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Summary

Topology optimization is a tool for finding a domain in which material is placed that

optimizes a certain objective function subject to constraints. This thesis considers

topology optimization for structural mechanics problems, where the underlying PDE

is derived from linear elasticity.

There are two main approaches for solving topology optimization: Solid Isotropic

Material with Penalisation (SIMP) and Evolutionary Structural Optimization (ESO).

SIMP is a continuous relaxation of the problem solved using a mathematical program-

ming technique and so inherits the convergence properties of the optimization method.

By contrast, ESO is based on engineering heuristics and has no proof of optimality.

This thesis considers the formulation of the SIMP method as a mathematical op-

timization problem. Including the linear elasticity state equations is considered and

found to be substantially less reliable and less efficient than excluding them from the

formulation and solving the state equations separately. The convergence of the SIMP

method under a regularising filter is investigated and shown to impede convergence. A

robust criterion to stop filtering is proposed and demonstrated to work well in high-

resolution problems (O(106)).

The ESO method is investigated to fully explain its non-monotonic convergence

behaviour. Through a series of analytic examples, the steps taken by the ESO algorithm

are shown to differ arbitrarily from a linear approximation. It is this difference between

the linear approximation and the actual value taken which causes ESO to occasionally

take non-descent steps. A mesh refinement technique has been introduced with the sole

intention of reducing the ESO step size and thereby ensuring descent of the algorithm.

This is shown to work on numerous examples.

Extending the classical topology optimization problem to included a global buckling

constraint is considered. This poses multiple computational challenges, including the

introduction of numerically driven spurious localised buckling modes and ill-defined

gradients in the case of non-simple eigenvalues. To counter such issues that arise

in a continuous relaxation approach, a method for solving the problem that enforces

the binary constraints is proposed. The method is designed specifically to reduce the

number of derivative calculations made, which is by far the most computationally

expensive step in optimization involving buckling. This method is tested on multiple

problems and shown to work on problems of size O(105).
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1
Introduction

1.1 Motivation of the thesis

Topology optimization aims to answer the question, what is the best domain in which

to distribute material in order to optimise a given objective function subject to some

constraints?

Topology optimization is an incredibly powerful tool in many areas of design such

as optics, electronics and structural mechanics. The field emerged from structural

design and so topology optimization applied in this context is also known as structural

optimization.

Applying topology optimization to structural design typically involves considering

quantities such as weight, stresses, stiffness, displacements, buckling loads and resonant

frequencies, with some measure of these defining the objective function and others

constraining the system. For other applications aerodynamic performance, optical

performance or conductance may be of interest, in which case the underlying state

equations are very different to those considered in the structural case.

In structural design, topology optimization can be regarded as an extension of

methods for size optimization and shape optimization. Size optimization considers a

structure which can be decomposed into a finite number of members. Each member

is then parametrised so that, for example, the thickness of the member is the only

variable defining the member. Size optimization then seeks to find the optimal values

of the parameters defining the members.

Shape optimization is an extension of size optimization in that it allows extra free-

doms in the configuration of the structure such as the location of connections between

members. The designs allowed are restricted to a fixed topology and thus can be written

using a limited number of optimization variables.

Topology optimization extends size and shape optimization further and gives no
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restrictions to the structure that is to be optimized. It simply seeks to find the optimal

domain of the governing equations contained within some design domain.

Definition 1.1. The design domain is a 2-dimensional area or 3-dimensional volume

in which the optimal domain can be contained.

To solve a topology optimization problem the design domain is discretised and the

presence of material in any of the resulting divisions denotes each individual optimiza-

tion variable. The goal is then to state which of the discretised portions of the design

domain should contain material and which should not contain material. With the

objective function denoted by φ and constraints on the system denoted ψ, then the

topology optimization problem can be written

min
x

φ(x) (1.1a)

subject to ψ(x) ≤ 0 (1.1b)

and xi ∈ {0, 1} (1.1c)

where xi = 0 represents no material in element i of the design domain and xi = 1

represents the presence of material in element i of the design domain.

(a) Example of a 2D design domain of a topol-
ogy optimization problem

(b) Example of the discretisation of a design
domain of a topology optimization problem

Figure 1-1: Design domain and discretisation of a 2D topology optimization problem.
The design domain is the area or volume contained within the given boundary in which
material is allowed to be placed. This region is then discretised into smaller divisions
within which we associate the presence of material with an optimization variable.
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f

Figure 1-2: Design domain of the short cantilevered beam showing the applied load f
and the fixed boundary conditions

This thesis is concerned with investigating the techniques and issues that arise when

topology optimization is applied to structural design. In a illustrative example of this,

(1.1) could have the form

min
x

fTu(x) (1.2a)

subject to
∑
i

xi − V ≤ 0 (1.2b)

K(x)u(x) = f (1.2c)

and xi ∈ {0, 1} (1.2d)

where K(x)u(x) = f is the finite-element formulation of the equations of linear elas-

ticity, relating the stiffness matrix K(x) and the displacements u(x) resulting from

an applied load f . Here the objective is minimising the compliance of the structure

(equivalently maximising its stiffness) subject to an upper bound V on the volume of

the structure.

Compliance measures the external work done on the structure. It is the sum of all

the displacements at the points where the load is applied, weighted by the magnitude

of the loading. Hence minimising this quantity minimises the deflection of the structure

due to an applied load and thus maximises the stiffness of the structure.

There are two distinct approaches to solving this optimization problem: a contin-

uous relaxation of the binary constraint (1.1c) which is referred to as Solid Isotropic

Material with Penalisation (SIMP) and a method based on engineering heuristics re-

ferred to as Evolutionary Structural Optimization (ESO). The SIMP approach uses
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(a) Typical convergence of SIMP approach to
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(b) Typical convergence of ESO approach to
topology optimization

Figure 1-3: Convergence behaviour of different approaches to topology optimization

a mathematical programming technique and so inherits the convergence properties of

the optimization method used, whereas the ESO method does not have such qualities.

Figure 1-2 shows a test example known as the short cantilevered beam. Figure 1-3

shows the objective function history of applying both the SIMP approach and the ESO

method to the short cantilevered beam. It can be seen that the SIMP approach has

monotonic convergence whereas the ESO method takes many non-descent steps. Roz-

vany 2008 [139] wrote a highly critical article in which the lack of mathematical theory

for ESO led him to favour such methods as SIMP for topology optimization. This

motivates this thesis to bring together all the existing theory for the SIMP approach

and to further develop the theory of ESO.

1.2 Aims of the thesis

This thesis aims to give a formal mathematical justification to the choice of approaches

used to solve topology optimization problems applied to structural design. Previous

work has concentrated on comparisons between different approaches and selecting an

appropriate method for a given problem. Different approaches for topology optimiza-

tion will be considered in isolation and questions pertaining to them will be answered,

as opposed to proposing an alternative solution method. This new in-depth knowledge

of the approaches can then be used to inform the choice of approach taken to solve a

structural optimization problem.
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1.3 Achievements of the thesis

1. This thesis thoroughly investigates the convergence behaviour of the ESO method

for topology optimization. A discrete heuristic method, ESO is seen to take non-

descent steps and these have been explained by observing the nonlinear behaviour

of the linear elasticity equations with respect to varying the domain of the PDE.

Furthermore, this behaviour has been eradicated by introducing a simple adaptive

mesh refinement scheme to allow smaller changes in the structure to be made.

This is covered in Chapter 7.

2. Including the solution of the state equations in the formulation of a topology op-

timization problem using the SIMP approach has been implemented in multiple

optimization software packages. In all cases the same difficulty in finding feasible

solutions was found, and this motivated the proof that certain constraint qualifi-

cations do not hold in this formulation. This result then gives a solid justification

for why removing these variables from the optimization formulation has gained

prevalence over solving the same problem with them included. Poor convergence

is observed when filtering is applied to regularise the problem. A robust crite-

rion to stop filtering is proposed to recover convergence. This forms the basis of

Chapter 5.

3. This thesis then considers extending the classical structural optimization problem

to include a buckling constraint. This extra constraint significantly increases the

difficulty of the problem when the optimization variables are relaxed to vary con-

tinuously. Spurious localised buckling modes are observed in this approach and

a formal justification for a technique to eradicate them is given. This eradica-

tion technique then leads to the calculation of critical loads that are inconsistent

with the underlying state equations. To avoid these issues, and to have a com-

putationally efficient solution method for such problems, a new method designed

specifically for this problem is introduced which has been published in Browne et

al. 2012 [27]. This is shown in Chapter 6.

4. In the process of bringing together the theory of linear elasticity which is appli-

cable to topology optimization, a gap has been found in the literature (Karal and

Karp 1962 [84]) of the categorisation of singularities which occur at a re-entrant

corner. Knowledge of these singularities is essential when analysing topology op-

timization methods as some authors believe them to be a source of numerical

error. The classification of the singularity which occurs at a re-entrant corner is

formalised in Chapter 3.
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5. It has been shown that for the linear elasticity systems considered in topology

optimization, direct linear algebra methods remain very effective on problems

with matrices of size O(106).

These achievements have immediate importance in the engineering application of topol-

ogy optimization. The most efficient and robust formulation of the general topology

optimization problem as a mathematical programming problem has been stated. How-

ever, the traditional engineering approach to topology optimization is the ESO method

which relied on heuristics for its justification. A simple modification to the ESO algo-

rithm, motivated by a new understanding of its nonmonotonic convergence behaviour,

then resulted in monotonic convergence to an approximate stationary point, hence

verifying ESO as an optimization algorithm. This is a very important result for the

community of researchers working on ESO, as previously their method had little math-

ematical justification.

