogous model with the disease infecting the prey. Here we will assume

in both models that the disease causes more deaths, but that infected individuals are

otherwise identical to susceptible individuals (unless otherwise stated, like in the Ex-

tensions (Section 4)). On top of this, all newborns are assumed to be susceptible, i.e.

there is no vertical transmission.

We will formulate the models in terms of the total predator and prey populations

and the prevalence of the disease in the host population, i.e. the fraction of hosts that
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are infected. In other words,iP = IP
P = IP

SP+IP
andiN = IN

N = IN
SN+IN

, whereIP (IN) and

SP (SN) are the infected and susceptible predator (prey) densities, respectively (the

original SI models can be found in Appendix 2.A). This scaling is used to demonstrate

the effect the disease has on the host in the predator–prey system, something that is

not immediately clear when the host population is in two classes. Notice thatiP andiN
can take any value between 0 and 1, where a value of zero means there is no disease

and a value of one means that every host is infected.

The scaling and parameters are equivalent to those in Hilkerand Schmitz (2008);

their model being the same as the diseased predators model except they used frequency

dependent infection.

Diseased predators model

dN
dt

= rN(1−N)− NP
h+N

, (2.3)

dP
dt

=
NP

h+N
−mP−µPiP, (2.4)

diP
dt

= iP

(

(βP−µ)(1− iP)−
N

h+N

)

. (2.5)

Diseased prey model

dN
dt

= rN(1−N)− NP
h+N

−µNiN, (2.6)

diN
dt

= iN((βN−µ)(1− iN)− r), (2.7)

dP
dt

=
NP

h+N
−mP. (2.8)

In both models,µ is the disease-induced death rate andβ is the disease transmis-

sibility. In the diseased prey model,r is defined as a per capita birth rate instead of

a growth rate, i.e. there is no density independent mortality (see Appendix 2.A for

details). This means that susceptible prey only experiencemortality via predation and

competition.

Parameter values are chosen such that the predator–prey system has a stable limit

cycle in the absence of the disease
(

i.e. m< 1−h
1+h

)

. Throughout this chapter, any vari-

able that is ‘starred’, e.g.P∗, refers to the (unstable) steady state of that variable.
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Likewise, any variable that has a ‘bar’, e.g.P, is the time-average of that variable over

the period. In this chapter, the time-average (ofP, say) is defined asP = 1
T

∫ T
0 Pdt,

whereT is the period of the predator–prey limit cycle.

2.3 Results

Several papers have calculatedR0 in a periodic environment (Bacaër and Guernaoui,

2006; Wang and Zhao, 2008; Wesley and Allen, 2009, for example). Here, we find

R0 by using a Floquet theory argument. However, we only need to focus on the

infecteds/prevalence equations since the predator–prey cycles are stable in the orig-

inal Rosenzweig–MacArthur model (1–2). The details of this argument are in Ap-

pendix 2.A. However, it is worth noting that allR0’s can be found directly by using the

method in Bacäer and Guernaoui (2006, eq.(31)).

2.3.1 Diseased predators

Figure 2-1(a) shows when a disease establishes in an oscillating predator host, as a

function of transmissibility,β . For low transmissibility, the disease is not endemic and

only disease-free predator–prey oscillations are stable.At R∗
0 = 1, an unstable endemic

equilibrium bifurcates from the unstable disease-free predator–prey equilibrium. For

some region after this (the grey region), we have stable disease-free oscillations with

an unstable endemic equilibrium, i.e. the disease is not endemic despiteR∗
0 > 1. At

R0 = 1, a stable endemic limit cycle bifurcates from the stable disease-free predator–

prey limit cycle. Beyond this, the disease is endemic in oscillation until the stable

oscillations and unstable equilibrium collide at a Hopf bifurcation, giving rise to a

stable endemic equilibrium.

The crucial point of Figure 2-1(a) is that the system remainsdisease-free (zero

prevalence) in a parameter range well beyondR∗
0 > 1, whereR∗

0 is the equilibrium-

based basic reproductive numberR∗
0 = βP∗

m+µ and P∗ is the predator density at the

disease-free predator–prey equilibrium. This means that the system remains disease-

free for a larger parameter range because of the oscillatorydynamics.

Figure 2-1(b) demonstrates that this difference can be attributed to the difference

in the time-averaged density of the predator between the equilibrium and oscillations

(a corollary of results in Armstrong and McGehee (1980)). A disease is endemic

only when the time-averaged basic reproductive numberR0 = βP
m+µ ≥ 1, whereP is

the time-average predator density for the disease-free predator–prey oscillations (see
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Appendix 2.A). The dotted line representingR0(β )= 1 gives the invasion condition for

a disease, i.e. the critical host density required for the disease to establish. This means

that a disease can only become endemic if the time-averaged predator density is above

the dotted line. Note that the dotted line intersects both the (unstable) predator–prey

equilibrium and the time-average of the predator–prey oscillations at the transcritical

bifurcations where the disease becomes endemic. This is consistent with the fact that

R∗
0 andR0 differ only because the (time-averaged) host densities of the disease-free

equilibrium and oscillations are different.

2.3.2 Diseased prey

Figure 2-2(a) demonstrates that the (stable) endemic oscillations bifurcate from the

disease-free predator–prey oscillations before the (unstable) endemic equilibrium bi-

furcates from the disease-free equilibrium2. This contrasts with Figure 2-1(a) where

the oscillations bifurcate after the unstable equilibriumbifurcates. Hence there is a re-

gion (the grey region) where the disease is endemic in oscillations despiteR∗
0 < 1. This

means that a disease in the prey host becomes endemic at a smaller transmissibility (β )

than expected from the standard calculation of the equilibrium-based basic reproduc-

tive numberR∗
0 =

βN∗

µ+ P∗
h+N∗+rN∗ , which can be simplified toR∗

0 =
βN∗

µ+r whereN∗ andP∗

are the respective prey and predator densities at the disease-free predator–prey equi-

librium. Instead, the invasion criterion isR0 = 1, whereR0 =
βN

µ+( P
h+N )+rN

= βN
µ+r is the

time-averaged basic reproductive number (see Appendix 2.A). Since the predator–prey

oscillations have a larger time-averaged prey density thanthe equilibrium (Armstrong

and McGehee, 1980),R0 has a smaller threshold value ofβ to become endemic. This

means the disease will find it “easier” to become endemic because of the oscillatory

dynamics. The dotted line in Figure 2-2(b) demonstrates that this change in criticalβ
can be solely attributed to the difference betweenN∗ andN.

2.3.3 Summary

In this section, we have described the difference between the equilibrium-based ba-

sic reproductive numberR∗
0 and the time-averaged basic reproductive numberR0 for

predator–prey oscillations. In all cases we have thatR0 = R0. At equilibrium, R0 =

R0 = R∗
0. However, in oscillations, we generally haveR0 = R0 6= R∗

0.

2Figure 2-2(a) also demonstrates that both predator and disease in prey can co-exist at equilibrium,
contradicting the principle of competitive exclusion. This point is explained in much more detail in
Chapter 4.

28



Chapter 2. Predator–prey oscillations can shift when diseases become endemic

On a side issue, both the diseased predator and diseased preymodels demonstrate

that the disease can stabilise an oscillating predator–prey system by increasing total

host mortality (for a sufficiently largeµ andβ ), in a manner similar to that in Hilker

and Schmitz (2008).

2.4 Extensions

2.4.1 Disease alters density dependent mortality in prey host

Previously, infected prey experienced the same density dependence as susceptible prey.

We will now change this assumption by letting infected prey experience a different

level of density dependence than susceptible prey. Henceforth, we will assume that

susceptible prey have a density dependent mortality term ofrSN (since the carrying

capacity has been scaled to one), whereas infected prey havea density dependent term

rcIN (see Appendix 2.A). Here,c is a coefficient that defines the density dependent

mortality infected prey experience relative to susceptible prey. Ifc= 1, then the total

density dependent mortality becomesrN2, which is the same as in the original diseased

prey model.

While this formulation accounts for different competitive pressures experienced

by susceptible and infected individuals, it implies that both susceptibles and infect-

eds exert the same competitive strength on an individual they interact with. This is

a simplifying assumption and in general is not true. In fact,Hochberg (1991) argues

that there are four different terms of density dependence inan SI model; the density

dependence that (i) susceptibles inflict on susceptibles (called αSS), (ii) susceptibles

inflict on infecteds (αIS), (iii) infecteds inflict on susceptibles (αSI) and (iv) infecteds

inflict on infecteds (αII ). However, since we can assume that there are negligibly few

infected individuals when findingR∗
0 or R0, the density dependent mortalities caused

by infected individuals (cases (iii) and (iv)) are negligible on the calculation ofR∗
0 and

R0. This means thatR∗
0 andR0 found here are the same as those in a full four-case

density dependent model, wherer = αSSandrc = αIS.
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Now, incorporating this assumption into the diseased prey model, we get:

dN
dt

= rN (1−N ((1− iN)+c iN))−
NP

h+N
−µNiN, (2.9)

diN
dt

= iN((βN−µ − rN(c−1))(1− iN)− r), (2.10)

dP
dt

=
NP

h+N
−mP. (2.11)

In Appendix 2.A, we demonstrate that:

R0 =
βN

µ + r + r(c−1)N
, (2.12)

as well asR∗
0 =

βN∗

µ+r+r(c−1)N∗ .

If c 6= 1, then the denominator ofR0 depends onN and we get an overall expression

for R0 that is hyperbolic rather than linear inN. If we assume that infecteds suffer more

from density dependent mortality than susceptibles (because they are at a disadvantage

in competition), then we havec> 1. The expression forR0 is then much like a Holling

type II functional response. This means thatR0 still monotonically increases with

respect toN, but it saturates toR0max=
β

r(c−1) . A corollary of this is that the disease

can never be endemic ifβ < r(c−1). However, saturation happens beyond all feasible

values ofN; consequently, we haveR0 is ‘sublinear’ with respect toN (Figure 2-3).

Now supposec< 1, i.e. infected prey are better competitors than susceptible prey.

(While this assumption seems unrealistic at first glance, Sieber et al, 2013, find that

this is possible if density dependence is due to exploitative competition where infect-

eds take up less resources. If infecteds take up less resources, one would expect that

infecteds would have a smaller reproductive rate than susceptibles. Here, however,

both populations have the same birth rate. Hence this may notbe compatible with

c< 1.) Notice that althoughR0 does have an asymptote and can be negative for large

enoughN, such values ofN can never be attained sinceN is bounded above by the

disease-free carrying capacity, i.e.N ≤ 1. This means thatR0 is ‘superlinear’ and

monotonically increasing for all feasible values ofN (Figure 2-3).

Using ∂
∂ iN

(

dN
dt

)

, we get thatN increases withiN if µ + r(c−1)N < 0. In particular,

if µ < r(1−c), the prey host at disease-free carrying capacity (i.e. no predators) will

increase in density as the disease establishes in the population. This means a disease

that reduces density dependent mortality can benefit the infected host if this reduction

is greater than the additional disease-induced mortality.If this is the case (which at the

moment is hypothetical), the disease will increase the total host population.
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2.4.2 Frequency dependent transmission

One key assumption in all the previous models in this chapteris density dependent

transmission. Incorporating frequency dependent transmission into the model (9-11),

the prevalence equation becomes:

diN
dt

= iN((β −µ − rN(c−1))(1− iN)− r). (2.13)

The only difference between this and the previous prevalence equation is thatβN has

become justβ . Using the same arguments as before, we get thatR∗
0 =

β
µ+r+r(c−1)N∗

andR0 = β
µ+r+r(c−1)N

. If c = 1, i.e. we are working with the frequency dependent

transmission version of the original diseased prey model, we have thatR∗
0 = R0 =

β
µ+r .

This means that the basic reproductive number is independent of host density, whether

oscillatory or not. However, ifc> 1, we have thatR0 is monotonically decreasing with

host densityN. This means that disease is endemic when the population is sufficiently

small, i.e.N < β−µ−r
r(c−1) . If c< 1, thenR0 is monotonically increasing with host density.

Here, the disease is endemic if the population is sufficiently large, i.e.N > β−µ−r
r(1−c) .

2.5 Discussion

We have demonstrated that the conditions for a disease to become endemic in a host

involved in a predator–prey relationship depend on the time-averaged host density.

Rosenzweig–MacArthur predator–prey dynamics are used to show this. Oscillations

in such a model have a greater time-averaged prey density andlower time-averaged

predator density compared to the corresponding (unstable)equilibrium. This means

that predator–prey oscillations make a disease easier to become endemic in a prey host

and harder to become endemic in a predator host.

These explanations could also explain the differing basic reproductive numbers

observed in Kooi et al (2011), and make some progress towardsexplaining the basic

reproductive number argument from Hadeler and Freedman (1989). The latter is not

straight–forward since the disease in their model infects both the prey and predator

and only by cross-infection (i.e. infected prey infect susceptible predators and infected

predators infect susceptible prey), which complicates thepattern of transmission (see

Appendix 2.B for a model description). However, Figure 2-4(a) demonstrates that the

disease is not endemic when the hosts cycle despite having anequilibrium-based basic

reproductive number greater than one, i.e.R∗
0 > 1 (like the diseased predator model).
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Likewise, Figure 2-4(b) shows that the disease is endemic when the hosts cycle de-

spite having an equilibrium-based basic reproductive number less than one (like the

diseased prey model). This means that the equilibrium-based basic reproductive num-

ber does not give either an upper nor lower bound for when a disease is endemic in

predator–prey oscillations. With two infected compartments, the model in Hadeler and

Freedman (1989) is considerably more complicated than the diseased predators or dis-

eased prey models. In another model with two infected compartments (Bacäer, 2007,

a malaria model with seasonality in the vector), it was shownthat the actual endemic

threshold is based on the time-averaged reproductive number with a correction based

on the size of the oscillations. Assuming something similaroccurs here, the difference

in endemic thresholds between predator–prey oscillationsand equilibria in Hadeler

and Freedman (1989) can largely be explained by the difference in the time-averages,

but this difference alone does not give the full picture.

This can have major consequences for disease management andepidemiology.

Firstly, it undermines the idea that the equilibrium-basedbasic reproductive number

determines whether a disease would invade deterministically. This somehow resem-

bles the scenario of a backward bifurcation, where a diseasemay persist (depending on

initial conditions or the “history” of the population) eventhoughR0 < 1. Conversely,

other bifurcations like saddle–node bifurcations or homoclinic bifurcations can lead

to the disappearance of disease even thoughR0 > 1, but this typically involves host

extinction as well (Hilker et al, 2009; Hilker, 2010). Consequently, if oscillations exist

in the disease-free predator–prey system, care must be taken when using reproductive

number arguments based on equilibria as one can not assume that they are the same

for oscillations (like those in Hilker and Schmitz, 2008; Das et al, 2011).

Secondly, there can be profound consequences for the eradication of diseases within

predators. A common strategy to help eradicate a disease from a wildlife host is in-

discriminate culling or harvesting of the host. For example, hunting/harvesting/culling

has been used for controlling chronic wasting disease in some species of deer and elk

(Williams et al, 2002), bovine tuberculosis in badgers (Woodroffe et al, 2002) and fa-

cial tumour disease in Tasmanian devils (Beeton and McCallum,2011). However, har-

vesting/indiscriminate culling corresponds to effectively increasing the constant per-

capita death rate. Applying this to a predator population will not decrease, but rather

increase the time-average predator density, if the system is cyclic. (This phenomenon

is called the ‘hydra effect’ Abrams, 2009; Sieber and Hilker, 2012). Hence, harvesting

will increase disease prevalence in predators and is therefore counter-productive as a

control approach.
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By contrast, a management action that can be recommended on the basis of this

chapter is to enforce endogenous oscillations in an otherwise stable population. The

oscillations could bring the time-averaged basic reproductive numberR0 below one,

even though without oscillationsR∗
0 is greater that one, resulting in long term disease

eradication. One such way of forcing oscillations is to utilise theparadox of enrich-

mentby increasing the prey’s carrying capacity, which will destabilise the predator–

prey system.

Lastly, for prey as a host population, a disease will spread more easily under

predator–prey oscillations than at equilibrium, thus making eradication harder. Actions

that stabilise predator–prey oscillations such as reducing the prey’s carrying capacity

or increasing the predators death rate can combat this. In particular, indiscriminate

culling or harvesting of predators can help eradicate a disease of the prey by stabil-

ising the predator–prey oscillations. This contradicts the ‘keeping the herds healthy’

hypothesis in Packer et al (2003), where predator removal issuggested to result in

more infections in the prey.

The effect of shifting the threshold for the establishment of disease described in this

chapter is only due to the difference of the time-averaged host density. Hence, assump-

tions about the disease (e.g. increased mortality, reducedfertility, vertical transmission

or host manipulation) should not change this. Consequently,the difference betweenR∗
0

andR0 is largely independent of model assumptions. In fact, the phenomenon reported

here does not depend on the predator–prey dynamics itself, but on the fact that the host

is oscillating at a different time-averaged density when compared to the equivalent

equilibrium density.

One important assumption made in the diseased prey model is that susceptible and

infected prey are equally good intra-specific competitors.However, this assumption is

likely to be unrealistic in many cases. In the Extensions, using different strengths of

density dependence for susceptibles and infecteds, we demonstrate that although the

relationship between time-averaged host density and the time-averaged basic repro-

ductive number is no longer linear, they still monotonically increase with each other.

This suggests that density dependence does not alter the rule that higher time-averaged

densities have higher values ofR0.

There is one curious result in the case where infected individuals experience sig-

nificantly less density dependence than susceptibles (c≪ 1); in this case, the disease

can increase host density. Here, the reduction in density dependent mortality more

than offsets the additional disease-induced mortality, giving a total reduction in host

mortality. In particular, this means that infection will result in increasing the carrying
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capacity of the host population beyond that of a disease-free host population (the per

capita growth rate (r−µ iN) still decreases with prevalence). This scenario of a disease

increasing rather than decreasing the host carrying capacity challenges the typically

detrimental impact associated with diseases. We have not searched for any empiri-

cal evidence for this theoretical prediction, but we believe this could be an interesting

over-looked indirect effect of infectious diseases.

However, there is one crucial assumption throughout this chapter; namely density

dependent disease transmission. For a frequency dependentdisease, the basic repro-

ductive number would be independent of host density, whether time-averaged or oth-

erwise. If we put together frequency dependent transmission and infected individuals

experiencing greater density dependent mortality, we get that the basic reproductive

numberR0 is a monotonically decreasing function of host density. This means that

the disease is endemic if the host population is below some threshold density. This

is contrary to typical epidemiological models where a disease is endemic when above

some threshold density.

Frequency dependent transmission and density dependent mortality are common in

epidemiological and ecological systems, respectively. Hence, it seems reasonable that

a maximum viable host density should exist in some wildlife diseases. In these cases,

attempts to eradicate a disease by reducing the (time-averaged) host density (e.g. by

indiscriminate culling) could actually help keep a diseaseendemic. A more general

discussion of this effect is in preparation.

The diseased predator model also exhibits bistability and saddle–node bifurcations

(Chapter 3, i.e. Bate and Hilker, 2013a; Hurtado et al, 2014), which further undermine

the use of basic reproductive numbers in determining the long term dynamics of an

eco-epidemiological system.

In summary, density dependent diseases can only become endemic in an oscillat-

ing predator–prey system if the time-averaged density of the disease free oscillation

is large enough. The time-averaged density is different from the equilibrium-based

density that the disease-free oscillations cycle around. This means endemicity can

not be determined by the equilibrium-based basic reproductive number. These results

can have major consequences on disease management and conservation in oscillating

populations.
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2.A Model formulation and calculation of R0

For all models, the equilibrium-based basic reproductive numberR∗
0 can be found from

R0 by setting the time-averaged densities (N or P) as the equilibrium value (since

the time-average of something at equilibrium is the equilibrium). The converse is

generally not true; for example(P2)∗ = P∗2 but generallyP2 6= (P)2. This example

is equivalent to the variance of one data point against (infinitely) many data points,

where variance is zero in the former, but variance is non-zero in the latter unlessP is

constant.

Diseased predator

Incorporating the assumptions in the main text for a diseasein the predators, we get:

dN
dt

= rN(1−N)− N(S+ I)
h+N

, (2.14)

dS
dt

=
N(S+ I)

h+N
−mS−βSI, (2.15)

dI
dt

= βSI− (m+µ)I . (2.16)

From an eco-epidemiological point of view, one key questionis what a disease does

to the host population. This is not entirely clear when the host is split into two different

classes. Hence, we will gather all predators, whether susceptible or infected, into one

class. This is done by replacing the equation fordS
dt with dP

dt =
d(S+I)

dt . Consequently,

we have:
dP
dt

=
NP

h+N
−mP−µI . (2.17)

From this, we establish that the disease only adds an additional mortality term to the

host population. On top of this, by replacing infected predators with disease preva-

lence, we get the diseased predator equations (3–5) in the main text.

Along the predator–prey limit cycle, if we integrate over the periodT of the limit

cycle, then the cycle is back where it has started. The same istrue if we take the

‘per-capita’ of the limit cycle. This means that both
∫ T

0
1
P

dP
dt dt = 0 and

∫ T
0

1
N

dN
dt dt = 0
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by the Fundamental Theorem of Calculus, noting that1
P

dP
dt =

d(lnP)
dt . Armed with this

information we get:

R0 =
1
T

∫ T
0 βPdt

µ +m
=

βP
µ +m

(2.18)

which can be derived from1
T

∫ T
0

1
I

dI
dt dt = 1

T

∫ T
0

d(ln I)
dt dt = 0 whereI is negligibly small.

There is an equivalent formulation ofR0 from the prevalence equation (5) which

can be found by substitutingm= N
h+N

(

from 1
T

∫ T
0

1
P

dP
dt dt = 0, whereI (iP) is negligi-

bly small
)

into the denominator of the aboveR0. However, this formulation is a more

complicated formulation ofR0 and therefore has been omitted.

Diseased prey

Following the modelling assumptions in the main text for a disease in the prey, we get:

dS
dt

= r(S+ I)(1−S)− SP
h+(S+ I)

−βSI, (2.19)

dI
dt

= βSI− IP
h+(S+ I)

− (µ + r(S+ I))I , (2.20)

dP
dt

=
(S+ I)P

h+(S+ I)
−mP. (2.21)

Recall that there is no vertical transmission, i.e. infectedindividuals reproduce

into the S-class with the same per-capita birth rater as susceptible individuals. More-

over, both susceptible and infected individuals experience density-dependent mortality

(described by the parameterr since the carrying capacity has been scaled to one) and

mortality due to predation, but no density-independent mortality.

Like with the diseased predator model, it is more convenientto work withN instead

of S. Consequently, we have:

dN
dt

= rN(1−N)− NP
h+N

−µI , (2.22)

Again, by replacing infected prey with disease prevalence,we get the diseased prey

equations (6–8) in the main text.

Just like for the diseased predator results, we integrate over the periodT of the

limit cycle for the ‘per capita’ of the limit cycle. Using1T
∫ T

0
1
I

dI
dt dt = 1

T

∫ T
0

d(ln I)
dt dt = 0,

whereI is negligibly small, we get that:
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R0 =
1
T

∫ T
0 βNdt

µ + 1
T

∫ T
0

(

P
h+N + rN

)

dt
=

βN

µ +( P
h+N)+ rN

. (2.23)

By usingr =( P
h+N)+rN

(

from 1
T

∫ T
0

1
N

dN
dt dt = 0 whereI (iN) is negligibly small

)

,

R0 can be greatly simplified to:

R0 =
1
T

∫ T
0 βNdt

µ + r
=

βN
µ + r

. (2.24)

This formulation demonstrates thatR0 is in fact linear withN, something that could

not be seen from the original formulation ofR0. It is also the formulation ofR0 that

can be found directly from the prevalence equation (7) foundin the main text.

Density dependent mortality

Here, we will allow infected prey to be weaker (or stronger) intra-specific competitors

than susceptible prey, and see the effect this has onR0 and its relationship withN.

Starting with the diseased prey model, suppose that infecteds experience density

dependence differently to susceptibles. Doing so, we have that the infected population

follows:
dI
dt

= β (N− I)I − rcNI−µI − IP
h+N

, (2.25)

whererc is reflects the density dependence infecteds suffer. The correspondingN, iN,P

equations are given in the Extensions section of the main text (9-11).

Working with the infected population equation (or its logarithm), and assuming

thatI is negligibly small, we get:

R0 =
1
T

∫ T
0 βNdt

µ + 1
T

∫ T
0

P
h+N + rcNdt

=
βN

µ +( P
h+N)+ rcN

. (2.26)

This in itself is not enlightening. However, by substituting 1
T

∫ T
0

1
N

dN
dt dt = 0 whereI

(iN) is negligibly small or by using the prevalence equation we get:

R0 =
1
T

∫ T
0 βNdt

µ + r(1− 1
T

∫ T
0 Ndt)+ rc 1

T

∫ T
0 Ndt

=
βN

µ + r + r(c−1)N
. (2.27)

Linking back to the original diseased prey model (whenc= 1), we had thatR0 is

linear (with respect toN). This means that the originalR0 is the transition between the

sublinear (c> 1) and superlinear (c< 1) cases, which makes sense.

37



Chapter 2. Predator–prey oscillations can shift when diseases become endemic

2.B Disease in both predators and prey

The model is from Hadeler and Freedman (1989). It has notabledifferences to the

other models in this chapter beyond just being a disease infecting both predators and

prey. Disease transmission is interspecific only, where susceptible predators become

infected by feeding on infected prey, and susceptible prey are infected by infected

predators. However, the disease-free dynamics are the same(up to rescaling) as the

models considered in this chapter, and thus have the same type of oscillations.

