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Abstract

This thesis is concerned with the development, analysis and implementation of efficient

and accurate numerical methods for solving high-frequency acoustic scattering problems.

Classical boundary or finite element methods that are based on approximating the so-

lution by polynomials can be effective for small and moderate frequencies. However, as

the frequency increases, the solution to the scattering problem becomes more oscillatory

and classical numerical methods cope very badly with high oscillation. For example, for

two-dimensional scattering problems, classical numerical methods require their number

of degrees of freedom to grow at least linearly with frequency to capture the oscillatory

behaviour of the solution accurately. Therefore, at large frequencies, classical numerical

methods become essentially numerically intractable.

In order to overcome the limitations of classical methods, one can seek to incorporate the

known asymptotic behaviour of the solution in the numerical method. This involves using

asymptotic theory to determine the oscillatory part of the solution and then using classical

numerical methods to approximate the slowly varying remainder. Such methods are often

referred to as hybrid numerical-asymptotic methods.

Determining the high frequency asymptotics of acoustic scattering problems is a classic

problem in applied mathematics, with methods such as geometrical optics or the geomet-

rical theory of diffraction providing asymptotic expansions of the solutions. Considerable

amount of research has been directed towards both constructing these asymptotic expan-

sions and proving error bounds for truncated asymptotic series of the solution, notably

by Buslaev [23], Morawetz and Ludwig [78], and Melrose and Taylor [75], among oth-

ers. Often, the oscillatory component of the solution can be determined explicitly from

these asymptotic expansions. This can then be used in designing efficient hybrid meth-

ods. Furthermore, from the asymptotic expansions, frequency-dependent bounds on the

slowly-varying remainder and its derivatives can be obtained (in some cases these fol-

low directly from classical results, in other cases some additional work is required). The

frequency-dependent bounds are the key results used in the frequency-explicit numerical

error analysis of the approximation of the slowly-varying remainder. This thesis presents

a rigorous justification of one of the key result using only elementary techniques.



Hybrid numerical-asymptotic methods have been shown in theory to be substantially

more efficient than classical numerical methods alone. For example, [40] presented a

hybrid numerical-asymptotic method in the context of boundary integral equations (BIEs)

for solving the problem of high-frequency scattering by smooth, convex obstacles in two

dimensions. It was proved in [40] that in order to maintain the accuracy as the frequency

increases, the hybrid BIE method requires the number of degrees of freedom to grow

slightly faster than k1/9, where k is a parameter proportional to the frequency. This is a

substantial improvement from the classical boundary integral methods that require O(k)

number of degrees of freedom to achieve the same accuracy for this problem.

Despite this slow growth in the number of degrees of freedom, hybrid numerical-asymptotic

methods lead to stiffness matrices with entries that are highly-oscillatory singular inte-

grals that can not be computed exactly. Thus, without efficient and accurate numerical

treatment of these integrals, the hybrid numerical-asymptotic methods, regardless of their

attractive theoretical accuracy, can not be efficiently implemented in practice.

In order to resolve this difficulty, this thesis develops a methodology for approximating the

integrals arising from hybrid methods in the context of BIEs. The integrals are transformed

under a change of variables into integrals amenable to Filon-type quadratures. Filon-type

quadratures are designed to cope well with high oscillations in the integrands. Then,

graded meshes are used to capture the singularities accurately.

Along with k-explicit error bounds for the integration methods, this thesis derives k-

explicit error bounds for the hybrid BIE methods that incorporate the error of the inexact

approximation of the entries of the stiffness matrix. The error bounds suggest that, with an

appropriate choice of parameters of Filon quadrature and mesh grading, the overall error

of the hybrid method does not deteriorate due to inexact approximation of the stiffness

matrix, therefore preserving its attractive theoretical convergence properties.
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Chapter 1

Introduction

1.1 High-frequency acoustic scattering problem

Motivation

High frequency acoustic waves are utilised in a huge number of applications that we benefit

from in our daily lives. For example, medical ultrasound detects changes in biological

tissue by sending an acoustic wave into the tissue and determining its properties from

the scattered waves. More recently, medical high-intensity focused ultrasound (HIFU) has

been the subject of intense research and development. The idea behind HIFU is to focus

ultrasonic acoustic waves at pathogenic tissue to rapidly heat and destroy it. This is a

highly promising technology that can potentially deposit energy in biological tissue via

high-frequency acoustic waves without damaging the tissue through which the ultrasound

propagates prior to its focal point. In addition to medical applications, ultrasound can

be used in industrial applications to detect cracks and flaws in construction material -

an application known as ultrasonic testing. Furthermore, seismic inversion uses scattered

acoustic wavefield data to determine the properties of subsurface rock structure. Oil

companies use seismic inversion for exploration of oil and gas fields.

Furthermore, the equations that govern acoustic wave propagation have similar proper-

ties to those describing electro-magnetic waves and thus a better understanding of high-

frequency acoustic wave propagation is often the first step in a better understanding of

electro-magnetic wave propagation. Electro-magnetic waves are used in diverse industrial

applications such as radar and telecommunications.

In these applications, the characteristic length scale of the scatterer is much bigger than

the wavelength λ of the ultrasound. Hence, it is of great importance that we understand

and are able to predict the behaviour of the acoustic wavefield, particularly for the case

when acoustic waves have short wavelengths in comparison with the size of the scatterer.

Forward model problem

The standard equation that governs the acoustic wave propagation can be written as
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follows,

∇2φ =
1

c2

∂2φ

∂t2
,

where c is a constant that represents the speed at which the wave propagates and ∇2 is

the Laplacian. The equation is a second order linear partial differential equation known

as the wave equation. If the time dependence of φ(x, t) is known to be of the form

φ(x, t) := u(x) exp(−iωt), (1.1)

where ω = 2π/λ, and λ is the wavelength, then such an acoustic wavefield is called

time-harmonic. For time-harmonic wavefield, the wave equation reduces to the Helmholtz

equation

∇2u+ k2u = 0,

where k = ω/c is a parameter called the wavenumber.

There are two types of scattering problems: the forward problem and the inverse problem.

The forward problem is concerned with determining scattered wavefield data given the

properties of the incident wavefield and the scatterer.

On the other hand, the inverse problem is concerned with determining the properties of

the scatterer given the incident and scattered wavefields are known. An example of the

inverse problem can be found in sonar devices: a known wave is emitted and the scattered

wavefield data is examined to determine the nature of the object upon which it scattered.

In this case, the higher the frequency used, the more details of the geometry can be

recovered.

The forward model problem is typically formulated as a boundary value problem. In the

case of the Helmholtz equation on an unbounded domain, this is to be solved subject to

boundary conditions and a radiation condition.

Let us consider the underlying “simpler” mathematical problem (that we refer to as a

model problem) that underpins the modelling, or simulation, of the wave propagation

phenomena in applications described earlier.

In the following definition we formulate the model forward problem in the unbounded

domain.

Definition 1.1. We define the exterior model scattering problem as follows. We seek

the total wavefield u that satisfies the Helmholtz equation in the exterior domain to the

scatterer, Ω, with Lipschitz boundary Γ,

∆u+ k2u = 0 in Rd \ Ω, (1.2)
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and the Dirichlet boundary condition,

u = 0, on Γ, (1.3)

with the scattered wavefield, uS, satisfying Sommerfeld radiation condition:

∂uS

∂r
− ikuS = o

(
r

1−d
2

)
, (1.4)

as |r| → ∞ uniformly in x̂ = x/r, where us = u − uI , where uI represents incident

wavefield and d denotes the dimension.

 

 

Ω

Γa

Figure 1.1: Example illustration of scattering in 3D. The plot illustrates the the incident wavefield
propagating in the direction of the vector a. The boundary of the three dimensional scatterer Ω is
denoted by Γ.

The exterior scattering problem is known to have a unique solution provided that u and

∇u are locally square integrable [34].

The wavenumber parameter k is typically very large in the applications described earlier.

The analytic solution of the Helmholtz equation is possible only for simple obstacles such

as a circle. For more general obstacles, asymptotic and numerical methods for finding

approximate solutions need to be applied.

The purpose of the thesis

Ultimately, this thesis is devoted to the development, analysis, and implementation of the

methods for solving the model exterior scattering problem with controllable accuracy for

any wavenumber k.

Conventional numerical methods, based on polynomial interpolation, have been success-

fully applied to the model exterior scattering problem, and subsequently to the simulation
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of the acoustic wave propagation in applications. However, the applicability of these

methods is limited to moderately low wavenumbers k. We explain this fact in more detail

shortly.

At much higher frequencies, asymptotic methods can be used to find an approximate

solution to the forward problem. However, asymptotic methods are not error-controllable

for all k.

Asymptotic methods

Asymptotic methods are typically used to construct the solution to the scattering problem

as a series, called an asymptotic expansion, with respect to the small parameter 1/k. For

example, well known ray methods are used successfully in many engineering disciplines.

The solution to the Helmholtz equation (1.2) is sought in the form of the ray expansion

as follows:

u(x) =

 ∞∑
j=0

Aj(x)

(ik)j

 exp (ikτ(x)) . (1.5)

The unknown functions in (1.5), are the Eikonal τ(x) and the asymptotes A0(x), A1(x),. . . ,

etc. The equations for τ(x) and Aj(x), are obtained by formally substituting the Ray ex-

pansion (1.5) into the Helmholtz equation (1.2) and equating terms of order k2, k1, k0,

k−1 and so on. Namely,

(i) the Eikonal equation (by equating the terms of order k2):

|Oτ(x)|2 = 1, (1.6)

for x ∈ R2 \ Ω, and

(ii) the Transport equation (by equating the terms of order k1−n):

4τ(x)An(x) + 2 (∇τ(x) · ∇An(x)) = −4An−1(x), n = 0, 1, 2, ..., (1.7)

where, by convention, A−1 = 0.

Geometrical optics and the geometrical theory of diffraction [65] provide a general set of

instructions for the construction of the asymptotic expansion of the solution to a scattering

problem.

For the case of high-frequency scattering by a convex obstacle, asymptotic theory suggests

that the normal derivative of the solution to the exterior scattering problem can be written

as the product of an explicitly known oscillatory function and a relatively slowly-varying

function, V (x, k),
∂u

∂n
(x) = kV (x, k) exp(ikx · a), x ∈ Γ, (1.8)
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where a is a unit vector representing the direction of incidence and the unit vector n is

the outward unit normal to the boundary.

In the case of non-convex objects, the function ∂u/∂n in (1.8) has more complicated

asymptotic behaviour, e.g. diffraction from edges or corner points [15, 6], or multiple

scattering (non-convex domains) [18, 42, 43]. As we shall see later, results on asymptotic

behaviour of the solution are of fundamental importance to the development and analysis

of efficient numerical techniques for solving high-frequency scattering problems.

Conventional numerical methods

Both finite element and boundary element methods can be applied to scattering problems.

While finite element methods are typically used for solving scattering problems in inho-

mogeneous bounded media, boundary element methods are a popular choice for solving

scattering problems in unbounded domains in predominantly homogeneous media. This is

because the exterior scattering problem posed on a homogeneous unbounded domain can

be reformulated as a problem on the surface of the scatterer, hence reducing the dimension

of the problem posed. Typical features of finite element and boundary element methods

in the context of exterior scattering problems are outlined in the table below.

Finite element methods (FEMs) Boundary element methods (BEMs)

are suitable for propagation in homoge-

neous and inhomogeneous media

are suitable for predominantly homoge-

neous media

require the mesh to cover the whole scat-

tering domain

the only require the mesh to cover the

boundary of the scatterer

lead to large sparse matrices lead to smaller dense matrices

applied to problems on unbounded do-

mains, require the radiation condition to

be approximated by an artificial boundary

condition (e.g. to truncate the domain)

are more suitable for scattering problems

on unbounded domains

Conventional finite element and boundary element methods are based on (piecewise) poly-

nomial approximation of the solution and cope very badly with high oscillations. Indeed,

it is commonly recommended that with conventional methods, one should carry out a
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fixed number of function evaluations per wavelength in order to capture the oscillatory

behaviour of the solution to the scattering problem accurately. While classical methods

can be effective for small and moderate wavenumbers, as frequency increases, to maintain

the accuracy, the number of function evaluations grows with k at least as kd−1, where

d denotes the dimension of the scattering domain. Therefore, as k → ∞ conventional

numerical methods become essentially numerically intractable.

The finite element approach has even further increase in computational costs due to the

“pollution error” contribution [9, 7, 8]. For the case of 1D model problem,

d2u

dx2
(x) + k2u(x) = −f(x), x ∈ (0, 1) u(0) = 0,

du

dx
(1) + iku(1) = 0,

assuming only kh < 1 (where h is the size of the biggest finite element), the relative finite

element error in the H1-norm, satisfies the estimate:

e1 ≤ C1kh+ C2k
3h2, (1.9)

where C1 and C2 are constants independent of k and h. The second term is often referred

to as a “pollution error” term. The error bound (1.9) indicates that for growing k, even if

hk is controlled, the error still grows linearly with k.

Novel FEMs

Several recent developments have enabled finite element methods to be applied to high-

frequency scattering problems. The partition of unity method proposed by Babuška and

Melenk [10] is a general technique in which the approximation space is enriched with func-

tions that represent the oscillatory solution well. For example, sets of plane wave functions

and Bessel functions provide complete sets for the approximation of an oscillatory wave-

field. Plane waves have been successfully implemented in a finite element (PUFEM),

approach e.g. in [85]. In the PUFEM, the finite element space is constructed by multiply-

ing shape functions, which form a partition of unity, with functions that have good local

approximation properties. However, the number of degrees of freedom is still required to

grow linearly with k as k →∞ to maintain the accuracy.

Further classes of finite element methods, based on the inclusion of the wave nature of

the solution into the formulation, are the ultra weak variational formulation (UWVF)

[24, 77, 22, 52] and the Galerkin least squares finite element methods [77, 98]. The UWVF

methods have been shown to be equivalent to a Galerkin least squares method that uses the

Trefftz variational formulation, see [49]. Trefftz-type methods are based on approximation

spaces made of functions which locally solve the Helmholtz equation. Thus PUFEM and

UWVF methods are both Trefftz-type methods. Recently, error analysis of Trefftz-type

Galerkin methods for the time-harmonic Maxwell equations has been carried out in [57]
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and in particular for UWVF methods in [22].

Novel BEMs

The partition of unity method has also been successfully applied in a boundary element

approach (PUBEM). The numerical experiments [58, 87] suggest that such an approach

significantly reduces the computational costs of the boundary element method.

Recently, a new class of methods called hybrid asymptotic-numerical boundary element

methods has attracted considerable interest. These methods, related to the PUBEM,

incorporate the wave nature of the solution into the approximation space [1, 2, 20, 51, 28,

87, 27, 40].

BEMs allow the scattering problem (1.2)-(1.4) to be reformulated for the normal derivative

of the solution v(x) = ∂u(x)/∂n(x) ∈ L2(Γ) as an integral equation on the boundary

Γ using Green’s integral representation theorem [34, Theorem 2.1]. For example, the

function u is the solution of the exterior scattering problem (1.2)-(1.4) if and only if its

normal derivative v satisfies the boundary equation (see Theorem 2.2), for x ∈ Γ, for a

fixed η ∈ R \ {0},

1

2

∂u

∂n
(x) +

∫
Γ

(
∂Φ(x,y)

∂n(x)
− iηΦ(x, y)

)
∂u

∂n
(y)dS(y) =

∂uI

∂n
(x)− iηuI(x), (1.10)

where Φ(x,y) is the fundamental solution of Helmholtz equation defined later in Theorem

2.1. For the case when the incident wave is planar and the scatterer is convex, the solution

is known to be of the form (1.8), i.e. the product of an explicitly known oscillatory term

and a relatively slowly-varying function V . In [1, 2] the ansatz (1.8) is utilised so that

only the slowly-varying V is approximated. The authors of [1, 2] suggested that in order

to maintain the accuracy of the method, the number of degrees of freedom must grow only

as O(k1/3) as k →∞.

In [20], the boundary integral formulation (1.10) is modified using the ansatz (1.8) so

that the solution of the modified equation is the relatively slowly-varying V . In detail,

multiplying the boundary integral equation (1.10) by exp(−ikx ·a), we obtain an integral

equation for V (x, k), x ∈ Γ:

1

2
V (x, k) +

∫
Γ

(
∂Φ(x,y)

∂n(x)
− iηΦ(x, y)

)
V (y, k) exp(ik(y − x) · a)dS(y) = i(n · ak − η).

(1.11)

The function V is slowly-varying away from the shadow boundaries (transition points).

However, even when V is slowly-varying, the evaluation of the integral in (1.11) requires

the number of quadrature points to grow proportionally with k to maintain the accuracy.

In [20], a novel method called the localisation principle tackles the problem of evaluating
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the integral using an error-controllable extension of the method of stationary phase. The

idea of the localisation method is that the highly-oscillatory integral needs only be approx-

imated around the critical points of its integrand where the only significant contribution

to the overall integral is made. The intuitive justification for this phenomenon is that

away from critical points the oscillations in the integrand cancel each other out.

The critical points in the integral in (1.11) for a fixed x are

• the kernel singularity, when y = x;

• the stationary points of the phase,

φ(y) = |y − x|+ (y − x) · a.

Expanding the phase function in the Taylor series, one can find that the oscillatory part

of the integrand in (1.11) is of the form exp(ikxp) with:

• p = 1 around the kernel singularity,

• p = 2 around the stationary points other than the shadow boundaries,

• p = 3 around the shadow boundary stationary points, provided the curvature does

not vanish.

The concept of the localised integration in [20] can be understood by considering an

example. Integrate

I
[−A,A]
k [fA] :=

∫ A

−A
fA(x) exp(ikxp)dx,

where fA(x) = S(x, cA,A)(1 − S(x,−A,−cA)) for 0 < c < 1 and the smooth cut-off

function S(x, x0, x1) is defined as:

S(x, x0, x1) =


1, for x ≤ x0,

exp
(

2e−1/u

u−1

)
, for x0 < x < x1, u = |x|−x0

x1−x0
,

0, for x ≥ x1.

(1.12)

Then, for 0 < ε < A and for fε(x) = fA(Ax/ε), see [20, Lemma 3.1],

∫ A

−A
fA(x) exp(ikxp)dx =

∫ ε

−ε
fε(x) exp(ikxp)dx+O

(
(kεp)−n

)
, n ≥ 1. (1.13)

Thus, under certain conditions on kεp, the integral I
[−ε,ε]
k [fε] (that can be efficiently

computed using classical quadrature methods) is a good approximation to the integral

I
[−A,A]
k [fA].
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Integration around the shadow boundaries requires special consideration. The function

V is not slowly-oscillatory around the shadow boundary. In fact, the n-th derivative of

V grows with order O(kn/3) as k → ∞. In order to overcome this, a change of variable

is employed before the localised integration is applied. Wavenumber-independent conver-

gence was observed experimentally in [20]. The method has been subsequently extended

to 3D in [19].

A similar ansatz and ideas have been considered for the problem of scattering by non-

convex obstacles in [18]. The theory for this method has been subsequently advanced in

[43, 42] for the case of multiple scatterers. However, the frequency-explicit error analysis

of the hybrid methods has not been developed in these references.

To summarize, hybrid asymptotic-numerical methods are methods for solving the bound-

ary integral equation (1.10) using Galerkin method with the finite dimensional space that

incorporates the ansatz such as (1.8) for the case of planar wave scattering by smooth

convex objects. Wavenumber-explicit error estimates of the hybrid asymptotic-numerical

methods have been obtained in [40] for the case of a convex obstacle with smooth boundary

Γ, and in [27] by a convex polygon.

1.2 The main aims of the thesis

The main aims of this thesis are:

A. The rigorous justification of the asymptotic result (1.8) is of considerable interest to us

since it plays a key role in the development and analysis of efficient numerical techniques for

solving scattering problems. The often cited paper by Melrose and Taylor [75] provides

a very technical proof of this result and will not be reproduced here. It is of benefit,

however, to provide a rigorous justification of this result that does not require substantial

a priori knowledge of short-wave diffraction theory. This potentially provides a better

understanding of the behaviour of the solution to the scattering problem to non-specialists

in the area of short-wave diffraction. In numerical analysis, deeper understanding of such

results may ultimately lead to development of new, more efficient algorithms for solving

scattering problems.

B. Another aim of this thesis is to develop, analyse and implement an efficient numerical

method for the approximation of the integrals of the form,∫ ∫
D
M(s, t) exp (ikΨ(s, t)) dsdt, (1.14)

for any wavenumbers k, where D is either rectangular or triangular domain. The func-

tion M in (1.14) may have algebraic singularities and the function Ψ (called the “phase-

function”) is non-linear in s and t and is smooth.

9
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The Galerkin discretisation of (1.10) leads to a dense system of linear equations, the

coefficients of which are of the form (1.14). An accurate computation of such integrals

using classical quadratures becomes unfeasible as k → ∞. Such systems are common

for hybrid boundary element methods and their efficient assembly remains a substantial

hurdle in any practical implementation of the Galerkin method.

Filon-type methods are designed for computing one-dimensional highly-oscillatory inte-

grals. We utilise a Filon-type quadrature method known as Filon-Clenshaw-Curtis quadra-

ture when constructing the numerical scheme for an efficient and accurate computation of

(1.14).

C. Once the numerical integration method in B is developed, one must make sure that

the accuracy of the Galerkin method does not deteriorate due to inexact approximation

of integrals (1.14). Thus, robust error estimates for the resulting “fully-discrete” Galerkin

method (that incorporates the quadrature) must be derived.

D. This will lead us to an interesting subproblem: a robust error analysis of the Filon-

Clenshaw-Curtis quadrature. Filon-type quadratures achieve high accuracy for the ap-

proximation of integration of f(x) exp(ikx) with a relatively small number of quadrature

points. In fact, for sufficiently smooth functions f and a fixed number of quadrature

points, N , the accuracy increases as the wavenumber k grows. Only recently in [41] have

error estimates been obtained for the Filon-Clenshaw-Curtis quadrature that are explicit

in the wavenumber k, the number of quadrature points N and Sobolev regularity of the

integrand function f . However, error estimates for the Filon-type quadratures applied to

highly-oscillatory integrals with algebraic singularities remained an open problem which

we also solve in this thesis.

1.3 The main achievements of the thesis

The main achievements of this thesis are:

1. This thesis proves the result (1.8) for the model problem of scattering by a circle

using only elementary arguments following the methods of analysis developed in [5]

and [78] and making them more explicit. The extension of this proof to more general

convex scatterers is also outlined.

2. This thesis develops a numerical integration method for accurate and efficient compu-

tation of highly-oscillatory double integrals (1.14) that arise in scattering problems.

The numerical method transforms the integrals into a form suitable for Filon-type

integration. This has been briefly discussed in our recent publication [39].
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3. This thesis makes two novel contributions in the analysis of the Filon-Clenshaw-

Curtis quadrature. Firstly, the analysis of the Filon-Clenshaw-Curtis quadrature is

extended to obtain novel robust error estimates in terms of the wave parameter k,

number of quadrature points and the regularity of the integrand function. Secondly,

the error estimates for the composite Filon-Clenshaw-Curtis quadrature applied on

graded meshes are derived. This technique can be successfully applied to compute

singular highly-oscillatory integrals that often arise when solving scattering problems

with error that is independent of k and unaffected by the strength of the singularities.

4. This thesis derives an error analysis for the fully-discrete Galerkin method, i.e.

Galerkin method incorporating quadrature for computing (1.14). The convergence

properties of the semi-discrete Galerkin method are preserved in the resulting fully-

discrete version.

5. This thesis implements the fully-discrete Galerkin scheme in MATLAB for a standard

formulation of the hybrid asymptotic numerical method and for a recently derived

“star-combined” formulation [96]. Numerical results show even better convergence

rates than the theoretical prediction for k →∞.

1.4 Outline of the thesis

Before presenting the layout of the thesis, some general remarks should be made about

the structure of each chapter. The four main chapters of the thesis address its four main

aims. Each chapter contains an introduction where the motivation for the chapter and its

content are outlined. In addition, a review of the existing literature is presented.

In Chapter 2, we present the mathematical framework for the thesis. We discuss in

more detail the hybrid numerical-asymptotic method for two boundary integral equations:

with standard combined and star-combined potential operators. We survey the available

literature for the analysis of the semi-discrete Galerkin method and present the error

estimates for the fully-discrete Galerkin method.

The error estimates for the numerical approximation of the slowly-varying part V (x, k) of

the solution v(x) in (1.8) are obtained from asymptotic theory. In Chapter 3, we derive

these estimes for the case of scattering by a circle. The strategy for solving the scattering

problem for the circle underpins the Model Problem Method developed in [5]. We outline

the extension of the results obtained for the case of the circle to more general convex

scatterers.

In Chapter 4, we present a novel technique for computing the highly-oscillatory double

integrals with singularities that arise from the the Galerkin discretization. We do this

by analysing the behaviour of the double integrals and transforming them into integrals

11



1. Introduction

that are suitable for Filon-type quadrature. We then analyse the behaviour of the result-

ing integrands by studying the location and type of singularities that are present in the

integrand.

In Chapter 5, we provide an extensive literature survey for the Filon-type quadratures.

We extend the results of [41] to obtain error estimates for the Filon-Clenshaw-Curtis

quadrature in terms of the Chebyshev norm of the slowly-varying part of the integrand,

f , instead of the Sobolev norm. This allows us to derive the error bounds for the compos-

ite Filon-Clenshaw-Curtis quadrature applied on graded meshes. Such composite Filon-

Clenshaw-Curtis methods provide accurate and efficient tools for the approximation of the

highly-oscillatory integrals with algebraic singularities.

Finally, in Chapter 6, we derive the k-explicit error estimates of the fully-discrete Galerkin

approximation. We conclude the chapter with a discussion on the results of numerical

experiments.

12



Chapter 2

Mathematical framework

2.1 Introduction

Let us consider the forward model problem of the acoustic scattering of an incident plane

wavefield uI(x) = exp(ikx·a) by a bounded sound soft obstacle Ω with a boundary Γ. The

unit vector a denotes the direction of incidence. We seek the total wavefield u := uI + uS

that solves the exterior model scattering problem,

∆u+ k2u = 0 in Rd \ Ω, (2.1)

u = 0 on Γ, (2.2)

∂uS

∂r
− ikuS = o

(
r

1−d
2

)
, (2.3)

as |r| → ∞ uniformly in x̂ = x/r, where uS represents the scattered wavefield, uI repre-

sents the incident wavefield, and d denotes the dimension.

The boundary value problem (2.1)-(2.3) can be reformulated as an integral equation on

the boundary Γ using Green’s identities. Green’s identities follow from the divergence

theorem 1 and are defined as follows:

• Green’s first identity

For u ∈ C1(Ω) and v ∈ C2(Ω ∪ Γ),∫
Ω
u∆v dx =

∫
Γ
u
∂v

∂n
ds(x)−

∫
Ω
∇u · ∇v dx; (2.4)

• Green’s second identity

1Divergence Theorem
Let F : Ω ∪ Γ→ Rd, d = 2, 3, with each component of F in C1(Ω ∪ Γ), then∫

Ω

∇ · F (x) dx =

∫
Γ

n(x) · F (x) ds(x).

13



2. Mathematical framework

If additionally u ∈ C2(Ω ∪ Γ), then∫
Ω

(u∆v − v∆u) dx =

∫
Γ

(
u
∂v

∂n
− v ∂u

∂n

)
ds(x). (2.5)

A useful integral representation for the solution u of (2.1) relating u to its values on the

boundary Γ is given in the Green’s theorem presented below.

Theorem 2.1. Green’s Theorem [33, Theorem 3.3] Let u ∈ C2(Rd \Ω) be a solution to

the Helmholtz equation (2.1) satisfying the Sommerfeld radiation condition (2.3). Then,

u(x) =

∫
Γ

(
u(y)

∂Φk(x,y)

∂n(y)
− ∂u

∂n
(y)Φk(x,y)

)
ds(y), x ∈ Rd \ Ω (2.6)

where the unit vector n(x) is an outward normal to Γ and ∂/∂n denotes a derivative in

the normal direction. The function Φk(x,y) defined as

Φk(x,y) =
i

4
H

(1)
0 (k|x− y|), in R2,

where H
(1)
0 (t) is the Hankel and

Φk(x,y) =
1

4π

eik|x−y|

|x− y| , in R3.

represents the fundamental solution of the Helmholtz equation.

The plan for this chapter is as follows. In Section 2.2, we introduce the standard combined

and star-combined potential integral equations for determining v = ∂u/∂n. We will derive

the boundary equations from Green’s integral representation theorem. In Section 2.3.1

we outline the construction of an optimal approximation space X for the semi-discrete

Galerkin method that solves the boundary integral equations. In Section 2.3.2, we outline

the strategy for construction and analysis of the fully-discrete Galerkin method.

14



2. Mathematical framework

2.2 Boundary integral representation

In this section, we derive two boundary integral equation formulations for the scattering

problem (2.1)-(2.3) in Section 2.2.1 and Section 2.2.2. Using Green’s second identity and

bearing in mind that uI is a free space solution to the Helmholtz equation, we obtain,∫
Γ

(
uI(y)

∂Φk(x,y)

∂n(y)
− ∂uI

∂n
(y)Φk(x,y)

)
ds(y)

=

∫
Ω

(
uI(x)∆Φk(x,y)− Φk(x,y)∆uI(x)

)
dx

=

∫
Ω
uI(x)

(
∆Φk(x,y) + k2Φk(x,y)

)
dx = 0, x ∈ Rd \ Ω. (2.7)

On the other hand, we also have, for x ∈ Rd \ Ω,

uS(x) =

∫
Γ

(
uS(y)

∂Φk(x,y)

∂n(y)
− ∂uS

∂n
(y)Φk(x,y)

)
ds(y). (2.8)

Therefore, adding (2.7) and (2.8) and imposing the boundary condition (2.2), we obtain,

uS(x) =

∫
Γ

(
u(y)

∂Φk(x,y)

∂n(y)
− ∂u

∂n
(y)Φk(x,y)

)
ds(y)

= −
∫

Γ

∂u

∂n
(y)Φk(x,y)ds(y), x ∈ Rd \ Ω.

Hence we obtain, see also [34, Theorem 3.12]:

u(x) = uI(x)−
∫

Γ

∂u

∂n
(x)Φk(x,y)ds(y), x ∈ Rd \ Ω. (2.9)

2.2.1 Standard combined-potential boundary integral equation

We introduce the following notation for the two operators Sk and D′k - the single-layer

potential and the adjoint double-layer potential respectively. Both operators solve the

Helmholtz equation and satisfy the Sommerfeld radiation condition, and are defined as

follows:

Skφ(x) :=

∫
Γ

Φk(x,y)φ(y)dS(y) and D′kφ(x) :=

∫
Γ

∂Φk(x,y)

∂n(x)
φ(y)dS(y). (2.10)

Taking the trace of (2.9) and using (2.2) we obtain:

Sk
(
∂u

∂n

)
(x) = uI(x), x ∈ Γ. (2.11)

This equation is an integral equation of the first kind. For an infinite set of parameters

15



2. Mathematical framework

k, called spurious frequencies, the integral equation (2.11) is not uniquely solvable. In

other words, there exist non-trivial solutions u to the Helmholtz equation in the interior

domain Ω satisfying homogeneous Neumann boundary conditions ∂u/∂n(x) = 0, see [33,

Theorem 3.30].

A second kind boundary integral equation can be derived by taking the trace of (2.11)

(see [66, Theorem 6.13]),(
1

2
I +D′k

)
∂u

∂n
(x) =

∂uI

∂n
(x), x ∈ Γ. (2.12)

This boundary equation also suffers from spurious frequencies as proved in [33, Theorem

3.32] and therefore is not uniquely solvable either.

To overcome this, the two integral equations are combined with a coupling parameter

η ∈ R \ {0}, to obtain the combined potential integral equation:

1

2
v +D′kv − iηSkv =

∂uI

∂n
− iηuI , on Γ, (2.13)

where v(x) := ∂u/∂n(x) ∈ L2(Γ), for x ∈ Γ. The combined potential integral equation is

often attributed to Burton and Miller [34].

Theorem 2.2. If u ∈ C2(R2 \Ω) ∩C(R2 \Ω) satisfies the boundary value problem (2.1)-

(2.3) then, for every η ∈ R \ {0}, the function v := ∂u/∂n ∈ L2(Γ) is a unique solution

of the integral equation:

Rkv = fk, (2.14)

where the integral operator is defined as

Rkv :=
1

2
v +D′kv − iηSkv, (2.15)

and

fk = ∂nu
I − iηuI . (2.16)

Conversely, if v ∈ L2(Γ) satisfies (2.15) for some η ∈ R \ {0}, then u ∈ C2(R2 \ Ω) ∩
C(R2 \ Ω) and satisfies the boundary value problem (2.1)-(2.3).

Proof. See the proof in [27, Theorem 2.5].

Remark 2.3. As shown in [26], the choice of the coupling parameter is essential for

minimising the condition number of the boundary operator in (2.13). The recommended

choices for η (in terms of minimizing the condition number) are to choose it to be propor-

tional to k for large k, and to (log k)−1 for small k in 2D. These choices have initially been
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2. Mathematical framework

justified by theoretical studies on the circle and sphere [66, 68] and on the basis of compu-

tational experience [21]. Recently, analysis and numerical experiments [26, 12] have shown

that these commonly recommended choices are optimal for a wide variety of domains.

Unlike equations (2.11) and (2.12), the boundary integral equation (2.13) is uniquely

solvable in C(Γ) when Γ is sufficiently smooth, for all values of k such that Im k ≥ 0 as

proved in [34, Theorem 3.34]. Moreover, the existence and uniqueness of the solution in

the Sobolev space Hs(Γ), −1 ≤ s ≤ 0 have recently been proved in [27] for the case when

Γ is a general Lipschitz boundary for Im k ≥ 0.

We denote the standard combined potential integral operator by Rk:

Rk :=
1

2
I +D′k − iηSk, (2.17)

The standard combined potential integral equation (2.13) is closely related to another

combined potential integral equation formulation:

Pkv :=
1

2
v +Dkv − iηSkv = −uI , (2.18)

independently suggested (in 1965) by Brakhage and Werner [17], Leis [69] and Panic [86].

The operator Dk is called the double-layer potential. The operators Rk and Pk are adjoint

operators in L2(Γ). They have the same spectrum, norm and condition number [25]. The

solution of the equation (2.13) is known to be the normal derivative of the solution to the

scattering boundary value problem. In this thesis, we consider the operator Rk and the

equation (2.13) since the behaviour of its solution is better understood, particularly for

the case of convex scatterers.

2.2.2 Star-combined potential boundary integral equation

The star-combined boundary integral equation has been introduced in [96].

Theorem 2.4. [96, Lemma 4.1] Suppose u ∈ C2(R2 \Ω)∩C(R2 \Ω) solves the boundary

value problem (2.1)-(2.3) and let η ∈ L∞(Γ). Then, v := ∂u/∂n ∈ L2(Γ) satisfies the

integral equation

Akv = f, (2.19)

where the integral operator Ak is defined as

Ak := (x · n(x))

(
1

2
I +D′k

)
+ x · ∇ΓSk − iηSk, (2.20)

17
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and ∇Γ denotes the surface gradient,

∇ΓSkψ(x) :=

∫
Γ

(
∇xΦ(x,y)− n(x)

∂Φ(x,y)

∂n(x)

)
ψ(y)dy,

and the known function f is defined in terms of uI by:

f := x · ∇uI − iηuI .

Proof. The proof follows the proof of Lemma 4.1 in [96]. Take the surface gradient of

(2.11) (valid since Sk : L2(Γ)→ H1(Γ) and ∂u/∂n ∈ L2(Γ)) to obtain,

∇ΓSk
∂u

∂n
= ∇Γu

I .

Then, equation (2.19) follows by taking the scalar product of the last equation with x 2,

adding (x · n) times (2.12) and subtracting iη times (2.11).

The star-combined operator (2.20) is coercive for all Lipschitz star-shaped domains, uni-

formly in k, see Theorem 2.5 below. The uniform coercivity of the operator leads to the

stability analysis and the k-explicit error analysis of the corresponding hybrid Galerkin

method for any choice of the approximation space. The uniform coercivity property of

the star-combined operator (2.20) is advantageous over the standard combined operator

(2.15) because the standard operator has only been proven to be coercive for a circle and

a sphere, in [40]. The proof of the uniform coercivity of the star-combined operator is

obtained in [96] by a novel application of the Morawetz and Ludwig identity [78].

Theorem 2.5. [96, Theorem 1.1] Suppose that Ω is a bounded star-shaped Lipschitz do-

main and x is the position vector relative to an origin from which Ω is star-shaped. Then,

for all φ ∈ L2(Γ),

Re(Akφ, φ)L2(Γ) ≥ γ‖φ‖2L2(Γ), (2.21)

where Ak is defined as in (2.20) with

η(x) = kr + i
d− 2

2
, (2.22)

where r = |x| and

γ :=
1

2
ess inf

x∈Γ
(x · n(x)) > 0. (2.23)

If a vector n is well-defined everywhere on the boundary ess inf in (2.23) can be replaced

by inf.

2in [96] the combined equation is presented with a suitable vector field Z which we replaced with x
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When Γ is a unit circle or sphere, the star-combined operator Ak reduces to the standard

combined operator Rk with the coupling parameter η given by (2.22). Therefore, Theorem

2.5 provides alternative proofs of the coercivity results as k → ∞ of [40], and also shows

that coercivity holds uniformly for all k on the circle and the sphere provided we make

the choice of coupling constant as in (2.22).

The Galerkin method for solving the star-combined equation (2.19) is essentially no more

difficult to implement than the standard-combined operator (2.15). We will discuss the

implementation of both standard and star-combined formulations in more detail in Chapter

6.

2.3 Galerkin method and its error analysis

Let us consider in more detail the structure for the analysis of boundary element methods

and survey the literature for developments in these areas.

Recall, for example, the standard combined boundary integral equation (2.15),

Rkv = fk.

The variational formulation for (2.15) seeks v ∈ L2(Γ) such that,

ak(v, w) := (Rkv, w) = (fk, w), for all w ∈ L2(Γ). (2.24)

Using standard arguments in the abstract theory of variational methods we deduce that

the solution, v ∈ L2(Γ), of (2.24) is unique if the sesquilinear form, ak, is continuous and

coercive (Lax-Milgram), i.e. there exist constants Bk > 0 and αk > 0 that satisfy the

inequalities

ak(v, v) ≥ αk‖v‖2 ∀v ∈ L2(Γ), coercivity,

|ak(u, v)| ≤ Bk‖u‖‖v‖ ∀u, v ∈ L2(Γ), continuity.
(2.25)

Here the notation ‖ · ‖ represents the L2 norm on Γ, ‖ · ‖L2(Γ).

I. Error estimates for the semi-discrete Galerkin method:

Given a finite dimensional approximation space X, the uniquely determined semi-discrete

Galerkin solution ṽ ∈ X of the system of equations

ak(ṽ, w̃) := (fk, w̃), for all w̃ ∈ X, (2.26)

satisfies the quasi-optimal error estimate (Cea’s Lemma)

‖v − ṽ‖ ≤ Bk
αk

inf
w̃∈X
‖v − w̃‖. (2.27)

19



2. Mathematical framework

The convergence analysis of the semi-discrete Galerkin scheme for the discretisation of the

boundary integral equations consists of two components. The first component is the proof

of stability of the Galerkin method. This is determined by the k-explicit bounds on the

coercivity and continuity constants αk and Bk in (2.25). The second component is the

construction of the approximation space X which ensures the best approximation error is

small for large k.

(a) Continuity and coercivity: The stability of the Galerkin approximation as k →
∞ may be determined by the k-explicit estimates of the continuity and coercivity

constants Bk and αk. Note that the obvious choice for the continuity constant is

Bk = ‖Rk‖, [25]:

|ak(u, v)| = |(Rku, v)| ≤ ‖Rk‖‖u‖‖v‖.

Moreover, the ratio of Bk/αk is bounded below by the condition number of the

operator Rk, see e.g. [25]:

Bk
αk
≥ cond Rk := ‖Rk‖‖R−1

k ‖. (2.28)

Estimates for the standard combined operator Rk defined in (2.17)

The estimates for these constants have only recently been derived for the boundary

integral equation (2.17). In [40] the upper bounds for ‖Rk‖ have been derived for

2D and 3D smooth curves and surfaces Γ, with the coupling parameter η = k to be

bounded as follows, for sufficiently large k,

‖Rk‖ ≤ C1k
1/3, for a circle in 2D or a sphere in 3D,

‖Rk‖ ≤ C2k
1/2, for a Lipschitz scatterer in 2D

‖Rk‖ ≤ C3k, for a Lipschitz scatterer in 3D.

where the constants C1, C2 and C3 are independent of k. Furthermore, in [40] a

lower bound on the coercivity constant αk has been proved for the case when Γ is a

circle to be of the form,

αk ≥
1

2
, for k ≥ k0. (2.29)

Also in [40], the operator Rk has been shown to be uniformly coercive for the case

of the sphere, i.e.

αk ≥ c, for k ≥ k0,

where c is independent of k.

These results have been further extended in [26] and then in the follow up paper [12]

and experimentally verified in [13]. In [26, 12] the upper and lower bounds on the

condition number of the operator Rk have been derived for various geometries of the
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scatterer. The bounds are explicit in the wavenumber k, the coupling parameter η

and the dimension d = 2, 3. The results illustrate strong dependence of the bounds

for the condition number on the geometry of the domains: for example, in 2D, with

η = k,

cond Rk v k1/3 for a circle,

cond Rk v k1/2 for a star-like polygon.

In [13] a numerical method for the estimation of the coercivity constant αk in (2.25)

has been proposed for general boundary integral operators in acoustic scattering by

exploiting properties of their numerical range (or field of values). The numerical

range W (T ) of a bounded linear operator T in Hilbert space H is defined as

W (T ) := {(Tu, u), u ∈ H, ‖u‖ = 1}. (2.30)

The operator T is coercive if and only if 0 is not in the closure of its numerical range

as shown in [13, Proposition 3.3]. Numerical experiments conducted in [13] suggest

that the standard combined operator Rk is coercive for a wide range of domains by

showing that the numerical range of the operator Rk,

W (Rk) = {ak(u, u), u ∈ L2(Γ), ‖u‖ = 1},

does not contain 0.

Estimates for the star-combined operator Ak
For the star-combined operator, the coercivity constant αk that does not depend

on k is given in (2.23). Moreover, if Γ is Lipschitz, the operator Ak is a bounded

operator on L2(Γ) and the continuity constant Bk satisfies:

‖Bk‖ ≤ Ck(d−1)/2

(
1 +
‖η‖∞
k

)
, (2.31)

for all k ≥ k0 > 0, where d denotes the dimension and where C is independent of k

and η [96, Theorem 4.2]. Note that with η given by (2.22), ‖η‖∞ = O(k) as k →∞,

therefore, ‖Bk‖∞ ≤ Ck(d−1)/2. As we will see later, the implementation of the star-

combined equation (2.19) requires some additional work to “set up” compared to

the standard combined equation (2.19). However, the star-combined operator has

the advantage of being uniformly coercive for all Lipschitz star-shaped domains.

(b) Approximation spaces: Constructing an optimal approximation space and obtain-

ing explicit best approximation error estimates is a difficult task. It requires detailed

results from the asymptotic theory on the behaviour of the exact solution of the cor-
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responding boundary integral equation. Such a robust analysis has been carried out

in [40] and [27] for smooth and convex obstacles and convex polygons respectively.

In order to ensure that the best approximation error is small, an ansatz such as (1.8)

is incorporated in the approximating space X so that only the slowly-varying function

V is approximated rather than the highly-oscillatory function v. For example, for

the case of the scattering by convex obstacles,

v(x) = kV (x, k) exp(ikx · a), x ∈ Γ. (2.32)

for planar wave incidence. Essentially, the approximation space is then constructed

so that the basis functions are a product of a suitable polynomial basis and the

known oscillatory function exp(ikx · a).

From the asymptotic theory (see also Chapter 3), for the case of smooth convex

obstacles, the slowly-varying function V is known to have a different asymptotic

behaviour in the illuminated, shadow and transition domains (or “Fock” domains)

of the boundary Γ. In [40], a partition of unity is introduced to separate the bound-

ary Γ into these regions. The slowly-varying function V is then approximated by

polynomials separately on each region of the boundary. Then, the approximation

space is of the form,

X := XIlluminated × XTransition × XShadow.

The wavenumber-explicit, best approximation error can then be found by utilising

the information on the asymptotic behaviour of V . We discuss this in more detail

in Chapter 3.

II. Error estimates for the fully-discrete Galerkin method:

The Galerkin discretisation (2.26) leads to a dense system of linear equations that requires

the computation of highly-oscillatory double integrals with singularities: ak(φ, ψ), where

φ, ψ ∈ X. Using conventional numerical quadratures to assemble the discretisation matrix

is computationally expensive and would destroy the attractive theoretical computational

cost of the hybrid method [40] for high-frequency problems.

In practice, we seek a fully-discrete Galerkin solution, ˜̃v ∈ X, that satisfies the following

system of equations:

ãk(˜̃v, φ) = (fk, φ), for all φ ∈ X, (2.33)

where ãk(ψ, φ) denotes an approximation to ak(ψ, φ) obtained by an efficient numerical

quadrature suitable for highly-oscillatory integrals.

Cea’s Lemma (2.27) determines the error bounds of the semi-discrete solution that is

obtained assuming that integrals ak(ψ, φ), φ, ψ ∈ X are computed exactly.
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The following theorem, known as the Strang Lemma, determines the error bounds of the

fully-discrete Galerkin method. The error bounds incorporate the error contribution of

the inexact approximation of the integrals ak(ψ, φ) by ãk(ψ, φ) for all φ, ψ ∈ X.

Theorem 2.6. Strang Lemma [30, Theorem 4.2.2]

Consider the family of discrete problems (2.33) and assume that the associated sesquilinear

form ãk is coercive and continuous:

1) ãk(z, z) ≥ α̃k||z||2 ∀z ∈ X,

2) |ãk(z, w)| ≤ B̃k||z||||w|| ∀z, w ∈ X.

Then the following holds:

‖v − ˜̃v‖ ≤ inf
z∈X

{(
1 +

B̃k
α̃k

)
‖v − z‖+

1

α̃k
sup
w∈X

|ak(z, w)− ãk(z, w)|
‖w‖

}
, (2.34)

where ˜̃v ∈ X is the fully-discrete Galerkin solution that satisfies the following system of

equations (2.33).

We will use Theorem 2.6 in Section 6.4 of Chapter 6, where we derive the error bounds of

the fully-discrete Galerkin solution.

2.3.1 Semi-discrete Galerkin method

In this section, we give an overview of the semi-discrete Galerkin method applied to the

exterior scattering problem for 2D scatterers with smooth and convex obstacles. We

present the error estimate for the semi-discrete Galerkin method obtained in [40].

We parametrise the convex boundary Γ by 2π-periodic parametrisation:

Γ = {γ(s) : s ∈ [0, 2π]} ,

where |γ ′(s)| > 0 for all s ∈ [0, 2π]. We define the illuminated part of the boundary

as an interval in [0, 2π] where n(γ(s)) · a < 0, where n is the outward normal to the

boundary Γ and a is the direction of incidence. Similarly, in the shadow part we have

n(γ(s)) · a > 0. Finally, we define the two transition regions as intervals which contain

the transition points s = t1 and s = t2, satisfying: n(γ(s)) · a = 0, see Figure 2.1.

We denote four intervals in [0, 2π] representing the illuminated, two transition and shadow

parts of the boundary as Λ1, Λ2, Λ3 and Λ4 respectively. The solution, v, of the boundary

integral equation, e.g. (2.15), is known to be of the form (2.32). The relatively slowly-

varying part, V , of the solution has different asymptotic behaviour in the illuminated,

shadow and transition regions of the boundary Γ.
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Figure 2.1: Parameterised boundary is split into four domains, where the solution has different
asymptotic expansions as k →∞.

Approximation space In order to reflect the structure of the solution, we introduce a

partition of unity: for all j = 1, 2, 3, 4 and for χj ∈ L∞[0, 2π],

supp χj = Λj , 0 ≤ χj(s) ≤ 1, and

 4∑
j=1

χj

 (s) = 1, s ∈ [0, 2π]. (2.35)

Then we write the solution in each zone of the boundary as follows:

χj(s)v(s) = kVj(s, k) exp(ikγ(s) · a), (2.36)

where Vj(s, k) := χj(s)V (s, k), j = 1, 2, 3, 4, denotes the unknown “amplitudes” of v in the

illuminated (l = 2), transition (l = 1, 3), and shadow (l = 4) parts of the boundary. The

solution v is known to be exponentially small in the shadow region. Thus, we approximate

the solution in the shadow part of the boundary Λ4 by zero.

In this thesis, we consider a partition of unity χj , j = 1, 2, 3, 4 with χj defined as,

χj(s) =

{
1, if s ∈ Λj ,

0 if s /∈ Λj .

We can write the solution v as follows,

v(s) = k

3∑
j=1

Vj(s, k) exp(ikγ(s) · a) + χ4(s)v(s). (2.37)

The asymptotic expansions of Vl, l = 1, 2, 3 are presented in Theorem 3.1, Theorem 3.3

and Theorem 3.2 in Chapter 3. Hence, we construct the approximation space Vd
k for the

Galerkin discretization,

Vd
k = ⊕3

j=1V
j
k, (2.38)

where V2
k is an approximation subspace for the illuminated part Λ2 and V1

k and V3
k for

24



2. Mathematical framework

transition parts, Λ1, and Λ3 respectively,

Vjk = span {φj,m, m = 0, ..., dj : φj,m(s) = kPm(s) exp(ikγ(s) · a) , s ∈ Λj} ,

where {Pm}djm=0 is a suitable basis for the polynomials of degree dj .

We seek a semi-discrete Galerkin solution ṽ ∈ Vd
k which satisfies the following system of

equations:

ak(ṽ, w) = (fk, w), for all w ∈ Vdk. (2.39)

The error of the semi-discrete Galerkin scheme is bounded as follows [40]:

Theorem 2.7. Let ṽ ∈ Vd
k be the semi-discrete Galerkin solution with Λj defined as

follows,

Λ1 = [t1 − c1k
−1/3, t1 + c2k

−2/9], Λ2 = [t1 + c2k
−2/9, t2 − c2k

−2/9],

Λ3 = [t2 − c2k
−2/9, t2 + c1k

−1/3], Λ4 = [t2 + c1k
−1/3, 2π] ∪ [0, t1 − c1k

−1/3]. (2.40)

Let the vector d in Vd
k be equal to d = (dT , dI , dT ). Then for all 6 ≤ n ≤ min {dI , dT }+ 1,

there exists a constant Cn such that

‖v − ṽ‖ ≤ Cn
(
Bk
αk

)[
k

{
k−2/3

(
k1/9

dI

)n
+ k−4/3

(
k1/9

dT

)n}
+ exp (−c0k

δ)

]
, (2.41)

where Cn is independent of k, and dI and dT are the degrees of the polynomial approxi-

mations in the illuminated and transition zones respectively.

We will discuss the derivation of this result in more details in Chapter 6.

The three terms in (2.41) in curly brackets represent the error bounds of the best poly-

nomial approximations in the illuminated, transition and shadow parts of the boundary

respectively.

Taking the polynomial basis of the same degree in the illuminated and transition domains:

dI = dT = d, the estimate (2.41) simplifies to the following,

‖v − ṽ‖ ≤ Cn
(
Bk
αk

)
k

{
k−4/3

(
k1/9

d

)n
+ exp (−c0k

δ)

}
. (2.42)

The error bound (2.42) suggests that in order to maintain accuracy as k → ∞, the

polynomial degrees need only grow very mildly with k, more precisely, as k1/9. This is a

substantial reduction in complexity from their conventional analogues.
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2.3.2 Fully-discrete Galerkin method

We can write the equation (2.39) in a matrix form:

RV :=

R[1,1] R[1,2] R[1,3]

R[2,1] R[2,2] R[2,3]

R[3,1] R[3,2] R[3,3]


V 1

V 2

V 3

 =

F 1

F 2

F 3

 =: F . (2.43)

In the equation (2.43), the vectors V and F and the matrix R are defined as follows.

(i) The right hand side vector, F , is defined as follows:

F = [F 1,F 2,F 3]T , where F j(m) = (fk, φj,m),

where fk(s) = ∂n(s)u
I(s)− iηuI(s). Note that F j(m) is a one-dimensional integral with a

non-oscillatory, well-behaved integrand. In fact, since

∂nu
I(s) := ∇uI(γ(s)) · n = ik(a · n) exp (ikγ(s) · a),

we have

F j(m) := (fk, φj,m)

= k2

∫
Λj

(
∂nu

I − ikuI
)

(s)φj,m(s)ds = ik2

∫
Λj

(a · n− 1)Pm(s)ds. (2.44)

Therefore, the entries of the vector F are one-dimensional, smooth and non-oscillatory

integrals that can be computed accurately and efficiently using conventional numerical

integration methods.

(ii) The vector V := [V 1,V 2,V 3]T is a vector of unknown coefficients of the approximating

polynomials for V (γ(s), k) (that we simply denote by V (s, k) in the remainder of this

thesis) in the transition domains and the illuminated zon:

V (s, k) ≈
d1∑
m=0

V 1(m)φ1,m(s) +

d2∑
m=0

V 2(m)φ2,m(s) +

d3∑
m=0

V 3(m)φ3,m(s).

(iii) The matrix R is a dense matrix, with the (n,m)-th entry of the subblock R[l,j] given
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by

R[l,j](n,m) = ak(φj,n, φl,m)

:= (Rkφj,n, φl,m)

=

(
1

2
φj,n +Dkφj,n − ikSkφj,n, φl,m

)
= k2 1

2

(∫
Λj

Pn(s)Pm(s)ds

)
δj,l (2.45a)

+ k2

∫
Λl

∫
Λj

Pn(t)Pm(s)
[
∂n(s)Φk(γ(s),γ(t))− ikΦk(γ(s),γ(t))

]
×

× exp (ika · [γ(t)− γ(s)]) |γ ′(t)|dtds, (2.45b)

where Φk(s, t) denotes the fundamental solution of the Helmholtz equation in two dimen-

sions:

Φk(γ(s),γ(t)) =
i

4
H

(1)
0 (k |γ(t)− γ(s)|) . (2.46)

Remark 2.8. Notice from (2.44) that both the left-hand side and the right-hand side of

(2.43) contain a coefficient k2. In practice, we divide both sides of the equation (2.43) by

k2 and compute the integrals (2.44), (2.45a) and (2.45b) without the coefficient k2.

The first term (2.45a) vanishes except when j = l, i.e. both s and t belong to the same

interval Λj . In this case, the integrand of this single integral is a product of two polynomials

and therefore the integral can be computed exactly. On the other hand, the second term

(2.45b) is a double integral that cannot be integrated exactly. As we show in Lemma 4.3,

Chapter 4, these highly-oscillatory double integrals can be written in the form:

ak(φj,n, φl,m) := k2

∫
Λj

∫
Λl

M(s, t) exp (ikΨ(s, t)) dtds, (2.47)

where M(s, t) is a relatively slowly-varying function with singularities, Ψ(γ(s),γ(t)) is the

phase-function, and φj,n and φl,m are basis elements of the approximation space Vd
k .

We denote by ãk(φj,n, φl,m) the numerical approximation of the integral ak(φj,n, φl,m)

leading us to the fully-discrete system (2.33).

The strategy for obtaining the fully discrete system for solving the exterior model problem

is as follows:

• Develop a numerical integration method for accurate and efficient approximation of

ak(φj,n, φl,m) in (2.47) (Chapter 4).

• Analyse the wavenumber-explicit error estimates of the numerical integration method

(Chapter 5) and derive the wavenumber-explicit error estimates of the fully-discrete

Galerkin method (Chapter 6).
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• Implement the fully-discrete Galerkin method and carry out the numerical experi-

ments (Chapter 6).
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Chapter 3

Asymptotic methods for

high-frequency acoustic scattering

problems

3.1 Introduction

Asymptotic methods are typically used to construct an approximate solution to the scatter-

ing problem as a series, called an asymptotic expansion, with respect to a small parameter

1/k. Geometrical optics and the geometrical theory of diffraction [65] provide a general

set of recipes on how to construct the asymptotic expansion of the solution to a scattering

problem. Considerable amount of research has been directed towards both constructing

these asymptotic expansions and proving error bounds for truncated asymptotic series of

the solution, notably by Buslaev [23], Morawetz and Ludwig [78], and Melrose and Taylor

[75], among others, see further references in [5].

In this chapter, we will state the main results of the asymptotic theory which provide an

asymptotic expansion of the solution to the high-frequency scattering problem (2.1) - (2.3)

with respect to a small parameter 1/k.

These important results are used for the construction and analysis of efficient numerical

methods for the computation of high-frequency scattering problems such as the hybrid

boundary integral method described in Chapter 2. Rigorous proofs of these results however

are very technical.

Our motivation for this chapter is to provide an insight into asymptotic techniques used to

justify these results without substantial a priori knowledge of asymptotic high-frequency

diffraction theory. This in turn may prove beneficial for further development of new hybrid

methods and techniques for their analysis for high frequency scattering problems.