1.4 Structure and content of the thesis

For a comprehensive view of the field of topology optimization it is necessary to bring

together three key areas of science; namely, elasticity theory, engineering and optimiza-

tion theory. This thesis begins by covering these areas before moving on to showing the

original new work in the subsequent chapters. Hence the thesis is organised as follows.

Chapter 2 contains a comprehensive literature review of the field of structural op-

timization. Truss topology optimization, optimization of composites and topological

derivatives are detailed in the early sections, though are not investigated in this thesis.

The technique of homogenisation for structural optimization is detailed in Section 2.5

which leads into the review of the SIMP method in Section 2.6. The SAND approach to

formulating the optimization problem is reviewed in Section 2.7. ESO and its successor

BESO are reviewed in Section 2.8 followed by a review of the work that has been done

on buckling optimization in Section 2.9. Finally in Chapter 2, this thesis examines

the literature on chequerboard patterns emerging in topology optimization, symmetry

properties of optimal solutions and linear algebra matters.

Chapter 3 contains the derivation and analysis of the state equations that are used

to compute the response of a structure to an applied load. Starting with Newton’s laws

of motion, in Section 3.1 the Lamé equation is derived which is the underlying PDE to

be solved. The process of discretising this PDE in a finite element context is presented

for linear elasticity in Section 3.2. In Section 3.3, the conditioning of the finite element

stiffness matrices are considered. The stress stiffness matrix is derived in Section 3.4,

which is used to compute the linear buckling load of a structure. Section 3.5 describes
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the linear algebra technique employed to find the buckling load of a structure. Finally,

corner singularities inherent in the underlying equations are discussed in Section 3.6

by first considering Poisson’s equation and then looking at the elasticity case.

In Chapter 4 mathematical optimization methods are surveyed, beginning with

general definitions in Section 4.1. The simplex method for linear programming is

discussed in Sections 4.2 and 4.3. Integer programming methods are covered in Sections

4.4 to 4.6. Nonlinear continuous programming methods are explored in Sections 4.7 to

4.11.

Chapter 5 is concerned with the formulation of structural optimization as an math-

ematical programming problem that can be solved efficiently using the methods of

Chapter 4. Sections 5.1 and 5.2 formulate the problem in the SIMP approach. Section

5.3 discusses appropriate optimization methods to solve the mathematical program-

ming problem. Section 5.4 investigates the possibility of including the state equations

directly in the optimization formulation. Section 5.5 introduces filters in order to regu-

larise the problem and make it well posed. Finally Section 5.6 shows the latest results

in solving this particular structural optimization problem.

In Chapter 6 adding a buckling constraint to the standard structural optimization

problem is considered. This adds a great deal of complexity and introduces a number

of issues that do not arise in the more basic problem considered in Chapter 5. Section

6.1 introduces the buckling constraint and shows how a direct bound on the buckling

constraint becomes non-differentiable when there is a coalescing of eigenvalues. Sec-

tion 6.2 discusses the issues arising with spurious buckling modes. The problem is

reformulated in Sections 6.3 to 6.4 and an analytic formula for the derivative of the

stress stiffness matrix is presented. In Section 6.5 we then introduce a new method in

order to efficiently compute a solution to an optimization problem involving a buckling

constraint.

Chapter 7 is concerned with the convergence of the ESO algorithm and contains

substantial new results on the topic. Section 7.1 commences the chapter by introducing

the algorithm. This is followed by a typical example of the convergence behaviour of

the algorithm. The choice of strain energy density as the sensitivity is demonstrated

in Section 7.3. Sections 7.4 and 7.5 find analytic examples of nonlinear and linear

behaviour of the linear elasticity equations respectively. A motivating example in the

continuum setting is presented in Section 7.6 that shows the nonlinear behaviour of the

algorithm and inspires the modified ESO algorithm which is given in Section 7.7. This

modified algorithm is then applied to the tie beam problem in Section 7.8 in order to

show its effectiveness.

Finally, Chapter 8 concludes the thesis by recounting the achievements and limita-

7



Chapter 1. Introduction

tions of the work. Ideas for future work are set out as possible topics for investigation.
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2
Literature review

In this chapter the history of structural optimization will be reviewed. Starting from

its beginnings with analytic optima of simple structures going through to the com-

putational methods used to optimize complex structures, this chapter will detail the

methods used and the difficulties associated with each. The theory and applications of

SIMP and ESO will be detailed, followed by listing some properties of the solutions to

structural optimization problems, such as ill-posedness and symmetries.

2.1 The foundations of structural optimization

Structural optimization can easily be traced back to 1904 when Michell derived formulae

for structures with minimum weight given stress constraints on various design domains

[112]. Save and Prager 1985 [147] proved that the resulting structures (known at

the time as Michell structures) had the minimum compliance for a structure of the

corresponding volume and hence were global optimum of minimisation of compliance

subject to volume problems.

Long before this, one-dimensional problems were considered by Euler and Lagrange

in the 1700s. They were interested in problems to design columns [49] or bars for which

the optimal cross-sectional area needed to be determined. Euler also considered the

problem of finding the best shape for gear teeth [50]. Typically an analytic solution to

a structural optimization problem may only be found for very specific design domains

and loading conditions such as those considered by Michell. Automating the solution of

the state equations using the finite element method with computers allowed significant

advances in the field of structural optimization (see for example, Schmit and Fox [148]).

In 1988, Bendsøe and Kikuchi [21] used a homogenisation method which allowed

them to create microstructure in the material. This resulted in a composite-type struc-

ture where material in each element was composed of both solid material and voids.

9



Chapter 2. Literature review

This was the first foray into a continuous relaxation of the problem and will be discussed

in Section 2.5.

In both the Solid Isotropic Material with Penalisation (SIMP) and Evolutionary

Structural Optimization (ESO) approaches (which will be introduced in sections 2.6

and 2.8 respectively), the topology of the structure is typically represented by values of

material in an element of a finite-element mesh. Other representations of the structure

are possible, for example, using non-uniform rational B-splines (NURBS) to represent

the boundary of the material. The control points of the NURBS can then be moved in

order to find an optimal structure. For an example of B-spline use in shape optimization

see Herskovits et al. [68]. This approach is not considered in this thesis but is covered

in detail in the thesis of Edwards [47].

Level-sets are another possible way to represent the topology of a structure. In this

approach an implicit functional is positive where there is material and negative where

there is no material in the design domain. Thus the level-set is the set of points for

which this functional is zero and represents the boundary of the structure. The implicit

function can be modified in order to find an optimal structure. Xia et al. [183] used

a level-set approach to maximise the fundamental frequency of a continuum structure.

In 2010, Challis [35] produced an educational article that was a short MATLAB code

for topology optimization using a level-set approach. There are many issues still to be

answered regarding the use of level-sets for topology optimization such as schemes for

hole insertion [32] and the optimal methods of structural analysis using level-sets [179].

This approach is not considered in this thesis but is covered in detail in the thesis of

Dunning [46]. Instead we focus on the analysis of the two leading methods for topology

optimization, namely the element based approaches, SIMP and ESO.

2.2 Truss topology optimization

A truss structure is formed from a number of straight bars that are joined only at their

ends. In order to optimize a truss, a ground structure of all allowable bars is described.

The goal of truss optimization is to determine which of these bars should be included

in the final design and the optimal thickness of each bar. A typical example is shown

in Figure 2-1.

Optimality criteria (OC) has been a technique widely applied to truss optimization

problems. In the OC approach, the KKT conditions (see Definition 4.5) are written

down for the given problem and an iterative scheme adopted to try and converge to

meet these conditions. Khot et al. 1976 [87] used OC to design a reinforced truss

structure for minimum weight subject to stability constraints. The same technique was
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(a) A typical truss problem. Bars are allowed only between
nodes.

(b) Example solution of an optimized truss.

Figure 2-1: An example of a possible truss optimization problem and its solution.

applied to the design of structures from material that exhibit nonlinear behaviour [86].

Ringertz 1985 [133] worked on topology optimization of trusses for minimisation of

weight subject to stress and displacement constraints. Firstly an optimal topology was

found via linear programming then the sizes of the bars were optimized via nonlinear

programming.

Branch-and-bound methods have been used in truss optimization to find global

minimisers of weight subject to stress and displacement constraints [134, 142]. Ringertz

1988 [135] compared methods for solving discrete truss topology optimization problems.

He compared branch-and-bound methods, dual methods and a continuous problem with

rounding and found that the problem size was highly limiting for the discrete methods.

Achtziger and Stolpe 2007 [6] used a branch-and-bound method to find the globally

optimal solution to truss topology optimization problems.

Achtziger and Stolpe 2008 [7] give the theoretical basis for the relaxed subproblem

in a branch-and-bound approach. They followed this with a paper [8] discussing the

implementation and numerical results of truss topology optimization. Yonekura and

Kanno 2010 [185] used a branch-and-bound algorithm to find the global minimiser of

a truss topology problem that was written in a semidefinite formulation.

Buckling has also been considered in truss optimization. There are two types of

buckling which can be considered in truss optimization: local and global buckling.
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Local buckling is where each member bar is considered individually and there is a

critical buckling load for every bar in the system. Global buckling is where the system

is considered as a whole and there are more than one possible deformative modes for

the system (see Chapter 6). Local buckling poses significantly fewer computational

difficulties than global buckling.

Many other formulations of truss topology optimization problems have been posed.

For instance, Beckers and Fleury 1997 [17] used a primal-dual approach to minimisa-

tion of compliance subject to volume for truss topology problems. Achtziger 2007 [3]

considered truss topology optimization where both the location of connections and the

cross sectional area of the bars were design variables. Kanno and Guo 2010 studied

truss topology optimization with stress constraints in a mixed integer programming

manner [82]. The largest example they computed (and found the global solution) has

29 design variables.