Keeping the original notation from Hadeler and Freedman (1989), we have:

dx0

dt
= ax

(

1− x0

K

)

− x0

A+x0+ρx1
y−βx0y1, (2.28)

dy0

dt
=−c

B
B+A

y0+c
x0+ρx1

A+x0+ρx1
y−κ

ρx1

A+x0+ρx1
y0, (2.29)

dx1

dt
= βy1x0−

axx1

K
− ρx1

A+x0+ρx1
y, (2.30)

dy1

dt
=−c

B
B+A

y1+κ
ρx1

A+x0+ρx1
y0, (2.31)

wherex = x0+ x1 is the total prey density,x0 is the susceptible prey density andx1

is the infected prey density. Likewise,y = y0+ y1 is the total predator density,y0 is

the susceptible predator density andy1 is the infected predator density. Many of the

parameters have abstract definitions chosen for analyticalsimplicity; but some param-

eters do have important definitions. For example,ρ is the vulnerability to predation of

infected prey relative to the susceptible prey (Hadeler andFreedman (1989) stipulated

thatρ > 1, a restriction we will ignore here),κ is the transmissibility from feeding on

infected prey,β is the transmissibility of the disease from infected predator to prey,

K is the carrying capacity of the prey, andB is the prey density at the disease-free

predator–prey equilibrium (whenB< K).

In this model, oscillatory disease-free predator–prey dynamics occurs whenB <

(K −A)/2. Likewise, the condition where the (equilibrium-based) basic reproductive

numberR∗
0 = 1 is:

βκ =
cB

A+B
ax∗(A+x∗)+ρKy∗

ρKx∗y∗
=

cB
A+B

B+ρ(K−B)
Bρ(K−B)

(2.32)

where(x∗,y∗) is the disease-free (unstable) equilibrium.
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(a)

(b)

Figure 2-1: Diseased predators model: Time-averaged bifurcation diagram of (a) prevalence
and (b) predator (host) density, with respect to the disease transmissionparameterβ . The grey
region highlights where the disease isnot endemic despite the equilibrium-based reproductive
number being greater than one, i.e. iP = 0 and R∗0 > 1. Thick lines mean stable equilibria,
thin lines mean unstable equilibria, black (white) circles are time-averages of stable (unstable)
oscillations. The dotted line in (b) represents R0(β ) = 1 and goes through both R∗0 = 1 and
R0 = 1, demonstrating that host time-averaged density alone explains the difference in disease
invasion. (Parameter values:µ = 0.5, r = 2, h= 0.3 and m= 0.3)
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(a)

(b)

Figure 2-2: Diseased prey model: Time-averaged bifurcation diagram of (a) prevalence and
(b) prey (host) density, with respect to the disease transmission parameter β . The grey region
highlights where the disease is endemic despite the equilibrium-based reproductive number
being less than one, i.e.iN > 0 and R∗0 < 1. The lines and circles have the same meaning as
those in Figure 2-1. (Parameter values:µ = 1, r = 1, h= 0.3 and m= 0.3)
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Figure 2-3: Density dependent mortality: plots of R0 as a function of host density. This figure
demonstrates, with respect to N, R0 is sublinear for c> 1, linear for c= 1 and superlinear
for c < 1. Replace R0 and N with R∗0 and N∗ or R0 and N to get the equivalent figure of R∗0
andR0, respectively. The vertical line represents the disease-free carrying capacity of the prey.
Parameter values:β = 2, µ = 0.5, r = 1, c= 2 (sublinear) and c= 0.5 (superlinear).
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Figure 2-4: Disease in both predator and prey: State space diagrams of (a) a disease that
does not become endemic in the prey (likewise predator) despite R∗

0 > 1 (R∗
0 = 1.26) and (b) a

disease that becomes endemic in the prey (likewise predator) despite R∗
0 < 1 (R∗

0 = 0.8055). For
model details/equations, see Appendix 2.B. Parameter values: (a)β = 3, a= 0.1 andρ = 1,
(b) β = 1.4, a= 50andρ = 10. Other parameters: K= κ = c= 1 and A= B= 0.3.
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Chapter 3

Complex dynamics in an

eco-epidemiological model1

Abstract

The presence of infectious diseases can dramatically change the dynamics of ecologi-

cal systems. By studying an SI-type disease in the predator population of a Rosenzweig–

MacArthur model, we find a wealth of complex dynamics that do not exist in the ab-

sence of the disease. Numerical solutions indicate the existence of saddle–node and

subcritical Hopf bifurcations; turning points and branching in periodic solutions; and

a period-doubling cascade into chaos. This means that thereare regions of bistability,

in which the disease can have both a stabilising and destabilising effect. We also find

tristability, which involves an endemic torus (or limit cycle), an endemic equilibrium

and a disease-free limit cycle. The endemic torus seems to disappear via a homoclinic

orbit. Notably, some of these dynamics occur when the basic reproduction number is

less than one, and endemic situations would not be expected at all. The multistable

regimes render the eco-epidemic system very sensitive to perturbations and facilitate a

number of regime shifts, some of which we find to be irreversible.

3.1 Introduction

Complex dynamics like bistability, quasiperiodicity and chaos have been found in iso-

lation in many ecological, epidemiological and eco-epidemiological models. Such

1This chapter has previously been published in Bulletin of Mathematical Biology (Bate and Hilker,
2013a) and is reproduced here with kind permission from Springer Science+Business Media
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complex dynamics mean that small changes to parameters or initial conditions can

have large effects on the biological system in the long term.In this chapter, two

relatively simple eco-epidemiological models are investigated; both models are of

Rosenzweig–MacArthur predator–prey type with an SI diseasein the predator with

different forces of infection. Within these models, a multitude of different forms of

bistability are found, as well as a torus bifurcation, a period-doubling cascade into

chaos and even an example of tristability. This diversity ofcomplex dynamics has

rarely been seen in one investigation.

Some of these complex dynamics have been discovered in ecology. For example,

May (1974) demonstrated that simple discrete-time single-species models can exhibit

chaos. However, in continuous-time models, three species are needed to produce more

complex dynamics than just equilibria and limit cycles (Seydel, 1988). Gilpin (1979)

found the first example of chaos in a continuous-time ecological model while inves-

tigating a one-predator–two-prey model, whereas Hastingsand Powell (1991) found

chaos in a three-species food chain. Bistability is something that has long been estab-

lished in ecology. One famous example of bistability is the two-species Lotka–Volterra

competition model. Likewise, in epidemiology, there existbackward bifurcations with

saddle–node bifurcations in several models creating bistability between endemic and

disease-free equilibria (van den Driessche and Watmough, 2002).

Within the field of eco-epidemiology, there are a few studiesthat demonstrate some

of these complex dynamics. Hilker and Malchow (2006) found a‘strange periodic’ at-

tractor, which seems to be a toric transient that lasts for a substantial time period.

Sieber and Hilker (2011) go further than Hilker and Malchow (2006) by demonstrating

that chaos, bistability and attractor crises can also occur. The first eco-epidemiological

paper to show chaos is Upadhyay et al (2008), using an existing model (Chattopad-

hyay and Bairagi, 2001), presumably via a cascade of period-doubling bifurcations.

Stiefs et al (2009) demonstrate that quasi-periodicity andchaos exist in a generalised

predator–prey model with an SIRS disease in the predator, although the focus of the

complex dynamics is on cases with saturating forces of infection. Siekmann et al

(2010) found bistability when adding a free-living virus stage to models of a predator–

prey system with disease in the prey. Kooi et al (2011) found period-doubling cascades

into chaos, bistability and transcritical bifurcations oflimit cycles. However, the ex-

istence of chaos in this model is not surprising, since the model is the same as the

three-species Rosenzweig–MacArthur food chain model that was found to be chaotic

in Hastings and Powell (1991).

In this chapter, we explore two relatively simple eco-epidemiological models and
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demonstrate that a multitude of complex dynamics occurs. Such an array of complex

dynamics has rarely been seen before. In Section 3.2, the models are introduced and

explained, whereas Section 3.3 is a discussion on the steadystates of these models and

their stability. Together, these two Sections give the background (the ‘basic’ dynamics)

for the main results in Section 3.4. These main results include bistability of limit

cycles, turning points of limit cycles, a period-doubling cascade into chaos, tristability

and a stable torus and its homoclinic destruction. All theseresults are a consequence

of the disease since they do not occur in the disease-free predator–prey system.

3.2 The models

We will introduce two similar models, one of which is the model in Hilker and Schmitz

(2008) and uses frequency dependent transmission. The other model is the diseased

predator model in Chapter 2, i.e. Bate and Hilker (2013b), which is the analogue with

density dependent transmission. We will start by describing their similarities before

working on each model individually.

For both models, prey densityX grows logistically to a carrying capacityK in the

absence of predators. In the absence of prey, the predators die out exponentially. Pre-

dation is based on a Holling type II functional response and the predator’s numerical

response is proportional to total predation. Predators areinfected by an SI disease,

i.e. infection is for life and there is no immunity. Susceptible and infected predators

are denoted by the densitiesSandI , respectively. All predators are born susceptible;

there is no vertical transmission from infected mother to offspring. Infected predators

suffer an additional disease-induced death rate, but otherwise behave in the same way

as susceptible predators.

Starting with a prey–susceptible predator–infected predator model formulation, we

will reformulate the models in terms of the total predator and prey populations and the

prevalence of the disease in the predator population, i.e. the fraction of predators

that are infected. This scaling is used to demonstrate the effect of the disease on the

predator in the predator–prey system, something that is notimmediately clear when

the predator population is in two classes.
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3.2.1 Density dependent transmission (DD model)

Incorporating all these assumptions with a density dependent force of infection gives:

dX
dT

= bX

(

1− X
K

)

− aX(S+ I)
H +X

, (3.1)

dS
dT

=
eaX(S+ I)

H +X
−dS−σSI, (3.2)

dI
dT

= σSI− (d+α)I , (3.3)

whereb is the per capita growth rate of the prey when rare,K the carrying capacity of

the prey,H the half-saturation population density,a the maximum predation rate per

predator per prey,e the biomass conversion constant,d the natural per capita death rate

of the predator,α the disease-induced per capita death rate of the predator and σ the

transmissibility coefficient.

SettingY = S+ I as the total predator density andi = I
Y to be the prevalence, i.e.

the proportion of infected predators, we get:

dX
dT

= bX

(

1− X
K

)

− aXY
H +X

, (3.4)

dY
dT

=
eaXY
H +X

−dY−αYi, (3.5)

di
dT

= i

(

(σY−α)(1− i)− eaX
H +X

)

. (3.6)

To reduce the number of parameters, we can rescale usingX = NK, Y = eKP and

T = t
ea to get:

dN
dt

= rN(1−N)− NP
h+N

, (3.7)

dP
dt

=
NP

h+N
−mP−µPi, (3.8)

di
dt

= i

(

(βP−µ)(1− i)− N
h+N

)

, (3.9)

wherer = b
ea, h= H

K , m= d
ea, µ = α

ea andβ = σK
a . This model is the diseased predator

model in Bate and Hilker (Chapter 2 (2.3-2.5, p14), i.e. 2013b)
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3.2.2 Frequency dependent transmission (FD model)

Using the same argument, we arrive at the frequency dependent model, the same model

as that in Hilker and Schmitz (2008). The parameters are the same as in the density

dependent model except that the transmissibility carries adifferent unit and its dimen-

sionless analogue is rescaled toβ = σ
ea. This means that:

dX
dT

= bX

(

1− X
K

)

− aX(S+ I)
H +X

, (3.10)

dS
dT

=
eaX(S+ I)

H +X
−dS−σ

SI
S+ I

, (3.11)

dI
dT

= σ
SI

S+ I
− (d+α)I , (3.12)

becomes:

dN
dt

= rN(1−N)− NP
h+N

, (3.13)

dP
dt

=
NP

h+N
−mP−µPi, (3.14)

di
dt

= i

(

(β −µ)(1− i)− N
h+N

)

. (3.15)

Notice that (13–15) are almost identical to (7–9), the difference being that (9) has

a βP term whereas (15) has aβ term.

3.3 Steady states and stability

In this section, we will give a brief summary of the steady states and their stability. For

more details, see Appendix 3.A.

For both models, we have the extinction steady state(0,0,0) and the prey-only

disease-free steady state(1,0,0). The former is always unstable, whereas the latter is

stable when the natural mortality rate of the predators is too high
(

i.e. m> 1
h+1

)

. Addi-

tionally, the FD model has a disease-induced predator extinction steady state(1,0, i∗)2,

where i∗ = 1− 1
(β−µ)(1+h) . This occurs when the total mortality rate (natural plus

disease-induced) of the predators is too high (i.e.m+µ i∗ > 1
h+1). Notice that this can

never happen ifm+µ < 1
h+1.

2The disease-induced extinction steady state is a singularity in the original(N,S, I) model. However,
in the original model, it represents a disease that can persist (deterministically) in even the smallest host
populations, i.e. limS+I→0

I
S+I = i∗ > 0, allowing the disease to be a driving force in host extinction.

This phenomenon would be lost or hidden without rescaling to(N,P, i) (Hilker and Schmitz, 2008).
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There can be two other steady states; the disease-free predator–prey steady state

(N∗,P∗,0) and the coexistent (predator–prey–disease) steady state(N∗,P∗, i∗). There

is a transcritical bifurcation between these atR∗
0 = 1 (the equilibrium-based basic re-

productive number, Bate and Hilker, 2013b). For the FD model,the coexistent steady

state is always unique when it exists. However, for the DD model, there can be up to

two coexistent steady states. This opens up the possibilityof saddle–node and back-

ward bifurcations of the coexistent steady states.

Finding all the steady states does not give the full story. The underlying predator–

prey system is the Rosenzweig–MacArthur model (1963), whichis well-known for

having oscillatory dynamics caused by a Hopf bifurcation. Hence, by continuity, os-

cillations should occur in the predator–prey–disease system. Given the existence of

stable oscillations, numerical results will be necessary.All bifurcation diagrams are

plotted in MATLAB, mostly using data from the continuation software XPPAUT or

multiple runs of ‘ode45’ or ‘ode15s’ in MATLAB. Equations in MATLAB are ‘log

transformed’ to prevent numerical errors dominating dynamics around zero. MAT-

CONT is used for the two-parameter bifurcation diagram in Figure 3-3(a).

3.4 Results

In this section, we will analyse and compare various complexdynamics that have been

found in both models when there exist stable predator–prey oscillations in the absence

of the disease (so parameters are chosen such thatm< 1−h
1+h). This analysis is largely

done by varying the disease transmissibility (β ) and the disease-induced death rate (µ).

First, we will describe some general results that apply to either model. Then, we will

focus on various forms of bistability that can be found in these models. Furthermore,

we will demonstrate that the DD model can exhibit tristability, a stable torus and its

destruction via a homoclinic bifurcation; whereas the FD model can exhibit chaos via

a period-doubling cascade. Lastly, we will describe various forms of regime shifts and

hysteresis.

3.4.1 General results

Figure 3-1(a)-(d) are bifurcation diagrams with respect totransmissibility (β ) for the

FD and DD models, respectively. When transmissibility is small, the disease can not

spread fast enough to survive in the long run and thus only disease-free predator–prey

oscillations are stable. As transmissibility increases, it will reach a threshold value cor-
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responding toR0 = 1, above which the disease will become endemic in the predator–

prey oscillations, giving coexistent oscillations (Figure 3-1(d)). Increasing transmissi-

bility further results in the stabilisation of the coexistent oscillations via a Hopf bifur-

cation, leading to a stable coexistent equilibrium. The reason for stabilisation is that

the total death rate of predators (m+µ i∗) is now large enough to prevent predator–prey

oscillations. However, this depends on a sufficiently largedisease-induced death rate

µ.

In addition to these common effects between the two models, there are aspects that

only exist in one of the models.

For the FD model, a disease-induced extinction of the predators can occur when

transmissibility (β ) (and disease-induced death rateµ) are particularly large (Figure 3-

1(a)). This is not possible in the DD model since the disease can not survive when the

density of predators becomes small, whereas the disease in the FD model can persist

at any predator density, provided transmissibility is sufficiently large.

For the DD model (Figure 3-1(b)), there is a difference between the transcritical

bifurcation in the (stable) predator–prey oscillations (R0 = 1) and the transcritical bi-

furcation in the (unstable) predator–prey equilibrium (R∗
0 = 1). This means that the dis-

ease has a different endemic threshold in predator–prey oscillations than at equilibrium

(Figure 3-1(d)). This difference in thresholds occurs because the time-averaged preda-

tor density for predator–prey oscillations is smaller thanthe predator density for the

(unstable) predator–prey equilibrium in Rosenzweig–MacArthur predator–prey mod-

els. In the FD model, the thresholds at equilibrium and in oscillations are the same

since the thresholds are independent of predator density, i.e. R∗
0 = R0 = β

m+µ . The

difference between the thresholdsR∗
0 = 1 andR0 = 1 has been explored in more detail

in Bate and Hilker (2013b). As we will find out in the next subsection, this difference

can lead to an interesting form of bistability between the endemic equilibrium and

disease-free predator–prey oscillations in the DD model.

3.4.2 Various forms of bistability

In this subsection, we will demonstrate the birth of bistability via a cusp bifurcation

of limit cycles and a generalised Hopf bifurcation in both the DD and FD models. We

then discuss various forms of bistability, including bistability between endemic and

disease-free states in the DD model.

Figure 3-2(a) is a bifurcation diagram with respect to transmissibility (β ) for the

DD model, like Figure 3-1(b), but with a slightly increased disease-induced death
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rate (µ = 0.53 instead ofµ = 0.5 in Figure 3-1(b)). Both figures are quite similar

with respect to the overall pattern from low to high transmissibility (β ) of disease-free

oscillations to coexistent oscillations to coexistent equilibria. There is, however, one

major difference; namely, there are two turning points of limit cycles in the coexistent

oscillations branch. Zooming in around the turning points makes this difference much

clearer (Figure 3-2(b)). Due to these two turning points of limit cycles, there are

parameter regions with three coexistent limit cycles; the inner and outer limit cycles

are stable (black circles in Figure 3-2(b)), whereas the middle limit cycle (the one that

joins the two turning points of limit cycles) is unstable (white circles in Figure 3-2(b)).

Thus there is bistability between two different limit cycles.

Figure 3-3 demonstrates how two turning points of limit cycles can arise, as well

as how this can lead to a subcritical Hopf bifurcation. We start the sequence in Fig-

ure 3-3(b)(i) (bottom of Figure 3-3(a)) with a solitary (coexistent) limit cycle just like

in Figure 3-1. Increasingµ results in the limit cycle branch being bowed in the mid-

dle much like a reverse ‘
∫

’ (Figure 3-3(b)(ii)). Instantaneously, this bowing results

in an inflection point, also called a cusp point or bifurcation of the limit cycle (Fig-

ure 3-3(b)(iii)). This is shown by the ‘CPC’ in Figure 3-3(a). Beyond this inflection

point there are two turning points (i.e. two saddle–nodes bifurcations) of limit cycles

(Figure 3-3(b)(iv)). In between these, there are three limit cycles; one stable limit

cycle with small amplitude oscillations, one stable limit cycle with large amplitude

oscillations and one unstable limit cycle that is between the other two. Thus there is

bistability between two different limit cycles, one with large amplitude and one with

small amplitude.

Further increasingµ results in the two turning points spreading apart, and at some

point the top/outer limit cycle goes beyond the Hopf bifurcation (when one of the

dashed lines moves to the right of the bold Hopf line in Figure3-3(a)). From this

point on, there is some parameter region where there is bistability between the large-

amplitude limit cycle and the coexistent steady state. Increasingµ further moves

the inner turning point closer to the Hopf bifurcation untilthey collide resulting in

a generalised Hopf bifurcation (Figure 3-3(b)(v)). This generalised Hopf bifurcation

is marked ‘GH’ in Figure 3-3(a). Increasingµ beyond this, there is a subcritical Hopf

bifurcation and only one turning point (Figure 3-3(b)(vi)). In this case, there is bista-

bility only between the outer coexistent limit cycle and thecoexistent equilibrium.

This bifurcation sequence occurs in both the DD and FD models(see caption of

Figure 3). Consequently, both models can exhibit bistability between either two coex-

istent oscillations (one with large-amplitude and one withsmall-amplitude) or between
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a coexistent oscillation and a coexistent equilibrium. There is another form of bista-

bility that, to the authors’ knowledge, can only occur in theDD model: bistability

between the coexistent equilibrium (or small-amplitude coexistent oscillations) and

disease-free oscillations. This occurs when the Hopf bifurcation is to the left of the

transcritical bifurcation of limit cycles atR0 = 1 (Figure 3-4 is an example of this kind

of bistability). Bistability in the DD model between coexistent equilibria and either co-

existent or disease-free oscillations model has also been found in Hurtado et al (2014),

although they dismiss such bistability occurring in the FD model.

3.4.3 Torus bifurcations and tristability

Figure 3-4 illustrates many phenomena not shown previouslyin this chapter:

1. There is a saddle–node bifurcation of the coexistent equilibrium.

2. There is bistability between disease-free oscillationsand coexistent equilibria.

Normally, this bistability occurs when the Hopf bifurcation is to the left of the

transcritical bifurcation of limit cycles. However, if theHopf bifurcation is on

the lower ‘saddle’ branch of equilibria (like in Figure 3-4)this bistability occurs

when the saddle–node bifurcation is to the left of the transcritical bifurcation of

limit cycles.

3. The saddle–node and Hopf bifurcations have switched positions (previously, the

Hopf bifurcation was located on the upper ‘node’ branch of equilibria, whereas

in Figure 3-4, the Hopf bifurcation is located on the lower ‘saddle’ branch of

equilibria). This means that a fold–Hopf bifurcation (sometimes called a zero–

Hopf bifurcation) has occurred when the two bifurcations meet.

4. Along the unstable limit cycle arising from the Hopf bifurcation, a torus bifurca-

tion occurs, which stabilises the limit cycle until a turning point of limit cycles

is reached.

5. The stable torus created at the torus bifurcation is destroyed by a homoclinic

bifurcation as the torus collides with the saddle limit cycle. Between the turn-

ing point of limit cycles and the homoclinic destruction of the torus, there is a

region of tristability (the grey region of Figure 3-4). Figure 3-5(a) demonstrates

this tristability by showing that three different attractors can be obtained just by

changing the initial condition, whereas Figure 3-5(b) demonstrates that the toric

attractor gives quasiperiodic dynamics.
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The cause of the tristability seems to be the combination of (i) the Hopf bifurcation

colliding with the saddle–node bifurcation, creating a fold–Hopf bifurcation, and (ii)

a generalised Hopf bifurcation leading to the creation of a turning point of limit cy-

cles near the Hopf bifurcation (like in Figure 3-3) occurring soon after the fold–Hopf

bifurcation. By varying the disease-induced death rate,µ, and assuming all other pa-

rameters are the same as Figure 3-4, tristability occurs forvalues ofµ beyond the

fold–Hopf bifurcation (µ ≈ 0.95) and the generalised Hopf bifurcation (µ ≈ 0.97), i.e.

tristability occurs forµ & 0.97.

The torus that appears at the (supercritical) torus bifurcation grows until it collides

with another invariant set. In Figure 3-4 (µ = 2), the torus breaks down as it seems

to collide with the saddle limit cycle to form a homoclinic orbit. (This is clearer in

Figure 3-4(b) since in Figure 3-4(a), the torus looks as if itis close to the unstable

equilibrium at the homoclinic bifurcation, which is not thecase). Figure 3-6(a) and

(b) are Poincaŕe sections before and after this homoclinic bifurcation, respectively,

showing the homoclinic destruction of the torus. Figure 3-6(a) shows a closed loop

in the Poincaŕe section, consistent with quasi-periodic dynamics on a stable torus3,

whereas Figure 3-6(b) shows a loop in the Poincaré section that is broken after many

iterations, consistent with a long quasi-periodic transient. Figure 3-6(c) is a sketch

of the mechanism behind the homoclinic destruction of the torus. The saddle limit

cycle (seen as a saddle point in the Poincaré section) and stable torus (seen as a stable

limit cycle in the Poincaŕe section) approach each other (top left of Figure 3-6(c)).

Instantaneously, the stable torus and saddle limit cycle collide to form a homoclinic

orbit in the Poincaŕe section (top right of Figure 3-6(c)). Beyond this, althoughthere

are quasiperiodic transients, the stable torus no longer exists, leaving just the saddle

limit cycle and unstable limit cycle (bottom middle of Figure 3-6(c)). In the case of

Figure 3-4, after the homoclinic destruction of the torus, trajectories near the original

torus seem to eventually converge to the disease-free predator–prey oscillations, after

some quasiperiodic transient.

The existence of a stable torus should not be too much of a surprise. In fact,

Kuznetsov (1995, p.300) states that fold–Hopf bifurcations, the interaction between

fold (i.e. saddle–node) and Hopf bifurcations, can lead to tori. In the FD model,

however, torus bifurcations and tristability have not beenfound. The reason is that

3Ulrike Feudel (pers. comms. after publication) mentioned that the kink suggests that this torus has
become chaotic as the stable and unstable manifolds twist around each other. This could be investigated
using Lyapunov exponents. However, this does not underminethe idea of tristability, nor the existence
of tori for parameter values nearer the torus bifurcation. All it does is ‘muddy’ the transition around the
homoclinic bifurcation.
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there is no ‘fold’ in the FD model. Likewise, there is no saddle–node bifurcation to

provide a second equilibrium branch which may lead to another set of stable dynamics.

Consequently, the frequency dependent model probably does not have either tristability

or invariant tori, although we can not exclude these phenomena.

It is worth noting that in this scenario, ‘living on the torus’ can be a reasonably

good scenario for the disease, predator and prey. Forβ = 27.4, the minimum values

are N ≈ exp(−3.5), P ≈ exp(−4) and i ≈ exp(−11), whereas near the homoclinic

orbit at β = 27.54513 (Figure 3-6(a)) the lows areN ≈ exp(−5), P ≈ exp(−6) and

i ≈ exp(−25). For example, ifβ increases from a region with a stable torus to a

region where it has broken down, trajectories near the previously stable torus will now

eventually approach (after some quasiperiodic transient)the disease free predator–prey

oscillations. These oscillations have much more severe lows for both predator and prey

(approximately exp(−19) and exp(−43), respectively) which in reality could lead to

stochastic extinction of the predator and/or prey.