In Chapter 2, we have described the two-dimensional problem of acoustic scattering of the

time-harmonic incident wave-field uI(x) = exp(ikx · a), where the unit vector a denotes

the direction of incidence, by a bounded sound-soft obstacle Ω with a smooth and convex

boundary Γ. We seek the total wavefield u(x) = uI(x) + uS(x), x ∈ R2 \ Ω, which
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3. Asymptotic methods for high-frequency acoustic scattering problems

satisfies the boundary value problem (2.1)- (2.3). This problem can be reformulated as a

boundary integral equation with solution as the normal derivative of the total wavefield,

v(x) := (∂u/∂n)(x). The function v solves the following boundary integral equation:

Rkv(γ(s)) = fk(γ(s)) for γ(s) ∈ Γ, s ∈ [0, 2π], (3.1)

where γ is a 2π-periodic parametrisation of the boundary Γ and Rk and fk are defined in

(2.13). We denote γ(t1) and γ(t2) as shadow boundary transition points on the boundary

Γ, i.e. the normal to the boundary at these points is perpendicular to the direction of

incidence a. Thus n(tj) · a = 0, j = 1, 2, see Figure 1.1.

The solution v ∈ L2(Γ) of the boundary integral equation (3.1) is shown in this chapter to

be the product of an explicitly known highly-oscillatory function and a relatively slowly-

varying function V (s, k):

v(s) = kV (s, k) exp(ikγ(s) · a). (3.2)

This information was used in [40] in construction of the approximation space for the

Galerkin method and its analysis as described in Chapter 2. Let us now describe the three

main results of the asymptotic theory describing the behaviour of the slowly-varying part

of the solution, i.e. the function V .

3.1.1 Main results of the asymptotic theory for high-frequency scatter-

ing problems

The asymptotic behaviour of the function V , for large k, in (3.2) is different in the il-

luminated, transition and shadow parts of the boundary Γ. There are three theorems,

presented below, that describe these behaviours: the first theorem is a commonly well

known “geometrical optics” expansion of V for s in the illuminated part of the bound-

ary. The second theorem that describes the uniform asymptotic behaviour of V for s in

the transition regions (also known as “Fock” domains) is also a well known expansion.

The third theorem describes the behaviour of the solution v on the shadow part of the

boundary [46].

Theorem 3.1 (Illuminated part of the boundary, Λ2). For any small and positive

∆, for all s ∈ (t1 + ∆, t2 −∆) and all non-negative integers N :

V (s, k) =

N∑
j=0

k−jdj(s) + rN (s, k), (3.3)
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where dj(s) ∈ C∞(t1 + ∆, t2 −∆), and for all n ≥ 0,

|Dn
s rN (s, k)| ≤ cN,n(1 + k)−N−1, (3.4)

where cN,n = cN,n(∆) is a constant independent of k.

Theorem 3.2 (Transition part of the boundary, Λ1, Λ3). There exist ∆ > 0 such

that for s ∈ I∆ := (t1 −∆, t1 + ∆) ∪ (t2 −∆, t2 + ∆):

V (s, k) =
L∑
l=0

M∑
m=0

k−1/3−2l/3−mbl,m(s)Ψ(l)
(
k1/3Z(s)

)
+RL,M (s, k) , (3.5)

where the remainder satisfies

|Dn
sRL,M (s, k)| ≤ CL,M,n(1 + k)µ+n/3, (3.6)

where µ := −min {2(L+ 1)/3, (M + 1)} and CL,M,n are independent of k. Here bl,m are

C∞ complex-valued functions on I∆, Z is a C∞ real-valued function on I∆, with simple

zeros at t1 and t2, positive-valued in (t1, t2)∩ I∆ and negative-valued in (t2 − 2π, t1)∩ I∆,

and Ψ : C→ C, the so-called “Fock’s integral”, is defined as follows:

Ψ(τ) := exp (−iτ3/3)

∫
c

e−izτ

Ai(e2πi/3z)
dz (3.7)

where Ai is the Airy function and the contour of integration c is as in Figure 3.1.

The function Ψ(l) denotes the l-th derivative of Ψ defined in (3.7) and this integral con-

verges exponentially for any small positive θ due to asymptotic properties of Airy function

Ai described later in (3.31). Further, there exist γ > 0 and c0 6= 0 such that for any

l ∈ N ∪ {0},

D(l)
τ Ψ(τ) = c0D

(l)
τ

{
exp(−iτ3/3− iτα1)

}
(1 +O(exp(−|τ |γ))) , as τ → −∞, (3.8)

where α1 = exp(−2iπ/3)a1, where a1 < 0 is the rightmost root of the Airy function Ai, see

Section 3.2.5. From (3.8), we deduce that Ψ as well as its derivatives decay exponentially

as τ → −∞.

Theorem 3.3 (Shadow part of the boundary, Λ4). For any small ∆ > 0, there exist

positive constants δ, C and c such that for s ∈ S∆ := [0, t1 −∆] ∪ [t2 + ∆, 2π],

‖v‖L2(S∆) ≤ C exp
(
−ckδ

)
. (3.9)

When designing numerical methods, in order to reflect the structure of the solution, we

introduce a partition of unity χj ∈ L∞[0, 2π], possibly depending on k, defined in (2.35).
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Im(z)

Re(z)
0

θ

c

Figure 3.1: Contour of integration c.

Then we write the solution in each zone of the boundary as follows:

χj(s)v(s) = kVj(s, k) exp(ikγ(s) · a), (3.10)

where Vj(s, k) := χj(s)V (s, k), j = 1, 2, 3, 4, denotes the unknown “amplitudes” of v in

the illuminated (l = 2), transition (l = 1, 3), and shadow (l = 4) parts of the boundary.

The solution v is known to be exponentially small in the shadow region, see Theorem 3.3.

Thus, we approximate the solution in the shadow part of the boundary Λ4 by zero.

Therefore, we can write

v(s) = k
3∑
j=1

Vj(s, k) exp(ikγ(s) · a) + χ4(s)v(s).

Remark 3.4. The asymptotic expansion for Vj(s, k), j = 1, 2, 3, 4, in the transition zones,

given in (3.5), adopts the form (3.3) by replacing the coefficients bl,m(s) by an appropriate

smooth, 2π-periodic extensions and replacing Ψ(l)
(
k1/3Z(s)

)
in (3.5) by its asymptotics

as k →∞. Then, the global asymptotic behaviour of V (s, k), for s ∈ [0, 2π] follows as we

state in the corollary below.

Corollary 3.5. [40, Corollary 5.3] In the same notation as Theorem 3.2, the functions

bl,m(s) can be non-uniquely extended to 2π-periodic C∞ functions such that, for all L,

M ∈ N ∪ 0, the decomposition

V (s, k) =
L∑
l=0

M∑
m=0

k−1/3−2l/3−mbl,m(s)Ψ(l)
(
k1/3Z(s)

)
+RL,M (s, k), (3.11)
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holds for all s ∈ [0, 2π], with remainder term satisfying for all n ∈ N ∪ 0,

|Dn
sRL,M (s, k)| ≤ CL,M,n(1+k)µ+n/3, where µ := −min {2(L+ 1)/3, (M + 1)} , (3.12)

where constants CL,M,n are independent of k.

The corollary then leads to the following k-dependent estimates of the derivatives of the

function V .

Theorem 3.6. [25, Theorem 2.2] For all n ∈ N∪ 0 there exist constants Cn > 0 indepen-

dent of k and s such that for all k sufficiently large,

|Dn
s V (s, k)| ≤ Cn

1, n = 0, 1

k−1(k1/3 + |w(s)|)−n−2, n ≥ 2,
, (3.13)

where w(s) = (s− t1)(t2 − s). The estimates (3.13) are uniform in s ∈ [0, 2π].

The estimates (3.13) indicate that the derivatives of V remain bounded as k →∞ for s in

the illuminated zone bounded away from t1 and t2 (so that |w(s)| is bounded away from

zero). On the other hand, if s is in the region of width O(k−1/3) around the transition

points, then |w(s)| ≤ ck−1/3, with c is independent of k. Hence |Dn
s V (s, k)| may blow up

with O(k(n−1)/3).

In each of the zones Λ1, Λ2, and Λ3, the error in best approximation by polynomials can

be estimated using (3.13).

Then the error bound for the semi-discrete Galerkin scheme for the discretization of the

boundary integral equations such as the standard combined potential boundary integral

equation (1.10).

3.1.2 Outline of the chapter

In Section 3.2, we describe the properties of Hankel and Airy functions. Asymptotic

expansions of Hankel function in Debye’s, Olver’s and Cherry’s form will also be presented

as needed for high frequency asymptotic analysis of exact solution of scattering by a circle.

In Section 3.3, we prove Theorems 3.1 and 3.2 for the model problem of scattering by a

circle essentially following ideas from [5]. In Section 3.4 we outline the Model Problem

Method [5] for constructing asymptotic expansion of the solution to the scattering problem

for cases of general smooth and convex domains.

33



3. Asymptotic methods for high-frequency acoustic scattering problems

3.2 Preliminaries

In this section, we introduce Bessel functions and present their known asymptotic be-

haviour for certain large parameters they depend upon. We also introduce Airy functions

and their basic properties and asymptotic expansions.

3.2.1 Bessel functions

Bessel functions are solutions of the Bessel’s differential equation:

z2d
2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0. (3.14)

Here ν is generally a complex “order” parameter, ν ∈ C. For any complex ν, Bessel

equation has two independent solutions: the Bessel function of the first kind Jν(z) and

the Bessel function of the second kind, Yν(z) of order ν, also known as Neumann function.

When ν is not an integer, the Bessel function Jν(z) can be represented as an absolutely

convergent infinite series solution of (3.14) as follows, e.g. [16, Section I.3.1],

Jν(z) =

(
1

2
z

)ν ∞∑
m=0

(
−1

2z
2
)m

m!Γ(ν +m+ 1)
,

where Γ is a Gamma function [3, Chapter 6]. For ν = n ∈ Z,

Jn(z) := lim
ν→n

Jν(z).

The function Jν(z) is an entire function of ν for z in a complex plane cut along the negative

real axis from 0 to −∞, [16]. Moreover, for fixed ν, the function z−νJν(z) is an entire

function of z ∈ C \ (−∞, 0), [16].

The Neumann function Yν(z) is defined as follows for all ν,

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
, ν 6= n ∈ N,

Yν(z) = lim
ν→n

Yν(z), n ∈ N.

In particular, for ν = n ∈ N,

Yn(z) =− 1

π

(
1

2
z

)−n ν−1∑
m=0

(n−m− 1)!

m!

(
1

2
z

)2m

+
2

π
ln

(
1

2
z

)
Jn(z)

− 1

π

(
1

2
z

)n ∞∑
m=0

η(m+ 1) + η(n+m+ 1)

(−1)mm!(n+m)!

(
1

2
z

)2m

,
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with

η(1) = −E, η(n) = −E +

n−1∑
m=1

1

m
,

where E = 0.5772 . . . is the Euler’s constant. The Neumann function Yν(z) is an entire

function of ν for z in a complex plane cut along the negative real axis from 0 to −∞, [16].

Other solutions of Bessel equation are Bessel functions of the third kind, also called Hankel

functions, which are defined as a linear combination of the Bessel functions of the first

and second kind as follows:

H(1)
ν (z) = Jν(z) + iYν(z), H(2)

ν (z) = Jν(z)− iYν(z).

Functions H
(1)
ν (z) and H

(2)
ν (z) are entire functions of their index ν ∈ C for z ∈ C\(−∞, 0).

3.2.2 Basic asymptotic expansions of Bessel functions at large values of

the order or the argument

Asymptotic expansion of Bessel functions at large values of the order

The following estimates are obtained from [16, (I.210) and (I.212)]. For a fixed z and

|ν| → ∞ and |arg ν| < π,

Jν(z) =

√
1

2πν

( ez
2ν

)ν [
1 +O(ν)−1

]
, (3.15)

Yν(z) = −
√

2

πν

( ez
2ν

)−ν [
1 +O(ν)−1

]
. (3.16)

Asymptotic expansion of Bessel functions at large values of the argument

The following estimates are obtained from [3] formulae (9.2.5), (9.2.7), (9.2.11) and (9.2.13).

For a fixed order ν ∈ C, as |z| → ∞, Bessel and Hankel function’s asymptotic expansions

are

Jν(z) =
√

2/(πz) cos

(
z − 1

2
νπ − 1

4
π

)(
1 +O(|z|−1)

)
,

J ′ν(z) = −
√

2/(πz) sin

(
z − 1

2
νπ − 1

4
π

)(
1 +O(|z|−1)

)
, (3.17)

for |arg z| < π and

H(1)
ν (z) =

√
2/(πz) exp

{
i

(
z − 1

2
νπ − 1

4
π

)}(
1 +O(|z|−1)

)
,

H(1)′
ν (z) = i

√
2/(πz) exp

{
i

(
z − 1

2
νπ − 1

4
π

)}(
1 +O(|z|−1)

)
, (3.18)
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for −π < arg z < 2π.

Let us introduce the function Wν(z), also known as Wronskian, for ν ∈ C and z ∈ C as

follows,

Wν(z) := J
′
ν(z)H(1)

ν (z)− Jν(z)H(1)′
ν (z). (3.19)

Then the following property holds.

Proposition 3.7. For all ν ∈ C, z ∈ C,

Wν(z) = − 2i

πz
. (3.20)

Proof. We begin by introducing the following notation,

y1(z) := Jν(z) and y2(z) := H(1)
ν (z).

Then y1(z) and y2(z) solve the Bessel’s differential equation (3.14), i.e.

z2y′′j (z) + zy′j(z) +
[
z2 − ν2

]
yj(z) = 0, j = 1, 2.

Dividing through by z:

zy′′j (z) + y′j(z) +

[
z − ν2

z

]
yj(z) = 0, j = 1, 2.

Hence, (
zy′j(z)

)′
+ qν(z)yj(z) = 0, where qν(z) = z − ν2

z
. (3.21)

Therefore,

(zWν(z))′ =
(
zy′1(z)y2(z)− zy′2(z)y1(z)

)′
=

(
zy′1(z)

)′
y2(z) + zy′1(z)y′2(z)− zy′1(z)y′2(z)−

(
zy′2(z)

)′
y1(z)

=
(
zy′1(z)

)′
y2(z)−

(
zy′2(z)

)′
y1(z)

= −qν(z)y1(z)y2(z)− (−qν(z)y2(z)y1(z))

= 0.

Hence

zWν(z) = const, for all z ∈ C. (3.22)

In order to find the value of the constant, we use the asymptotic expansions (3.17) and

(3.18) to determine the limit value of zWν(z) for Im z = 0 and |z| → ∞. Denoting
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φ = z − 1
2νπ − 1

4π, we obtain

Wν(z) =
2

πz
[− sin(φ) exp (iφ)− i cos(φ) exp (iφ)]

(
1 +O(|z|−1)

)
= − 2i

πz
[exp (iφ) exp (−iφ)+]

(
1 +O(|z|−1)

)
= − 2i

πz

(
1 +O(|z|−1)

)
.

Then,

lim
|z|→∞

zWν(z) = −2i

π
.

Hence, from equation (3.22), we deduce that zWν(z) = −2i/π for all z.

3.2.3 Airy functions and their basic asymptotic expansions

The Airy functions Ai(z) and Bi(z) are linearly independent solutions to the Airy equation

w′′(z)− zw(z) = 0. (3.23)

All solutions of Airy equation are entire functions of z and can be expanded in powers of

z in series that converge for any z ∈ C [5] as we show in the following proposition.

Proposition 3.8. Any solution of the Airy equation takes the form:

w(z) = w(0)

(
1 +

z3

2 · 3 +
z6

2 · 3 · 5 · 6 + . . .

)
+ w′(0)

(
z +

z4

3 · 4 +
z7

3 · 4 · 6 · 7 + . . .

)
. (3.24)

Proof. Substitute the power series

w(z) =
∞∑
j=0

cjz
j ,

into the Airy equation to obtain:

w′′(z)− zw(z) :=
∞∑
j=2

j(j − 1)cjz
j −

∞∑
j=0

cjz
j+1

= c2 +
∞∑
j=0

(j + 3)(j + 2)cj+3z
j+1 −

∞∑
j=0

cjz
j+1

= c2 +
∞∑
j=0

[(j + 3)(j + 2)cj+3 − cj ] zj+1. (3.25)
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Setting the coefficients of tj , j = 0, 1, 2, . . . to zero in (3.25), we deduce:

c0 = w(0), c1 = w′(0), c2 = 0,

j = 1 3 · 2 c3 = c0

j = 2 4 · 3 c4 = c1

j = 3 5 · 4 c5 = c2 = 0

. . .

j = n (n+ 3)(n+ 2)cn+3 − cn = 0, n ≥ 3.

The two series in (3.24) both converge absolutely for any z. Moreover, the two solutions

are linearly independent. Hence any other solution is their linear combination. Thus,

(3.24) follows.

Proposition 3.9. [16, Formulae (I.256) and (I.257)] The functions Ai(z) and Bi(z),

represented in an integral form as follows: for z ∈ C,

Ai(z) =
1

2πi

∫ ∞ eiπ/3

∞ e−iπ/3
exp

(
x3

3
− zx

)
dx, (3.26)

and

Bi(z) =
1

2π

(∫ ∞ eiπ/3

−∞
exp

(
x3

3
− zx

)
dx+

∫ ∞ e−iπ/3

−∞
exp

(
x3

3
− zx

)
dx

)
, (3.27)

are solutions of Airy equation (3.23). The contour of integration in (3.26) is illustrated

in Figure 3.2 on the right plot in red.

Proof. Consider an entire function

s(x) := exp

(
1

3
x3

)
.

The function s is exponentially small as x → ∞eπi/3 (i.e. x = teπi/3, t → +∞). To see

this we observe that for x ∈ C, x3 = |x|3 exp(i3θ), where θ = arg(x). Therefore, for θ

satisfying the inequality

cos(3θ) < 0,

the following holds: s(x) → 0 as |x| → ∞. In Figure 3.2, the corresponding subintervals

in [0, 2π] for θ where cos θ < 0 are shaded in the left plot. Also in Figure 3.2, the domains

in the complex plane for x where s(x) → 0 as x → ∞ are illustrated on the right plot as
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π
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Im(x)

− π
3
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Figure 3.2: The plot of cos 3θ is illustrated on the left with the shaded regions indicating where
the values of cos 3θ are negative. The function s(x) decays exponentially in the shaded regions
illustrated on the right. In particular, s(x) decays exponentially as |x| tends to infinity along a
contour plotted in red.

shaded domains. In particular,

lim
x→∞e±πi/3

s(x) = 0. (3.28)

Differentiating Airy function Ai(z) twice, we obtain,

Ai′′(z) =
1

2πi

∫ ∞ eiπ/3

∞ e−iπ/3
x2 exp

(
x3

3
− zx

)
dx. (3.29)

On the other hand, integrating zAi(z) by parts, we deduce,

zAi(z) :=

∫ ∞ eiπ/3

∞ e−iπ/3
z exp

(
x3

3
− zx

)
dx

= −
∫ ∞ eiπ/3

∞ e−iπ/3
exp

(
x3

3

)
d

dx
(exp(−zx)) dx

= −
[
exp

(
x3

3

)
exp(−zx)

]x=∞ eiπ/3

x=∞ e−iπ/3
+

∫ ∞ eiπ/3

∞ e−iπ/3
x2 exp

(
x3

3

)
exp(−zx)dx

= Ai′′(z),

due to (3.28) and (3.29). Hence Ai(z) defined in (3.26) is the solution of Airy equation

(3.23). Similarly we can prove that Bi(z) is also the solution of Airy equation (3.23).

Similarly to Proposition 3.7, we can show that Wronskian for Airy functions is constant

for all z.
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Proposition 3.10. For any z,

W (z) := w1(z)
dv

dz
(z)− v(z)

dw1

dz
(z) = i, (3.30)

where v(z) = Ai(z) and w1(z) = 2e2πi/3Ai(ze2πi/3). The notation for the functions v

and w1 is consistent with notation in Babich and Buldyrev [5]; notice that w1(z) is also a

solution of (3.23) which can be verified by a direct substitution.

Proof. Differentiating the Wronskian we obtain:

W
′
(z) =

dw1

dz

dv

dz
+ w1

d2v

dz2
− dv

dz

dw1

dz
− vd

2w1

dz2

= w1
d2v

dz2
− vd

2w1

dz2
applying (3.23)

= zw1v − zvw1 = 0.

Therefore, for all z, W (z) = C, where C is a constant. In order to find C, we evaluate

W (z) at a point z = 0 using known values of v and w1 at 0 which can be found from (3.26)

and are given for example in [3, (10.4.4) and (10.4.5) ]:

w1(0) =
2
√
πeiπ/6

32/3Γ(2/3)
, w

′
1(0) =

2
√
πe−iπ/6

34/3Γ(4/3)
,

v(0) =

√
π

32/3Γ(2/3)
, v

′
(0) = −

√
π

34/3Γ(4/3)
.

Therefore,

W (0) = − 2π

32Γ
(

2
3

)
Γ
(

4
3

) (eiπ/6 + e−iπ/6
)

= i,

where Γ(a) is the Gamma function. Here we have used the Triplication formula for the

Gamma functions [3, (6.1.19)]:

Γ(2) =
33/2

2π
Γ

(
2

3

)
Γ(1)Γ

(
4

3

)
,

and that Γ(1) = 1 and Γ(2) = 1. Hence (3.30) follows.

Asymptotic expansion of Airy function at large values of the argument [5]

The asymptotic expansion of Airy function Ai(z) for complex z as |z| → ∞ can be obtained

from their integral representation via the method of steepest descent cf [5, Appendix A.1,
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(A.1.2.5), (A.1.3.1)]. As a result, for −2π/3 ≤ argz ≤ 2π/3, and |z| → ∞,

Ai(z) =
1

π

exp
(
−2z3/2

3

)
2z1/4

∞∑
n=0

Γ
(
3n+ 1

2

)
(2n)!

(
−9z3/2

)−n
. (3.31)

On the other hand, for 2π/3 ≤ argz ≤ 4π/3, and |z| → ∞,

Ai(z) :=
1

π

exp
(
−2z3/2

3

)
2z1/4

∞∑
n=0

Γ
(
3n+ 1

2

)
(2n)!

(
−9z3/2

)−n

− 1

π

exp
(

2z3/2

3

)
2iz1/4

∞∑
n=0

Γ
(
3n+ 1

2

)
(2n)!

(
9z3/2

)−n
. (3.32)

3.2.4 Debye’s, Olver’s and Cherry’s asymptotic expansions of Hankel

function

The asymptotic expansion of the Hankel function for large values of the argument as well

as the order are given by Debye’s [36], Olver’s [80] and Cherry’s [29] asymptotic expansion.

We will use these expansions later in the chapter.

Debye’s asymptotic expansion of Hankel function

Debye’s asymptotic representation describes the behaviour of Hankel function H
(1)
Nξ(N) for

large values of N . This a WKB-type expansion for Bessel’s ODE (3.14). We denote by S1

and S2 the following series, e.g. [4],

S1 :=

√
2

πN

1

(ξ2 − 1)1/4
exp

{
N
[
−ξln

(
ξ +

√
ξ2 − 1

)
+
√
ξ2 − 1

]}(
1 +

∞∑
m=1

Am(ξ)

Nm

)
,

S2 :=

√
2

πN

i

(ξ2 − 1)1/4
exp

{
N
[
−ξln

(
ξ +

√
ξ2 − 1

)
−
√
ξ2 − 1

]}(
1 +

∞∑
m=1

Bm(ξ)

Nm

)
,

(3.33)

where function Am(ξ) and Bm(ξ) are regular functions of ξ in the complex plane with

cuts along the real line from −∞ to −1 and from 1 to +∞. Moreover, for |ξ| → +∞,

Am(ξ) = O(|ξ|−m) and Bm(ξ) = O(|ξ|−m). Functions Am and Bm are known and can be

found for example in [3].

In Figure 3.3 we illustrate how series S1 and S2 in (3.33) represent H
(1)
Nξ(N). In small

circular neighborhoods of points ξ = ±1, the Debye’s asymptotic representation of Hankel
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S1

S1 − e−2πiξNS2

S1 − S2

Im(ξ)

S1

1

I

S1

−1 0
Re(ξ)

B1
B−1

Figure 3.3: The plot illustrates the domains where Hankel function is represented by series S1 and
S2 defiend in (3.33). We denote the circular neighborhoods of points ξ = ±1, as B±1, where the
Debye’s representation of Hankel function is not valid.

function is not valid. Here, the Olver’s or Cherry’s expansion can be used instead, see

below. We denote the circular neighborhoods of points ξ = ±1, as B±1.

In Figure 3.3, we denote the region inside the rhombus-like area (plotted in blue) by I.

The boundary of I in the first quadrant is a curve described by the following equation:

π = arg{ξ log
(
ξ +

√
ξ2 − 1

)
−
√
ξ2 − 1}.

The boundaries of I in the second, third and fourth quadrants are obtained by reflection

with respect to the coordinate axes.

In the domain I, as well as in the fourth quadrant (where Im ξ < 0 and Re ξ > 0), it is

often more convenient to use the following formula equivalent to (3.33),

H
(1)
Nξ(N) :=

√
2

πN

e−πi/4

(ξ2 − 1)1/4
exp

{
Ni
[
−ξ cos−1 ξ +

√
1− ξ2

]}
×

×
(

1 +

M∑
m=1

Am(ξ)

Nm
+RM,N (ξ)

)
.

(3.34)

Notice that then 0 < Re(cos−1(ξ)) < π.

In the domain I, and in the fourth quadrant (where Im(ξ) < 0 and Re(ξ) > 0), excluding
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B±1, the remainder term RM,N (ξ) in (3.34) is uniform and is of order

RM,N (ξ) = O(N−M−1), ξ ∈ I \ B±1.

Outside of the domain I, the remainder term is of order RM,N (ξ) = O(N−M−1|ξ|−M−1).

Olvers’s asymptotic expansion of Hankel function

In B±1, the asymptotic expansion of Hankel function H
(1)
Nξ(N) for large N is more compli-

cated (the asymptotic expansion corresponds to the turning points for the WKB asymp-

totics). Here we use Olver’s uniform asymptotic representation, [4]

H
(1)
Nξ(N) =

Ai
(
e2πi/3N2/3ζ(ξ)

)
N1/3

(
M−1∑
m=0

Cm(ξ)

N2m
+RIN,M (ξ)

)

+
Ai
′ (
e2πi/3N2/3ζ(ξ)

)
N5/3

(
M−1∑
m=0

Dm(ξ)

N2m
+RIIN,M (ξ)

)
,

(3.35)

where Cm(ξ) and Dm(ξ) are regular functions in B±1, and C0(ξ) 6= 0. Functions Cm and

Dm are known and can be found for example in [3]. The function ζ(ξ) is defined as follows,

ζ(ξ) =

(
3

2

)2/3 (
ξ log

(
ξ +

√
ξ2 − 1

)
−
√
ξ2 − 1

)2/3
. (3.36)

The function ζ(ξ) is regular at ξ = 1 because, by direct inspection, (3.36) admits a regular

Taylor expansion at ξ = 1.

The remainder terms RIN,M (ξ) and RIIN,M (ξ) are uniform in B±1 and are of order:

RIN,M (ξ) = O

(
1

N2M

)
, RIIN,M (ξ) = O

(
1

N2M

)
. (3.37)

It will also be useful to write down the Olver’s expansion for H
(1)
ν (νt) for 0 ≤ arg ν ≤ π,

|arg t| < π, |t− 1| ≤ const < 1 and |ν| → ∞, [4]

H(1)
ν (νt) =

Ai
(
e2πi/3ν2/3ζ̃(t)

)
ν1/3t1/3

(
M−1∑
m=0

Cm(1/t)

(νt)2m
+O

(
1

ν2M

))
+

+
Ai
′
(
e2πi/3ν2/3ζ̃(t)

)
(νt)5/3

(
M−1∑
m=0

Dm(1/t)

(νt)2m
+O

(
1

ν2M

))
,

(3.38)

where

ζ̃(t) := t2/3ζ

(
1

t

)
. (3.39)

In (3.38), the functions Cm(1/t) and Dm(1/t) are regular functions in the circular neigh-
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borhood of t = 1.

Cherry’s form of the uniform asymptotic expansion

Uniform asymptotic expansion of the Hankel functions were derived by Cherry in 1950

[29] and then, in a different form, by Olver in 1954 [82]. The Cherry’s asymptotic repre-

sentation of Hankel function is given as follows, see [5, Section 7.2, (7.2.4) and (13.1.1)] for

|arg ν| ≤ π/2, 0 < ε < |t| < E <∞, |arg t| ≤ π/2, (ε > 0 and E > 0 are fixed constants),

for |νt| → ∞,

H(1)
ν (νt) = eiπ/3(νt)1/3

(
Tν(t)

1− t2
)1/4

C0(ζ(t))A+

(
Tν(t) +

M∑
m=1

pm(z(t))

(νt)2m−2/3
+RM (ν, t)

)
,

(3.40)

where

A+(z) := Ai
(
e

2πi
3 z
)
,

is the Airy function. In (3.40), Tν(t) and z(t) are defined as follows (see [5, (7.2.4)]),

Tν(t) := ν2/3z(t) =

[
3

2
iνt

∫ 1/t

1
cos−1(x)dx

]2/3

= ν2/3ζ̃(t) (3.41)

= 2

(
νt

2

)2/3(1

t
− 1

)[
1− 1

30

(
1

t
− 1

)
+ . . .

]
, (3.42)

and where p1(z), p2(z), . . . , pN (z) are functions that are analytic at z = 0, i.e. at t = 1.

Hence Tν(t) is analytic at t = 1. The function ζ̃ in (3.41) also appears in (3.38).

The function C0(ζ) in (3.40), defined as

C0(ζ) :=
d

dζ

(
ζ +

M∑
m=1

pm(ζ)

(ν)2m

)
, (3.43)

is regular at ζ = 0. Furthermore, by (3.42), the function
(
Tν(t)/(1− t2)

)1/4
is analytic

near t = ±1.

Remark 3.11. The Olver’s expansion (3.38) can be shown to be equivalent to Cherry’s

asymptotic expansion (3.40) via the decomposition of the Airy function A+ in (3.40) into

Taylor series about ν2/3z and using Airy differential equation (3.23) for A+. Thus, uni-

form error bounds for the Cherry’s asymptotic expansion are implied by the uniform error

bounds (3.37) for Olver’s asymptotic expansion. In (3.40), the remainder term RM (ν, t)

is as a result bounded as follows,

RM (ν, t) = O

(
1

(νt)2(M+1)

)
,

uniformly in t ∈ B1.
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3.2.5 Zeroes of Airy and Hankel functions

Proposition 3.12. Denote as, s = 1, 2, 3, . . . as zeroes of Airy function:

Ai(as) = 0.

Then as, s = 1, 2, 3, . . . are real and negative.

Proof. Let −zs denote a root of Ai(z), i.e. Ai(−zs) = 0. Denote ys(z) := Ai(z− zs), then,

− y′′s (z) + zys(z) = zsys(z), ys(0) = 0, lim
t→∞,

Im(t)=0

ys(t) = 0, (3.44)

i.e. the zs can be considered as eigenvalues of the boundary value problem (3.44). Multi-

plying the equation (3.44) by the complex conjugate functions ys, we obtain:

− y′′s (z)ys(z) + z|ys(z)|2 = zs|ys(z)|2. (3.45)

Moreover, ∫ ∞
0

y′′s (z)ys(z) =
[
y′s(z)ys(z)

]z=∞
z=0

−
∫ ∞

0
|y′s(z)|2dz,

= −
∫ ∞

0
|y′s(z)|2dz,

due to the boundary conditions in (3.44). Therefore, (3.45) yields,∫ ∞
0

(
|y′s(z)|2 + z|ys(z)|2

)
dz = zs

∫ ∞
0
|ys(z)|2dz.

Hence, all zs are real and positive. We conclude that all zeroes as of Airy function Ai(z)

are real and negative since as = −zs.

The zeroes as of the Airy function Ai(z) have been thoroughly studied [82, pp. 364-367]

and may be expressed asymptotically as

as = −
[

3

2
π

(
s− 1

4

)
+O

(
1

s

)]2/3

, (3.46)

for large values of s. Higher order terms of the asymptotic expansion for as as s→∞ can

also be found in (10.4.94) and (10.4.105) in [3].

The ν-zeros of the Hankel function, H
(1)
ν (z), for large |z|, [32]
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0

Im(ν)

z
Re(ν)

The ν-zeroes of Hankel
function H

(1)
ν (z)

Zeroes of Airy function, as

Figure 3.4: Zeroes of Airy function, Ai, denoted as as, are plotted as blue starts located strictly on

the negative real axis. The ν-zeroes (3.47) of the Hankel function H
(1)
ν (z) are plotted as red stars.

Proposition 3.13. Given z with |arg z| < π and |z| >> 1, for s = 1, 2, 3, . . .,

H(1)
νs (z) = 0, νs = z + 2−1/3ase

−2πi/3z1/3 +O
(
|z|−1/3

)
, (3.47)

where as, s = 1, 2, 3, . . ., are zeroes of Airy function: Ai(as) = 0.

Sketch of proof. See also [32, Section 4]. From (3.38), we deduce that asymptotically for

large |ν|, H(1)
ν (νt) = 0 when Ai

(
e2πi/3ν2/3ζ̃

)
= 0. Thus,

as = e2πi/3ν2/3ζ̃.

Hence we obtain the asymptotic relation between zeroes of the Airy function Ai(as) = 0

and ν-zeroes of Hankel function, H
(1)
ν (z),

νs =
z

t(ζ)
= e−πi

(
as

ζ̃

)3/2

, (3.48)

for |ν| → ∞, where ζ and t are related by, cf (3.35),

ζ(t) =

(
3

2

)2/3 (
t log

(
t+
√
t2 − 1

)
−
√
t2 − 1

)3/2
. (3.49)

Then, from (3.39), we deduce

ζ̃(t) =

(
3

2

)2/3
(

log

(
1

t
+

√
1

t2
− 1

)
−
√

1

t2
− 1

)3/2

. (3.50)
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From the second equality in (3.48), we deduce that the limiting case that gives rise to

large values of νs is |ζ| → 0, which yields from (3.50),

t(ζ̃) = 1− 2−
1
3 ζ̃ +

3

10
2−

2
3 ζ̃2 +O

(
ζ̃3
)
.

Thus, for |z| → ∞,

νs =
z

t(ζ̃)
=

z

1− 2−
1
3 ζ̃ +O

(
ζ̃2
)

= z
(

1 + 2−
1
3 ζ̃ +O

(
ζ̃2
))

= z + 2−
1
3ase

− 2
3
πiz

1
3 +O

(
z−

1
3

)
Hence the result (3.47) follows. Notice that the Debye asymptotic expansions ensure the

absence of other zeroes for H
(1)
ν (z) = 0, for large |ν|.

In Figure 3.4, the zeroes as of Airy function and the corresponding leading order terms in

(3.47) describing zeroes νs of the Hankel function, H
(1)
ν (z), are illustrated.
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3.3 Model problem: scattering by a circle

In this section, we consider the model problem of high-frequency scattering by a circular

domain in homogeneous media exploiting the ideas presented in [5]. The exact solution

to this problem is well known and can be obtained by standard separation of variables

method, see for example [95, 16]. The exact solution is given as a series involving Hankel

and Bessel functions. The series can be re-formulated as a contour integral using the

Cauchy Residue Theorem, the general procedure known as Watson’s transformation [100].

Then the function v(s, k) = (∂u/∂n)(γ(s)), can be simplified to be only expressed as

a contour integral with the integrand containing the Hankel function. By replacing the

Hankel function by its asymptotics and with an appropriate change of variables for the

resulting integral, Theorem 3.1 and Theorem 3.2, as well as Theorem 3.3, can be proved

for the case of a circle. We do this for Theorem 3.1 and Theorem 3.2 in Section 3.3.2 and

Section 3.3.3 respectively.

In the following proposition, we present the exact solution of the scattering problem (2.1)

- (2.3) in terms of the Bessel and Hankel functions.

Proposition 3.14. In the case of scattering by a circle of radius a centered at the origin,

the solution, u, of the scattering problem (2.1) - (2.3) with the direction of incidence along

the vector a = (1, 0)T in polar coordinates (r, s) can be written as the following infinite

sum [95, 16]:

u(r, s) := (uI + uS)(r, s) :=
∞∑
n=0

2δn

[
Jn(kr)− H

(1)
n (kr)Jn(ka)

H
(1)
n (ka)

]
einπ/2 cosns, (3.51)

where δn = 1, n > 0 and δ0 = 1/2.

Proof. This is a classical result obtained by the standard separation of variables, see

[95, 16]. Namely,

uI(x) = eikx·a ⇐⇒ uI(r, s) = eikr cos s,

is decomposed into Fourier series in s,

uI(r, s) =
∞∑
n=0

2δnJn(kr)einπ/2 cosns.

The scattered wave is an outgoing wave. Thus, it can be represented as the following

series:

uS(r, s) =

∞∑
n=0

2δnbnH
(1)
n (kr)einπ/2 cosns,
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for some coefficients bn. Then we can write the total wavefield u as follows,

u(r, s) =
∞∑
n=0

2δn

[
Jn(kr) + bnH

(1)
n (kr)

]
einπ/2 cosns.

Then, coefficients bn are found from the boundary conditions (2.2) for the total wavefield

bn = −Jn(ka)/H
(1)
n (ka).

This infinite sum can be expressed as a contour integral via the “reverse” application of

the Cauchy Residue theorem.

Proposition 3.15. The solution, u, of the scattering problem (2.1) - (2.3) in polar coor-

dinates (r, s) can be written in an integral form,

u(r, s) := ik

∫
L

Jkξ(kr)− H
(1)
kξ (kr)Jkξ(ka)

H
(1)
kξ (ka)

 e−ikξπ/2 cos kξs

sin kξπ
dξ, (3.52)

using the analyticity of the Bessel and Hankel functions with respect to their index. Here,

for β = O
(
k−2/3−γ) with small γ > 0, the contour of integration L consists of the lines

(+∞− iβ,−iβ] and [iβ, iβ +∞) joined by the segment [−iβ, iβ] in the complex ξ-plane,

see Figure 3.5.

Remark 3.16. In order to ensure that the contour of integrations L does not contain

zeroes of the Hankel function H
(1)
kξ (ka) in (3.52), we take, for large enough k,

β ≤ Ck−2/3−γ for some small γ > 0. (3.53)

This condition arises from relation (3.47) between zeroes, ξ = hs, s = 0, 1, 2, ... of the

Hankel function H
(1)
kξ (ka) and zeros z = as of the Airy functions Ai(z) for large values of

k, see (3.47),

hs = a+ 2−1/3ase
−2πi/3k−2/3a1/3 +O

(
k−4/3a−1/3

)
.

In Figure 3.5 we illustrate the contour of integration L in relation to the zeroes of Hankel

function and zeroes of sine function where the integrand of (3.52) blows up. Provided β

is chosen so that (3.53) is satisfied, the contour L does not contain inside its loop any

zeroes of the Hankel function, and therefore the application of Cauchy Residue Theorem

to (3.52) yields (3.51).

Remark 3.17. The integration over the interval [−iβ, iβ] has to be understood in the

sense of Cauchy principal value:∫ iβ

−iβ
= lim

ε→0

(∫ −iε
−iβ

+

∫ iβ

iε

)
.
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Zeroes of Hankel function H
(1)
kξ (ka)

a−iβ

Im(ξ)

Re(ξ)

L

0

Zeroes of sine function, sin(kξπ)

iβ

Figure 3.5: The contour of integration L in (3.52). In this figure, zeroes of the Hankel function,

H
(1)
kξ (ka), are illustrated (as red stars) in relation to the contour of integration L. In green stars,

the zeroes of the sine function are plotted in relation to L. The contour L does not contain inside
its loop any zeroes of Hankel function provided (3.53) is satisfied.

Proof of Proposition 3.15.

Proof. Deforming the contour L to the right yields residue contributions at

ξn =
n

k
.

We deduce from the Residue Theorem that

u(s, k) = 2πi
N∑
n=0

δnRes {Fkξ(kr), ξn}+

∫
LN

Fkξ(kr)dξ, (3.54)

where the contour of integration LN is the contour L shifted to the right by (N + 1/2)/k,

LN :=

{
ξ̃ ∈ C : ξ̃ = ξ +

1

k

(
N +

1

2

)
, where ξ ∈ L

}
.

The function Fn(kr) in (3.54) denotes the integrand of (3.52),

Fkξ(kr) = ik

Jkξ(kr)− H
(1)
kξ (kr)Jkξ(ka)

H
(1)
kξ (ka)

 e−ikξπ/2 cos kξs

sin kξπ
.
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Recall the definition of Res {Fkξ(kr), ξn}. We can write Fkξ(kr) as

Fkξ(kr) =
fkξ(kr)

sin kξπ
,

with

fkξ(kr) = ik

Jkξ(kr)− H
(1)
kξ (kr)Jkξ(ka)

H
(1)
kξ (ka)

 e−ikξπ/2 cos kξs.

Since both fkξ(kr) and sin kξπ are holomorphic inside L,

Res {Fkξ(kr), ξn} :=
fkξn(kr)[

d
dξ sin kξπ

]
ξ=ξn

= (−1)n
fn(kr)

kπ

= einπ
fn(kr)

kπ
.

Hence, the equivalence of (3.51) and (3.52) follows.

Since Jkξ and H
(1)
kξ are analytic with respect to ξ and H

(1)
kξ (ka) 6= 0 and due to asymptotic

properties of Bessel functions for |ν| = |kξ| → ∞, see (3.15) and (3.16), we ensure that

both (3.51) and (3.52) converge as N →∞ and |ξ| → ∞ respectively.

The normal derivative of the function u on the boundary of the circle can also be written

as a contour integral by differentiating (3.52) with respect to n(s). We will show that the

integrand of this contour integral simplifies on the boundary with only Hankel function

remaining in the integrand.

3.3.1 Evaluating the normal derivative of the solution

Differentiating (3.52) with respect to r and then setting r = a, we obtain the normal

derivative of the solution u(r, s) on the boundary:

v(s, k) :=
∂u(r, s)

∂r

∣∣∣∣
r=a

= ik2

∫
L

Wkξ(ak) e−ikξπ/2

H
(1)
kξ (ka)

cos kξs

sin kξπ
dξ , (3.55)

where the Wronskian Wkξ(rk) is defined by (3.19). Then using Proposition 3.7, the normal

derivative of the solution u(r, s) on the boundary simplifies to the following form:

v(s, k) =
2k

πa

∫
L

1

H
(1)
kξ (ka)

e−ikξπ/2 cos kξs

sin kξπ
dξ . (3.56)
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Before we begin to evaluate the asymptotics of this integral for large k, we study the

behaviour of the integrand for ξ ∈ L and s in the illuminated or in the transition zones,

and simplify (3.56) accordingly. In Theorem 3.18 we show how the integrals are simplified,

for s ∈ [0, π − δ], δ > 0.

Theorem 3.18. When s ∈ [δ, π− δ], where δ > 0, the integral (3.56) simplifies asymptot-

ically for large k to the integration only along the upper branch of L as follows,

v(s, k) = −2ik

πa

∫ iβ+∞

iβ

e−ikξ(s−π/2)

H
(1)
kξ (ka)

dξ +O
(
e−ck

γ
)
, (3.57)

for some c, γ > 0.

To prove Theorem 3.18 we need to show firstly that the integral along the lower branch

of L is exponentially small when k →∞. This result follows from Lemma 3.20 which we

state later and prove using Lemma 3.19 below.

Lemma 3.19. For ξ ∈ [−iβ,−iβ +∞], and β > 0 and a > 0,

Im

(
cos−1

(
ξ

a

))
≥ γ > 0. (3.58)

Proof. Let z ∈ C with ζ := Re(z) ∈ [0, π] and η := Im(z), be defined as follows,

z := cos−1

(
ξ

a

)
. (3.59)

Then, proving (3.58) is equivalent to proving that η > 0. From (3.59), we deduce,

ξ = a cos(z) = a

(
eiz + e−iz

2

)
=
a

2
eiζe−η +

a

2
e−iζeη

=
a

2
(cos ζ + i sin ζ)e−η +

a

2
(cos ζ − i sin ζ)eη

= a cos ζ cosh η − ia sin ζ sinh η. (3.60)

Therefore,

Re(ξ) = a cos ζ cosh η, and Im(ξ) = −a sin ζ sinh η. (3.61)

Along the path ξ ∈ [−iβ,−iβ +∞], the imaginary part of ξ is negative: Im(ξ) = −β < 0.

Together with (3.61), the latter implies that ζ and η must satisfy the inequality

sin ζ sinh η =
β

a
> 0.
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Since ζ ∈ (0, π), we deduce that sinh η ≥ β/a > 0. Then

η = Im

(
cos−1

(
ξ

a

))
≥ sinh−1

(
β

a

)
=: γ,

as required.

To motivate the following lemma, we make one elementary observation. The function

exp(ikf(x)) is exponentially decaying as k →∞ when the imaginary part of a function f

is positive at x. Later, we will use this observation to prove Theorem 3.18.

For ξ ∈ [−iβ,−iβ +∞) \ B1, we can replace the Hankel function in (3.56) by its Debye’s

asymptotic expansion (3.34). In Lemma 3.20 below, we show the resulting phase function

in the integrand in (3.56) has positive imaginary part along the path ξ ∈ [−iβ,−iβ +∞].

Lemma 3.20. Consider a function φ(ξ), for ξ ∈ [−iβ,−iβ+∞], β > 0 and a > 0 defined

as follows,

φ(ξ) := ξ cos−1

(
ξ

a

)
−
√
a2 − ξ2 + ξ

(
s− 3π

2

)
. (3.62)

Then, for s ∈ [δ, π − δ], δ > 0

Im(φ(ξ)) ≥ βδ > 0. (3.63)

Proof. Let t := Re(ξ), then we can write ξ = −iβ + t, t ≥ 0. Then,

φ(−iβ + t) = (−iβ + t) cos−1

(−iβ + t

a

)
−
√
a2 − (−iβ + t)2

+ (−iβ + t)

(
s− 3π

2

)
.

When t = 0, we have,

φ(−iβ) = −iβ cos−1

(
−iβ
a

)
−
√
a2 + β2 − iβ

(
s− 3π

2

)
. (3.64)

Note that for x ∈ R,

cos−1(−ix) =
π

2
− sin−1(−ix) =

π

2
+ i log

(
x+

√
1 + x2

)
=
π

2
+ i sinh−1(x).

Then equation (3.64) can be written as follows

φ(−iβ) = −iβ
(
π

2
+ i sinh−1

(
β

a

))
−
√
a2 + β2 − iβ

(
s− 3π

2

)
.

Hence for s ∈ [0, π − δ),

Im(φ(−iβ)) = −βπ
2

+ β

(
3π

2
− s
)

= β(π − s) ≥ βδ > 0. (3.65)
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Since φ(ξ) is analytic in ξ, we have for ξ = −iβ + t,

∂φ

∂ξ
:= lim

h→0

φ(ξ + h)− φ(ξ)

h
=
∂φ

∂t
,

with h tending to 0 along the real axis. On the other hand, from (3.62),

∂φ

∂ξ
= cos−1

(
ξ

a

)
+

(
s− 3π

2

)
.

Thus using Lemma 3.19, for t ≥ 0,

Im

(
∂φ

∂t

)
= Im

(
cos−1

(
iβ + t

a

))
≥ γ > 0. (3.66)

Therefore, the function Im(φ(−iβ+t)) increases monotonically in t ≥ 0 with Im(φ(−iβ)) >

0. Hence, the result follows.

Proof of Theorem 3.18

Proof. The proof consists of investigating the behaviour of the integrand of (3.56), F ,

along the three branches of L. We denote the integrand as follows,

F (ξ) :=
1

H
(1)
kξ (ka)

e−ikξπ/2 cos kξs

sin kξπ
. (3.67)

Note that although the right hand side of (3.67) depends on parameters k, a and s, we do

not reflect this in the notation for F (ξ) for convenience.

Firstly, let us consider the behaviour of the function F along the vertical branch of L. The

function F (ξ) is an odd function with respect to ξ. To see this, note that H
(1)
−kξ(ka) =

eiπkξH
(1)
kξ (ka), see e.g. [3, (9.1.6)], and hence

F (−ξ) = − eikξπ/2

H
(1)
−kξ(ka)

cos kξs

sin kξπ
= − e−ikξπ/2

H
(1)
kξ (ka)

cos kξs

sin kξπ
= −F (ξ).

Therefore, the integration of F (ξ) along the [−iβ, iβ] branch of L vanishes identically.

Along the lower branch of L, i.e. [−iβ,−iβ +∞), the integrand F (ξ) turns out to be

exponentially small. Indeed F (ξ) is of order O(e−kβδ) for ξ = −iβ + t, t ≥ 0. To see this,

first express the trigonometric functions in F (ξ) by complex exponentials:

cos(kξs)

sin(kξπ)
= ieikξ(s−π)

[
1 +O(e−2kβs) +O(e−2kβπ)

]
.
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Then, for ξ ∈ [−iβ,−iβ +∞), and s ∈ [δ, π − δ],

cos(kξs)

sin(kξπ)
e−ikξπ/2 = i exp

(
ikξ

(
s− 3π

2

))[
1 +O(e−2kβδ)

]
. (3.68)

Now, we replace the Hankel function H
(1)
kξ (ka) in F (ξ) by its Debye’s asymptotic expansion

given in (3.34) (and also later in (3.73)) for ξ ∈ [−iβ,−iβ+∞)\B1. Then we write equation

(3.67) in the form

F (ξ) = f(ξ, k) exp(ikφ(ξ))
[
1 +O(e−2kβδ)

]
, (3.69)

where the phase function φ(ξ) is defined in (3.62) and the function f(ξ, k) satisfies for all

ξ ∈ [−iβ,−iβ +∞) \ B1 with a fixed a ∈ R, and s ∈ [δ, π − δ), the following inequality,

|f(ξ, k)| ≤ Ck1/2 (1 + |ξ|)1/2 , (3.70)

where C > 0 is a constant independent of k and ξ. From Lemma 3.20, we deduce for

ξ ∈ [−iβ,−iβ +∞) \ B1,

F (ξ) = O
(
k1/2 (1 + |ξ|)1/2 e−kβδ

)
→ 0, as k →∞.

Now, from (3.66) and (3.63), we deduce that for t ≥ 0

Im(φ(−iβ + t)) ≥ βδ + γt.

Then, also using (3.70) we obtain,∣∣∣∣∫ ∞
0

F (−iβ + t)dt

∣∣∣∣ ≤ ∣∣∣∣∫ ∞
0

f(−iβ + t, k) exp(ikφ(−iβ + t))dt

∣∣∣∣
≤ C1k

1/2

∫ ∞
0

(1 + t)1/2 exp (−k (βδ + γt)) dt

= C1k
1/2 exp(−kβδ)

∫ ∞
0

(1 + t)1/2 exp(−kγt)dt,

where C1 > 0 is a constant independent of k. Note that there exist a constant C2 > 0 also

independent of k such that (1 + t)1/2 ≤ C2e
kγt/2 for large enough k. Then,∣∣∣∣∫ ∞

0
F (−iβ + t)dt

∣∣∣∣ ≤ C3k
1/2 exp(−kβδ)

∫ ∞
0

exp(−kγt/2)dt

≤ C4
k1/2 exp(−kβδ)

kγ
≤ C5 exp(−kβδ), (3.71)

where Cj > 0, j = 3, 4, 5, are constants independent of k. From (3.71) we deduce that the

integration of (3.56) along the lower branch of L, excluding the small part intersecting B1,

yields an exponentially small term that is represented by O
(
e−ck

γ)
in (3.57).

55



3. Asymptotic methods for high-frequency acoustic scattering problems

For ξ in the small part of the contour [−iβ,−iβ +∞) ∩ B1, we use Olver’s asymptotic

expansion of H
(1)
kξ (ka) given in (3.35). Using then the asymptotic expansions (3.31), (3.32)

for the Airy functions in (3.35), we conclude that the integrand F (ξ) remains exponentially

small in k on [−iβ,−iβ +∞) ∩ B1.

Finally, on the upper part of L: ξ ∈ [iβ, iβ+∞], again we replace trigonometric functions

by their complex exponentials to obtain, for s ∈ [δ, π − δ),

cos(kξs)

sin(kξπ)
e−ikξπ/2 = −ie−ikξ(s−π/2)

[
1 +O(e−2kβδ)

]
. (3.72)

Combining this with with the asymptotic expansion for H
(1)
kξ (ka) from (3.34) and (3.35)

for the upper part of L results in an exponentially small contribution into the integral of

the term corresponding in (3.72) to O(e−2kβγ) (the technical details, somewhat analogous

to those for the lower contour, are omitted).

Hence, by combining (3.71) and (3.72) the result of the theorem (3.57) follows.

3.3.2 Asymptotic behaviour of the solution on the illuminated part of

the boundary

In this section, we prove Theorem 3.1 in the case of a circle for t1 + ∆ < s < π − δ. We

do this by evaluating the asymptotics of the simplified integral representation of v(s, k)

in (3.57) from Theorem 3.18. We employ the Debye’s asymptotic expansion of Hankel’s

function reviewed in Section 3.2.4.

Debye’s form of the asymptotic expansion From Theorem 3.18, we know that in

order to obtain an asymptotic expansion of v(s, k) for s ∈ (π/2 + ∆, π − δ], ∆, δ > 0, we

require Debye’s asymptotic expansion of the Hankel function H
(1)
kξ (ka) for ξ ∈ [iβ, iβ+∞).

In Figure 3.6, we illustrate the domain D where the Debye’s asymptotic expansion of

H
(1)
kξ (ka) is of the form (3.34) presented as follows,

H
(1)
kξ (ka) =

√
2

πk

exp
{
ik
(√

a2 − ξ2 − ξ cos−1
(
ξ
a

))
− iπ

4

}
(a2 − ξ2)1/4

×

×

1 +
M∑
m=1

Am

(
ξ
a

)
km

+Rk,M

(
ξ

a

) , (3.73)

with ∣∣∣∣Rk,M ( ξa
)∣∣∣∣ ≤ CMk−2(M+1) (1 + |ξ|)−M−1

for all ξ in D - the domain in the complex plane illustrated as shaded regions in Figure 3.6.

The functions Am(ξ/a) and Rk,M (ξ/a) in (3.73) are regular for all ξ in D that excludes
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Im(ξ)

a

D

0

iβ

B1

Re(ξ)

Figure 3.6: The domain D in the complex ξ-plane represents the domain where the Debye’s asymp-
totic representation of Hankel function is valid [16] and of the form (3.73). Domain D excludes
the point ξ = a and the circular domain around the point of a fixed radius denoted as B1. The path
of integration, ξ ∈ [iβ, iβ +∞), is also illustrated

the circular neighborhood of ξ = a. We know from Section 3.2.4 that for Re(ξ) > 0 and

Im(ξ) < 0, the expansion (3.73) is valid.

Now we proceed to the proof of Theorem 3.1 for s ∈ (π/2+∆, π−δ)∪(π+δ, 3π/2−∆).

Remark 3.21. The proof below does not include the case when |s− π| ≤ δ. However, the

result of Theorem 3.1 still holds for |s − π| ≤ δ as could be seen, for example, from the

more general theory discussed in Section 3.4, where the Model Problem Method is described

that can be used to prove (3.3) and (3.5) for general convex scatterers.

Proof. We will prove the theorem for s ∈ (π/2 + ∆, π − δ) for any small δ > 0. The case

when s ∈ (π + δ, 3π/2−∆) can be proved analogously.

The main idea of the proof is to replace the Hankel function in the integral (3.57) by its

Debye’s asymptotic expansion (3.73) and apply the method of steepest descent. Writing

v(s, k) as in Theorem 3.18 and using Debye’s asymptotic expansion (3.73), we deduce

v(s, k) = −2ik

πa

∫ iβ+∞

iβ

e−ikξ(s−π/2)

H
(1)
kξ (ka)

dξ + EST

= −2ik

πa

∫ iβ+∞

iβ
F (ξ) exp (ikGs(ξ))dξ + EST, (3.74)
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where EST represents henceforth the exponentially small terms with respect to k,

EST := O
(
e−ck

γ
)
, (3.75)

with some c > 0 and γ > 0; EST remain exponentially small upon differentiation in s. In

(3.74), the function F (ξ) is regular in the shaded domain in Figure 3.6 as follows,

F (ξ) =

√
πk

2
eiπ/4

(
a2 − ξ2

)1/4(
1 +

M∑
m=1

Ãm(kξ)

km
+O

(
k−M

))
+ EST, (3.76)

The phase function Gs(ξ) is defined as follows:

Gs(ξ) = −ξ
(π

2
− s
)

+ ξ cos−1

(
ξ

a

)
−
√
a2 − ξ2. (3.77)

The notation Gs(ξ) means that we think of G as a function of ξ parametrised by s.