This thesis is concerned with topology optimization of continuum structures which

poses more computational challenges than truss topology optimization.

2.3 Optimization of composites

Optimization of composite materials is an active research area with many open ques-

tions. A composite material consists of multiple layers (or plys) of anisotropic material,

and the goal of the optimization of the composite is to find the optimal orientation of

the alignment of each ply of anisotropic material. These optimization problems typ-

ically have reasonably small dimension (fewer than 20 variables) but are subject to

many manufacturing constraints. This leads to feasible regions which are nonconvex

and possibly disconnected.

For example, Starnes and Haftka 1979 [157] looked at composite panels and op-

timized them for maximum buckling load subject to strength and displacement con-

straints. Tenek and Hagiwara 1994 [173] used homogenisation techniques (see sec-

tion 2.5) to maximise the fundamental eigenfrequency of both isotropic and composite

plates. To perform the optimization they used SLP methods.

Setoodeh et al. [149] and Lindgaard and Lund 2010 [101, 102] optimize the layout

of fibre angles in a composite material in order to maximise the buckling load of the

material. Karakaya and Soykasap 2011 [83] used a genetic algorithm and simulated

annealing to optimize composite plates.

This thesis shall not look at optimization of composite panels, but instead will be

concerned with topology optimization problems where the material is isotropic.
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2.4 Topological derivatives

The topological derivative is a measure of how a functional changes when an infinites-

imally small spherical hole is introduced into the structure. In 1999, Sokolowski and

Żochowski [154] worked on the topological derivative in shape optimization. They for-

mally defined the topological derivative T at a point ξ for an arbitrary functional J ∈ Ω

as

T (ξ) := lim
h→0

J(Ω\B(ξ, h))− J(Ω)

|B(ξ, h)|

where B(ξ, h) is the ball of radius h centred at ξ. In 2001, Garreau et al. [55] gave the

specific formulations for the topological derivative of planar linear elasticity equations.

Suresh 2010 [164] wrote an educational article on Pareto-optimal tracing in topol-

ogy optimization. They produced an educational MATLAB code that made use of

topological-sensitivity (or topological derivative). Amstutz 2011 [13] used the topologi-

cal derivative approach to write a topology optimization problem with cone constraints.

They presented results for minimisation of weight subject to compliance and harmonic

eigenvalue constraints.

This thesis shall not consider using the topological derivative. To do so would

require the use of a structural representation other than an element based approach,

which is how we have chosen to implement our methods.

2.5 Homogenisation

Bendsøe and Kikuchi 1988 [20] were the first to apply a homogenisation method to

structural optimization. Here a small cell structure was designed using a fixed grid finite

element representation and then homogenisation was used to calculate the effective

properties of a material composed of the individual cells. Suzuki and Kikuchi 1991 [165]

applied the homogenisation method of Bendsøe and Kikuchi [20] to extra problems in

order to validate it.

Tenek and Hagiwara 1994 [173] used homogenisation techniques to maximise the

fundamental eigenfrequency of both isotropic and composite plates and used SLP to

perform the optimization. In a famous industrial example of topology optimization,

Larsen et al. 1997 [98] designed compliant mechanisms and the microstructure of a

material with negative Poisson’s ratio.

Maar and Schulz 2000 [104] applied multigrid methods within a homogenisation

setting for structural optimization. More recently homogenisation approaches have

fallen out of favour, giving way to the SIMP approach for topology optimization.

13
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2.6 Solid Isotropic Material with Penalisation (SIMP)

Until 1989 only integer values were used as the design variables for structural opti-

mization. In his paper of that year, Bendsøe proposed a method to vary the design

variables continuously which resulted in a non-discrete solution [21]. In order to obtain

a non-discrete solution that approximated a discrete solution the underlying mathe-

matical model used to perform the analysis of the structure was changed to give less

influence to intermediate values of the variables. This type of scheme was later named

Solid Isotropic Material with Penalisation (SIMP) [140].

Buhl et al. 2000 [31] used the SIMP approach along with the Method of Moving

Asymptotes (MMA) [168] to minimise various objective functions of geometrically non-

linear structures subject to volume constraints. In 2001, Rietz showed how the penalty

function in the SIMP method was sufficient to give discrete solutions under some condi-

tions [132]. In 2001, Stolpe and Svanberg [160] discussed using a continuation method

to incrementally increase the penalty parameter in the SIMP method. They concluded

that this avoids many local minima which may be attained when using a constant value

of the penalty parameter but at the expense of increased computational cost. They also

found specific examples where the solution will contain intermediate densities regardless

of the size of the penalty parameter.

In 2001, Sigmund published a freely available code for topology optimization written

as a short MATLAB code [150]. The code was based on the SIMP formulation and

used a Nested Analysis and Design (NAND) based approach to update the structure

using an iterative method to converge to the given optimality criteria (OC) for the

minimisation of compliance subject to a volume constraint problem.

Rozvany 2001 [138] presented a semi-historical article about the SIMP method

and its advantages over other approaches for topology optimization. Bendsøe and

Sigmund 2003 [19] produced the monograph on topology optimization in which the

SIMP approach was the main technique considered.

Martinez 2005 [108] showed that in the SIMP approach, solutions to this problem

exist under given assumptions about the penalisation function. An example of an

industrial application of the SIMP method was given in Sardan et al. 2008 [146] where

they presented optimization of Micro Electro Mechanical Systems (MEMS) grippers

for application in the manufacturing of carbon nanotubes.

Niu et al. 2011 [119] looked at applying both external forces and non-zero displace-

ments to the structure. Here the stiffness of the structure is measured by a function

that differs from compliance so extra techniques are required to deal with this situation.

This is a prime example of the power and flexibility of the SIMP method. Formulated
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in this manner, the topology optimization problem can be tackled using generic math-

ematical programming software that has the ability to address such constraints.

2.7 Simultaneous Analysis and Design (SAND)

Haftka 1985 [66] wrote a paper called Simultaneous Analysis and Design (SAND). In

it he describes SAND as the formulation of the optimization problem with the solution

of the state equations also as optimization variables. This increases the dimension of

the optimization problem which has to be solved and therefore potentially the com-

putational difficulty of the problem. It also increases the potential search space and

therefore may, on occasion, find a solution with an improved objective function or find

a solution in a fewer number of steps.

Orozco and Ghattas 1992 [123] wrote about trying to use sparsity to help in a SAND

approach to structural optimization. They found that the SAND approach bettered

the NAND approach whenever the sparsity of the Jacobian was utilised in the SAND

approach. Kirsch and Rozvany 1994 [89] discuss the SAND method and its advantages

and disadvantages.

Sankaranarayanan et al. 1994 [145] used a SAND approach to truss topology opti-

mization using an Augmented Lagrangian method. They had difficulties with efficiency

though found that in some cases very good solutions were attained.

In 1997, Orozco [122] used a SAND approach to solve structural optimization prob-

lems with non-linear material. Hoppe and Petrova 2004 [71] used a Primal-dual Newton

interior point method to solve shape and topology optimization problems in a SAND

based approach.

More recently, Bruggi and Venini 2008 [28] considered stress-constrained topology

optimization with stresses in the optimization formulation. Canelas et al. 2008 [34]

used the SAND approach and boundary element methods for shape optimization. The

reasons why the SAND approach is not widely used have not been documented, which

is noteworthy as it has the potential to produce improved local optima. The SAND

approach will be investigated in Chapter 5.

2.8 Evolutionary Structural Optimization (ESO)

Evolutionary Structural Optimization (ESO) is a different approach to finding solutions

to structural optimization problems. It was originally developed by Xie and Stephen

1993 [184]. The basic premise of ESO is to systematically remove material that appears

to be the least important to the structure.
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Querin et al. 2000 [128, 129] introduced an additive ESO algorithm which was

named Bi-directional Evolutionary Structural Optimization (BESO). This follows the

same basic premise as ESO but can reintroduce material into the structure.

Zhou and Rozvany 2001 [187] proposed their “tie-beam” and showed how ESO,

when applied to this problem, produces a highly non-optimal solution. Huang and Xie

2007 [73] developed the filter that is used in BESO and also introduced the idea of using

historical based sensitivity to improve the convergence, albeit without mathematical

justification. In this, to improve the nonmonotonic behaviour of the objective function,

they define the sensitivity of an element as a weighted average of the sensitivity of the

element over previous iterations.

Burry et al. 2005 [33] wrote about architectural examples in which ESO and BESO

have been applied. The centrepiece of this work was to show that the design of a façade

of the Sagrada Famı́lia in Barcelona is structurally optimum.

Huang and Xie 2008 [72] published an article on how all boundary conditions need

to remain in order for ESO/BESO methods not to find highly nonoptimal solutions.

Again, no mathematical justification for this was given. Rozvany 2008 [139] wrote a

highly critical article in which the lack of mathematical theory for ESO led him to

favour such methods as SIMP for topology optimization.

Zuo et al. 2009 [76] combined BESO with a genetic algorithm but did not say how

many individuals they kept in their population at each step. They did find that only a

small number of iterations was required to find an optimum that was better than the

local optimum found for the same problems by the SIMP approach. Huang and Xie

2010 [74] talk about recent advances to ESO/BESO and show numerical examples of

where it is effective. In that year they also produced a book on evolutionary structural

optimization [75].

There has been very little written about the convergence of ESO. Tanskanen 2002

[172] published a paper comparing ESO with the simplex method. He found that the

step taken by ESO is equivalent to taking an optimal simplex step. However he did

not address the nonmonotonic behaviour of the convergence of ESO. Chapter 7 of this

thesis will examine the question of why ESO has nonmonotonic convergence.