At µ = 1 (with other parameters the same as Figure 3-4), there is a similar torus/limit

cycle tristability (sinceµ & 0.97). However, the parameter region is very small, which

also makes it more difficult to numerically investigate how the torus disappears. In this

case, the lows of each variable are not as severe as the case ofµ = 2 (Figure 3-4). The

authors suspect that this breakdown is either the result of the same homoclinic orbit

at the saddle limit cycle or the ‘hole’ of the torus shrinks tonothing, colliding with

the unstable (saddle point) steady state it surrounds. Following the breakdown of this

torus forµ = 1, after some quasiperiodic transient, the system seems to settle down at

the endemic equilibrium, which is different to theµ = 2 (Figure 3-4) case where the

disease-free oscillations are approached.

3.4.4 Period-doubling and chaos

In the FD model, increasing the disease-induced death rate (µ), period-doubling bi-

furcations begin to arise. By the timeµ = 12, three period-doubling bifurcations have

occurred (Figure 3-7(a)), resulting in the existence of an ‘8-cycle’ (Figure 3-7(b)).

Figure 3-8 demonstrates that these period-doubling bifurcations form part of a period-

doubling cascade, which results in chaotic dynamics soon after µ = 12.

We also have a region of bistability in Figure 3-7(a), between coexistent limit cy-

cles (including 2-cycles) and coexistent equilibria. Thisleads to the possibility of

bistability between coexistent chaos and coexistent equilibria/small-amplitude limit

cycles.
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In the DD model, period-doubling bifurcations have not beenfound. However, we

suspect that period-doubling bifurcations and the cascading into chaos phenomenon

might exist in the DD model. Additionally, since bistability seems to be at least as

common in the DD model, compared with the FD model, bistability between coex-

istent chaos and coexistent equilibria/small-amplitude limit cycles might also exist in

the DD model.

3.4.5 Regime shifts and hystereses

There is one distinct phenomenon common to Figures 3-2, 3-3,3-4, 3-7; the possibility

of regime shifts and hystereses. Regime shifts are large, abrupt, persistent changes in

the structure and function of a system (Biggs et al, 2009). Here, we will restrict the def-

inition of regime shifts to that of ‘critical transitions’ from Scheffer (2009); the drastic

change towards another state caused by minor perturbationsand/or a gradual change

in the system (i.e. parameters), This definition ignores drastic changes caused by large

and sudden changes to the system. Using this definition, a regime shift occurs when

there is a discontinuity (jump) in stable attractors when varying a particular parameter.

Here, there are many different regime shifts because of the existence of saddle–node

bifurcations, turning points of limit cycles, bistability, tristability and the homoclinic

destruction of a stable torus. We will separate regime shifts into two different classes;

(globally) reversible and (globally) irreversible.

A (globally) reversible regime shift is a regime shift such that there is a (possibly

complex) sequence of small alterations in the bifurcation parameter that will lead back

to the starting point, via a hysteresis loop. Notice that we mention globally, since we

are describing recovering to the original state via some potentially long and compli-

cated path and not by a small, local change. An example of a reversible regime is in

Figure 3-7; starting just to the left of the turning point of the coexistent oscillations,

slowly increasing transmissibility beyond the turning point will mean that the system

will eventually approach the coexistent equilibrium aftersome oscillatory transient.

Now that we ‘sit’ on the endemic equilibrium, reducing transmissibility slowly will

not deviate from the equilibrium until the Hopf bifurcationis passed, far below the

original transmissibility. Below the Hopf bifurcation, thesystem will slowly approach

the endemic oscillations (possibly a 2-cycle). Once there,slowly increasing the trans-

missibility will move the system towards the original statenear the turning point on

the endemic oscillations.

A (globally) irreversible regime shift is a regime shift where there is no such se-

54



Chapter 3. Complex dynamics in an eco-epidemiological model

quence of small alterations to get back to the starting point, i.e. there is no hysteresis

loop. This means that once the system has moved away from the starting point, it

can never return without a dramatically large perturbationaway from another stable

state. For example, in Figure 3-4, there seems to be no plausible way of approaching

the endemic limit cycle/torus via either stable oscillations or equilibria. This means

when starting on the stable coexistent limit cycle/torus, slowly decreasing transmis-

sibility below the turning point of coexistent oscillationor increasing transmissibility

beyond the homoclinic destruction of the torus would lead tothe end of coexistent

limit cycle/torus forever.

3.5 Discussion

In this chapter, we explored two relatively simple eco-epidemiological models and

found an unusually large variety of complex dynamics. The variety of complex dy-

namics found in these models, which is summarised in Table 3.1, is much broader than

in previous studies in eco-epidemiology and most studies inecology and epidemiol-

ogy.

We found that the Hopf bifurcation between the coexistent steady state and the

coexistent periodic orbit can become subcritical, via a cusp bifurcation of limit cycles.

Consequently, bistability between coexistent oscillations and coexistent equilibria or

between two different coexistent oscillations can occur inboth the DD and FD models.

Combining this with the fact that there is a difference between R∗
0 andR0 in the DD

model (see Chapter 2, i.e. Bate and Hilker, 2013b, for more details), there are also

scenarios where there is bistability between a coexistent equilibrium and disease-free

predator–prey oscillations. In these scenarios, it is the initial condition that determines

whether the disease can become endemic to a stable equilibrium or not. In particular,

if the saddle–node bifurcation is biologically realistic,there are scenarios where the

disease is endemic (at equilibrium, oscillation or torus, Figure 3-4) despite bothR∗
0 and

R0 being less than one. This is reminiscent of a backward bifurcation, a phenomenon

found in a few epidemiological models like some in van den Driessche and Watmough

(2002).

In the previous paragraph, we concluded that the disease canpersist despite bothR∗
0

andR0 being less than one. However, we can say more; Figure 3-4 demonstrates that

there can be two stable coexistent states despite bothR∗
0 andR0 being less than one.

This goes beyond the usual backward bifurcation since Figure 3-4 demonstrates that

the disease can persist in two stable states, one stable state is an equilibrium whereas
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the other is (quasi-)oscillatory, despite bothR∗
0 andR0 being less than one.

We demonstrated that period-doubling exists in the FD model. In fact, we have

shown that period-doubling bifurcations can cascade into chaos. We have not found

period-doubling in the DD model, however, the authors believe that period-doubling

bifurcations (and the cascade into chaos) might occur.

One result in this chapter is the existence of hystereses andregime shifts. With all

the bistability, tristability and homoclinic orbits, there are many examples of regime

shifts. Most of these regime shifts can be reversed via some long and complex se-

quence of small changes in parameter value. It is worth noting that such sequences

may be impractical, not feasible or downright impossible inreality. However, some

regime shifts can not be reversed. In particular, we found that the stable coexistent

torus/oscillations in Figures 3-4, 3-5, 3-6 are not recoverable when lost without large

perturbations.

One aspect that is novel in this chapter is the scenario of tristability. Tristability

seems particularly rare in ecological and epidemiologicalmodels. The authors are

not aware of any previous examples of tristability in eco-epidemiological papers, with

only a few works finding bistability (Siekmann et al, 2010; Kooi et al, 2011; Sieber and

Hilker, 2011). In fact, the most examples the authors have found of tristability in ecol-

ogy or epidemiology typically involve one or more Allee effects. For example, Hilker

et al (2009) found tristability when adding disease to a population with an Allee effect,

whereas Gonźalez-Olivares and Rojas-Palma (2011) found tristability when combin-

ing a predator–prey interaction with a Holling type III functional response and an Allee

effect in the prey. Likewise, Berezovskaya et al (2010) foundtristability when consid-

ering a predator–prey interaction with linear functional response, prey refuge and an

Allee effect in the prey. Tristability in these models is notparticularly surprising;

Allee effects usually imply bistability, so tristability only requires the creation of one

unexpected stable equilibrium or limit cycle. An example oftristability that does not

involve Allee effects is found in Beardmore and White (2001); here there is an infec-

tious disease in a population with complex social group structure. All these papers

have one aspect in common, the tristability is between several equilibria (Beardmore

and White, 2001; Hilker et al, 2009) or two equilibria and an oscillation (Hilker et al,

2009; Gonźalez-Olivares and Rojas-Palma, 2011; Berezovskaya et al, 2010), with one

or more of the equilibria being (semi-)trivial. In this chapter, the tristability is between

a disease-free (semi-trivial) oscillation and two coexistent states, one equilibrium and

one (quasi-)oscillatory. However, both coexistent states, as previously mentioned, are

not expected to exist from the usual ‘R0 argument’ as bothR∗
0 < 1 andR0 < 1. On top
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of this, the coexistent torus/limit cycle in Figure 6 can notbe found by the usual steady

state and stability analysis.

We can confirm that a disease with density dependent transmission can have the

same stabilising effect as the disease with frequency dependent transmission has on

a predator found in Hilker and Schmitz (2008), taking predator–prey oscillations to

endemic equilibrium. The reason why this occurs is that the disease increases total

host mortality (frommP to (m+ µ i)P), which will dampen the boom and bust of

Rosenzweig–MacArthur predator–prey dynamics. Also, we have demonstrated that

disease in the predators can greatly influence not only predator (host) density, but also

interacting species like the prey.

The models used in this chapter are relatively simple for eco-epidemiological mod-

els as the disease only increases host mortality. This meansinfection does not change

how effective the predator is at searching, handling and eating prey as well as repro-

duction. This point is particularly clear in the predator–prey–prevalence equations

(7–9) and (13–15), where the disease has no direct influence on total prey density and

only influences the predator population via additional mortality. Likewise, the disease

is only an SI disease, with no recovery, latency or immunity.Also, the models use the

standard frequency dependent and density dependent forcesof infection.

These two forces of infection are the two default choices when modelling disease

transmission, largely because they are relatively simple and can be mechanistically

derived using assumptions based on contact rates. However,in wildlife diseases, there

have been mixed results to whether these forces of infections are realistic (McCallum

et al, 2001; Ferrari et al, 2011). Despite this, they are still seen as the benchmarks of

which all other forces of infection are compared (Begon et al,2002a).

The summary of results in Table 3.1 shows that density dependent and frequency

dependent transmission can yield distinctly different dynamics. Note that tristability

and different endemic thresholds between limit cycles and equilibrium are not possi-

ble with frequency dependent transmission. On top of this, there are relatively small

regions of coexistence between predator and disease in the frequency dependent trans-

mission if the disease-induced mortality (µ) is large. If more complex, non-linear

forces of infection were used, one would expect some of the complex dynamics found

in these models (especially the density dependent model, since many non-linear forces

of infection like those based on power laws or saturating contact rates can be simpli-

fied to a density dependent force of infection via parameter or limit assumptions) as

well as other complex phenomena. In particular, the endemicthresholdsR∗
0 andR0

would be different for most forces of infection, with frequency dependent transmis-
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sion being the main exception. This means that, unlike frequency dependent transmis-

sion, most forces of infection could have bistability between endemic and disease-free

states. However, both models have bistability and both are suspected to have chaos

following a period–doubling cascade, which suggests that such phenomena also exist

for a wide range of forces of infection.

There is a caveat to some of these results in this chapter, onethat is common with

many models that exhibit chaos and complex dynamics; dangerously small population

sizes (Berryman and Millstein, 1989; Thomas et al, 1980). Some of the interesting

dynamics occur in scenarios of major boom and bust, cases that are likely to cause

stochastic extinctions (this problem depends on the predator/prey rescaling; in particu-

lar, it depends on the carrying capacity of the prey in the original model,K). In partic-

ular, looking at the phase space plots illustrating tristability in Figure 3-5, we can see

that the predator–prey oscillations (and to a lesser extentthe coexistent torus) get very

close to the origin. Although various simulations were investigated, the search was

not exhaustive and there may be parameter values that do not result in dramatic boom

and bust but still contain similar complex dynamics. For example, the torus atµ = 1

(other parameters are the same as in Figure 3-4) suffers lessfrom the dangerously low

populations than the example in Figures 3-4, 3-5, 3-6 whereµ = 2. In particular, we

only investigated scenarios where disease-free predator–prey oscillations exist. There

could be scenarios where complex dynamics like oscillatorydynamics, bi-/tristability

and chaos occur when, in the absence of the disease, only stable equilibria exist; but

we stress that this has not been investigated in this chapter.

The existence of a torus bifurcation (equivalent to a Neimark–Sacker bifurcation of

the Poincaŕe map) poses many unanswered questions. We have demonstrated one case

where the torus seems to be broken by a homoclinic orbit of a saddle–cycle. However,

there are many other ways how a torus can bifurcate or disappear. For example, the

torus could experience period doubling bifurcations into chaos or there could be phase

locking into a periodic orbit. The analysis in this chapter is restricted to just one set

of parameter values, largely because of the interesting case of tristability. This means

there is much more to explore in relation to the stable torus than is found this chapter.

The results in the FD model are directly comparable with Hilker and Schmitz

(2008). Figure 3-1 uses parameter values not too dissimilarto those in Hilker and

Schmitz (2008). As we make the disease dynamics ‘faster’ (i.e. higher disease-induced

death rateµ with higher transmissibilityβ ), the system becomes more complex as

bistability and period doubling cascades arise. However, increasingµ gives smaller

ranges ofβ where coexistence can occur (complex or not). This makes it less likely for
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coexistence to occur for highµ, a point that can be seen in Hilker and Schmitz (2008,

Figure 4). In the DD model, we suspect a similar pattern for fast disease dynamics.

However, there is no upper limit in transmissibility (β ) for endemic coexistence since

there is no disease-induced extinction of the predator in the DD model.

In the absence of the disease, the predator–prey interaction can only lead to two

types of stable dynamics; stable equilibria and stable oscillations. This means that the

bistability, tristability, period-doubling into chaos, stable tori and homoclinic orbits

(and much more, see Table 3.1) exist because of the interaction with the disease in the

predator. The regimes of multistability imply that the eco-epidemic system may be

extremely sensitive to perturbations (e.g. due to stochastic events, control actions like

culling or gradual trends in environmental conditions). This can trigger a number of

regime shifts, some of which we have identified to be irreversible. The regime shifts

may also be accompanied by long-lasting transients of former attractors.

In summary, we can conclude that diseases can greatly influence the dynamics of

the host population and other species interacting with the host. In other words, eco-

epidemiology can give profoundly different results than just the background ecology.

Similarly, predation can make disease dynamics more complicated.
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3.A Steady states of FD and DD models

There are two key differences between the DD and FD model. Oneis the existence of

a disease-induced extinction of the predator in the FD model. The other is that there

can be only one coexistent steady state in the FD model as the corresponding value

of i∗ is known; whereas in the DD model, there can be one or two coexistent steady

states.

3.A.1 Trivial/semi-trivial steady states

• Both models:(0,0,0) which always exists and is always unstable

• Both models:(1,0,0) which always exists and is stable ifm> 1
1+h, unstable

otherwise
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FD model DD model
Disease stabilisation ✓(Hilker and Schmitz, 2008) ✓(Fig. 3-1(b)-(d))
Different endemic thresholds ✗, R∗

0 = R0 (Chapter 2, ✓, R∗
0 > R0 (Chapter 2,

i.e. Bate and Hilker (2013b)) i.e. Bate and Hilker (2013b))
S–N bifurcation of Eq ✗(Appendix 3.A) ✓(Fig. 3-4)
S–N bifurcation of LC (turning points) ✓(Fig. 3-2,3-3) ✓(Fig. 3-2,3-3)
Subcritical Hopf ✓(Fig. 3-3,3-7(a)) ✓(Fig. 3-3)
Cusp bifurcation of LC ✓(Fig. 3-3) ✓(Fig. 3-3)
Bistability ... ✓ ✓

... between Co LC and Co Eq ✓(Fig. 3-3,3-7(a)) ✓(Fig. 3-3)

... between 2 Co LC ✓(Fig. 3-2,3-3) ✓(Fig. 3-2,3-3)

... between DF LC and Co Eq/LC ✗ ✓(Fig. 3-4)

... between Co Chaos and Co Eq/LC ✓? (Fig. 3-7) ✓?
Torus bifurcation ✗? ✓(Fig. 3-4)
Homoclinic bifurcation ✗? ✓, destruction of torus (Fig. 3-4,3-6)
Tristability ✗? ✓, between DF LC, Co Eq

and Co LC/Torus (Fig. 3-4,3-5)
Period doubling bifurcation ✓, cascades into chaos, (Fig. 3-7,3-8)✓?
Regime Shifts and hysteresis ✓, Reversible found only ✓, Reversible and irreversible

Table 3.1: Summary of complex dynamics found in the DD and FD models: ‘✓’ means found, ‘✗’ means can not occur in this model, ‘✓?’ means
that not found in this chapter but we suspect can occur in this model and ‘✗?’ means that we do not believe this can occur but have not completely
discounted it. ‘Co’: Coexistent, ‘DF’: Disease-free, ‘Eq’: Equilibria, ‘LC’: Limit cycles, ‘S–N’: Saddle–Node.
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Figure 3-1: Bifurcation diagrams of (a) the FD model and (b),(c),(d) the DD model, demon-
strating the progression (with increasing transmissibility) from disease-freeoscillations to en-
demic oscillations to an endemic equilibrium and, in (a) only, to disease-induced extinction
of the predators. (a) and (b) show the (maximum) prey density (N) with respect to transmis-
sibility (β ), whereas (c) and (d) show maximum predator density and maximum prevalance,
respectively. The trivial steady states have been omitted as well as the preyonly steady state in
(b). (b) is the same as Figure 2-1 in Chapter 2, i.e. Bate and Hilker (2013b) (but without the
time-averaging), whereas (a) is comparable to Figure 2(a) in Hilker andSchmitz (2008) (but
with different parameter values). Parameter values: (a)µ = 1, r = 1, h= 0.3 and m= 0.3 (FD
model); (b),(c),(d)µ = 0.5, r = 2, h= 0.3 and m= 0.3 (DD model).

• Both models:(N∗,P∗,0), whereN∗ = hm
1−m andP∗ = r(h+N∗)(1−N∗). This ex-

ists whenm< 1
1+h(< 1). It is stable ifN∗ > 1−h

2 (equivalentlym> 1−h
1+h (Hopf bi-

furcation)) andR∗
0 < 1, whereR∗

0 equalsβP∗

m+µ (DD model) and β
m+µ (FD model).

• FD model only:(1,0, i∗) wherei∗ = 1− 1
(β−µ)(1+h) . This exists whenβ − µ >

1
1+h and is stable ifm+µ i∗ > 1

1+h, unstable otherwise.

• (FD model only:(0,0,1). This is always unstable.)

• (FD model only:(0,0, i∗). i∗ is unspecified. This only exists whenβ = µ, which

is not generally true. This is always unstable.)
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3.A.2 Coexistent steady state(s)

DD model

The coexistent equilibria for the DD model are of the form(N∗,P∗, i∗), whereN∗ =
h(m+µ i∗)

1−(m+µ i∗) , P∗= r(h+N∗)(1−N∗) andi∗= 1− N∗
h+N∗

1
βP∗−µ = 1− m+µ i∗

βP∗−µ = µ(1−i∗)−m+βP∗

βP∗−µ .

This exists wheni∗ < 1−m
µ (N∗ > 0), i∗ < 1

µ(h+1) −
m
µ (N∗ < 1, i.e. P∗ > 0), P∗ > µ

β
(for i∗ < 1) andP∗ > µ+m

β (for i∗ > 0).

The strongest of these conditions arei∗ < 1
µ(h+1) −

m
µ andP∗ > µ+m

β , which are

the conditions thatRp
i > 1 (the predators’ reproductive number given an infection is

present) andR∗
0 > 1, (the diseases’ reproductive number).

It is not clear whether(N∗,P∗, i∗) has only one solution. Consequently, this must

be solved. For tidiness, letD = m+µ i∗. Starting

with D−m
µ (= i∗), we get:

D−m
µ

= 1− D
βP−µ

(3.16)

= 1− D
β r(h+N)(1−N)−µ

(3.17)

= 1− D

β r(h+ hD
1−D)(1−

hD
1−D)−µ

(3.18)

= 1− D(1−D)2

β rh(1−D−hD)−µ(1−D)2 . (3.19)

After some further rearrangement, we get:

0=

(

D−m
µ

−1

)

β rh(1−D−hD)+(m+µ)(1−D)2 (3.20)

This is clearly quadratic with respect toD and thusi∗. D can only be biologically

realistic if D ∈ (m,m+ µ) (i.e i∗ ∈ (0,1)). This means there are at most two feasible

coexistent solutions.

The stability is not fully investigated. However, when these steady states exist,

no other steady state is stable. Also, when there are two viable coexistent steady

states, they will be connected to a nearby saddle–node bifurcation, so only one steady

state should be stable. Given this, we expect would that either one of the coexistent

equilibria is stable or there is some stable periodic solution.
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FD model

The coexistent steady state for the FD model is(N∗,P∗, i∗) whereN∗ = h(m+µ i∗)
1−(m+µ i∗) ,

P∗ = r(h+N∗)(1−N∗) and i∗ = 1− µ+m
β . This exists whenβ > µ +m (i∗ > 0),

i∗ < 1−m
µ (N∗ > 0), i∗ < 1

µ(h+1) −
m
µ (N∗ < 1, i.e.P∗ > 0). Like the DD model, the two

strongest conditions arei∗ < 1
µ(h+1) −

m
µ andβ > µ +m. In this case, there is only one

coexistent steady state if it exists.

The stability is not fully investigated. However, when thissteady state exists, no

other steady state is stable. Given this, we would expect that either one of the coexistent

equilibria is stable or there is some stable periodic solution.
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Figure 3-2: Bistability between two limit cycles in the DD model. (a) demonstrates that bista-
bility occurs for values ofβ between the two turning points of limit cycles, whereas (b) zooms
in on the turning points of the limit cycles. There is also similar bistability in the FD model.
In (b), the disease-free oscillations are not shown and stable/unstable equilibria have been
drawn in for clarity, with the dashed line representing unstable equilibrium.µ = 0.53. Other
parameters are the same as Figure 3-1(b)

.
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Figure 3-3: The birth of bistability: (a) is a two-parameter bifurcation diagram with varying transmissibility (β ) and

disease-induced death rate (µ). This demonstrates that the bistability in Figure 3-2 is the result of a cusp bifurcation of turning

points of limit cycles between Figure 3-1(b) and Figure 3-2 (marked ‘CPC’ for Cusp Point of Cycles). Further increases ofµ

lead to bistability between an equilibrium and a limit cycle(once beyond the generalised Hopf bifurcation, marked ‘GH’). For

(a), the thick dashed lines represent the turning points of limit cycles, the bold line represents the Hopf bifurcation,and the

grey dashed horizontal line highlights where Figure 3-2 fitsin. (b) is a sequence of sketched bifurcation diagrams with respect

to transmissibility (β ) for increasing disease-induced death rate (µ). For (b), large black circles stand for stable (endemic)

oscillations, and small black circles stand for unstable (endemic) oscillations. Starting with a stable limit cycle (i) (µ = 0.5,

see Figure 3-1(b)), the system progresses to the limit cyclebeginning to ‘bow’ (ii) (µ = 0.52); to an inflection point in the limit

cycle (cusp point) (iii) (µ ≈ 0.5235); to two stable limit cycles and one unstable limit cycle (iv) (µ = 0.53, see Figure 3-2); to

a generalised Hopf bifurcation (v) (µ ≈ 0.55); to a subcritical Hopf bifurcation with one stable and one unstable endemic cycle

(vi) (µ = 0.6). A similar progression occurs in the FD model:µ = 1 (see Figure 3-1(a)) (i),µ = 2.4 (ii), µ ≈ 2.47 (iii), µ = 3

(iv), µ ≈ 3.35 (v) andµ = 3.5 (vi). Other parameters. DD model: same as Figure 3-1(b). FD model: same as Figure 3-1(a).
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(a)

(b)

Figure 3-4: Tristability and torus bifurcations in the DD model: Bifurcation diagrams of (a)
maximum prey density (N) and (b) maximum prevalence, with respect to transmissibility (β )
focused around the Hopf and saddle–node bifurcations. The grey region highlights a region
of tristability between disease-free predator–prey oscillations, a coexistent equilibrium and
coexistent limit cycle or torus. In this figure, both R∗

0 < 1 andR0 < 1, yet there are two endemic
states in the grey region. Parameter values:µ = 2, r = 0.5, h= 0.1 and m= 0.2. The disease-
free predator–prey equilibrium is omitted; it is a horizontal line near the horizontal-axis (N=
0.025). The parameter region where the disease invades the predator–preyoscillation has been
omitted.
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Figure 3-5: (a) Phase portrait illustrating tristability in the DD model and (b) a time profile
of the coexistent torus with respect to prey density (N). Initial conditions are (0.05,0.3,0.01)
(disease-free oscillations), (0.5,0.01,0.01) (coexistent equilibrium) and (0.1,0.2,0.01) (coexis-
tent torus).β = 27.4. Other parameters are the same as Figure 3-4.
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Figure 3-6: Poincaŕe sections demonstrating the destruction of the torus in Figure 3-4 in the
DD model: (a) just before the homoclinic destruction of the torus (β = 27.54513), (b) just
after the homoclinic destruction of the torus (β = 27.54514). Notice the curve in the Poincaré
section (torus) is sparser in (b) since the system follows the cycle severaltimes in a transient
phase before going to the predator–prey oscillations. The Poincaré section is of trajectories
hitting the N= 0.12 plane from above. (c) is a sketch of the creation and destruction of the
homoclinic orbit in the Poincaŕe section, where the white circles represent unstable (or saddle)
limit cycles, thick lines represent the stable torus, and the thin lines with arrows represent either
the trajectories, or the stable/unstable manifolds of the saddle-limit cycle. Other parameters
are the same as Figure 3-4.
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Figure 3-7: Period-doubling in the FD model: (a) Bifurcation diagram with respect toβ
whereµ = 12. Three period-doubling bifurcations have occurred, although this is notclear
as all branches are very close to each other. To confirm the existence of three period doubling
bifurcations, (b) shows a phase portrait of the resulting 8-cycle atβ = 12.62(= µ + 0.62).
Other parameters are the same as Figure 3-1(a).
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Figure 3-8: Period-doubling cascade into chaos in the FD model. Bifurcation diagram of
(local) maximum prevalence with respect toµ, whereβ varies withµ along the lineβ =
µ + 0.62. Other parameters are the same as Figures 3-1(a) and 3-7. The initial condition
(N,P, i) = (1,0.1,0.01) was used.
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Chapter 4

Disease in group-defending prey can

benefit predators1

Abstract

Infectious diseases have the capacity to influence not only the host population but also

interacting species like predators. In particular, they can reduce host densities, which

can have knock-on effects on predators. Here, we consider how an infectious disease

in the prey affects the predator–prey relationship where the prey exhibit some kind of

group defence against the predator (using a Holling type IV functional response). We

find that the disease can reduce prey densities to levels where the group defence is

weaker. This weakened group defence allows predators to survive in many scenarios

where they could not without the disease.