The first derivative of Gs(ξ) is given as follows,

Gs(ξ) = −
(π

2
− s
)

+ cos−1

(
ξ

a

)
− 1

a

ξ√
1−

(
ξ
a

)2
+

ξ√
a2 − ξ2

= −
(π

2
− s
)

+ cos−1

(
ξ

a

)
,

and the second derivative is given as

G′′s(ξ) = − 1√
a2 − ξ2

. (3.78)

Therefore,

ξ0 := a sin s, (3.79)

is a stationary (saddle) point of the phase function Gs:

Gs(ξ0) = a cos s, G′s(ξ0) = 0, G′′s(ξ0) = − 1

a| cos s| =
1

a cos s
< 0,

since s ∈ (π/2 + ∆, π − δ).

Note that when s → π/2, the stationary point ξ0 in (3.79) enters the circular domain B1

around the point ξ = a, where the Debye’s asymptotic expansion is not valid. Hence in the

transitional domain of the boundary of the scatterer, another asymptotic representation

of the Hankel function must be used, as we will show later.

We can obtain the asymptotic expansion of the integral (3.74) using the method of steepest

descent see e.g. [101]. We deform the contour of integration into a new path of integration
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that passes through the stationary (saddle) point ξ0 of the phase function G. In doing so

the integrand can be shown to be exponentially small everywhere on the deformed contour

except near ξ0 where the contour is of the “steepest descent” form.

In detail, we transform the contour of integration to a new contour illustrated in Figure

3.7. Along the deformed path, away from ξ0, the integrand in (3.74) has the following

properties: F and Gs are smooth and the imaginary part of the phase-function Gs is

positive. In particular, analogously to Lemma 3.20, we can show that at ξ = iβ, the

imaginary part of Gs is positive. Also for Re(ξ)→∞ and Im(ξ) < 0, the imaginary part

of Gs is positive.

Therefore, along the path L′, away from ξ = ξ0, the function exp(ikGs(ξ)) is exponentially

small, i.e. of order O(e−kβδ)→ 0 as k →∞.

Im(ξ)

ξ0

iβ B1

a

Re(ξ)

Figure 3.7: Deformed contour of integration L′

Thus, the only significant contribution of the integral (3.74) comes from integration over a

small sub-contour of the deformed contour containing the stationary point ξ0, see Figure

3.8.

Using Taylor expansion near ξ = ξ0, we deduce that

Gs(ξ) = Gs(ξ0) +G′′s(ξ0)
(ξ − ξ0)2

2
+O

(
(ξ − ξ0)3

)
. (3.80)

We introduce new variable of integration t,

ξ − ξ0 = ei3π/4t. (3.81)
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Im(ξ)

ξ0

iβ
3π
4

iβ

Re(ξ)

Figure 3.8: The subcontour of the deformed contour of integration L′ containing the stationary
point ξ0

Then, we can write

v(s, k) = −2ik

aπ

∫
L′
F (ξ) exp(ikGs(ξ))dξ + EST

= −2ik

aπ

∫ ξ0+ei3π/4ε

ξ0−ei3π/4ε
F (ξ) exp(ikGs(ξ))dξ + EST,

where ε ≤ ck−1/2+γ , for 0 < γ < 1/6. Then, using (3.80), we deduce

v(s, k) = −2ik

aπ
eikGs(ξ0)

∫ ξ0+eiπ/4ε

ξ0−eiπ/4ε
F (ξ) exp

(
ikG′′s(ξ0)

(ξ − ξ0)2

2
+O

(
ik(ξ − ξ0)3

))
dξ

+ EST. (3.82)

We introduce the function F̃ (ξ) as follows

F̃ (ξ) = F (ξ) exp

(
ikG′′s(ξ0)

(ξ − ξ0)2

2
+ ikO (ξ − ξ0)3

)
exp

(
−ikG′′s(ξ0)

(ξ − ξ0)2

2

)
.

Note that the function F̃ is slowly-varying within the integration range in (3.82) since

|ξ − ξ0| ≤ ck−1/3. Also for notational convenience, we introduce the integral I(k):

I(k) :=

∫ ξ0+eiπ/4ε

ξ0−eiπ/4ε
F̃ (ξ) exp

(
ikG′′s(ξ0)

(ξ − ξ0)2

2

)
dξ.
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Then, from (3.82), the function v(s, k) is equal to

v(s, k) = − 2ik

aπ
eikGs(ξ0)I(k) + EST. (3.83)

Expanding F̃ in Taylor series, we obtain,

F̃ (e−iπ/4t+ ξ0) = F̃ (ξ0) + F̃ ′(ξ0)e−iπ/4t+ F̃ ′′(ξ0)

(
e−iπ/4t

)2
2!

+ ...+ F̃ (N)(ξ0)

(
e−iπ/4t

)N
N !

+ RN+1(t),

where

|RN (t)| ≤ C tN+1

(N + 1)!
.

Then,

I(k) = eiπ/4
∫ +ε

−ε
F̃ (e−iπ/4t+ ξ0) exp

(
−kG′′s(ξ0)

t2

2

)
dt

= eiπ/4
N∑
n=0

eiπn/4F̃ (n)(ξ0)

n!

∫ +∞

−∞
tn exp

(
−kG′′s(ξ0)

t2

2

)
dt

+eiπ/4
∫ +∞

−∞
RN (t) exp

(
−kG′′s(ξ0)

t2

2

)
dt+ EST. (3.84)

To compute the integrals in (3.84), we make further change of variables

z =
(
k|G′′s(ξ0)|

)1/2
t,

then

∫ +∞

−∞
tn exp

(
−kG′′s(ξ0)

t2

2

)
dt =

1

(kG′′(ξ0))(n+1)/2

∫ +∞

−∞
zn exp

(−z2

2

)
dz

=

√
2πn!

(kG′′s(ξ0))(n+1)/2


0, if n is odd,

1, if n = 0,
1

2mm! if n = 2m.

Then, returning to (3.84), we obtain,

I(k) = e−iπ/4
N∑
n=0

eiπn/4F̃ (n)(ξ0)

n!

√
2πn!

(kG′′s(ξ0))(n+1)/2


0, if n is odd,

1, if n = 0,
1

2mm! if n = 2m.

+ r̃N (s, k) + EST,
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where for all s ∈ (π/2 + ∆, π − δ),

|r̃N (s, k)| ≤ C
√

2π

(kG′′s(ξ0))(N+2)/2
. (3.85)

Furthermore, the estimate (3.85) is also true for all derivatives of r̃N (s, k) taken with

respect to s.

Now, from (3.83), we obtain,

v(s, k) = −
√

2

π

k

a
eikGs(ξ0)e−iπ/4

M∑
m=0

1

2mm!

imF̃ (2m)(ξ0)

(kG′′s(ξ0))m+1/2

+ rM (s, k) + EST, (3.86)

where for all s ∈ (π/2 + ∆, π − δ),

|rM (s, k)| ≤ c 1

kM
. (3.87)

We write (3.86) in the form,

v(s, k) = k exp(ika cos s)


M∑
j=0

k−jdj(s) + rM (s, k)

 , (3.88)

where dj(s), j = 0, 1, 2, . . ., are smooth functions, see (3.76), defined as

dj(s) := π
(−1)j

j!
F̃ (2j)(ξ0)

(cos s)(j+1)/2

2j−1
.

The remainder term rM (s, k) is bounded as follows, see (3.87),

|rM (s, k)| ≤ c0k
−M−1,

where c0 > 0 is independent of k; and the derivatives are bounded as

|D(n)
s rM (s, k)| ≤ cM,nk

−M−1,

where cM,n > 0 is independent of k.

From (3.88) we deduce that the asymptotic representation of the function V (s, k) defined

in (3.2) is of the form:

V (s, k) =

M∑
j=0

k−jdj(s) + rM (s, k). (3.89)

The latter expansion is in agreement with (3.3). The leading order term in the expansion
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for v is

v(s, k) ' −
√

2

π

2ik

a
eikGs(ξ0)e−iπ/4

F̃ (ξ0)√
kG′′s(ξ0)

= −
√

2

π

2ik

a
eikGs(ξ0)e−iπ/4

eiπ/4
(
πk
√
a2 − ξ2

0

)1/2

√
2kG′′s(ξ0)

= −2ikeikG(ξ0)

√
a| cos s|
G′′s(ξ0)

= 2ikeika cos s cos s.

Note d0(s) is d0(s) := 2i cos s is in agreement with d0(s) := 2in(s) · a, where n(s) is

an outer normal to the boundary of the scatterer unit vector and a is a unit vector

representing the direction of incidence.

3.3.3 Asymptotic behaviour of the solution on the transitional parts of

the boundary

As we have mentioned earlier, the Debye asymptotic expansion of the Hankel function is

not valid near the transition point ξ = a. Instead, we use the Cherry’s form of the uniform

asymptotic expansion for the Hankel function to prove Theorem 3.2.

The Cherry asymptotic representation of Hankel function is given as follows, see (3.40),

for complex ξ in B1, see Figure 3.6,

H
(1)
kξ (ka) = eiπ/3(ka)1/3

(
T (ξ)

ξ2 − a2

)1/4

α(ζ)A+(T (ξ) +
M∑
j=1

pj(ζ)

(ka)2j−2/3
+O

(
(k)−2(M+1)

)
),

(3.90)

where

A+(z) := Ai
(
e

2πi
3 z
)
,

is the Airy function. In (3.90), T (ξ) and ζ are defined as follows (see [5, (7.2.4)]),

T (ξ) := (kξ)2/3ζ =

[
3

2
ika

∫ ξ/a

1
cos−1(x)dx

]2/3

= 2

(
ka

2

)2/3( ξ
a
− 1

)[
1− 1

30

(
ξ

a
− 1

)
+ . . .

]
, (3.91)

and where p1(ζ), p2(ζ), . . . , pM (ζ) are functions that are analytic at ζ = 0, i.e. at ξ = a.
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The function α(ζ), defined as

α(ζ) :=
d

dζ

ζ +
M∑
j=1

pj(ζ)

(ak)2j

 , (3.92)

is regular at ζ = 0. Furthermore, by (3.91), the function
(
T (ξ)
ξ2−a2

)1/4
is analytic near ξ = a.

Now we can proceed to the proof of Theorem 3.2 in the case of a circle.

Proof of Theorem 3.2

Proof. From Theorem 3.18, we have the following asymptotically simplified representation

of the normal derivative, see (3.57):

v(s, k) =
2ik

πa

∫ iβ+∞

iβ

e−ikξ(s−π/2)

H
(1)
kξ (ka)

dξ + EST.

Our immediate goal is to deform the contour of integration to enable us to retrieve the

short-wave asymptotic expansion of the integral. We deform the old contour of integration

with the new contour which we denote as L1 illustrated in Figure 3.9.

iβ

a

L1

Im(ξ)

Re(ξ)0

Figure 3.9: The deformed contour of integration.

If s is close to π/2, the biggest contribution of the integral is over the part of the contour

that is near ξ = a. Indeed, within the accuracy of terms which are exponentially small

as k → ∞, we can replace the contour of integration L1 by L2 of small enough O(1) size

around point ξ = a as illustrated in Figure 3.10. Now we have,

v(s, k) =
2ik

πa

∫
L2

e−ikξ(s−π/2)

H
(1)
kξ (ka)

dξ + EST.
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iβ

a

Im(ξ)

Re(ξ)0

L2

Figure 3.10: Within an accuracy of terms which are exponentially small as k →∞, we can replace
the contour of integration L1 with L2.

We next replace the Hankel function with its Cherry asymptotic representation (3.90) and

obtain

v(s, k) =
2ik

πa

∫
L2

F (ξ)e−ikξ(s−π/2)dξ + EST, (3.93)

where the function F (ξ) is defined by

F (ξ) = e−iπ/3
(ka)−1/3

α(ζ)

(
T (ξ)

ξ2 − a2

)−1/4 1

A+

(
T (ξ) +

∑M
j=1

pj(ζ)

(ka)2j−2/3 +O
(
k−(2M+4/3)

)) ,
(3.94)

The function α(ζ) defined in (3.92) is a non-zero analytic function at a neighborhood of

ζ = 0 (i.e. ξ = a) and p1(ζ), p2(ζ), . . . , pN (ζ), are regular functions at ζ = 0 and are

determined from a recurrent relation [29]; T and ζ are defined by (3.91). In order to

obtain the asymptotic expansion of v(s, k) from (3.93), in the neighbourhood of ζ = 0 we

introduce, for large enough k, the new variable z:

z = T (ξ) = (kξ)2/3ζ +
N∑
j=1

pj(ζ)

(ak)2j−2/3
. (3.95)

Notice that due to (3.91), T is invertible on L2 chosen small enough for large enough k.

Therefore,

ξ = T −1(z) = a+ k−2/3
(a

2

)1/3
z + r(z, k), (3.96)

where r(z, k) = O
(
k−4/3z2 + k−2

)
. See [5, Section 7.2] for the proof of this fact.

In the new variable z, the transformed contour of integration L3 is illustrated in Figure

3.11.
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L3

Re(z)0

Im(z)

Figure 3.11: Integration path in the new variable z. Due to the definition of z in (3.95), the
contour of integration in z extends to infinity with exponentially small error. The contour L3 is of
the same form as a contour c in Figure 3.1.

Now, the function F (ξ) takes the following form after the change of variables:

F (z) = Bk(z)
1

A+ (z + rM )
,

where rM = O(k−(2M+4/3)) and Bk(z) is defined as

Bk(z) = e−iπ/3
(ka)−1/3

α (η (T −1(z)))

(
(T −1(z))2 − a2

T (T −1(z))

)1/4 (
T −1

)′
(z),

where the functions T and T are defined in (3.91) and (3.95) respectively, and the function

α(ζ) is defined in (3.92), and η denotes the function ζ = η(ξ) (that can be explicitly

determined from (3.91) and satisfies η(a) = 0). Note that

z = 0 ⇐⇒ T −1(z) = a ⇐⇒ ξ = a ⇐⇒ ζ = 0.

Further notice that due to (3.91), the function

((
T −1(z)

)2 − a2

T (T −1(z))

)1/4

is analytic at z = 0. Then, due to the uniformity of the expansion (3.94) and the estimate

(3.96) and the fact that α(ζ) is a non-zero, analytic function in the neighborhood of ζ = 0,

we can write

Bk(z) =

N∑
j=0

βj(z)k
−j +O

(
k−N−1

)
, (3.97)

where βj(z), j = 0, 1, 2, . . . are analytic at z = 0 (in fact, βj(z) are analytic on L3 with

radius of convergence O(k2/3) around z = 0).
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Therefore, Bk(z) is an analytic function at z = 0. Thus, the integral (3.93) can be written

as follows:

v(s, k) =
ik2/3

π

(
2

a

)2/3

e−ika(s−
π
2 )

(∫
L3

Bk(z)
eizk

1/3Z(s)−ikr(z,k)(s−π2 )

A+(z)
dz

)
×

×
(

1 +O
(
k−(2M+ 4

3
)
))

+ EST, (3.98)

where r(z, k) is defined in (3.96) and Z is defined by

Z(s) = 2−1/3a

∫ π/2

s
κ2/3(s)ds = 2−1/3a1/3

(π
2
− s
)
, (3.99)

where κ(s) = a−1 is the curvature. Now, let us introduce for convenience the function B̃k,

B̃k(z) = Bk(z)e
−ikr(z,t)(s−π2 ).

Since the function Bk is analytic at z = 0, we can expand B̃k around 0 using Taylor’s

expansion:

B̃k(z) =

∞∑
m=0

b̃m(s, k)zm,

where b̃m(s, k) are smooth in s and, due to (3.97),

b̃m(s, k) =
N∑
j=0

k−j b̃m(s) +O(k−N−1). (3.100)

Let us denote the integral in (3.98) for convenience as follows,

I(k) :=

∫
L3

Bk(z)e
−ikr(z,k)(s−π2 ) e

izk1/3Z(s)

A+(z)
dz.

Then, by introducing B̃k(z) := Bk(z) exp(−ikr(z, k)
(
s− π

2

)
), we can write

I(k) =

∫
L3

B̃k(z)
eizk

1/3Z(s)

A+(z)
dz =

∫
L3

( ∞∑
m=0

b̃m(s, k)zm

)
eizk

1/3Z(s)

A+(z)
dz

=
∞∑
m=0

b̃m(s, k)eika(
π
2
−s)

3
/6

∫
L3

zm
eizk

1/3Z(s)−ikZ3(s)/3

A+(z)
dz,

where the latter equation is obtained by multiplying and dividing by exp(ikZ3(s)/3) and

using the fact that Z3(s) = (1/2)a(π/2− s)3 (from (3.99)).

Now, denote

τ = k1/3Z(s). (3.101)
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Then,

I(k) = eika(
π
2
−s)

3
/6
∞∑
m=0

b̃m(s, k)e−iτ
3/3

∫
L3

zm
eizτ

A+(z)
dz

= eika(
π
2
−s)

3
/6
∞∑
m=0

b̃m(s, k)e−iτ
3/3(−i)m dm

dτm

(∫
L3

eizτ

A+(z)
dz

)

= eika(
π
2
−s)

3
/6
∞∑
m=0

˜̃
bm(s, k)

dm

dτm

(
e−iτ

3/3

∫
L3

eizτ

A+(z)
dz

)
, (3.102)

where
˜̃
bm(s, k) are smooth. Finally, substituting (3.102) into (3.98), we deduce

v(s, k) =
ik1/3

π

(
2

a

)2/3

e−ika(s−
π
2 )eika(

π
2
−s)

3
/6

( ∞∑
m=0

˜̃
bm(s, k)Ψ(m)(τ)

)
×

×
(

1 +O
(
k−(2M+ 4

3
)
))

+ EST,

where the function Ψ(τ) is defined as

Ψ(τ) = e−iτ
3/3

∫
c

eizτ

A+(z)
dz,

the contour of integration being illustrated in Figure 3.1.

Recall that

cos s = sin(π/2− s) '
(π

2
− s
)
− 1

6

(π
2
− s
)3

+O

((π
2
− s
)5
)
.

Thus, we can write the integral for v(s, k) in the form

v(s, k) = eika cos s
∞∑
m=0

k−1/3−2m/3bm(s, k)Ψ(m)
(
k1/3Z(s)

)
+ EST, (3.103)

where bm(s, k), m = 0, 1, 2, . . . are smooth functions in s and can also be written in the

form (3.100). Now, putting

bm(s, k) =

N∑
j=0

k−jbj,m(s) +RN (s, k),

with

|RN (s, k)| = O
(
k−N−1

)
.
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we write the equation (3.103) as follows

v(s, k) = keika cos s
L∑

m=0

N∑
j=0

k−1/3−j−2m/3bj,m(s)Ψ(m)
(
k1/3Z(s)

)
+ RL,N (s, k) + EST. (3.104)

Equation (3.104) is in agreement with (3.5), where RL,N (s, k) is as in (3.6). This concludes

the proof.
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3.4 Model Problem Method

In this section, we will outline the Model problem method [5] which in turn followed [72],

that can be used to prove the results (3.3) and (3.5) for general convex obstacles. The

main idea of the Model problem method is to construct an asymptotic approximation

to the scattering problem (2.1)- (2.3) consistent with (3.3) and (3.5). The resulting ap-

proximation solves the BVP (2.1)- (2.3) with small errors on the right hand-side of (2.1).

Finally, methods of e.g. [78] yield the error bounds (3.4) and (3.6) respectively.

Ia

II

IV

III

t1

t2

Figure 3.12: The exterior to the general convex scatterer domain is separated into illuminated (I),
transitional (II and III) and shadow (IV) zones with respect to the incident wave.

In Figure 3.12, the exterior to the scatterer domain is separated into four regions: the

illuminated (I), the shadow (IV ) and the two transitional subdomains (II and III). We

seek the asymptotic representation of the solution u to the exterior scattering problem in

each of the four domains.

On the illuminated domain, the solution can be found using the Ray method. We describe

the ray method in Section A of the Appendix. Mathematically, ray methods are simply

an extension of the WKBJ method: the solution is constructed in the form of a WKBJ-

type asymptotic expansion. Moreover, ray methods provide a physical insight into wave

propagation phenomena, extending basic principles of the geometrical optics theory.

On the other hand, it is suggested in [5] that we seek the asymptotic expansion of u in the

transition zones, in a form similar to that for the circle (3.52) which we present shortly.

The ray approximation in the illuminated zone and the asymptotic approximation in

the transition zone have to match with each other in the overlapping regions. Let us

denote the resulting approximations by uaj (x, k), x ∈ R2 \Ω, with parameter j = 1, 2, 3, 4

representing the region in the exterior domain the asymptotic expansion corresponds to.
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Then, for x ∈ I ∪ II, with P illustrated in Figure 3.13,

u(x) ∼= uaI (x, k)χ1(x) + uaII(x, k)χ2(x), (3.105)

where χj : I ∪ II → [0, 1], j = 1, 2 are smooth functions that satisfy the following

conditions:

χ1(x) = 1, if x ∈ I \ P and χ1(x) = 0, if x ∈ II,
χ2(x) = 1, if x ∈ II \ P and χ2(x) = 0, if x ∈ I,

and χ1(x) + χ2(x) = 1, if x ∈ P.

Note that the last equation implies ∇χ1(x) = −∇χ2(x) and ∆χ1(x) = −∆χ2(x) for

x ∈ P. Then, for x ∈ P,

(
∆ + k2

)
u(x) ∼=

(
∆ + k2

)
(ua1(x, k)χ1(x) + ua2(x, k)χ2(x))

=
(
∆ + k2

)
uaI (x, k)χ1(x) +

(
∆ + k2

)
uaII(x, k)χ2(x)

+2∇ [uaI (x, k)− uaII(x, k)] · ∇χ1(x) (3.106)

+ [uaI (x, k)− uaII(x, k)] ∆χ1(x). (3.107)

From (3.106) and (3.107) we deduce that the asymptotic approximations uaI (x, k) and

I

II

t1
a

P

Figure 3.13: The illuminated (I), transitional (II) zones overlap in the domain P.

uaII(x, k) must not only represent the solution u in I and II accurately but also match

in the overlap region P illustrated in Figure 3.13, i.e. to ensure the smallness of the

term uaI − uaII in (3.106) and (3.107). The same applies to matching II and III with the

shadow fields in IV which is set to identical zero. The latter matching will be ensured
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automatically by the exponential decay property (3.8) of Ψ(τ) as τ → −∞.

3.4.1 Asymptotic representation of the solution in the transition regions

for general convex domains

It is suggested in [5] that we seek the asymptotic expansion of u in the transition zones in

the form

u(x) = uI(x) + uS(x) ' k
∫
L

[
J(x, γ)−H(x, γ)

Ai(k2/3γ)

A+(k2/3γ)

]
eikξ(x,γ)dγ. (3.108)

Here Ai is the Airy function and A+(z) := Ai
(
e2i/3z

)
and the contour of integration L

is a “forked” shaped contour illustrated in Figure 3.14. Integration over the contour L is

described in [5, Section 13.1]. The function Ai in (3.108) is replaced by

Ai(t) =
1

i

(
Ai
(
te−iπ/3

)
+ Ai

(
teiπ/3

))
,

and the integrand in (3.108) is split into two terms. The term containing Ai(te−iπ/3) is

integrated along the lower branch of L, i.e. with Re(te−iπ/3) < 0 and Im(te−iπ/3) < 0.

The term containing Ai(te−iπ/3) is integrated along the upper branch of L. The function

Ai does not need to be split up along the horizontal branch of L.

The point x is the observation point. The functions ξ(x, γ) and µ(x, γ) that appear in

equations below, are unknown and J(x, γ) and H(x, γ) are given as follows:

γ0

γ1

γ2

Re(γ)

Im(γ)

0

L

Figure 3.14: The contour of integration Λ3 in the complex plane. |γ1| = |γ2| = γ0, where γ0 is a
small positive number.

J(x, γ) = k−1/3Ai
(
−k2/3µ(x, γ)

)
A(x, γ, k) + ik−2/3Ai′

(
−k2/3µ(x, γ)

)
B(x, γ, k),

(3.109)
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3. Asymptotic methods for high-frequency acoustic scattering problems

H(x, γ) = k−1/3A+

(
−k2/3µ(x, γ)

)
A(x, γ, k) + ik−2/3A′+

(
−k2/3µ(x, γ)

)
B(x, γ, k),

(3.110)

where A(x, γ, k) and B(x, γ, k) are sought in the form

A(x, γ, k) =

N∑
j=0

k−jAj(x, γ), (3.111)

and

B(x, γ, k) =
N∑
j=0

k−jBj(x, γ), (3.112)

where Aj and Bj are unknown. We in turn seek ξ, µ, Aj and Bj as power series expansions

in γ:

ξ(x, γ) =
∞∑
j=0

lj(x)γj µ(x, γ) =
∞∑
j=0

mj(x)γj (3.113)

An(x, γ) =

∞∑
j=0

Anj(x)γj Bn(x, γ) =

∞∑
j=0

Bnj(x)γj . (3.114)

Substituting the sums into (3.109) and (3.110), we obtain the so-called approximate caustic

sums (AC sums). The method for constructing the AC sums can be briefly described as

follows. The “anzatz” (3.108) - (3.114) is then substituted into the Helmholtz equation

(2.1) and the boundary conditions (2.2). We require that the coefficients of successive

powers of k−1 on both sides of these equations are identical. This will lead to a recurrence

relation between Anj and Bnj and lj and mj .

In more detail, the integrand takes the form of the following asymptotic expansion:[
J(x, γ)−H(x, γ)

Ai(k2/3γ)

A+(k2/3γ)

]
eikξ(x,γ) =

k−1/3

{
Ai
(
−k2/3µ(x, γ)

)
− Ai(k2/3γ)

A+(k2/3γ)
A+

(
−k2/3µ(x, γ)

)}
A(x, γ, k)eikξ(x,γ)

+ ik−2/3

{
Ai′
(
−k2/3µ(x, γ)

)
− Ai(k2/3γ)

A+(k2/3γ)
A′+

(
−k2/3µ(x, γ)

)}
B(x, γ, k)eikξ(x,γ)

with the unknown coefficients Aj(x, γ) and Bj(x, γ), as well as µ(x, γ) and ξ(x, γ).

The boundary condition (2.2) for u(x) translate into following conditions for the unknowns:

for x ∈ Γ,

µ(x, γ) = −γ, (3.115)

Bj(x, γ) ≡ 0. (3.116)
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3. Asymptotic methods for high-frequency acoustic scattering problems

For notational convenience, we introduce the function D as follows,

D(x, γ, k) = W
(
−k2/3µ(x, γ)

)
A(x, γ, k) + ik−1/3W ′

(
−k2/3µ(x, γ)

)
B(x, γ, k),

where W (z) is either the Airy function Ai(z) or A+(z). Note that both functions Ai(z) and

A+(z) solve the Airy differential equation (3.23). Then, in order to determine the unknown

functions, we solve asymptotically the following equation, to ensure an approximation to

(2.1),

(∆ + k2)
(
D(x, γ, k)eikξ(x,γ)

)
= 0. (3.117)

Then by equating the terms of order k2 in (3.117) the functions ξ(x, γ) and µ(x, γ) can

be found.

Proposition 3.22. If the function u(x) in (3.108) satisfies

(∆ + k2)u(x) = 0,

then the functions ξ(x, γ) and µ(x, γ) satisfy|∇ξ|2 + µ|∇µ|2 = 1,

∇µ · ∇ξ = 0.
(3.118)

Proof. See Section G of Appendix.

3.4.2 Determining the eikonal analogue

The system of equations (3.118) is seen to be equivalent to the system of two eikonal

equations which can be written as follows:∣∣∣∣∇(ξ ± 2

3
µ3/2

)∣∣∣∣2 = 1. (3.119)

To solve this system, we seek further expansions in the powers of γ,

ξ(x, γ) =
∞∑
j=0

ξj(x)γj , and µ(x, γ) =
∞∑
j=0

µj(x)γj . (3.120)

Substituting the expansions (3.120) for ξ and µ into equation (3.118), and equating coef-

ficients of γj , we obtain, for j = 0,

{
|∇ξ0|2 + µ0|∇µ0|2 = 1,

∇ξ0 · ∇µ0 = 0.
(3.121)
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3. Asymptotic methods for high-frequency acoustic scattering problems

Regarding the functions µ0(x) and ξ0(x), we make the following observations:

(i)

When x ∈ Γ, since µ0(x) = 0 by (3.115), vector ∇µ0 must be parallel to n(x), the normal

to the boundary at x. But from the second equation in (3.121), we deduce that ∇µ0 is

perpendicular to ∇ξ0. Thus ∇ξ0 = t(x), where t(x) is the unit tangent vector. On Γ, we

have

ξ0(s) = s+ c0.

Here c0 is a constant of integration that has to be taken to equal to zero on Γ for matching

with the geometrical optics asymptotics in the domain I.

(ii)

Set

τ±0 (x) = ξ0(x)± 2

3
µ

3/2
0 (x), (3.122)

then, cf (3.119), τ±0 must satisfy{ ∣∣∇τ±0 (x)
∣∣ = 1,

τ±0 (x0) = s for x0 ∈ Γ
(3.123)

With reference to Figure 3.15, we deduce in “normal” coordinates (s, n), from (3.123),

τ±(s, n) = s0 ± t(s, n). (3.124)

n

s

a a

s−0

t+

t−
s+0

θ

Figure 3.15: The eikonal τ(x) equals to s+ t .

Lemma 3.23. The function τ± in (3.124) satisfies,

τ±(s, n) = s± 2

3

√
2κ(s)n3/2 +O

(
n2
)
, as n→ 0,

where κ(s) denotes the curvature of the boundary at s, see (3.3.19) in [5].
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3. Asymptotic methods for high-frequency acoustic scattering problems

Proof for the case of a cirle. From Figure 3.15 we deduce,

τ± = s0 ± t
= s− (s− s0)± t.

Note that

s− s0 = ±aθ, (3.125)

and

t = (a+ n) sin θ = (a+ n)

(
θ − θ3

6
+O(θ5)

)
= aθ + nθ − 1

6
aθ3 +O

(
n2
)
. (3.126)

Now, from (3.125) and (3.126), we deduce,

τ± = s± [t− aθ].

t− aθ = nθ − 1

6
aθ3 +O(n2).

Since θ =
√

(2/a)n1/2 and a = κ(s)−1, the result follows.

Thus we can find the Eikonal, τ , in the transition zones and write it in the form

τ(s,m) = s+
2

3

√
2κ(s)m3 +O(m4), (3.127)

where s is the parameter of the arc-length parametrisation of the boundary and m2 = n

is the distance from the point on the diffracted ray to the boundary, along the normal to

the boundary, see Figure 3.15. Define

τe(s,m) =
τ(s,m) + τ(s,−m)

2
, and τo(s,m) =

τ(s,m)− τ(s,−m)

2
.

Then,

τe(s,m) = ξ(s,m) = s+O(m4), and τo(s,m) = ±2

3
µ3/2
o (s,m),

where

µo(s,m) = (2κ(s))2/3m2 +O(m4). (3.128)

Returning to the main system of equations (3.118) with substituted expansions (3.120),

we obtain by equating coefficients of γm, m = 1, the following system for ξ1 and µ1:{
∇ξ0 · ∇ξ1 + µ1|∇µ0|2 + 2µ0∇µ0 · ∇µ1 = 0,

∇ξ0 · ∇µ1 +∇ξ1 · ∇µ0 = 0.
(3.129)
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From (3.128), we deduce that when x ∈ Γ

|∇µ0(x)|2 = (2κ(x))2/3 . (3.130)

From (3.115), for x ∈ Γ, µ1(x) = −1. Therefore, ∇µ1 is perpendicular to the tangent

vector to Γ. This implies that∇ξ0(x)·∇µ1(x) = 0 on Γ. Thus, from (3.129), ∇ξ1·∇µ0 = 0,

and hence

ξ1(x) = 2−1/3

∫ x

x0

κ(s)2/3ds. (3.131)

In a similar way, unknowns µ1, ξ2, µ2,. . . can be obtained by solving the relevant recurrence

relations and determining the constants of integration so that the ray asymptotic expansion

is matched, see [5, Sections 13.2, 13.4].

We proceed to estimating the normal derivative v(s, k).

3.4.3 The normal derivative of the solution.

We start by finding the normal derivative of the following term in the integrand in (3.108):

∇
[(

J(x, γ)−H(x, γ)
Ai(k2/3γ)

A+(k2/3γ)

)
eikξ(x,γ)

]
· n =

k−1/3

(
Ai(−k2/3µ)− Ai(k2/3γ)

A+(k2/3γ)
A+(−k2/3µ)

)
∇A · n eikξ

+ ik−2/3

(
Ai′(−k2/3µ)− Ai(k2/3γ)

A+(k2/3γ)
A
′
+(−k2/3µ)

)
∇B · n eikξ

+ k−1

(
Ai′(−k2/3µ)− Ai(k2/3γ)

A+(k2/3γ)
A
′
+(−k2/3µ)

)
(n · ∇µ)A eikξ

+ ik−4/3

(
Ai′′(−k2/3µ)− Ai(k2/3γ)

A+(k2/3γ)
A
′′
+(−k2/3µ)

)
(n · ∇µ)B eikξ

+

[
k−1/3

(
Ai(−k2/3µ)− Ai(k2/3γ)

A+(k2/3γ)
A+(−k2/3µ)

)
A

+ ik−2/3

(
Ai′(−k2/3µ)− Ai(k2/3γ)

A+(k2/3γ)
A
′
+(−k2/3µ)

)
B
]
ik (∇ξ · n) eikξ

where A(x, γ, k) and B(x, γ, k) are defined in (3.111) and (3.112) respectively. Note that

the first and the second to last terms vanish due to (3.115) and (3.116). Furthermore,

the last term also vanishes when x ∈ Γ due to (3.115) and (3.116). The second and third

terms simplify significantly for x ∈ Γ since for all t, the following identity holds due to

Proposition 3.10,

Ai′(t)A+(t)−Ai(t)A
′
+(t) = i.
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This leads to the following representation of the normal derivative: for x ∈ Γ,

∇u · n(x) = k2/3

∫
L

B̃(x, k, γ)

A+(k2/3γ)
eikξ(x,γ)dγ, (3.132)

where

B̃(x, k, γ) =
N∑
j=0

k−j
(
iAj(x, γ)(n · ∇µ(x, γ))− k−1/3∇Bj(x, γ) · n

)
+RN (x, k)

=

N∑
j=0

k−jB̃j(x, γ) +RN (x, k, γ),

where ∣∣∣D(n)
x RN (x, k, γ)

∣∣∣ ≤ Cn 1

kN+1
.

Although the functions B̃j(x, γ) depend on k, we do not reflect this in the notation since

B̃j(x, γ) = O(1) as k →∞. Now, from (3.132), we deduce,

∇u · n(x) = k−1/3
N∑
j=0

k−j
∫
L

B̃j(x, γ)

A+(k2/3γ)
eikξ(x,γ)dγ + R̃N (x, k), (3.133)

where ∣∣∣D(n)
x R̃N (x, k)

∣∣∣ ≤ C̃n 1

kN+1
.

Now put

B̃j(x, γ) =
L∑

m=0

Bj,m(x)γm + rL(x, γ),

where

rL(x, γ) = O

(
1

γL+1

)
.

Thus, we deduce that

∇u · n(x) =

N∑
j=0

k−1/3−j

(
L∑

m=0

Bj,m(x)

∫
L

γmeikξ(x,γ)

A+(k2/3γ)
dγ +

∫
L

rL(x, γ)eikξ(x,γ)

A+(k2/3γ)
dγ

)
+ RN (x, k).

We introduce a change of variables: z = k2/3γ, then

∇u · n(x) =

N∑
j=0

L∑
m=0

k−1/3−2m/3−jBj,m(x)

∫
L

rL(x, γ)eikξ(x,k
−2/3z)

A+(z)
dz

+ N

∫
L

rL(x, zk−2/3)eikξ(x,k
−2/3z)

A+(z)
dz +RN (x, k). (3.134)
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We take ξ(x, γ) = ξ0(x) + ξ1(x)γ +O(γ2) and then, using (3.131),

∫
L

zmeikξ(x,k
−2/3z)

A+(z)
dz =

∫
L

zmeikξ0(x)eikξ1(x)k−2/3z)

A+(z)
dz

= eikξ0(x)

∫
L

zmeik
1/3ξ1(x)z

A+(z)
dz = eikξ0(x)

∫
L

zmeik
1/3Z(x)z

A+(z)
dz,

where

Z(s) = 2−1/3

∫ x

x0

κ(s)2/3ds. (3.135)

We can now rewrite the equation (3.134) as follows, for x ∈ Γ as x = x(s):

v(s, k) = keikx·a
N∑
j=0

L∑
m=0

k−1/3−2m/3−jbj,m(x)Ψ(m)
(
k1/3Z(s)

)
+RN,L(x, k), (3.136)

with

|Dn
sRL,N (s, k)| ≤ CL,N,n(1 + k)µ+n/3,

and where µ := −min {2(L+ 1)/3, (N + 1)} and CL,N,n are independent of k and the

Fock’s integral Ψ(τ) is defined as,

Ψ(τ) := exp (−iτ3/3)

∫
c

e−izτ

Ai(e2πi/3z)
dz,

where the contour c is illistrated in Figure 3.1. The function Ψ(l) denotes the l-th derivative

of Ψ and this integral converges exponentially due to asymptotic properties of Airy function

Ai defined earlier in (3.31).
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Chapter 4

Computation of highly-oscillatory

double integrals

4.1 Introduction

In this chapter, we describe a numerical method for the efficient computation of the highly-

oscillatory double integrals that arise from the Galerkin discretisation of the boundary

integral equations for solving scattering problems which was described in Chapter 2.

We will often use terms highly-oscillatory and slowly-varying to describe functions or

integrals. Thus, before we proceed to the main content of the chapter, we consider an

example of slowly-varying and highly-oscillatory functions and integrals.

Let I = [a, b] be a bounded interval. In the simplest case, a family of smooth functions

fk : I → R depending on a parameter k ∈ [1,∞) is said to be slowly-varying if for any

j = 0, 1, 2, . . . ∣∣∣f (j)
k (x)

∣∣∣ ≤ Cj , x ∈ I, (4.1)

where Cj is a constant independent of k. On the other hand, a family of functions Fk :

I → R of the form

Fk(x) := fk(x) exp(ikx), (4.2)

is said to be highly-oscillatory. Note that Fk satisfy∣∣∣F (j)
k (x)

∣∣∣ ≥ Cjkj , x ∈ I, (4.3)

where Cj is a constant independent of k.

A slowly-varying function can be well approximated by a polynomial interpolation at a

suitable set of points independent of k with error remaining bounded as k →∞. However,

this property does not hold for highly-oscillatory functions.

Similarly, integrals of slowly-varying functions can be accurately approximated using clas-

sical quadratures that are based on the polynomial approximation of the integrand. In this

case, the number of quadrature points would be independent of k. However, the number of

quadrature points required for the computation of highly-oscillatory integrals via classical
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quadrature typically grows with k as k →∞ to achieve the same level of accuracy.

To illustrate and emphasize the difficulty of approximating highly-oscillatory integrals

using classical quadratures consider the following example of error bounds for the cases

when the same quadrature rule is applied to an integral with a slowly-varying and a

highly-oscillatory integrand.

We consider the classical Clenshaw-Curtis quadrature described in Chapter 5 based on

polynomial interpolation of the integrand at Clenshaw-Curtis points. Error estimates

follow from Theorem 5.2 in Chapter 5.

N+1-point classical Clenshaw-Curtis applied to a slowly-varying integrand, i.e.

to fk satisfying (4.1),

I [a,b][fk] :=

∫ b

a
fk(x)dx '

∫ b

a
[PNfk](x)dx =: Q

classical,[a,b]
1,N [fk],

where PNfk is a polynomial of degree N satisfying PNfk(xj) = fk(xj), where xj , j =

0, ..., N are Chebyshev points mapped to the interval [a, b].

∣∣∣I [a,b][fk]−Qclassical,[a,b]1,N [fk]
∣∣∣ ≤ Am (b− a)m+1

Nm
sup
k

∥∥∥f (m)
k

∥∥∥
∞,[a,b]

, m ≥ 1, (4.4)

where Am > 0 are constants independent of k and N .

N +1-point classical Clenshaw-Curtis applied to a highly-oscillatory integrand,

i.e. Fk satisfying (4.2),

I [a,b][Fk] :=

∫ b

a
Fk(x) exp(ikx)dx '

∫ b

a
[PNFk](x)dx := Q

classical,[a,b]
2,N [Fk],

∣∣∣I [a,b][Fk]−Qclassical,[a,b]2,N [Fk]
∣∣∣ ≤ Am

(b− a)m+1

Nm

∥∥∥F (m)
k

∥∥∥
∞,[a,b]

≤ Bm
(b− a)m+1km

Nm
, (4.5)

where Am > 0 and Bm > 0 are constants independent of k and N . The error bound (4.4)

shows that the classical quadrature applied to the slowly-varying integrand converges

superalgebraically with N independently of k. On the other hand, the error bound (4.5)

only shows convergence when the number of quadrature points N grows linearly with k

as k →∞ or the interval (a, b) shrinks with O(k−1).

Note that estimates (4.1) and (4.2) do not allow functions with singularities. However

the notion of slowly- and highly-oscillatory can easily be extended to this case. We will

consider the extension to singular functions as well as two dimensional functions with

singularities when we encounter them later in this chapter.
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4.1.1 Motivation of the chapter

In Chapter 2, a Galerkin boundary integral method for solving high-frequency acoustic

scattering problems was described. This method requires the assembly and solution of a

system of linear equations (2.39). The coefficients of this system of linear equations are

double integrals. Assuming that the integrals can be computed exactly, the number of

degrees of freedom of the Galerkin method only needs to grow at a rate slightly higher

than k1/9 in order to maintain the accuracy as k →∞. This follows from Theorem 6.5 in

Chapter 2.

In practice, however, the double integrals can not be computed exactly and numerical

methods are required for their approximation. The difficulty with the approximation of

these integrals is that they are often highly-oscillatory. As described above, this means that

the number of integration points required for their computation grows with k in practice

at least quadratically if integration methods based on polynomial interpolation of the

integrand are applied. The assembly of the system of linear equations (2.39) then becomes

computationally unfeasible for large k. Moreover, the integrands of the double integrals

often suffer from algebraic singularities. This fact must also be carefully considered for an

accurate approximation of the integrals.

In this chapter, we present a numerical technique for the computation of the double

integrals that arise from the Galerkin boundary integral method described in Chapter 2.

The numerical method has the following properties:

• we can efficiently obtain an accuracy for the approximation of the double integrals

so that the overall convergence rate of the theoretical Galerkin boundary integral

method is not degraded by the application of the quadrature to capture the integrals,

• the number of quadrature points required to maintain this accuracy does not de-

pend on the wavenumber k, and therefore the integration method is efficient for all

wavenumbers k.

Our quadrature methods are devised by adapting Filon-type ideas, which are discussed

in detail in Chapter 5. There Filon-type quadratures are introduced for integrals of the

form:

I
[a,b]
k [f ] =

∫ b

a
f(x) exp(ikx)dx, (4.6)

by replacing the function f by a suitable interpolating polynomial PNf of degree N and

integrating exactly. One feature of these methods is that for a fixed number of quadrature

points, Filon-type quadratures become more accurate as k increases provided the function

f is sufficiently smooth. Moreover, and very important for our purposes, for fixed k the

method converges superalgebraically with respect to N . In this sense good accuracy is

obtained for both small and large k.
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The oscillatory term in (4.6), exp(ikx), is called a canonical oscillator. On the other hand,

if the frequency of the oscillator changes non-linearly with x, e.g. exp(ikg(x)), we call

such function a non-canonical oscillator.

Definition 4.1. We denote highly-oscillatory integrals with non-canonical oscillator by

I
g,[a,b]
k [f ], i.e.

I
g,[a,b]
k [f ] :=

∫ b

a
f(x) exp(ikg(x))dx. (4.7)

Note

I
[a,b]
k [f ] = I

g,[a,b]
k [f ], when g(x) = x.

Before we proceed to describing the structure of the double integrals, we introduce the

following notation that we use later for the derivatives of functions two variables.

Notation 4.2. For g : [a, b]× [c, d]→ R, denote Dpg(s, t), with p = (p1, p2)T ∈ N2, as

Dpg(s, t) :=
∂|p|

∂sp1∂tp2
(g(s, t)) (4.8)

where |p| = p1 + p2.

Furthermore, we say g is smooth, i.e. g ∈ C∞ ([a, b]× [c, d]), if for any p ∈ N2, Dpg(s, t)

exist and is continuous.
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4.1.2 The structure of the double integrals

In this section, we discuss the structure of the double integrals arising from the Galerkin

discretisation (2.39). Recall that the Galerkin method of Chapter 2 leads to integrals of

the following form, (see equation (6.26b)),

Jk :=

∫
Λ

∫
Λ′
g(s, t)

[
∂n(s)Φk(γ(s),γ(t))− ikΦk(γ(s),γ(t))

]
exp (ika · [γ(t)− γ(s)]) dtds,

(4.9)

where Λ and Λ′ are two subintervals of [0, 2π] and g ∈ C∞ ([0, 2π]× [0, 2π]) is independent

of k and

Φk(x,y) =
ik

4
H

(1)
0 (k |x− y|) , (4.10)

is the fundamental solution of the Helmholtz equation in 2D.

The first step in computing Jk is to separate the highly-oscillatory part of the integrand

from the slowly-varying part. We do this in Theorem 4.3.

Theorem 4.3. The double integral, Jk, defined in (4.9) can be written in the form:

Jk =

∫
Λ

∫
Λ′
M(s, t) exp (ikΨ(s, t)) dtds, (4.11)

where the phase function Ψ : Λ× Λ′ → R is given by

Ψ(s, t) = |γ(s)− γ(t)| − a · (γ(s)− γ(t)) , (4.12)

and the function M : Λ× Λ′ → R, is defined as

M(s, t) := g(s, t)
[
∂n(s)Φk(γ(s),γ(t))− ikΦk(γ(s),γ(t))

]
exp (−ik |γ(s)− γ(t)|) , (4.13)

satisfies for s 6= t

|M(s, t)| ≤ C1kmax

{
1, log

(
1

|γ(s)− γ(t)|

)}
, (4.14)

where C1 > 0 is independent of k. Furthermore, for all p ∈ N2,

|DpM(s, t)| ≤ C2k
1

|γ(s)− γ(t)||p|
, (4.15)

where C2 > 0 is independent of k.

Note that the bounds on the function M given in (4.14) grow linearly with k. This is

due to the factor of k that appears in the function Φk defined in (4.10). However, the

derivatives of M do not produce any additional powers of k.
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4. Computation of highly-oscillatory double integrals

The proof of Theorem 4.3 requires several intermediate results that we present in Lemma

4.5, Lemma 4.6 and Lemma 4.7. For convenience, we introduce the following notation,

Notation 4.4. For m ≥ 0, we define

hm(z) = exp(−iz)H(1)
m (z), z > 0. (4.16)

The function hm(z) is singular at z = 0 due to the singularity in the Hankel function

H
(1)
m (z).

In Lemma 4.5, we bound h0(z), z > 0 by another function that has an explicit singularity

for z > 0. Furthermore, we derive estimates for the derivatives of h0(z) for z > 0.

Lemma 4.5. There exists C > 0 such that

|h0(z)| ≤ C

1− log z, z ∈ (0, 1],

z−1/2, z ∈ [1,∞).
(4.17)

Moreover, for each n ≥ 1, there exist Cn > 0 such that

∣∣∣∣( d

dz

)n
h0(z)

∣∣∣∣ ≤ Cn
z−n, z ∈ (0, 1],

z−(n+1/2), z ∈ [1,∞).
(4.18)

Proof. We use the integral representation of Hankel function [81, Section 13.3]:

H
(1)
0 (z) = −2i

π
exp(iz)

∫ ∞
0

exp(−zt)
t1/2(t− 2i)1/2

dt, z > 0, (4.19)

where (t− 2i)1/2 is chosen with positive real part for t > 0. The latter implies

|t− 2i|1/2 ≥ max{t1/2, 21/2}. (4.20)

The representation (4.19) yields

h0(z) = −2i

π

∫ ∞
0

exp(−zt)
t1/2(t− 2i)1/2

dt.

Therefore, for n ≥ 0,(
d

dz

)n
h0(z) = (−1)n+1 2i

π

∫ ∞
0

exp(−zt)tn−1/2

(t− 2i)1/2
dt. (4.21)
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We now write the integral (4.21) as a sum of two integrals:

(
d

dz

)n
h0(z) = (−1)n+1 2i

π

(∫ 1

0

exp(−zt)tn−1/2

(t− 2i)1/2
dt+

∫ ∞
1

exp(−zt)tn−1/2

(t− 2i)1/2
dt

)
=: (−1)n+1 2i

π
(I1(z) + I2(z)) .

Using (4.20) and then changing variables y = zt we deduce,

|I1(z)| ≤ 1√
2

∫ 1

0
exp(−zt)tn−1/2dt =

1√
2zn+1/2

∫ z

0
exp(−y)yn−1/2dy, (4.22)

|I2(z)| ≤
∫ ∞

1
exp(−zt)tn−1dt =

1

zn

∫ ∞
z

exp(−y)yn−1dy. (4.23)

For the case when n = 0, the integral I1(z) is bounded as follows,

|I1(z)| ≤ C

1, z ∈ (0, 1],

z−1/2, z ∈ [1,∞),
(4.24)

where C > 0. Similarly I2(z) for z ≤ 1 is estimated by

|I2(z)| ≤ 1√
2

∫ 1

z

exp(−y)

y
dy +

1√
2

∫ ∞
1

exp(−y)

y
dy ≤

∫ 1

z

1

y
dy +

∫ ∞
1

exp(−y)dy

≤ C1 log

(
1

z

)
+ C2, (4.25)

where C1 > 0 and C2 > 0. On the other hand, for z ≥ 1,

|I2(z)| ≤
∫ ∞

1

exp(−y)

y
dy ≤ C, (4.26)

where C > 0. Hence the result (4.17) follows from estimates (4.24) - (4.26).

The case when n ≥ 1, i.e. the result (4.18), follows from estimates (4.22) and (4.23) by

considering cases when z ≤ 1 and z > 1 separately.

In Lemma 4.6, we bound zh1(z), z > 0 and its derivatives using Lemma 4.5.

Lemma 4.6. For the function h1(z) defined as in (4.16), the following estimate holds:

|zh1(z)| ≤ C

1, z ∈ (0, 1]

z1/2, z ∈ [1,∞)
. (4.27)
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4. Computation of highly-oscillatory double integrals

Moreover, the derivatives are bounded by,

∣∣∣∣( d

dz

)n
(zh1(z))

∣∣∣∣ ≤ C
z−n, z ∈ (0, 1]

z−(n−1/2), z ∈ [1,∞)
, n ≥ 1. (4.28)

Proof. Since
d

dz
H

(1)
0 (z) = −H(1)

1 (z),

we find the function h1(z) is related to h0(z) by

h1(z) = −ih0(z)− d

dz
h0(z).

Therefore, zh1(z) = −izh0(z)− z((d/dz)h0(z)). Then to see (4.27), for z ∈ (0, 1], we use

Lemma 4.5 and the fact that limz→0 z log(z) = 0.

On the other hand, to show (4.28), we use the identity,(
d

dz

)n
(zf(z)) = n

(
d

dz

)n−1

f(z) + z

(
d

dz

)n
f(z),

to deduce, ∣∣∣∣( d

dz

)n
(zh1(z))

∣∣∣∣ ≤
∣∣∣∣∣n
(
d

dz

)n−1

h0(z)

∣∣∣∣∣+

∣∣∣∣z( d

dz

)n
h0(z)

∣∣∣∣
+

∣∣∣∣n( d

dz

)n
h0(z)

∣∣∣∣+

∣∣∣∣∣z
(
d

dz

)n+1

h0(z)

∣∣∣∣∣ .
Finally, using Lemma 4.5, we obtain (4.28).

In the following lemma, we prove an intermediate result required for the proof of Theorem

4.3.

Lemma 4.7. Define the function L : [0, 2π]× [0, 2π]→ R as,

L(s, t) :=
(γ(s)− γ(t)) · n(s)

|γ(s)− γ(t)|2
, (4.29)

where γ is a smooth parametrisation of a 2D contour Γ, i.e. γ ∈ C∞([0, 2π])×C∞([0, 2π]).

Then L ∈ C∞ ([0, 2π]× [0, 2π]).

Proof. Clearly L is a C∞ function for any t outside a neighborhood of s. To investigate

what happens when t near s, note that for i = 1, 2, we may write,

γi(s)− γi(t) =

∫ 1

0

d

dλ
{γi(t+ λ(s− t))} dλ.
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Then, integrating by parts, we have,

γi(s)− γi(t) =

[
λ
d

dλ
{γi(t+ λ(s− t))}

]λ=1

λ=0

−
∫ 1

0
λ
d2

dλ2
{γi(t+ λ(s− t))} dλ

= γ ′i(s)(s− t)− (s− t)2

∫ 1

0
λγ ′′i (t+ λ(s− t))dλ

= γ ′i(s)(s− t)−G(s, t)(s− t)2,

where G ∈ C∞([0, 2π]× [0, 2π]). Therefore,

γ(s)− γ(t) = γ ′(s)(s− t) +G(s, t)(s− t)2, (4.30)

with G ∈ C∞([0, 2π]× [0, 2π]). Hence, since γ ′(s) · n(s) = 0, we have,

(γ(s)− γ(t)) · n(s) = [G(s, t) · n(s)] (s− t)2,

and

|γ(s)− γ(t)|2 = |γ ′(s)|2(s− t)2 + 2
[
γ ′(s) ·G(s, t)

]
(s− t)3 + |G(s, t)|2(s− t)4. (4.31)

Thus,

L(s, t) =
G(s, t) · n(s)

|γ ′(s)|2 + 2 [γ ′(s) ·G(s, t)] (s− t) + |G(s, t)|2(s− t)2
.

Since |γ ′(s)| > 0, it follows that L is also C∞ in a sufficiently small neighborhood of

t = s.

Lemma 4.8. If γ is a smooth parammetrisation of a 2D contour Γ and a function r is

defined as

r(s, t) := |γ(s)− γ(t)| , (4.32)

then for each p ∈ N2 there exists Cp > 0 such that∣∣∣Dp
(s,t)r(s, t)

∣∣∣ ≤ Cpr(s, t)
1−|p|, (4.33)

where Dp
(s,t) is defined as in (4.8),

Dp
(s,t)r(s, t) :=

∂|p|

∂sp1∂tp2
(r(s, t)) .

Proof. See Section F of Appendix.

Remark 4.9. Although, the first derivatives of the function r are bounded, they are not

continuous at s = t. For example let us consider the partial derivative of r with respect to
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the variable s,

∂

∂s
r(s, t) =

(γ(s)− γ(t)) · γ ′(s)
|γ(s)− γ(t)| .

By (4.30) and (4.31), we have

(γ(s)− γ(t)) · γ ′(s) = −(s− t)
(
|γ ′(s)|2 + (s− t)G(s, t) · γ ′(s)

)
,

and

|γ(s)− γ(t)| = |s− t|
{
|γ ′(s)|2 + 2

[
γ ′(s) ·G(s, t)

]
(s− t) + |G(s, t)|2(s− t)2

}1/2
,

so

lim
t→s+

{
(γ(s)− γ(t)) · γ ′(s)
|γ(s)− γ(t)|

}
= −1 = − lim

t→s−

{
(γ(s)− γ(t)) · γ ′(s)
|γ(s)− γ(t)|

}
.

Let us now return to the proof of Theorem 4.3.

Proof of Theorem 4.3

Proof. For convenience assume k ∈ [1,∞). The formulae (4.11) -(4.12) are obtained by

straightforward algebra. It remains to show that function M satisfies (4.14) and (4.15).

Recall the definition of the function M in (4.11),

M(s, t) = g(s, t)K(s, t) exp(−ikr(s, t)), (4.34)

where g ∈ C∞([0, 2π]× [0, 2π]) and

K(s, t) :=
[
∂n(s)Φk(γ(s),γ(t))− ikΦk(γ(s),γ(t))

]
= − ik

4
H

(1)
1 (kr(s, t))

(γ(s)− γ(t)) · n(s)

r(s, t)
+
k

4
H

(1)
0 (kr(s, t)) .

Since g in (4.34) is smooth, we require only bounds on the derivatives of

K(s, t) exp(−ikr(s, t)) := − ik
4
h1(kr(s, t))

(γ(s)− γ(t)) · n(s)

r(s, t)
+
k

4
h0(kr(s, t))

= − ik
4

[h1(kr(s, t))r(s, t)]L(s, t) +
k

4
h0(kr(s, t)), (4.35)

where functions h0 and h1 are defined in (4.16) and L is defined in (4.29) and proved to

be smooth in Lemma 4.7.

From Lemma 4.5, we deduce, for 0 < kr(s, t) ≤ 1,

|h0 (kr(s, t))| . log

(
1

kr(s, t)

)
+ 1 . log

(
1

r(s, t)

)
+ 1, (4.36)
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since log(1/x) is a decreasing function and kr(s, t) ≥ r(s, t), where the notation A . B in

(4.36) means A ≤ cB, where c is independent of k.