2.9 Buckling optimization

For a given load, a structure may have many possible deformation shapes. When this

occurs and the structure deforms into a different one of these shapes from its current

configuration, the structure is said to buckle. A formal definition of this is given in

Chapter 6.
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Giles and Thompson 1973 [77] considered the implications of structural optimization

on the nonlinear behaviour of structures. They noted that a “process of optimization

leads almost inevitably to designs which exhibit the notorious failure characteristics

often associated with the buckling of thin elastic shells”. Thus removing material

deemed unnecessary based on a given get of loading and boundary conditions may

make the structure subject to failure or collapse under differing loads.

This has led to engineers wanting to impose extra constraints on the optimization

problem in order to find optimal structures which are not unstable. This constraint is

an eigenvalue constraint which is similar in mathematical structure to a constraint on

the harmonic (or resonant) modes of the structure.

Haftka and Gürdal 1991 [67] published their book on elements of structural op-

timization. They prescribe the derivative of an eigenvalue constraint for the case in

which the eigenvalue is simple. However they completely neglect to give an expression

for the derivative of the stress stiffness matrix, which is presented in Section 6.4 of this

thesis.

In truss optimization, Gu et al. 2000 [63] considered optimization of trusses with

buckling objectives subject to weight constraints and vice versa. Pedersen and Nielsen

2003 [126] looked at truss optimization with stress and local buckling constraints and

performed the optimization with Sequential Linear Programming (SLP) methods. Guo

et al. 2005 [64] considered truss topology optimization to minimise the weight of a

structure whilst maintaining stress and local buckling constraints.

Neves et al. 1995 [117] maximise the minimum buckling load of a continuum struc-

ture subject to a volume constraint in an optimal reinforcement sense. They do find

spurious buckling modes in which the buckling of the structure is confined to the regions

which are supposed to represent voids (see section 6.2). Their solution to eradicate such

modes was to set the stress contributions of low density elements in the stress stiffness

matrix to zero.

Pedersen 2000 [125] considered using the SIMP approach to maximise the minimum

harmonic eigenvalue of a structure. He applied this method to the design of MEMS.

Spurious localised modes were observed and were eradicated using a similar technique

to Neves et al. 1995 [117]. Ben-Tal et al. 2000 [18] considered truss topology design

with a global buckling constraint and solved this problem using SDP. In the same

year Cheng at al. 2000 [36] performed maximisation of the critical load of a structure

subject to a volume constraint using OC.

Kočvara 2002 also considered truss topology design with a global buckling constraint

[90]. Within this paper there is a clear description of the difference between the global

buckling of the structure and local Euler buckling of each bar. There is also an excellent
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description of how the semidefinite approach is equivalent to bounding the smallest

positive eigenvalue. They used an interior point technique to solve the problem when

written as a semidefinite programming problem.

Also Neves et al. 2002 [118] considered the problem of minimising a linear com-

bination of the homogenised elastic properties of the structure subject to volume and

bucking constraints applied to periodic microstructures. They do not use the SIMP

method to penalise intermediate densities but instead add a penalty term to the objec-

tive function considered. They also make some assumptions that all the eigenvalues of

the buckling problem are positive which significantly simplifies the calculations. They

note that “the appearance of low-density regions may result in non-physical local-

ized modes in the low-density regions, which are an artefact of the inclusion of these

low-density regions that represent void material in the analysis”. Their strategy of

eradicating these spurious buckling modes by setting the stress in low density regions

to an insignificant value (10−15) is an approximation of setting the stress to zero, but

is necessitated by their assumption that all the buckling modes are positive.

A SIMP approach to buckling optimization on a continuum structure was used

by Rahmatalla and Swan [130] in 2003. They assumed that the eigenvalues were all

simple, or that symmetry could be removed from the problem so that they did not

occur. Kočvara and Stingl 2004 [92] utilise an Augmented Lagrangian formulation

of the SDP formulation and solve this within the code PENNON. They solve some

problems of buckling and vibration constrained optimization but only in a Variable

Thickness Sheet (VTS) setting.

Maeda et al. 2006 [105] developed a method for maximising the harmonic frequency

of a continuum structure. Jensen and Pedersen 2006 [78] optimized topologies to get

the largest separation of harmonic eigenvalues around a specific frequency.

Achtziger and Kočvara 2007 [4] consider the maximisation of the fundamental (har-

monic) eigenvalue in truss topology optimization. They do not include penalisation in

their approach and so have a convex problem which they solve with SDP methods.

In the same year they also considered using SDP methods to solve truss topology

optimization problems involving buckling [5].

Bruyneel et al. 2008 [29] discussed convergence properties of buckling optimization.

They talk about the need for considering multiple eigenvalues as (in continuous opti-

mization) mode switching can occur and so a buckling constraint can easily be violated

by an eigenvalue that was not being considered.

Zhan et al. 2009 [186] considered a SIMP approach to maximise the minimal

harmonic frequency of a continuum structure. They used an SLP method, similar

to Stingl et al. 2009 [159] who used an FMO approach along with SDP to optimize
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structures with constraints on the fundamental eigenfrequency.

Bogani et al. 2009 [23] have applied an adapted version of their semidefinite codes

to find VTS solutions to buckling problems. This made use of a reformulation of a

semidefinite constraint using the indefinite Cholesky factorisation of the matrix, and

solving a resulting nonlinear programming problem with an adapted version of MMA.

With these techniques they were able to solve a non-discrete problem with 5000 vari-

ables in about 35 minutes on a standard PC. The approach was based on an observation

by Fletcher in 1985 [53] who noted a formulation of a semidefinite matrix constraint

that consists of bounding the values of the inertia of the matrix involved and can be

computed by looking at the values of the diagonal factors in an LDLT factorisation.

Du and Olhoff 2005 [44] presented methods for dealing with multiple eigenfrequen-

cies. Lee 2007 [99] also introduced a method for calculating a derivative of a nonsimple

eigenvalue. The derivative of a nonsimple eigenvalue is not well defined, as is shown

in Section 6.1. Therefore, if we try and apply a derivative based optimization method

that is not designed specifically to deal with this eventuality, we will be providing the

optimization method with the wrong values of the derivative. Thus the method may

fail to converge or indeed it may return a highly nonoptimal solution.

Other approaches to buckling optimization have included Sadiku 2008 [141] who

used variational principals to compute the optimal cross-sectional area for columns of

given height and volume in order to maximise the buckling load. Mijailović 2010 [113]

minimised the weight of a braced column subject to both global and local buckling

constraints as well as deformation constraints. Nagy et al 2011 [115] used a NURBS

representation of a structure and optimized them to maximise the fundamental fre-

quency of an arch. Buckling constraints have been included in composite optimization,

for example in 1997, Mateus et al. [109] investigated the buckling sensitivities of com-

posite structures.

The inclusion of buckling into a structural optimization problem was very well

summed up by Bruyneel et al. 2008 [29], “it must be noted that buckling optimisation

is a very difficult problem”.

Chapter 6 of this thesis will consider optimization with global buckling constraints.

2.10 Chequerboarding

A problem of minimization of compliance subject to volume is known to be ill-posed

(see for example Ambrosio and Buttazzo 1993 [9] and Kohn and Strang 1986 [93,

94, 95]). That is, improved structures can be found by taking increasingly smaller

microstructure. Therefore the problem as stated in general has no solution. In a
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Figure 2-2: Chequerboard pattern of alternating solid and void regions

Figure 2-3: Chequerboard pattern appearing in the solution to a cantilevered beam
problem.

numerical calculation the solutions of the problem would therefore be dependent on

the size of the mesh that is employed. Microstructure is found commonly in nature:

materials such as bone and wood have have multiple length scales associated with them,

with different organisations of material at the various scales [96].

In an element-based topology optimization approach there may exist solutions that

are not desired by engineers. These solutions typically exhibit chequerboard patterns

as shown in Figure 2-2. In an actual example of minimising the compliance of a

cantilevered beam this may manifest itself as in Figure 2-3.

Diaz and Sigmund 1995 [42] discuss how chequerboard patterns have artificially high

stiffness for their relative density. These patterns were also observed by, amongst others,

Jog and Haber 1996 [79] in topology optimization problems. Sigmund and Petersson

1998 [151] surveyed the methods for dealing with chequerboard patterns appearing in
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topology optimization. The two most popular methods are filtering techniques and

imposing a constraint on the perimeter of the structure.

Rahmatalla and Swan 2004 [131] implemented topology optimization with higher

order elements and showed that this eradicated chequerboard patterns. However, this

did not lead to mesh independent designs and they still had to include a perime-

ter constraint. If the underlying mesh has no corner contacts (such as a hexagonal

mesh) then these issues do not arise. This has been observed by Talischi et al. 2008

[171, 170]. However, automatic mesh generation techniques in general do not exclude

corner contacts between elements so it is necessary to employ techniques to eradicate

chequerboard patterns from any mesh.

To overcome the illposedness of the problem a lower length scale is imposed on

the problem, but care has to be taken so that the optimization strategy is not too

dependent on the regularisation strategy. This will be considered in detail in Section

5.5.

2.11 Symmetry properties of optimal structures

It might be expected that the solution to a topology optimization problem with sym-

metric design domain, boundary conditions and loading would be symmetric. There

has recently been a lot of interest in this problem. Stolpe 2010 showed that the optimal

solutions to topology optimization problems in general are not unique and that discrete

problems possibly have inactive volume or compliance constraints [161]. He showed how

optimal solutions to the considered problems in general are not symmetric even if the

design domain, the external loads and the boundary conditions are symmetric around

an axis.