4.1 Introduction

Group-defending prey pose many difficulties for predators to overcome. Large groups

of prey can dazzle and confuse predators, making it difficultfor predators to focus on

and pick out individual prey from the group. Large groups of prey have many eyes

that improve vigilance, reducing the element of surprise often necessary for successful

attack. On top of this, large groups of prey may even mob attack, potentially harming

predators.

There are many examples of group defence (see Krause and Ruxton, 2002). As

1This chapter has previously been published in Theoretical Ecology (Bate and Hilker, 2014) and is
reproduced here with kind permission from Springer Science+Business Media B.V.
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early as 1920, Allen suggests that a school of sardines can confuse Great Northern

loons, whereas Miller (1922) suggests a flock of Bush tits has many eyes to spot hawks

and will respond with a ‘confusion chorus’. More recently, Japanese honeybees have

been reported to mob attack foraging hornets by forming a ‘hot defensive ball’ around

the hornet (Ono et al, 1995).

There have been several attempts to mathematically model group defence, the first

being Freedman and Wolkowicz (1986). The most common and among the simplest

method of incorporating group defence in a predator–prey model is by using Holling

type IV functional responses (sometimes called Monod–Haldane functional responses,

a term with origins in microbiology, Andrews, 1968). Such functional responses be-

have much like a Holling type II functional response, especially for small prey den-

sities. However, instead of saturating at large prey densities, the functional response

will become negatively sloped. That is, the predation rate per predator decreases for

larger prey densities as a consequence of group defence. From this, it is worth noting

that Holling type IV functional responses usually result inan upper threshold of prey

density, beyond which the predator can not survive. This canbe seen as a strong group

defence. There are other ways of modelling group defence. For example, Ajraldi et al

(2011) and Venturino (2011a) recently suggested a ‘square-root’ functional response

for predators of herding prey, particularly for the herdingof large mammals. Their

argument centres around the idea that predators can only attack those prey along the

perimeter of a herd. Such functional responses neglect the other aspects of group de-

fence like predator confusion, but also these functional responses grow particularly

high for small prey densities (with infinite gradient at zero). Likewise, Geritz and

Gyllenberg (2013) developed a model for group defence wherepredators capture only

individual prey and not those in groups. These individual prey can join and leave

groups. This results in a functional response that is proportional to the number of

individual prey which increases monotonically (sublinearly) with total prey density.

The combination of group defence and disease has rarely beenconsidered, either

theoretically (Venturino, 2011a, being an exception) or empirically. However, diseases

have the capacity to weaken not only the infected individuals, but also the group de-

fences. This weakening can be simply because the disease reduces the size of the group

via disease-induced mortality. However, a weaker group defence could also be the re-

sult of infected individuals not being as good at contributing to the group defence.

For example, Seppälä et al (2008) show that rainbow trout infected with eye flukes

have different shoaling behaviour to those without eye flukes; and although infected

and susceptible fish were not mixed, one would expect that infected fish would not
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co-ordinate well with susceptibles of the shoal, potentially breaking down the whole

group defence. In short, there is much prospect for diseasesto undermine group de-

fence effort by prey.

Diseases and predators are competing for the same prey hosts. In many models,

both the disease and predator can coexist at equilibrium. However, such coexistence

between predator and disease is the result of infected prey being more vulnerable to

predation than susceptible prey. In particular, equilibrial coexistence can not occur

in models where predators do not discriminate between susceptible and infected prey

with respect to the predators’ functional response (Siekmann et al, 2010; Hilker and

Malchow, 2006). This is because discriminate predation is reminiscent of intraguild

predation (with susceptible prey as resource, infected prey as intraguild predator and

the predator as top predator), whereas indiscriminate predation can be rescaled to ex-

ploitative competition (see Sieber and Hilker, 2011), where predator and prevalence

(the proportion of infected prey in the prey population) do not interact directly but

both prey on the same prey host.

In ecology, it has long been established (Gause, 1934) that two species competing

for a common resource can not coexist at equilibrium (calledthe ‘principle of compet-

itive exclusion’; Hardin, 1960). In short, exploitative competition means extinction of

one or more predators. There are factors that undermine thisprinciple; for example, it

does not hold if there is any direct interaction between two predators like competition.

In particular, coexistence can occur if one of the predatorspreys on the other predator,

i.e. we have intraguild predation. Another counterexampleis that coexistence can oc-

cur if all populations are oscillating, e.g. due to a Hollingtype II functional response

(McGehee and Armstrong, 1977). Likewise, Chesson (2000) demonstrates that co-

existence can occur if there is some spatial heterogeneity.Another, often overlooked

counterexample is that one or more of the predators are restricted by some sort of

density dependence (Gurney and Nisbet, 1998, pp.166–167).In this case, coexistence

can occur if the density dependent predator can survive at prey levels set by the other

predator.

In this chapter, we find that a disease and predator can coexist on the same prey

host, contradicting the principle of competitive exclusion. On top of that, if we as-

sume that the prey exhibit some group defence, we find that thedisease can benefit

the predator by reducing prey densities to more manageable levels for the predator.

In particular, we find two cases where an endemic disease can prevent the predator

becoming extinct; one case is where the disease reduces the prey density below a crit-

ical threshold; the other is that the disease reverses a homoclinic bifurcation, bringing
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coexistent oscillations from what was the certain extinction of the predator.

4.2 Model derivation

In this section, we will construct two models with predators, susceptible prey and

infected prey where the prey exhibit group defence. But before we proceed, we need

to carefully derive appropriate functional responses.

4.2.1 The functional response

When modelling group defence for the prey, Holling type IV functional responses of

the form equivalent to aN
1+bN+cN2 (or the simplification aN

1+cN2 ) are often used (Freed-

man and Wolkowicz, 1986; Ruan and Xiao, 2001; Kot, 2001, chap.9). Usually, they

are used without any mechanistic derivation or justification. Such Holling type IV

functional responses can be derived from a Holling type II functional response, aN
1+ahN,

wherea is the attack rate,h is the handling time andN is the prey density. One way

of deriving a Holling type IV is by assuming that the attack rate a decreases with re-

spect toN inverse-quadratically, i.e.a(N) = a0
1+bN2 (Koen-Alonso, 2007). Another

derivation assumes that the handling time is linearly increasing with respect toN, i.e.

h(N) = h0+hNN. (There have been a few other attempts to derive a Holling Type IV,

for example, Collings (1997) derives it by assuming both a linearly increasing handling

time and an inverse-linear attack rate, which is not a simpleargument.) The second

derivation based on linear handling times will be used here,largely because it is a sim-

pler argument. The handling time formulation is apt if we assume that time taken to

attack and catch a prey increases linearly with respect to prey density. This increased

handling time can be considered due to group defence and the additional time it takes

to separate and subdue prey at higher prey densities. The time to eat and digest prey is

still independent of prey density.

This single-prey Holling type IV functional response does not take into account

that the prey is structured because of an infectious disease. We need to derive a two-

prey Holling type IV functional response where the two classes of prey are susceptible,

S, and infected,I . This can be done by considering the following two-prey Holling type

II functional response for susceptible prey, derived usinga standard time-management

argument (Holling, 1959; Murdoch, 1972):

fS(S, I) =
aSS

1+aShSS+aIhI I
.
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Here,aS andaI are the attack rates on the susceptibles and infecteds, respectively.

Likewise,hS andhI are the handling times on the susceptibles and infecteds, respec-

tively. The infected prey have an equivalentfI (S, I), which has the numeratoraI I .

Now we can assume, as with the one-prey case, that the handling times are density

dependent. Thus, we havehS(S, I) = hS0+hSSS+hSII andhI (S, I) = hI0+hISS+hII I ,

wherehS0 andhI0 are the density independent handling times of the susceptible and

infected prey, respectively;hSSandhIS are the density dependent (with respect to sus-

ceptible prey) handling times of susceptible and infected prey, respectively; whereas

hSI andhII are the density dependent (with respect to infected prey) handling times

of susceptible and infected prey, respectively. These formulations take into account

that although infected and susceptible prey are seen as different classes of prey, they

contribute to the same group defence. In general, all these parameters can be differ-

ent. For example, imagine a diseased fish that can not follow the rest of the school,

potentially leading to ineffective school movement and compromised group defence,

or a diseased meerkat that is not as capable at spotting threats when acting as sen-

try for the clan, leaving the clan at greater risk. Both of these examples suggest that

hSS6= hSI. Likewise, infected prey can be easier to catch, subdue and eaten by predator

once spotted, suggesting thathSS 6= hIS andhSI 6= hII .

By incorporating these density dependent handling times, weget the following

two-prey Holling type IV functional response for the susceptible prey:

fS(S, I) =
aSS

1+aShS0S+aIhI0I +aShSSS2+(aShSI+aIhIS)SI+aIhII I2 .

Likewise, the functional response for the infected prey is:

fI (S, I) =
aI I

1+aShS0S+aIhI0I +aShSSS2+(aShSI+aIhIS)SI+aIhII I2 .

If susceptible and infected prey do not contribute to the same group defence, but

instead contribute to their own group defence, then we wouldhave thathSI = 0 and

hIS = 0. In this case, we would have a functional response comparable to that of two

distinct species under a common predator, both with their own group defence.

4.2.2 Other model assumptions

We consider an SI disease in the prey where disease transmission is either frequency

dependent (β (S, I) = βSI
S+I ) or density dependent (β (S, I) = βSI), whereβ is the trans-

missibility coefficient. All prey are born susceptible, i.e. there is no vertical trans-
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mission. We assume (for now at least) that infecteds have different fertility, increased

density independent mortality and different strengths of competition when compared

to susceptible prey. Additionally, predators grow linearly with respect to the predation

and die at a constant per capita rate.

dS
dt

= bSS+bI I −mS−cSSS
2−cSISI− fS(S, I)P−β (S, I), (4.1)

dI
dt

= β (S, I)− (m+µ)I −cISIS−cII I
2− fI (S, I)P, (4.2)

dP
dt

= (γSfS(S, I)+ γI fI (S, I)−d)P. (4.3)

Here,bS andbI are the per capita birth rates andγS andγI are conversion efficiencies

from consuming susceptible and infected prey, respectively. cSSandcSI represent den-

sity dependent mortalities that susceptibles experience when encountering other sus-

ceptible and infected prey, respectively. Likewise,cIS andcII represent density depen-

dent mortalities that infected prey experience when encountering other susceptible and

infected prey, respectively. Together,cSS, cSI, cIS andcII represent intra/interspecific

competition.m is the natural per capita (density independent) death rate of the prey,

µ is the disease-induced per capita death rate of the prey andd is the per capita death

rate of the predator andµ is the disease-induced per capita death rate.

4.2.3 Simplified model

The full model (4.1)–(4.3) is rather complex, with twenty parameters in a three di-

mensional system. To mitigate this, we simplify the model asmuch as possible as a

starting point. We can always, in the future, consider more complicated versions once

the simpler model is fully understood.

The simplifying assumptions are as follows:bS = bI (:= b), cSS= cSI = cIS =

cII (:= c), γS= γI (:= γ), aS= aI (:= a), hS0 = hI0(:= h0) andhSS= hSI = hIS= hII (:=

hN). These assumptions essentially can be summarised by sayingthat infected and

susceptible prey only differ by additional mortality for infected prey (µ > 0); that

susceptible and infected prey have the same birth rates, areequally good competitors

and have equal attack rates, handling times and conversion.By implementing these

assumptions, we can not only gather terms but also collapse the functional responses
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to a single-prey form:

dS
dt

= b(S+ I)−mS−cS(S+ I)− aSP
1+ah0(S+ I)+ahN(S+ I)2 −β (S, I), (4.4)

dI
dt

= β (S, I)− (m+µ)I −cI(S+ I)− aIP
1+ah0(S+ I)+ahN(S+ I)2 , (4.5)

dP
dt

= P

(

γa(S+ I)
1+ah0(S+ I)+ahN(S+ I)2 −d

)

. (4.6)

Working with total preyN=S+ I instead of susceptible prey and prevalencei = I
N ,

i.e. the proportion of infected prey in the prey population,instead of infected prey:

dN
dt

= (b−m)N−µ iN −cN2− aNP
1+ah0N+ahNN2 , (4.7)

di
dt

= i

((

β (N, i)
Ni(1− i)

−µ
)

(1− i)−b

)

, (4.8)

dP
dt

= P

(

γaN
1+ah0N+ahNN2 −d

)

. (4.9)

For frequency dependent transmission,β (N, i) = βNi(1− i), whereas for density

dependent transmission,β (N, i) = βN2i(1− i).

To reduce the number of parameters further, we non-dimensionalise the system.

Let us rescale time such that the predator’s death rate becomes one (t = 1
dT). Predator

density is rescaled such that the numerator of the functional response becomes one

(P= d
ay). Prey density is rescaled such that the numerator of the predator’s numerical

response is scaled to one (N = d
γax). Then, for frequency dependent transmission,

equations (4.7)–(4.9) become:

dx
dT

= (b′−m′)x−µ ′ix−c′x2− xy
1+H0x+Hxx2 , (4.10)

di
dT

= i((β ′−µ ′)(1− i)−b′), (4.11)

dy
dT

= y(
x

1+H0x+Hxx2 −1). (4.12)

The new parameters are the scaled prey birth (b′ = b
d) and death (m′ = m

d ) rates,

scaled disease-induced death rate (µ ′ = µ
d ), scaled density dependent mortality (c′ =

c
γa), scaled transmissibility (β ′ = β

d ) and the scaled density independent (H0 = h0d
γ )

and density dependent (Hx =
hNd2

aγ2 ) handling time.

For density dependent transmission, the only difference from equations (4.10)–
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(4.12) is that the prevalence equation (4.11) becomes:

di
dt

= i((β ′x−µ ′)(1− i)−b′), (4.13)

whereβ ′ = β
γa.

For simplicity of notation, we will drop the dashes. From nowon, we will only

work with the non-dimensionalised parameters, so there should be no confusion of

notation.

These models are comparable with existing models; in particular, settingm= 0

and Hx = 0, we obtain the diseased-prey model in Chapter 2, i.e. Bate andHilker

(2013b). Also, with this scaling, we have reduced the model from an intraguild pre-

dation model to something resembling exploitative competition, as there is no direct

interaction between predators and disease prevalence (cf Sieber and Hilker, 2011). In

fact, for density dependent transmission, the model is exploitative competition.

Now, for the frequency dependent model, by defining functions f (x) = x
h(x) (func-

tional response),g(x) = b−m−cx (per capita growth rate of prey in absence of preda-

tors and disease),h(x) = 1+H0x+Hxx2 (the denominator of the functional response,

or in other words, the total time predators spend searching and handling prey relative

to search time) andp(i) = (β −µ)(1− i)−b (per capita growth in prevalence), we get:

dx
dT

= f (x)[(g(x)−µ i)h(x)−y], (4.14)

di
dT

= i p(i), (4.15)

dy
dT

= y( f (x)−1). (4.16)

For the density dependent model,p(i) becomes:

p(x, i) = (βx−µ)(1− i)−b. (4.17)

With such functions, we can use analysis similar to that in Kot (2001, chap. 9)

to establish the existence and stability of steady states with relatively clear notation.

In the rest of the chapter, we will always assume the prey can grow in the absence of

predator and disease, i.e.g(0)> 0 (equivalently,b> m).
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4.3 Disease-free predator–prey dynamics

Ignoring the disease, the predator–prey model is equivalent to the model in Freedman

and Wolkowicz (1986) and Kot (2001, chap. 9). Since these areexisting results, we

will summarise and classify them into various scenarios here. However, for complete-

ness, some of the steady state and nullcline analysis is explained in Appendices 4.A

and 4.B.

There are three different main scenarios that can be derivedfrom the steady states:

• Scenario 1: There is no coexistent steady state. The prey-only steady state is

stable. This can be split into (1A) no real solutions or (1B) only negative solu-

tions for the coexistent steady states. A phase plane of Scenario 1B (top left of

Figure 4-1) has two vertical predator nullclines that do notintercept the humped

prey nullcline in the positive quadrant.

• Scenario 2: One coexistent steady state exists. It is either(2A) stable or (2B)

unstable and is the centre of some stable limit cycle. This depends on the slope

of the prey nullcline, which is given by the sign of∂y
∂x(x

∗) := y′(x). Phase planes

of Scenarios 2A and 2B show that one of the predator nullclines intercepts the

humped prey nullcline in the positive quadrant, resulting in one predator–prey

equilibrium and an unstable prey-only steady state. If the interception occurs

while the prey nullcline is negatively sloped (i.e. to the right of the maximum

in the prey nullcline), the predator–prey equilibrium is stable (Scenario 2A (top

middle of Figure 4-1)); whereas, if the interception occurswhile the prey null-

cline is positively sloped (i.e. to the left of the maximum inthe prey nullcline),

the predator–prey equilibrium is unstable and there is a stable predator–prey

limit cycle (Scenario 2B (top right of Figure 4-1)).

• Scenario 3: Two coexistent steady states exist. The coexistent steady state with

the lower prey density is either (3A) stable or (3B) unstable and is the centre of

some limit cycle. Again, this depends on the slope of the preynullcline, which

is given by the sign ofy′(x). The stable steady state/limit cycle is bistable with

the prey-only steady state, where the higher prey density coexistent steady state

forms part of a separatrix. In the phase planes of Scenarios 3A and 3B (Fig-

ure 4-1 bottom left and middle, respectively), both predator nullclines intercept

the humped prey nullcline, resulting in two predator–prey steady states. The

prey-only steady state is stable and the ‘right’ coexistentsteady state (i.e. the

coexistent steady state with the larger prey density) is always unstable (saddle
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point). The difference between Scenarios 3A and 3B is the same as the difference

between Scenarios 2A and 2B; the stability of the ‘left’ coexistent steady state

(i.e. the coexistent steady state with the smaller prey density) and the existence

of a limit cycle depend on where the interception is relativeto the maximum of

the prey nullcline.

Scenarios 1 and 2 can be said to be the cases where group defence is weak since

these scenarios are also possible for a Holling type II functional response (i.e. the

Rosenzweig–MacArthur model). In Scenario 3, group defence is strong enough to

dominate dynamics for larger prey densities. This is expressed by the stability of the

prey-only equilibrium and the bistability, which is not possible in the Rosenzweig–

MacArthur model. Note that the dynamics associated with Holling Type II functional

responses are still dominant for smaller prey densities.

This list does not give all the information; there is also a global bifurcation. Freed-

man and Wolkowicz (1986) and Kot (2001, chap. 9) demonstratethat the limit cycle

in Scenario 3B can collide with the saddle point to form a homoclinic orbit. Beyond

this homoclinic bifurcation, the limit cycle disappears and the prey-only steady state is

the only stable steady state, like Scenario 1. Consequently,we have another scenario:

• Scenario 4: Two coexistent steady states exist, neither arestable. No limit cycle

exists due to a homoclinic bifurcation. Only the prey-only steady state is stable.

In the phase plane of Scenarios 4 (Figure 4-1 bottom right), both predator null-

clines intercept the humped prey nullcline, resulting in two predator–prey steady

states.

Scenario 4 means that there is no stable coexistence. There may be, however, coex-

istent oscillatory transients dynamics near the homoclinic bifurcation for some initial

conditions, meaning that the eventual extinction of the predator would not be apparent

in short to medium time scales. Figure 4-2 demonstrates thishomoclinic bifurcation

with a phase plane ‘before’ (left) and ‘after’ (right) the homoclinic bifurcation. In

the left panel, we are in Scenario 3B, with the stable coexistent limit cycle and sad-

dle point are very close. The right panel is in Scenario 4, where the limit cycle has

disappeared after colliding with the saddle point, leavingthe prey-only steady state

as the only stable attractor, despite there being two coexistent steady states. Scenario

4 essentially means that the usual predator–prey oscillations from the Rosenzweig–

MacArthur model can not be fully contained in the region where prey densities are

small enough for group defence to be weak, and instead encroaches into regions where

group defence dominates.
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4.4 Results: Frequency dependent transmission

In the previous section, we set the scene by describing the predator–prey model in the

absence of infection. Now we can incorporate a disease in theprey population. In

this section, we will analyse the frequency dependent model(4.14–4.16), and we will

then tackle the more complicated case of density dependent transmission in the next

section.

4.4.1 Coexistence between disease and predator

Observing that the prevalence equation (4.15) is completely independent from both

the predator and prey (sincep(i) = (β −µ)(1− i)−b), we can separate the prevalence

equation. From the prevalence equation, we have that the disease-free state (i∗ = 0) is

stable ifp(0)= β −µ−b< 0. Otherwise, ifp(0)> 0, the disease-free state is unstable,

the disease will be endemic and disease prevalence will approachi∗ = 1− b
β−µ .

For the remainder of this section, we will assume that the prevalence is at the

equilibrium i∗ = 1− b
β−µ . Armed with this quasi-stationary assumption, we can treat

prevalence as a constant, reducing the frequency dependentmodel (4.14–4.16) to the

following 2D model:

dx
dT

= f (x)[(g(x)−µ i∗)h(x)−y], (4.18)

dy
dT

= y( f (x)−1). (4.19)

This model is the same as the disease-free predator–prey model, except that there is an

additional disease-induced mortality in the prey. This additional term only alters the

‘humped’ non-trivial prey nullcline defined byy(x) = (g(x)−µ i∗)h(x).

Figure 4-3 demonstrates how this nullcline is changed. Increasing prevalence alters

two key points of the humped nullcline; (i) the intercept with the horizontal-axis (the

prey-only steady state) is moved left, i.e. prevalence reduces the prey-only steady

state, and (ii) the maximum of the nullcliney(x) is moved left, i.e. occurs at lower

prey densities.

4.4.2 Loss of stability of the prey–only steady state

As prevalence increases, prey density at the prey-only steady state is reduced. This re-

duction in prey carrying capacity by the disease can become beneficial for the predator
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as it can shift the predator–prey system from Scenario 3 to Scenario 2, like in Figure 4-

3. This shift is important since Scenario 3 means bistability involving a prey-only

steady state, whereas Scenario 2 means the predator will always survive. In this case,

the disease can help the predator survive under conditions where it can not survive

without the disease due to unmanageable prey densities. Thepresence of the disease

does reduce predator density at the stable coexistent equilibrium, though, but the loss

of extinction risk at high prey densities is significant (i.e. the disease can render group

defence ineffective).

4.4.3 Stabilisation of limit cycles

The shift of the maximum of the nullcliney(x) to the left reduces or eliminates limit

cycles (Figure 4-3). In the disease-free predator–prey system, limit cycles only occur

if the maximum of the nullcliney(x) is to the right (i.e. at a higher prey density) of

the coexistent steady state with the lower prey density. By shifting this maximum

beyond the lower steady state, the limit cycle is eliminatedand a stable steady state

is formed. Thus, we have that Scenario 2B/3B becomes Scenario2A/3A. This means

that increasing prevalence should take Scenario 3B to Scenario 2A via either Scenario

3A or via Scenario 2B.

4.4.4 Disease reversing global bifurcation

As we previously stated, there are significant parameter regions in the predator–prey

model where the prey-only steady state is the only attractordespite the existence of

two coexistent steady states (Scenario 4). In these regions, the predator can not sur-

vive in the long run, independent of the initial condition. However, the presence of

a disease infecting the prey can reverse this homoclinic bifurcation and give rise to

a stable predator–prey–disease limit cycle. This means that the disease can facilitate

coexistence where it was impossible without the disease.

4.4.5 Overall pattern

Figure 4-4 demonstrates this reversal of a homoclinic bifurcation. In the absence of

the disease (i∗ = 0), the predator can not survive, despite there being two predator–

prey steady states. As the prevalence increases, the prey-only steady state decreases.

If disease-induced mortality is sufficiently high, the disease can bring the prey steady

state close to the predator–prey saddle point. At the same time, increased prevalence
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will reduce the slope of the prey nullcline and shift the maximum to the left. Together,

with sufficiently large prevalence, a stable limit cycle will appear as the homoclinic

bifurcation is reversed. We have suddenly moved from Scenario 4 to 3B. In this re-

gion, the predator can survive with the right initial condition. However, if we increase

prevalence further, the prey-only steady state will lose stability as it collides with the

predator–prey saddle point in a transcritical bifurcation(like in Figure 4-3). After this

transcritical bifurcation, we will move to Scenario 2B where the predator will survive

no matter what the initial condition. The next transition occurs when the predator–prey

limit cycle is stabilised by a Hopf bifurcation (like in Figure 4-3), leading to Scenario

2A. Increasing prevalence further (i∗ > 0.6), the predator–prey steady state will col-

lide with the prey-only steady state in a transcritical bifurcation, resulting in the loss

of the predator–prey steady state and a stable prey-only steady state (Scenario 1). And

finally, if prevalence (and disease-induced mortality,µ) is sufficiently high (i∗ > 0.75),

the disease can wipe out the prey population (i.e. ifb< m+µ). This host extinction is

a trademark of frequency dependent diseases and can not happen in density dependent

diseases (see next section).