On the other hand, when kr(s, t) > 1,

|h0 (kr(s, t))| . 1, (4.37)

Combining equations (4.36) and (4.37), we obtain

|h0 (kr(s, t))| . max

{
1, log

(
1

r(s, t)

)}
, s, t ∈ [0, 2π]. (4.38)

Let us now investigate the bounds on derivatives of h0 (kr(s, t)). For this, we require

two-dimensional Faa di Bruno’s formula in it’s combinatorical form 1.

For integers p1, p2 ≥ 0, we introduce the set

S := {1, . . . , p1, p1 + 1, . . . , p1 + p2} .

We denote p = (p1, p2)T . A partition of S is a set (here denoted by σ) of non-empty,

non-overlapping subsets of S whose union is all of S. The number of sets in σ is denoted

|σ|. For each β ∈ σ we let β1 denote the number of elements of β which are ≤ p1 and let

β2 denote the number of elements of β which are > p1 and ≤ p1 + p2. Denote the number

of elements in σ by |σ| and denote |β| as β1 + β2.

Then, using Faa di Bruno’s formula [55, 35], we deduce,(
∂

∂s

)p1
(
∂

∂t

)p2

{h0(kr(s, t))} =
∑
σ

h
|σ|
0 (kr(s, t))

∏
β∈σ

(
∂

∂s

)β1
(
∂

∂t

)β2

{kr(s, t)} ,

(4.39)

where the sum is over all possible partitions σ of S.

For example, if p1 = 1 = p2, then S = {1, 2} and the possible partitions of S are:

σ = {{1}, {2}} and σ = {{1, 2}} ,
1Faa di Bruno’s formula in 2D [55, 35]. For a composite function F ◦ G, regardless of whether

x1, . . . , xp are all distinct or identical, the following holds,

∂p

∂x1 . . . ∂xp
F (G) =

∑
σ∈S

F (|σ|)(G)
∏
β∈σ

∂|β|G∏
j∈β ∂xj

,

where σ denotes a set of all possible partitions of the set S = {1, 2, . . . , p}. Here σ is a set of non-empty,
non-overlapping subsets of S whose union is all of S. We denote the number of elements in σ by |σ|. For
β ∈ σ, we denote |β| as the number of elements in β.

90



4. Computation of highly-oscillatory double integrals

with |σ| = 2 and |σ| = 1 respectively. The right hand side of (4.39) is

h
(2)
0 (kr(s, t))

∂

∂s
{kr(s, t)}+ h

(1)
0 (kr(s, t))

∂

∂s

∂

∂t
{kr(s, t)} ,

which is easily seen to equal the left hand side.

Now, consider a typical term in the sum (4.39),∣∣∣∣∣∣
∏
β∈σ

(
∂

∂s

)β1
(
∂

∂t

)β2

{kr(s, t)}

∣∣∣∣∣∣ = k|σ|

∣∣∣∣∣∣
∏
β∈σ

(
∂

∂s

)β1
(
∂

∂t

)β2

{r(s, t)}

∣∣∣∣∣∣ by (4.33)

≤ k|σ|
∏
β∈σ

r(s, t)1−|β|

= Ck|σ|r(s, t)|σ|r(s, t)−|p|, (4.40)

with C independent of k, s and t. Also, by Lemma 4.5,∣∣∣h(|σ|)(kr(s, t))
∣∣∣ ≤ C(kr(s, t))−|σ|. (4.41)

Therefore, a typical term in (4.39) is bounded by

Ck−|σ|(r(s, t))−|σ|k|σ|r(s, t)|σ|r(s, t)−|p| = Cr(s, t)−|p|,

which proves

Dp {h0(kr(s, t))} . r(s, t)−|p|. (4.42)

On the other hand, from Lemma 4.6, we obtain, for 0 < kr(s, t) ≤ 1,

|h1 (kr(s, t)) r(s, t)| . 1

k
. 1, (4.43)

while for kr(s, t) > 1,

|h1 (kr(s, t)) r(s, t)| =
1

k
[h1 (kr(s, t)) kr(s, t)]

.
1

k
(kr(s, t))1/2 . 1. (4.44)

Combining (4.43) and (4.44), we deduce

|h1 (kr(s, t)) r(s, t)| . 1, s, t ∈ [0, 2π]. (4.45)

To estimate the derivatives, first note

Dp {h1(kr(s, t))r(s, t)} =
1

k
Dp

(s,t) {l(kr(s, t))} ,
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where l(z) := zh1(z).

Applying formula (4.39) with h0 replaced by l and applying analogous estimates using

Lemma 4.6, we obtain a sum of terms each of which can be estimated by,

1

k
(kr(s, t))−|σ|+

1
2k|σ|r(s, t)|σ|r(s, t)−|p| =

1

k
r(s, t)−|p| . r(s, t)−|p|,

which proves

|Dp [h1 (kr(s, t)) r(s, t)]| . (r(s, t))−|p|, s, t ∈ [0, 2π]. (4.46)

Using (4.38) and (4.45) in (4.35) and then substituting the estimates in (4.34), we obtain

the bound on |M(s, t)|, s, t ∈ [0, 2π], hence proving (4.14).

Finally, using (4.42) and (4.46) in (4.35) and then in (4.34), we obtain the bounds on the

derivatives of M , therefore proving (4.15).

Theorem 4.3 implies that that the double integral Jk is highly-oscillatory with the inte-

grand function M that has a logarithmic singularity. Moreover, Jk has a non-canonical

oscillator. All these factors make it difficult to approximate Jk accurately and efficiently.

4.1.3 Outline of the remainder of the chapter

The plan for this chapter is as follows. In Section 4.2 we discuss an abstract methodology

for the computation of single highly-oscillatory integrals with non-canonical oscillators

using Filon-type quadratures. Also in this section, we demonstrate how this idea can be

extended to double integrals with non-canonical oscillators. In Section 4.3, we apply the

idea to the integrals of the form (4.11) arising in scattering problems.

We demonstrate how the highly-oscillatory integral Jk defined in (4.11) can be written as a

repeated integral where the outer integral is highly-oscillatory with a canonical oscillator,

i.e. can be written in the form (4.6), and the inner integral is slowly-varying. Adaptation

of this idea to double integrals such as (4.11) is a novel result of this chapter. In the next

chapter, we obtain explicit error bounds for the method.

For the case when the phase-function Ψ in (4.11) has stationary points in the domain of

integration, the integration method described in Section 4.3 is not applicable. In Section

4.4, we describe the stationary points of the phase-function Ψ and investigate the behaviour

of the integrand in (4.11) around these points.

Finally, in Section 4.4.1, we describe the methodology for the computation of integrals

(4.11) in domains containing stationary points.
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4.2 Methodology for the computation of highly-oscillatory

integrals

In this section, we develop a methodology for the computation of highly-oscillatory inte-

grals of the form:

I
ψ,[a,b]
k [f ] :=

∫ b

a
f(s) exp(ikψ(s))ds, (4.47)

using classical Filon-type quadratures, where the function f is a slowly-varying function

and the phase-function ψ is smooth. We also demonstrate how to compute double integrals

of the form,

JΨ,D
k [M ] :=

∫ ∫
D
M(s, t) exp(ikΨ(s, t))dtds, (4.48)

where the function M is slowly-varying and the phase-function Ψ is a smooth function

satisfying certain properties, and where D is ether a rectangular or a triangular domain.

4.2.1 Abstract methodology for single integrals

One class of methods specifically designed for the computation of highly-oscillatory in-

tegrals is Filon-type methods. Classical Filon-type quadratures are designed to compute

integrals of the form:

I
[a,b]
k [f ] :=

∫ b

a
f(s) exp(iks)ds, (4.49)

by replacing the slowly-varying function f by a suitable interpolating polynomial PNf

of degree N and integrating exactly. Filon-type quadratures require computation of the

so-called moments µn(k) defined as µn(k) := I
[a,b]
k [pn] where pn is a suitable polynomial

basis. Clearly, the moments can be computed exactly for all n and k in the case of the

canonical oscillator.

However, when the oscillating term in the integrand is non-canonical, i.e. exp(ikψ(s)):

I
ψ,[a,b]
k [f ] :=

∫ b

a
f(s) exp(ikψ(s))ds, (4.50)

it is generally not possible to compute the moments µψn(k) := I
ψ,[a,b]
k [pn] exactly or express

them in terms of special functions.

Let us first consider computing (4.50) when the phase-function ψ does not have any

stationary points in [a, b]. Later we consider the case when stationary points are present

in [a, b].
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The case when the phase function does not have stationary points

In order to avoid computing moments the following technique can be applied: the integral

with non-canonical oscillator (4.50) is transformed into an integral with the canonical

oscillator (4.49) with the change of variable,

τ = ψ(s). (4.51)

The change of variable is valid since there are no stationary points in [a, b], i.e.

ψ′(s) 6= 0 for all s ∈ [a, b]. (4.52)

The change of variable yields the Jacobian in the integrand:

ds =
1

|ψ′(ψ−1(τ))|dτ, with s = ψ−1(τ).

Then we can write,

I
ψ,[a,b]
k [f ] : =

∫ b

a
f(s) exp(ikψ(s))ds

=

∫ ψ(b)

ψ(a)

f(ψ−1(τ))

|ψ′(ψ−1(τ))| exp(ikτ)dτ

=

∫ ψ(b)

ψ(a)
F (τ) exp(ikτ)dτ, (4.53)

where

F (τ) :=
f
(
ψ−1(τ)

)
|ψ′ (ψ−1(τ))| .

The resulting integral in (4.53) can be computed using classical Filon-type quadrature.

The additional cost is the evaluation of the inverse function ψ−1.

Some observations about the regularity of F can be made if certain properties of f and ψ

are known. For example, if both functions f and ψ are smooth and (4.52) holds then the

function F is smooth in [ψ(a), ψ(b)].

On the other hand, if the condition (4.52) is not satisfied, i.e. the phase-function has

stationary points, then the change of variables (4.51) can not be applied on the whole

interval [a, b].
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The case when the phase function has stationary points

Let us consider in more detail the case when the phase-function has a stationary point

ξ ∈ (a, b) of order n:

ψ′(ξ) = ψ′′(ξ) = . . . = ψ(n)(ξ) = 0, (4.54)

ψ(n+1)(ξ) 6= 0, (4.55)

and ψ′(s) 6= 0, s ∈ [a, b] \ {ξ}.
Then, the change of variables (4.51) can be applied on two intervals [a, ξ) and (ξ, b] sepa-

rately. The function ψ is strictly monotone in [a, ξ] and in [ξ, b]. Without loss of generality,

assume ξ is a minimum. Then, we write

I
ψ,[a,b]
k [f ] :=

∫ ξ

a
f(s) exp(ikψ(s))ds+

∫ b

ξ
f(s) exp(ikψ(s))ds

=

∫ ψ(a)

ψ(ξ)
F1(τ) exp(ikτ)dτ +

∫ ψ(b)

ψ(ξ)
F2(τ) exp(ikτ)dτ, (4.56)

where F1 : [ψ(ξ), ψ(a)]→ R and F2 : [ψ(ξ), ψ(b)]→ R are defined by

F1(τ) := − f
(
ψ−1(τ)

) (
ψ−1

)′
(τ), and F2(τ) := f

(
ψ−1(τ)

) (
ψ−1

)′
(τ). (4.57)

In the following theorem, we provide estimates for the derivatives of F1(τ) and F2(τ).

Theorem 4.10. Assuming the functions ψ and f in (4.57) are smooth, the derivatives of

F1 and F2 are bounded as follows:∣∣∣F (p)
1 (τ)

∣∣∣ ≤ C1,p |τ − ψ(ξ)| 1
n+1
−p−1 , τ ∈ [ψ(ξ), ψ(a)] (4.58)

and ∣∣∣F (p)
2 (τ)

∣∣∣ ≤ C2,p |τ − ψ(ξ)| 1
n+1
−p−1 , τ ∈ [ψ(ξ), ψ(b)], (4.59)

where C1,p and C2,p are positive constants independent of n.

The proof of Theorem 4.10 requires Lemma 4.11 presented below.

Lemma 4.11. The derivatives of ψ−1 are bounded as follows,∣∣∣(ψ−1
)(j)

(τ)
∣∣∣ ≤ Cj |τ − ψ(ξ)| 1

n+1
−j , (4.60)

for all j = 1, 2, . . ., where Cj are constants independent of τ and n.

We prove lemma for the case j = 1. Following the proof, we give an example where we

consider a particular function ψ and verify Lemma 4.11 for all j using the chain rule.
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Proof. Choose δ > 0 such that Iδ := (ξ, ξ + δ) ⊂ [a, b]. We use Taylor’s expansion of ψ(s)

around ξ,

ψ(s) = ψ(ξ) + (s− ξ)ψ′(ξ) + . . .+
(s− ξ)n
n!

ψ(n)(ξ) +Rξ(s), (4.61)

for s ∈ Iδ, where the remainder term is given in the integral form, [97, Theorem 4, Chapter

19],

Rξ(s) =
1

n!

∫ s

ξ
(s− t)nψ(n+1)(t)dt. (4.62)

By making the change of variables y = (t − ξ)/(s − ξ) ∈ [0, 1] for t ∈ [ξ, s] in (4.62), we

obtain

Rξ(s) =
1

n!
(s− ξ)n+1

∫ 1

0
(1− y)nψ(n+1)(ξ + y(s− ξ))dy. (4.63)

Therefore Rξ ∈ C∞(Iδ) since ψ is smooth on [a, b].

Now, substituting (4.54) into (4.61) we obtain, for s ∈ Iδ, ψ(s) = ψ(ξ) + Rξ(s). Hence,

using (4.63), we deduce,

|ψ(s)− ψ(ξ)| ≤ |s− ξ|n+1|G(s)|, (4.64)

where for s ∈ Iδ,

|G(s)| ≤ 1

n!

∫ 1

0
(1− y)ndy max

t∈[s,ξ]

∣∣∣ψ(n+1)(t)
∣∣∣

≤ 1

(n+ 1)!
max
t∈[s,ξ]

∣∣∣ψ(n+1)(t)
∣∣∣ .

Next, similarly to (4.61), we expand the derivative of ψ around ξ,

ψ′(s) = ψ′(ξ) + (s− ξ)ψ′′(ξ) + . . .+
(s− ξ)(n−1)

(n− 1)!
ψ(n)(ξ) + R̃ξ(s), (4.65)

where

R̃ξ(s) =
1

(n− 1)!

∫ s

ξ
(s− t)n−1ψ(n+1)(t)dt.

Hence substituting (4.54) into (4.65), we obtain ψ′(s) := R̃(ξ). Changing the variable

from t to y as before, we obtain,

ψ′(s) =
1

(n− 1)!
(s− ξ)n

∫ 1

0
(1− y)n−1ψ(n+1)(ξ + y(s− ξ))dy.

Thus, we find,

|ψ′(s)| ≥ |s− ξ|n|G̃(s)|, (4.66)
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where G̃ ∈ C∞(Iδ) satisfies for s ∈ Iσ and σ sufficiently small,

|G̃(s)| ≥ 1

(n− 1)!

∫ 1

0
(1− y)n−1dy min

t∈[s,ξ]

∣∣∣ψ(n+1)(t)
∣∣∣

≥ 1

n!
min
t∈[s,ξ]

∣∣∣ψ(n+1)(t)
∣∣∣ ≥ C > 0,

for some constant C, due to (4.55). Using (4.64) and (4.66), we obtain,

|ψ(s)− ψ(ξ)|
|ψ′(s)|n+1

n

≤ |s− ξ|n+1 |G(s)|

|s− ξ|n+1
∣∣∣G̃(s)

∣∣∣n+1
n

≤ C. (4.67)

Now, since (
ψ−1

)′
(τ) =

1

ψ′(ψ−1(τ))
,

we can write (4.67) with s = ψ−1(τ), as follows,

|τ − ψ(ξ)|
∣∣∣(ψ−1

)′
(τ)
∣∣∣n+1
n ≤ C.

Finally, rearranging the latter equation, we obtain,∣∣∣(ψ−1
)′

(τ)
∣∣∣ ≤ C |τ − ψ(ξ)|− n

n+1 , (4.68)

for τ = ψ(s), s ∈ Iδ.

Example

Consider a function

ψ(s) = s2, near s = 0, s ≥ 0.

The function ψ(s) has a stationary pointof order n = 1 at s = 0. We also have,

ψ−1(τ) = τ−1/2,

and ψ
(
ψ−1(τ)

)
= τ . The first and second derivatives of ψ are

ψ′(s) = 2s,

ψ′′(s) = 2.
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Then using the chain rule, we deduce,

ψ
(
ψ−1(τ)

)
= τ,

⇒ ψ′
(
ψ−1(τ)

) (
ψ−1

)′
(τ) = 1.

Therefore,

(
ψ−1

)′
(τ) =

1

ψ′ (ψ−1(τ))

=
1

2ψ−1(τ)

=
1

2
τ−1/2. (4.69)

Equation (4.69) is consistent with (4.60) with j = 1. Furthermore, by the second applica-

tion of the chain rule,

ψ′′
(
ψ−1(τ)

) [(
ψ−1

)′
(τ)
]2

+ ψ′
(
ψ−1(τ)

) (
ψ−1

)′′
(τ) = 0.

Then,

(
ψ−1

)′′
(τ) = −

2
[(
ψ−1

)′
(τ)
]2

ψ′ (ψ−1(τ))

= − 1

2τ

1

2τ1/2

= −1

4
τ−3/2. (4.70)

Equation (4.69) is consistent with (4.60) with j = 2. Applying the chain rule repeatedly

and using the known derivatives of ψ, Lemma 4.11 can be verified for all j.

Proof of Theorem 4.10

Proof. We first observe

F1(τ) := −f(ψ−1(τ))
(
ψ−1

)′
(τ).

Faa di Bruno’s formula [37] tells us that

∂p

∂τp
{
f
(
ψ−1(τ)

)}
, for p ≥ 1,

is a linear combination of terms of the form

[
f (m1+...+mp)

(
ψ−1(τ)

)] p∏
j=1

((
ψ−1

)(j)
(τ)
)mj , (4.71)
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where

m1 + 2m2 + . . .+ pmp = p. (4.72)

Now, the first term in (4.71) is bounded, while in view of estimates (4.60), the second

term in (4.71) can be estimated by

Cp|τ − ψ(ξ)|(α−1)m1+(α−2)m2+...+(α−p)mp , (4.73)

where Cp depends on p and α = 1/(n+ 1). Then using (4.72), the index in (4.73) satisfies

α

p∑
j=1

mj −
p∑
j=1

jmj = α

p∑
j=1

mj − p ≥ α− p.

So each term of the form (4.71) may be bounded by Cp|τ −ψ(ξ)|α−p. Now let us consider

∂p

∂τp
{
f
(
ψ−1(τ)

)
ψ−1(τ)

}
, for p ≥ 1.

By Leibnitz rule this is a linear combination of

∂l

∂τ l
{
f
(
ψ−1(τ)

)} ∂p−l

∂τp−l
{
ψ−1(τ)

}
, l = 0, . . . , p. (4.74)

From the above discussion and (4.60) again, for l 6= 0 and l 6= p, each term of the form

(4.74) can be estimated by

Cp|τ − ψ(ξ)|α−l|τ − ψ(ξ)|α−p+l = Cp|τ − ψ(ξ)|2α−p.

However, when l = 0 or p the bound is

Cp|τ − ψ(ξ)|α−p.

Hence the result follows. The proof of estimates (4.59) for F2 follows analogously.

Theorem 4.10 implies F1(τ) and F2(τ) have an algebraic singularity at τ = ψ(ξ). Filon-

type quadratures applied on a mesh graded towards the singularity can be used to compute

integrals (4.56) with F1 and F2 satisfying (4.58) and (4.59) accurately as we discuss in

detail in Chapter 5.
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4.2.2 The idea for the computation of the double integrals

Let us return to the double integral introduced in Theorem 4.3:

Jk :=

∫ b

a

∫ d(s)

c(s)
M(s, t) exp(ikΨ(s, t))dtds, (4.75)

where M is slowly-varying, i.e. all derivatives bounded independently of k and the phase-

function Ψ is smooth. We imagine that M may depend on k, although we do not reflect

this in the notation.

Definition 4.12. We define the function ψ[s](t) as

ψ[s](t) := Ψ(s, t).

Here the notation indicates that we are thinking of ψ[s] as a family of functions of t

parameterised by s. Similarly, we define

ψ[t](s) := Ψ(s, t),

as a family of functions of s parameterised by t.

Clearly,

ψ[s](t) = Ψ(s, t) = ψ[t](s).

As in the one dimensional case, explained above, our immediate aim is to rewrite (4.75)

so that the oscillator is canonical. We do this in Lemma 4.13 under conditions defined in

the following hypothesis.

Hypothesis A. For all s ∈ [a, b],

ψ′[s](t) 6= 0, for all t ∈ [c(s), d(s)]. (4.76)

We will see later in this thesis that this hypothesis is often (but not always) satisfied in

the integrals with arise from the Galerkin discretisation.

Lemma 4.13. Under Hypothesis A,

Jk =

∫ b

a

∫ ψ[s](d(s))

ψ[s](c(s))
H(s, t) exp(ikτ)dτds, (4.77)

where

H(s, τ) :=
M(s, ψ−1

[s] (τ))∣∣∣ψ′[s] (ψ−1
[s] (τ)

)∣∣∣ . (4.78)
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Proof. For fixed s we make the change of variable:

τ := ψ[s](t). (4.79)

This yields,

dt =
1

|ψ′[s](ψ
−1
[s] (τ))|

dτ, with t = ψ−1
[s] (τ),

and the result follows.

Depending on the shape of the functions ψ[s](c(s)) and ψ[s](d(s)), the integral Jk in (4.77)

may be rewritten by changing the order of integration in the form,

Jk :=

∫ τ1

τ0

F1(τ) exp(ikτ)dτ + . . .+

∫ τN

τN−1

FN (τ) exp(ikτ)dτ

=

N−1∑
j=0

I
[τj ,τj+1]
k [Fj+1], (4.80)

where Fj , j = 1, . . . , N , are themselves defined as integrals. We now give two examples to

illustrate this process.

Example 1. Let us consider a double integral (4.75),

Jk :=

∫ b

a

∫ d

c
M(s, t) exp(ikΨ(s, t))dtds,

where the domain of integration D is a rectangular domain

D := {(s, t), s ∈ [a, b], t ∈ [c, d], [a, b] ∩ [c, d] = ∅} .

Under Hypothesis A, we have,

Jk :=

∫ b

a

∫ d

c
M(s, t) exp(ikΨ(s, t))dtds

=

∫ b

a

∫ ψ[s](d)

ψ[s](c)
H (s, τ) exp(ikτ)dτds, (4.81)

where H is defined in (4.78).

In order to write Jk in the form (4.80) we need to change the order of integration. Consider

the case when ψ[c] and ψ[d] are monotone functions on [a, b].

Remark 4.14. The latter condition is often satisfied by the integrals (4.11) arising from

the scattering problems as we will show in Theorem 4.17 later.
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The monotonicity condition can be written in the following form, for all s ∈ [a, b],(
ψ[c]
)′

(s) 6= 0, and
(
ψ[d]
)′

(s) 6= 0. (4.82)

Then, the rectangular domain of integration in s − t space in (4.75) transforms into a

curvilinear rectangular domain in s − τ space with straight edges and curved edges as

shown in Figure 4.1. The transformation is governed by (4.79).

D

a b

d

c

s

t

D̃

a b

τ

τ = ψ[s](d)

τ = ψ[s](c)

s

Figure 4.1: Original (left) and transformed (right) domains of integration under transformation
(4.79). Note the upper and lower curves bounding D̃ are monotone due to assumption (4.82).

To obtain the form (4.80), we need to subdivide D̃ into subdomains so that the integral

over each subdomain can be written as a repeated integral. In this case, we subdivide D̃

into three subdomains as shown in Figure 4.2.

b

τ

a

τmin

τmax

τ1

τ2

τ = ψ[c](s)

τ = ψ[d](s)

s

Figure 4.2: Transformed domain D̃ is subdivided into three subdomains.
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Then, (4.75) can be written in the form (4.80),

Jk =

∫ τ1

τmin

F1(τ) exp(ikτ)dτ +

∫ τ2

τ1

F2(τ) exp(ikτ)dτ

+

∫ τmax

τ2

F3(τ) exp(ikτ)dτ, (4.83)

where τmin = ψ[c](a), τ1 = ψ[c](b), τ2 = ψ[d](a), τmax = ψ[d](b). The functions F1, F2 and

F3 are defined as

F1(τ) :=

∫ (ψ[c])
−1

(τ)

a
H(s, τ)ds, (A1)

F2(τ) :=

∫ b

a
H(s, τ)ds, (A2)

F3(τ) :=

∫ b

(ψ[d])
−1

(τ)
H(s, τ)ds. (A3)

The integrals in (4.83) are in the form amenable to classical Filon-type quadratures and

the integrals (A1) - (A3) have slowly-varying integrands.

Similarly to the one-dimensional case, we can make some observations about the behaviour

of F1, F2 and F3, provided particular properties of M and Ψ are known.

Since M is slowly-varying and ψ[c] and ψ[d] are assumed monotone, we can show by

differentiating (A1), (A2), and (A3) that Fj , j = 1, . . . , 3, have all derivatives bounded

independently of k. In other words, each Fj , j = 1, 2, 3, is slowly-varying in [τmin, τ1],

[τ1, τ2] and [τ2, τmax] respectively.

In cases when either the upper boundary τ = ψ[d](s) or the lower boundary τ = ψ[c](s)

are not monotone, (i.e. (4.82) does not hold), the functions Fj , j = 1, 2, 3, will have

singularities at these points.

In the next example, we consider the case when the original domain is triangular and the

condition (4.82) is violated.

Example 2. Consider an integral,

Jk :=

∫ c

b

∫ c

s
M(s, t) exp(ikΨ(s, t))dtds, (4.85)

where the domain of integration T is an upper triangular domain:

T := {(s, t)), s ∈ [b, c], t ∈ [s, c]} ,

and the function M is slowly-varying and the phase-function Ψ is smooth and satisfies the
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following conditions,

ψ[s](s) = Ψ(s, s) = ψ[s](s) = 0, (4.86)

also there exist a unique point ξ ∈ [b, c] such that(
ψ[c]
)′

(ξ) = 0, and
(
ψ[c]
)′′

(ξ) 6= 0. (4.87)

The condition (4.87) is often satisfied by the integrals (4.11) arising from the scattering

problems as we will see in the next section.

The change of variable (4.79) and assumption (4.86) yields

Jk =

∫ c

b

∫ ψ[s](c)

0
H (s, τ) exp(ikτ)dτdx. (4.88)

The transformed domain T̃ is illustrated in Figure 4.3.

T

t

s

b

c

b c

τ

ξ
0

T̃

b c s

τ = ψ[c](s)

Figure 4.3: Original and transformed domains of integration. Note the upper curve bounding D̃
contains a turning point and the lower boundary is τ = 0.

We want to change the order of integration in (4.88) to rewrite the integral in analogous

way to (4.83). In order to do this, we need to subdivide T̃ into two subdomains as shown

in Figure 4.4. Then, we write Jk in the form (4.80),

Jk =

∫ τ1

τmin

F1(τ) exp(ikτ)dτ +

∫ τmax

τ1

F2(τ) exp(ikτ)dτ, (4.89)

where τmin = 0, τ1 = ψ[c](b) and τmax = ψ[c](ξ), and the functions F1 and F2 are defined

as

F1(τ) :=

∫ (ψ[c])
−1

(τ)

b
H (s, τ) ds, and F2(τ) :=

∫ r2(τ)

r1(τ)
H (s, τ) ds, (4.90)

where

r1 : [τ1, τmax]→ [b, ξ], r1(τ) :=
(
ψ[c]
)−1

(τ),
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τ

τ1

τmax

ξ s0
τmin

τ = ψ[c](s)

b c

Figure 4.4: Transformed domain T̃ is subdivided into two subdomains.

is monotone increasing and

r2 : [τ1, τmax]→ [ξ, c], r2(τ) :=
(
ψ[c]
)−1

(τ),

is monotone decreasing, and H(s, τ) is defined in (4.78). After the change of variable, the

integrals in (4.89) are in the form amenable to classical Filon-type quadratures.

Due to (4.87), functions r1 and r2 have a square-root singularity. This can be shown

similarly to the proof of Theorem 4.10. Although we have assumed that M is smooth,

similar arguments can be applied if M has a weak singularity. In the stiffness matrix

R in (2.43), the entries are of the form (4.11) with M(s, t) that has a log-singularity at

t = s. This induces a singularity in F1. We prove that F1 has a log-singularity at τ = 0 in

Section E for a particular case. We also show in Chapter 5 that Filon quadrature applied

on graded meshes can be used for approximating (4.89) when F1 and F2 have algebraic

singularities.

We will describe typical geometries of transformed domains arising in scattering problems

in Section 4.3. As we will see, in all our applications, there is never more than one turning

point on the upper and lower boundaries of the transformed domains. This follows from

the assumption that Γ, the boundary of the scatterer, is convex.
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4.3 Application to the integrals arising from scattering prob-

lem

The double integrals (4.11) arising from the Galerkin discretisation are of the form

Jk :=

∫
Λl

∫
Λj

M(s, t) exp (ikΨ(s, t)) dtds, (4.91)

with Ψ given in (4.10) and M(s, t) is typically (weakly) singular at s = t and Λl and Λj

are subintervals of [0, 2π], see below. By Theorem 4.3, M satisfies the estimates (4.15).

The phase-function Ψ given in (4.12) satisfies (4.86). Recall the intervals Λ1, Λ2 and Λ3

in [0, 2π] are defined in (2.40) as follows,

Λ1 = [a, b], Λ2 = [b, c], Λ3 = [c, d], (4.92)

with

a = t1 − δ, b = t1 + ε, c = t2 + ε, d = t2 + δ,

with ε > δ, where t1 and t2 are transition points on the boundary (also called shadow

boundaries, where n(tj) · a = 0, j = 1, 2).

Remark 4.15. The condition ε > δ ensures that transition parts of the boundary extend

further into illuminated part than the shadow. This ensures that Hypothesis A is satisfied

for all (s, t) ∈ ([a, d]× [a, d]) apart from only two domains, see Theorem 4.16. We discuss

the computation of integrals over the two domains where Hypothesis A is not satisfied,

later in Section 4.4.1.

In Figure 4.5 we illustrate all the possible rectangular domains of integration which arise

in the computation of (4.11). In domains which include the diagonal s = t (at which M is

singular), we decompose the integral (4.91) as a sum of two integrals: one over the upper

triangular domain and one over the lower triangular domain.

In this section, we describe the geometries of the corresponding transformed domains

governed by the transformation (4.79). The following two theorems examine the validity

of Hypothesis A as well as conditions (4.82) and (4.87).

Theorem 4.16. For s, t ∈ ([a, d]× [a, d]), excluding (s, t) ∈ Λ1×Λ1 and (s, t) ∈ Λ3×Λ3,

the following holds (
ψ[s]

)′
(t) 6= 0.

The proof is derived in Lemmas C.2 and C.5 of Section C of the Appendix. Theorem

4.16 implies that in all domains in Figure 4.5 apart from two rectangular domains, the

conditions of Hypothesis A are satisfied.
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Original Domain of Integration

s

t

b dc

c

d

b

a

a

C

ED

F G

A

Λ1

Λ1

Λ2

Λ3

Λ3Λ2

B

Figure 4.5: The original rectangular domains of integration which include the diagonal s = t
(where M is singular). The rectangular domains containing the diagonal are separated into the
upper triangular and lower triangular subdomains.

Transformed Domain of Integration

a c d

s

τ

bΛ1 Λ2 Λ3

G′

D′

B′

E′ C′F ′

Transformed Domain of Integration

a b c d

s

τ

Λ1 Λ2 Λ3

Figure 4.6: On the left, the transformed domains of integration, corresponding to the above-the-
diagonal part of the original domains are illustrated; on the right, the transformed domains corre-
sponding to the below-the-diagonal part of the original domains are illustrated. The transformation
is governed by (4.79). We consider the integration over the triangular domain AFG in more detail
later, see Figure 4.16.

Theorem 4.17. For each t ∈ [a, d], there exists a unique point ξ ∈ [a, t) such that(
ψ[t]
)′

(ξ) = 0, and
(
ψ[t]
)′′

(ξ) 6= 0.

The proof of this theorem is derived similarly to the proof of Theorem 4.16 in the Appendix.

Theorem 4.17 implies that in some transformed under (4.79) domains, the upper, the lower
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or both curvilinear boundaries would contain a turning point.

In Figure 4.6, the geometries of the domains of Figure 4.5 transformed under (4.79) are

depicted. In Figure 4.6, the plot on the left corresponds to the above-the-diagonal domains

of the original domain in Figure 4.5. The plots are shown for the case of an elliptic scatterer

although the geometries of the transformed domains are illustrative of the corresponding

domains for more general convex obstacles.

A number of transformed domains have boundaries that are curves with turning points.

As we have seen from Section 4.2.1, the resulting transformed integrals over these domains

will contain singularities.

In Table 4.1, we present the geometries of the individual domains of Figure 4.5 transformed

under (4.79).

The double integrals can be written as a sum of integrals (4.80), with singularities confined

to the end points,

Jk :=

J−1∑
j=0

I
[τj ,τj+1]
k [Fj+1], (4.93)

with τ0 = τmin and τN = τmax. See for example (4.83). We introduce the following

notation for the integrand function Fj , j = 1, . . . , J

Fj(τ) =

∫ upper boundary

lower boundary
H (s, τ) ds, (4.94)

where the upper and the lower boundaries are presented in Table 4.2 for the transformed

domains corresponding to the above-the-diagonal regions of the original domains. See for

example F1, F2, F3 defined in (A1), (A2) and (A3) following (4.83).

For the below-the-diagonal subdomains, the table can be constructed in a similar way.

In the Table 4.2, the notation (Λ2 × Λ2)+ is used to denote the domain {(s, t) : s, t ∈ [b, c],

t > s} while (Λ3 × Λ3)+ is used to denote {(s, t) : s, t ∈ [c, d], t > s}. In the second column

of Table 4.2, we display the singularities in the interval [τmin, τmax]. We emphasize what

type of singularity Fj has at τ by adding (L) or (S) next to τ , where (L) represents a

logarithmic singularity and (S) represents a square-root singularity.

In Section E of the Appendix, we prove that

• if the original domain of integration contains the diagonal, i.e. points s = t, then in

the transformed domain the function F1 has a log-singularity at τ = 0

• if upper or lower boundaries of the transformed domain contain turning points, then

at least one of Fj , j = 2, . . . , J , has a square-root singularity at τ = ψ(ξ), where ξ

is a turning point.
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• away from these singularities, the functions Fj , j = 1, . . . , J , are smooth.

Under the change of variables (4.79), the horizontal lines t = b, t = c and t = d become

curves τ = ψ[b](s), τ = ψ[c](s) and τ = ψ[d](s) respectively. These curves represent the

upper and lower boundaries of the transformed domains, see e.g. Figure 4.6 and Table

4.1. In Table 4.2, we denote ξb,ξc and ξd as the turning points of the curves τ = ψ[b](s),

τ = ψ[c](s) and τ = ψ[d](s) respectively:(
ψ[b]
)′

(ξb) = 0,
(
ψ[c]
)′

(ξc) = 0,
(
ψ[d]
)′

(ξd) = 0. (4.95)

Let us now consider in more detail two examples of integration over the triangular domain

(Λ2 × Λ2)+ and the rectangular domain (Λ2 × Λ3).

Example of computing the double integral over the domain (Λ2 × Λ2)+

As we have shown in (4.89) the integral Jk over the triangular domain (Λ2 ×Λ2)+ can be

written as

Jk :=

∫ c

b

∫ c

s
M(s, t) exp (ikΨ(s, t)) dtds

=

∫ τ1

0
F1(τ) exp(ikτ)dτ +

∫ τmax

τ1

F2(τ) exp(ikτ)dτ, (4.96)

where F1 : [0, τ1]→ R and F2 : [τ1, τmax]→ R are defined as

τ1 τmax τ0

F1

F2

ττmax

0

F2

Figure 4.7: Plot of function F1(τ) and F2(τ). The function F1(τ) has a logarithmic singularity at
τ = 0 and the function F2(τ) has the square-root singularity at τ = τmax.

F1(τ) =

∫ (ψ[c])
−1

(τ)

b
H (s, τ) ds, F2(τ) =

∫ r2(τ)

r1(τ)
H (s, τ) ds,

where,

r1(τ) =
(
ψ[c]
)−1

(τ) ∈ [b, ξc], and r2(τ) =
(
ψ[c]
)−1

(τ) ∈ [ξc, c],
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4. Computation of highly-oscillatory double integrals

original domain transformed domain

(Λ2 × Λ2)+ s

t

b c

b

c

τmax

ξc

τ1

b c
τ0

(Λ2 × Λ3)
s

t

c

d

b c ξd

τ2

τmax

τ4

τ3

τ1

cb ξc
τ0

(Λ1 × Λ2)
s

t

a b

c

b

ξb

τmax

τ2

τ0
τ1

a b

(Λ1 × Λ3)
s

t

ba

c

d

a b

τmax

τ3
τ2

τ1

(Λ3 × Λ3)+

t

sdc

d

c

d

τmax

τ0
c

Table 4.1: Geometries of the original and transformed under (4.79) domains respectively.
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original domain singularities τ-interval lower upper

boundary boundary

(Λ2 × Λ2)+ (L) τ0 = 0, τ1 = Ψ(b, c) [τ0, τ1] b
(
ψ[c]
)−1

(τ)

(S)τmax = Ψ(ξc, c) [τ1, τmax]
(
ψ[c]
)−1

(τ)
(
ψ[c]
)−1

(τ)

(Λ2 × Λ3) (L) τ0 = 0, τ1 = Ψ(c, d) [τ0, τ1]
(
ψ[c]
)−1

(τ) c

τ2 = Ψ(b, c) [τ1, τ2]
(
ψ[c]
)−1

(τ)
(
ψ[d]
)−1

(τ)

(S) τ3 = Ψ(ξc, c) [τ2, τ3] b
(
ψ[c]
)−1

(τ)(
ψ[c]
)−1

(τ)
(
ψ[d]
)−1

(τ)

τ4 = Ψ(b, d) [τ3, τ4] b
(
ψ[d]
)−1

(τ)

(S) τmax = Ψ(ξd, d) [τ4, τmax]
(
ψ[d]
)−1

(τ)
(
ψ[d]
)−1

(τ)

(Λ1 × Λ2) (L) τ0 = 0, τ1 = Ψ(a, b) [τ0, τ1]
(
ψ[b]
)−1

(τ) b

(S) τ2 = Ψ(ξb, b) [τ1, τ2] a
(
ψ[b]
)−1

(τ)(
ψ[b]
)−1

(τ) b
τ3 = Ψ(a, c) [τ2, τ3] a b

τmax = Ψ(b, c) [τ3, τmax]
(
ψ[c]
)−1

(τ) b

(Λ1 × Λ3) τ1 = Ψ(a, c), τ2 = Ψ(b, c) [τ1, τ2] a
(
ψ[c]
)−1

(τ)
τ3 = Ψ(a, d) [τ2, τ3] a b

τmax = Ψ(b, d) [τ3, τmax]
(
ψ[d]
)−1

(τ) b

(Λ3 × Λ3)+ (L) τ0 = 0, τmax = Ψ(c, d) [τ0, τmax] c
(
ψ[d]
)−1

(τ)

Table 4.2: Description of the transformed domains. In the first column we display the original
domain of integration in Jk that is either a rectangular or a triangular domain. See Table 4.1
for plots of these domains. The remaining four columns of the table describe the corresponding
transformed domain and contain a sufficient information to enable us to write the double integral
Jk in the form (4.93). The intervals [τj , τj+1], j = 0, . . . , J − 1, in (4.93) are displayed in the
third column of the table with τj defined in the second column. The turning points ξb, ξc and ξd
are defined in (4.95). The lower and the upper boundaries of functions Fj defined in (4.94) are
displayed in the fourth and fifth columns respectively. For each j = 1, . . . , J , we emphasize what
type of singularity Fj has at τ by adding (L) or (S) next to τ in the second column, where (L)
represents a logarithmic singularity and (S) represents a square-root singularity. The function Fj
is smooth away from these singularities. The entries of this table were obtained by investigating
the geometries of the transformed domains and can be easily verified by looking at the geometry of
the transformed domains in Table 4.1.
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with ξc defined in (4.95).

The geometry of the transformed domain of integration can be observed in Figure 4.3 (see

also Table 4.1).

In Figure 4.7 the plots of functions F1 and F2 are illustrated. The function F1 has a

logarithmic singularity at τ = 0 and the function F2 has a square-root singularity at

τ = τmax. Away from these points, the funtions F1 and F2 are smooth. The proofs of

these statements can be found in Lemma E.1, Lemma E.3 and Lemma E.5 in Section E

of the Appendix.

c
s

t

b

D

c

d

D̃
τ = ψ[s](d)

τ = ψ[s](c)

τ

b c
sξc ξd

Figure 4.8: The original domain of integration, (Λ2 × Λ3) and the transformed domain of integra-
tion.

Example of computing the double integral over the domain (Λ2 × Λ3)

Let us now consider another example, where the domain of integration is the rectangle

Λ2 × Λ3,

Jk =

∫
Λ2

∫
Λ3

M(s, t) exp (ikΨ(s, t)) dtds,

The original and transformed domains of integration are illustrated in Figure 4.8 (see also

Table 4.1).

In Figure 4.9, the transformed domain is divided into subdomains over which the integral

Jk can be written in the form (4.80). Note that in the interval τ ∈ [τ2, τ3], the domain is

further divided into two subdomains: one on the left of s = ξc and another on the right.

We then write the double integral Jk as a sum of five highly-oscillatory one-dimensional

integrals,

Jk :=

5∑
j=0

∫ τj+1

τj

Fj+1(τ) exp(ikτ)dτ,

with τ0 = τmin = 0, τ1 = Ψ(c, d), τ2 = Ψ(b, c), τ3 = Ψ(ξc, c), τ4 = Ψ(b, d) and τmax =
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b c
sτmin

τ1

τ2

τ3

τ4

τmax

τ

τ = ψ[d](s)

τ = ψ[c](s)

ξc ξd

Figure 4.9: The transformed domain is subdi-
vided by the dashed lines into five subdomains.

τ0 τ1 τ2 τ3 τ4 τmax

F1
F2

F3
F4

F5

0

Figure 4.10: Plot of functions Fj, j = 1, . . . , 5.
The function has the square-root singularity at
τ = τ3 and τ = τmax, and a log-singularity at
τ = τmin = 0.

Ψ(ξd, d). The functions Fj are defined as follows,

Fj(τ) =

∫ r2,j(τ)

r1,j(τ)
H
(
s, ψ−1

[s] (τ)
)
ds, (4.97)

where F3(τ) is a sum of two integrals:

F3(τ) =

∫ rI2,3

rI1,3

H
(
s, ψ−1

[s] (τ)
)
ds+

∫ rII2,3

rII1,3

H
(
s, ψ−1

[s] (τ)
)
ds,

where the functions r1,j and r2,j are defined, for subintervals of τ , as follows:

τ = [0, τ1], r1,1(τ) =
(
ψ[c]
)−1

(τ), r2,1(τ) =c,

τ = [τ1, τ2], r1,2(τ) =
(
ψ[c]
)−1

(τ), r2,2(τ) =
(
ψ[d]
)−1

(τ),

τ = [τ2, τ3], rI1,3(τ) =b, rI2,3(τ) =
(
ψ[c]
)−1

(τ) ∈ [b, ξc],

rII1,3(τ) =
(
ψ[c]
)−1

(τ) ∈ [ξc, c], rII2,3(τ) =
(
ψ[d]
)−1

(τ),

τ = [τ3, τ4], r1,4(τ) =b, r2,4(τ) =
(
ψ[d]
)−1

(τ),

τ = [τ4, τmax], r1,5(τ) =
(
ψ[d]
)−1

(τ) ∈ [b, ξ4], r2,5(τ) =
(
ψ[d]
)−1

(τ) ∈ [ξ4, c].

In Figure 4.10 we present the plots of Fj , j = 1, . . . , 5. The functions F1, F3 and F5 have

singularities at τ0 = τmin = 0, τ3 and τmax respectively. At the point τ0 = τmin = 0, the

function F1(τ) has a log-singularity inherited from the singularity in M at s = t. At the

points τ3 and τ5, functions F3 and F5 respectively have a square-root singularity.
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4.4 Stationary points for the phase function

In this section, we investigate the typical locations of points (s, t) ∈ [0, 2π]× [0, 2π] where

ψ′[s](t) = 0, (4.98)

i.e. where the condition of Hypothesis A is not satisfied.

In Figure 4.11, the points t where Hypothesis A is not satisfied are plotted against s for

the case of an elliptical scatterer in blue. The diagonal is also plotted in Figure 4.11 in

red.

In Figure 4.12, the rectangles plotted in black represent the domains of integration (Λl ×
Λj), with l, j = 1, 2, 3 in the double integrals (4.11). Along with the black rectangles, the

diagonal s = t is also plotted in red. Also in Figure 4.12, the points where Hypothesis A

is not satisfied in the domains contained within the black rectangles, are plotted in blue.

t2

t1 t2

t

s0 2π

2π

t1

Figure 4.11: The curves plotted in blue repre-
sent points (s, t) ∈ ([0, 2π] × [0, 2π]) where Hy-
pothesis A is not satisfied for the case of an
elliptical scatterer (a = 3, b = 1). The points
where the integrand is singular are located on
the diagonal s = t which is plotted in red.

s
t1 t2

a

t1

t2

a

b

b

c d

d

c

t

2π

Λ3

Λ2

0

Λ2

2π

Λ3Λ1

Λ1

Figure 4.12: The boundaries of the illuminated
Λ2 := [b, c] and transition domains Λ1 := [a, b]
and Λ3 := [c, d] are plotted along with the diag-
onal s = t in red and blue curves representing
points where Hypothesis A is not satisfied within
the domain contained in the rectangles.

From Figure 4.12 we observe that (4.98) holds only in two domains,

(Λ1 × Λ1) and (Λ3 × Λ3) . (4.99)

Computing the double integrals (4.11) over the domains in (4.99) using integration method

described in the previous section is not possible due to Hypothesis A not being satisfied.

However the integrals can still be computed efficiently. The first result towards showing

this is given in Theorem 4.18 below.
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Theorem 4.18. We define domains A1 and A2 as follows

A1 := {(s, t) : s, t ∈ [t1 − δ, t1 + δ], t > s} , and A2 := {(s, t) : s, t ∈ [t2 − δ, t2 + δ], t < s} ,
(4.100)

where δ is of order O(k−1/3). The integrands of the double integrals∫ ∫
Aj

M(s, t) exp(ikΨ(s, t))dsdt, for j = 1, 2, (4.101)

where M and Ψ are defined in (4.13) and (4.12) respectively, satisfy in the domains A1

and A2,

k−
1
3
|p| |Dp (M(s, t) exp(ikΨ(s, t)))| ≤ Cp |DpM(s, t)| , (4.102)

where Cp > 0 is a constant independent of k, with the estimates of the derivatives of M

obtained in (4.15). Therefore, the integrals (4.101) can be approximated accurately and

efficiently using classical quadratures.

Remark 4.19. Theorem 4.18 essentially states that the domain A1 (that contains station-

ary point) is small enough for the integrand in (4.101) to be slowly-varying, i.e. the deriva-

tives of the integrand do not produce any additional powers of k (as stated in (4.102)).

However, the integrand in (4.101) is singular as known from (4.15). In practice, classical

quadrature rules can be applied on a graded mesh to capture the singularity accurately. In

detail, the triangular domain A1 with the singularities of M on the diagonal can be trans-

formed into a rectangular domain with the singularities of M on one side of the rectangle.

Then, the new integral is of the form,∫ ∫
R
M(s̃, t̃) exp(ikΨ(s̃, t̃))ds̃dt̃,

where R is the rectangular domain. In one of the variables s̃ or t̃, the integrand is smooth

and integration can be carried out with classical quadratures. In the other variable, the

integrand is singular and classical quadratures can be applied on a graded mesh to compute

the integral accurately. The application of graded meshes to singular integrals will be

discussed in Chapter 5 in more detail later. The integration over the domain A2 can be

performed identically to the technique described above. In the numerical examples presented

in Chapter 6, classical Clenshaw-Curtis rule (in its standard form and over a graded mesh)

is used in these domains.

The domains A1 and A2 are plotted in Figure 4.13. The proof of Theorem 4.18 requires a

few intermediate results. We first show in Lemma 4.20 that at points (t1, t1) and (t2, t2),

the phase function Ψ(s, t) defined in (4.12) and its first and second derivatives, vanish.

Then in Proposition 4.21 we find k-dependent estimates on higher derivatives of Ψ. Finally,

using Faa di Bruno’s formula in 2D (that we have used before in the proof of Theorem
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s
t1

a

t1

t2

a

b

b

c d

d

c

t

2π

2π

0

Λ2

t2

Λ3Λ1

Λ1

Λ2

Λ3

A1

A2

Figure 4.13: The boundaries of the triangular
domains A1 and A2 are plotted in green.

a

a′

b

a′a b

(t1, t1)

A1Λ1

Λ1

A

P Q

Figure 4.14: The subdomain A1 represents
the domain where the integrand is slowly-
oscillatory and is defined in (4.100).

4.3, see (4.39)) we prove Theorem 4.18.

 

 

−100
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−60

−40

−20

0
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t1 − δ

t1 − δ

t1 + δ

t1 + δ

t

s

Figure 4.15: The behaviour of the integrand in the domain [t1−δ, t1 +δ]× [t1−δ, t1 +δ]. Above the
diagonal, the integrand of (4.11) is slowly-varying, while below the diagonal it is highly-oscillatory.

Denote

F (x−, y) := lim
ε→0

F (x− ε, y) and F (x+, y) := lim
ε→0

F (x+ ε, y).

Lemma 4.20. The phase-function Ψ defined in (4.12) has the following properties:

Ψ(t−1 , t1) = 0, Ψs(t
−
1 , t1) = 0, Ψt(t

−
1 , t1) = 0,

Ψss(t
−
1 , t1) = 0, Ψst(t

−
1 , t1) = 0, Ψtt(t

−
1 , t1) = 0, (4.103)
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and

Ψ(t+2 , t2) = 0, Ψs(t
+
2 , t2) = 0, Ψt(t

+
2 , t2) = 0,

Ψss(t
+
2 , t2) = 0, Ψst(t

+
2 , t2) = 0, Ψtt(t

+
2 , t2) = 0. (4.104)

Proof. Denote the function ρ(s, t) as follows,

ρ(s, t) :=
γ(s)− γ(t)

|γ(s)− γ(t)| .

Differentiating ρ(s, t) we obtain,

d

ds
ρ(s, t) =

1

|γ(s)− γ(t)|
(
γ ′(s)−

(
ρ(s, t) · γ ′(s)

)
ρ(s, t)

)
,

d

dt
ρ(s, t) =

1

|γ(s)− γ(t)|
(
−γ ′(t) +

(
ρ(s, t) · γ ′(t)

)
ρ(s, t)

)
Also, the function ρ(s, t) has the following properties:

ρ(t−1 , t1) = lim
ε→0

γ(t1 − ε)− γ(t1)

|γ(t1 − ε)− γ(t1)| = − γ
′(t1)

|γ ′(t1)| = a, (4.105)

and

ρ(t+2 , t2) = lim
ε→0

γ(t2 + ε)− γ(t2)

|γ(t2 + ε)− γ(t2)| =
γ ′(t2)

|γ ′(t2)| = a. (4.106)

The equalities in (4.105) and (4.105) follow because the incident plane wave is tangential

to the boundary Γ at γ(t1) and γ(t2).

Now, differentiating Ψ defined in (4.12), we obtain

Ψt(s, t) = γ ′(t) · (a− ρ(s, t)) , Ψs(s, t) = γ ′(s) · (ρ(s, t)− a) ,

Ψtt(s, t) = γ ′′(t) · (a− ρ(s, t)) +
1

|γ(s)− γ(t)|
(
|γ ′(t)|2 − (γ ′(t) · ρ(s, t))2

)
,

Ψss(s, t) = γ ′′(s) · (ρ(s, t)− a) +
1

|γ(s)− γ(t)|
(
|γ ′(s)|2 − (γ ′(s) · ρ(s, t))2

)
,

Ψst(s, t) =
1

|γ(s)− γ(t)|
(
−γ ′(s) · γ ′(t) + (γ ′(s) · ρ(s, t))(γ ′(t) · ρ(s, t))

)
,

Hence using (4.105) and (4.106), and the fact that γ′(ti), is in the direction a for i = 1, 2,

the result follows.

Proposition 4.21. The derivatives of the phase-function Ψ can be bounded as follows:∣∣∣∣( ∂

∂s

)n( ∂

∂t

)m
Ψ(s, t)

∣∣∣∣ ≤ Cn,mk−1+ 1
3

(n+m), for (s, t) ∈ A1. (4.107)
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Proof. Expanding the function Ψ(s, t) in a Taylor series around the point (t−1 , t1) and

using Lemma 4.20, we obtain

Ψ(s, t) = Ψ(t−1 , t1) + (s− t1)Ψs(t
−
1 , t1) + (t− t1)Ψt(t

−
1 , t1) +

(s− t1)2

2!
Ψss(t

−
1 , t1)

+
(t− t1)2

2!
Ψtt(t

−
1 , t1) + 2

(t− t1)(s− t1)

2!
Ψst(t

−
1 , t1) +

(s− t1)3

3!
Ψsss(t

−
1 , t1)

+ 3
(s− t1)2(t− t1)

3!
Ψsst(t

−
1 , t1) + 3

(s− t1)(t− t1)2

3!
Ψstt(t

−
1 , t1)

+
(t− t1)3

3!
Ψttt(t

−
1 , t1) +O(|s− t1|4) +O(|t− t1|4).

Since the functions Ψsss(s, t), Ψsst(s, t), Ψstt(s, t), Ψttt(s, t) are bounded independently of

k, and since the diameter of A1 is O(k−1/3), we deduce that |Ψ(s, t)| ≤ c1k
−1. Similarly,

|Ψs(s, t)| ≤ c2k
−2/3, |Ψt(s, t)| ≤ c3k

−2/3,

|Ψtt(s, t)| ≤ c4k
−1/3, |Ψst(s, t)| ≤ c5k

−1/3, |Ψss(s, t)| ≤ c6k
−1/3,

where the constants cj , j = 1, . . . , 6 are independent of k. All the remaining derivatives

of Ψ are bounded independently of k. Therefore, for (s, t) ∈ A1,∣∣∣∣( ∂

∂s

)n( ∂

∂t

)m
Ψ(s, t)

∣∣∣∣ ≤ Cn,m min{k−1+ 1
3

(n+m), 1}.

Hence the result follows.

proof of Theorem 4.18.

Proof. Applying product rule twice, we obtain

Dp [M(s, t) exp(ikΨ(s, t))] =

p1∑
n1=0

p2∑
n2=0

Cn,p

(
Dp−nM(s, t)

)
(Dn [exp(ikΨ(s, t))]) ,

(4.108)

where n = (n1, n2)T . In order to obtain estimates on Dp [M(s, t) exp(ikΨ(s, t))] we require

estimates on the derivatives of exp(ikΨ(s, t)). For this, we require Faa di Bruno’s formula.

For integers p1, p2 ≥ 0, we introduce the set

S := {1, . . . , p1, p1 + 1, . . . , p1 + p2} .

We denote p = (p1, p2)T . A partition of S is a set (that we denote by σ) of non-empty,

non-overlapping subsets of S whose union is all of S. The number of sets in σ is denoted

|σ|. For each β ∈ σ we let β1 denote the number of elements of β which are ≤ p1 and let
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β2 denote the number of elements of β which are > p1 and ≤ p1 + p2. We denote |β| as

β1 + β2.

Then, using Faa di Bruno’s formula, we deduce,(
∂

∂s

)p1
(
∂

∂t

)p2

{exp(ikΨ(s, t))} =
∑
σ

exp(ikΨ(s, t))k|σ|
∏
β∈σ

(
∂

∂s

)β1
(
∂

∂t

)β2

{Ψ(s, t)} ,

(4.109)

where the sum is over all possible partition of σ.

Now consider a typical term in the sum (4.109),

k|σ|

∣∣∣∣∣∣
∏
β∈σ

(
∂

∂s

)β1
(
∂

∂t

)β2

{Ψ(s, t)}

∣∣∣∣∣∣ ≤ k|σ|
∏
β∈σ

k−1+ 1
3
|β|

= Ck|σ|k−|σ|k
1
3
|p|, (4.110)

with C independent of k, s and t. Therefore, a typical term in (4.109) is bounded by

Ck
1
3
|n|, which proves

Dn
(s,t) {exp (ikΨ(s, t))} ≤ Cnk

1
3
|n|. (4.111)

Returning to equation (4.108), we deduce that |Dp [M(s, t) exp(ikΨ(s, t))]| is bounded by

a linear combination of

Cp,nk
1
3
|n| ∣∣Dp−nM(s, t)

∣∣ ,
for n1 = 0, ..., p1 and n2 = 0, ..., p2, with n = (n1, n2). Multiplying each term by k−

1
3
|p|,

we deduce that k−
1
3
|p| |Dp [M(s, t) exp(ikΨ(s, t))]| is bounded by a linear combination of

Cp,nk
1
3

(|n|−|p|) ∣∣Dp−nM(s, t)
∣∣ ≤ C̃p,n

∣∣Dp−nM(s, t)
∣∣ ,

since k
1
3

(|n|−|p|) ≤ 1. Hence (4.102) follows.