This article prompted a series of responses, notably Rozvany 2011 [137, 136] and

Watada et al. 2011 [178] looking at the nonuniqueness and nonsymmetry of solutions

to symmetric minimisation of compliance problems. Cheng and Liu 2011 [37] discussed

the symmetry of solutions of frame topology optimization with harmonic eigenvalue

constraints and found that optimal solutions were nonsymmetric. This has implica-

tions for the buckling problem considered in Chapter 6 as we cannot either remove

symmetries from the design domain nor expect symmetric solutions.

2.12 Linear algebra

Linear algebra always forms a large part of optimization. For example, even a simple

Newton method requires the solution of a linear system involving the Jacobian ma-
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trix. In structural optimization the solves involving the elasticity stiffness matrix are

typically one of the most computationally intensive parts of the algorithms. If fact,

Borrvall and Petersson [24] reported that up to 97% of the computational time is spent

on the linear solve.

There are two broad categories of linear solver: iterative and direct methods. Itera-

tive methods begin with an initial guess of the solution and apply a sequence of update

steps to hopefully converge to the solution of the original equation. A convergence

criterion is specified and the method continues until this is satisfied up to a certain tol-

erance. Examples of such methods include Jacobi iteration, Krylov subspace methods

such as the preconditioned conjugate gradient (PCG) method and multigrid methods.

Direct solvers on the other hand decompose a matrix into a form which is then easy

to invert using forward and backward substitution. These factors are computed in a

finite number of arithmetic computations. For any method of solving a linear system to

be effective, the sparsity of the matrix must be utilised. This is generally very easy to

achieve with an iterative method such as a Krylov subspace technique as these rely on

matrix-vector multiplication to find a solution. In a direct method the use of sparsity

is much more complex [45].

When performing a Cholesky decomposition of a matrix A:

A = LDLT (2.1)

where L is a lower triangular matrix and D is a diagonal matrix, the efficiency of the

process will depend greatly on the degree of sparsity of the matrix L. Pivot ordering

strategies are used in order to improve the degree of fill-in that occurs.

Typically the convergence of an iterative method will depend on the condition

number of the matrix in question (see Section 3.3). In contrast, the efficiency of a

direct method is generally independent of the condition number of the matrix. To try

and overcome this deficiency of iterative methods, preconditioning is applied to the

matrix in order to try and give the resulting matrix a significantly lower condition

number. Many of these techniques have been applied to topology optimization.

There are many issues around using multigrid methods to solve the linear-elasticity

equations that occur in structural optimization. For instance the domain of the problem

may be highly complex and the material in each element may vary in a SIMP approach.

Stevenson 1993 [158] looks at multigrid methods for solving equations on domains with

re-entrant corners and discusses the nontrivial issues of convergence. Karer and Kraus

2010 used algebraic multigrid (AMG) for solving finite element elasticity equations with

non-constant Young’s modulus [85].
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Dreyer et al. 2000 [43] used multigrid and SQP for turbine blade profile optimization

as well as simple cantilevered beam test topology optimization problems. For other

examples of multigrid use, see Griebel et al. 2003 [62] or Buckeridge 2010 [30].

Borrvall and Petersson 2001 [24] considered 3D topology optimization on a dis-

tributed machine using PCG and domain decomposition to solve the elasticity equa-

tions. They used a simple diagonal preconditioner. They solved problems with a maxi-

mum of 144, 000 elements. Wang et al. 2007 [177] used a NAND approach to large-scale

topology optimization. They used a preconditioned Krylov subspace method with sub-

space recycling in order to reduce the computational cost of each linear solve. Amir et

al. 2009 [10] looked at a NAND approach to topology optimization. They discussed

the need to accurately solve the state equations and found that an approximate solve

is acceptable when the error is taken into account in the sensitivity analysis. This

resulted in a saving of computation time.

Amir and Sigmund 2011 [11] discussed the latest challenges in reducing the com-

putational complexity of topology optimization. They discussed the need for better

preconditioners and appropriate stopping criteria for iterative solution of linear sys-

tems. Amir et al. 2010 [12] looked at efficient use of iterative solvers for a NAND ap-

proach to topology optimization. They use a preconditioned conjugate gradient (PCG)

method for solving the linear system but precondition using an incomplete Cholesky

factorisation.

El maliki et al. 2010 [48] compared general iterative solvers for 3D linear elasticity

problems. They found that for linear elements, a direct solver (MUMPS) is generally

more efficient than an iterative scheme provided that memory does not become an issue.

This is the same result as Edwards 2008 [47] found when performing a comparison of

solvers for the systems in topology optimization.

Venkataraman and Haftka 2004 [176] considered how Moore’s Law has influenced

structural optimization. There is always the possibility of using more computing power

to solve a problem, but it is important to know how best to solve the problem given the

available resources. In this thesis we consider computing on a standalone workstation,

that is a machine with shared memory such as a desktop PC or a laptop computer.

Unless otherwise stated, the linear solver that will be used throughout this thesis

will be HSL MA87 [69, 70], a DAG (Directed Acyclic Graph) based direct solver from

the HSL [1] mathematical software library. This is the successor to HSL MA57, a

multifrontal solver from HSL. HSL MA87 is designed to make use of multiple processing

cores accessing shared memory, and so attains a good degree of parallelism.

In the work carried out for this thesis, it has been found that a direct solver is

still very efficient at solving linear algebra problems resulting from the linear elasticity
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equations underlying the considered topology optimization problems when the matrices

in question are up to size O(106). Beyond this problem size, memory issues come into

play and an in-core direct factorisation will fail on a machine without more than than

4GB RAM. Indeed, problems with matrices of size O(107) have been solved efficiently

on a server with larger amounts of shared memory.

2.13 Summary

There are a number of key issues in the field of structural optimization that this liter-

ature review has highlighted. Firstly, the issue of why a SAND approach to structural

optimization has fallen out of favour compared to a NAND approach has not been

thoroughly investigated. This thesis will consider this question in Chapter 5.

In Chapter 6 this thesis shall study the introduction of a buckling constraint into

the optimization problem. The issues surrounding the use of existing methods for this

problem will be highlighted and ultimately this will lead to the development of a new

algorithm to give solutions to this problem.

The lack of mathematical justification for the ESO method for structural optimiza-

tion will be addressed in Chapter 7. We shall try and provide some more theoretical

basis for the optimization path which ESO takes and hope to explain the non-monotonic

convergence behaviour which is typically exhibited by ESO.
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3
Linear elasticity and finite elements

This chapter contains the derivation and analysis of the state equations that are used

to compute the response of a structure to an applied load. Starting with Newton’s laws

of motion, in Section 3.1 the Lamé equation is derived which is the underlying PDE to

be solved. The process of discretising this PDE in a finite element context is presented

for linear elasticity in Section 3.2, i.e. the structure undergoes small displacements and

the material obeys a linear stress–strain relationship. In Section 3.3, the conditioning

of the finite element stiffness matrices are considered. The stress stiffness matrix is

derived in Section 3.4, which is used to compute the linear buckling load of a structure.

Section 3.5 describes the linear algebra technique employed to find the buckling load

of a structure. Finally, corner singularities inherent in the underlying equations are

discussed in Section 3.6 by first considering Laplace’s equation and then looking at the

elasticity case.

3.1 Linear elasticity

In this section, the Lamé equation is derived from Newton’s laws of motion.

Definition 3.1. A surface traction t(ej) is defined as follows

t(ej) := σijei

where σij, i, j = 1, 2, 3 are stresses.

As a preliminary, consider a tetrahedron (Figure 3-1) whose skewed face has external

normal n.

Let dS1, dS2 and dS3 be surface elements perpendicular to x1, x2 and x3 respec-

tively. dSn is the surface element perpendicular to the skewed face. e1 represents the
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Figure 3-1: Tetrahedron relating tractions and stresses

vector [1, 0, 0]T etc.

The forces on the faces perpendicular to the axes are given by

fi = t(−ei)dSi i = 1, 2, 3

and for the skewed face are given by

fn = t(en)dSn

Newton’s second law gives

t(−e1)dS1 + t(−e2)dS2 + t(−e3)dS3 + t(en)dSn = mẍ (3.1)

where m is a mass and ẍ an acceleration. Consider now the following integral:∫
V

∂

∂xi
1 dx1 dx2 dx3 = 0 as the integrand = 0

but applying the divergence theorem to the left hand side yields the following∫
V

∂

∂xi
1 dx1 dx2 dx3 =

∫
∂V
Ni dS where Ni is external normal to ∂V

= −dSi + nidSn

Hence

dSi = nidSn i = 1, 2, 3

and substituting this into (3.1) gives

(−t(ej)nj + t(n))dSn = mẍ (3.2)
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Ω

V

S

Figure 3-2: A continuum body Ω containing an arbitrary volume V

noting the use of Einstein notation where the sum is denoted by the repeated index.

Now let ∆x1,∆x2 and ∆x3 → 0 then m → 0 cubically but dSn → 0 quadratically

so the term in brackets in (3.2) is equal to zero. So

t(n) = t(ej)nj = σijeinj

and as a result, for each component

(t(n))i = σijnj

Now consider a continuum body Ω containing an arbitrary volume V ∈ Ω with

boundary S = ∂V . Let ρ represent the density of mass at a point, f body forces, t

surface tractions applied to V , u displacements of the body and ü the accelerations of

the body.

Newton’s second law then gives the following equality:∫
V
ρü dV =

∫
V
ρf dV +

∫
S

t dS

Splitting (3.1) into each component gives:∫
V

(ρüi − ρf) dV =

∫
S
ti dS i = 1, 2, 3

=

∫
S
σijnj dS

=

∫
V
σij,j dV by the divergence theorem

Hence ∫
V

(ρüi − σij,j − ρfi) dV = 0 i = 1, 2, 3
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Hence as V was arbitrary this leads to the equation of motion

ρüi − σij,j = ρfi i = 1, 2, 3

and in the special case when the body is equilibrium, i.e. ü = 0, this gives the equation

of equilibrium

σij,j = −ρfi i = 1, 2, 3

which can be written in vector notation to give the Lamé equation

−∇.(σ) = ρf.