4.4.6 Summary

For a frequency dependent disease, the prevalence equationis independent of prey or

predator densities. Consequently, the prevalence can be assumed to be fixed. With

this in mind, we find that the disease can coexist with the predator (Scenarios 2 and

3). On top of this, the disease can help the predator by (a) keeping prey densities be-

low densities where prey group defence is strong; (b) stabilising predator–prey cycles

(preventing large booms and busts of predator and prey populations) and (c) reversing

the homoclinic bifurcation, thus preventing the eventual extinction of the predator. In

particular, Figure 4-4 demonstrates that with increasing prevalence, we can go from

a prey-only steady state (Scenario 4) to bistability between the prey-only steady state

and a predator–prey limit cycle (Scenario 3B) to a predator-prey limit cycle (Scenario

2B) to a predator–prey steady state (Scenario 2A) to prey-only steady state (Scenario

1) to diseased-induced extinction of the prey (and predator, of course).

4.5 Results: Density dependent transmission

Unlike in the frequency dependent model, we can not separatethe disease from the

predator–prey dynamics in the density dependent model (4.14), (4.16) and (4.17). This

83



Chapter 4. Disease in group-defending prey can benefit predators

means that 2D phase plane analysis used in the disease-free and frequency dependent

models can not give the whole story. In particular, it does not provide much insight

into the existence of more complex dynamics like chaos and quasi-periodic dynamics.

However, such phase plane analysis is still very enlightening as a similar pattern of

progressing from Scenario 4 to Scenario 1 occurs.

Firstly, both oscillatory and equilibrial coexistence between predator and disease

prevalence also occur in the density dependent model. This coexistence is more inter-

esting and complex than in the frequency dependent model as the predator–prevalence–

prey equations are in the form of exploitative competition;thus this coexistence con-

tradicts the principle of competitive exclusion.

The coexistence is facilitated by the mixture of density dependent terms (i.e. the

‘1− i’ terms) and density independent terms (in this case, ‘b’) in the per-capita growth

rate for prevalencep(x, i). This means that the prevalence nullsurface (the points of

(x,y, i) such thatp(x, i) = 0) is not fixed to a particular value of prey density but instead

exists for a range of prey densities. Since the predator nullplanes have fixed prey densi-

ties, if one or more of these prey densities lie within the range of prey densities for the

prevalence nullsurface, coexistence will occur (subject to positive predator densities

and prevalence).

Secondly, the same scenarios and transitions occur in the density dependent model

as in the frequency dependent model. For example, Figure 4-5demonstrates that in-

creasing transmissibility (as a proxy for prevalence and thus Figure 4-5 is equivalent

to Figure 4-4) goes through the same transitions, from Scenario 4 to Scenario 3B to

Scenario 2B to Scenario 2A, as Figure 4-4 (except for Scenario 1, which occurs for

levels of transmissibility well beyond the range of Figure 4-5, and disease-induced

extinction, which can not happen in the density dependent model).

One novelty is that prevalence does not always increase withtransmissibility (Fig-

ure 4-5(b)). In particular, the loss of stability for the disease–prey steady state at the

transition between Scenarios 3B and 2B results in massive reduction of prevalence (al-

though the predator–prey–disease limit cycle will have short periods where prevalence

is higher than the disease–prey steady state).

Lastly, complex dynamics can occur. In the 2D predator–preyand frequency de-

pendent models, the possible stable dynamics are limit cycles and equilibria only. In

3D systems like the density dependent model, many more phenomena can be found

within regions of Scenarios 2B and 3B. An example of such complex dynamics is

Figure 4-6.

In Figure 4-6, there are several complex dynamics. After thereversal of the ho-
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moclinic orbit (at approximatelyβ = 0.6), the species coexist on a ‘2-cycle’ (note

that both predators and prey exhibit two local maxima and minima each, whereas the

prevalence, not shown here, exhibits only one local maximumand minimum each).

At approximatelyβ = 1, one branch of the attractor suddenly disappears as one of

the maxima collides with one of the minima. Note that this branch emerges again in

form of a chaotic attractor, as the remaining branch has undergone a cascade of period

doubling bifurcations. At aroundβ = 1.8, the system stabilises via a period halving

cascade. But for parameter values in between, the bifurcation diagram displays a num-

ber of different attractor crises, in which branches of the attractor merge and split, or

significantly change in size out of the blue. This suite of attractor crises is indicative

of global bifurcations and in some way a more complex analogue of the homoclinic

bifurcation known from the disease-free 2D predator-prey model. The non-local phe-

nomena characteristic of the Holling-type IV predator–prey model therefore persist, in

increased variety, also in the 3D model with disease. Hence,group defence tends to

induce sudden catastrophic changes in the qualitative dynamics.

4.6 Discussion

In this chapter, we consider how an infectious disease in theprey affects the predator–

prey relationship where the prey exhibits some kind of groupdefence against the preda-

tor. We find that the disease can reduce prey densities to levels where the group de-

fence is not as strong. This allows predators to survive in scenarios where they could

not without the disease.

In the absence of the disease, there are three scenarios where the predator can not

survive; prey-only steady with no other unstable steady states (Scenario 1), bistability

between prey-only steady state and predator-prey steady state/oscillations (Scenario

3, survival depends on the starting point) and a prey-only steady state with two un-

stable predator–prey steady states (Scenario 4). The disease can help the predator

survive in the latter two cases. Firstly, the disease can reduce the prey carrying capac-

ity to densities more manageable for the predator, moving from bistability between a

prey-only steady state and a predator–prey steady state/limit cycle to where only the

predator–prey steady state/limit cycle is stable. On top ofthis, the disease can reverse

a homoclinic bifurcation, going from just a prey-only steady state to bistability be-

tween the prey-only steady state and the predator–prey limit cycle. This is due to the

disease dampening the predator–prey oscillations, keeping prey densities too small for

group defence to dominate. Combining these two phenomena together, we do have
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cases that, with the disease, only the predator–prey steadystate/limit cycles are stable,

whereas in the absence of the disease, only the prey-only steady state exists. In this

case, the disease is helping the predator survive for all initial conditions where it could

not survive in the diseases absence.

Typically, both the predator and disease are in competitionfor prey hosts. In sev-

eral models, this competition leads to only one of the predator or disease persisting,

i.e. the predator/disease manages to keep prey/host density low enough that the dis-

ease/predator population will eventually die out (for example, Hilker and Malchow,

2006; Siekmann et al, 2010, although coexistence can occur if all populations oscil-

late). Here, in both the density dependent and frequency dependent model, there is

a stable predator–prey–disease equilibrium. This was alsotrue in the diseased prey

models in Chapter 2, i.e. Bate and Hilker (2013b), and several extension models in

Table 6 of Anderson and May (1986), although this was not elaborated in either paper.

This is novel in itself, especially for the density dependent model, since the principle of

competitive exclusion states that two consumers can not share a resource. Previously,

counterexamples are the result of temporal heterogeneity (Armstrong and McGehee,

1980, for example, via predator–predator–prey oscillations) or spatial heterogeneity

(Chesson, 2000). Here, we have steady state coexistence, which is largely indepen-

dent of the choice of functional response (for example, using linear and Holling type

II functional responses would also have steady state coexistence). In particular, it is

independent of group defence; however, with group defence,we find that the disease

not only coexists with predators, it can help predators survive where they could not

without the disease.

The counterexample of the principle of competitive exclusion found in the den-

sity dependent model occurs because there is a mix of densitydependent and den-

sity independent terms in the prevalence equation (4.17). Gurney and Nisbet (1998,

pp.166–167) found that adding a density dependent mortality (a quadratic term) to one

of the predators allowed both predators to coexist at equilibrium. This can be gen-

eralised to other forms of density dependence like predatorinterference (by using a

Beddington–DeAngelis functional response) in one or both predators. The reason that

density dependence defies competitive exclusion is that it gives the predator a range

of prey densities under which it can be at equilibrium, and ifthe other consumer can

also survive at steady state in this range, coexistence can occur. Without density depen-

dence, the range is a point which means coexistence generally can not occur. The same

density dependence argument occurs in the density dependent model, in the prevalence

equation (4.17), since the mixture of density dependent ((βx−µ)(1− i)) and density
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independent (b) terms means that prevalence can be static for a range ofx.

There are several key assumptions in this model that lead to coexistence of both the

disease and predator. For example, if infected prey are completely sterile, then theb

term in prevalence equation (4.17) becomesb(1− i). With this, the prevalence equation

can only be static fori∗ = 0,1 unless prey density isx∗ = µ+b
β , which is generally not

true. Sincei∗= 1 means all prey are infected and sterile (leading to the extinction of the

prey and predator), equilibrial coexistence between predator and disease can not occur

in general. Likewise, the lack of vertical transmission also allows for coexistence (for

example, in Hilker and Malchow, 2006; Siekmann et al, 2010, there is perfect vertical

transmission, an assumption that leads to the lack of equilibrial coexistence).

For the frequency dependent model, coexistence of predatorand disease is not as

profound as is the case in the density dependent model. The prevalence equation 4.15

shows that the prevalence–prey equations follow amensalism (disease prevalence has

a negative effect on prey growth but disease prevalence doesnot gain from higher prey

densities) and not exploitation. Consequently, the principle of competitive exclusion

does not apply for frequency dependent transmission.

Venturino (2011a) tackled group defence from a different perspective, leading to

significantly different result. Instead of a non-monotonicfunctional response like the

Holling Type IV used in this chapter, he uses square root functional response. This

choice of functional response is based on the idea that predators can only take prey

on the outskirt of the herd and thus the functional response should be proportional to

the perimeter of the herd. However, Venturino (2011a) assumes this only applies to

susceptible prey since infected prey are assumed to leave the herd and thus experience

a linear functional response. The resulting dynamics are less complicated in their

model, only equilibria and limit cycles seem to occur with nobistability. Coexistence

between predator and prey can occur as well as cases where thedisease helps the

predator survive. In this chapter, bistability occurs in Scenario 3 and more complex

dynamics can occur in the density dependent model.

Previous eco-epidemiological models have demonstrated equilibrial coexistence

between predator and disease for the prey host invariably, but those models can not be

simplified to a exploitative competition model. Instead, they can only be simplified to

an intraguild predation or food chain model (in particular Venturino, 2011a). As such,

coexistence between predator and disease is expected. There is one model that looks

like exploitative competition and has coexistence (Das et al, 2009), but this coexistence

occurs because the predator grows logistically in the absence of prey, so implicitly the

predator has another resource.

87



Chapter 4. Disease in group-defending prey can benefit predators

For brevity, we have not looked into the case where the prey nullcline has both

a maximum and a minimum (see Appendix 4.B). In this case, steady states with low

prey density are stable, likewise for high prey density (i.e. Scenarios 2A and 3A),

but for moderate densities, the steady state is unstable (i.e. Scenarios 2B, 3B and

4). Given this nullcline will probably flatten, move to the left and eventually lose both

extrema as we increase prevalence/virulence, it seems plausible that there may be some

prevalence region where we are in Scenario 4 whereas withoutthe disease we would

be in Scenario 3A or 3B. However, further increases in prevalence/virulence would

reverse this and go through the usual pattern from Scenario 4to Scenario 3 to Scenario

2 and so forth.

In this chapter, we derive a general ‘two species’ Holling type IV functional re-

sponse incorporating a handling time that is linear with respect to prey density to a

Holling type II functional response. This formulation, although straightforward, seems

novel as multispecies Holling type IV functional responsesare rarely considered and

single species Holling type IV functional responses are usually stated and not derived

and explained. In particular, assuming that handling time is a linear function of prey

density seems to be the simplest assumption in deriving a single species Holling type

IV functional response.

For simplicity, we assumed that the infected prey and susceptible prey are equiva-

lent. Although the full model is cumbersome, future investigations could relax some

of these simplifying assumption. For example, we could assume that infected prey

may contribute less to the group defence. The authors suspect that if a disease does

weaken group defence by more than just reducing host density, the disease could even

further benefit the predator by increasing predator densityand not just by eliminating

extinction risk. In particular, if the disease is trophically transmitted (we have direct

transmission in this chapter), it may be beneficial for the disease if the infected prey

break down group defence to aid transmission to predators. This should depend on rel-

ative importance for the disease of the effect on prey to predator transmission as well

as the greater predator numbers and lower prey numbers caused by the breakdown of

group defence. However, by doing so, the resulting eco-epidemiological system would

almost certainly result in more complicated intraguild predation.

To conclude, we find that predator and disease can coexist at steady state, contra-

dicting the principle of competition. On top of this, in somecases where group defence

in the prey is prominent, coexistence between prey and predator can often benefit from

the presence of the disease, either by reversing a homoclinic bifurcation or by reducing

the prey density below a group defence threshold.
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4.A Steady state analysis

4.A.1 Disease-free model

From steady state analysis, we have the following conditions for each Scenario (as-

sumingb> m):

• Scenario 1: There is no coexistent steady state. Prey-only steady state is stable.

(1A)H0 > 1 or (H0−1)2−4Hx < 0 (no real solutions), (1B)H0 < 1, (H0−1)2−
4Hx > 0, b−m

c <
(1−H0)±

√
(H0−1)2−4Hx

2Hx
(two negative solutions).

• Scenario 2: One coexistent steady state exists. It is either(2A) stable or (2B)

the centre of some stable limit cycle (depending on the sign of y′(x∗))

(

H0 < 1,

(H0−1)2−4Hx> 0,
(1−H0)−

√
(H0−1)2−4Hx

2Hx
< b−m

c <
(1−H0)+

√
(H0−1)2−4Hx

2Hx

)

(one

positive and one negative solution)

• Scenario 3: Two coexistent steady state exists. The coexistent steady state with

the lower prey density is either (3A) stable or (3B) the centreof some limit cy-

cle (depending on the sign ofy′(x∗)). This is bistable with the prey-only steady

state, where the higher prey density coexistent steady state acting as a separatrix.
(

H0 < 1, (H0−1)2−4Hx > 0,
(1−H0)±

√
(H0−1)2−4Hx

2Hx
< b−m

c

)

(two positive so-

lutions)

4.A.2 Frequency dependent model

The conditions are the same for the frequency dependent model as for the disease-free

model except you must substitutemwith m+µ i∗, wherei∗ = max
(

0,1− b
β−µ

)

. Note

that if b<m+µ i∗, then the disease will cause the extinction of both predatorand prey.

4.A.3 Density dependent model

There are the following steady states(x∗,y∗, i∗):
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• (0,0,0) always exists and is stable ifb< m

• (x∗,0,0), wherex∗ = b−m
c . This exists whenb> mand is stable whenf (x∗)< 1

(i.e. predators can not survive) andβx∗

µ+b < 1 (i.e. disease can not spread)

• (x∗,0, i∗) wherex∗, i∗ solvep(x∗, i∗) = 0 andg(x∗) = µ i∗. This exists whenx∗ >

0 andi∗ > 0
(

i.e. b> mand βx∗

µ+b > 1
)

. It is stable if f (x∗) < 1 (i.e. predators

can not survive)

• (x∗,y∗,0), wherex∗ solvesf (x∗)= 1

(

i.e. x∗ =
(1−H0)±

√
(H0−1)2−4Hx

2Hx

)

andy∗=

g(x∗)h(x∗). This exists ifx∗> 0 andg(x∗)> 0
(

i.e. H0 < 1, (H0−1)2−4Hx > 0

and x∗ < b−m
c

)

. This means there can be up to two such steady states . It is

stable if βx∗

µ+m < 1 (i.e. disease can not invade),f ′(x∗) > 0 andh(x∗)g′(x∗) +

h′(x∗)g(x∗) := y′(x∗) < 0. If f ′(x∗) < 0, then this steady state is a saddle point,

whereas iff ′(x∗) > 0 andy′(x∗) > 0, we have that the steady state in unstable

and is surrounded by a stable limit cycle. The sign off ′(x∗) depends on the rel-

ative values ofx∗ (when two steady states occur); the smallerx∗ has f ′(x∗)> 0,

whereas the largerx∗ has f ′(x∗)< 0.

• (x∗,y∗, i∗), wherex∗ solvesf (x∗)= 1

(

i.e. x∗ =
(1−H0)±

√
(H0−1)2−4Hx

2Hx

)

, i∗ solves

p(x∗, i∗) = 0 andy∗ = (g(x∗)−µ i∗)h(x∗). This exists ifx∗ > 0 (i.e. H0 < 1 and

(H0−1)2−4Hx > 0), i∗ > 0
(

i.e. βx∗

µ+m > 1
)

andy∗ > 0 (i.e. g(x∗)> µ i∗). This

means that there can be up to two steady states. By using qualitative stability

criteria on the Jacobian at these steady states, we have thatthe system is defi-

nitely stable whenf ′(x∗) > 0 and∂y∗

dx∗ (x
∗, i∗) < 0. Likewise, if f ′(x∗) < 0, then

the Jacobian has a positive determinant which means the steady state is unstable.

If ∂y∗

dx∗ (x
∗, i∗)> i(βx∗−µ)

f (x∗) , then the Jacobian has a positive trace which means the

steady state is unstable. Consequently, we only do not know the stability for

the regionf ′(x∗)> 0 and 0< ∂y∗

dx∗ (x
∗, i∗)< i(βx∗−µ)

f (x∗) , presumably there is a Hopf

bifurcation within this region (like the disease free case). Like the predator–prey

case, there can be up to two steady states.

This steady state analysis can be summarised into the same scenarios as before, but

some of the criteria have not been fully analysed. In particular, the Hopf bifurcation

separating Scenario 2A/3A and 2B/3B has not been found.
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4.B Phase plane analysis

To complement the steady state analysis, we can use phase plane analysis to derive and

demonstrate the different Scenarios (Figures 4-1 and 4-2).For simplicity, we will use

nullclines to refer to both the nullclines of the predator–prey system and nullplanes/

-surfaces of both the frequency and density dependent models.

There are up to three different predator nullclines. The predator-free nullcline (y=

0) always exists. The other two nullclines are the roots (if they exist) of the quadratic

equation derived fromf (x) = 1. These roots are always positive when they exist.

There are two different prey nullclines; one is the prey-free nullcline (x = 0), the

other nullcline is derived fromy= h(x)(g(x)−µ i). The latter nullcline is in fact cubic

with respect tox. Assuming thatb> m+µ i, then the intercept atx= 0 is positive, and

there is one intercept withy= 0 atg(x) = µ ′i. Given that the nullcline is cubic with

respect tox, there can be up to two local extrema. Thus the nullcline can have:

• no realistic (positive) extrema (y′(0)< 0 andy′(x) has no positive (or real) roots).

• two realistic (positive) extrema (y′(0) < 0 andy′(x) has two positive roots).

These extrema are one local minimum and one local maximum, the minimum

occurs at lower prey density than the maximum. The region between these two

extreme has a positive slopey′(x)> 0.

• only one positive local maximum (y′(0)> 0)

For simplicity, we will consider the third type of (disease-free) nullclines. The first

case will not have a limit cycle, asy′(x) < 0 for all x> 0. This means only Scenarios

1, 2A and 3A can occur. The second case is a little more complexthan the third case,

but the same arguments still apply. In fact, the only difference is that for small prey

densities (lower than the local minimum),y′(x)< 0 and thus steady states can be stable

here. In between the maximum and minimum, limit cycles are likely to occur. This

formulation does not add any new scenarios but may change theorder of scenario

changes when we increase prevalence. In particular, it seems plausible that the disease

may destabilise the predator–prey equilibrium if the disease moves the minimum to a

lower prey density than the lower predator nullcline (i.e. going from Scenario 2A to

Scenario 2B or from Scenario 3A to Scenario 3B or 4).

There are at most two disease nullclines, the disease-free nullcline i = 0 and the

endemic nullclinep(i,x)= 0. In the frequency dependent model, the endemic nullcline

is i = 1− b
β−µ .
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Figure 4-1: Sketched phase planes of different scenarios from the disease-free predator–prey
model with group defence. These scenarios are: a stable prey-only equilibrium with no co-
existent equilibrium (Scenario 1B, top left); one stable coexistent equilibrium(Scenario 2A,
top middle); one unstable coexistent equilibrium surrounded by a stable coexistent limit cycle
(Scenario 2B, top right); bistability between a coexistent equilibrium and prey only equilibrium
(Scenario 3A, bottom left); bistability between a coexistent limit cycle surrounding an unstable
coexistent equilibrium and a prey-only equilibrium (Scenario 3B, bottom middle); and finally
a stable prey-only equilibrium with two unstable equilibria and no limit cycle (Scenario 4,
bottom right). The dashed lines represent predator nullclines, the dotted lines represent prey
nullclines, the white circles represent unstable steady states, the black circles represent stable
steady states and the loop represents a stable limit cycle.
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Figure 4-2: Phase planes demonstrating the existence of a homoclinic bifurcation and the
resulting destruction of the stable limit cycle in the disease-free model. (a) is aphase plane with
bistability between a stable predator–prey limit cycle and a prey-only equilibrium (Scenario
3B), where the stable predator–prey limit cycle is close to the predator–prey saddle point (c=
0.218); whereas (b) is a phase plane with no stable limit cycle after a homoclinic bifurcation
(c= 0.216). Here, all trajectories eventually approach the prey-only steady state despite there
being two coexistent steady states (Scenario 4). The dashed lines represent nullclines. Other
parameters: H0 = 0.2, Hx = 0.1, b= 2, m= 0.5
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Figure 4-3: Impact of disease on group defence in the frequency dependent model: sketch of
the predator–prey phase plane with nullclines and equilibria where x is preydensity and y is
predator density. Left hand figure is without disease. Here, there is bistability between the prey-
only equilibrium and a predator–prey oscillation, where the predator can not survive ‘beyond’
the separatrix saddle–point (unstable) equilibrium (Scenario 3B). Including the disease has no
effect on the predator nullclines, but it ‘lowers’ the prey nullcline and moves the maximum to
the left and down (right hand figure). These changes stabilise the predator–prey oscillations
and result in the prey-only steady state losing stability. Consequently, with thedisease, we
have a stable predator–prey equilibrium (Scenario 2A). The lines and circles have the same
meaning as Figure 4-1.
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Figure 4-4: Frequency dependent model: Bifurcation diagrams of (a) prey densityand (b)
predator density, with respect to prevalence equilibrium i∗, showing the progression of Scenar-
ios as prevalence increases. As prevalence is assumed to be static, we can treat it as a control
parameter. In the absence of disease (i∗ = 0), only the prey-only steady state is stable but two
predator–prey steady states exist (Scenario 4). However, as we increase prevalence, we go from
Scenario 4 to Scenario 3B (bistability between predator–prey oscillations and prey-only steady
state) to Scenario 2B (only the predator–prey oscillations are stable) to Scenario 2A (only the
predator–prey steady state is stable) to Scenario 1 (only the prey-only steady state is stable) to
prey extinction. Thick black lines represent stable equilibria, thick grey lines represent stable
oscillations and thin black lines represent unstable equilibria. ‘TC’, ‘HC’ and ‘Hopf’ stand
for transcritical, homoclinic and Hopf bifurcation, respectively. Other parameters: H0 = 0.2,
Hx = 0.1, b= 2, m= 0.5, c= 0.2 µ = 2. Figures produced using MATLAB, using data from
continuation software XPPAUT.
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Figure 4-5: Density dependent model: Bifurcation diagrams of (a) prey density, (b)prevalence
and (c) predator density, with respect to transmissibilityβ . Together they show the progres-
sion from a stable prey-only (or prey–disease) steady state with two other predator–prey (or
predator–prey–disease steady states) (Scenario 4); to bistability between a coexistent limit cy-
cle and prey–disease equilibrium (Scenario 3B); to a coexistent limit cycle(Scenario 2B); to a
coexistent steady state (Scenario 2A). The stable limit cycle numerically breaks down at ‘HC’.
The labels and lines have the same meaning as Figure 4-4. The trivial (no prey) steady state
has been omitted. Parameter valuesµ = 1.5, c= 0.05, b= 2, m= 0.5, H0 = 0.2 and Hx = 0.1.
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Figure 4-6: Complex dynamics in the density dependent model: Bifurcation diagrams of(a)
(local) maximum predator density and (b) (local) minimum predator density, with respect to
transmissibility. Forβ . 0.6, we are in Scenario IV and the predator can not survive. At
β ≈ 0.6, a two-cycle (with respect to the predator) appears (i.e. there are two local maxima
and minima). At aroundβ = 1, one of the local maxima collides with a local minima, re-
sulting in the loss of both. Soon afterwards, a period doubling cascade occurs, resulting in
chaos. After this, the second branch of maxima and mimuma reappears,but this time as a
chaotic attractor. In the intervalβ ∈ (1,2), a series of attractor crises occur. Parameter val-
ues: µ = 1.5, c= 0.2, b= 2, m= 0.5, H0 = 0.2 and Hx = 0.1. Using the initial condition
(x,y, i) = (0.5,0.5,0.1), we find the numerical solution (by using MATLAB’s ‘ode45’ and the
log-transform of equations (4.14)–(4.16), subject to equation (4.17), toavoid numerical errors
around zero) for time up to T= 7000and then discard transients (all data up to T= 4000).
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Chapter 5

Preytaxis and travelling waves in an

eco-epidemiological model

Abstract

We investigate the effects preytaxis has on the wavespeed ofseveral different inva-

sion scenarios in an eco-epidemiological system. In general, preytaxis cannot slow

down predator or disease invasions and there are scenarios where preytaxis speeds up

predator or disease invasions. For example, in the absence of disease, positive prey-

taxis results in an increased wavespeed of predators invading prey, whereas negative

preytaxis has no effect on the wavespeed, but the wavefront is shallower. On top of

this, negative preytaxis can induce spatiotemporal oscillations and/or chaos behind the

invasion front, phenomena normally only seen when the steady state is unstable. In

the presence of disease, the predator wave can have a different response to attractive

susceptible and attractive infected prey. In particular, we found a case where attractive

infected prey increases the predators’ wavespeed by a disproportionately large amount

compared to attractive susceptible prey since a predator invasion has a larger impact on

the infected population. When we consider a disease invadinga predator–prey steady

state, we found some counter-intuitive results. For example, if infected prey attract

predators, then the infection wave will move a little faster. Likewise, repulsive sus-

ceptible prey can also increase the infection wave’s wavespeed. These results suggest

that overlooked phenomena like preytaxis can have a major effect on the interactions

of predators, prey and diseases.
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5.1 Introduction

In previous chapters, we have ignored spatial effects. Thismeans that we have assumed

that the populations are averaged over space. However, usually population distribu-

tions are not uniform. In particular, biological invasionsare inherently local events

and not global. For a species (or infection) to successfullyinvade, it must first be in-

troduced, then establish locally and then spread (Petrovskii and Li, 2006), usually in

the form of a travelling wave. There are many examples of predator invasions that are

considered to have spread like a travelling wave. The Colorado Potato Beetle spread

rapidly across mainland Europe during the mid 20th century (Johnson, 1967; Begon

et al, 2002b), damaging potato crops as it spread. Red Foxes have spread across much

of mainland Australia over the last 140 years after being introduced in south Victo-

ria around 1871, with major impact on birds and medium-sizedmammals (Dickman,

1996). Likewise, there are many epidemics that also moved like a travelling wave,

from the Black Death during 14th Century Europe to the spread ofrabies across conti-

nental Europe (Murray, 2003; Shigesada and Kawasaki, 1997;Langer, 1964, Chapter

13). Other famous invasions that have moved like travellingwaves are the Muskrat in-

vasion of Europe (Skellam, 1951; Britton, 2003) and the Grey Squirrel invasion of the

British Isles, which has had a massive impact on the native Red Squirrel (Middleton,

1930; Lloyd, 1983; Tompkins et al, 2003; Bell et al, 2009).