In Figure 4.15, the integrand of (4.11) is plotted on the domain [t1 − δ, t1 + δ] × [t1 −
δ, t1 + δ] for the case of an elliptic scatterer. On the diagonal, the integrand has a log-

singularity. Above the diagonal, the integrand is slowly-oscillatory and below the diagonal

the integrand is highly-oscillatory.

The analogous result can be proved in a similar way for the domain A2. Therefore, the

double integrals over A1 and A2 can be computed using conventional quadratures.

By separating the domain Λ1 × Λ1 into above-the-diagonal and below-the-diagonal sub-

domains, we have shown that

• above the diagonal, in the domain A1 defined in (4.100), the integral (4.11) is slowly-

varying- see Figure 4.14 and Figure 4.15;
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4. Computation of highly-oscillatory double integrals

• below the diagonal, the integral (4.11) is highly-oscillatory and Hypothesis A is

satisfied, see Remark C.8 in Section C of Appendix.

In the next example, we consider the integration over the above-the-diagonal domain of

(Λ1 × Λ1) containing A1.

4.4.1 Integration over the transition domains

Let us consider computing the integral

Jk :=

∫ ∫
(Λ1×Λ1)+

M(s, t) exp (ikΨ(s, t)) dtds,

where the domain of integration is defined as

(Λ1 × Λ1)+ = {(s, t) : s, t ∈ [a, b], t > s} . (4.112)

The domain (Λ1 × Λ1)+ is illustrated in Figure 4.16.

Original Domain of Integration

G

• (t1, t1)

Q

s

t

P

Aa

a′

a′a

F

b

b

Transformed Domain of Integration

a

τ

sba′

P ′

F ′

Q′ G′

Figure 4.16: On the left, is the plot of the original domain (Λ1 × Λ1)
+

separated into two subdo-
mains by a line PQ: the triangle APQ and the remaining trapezium FGPQ; the right plot corre-
sponds to the transformed domain of the subdomain FGPQ.

We separate the domain (Λ1 × Λ1)+ into two:

• the triangular domain APQ plotted in Figure 4.16 that represents O(k−1/3) region

around the point (t−1 , t1), this is the same as A1 in (4.100) and

• the trapezium FGPQ plotted in Figure 4.16, where Hypothesis A is satisfied.

We write the integral Jk as a sum of two integrals,
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4. Computation of highly-oscillatory double integrals

Jk :=

∫ ∫
APQ

M(s, t) exp (ikΨ(s, t)) dtds+

∫ ∫
FGPQ

M(s, t) exp (ikΨ(s, t)) dtds.

The integral over the domain APQ can be efficiently computed using classical quadrature

rules since the integral is slowly-varying.

Over the trapezium FGPQ (that consists of a rectangle and a triangle), the integral in Jk

is highly-oscillatory. The transformed domain of integration for the the trapezium FGPQ

is illustrated in Figure 4.16. Then

∫ ∫
FGPQ

M(s, t) exp (ikΨ(s, t)) dtds =
2∑
j=0

I
[τj ,τj+1]
k [Fj+1],

where, with a′ = t1 + δ,

F1(τ) =

∫ (
ψ[a′]

)−1
(τ)

a
H (s, τ) ds+

∫ (ψ[b])
−1

(τ)

(ψ[a′])
−1

(τ)
H (s, τ) ds, τ ∈ [τ0, τ1],

F2(τ) =

∫ (ψ[b])
−1

(τ)

a
H (s, τ) ds, τ ∈ [τ1, τ2],

F3(τ) =

∫ r2(τ)

r1(τ)
H (s, τ) ds, τ ∈ [τ2, τ3],

where

r1(τ) =
(
ψ[b]
)−1

(τ) ∈ [a, ξ2],

r2(τ) =
(
ψ[b]
)−1

(τ) ∈ [ξ2, b].

In the Table 4.3, we tabulate the boundaries of the inner integral to complete the Table

4.2. The domain in the table is defined as follows:

(Λ1 × Λ1)∗ =
{

(s, t) : s ∈ [a, t], t ∈ [a′, b]
}
, a := t1 − δ, a′ := t1 + δ.

Also ξa and ξb are defined as in (4.95):(
ψ[a]
)′

(ξa) = 0, and
(
ψ[b]
)′

(ξb) = 0.
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4. Computation of highly-oscillatory double integrals

original domain singularities τ-interval lower upper

boundary boundary

(Λ1 × Λ1)∗ (L) τ0 = 0, [τ0, τ1] a
(
ψ[a′]

)−1
(τ)

(S) τ1 = Ψ(ξa, a)
(
ψ[a′]

)−1
(τ)

(
ψ[b]
)−1

(τ)

τ2 = Ψ(a, b) [τ1, τ2] a
(
ψ[b]
)−1

(τ)

(S) τ3 = τmax = Ψ(ξb, b) [τ2, τmax]
(
ψ[b]
)−1

(τ)
(
ψ[b]
)−1

(τ)

Table 4.3: Table of transformed domains
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Chapter 5

Filon-Clenshaw-Curtis quadrature

5.1 Introduction

In Chapter 4, we described the double integrals that arise from the Galerkin discretisation

of the boundary integral equation (2.13). The double integrals can be written as a sum of

repeated integrals with the outer integral of the form,

I
[a,b]
k [f ] =

∫ b

a
f(x) exp(ikx)dx, (5.1)

where f may have algebraic singularities at the end points and the wavenumber k can be

large. In this chapter we describe methods which compute the integrals of the form (5.1)

so that they:

• efficiently compute the integral with high accuracy for both high and low wavenum-

bers k;

• allow algebraic singularities in the integrand so that the rate of convergence of the

method is not affected by the singularity;

• permit error analysis resulting in error bounds that are explicit in the wavenumber

k, the number of quadrature points N , the regularity of f and other parameters that

account for the singularities in the integrand.

Many classical integration rules are based on the polynomial interpolation of the integrand.

When applied to (5.1), classical rules typically require a fixed number of quadrature points

N per wavelength. The wavelength is inversely proportional to the wavenumber k. Hence,

in order to maintain the accuracy, these rules require N to grow linearly with k as k →∞.

Therefore, the classical quadrature rules fail to be efficient when approximating I
[a,b]
k [f ]

for large wavenumbers k.

There are at least three classes of methods designed for computing (5.1) accurately as

k →∞. These are asymptotic methods, Filon-type methods (Filon 1928) and Levin-type

methods (Levin 1982). The main property of all these methods is that the error bounds

decrease with inverse powers of k as k → ∞. Recently, the computation of the highly-

oscillatory integrals has been a subject of substantial renewed research and the three
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5. Filon-Clenshaw-Curtis quadrature

classes of methods have been revisited, analysed and enhanced. Indeed, new numerical

methods have been developed such as numerical steepest descent method [60]. We refer

the reader for a general overview of these methods to [59].

5.1.1 Outline of the chapter

The plan for this chapter is as follows. In the remainder of this section, we will discuss

the development of Filon-type methods and their properties and other novel numerical

methods for computing (5.1). We will motivate the choice of Filon-Clenshaw-Curtis (FCC)

quadrature for our target application, namely the integrals arising in Chapter 4. In Section

5.2, we will discuss the accuracy of Chebyshev interpolating polynomials and derive a non-

composite version of FCC quadrature and discuss an efficient method for the computation

of its weights. In Section 5.3, we will derive two error bounds for the FCC quadrature

that are explicit in k, N and regularity of f : the first in terms of the Sobolev norm of the

cosine transform of f and the second in terms of Chebyshev norm of the derivatives of

f . The second error bound is one of the novel results of this chapter. The reason for the

development of error bounds in terms of the regularity of the function f rather that its

cosine mapping will become apparent in Section 5.4. In the section, we consider the case

when the function f has algebraic singularities and we extend the error analysis to the

case when FCC quadrature is applied on graded meshes in order to resolve the singularity

in f . This is the second novel result of this chapter. We conclude the chapter with the

Section 5.5 where we carry out numerical experiments.
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5. Filon-Clenshaw-Curtis quadrature

5.1.2 Survey of existing methods

Filon-type methods

The idea behind Filon-type quadratures is simple, the function f(x) in (5.1) is replaced by

a suitable interpolating function so that the integral of exp(ikx) against this interpolant

is easily computed. In our case, the function f is replaced by an algebraic polynomial

(PNf) that interpolates the function f at x0,. . . ,xN :

(PNf) (xj) = f(xj), j = 0, . . . , N. (5.2)

The resulting integral can then be integrated exactly to obtain an approximation to

I
[a,b]
k [f ]:

I
[a,b]
k [f ] :=

∫ b

a
f(x) exp(ikx)dx '

∫ b

a
(PNf) (x) exp(ikx)dx =: Q

[a,b]
k,N [f ]. (5.3)

Note that writing

(PNf) (x) =
N∑
n=0

αnpn(x),

where {p0(x), . . . , p1(x)} is a suitable polynomial basis and αn, n = 0, . . . , N are constants

that can be determined from (5.2), the quadrature can be written as follows

Q
[a,b]
k,N [f ] := I

[a,b]
k (PNf) =

N∑
n=0

αnµn(k) (5.4)

where

µn(k) := I
[a,b]
k pn =

∫ b

a
pn(x) exp(ikx)dx,

are called moments.

Filon [47] was the first to suggest in 1928 computing integrals of the form (5.1) by replacing

the function f with a quadratic polynomial which takes the same values as f at the end

points and the midpoint of the interval of integration. This rule can be understood as a

modified Simpson’s rule or Filon-Simpson quadrature. In the limit as k → 0, the weights

of the Filon-Simpson quadrature reduce to the weights of the classical Simpson rule. The

idea has been subsequently enhanced by Luke 1954 [73] and Flinn 1960 [48] where higher

order polynomial approximations of f (with degree ≤ 10) were considered. However the

convergence rates have not been discussed by neither Filon, Luke nor Flinn.

In Iserles et al 2003 [62] the Filon-type methods have been generalized: the function

f in (5.1) is replaced by a suitable approximating polynomial and the analysis of the

asymptotic order of convergence of such Filon-type methods is derived in [62] for k →∞.
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5. Filon-Clenshaw-Curtis quadrature

The asymptotic order of convergence of a method represents the rate at which the error

of the method decreases with respect to inverse powers of k as k → ∞. In [62] the error

of Filon-type methods applied to (5.3) with [a, b] = [−1, 1] is proved to be of asymptotic

order O(k−2), provided the quadrature points include the end points of the interval of

integration. This has been further generalized in Iserles et al 2005 [63] to the case when

the oscillating term in the integrand in (5.1) is replaced with the non-canonical exponential

term exp(ikg(x)) where the function g may have a finite number of stationary points of

order 1 in [−1, 1]:

I
g,[−1,1]
k [f ] :=

∫ 1

−1
f(x) exp(ikg(x))dx. (5.5)

The corresponding moments µn(k) = I
g,[−1,1]
k [pn] are assumed to be known. The error

of the Filon-type quadrature is shown in this case to be of asymptotic order O(k−3/2),

provided the quadrature points include the end points and all stationary points.

In Iserles and Nørset 2005 [64] a generalized Filon method for integrals with non-canonical

oscillating term exp(ikg(x)) has been developed with error bounds that decay with simi-

larly high negative powers of k by approximating f with the Hermite interpolating poly-

nomial φ. By definition, the Hermite interpolating polynomial satisfies:

φ(m)(xj) = f (m)(xj), m = 0, . . . , θj , j = 1, . . . , N, (5.6)

where a = x1, . . . , xN = b are the quadrature points of multiplicities θ1, . . . , θN :

φ(x) =

N∑
j=1

θj∑
m=1

αm,j(x)f (m)(xj), (5.7)

where αm,j(x) is a polynomial of degree
∑N

j=1 θj − 1 satisfying

α
(n)
m,j(xl) = 0 for all n = 0, 1, . . . , θj − 1, and l = 1, 2, . . . , N

α
(j)
m,j(xm) = 1

For s = min{θ1, θN}, convergence of asymptotic order O(k−s−1) is proved in [64] when

the phase-function g has no stationary points and of order O(k−s−1/(r+1)) when g has

a stationary point of order r, provided a quadrature point coincides with the stationary

point. The asymptotic order of convergence is derived in [64] as follows:

• In the case when the oscillating term in the integrand is canonical, exp(ikx), the

integral I
[a,b]
k [f − φ], where φ is a Hermite interpolating polynomial, can simply be
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5. Filon-Clenshaw-Curtis quadrature

integrated by parts s-times,

I
[a,b]
k [f − φ] :=

s∑
m=0

(−1)m

(ik)m+1

(
(f (m) − φm)(b) exp(ikb)

− (f (m) − φ(m))(a) exp(ika)
)

+O

(
1

ks+1

)
,

provided f is sufficiently smooth. The first s terms of the resulting expansion then

vanish by construction, see (5.6) with s = min{θ1, θN}. The error of such Filon-type

method is then of order: I
[a,b]
k [f − φ] v O(k−s−1) as k →∞.

• In the case when the oscillating term in the integrand is non-canonical, exp(ikg(x)),

and a stationary point x = ξ is present in the domain of integration (we assume

ξ 6= a, b), the following technique is used for removing the singularity originating

from the stationary point,

I
g,[a,b]
k [f ] :=

∫ b

a
f(x) exp (ikg(x))dx (5.8)

=

∫ b

a
f(ξ) exp (ikg(x))dx+

∫ b

a
(f(x)− f(ξ)) exp (ikg(x))dx

= f(ξ)

∫ b

a
exp (ikg(x))dx

+
1

ik

{
exp (ikg(b))

g′(b)
[f(b)− f(ξ)]− exp (ikg(a))

g′(a)
[f(a)− f(ξ)]

}
− 1

ik

∫ b

a

(
f(x)− f(ξ)

g′(x)

)′
exp (ikg(x))dx, (5.9)

where [f(·) − f(ξ)]/g′(·) is a smooth function. Iterating this procedure on the lat-

ter integral leads to an asymptotic expansion of the integral Then, provided the

quadrature points include the stationary point: xj = ξ, the first s terms of the

asymptotic expansion of I
g,[a,b]
k [f − φ] vanish by construction. Moreover, the first

moment satisfies

µ0(k) :=

∫ b

a
exp (ikg(x))dx = O

(
k−1/(r+1)

)
, (5.10)

hence the asymptotic order of the method follows. To see (5.10), we expand the

function g in Taylor series around ξ. The first r terms in the expansion vanish since

ξ is a stationary point of order r. Hence we obtain,

µ0(k) :=

∫ b

a
exp

(
ik
g(r+1)(ξ̃)

(r + 1)!
(x− ξ̃)r+1

)
dx.
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Now, by making the change of variables from x to t as

t = g(r+1)(ξ̃)(x− ξ̃)r+1/(r + 1)!,

we deduce

|µ0(k)| ≤

∣∣∣∣∣∣ 1

r + 1

∫ ∞
−∞

(
|g(r+1)(ξ̃)|
(r + 1)!|t|

) 1
r+1
−1

exp(ikt)dt

∣∣∣∣∣∣
≤ 2|g(r+1)(ξ̃)|

(r + 1)!(r + 1)

∣∣∣∣∫ ∞
0

1

t
1
r+1
−1

exp(ikt)dt

∣∣∣∣
≤ c

(
1

k

) 1
r+1

,

where c is a constant independent of r.

The singularity removing technique can be applied to integrals with the oscillators

that have any finite number of stationary points by partitioning the interval [a, b]

into a number of subintervals with a single stationary point residing in a single

subinterval.

In a number of subsequent papers, the error analysis of the Filon-type methods concen-

trated on their asymptotic order of convergence.

Moment-free Filon-type methods

Several authors addressed the problem of the computation of moments: when the oscil-

lating term is of the form exp(ikg(x)), it is not always possible to compute the moments

µn(k) defined in (5.4) exactly. In Olver 2007 [83] a moment-free Filon-type method has

been developed for approximating

I
g,[−1,1]
k [f ] =

∫ 1

−1
f(x) exp(ikg(x))dx, (5.11)

where the phase-function g has a stationary point of order r at x = 0. A set of basis

functions {φ1, . . . , φM} is constructed here that interpolates f in (5.8) and a sufficient

number of its derivatives at the stationary point. Moreover, the moments of the resulting

Filon-type method are guaranteed to be known. The basis functions {φ1, . . . , φM} are

defined in [83, Lemma 1] for x ∈ [−1, 1].

Lemma 5.1. [83, Lemma 1]

Let

φn(x) := Dr,n(x)
k−

1+n
r

r
e−ikg(x)+ 1+n

2r
iπ

[
Γ

(
1 + n

r
,−ikg(x)

)
− Γ

(
1 + n

r
, 0

)]
,
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where

Dr,n(x) =


(−1)k, sgn x < 0, and r even

(−1)ke−
1+n
r
iπ, sgn x < 0, and r odd

−1, otherwise

Then φn ∈ C∞[−1, 1] and, for L[F ] := F ′ + iwg′F ,

L[φn] := sgn (x)r+n+1 |g(x)| 1+n
r g′(x)

r
.

Furthermore, L[φn] ∈ C∞[−1, 1]. Finally,

I
g,[−1,1]
k [L[φn]] = φn(1)eikg(1) − φn(−1)eikg(−1). (5.12)

Let us define a smooth function ψ as follows,

ψ(x) :=
M∑
n=1

cnL[φn](x),

where the coefficients cn can be determined by solving a system

ψ(m)(xj) = f (m)(xj), m = 0, . . . , θj − 1, j = 1, . . . , N, M =
N∑
j=1

θj .

Then we can approximate I
g,[−1,1]
k [f ] using Filon-type quadrature that can be found ex-

plicitly:

Q
g,[−1,1]
k,N [f ] := I

g,[−1,1]
k [ψ] =

N∑
n=1

cnI
g,[−1,1]
k [L[φn]],

where I
g,[−1,1]
k [L[φn]] are known from (5.12). The asymptotic order of the error in approx-

imating (5.11) of this method is O(k−s−1/r), where s = min{θ1, θN}.

Another moment-free method has been developed by Xiang 2007 [102] that has similar

asymptotic convergence properties and also uses information on higher derivatives of f .

Here the authors propose a change of variables y = g(x) which is valid provided the

function g is monotone in all of [a, b], so that

I
g,[a,b]
k [f ] :=

∫ b

a
f(x) exp(ikg(x))

=

∫ g(b)

g(a)

f(g−1(y))

|g′(g−1(y))| exp(iky)dy '
∫ g(b)

g(a)
φ(y) exp(iky)dy, (5.13)

where φ is Hermite interpolating polynomial defined in (5.7). The oscillating term in (5.13)

is canonical, i.e. exp(iky) and the moments of the Filon-type method can be computed
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analytically as we have demonstrated in Chapter 4. The asymptotic rate of convergence in

this case is O(k−s−1), where s = min{θ1, θN}. On the other hand, if g(x) has a stationary

point, ξ, of order r, the following change of variables is employed in [102],

yr+1 = g(x)− g(ξ). (5.14)

Then, the highly-oscillatory integral can be written as

I
g,[a,b]
k [f ] := exp(ikg(ξ))

(∫ ξ

a
+

∫ b

ξ

)
f(x) exp(ik [g(x)− g(ξ)])dx

= exp(ikg(ξ))

∫ (g(b)−g(ξ))
1
r+1

0
f2(y) exp(ikyr+1)dy

−
∫ (g(a)−g(ξ))

1
r+1

0
f2(y) exp(ikyr+1)dy

 , (5.15)

where functions f1 and f2 containing the Jacobian of the transformation (5.14) are smooth

functions, provided f and g are smooth. Then, the moments of the Hermite-based Filon-

type quadrature applied to (5.15) can be computed using incomplete Gamma functions

[3]. The asymptotic order of convergence of such method is O(k−s−1/(r+1)).

It is evident that Filon-type methods can achieve arbitrarily high asymptotic orders of

convergence for k →∞ provided the derivatives of the integrand function f are available

at a certain set of points. It is often the case however, that the derivatives of the function

f can not be easily obtained (for example if f is a composition of several complicated

functions). This is the case in the integrals we aim to compute in Chapter 4.

Levin-type methods and the steepest descent method

There are also a number of other methods that are designed to compute the integrals of

the form (5.1) for k →∞.

Levin-type methods [70] reduce the problem of approximating the integral (5.1) with a

simpler problem of finding an antiderivative function F (x) such that,

I
g,[a,b]
k [f ] :=

∫ b

a
f(x) exp(ikg(x))dx =

∫ b

a

d

dx
(F (x) exp(ikg(x)))

= F (b) exp(ikg(b))− F (a) exp(ikg(a)).

We seek a solution F of the ordinary differential equation

L[F ] = f,

with no boundary conditions prescribed [70], where the differential operator L is defined
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as

L[F ](x) = F ′(x) + ikg′(x)F (x). (5.16)

The function F is typically approximated using collocation method. Let {ψ1, . . . , ψN} be

linearly independent basis functions on [a, b]. A collocation approximation to the solution

F is defined as

v(x) :=
N∑
m=1

cmψm(x),

where the coefficients cm are determined from a system of linear equations,

L[v](x1) = f(x1), . . . , L[v](xN ) = f(xN ). (5.17)

where x1, . . . , xN is a set of collocation nodes. Then, the integral I
g,[a,b]
k can be approxi-

mated by

Q
Levin,g,[a,b]
k,N = v(b) exp(ikg(b))− v(a) exp(ikg(a)). (5.18)

Levin-type methods become more accurate as k → ∞ [71] and as the equation (5.16)

is solved more accurately. Levin-type methods do not require computation of moments.

The asymptotic order of convergence of Levin-type methods (for any choice of linearly

independent basis functions {ψ1, . . . , ψN}) is known to be of order O(k−2) [71] provided no

stationary points are present and collocation points include the end points of integration.

In Olver 2010 [84] a GMRES-Levin-type method was developed for highly-oscillatory in-

tegrals with or without stationary points. The collocation method for solving the dif-

ferential equation (5.16) leads to a system of equations (5.17). The author proposes a

stable method for solving this system using the GMRES algorithm [91]. The rate of con-

vergence of the GMRES algorithm is shown in [84] to increase as k → ∞. The resulting

Levin-type method has an asymptotic order of convergence O(k−2) and the computational

cost decreases with k as k → ∞ to maintain the accuracy. Furthermore, higher order of

asymptotic convergence of this method can be achieved if the derivative information of f

is used.

In Huybrechs and Vandewalle 2006 [60] a numerical steepest descent method was developed

where the integration over the real interval [a, b] in I
g,[a,b]
k [f ] is converted into a path in the

complex plane so that the oscillations of the integrand are essentially removed, provided

f is analytic. For example, let us consider the integral with a canonical oscillator: I
[a,b]
k [f ]

where f is analytic. Since the value of a line integral along a path between two points in

the complex plane does not depend on a path taken provided that the integrand is analytic

(Cauchy’s Theorem), we can write,

I
[a,b]
k [f ] :=

∫ b

a
f(x) exp(ikx)dx =

∫
L
f(x) exp(ikx)dx,
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where L is a new path of integration consisting of three lines in the complex plane: L =

L1 ∪ L2 ∪ L3, where

L1 is a vertical path represented by ha(p) := a+ ip, p ∈ [0, P ],

L2 is a vertical path represented by hb(p) := b+ ip, p ∈ [0, P ],

L3 is a horizontal path connecting ha(P ) and hb(P ).

ℜ(p)

ℑ(p)

ha(p) hb(p)

ba

P

Figure 5.1: The deformed contour of integration in the complex plane.

Thus, setting P → ∞, the integral over L3 vanishes since for all x ∈ L3, we can write

x = t+ iP , where t ∈ [a, b] ∈ R, and

exp(ikx) = exp(ikt) exp(−kP )→ 0, as P →∞.

With ha(p) = a+ ip, p ∈ [0,∞), the integral over L1 is of the form,∫
L1

f(x) exp(ikx)dx = eika
∫ ∞

0
f(a+ ip) exp(−kp)dp.

Similarly, the integral over L2 can be written as a non-oscillatory integral. Thus, we

obtain,

I
[a,b]
k [f ] =

∫
L1

f(x) exp(ikx)dx+

∫
L2

f(x) exp(ikx)dx

= eika
∫ ∞

0
f(a+ ip) exp(−kp)dp+ eikb

∫ ∞
0

f(b+ ip) exp(−kp)dp.

Both integrals on the right hand side can be efficiently approximated using Gauss-Laguerre

quadrature.

For more general integrals, i.e. with non-canonical oscillators, I
g,[a,b]
k [f ], the new path

hx(p), p ∈ [0,∞) of integration in the complex plane can be found using inverse of g,
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provided there are no stationary points in [a, b]: hx(p) = g−1(g(x) + ip), so that

Im g(hx(p)) > 0.

Then, over the new path of integration, the integrand has the desired decay properties:

for fixed x,

exp(ikg(hx(p))) := exp(ikg(x)) exp(−kp).

The resulting integrals are non-oscillatory and well behaved provided f and g are analytic

and f does not grow exponentially large in the complex plane. Integrals can be efficiently

approximated using Gauss-Laguerre quadrature. The asymptotic order of the error of this

method is O(k−2n−1) when n-point Gauss-Laguerre quadrature is used.

The case when stationary points in [a, b] of order r are present in g is also discussed in

[60] and the error is derived to be of asymptotic order O(k−2n−1+r/(r+1)). The method

however is not applicable to non-smooth integrand functions f .

Subsequently, in Huybrechs and Vandewalle 2007 [61], the numerical steepest descent

method was applied in the context of boundary integral methods for high frequency scat-

tering problems. The collocation approach for the discretization of the boundary integral

equation (2.15) was used.

Numerical experiments in [61] indicate that method has decreasing error with growing

wavenumber k.

Quadrature rules for singular integrals. In this Chapter, we will propose a numerical

method for computing (5.1) for the case when the function f has algebraic singularities.

These types of integrals often arise in methods for solving scattering problems.

Techniques for the numerical computation of integrals with singular integrands include:

• singularity removing transformations: using a change of variables, the singularity in

the function f(x) can be removed. The disadvantage of such technique applied in

the context of Filon-type integration is that the resulting moments µn(k) can not

generally be analytically computed.

In Hascelik 2009 [56] Filon-type methods for computing integrals with algebraic sin-

gularities have been considered for a special case, when the integrand is of the form:

xαf(x) exp(ikx−r) for x ∈ [0, 1], r > 0 and r + α > −1. The function f (assumed

to be smooth), is replaced by Hermite interpolating polynomial of degree N . The

moments of the resulting Filon-type method are computed using extended exponen-

tial integrals Ei, defined in (5.1.2) [3]. The error bound for the Filon quadrature is

given in terms of k, α, N and derivatives of f and inverse powers of r;
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• graded meshes: instead of applying a quadrature rule on the whole interval of in-

tegration, a graded mesh is created. The quadrature rule is then applied on each

subinterval of the graded mesh. Graded meshes are constructed so that the length

of the subintervals becomes smaller towards the singularity, so that the errors of

approximations on each subinterval are uniform and small [74]. For a general idea of

graded meshes technique applied to singular integrals without oscillations and their

analysis, we refer the reader to [76].

In our target application, the most straightforward technique for computing (5.1) with

singular f is to apply the graded meshes technique with Filon-type methods, see Section

5.4. In this chapter, we will extend the error analysis of Filon-type methods to obtain

explicit error bounds in terms of wavenumber k, the number of quadrature points N and

regularity of f .

5.1.3 Motivation for the chapter

We will consider Filon-Clenshaw-Curtis quadrature for the approximation of the integrals

in the form

I
[−1,1]
k [f ] :=

∫ 1

−1
f(x) exp(ikx)dx (5.19)

with a view to implementing this quadrature in numerical methods for boundary integral

equations for scattering problems as introduced in Chapter 2 and 4. There are a number

of reasons for our choice.

Firstly, the Filon-Clenshaw-Curtis quadrature inherits the attractive features of the Clenshaw-

Curtis method (1960) [31]. Clenshaw-Curtis quadrature is a classical method that approx-

imates an integral of the form:

I [−1,1][f ] =

∫ 1

−1
f(x)dx, with Q

[−1,1]
N [f ] =

∫ 1

−1
PNf(x)dx,

where PNf(x) is a polynomial that interpolates f(x) at Chebyshev points:

xj,N = cos

(
jπ

N

)
, j = 0, 1, . . . , N.

The error bounds of the Clenshaw-Curtis quadrature were derived in [99, Theorem 5.1] to

be of the form,

Theorem 5.2. Let Clenshaw-Curtis quadrature Q
[−1,1]
N [f ] be applied to a function f ∈

C([−1, 1]). If f , f ′,. . . ,f (m+1) are absolutely continuous on [−1, 1] for some m ≥ 1, then
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for all sufficiently large N ,

∣∣∣I [−1,1][f ]−Q[−1,1]
N [f ]

∣∣∣ ≤ 32

15πm

1

(2N + 1−m)m

∫ 1

−1

∣∣f (m+1)(x)
∣∣

√
1− x2

dx. (5.20)

From Theorem 5.2, we deduce that if in addition to the requirements of the theorem,

m ≤ N + 1, then the following holds

∣∣∣I [−1,1][f ]−Q[−1,1]
N [f ]

∣∣∣ ≤ C ( 1

N

)m ∫ 1

−1

∣∣f (m+1)(x)
∣∣

√
1− x2

dx. (5.21)

One of the features of the Clenshaw-Curtis quadrature is that its weights can be precom-

puted using FFT allowing the quadrature to be applied to many different functions with

minimal additional computations. Another feature of the quadrature is that it is “nested”,

i.e. if the quadrature is computed for N + 1 points, then computing the quadrature for

2N + 1 points only requires N additional evaluations of f .

The second reason for our choice of the Filon-Clenshaw-Curtis quadrature is that the

quadrature does not require the evaluation of the derivatives of f . In our target appli-

cation, the derivatives of the integrand cannot be easily obtained. As we discussed in

Chapter 4, we are required to compute the integral (5.19) with a function f(x) of the form

(4.83) that is in itself is an integral with a rather complicated integrand.

Finally, as we will prove later in this chapter, Filon-Clenshaw-Curtis quadrature applied

on graded meshes can accurately approximate the integral (5.19) when f(x) has algebraic

singularities. We will derive an error bound of the Filon-Clenshaw-Curtis quadrature

that is explicit in the wavenumber k, the number of quadrature points N , the number of

subintervals in the graded mesh M , the grading parameter q and the regularity of f . This

is a novel contribution of this Chapter.

Remark 5.3. It is worth mentioning that Classical Clenshaw-Curtis quadratures have

also been considered for the computation of the integrals of the form:

Ik[f ] =

∫ 1

−1
f(x)w(x)dx,

with the function w(x) allowed to contain singularities or oscillations. These methods

are often reffered to as modified Clenshaw-Curtis rules or product integration rules with

Clenshaw-Curtis points and were developed for example in [94, 50, 89, 88, 90] (1972-1984).

However, when w(x) = exp(ikx), error bounds that are explicit in k and the regularity of

f were not presented in any of these references.

In the context of product integration rules with Clenshaw-Curtis points, a number of au-

thors have also addressed the problem of the computation of the moments µn(k), n =
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0, 1, . . . , N :

µn(k) =

∫ 1

−1
Tn(x) exp(ikx)dx, (5.22)

where Tn(x) denotes the Chebyshev polynomial of degree n that we discuss in detail in

Section 5.2.1. For an overview of these methods, for the case when w(x) = exp(ikx), we

refer the reader to Evans and Webster 1999 [44]. However, these methods were proved

to be stable only for certain values of k and n. Notably, the moments for the modified

Clenshaw-Curtis rule with w(x) = exp(ikx), can be obtained by a recurrence relation that

is derived from the forward recurrence relation for the Chebyshev polynomials. This method

of obtaining the moments is only stable for N < k. Recently, however, a method for the

computation of the moments has been presented in Dominguez et al 2010 [41] that is proved

to be stable for all N and k. In Section 5.2.1, we will discuss this method in detail. A

public domain Matlab code which implements this algorithm is available at [38].
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5.2 Filon-Clenshaw-Curtis quadrature

In this section, we will describe the Filon-Clenshaw-Curtis (FCC) quadrature and dis-

cuss the properties of the Chebyshev interpolating polynomial. Also, we will discuss the

computation of the weights of the FCC quadrature as presented in [41].

The FCC quadrature Q
[−1,1]
k,N [f ] approximates the integral of the form,

I
[−1,1]
k [f ] :=

∫ 1

−1
f(x) exp(ikx)dx,

by replacing the function f with Chebyshev interpolating polynomial (PNf) of degree N ,

see Definition 5.6. Then, we obtain

Q
[−1,1]
k,N [f ] :=

∫ 1

−1
(PNf) (x) exp(ikx)dx. (5.23)

Notation 5.4. In the remainder of this section, for convenience, we will replace the

notation I
[−1,1]
k [f ] with Ik[f ] and similarly, Q

[−1,1]
k,N [f ] with Qk,N [f ].

5.2.1 Chebyshev interpolating polynomial

Definition 5.5. The Chebyshev polynomial of the first kind of degree n is a function

Tn(x), x ∈ [−1, 1], defined by

Tn(x) = cos(n arccos(x)). (5.24)

Chebyshev polynomials of the first kind can also be defined as functions that satisfy the

recurrence relation:

T0(x) = 1,

T1(x) = x,

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 1, (5.25)

Therefore Tn(x) is a polynomial of degree n. Additionally, Chebyshev polynomials satisfy

the recurrence relation involving their derivatives:

2Tn(x) =
1

n+ 1
T
′
n+1(x)− 1

n− 1
T
′
n−1(x). (5.26)

In the following Definition, we will define the Chebyshev interpolating polynomial.

Definition 5.6. The Chebyshev interpolating polynomial (PNf) for the function f is
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defined as follows:

(PNf) (xj) = f(xj), at xj = cos

(
jπ

N

)
, j = 0, ..., N, (5.27)

where xj are called the Chebyshev points.

Lemma 5.7. The Chebyshev interpolating polynomial can be written as follows,

(PNf) (x) =
1

2
c0 + c1T1(x) + ...+ cN−1TN−1(x) +

1

2
cNTN (x), (5.28)

where the coefficients cj, j = 0, ..., N are given as:

cj := cj [f ] =
2

N

N∑
m=0

′′f(xm)Tj(xm)

=
1

N

[
f(−1)(−1)j + 2

N−1∑
m=1

f(xm) cos

(
mjπ

N

)
+ f(1)

]
, (5.29)

where
∑′′

denotes the sum with the first and the last terms halved.

Proof. We use the orthogonality relation

N∑
n=0

′′ cos
(nmπ
N

)
cos

(
njπ

N

)
=


0 : j 6= m

N : j = m = 0 or N,

N/2 : j = m 6= 0 or N.

,

to deduce

(PNf) (xj) =
2

N

N∑
n=0

′′

(
N∑
m=0

′′f(xm) cos
(nmπ
N

))
cos

(
njπ

N

)

=
2

N

N∑
m=0

′′f(xm)

[
N∑
n=0

′′ cos
(nmπ
N

)
cos

(
njπ

N

)]
= f(xj).

Hence the result follows.

Chebyshev interpolating polynomials are related to trigonometric interpolating polynomi-

als as we will see in Section 5.2.2, which in turn are related to truncated Fourier series. We

will use these equivalences in the error analysis of the Filon-Clenshaw-Curtis quadrature

given in Section 5.2.3.
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5.2.2 Trigonometric interpolating polynomials

Definition 5.8. For g : [−1, 1]→ R, we denote gc as the cosine mapping of the function

g,

gc(θ) = g(cos θ). (5.30)

Definition 5.9. For f : [a, b]→ R, we define f̃ : [−1, 1]→ R by

f̃(t) = f

(
b+ a

2
+
b− a

2
t

)
. (5.31)

So f̃ = f if [a, b] = [−1, 1]. We denote the cosine mapping of the function f̃ as f̃c. So

f̃c = fc if [a, b] = [−1, 1].

The cosine mapping of the interpolating Chebyshev polynomial (PNf) defined in (5.28) is

(PNf)c (θ) =
1

2
c0 + c1 cos(θ) + ...+ cN−1 cos((N − 1)θ) +

1

2
cN cos(Nθ). (5.32)

Hence (PNf)c ∈ span{1, cos(θ), ..., cos(Nθ)}. Thus, it is a trigonometric polynomial of

degree N and it interpolates fc(θ) at N + 1 equally spaced points

θj := jπ/N, j = 0, 1, ..., N.

In Theorem 5.12, we will present the error of the trigonometric polynomial interpolant

at equally spaced points in the periodic Sobolev space Hm
per which we define in Definition

5.10. We will use Theorem 5.12 to analyse the error when fc is approximated by (PNf)c
when proving k-dependent error bounds of the FCC quadrature, see Theorem 5.14.

Recall that for φ ∈ L2[−π, π] we define the corresponding Fourier series as follows:

φ(θ) =
+∞∑

µ=−∞
φ̂(µ) exp(iµθ), where φ̂(µ) :=

1

2π

∫ π

−π
φ(θ) exp(−iµθ)dθ. (5.33)

Definition 5.10. For m ≥ 0, the 2π-periodic Sobolev space Hm
per is the space of all func-

tions φ ∈ L2[−π, π] such that ‖φ‖2Hm
per

<∞, where

‖φ‖2Hm
per

:= |φ̂(0)|2 +
∑

µ∈Z,µ 6=0

|µ|2m|φ̂(µ)|2. (5.34)

Hm
per is a Hilbert space with respect to the scalar product

(φ, ϕ)Hm
per

= φ̂(0)ϕ̂(0) +
∑

µ∈Z,µ 6=0

|µ|2mφ̂(µ)ϕ̂(µ).

139



5. Filon-Clenshaw-Curtis quadrature

Now, let QNu, be the interpolating trigonometric polynomial of degree N that satisfies

the following conditions:

QNu ∈ TN := span{exp(iµθ), µ = −N, . . . , N}, (5.35)

(QNu) (θj) = u(θj), where θj =
πj

N
, j = −N, . . . , N.

Since the function fc is even, the operator QN applied to fc is only composed in terms of

cosines,

QNfc ∈ span{cos(µθ), µ = 0, . . . , N}, (5.36)

(QNfc) (θj) = fc(θj), where θj =
πj

N
, j = −N, . . . , N.

Lemma 5.11. For all f ∈ C([−1, 1]),

(PNf)c = QNfc. (5.37)

Proof. PNf is a polynomial of degree ≤ N . It follows that

(PNf)c ∈ span {cos(µθ) : µ = 0, ..., N} .

Moreover,

PNf(xj) = f(xj),

with xj given as in (5.27). Therefore,

(PNf)c

(
πj

N

)
= fc

(
πj

N

)
, j = 0, ..., N.

Therefore, by uniquesnes, (5.37) follows.

The following theorem provides an error estimate for the interpolating trigonometric poly-

nomial QN .

Theorem 5.12. [Error of the trigonometric polynomial approximation, [92,

Theorem 8.3.1]] For u ∈ Hµ
per, µ ∈ R, µ > 1/2,

‖u−QNu‖Hλ
per
≤ γµ

(
1

N

)µ−λ
‖u‖Hµ

per
, (0 ≤ λ ≤ µ), (5.38)

where

γµ :=

1 +

∞∑
j=1

1

j2µ

1/2

<∞.
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5.2.3 The moments of the Filon-Clenshaw-Curtis quadrature

In this section, we will discuss the practical computation of the weights and moments of

the FCC quadrature defined below in (5.40) and (5.41) respectively. As we have discussed

earlier in Section 5.1, the stable computation of moments, in general, can be a challenging

problem associated with Filon-type methods. In this case, the moments ωn(k), n =

0, . . . , N can be found recursively using forward recurrence relation for the Chebyshev

polynomials (5.26). This algorithm however is stable only when N ≤ k.

In [41], a two-phase method is proved to be stable, using the forward recurrence relation for

Chebyshev polynomials to compute moments (5.41) for n ≤ min{k,N} and an algorithm

that solves a tridiagonal system of size about N − k to compute the remaining moments

(Oliver’s algorithm [79]), for k < n ≤ N . We will discuss this method in more detail in

this section.

We begin by deriving the FCC quadrature.

Lemma 5.13. The Filon-Clenshaw-Curtis quadrature defined in (5.23) (see also Notation

5.4) can be written as follows:

Qk,N [f ] :=

N∑
m=0

′′Wm(k)f(xm), (5.39)

where the weights Wm(k), m = 0, 1, . . . , N are defined as:

Wm(k) =
2

N

N∑
n=0

′′ωn(k) cos
(mnπ
N

)
, (5.40)

and the moments ωn(k), n = 0, 1, . . . , N are:

ωn(k) =

∫ 1

−1
Tn(x) exp(ikx)dx, (5.41)

Proof. We can verify equations (5.40) and (5.41) by substituting the Chebyshev interpo-

lating polynomial (PNf) defined in (5.28) and (5.29) into the integral Ik[(PNf)],

Qk,N [f ] =

∫ 1

−1
(PNf) (x) exp(ikx)dx

=
N∑
j=0

′′cj

∫ 1

−1
Tj(x) exp(ikx)dx

=

N∑
m=0

′′

 2

N

N∑
j=0

′′ωj(k) cos

(
mjπ

N

) f(xm). (5.42)

Therefore, the result follows.
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Two-phase method for computing moments in the FCC quadrature

Depending on N and k, the moments ωn defined in (5.41) for n = 0, 1, . . . , N can be

computed using the two-phase method described below. If N ≤ k, then all the moments

ωn, n = 0, 1, . . . , N can be computed using the algorithm described in the first phase. On

the other hand, if N > k, then ωn for 0 ≤ n < k are computed using the first phase and

the remaining moments: ωn for k < n ≤ N are computed using the second phase.

First phase. Using the classical recurrence relation for Chebyshev polynomials (5.26),

we obtain:

2ωn(k) = ρn+1(k)− ρn−1(k), n ≥ 2, (5.43)

where

ρn(k) :=
1

n

∫ 1

−1
Tn
′(x) exp(ikx)dx, n ≥ 1. (5.44)

Integrating formula (5.41) for ωn(k) by parts, we obtain,

ω0(k) = γ0(k) and ωn(k) := γn(k)− n

ik
ρn(k), n ≥ 1, (5.45)

where

γn(k) :=
1

ik
Tn(x) exp(ikx)|x=1

x=−1 =
1

ik
[exp(ik)− (−1)n exp(−ik)]

=

{
2 sin k
k , for even n,

2 cos k
k , for odd n.

(5.46)

Combining the equations (5.43) and (5.45), we obtain

2γn(k)− 2n

ik
ρn(k) = ρn+1(k)− ρn−1(k), (5.47)

with

ρ1(k) := γ0(k), (5.48)

ρ2(k) := 2γ1(k)− 2

ik
γ0(k). (5.49)

Thus, to evaluate the moments ωn(k) for n ≤ min{N, k}, we use the recurrence relation

(5.47)-(5.49) to compute ρn(k). Then ωn(k) can be computed using (5.45). This algorithm

is proven to be stable for n < N ≤ k in Theorem 5.1 and Corollary 5.2 in [41].

Second phase. When N ≥ k, additional algorithm must be added where ρn(k) for

k ≤ n ≤ N can be computed stably. This can be achieved using Oliver’s algorithm [79].

Let n0 = dke, where dke denotes the smallest integer ≥ x, and take M ≥ max{n0/2, N/2}.
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We can find ρn(k), n = n0, . . . , 2M −1, by solving the tridiagonal system for x ∈ R2M−n0 ,

AM (k)x = bM (k), (5.50)

where

AM (k) :=



2n0
ik 1

−1 2(n0+1)
ik 1

−1 2(n0+1)
ik 1
. . .

. . .
. . .

−1 2(2M−1)
ik


, bM (k) :=


2γn0(k) + ρn0−1(k)

2γn0+1(k)

2γn0+2(k)

2γ2M−1(k)− ρ2M (k)

 .

(5.51)

The solution of (5.50) is a vector ρM (k):

ρM (k) := [ρn0(k), ρn0+1(k), ρn0+2(k), . . . , ρ2M−1(k)]T .

The components of the right-hand side vector bM (k) can be obtained using the following:

equation (5.46) for γn(k), n = n0, . . . , 2M − 1, and the value of ρn0−1(k) can be obtained

from the first phase. Finally, ρ2M (k) can be obtained, for sufficiently large M , using an

asymptotic argument described in Theorem 3.1 [41].

Computing the Filon-Clenshaw-Curtis quadrature using FFT.

The FCC quadrature rule can be implemented in O(N logN) operations. The first and

second phases of the algorithm for computing weights require O(N) operations and Qk,N [f ]

in (5.39) can be computed in O(N logN) operations using FFT.

To see this, define the vectors ωN and fN of length N as follows:

ωN = [ω0(k)/2, ω1(k), . . . , ωN−1(k), ωN (k)/2]T

fN = [f(x0)/2, f(x1), . . . , f(xN−1), f(xN )/2]T .

and define an N ×N matrix T as

(T )j,m = cos

(
jmπ

N

)
, j,m = 0, . . . , N.

Then, the quadrature is obtained by straightforward dot product:

Qk,N [f ] = ωTNTfN = (TωN )TfN .

The matrix-vector product TωN is a discrete cosine mapping that can be precomputed
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in O(N logN) operations. Then the quadrature Qk,N [f ] can be applied to many different

functions without any additional computations of the weights.
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5.3 Error of the Filon-Clenshaw-Curtis quadrature

In this section, we will state and prove two theorems which present error estimates for

the Filon-Clenshaw-Curtis quadrature. These error estimates are explicit in k, N and

regularity of f . In the first theorem, the error is bounded by a periodic Sobolev norm

of the cosine mapping of f . The cosine transform of the function is defined in Definition

5.8. The second theorem is analogous to the first but the bound involves a Chebyshev

weighted norm of the derivatives of f .

The reasons why we need two error estimates for the Filon-Clenshaw-Curtis quadrature

will be explained in Remark 5.16.

5.3.1 Error estimate in terms of the periodic Sobolev norm of fc

The following theorem is proved in [41].

Theorem 5.14. [Error of the Filon-Clenshaw-Curtis quadrature in terms of

Sobolev norm of the cosine mapping of f ] For s = 0, 1, 2 and for all m ≥ m0 >

max{1/2, ρ(s)}, there exist a constant Cm0 > 0 such that

|Ik[f ]−Qk,N [f ]| ≤ Cm0

(
1

k

)s( 1

N

)m−ρ(s)

‖fc‖Hm
per
, (5.52)

where ρ(s) is

ρ(s) =


0, if s = 0,

1, if s = 1,

7/2 if s = 2.

Proof. We prove the three cases separately: when s = 0, when s = 1 and when s = 2. We

begin by defining the error function e : [−1, 1]→ R as follows,

e(x) := (f − PNf) (x).

The cosine mapping of e is of the form,

ec(θ) := e(cos θ) = (f − PNf) (cos θ) = (fc −QNfc) (θ),

where QNfc ∈ TN is the cosine mapping of PNf , see Lemma 5.11. Therefore,

e′c(θ) := −e′(cos θ) sin θ (5.53)

e′′c (θ) := −e′′(cos θ) sin2 θ − e′(cos θ) cos θ. (5.54)
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5. Filon-Clenshaw-Curtis quadrature

From Theorem 5.12 we obtain the bounds on ec and its derivative,

‖ec‖L2([−π,π]) ≤ c1‖ec‖H0
per
≤ Cm

1

Nm
‖fc‖Hm

per
, (5.55)

‖e′c‖L2([−π,π]) ≤ c2‖ec‖H1
per
≤ Cm

1

Nm−1
‖fc‖Hm

per
, (5.56)

and for m > n,

‖e(n)
c ‖L2([−π,π]) ≤ c2‖ec‖Hn

per
≤ Cm

1

Nm−n ‖fc‖Hm
per
. (5.57)

Case s = 0. Using (5.55)

|Ik[f ]−Qk,N [f ]| ≤
∣∣∣∣∫ 1

−1
(f(x)− PNf(x)) exp(ikx)dx

∣∣∣∣
≤

∫ π

0
|(f(cos θ)− PNf(cos θ))| sin θdθ

≤ 1

2

∫ π

−π
|ec(θ)| dθ ≤

1

2

(∫ π

−π
|ec(θ)|2 dθ

)1/2(∫ π

−π
12dθ

)1/2

≤
√
π

2
‖ec‖L2([−π,π]) ≤ Cm

1

Nm
‖fc‖Hm

per
. (5.58)

Case s = 1. We integrate Ik[f ]−Qk,N [f ] by parts once and obtain:

Ik[f ]−Qk,N [f ] =
1

ik
[(f(x)− PNf(x)) exp(ikx)]x=1

x=−1 −
1

ik

∫ 1

−1
(f − PNf)′ (x) exp(ikx)dx.

Since PNf(±1) = f(±1), the first term vanishes. By making the substitution x = cos θ

and using (5.53) we obtain a bound for the second term:

|Ik[f ]−Qk,N [f ]| =
1

k

∣∣∣∣∫ π

0
(fc −QNfc)′ (θ) exp (ik cos θ)dθ

∣∣∣∣ (5.59)

≤
√
π

k

∥∥∥(ec)
′
∥∥∥
L2,[0,π]

≤ C 1

k
‖ec‖H1

per

≤ Cm
1

k

1

Nm−1
‖fc‖Hm

per
using (5.56).

Case s = 2. Define the function φN (θ):

φN (θ) :=
(ec)

′
(θ)

sin θ
= −(f − PNf)′(cos θ) = −e′(cos θ). (5.60)
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5. Filon-Clenshaw-Curtis quadrature

Then integrating (5.59) by parts again, we obtain:

|Ik[f ]−Qk,N [f ]| =

∣∣∣∣ 1

ik

∫ π

0
(ec)

′(θ) exp (ik cos θ)dθ

∣∣∣∣
=

∣∣∣∣ 1

ik

∫ π

0
φN (θ) exp (ik cos θ) sin θdθ

∣∣∣∣
≤

∣∣∣∣ 1

k2

(
φN (π)e−ik − φN (0)eik

)∣∣∣∣+

∣∣∣∣ 1

k2

∫ π

0
φ
′
N (θ) exp(ik cos θ)dθ

∣∣∣∣
=

1

k2
|E1|+

1

k2
|E2|,

where we denote

E1 := φN (π)e−ik − φN (0)eik,

E2 :=

∫ π

0
φ
′
N (θ) exp(ik cos θ)dθ.

From (5.54) and (5.60), we deduce

(ec)
′′(0) = −e′(cos 0) = φN (0)

(ec)
′′(π) = e′(cosπ) = −φN (π).

Then for all m ≥ 3, using the Sobolev embedding theorem, we deduce

|E1| ≤ |φN (0)|+ |φN (π)| =
∣∣(ec)′′(0)

∣∣+
∣∣(ec)′′(π)

∣∣
≤ C‖ec‖H3

per
≤ Cm

1

Nm−3
‖fc‖Hm

per
, by (5.57).

Now, it remains to find a bound on |E2|. Since ec is a even function, we can write it as a

cosine series (see Lemma 5.18 later):

ec(θ) = êc(0) + 2

∞∑
m=1

êc(m) cosmθ, (5.61)

where

êc(m) :=
1

π

∫ π

0
ec(θ) cos(mθ)dθ, m ≥ 0.

From (5.61) it follows,

(ec)
′(θ) = −2

∞∑
m=1

mêc(m) sinmθ. (5.62)

Substituting (5.62) into (5.60), we obtain

φN (θ) = −2

∞∑
m=1

mêc(m)
sinmθ

sin θ
. (5.63)

147



5. Filon-Clenshaw-Curtis quadrature

Denote σ(θ) := (sin θ)/θ. For θ ∈ [−π/2, π/2], σ(θ) ≥ 2/π and so for θ ∈ [0, π/2], and

m ≥ 1,∣∣∣∣(sinmθ

sin θ

)′∣∣∣∣ =

∣∣∣∣m(σ(mθ)

σ(θ)

)′∣∣∣∣ =

∣∣∣∣m2σ
′(mθ)

σ(θ)
−mσ(mθ)σ′(θ)

σ2(θ)

∣∣∣∣ ≤ Cm2. (5.64)

Moreover, writing
sinmθ

sin θ
= (−1)m−1 sinm(θ − π)

sin(θ − π)
,

allows us to extend (5.64) to θ ∈ [0, π]. Therefore,

|E2| ≤ π‖φ
′
N‖L∞([0,π]) ≤ C

∞∑
m=1

m3|êc(m)|. (5.65)

To complete the estimate on E2, we use the elementary estimates

N∑
m=1

m6 <
(N + 1)7

7
and

∞∑
m=N+1

1

m1+α
<

1

αNα
, (α > 0).

Splitting the sum (5.65) for m ≤ N and m > N , using Cauchy-Schwartz inequality, we

deduce for s ≥ s0 > 7/2

|E2| ≤ C


[

N∑
m=1

m6

]1/2 [ N∑
m=1

|êc(m)|2
]1/2

+

[ ∞∑
m=N+1

1

m2s−6

]1/2 [ ∞∑
m=N+1

m2s|êc(m)|2
]1/2


≤ C

{(
1

N

)−7/2

‖ec‖H0
per

+

(
1

N

)s−7/2

‖ec‖Hs
per

}

≤ Cs0

(
1

N

)s−7/2

‖fc‖Hs
per

The error estimate presented in Theorem 5.14 is not optimal when k is small. The estimate

(5.52) implies that as k → 0, the error of the FCC quadrature may blow up with a rate

of order k−s, s = 1, 2. In the following Corollary, this result is extended to include all

possible k.

Corollary 5.15. Under the conditions of the Theorem 5.14, for s = 0, 1, 2 and for all

m ≥ m0 > max{1/2, ρ(s)}, there exist a constant Cm0 > 0 such that

|Ik[f ]−Qk,N [f ]| ≤ Cm0 min

{
1,

(
1

k

)s}( 1

N

)m−ρ(s)

‖fc‖Hm
per
. (5.66)

Proof. For k ≥ 1, the result follows from Theorem 5.12. For k ≤ 1, the result follows from
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5. Filon-Clenshaw-Curtis quadrature

(5.58).

Remark 5.16. Theorem 5.14 provides the error bound of the Filon-Clenshaw-Curtis

quadrature in terms of the periodic Sobolev norm of the cosine mapping of f .

One of the ways of computing integrals (5.1) when f has algebraic singularities is to apply

the quadrature on a mesh graded towards the singularity. The idea is that the error of the

quadrature can then be made uniform on subintervals and small overall. Investigating the

convergence of the Filon-Clenshaw-Curtis quadrature applied on graded meshes requires

the error bounds that are explicit in terms of derivatives of f and the length of the interval

the quadrature is applied to (see later Corollary 5.25 where we consider integrals over [a, b]

rather than [−1, 1]). Therefore, we need an alternative to the error bound (5.52). We

present this result in Theorem 5.17 below.

5.3.2 Error estimate in terms of Chebyshev weighted norm of f (m)

In this section, we will state and prove explicit error estimates for the FCC quadrature in

terms of the Chebyshev weighted norm of the derivatives of f .

Theorem 5.17. [Error of the Filon-Clenshaw-Curtis quadrature in terms of

Chebyshev weighted norm of fm] Let f ∈ Cm([−1, 1]) be m-times continuously dif-

ferentiable function. For s = 0, 1, 2 let ρ(s) be defined as in Theorem 5.14, and for all m

such that 0 ≤ m ≤ N + 1, there exist constants 1 σm,N > 0, such that

|Ik[f ]−Qk,N [f ]| ≤ σm,N
(

1

N

)m−ρ(s)(1

k

)s [∫ 1

−1

∣∣f (m)(t)
∣∣2

√
1− t2

dt

]1/2

. (5.67)

The proof of this theorem requires a few definitions and lemmas.

Lemma 5.18. Consider an even function φ ∈ L2([−π, π]), i.e. φ(θ) = φ(−θ), θ ∈ [−π, π].

The Fourier series for the function φ can be written as follows:

φ(θ) = φ̂(0) + 2

∞∑
µ=1

φ̂(µ) cos(µθ), where φ̂(µ) :=
1

π

∫ π

0
φ(θ) cos(µθ)dθ. (5.68)

Furthermore,

‖φ‖2Hm
per

= |φ̂(0)|2 + 2

∞∑
µ=1

µ2m|φ̂(µ)|2. (5.69)

1 The size of the constant σm,N does not play role in the error estimates of the composite FCC which
we aim to obtain in this chapter and therefore is not displayed explicitly in the error estimate. However,
the explicit expression for the constant can be found in Remark 5.22.
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5. Filon-Clenshaw-Curtis quadrature

Proof. From the definition of Fourier series for general functions in L2([−π, π]) (5.33), we

deduce

φ̂(µ) :=
1

2π

∫ π

−π
φ(θ) exp(iµθ)dθ

=
1

2π

∫ 0

−π
φ(θ) exp(iµθ)dθ +

1

2π

∫ π

0
φ(θ) exp(iµθ)dθ

=
1

2π

∫ π

0
φ(−θ) exp(−iµθ)dθ +

1

2π

∫ π

0
φ(θ) exp(iµθ)dθ

=
1

π

∫ π

0
φ(θ) cos(µθ)dθ. (5.70)

Moreover,

φ̂(−µ) :=
1

π

∫ π

0
φ(−θ) cos(−µθ)dθ =

1

π

∫ π

0
φ(θ) cos(µθ)dθ = φ̂(µ). (5.71)

Therefore,

φ(θ) =

−1∑
µ=−∞

φ̂(µ) exp(iµθ) + φ̂(0) +

∞∑
µ=1

φ̂(µ) exp(iµθ)

= φ̂(0) +
∞∑
µ=1

φ̂(µ) (exp(iµθ) + exp(−iµθ))

= φ̂(0) + 2
∞∑
µ=1

φ̂(µ) cos(µθ).