3.2 The finite-element discretisation of the linear elastic-

ity equations

In this section the equilibrium equations governing linear elasticity are derived. Firstly

begin by defining concepts needed for the presentation of the finite-element method.

Definition 3.2.

Lp(Ω) := {f : Ω→ R s.t. ||f ||Lp(Ω) <∞}

where the norm is given by

||f ||Lp(Ω) :=

(∫
Ω
|f(x)|pdx

) 1
p

Definition 3.3. A multi-index is an ordered list of n non-negative integers α =

α1, . . . , αn. The order of α is |α| := α1 + . . .+ αn.

Given α there exist associated polynomial functions

xα := xα1
1 xα2

2 . . . xαnn

and partial differential operators

(Dαv) = (
∂α1

∂xα1
1

∂α2

∂xα2
2

. . .
∂αn

∂xαnn
)v

Definition 3.4.

Hk(Ω) := {f ∈ L2(Ω) s.t. ||f ||Hk(Ω) <∞}
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Ω
φ(Ω)

φ

Figure 3-3: Elastic body before and after deformation

where the norm is defined by

||f ||Hk(Ω) = {
∑

0≤|α|≤k

||Dαf ||2L2(Ω)}
1
2

and denote

Hk
0 (Ω) := {f ∈ Hk(Ω) s.t. f = 0 on ∂ΩD}.

Let Ω ⊂ R3 be an elastic body in its unstressed state. Under stress it undergoes a

deformation

φ : Ω̄→ R3.

Write φ = I+u where I is the identity map and u : Ω̄→ R3 is the displacement vector.

Definition 3.5. The dot product of two tensors is defined by

T : σ =
∑
i,j

Tijσij

Definition 3.6. Assuming small displacements, the strain tensor is defined by

ε(u) =
1

2
(∇u + (∇u)T )

which can be equivalently written as

εij(u) =
1

2
(ui,j + uj,i)

Hooke’s law for for the relationship between stress and strain is given by the fol-

lowing relation.

σij = cijklεkl
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where σij is the stress tensor and cijkl is referred to as the stiffness tensor .

Definition 3.7. For an isotropic solid, Hooke’s law defines the stress tensor as follows

σij = λδijεkk + 2µεij

where λ, µ ∈ R are known as the Lamé constants, εkk := ε11 + ε22 + ε33 and δij is the

Kronecker delta.

This is equivalent to

σij =
Eν

1− ν2
δijεkk +

E

1 + ν
εij (3.3)

with E the Young’s modulus of the material, and ν the Poisson’s ratio of the material.

The constituent equation that the displacement u then satisfies is the Lamé equation

−∇ · (σ(u)) = f on Ω

subject to

u = g on ∂ΩD

and

σ(u)ν = t on ∂ΩN (3.4)

where f is the body force, g is the boundary displacement, t is the boundary traction

and ν is the outward unit normal to Ω.

The derivation of the weak form of (3.2) is shown subsequently. Let v ∈ H1
0 (Ω).

−
∫

Ω
∇σ.v = −

∑
i

∑
j

∫
Ω
σ,jvi

=
∑
i

∑
j

(∫
Ω
σ
∂vi
∂xj
−
∫
∂Ω
σviνj

)
=

∫
Ω

(σ : ∇v)−
∫
∂Ω
σν.v

Rearranging this gives ∫
Ω

(σ : ∇v) =

∫
Ω
−∇σ.v +

∫
∂Ω
σν.v
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and substituting the boundary condition (3.4) and the Lamé equation (3.2) gives∫
Ω

(σ : ∇v) = (f ,v)L2(Ω) + (t,v)L2(∂ΩN ) (3.5)

where

(f ,g)L2(Ω) :=
∑
i

∫
Ω
figi

Note that

ε(u) : ∇v =
1

2

∑
i,j

(ui,j + uj,i) vi,j (3.6)

Since the double sum on the RHS is over all i and j, the result is unchanged if i and j

are interchanged in the summand, i.e.

ε(u) : ∇v =
1

2

∑
i,j

(uj,i + ui,j) vj,i (3.7)

Summing both (3.6) and (3.7) gives the following

2ε(u) : ∇v =
1

2

∑
i,j

(ui,j + uj,i) vi,j +
1

2

∑
i,j

(uj,i + ui,j) vj,i

=
1

2

∑
i,j

(ui,j + uj,i) (vi,j + vj,i)

hence

ε(u) : ∇v =
∑
i,j

1

2
(ui,j + uj,i)

1

2
(vi,j + vj,i)

= ε(u) : ε(v)

A direct calculation can show

(δijεkk(u)) : ∇v = ∇.u∇.v

and hence using Definition 3.7, (3.5) can be written as∫
Ω

(2µε(u) : ε(v) + λ∇.u∇.v) = (f ,v)L2(Ω) + (t,v)L2(∂ΩN ) (3.8)

for all v ∈ H1
0 (Ω). Writing (3.8) in abstract form becomes

a(u,v) = F (v) ∀v ∈ H1
0 (Ω) (3.9)
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where a is a symmetric bilinear form.

If Vh is a finite dimensional subset of H1
0 (Ω), a basis {φi : i = 1, . . . , N} for Vh can

be chosen. Thus to solve this problem it is necessary to find uh ∈ Vh such that

a(uh,vh) = F (vh) ∀vh ∈ Vh

Write uh =
∑N

j=1 Ujφj for some unknown coefficients Uj . Since a is linear this is

equivalent to finding Uj such that

N∑
j=1

a(φj , φi)Uj = F (φi) ∀i = 1, . . . , N

Then the matrix form of (3.9) becomes

Ku = f (3.10)

where

Kij := a(φj , φi) ∀i, j = 1, . . . , N

fi := F (φi) ∀i = 1, . . . , N

The matrix Kij is known as the stiffness matrix and the vector f the applied force.

3.2.1 Coercivity of the bilinear form in linear elasticity

Definition 3.8. The H1 seminorm of a function f ∈ H1(Ω) is defined by

|f |H1(Ω) =

(∫
Ω
|∇f |2

)1
2

Theorem 3.9 (The Poincaré-Friedrichs Inequality). If Ω is a bounded domain then

there exists a constant C > 0 (which depends on Ω) such that

||u||H1(Ω) ≤ C|u|H1(Ω) ∀u ∈ H1
0 (Ω)

Proof. The proof of this is omitted but can be found in, for example, Brenner and Scott

[26] section 5.3.
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Lemma 3.10. Given an operator [v∇] defined by

[v∇]u :=


∑

i vi
∂u1
∂vi∑

i vi
∂u2
∂vi

...∑
i vi

∂un
∂vi


then the following equality holds

2ε(v) : ε(v) = ∇.([v∇]v− (∇.v)v) +∇v : ∇v + (∇.v)2

Proof. By writing down each term, it is possible to see that equality holds. The first

term is

2ε(v) : ε(v) = 1
2

3∑
i=1

3∑
j=1

(vi,j + vj,i)
2 (3.11)

= 2v2
1,1 + 2v2

2,2 + 2v2
3,3+

v2
1,2 + v2

1,3 + v2
2,3 + v2

2,1 + v2
3,1 + v2

3,2+

2v1,2v2,1 + 2v1,3v3,1 + 2v2,3v3,2 (3.12)

The final term on the right hand side expands to the following

(∇.v)2 = (v1,1 + v2,2 + v3,3)2

= v2
1,1 + v2

2,2 + v2
3,3 + 2v1,1v2,2 + 2v1,1v3,3 + 2v2,2v3,3 (3.13)

Similarly the middle term on the right hand side expands as follows

∇v : ∇v = v2
1,1 + v2

1,2 + v2
1,3 + v2

2,1 + v2
2,2 + v2

2,3 + v2
3,1 + v2

3,2 + v2
3,3 (3.14)

For the first term on the right hand side, begin by writing down the argument inside

the brackets.

[v∇]v− (∇.v)v =

v1v1,1 + v2v1,2 + v3v1,3 − (v1,1 + v2,2 + v3,3)v1

v1v2,1 + v2v2,2 + v3v2,3 − (v1,1 + v2,2 + v3,3)v2

v1v3,1 + v2v3,2 + v3v3,3 − (v1,1 + v2,2 + v3,3)v3


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Hence

∇.([v∇]v− (∇.v)v) = v1v1,11 + v1,1v1,1 + v2v1,21 + v2,1v1,2 + v3v1,31 + v3,1v1,3+

− (v1,11 + v2,21 + v3,31)v1 − (v1,1 + v2,2 + v3,3)v1,1+

v1v2,12 + v1,2v2,1 + v2v2,22 + v2,2v2,2 + v3v2,32 + v3,2v2,3+

− (v1,12 + v2,22 + v3,32)v2 − (v1,1 + v2,2 + v3,3)v2,2+

v1v3,13 + v1,3v3,1 + v2v3,23 + v2,3v3,2 + v3v3,33 + v3,3v3,3+

− (v1,13 + v2,23 + v3,33)v3 − (v1,1 + v2,2 + v3,3)v3,3 (3.15)

Now notice that all the terms with two derivatives in them in (3.15) cancel and what

remains is

∇.([v∇]v− (∇.v)v) = 2(v1,2v2,1 + v2,3v3,2 + v1,3v3,1)−

2(v1,1v2,2 − v1,1v3,3 − v2,2v3,3) (3.16)

Now simply equating the terms in (3.12), (3.13), (3.14) and (3.16) gives the result.