Most models that involve spatial movement assume that prey and predators (espe-

cially when using PDEs) move by diffusion only. This means that predators and prey

move in a random manner with no bias or external stimuli. However, movement is of-

ten not random. In particular, there are many external factors that attract or repel prey

and predators, be it chemical attractant/repellent gradients (chemotaxis), gradients of

oxygen (aerotaxis) or gradients of prey density (preytaxis).

The term ‘preytaxis’ was first coined in Kareiva and Odell (1987), where they mod-

elled movement patterns of foraging Ladybirds. There are two schools of thought for

modelling preytaxis; there are those who incorporate a flux in the predator that is de-

pendent on gradients of prey density (Kareiva and Odell, 1987; Grünbaum, 1998; Lee

et al, 2008, 2009; Ainseba et al, 2008), and those who incorporate preytaxis in a sepa-

rate predator velocity equation where predators accelerate according to prey gradients

(with some diffusion term to harmonise predator velocitieswith neighbours) (Arditi

et al, 2001; Sapoukhina et al, 2003; Chakraborty et al, 2007).In other words, the

former consider preytaxis as the predators’ velocity is proportional to prey gradients

(a formulation akin to other classical taxis models like chemotaxis), whereas the later
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consider preytaxis as the predators’ acceleration is proportional to prey gradients. This

difference seems to be largely down to whether you feel it is reasonable to assume

that predators can adjust their velocity instantaneously with changes in prey gradients,

although I believe there are more caveats to the latter formation. For example, suppose

that prey density has fixed gradient for all time over a large domain. In the former,

the predators will move at a constant velocity. In the latter, assuming no spatial het-

erogeneity in velocity as an initial condition, the predators will move with constant

acceleration, leading to unrealistic velocities if the domain/prey density gradient is

large enough.

These two different schools of modelling preytaxis seem to give different results.

In the former, (positive) preytaxis always has a stabilising effect, limiting spatiotem-

poral oscillations and chaos (Lee et al, 2009), whereas the latter form of preytaxis can

only have a stabilising effect for intermediate values of (positive) preytaxis, i.e. strong

preytaxis can induce spatiotemporal chaos and oscillations (Sapoukhina et al, 2003).

This difference may be attributed to the fact that there is some ‘inertia’ in the latter

formation, predators that have reached the peak of prey density no longer accelerate

but still have velocity and thus can overshoot. In this chapter, the former, flux-based

method, is used, largely because of its relative simplicityand tangibility and that in-

stantaneous velocity changes in predators seems a reasonable simplifying assumption.

In previous preytaxis papers, the focus has largely been about pattern formation

(Chakraborty et al, 2007; Ainseba et al, 2008; Lee et al, 2009)or on the effect prey-

taxis has for pest control (Sapoukhina et al, 2003; Lee et al,2008). Given this, studies

of preytaxis are relatively limited and a qualitative studyof how preytaxis alters preda-

tor invasions, the corresponding travelling waves and their wavespeeds has not been

investigated, although Ainseba et al (2008) found that predators with preytaxis and

diffusion can fill a 2D domain faster than with diffusion alone.

There are no preytaxis papers that consider the impact a disease has on a prey-

tactic predator–prey interaction. In fact, in eco-epidemiology, there have been only a

handful of papers that have considered spatial interactions. Most of these spatial eco-

epidemiological papers consider infections within plankton communities (Malchow

et al, 2004, 2005; Hilker et al, 2006; Sieber et al, 2007; Siekmann et al, 2008). There

are other papers considering a general predator–prey–disease system with spatial ef-

fects, but they discretise space by using lattices (Su et al,2009) and cellular automata

instead of PDEs (Su et al, 2008; Su and Hui, 2011; Ferreri and Venturino, 2013).

In this chapter, we will develop a spatial eco-epidemiological model that incor-

porates the random (diffusive) movement of predators and prey as well as predators
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moving along susceptible and infected prey gradients (preytaxis). Following that, we

will consider the results of various invasion scenarios, with a particular focus on how

preytaxis affects the resulting travelling wave and its wavespeed.

5.2 Model derivation

Consider a model with susceptible prey, infected prey and predators, denoted by the

densitiess, i andp, respectively. Firstly, we will define the non-spatial parameters. Let

b be the per-capita birth rate for prey and letm andd be the natural per-capita death

rates for prey and predators, respectively. Letc be the coefficient for density dependent

mortality caused by competition among prey, which results in logistic growth for the

prey. We also assume that infection does not alter the host’sper capita birth rateb

and competition coefficientc. β is the transmissibility of the disease (in this case, the

transmissibility term for density dependent transmission; we will later briefly consider

frequency dependent transmission).aS andaI are the attack rates of the predator on

susceptible and infected prey, respectively. Likewise,hS andhI are the handling times

of the predator when attacking susceptible and infected prey, respectively. µ is the

additional per-capita disease-induced mortality for infected prey. And lastly,e is a

conversion coefficient of predators from eating prey. In short, the model is similar

to the model in Chapter 4 (i.e. Bate and Hilker, 2014) but with nogroup defence

parameter.

Now, we will assume that susceptible prey, infected prey andpredators experience

diffusion with coefficientsDS, DI andDP, respectively. On top of diffusion, we assume

that predators move along prey gradients. This means that the preytaxis flux ispFS
∂s
∂x

and pFI
∂ i
∂x for susceptible and infected prey, respectively. This formof preytaxis is

chosen because it is a relatively simple form that includes adifferent preytaxis terms

for infected and susceptible prey.

∂s
∂ t

= DS
∂ 2s

∂x2 +b(s+ i)−ms−cs(s+ i)−βsi− aSsp
1+aShSs+aIhI i

, (5.1)

∂ i
∂ t

= DI
∂ 2i

∂x2 +βsi− (m+µ)i−ci(s+ i)− aI ip
1+aShSs+aIhI i

, (5.2)

∂ p
∂ t

= DP
∂ 2p

∂x2 − ∂
∂x

(

pFS
∂s
∂x

+ pFI
∂ i
∂x

)

+
ep(aSs+aI i)

1+aShSs+aIhI i
−dp. (5.3)

We will assume zero flux boundary conditions on the boundaries of spatial domain

[0,L], i.e. ∂s
∂x(0, t) =

∂s
∂x(L, t) = 0, ∂ i

∂x(0, t) =
∂ i
∂x(L, t) = 0 and ∂ p

∂x(0, t) =
∂ p
∂x(L, t) = 0
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for all timest, whereL is the width of the domain. Now, we can non-dimensionalise to

simplify and reduce the number of parameters. Lett = τT, s= γS, p= δP andx= χX.

Then, we chooseτ such that the per-capita predator death rate is one (τ = 1
d), χ such

that the susceptible prey diffusion is set to one (χ2 = DS
d ), δ such that the coefficient

of numerator of the susceptible prey functional response (attack rate) becomes one

(δ = d
aS

) andγ such that the coefficient for susceptible prey predation in the predators’

numerical response is set to one (γ = d
eaS

). Given this, we have:

∂S
∂T

=
∂ 2S

∂X2 +b′(S+ I)−m′S−c′S(S+ I)−β ′SI− SP
1+h′SS+aRh′I I

, (5.4)

∂ I
∂T

= DR
∂ 2I

∂X2 +β ′SI− (m′+µ ′)I −c′I(S+ I)− aRIP
1+h′SS+aRh′I I

, (5.5)

∂P
∂T

= D′
P

∂ 2P

∂X2 −
∂

∂X

(

PF′
S

∂S
∂X

+PF′
I

∂ I
∂X

)

+
P(S+aRI)

1+h′SS+aRh′I I
−P. (5.6)

whereb′ = b
d , m′ = m

d , c′ = c
eaS

, β ′ = β
eaS

, h′S = dhS
e , aR = aI

aS
(relative attack rate),

h′I =
dhS
e , DR = DI

DS
, µ ′ = µ

d , D′
P = DP

DS
, F ′

S=
dFS

eaSDS
andF ′

I =
dFI

eaSDS
. Likewise, from the

boundary conditions, we have thatL′ = L
√

d√
DS

.

To simplify terminology, we will drop all the primes. Now, wewill replace suscep-

tible prey with a total prey class,N = S+ I . Unlike in previous chapters, we will leave

the infected class alone and will not consider the prevalence equation. The reason for

this is that the prevalence equation would have considerably more complex diffusion

and preytaxis terms.

∂N
∂T

=
∂ 2N

∂X2 +(DR−1)
∂ 2I

∂X2 +bN−mN−cN2−µI − (N+(aR−1)I)P
1+hSN+(aRhI −hS)I

,

(5.7)

∂ I
∂T

= DR
∂ 2I

∂X2 +β (N− I)I − (m+µ)I −cIN− aRIP
1+hSN+(aRhI −hS)I

, (5.8)

∂P
∂T

= DP
∂ 2P

∂X2 −
∂

∂X

(

PFS
∂N
∂X

+P(FI −FS)
∂ I
∂X

)

+
P(N+(aR−1)I)

1+hSN+(aRhI −hS)I
−P.

(5.9)

Let f (N, I) = N+(aR−1)I
1+hSN+(aRhI−hS)I

, g(N) = b−m−cN, k(N, I) = β (N− I)−(m+µ)−
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cN and fI (N, I) = aR
1+hSN+(aRhI−hS)I

. Then these equations can be written as:

∂N
∂T

=
∂ 2N

∂X2 +(DR−1)
∂ 2I

∂X2 +Ng(N)−µI − f (N, I)P, (5.10)

∂ I
∂T

= DR
∂ 2I

∂X2 + I(k(N, I)− fI (N, I)P), (5.11)

∂P
∂T

= DP
∂ 2P

∂X2 −
∂

∂X

(

PFS
∂N
∂X

+P(FI −FS)
∂ I
∂X

)

+P( f (N, I)−1). (5.12)

The zero flux boundary conditions are∂N
∂X (0,T) =

∂N
∂X (L,T) = 0,

∂ I
∂X (0,T) =

∂ I
∂X (L,T) = 0 and∂P

∂X (0,T) =
∂P
∂X (L,T) = 0 for all timeT.

5.3 Non-spatial dynamics

Before we analyse the spatial dynamics, in particular the wavespeeds, we first have

to get some basic understanding of the non-spatial dynamics. This is done by under-

standing the steady states and their stability.

• (N∗, I∗,P∗) = (0,0,0). This always exists, and is stable ifg(0)< 0, i.e.b< m.

• (N∗, I∗,P∗) = (N∗,0,0), which satisfiesg(N∗) = 0
(

i.e. N∗ = b−m
c

)

. This exists

if g(0) > 0 (i.e. b> m), and is stable ifk(N∗,0) < 0
(

i.e. R0 =
βN∗

m+µ+cN∗ < 1
)

and f (N∗,0)< 1 (i.e. (b−m)(1−hS)< c)

• (N∗, I∗,P∗) = (N∗,0,P∗), which satisfiesf (N∗,0) = 1
(

i.e. N∗ = 1
1−hS

)

and

P∗ = N∗g(N∗) = (b−m)(1−hS)−c
(1−hS)2

. This exists ifhS < 1 and(b−m)(1− hS) >

c. This is stable if the disease can not establish in the presence of predators
(

k(N∗,0)< P∗ fI (N∗,0), i.e. RP
0 = βN∗

m+µ+cN∗+P∗ fI (N∗,0) < 1
)

as well asg(N∗)−

cN∗−P∗ ∂ f (N∗,0)
∂N < 0. The latter condition is the result of a Hopf bifurcation at

g(N∗)−cN∗−P∗ ∂ f (N∗,0)
∂N = 0, and thus stable limit cycles are likely to occur if

this condition is broken.

• (N∗, I∗,P∗)= (N∗, I∗,0), which satisfiesk(N∗, I∗)= 0
(

i.e. I∗ = N∗
(

1− m+µ+cN∗

βN∗

))

andN∗g(N∗) = µI∗. This equation forms a quadratic in terms ofN∗, which al-

ways has one positive and one negative solution. This existsif 0 < I∗ < N∗. It is

stable whenf (N∗, I∗)< 1.

• (N∗, I∗,P∗)= (N∗, I∗,P∗), which satisfiesf (N∗, I∗)= 1,k(N∗, I∗)= fI (N∗, I∗)P∗

andg(N∗) = µI∗+P∗. This exists whenP∗ > 0 andN∗ > I∗ > 0. We have not
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investigated its stability, but understand that this steady state can lose its stability

via a Hopf bifurcation.

It is important to note that, at most, only one steady state isstable. There is no

bistability between steady states, this does not say anything about possible bistability

involving cyclic and chaotic attractors (like those in Chapter 3, i.e. Bate and Hilker,

2013a). If we assume thataR= 1 andhS= hI , then the non-spatial model would be the

same as Chapter 4 (i.e. Bate and Hilker, 2014) but with a HollingType II functional

response instead of a Holling Type IV functional response.

5.4 Travelling waves

From this point on, we will consider the various invasion scenarios. We assume that

the native species are at their corresponding steady state everywhere (be it prey only,

prey with endemic disease or disease-free predator–prey steady state), but we will

introduce an invader, either the predator or the disease, ata low density in a small

region of the spatial domain. In such invasion scenarios, the solutions converge over

time to travelling waves.

Before going on to numerical solutions, we will find some analytical minimum

wavespeeds. This is done by assuming there is a travelling wave solution with con-

stant wavespeed. By doing so, we use the transformationZ = X−ωT (whereω is the

constant wavespeed) to arrive at a system of ODEs. After linearising ahead of the wave

(i.e. at the native steady state) we look at the eigenvalues to see if there is any com-

plex eigenvalues that would lead to unrealistic travellingwaves (negative populations).

This is sufficient for finding the actual wavespeed on the assumption we have ‘linear

determinacy’(Lewis et al, 2002), i.e. linearising ahead ofthe travelling wave gives

the wavespeed. In single species systems, it is sufficient for there to be no Allee ef-

fect (assuming a constant diffusion coefficient, Aronson and Weinberger, 1975, 1978;

Shigesada and Kawasaki, 1997). Many systems have been shownto exhibit this, but

the theory for this is lacking for multispecies system (Bell et al, 2009), with a notable

exception of competitive/cooperative systems (Lewis et al, 2002). Despite the lack of

theory, analogous arguments to scalar systems (like linearising in front of the wave)

wave provided a great deal of success to calculation the wavespeed (Bell et al, 2009),

i.e. linear determinacy has been shown to be true in many multispecies systems, usu-

ally numerically. However, this is not always true, there are cases where the actual

wavespeed is substantially faster than the calculated minimum wavespeed (Hosono,

1998).

104



Chapter 5. Preytaxis and travelling waves in an eco-epidemiological model

The derivation of the analytic minimal wavespeeds is in Appendix 5.A, and we

find that numerical solutions agree with this wavespeed (at least in the absence of

preytaxis). For simplicity we will assume that infecteds move in the same way as

susceptibles, i.e.DR = 1.

• Predator invasion in the absence of infected prey:

ωcrit = 2
√

DP( f (N∗,0)−1), whereN∗ is the density of prey at the disease-free

prey-only steady state.

• Predator invasion in the presence of infected prey:

ωcrit = 2
√

DP( f (N∗, I∗)−1), whereN∗ andI∗ are the densities of the total prey

and infected prey at the endemic prey-only steady state, respectively.

• Disease invasion in the absence of predators:

ωcrit = 2
√

K(N∗,0), whereN∗ is the density of prey at the disease-free prey-

only steady state.

• Disease invasion in the presence of predators:

ωcrit = 2
√

K(N∗,0)−P∗ fI (N∗,0), whereN∗ andP∗ are the densities of the prey

and predator at the disease-free prey–predator steady state, respectively.

These minimum wavespeeds are independent of preytaxis terms. This is because

these wavespeeds are calculated ahead of the invasion (where the system is near the na-

tive steady state, with negligible gradients) which results in negligible preytaxis terms.

In the absence of preytaxis, we expect that the travelling wave will form and will

move at the minimum speedωcrit (after some transient), since the initial condition has

compact support (as the initial condition is finite). This isusually very hard to prove

mathematically even for simpler models (Edelstein-Keshet, 1988; Murray, 2003), but

we can verify numerically that these wavespeeds are attained (after some transient).

5.5 Results

For all results, we will use a spatial domain of[0,250]. The initial conditions will be

the relevant native steady state, distributed everywhere on the entire domain, with pa-

rameters chosen such that it is stable (at least in the non-spatial system) in the absence

of the invader. We will add an invader, using a step function as an initial condition

(unless stated otherwise). This step function has the invader at a density of 0.1 for

x ∈ [0,20] and at a density of 0 elsewhere. A full discussion about the numerical
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methods used is in Appendix 5.B. Also, we will assume that susceptible and infected

prey only differ by the inclusion of disease-induced mortality and different preytaxis

coefficients (i.e.aR = 1, DR = 1 andhS= hI ).

5.5.1 Predator invasion in the absence of infected prey

Without preytaxis (FS= 0)

In the absence of preytaxis, we have a reaction–diffusion predator–prey model. Similar

models have been analysed elsewhere (for example Murray, 2003). During the initial

stages of the invasion, the dynamics are dominated by the predator establishing and

growing locally at the expense of prey (Figure 5-1(a)). By thetime t = 5, a wave front

is largely established, with a predator–prey steady state behind the wave front and a

prey-only steady state ahead of the wave. Figure 5-1(b) demonstrates that the wave

follows the ‘moving line’, which tells us that the predator invasion wave is moving at

the same speed as the analytically derived minimum speedωcrit . Behind the wavefront,

there are some dampened spatiotemporal oscillations. Thisseems consistent with what

would be expected since with the chosen parameter values, the predator–prey steady

state is a stable focus.

With positive preytaxis (FS> 0)

Now, incorporating preytaxis into the predator–prey dynamics gives us a reaction–

diffusion–taxis predator–prey model. First, let’s consider positive preytaxis, i.e. preda-

tors move from places of low prey density to places of high prey density, with a velocity

proportional to the prey gradient.

At early stages, growth is similar to that of no taxis, with Figure 5-2(a) looking

nearly identical to Figure 5-1(a). However, over time, results change substantially.

Whereas in Figure 5-1(b), we have that the wave travels at the same speed as the

‘moving line’, Figure 5-2(b) shows the wave front overtakesthe ‘moving line’, telling

us that the travelling wave is moving at a speed significantlyfaster than the analytically

derived minimum speedωcrit . This means that positive preytaxis has increased the

wave speed.

To demonstrate this effect further, we have set predator diffusion DP = 0 in Fig-

ure 5-3 (and 5-14). By doing so, the analytic wave speed of the predator wave is zero,

i.e. the predator can only grow in regions it is established.(Actually, since the initial

condition in Figure 5-3 has predators everywhere, a wave should form from growth

alone, given enough time. However, we get the same wavespeedfrom a step function
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in 5-14, which tells us that the travelling wave depends on preytaxis, and not just the

growth of the initial condition.) This is clearly not the case since there is a travelling

wave of constant shape and speed in Figures 5-3 and 5-14. Thiswave has moved ap-

proximately 175 spatial units to the right byt = 100. Compare this with Figure 5-2(b),

where the wave moved approximately 225 spatial units to the right by t = 100 (only

about 25 spatial units ahead of the moving line). This suggests that increasing diffu-

sion will reduce the effect of preytaxis. Presumably, this effect is largely due to the

fact that diffusion flattens the wavefront, reducing prey gradients and thus the strength

of preytaxis as a result.

With negative preytaxis (FS< 0)

In this subsection, we will assume that predators find susceptible prey repulsive and

thus move down prey gradients. This may not seem that realistic, although possible

cases where it may occur are presented in the Discussion. However, the idea of repul-

sive infected prey seems more plausible, and the results in this subsection will help in

understanding the results that include infected prey.

Figure 5-4(a) shows that by timet = 5, the predator distribution is far from uniform

around the wavefront, especially as a spike in predator density (with a corresponding

trough in prey density) is formed. The wavefront stabilisesas time goes on (Fig-

ure 5-4(b)), and moves at the analytic wavespeed. Immediately behind the wave, some

dampened oscillations take place, which is consistent withthe fact that the predator–

prey steady state is a stable focus in the absence of spatial effects. However, further

behind the wavefront, some spatiotemporal oscillations and/or chaos start to appear. In

this case, the predator–prey steady state is not actually stable once spatial effects are

taken into account.

Why would negative preytaxis encourage oscillations? Well,since the steady state

is a focus (in the absence of spatial effects), we would expect some (damped) oscil-

lations. Given this, we can suppose there are regions with (relatively) high predator

density and (relatively) low prey density. In such regions,we expect both prey and

predator densities to decline further, prey because of the large numbers of predators,

and predators because of the lack of prey to sustain them. However, if nearby there

are regions with higher prey densities and lower predator densities, then the preda-

tors would migrate into the high-predator–low-prey region. If this movement is strong

enough to replenish the predators lost from lack of prey and diffusion, then the peak in

predator density is sustained. A similar argument applies to the persistence of troughs

in predator density.
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So why is the wavespeed the same as the analytically derived wavespeed for neg-

ative preytaxis? Well, the wave can not be any slower, as the analytic wavespeed was

calculated as a minimum wavespeed. But negative preytaxis should slow the wave, by

the same argument as positive preytaxis speeding up the wave. We suspect that instead,

the negative preytaxis picks a travelling wave that would otherwise move faster than

the minimum wavespeed and be unstable in the absence of negative preytaxis. In this

case, the predator wavefront is much shallower, which has been associated with faster

travelling waves before (page 446 of Murray, 2002, shows this for the Fisher model).

A way of understanding why shallower waves are faster is thatshallower waves have

a larger spatial region where total population growth is large (regions both ahead and

behind of the wavefront do not contribute much to the growth of the invading popula-

tion), and thus should have a greater growth overall and thusa greater wavespeed. The

negative preytaxis slows down this wave to the analytic minimum wavespeed.

5.5.2 Predator invasion in the presence of infected prey

In the absence of preytaxis (FS = FI = 0), we have that predators invade an infected

prey steady state as expected, with the same wavespeed as theanalytic wavespeed

(Figure 5-5).

With positive preytaxis

Earlier, we demonstrated that positive preytaxis in the disease-free case increases the

wavespeed substantially for a predator invasion. However,looking at Figure 5-6(a), if

only susceptibles attract predators, then the wavespeed isonly slightly increased, de-

spite the fact that susceptibles are much more attractive here than earlier in Figure 5-2.

However, if only infecteds are attractive, like in Figure 5-6(b), then the wavespeed

of the predator invasion is substantially faster. Well, howcan this be explained? We

suspect that this phenomenon can be explained by the effect the predator has on each

prey class. The effect of the predator on susceptible prey isthat they are reduced by

predation. However, infected prey take a much greater hit; not only do they experience

the additional predation like susceptible prey, but also there are fewer susceptibles to

infect. Consequently, an invasion of predators has a much greater effect on infected

prey. This means that the gradient of infected prey is steep,whereas the susceptible

prey gradient is much more shallow (the changes in total preydensity is largely ex-

plained by the changes in infected prey density). Consequently, infected prey have

steeper gradients and thus a greater preytaxis effect than the shallower gradients of
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susceptible prey.

We do note that Figure 5-6(a) has a large proportion of infected prey. For cases

where infected prey take up a smaller proportion of the totalprey, the increase in

wavespeed from attractive infected prey is smaller (and conversely, a larger increase

from attractive susceptible prey). In particular, since infected prey always suffer (dis-

proportionately) from a predator invasion, there will alway be an increase in wavespeed

from attractive infected prey. The purpose of this example is to demonstrate that in-

fected prey have a disproportionate effect.

With negative preytaxis

Figure 5-7(a) and (b) show that negative preytaxis does not slow the wave. However,

the predator wave in Figure 5-7(b) is much shallower than thepredator wave in Fig-

ure 5-5. This suggests a similar phenomenon to what happenedwithout the disease,

that negative preytaxis can lead to shallower wavefronts. However, since this effect is

not obvious in Figure 5-7(a), we can conclude that infected prey can have a stronger

negative preytaxis effect than susceptible prey. This is for the same reasons too, i.e.

the wavefront has a much larger infected prey gradient sincepredators have a bigger

impact on the infected prey class. Also, just as we had in the absence of the disease,

negative preytaxis can lead to spatiotemporal oscillations and/or chaos.

5.5.3 Disease invasion in the absence of predators

Since there are no predators, there is no preytaxis to consider.