Hence, (5.68) follows. Similarly, (5.69) follows by the definition of the 2π-periodic Sobolev

space Hm
per given in (5.34):

‖φ‖2Hm
per

=
−1∑

µ=−∞
|µ|2m|φ̂(µ)|2 + |φ̂(0)|2 +

∞∑
µ=1

|µ|2m|φ̂(µ)|2

= |φ̂(0)|2 + 2
∞∑
µ=1

|µ|2m|φ̂(µ)|2, using (5.71).

In Lemma 5.19, we will describe the property of the Fourier coefficients for the cosine

mapping function gc.

Lemma 5.19. Let gc be the cosine mapping of the function g ∈ C([−1, 1]). Then gc is an

even function in L2([−π, π]). The coefficients of the Fourier cosine series of gc satisfy the
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5. Filon-Clenshaw-Curtis quadrature

following property: for µ ∈ N, µ 6= 0,

ĝc(µ) =
1

2µ

[
(̂g′)c(µ− 1)− (̂g′)c(µ+ 1)

]
. (5.72)

Proof. In order to show this, we use Lemma 5.18 for the definition of ĝc(µ) and integrate

by parts:

ĝc(µ) =
1

π

∫ π

0
gc(θ) cos(µθ)dθ

=
1

πµ
[gc(θ) sin(µθ)]θ=πθ=0 −

1

πµ

∫ π

0
(gc)

′ (θ) sin(µθ)dθ.

The first term vanishes since sin(µπ) = sin(0) = 0 for µ ∈ Z. Then,

ĝc(µ) =
1

µπ

∫ π

0
g′(cos θ) sin θ sin(µθ)dθ

=
1

2µπ

∫ π

0

(
g′
)
c
(θ) [cos((µ− 1)θ)− cos((µ+ 1)θ)] dθ

=
1

2µ

(
(̂g′)c(µ− 1)− (̂g′)c(µ+ 1)

)
.

Hence the result follows.

Definition 5.20. We define the operator SN : L2([−π, π])→ TN , where TN is the space

of trigonometric polynomials of degree N (5.35), as follows:

(SNφ) (θ) =

µ=N∑
µ=−N

φ̂(µ) exp(iµθ), θ ∈ [−π, π], N ≥ 0, (5.73)

where φ̂(µ) is defined in (5.33). Moreover, the operator SN applied to an even function φ,

yields,

(SNφ) (θ) = φ̂(0) + 2

µ=N∑
µ=1

φ̂(µ) cos(µθ), (5.74)

and φ̂(µ) may be written in the form (5.68).

The operator SN is often referred to as a truncated Fourier operator.

Using Lemma 5.19, we prove the following important result for the truncated Fourier

operator SN applied to fc.

Lemma 5.21. For all 0 ≤ m ≤ N + 1, there exist constants σm,N > 0 such that

‖(I − SN )fc‖Hm
per
≤ σm,N‖(f (m))c‖H0

per
. (5.75)
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Proof. Expanding the function (I − SN )fc in Fourier series, we obtain:

(I − SN ) fc(θ) = 2
∞∑
µ=1

f̂c(µ) cos(µθ)− 2
N∑
µ=1

f̂c(µ) cos(µθ)

= 2
∞∑

µ=N+1

f̂c(µ) cos(µθ). (5.76)

Let

F (θ) :=
∞∑

µ=N+1

f̂c(µ) cos(µθ).

Then, the function F is even and

F̂ (ν) =
1

π

∫ π

0
F (θ) cos(νθ)dθ

=
1

π

∫ π

0

 ∞∑
µ=N+1

f̂c(µ) cos(µθ)

 cos(νθ)dθ

=
1

π

∞∑
µ=N+1

f̂c(µ)

∫ π

0
cos(νθ) cos(µθ)dθ.

Since ∫ π

0
cos(νθ) cos(µθ)dθ =

{
π
2 , if ν = µ,

0, otherwise,

we obtain,

F̂ (ν) =

{
0, ν = 0, ..., N,
1
2 f̂c(ν), if ν ≥ N + 1.

(5.77)

Then, by (5.69) and (5.76),

‖(I − SN )fc‖2Hm
per

= 2‖F‖2Hm
per

:= 2

|F̂ (0)|2 + 2

∞∑
µ=1

µ2m|F̂ (µ)|2


=

∞∑
µ=N+1

µ2m
∣∣∣f̂c(µ)

∣∣∣2 , using (5.77). (5.78)
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Now, using Lemma 5.19, we obtain:

‖(I − SN ) fc‖2Hm
per

≤ 1

4

∑
µ≥N+1

µ2m−2
∣∣∣(̂f ′)c(µ− 1)− (̂f ′)c(µ+ 1)

∣∣∣2

≤ 1

2

 ∑
µ≥N+1

µ2m−2
∣∣∣(̂f ′)c(µ− 1)

∣∣∣2

+
∑

µ≥N+1

µ2m−2
∣∣∣(̂f ′)c(µ+ 1)

∣∣∣2
 , (5.79)

since (a− b)2 ≤ 2a2 + 2b2. Then, using the following elementary inequality,

µ+ 1 ≤ N + 1

N
µ, for µ ≥ N,

we obtain from (5.79),

2 ‖(I − SN ) fc‖2Hm
per

≤
∑
µ≥N

(µ+ 1)2m−2
∣∣∣(̂f ′)c(µ)

∣∣∣2 +
∑

µ≥N+2

(µ− 1)2m−2
∣∣∣(̂f ′)c(µ)

∣∣∣2
≤

(
N + 1

N

)2m−2 ∑
µ≥N

µ2m−2
∣∣∣(̂f ′)c(µ)

∣∣∣2 +
∑

µ≥N+2

µ2m−2
∣∣∣(̂f ′)c(µ)

∣∣∣2
≤ 2

(
N + 1

N

)2m−2 ∑
µ≥N

µ2m−2
∣∣∣(̂f ′)c(µ)

∣∣∣2 . (5.80)

Analogously to (5.78), we can show that,

‖(I − SN−1)(f ′)c‖2Hm−1
per

=
∞∑
µ=N

µ2(m−1)
∣∣∣(̂f ′)c(µ)

∣∣∣2 .
Then, dividing both sides of (5.80) by 2, we deduce,

‖(I − SN ) fc‖Hm
per
≤
(
N + 1

N

)m−1 ∥∥(I − SN−1) (f ′)c
∥∥
Hm−1
per

. (5.81)

Now, since m− 1 ≤ N , using (5.81) iteratively m− 1 times, we obtain,

‖(I − SN ) fc‖Hm
per

≤
(
N + 1

N

)m−1( N

N − 1

)m−2

. . .

(
N −m+ 3

N −m+ 2

)
× ‖ (I − SN−m+1) (f (m−1))c‖H1

per

≤ (N + 1)m(N −m+ 1)!

N !
‖ (I − SN−m+1) (f (m−1))c‖H1

per
(5.82)
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When m < N + 1, one additional iteration of (5.82) together with the fact that

‖ (I − SN−m) (f (m))c‖2H0
per
≤ ‖(f (m))c‖2H0

per
,

yields the desired result,

‖(I − SN ) fc‖Hm
per
≤ σm,N ‖(f (m))c‖H0

per
,

where

σm,N :=
(N + 1)m(N −m+ 1)!

N !
.

On the other hand, if m = N + 1, the right hand side of the equation (5.82), can be

bounded using (5.79) as follows,

‖ (I − S0) (f (m−1))c‖2H1
per

≤ 1

2

 ∞∑
µ=0

∣∣∣ ̂(f (m))c(µ)
∣∣∣2 +

∞∑
µ=2

∣∣∣ ̂(f (m))c(µ)
∣∣∣2


≤
∣∣∣ ̂(f (m))c(0)

∣∣∣2 + 2

∞∑
µ=1

∣∣∣ ̂(f (m))c(µ)
∣∣∣2

=: ‖(f (m))c‖2H0
per
.

Hence the result (5.75) follows.

Remark 5.22. Note that the constants σm,N are bounded as N →∞. This can be shown

by noticing that Γ(N + 1) = N ! and using the following formula (see [3, (6.1.46)]),(
lim
N→∞

σm,N =

)
lim
N→∞

Nm−1 Γ(N −m)

Γ(N + 1)
= 1.

Finally, using Theorem 5.14 and Lemma 5.21, we can prove Theorem 5.17.

Proof of Theorem 5.17

Proof. We use Theorem 5.14, to determine the error bound of the FCC quadrature in

terms of the cosine mapping of the integrand function. Denote p(x) as

p(x) = f̂c(0) + 2

µ=N∑
µ=1

f̂c(µ)Tµ(x), x ∈ [−1, 1], (5.83)

where fc : [0, π] → R is the cosine mapping, defined in (5.30), of f . Then the cosine

mapping of p satisfies,

pc(θ) = (SNfc) (θ). (5.84)

Note that the quadrature Qk,N defined in (5.23) is exact for all polynomials of degree up
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to N , and so

Ik [p] = Qk,N [p] .

Then, we deduce, for all m ≥ 0,

|Ik[f ]−Qk,N [f ]| = |Ik [f − p]−Qk,N [f − p]|

≤ Cm0

(
1

k

)s( 1

N

)m−ρ(s)

‖(f − p)c‖Hm
per
, by Theorem 5.14

≤ Cm0

(
1

k

)s( 1

N

)m−ρ(s)

‖fc − (SNfc)‖Hm
per
, by (5.84).

Then, using Lemma 5.21, for 0 ≤ m ≤ N + 1,

|Ik[f ]−Qk,N [f ]| ≤ σm,N
(

1

k

)s( 1

N

)m−ρ(s)

‖(f (m))c‖H0
per
,

which completes the proof.

5.3.3 Extension to the integrals over [a, b]

Let us now consider an integral over [a, b]:

I
[a,b]
k [f ] :=

∫ b

a
f(x) exp(ikx)dx.

To apply the FCC quadrature, we first need to transform the integral using the following

linear change of variables:

x = m+ ht, t ∈ [−1, 1], where m :=
b+ a

2
, and h :=

b− a
2

, (5.85)

into an integral over [−1, 1],

I
[a,b]
k [f ] = h exp (ikm)

∫ 1

−1
f (m+ ht) exp (ikht) dt

= h exp (ikm)

∫ 1

−1
f̃(t) exp(ik̃t)dt

= h exp (ikm) I
[−1,1]

k̃
[f̃ ], (5.86)

where

k̃ = hk, (5.87)

and f̃ : [−1, 1]→ R is defined as in (5.31): f̃(t) = f (m+ ht), t ∈ [−1, 1].

Now, we can approximate I
[a,b]
k [f ]by applying the FCC quadrature to approximate the
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integral I
[−1,1]

k̃
[f̃ ] in (5.86). The result is derived as follows.

Notation 5.23. We denote Q
[a,b]
k,N [f ] as an approximation to the integral I

[a,b]
k [f ], defined

as:

Q
[a,b]
k,N [f ] := h exp (ikm)Q

[−1,1]

k̃,N
[f̃ ], (5.88)

The following corollary is an extension of the Theorem 5.14 to the case of integration over

[a, b].

Corollary 5.24. [Error of the FCC quadrature on [a, b] in terms of the Sobolev

norm of the cosine mapping of the integrand function] Let f ∈ Cm[a, b] be m-times

continuously differentiable function. For s = 0, 1, 2 and for all m ≥ m0 > max{1/2, ρ(s)},
there exist a constant Cm0 > 0 such that

∣∣∣I [a,b]
k [f ]−Q[a,b]

k,N [f ]
∣∣∣ ≤ Cm0

(
b− a

2

)1−s(1

k

)s( 1

N

)m−ρ(s)

‖(f̃)c‖Hm
per
, (5.89)

where f̃ is defined in (5.31) and ρ(s) is defined in (5.14).

Proof. From Theorem 5.14, we obtain the following estimate∣∣∣I [a,b]
k [f ]−Q[a,b]

k,N [f ]
∣∣∣ = h

∣∣∣I [−1,1]

k̃
[f̃ ]−Q[−1,1]

k̃,N
[f̃ ]
∣∣∣

≤ Cm0h
1

k̃s

(
1

N

)m−ρ(s)

‖(f̃)c‖Hm , (5.90)

where h := (b− a)/2. Substituting equation (5.87) into the estimate we obtain the result.

The following corollary is more useful extension of the Theorem 5.17 to the cases of

integration over [a, b].

Since from now on, we will be considering composite Filon-Clenshaw-Curtis rules with N

fixed and b − a → 0, we do not any more keep the negative power of N term in (5.89)

explicitly in the analysis.

Corollary 5.25. [Error of the FCC quadrature on [a, b] in terms of the Cheby-

shev weighted norm of the derivatives of the integrand function] Let f ∈ Cm[a, b]

be m-times continuously differentiable function. For s = 0, 1, 2 and ρ(s) defined as in The-

orem 5.17, and for all m such that 0 ≤ m ≤ N + 1, there exist constants σm,N > 0,

∣∣∣I [a,b]
k [f ]−Q[a,b]

k,N [f ]
∣∣∣ ≤ (b− a

2

)m+1−s
σm,N

(
1

k

)s [∫ b

a

∣∣f (m)(x)
∣∣2√

(b− x)(x− a)
dx

]1/2

. (5.91)
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Proof. From the definition of f̃ , see (5.31), we deduce,

f̃ (m)(t) = hmf (m) (m+ ht) , (5.92)

where h = (b− a)/2. Thus,

∫ 1

−1

∣∣∣f̃ (m)(t)
∣∣∣2

√
1− t2

dt = h2m

∫ 1

−1

∣∣∣f̃ (m)
(
b+a

2 + b−a
2 t
)∣∣∣2

√
1− t2

dt

= h2m

∫ b

a

∣∣f (m)(x)
∣∣2√

(b− x)(x− a)
dx. (5.93)

From Theorem 5.17, we obtain the following estimate∣∣∣I [a,b]
k [f ]−Q[a,b]

k,N [f ]
∣∣∣ = h

∣∣∣I [−1,1]

k̃
[f̃ ]−Q[−1,1]

k̃,N
[f̃ ]
∣∣∣

≤ σm,Nh

(
1

k̃

)s ∫ 1

−1

∣∣∣f̃ (m)(t)
∣∣∣2

√
1− t2

dt


1/2

. (5.94)

Hence substituting (5.93) into (5.94), the result follows.
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5.4 The application of the Filon-Clenshaw-Curtis rule to

integrals with algebraic singularities

Let us consider an integral of the form:

I
[a,b]
k [f ] :=

∫ b

a
f(x) exp(ikx)dx, (5.95)

where the integrand function f has an algebraic singularity at a point c in the interval [a, b].

Quadrature rules applied to the whole interval [a, b] may perform badly. In order to ensure

better convergence rates, in this section the integral is split into a sum of two integrals

with the singularity c at the end point of the interval of integration. Then quadratures

are applied on a mesh graded toward the singularity c, to the two integrals separately.

Similarly, if the integrand in (5.95) is singular at points sj , j = 1, . . . , J in the interval

[a, b], then the integral is split into integrals with singularities confined to the end points,

I
[a,b]
k [f ] := I

[a,s1]
k [f ] +

J−1∑
j=2

I
[sj+1,sj ]
k [f ] + I

[sJ ,b]
k [f ]. (5.96)

In this section, without the loss of generality, we consider integrals of the form,

I
[0,1]
k [f ] :=

∫ 1

0
f(x) exp(ikx)dx, (5.97)

where the function f has an algebraic singularity at x = 0. With an elementary linear

transformation, the integrals in (5.96) can each be transformed into the integral in (5.97)

with the singularity confined to the origin.

The technique for the computation of (5.97) consist of applying Filon-Clenshaw-Curtis

quadrature on the subintervals of a mesh which is graded towards the origin.

We define the space of all functions that have an algebraic singularity of order β as follows:

Definition 5.26. Let m ∈ N, 0 < β ≤ 1. Denote Cmβ [0, 1] as the space of all functions

v : [0, 1] → C that have m continuous derivatives on (0, 1) and for which ||v||m,β < ∞
where

||v||m,β,[0,1] = max

{
sup
x∈[0,1]

|v(x)|, sup
x∈[0,1]

∣∣∣xj−βDjv(x)
∣∣∣ , j = 1, ...,m.

}
. (5.98)

To approximate such functions accurately, we introduce a mesh graded towards the origin.
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Definition 5.27. ΠM,q is a set of points on [0, 1] defined as

ΠM,q :=

{
xj : j = 0, 1, . . . ,M, xj :=

(
j

M

)q}
. (5.99)

We write the integral I
[0,1]
k [f ] as a sum of integrals over intervals of the graded mesh ΠM,q.

We approximate each integral using FCC quadrature as follows:

• In the first subinterval, for convenience of the analysis, we rewrite the integral

as a sum of a known constant and a new integral with the integrand function that

vanishes at 0:∫ x1

0
f(x)dx = x1f(0) +

∫ x1

0
(f(x)− f(0)) dx = x1f(0) +

∫ x1

0
f̃(x)dx.

The latter integral is then approximated using FCC quadrature.

• In the remaining subintervals, we apply FCC quadrature directly to the integral.

Then, the total error of the approximation is bounded as a sum of errors on each subin-

terval:

E(k,M, q,N, f) :=
∣∣∣I [x0,x1]
k [f̃ ]−Q[x0,x1]

k,N [f̃ ]
∣∣∣+

M−1∑
j=0

∣∣∣I [xj ,xj+1]
k [f ]−Q[xj ,xj+1]

k,N [f ]
∣∣∣

≤ |ẽ0|+
M−1∑
j=1

|ej |, (5.100)

where ej is the error on the j-th subinterval.

To analyse the total error of the composite FCC quadrature, we estimate the individual

error of the approximation on each subinterval. We find these estimates using Theorem

5.17 for all subintervals excluding the first subinterval containing the singularity. In the

first subinterval, we estimate the error using Corollary 5.24.

Error estimates on each subinterval [xj , xj+1], j 6= 0, are presented below in Theorem 5.28

for the j-th subinterval. In Theorem 5.31 the error estimate for the first subinterval, [0, x1]

is presented. To prove Theorem 5.31, we require Lemma 5.29 and Theorem 5.30.

Lemma 5.28 (Error in the j-th subinterval). For 0 ≤ m ≤ N + 1, and all j =

1, ...,M − 1, and for s = 0, 1, 2, there exist σm > 0 such that

|ej | ≤ σm
(

1

k

)s
hm+1−s
j max

x∈[xj ,xj+1]
|f (m)(x)|, (5.101)

where hj = xj+1 − xj.
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Proof. The proof is a consequence of Corollary 5.25 and the following inequality,

∫ b

a

∣∣f (m)(x)
∣∣2√

(b− x)(x− a)
dx ≤ C max

x∈[a,b]

∣∣∣f (m)(x)
∣∣∣2 .

Using Definition 5.8, we determine the cosine mapping of the function f ∈ Cmβ [0, χ],

χ ∈ (0, 1).

In the following lemma, we determine which Sobolev space the cosine mapping of the

function xβ belongs to.

Lemma 5.29. Let g be a function defined as

g(x) = xβ, x ∈ [0, χ],

where χ ∈ (0, 1) and β ∈ (0, 1). Following (5.30) and (5.31), the cosine mapping of g is

g̃c(θ) = g
(χ

2
(1 + cos θ)

)
= g

(
χ cos2 θ

2

)
, θ ∈ [0, π]. (5.102)

Then, for any ε > 0,

g̃c ∈ H
1
2

+2β−ε
per . (5.103)

Furthermore, there exist a constant C > 0, such that

‖g̃c‖
H

1
2 +2β−ε
per

≤ Cχβ. (5.104)

Proof. We want to show that the Sobolev norm of g̃c in H
1
2

+2β−ε
per is bounded. For this,

we require the estimates of the Fourier coefficients of the cosine transform of the function

g̃c. We will use the following notation for the Fourier coefficients of g̃c,

(g̃c)̂ (m) = Fourier Transform of g̃c.

Following (5.69), we write,

‖g̃c‖2Hs
per

:= |(g̃c)̂ (0)|2 + 2
∞∑
m=1

m2s |(g̃c)̂ (m)|2 , (5.105)

where the Fourier coefficients are defined as

(g̃c)̂ (m) :=
1

π

∫ π

0
g̃c(θ) cos(mθ)dθ.
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Now, we estimate the Fourier coefficients for g̃c by firstly integrating by parts,

(g̃c)̂ (m) :=
1

π

∫ π

0
g̃c(θ) cos(mθ)dθ,

=
1

mπ
g̃c(θ) sin(mθ)|θ=πθ=0 −

1

mπ

∫ π

0
(g̃c)

′(θ) sin(mθ)dθ

=
χ

mπ

∫ π

0
g′
(
χ cos2

(
θ

2

))
cos

(
θ

2

)
sin

(
θ

2

)
sin(mθ)dθ.

Therefore,

(g̃c)̂ (m) =
βχ

mπ

∫ π

0

(
χ cos2

(
θ

2

))β−1

cos

(
θ

2

)
sin

(
θ

2

)
sin(mθ)dθ

=
βχβ

mπ

∫ π

0
cos2β−1

(
θ

2

)
sin

(
θ

2

)
sin(mθ)dθ

=
2βχβ

mπ

∫ π
2

0
cos2β−1 (t) sin (t) sin(2mt)dt.

The latter integral can be found in [53, (3.633.1)] ,

|(g̃c)̂ (m)| = Cπ
χβ

mπ

m

B
(

2β+2m
2 + 1, 2β−2m

2 + 1
) , (5.106)

where the constant C is independent of m and B is the Beta function defined, for example

in [53, (8.384.1)] as follows:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (5.107)

where Γ is the Gamma function [53, Section 8.31]. For large values of its variable, Γ can

be approximated using Stirling’s formula [3, (6.1.37)]. This leads to the following property

of the Beta functions: for x, y →∞

B(x, y) ∼=
√

2π
xx−

1
2 yy−

1
2

(x+ y)x+y− 1
2

. (5.108)

Then, for m→∞,

|B (β +m+ 1, β −m+ 1)| ≤ cβ |β +m+ 1|β+m+ 1
2 |β −m+ 1|β−m+ 1

2

≤ Cβm
2β+1,

where cβ and Cβ are constants independent of m. Finally, for m → ∞, we obtain from

(5.106),

|(g̃c)̂ (m)| ≤ Cχβm−2β−1, (5.109)
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where C is a constant independent of m. Substituting this estimate into the definition of

the Sobolev norm (5.105), we obtain

‖g̃c‖2Hs
per

:= | (g̃c)̂ (0)|2 + 2
∞∑
m=1

m2s |(g̃c)̂ (m)|2

≤ | (g̃c)̂ (0)|2 + Cχ2β
∞∑
m=1

m2sm−4β−2. (5.110)

The sum on the right hand side is convergent if and only if 2s − 4β − 2 < −1. Thus,

gc ∈ H2β+ 1
2
−ε.

Furthermore, observe that

(g̃c)̂ (0) :=
1

π

∫ π

0

(
χ cos2 θ

2

)β
dθ

=
χβ

π

∫ π

0

(
cosβ

θ

2

)2

dθ

≤ χβ

π

∫ π

0
(1)2 dθ

= χβ, (5.111)

Then, by substituting (5.111) into (5.110), we obtain (5.104).

Corollary 5.30. For f ∈ C3
β[0, χ], where χ < 1, and β ∈ (0, 1), the following holds:

f̃c ∈ H
1
2

+2β−ε
per . (5.112)

If, in addition, f vanishes at 0, then,∥∥∥f̃c∥∥∥
H

1
2 +2β−ε
per

≤ Cχβ‖f‖1,β,[0,χ]. (5.113)

Proof. We will prove the corollary for the case when β ≤ 1/4. For β ≥ 1/4 the proof

follows similarly. We aim to show f̃c ∈ Hs, where s = 1/2 + 2β − ε < 1. Following (5.69),

we write, ∥∥∥f̃c∥∥∥2

Hs
per

:=
∣∣∣(f̃c)̂ (0)

∣∣∣2 + 2
∞∑
m=1

m2s
∣∣∣(f̃c)̂ (m)

∣∣∣2 ,
is equivalent to the Sobolev-Slobodetskiy norm, ‖·‖s, (see [66, Theorem 8.5]) for 0 < s < 1:

∥∥∥f̃c∥∥∥2

s
:=

∫ π

0
|f̃c(t)|2dt+

∫ π

0

∫ π

0

|f̃c(t)− f̃c(τ)|2∣∣sin t−τ
2

∣∣2s+1 dτdt. (5.114)
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Note that g̃′(t) ≥ 0 for all t ∈ [−1, 1], where g(x) = xβ. Then, for t, τ ∈ [0, π],

∣∣∣f̃c(t)− f̃c(τ)
∣∣∣ =

∣∣∣∣∫ t

τ

(
f̃c

)′
(θ)dθ

∣∣∣∣
≤

∫ t

τ

∣∣∣f̃ ′(cos θ) sin(θ)
∣∣∣ dθ

≤
∫ t

τ

∣∣∣f̃ ′(cos θ)
∣∣∣ sin(θ)dθ since sin(θ) ≥ 0,

≤ ‖f‖1,β,[0,χ]

∫ t

τ
g̃′(cos θ) sin(θ)dθ = ‖f‖1,β,[0,χ]

∫ t

τ
(g̃c)

′ (θ)dθ

= ‖f‖1,β,[0,χ] |g̃c(t)− g̃c(τ)| . (5.115)

Furthermore, we observe the following, using (5.115) and the fact that g̃c(π) = g̃(−1) =

g(0) = 0, ∫ π

0
|f̃c(t)|2dt ≤

∫ π

0
|f̃c(π)|2dt+

∫ π

0
|f̃c(t)− f̃c(π)|2dt

≤ π|f̃c(π)|2 + ||f ||1,β,[0,χ]

∫ π

0
|g̃c(t)|2dt. (5.116)

Therefore, using (5.116) to bound the first term in (5.114) and using (5.115) to bound the

second term, we obtain∥∥∥f̃c∥∥∥2

s
≤ π|f̃c(π)|2 + ||f ||1,β,[0,χ]

∫ π

0
|g̃c(t)|2dt

+ ||f ||1,β,[0,χ]

∫ 2π

0

∫ 2π

0

|g̃c(t)− g̃c(τ)|2∣∣sin t−τ
2

∣∣2s+1 dτdt

= π|f̃c(π)|2 + ||f ||1,β,[0,χ]

(∫ π

0
|g̃c(t)|2dt+

∫ π

0

∫ π

0

|g̃c(t)− g̃c(τ)|2∣∣sin t−τ
2

∣∣2s+1 dτdt

)
= π|f̃c(π)|2 + ||f ||1,β,[0,χ]‖g̃c‖2Hs

per
. (5.117)

Thus (5.112) follows from Lemma 5.29.

Note that, if f(0) = 0, then f̃c(π) = 0 and the first term in (5.117) vanishes. Then, the

bound (5.113) follows from Lemma 5.29.

When β > 1/4, the proof follows analogously by using [66, Corollary 8.6]: for s = n + q,

0 < q < 1, n ∈ N, ∥∥∥f̃c∥∥∥2

Hs
per

= ‖f̃c‖2H0
per

+

∥∥∥∥(f̃c)(n)
∥∥∥∥2

q

, (5.118)

with n = 1, when 1/4 < β < 3/4 and n = 2, when β > 3/4.

In the following proposition, we obtain an estimate for ẽ0 using Theorem 5.14.
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Theorem 5.31 (Error in the first subinterval). The error of the FCC approximation

of I
[0,x1]
k

[
f̃
]

is bounded as follows: for s = 0, 1, 2,

|ẽ0| ≤ C
(

1

k

)s( 1

M

)q(1+β−s)
‖f‖1,β,[0,x1], (5.119)

where C is independent of k, M and f .

Proof. The estimate for ẽ0 can be obtained from Corollary 5.24 (extension of the Theorem

5.14 to [a, b]). Since f̃(0) = 0, by (5.113)

|ẽ0| ≤ Cxβ1h1−s
0

(
1

k

)s( 1

N

)1/2+2β−s−ε ∥∥∥f̃c∥∥∥
H

2β+ 1
2−ε

per

, (5.120)

where h0 = x1 − 0 = (1/M)q. Thus the result follows.

Finally, combining the results of Theorem 5.30 and Theorem 5.28, we deduce the composite

error of the FCC quadrature applied on graded meshes.
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5.4.1 Error estimate of the composite Filon-Clenshaw-Curtis quadra-

ture

In this section we state and prove the main result of this chapter: the error, E(k,M, q,N, f),

of the Filon-Clenshaw-Curtis quadrature applied on graded meshes for the computation

of integrals with algebraic singularities. Recall, the error is bounded as a sum of errors on

each subinterval:

E(k,M, q,N, f) :=
∣∣∣I [x0,x1]
k [f̃ ]−Q[x0,x1]

k,N [f̃ ]
∣∣∣+

M−1∑
j=0

∣∣∣I [xj ,xj+1]
k [f ]−Q[xj ,xj+1]

k,N [f ]
∣∣∣

≤ |ẽ0|+
M−1∑
j=1

|ej |, (5.121)

where ej is the error on the j-th subinterval.

Theorem 5.32. [Error of the composite Filon-Clenshaw-Curtis quadrature for

singular integrals] Let f ∈ CN+1
β [0, 1], β ∈ (0, 1) and let ΠM,q be as in (5.99). Choose

q ≥ N + 1− s
1 + β − s , (5.122)

then for s = 0, 1,

E(k,M, q,N, f) ≤ C
(

1

k

)s( 1

M

)N+1−s
‖f‖N+1,β,[0,1] , (5.123)

where the constant C depends on N , β and s.

Proof. In this proof, we denote C as a generic constant that may depend on N , β, q

and s, but not on M and k. We seek the estimates on the sum of individual errors ej ,

j = 0, . . . ,M − 1, see (5.121). The error on the first subinterval is bounded as in Theorem

5.31 and on the j-th subinterval as in Lemma 5.28.

We begin by estimating the sum in (5.121) using Lemma 5.28,

M−1∑
j=1

|ej | ≤ C

(
1

k

)s M−1∑
j=1

hN+2−s
j max

x∈[xj ,xj+1]

∣∣∣f (N+1)(x)
∣∣∣

≤ C

(
1

k

)s
‖f‖N+1,β,[x1,1]

M−1∑
j=1

hN+2−s
j xβ−N−1

j . (5.124)

In (5.124) the constant σm appearing in Lemma 5.28 has been absorbed in the constant

C.
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For each hj , j = 1, . . . ,M − 1, hj can be bounded using the Mean Value Theorem,

x
(1−1/q)
j

q

M
≤ hj ≤ x(1−1/q)

j+1

q

M
. (5.125)

Then, using the second inequality in (5.125), the sum of errors in (5.124) is bounded as

follows,

M−1∑
j=1

|ej | ≤ C
(

1

k

)s
‖f‖N+1,β,[x1,1]

1

MN+2−s

M−1∑
j=1

x
(1−1/q)(N+2−s)+β−N−1
j , (5.126)

where the constant C depends on q. We can find an upper bound for the sum on the right

hand side of (5.126) as follows, for qα > −1,

M−1∑
j=1

xαj =

M−1∑
j=1

(
j

M

)qα
≤ CM. (5.127)

Then, taking α = (1− 1/q)(N + 2− s) + β −N − 1, for qα > −1,

M−1∑
j=1

x
(1−1/q)(N+2−s)+β−N−1
j ≤ CM,

and
M−1∑
j=1

|ej | ≤ C
(

1

k

)s( 1

M

)N+1−s
‖f‖N+1,β,[x1,1] . (5.128)

The condition qα > −1 is equivalent to (5.122). On the other hand, using Lemma 5.31,

we deduce that the first term in (5.121) is bounded as follows,

|e0| ≤ C

(
1

k

)s( 1

M

)q(1+β−s)
‖f‖N+1,β,[0,x1]

≤ C

(
1

k

)s( 1

M

)N+1−s
‖f‖N+1,β,[0,x1]. (5.129)

Then, the total error, including the first subinterval, is bounded as in (5.123) This con-

cludes the proof.
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5.5 Numerical examples

In this section we carry out numerical experiments where we compute integrals with al-

gebraic singularities using the composite Filon-Clenshaw-Curtis quadrature to verify the

theoretical error estimates presented in Section 5.4.

Example 1.

In this example, we investigate the error of the (non-composite) Filon-Clenshaw-Curtis

quadrature without grading applied to a singular integral presented below: for β > 0,

I
[−1,1]
k [fβ] =

∫ 1

−1
fβ(x) exp(ikx)dx, where fβ(x) :=

(
1 + x

2

)β
. (5.130)

From Corollary 5.30, we know that the function fβ in (5.130) satisfies,

(fβ)c ∈ H
1
2

+2β−ε
per .

The purpose of this experiment is to examine the rate of decay of the error as k →∞ for

different choices of β for fixed N .

verify that Theorem 5.14 is sharp with respect to parameter β.

β = 1/8 β = 1/4 β = 1/2 β = 7/8 β = 3/2

ki Eki(24) r(ki) Eki(24) r(ki) Eki(24) r(ki) Eki(24) r(ki) Eki(24) r(ki)

100 2.8e-003 1.1e-003 1.7e-004 4.2e-006 2.4e-007

200 1.8e-003 0.62 6.9e-004 0.69 9.5e-005 0.81 2.1e-006 0.99 1.0e-007 1.23

400 9.2e-004 0.96 3.4e-004 1.02 4.3e-005 1.13 8.8e-007 1.26 3.8e-008 1.45

800 4.4e-004 1.05 1.6e-004 1.13 1.8e-005 1.25 3.3e-007 1.40 1.3e-008 1.60

1600 2.1e-004 1.09 6.9e-005 1.17 7.3e-006 1.32 1.2e-007 1.50 3.9e-009 1.70

3200 9.7e-005 1.11 3.0e-005 1.20 2.8e-006 1.38 3.9e-008 1.58 1.1e-009 1.79

6400 4.5e-005 1.11 1.3e-005 1.22 1.1e-006 1.41 1.3e-008 1.63 3.1e-010 1.85

12800 2.1e-005 1.12 5.5e-006 1.23 3.9e-007 1.44 4.0e-009 1.67 8.4e-011 1.89

25600 9.5e-006 1.12 2.3e-006 1.24 1.4e-007 1.46 1.2e-009 1.71 2.2e-011 1.93

51200 4.3e-006 1.12 9.8e-007 1.24 5.1e-008 1.47 3.7e-010 1.73 5.7e-012 1.94

Table 5.1: The table illustrates the errors Ek(N) defined in (5.131) and the ratios of errors, r(k),
defined in (5.132).

In Table 5.1 we tabulate the errors: Ek(N) defined as

Ek(N) =
∣∣∣I [−1,1]
k [fβ]−Q[−1,1]

k,N [fβ]
∣∣∣ , (5.131)

for β ∈ {1/4, 1/2, 7/8, 3/2} and for k ∈ {100 × 2i, i = 0, ..., 9}, and fixed N = 24. That
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is, the integral I
[−1,1]
k [fβ] is approximated with 25-point Filon-Clenshaw-Curtis rule on

[−1, 1].

In the table, we also display the ratios,

r(k) := log2

Ek/2(N)

Ek(N)
, (5.132)

that indicate the rate, s, at which the error Ek(N) decays with respect to k, i.e. Ek(N) v

O(k−s) and

r(k) = log2

((
k

2

)−s
ks

)
= s.

From the Theorem 5.14, we expect to see O(k−1) convergence for β > 1/4 and O(k−2) for

β > 3/2.

We clearly observe O(k−1) convergence for β = 1/8 and O(k−5/4) convergence for β = 1/4

which is better than theory predicts. On the other hand, for β = 1/2, the error converges

with order close to O(k−3/2), while for β = 7/8 the convergence rate is O(k−7/4) and

for β = 3/2 the convergence rate is O(k−2) indicating the sharpness of the estimate in

Theorem 5.14.

The results of this example are consistent with a similar experiment conducted in [41].

Example 2.

In this example, we again consider the integral (5.130). Here, we compute I
[−1,1]
k [fβ] using

the composite Filon-Clenshaw-Curtis quadrature. The purpose of this experiment is to

verify the theoretical predictions given by Theorem 5.32 for fixed M as k →∞ and as the

parameter β changes. Furthermore, the example demonstrates the advantages of using

the composite quadrature over the non-composite FCC applied to singular integrals.

We compute the integral I
[−1,1]
k [fβ] by applying FCC quadrature on the subintervals of

the graded mesh on [−1, 1]:

ΠM,q :=

{
xj : j = 0, 1, . . . ,M, xj := 2

(
j

M

)q
− 1

}
, (5.133)

with fixed

M = 6 and q = 12. (5.134)
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β = 1/8 β = 1/4 β = 1/2 β = 7/8 β = 3/2

ki Eki(6, 12) r(ki) Eki(6, 12) r(ki) Eki(6, 12) r(ki) Eki(6, 12) r(ki) Eki(6, 12) r(ki)

200 1.5e-004 1.1e-004 2.3e-005 7.2e-007 1.9e-007

400 8.2e-005 0.90 5.6e-005 0.94 1.2e-005 1.02 2.9e-007 1.33 4.7e-008 2.05

800 3.4e-005 1.29 2.3e-005 1.30 4.6e-006 1.32 1.2e-007 1.24 1.5e-008 1.69

1600 1.2e-005 1.54 7.8e-006 1.54 1.6e-006 1.57 4.0e-008 1.59 3.9e-009 1.91

3200 3.6e-006 1.67 2.4e-006 1.68 4.8e-007 1.71 1.2e-008 1.75 1.1e-009 1.79

6400 1.4e-006 1.39 7.9e-007 1.63 1.4e-007 1.80 3.2e-009 1.89 2.8e-010 1.99

12800 1.9e-007 2.84 1.7e-007 2.22 3.6e-008 1.93 8.5e-010 1.93 7.1e-011 2.00

Table 5.2: The table illustrates the errors Ek(M, q) defined in (5.135) and the ratios of errors,
r(k), defined in (5.136).

In Table 5.2 we tabulate the errors: Ek(M, q) defined as

Ek(M, q) =

∣∣∣∣∣∣I [−1,1]
k [fβ]−

M−1∑
j=0

Q
[xj ,xj+1]
N,k [fβ]

∣∣∣∣∣∣ , with N = 4, (5.135)

for β ∈ {1/4, 1/2, 7/8, 3/2} and for k ∈ {100× 2i, i = 0, ..., 9}.

To verify the convergence rates we also display the ratios,

r(k) := log2

Ek/2(M, q)

Ek(M, q)
, (5.136)

which indicate the rate s at which the error Ek(M, q) decays with respect to k, i.e.

Ek(M, q) v O(k−s).

Note that with our choice of parametersM andN , the total number of function evaluations

in the interval [−1, 1] is equal to 25 which is the same number as in the previous example.

Comparing Table 5.2 and Table 5.1, we see that for fixed k, the errors of the composite FCC

quadrature are smaller that non-composite FCC (i.e. FCC applied to the whole interval

[−1, 1]) although the same number of function evaluations were used in both experiments.

With our choice of parameters q and N (see condition (5.122) in Theorem 5.32), we expect

the errors to be decaying with respect to k as follows for β = 1/8 and β = 1/4, the errors

should decay at the following rate Ek(M, q) = O(k0); while for β = 1/2 and β = 7/8, we

expect Ek(M, q) = O(k−1).

In Table 5.2, we observe even better convergence results: For β = 1/8 and β = 1/4,

Ek(M, q) decays with k at a rate between O(k−1) and O(k−2). On the other hand, for

β = 1/2 and β = 7/8, Ek(M, q) decays with k at a rate close to O(k−2).
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FCC quadrature composite FCC

ENi(1, 1) ENi(6, 12)

N k = 400 k = 1600 M ×N k = 400 k = 1600

24 9.2e-004 4.5e-005 6×4 1.5e-005 1.0e-006

48 5.9e-004 4.4e-005 6×8 8.4e-007 2.3e-007

96 1.8e-004 4.2e-005 6×16 1.5e-008 1.5e-008

192 9.7e-005 2.6e-005 6×32 5.5e-012 3.3e-009

Table 5.3: The table illustrates the errors EN (M, q) defined in (5.137).

In Table 5.3, we display the errors ENi(M, q), defined as,

EN (M, q) =

∣∣∣∣∣∣I [−1,1]
k [fβ]−

M−1∑
j=0

Q
[xj ,xj+1]
N,k [fβ]

∣∣∣∣∣∣ , (5.137)

with xj , j = 0, ...,M defined in (5.133). The values of M and q are both equal to 1 when

non-composite FCC is applied, and are as given in (5.134) for the composite version.

The purpose of this experiment is to compare the performance of the composite FCC rule

with the non-composite FCC quadrature when the number of quadrature points, N , is

increased. For the non-composite rule, we display the errors of the approximation with

Ni = {24×2i, i = 0, 1, 2, 3}. For the composite rule, we fix parameters q = 12, M = 6 and

take Ni = {4 × 2i, i = 0, 1, 2, 3}. The total number of function evaluations in both cases

is the same.

From the Table 5.3, we observe very slow convergence with respect to N for the case of

non-composite FCC. For the composite FCC, on the other hand, we observe convergence

of order O(N−1) at worst.

Example 3.

In this experiment we compute the integral

Ik
[√
x
]

=

∫ 1

0

√
x exp(ikx)dx,

for fixed values of N and q and varying M and k. Here, we can think of the parameter β

featuring in the previous examples, as 1/2.

In Table 5.4, we display the error Ek(M, q,N) defined as,

Ek(M, q,N) :=

∣∣∣∣∣∣I [−1,1]
k

[√
x
]
−
M−1∑
j=0

Q
[xj ,xj+1]
N,k

[√
x
]∣∣∣∣∣∣ , (5.138)

170



5. Filon-Clenshaw-Curtis quadrature

k M = 4 M = 8 M = 16 M = 32

N = 8, q = 6
10 2.4e-006 4.6e-009 9.1e-012 4.7e-013

100 4.0e-006 5.3e-009 1.4e-011 2.1e-014

1000 1.8e-006 5.8e-009 1.7e-011 1.1e-014

10000 2.0e-006 4.6e-009 1.3e-011 2.7e-014

N = 10, q = 8
10 7.7e-008 3.7e-011 1.9e-014 4.9e-016

100 2.2e-007 1.8e-009 5.6e-013 2.0e-016

1000 1.5e-007 1.2e-009 3.6e-013 2.1e-016

10000 1.2e-007 3.5e-010 3.3e-013 1.4e-016

Table 5.4: The table displays the errors Ek(M, q,N) defined in (5.138) for fixed N and q and
varying M and k.

where we choose q and N so that the condition (5.122) holds with s = 0:

q ≥ N + 1

1 + β
.

The error Ek(M, q,N) is equal to E(k,M, q,N, f) defined in (5.121).

Therefore, from Theorem 5.32, we expect no convergence with respect to k and order

O(M−N−1) convergence with respect to growing M . We show the values for q and N in

the first column of Table 5.4. We observe no convergence with respect to k as expected.

In Table 5.5, we display the ratios

rk(M, q,N) := log2

Ek(M, q,N)

Ek(2M, q,N)
, (5.139)

which indicate the rate, s, at which the error Ek(M, q,N) decays with respect to M , i.e.

Ek(M, q,N) v O(M−s).

We observe that rk(M, q,N) tends to the value of N + 1 as M increases which indicates

the sharpness of the error bound in Theorem 5.32 with respect to M .

rk(4, q,N) rk(8, q,N) rk(16, q,N) expected ratio

N = 6, q = 5, k = 1000 7.7 8.1 7.3 7
N = 8, q = 6, k = 1000 8.2 8.0 10.6 9
N = 10, q = 8, k = 1000 8.4 10.1 11.2 11

Table 5.5: The table displays the ratios rk(M, q,N) of errors defined in (5.139) for k = 1000 to
determine the convergence rate of the composite FCC with respect to M .
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In Table 5.6, we display the error Ek(M, q,N) with N and q satisfying the inequality

(5.122) with s = 1:

q ≥ N

β
.

Therefore, from Theorem 5.32, we expect O(k−1) convergence with respect to k and order

O(M−N ) convergence with respect to growing M .

Also in Table 5.6, we display the ratios

qk(M, q,N) := log10
Ek(M, q,N)

E10k(M, q,N)
, (5.140)

which indicate the rate at which the error Ek(M, q,N) decays with respect to k. We

expect the ratios qk(M, q,N) to tend to 1. In Table 5.6, we observe that the ratios indeed

tend to the value of 1.

M = 4 M = 8

Ek(M, q,N) qk(M, q,N) Ek(M, q,N) qk(M, q,N)

N = 8, q = 16 k
100 6.8e-005 6.3e-007

1000 1.2e-006 1.7 4.0e-008 1.2

10000 2.5e-007 0.7 4.9e-009 0.9

100000 6.1e-009 1.6 5.4e-010 1.0

N = 10, q = 20
100 1.3e-004 8.3e-007

1000 2.9e-006 1.7 9.6e-008 1.0

10000 1.7e-007 1.2 1.0e-008 1.0

100000 1.2e-008 1.2 2.2e-010 1.7

Table 5.6: The table displays the errors Ek(M, q,N) and their ratios qk(M, q,N) that are defined
in (5.140) to determine the convergence rate with respect to k.

Example 4

In this example, we consider approximating integrals of the form

Ik[log] :=

∫ 1

0
log(x) exp(ikx)dx, and Ik

[
xβ
]

:=

∫ 1

0
xβ exp(ikx)dx, with −1 < β < 0,

using the composite Filon-Clenshaw-Curtis quadrature.

The integral Ik[log] is a model integral typically arising in boundary integral equations for

high-frequency Helmholtz equation in two dimensions.

To avoid evaluation of log-function and xβ, β < 0, at x = 0, we compute the integrals

Ik[log] :=

∫ 1

a
log(x) exp(ikx)dx, and Ik[x

β] :=

∫ 1

a
xβ exp(ikx)dx, (5.141)

with a = 10−20. We aim to investigate what values of parameters M and N are required
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k log β = −1/8 β = −1/4 β = −1/2

10 3.36e-001 2.28e-001 2.28e-001 5.94e-001

100 5.42e-002 1.05e-002 2.89e-002 1.68e-001

1000 7.65e-003 2.38e-003 6.76e-003 5.62e-002

10000 9.91e-004 4.35e-004 1.30e-003 1.78e-002

Table 5.7: The absolute values of the integrals in (5.141)

to achieve a certain accuracy for varying k.

In the first experiment, we apply the composite FCC quadrature with fixed parameters

N = 16 and q = 12 and increasing M . We start with M = 2 and compute the values

of each integral with increasing M until the difference between the exact value and the

computed value is less than TOL = 1.0e− 012. The results are displayed in Table 5.8 for

the integrals in (5.141) with β = −1/8, β = −1/4 and β = −1/2. The absolute values of

the exact solutions are displayed in Table 5.7.

log β = −1/8 β = −1/4 β = −1/2

k E(k,M, q,N, log) M E(k,M, q,N, fβ) M E(k,M, q,N, fβ) M E(k,M, q,N, fβ) M

10 4.7e-013 15 7.2e-013 15 7.6e-013 18 7.5e-013 46

100 4.7e-013 15 7.2e-013 15 7.6e-013 18 7.4e-013 46

1000 2.7e-013 14 7.0e-013 15 7.6e-013 18 7.5e-013 46

10000 3.1e-013 15 6.5e-013 15 7.7e-013 18 7.5e-013 46

Table 5.8: The table displays the values of the parameter M required for the composite FCC to
achieve an absolute accuracy of TOL = 1.0e − 012 for varying k as well as the error of the FCC
E(k,M, q,N, f), defined in (5.122). The parameters N and q are fixed at N = 16, q = 12.

We observe from Table 5.8 that to maintain the same level of accuracy with increasing k,

the total number of function evaluations of the composite FCC does not increase. However,

as the singularity becomes more severe, the number of subintervals M has to grow rapidly.

In the second experiment, we apply the composite FCC quadrature with fixed parameters

N = 16 and q = 12 to the integral:

Ik[x
−1/4] =

∫ 1

a

1

x1/4
exp(ikx)dx.

In this experiment, the values of TOL vary and we study the values of parameter M

required to achieve the absolute accuracy TOL. The results are displayed in Table 5.9.
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k TOL = 1.0e− 006 TOL = 1.0e− 009 TOL = 1.0e− 012 TOL = 1.0e− 015

10 5 9 18 34

100 6 9 18 33

1000 6 9 18 33

10000 6 10 18 33

ratio 14.8 10.4 11.22

Table 5.9: The table of values M required for the composite FCC to achieve an accuracy of TOL
with fixed N = 16, q = 12 and β = −1/4. In the bottom line of the table, the ratios defined in
(5.142), averaged over k, are displayed.

In the last line of the Table 5.9, we display the ratios:

ratio =
log10

TOLprevious
TOLcurrent

log10
Mprevious

Mcurrent

, (5.142)

averaged over all k. The ratio determines at which rate, s, the error of the composite

FCC converges with respect to M , i.e. E(k,M, q,N, f) v O(M−s).

From Table 5.9, we observe that M remains largely fixed for increasing k.

Finally, in the third experiment in this example, we apply the composite FCC quadrature

with fixed parameters M = 10 and q = 12 and increasing N . We start with N = 8 and

compute the values of the integral with doubling N until the difference between the exact

solution and the computed solution is less than TOL. We then record the value of N .

The results are displayed in Table 5.10.

k TOL = 1.0e− 006 TOL = 1.0e− 009 TOL = 1.0e− 012 TOL = 1.0e− 015

10 16 32 64 256

100 16 32 64 256

1000 16 32 64 256

10000 16 32 64 256

Table 5.10: The table of values N required for the composite FCC to achieve an accuracy of TOL
with fixed M = 10, q = 12, β = −1/4.

From Table 5.10 we observe that N remains fixed for increasing k.
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Chapter 6

Error of the fully-discrete

Galerkin method

6.1 Introduction

In this chapter, we investigate the error of the fully-discrete Galerkin method, described

in Chapter 2. Recall that the standard combined integral equation can be written in the

form

Rkv = fk, on Γ, (6.1)

where the operator Rk and the function fk are defined in (2.15) and (2.16) respectively.

We will consider them in more detail later.

The boundary Γ is parametrised using a 2π-periodic parametrisation γ(s), s ∈ [0, 2π]. As

before, we denote (v, w)L2(Λ) as the ususal L2-inner product of complex-valued functions,

where Λ ∈ [0, 2π]. We denote ‖v‖2L2(Λ) := (v, v)L2(Λ). When Λ ⊆ [0, 2π], we denote the

inner product and the norm simply by (v, w) and ‖v‖.

The variational formulation of (6.1) seeks v ∈ L2([0, 2π]) such that,

ak(v, w) := (Rkv, w) = (fk, w), for all w ∈ L2([0, 2π]). (6.2)

The plan for this chapter is as follows. In Section 6.2, we describe and derive the error

estimates of the semi-discrete Galerkin approximation to the solution of (6.2), closely

following [40]. In Section 6.3, we describe the entries of the stiffness matrices arising from

the Galerkin discretization of (6.2). Moreover, the entries of the stiffness matrix arising

via the star-combined formulation will also be described. In practice, these entries can

not be computed exactly. The numerical integration method described in Chapter 4 can

be utilised to approximate the entries of the stiffness matrix. The numerical integration

method uses the composite Filon-Clenshaw-Curtis quadrature, for which error estimates

were derived in Chapter 5. In Section 6.4 we use the Strang Lemma to derive the error

bounds of the fully- discrete Galerkin method. These error bounds incorporate the error

of the inexact approximation of the entries of the stiffness matrix. Finally, in Section 6.5,

we discuss the results of numerical experiments.
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6.2 Error of the semi-discrete Galerkin approximation

Recall the approximation space Vd
k for the Galerkin discretization is constructed using the

ansatz (3.2),

v(s) = kV (s, k) exp(ikγ(s) · a). (6.3)

The slowly-varying function V (s, k) has different asymptotic behaviour in different parts

of the boundary (see Chapter 3): the illuminated part (that we denote as Λ2), transition

parts (Λ1 and Λ3) and the shadow part of the boundary (Λ4). In order to capture this

behaviour, we introduce the partition of unity, see (2.35). In this thesis, we choose the

partition of unity {χj}, j = 1, ..., 4, with χj as characteristic functions:

χj(s) =

{
1, if s ∈ Λj ,

0 if s /∈ Λj .
(6.4)

Then the approximation space Vd
k is defined as follows,

Vd
k = ⊕3

j=1V
j
k, (6.5)

where V2
k is an approximation subspace for the illuminated part and V1

k and V3
k for tran-

sition parts. Since the solution in the shadow part of the boundary is exponentially small,

see Theorem 3.3, we approximate the solution by zero in the shadow.

The subspaces Vjk in (6.5) are defined as follows,

Vjk = span {φj,m, m = 0, ..., dj : φj,m(s) = kPm(s) exp(ikγ(s) · a) , s ∈ Λj} , (6.6)

where {Pm}djm=0 is the Chebyshev polynomial basis:

Pm(s) = Tm

(
2s− (bj + aj)

bj − aj

)
, s ∈ [aj , bj ] =: Λj , (6.7)

and Tm(x), m = 0, 1, ..., x ∈ [−1, 1], are Chebyshev polynomials,

Tn(x) = cos(n arccos(x)).

The points aj and bj denote the end points of the interval Λj , j = 1, ..., 3.

We seek a semi-discrete Galerkin solution ṽ ∈ Vd
k which satisfies the following system

of equations:

ak(ṽ, w) = (fk, w), for all w ∈ Vd
k . (6.8)

The theorem below provides the error bound for the semi-discrete Galerkin approximation.
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Theorem 6.1 (Cea’s Lemma). Suppose that ak satisfies for all v, w ∈ L2([0, 2π]) the

two assumptions

continuity |ak(v, w)| ≤ Bk‖v‖‖w‖, Bk > 0 (6.9)

coercivity |ak(v, v)| ≥ αk‖v‖2, αk > 0. (6.10)

Then both the weak form (6.2) and the Galerkin approximation (6.8) have unique solutions,

ṽ ∈ Vd
k . Moreover,

‖v − ṽ‖ ≤
(
Bk
αk

)
min
w̃∈Vd

k

‖v − w̃‖. (6.11)

We can write the solution v as follows,

v(s) =
4∑
j=1

χjv(s) = k
3∑
j=1

χj(s) exp(ikγ(s) · a)V (s, k) + χ4(s)v(s), (6.12)

and we write w̃ ∈ Vd
k as

w̃(s) = k
3∑
j=1

χj(s) exp(ikγ(s) · a) pj(s) (6.13)

for some polynomial pj ∈ Pdj where Pdj denotes the space of all polynomials of degree dj ,

j = 1, 2, 3.

Using (6.12) and (6.13) in (6.11) we deduce,

‖v − ṽ‖ ≤
(
Bk
αk

)k 3∑
j=1

inf
pj∈Pdj

‖Vj(·, k)− pj‖L2(Λj) + ‖v‖L2(Λ4)

 , (6.14)

where

Vj(s, k) := V (s, k)χj(s).

Hence, in order to estimate the error of the Galerkin approximation we require the error

estimates of the best polynomial approximations in Vj , j = 1, 2, 3. These estimates can be

found using Theorem 3.6 stated in Chapter 3, which provides the asymptotic estimates of

the derivatives of V in the illuminated and transition parts of the boundary.

Choosing the intervals Λj as follows

Λ1 = [t1 − c1k
−1/3, t1 + c2k

−2/9], Λ2 = [t1 + c2k
−2/9, t2 − c2k

−2/9],

Λ3 = [t2 − c2k
−2/9, t2 + c1k

−1/3], Λ4 = [t2 + c1k
−1/3, 2π] ∪ [0, t1 − c1k

−1/3], (6.15)

ensures that the error of the best polynomial approximation of Vj , j = 1, 2, 3 is small in
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Λj and uniform, i.e. of the same order of convergence in k as k →∞ in the three intervals

Λ1, Λ2 and Λ3.

The error estimates for the best polynomial approximation of V in the illuminated and

transition parts of the boundary are presented below in Theorem 6.2 and Theorem 6.3

respectively.

Theorem 6.2. [40, Theorem 6.3] [The best polynomial approximation in the illu-

minated part of the boundary] For all fixed n, there exists Cn > 0 such that, for all

n ≤ d+ 1 and k sufficiently large,

inf
p∈Pd
‖V2(·, k)− p2‖L2(Λ2) ≤ Cnk−2/3

(
k1/9

d

)n
, as d→∞. (6.16)

Theorem 6.3. [40, Theorem 6.4][The best polynomial approximation in the tran-

sition part of the boundary] For all n ≥ 2 and n ≤ d+ 1 there exists Cn independent

of k such that, for j = 1, 3,

inf
p∈Pd
‖Vj(·, k)− pj‖L2(Λj) ≤ Cnk−4/9

(
k1/9

d

)n
, as d→∞. (6.17)

Moreover, in the shadow part of the boundary, the solution v is known to be exponentially

small.