Theorem 3.11. When ∂ΩN = ∅, µ > 0 and λ > −µ then the bilinear form in (3.9) is

coercive.

Proof. Let v ∈ H1
0 (Ω). Then

a(v,v) =

∫
Ω

(2µε(v) : ε(v) + λ∇.v∇.v)

=

∫
Ω
µ
(
∇.([v∇]v− (∇.v)v) +∇v : ∇v + (∇.v)2

)
+ λ(∇.v)2

=

∫
Ω
µ∇v : ∇v +

∫
Ω

(µ+ λ)(∇.v)2 + µ

∫
Ω
∇.([v∇]v− (∇.v)v)

=

∫
Ω
µ∇v : ∇v +

∫
Ω

(µ+ λ)(∇.v)2 + µ

∫
∂Ω

([v∇]v− (∇.v)v).n

=

∫
Ω
µ∇v : ∇v +

∫
Ω

(µ+ λ)(∇.v)2 as v = 0 on ∂Ω

where here the divergence theorem has been used. Hence

a(v,v) ≥ µ
∫

Ω
∇v : ∇v as µ+ λ > 0

= µ|v|2H1(Ω) by definition of H1(Ω) seminorm

≥ Cµ||v||2H1(Ω) by the Poincaré-Friedrichs Inequality

and thus a is coercive.
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For the proof of the general case where surface tractions are present, see Brenner

and Scott [26] section 11.2.

Theorem 3.12. The matrix K in (3.10) is positive definite.

Proof. Let w 6= 0 be an eigenvector of the matrix K in (3.10) corresponding to eigen-

value λ normalised so that ||w||1 = 1. Then by the coercivity of a

0 < a(w,w)

and so

a(w,w) =a(
∑
j

wjφj ,
∑
i

wiφi)

=
∑
j

wja(φj ,
∑
i

wiφi)

=
∑
j

∑
i

wjwia(φj , φi)

=wTKw

=λwTw = λ||w||21 = λ

Thus the eigenvalue λ is bounded away from zero and thus the matrix K is positive

definite.

3.3 Conditioning of the stiffness matrix

Let us now consider the condition number of the stiffness matrix emanating from the

SIMP method (see Section 5.2) for topology optimization as examined by Wang, Sturler

and Paulino [177]. As K is SPD the condition number κ can be written as

κ(K) =
λmax(K)

λmin(K)

where λi(K) are eigenvalues of the matrix K. It can then be shown that the condition

number can be written in the following way.

κ(K) =
max||u||2=1 ||Ku||2
min||u||2=1 ||Ku||2

As

min
||u||2=1

||Ku||2 ≤ ||Kel||2 = ||cl||2 ≤ max
||u||2=1

||Ku||2
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Figure 3-4: Node in the centre of elements

then

max
i,j∈1,...,n

||ci||2
||cj ||2

≤ κ(K) (3.17)

A column of the stiffness matrix may be expressed as follows:

cl =
∑

e∩D.O.F.l

xpeG
T
eKeGeel

where Ke is the element stiffness matrix of element e and Ge is the corresponding local

to global transformation matrix.

Consider a node that is in the centre of all void elements and one which is in the

centre of all solid elements.

If l1 denotes a node in the centre of solid elements, and l2 denotes a node in the

centre of void elements this gives the following formula for the corresponding columns.

cl1 =
∑
e

GTeKeGeel1

cl2 = xpmin

∑
e

GTeKeGeel2

Hence from (3.17) a lower bound on the condition number is attained.

κ(K) ≥ ||cl1 ||2
||cl2 ||2

=
1

xpmin

With the typical values xmin = 10−3 and p = 3 this gives κ(K) ≥ 109. This analysis is

valid for both 2D and 3D structures and it should be noted that it is conservative. It

does not take into account any geometry of the problem which, as is well known, can
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Figure 3-5: Condition number of the stiffness matrix generated by the ESO method
applied to the short cantilevered beam. The condition number has been estimated by
the linear solver HSL MA57.

itself lead to highly ill-conditioned stiffness matrices.

In the ESO approach to topology optimization where there is no variation in the

density of elements, only the geometry of the underlying structure varies. Figure 3-5

shows an estimate of the condition number of the matrix which is generated by the

ESO method when applied to the short cantilevered beam problem, as given by the

linear solver HSL MA57. It is clear from this figure that the matrices are extremely

ill-conditioned. In fact after around 170 iterations the linear solver switches to an

indefinite mode as the matrices become closer to singular.

Within this section it has been shown that the matrices which arise in topology

optimization are highly ill-conditioned. Indeed, with matrices as ill-conditioned as

those shown in Figure 3-5 this may hint at the possibility that the structure is almost

disconnected and a careful look at subsequent analyses may be warranted.

3.4 Derivation of stress stiffness matrices

In this section it is shown how the stability analysis is derived, and in doing so an

explicit expression for the stress stiffness matrix is found. This is an elaboration of the

derivation given by Cook [39] and a specific example of the more general case given by

Oden [121].

Let u, v and w be the displacements in the x, y and z directions respectively.
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The notation ·,x, ·,y and ·,z mean partial differentiation with respect to x, y and z

respectively.

Definition 3.13. Green-Lagrange strain is defined as follows

εx = u,x +
1

2
(u2
,x + v2

,x + w2
,x) (3.18)

εy = v,y +
1

2
(u2
,y + v2

,y + w2
,y) (3.19)

εz = w,z +
1

2
(u2
,z + v2

,z + w2
,z) (3.20)

εxy = u,y + v,x + (u,xu,y + v,xv,y + w,xw,y) (3.21)

εyz = v,z + w,y + (u,yu,z + v,yv,z + w,yw,z) (3.22)

εxz = w,x + u,z + (u,xu,z + v,xv,z + w,xw,z) (3.23)

and write

ε =
[
εx εy εz εxy εyz εxz

]T
ς =

[
σx σy σz σxy σyz σxz

]T
Assuming that the initial stresses ς =

[
σx σy σz σxy σyz σxy

]T
remain con-

stant as strains ε occur. The work done by the structure is then

U =

∫
V
εT ςdV (3.24)

Consider the product εT ς. Using the definitions of Green-Lagrange strain (3.18) -
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(3.23) it can be written as follows.

εT ς = εxσx + εyσy + εzσz + εxyσxy + εyzσyz + εxzσxz (3.25)

= u,xσx + v,yσy + w,zσz+

(u,y + v,x)σxy + (v,z + w,y)σyz + (w,x + u,z)σxz+

1

2
(u2
,x + v2

,x + w2
,x)σx +

1

2
(u2
,y + v2

,y + w2
,y)σy+

1

2
(u2
,z + v2

,z + w2
,z)σz + (u,xu,y + v,xv,y + w,xw,y)σxy+

(u,yu,z + v,yv,z + w,yw,z)σyz + (u,xu,z + v,xv,z + w,xw,z)σxz (3.26)

= ε̄T ς+

1

2
(u2
,x + v2

,x + w2
,x)σx +

1

2
(u2
,y + v2

,y + w2
,y)σy+

1

2
(u2
,z + v2

,z + w2
,z)σz + (u,xu,y + v,xv,y + w,xw,y)σxy+

(u,yu,z + v,yv,z + w,yw,z)σyz + (u,xu,z + v,xv,z + w,xw,z)σxz (3.27)

where ε̄T ς is an equivalent, vectorised formulation of σ : ∇v which appears in equation

(3.5).

Define the vector

d =
[
u,x u,y u,z v,x v,y v,z w,x w,y w,z

]T
then multiplying out the matrix vector products shows

εT ς = ε̄T ς +
1

2
dT

σ 0 0

0 σ 0

0 0 σ

d

Substituting this into equation (3.24) gives

U =

∫
V
ε̄T ςdV +

1

2

∫
V

dT

σ 0 0

0 σ 0

0 0 σ

ddV (3.28)

If v are the nodal degrees of freedom then d and v are related via the equation

d = Gv

where G is a matrix containing derivatives of the basis functions. Substituting this
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into (3.28) gives

U =
1

2
vTKv +

1

2
vTKσv

=
1

2
vT (K +Kσ)v

where

Kσ =

∫
Ω

GT

σ 0 0

0 σ 0

0 0 σ

GdV (3.29)

It should be noted that the stress stiffness matrix Kσ is not necessarily definite, i.e.

in certain circumstances it is possible to find vectors x+ and x− such that

xT+Kσx+ > 0 and xT−Kσx− < 0.

The problem which is needed to be solved, as described by Bathe [16] is as follows:

Find the smallest positive λ such that

det(K + λKσ) = 0 (3.30)

If λ ≤ 1 then the system will be unstable. The critical load of the structure is λ times

the applied load. Note that this is a symmetric generalised eigenvalue problem (as both

K and Kσ are symmetric) and as such λ ∈ R. However as Kσ is not guaranteed positive

semidefinite there may exist λ < 0. Calculation of the smallest positive eigenvalue and

corresponding eigenvector is non-trivial, and indeed finding an efficient method for this

is the subject of Section 3.5.

3.5 Calculation of the critical load

Calculating the smallest positive eigenvalue of the system (3.30) is not trivial, and

indeed can take up a lot of computational time. A very efficient method for calculating

the smallest eigenvalue in modulus is inverse iteration (see for example Golub and Van

Loan [58]). However, as Kσ is not necessarily positive definite [39] this would not be

guaranteed to find a positive eigenvalue. Also, it may be necessary (for reasons which

will be set out in Chapter 6) to know a number of the smallest positive eigenvalues and

their associated eigenvectors.