For a disease invasion in the absence of predators, we have a reaction–diffusion

epidemic model. Similar models have been analysed before elsewhere (for example,

the rabies models in Murray, 2003). As we had in the predator invasion, for earlier

time steps, the dominating dynamics are local growth of the infected class, with a

corresponding small reduction to total prey from the additional mortality. However,

we also have that in this time scale, infected prey are drifting across. By timet = 5,

a travelling wave has been formed, behind the wave the dynamics are nearly at the

endemic steady state, whereas in front of the wave, we have the disease-free steady

state. In between we have a wave front. Comparing the positionof the wave front with

the ‘moving line’ in Figure 5-8, we see that the wave front is moving at the same speed

as the analytically derived minimum speedωcrit .
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5.5.4 Disease invasion in the presence of predators

If the predator does not exhibit preytaxis, then the diseasespreads at the same speed as

expected (see Figure 5-9). It is worth noting that because ofthe presence of predators,

it is harder for a disease to become endemic due to both the additional deaths from pre-

dation and the reduced susceptible prey density from such predation (see Figure 5-8

where the susceptible prey density is 5, whereas in Figure 5-9 prey density is approx-

imately 1.5). Consequently, a significant increase of transmissibility is needed for the

disease to establish. On top of this, the invasion of the disease (once fully established

locally) does not change the prey density and instead the predator density has been

reduced. This reduction in predator density is consistent with the idea that the preda-

tor and disease are exploitative competitors (Hardin, 1960, discussed in more detail in

Chapter 4, i.e. Bate and Hilker, 2014).

With positive preytaxis

Now we consider that predators are attracted to susceptibleprey. Figure 5-10(a)

demonstrates that the stabilising effect of positive preytaxis (discussed in the Intro-

duction, Lee et al, 2009) does not have a substantial effect,with the wavespeed for

disease invasion remaining the same as the analytic wavespeed. The wavefront is a

little steeper than in Figure 5-9.

Now, suppose that infected prey attract predators. If this effect is relatively weak,

the wavespeed seems, by eye, to be no different. However, if this attraction is suffi-

ciently strong, a clear increase in wavespeed is found. For example, in Figure 5-10(b),

the disease wave has overtaken the ‘moving line’. The suspected reason for this is as

follows. Once a wavefront is formed, predators would move upthe wavefront resulting

in a trough in predator density just ahead of the wave and a peak of predator density

just behind the wavefront. Having a reduced predator density directly in front of the

wave means that (susceptible) prey density is higher. Combining these two effects

(their relative importance is not known), the infected preycan spread a little faster

since there are more susceptibles to infect as well as a reduced death rate from the

reduction in predator density just ahead of the wavefront.

With negative preytaxis

Figure 5-11 demonstrates some interesting results that occur when susceptible prey

repel predators. In Figure 5-11(a), the wave is moving faster than expected, with

oscillations in the tail.
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Why is this wave faster than expected? As we have seen in the predator invasion

with negative prey taxis (Figure 5-4(b)), the system can be oscillatory/chaotic. Given

this, the presence of an infection seems to perturb the predator–prey steady state, re-

sulting in such oscillations and chaos. We will call these oscillations and chaos within

the predator–susceptible-prey system ‘turbulence’. This‘turbulence’ spreads over time

at its own speed. In this turbulence, we have that predator density is on average smaller

than at the steady state, and total prey density is on averagehigher than at the steady

state (akin toN > N∗ andP< P∗ described in Chapter 2, i.e. Bate and Hilker (2013b)

and Armstrong and McGehee (1980)). If this turbulence is moving fast enough to

‘escape’ the disease (as is the case in Figure 5-11(a)) the assumption of a predator–

prey steady state ahead of the infection wave for the analytic wavespeed is no longer

valid, and instead the infection wavespeed should be based on the (probably average)

densities of the turbulence ahead of the wave.

Now suppose that the disease has frequency dependent transmission and compare

Figure 5-11(b) with Figure 5-11(a). Figure 5-11(b) shows the same turbulence as

Figure 5-11(a). However, the disease wave moves only at the analytic wavespeed and

no faster. This means that the turbulence does not speed up the wave. This supports the

idea that the increase in wavespeed in Figure 5-11(a) is due to the change in the average

predator and prey densities in the turbulence, sinceR0 does not change with density for

frequency dependent transmission, but does for density dependent transmission (much

like Chapter 2, i.e. Bate and Hilker, 2013b, in fact, this also suggests the wavespeed is

independent of predator density for both frequency dependent and density dependent

transmission, just as we had forR∗
0 andR0 in Chapter 2).

Back to density dependent transmission, if we increase transmissibility fromβ = 1

(Figure 5-11(a)) toβ = 1.2 (Figure 5-12), then there are no oscillations in the tail and

the wavespeed is not faster than the infected prey. Instead,there is a pulse in prey

density around invasion wavefront, but prey density behindthe wavefront is the same

as ahead of the wavefront. Firstly, the disappearance of oscillations is probably the

result of the increase in the infected class from the increase in transmissibility, which

increases the total mortality of the total prey class. This additional mortality is known

to stabilise Rosenzweig–MacArthur predator–prey oscillations (Hilker and Schmitz,

2008, and references therein, also see Chapter 2). It also restricts the susceptible pop-

ulation, probably flattening susceptible prey gradients, and thus reducing the strength

of preytaxis. Likewise, increasing transmissibility fromβ = 1 toβ = 1.2 increases the

analytical wavespeed. This means that the infection wave isnow fast enough to keep

up with the turbulence, and stabilises it. In such a case, there is no turbulent ‘pull’ and
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the wavespeed is the same as the analytic wavespeed.

Figure 5-13 considers the case where infected prey repel predators. In Figure 5-13,

the wavespeed is the same as the analytic wavespeed, i.e. thenegative preytaxis does

not speed up or slow down the travelling wave. In the tail behind the wave, there is a

short window where the system is near the coexistent steady state before there is a shift

to a regime of spatiotemporal oscillations/chaos in the wake of the travelling wave, a

phenomena already seen for negative preytaxis for predatorinvasions.

5.6 Discussion

In this chapter, we analysed the wavespeed of various invasion scenarios in a susceptible-

prey–infected-prey–predator system and investigated theeffect preytaxis has on the

wavespeed of these invasions. In the absence of preytaxis, the wavespeed of the trav-

elling wave is the same as the analytical minimum wavespeed.Adding preytaxis does

not necessarily change the travelling wave’s wavespeed. However, there are many

cases where preytaxis has increased the wavespeed for predator and disease invasion

waves.

A positive preytaxis increases the wavespeed for a predatorinvasion, a phenomenon

found in Ainseba et al (2008). In particular, there can be a preytaxis-induced wave

where there would be no wave due to no predator diffusion in the absence of preytaxis.

On the other hand, negative preytaxis does not seem to slow down the wavespeed. The

suspected reason for this is that the analytically derived wavespeed is a minimum speed

for a travelling wave to exist (although some transient waves can be slower; Hastings,

1996). This is counter-intuitive as we expect negative preytaxis to slow down trav-

elling waves. We suspect that this difference can be resolved if we consider that the

shape of the wave would be that of a faster, shallower wave that is unstable when there

is no preytaxis, but the preytaxis slows down this wave and makes it the stable wave.

(Murray, 2002, Chapter 13 (in particular page 446 and Figure 13.3) suggests that faster

waves are shallower, at least for the Fisher model.)

On top of the wavespeed, we found that negative preytaxis hasa destabilising ef-

fect, creating and exacerbating predator–prey oscillations which do not exist in the

absence of preytaxis. For example, we found many scenarios where, in the absence

of spatial effects, the predator–prey steady state is stable, but with spatial effects, the

predator–prey steady state is unstable and instead spatiotemporal oscillations and/or

chaos are the dominant dynamics. The oscillations seem to have the hallmarks of

convective instability (Sherratt et al, 2014; Dagbovie andSherratt, 2014, and refer-
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ences therein). In particular, there are windows of dynamical stabilisation (Petrovskii

and Malchow, 2000), where there is some region behind the travelling wave where the

(convectively) unstable predator–prey steady state appears to be stable. Dynamical sta-

bilisation usually occurs with convective instability where the instability moves more

slowly than the travelling wave. As far as the author knows, if convective instability

can be confirmed, this would be the first case of convective instability where the steady

state is stable when only considering the underlying kinetic ODEs.

The effect preytaxis has on an invasion of predators on an endemic prey population

is largely predictable. In the absence of preytaxis and if there is only negative prey-

taxis for either susceptible or infected prey (or both), thetravelling wave moves at the

analytic wavespeed. If preytaxis is positive, then the travelling wave is usually faster

than the analytic wavespeed. However, this increase can be very different in magnitude

when comparing attractive infected prey and attractive susceptible prey, and depends

on several factors. For example, with higher disease transmissibility, there are more

infecteds at the endemic steady state and thus the relative strength of infected preytaxis

increases. However, on top of this, we have that the invasionof predators has a greater

impact on the size of infected prey than on susceptible prey (at least for density de-

pendent transmission). This means that the gradient of infected prey at the wavefront

is proportionally greater then that of susceptible prey andthus would cause a greater

preytactic ‘pull’ (at least proportionally). This suggests that infected prey can have a

particularly large effect on the wavespeed of the invading predator. In particular, if a

non-attractive/repulsive infection (FI = 0) in the host population where susceptible host

is attractive to predators (FS> 0), the predator invasion is slowed down greatly, from

a wavespeed much faster than expected (Figure 5-2), but in the presence of unattrac-

tive infected prey, the predators essentially follow a significantly slower wavespeed

(Figure 5-6(a)).

In the absence of preytaxis, the disease wave behaves as expected, moving at the

analytic wavespeed. However, the inclusion of preytaxis can increase the wavespeed,

indirectly. In particular, we found two cases where preytaxis can increase the wavespeed.

The first case was when infected prey attract predators. Thisseems counter-intuitive

since attracting predators should increase the death rate of infected prey and thus slow

the disease down. However, what preytaxis does here is to draw predators away from

the infection wavefront and into regions where the disease is already established. This

means that the tip of the disease wavefront has a considerably smaller predator density

and thus a reduced death rate from predation for infecteds ahead. Also, because of

the reduction of predators locally, the susceptible prey density is also higher, and thus
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disease transmission is increased. Putting these two effects together, we would have a

faster wavespeed.

The second case is in some parameter regimes where susceptible prey repel preda-

tors and where transmissibility is small enough for the disease wave to be relatively

slow. In this case, the perturbation of the infection wave leads to a turbulent wave

which spreads ahead of the infection wave due to the destabilising effect of negative

preytaxis. This results in predator–susceptible-prey oscillations ahead of the wave.

With such oscillations, the average prey density is higher than at equilibrium and the

average predator density is lower than at equilibrium. Thisleads to a faster growth

of infections and thus an increased infection wavespeed. This is reminiscent of Chap-

ter 2 (i.e. Bate and Hilker, 2013b), where the criteria for a density dependent disease

(but not for a frequency dependent disease) to invade predator–prey oscillations is de-

pendent on the time-averaged density of the host species. Inparticular, if the disease

has frequency dependent transmission, there is no such increase in wavespeed in these

spatiotemporal predator–prey oscillations.

Given this result and those in Chapter 2 (i.e. Bate and Hilker, 2013b), we suspect

that the disease invading a predator–prey system with spatiotemporal oscillations and

chaos would have a wavespeed which will, on average, move at awavespeed based on

the average prey density.

5.6.1 Preytaxis and model assumptions

Here, we have assumed that the preytaxis coefficients are constant. This is the simplest

assumption to make, and has been used elsewhere (Grünbaum, 1998; Lee et al, 2009),

but other choices of taxis can be made. For example, Lee et al (2009) also consider

FS → FS
S , the same form as that in the chemotactic model (Keller and Segel, 1971).

Lee et al (2008) adapted this by usingFS
S+τ and FS

(S+τ)2 (which was also suggested for

chemotaxis by Tyson et al, 1999), to avoid the singularity aroundS= 0. Ainseba et al

(2008) did not give an explicit form for the preytaxis, but assumed that there is no

preytaxis once prey density is above some threshold. However, others have modelled

preytaxis by having a separate equation for velocity (Arditi et al, 2001; Sapoukhina

et al, 2003; Chakraborty et al, 2007), which incorporates both preytaxis and velocity

‘diffusion’ to harmonise the movement of predators. This choice of preytaxis would

increase the complexity of the system.

The choice of preytaxis terms focuses on the gradient of preydensity. But surely

the predator would benefit most from moving towards areas that maximise growth.
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This means preytaxis would be based on the gradient of the functional response and

not of prey density. In fact, there are many cases discussed in Chapter 4, i.e. Bate

and Hilker (2014), where moving towards regions of high preydensity would be a bad

strategy for predators.

We have only considered preytaxis, the movement of predators towards or away

from prey. However, prey could also find predators repulsiveor attractive. In fact,

Murray (2003, Chapter 1) describes such spatial systems as ‘pursuit and evasion’, sug-

gesting prey movement is equally important to predator movement in predator–prey

interactions. But preytaxis only considers whether predators actively pursue prey. It

is very reasonable to consider prey evading predators or ‘predataxis’ (Berleman et al,

2008). It is usually in the prey’s interest to avoid predators. For example, white-tailed

deer tend to gather in between wolf pack territories (Murray, 2003, Chapter 14). Like-

wise, there are many predators that attract prey using chemical, light or other effects.

Angler fish attract prey with light and pitcher plants attract flies using their distinc-

tive smell. Including predataxis could lead to other interesting (and possibly counter-

intuitive) results. For example, given that attractive infected prey in an infection wave

increase the infection’s wavespeed, then a repulsive predator wave (i.e. negative pre-

dataxis) should lead to a gathering of prey just ahead of the predator wave, leading to

an increased predator wavespeed. However, such predataxisshould also be dependent

on the predation pressure itself and not just on the number ofpredators. This means

that prey have safety in numbers as they saturate the predator’s functional response, at

least until predator density increases from movement and growth.

There are some cases in this chapter that may not seem realistic. For example,

many of the most interesting dynamics occur when there exists negative preytaxis, but

negative preytaxis seems counter-intuitive.

Repulsive infected prey are easier to give examples. Predators may wish to avoid

infected prey for the unpleasant taste, sight or smell. Predators may also fear of get-

ting sick from eating prey. This does require infected prey to be distinguishable from

susceptibles from a distance, or at least for predators to gain a sense of the density of

infected prey from a distance. If susceptible and infected prey are indistinguishable

for predators, the experience of meeting infected prey may put predators off prey in

general, and thus susceptible prey may also become repulsive.

It may seem difficult to understand a predator finding susceptible prey repulsive (in

the absence of disease). However, the repulsiveness of susceptible prey could be a va-

riety of defence mechanisms. For example, negative preytaxis could occur for defence

mechanisms that do not require direct encounters. For example, susceptible prey may

115



Chapter 5. Preytaxis and travelling waves in an eco-epidemiological model

expel repellent chemicals or sounds. Susceptible prey could also alter the environment

to something uncomfortable for predators; perhaps predators prefer environments with

a particular density of foliage which is altered by a herbivore prey. It is also plausible

that high prey densities attract enemies of the predator, enemies the predator would

actively avoid. Such mechanisms could be forms of group defence discussed in Chap-

ter 4 (Bate and Hilker, 2014), but these mechanisms do not necessarily influence the

functional response. It is also worth noting that for predator invasion, the predator (and

prey) may be naive to each other, although this argument doesfall down if the time for

the travelling wave to form and spread is at a comparable or slower time-scale than the

time needed for the naivety to disappear.

In the presence of infection, predators may prefer moving towards regions of high

infected prey densities as infected prey are often weaker and more vulnerable. Like-

wise, infected prey may attract predators if the infection is trophically transmitted. In

such cases, repulsive susceptible prey can be understandable as predators find them

difficult to overcome.

In conclusion, we have found that by including preytaxis in an eco-epidemiological

model, we can find many cases where preytaxis increases the wavespeed of predator

and disease invasions. Preytaxis can also change the shape of the travelling wave and

cause some spatiotemporal oscillations and/or chaos, but preytaxis can not slow down

predator and disease invasions.

5.A Analytic wavespeeds

For travelling waves, we will seek solutions of the form(N(X,T), I(X,T),P(X,T)) =

(N(Z), I(Z),P(Z)), whereZ = X−ωT andω is the wavespeed. We will also assume,

for theoretical purposes, that the spatial domain is infinite. This is not a big assump-

tion since the spatial domain is much larger than the wave itself. Likewise, we have

assumed thatDR = 1. With this, the PDEs in equations (5.10)-(5.12) become:

−ω
dN
dZ

=
d2N

dZ2 +Ng(N)−µI − f (N, I)P, (5.13)

−ω
dI
dZ

=
d2I

dZ2 + I(k(N, I)− fI (N, I)P), (5.14)

−ω
dP
dZ

= DP
d2P

dZ2 −
d

dZ

(

PFS
dN
dZ

+P(FI −FS)
dI
dZ

)

+P( f (N, I)−1). (5.15)
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Equations (5.13)-(5.15) can be rewritten as a system of six first order ODEs,

dN
dZ

= Ṅ, (5.16)

dṄ
dZ

=−ωṄ− (Ng(N)−µI −P f(N, I)), (5.17)

dI
dZ

= İ , (5.18)

dİ
dZ

=−ω İ − I(K(N, I)−P fI (N, I)), (5.19)

dP
dZ

= Ṗ, (5.20)

dṖ
dZ

=
−1
DP

(

ωṖ+P( f (N, I)−1)−P

(

FS

(

ṖṄ+P
dṄ
dZ

)

+(FI −FS)

(

Ṗİ +P
dİ
dZ

)))

=
−1
DP

[Ṗ(ω −FSṄ− (FI −FS)İ)+P( f (N, I)−1)...

...−P[FS[−ωṄ− (Ng(N)−µI −P f(N, I))]... (5.21)

...+(FI −FS)[−ω İ − I(K(N, I)−P fI (N, I))]]].

Without any preytaxis (FS= FI = 0), then equation (5.21) becomes:

dṖ
dZ

=
−1
DP

(ωṖ+P( f (N, I)−1)).

The Jacobian for equations (5.16)-(5.21) (including preytaxis) is:


































0 1 0 · · ·
−g(N)−N ∂g(N)

∂N +P∂ f (N,I)
∂N −ω µ · · ·

0 0 0 · · ·
−I

(

∂K(N,I)
∂N −P∂ fI (N,I)

∂N

)

0 −(K(N, I)−P fI (N, I))− I
(

∂K(N,I)
∂ I −P∂ fI (N,I)

∂ I

)

· · ·
0 0 0 · · ·
−P
DP

(

∂ f
∂N (N, I)+FS(g(N) −FS

DP
(ωP− Ṗ) −P

DP

(

∂ f
∂ I (N, I)+FS

(

µ + ∂ f
∂ I (N, I)

)

· · ·

+N ∂g(N)
∂N −P∂ f (N,I)

∂N

)

+(FI −FS)((K(N, I)−P fI (N, I))

+(FI −FS)I
(

∂K(N,I)
∂N −P∂ fI (N,I)

∂N

))

+I
(

∂K(N,I)
∂ I −P∂ fI (N,I)

∂ I

)))

· · · 0 0 0

· · · 0 f (N, I) 0

· · · 1 0 0

· · · −ω I f I (N, I) 0

· · · 0 0 1

· · · −(FI−FS)
DP

(ωP− Ṗ) −1
DP

( f (N, I)−1+FS[ωṄ+(Ng(N)−µI −2P f(N, I))] −1
DP

(ω −FSṄ

+(FI −FS)[ω İ + I(K(N, I)−2P fI (N, I))]) −(FI −FS)İ)



























5.A.1 Predator invasion in the absence of infected prey

Consider that there is a prey-only steady state in front of a travelling wave of predators

(thus we will ignore all infected prey equations/terms). Wecan linearise around this
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steady state,(N, Ṅ,P, Ṗ) = (N∗,0,0,0), whereg(N∗) = 0, and ignore the disease, to

get the Jacobian:












0 1 0 0

cN∗ −ω µ 0

0 0 0 1

0 0 − f (N∗,0)−1
DP

− ω
DP













Fortunately, this Jacobian is block upper triangular, so the eigenvalues are the

eigenvalues of
(

0 1
cN∗ −ω

)

and
( 0 1
− f (N∗,0)−1

DP
− ω

DP

)

. The former has eigenvalues−ω±
√

ω2+4cN∗
2 ,

which are always real, whereas the latter has eigenvalues
−ω±

√
ω2−4DP( f (N∗,0)−1)

2DP
,

which are real as long asω ≥ 2
√

DP( f (N∗,0)−1). This means that a travelling wave

with invade at a minimum speed ofωcrit = 2
√

DP( f (N∗,0)−1). It is worth noting

that this is independent of the preytaxis coefficient. The reason for this is that at the

leading edge of the predator invasion, prey density is nearly constant and thus there

is no prey gradient for the predator to move along. However, this does not mean that

preytaxis will have no effect on the wave away from the front edge.

5.A.2 Predator invasion in the presence of infected prey

Starting with the steady state(N, Ṅ, I , İ ,P, Ṗ) = (N∗,0, I∗,0,0,0), whereN∗g(N∗) =

µI∗ andK(N∗, I∗) = 0, the Jacobian becomes:






















0 1 0 0 0 0

−g(N∗)+cN∗ −ω µ 0 f (N∗, I∗) 0

0 0 0 1 0 0

−I∗ ∂K(N∗,I∗)
∂N 0 −I∗ ∂K(N∗,I∗)

∂ I −ω I∗ fI (N∗, I∗) 0

0 0 0 0 0 1

0 0 0 0 −1
DP

( f (N∗, I∗)−1) −ω
DP























Again, this is block upper-triangular, and thus we get the subsystem
( 0 1
− f (N∗,I∗)−1

DP
− ω

DP

)

.

This has eigenvalues
−ω±

√
ω2−4DP( f (N∗,I∗)−1)

2DP
. This means that the travelling wave has

a minimal wavespeed ofωcrit = 2
√

DP( f (N∗, I∗)−1).

The rest of the system is:












0 1 0 0

−g(N∗)+cN∗ −ω µ 0

0 0 0 1

−(β −c)I∗ 0 β I∗ −ω













This subsystem has eigenvaluesλ =
−ω±

√
ω2−2(A±

√
A2−4B)

2 , whereA = g(N∗)−
cN∗−β I∗ < 0 andB= I(β (µ +cN∗−g(N∗))−cµ)> 0 (these are the trace and deter-
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minant of the Jacobian of the susceptible-infected prey subsystem around the endemic

steady state, andA2− 4B < 0 is the condition for the steady state to be a stable fo-

cus). These eigenvalues, however, can have complex parts sinceN∗, I∗ > 0, and thus

a focus around(N∗, I∗) can be realistic (i.e. no issue about negative populations)and

consequently this subsystem should not pose a restriction of the wave speed.

5.A.3 Disease invasion in the absence of predators

Consider that there is a prey-only steady state in front of a travelling wave of infection

(thus we will ignore all predator equations/terms). We can linearise around this steady

state,(N, Ṅ, I , İ) = (N∗,0,0,0), whereg(N∗) = 0, and ignore the predator, to get the

Jacobian:












0 1 0 0

cN −ω µ 0

0 0 0 1

0 0 −K(N,0) −ω













Fortunately, this Jacobian is block upper triangular, of which the top block has

already been considered, with eigenvalues that are always real. The bottom block is
(

0 1
−K(N∗,0) −ω

)

, and has eigenvalues
−ω±

√
ω2−4K(N∗,0)

2 , which are real ifω ≥ 2
√

K(N∗,0).

This means that the disease will invade at a minimum speedωcrit = 2
√

K(N∗,0).

5.A.4 Disease invasion in the presence of predators

Here, we start with the steady state(N, Ṅ, I , İ ,P, Ṗ)= (N∗,0,0,0,P∗,0), wheref (N∗,0)=

1 andP∗ = N∗g(N∗) (andg(N∗)−cN∗−P∗ ∂ f (N∗,0)
∂N < 0 for the steady state to be sta-

ble). Then the Jacobian becomes:




























0 1 0 0 0 0

−g(N∗)+cN∗+P∗ ∂ f (N∗ ,0)
∂N −ω µ 0 1 0

0 0 0 1 0 0

0 0 −(K(N∗,0)−P∗ fI (N∗,0)) −ω 0 0

0 0 0 0 0 1
−P∗
DP

(

∂ f
∂N (N∗,0)+FS(g(N∗) −FSωP∗

DP

−P∗
DP

(

∂ f
∂ I (N

∗,0)+FS

(

µ + ∂ f
∂ I (N

∗,0)
)

(FS−FI )ωP∗
DP

FSP∗
DP

−ω
DP

−cN∗−P∗ ∂ f (N∗ ,0)
∂N

))

+(FI −FS)(K(N∗,0)−P∗ fI (N∗,0)))





























The middle two rows (forI andİ ) can be separated as all other terms in these rows

are zero. Thus we have the matrix
(

0 1
−(K(N∗,0)−P∗ fI (N∗,0)) −ω

)

, which has the eigenval-

ues
−ω±

√
ω2−4(K(N∗,0)−P∗ fI (N∗,0))

2 . These are real ifω2 ≥ 4(K(N∗,0)−P∗ fI (N∗,0))

and thus the suspected minimum wavespeed isωcrit = 2
√

K(N∗,0)−P∗ fI (N∗,0).

However, we need to check the other eigenvalues, namely of,
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0 1 0 0

−π −ω 1 0

0 0 0 1
−P∗
DP

(

∂ f
∂N(N

∗,0)+FSπ
)

−FSωP∗

DP

FSP∗

DP

−ω
DP













(5.22)

whereπ = g(N∗)− cN∗ − P∗ ∂ f
∂N(N

∗,0). The eigenvalues of this system are com-

plex and difficult to find. However, they do not need to be real as they represent

the predator–prey subsystem and spiraling around the predator–prey steady state poses

no threat of negative populations. Thus we do not have any more restrictions on the

values forω.