Theorem 6.4. [40, Theorem 6.5][The estimate of the solution in the shadow part

of the boundary] There exist positive constants c0, c′0 such that for all k sufficiently

large,

‖v‖L2(Λ4) ≤ c′0 exp(−c0k
δ). (6.18)

Substituting the estimates (6.16), (6.17) and (6.18) in (6.14), we deduce the error of the

Galerkin approximation is bounded as follows.

Theorem 6.5. [40, Theorem 6.7] Let ṽ ∈ Vd
k be the semi-discrete Galerkin solution of

(6.8) with intervals Λj chosen as in (6.15). Suppose that polynomials of degree dI are used

in the illuminated zone and dT in the transition zones. Then for all n ≥ 6 and n ≤ dI + 1

and n ≤ dT + 1, there exist a constant Cn > 0 such that

‖v − ṽ‖ ≤ Cn
(
Bk
αk

)[
k

{
k−2/3

(
k1/9

dI

)n
+ k−4/3

(
k1/9

dT

)n}
+ exp (−c0k

δ)

]
, (6.19)

where 6 ≤ n ≤ min {dI , dT }+ 1, Cn is a constant independent of k.

The error bound (6.19) suggests that in order to maintain the accuracy as k → ∞, the

number of degrees of freedom, which is proportional to d, must grow at a rate slightly

higher than k1/9 as k →∞.
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If dI = dT = d, then the error bound (6.19) simplifies to the following estimate.

Corollary 6.6. [40, Corollary 6.8] Under the conditions of Theorem 6.5, suppose also

that dI = dT = d. Then for n ≥ 6 and n ≤ d+ 1,

‖v − ṽ‖ ≤ Bk
αk
k

{
k−2/3

(
k1/9

d

)n
+ exp (−c0k

δ)

}
. (6.20)
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6.3 Inexact approximation of the entries of the stiffness ma-

trix

The Galerkin method requires the assembly and solution of a system of linear equations

(6.8). The coefficients of this system of linear equations are double integrals that are often

highly-oscillatory and singular and the integrals cannot be computed exactly as we have

seen for the case of the standard-combined formulation in Chapter 4.

In this section, we revisit the standard and star-combined potential integral equations

and write out the entries of their stiffness matrices in Section 6.3.1 and Section 6.3.2

respectively. In practice, we use the numerical integration method developed in Chapters

4 and 5 for the approximation of highly-oscillatory singular integrals to calculate the entries

of the stiffness matrix. In Section 6.3.3, we recall the error of the numerical integration

method, i.e. the error of the approximation of the entries of the stiffness matrix derived

in Chapter 5.

6.3.1 Standard formulation

Standard combined integral equation is defined as follows

Rkv = fk, on Γ (6.21)

where the operator Rk is defined by

Rk :=
1

2
I +D′k − ikSk, (6.22)

and the function fk is defined as

fk(x) = ∂nu
I(x)− ikuI(x). (6.23)

The semi-discrete Galerkin solution, ṽ ∈ Vd
k , satisfies the linear system of equations (6.8)

that can be written in the matrix form as follows:

RV = f . (6.24)

The matrix R is a discretization matrix that consists of 9 subblocks Rl,j , l, j = 1, 2, 3:R[1,1] R[1,2] R[1,3]

R[2,1] R[2,2] R[2,3]

R[3,1] R[3,2] R[3,3]


V 1

V 2

V 3

 =

f1

f2

f3

 , (6.25)
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with entries in each subblock of the form,

R[l,j](n,m) = k2 1

2

(∫
Λj

Pm(s)Pn(s)ds

)
δj,l (6.26a)

+ k2

∫
Λl

∫
Λj

Pm(t)Pn(s)
[
∂n(s)Φk(γ(s),γ(t))− ikΦk(γ(s),γ(t))

]
×

× exp (ika · [γ(t)− γ(s)]) |γ′(t)|dtds, (6.26b)

The integrals can be written in a more familiar notation from Chapter 4 as follows,

R[l,j](n,m) = k2 1

2

(∫
Λj

Pm(s)Pn(s)ds

)
δj,l + k2

∫
Λl

∫
Λj

M(s, t) exp(ikΨ(s, t))dtds,

where M(s, t) is defined as in (4.13),

M(s, t) := g(s, t)
[
∂n(s)Φk(γ(s),γ(t))− ikΦk(γ(s),γ(t))

]
exp (−ik |γ(s)− γ(t)|) , (6.27)

and the phase function Ψ is defined as in (4.12),

Ψ(s, t) = |γ(s)− γ(t)| − a · (γ(s)− γ(t)) . (6.28)

The integral (6.26a) is a slowly-varying one-dimensional integral that can be computed

using classical quadrature rules (i.e. quadratures based on polynomial approximation of

the integrand). On the other hand, the integral (6.26b) is a highly-oscillatory double

integral that can be computed using the method described in Chapter 4.

The vector f consists of three subvectors: f1, f2 and f3. The entries of the subvector

f j , j = 1, 2, 3, are defined as

f j(m) := (fk, φj,m) :=

∫
Λj

(
∂nu

I − ikuI
)

(s)φj,m(s)ds

= ik2

∫
Λj

(a · n(s)− 1)Pm(s)ds. (6.29)

The integrals (6.29) are slowly-varying and can be computed using classical quadratures.
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6.3.2 Star-combined formulation

The star-combined integral equation [96] is defined as

Akv = gk, (6.30)

where the operator Ak is

Ak := (x · n(x))

(
1

2
+D′k

)
+ (x · t(x))

∂

∂t
Sk + ηk(x)Sk, (6.31)

and the function gk is given as

gk(x) := x · ∇uI(x) + ηk(x)uI(x), (6.32)

where ηk is a “coupling” function,

ηk(x) =

(
1

2
− ik|x|

)
.

Having parameterised the boundary Γ using the 2π-periodic parametrisation γ(s), s ∈
[0, 2π], we seek the discrete Galerkin solution, v ∈ Vd

k of the equation (6.30) by solving

the system of equations:

(Akv, w) = (gk, w) for all w ∈ Vd
k ,

that can be written in the matrix form as follows:

AV = g. (6.33)

Again, the matrix A is a discretization matrix that consists of 9 subblocks Al,j , l, j =

1, 2, 3: A[1,1] A[1,2] A[1,3]

A[2,1] A[2,2] A[2,3]

A[3,1] A[3,2] A[3,3]


V 1

V 2

V 3

 =

g1

g2

g3

 . (6.34)

Before we write out the entries of the matrix A, let us consider the inner product arising

of each term in the star-combined operator (6.31) applied to φj,m with φl,n. We recall φl,n

is defined in (6.6). For convenience let us denote A1,k, A2,k and A3,k as follows:

Ak =: A1,k +A2,k +A3,k,
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where

A1,k = (γ · n) (s)

(
1

2
+D′k

)
,

A2,k = (γ · t) (s)
∂

∂t
Sk,

A3,k =

(
1

2
− ik|γ(s)|

)
Sk.

The inner product of A1,kφj,m(s) with φl,n(s) is of the form,

(A1,kφj,m(s), φl,n(s)) =

∫
Λj

(γ · n) (s)

(
1

2
+D′k

)
φj,m(s)φl,n(s)ds

= k2 1

2

(∫
Λj

(γ · n) (s)Pn(s)Pm(s)ds

)
δj,l

+ k2

∫
Λl

∫
Λj

(γ · n) (s)Pm(t)Pn(s)
∂Φk(γ(s),γ(t))

∂n(s)
exp (ika · [γ(t)− γ(s)]) |γ ′(t)|dtds.

We can write the double integral in the form (4.11),

(A1,kφj,m(s), φl,n(s)) = k2 1

2

(∫
Λj

(γ · n) (s)Pn(s)Pm(s)ds

)
δj,l (6.35)

+ k2

∫
Λl

∫
Λj

M1(s, t) exp (ikΨ(s, t)) dtds, (6.36)

where

M1(s, t) := (γ · n) (s)Pm(t)Pn(s)
∂Φk(γ(s),γ(t))

∂n(s)
exp (−ik |γ(t)− γ(s)|) |γ ′(t)| (6.37)

and the phase function Ψ is defined as in (6.28).

The single integral (6.35) is slowly-varying and can be computed using classical quadra-

tures. On the other hand, the integral (6.36) is highly-oscillatory double integral that can

be computed using methodology described in Chapters 4 and 5.

The inner product of A2,kφj,m(s) with φl,n(s) is more complicated: we use integration by

parts to write

(A2,kφj,m(s), φl,n(s)) :=

∫
Λl

(γ · t) (s)
∂

∂s
Skφj,m(s)φl,n(s)ds

=
[
(γ · t) (s)φl,n(s)Skφj,m(s)

]bl
s=al
−
∫

Λl

[
(γ · t) (s)φl,n(s)

]′
Skφj,m(s)ds, (6.38)

where al and bl denote the end points of the interval Λl and y denote a complex conjugate

of y.
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The first term on the right hand side of (6.38) is a difference between two one-dimensional

integrals. For example at s = al,

[(γ · t) (al)]φl,n(al)Skφj,m(al) :=

k2 (γ · t) (al)Pn(al) exp (−ikγ(al) · a)

∫
Λj

Φk(γ(al),γ(t))Pm(t) exp (ika · γ(t)) |γ ′(t)|dt

= k2 (γ · t) (al)

∫
Λj

Φk(γ(al),γ(t))Pn(al)Pm(t) exp (ika · (γ(t)− γ(al))) |γ ′(t)|dt. (6.39)

The integral in (6.39) can be written as follows:

[(γ · t) (al)]φl,n(al)Skφj,m(al) = k2

∫
Λj

f(al, t) exp (ikΨ(al, t)) dt, (6.40)

where

f(s, t) = (γ · t) (s)Φk(γ(s),γ(t)) exp (−ik|γ(s)− γ(t)|)Pn(s)Pm(t)|γ ′(t)| (6.41)

is a slowly-varying function and the phase function Ψ is defined in (6.28).

The integral in (6.40) is a non-canonical highly-oscillatory integral that can be transformed

into a canonical integral by the method described in Section 4.2 of Chapter 4. Then

the Filon-Clenshaw-Curtis quadrature can be applied to compute the resulting integral.

Moreover, if the integrand is singular, the composite version of the Filon-Clenshaw-Curtis

quadrature should be applied.

The second term on the right-hand side of (6.38), on the other hand, is a double integral

of the form∫
Λl

[
(γ · t) (s)φl,n(s)

]′
Skφj,m(s)ds

= k2

∫
Λl

∫
Λj

[
(γ · t)′ (s)Pn(s)− ik(γ ′(s) · a) (x · t) (s)Pn(s) + (x · t) (s)P

′
n(s)

]
×

× Φk(γ(s),γ(t))Pm(t) exp (ika · [γ(t)− γ(s)]) |γ′(t)|dtds.

The double integral can be written in the form,∫
Λl

[
(γ · t) (s)φl,n(s)

]′
Skφj,m(s)ds = k2

∫
Λl

∫
Λj

M2(s, t) exp (ikΨ(s, t)) dtds,

where

M2(s, t) :=
[
(γ · t)′ (s)Pn(s)− ik(γ ′(s) · a) (x · t) (s)Pn(s) + (x · t) (s)P

′
n(s)

]
Pm(t)×

×Φk(γ(s),γ(t)) exp (−ik |γ(t)− γ(s)|) |γ ′(t)|, (6.42)
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and the phase function Ψ is defined as in (6.28).

Finally, the inner product of A3,kφj,m(s) with φl,n(s) is of the form

(A3,kφj,m(s), φl,n(s)) =

∫
Λj

(
1

2
− ik|γ(s)|

)
Skφj,m(s)φl,n(s)ds

= k2

∫
Λl

∫
Λj

Pm(t)Pn(s)

(
1

2
− ik|γ(s)|

)
Φk(s, t) exp (ika · [γ(t)− γ(s)]) |γ ′(t)|dtds

= k2

∫
Λl

∫
Λj

M3(s, t) exp (ikΨ(s, t)) dsdt,

with

M3(s, t) = Pm(t)Pn(s)

(
1

2
− ik|γ(s)|

)
Φk(s, t) exp (−ik |γ(t)− γ(s)|) |γ ′(t)|, (6.43)

and the phase function Ψ is defined as in (6.28).

Now, we can write out the (n,m)-th entry of the (l, j)-th subblock of the matrix A as

follows:

A[l,j](n,m) =
k2

2

(∫
Λj

(γ · n) (s)Pn(s)Pm(s)ds

)
δj,l (6.44a)

+ k2

∫
Λl

∫
Λj

M1(s, t) exp (ikΨ(s, t)) dtds (6.44b)

+ k2

∫
Λj

f(bl, t) exp(ikΨ(bl, t))dt (6.44c)

− k2

∫
Λj

f(al, t) exp(ikΨ(al, t))dt (6.44d)

+ k2

∫
Λl

∫
Λj

M2(s, t) exp (ikΨ(s, t)) dtds (6.44e)

+ k2

∫
Λl

∫
Λj

M3(s, t) exp (ikΨ(s, t)) dtds, (6.44f)

where M1, M2 and M3 are defined in (6.37), (6.42) and (6.43) respectively, the function

f is defined in (6.41) and Ψ is defined in (6.28).

Integrals (6.44a) and (6.44b) correspond to the inner product A1,kφj,m(s) with φl,n(s).

Integrals (6.44c), (6.44d) and (6.44e) correspond to the inner product A2,kφj,m(s) with

φl,n(s). Finally, the remaining integrals (6.44f) correspond to the inner productA3,kφj,m(s)

with φl,n(s).

Computing each entry of the discretization matrixA consists of computing highly-oscillatory

double integrals (6.44b), (6.44f) and (6.44e); a slowly-varying one-dimensional integral

(6.44a); and highly-oscillatory one-dimensional integrals (6.44c) and (6.44d).
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The entries of the vector g on the right hand-side of the matrix equation (6.33) are one-

dimensional slowly-varying integrals of the form

gj(m) := (gk, φj,m)

= ik2

∫
Λj

[
(a · n)(s)(γ · n)(s) + (a · t)(s)(γ · t)(s) +

(
1

2ik
− |γ(s)|

)]
Pm(s)ds,

that can be computed using classical quadratures.

6.3.3 The error in the inexact approximation of the entries

From Theorem 4.3, we know the Galerkin discretisation matrix for the standard and star-

combined formulations consists of single integrals, for example (6.40), as well as double

integrals of the form,

Jk :=

∫
Λl

∫
Λj

M(s, t) exp (ikΨ(s, t)) dtds, (6.45)

where the function M is slowly-varying function and has an algebraic singularity and the

phase-function Ψ is defined in (4.12). Using the numerical integration method described

in Chapter 4, we can write the integral (6.45) in the form

Jk =

J−1∑
j=0

∫ τj+1

τj

Fj+1(τ) exp(ikτ)dτ (6.46)

where τj , j = 0, . . . ,J − 1 are known and Fj , j = 1, ...,J are one-dimensional slowly-

varying integrals.

Moreover, the single integrals with a non-canonical oscillators such as integral in (6.40),

can be written in the form

Ik =

∫ τj+1

τj

f̃(τ) exp(ikτ)dτ,

where f̃ may be singular.

The integral Ik as well as integrals on the right-hand side in (6.46) can be efficiently

computed using the composite Filon-Clenshaw-Curtis method discussed in Chapter 5.

Denote the composite Filon-Clenshaw-Curtis approximation to Jk in (6.46) as J̃k:

J̃k :=
J−1∑
j=0

Q
[τj ,τj+1]
k,N [Fj+1].

Then from Theorem 5.32, we deduce that provided q and N satisfy q ≥ (N + 1− s)/(1 +
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β − s), where N is the order of the FCC rule on each subinterval, M is the number of

subintervals and q is a parameter of the grading defined in (5.99), and β ∈ (0, 1) denotes

the “degree” of the algebraic singularity, see Definition 5.26, the following holds,

|Jk − J̃k| ≤ C
(

1

k

)s( 1

M

)N+1−s
, (6.47)

where C > 0 is a constant independent of k and M .
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6.4 Strang’s Lemma and the error of the fully-discrete Galerkin

method

In practice, we seek the solution of the system of equations (6.8),

ak(ṽ, w) = (fk, w), for all w ∈ Vd
k ,

with the left-hand side approximated rather than known exactly. We denote by ãk(v, w)

the approximation of ak(v, w) for v, w ∈ Vd
k .

We then say that ˜̃v ∈ Vd
k is the fully-discrete Galerkin solution of the following system

of equations,

ãk(˜̃v, w) = (fk, w), for all w ∈ Vd
k . (6.48)

The following theorem, known as the Strang Lemma, provides an error estimate for the

Galerkin approximation (6.48).

Theorem 6.7. [30, Theorem 4.2.2][Strang’s Lemma] Consider the family of discrete

problems (6.48) for which the associated sesquilinear form ãk is coercive and continuous:

1) ãk(v, v) ≥ α̃k||v||2 ∀v ∈ Vd
k ,

2) |ãk(u, v)| ≤ B̃k||u||||v|| ∀u, v ∈ Vd
k .

Then the following holds:

‖v − ˜̃v‖ ≤ inf
z∈Vd

k

{(
1 +

B̃k
α̃k

)
‖v − z‖+

1

α̃k
sup
w∈Vd

k

|ak(z, w)− ãk(z, w)|
‖w‖

}
. (6.49)

In order to apply this result to determine the error estimates for the fully-discrete Galerkin

method, we need some additional work. Since, in practice, we are using the Chebyshev

polynomial basis as the approximation space Vd
k , we need to state some properties of the

Chebyshev polynomials in Section 6.4.1. Then, in Section 6.4.2, we incorporate the error

of the inexact approximation of ak(ṽ, w) given in (6.47), in the estimate (6.49) given by

the Strang Lemma. Finally in Theorem 6.15 we determine the error of the fully-discrete

Galerkin method.

6.4.1 Properties of the Chebyshev-weighted norm

In the following lemma we define the Chebyshev weighted norm and determine the Cheby-

shev weighted norm of the linear combination of Chebyshev polynomials.
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Lemma 6.8 (The Parseval’s equality for Chebyshev expansions). Denote I := [−1, 1].

Consider a polynomial p(x) defined as

p(x) =

d∑
j=0

cjTj(x), x ∈ I,

where Tj(x), j = 0, 1, 2, ..., x ∈ I are Chebyshev polynomials defined in (5.24). Let

‖ · ‖L2(I),ω be the Chebyshev-weighted norm,

‖p‖L2(I),ω :=

(∫ 1

−1

(p(x))2

√
1− x2

dx

)1/2

.

Then p has the following Chebyshev-weighted norm,

‖p‖2L2(I),ω = π|c0|2 +
π

2

d∑
j=1

|cj |2. (6.50)

Proof. Chebyshev polynomials Tj , j = 0, 1, 2, ... satisfy the orthogonality relation:

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=


0 : n 6= m

π : n = m = 0

π/2 : n = m 6= 0

Therefore,

‖p‖2L2(I),ω =

∫ 1

−1

(p(x))2

√
1− x2

dx =
d∑
j=0

d∑
m=0

cjcm

∫ 1

−1

Tj(x)Tm(x)√
1− x2

dx = π|c0|2 +
π

2

d∑
j=1

|cj |2.

Thus the result follows.

The following proposition shows that the L∞-norm of p is bounded by the Chebyshev-

weighted L2-norm.

Proposition 6.9. For a polynomial p defined as p(x) =
∑d

j=0 cjTj(x), x ∈ I the following

inequality holds,

||p||2L∞(I) ≤
2(d+ 1)

π
||p||2L2(I),ω (6.51)
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Proof. Since p(x) =
∑d

j=0 cjTj(x), and |Tj(x)| ≤ 1, for all |x| ≤ 1, we deduce

(p(x))2 =

 d∑
j=0

cjTj(x)

2

≤

 d∑
j=0

|c2
j |

 d∑
j=0

|Tj(x)|2
 (6.52)

≤ (d+ 1)

 d∑
j=0

|cj |2
 .

On the other hand, using Lemma 6.8, we obtain

d∑
j=0

|cj |2 =
2

π

(
‖p‖2L2(I),ω −

π

2
|c0|2

)
≤ 2

π
‖p‖2L2(I),ω. (6.53)

Finally, combining (6.53) and (6.53), we obtain the result (6.51),

p2(x) ≤ 2(d+ 1)

π
‖p‖2L2(I),ω.

In the following lemma, we obtain a bound the Chebyshev-weighted norm of the polyno-

mial p in terms of the L2-norm.

Lemma 6.10. Inverse estimate for the weighted norm. For the polynomial p(x) =∑d
j=0 cjTj(x), the Chebyshev-weighted L2-norm of p is bounded by L2-norm of p as follows:

‖p‖2L2(I),ω ≤ Cd‖p‖2L2(I),

where C is independent of d.

Proof. [93, proof of Theorem 3.96] Set εµd = 1− cos (1/µd) for µ ≥ 1. We write∫ 1

−1

(p(x))2

√
1− x2

dx =

∫ −1+εµd

−1

(p(x))2

√
1− x2

dx+

∫ 1−εµd

−1+εµd

(p(x))2

√
1− x2

dx+

∫ 1

1−εµd

(p(x))2

√
1− x2

dx. (6.54)

Since the first and the last integrals in (6.54) are equal, we simplify (6.54),∫ 1

−1

(p(x))2

√
1− x2

dx = 2

∫ 1

1−εµd

(p(x))2

√
1− x2

dx+

∫ 1−εµd

−1+εµd

(p(x))2

√
1− x2

dx. (6.55)

We can estimate the integrals on the right hand side of (6.55) by observing that the

following inequalities hold:
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1.

max
x∈[1,1−εµp]

|p(x)| ≤ ‖p(x)‖L∞(I)

2.

max
x∈[−1+εµd,1−εµd]

1√
1− x2

≤ 1√
1− (1− εµd)2

=
1

sin (1/µd)
≤ 2µd

3. ∫ 1

1−εµd

1√
1− x2

dx = π/2− arcsin (1− εµd) =
1

µd

Then applying inequality 1 to the first integral on the right hand side of (6.55), and

inequality 2 to the second integral, we deduce,∫ 1

−1

(p(x))2

√
1− x2

dx ≤ 2µd

∫ 1−εµd

−1+εµd

(p(x))2dx+ 2||p||2L∞(I)

∫ 1

1−εµd

1√
1− x2

dx.

Finally using inequality 3, we conclude,∫ 1

−1

(p(x))2

√
1− x2

dx ≤ 2µd

∫ 1−εµd

−1+εµd

(p(x))2dx+
2

µd
||p||2L∞(I).

Then, using Proposition 6.9, we deduce,∫ 1

−1

(p(x))2

√
1− x2

dx ≤ 2µd

∫ 1

−1
(p(x))2dx+

4(d+ 1)

πµd

∫ 1

−1

(p(x))2

√
1− x2

dx.

Therefore, (
1− 4(d+ 1)

πµd

)∫ 1

−1

(p(x))2

√
1− x2

≤ 2µd

∫ 1

−1
(p(x))2dx.

Selecting sufficiently large µ, we obtain∫ 1

−1

(p(x))2

√
1− x2

dx ≤ Cd
∫ 1

−1
(p(x))2dx,

where C > 0 is a constant independent of d.

6.4.2 Error of the fully-discrete Galerkin method

We write the solution v of (6.1) as in (6.12),

v(s) =
4∑
j=1

χjv(s) = k
3∑
j=1

χj(s)V (s, k) exp(ikγ(s) · a) + χ4(s)v(s), (6.56)
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and we write z ∈ Vd
k as

z(s) = k
3∑
j=1

χj(s)pj(s) exp(ikγ(s) · a). (6.57)

Here pj ∈ Pd is defined as

pj(s) :=
d∑

n=0

αnPn(s),

where Pn, n = 0, . . . , d are Chebyshev polynomials defined in (6.7).

Remark 6.11. The Chebyshev-weighted norm of pj(s), s ∈ Λj := [aj , bj ], is defined as

follows,

‖pj‖2L2(Λj),ω
:=

∫ bj

aj

(pj(s))
2√

(s− aj)(bj − s)
ds.

The result of Lemma 6.8 is equivalent to

‖pj‖2L2(Λj),ω
= π|α0|2 +

π

2

d∑
n=1

|αn|2. (6.58)

Furthermore, Lemma 6.10 also implies

‖pj‖2L2(Λj),ω
≤ Cd‖pj‖2L2(Λj)

.

For convenience, assume that the approximation space Vd
k has d = (d, d, d). In other

words, we assume that the three subspaces of Vd
k are of the same dimension d. We write

w ∈ Vd
k similarly to (6.57) as follows

w(s) = k
3∑
j=1

χj(s)qj(s) exp(ikγ(s) · a) with qj(s) :=
d∑

n=0

βnPn(s)

= k
3∑
j=1

χj(s)

(
d∑

n=0

βnPn(s)

)
exp(ikγ(s) · a)

=
3∑
j=1

χj(s)

(
d∑

n=0

βnφj,n(s)

)
, (6.59)

where φj,n is a basis element of the approximation space Vd
k as defined in (6.6).

In estimate (6.49) given in Theorem 6.7, the second term corresponds to the error con-

tribution of the inexact approximation of the coefficients in (6.48). Our aim is to find

an upper bound on the error (of the inexact approximation of coefficients) that would

ensure that the total error (6.49) is of the same order as in estimate (6.20). We do this by

introducing a parameter ε that denotes the maximum error among the approximations of
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all coefficients in (6.48).

Definition 6.12. We denote ε by

ε := max
j,n,l,m

|ak(φj,n, φl,m)− ãk(φj,n, φl,m)| . (6.60)

In the following lemma, we derive the bound on |ak(z, w)− ãk(z, w)| for z, w ∈ Vd
k in terms

of ε and d.

Lemma 6.13. For any z and w ∈ Vd
k , with d = (d, d, d)T ,

|ak(z, w)− ãk(z, w)| ≤ Cε
(
d2

k

)
‖z‖‖w‖, (6.61)

where ε is defined as in (6.60) and where C > 0 is a constant independent of k and d.

Proof. For j = 1, 2, 3, 4, denote

zj(s) = χj(s)z(s), and wj(s) = χj(s)w(s).

Then,

z(s) = z1(s) + z2(s) + z3(s) + z4(s), and w(s) = w1(s) + w2(s) + w3(s) + w4(s),

and1

|ak(z, w)− ãk(z, w)| ≤
4∑
j=1

4∑
l=1

|ak(zl, wj)− ãk(zl, wj)|. (6.62)

Let us now fix l and j and consider |ak(zl, wj)− ãk(zl, wj)|. For ease of notation, we drop

the indices by introducing

z(s) = zl(s), and w(s) = wj(s),

1 By the properties of the sesquilinear form, we have

|ak(αz1 + βz2, w)− ãk(αz1 + βz2, w)| = |αak(z1, w) + βak(z2, w)− αãk(z1, w)− βãk(z2, w)|
≤ α|ak(z1, w)− ãk(z1, w)|+ β|ak(z2, w)− ãk(z2, w)|.

Hence (6.62) follows.
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Then, z(s) and w(s) are of the form (6.59),

z(s) =
d∑

n=0

αnφj,n(s)

w(s) =
d∑

n=0

βnφj,n(s)

Therefore,

|ak(z,w)− ãk(z,w)| ≤
∣∣∣∣∣
d∑

m=0

d∑
n=0

αmβn (ak(φj,n, φl,m)− ãk(φj,n, φl,m))

∣∣∣∣∣
≤

d∑
m=0

d∑
n=0

|αm||βn| |ak(φj,n, φl,m)− ãk(φj,n, φl,m)|

≤ ε

{
d∑

m=0

|αm|
}{

d∑
n=0

|βn|
}
. (6.63)

Furthermore,

z(s) = kp(s) exp(ikγ(s) · a), where p(s) :=

d∑
n=0

αnPn(s), (6.64)

w(s) = kq(s) exp(ikγ(s) · a), where q(s) :=
d∑

n=0

βnPn(s). (6.65)

Lemma 6.8 (see equation (6.58)) gives

d∑
m=0

|αm|2 ≤
2

π
‖p‖2L2(Λl),ω

. (6.66)

Also note that from (6.64),

1

k
‖z‖L2(Λl),ω = ‖p‖L2(Λl),ω

. (6.67)

Substituting (6.67) into (6.66), we deduce

d∑
m=0

|αm|2 ≤
2

kπ
‖z‖2L2(Λl),ω

. (6.68)
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Now using Cauchy-Schwarz inequality and (6.68) we deduce

d∑
m=0

|αm| ≤
{

d∑
m=0

|αm|2
}1/2{ d∑

m=0

|1|2
}1/2

≤ C

(
d

k

)1/2

‖z‖L2(Λl),ω. (6.69)

From (6.63), using Lemma 6.10, we obtain

|ak(z,w)− ãk(z,w)| ≤ C1ε
d

k
‖z‖L2(Λl),ω‖w‖L2(Λj),ω

≤ C2ε
d2

k
‖z‖L2(Λl)‖w‖L2(Λj). (6.70)

Finally, since the result (6.70) holds for all l and j = 1, 2, 3, by substituting (6.70) in

(6.62), we obtain the result of the lemma,

|ak(z, w)− ãk(z, w)| ≤ Cε
d2

k
‖z‖‖w‖. (6.71)

In the following lemma, we determine the bounds on continuity and coercivity constants

for the discrete sesquilinear form ãk.

Lemma 6.14. The discrete sesquilinear form ãk is coercive and continuous,

ãk(v, v) ≥ α̃k||v||2, ∀v ∈ Vd
k

|ãk(u, v)| ≤ B̃k||u||||v||, ∀u, v ∈ Vd
k ,

with d = (d, d, d)T and

B̃k ≤ Bk + Cε
d2

k
, (6.72)

α̃k ≥ αk − Cε
d2

k
> 0, (6.73)

for sufficiently large2 k, where ε satisfies (6.60). The constants αk and Bk denote the

coercivity and continuity constants, respectively, of the sesquilinear form ak as defined in

2in fact we require

k ≥ C d2ε

αk − δ
, for some δ > 0.
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(2.25),

ak(v, v) ≥ αk‖v‖2 ∀v ∈ L2(Γ), coercivity,

|ak(u, v)| ≤ Bk‖u‖‖v‖ ∀u, v ∈ L2(Γ), continuity.
(6.74)

Proof. From Lemma 6.13 we know that for all z, w ∈ Vd
k ,

|ak(z, w)− ãk(z, w)| ≤ Cεd
2

k
‖z‖‖w‖.

Then

ak(z, w)− Cεd
2

k
‖z‖‖w‖ ≤ ãk(z, w) ≤ a(z, w) + Cε

d2

k
‖z‖‖w‖. (6.75)

The left-hand inequality in (6.75) yields

ãk(z, z) ≥ αk‖z‖2 − Cε
d2

k
‖z‖2.

This leads to the bound on the coercivity constant for the discrete sesquilinear form, ãk.

We deduce that from the right-hand inequality in (6.75),

|ãk(z, w)| ≤ Bk‖z‖‖w‖+ Cε
d2

k
‖z‖‖w‖.

Thus the result for the continuity follows.

Theorem 6.15 (Error of the fully-discrete Galerkin method in terms of ε). Let

˜̃v ∈ Vd
k be the solution of the fully-discrete Galerkin method with Λj, j = 1, 2, 3 defined

(6.15). Let ε be defined as in (6.60). Let d in Vd
k equal to d = (d, d, d). Then, for all

n ≥ 6 with n ≤ max{dI , dT }+ 1,

‖v − ˜̃v‖ ≤ Cn

(
1 +

B̃k
α̃k

+
1

α̃k
Cεd2k−1

)(
k1/3

(
k1/9

d

)n
+ exp(−c0k

δ)

)
+ C ′

1

α̃k
εd2, (6.76)

where Cn and C ′ > 0 are constants independent of k.

Proof. We will prove the theorem for the case when dI = dT = d. The proof for other

cases follows analogously. Using Lemma 6.13, we simplify the estimate (6.49) as follows,

‖v − ˜̃v‖ ≤ inf
z∈Vd

k

{(
1 +

B̃k
α̃k

)
‖v − z‖+

1

α̃k
Cεd2k−1‖z‖

}
. (6.77)

Moreover, since

‖z‖ ≤ ‖v − z‖+ ‖v‖,
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we write (6.77) as follows,

‖v − ˜̃v‖ ≤ inf
z∈Vd

k

{(
1 +

B̃k
α̃k

)
‖v − z‖+

1

α̃k
Cεd2k−1 (‖v − z‖+ ‖v‖)

}

≤ inf
z∈Vd

k

{(
1 +

B̃k
α̃k

+
1

α̃k
Cεd2k−1

)
‖v − z‖+

1

α̃k
Cεd2k−1‖v‖

}
.

Using (6.56) and (6.57), we write

‖v − z‖ ≤ k
3∑
j=1

‖Vj(·, k)− pj‖L2(Λj)
+ ‖v‖L2(Λ4),

‖v‖ ≤
4∑
j=1

‖v‖L2(Λj),

where Vj(s, k) = χj(s)V (s, k). Then

‖v − ˜̃v‖ ≤
(

1 +
B̃k
α̃k

+
1

α̃k
Cεd2k−1

)k
3∑
j=1

inf
pj∈Pd

‖Vj(·, k)− pj‖L2(Λj)
+ ‖v‖L2(Λ4)


+

1

α̃k
Cεd2k−1

3∑
j=1

‖v‖L2(Λj).

Using the estimates on the best polynomial approximation of Vj , j = 1, 2, 3 from Theorem

6.2 and Theorem 6.3, we deduce that for 6 ≤ n ≤ d+1, there exist k-independent constants

Cn > 0 such that

‖v − ˜̃v‖ ≤ Cn

(
1 +

B̃k
α̃k

+
1

α̃k
Cεd2k−1

){
k1/3

(
k1/9

d

)n
+ ‖v‖L2(Λ4)

}

+
1

α̃k
Cεd2k−1

3∑
j=1

‖v‖L2(Λj). (6.78)

Now, note that

‖v‖2L2(Λj)
:= k

∫
Λj

|V (s, k)|2ds. (6.79)

From Theorem 3.6, we know that for j = 1, 2, 3

|V (s, k)| ≤ C ′0, for all s ∈ Λj ,

where C ′0 > 0 is a constant independent of k and s. Thus, we deduce from (6.79), for

197



6. Error of the fully-discrete Galerkin method

j = 1, 2, 3,

‖v‖L2(Λj) ≤ C0k, (6.80)

where C0 > 0 is a constant independent of k. Substituting (6.80) into (6.78), we obtain

‖v − ˜̃v‖ ≤ Cn
(

1 +
B̃k
α̃k

+
1

α̃k
Cεd2k−1

)(
k1/3

(
k1/9

d

)n
+ ‖v‖L2(Λ4)

)
+ C ′

1

α̃k
εd2,

where C ′ > 0 is also a constant independent of k.

Finally, using the estimate of ‖v‖L2(Λ4) from Theorem 6.4, we obtain the result (6.82).

Proposition 6.16. Under the assumptions of Theorem 6.15, if for 6 ≤ n ≤ d+ 1,

ε ≤ CBkk1/3d−2

(
k1/9

d

)n
, (6.81)

then

‖v − ˜̃v‖ ≤ Cn
(

1 +
Bk
αk

){
k1/3

(
k1/9

d

)n
+ exp (−c0k

δ)

}
. (6.82)

where Cn > 0 is a constant independent of k.

Proof. We know that

α̃k ≥ αk − Cεd2k−1. (6.83)

For sufficiently large d in (6.81), ε can be made sufficiently small to satisfy

α̃k ≥ c1αk, (6.84)

where c1 is a constant satisfying3 1/4 < c1 < 1/2.

Moreover, from Lemma 6.14, we deduce

1 +
B̃k
α̃k
≤ 1 +

Bk + Cεd2k−1

αk − Cεd2k−1
≤ αk +Bk

α̃k
.

3In order to satisfy (6.84), the parameter ε must satisfy

ε ≤ αk(1− c1)k

2Cd2
, (6.85)

where C is a constant appearing in (6.83). Comparing the bound with (6.81), we are satisfied that for
sufficiently large n, (6.85) holds.
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Now, using (6.81), we deduce

1 +
B̃k
α̃k

+
1

α̃k
Cεd2k−1 ≤ αk +Bk

α̃k
+ C

Bk
α̃k
k−2/3

(
k1/9

d

)n

≤ 1

c1

(
1 +

Bk
αk

)
+ C

Bk
α̃k
k−2/3

(
k1/9

d

)n
≤ c2

c1

(
1 +

Bk
αk

)
,

with c2 > 1.

Furthermore, we estimate the second term in (6.82) as follows,

C ′
1

α̃k
εd2 ≤ C̃

Bk
α̃k
k1/3

(
k1/9

d

)n

≤ C̃ ′
(

1 +
Bk
αk

)
k1/3

(
k1/9

d

)n
.

Hence, the result follows from Theorem 6.15.

Corollary 6.17. Let v ∈ L2([0, 2π]) be the solution of (6.2) and let ˜̃v ∈ Vd
k be the fully-

discrete solution of the system of equations (6.48) with the approximation space Vd
k defined

in (6.5), with d = (d, d, d) and Λj, j = 1, 2, 3 defined in (6.15). Let ε be defined as in

(6.60). Provided the parameters of the composite Filon-Clenshaw-Curtis quadrature are

chosen to satisfy:

N ≥ d+ 2, M ≥ dk−1/9, q ≥ (N + 1)/(1 + β), (6.86)

then for all n ≥ 6 with n ≤ d+ 1, the following holds

‖v − ˜̃v‖ ≤ Cn
(

1 +
Bk
αk

){
k1/3

(
k1/9

d

)n
+ exp (−c0k

δ)

}
, (6.87)

where δ is defined in Theorem 3.3, equation (3.9).

Proof. From Proposition 6.16, for (6.87) to hold, we require ε to satisfy (6.81)

ε ≤ Ck
1/3

d2

(
k1/9

d

)n
= Ck1/9

(
k1/2

d

)2(
k1/9

d

)n
.

From (6.47), it follows that

|Jk − J̃k| ≤ C
(

1

M

)N+1

.
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Choosing N > d+ 2 and M > dk−1/9 yields

ε v |Jk − J̃k| ≤ C
(
k1/9

d

)N+1

. (6.88)

Hence (6.81) is satisfied.

Therefore, provided appropriate choices of the parameters of the composite Filon-Clenshaw-

Curtis method are made, the error of the fully-discrete Galerkin method remains the same

as the error of the semi-discrete Galerkin method. In other words, the accuracy of the

fully-discrete Galerkin method does not deteriorate due to inexact approximation of the

entries of the stiffness matrix.
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6.5 Numerical examples

In this section, we discuss the numerical results obtained for the fully-discrete Galerkin

method.

Example 1.

Consider a problem of scattering by an ellipse illustrated in Figure 6.1 by a plane wave

uI(x) travelling in the direction a = (1, 0)T . In the numerical experiments below, we have

taken

Λ1 = [t1 − c1k
−1/3, t1 + c2k

−2/9], Λ2 = [t1 + c2k
−2/9, t2 − c2k

−2/9],

Λ3 = [t2 − c2k
−2/9, t2 + c1k

−1/3], Λ4 = [t2 + c1k
−1/3, 2π] ∪ [0, t1 − c1k

−1/3],

with the constants c1 and c2 chosen as

c1 = 0.506L, c2 = 0.366L, (6.89)

where L denotes the circumference of an ellipse in Figure 6.1.

4

2uI

Figure 6.1: In the Example 1, we consider scattering by an ellipse with major axis greater than the
minor axis. The incident wavefield, uI , is propagating in the direction of the vector (1, 0)T .

The vector d in Vd
k is equal to d = (d, d, d)T . The parameters q, N and M of the composite

FCC quadrature used for the assembly of the stiffness matrix, are fixed,

q = 8, N = 8, M = 20, (6.90)

and parameters k and d vary. The parameters q, N and M in (6.90) satisfy the conditions

(6.86).

In Table 6.1 we display the relative errors of the fully-discrete Galerkin approximation for

the cases of moderate k, defined as follows

ed =
‖v − ˜̃v‖L2([0,2π])

‖v‖L2([0,2π])
, (6.91)
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where the “exact” solution v is obtained via the Nystrom method [34, Section 3.5, pp66-

77]. The relative errors were computed using Simpson’s rule with a sufficient number of

quadrature points.

Since the integration parameters q,N,M are fixed, the cpu time4 for the computation of

the fully-discrete solution remains the same for fixed d and varying k. We observe from

the table that as k increases, the errors also increase but with much slower rate as the

increase in k. This is consistent with Theorem 6.17. Furthermore, for sufficiently large d,

the errors decrease as k grows which is a better result than the theory predicts.

Standard Star-combined

d k = 200 k = 400 k = 600 cpu time d k = 200 k = 400 k = 600 cpu time

4 1.47(-2) 3.09(-2) 3.49(-2) 84 4 1.62(-2) 3.54(-2) 4.09(-2) 118

8 2.18(-3) 4.16(-3) 4.99(-3) 101 8 2.91(-3) 5.83(-3) 6.24(-3) 136

12 1.53(-3) 6.83(-4) 7.87(-4) 135 12 3.04(-3) 9.85(-4) 9.97(-4) 180

16 2.25(-3) 6.59(-4) 3.73(-4) 184 16 2.72(-3) 8.36(-4) 6.97(-4) 238

Table 6.1: The errors ed defined in (6.91) of the fully-discrete Galerkin method for solving the
standard and star-combined integral equation for low/moderate k.

The errors in Table 6.1 are presented for the cases of standard and star-combined formu-

lations. In the star-combined case, the cpu time is slightly higher than the cpu time for

the case of standard formulation. This is due mainly to the additional computation of the

highly-oscillatory one-dimensional integrals, (6.44c) and (6.44d). However, as in case of

the standard formulation, the cpu time remains to be fixed for growing k and only grows

with increasing d. Moreover, the growth rate of the cpu time with increasing d in the case

of star-combined formulation is the same as in the case of standard combined formulation,

see Table 6.2.

Standard Star-combined

d cpu time ratio d cpu time ratio

4 84 4 118

8 101 1.20 8 136 1.15

12 135 1.33 12 180 1.32

16 184 1.36 16 238 1.32

Table 6.2: The rate of growth in cpu time with growing d.

In Table 6.3, we display the ratios of errors ed/ed+4. We conjecture that the errors in the

Table 6.1 decrease exponentially with growing d. In other words, we expect

ed ∼ e−cd,
4The CPU time was monitored using tic and toc commands in MATLAB run on Intel Premium Dual

CPU E2160@ 1.80 GHz 1.79 GHz, 1.98 GB RAM.
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Figure 6.2: The plot of the computed approxi-
mation of the function V (·, 600). The real part
of the solution is plotted in blue and the imagi-
nary part is plotted in red.
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Figure 6.3: The plot of the computed approxi-
mation of the function V (·, 6000). The real part
of the solution is plotted in blue and the imagi-
nary part is plotted in red.

with some constant c > 0 independent of d. Then,

ed
ed+4

=
e−cd

e−c(d+4)
= ec4 = const.

We observe from the first two rows of Table 6.3 that for fixed k, the errors indeed decay

exponentially.

Standard Star-combined

ratio k = 400 k = 600 ratio k = 400 k = 600

e4/e8 7.43 6.99 e4/e8 6.07 6.55

e8/e12 6.09 6.43 e8/e12 5.92 6.26

e12/e16 1.03 2.11 e12/e16 1.18 1.43

Table 6.3: The ratios of the errors of the fully-discrete Galerkin method for solving the standard
and star-combined integral equations.

The numerical approximation of V (·, k) for k = 600 is plotted in Figure 6.2.

Example 2.

Let us now consider the fully-discrete approximation for the cases of large values of k with

Λj , j = 1, 2, 3, 4 and the parameters M , q and N chosen as in Example 1. In Table 6.4,

we display the errors

ed =
‖v − ˜̃v‖L2([0,2π])

‖v‖L2([0,2π])
, (6.92)

where the “exact” solution, v, is the solution of the fully-discrete Galerkin method with

d = 20.

The cpu time remains the same, since the parameters for the numerical approximation of

the entries of the stiffness matrix are fixed at the same values (6.90) as in the previous
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example. Again, a k increases, the errors also increase but with much slower rate as the

increase in k. We also observe, as in Example 1, for sufficiently large d, the errors decrease

as k grows.

Standard Star-combined

d k = 4000 k = 8000 cpu time d k = 4000 k = 8000 cpu time

4 8.931(-3) 3.780(-2) 84 4 3.796(-2) 7.862(-2) 118

8 1.783(-3) 6.011(-3) 101 8 5.368(-3) 8.320(-3) 136

12 6.625(-4) 6.281(-4) 135 12 8.051(-4) 7.287(-4) 180

16 7.088(-4) 1.927(-5) 184 16 9.603(-4) 2.685(-5) 238

Table 6.4: The errors ed defined in (6.92) of the fully-discrete Galerkin method for solving the
standard and star-combined integral equations for large k.

The numerical approximation of V (·, k) for k = 6000 is plotted in Figure 6.2.

Example 3

In this example, we consider the scattering by an ellipse illustrated in Figure 6.4.

2

6

uI

Figure 6.4: The function uI denotes the incident wavefield propagating in the direction of the vector
(1, 0)T and scattering off the ellipse with the major axis smaller that the minor axis.

Again, the parameters q, N and M for integration on each pair of the domains of the

boundary are fixed as in (6.90), and parameters k and d vary. The constants c1 and c2 in

(6.15) are chosen as follows:

c1 = 0.085L,

c2 = 0.057L,

where L denotes the circumference of an ellipse in Figure 6.4. Note that the constants

c1 and c2 are not the same as in the previous example (6.89) where we have considered

the ellipse with the major axis bigger that the minor axis. Were the constants in this
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example to be chosen as in (6.89), the numerical results would have shown much poorer

convergence rates than in Example 1.

In Table 6.5, we display the errors

ed =
‖v − ˜̃v‖L2([0,2π])

‖v‖L2([0,2π])

for fixed d = 12 and k = 400 and varying c1 and c2 for two types of ellipses. The first

ellipse has curvature κ(t) = 9 at the transition points t = t1 and t = t2, see Figure 6.4;

while the second ellipse has curvature κ(t) = 1/3 at the transition points, see Figure 6.1.

From Table 6.5, we observe that the accuracy of the fully-discrete Galerkin method is

sensitive to the choice of the constants c1 and c2. In particular, in order to maintain

the accuracy in both cases, the constants c1 and c2 must depend on the curvature at the

transition points.

a = 1, b = 3 a = 3, b = 1
κ(t1) = κ(t2) = 9 κ(t1) = κ(t2) = 1/3

c1 and c2 k = 400 c1 and c2 k = 400

c1 = 0.026L and c2 = 0.019L 6.23(−3) c1 = 0.851L and c2 = 0.637L 1.68(−3)
c1 = 0.052L and c2 = 0.038L 2.29(−3) c1 = 1.019L and c2 = 0.731L 7.21(−4)
c1 = 0.105L and c2 = 0.076L 9.79(−4) c1 = 1.019L and c2 = 0.731L 1.03(−3)

Table 6.5: The errors in the approximation of V (·, k) for two different type of ellipses: on the left,
the results are displayed for ellipse with curvature κ(t) = 9 at the transition points (right columns)
and the results on the right correspond to the ellipse with curvature κ(t) = 1/3.

This can be explained by looking at the asymptotic expansion of V (·, k) in the transition

zones given in (3.5). The expansion is given in terms of the derivatives of the Fock’s

integral Ψ(l)
(
k1/3Z(s)

)
, where Z(s) is defined in (3.135),

Z(s) = 2−1/3

∫ x

x0

κ(s)2/3ds,

where κ(s) denotes the curvature of the boundary Γ at γ(s). Using the properties of

the Fock’s integral at large values of the argument, the k - dependent estimates of the

derivatives of V were be derived, see Theorem 3.6. However, the expansion (3.5) suggests

that the derivatives of V also depend on the curvature of the boundary in the transition

zones as follows, see Theorem 3.6,

|Dn
s V (s, k)| ≤ Cn

1, n = 0, 1

k−1(k1/3 + κ(s)|w(s)|)−n−2, n ≥ 2,
, (6.93)

where w(s) = (s− t1)(t2 − s).
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Figure 6.5: The plot of the computed approxi-
mation of the function V (·, 600). The real part
of the solution is plotted in blue and the imagi-
nary part is plotted in red.

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

2.5

s

Figure 6.6: The plot of the computed approxi-
mation of the function V (·, 6000). The real part
of the solution is plotted in blue and the imagi-
nary part is plotted in red.

The curvature at the transition point t1 on the ellipse in Figure 6.4 is substantially smaller

than the curvature at t1 for the ellipse in Figure 6.4. Therefore, it is reasonable to choose

transition intervals Λ1 and Λ3 in this example to be smaller than those in Example 1.

In Table 6.6 we display the errors of the fully-discrete Galerkin method for the cases of

moderate k, defined as before

ed =
‖v − ˜̃v‖
‖v‖ , (6.94)

where the “exact” solution v is obtained via the Nystrom method [34]. The relative errors

were computed using Simpson’s rule with a sufficient number of quadrature points.

From Table 6.4, we observe similar convergence rates as in Example 1: as k increases, the

errors also increase but with much slower rate as the increase in k. Also, for sufficiently

large d, errors decrease as k grows.

Standard Star-combined

d k = 200 k = 400 k = 600 cpu time d k = 200 k = 400 k = 600 cpu time

4 1.04(-2) 2.07(-2) 2.95(-2) 84 4 2.58(-2) 4.32(-2) 3.49(-2) 118

8 2.41(-3) 3.91(-3) 4.86(-3) 101 8 5.02(-3) 7.67(-3) 5.91(-3) 136

12 1.87(-3) 9.97(-4) 9.36(-4) 135 12 4.21(-3) 1.51(-3) 9.82(-4) 180

16 2.01(-3) 1.23(-3) 5.82(-4) 184 16 6.07(-3) 1.06(-3) 7.86(-4) 238

Table 6.6: The errors ed defined in (6.91) of the fully-discrete Galerkin method for solving the
standard and star-combined integral equation for low/moderate k.

In Table 6.7, we display the ratios of errors ed/ed+4. As we observe from the Table 6.3, the

errors decay exponentially as d grows until the error in the shadow part of the boundary

becomes dominant.

The numerical approximation of V (·, k) for k = 600 and k = 6000 are plotted in Figure

6.5 and Figure 6.6 respectively.
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Standard Star-combined

ratio k = 400 k = 600 ratio k = 400 k = 600

e4/e8 5.29 6.07 e4/e8 5.63 5.91

e8/e12 3.92 5.19 e8/e12 5.08 6.02

e12/e16 0.81 1.69 e12/e16 1.42 1.21

Table 6.7: The ratios of the errors of the fully-discrete Galerkin method for solving the standard
and star-combined integral equations.

Example 4

Let us now compare the condition numbers of the stiffness matrices corresponding to

the standard-combined and the star-combined formulations. Consider the problem of

scattering by an ellipse illustrated in Figure 6.1. Let Λj , j = 1, 2, 3, 4 be chosen as in

Example 1.

In Table 6.8, we display the condition numbers, condd(k) of the stiffness matrices, entries

of which are approximated by the numerical integration method described in Chapter 4.

The condition numbers are obtained using the command cond in MATLAB. Also in Table

6.8, we display the ratios

ratio =
condd+4(k)

condd(k)
,

between the condition numbers for growing d. We observe from the table that the the

rate of growth of the condition numbers with increasing d, corresponding to standard and

star-combined formulations, are similar.

Standard Star-combined

d k = 600 ratio k = 6000 ratio d k = 600 ratio k = 6000 ratio

4 38.5 27.9 4 33.2 22.7

8 74.9 1.94 59.6 2.14 8 74.9 2.25 56.6 2.49

12 121.1 1.61 95.9 1.61 12 144.3 1.93 117.5 2.08

16 187.5 1.54 139.7 1.46 16 240.4 1.67 203.1 1.73

Table 6.8: Condition numbers for star-combined integral equation.

In Table 6.9, we display the ratios

r(k) =
condd(k)

condd(10k)
,

between the condition numbers for k = 600 and the condition numbers for k = 6000.

From Table 6.9, we observe that the condition numbers grow very slowly (if at all) with

increasing k.

In Figures 6.7 to 6.10, we plot the absolute values of the entries of the stiffness matrices
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Formulation Ratios d = 8 d = 12

Standard r(600) 1.06 1.14
r(1200) 0.96 1.00
r(2400) 0.97 1.02

Star r(600) 1.06 1.04
r(1200) 1.11 1.09
r(2400) 1.10 1.11

Table 6.9: Ratios condd(600)/condd(6000), between the condition numbers for k = 600 and k =
6000.

R and A corresponding to the standard and the star-combined formulations defined in

(6.25) and (6.34) respectively with k = 600 and k = 6000. We observe from the plots that

with increasing k, the absolute values of the diagonal entries also increase, while the off-

diagonal entries remain relatively unchanged. The stiffness matrices are of the dimension

3(d+ 1) with d = 16.

The absolute values of the off-diagonal elements are bigger than the upper bound on ε

in (6.82). Therefore, by Proposition 6.16, in order to preserve the error estimates of the

semi-Galerkin method, the entries cannot be approximated by zero.
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Figure 6.7: The plot of absolute values of the
entries of the stiffness matrix for the case when
k = 600 corresponding to the standard combined
formulation.
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Figure 6.8: The plot of absolute values of the
entries of the stiffness matrix for the case when
k = 600 corresponding to the star-combined for-
mulation.
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Figure 6.9: The plot of absolute values of the
entries of the stiffness matrix for the case when
k = 6000 corresponding to the standard com-
bined formulation.
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Figure 6.10: The plot of absolute values of the
entries of the stiffness matrix for the case when
k = 6000 corresponding to the stan-combined
formulation.
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[36] P. Debye. Näherungsformeln für die zylinderfunktionen für groe werte des arguments

und unbeschränkt veränderliche werte des index. Mathematische Annalen, 67 (4):535

–558, 1909.

[37] C. F. F. di Bruno. Note sur une nouvelle formule du calcul differentiel. The Quarterly

Journal of Mathematics, 1:359–360, 1857.

[38] V. Dominguez. Public domain code. http: // www. unavarra. es/ personal/

victor_ dominguez/ clenshawcurtisrule , 2009.

[39] V. Dominguez, I. G. Graham, T. Kim, and V. P. Smyshlyaev. Recent progress on hy-

brid numerical asymptotic boundary integral methods for high-frequency scattering

problems. Proceedings of UKBIM7, pages 15–23, 2009.

[40] V. Dominguez, I. G. Graham, and V. P. Smyshlyaev. A hybrid numerical-asymptotic

boundary integral method for high-frequency acoustic scattering. Numerische Math-

ematik, 106(3):471–510, 2007.

[41] V. Dominguez, I. G. Graham, and V. P. Smyshlyaev. Stability and error estimates for

Filon-Clenshaw-Curtis rules for highly-oscillatory integrals. IMA Journal Numerical

Analysis, 31 (4):1253–1280, 2011.

[42] F. Ecevit. Integral equation formulations of electromagnetic and acoustic scattering

problems: convergence of multiple scattering interations and high-frequency asymp-

totic expansions. PhD thesis, University of Minnesota, 2005.

[43] F. Ecevit and F. Reitich. Analysis of multiple scattering iterations for high-frequency

scattering problems. part I: the two-dimensional case. Numerische Mathematik,

114:271–354, 2009.

[44] G. A. Evans and J. R. Webster. A comparison of some methods for the evaluation of

highly oscillatory integrals. Journal of Applied Mathematics and Computer Science,

112(1-2):55–69, 1999.

[45] L. Evans. Partial differential equations. American mathematical Society, 1998.

[46] V. Filippov. Rigorous justification of the shortwave asymptotic theory of diffraction

in the shadow zone. Journal Sov. Math., 6:577–626, 1976.

[47] L. Filon. On a quadrature formula for trigonometric integrals. Proceedings of the

Royal Society of Edinburgh, 49:38–47, 1928.

[48] E. A. Flinn. A modification of Filon’s method of numerical integration. Journal of

the ACM (JACM), 7(2):181–184, 1960.

213

http://www.unavarra.es/personal/victor_dominguez/clenshawcurtisrule
http://www.unavarra.es/personal/victor_dominguez/clenshawcurtisrule


Bibliography

[49] P. Gamallo and R. J. Astley. A comparison of two Trefftz-type methods: the Ultra-

weak Variational Formulation and the least-squares method, for solving shortwave

2-d helmholtz problems. International Journal for Numerical Methods in Engineer-

ing, 71, Issue 4:406 – 432, 2007.

[50] W. M. Gentleman. Implementing Clenshaw-Curtis quadrature, I methodology and

experience. Communications of the ACM, 15(5):337–342, 1972.

[51] E. Giladi and J. Keller. An asymptotically derived boundary element method for the

Helmholtz equations. Proceedings of the 20th Annual Review of Progress in Applied

Computational Electromagnetics, 2004.

[52] C. J. Gittelson, R. Hiptmair, and I. Perugia. Plane wave discontinuos Galerkin meth-

ods. ESIAM: Mathematical modelling and Numerical analysis, 43:297–331, 2009.

[53] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Aca-

demic Press, 1994.

[54] A. Gray. Modern differential geometry of curves and surfaces with Mathematica.

CRC Press LLC, 1998.

[55] M. Hardy. Combinatorics of partial derivatives. The Electronic Journal of Combi-

natorics, 13:1–13, 2006.

[56] A. I. Hascelik. Suitable Gauss and Filon-type methods for oscillatory integrals with

an algebraic singularity. Applied Numerical Mathematics, 59(1):101–118, 2009.

[57] R. Hiptmair, A. Moiola, and I. Perugia. Error analysis of Trefftz-discontinuous

Galerkin methods for the time-harmonic Maxwell equations. Preprint IMATI-CNR

Pavia, 5PV11/3/0, 2011.

[58] M. Honnor, J. Trevelyan, and D. Huybrechs. Numerical evaluation of the two-

dimensional partition of unity boundary integrals for Helmholtz problems. Jour-

nal of Computational and Applied Mathematics. Eighth International Conference on

Mathematical and Numerical Aspects of Waves, 234, Issue 6:1656–1662, 2007.

[59] D. Huybrechs and S. Olver. Highly oscillatory quadrature. ”Highly Oscillatory Prob-

lems”, editors: B. Engquist, T. Fokas, E. Hairer, A. Iserles, pages 51–71, Cambridge

University Press, 2009.

[60] D. Huybrechs and S. Vandewalle. On the evaluation of highly oscillatory integrals

by analytic continuation. SIAM Journal on Numerical Analysis, 44(3):1026–1048,

2006.

214



Bibliography

[61] D. Huybrechs and S. Vandewalle. A sparse discretization for integral equation for-

mulations of high frequency scattering problems. SIAM Journal on Scientific Com-

puting, 29(6):2305–2328, 2007.

[62] A. Iserles. On the numerical quadrature of highly-oscillating integrals I: Fourier

transforms. IMA Journal Numerical Analysis, 2003.

[63] A. Iserles. On the numerical quadrature of highly-oscillating integrals II: Irregular

oscillators. IMA Journal Numerical Analysis, 2005.

[64] A. Iserles and S. P. Norsett. Efficient quadrature of highly oscillatory integrals using

derivatives. Proceedings Royal Soc. 461: 1383-1399, 2005.

[65] J. B. Keller. Geometrical theory of diffraction. Journal of the Optical Society of

America A, 52:116–130, 1962.

[66] R. Kress. Linear Integral equations. Springer-Verlag, 1989.

[67] R. Kress. On the numerical solution of a hypersingular integral equation in scattering

theory. Journal of Computational and Applied Mathematics, 61:345–360, August

1995.

[68] R. Kress and W. T. Spassov. On the condition number of boundary integral operators

for the exterior dirichlet problem for the helmholtz equation. Numer. Math., 42:77–

95, 1983.

[69] R. Leis. Zur dirichletschen randwertaufgabe des auenraumes der schwingungsgle-

ichung. Mathematische Zeitschrift, 1965:205– 211, 90.

[70] D. Levin. Procedures for computing one- and two-dimensional integrals of functions

with rapid irregular oscillations. Mathematics of Computation, 38(158):pp. 531–538,

1982.

[71] D. Levin. Analysis of a collocation method for integrating rapidly oscillatory func-

tions. Journal of Computational and Applied Mathematics, 78:131–138, February

1997.

[72] D. Ludwig. Uniform asymptotic expansion for wave propagation and diffraction

problems. SIAM Review, 12:325–331, 1970.

[73] Y. L. Luke. On the computation of oscillatory integrals. Mathematical Proceedings

of the Cambridge Philosophical Society, Cambridge University Press, 50:269–277,

1954.

[74] J. M. Melenk. On the convergence of Filon quadrature. Journal of Computational

and Applied Mathematics, 234(6):1692–1701, 2010.

215



Bibliography

[75] R. B. Melrose and M. E. Taylor. Near peak scattering and the corrected Kirchhoff

approximation for a convex obstacle. Advances in Mathematics, 55(3):242 – 315,

1985.

[76] W. R. Mendes. The Numerical Solution Of Wiener-Hopf Integral Equations. PhD

thesis, University of Bath, 1988.

[77] P. Monk and D.-Q. Wang. A least-squares method for the Helmholtz equation.

Computer Methods in Applied Mechanics and Engineering, 175, Issues 1-2:121–136,

1999.

[78] C. S. Morawetz and D. Ludwig. An inequality for the reduced wave operator and

the justification of geometrical optics. Communications on pure and applied mathe-

matics, 21:187–203, 1968.

[79] J. Oliver. Relative error propagation in the recursive solution of linear recurrence

relations. Numerische Mathematik, 9:323–340, 1967.

[80] F. Olver. Error bounds for asymptotic expansions in turning-point problems. J.

Soc. Indust. Appl. Math., 12, Number 1:200–214, 1964.

[81] F. Olver. Asymptotics and special functions. Computer Science and Applied Math-

ematics. Academic Press. New York., 1974.

[82] F. W. J. Olver. The asymptotic expansion of Bessel functions of large order. Philo-

sophical Transactions of the Royal Society of London. Series A, Mathematical and

Physical Sciences, 247(930):328–368, 1954.

[83] S. Olver. Moment-free numerical approximation of highly oscillatory integrals with

stationary points. Euro. Jnl of Applied Mathematics, 18:435–447, 2007.

[84] S. Olver. Fast, numerically stable computation of oscillatory integrals with stationary

points. BIT Numerical Mathematics, 50:149–171, 2010.

[85] P. Ortiz and E. Sanchez. An improved partition of unity finite element model for

diffraction problems. International Journal for Numerical Methods in Engineering,

John Wiley & Sons, Ltd., 50, Issue 12:2727–2740, 2001.

[86] O. I. Panich. On the solubility of exterior boundary-value problems for the wave

equation and for a system of Maxwell’s equations [in russian]. Uspekhi Mat. Nauk,

20:1(121):221–226, 1965.

[87] E. Perrey-Debain, O. Laghrouche, P. Bettess, and J. Trevelyan. Plane-wave ba-

sis finite elements and boundary elements for three-dimensional wave scattering.

Philosophical Transactions of the Royal Society of London. Series A:Mathematical,

Physical and Engineering Sciences, 362(1816):561–577, 2004.

216



Bibliography

[88] R. Piessens and M. Branders. Numerical solution of integral equations of mathe-

matical physics, using Chebyshev polynomials. Journal of Computational Physics,

21:178–196, 1976.

[89] R. Piessens and M. Branders. Computation of Fourier transform integrals using

Chebyshev series expansions. Computing, 32:177–186, 1984.

[90] R. Piessens and M. Branders. A numerical method for the integration of oscillatory

functions. BIT Numerical Mathematics, 11:317–327, 1984.

[91] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.

[92] J. Saranen and G. Vainikko. Periodic Integral and Pseudodifferential Equations with

Numerical Approximation. Springer.

[93] C. Schwab. p− and hp− Finite Element Methods. Theory and Applications in Solid

and Fluid Machanics. Numerical MAthematics and Scientific Computation. Claren-

don Press. Oxford., 1998.

[94] I. H. Sloan and W. E. Smith. Product integration with the Clenshaw-Curtis points:

Implementation and error estimates. Numerische Mathematik, 34:387–401, Decem-

ber, 1980.

[95] V. I. Smirnov. A course of higher Mathematics, Vol. 3 Pt. 2. Nauka, Moscow

(Addison-Wesley, Reading, MA 1964), 1969.

[96] E. A. Spence, S. N. Chandler-Wilde, I. G. Graham, and V. P. Smyshlyaev. A

new frequency-uniform coercive boundary integral equation for acoustic scattering.

Communications on Pure and Applied Mathematics, 64 (10):1384–1415, 2011.

[97] M. Spivak. Calculus. World Student Series Edition, University textbook, 1967.

[98] L. L. Thompson and P. M. Pinsky. A Galerkin least-squares finite element method

for the two-dimensional Helmholtz equation. International Journal for Numerical

Methods in Engineering, 38, Issue 3:371–397, 1995.

[99] L. N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review,

50:67–87, February 2008.

[100] G. N. Watson. The diffraction of electric waves by the earth. Proceedings of the Royal

Society of London. Series A, Containing Papers of a Mathematical and Physical

Character, 95(666):pp. 83–99, 1918.

[101] R. Wong. Asymptotic Approximation of Integrals. Classics in Applied mathematics,

1989.

217



Bibliography

[102] S. Xiang. Efficient Filon-type methods for
∫ b
a f(x) eiωg(x) dx. Numerische Mathe-

matik, 105(4):633–658, 2007.

218



Appendices

219



Appendix A

Eikonal equation

We begin this section by describing the mathematical formulation of ray methods. This

leads to well known eikonal and transport equations, see Sections A.1, and A.3. Solving

the eikonal equation gives us greater physical understanding behind different types of ray

propagation (e.g. reflected and diffracted rays).

Recall the scattering problem under consideration: find u(x) = uS(x)+uI(x) that satisfies

∆u+ k2u = 0 in R2 \ Ω, (A.1)

uS + uI = 0 on Γ, (A.2)

lim
r→∞

√
r

(
∂uS

∂r
− ikuS

)
= 0. (A.3)

When the incident wave hits an illuminated part of the boundary of the scatterer, it

gives rise to a reflected wave. When the incident wave hits the boundary of the scatterer

tangentially, i.e. transition part of the boundary, creeping and then diffracted rays arise.

In later sections, we will discuss in detail how these can be found in practise.

An approximation to the scattered wave u(x), solving the Helmholtz equation (A.1), is

sought in the form of the ray expansion as follows:

u(x, k) = exp (ikτ(x))
∞∑
j=0

Aj(x)

(ik)j
. (A.4)

The unknown functions in (A.4), are the “Eikonal” τ(x) and the “asymptotes” A0(x),

A1(x),. . . . The equations for τ(x) and Aj(x), are obtained by formally substituting the

ray expansion (A.4) into Helmholtz equation (A.1) and equating terms of order k2, k1, k0,

k−1 and so on. Namely,

(i) the Eikonal equation (by equating the terms of order k2):

|Oτ(x)|2 = 1, (A.5)

for x ∈ R2 \ (Ω ∪ Γ), and
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A. Eikonal equation

(ii) the Transport equation (by equating the terms of order k1−n, n ≥ 0):

4τ(x)An(x) + 2 (∇τ(x) · ∇An(x)) = −4An−1(x), n = 0, 1, 2, ..., (A.6)

where, by convention, A−1 ≡ 0.

A.1 The Eikonal equation

The Eikonal equation (A.5), is a non-linear first-order partial differential equation that can

be solved using method of charachteristics, see for example [45] or [14]. Solving the Eikonal

equation (A.5) is equivalent to finding τ(x1, x2) that satisfies the following equation

F (x1, x2, p, q, τ) = p2 + q2 − 1 = 0, where p = τx1 , q = τx2 , (A.7)

where (·)x1 and (·)x1 denote partial derivatives with respect to x1 and x2 respectively. The

method of characteristics reduces the problem of solving non-liner first order PDE (A.7) to

a system of quasi-linear ODEs along a characteristic curve. Suppose that (x1, x2, p, q, τ),

solve a family of a general first-order ODE system

dx1

dσ
= 2p,

dx2

dσ
= 2q,

dτ

dσ
= 2,

dp

dσ
= 0,

dq

dσ
= 0,

where σ is a parameter that relates to the distance along the characteristic curve, and

(x1, x2, p, q, τ) smoothly depends on the additional parameter s, and the mapping (s, σ)→
(x1, x2) is invertible in some domain D ∈ R2, then

τ(x1, x2) = τ (s (x1, x2) , σ (x1, x2))

solves the equation (A.7). The charachteristic curve describes a ray. The solutions to this

system of equations are:

x1(s, σ) = x01(s) + 2p0(s)σ, x2(s, σ) = x02(s) + 2q0(s)σ, (A.8)

p(s) = p0(s, σ), q(s, σ) = q0(s), (A.9)

τ(s, σ) = τ0(s) + 2σ, 1 = p2(s) + q2(s). (A.10)

Here x01(s), x02(s), q0(s), p0(s), τ0(s) are defined from the appropriate initial conditions.

Note that by eliminating σ, we obtain the following solution for the Eikonal

τ(x) = τ(x0) + |x− x0|, (A.11)
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A. Eikonal equation

where x and x0 correspond to the same charachteristic curve, i.e. the same value of

s in (2.11) - (2.13). This equation has the following physical meaning: the Eikonal is

determined as the value of τ at the boundary, at the point x0, plus the length of the

scattered ray x0x. It is not obvious from the equation (A.11) alone, however, what the

scattered rays are. In the following two sections, we determine the scattered rays by

studying the system of equations (A.10) in more detail.

A.2 Reflected rays

In the illuminated region, the incident wave gives rise to a reflected wave. We denote τI

and τR as the incident and reflected components of the eikonal, that are required to satisfy

the following condition, consistently with (A.2):

τ I0 (s) = τ I(x01(s), x02(s)) = τR0 (s). (A.12)

This is the initial condition, with respect to the parameter σ, for the ODE system (A.11).

Differentiating (A.12) with respect to s, and using (A.7) we deduce that

pR0 x
′
01(s) + qR0 x

′
02(s)) = (τ I0 )

′
(s), pI0x

′
01(s) + qI0x

′
02(s) = (τ I0 )

′
(s). (A.13)

Note that the left hand sides of (A.13) represent the dot-products of the unit vector(
pR0 , q

R
0

)
and

(
pI0, q

I
0

)
, respectively, with the tangent (x

′
01(s), x

′
02(s))) to the boundary.

Since, by (2.11)-(2.13),
(
pI0, q

I
0

)
and

(
pR0 , q

R
0

)
are unit vectors in the direction of the incident

and reflected rays respectively, the incident ray and the reflected ray must make equal

angles with the tangent to the boundary at each point. Denote

pI0(s) = cosαI(s), qI0(s) = sinαI(s),

x
′
01(s)/

√
x
′
01(s) + x

′
02(s) = cos θ(s), x

′
02(s)/

√
x
′
01(s) + x

′
02(s) = sin θ(s),

Then,

pR0 (s) = cosαR(s), qR0 (s) = sinαR(s), (A.14)

where αR(s) = 2θ(s)−αI(s), see Figure A.1. This is a well known Snell’s law that provides

simple geometric description of the wave motion: the angle of reflection equals to the angle

of incidence.

A.3 Amplitude of the wave fronts

Transport equations have the following solutions, see e.g.[14] or [5]:
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Figure A.1: Directions of the incident and reflected waves.

Aj(σ) =
1(√

J(σ)J(σ1)− J(σ)
) ∫ σ

σ1

√
J(σ′)∇2Aj−1(σ′)dσ′,

where,

J(σ) =

∣∣∣∣n(s) · dx(s, σ)

ds

∣∣∣∣ . (A.15)

Since u(x) = uI(x) + uR(x) (and both, incident and reflected waves satisfy (A.4)) and

τ I(x) = τR(x) for x ∈ Γ, we deduce the asymptotic expansion of the normal derivative of

u(x),

∂u

∂n
(x) := 2ik (∇τ · n) (x) exp (ikτ(x))A0(x)

+

∞∑
j=0

1

(ik)j
(Aj+1∇τ +∇Aj) (x) · n(x) exp (ikτ(x)).

However, in the transition regions, the Jacobian (A.15) vanishes. In other words, the

ray coordinates (s, σ) can no longer be uniquely represented by the cartesian coordinates

x1 and x2. Hence, the ray method is not valid in the neighbourhood of the transition

domains.

In the case of plane wave incidence, we find τ(x) = x · a for x ∈ Γ. Therefore, since

A0(x) = 1, x ∈ Γ, we find the main order term for the expansion of the normal derivative,

∂u

∂n
(x)m = 2ik(a · n) exp (ik(x · a)), (A.16)

where the subscript ”‘m”’ denotes the ”‘main order term”’.
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Method of characteristics

In order to find eikonal τ(x), the partial differential equation (A.5) is solved using method

of characteristics. Method of characteristics solves first order non-linear partial differential

equations of the type

F (x1, x2, p, q, τ) = 0, where p = τx1 , q = τx2 , (B.1)

by reducing the problem into a system of quasi-linear partial differential equations:

dx1

Fp
=
dx2

Fq
=

dτ

pFp + qFq
= − dp

Fx1 + pFτ
= − dq

Fx2 + qFτ
. (B.2)

If we introduce a new parameter σ that indicates the distance along the characteristic

curve, then we can rewrite (B.2) as follows

dx1

dσ
= Fp,

dx2

dσ
= Fq,

dτ

dσ
= pFp + qFq, (B.3)

dp

dσ
= −Fx1 − pFτ ,

dq

dσ
= −Fx2 − qFτ . (B.4)

To find a solution τ that satisfies (B.1) and passes through the initial curve

x1 = x01(s), x2 = x02(s), τ = τ0(s),

where s is the variable of parametrisation of the initial curve, we solve the system of

equations (B.4), with p = p0(s) and q = q0(s) determined from the following equations:

F (x01(s), x02(s), τ0(s), p0(s), q0(s)) = 0 (B.5a)

τ
′
0(s) = p0(s)x

′
01(s) + q0(s)x

′
02(s). (B.5b)

It is possible to solve the system (B.5b) in the neighbourhood of initial point s0, provided

that

J(s, σ) = det

[
(x1)s (x2)s

(x1)σ (x2)σ

]
6= 0. (B.6)
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B. Method of characteristics

Then integrating (B.4), we obtain the solution:

x1 = x1(s, σ), x2 = x2(s, σ), τ = τ(s, σ), p = p(s, σ), q = q(s, σ).

From these equations, we can obtain τ .
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Locations of stationary points

In this section, we examine the locations of the stationary points of ψ[s], i.e. those points

(s, t) ∈ ([0, 2π]× [0, 2π]) satisfying

ψ′[s](t) := γ ′(t)

(
a− γ(s)− γ(t)

|γ(s)− γ(t)|

)
= 0. (C.1)

In particular, we aim to prove Theorem 4.16 in Chapter 4. The proof of Theorem 4.16

requires two intermediate results that we prove in Lemma C.2 and Lemma C.5.

We begin this section with the definition of convex curves [54]. Any straight line L divides

R2 into two half-planes, H1 and H2, such that:

H1 ∪H2 = R2 and H1 ∩H2 = L,

we say that a curve C lies on one side of the straight line L if either C ⊂ H1 or C ⊂ H2.

Definition C.1. A plane closed curve is convex if it lies on one side of each of its tangent

lines.

This definition can also be understood in terms of the behaviour of the pair of vectors

(T ,N) - tangent and normal to Γ. Let {γ : [0, 2π]→ R2} be the arc-length parametriza-

tion of the smooth, convex, closed curve Γ ⊂ R2. Then, the vector

T (s) := γ ′(s),

is the unit tangent vector of Γ at a point γ(s) on the boundary. There are two unit vectors

perpendicular to T , we choose to define N , the normal vector of Γ at γ(s), as a unit vector

obtained by rotating T clockwise by π/2.

Since Γ always lies on one side of its tangent lines, we deduce that unit vector T rotates in

only one direction (clockwise or anti-clockwise) as it moves along the curve in the direction

of increasing s. We choose the direction of increasing s to be anti-clockwise (such closed

curves are called positively-oriented). Then the tangent T and the outward normal, N ,

also rotate anti-clockwise.
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t

2

1

a

γ (s)(t) γ

r (s,t)

t

0
2

Figure C.1: Stationary s and t are opposite.

The function ψ′[s](t) can be written as follows, in terms of three unit vectors:

ψ′[s](t) := T (t) · (a− ρ(s, t)) , (C.2)

where a is fixed vector denoting the direction of incident wave, and vector ρ(s, t) is defined

as follows

ρ(s, t) :=
γ(s)− γ(t)

|γ(s)− γ(t)| , hence lim
t→s±

ρ(s, t) = ∓T (s).

It is possible to determine from the convexity of the boundary, the behaviour of the angles

between the tangent vector T (t) and a and similarly between T (t) and r(s, t).

The variable t in the illuminated part of the boundary

In the interval (t1, t2) the following holds

N(t1) · a = 0,

N(s) · a < 0, s ∈ (t1, t2),

N(t2) · a = 0.

Lemma C.2. Given t ∈ (t1, t2), there exist unique s ∈ [0, t1) ∪ (t2, 2π], such that

ψ′[s](t) = 0.

In fact, it is necessary and sufficient for s to satisfy the following equation:

ρ(s, t) = a. (C.3)

One of the consequences of the lemma, is that, given t ∈ Λ2, there are no stationary points

s ∈ [a, d], provided that the transition intervals Λ1 and Λ3 extend further into illuminated

zone than into the shadow.

To prove Lemma C.2, we study the angles between vectors a, ρ(s, t) and T (t), behaviour
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C. Locations of stationary points

of which can be sufficiently fully determined from the fact that the boundary Γ is convex.

For this, we require a few intermediate results that we present in Proposition C.3 and

Proposition C.4.

Proposition C.3. Define α(s, t) as the angle between T (t) and ρ(s, t), measured anti-

clockwise from T (t), see Figure C.2, then:

α(s, t) ∈ (0, π), for all s, t ∈ [0, 2π], s 6= t.

Proof. At the point γ(t), ρ(s, t) is the unit vector directed from γ(t) to γ(s). But γ(s)

is the point on the curve Γ which lies on one side of the tangent line L : cT (t) + γ(t),

see Figure C.2. Since T rotates anti-clockwise, the angle α belongs to the interval [0, π].

Moreover, α = 0 or α = π only when t → s±, i.e. when ρ(s, t) is parallel to T (t). Hence

α(s, t) ∈ (0, π).

We can deduce from the proposition that the following holds:

N(t) · ρ(s, t) < 0, ∀s, t ∈ [0, 2π], s 6= t,

and similarly,

N(s) · ρ(s, t) > 0, ∀s, t ∈ [0, 2π], s 6= t.

To see this, recall the definition of convexity. The tangent line passing through the point

γ(t), divides R2 into two half-planes one of which contains the curve Γ and towards which

vector ρ(s, t) is directed (because it is always directed into interior of Γ). Vector N(t)

however, always directed into exterior of Γ and hence the result.

Proposition C.4. Define β(t) as the angle between T (t) and a, measured anti-clockwise

from T (t), see Figure C.3, then

β(t) ∈ (0, π), for all t ∈ (t1, t2).

Proof. Consider the function g(t) := T (t) · a, then

g(t) := |T (t)||a| cos(β(t)) = cos(β(t)). (C.4)

However, g′(t) = T ′(t) ·a = γ ′′(t) ·a > 0 for all t ∈ (t1, t2) (since γ ′′(t) is parallel to N(t)

but faces inwards). Thus, g(t) is a monotonically increasing function for t ∈ (t1, t2), or

equivalently cos(β(t)) is monotonically increasing, and:

g(t1) = −1 ⇒ β(t1) = π,

g(t2) = 1 ⇒ β(t2) = 0,
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t
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Figure C.2: α(s, t) as the angle between T (t)
and ρ(s, t), measured anti-clockwise from
T (t).

Γ

γ

γ(t)

(s)

t

a

β(t)

Figure C.3: β(t) as the angle between T (t)
and a, measured anti-clockwise from T (t).

now from (C.4), the result follows.

proof of Lemma C.2.

Proof. With α(s, t) and β(t) as before, we can write the vector a and ρ(s, t) in terms of

the pair of orthogonal vectors T := T (t) and N := N(t) as follows:

ρ(s, t) = T cos (α(s, t))−N sin (α(s, t)),

a = T cos (β(t))−N sin (β(t)).

Then, using elementary trigonometric identities,

ψ′[s](t) = cos (β(t))− cos (α(s, t))

= −2 sin

(
β(t) + α(s, t)

2

)
sin

(
β(t)− α(s, t)

2

)
.

Thus ψ′[s](t) = 0 when

1. β(t)+α(s,t)
2 = 0, or

2. β(t)+α(s,t)
2 = π, or

3. β(t)−α(s,t)
2 = 0, or

4. |β(t)−α(s,t)|
2 = π.

We eliminate cases 1,2 and 4 since α(s, t), β(t) ∈ (0, π), see Proposition C.3 and Propo-
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sition C.4. Case 3 implies

a = ρ(s, t),

which is only possible when s does not belong to the interval (t1, t2). The later can be

deduced as follows: for all (s, t) ∈ [0, 2π], s 6= t,

N(s) · ρ(s, t) > 0.

However, since a = ρ(s, t), it follows N(s) · a > 0. Therefore, s 6∈ (t1, t2). This completes

the proof.

t in the transition parts of the boundary

Consider the case when t ∈ [0, t1] ∪ [t2, 2π] and t > s (the above-the-diagonal domains).

Recall the transition domains Λ1 and Λ3,

Λ1 = [a, b], with a = t1 − δ, b = t1 + ε,

also a′ = t1 + δ.

and

Λ3 = [c, d], with c = t2 − ε, d = t2 + δ,

d′ = t2 − δ.

Lemma C.5. Given t ∈ [0, t1], there exists unique s ∈ [0, 2π] such that

ψ′[s](t) = 0. (C.5)

Moreover, for t ∈ [0, t∗], where t∗ ∈ (0, t1) can be found by solving for t ∈ (0, t1),

ψ′[0](t) = 0,

the unique point s that satisfies (C.5) is in s ∈ [s∗, 2π], where s∗ is found by solving

r(s∗, 0) = a (for the case of a circle s∗ = π). While for t ∈ [t∗, t1], equation (C.5) holds

for s ∈ [0, t1] with s < t.

Proof. Similarly to the proof of Proposition C.4, we can show that when t ∈ (0, t1),

β(t) ∈ (π, 3π/2). (C.6)

To see this, recall that g′(t) = γ ′′(t) · a < 0 when t ∈ [0, t1] ∪ [t2, 2π]. Hence g(t) is

decreasing function for t ∈ (0, t1), or equivalently cos(β(t)) is decreasing. But g(0) = 0
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and g(t1) = −1 and β(t) > π, hence β(t) ∈ (π, 3π/2).

On the other hand, from Proposition C.3 we deduce that for all s and t, s 6= t,

α(s, t) ∈ (0, π). (C.7)

The function ψ′[s](t) is again zero when either of the equations

1. β(t)+α(s,t)
2 = 0, or

2. β(t)+α(s,t)
2 = π, or

3. β(t)−α(s,t)
2 = 0, or

4. |β(t)−α(s,t)|
2 = π,

hold. Using (C.6) and (C.7), we eliminate cases 1,3 and 4.

Therefore, for t ∈ (0, t1), the pair (s, t) satisfies ψ′[s](t) = 0 if and only if the equation

β(t) = 2π − α(s, t), (C.8)

holds. Suppose for t ∈ (0, t1), there exist s1 and s2 that satisfy (C.8),

β(t) = 2π − α(s1, t),

β(t) = 2π − α(s2, t).

Then α(s1, t) = α(s2, t), and therefore r(s1, t) = r(s2, t), thus s1 ≡ s2.

Now, recall that α(s, t) is the angle between the tangent vector T (t) and the vector ρ(s, t),

i.e. given t and α(s, t) from (C.8), the corresponding stationary s can be uniquely deter-

mined.

Since β(t) ∈ (π, 3π/2) is monotonically decreasing function of t, from equation (C.8) we

deduce that α(s, t) is monotone increasing function of t and α(s, t) ∈ (π/2, π). In other

words, as t increases from 0 to t1, the angle α(s, t) is monotonically increasing, assigning

correspondingly growing s. Moreover,

when t = 0, β(t) = 3π/2, → α(s, t) = π/2 → s = s∗, (C.9)

when t = t1, β(t) = π, → α(s, t) = π → s = t1. (C.10)

This concludes the proof.

The result of Lemma C.5 can be interpreted as follows: as t monotonically increases

from 0 to t1, the corresponding unique stationary point s also moves along the boundary

monotonically increasing in value starting from s∗ (until it reaches 2π, where it switches
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Figure C.4: The point tL that represent the limit of how far the transition zone Λ1 can extend
into the shadow is illustrated. There are similar restrictions for the domain Λ3 that can be derived
similarly to Λ1.

back to 0) to t1.

There exists a point tL ∈ (0, t1), such that

ψ′[d](tL) = 0,

where s = d is the end point of the Λ3: Λ3 = [c, d]. From Lemma C.5, we deduce that for

t > tL, and t < t1, there are no points s ∈ Λ1 ∪ Λ2 ∪ Λ3, with s < t, such that ψ′[s](t) = 0

holds.

Lemma C.6. Given t ∈ [t2, 2π], there exist unique s ∈ [0, 2π], such that (C.5) holds.

Moreover, for t ∈ [t∗, 2π], where t∗ ∈ (t2, 2π) can be found by solving for t ∈ (t2, 2π),

ψ′[0](t) = 0,

the unique point s that satisfies (C.5) is in s ∈ [0, s∗], where s∗ is defined as before:

r(s∗, 0) = a. While for t ∈ [π, t∗], equation (C.5) holds for s ∈ [t2, 2π] with t < s.

Proof. Follows analogously to the proof of Lemma C.5
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Corollary C.7. For t ∈ [a, t1) and s ∈ [a, d], s < t, the condition

ψ′[s](t) 6= 0, (C.11)

holds, provided that

a > tL,

where tL can be determined from the equation:

a · n(tL) = −r(d, tL) · n(tL),

or equivalently Ψt(d, tL) = 0.

Remark C.8. Let us consider the lower-triangular domain of (Λ1×Λ1) with Λ1 := [a, b] =

[a, t1] ∪ [t1, b].

Corollary C.7 implies the condition (C.11) is satisfied for t ∈ [a, t1] s ∈ Λ1 with s < t.

On the other hand, Lemma C.2 implies that given t ∈ [t1, b], the equation (C.5) holds for

s < t1. Therefore, the condition (C.11) is satisfied for t ∈ [t1, b] and s ∈ Λ1 with s < t.

Therefore, Hypothesis A is satisfied for (s, t) ∈ Λ1 × Λ1 with s > t.
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Appendix D

Chebyshev-weighted L2-norms.

Definition D.1. We call the functional ‖ · ‖L2[−1,1],ω : V → R, defined as

‖f‖L2[−1,1],ω :=

(∫ 1

−1

(f(x))2

√
1− x2

dx

)1/2

the Chebyshev-weighted L2-norm.

Note that since ∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=


0 : n 6= m

π : n = m = 0

π/2 : n = m 6= 0

for f(x) =
∑p

j=0 αjTj(x), x ∈ [−1, 1]:

‖f‖2L2[−1,1],ω =

∫ 1

−1

(f(x))2

√
1− x2

dx =

p∑
j=0

p∑
m=0

αjαm

∫ 1

−1

Tj(x)Tm(x)√
1− x2

dx =
π

2

 p∑
j=0

|αj |2
 .

Similarly, for g(x) =
∑p

j=0 αjSj(x) =
∑p

j=0 αjTj

(
2(x−a)
(b−a) − 1

)
, x ∈ [a, b]

∫ 1

−1

Tn(t)Tm(t)√
1− t2

dt =
(b− a)

2

∫ b

a

Sn(x)Sm(x)√
2(x−a)
b−a

√
2(b−x)
b−a

dx = (D.1)

∫ b

a

Sn(x)Sm(x)√
(a− x)(x− b)

dx =


0 : n 6= m

π : n = m = 0

π/2 : n = m 6= 0

(D.2)

hence

‖g‖2L2[a,b],ω =

∫ b

a

(g(x))2√
(x− a)(b− x)

dx =

p∑
j=0

p∑
m=0

αjαm

∫ b

a

Sj(x)Sm(x)√
(x− a)(b− x)

dx =
π

2

 p∑
j=0

|αj |2
 .

Therefore ‖v‖L2[−1,1],ω = ‖v‖L2[a,b],ω. The following proposition shows how L∞-norm is

bounded by the Chebyshev-weighted L2-norm.
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D. Chebyshev-weighted L2-norms.

Proposition 1.

||v(x)||2L∞([−1,1]) ≤
2(p+ 1)

π

∫ 1

−1

(v(x))2

√
1− x2

dx :=
2(p+ 1)

π
||v(x)||2L2,ω (D.3)

Proof. Since v(x) =
∑p

j=0 VjTj(x),

v2(x) =

 p∑
j=0

VjTj(x)

2

≤ (p+ 1)

 p∑
j=0

V 2
j

 .

Hence

v2(x) ≤ 2(p+ 1)

π

∫ 1

−1

v2(x)√
1− x2

dx

and (D.3) follows.

Lemma D.2 (Inverse estimate for weighted norm). For v(x) =
∑p

j=0 VjTj(x), the Chebyshev-

weighted L2-norm is bounded by L2-norm as follows:

||v(x)||L2([−1,1]),ω ≤
(

32(p+ 1)

π

)1/2

||v(x)||L2([−1,1])

Proof. Set εµp = 1− cos (1/µp) for µ ≥ 1. Since

∫ 1

−1

v2(x)√
1− x2

dx =

∫ −1

−1+εµp

v2(x)√
1− x2

dx+

∫ 1−εµp

−1+εµp

v2(x)√
1− x2

dx+

∫ 1

1−εµp

v2(x)√
1− x2

dx (D.4)

and

1.

max
x∈[−1,−1+εµp]

|v(x)| ≤ ||v(x)||L∞(I)

2.

max
x∈[−1+εµp,1−εµp]

1√
1− x2

≤ 1√
1− (1− εµp)2

=
1

sin (1/µp)
≤ 2µp

3. ∫ 1

1−εµp

dx√
1− x2

= π/2− arcsin (1− εµp) =
1

µp

we deduce∫ 1

−1

v2(x)√
1− x2

dx ≤ 2µp

∫ 1−εµp

−1+εµp

v2(x)dx+ 2||v(x)||2L∞(I)

∫ 1

1−εµp

dx√
1− x2

(D.5)

≤ 2µp

∫ 1−εµp

−1+εµp

v2(x)dx+
2

µp
||v(x)||2L∞(I) (D.6)
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Using Proposition 1 we can bound the latter integral as follows:∫ 1

−1

v2(x)√
1− x2

dx ≤ 2µp

∫ 1

−1
v2(x)dx+

4(p+ 1)

πµp

∫ 1

−1

v2(x)√
1− x2

dx.

Therefore for µ > µ∗, µ∗ = 8(p+1)
πp :

∫ 1

−1

v2(x)√
1− x2

≤

 2µp

1− 4(p+1)
πµp

∫ 1

−1
v2(x)dx.

Note that

min
µ∈(µ∗,∞)

 2µp

1− 4(p+1)
πµp

 =
32(p+ 1)

π

Finally, ∫ 1

−1

v2(x)√
1− x2

dx ≤ 32(p+ 1)

π

∫ 1

−1
v2(x)dx.
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Appendix E

Behaviour of the integrand in the

transformed integrals.

We have shown in Chapter 4 that the double integral (4.11) can be written in the form,

I
[τ0,τmax]
k [F ] :=

N−1∑
j=0

∫ τj+1

τj

Fj(τ) exp(ikτ)dτ, (E.1)

with an integrand function Fj of the form

Fj(τ) =

∫ r2,j(τ)

r1,j(τ)

M(s, ψ−1
[s] (τ))∣∣∣ψ′[s](ψ−1

[s] (τ))
∣∣∣ds,

where r1,j(τ) and r2,j(τ) are the upper and lower boundaries defined in e.g. Table 4.2. The

integral of the form (E.1) can be efficiently approximated using Filon-type quadrature. In

order to determine the accuracy of such approximation, the regularity of the functions Fj

must be known.

Let us introduce, for convenience, a function G,

G(s, t) :=
M(s, t)

ψ′[s](t)
= M1(s, t)∂n(s))Φk(s, t) +M2(s, t)Φk(s, t),= G1(s, t) +G2(s, t), (E.2)

where functions M1(s, t) and M2(s, t) are smooth. Note that since Hypothesis A is sat-

isfied, the function ψ′[s](t) does not vanish and and the function 1/ψ′[s](t) is smooth. In

the notation introduced in (E.2), the function ψ′[s](t) has been absorbed in M1(s, t) and

M2(s, t).

In this section, we return to the example from Section 4.3 where the original domain of

integration is (Λ2 × Λ2)+, see (4.96),

Jk :=

∫ c

b

∫ c

s
M(s, t) exp (ikΨ(s, t)) dtds

=

∫ τ1

0
F1(τ) exp(ikτ)dτ +

∫ τmax

τ1

F2(τ) exp(ikτ)dτ,
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with F1 : [0, τ1]→ R and F2 : [τ1, τmax]→ R defined as,

F1(τ) =

∫ r(τ)

b
G
(
s, ψ−1

[s] (τ)
)
ds, F2(τ) =

∫ r2(τ)

r1(τ)
G
(
s, ψ−1

[s] (τ)
)
ds,

where,

r(τ) =
(
ψ[c]
)−1

(τ),

and

r1(τ) =
(
ψ[c]
)−1

(τ) ∈ [b, ξc], and r2(τ) =
(
ψ[c]
)−1

(τ) ∈ [ξc, c],

where ξc is defined in (4.95).

We will prove in this section that F1 has a log-singularity at τ = 0 and F2 has a square-

root singularity at τ = τmax. We do this in Section E.1 and Section E.1 respectively. We

will also prove in Section E.2 that away from these singularities, functions F1 and F2 are

smooth.

In the notation of (E.2), we can write

F1(τ) =

∫ r(τ)

b
G1(s, ψ−1

[s] (τ))ds+

∫ r(τ)

b
G2(s, ψ−1

[s] (τ))ds = A(τ) +B(τ). (E.3)

E.1 Log-singularity

Lemma E.1 (Logarithmic singularity, single-layer case). The function B(τ) in (E.3),

defined as

B(τ) =

∫ r(τ)

b
G2(s, ψ−1

[s] (τ))ds =

∫ r(τ)

b
M2(s, ψ−1

[s] (τ))Φ(s, ψ−1
[s] (τ))ds (E.4)

where Φk(s, t) is the fundamental solution of the Helmholtz equation,

Φk(s, t) =
i

4
H

(1)
0 (k |γ(s)− γ(t)|) , (E.5)

can be written in the form

B(τ) = (E1 ◦ r2) (τ) + (E2 ◦ r2) (τ) log τ, (E.6)

where Em(x) : [a, b]→ R, m = 1, 2, is defined as

Em(x) =

∫ x

b
Em(s, ψ−1

[s] (φ(x))ds, (E.7)

where Em(s, t), m = 1, 2, are smooth functions on [Λl,Λj ], l, j = 1, 2, 3.
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Proof. We assume for the purpose of this example that the boundary Γ is analytic. We

can write the function Φk(s, t) as follows:

Φk(s, t) = Φ1(s, t) + Φ2(s, t) log

(
4 sin2 s− t

2

)
, (E.8)

where Φ1(s, t) and Φ2(s, t) are analytic functions [34], since Γ is analytic. Now, for sim-

plicity, we write the integral in (E.4) as

B(τ) =

∫ r2(τ)

b
G1(s, ψ−1

[s] (τ))ds, (E.9)

where G1(s, t) can now be written using (E.8) as

G1(s, t) = E1(s, t) + E2(s, t) log

(
4 sin2 s− t

2

)
, (E.10)

where E1(s, t) and E2(s, t) are smooth functions. Then adding and subtracting E2(s, t) log τ2,

we obtain

G1(s, ψ−1
[s] (τ)) = E1(s, ψ−1

[s] (τ)) + E2(s, ψ−1
[s] (τ)) log

4 sin2

(
s−ψ−1

[s]
(τ)

2

)
τ2


+ E2(s, ψ−1

[s] (τ)) log τ2. (E.11)

Then, we can prove that the second term in (E.11) is smooth by expanding the function

ψ−1
[s] (τ) in Taylor series around τ = 0:

ψ−1
[s] (τ) = ψ−1

[s] (0) +
(
ψ−1

[s]

)′
(0)τ +

1

2

(
ψ−1

[s]

)′′
(ξ)τξ, where ξ ∈ (0, τ)

= s+ C1τ + C2τξ.

Then,

sin2
(
s− ψ−1

[s] (τ)
)

= Cτ2 +O(τ4).

Therefore, 4 sin2

(
s−ψ−1

[s]
(τ)

2

)
/τ2 is a smooth function of τ ∈ [0, τmax]. Finally returning

to the equation (E.11), we obtain

G1(s, ψ−1
[s] (τ)) = Ẽ1(s, ψ−1

[s] (τ)) + E2(s, ψ−1
[s] (τ)) log τ, (E.12)

where Ẽ1(s, t) and E2(s, t) are smooth functions. Substituting this into (E.9), we deduce

B(τ) =

∫ r2(τ)

b
Ẽ1(s, ψ−1

[s] (τ))ds+ log τ

∫ r2(τ)

b
E2(s, ψ−1

[s] (τ))ds. (E.13)
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This concludes the proof.

Remark E.2. Lemma E.1 proves that the function B(τ) defined in (E.3) has a log-

singularity as τ → ∞. The function A(τ) also has a logarithmic singularity as τ → 0

since the kernel in the integrand function of A can be decomposed similarly to (E.10),

[67]. Analogous result can be shown for the function A in a similar manner.

Square-root singularity In this section we will consider the behaviour of the function

F2 at τ = τmax, where

τmax = ψ[c](ξc)

with ξc defined in (4.95) as(
φ[c]
)′

(ξc) = 0,
(
φ[c]
)′′

(ξc) 6= 0. (E.14)

Proposition E.3. The function F2(τ) can be written as

F2(τ) =

∫ ξc

r1(τ)
G(s, ψ−1

[s] (τ))ds+

∫ r2(τ)

ξc

G(s, ψ−1
[s] (τ))ds,

= G ◦ r1(τ) + G ◦ r2(τ), (E.15)

where G(x) : [ξc, b]→ R,

G(x) =

∫ x

ξc

G(s, ψ−1
[s] (φ(x))ds. (E.16)

Proof. From Lemma 4.11 and (E.14), it follows that functions r1(τ) and r2(τ), have a

square-root singularity at τ = τmax and then using Theorem 4.10 we conclude that F2 has

a square-root singularity at τ = τmax.

In the next section, we prove that the function G in (E.16) and the functions Em, m = 1, 2

defined in (E.7) are smooth.

E.2 Smoothness of the integrand function away from singu-

larities

The main result in this section is Theorem E.10, where we prove that the function G
defined in (E.16) and the function E defined in (E.7) are smooth. We will prove Theorem

E.7 using two lemmas that we present first. In Lemma E.5, we prove a simpler result for

an operator F(x) :=
∫ x
s0
F (s, x)ds with well behaved integrand function F . In Lemma

E.6, we consider more complicated integrand: a composite of two well behaved functions.

Finally, in the Theorem E.7, we specify the conditions on the integrand in order to ensure
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the smoothness of the operator. Now what remains is to show that the integrands in E
and G satisfy these conditions. We do this in Lemma E.9.

We introduce the following notation: let Ix, Is and It be three intervals in R such that

Ix ⊂ Is. Let F : Is × Ix → R be given. We denote the n-th derivative of F with respect

to its j-th argument as ∂nj F . Similarly, we denote the n-th derivative of F with respect

to s variable as ∂ns F and t variable as ∂nt F .

Definition E.4. We say that F (s, x) satisfies the condition A if there exist constants

An and A′n,m, such that

sup
s∈Is
x∈Ix

|(∂n2F ) (s, x)| ≤ An, (A1)

sup
x∈Ix

∣∣∣∣ dmdxm [(∂n2F ) (x, x)]

∣∣∣∣ ≤ A′n,m. (A2)

Lemma E.5. Suppose that Ix ⊂ Is, and condition A holds. For s0 ∈ Is, x ∈ Ix ⊂ Is

define

F(x) =

∫ x

s0

F (s, x)ds.

Then F is infinitely continuously differentiable and for n ≥ 1,

(
dnF
dxn

)
(x) =

n−1∑
j=0

dn−j−1

dxn−j−1

((
∂j2F

)
(x, x)

)
+

∫ x

s0

(∂n2F ) (s, x)ds. (E.18)

Proof. We begin by deriving the formula (E.18). The first derivative of F is

dF
dx

(x) = lim
∆x→0

F(x+ ∆x)−F(x)

∆x
= lim

∆x→0

∫ x+∆x
s0

F (s, x+ ∆x)ds−
∫ x
s0
F (s, x)ds

∆x

= lim
∆x→0

∫ x+∆x
x F (s, x+ ∆x)ds

∆x
− lim

∆x→0

∫ x
s0

(F (s, x+ ∆x)− F (s, x)) ds

∆x

= F (x, x) +

∫ x

s0

(
∂1

2F
)

(s, x)ds.

The formula (E.18) then follows by induction. Since F (s, x) satisfies the condition A,
dnF
dxn (x) is bounded for all n ≥ 1, x ∈ Ix. Since all of the derivatives of F(x) are bounded,

F(x) is infinitely continuously differentiable.

Now consider the following example:

F (s, x) = G (s, η(s, x)) , (E.19)
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where the functions G : Is × It → R and η : Is × Ix → It satisfy the following conditions,

sup
s∈Is
t∈It

|(∂m1 ∂n2G) (s, t)| ≤ Bn,m, (B1)

and

η(x, x) = b = const for all x ∈ Ix, (C1)

sup
s∈Is
x∈Ix

|(∂n2 η) (s, x)| ≤ Cn, (C2)

sup
x∈Ix

∣∣∣∣ dmdxm [(∂n2 η) (x, x)]

∣∣∣∣ ≤ C ′n,m. (C3)

Lemma E.6. If G(s, t) satisfies (B1) and η(s, x) satisfies (C1), (C2) and (C3), then

F (s, x), defined in (E.19), satisfies condition A.

Proof. Using Faa di Bruno’s formula, we deduce that

(∂n2F ) (s, x) =

(
∂n

∂xn

)
[G(s, η(s, x))]

=

n∑
j=1

(
∂j2G

)
(s, η(s, x))Bn,j

(
(∂1

2η)(s, x), . . . , (∂n−j+1
2 η)(s, x)

)
,

where Bn,j is the Bell Polynomial [11], whose coefficients are finite. From (B1) and (C2),

we deduce that (A1) holds.

On the other hand, using (C1), we deduce that

(∂n2F ) (x, x) =

n∑
j=1

(
∂j2G

)
(x, b)Pn,j

(
(∂1

2η)(x, x), . . . , (∂n−j+1
2 η)(x, x)

)
. (E.22)

Now, the function (∂n2F ) (x, x) is a smooth function with respect to the variable x since

(B1) and (C3) hold. Thus (A2) is satisfied and condition A holds.

Theorem E.7. Consider the function G(x), defined as

G(x) =

∫ x

s0

G (s, η(s, x)) ds, (E.23)

where G(s, t) and η(s, x) satisfy (B1) and (C1), (C2), (C3). Then

G ∈ C∞ (Ix) . (E.24)

Proof. From Lemma E.6, we deduce that F (s, x) = G(s, η(s, x)), satisfies the condition

A. Therefore, by Lemma E.5, G is infinitely continuously differentiable.
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Definition E.8. We define the function ψ[s] : It → [τ0, τmax] as follows: for a fixed s ∈ Is,

ψ[s](t) := Ψ(s, t). (E.25)

In the following lemma, we prove that the function η(s, x) = ψ[s](φ(x)) satisfies conditions

(C1), (C2) and (C3).

Lemma E.9. For φ : Ix → [τ0, τmax] such that φ(x) := ψ[s](b) where ψ[s] : It → [τ0, τmax],

s ∈ Is is defined in (E.25), define the function η : Is × Ix → It as follows:

η(s, x) = ψ−1
[s] (φ(x)) . (E.26)

Then, η(s, x) satisfies (C1), (C2) and (C3), provided ψ
′

[s](t) 6= 0.

Proof. Condition (C1). We begin with the identity

ψ−1
[s]

(
ψ[s](t)

)
= t, ⇐⇒ ψ−1

[s]

(
ψ[s](b)

)
= b, ⇐⇒ ψ−1

[s] (φ(s)) = b.

The final equation is obtained by the definition of ψ[s](t) and φ(s). Substituting s = x,

we obtain the result.

Condition (C2). Assume that ψ
′

[s](t) 6= 0, s ∈ Is, t ∈ It. We know that the phase-

function Ψ(s, t), defined in (4.12), satisfies (B1), provided the boundary Γ is smooth.

Therefore ψ[s](t) is continuously differentiable and has non-zero derivative. By the inverse

function theorem, the inverse of ψ[s](t) is also continuously differentiable. Then for fixed

s, η(s, x) is a composition of two continuously differentiable functions and therefore must

satisfy (C2).

Condition (C3). Consider the function t = ψ−1
[s] (τ). The first derivative is continuous:

(ψ−1
[s] )′(τ) =

1

(∂1
2Ψ)(s, ψ−1

[s] (τ))
.

If we differentiate this function again, we obtain:

(
ψ−1

[s] )
′′
(τ)
)

= ∂1
2

(
1

(∂1
2Ψ)(s, ψ−1

[s] (τ))

)
= −

[
(∂2

2Ψ)(s, ψ−1
[s] (τ))

]
[
ψ
′
[s](ψ

−1
[s] (τ))

]2 ,

which is bounded. Similarly, for j ≥ 1, (ψ−1
[s] )(j)(τ) is equal to: using Faa di Bruno’s
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formula,

(
ψ−1

[s]

)(n+1)
(τ) =

n∑
j=1

∂j2

(
1

(∂1
2Ψ)(s, ψ−1

[s] (τ))

)
Bn,j

(
(ψ−1

[s] )′(τ), . . . , (ψ−1
[s] )(n−j+1)(τ)

)
.

(E.27)

Thus, if the first derivative of ψ−1
[s] (τ) is bounded, the all derivatives are also bounded.

This can be shown by induction using (E.27).

Also using Faa di Bruno’s formula, we deduce

(∂n2 η) (s, x) =
n∑
j=1

(
ψ−1

[s]

)(j)
(φ(x))Bn,j

(
φ′(x), . . . , φn−j+1(x)

)
. (E.28)

Since φ(x) is a smooth and bounded function, we conclude that the condition (C3) holds.

Theorem E.10. Functions G(x) defined in (E.16) and E(x) defined in (E.7) are smooth.

Proof. The condition (B1) is satisfied by the definitions of G(s, t) and E(s, t) in (E.16)

and (E.7). Therefore, the result follows from Theorem E.7 and Lemma E.9.
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Appendix F

Proof of Lemma 4.8

The proof of Lemma 4.8 requires an intermediate result which we prove in Lemma F.1.

Lemma F.1. Let

g(x) = |x|, x ∈ Rd.

For each p ∈ Nd there exist functions aj and bj ∈ C∞
(
Rd
)

such that

(Dp
xg) (x) =

|p|∑
j=0

aj(x)bj

(
x

|x|

)
|x|1−j ,

where Dp
x denotes any partial derivative of order |p| with respect to x.

Hence if x ranges over a bounded domain in Rd,

|(Dp
xg) (x)| ≤ Cp

(
|x|1−|p|

)
, (F.1)

with Cp independent of x.

Proof. The proof follows by induction on n := |p|. For n = 0 (F.1) holds because

(Dp
xg) (x) = g(x) = |x| = |x|1−0.

Now suppose that (F.1) is true for |p| = n. Then if p = n+ 1, we have

Dp =
∂

∂xi
Dp′ ,

for some |p′| = n and some i = 1, 2, 3. Then

(Dp
xg) (x) =

∂

∂xi


n∑
j=0

aj(x)bj

(
x

|x|

)
|x|1−j

 .
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F. Proof of Lemma 4.8

Then the result follows since

∂

∂xi

{
bj

(
x

|x|

)}
=

d∑
k=1

∂bj
∂xk

(
x

|x|

)
∂

∂xi

(
xk
|x|

)

=
d∑

k=1

∂bj
∂xk

(
x

|x|

)(
δik −

xixk
|x|3

)

=
∂bj
∂xi

(
x

|x|

)
−

d∑
k=1

(
x

|x|

)
∂bj
∂xk

(
xi
|x|

)(
xk
|x|

)

and

∂

∂xi

{
|x|1−j

}
= xi|x|−j−1 =

xi
|x| |x|

−j

=
xi
|x| |x|

1−(j+1).

Proof of Lemma 4.8

Proof. Since

r(s, t) = g(γ(s)− γ(t)),

we have by Lemma F.1,

(
Dp

(s,t)r
)

(x) =

(
∂

∂s

)p1
(
∂

∂t

)p2

{g(γ(s)− γ(t))} , (F.2)

where

Dp
(s,t)r(s, t) :=

∂|p|

∂sp1∂tp2
(r(s, t)) .

The right hand side of (F.2) is a linear combination of

(Dq
xg) (γ(s)− γ(t)),

for |q| ≤ |p| with smooth coefficients. Hence the result follows from Lemma F.1.
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Appendix G

Proof of Proposition 3.22

Proof. We begin by writing out the equation (3.117) in terms of the function W which

represents the Airy function Ai or Bi,

(
∆ + k2

) (
W
(
−k2/3µ(x, γ)

)
A(x, γ, k) + ik−1/3W ′

(
−k2/3µ(x, γ)

)
B(x, γ, k)

)
eikξ(x,γ) = 0.

First, recall that ∆(fg) = ∇ · ∇(fg) = g∆f + 2∇f · ∇g + f∆g, therefore

(
∆ + k2

)
eikξD = eikξ

((
∆ + k2

)
D + 2ik∇D · ∇ξ − k2|∇ξ|2D + ik(∆ξ)D

)
= 0. (G.1)

Further, remembering that the Airy function W satisfies the Airy equation (3.23), we

deduce

∇D =
N∑
j=0

k−j
(
W
(
−k2/3µ

)
∇Aj − k2/3W ′

(
−k2/3µ

)
∇µAj

)

+ ik−1/3
N∑
j=0

k−j
(
W ′
(
−k2/3µ

)
∇Bj − k2/3W ′′

(
−k2/3µ

)
∇µBj

)

=

N∑
j=0

k−j
(
W
(
−k2/3µ

)
∇Aj − k2/3W ′

(
−k2/3µ

)
∇µAj

)

+ ik−1/3
N∑
j=0

k−j
(
W ′
(
−k2/3µ

)
∇Bj + k4/3µW

(
−k2/3µ

)
∇µBj

)
and

∆D =
N∑
j=0

k−j
[
W
(
−k2/3µ

)
∆Aj − 2k2/3W ′

(
−k2/3µ

)
(∇Aj · ∇µ)

− k2/3W ′
(
−k2/3µ

)
∆µAj − k2µW

(
−k2/3µ

)
Aj |∇µ|2

]
+ ik−1/3

N∑
j=0

k−j
[
W ′
(
−k2/3µ

)
∆Bj + 2k4/3W

(
−k2/3µ

)
µ(∇Bj · ∇µ)

+ k4/3W
(
−k2/3µ

)
|∇µ|2Bj + k4/3µW

(
−k2/3µ

)
∆µBj

−k2µW ′
(
−k2/3µ

)
|∇µ|2Bj

]
.
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G. Proof of Proposition 3.22

Substituting ∇D and ∆D into equation (G.1),we obtain

e−ikξ
((

∆ + k2
) [
eikξD

])
=

N∑
j=0

k−j
[
W
(
−k2/3µ

)
∆Aj − 2k2/3W ′

(
−k2/3µ

)
(∇Aj · ∇µ)

− k2/3W ′
(
−k2/3µ

)
∆µAj − k2µW

(
−k2/3µ

)
Aj |∇µ|2

]
+ ik−1/3

N∑
j=0

k−j
[
W ′
(
−k2/3µ

)
∆Bj + 2k4/3W

(
−k2/3µ

)
µ(∇Bj · ∇µ)

+ k4/3W
(
−k2/3µ

)
|∇µ|2Bj + k4/3µW

(
−k2/3µ

)
∆µBj − k2µW ′

(
−k2/3µ

)
|∇µ|2Bj

]
N∑
j=0

k−j
(
k2
(
1− |∇ξ|2

)
+ ik∆ξ

) [
W
(
−k2/3µ

)
Aj + ik−1/3W ′

(
−k2/3µ

)
Bj

]

+ 2ik
N∑
j=0

k−j
(
W
(
−k2/3µ

)
∇Aj · ∇ξ − k2/3W ′

(
−k2/3µ

)
∇µ · ∇ξAj

)

+ (2ik)ik−1/3
N∑
j=0

k−j
(
W ′
(
−k2/3µ

)
∇Bj · ∇ξ − k4/3µW

(
−k2/3µ

)
∇µ · ∇ξBj

)
,

and comparing coefficients in k2 and k2−1/3, we obtain:{ (
|∇ξ|2 + µ|∇µ|2 − 1

)
A0 − 2(∇µ · ∇ξ)µB0 = 0,(

|∇ξ|2 + µ|∇µ|2 − 1
)
B0 + 2(∇µ · ∇ξ)A0 = 0.

In order to make sure that A0(x, γ) 6= 0 and B0(x, γ) 6= 0, we require µ(x, γ) and ξ(x, γ)

to satisfy (3.118).
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