However, if we assume thatFS= 0 andDP= 1, then we can reduce the system from

a quartic equation to a quadratic equation:τ2+πτ+P∗ ∂ f
∂N(N

∗,0), whereτ = λ (λ +ω)

andπ = g(N∗)−cN∗−P∗ ∂ f
∂N(N

∗,0)< 0. From this, we haveτ =
−π±

√

π2−4P ∂ f
∂N (N∗,0)

2 .

Thus we haveλ = −ω±
√

ω2+4τ
2 . Sinceπ < 0 and ∂ f

∂N(N
∗,0) > 0, then allλ ’s are real

if and only if τ is real, i.e. π2 > 4P∗ ∂ f
∂N(N

∗,0). This condition is the same as the

condition for the predator–prey steady state to be stable. The eigenvalues for other

values ofFS andDP have not been found.

5.B Numerical methods

The initial condition consists of two parts. First, there are the native specie(s), which

we assume will be at the relevant (stable, at least in a non-spatial sense) coexistent

steady state. For both the predator–prey and endemic prey steady state initial condition

are derived by running MATLAB’s ‘ode45’ and taking their densities at the final time

(t = 1000). The invading initial condition will generally be a step function of 0.1 for

x≤ 20 and zero otherwise. However, for some scenarios, in particularly when predator

diffusion is very small (or zero), it is preferable for a smooth initial condition to be

used. In these cases, a smooth approximation of the step function, 0.05(1− tanh(x−
20)), is used.

The numerical scheme can be written as follows:
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N(x, t + tstep) = N(x, t)+Ngrowth(x,(t, t + tstep))+Ndi f f usion(x,(t, t + tstep)), (5.23)

I(x, t + tstep) = I(x, t)+ Igrowth(x,(t, t + tstep))+ Idi f f usion(x,(t, t + tstep)), (5.24)

P(x, t + tstep) = P(x, t)+Pgrowth(x,(t, t + tstep))+Pdi f f usion(x,(t, t + tstep))...

...+Ptaxis(x,(t, t + tstep)). (5.25)

where, for exampleNgrowth(x,(t, t + tstep)), is the growth ofN at pointx over the time

interval(t, t + tstep).

However, each of these terms have different properties. In particular, using one

numerical scheme to deal with all these simultaneously would be highly problematic.

In particular, the diffusion terms suggest using a scheme appropriate for parabolic

PDEs, but such schemes would have real difficulty handling the taxis terms. Instead of

trying to use one scheme to solve the whole system simultaneously, we will split the

system into a sequence of smaller problems using a Strang splitting scheme (Chapter

18 of LeVeque, 1992; Tyson et al, 2000). This scheme is implemented as follows.

First, solve the diffusion only problem numerically for half a time step and take

this as the new solution at timet, i.e. for predators we have:

P∗(x, t) := P(x, t +0.5∗ tstep) = P(x, t)+Pdi f f usion(x,(t, t +0.5tstep)) (5.26)

Do the same for susceptible and infected prey to deriveN∗(x, t) andI∗(x, t), respec-

tively. Following this, we then perform a taxis half step using an appropriate numerical

scheme to again get a new solution at timet (note, this step only changes the predators

since there is no taxis in the other classes).

P′(x, t) := P∗(x, t +0.5tstep) = P∗(x, t)+Ptaxis(x,(t, t +0.5tstep)) (5.27)

The next step is to take a full time step with only the growth dynamics, using an

appropriate solver. This will form a new solution, which will be centered at time

t +0.5tstep.

P̂(x, t +0.5tstep) := P′(x, t + tstep) = P′(x, t)+Pgrowth(x,(t, t + tstep)) (5.28)

Likewise, you getN̂(x, t + 0.5tstep) and Î(x, t + 0.5tstep) by the same method, using

N′(x, t) andI ′(x, t) instead, respectively. Next, another taxis half step is taken (which
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only affects the predator equation). This gives a new solution at timet +0.5tstep.

P̄(x, t +0.5tstep) := P̂(x, t + tstep) = P̂(x, t)+Ptaxis(x,(t +0.5tstep, t + tstep)) (5.29)

Finally, we take this solution and incorporate a half step ofdiffusion to get a final

solution for timet + tstep.

P(x, t + tstep) := P̄(x, t +0.5tstep)+Pdi f f usion(x,(t +0.5tstep, t + tstep)) (5.30)

Do the same witĥN(x, t+0.5tstep) andÎ(x, t+0.5tstep) to getN(x, t+ tstep) andI(x, t+

tstep), respectively.

This scheme splits the problem into several smaller, more manageable steps, as

well as allowing us to choose appropriate numerical methodsfor each subproblem

instead of trying to use one scheme that would have difficultyhandling the whole.

One key advantage of this scheme is that it is of order 2 as longas each subproblem is

order 2 or better.

For the growth step, the dynamics are local and thus a simple explicit ODEs solver

can be used. We used the midpoint method (2nd order Runge–Kutta). This is a reliable

scheme for ODE, and because of this, it was chosen for the fullstep. For diffusion, both

a forward-time–centered-space (FTCS) scheme and a Crank–Nicolson scheme were

used and compared. The former is of order 1 with respect to time (order 2 with respect

to space). This scheme is conditionally stable; it is stableif tstep

(xstep)2
< 0.5. The latter

scheme is implicit and of order two with respect to time and space. It is unconditionally

stable, although there are still numerical issues about artificial oscillations during the

first few steps if tstep

(xstep)2
is too large and initial condition is too spiky. Consequently,

the same step sizes will be used for both FTCS and Crank–Nicolson. Results between

the two schemes have been compared and agree very well, the only visible difference

being aroundx = 0 in some cases of spatiotemporal chaos. There are no noticeable

differences with respect to the wavespeed and the wavefront.

For the taxis term, we have used a two-step Lax–Wendroff scheme. It is an ex-

plicit second order (with respect to both time and space) scheme for hyperbolic PDEs

(Chapter 11 of LeVeque, 1992; Morton and Mayers, 2002). It is very good at follow-

ing suitably smooth solutions, but has issues around very large gradients and discon-

tinuities, where solutions will overshoot and oscillate around sharp (i.e. non-smooth)

points, particularly behind the discontinuity. These oscillations dampen away from

the discontinuity. This can lead to issues in a few cases, especially if this results in

negative populations. However, this scheme does follow themagnitude of peaks and
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their wavespeed very well. Note that this issue only really matters if negative prey-

taxis is too strong compared to diffusion in predators. In particular, if DP = 0, then

the numerical scheme breaks down for any negative preytaxisas negative populations

arise. Other numerical schemes were considered. For example, an upwind scheme

was considered, but it is only of order 1 in time and space. It does not have these

oscillations around sharp points, but instead these pointsare smeared over as if there

was some strong diffusive force. Another second order scheme is Beam–Warming,

which is like the Lax–Wendroff scheme except the oscillations are ahead of the wave

(LeVeque, 1992, Chapter 11), potentially altering the dynamics ahead of the wave, and

may lead to negative populations in cases of positive preytaxis. Likewise, the leapfrog

scheme is order two, but it has oscillations behind the wave that do not die out (Morton

and Mayers, 2002). These oscillations are generic for second order schemes (LeVeque,

1992, Chapter 11).

It is well worth noting that the inclusion of predator diffusion increases the smooth-

ness of the numerical solutions, which improves the reliability of the Lax–Wendroff

scheme. This is why the step function is used for every figure whereDP > 0. However,

in the absence of predator diffusion, Figure 5-14(a) shows that the step function initial

condition does not smooth out but instead brings in fuzziness in the back edge of the

wavefront. This contrasts with Figure 5-3(a), where a smooth wave forms. However,

even byt = 5, the solution in Figure 5-14(a) is largely smooth for the predator. In fact,

both Figure 5-3(b) and 5-14(b) show that the wave move at the same speed (actually, in

Figure 5-14(a) the travelling wave stays about 0.25 spatialunits behind Figure 5-3(b)

over timest = 5,10,20,50 and 100, this difference can be explained by the time taken

to converge to the wavefront). However, without diffusion,even the slightest negative

preytaxis results in negative predator populations and theeventual breakdown of the

numerical solution.

Boundary conditions are incorporated by setting the first andlast spatial point to

be equal to their immediate neighbour (and thus there is zeroflux). This is done after

each substep.

All figures have step sizes oftstep= 0.0005 andxstep= 0.05 for time and space,

respectively (unless stated otherwise). This means that the diffusion step is fine for

both FTCS and Crank-Nicolson becausetstep

(xstep)2
= 0.2 < 0.5 (in fact, it probably is

0.1 due to the half steps). Other time and space step sizes have been considered and

results do not look different as long as they are sufficientlysmall and the condition
tstep

(xstep)2
< 0.5 is satisfied.
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Figure 5-1: Predator invasion in the absence of disease. No preytaxis. (a) shows the initial
stages of predator invasion, where the predators grow locally up to steady state and spread to
converge to the shape of the travelling wave. (b) shows that after this convergence, the wave
travels with a speed that agrees with the analytic speed. For (a) the times areT = 0,1,2,5
whereas for (b) the times are T= 5,10,25,50,100. The dotted lines (top) represent total prey
density, whereas the bold lines (bottom) represent predator density. The vertical lines in (b)
represent the expected position of the wavefront20+ωcrit ∗T, whereωcrit is the analytical
wavespeed. Parameter values: b= 1, m= 0.5, c= 0.1, hS= 0.3, DP = 1 and FS= 0.
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Figure 5-2: Predator invasion in the absence of disease. Positive preytaxis. (a) shows the
initial stages of predator invasion, where the predators grow locally up to steady state and
spread to converge to the shape of the travelling wave. (b) shows that after this convergence,
the wave travels faster than the analytic speed. The times and lines used are the same as
Figure 5-1. Parameter values: b= 1, m= 0.5, c= 0.1, hS= 0.3, DP = 1 and FS= 1.
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Figure 5-3: Predator invasion in the absence of disease. Positive preytaxis, no predator diffu-
sion. (a) shows the initial stages of predator invasion, where the predators grow locally up to
steady state and spread to converge to the shape of the travelling wave. (b) shows that after
this convergence, the wave moves (at some wavespeed) where it should not in the absence of
preytaxis. Parameter values: b= 1, m= 0.5, c= 0.1, hS= 0.3, DP = 0 and FS= 1. The initial
condition is a smoothed approximation of the step function(0.05(1− tanh(x−20))). Results
for the normal step function initial conditions are in Figure 5-14. The times andlines used are
the same as Figure 5-1.
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Figure 5-4: Predator invasion in the absence of disease. Negative preytaxis. (a) shows the
initial stages of predator invasion, where the predators grows locally up tosteady state and
spreads to converge to the shape of the travelling wave. (b) shows that after this convergence,
the wave travels with a speed that agrees with the analytic speed. Parametervalues: b= 1,
m= 0.5, c= 0.1, hS = 0.3, DP = 1 and FS = −3. The times and lines used are the same as
Figure 5-1.
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Figure 5-5: Predator wave invading an endemic prey-only steady state. No preytaxis. The
predators spread at the same speed as the analytic wavespeed. The dotted lines represent
total prey density, the bold lines represent predator density and the dash-dotted line represent
infected prey. The times are (from top to bottom) T= 5,10,25,50,100. The vertical lines
represent the expected position of the wavefront20+ωcrit ∗T, whereωcrit is the analytical
wavespeed. Parameter values: FS = 0, FI = 0, β = 1, b = 1, m= 0.5, µ = 0.2, c = 0.1,
hS= 0.3, hI = 0.3, aR = 1, DR = 1 and DP = 1.
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Figure 5-6: Predator wave invading an endemic prey-only steady state. Predators are at-
tracted to (a) susceptible prey (FS= 10, FI = 0) and (b) infected prey (FS= 0, FI = 10). In (a)
the predator wave is marginally faster than the analytic wavespeed, whereas in (b) the predator
wave is much faster than the analytic wavespeed. Other parameters:β = 1, b= 1, m= 0.5,
µ = 0.2, c= 0.1, hS= 0.3, hI = 0.3, aR = 1, DR = 1 and DP = 1. The times and lines used are
the same as Figure 5-5.
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Figure 5-7: Predator wave invading an endemic prey-only steady state. Predators are repelled
by (a) susceptible prey (FS = −10, FI = 0) and (b) infected prey (FS = 0, FI = −10). Both
(a) and (b) demonstrate that the predator wave spreads at the analytic wavespeed, and that
spatiotemporal chaos or oscillations occur far behind the wavefront. Otherparameters: FS=
0, β = 1, b= 1, m= 0.5, µ = 0.2, c= 0.1, hS = 0.3, hI = 0.3, aR = 1, DR = 1 and DP = 1.
The times and lines used are the same as Figure 5-5.
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Figure 5-8: Infection wave invading a prey-only steady state. The travelling wave movesat the
analytic wavespeed. Parameter values: b= 1, m= 0.5, c= 0.1, β = 0.5, DR= 1 andµ = 0.2.
The times are (from top to bottom) T= 5,10,25,50,100. The dotted lines (top) represent total
prey density, whereas the dash-dotted line (bottom) represent infected prey density. The vertical
lines represent the expected position of the wavefront20+ωcrit ∗T, whereωcrit is the analytical
wavespeed.
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Figure 5-9: Infection wave invading predator–prey steady state. No preytaxis. The disease
spreads at the analytic wavespeed, which is represented by the verticalline, as before. Bold
line is total prey density, dashed line is predator density and dotted line is infected prey density.
Times are T= 5,10,25,50,100. Parameter values FS = FI = 0, b = 1, m= 0.5, µ = 0.2,
c= 0.1, hS= 0.3, hI = 0.3, β = 1.5, aR = 1, DR = 1 and DP = 1.
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(b)

Figure 5-10: Infection wave invading predator–prey steady state. (a) susceptible prey attract
predators (FS> 0), and (b) infected prey attract predators (FI > 0). In (a), the infection wave
moves at the analytic wavespeed, whereas in (b), the wavespeed is faster than the analytic
wavespeed. Parameter values (a) FS = 20 and FI = 0 and (b) FS = 0 and FI = 20. Other
parameters:β = 1.5, b= 1, m= 0.5, µ = 0.2, c= 0.1, hS= 0.3, hI = 0.3, aR= 1, DR= 1 and
DP = 1. The times and lines used are the same as Figure 5-5.
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Figure 5-11: Infection wave invading predator–prey steady state. Susceptible prey repel preda-
tors. Comparison of (a) density dependent and (b) frequency dependent transmission. In (a),
the wave moves faster than the analytic wavespeed, whereas in (b) the wave moves at the same
speed as the analytic wavespeed. The arrows and grey lines in (b) represent the expected po-
sition of the wavefront20+ωcrit ∗T, whereωcrit is the analytic wavespeed. Parameter values
(a) β = 1 and (b)βFD = 1.5. Other parameters: FS = −5, FI = 0, b= 1, m= 0.5, µ = 0.2,
c= 0.1, hS= 0.3, hI = 0.3, aR= 1, DR= 1 and DP = 1. The times and lines used are the same
as Figure 5-5.
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Figure 5-12: Infection wave invading predator–prey steady state. Susceptible prey repel preda-
tors. Higher transmissibility than Figure 5-11(a). The disease spreads at the same speed as
the analytic wavespeed. Parameter values:β = 1.2, FS=−5, FI = 0, b= 1, m= 0.5, µ = 0.2,
c= 0.1, hS= 0.3, hI = 0.3, aR= 1, DR= 1 and DP = 1. The times and other lines used are the
same as Figure 5-5.
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Figure 5-13: Infection wave invading predator–prey steady state. Infected prey repel preda-
tors. The infection wave spreads at the same speed as the analytic wavespeed. Behind
the wavefront the dynamics are oscillatory or chaotic. Parameter values:β = 1.5, FS = 0,
FI = −10, b= 1, m= 0.5, µ = 0.2, c= 0.1, hS= 0.3, hI = 0.3, aR = 1, DR = 1 and DP = 1.
The times and other lines used are the same as Figure 5-5.
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(b)

Figure 5-14: Predator model. Positive preytaxis, no predator diffusion. These figuresare same
as Figure 5-3 but with the usual step function as an initial condition.
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Overall conclusion

Each chapter has its own discussion, where each chapter’s results are put into context.

Here, we synthesise these results.

In this thesis, we have found many results that are novel not only in the field of

eco-epidemiology, but also in the much larger fields of theoretical ecology and epi-

demiology. In particular, one common consideration withinthis thesis is looking at

cases where predator–prey oscillations occur, with each chapter having some key re-

sult around (endogenous) predator–prey oscillations.

The results from Chapters 2 and 3 are inextricably linked. This is no surprise as

they have a common origin. Both chapters were developed from an investigation into

whether density dependent transmission alters the main finding in Hilker and Schmitz

(2008), that diseases can stabilise predator–prey oscillations. In verifying this, we dis-

covered (a) that the disease became endemic at a different threshold in transmissibility

to what was expected from steady state calculations, contrary to the results in Hilker

and Schmitz (2008), and (b) various bistabilities involving endemic oscillations.

Chapter 2 (i.e. Bate and Hilker, 2013b) attempts to generalisephenomenon ‘(a)’

by considering various models involving (endogenous) predator–prey oscillations. We

establish that this difference in endemic threshold is based on the difference between

the steady-state host density and time-averaged host density of the predator–prey oscil-

lations. In Rosenzweig–MacArthur-based models, prey have ahigher time-averaged

density when oscillating than the corresponding (unstable) steady state (Armstrong

and McGehee, 1980). For frequency dependent transmissibility, the endemic thresh-

old is independent of host density and thus there is no difference between the endemic

threshold of the predator–prey oscillations and steady state, akin to Hilker and Schmitz

(2008).

Further investigation into phenomenon ‘(b)’ shed light onto more complex dynam-
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ics, not only in the density dependent model, but also in the model in Hilker and

Schmitz (2008). When investigating cases where predators and prey oscillate in the

absence of the disease, we found more and more complex dynamics in these models,

including various bistabilities, in particular bistability between endemic and disease

free states (which requires prior knowledge of Chapter 2 to understand), period dou-

bling cascades into chaos and tristability between disease-free oscillations, endemic

equilibria and an endemic torus. The comparison of the dynamics found in these two

models is in Chapter 3, i.e. Bate and Hilker (2013a).

One aspect overlooked in the diseased-prey model in Chapter 2is that both the

predator and disease can coexist at equilibrium. Such coexistence is common in many

eco-epidemiological models (including some models in Anderson and May, 1986;

Chattopadhyay and Bairagi, 2001; Xiao and Chen, 2001b,a; Chattopadhyay and Pal,

2002; Hethcote et al, 2004; Singh et al, 2004; Haque and Venturino, 2006; Hilker and

Malchow, 2006; Greenhalgh and Haque, 2007; Upadhyay et al, 2008; Haque et al,

2009; Chatterjee et al, 2012, among others), but that is because infected prey are as-

sumed to be more (or less) vulnerable to predation. However,in Chapter 2 (i.e. Bate

and Hilker, 2013b), infection does not alter vulnerabilityto predators. This means that

the eco-epidemiological system is in fact an exploitative competition system, using

the rescaling in Figure 1-1(a). In such systems, the established rule is that the predator

and disease can not coexist (the principle of competitive exclusion Hardin, 1960), or

if they do, only in oscillatory dynamics (either temporallyor spatially McGehee and

Armstrong, 1977; Chesson, 2000). Consequently, we have foundan apparent contra-

diction. This contradiction is resolved by the fact that prevalence exhibits some kind

of density dependence, an often overlooked counterexamplefound Gurney and Nisbet

(1998). If in addition, we consider group defence, predators may not only coexist with

a disease in the prey, but the predators may actually benefit from the disease, as the

disease may restrict prey densities to more manageable levels for the predator. The

resulting investigation into these phenomena is Bate and Hilker (Chapter 4, i.e. 2014).

In Chapter 4, we find that the disease in the prey can benefit a predator in several

ways. In particular, we have that the disease can allow for coexistence in cases where

it could not without the disease. For example, the introduction of a disease can allow

predators and prey to coexist by reversing a homoclinic bifurcation that destroys the

predator–prey limit cycle. Likewise, the disease can restrict prey populations to levels

where the prey’s group defence is easier for the predator to overcome.

Chapters 3 and 4 (i.e. Bate and Hilker, 2013b,a, respectively)have several as-

pects in common; bistability, homoclinic bifurcations andperiod-doubling cascades
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into chaos. This means that we have established that such complex dynamics can oc-

cur in both diseased-predator and diseased-prey models, and it seems plausible that

complex dynamics like chaos could occur in many eco-epidemiology models. In par-

ticular, although this was not investigated, we suspect that some of these phenomena

(particularly chaos) would occur in Chapter 4’s model when wetake out group de-

fence, considering that in Scenarios 2B and 3B of Chapter 4, chaos occurs in regions

where group defence is not particularly strong and thus the Rosenzweig-MacArthur

dynamics dominate.

For Chapter 5, we go beyond the homogeneous, mean-field world of ODEs, which

assumes that the world is a perfect mixture of water, clay andMarmite (among many

other things). This was done by using PDEs, meaning that we incorporate a spatial

dimension, which allows for spatial heterogeneity as well as movement through space.

This movement incorporates both diffusion and preytaxis terms. Preytaxis is the move-

ment of predators along prey gradients. With such preytaxis, we find many new phe-

nomena. For example, preytaxis can change the wavespeed andthe wavefront’s shape

of an invading travelling wave. On top of this, we have found that negative preytaxis

can give rise to spatiotemporal oscillations, even when, inthe absence of spatial ef-

fects, there is a stable equilibrium.

One interesting phenomenon found in Chapter 5 was the case where an infection

wave was invading in spatiotemporal oscillation. In such a case, the wavespeed in-

creased much likeR0 > R∗
0 was in the diseased-prey model in Chapter 2, i.e. Bate and

Hilker (2013b).

6.1 Future work and extensions

First and foremost, we need to explore the predator–prey spatiotemporal oscillations/

chaos that occur when considering negative preytaxis in Chapter 5. At the moment,

we suspect the oscillations are due to some destabilisationeffect that preytaxis has

on the predator–prey steady state. On first inspection, the dispersion relation (using

methods in Sherratt et al, 2014; Dagbovie and Sherratt, 2014) contains preytaxis terms,

just like the determinant of (5.22), suggesting that the preytaxis terms can change the

spatiotemporal eigenvalues. If it is that the destabilisation is the result of a change

in the spatiotemporal eigenvalues, then we will have a case of absolute or convective

instability. The next steps would be to analyse the dispersion relation further to see if

there are any interesting bifurcations that could explain the spatiotemporal oscillations.

One missing aspect in this thesis is that we did not investigate the disease in both
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predator and prey. We did briefly consider a disease that infects both predator and prey

in Chapter 2 (i.e. Bate and Hilker, 2013b), using it to demonstrate that predator–prey

oscillations can increase or decrease the endemic criteria, but we have not investigated

this effect thoroughly.

Likewise, we suspect the model in Hadeler and Freedman (1989) (where there is

a disease in both predator and prey) to have complex dynamicsand that this could be

investigated. In fact, given that we have found complex dynamics in Chapters 3, 4

and 5, we suspect many eco-epidemiological models exhibit chaos, bistabilities and

possibly other complex dynamics, although the parameter values for these to occur

might be unrealistic.

Recently, Roberts and Heesterbeek (2013) have suggested the use of next-generation

matrices (Diekmann et al, 2010, 1990) for finding basic reproductive numbers in eco-

epidemiological systems. It is a tool commonly used in epidemiology but has not

yet been applied in eco-epidemiology. This should be a powerful tool for finding

when a disease becomes endemic in eco-epidemiological models with multiple in-

fected classes. In particular, this should be very useful for analysing models where a

disease infects both predator and prey.

In Chapter 4, we used a nice 2D argument for the model with frequency dependent

transmission, allowing us to gain insight into the 3D model with density dependent

transmission. However, we feel that 3D model could be explored further.

One issue, raised in Bairagi and Chattopadhyay (2008), is thatthere has been a lack

of work analysing evolution within an eco-epidemiology context. Recently, Andrew

Morozov and co-authors (Morozov and Adamson, 2011; Morozovand Best, 2012)

have tried to address this by using adaptive dynamics on a trade off between disease

virulence and disease-induced mortality or disease-related mortality from predation,

respectively. However, there are still many other evolutionary questions that can be

addressed. For example, if the disease infects both predator and prey and is trophically

transmitted, the evolutionary aspects of a trade off between trophic transmission and

disease-induced mortality would be particularly interesting.

Another area that has been overlooked is age structure. Age structure is important

in both ecology and epidemiology. Many predators target life stages of their prey, for

example, predators may only target the eggs, larvae or adults of a prey population.

Likewise, predators may target different prey during different life stages; the diet of a

tadpole is different to the diet of a frog. With respect to epidemiology, the age of the

host can greatly affect many aspects like the transmission rate and the disease-induced

mortality.
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6.2 Final summary

The following bulletpoints summarise the key results in this thesis:

• Diseases with density dependent transmission have different endemic thresholds

when the host(s) are in predator–prey oscillations than at the (unstable) predator–

prey equilibrium (Chapter 2, used in Chapters 3 and 5).

• Considering predator–prey oscillations as the disease-free state, a disease can in-

duce many different complex dynamics, including bistabilty/tristability between

disease-free and endemic attractors (Chapter 3).

• Diseases can induce chaos via period doubling cascades (Chapters 3 and 4).

• Diseases in prey and predators can coexist at a stable steadystate, even under

indiscriminate predation (Chapters 2, 4 and 5).

• A disease in a group-defending prey can benefit predators, either by reversing

a homoclinic bifurcation of the predator–prey limit cycle or by reducing prey

densities to more manageable levels for the predator (Chapter 4).

• The travelling waves from disease and predator invasions have a wavespeed that

depends on the strength of preytaxis (Chapter 5).

• Negative preytaxis does not slow down wavespeed, but it seems to have a desta-

bilising effect (Chapter 5).
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Bacäer N, Ait Dads EH (2012) On the biological interpretation of adefinition for

the parameterR0 in periodic population model. Journal of Mathematical Biology

65:601–621
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