It is possible to make a spectral transformation to take the eigenvalues of interest

to one end of the spectrum.
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λ

λ
λ−σ

σ

1

Proposition 3.14. Suppose K is a symmetric positive definite matrix and that σ 6= 0

is a scalar shift. Then (λ,x) is an eigenpair of

Kx = λMx (3.31)

if and only if ( λ
λ−σ ,x) is an eigenpair of

(K − σM)−1Kx = µx (3.32)

Proof. Firstly, let µ = λ
λ−σ . This is equivalent to λ = −σµ

1−µ . Now suppose (3.31) holds.

Kx = λMx

⇐⇒ Kx = −σµ
1−µMx

⇐⇒ (1− µ)Kx = −σµMx

⇐⇒ Kx− µKx = −σµMx

⇐⇒ Kx = µ(K − σM)x

⇐⇒ (K − σM)−1Kx = µx

Proposition 3.15. The spectral transformation given in Proposition 3.14 maps the

smallest positive eigenvalues of (3.31) to the largest eigenvalues of (3.32).

Proof. Suppose σ > 0 and that λ < σ is an eigenvalue of (3.31). Then λ− σ < λ and

so dividing by λ−σ gives 1 > λ
λ−σ . Hence all eigenvalues that lie to the left of the shift
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get mapped to an eigenvalue of the system (3.31) that is less than 1.

Suppose now that λ > σ. Hence 0 < λ − σ < λ, thus 1 < λ
λ−σ so any eigenvalues

to the right of the shift are mapped to eigenvalues of (3.32) that are larger than those

that were to the left of the shift. If there are two eigenvalues to the right of the shift

so that 0 < σ < λ1 < λ2 then

λ1 < λ2

⇐⇒ −λ1 > −λ2

⇐⇒ −σλ1 > −σλ2

⇐⇒ λ1λ2 − σλ1 > λ1λ2 − σλ2

⇐⇒ λ1(λ2 − σ) > λ2(λ1 − σ)

⇐⇒ λ1
λ1−σ >

λ2
λ2−σ

One possible method to calculate the required eigenpairs is the Arnoldi method

which is implemented in ARPACK [100] for large sparse matrices and makes use of

the spectral transformation from Proposition 3.14 (M = −Kσ to solve the buckling

equations). The drawback of this method is that it requires a linear solve of the form

(K − σM)x = b (3.33)

which can be computationally prohibitive when the number of design variables (and

hence the dimension of (3.33)) increases.

Another method to compute the eigenpairs required is subspace iteration and has

been implemented in the package HSL EA19. This has the advantage that it does

not require a solve of the form (3.33) as with ARPACK. It instead only requires that

an approximation (or preconditioner) to (3.33) be supplied. When a full solve has

been performed, the performance of HSL EA19 is similar to that of ARPACK. The

choice of the preconditioner is key to the performance of the algorithm. In general,

the better this solve is approximated, the fewer iterations it will take to converge.

The choice of preconditioner is exceptionally broad, and indeed it is possible to not

do this operation which is equivalent to choosing the identity as the preconditioner.

When the problem size is large, this is shown to pay off with the overall computation

time of the algorithm significantly decreasing. However as the shift made will be

small, a reasonable approximation to (3.33) is to use precomputed factors of K as a

preconditioner. If the factors have already been computed then the performing a solve
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1

ω

Figure 3-6: Wedge domain for the Laplace problem

with them is inexpensive and the subspace iteration algorithm should converge faster

than using the identity as a preconditioner.

In the rest of this thesis when the buckling load of a structure is computed,

HSL EA19 is used with the Cholesky factorisation of K as the preconditioner. This

will be used extensively in Chapter 6.

3.6 Re-entrant corner singularities

3.6.1 Laplace’s equation

Consider Laplace’s equation over the domain Ω with boundary ∂Ω.

−∇2u = 0 in Ω (3.34a)

u = f on ∂Ω (3.34b)

In polar coordinates (r, θ) the Laplace operator in (3.34a) can be written as follows:

∇2u =
1

r

∂u

∂r
+
∂2u

∂r2
+

1

r2

∂2u

∂θ
(3.35)

If our domain is a wedge with angle ω from the horizontal as in Figure 3-6 then

in the case of homogeneous Dirichlet boundary conditions adjacent to the origin it is

possible to write down a solution to this problem as follows. The boundary conditions

in (3.34b) become

u = 0 on θ = 0 and θ = ω

and

u = f(θ) on r = 1.
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ω

Figure 3-7: Domain for the Laplace problem with no singularity.

ω

Figure 3-8: Domain for Laplace’s equation with a re-entrant corner which gives a
singularity at the origin.

Consider

u =

∞∑
n=1

cnr
nπ/ω sin(nπθω ) (3.36)

where cn are the Fourier coefficients of f(θ) given by

cn = 2
ω

∫ ω

0
f(θ) sin

nπθ

ω
dθ.

A simple calculation shows that u given in (3.36) is the solution to Laplace’s equa-

tion (3.34) on the wedge domain given in Figure 3-6. The growth of u is of interest as

the origin approaches, so consider ∂u
∂r .

∂u

∂r
=
∞∑
n=1

cn
nπ
ω r

(nπ/ω−1) sin(nπθω ) (3.37)

As r → 0, ∂u
∂r → 0 if (nπω − 1) > 0 for all n ∈ N. However if (nπω − 1) < 0 for any

n ∈ N then ∂u
∂r →∞. This reduces to

∂u

∂r
→ 0 when ω < π

∂u

∂r
→∞ when ω > π.

The domain shown in Figure 3-8 shows what is known as a re-entrant corner . This

is a corner that is protruding into the interior of the domain, as opposed to a salient
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γ

−γ

Figure 3-9: Wedge domain for the elasticity problem

corner which is seen in 3-7. As has just been shown, these two different types of corner

can produce quantitatively different solutions.

3.6.2 Elasticity singularities

Consider a wedge with angle γ as shown in Figure 3-9. Green and Zerna 1968 [61] have

stated that the equations of elasticity have the following form:

2µ(ux + iuy) = κφ(z)− zφ′(z)− ψ(z)

and seek to find solutions of the form

φ(z) = A1z
λ +A2z

λ (3.38a)

ψ(z) = B1z
λ +B2z

λ (3.38b)

that satisfy the homogeneous boundary conditions

σθθ − iσrθ = 0 on θ = ±γ.

This boundary condition is written in the form

φ(z)− zφ′(z)− ψ(z) = 0 on θ = ±γ (3.39)

and represents a free Dirichlet boundary. This type of boundary will occur in the

interior of a structure when material is removed from it. Hence this situation is repre-

sentative of the elastic behaviour of a structure in the process of topology optimization.

Consider now (3.38) and imposing the condition that both φ and ψ be continuous

immediately gives Re(λ) > 0. Also, it is clear that if Re(λ) ≥ 1 then as z → 0,

φ(z)→ 0 and ψ(z)→ 0 and so there is no singularity. Hence eigenvalues of (3.39) with
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the property that 0 < Re(λ) < 1 are the eigenvalues of interest.

For completion, let us list some calculations:

φ(z) = A1r
λeiθλ +A2r

λeiθλ (3.40a)

φ′(z) = A1λr
λ−1eiθ(λ−1) +A2λr

λ−1eiθ(λ−1)

φ′(z) = Ā1λr
λ−1e−iθ(λ−1) +A2λr

λ−1e−iθ(λ−1)

zφ′(z) = Ā1λr
λe−iθ(λ−2) +A2λr

λe−iθ(λ−2) (3.40b)

ψ(z) = B1r
λeiθλ +B2r

λeiθλ (3.40c)

ψ(z) = B1r
λe−iθλ +B2r

λe−iθλ (3.40d)

Now put (3.40) into (3.39) and equating coefficients of rλ on the boundary θ = γ, rλ on

the boundary θ = γ, rλ on θ = −γ and rλ on θ = −γ respectively, gives the following

4 equations:

A1e
iγλ −A2λe

−iγ(λ−2) −B2e
−iγλ = 0

−A1λ̄e
−iγ(λ−2) +A2e

iγλ −B1e
−iγλ = 0

A1e
−iγλ −A2λe

−iγ(λ−2) −B2e
iγλ = 0

−A1λ̄e
iγ(λ−2) +A2e

−iγλ −B1e
iγλ = 0

As nonzero Ai and Bi terms are required they can be removed from the formulation

by looking for when the following condition on this determinant holds:∣∣∣∣∣∣∣∣∣∣
eiγλ λe−iγ(λ−2) 0 e−iγλ

λe−iγ(λ−2) eiγλ e−iγλ 0

e−iγλ λeiγ(λ−2) 0 eiγλ

λeiγ(λ−2) e−iγλ eiγλ 0

∣∣∣∣∣∣∣∣∣∣
= 0 (3.42)

Now let us seek a purely real eigenvalue, i.e. λ = λ. Through a large calculation

(or with the help of symbolic computations), this determinant can be reduced to the

equation:

λ2 sin2(2γ)− sin2(2λγ) = 0

This equation has a trivial solution at λ = 1 for all γ. The rest of the solutions to this

equation are plotted in Figure 3-10.

The smallest value of λ which solves the above equation for a given γ is of interest, as

this eigenvalue will determine the singularity at the corner. In the range 0 < γ ≤ π/2

the smallest eigenvalue is λ = 1. Hence for all salient corners, there is no stress
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Figure 3-10: Solution space of λ2 sin(2γ)− sin2(2λγ) = 0 for real valued λ.

singularity.

There is a clear bifurcation at the point γ = π/2, and for π/2 < γ < π the eigenvalue

is strictly less than 1. Hence for any re-entrant corner, stress singularities occur. The

eigenvalue λ appears to be monotonically decreasing in this range, and the slit domain

γ → π is the worst case singularity corresponding to λ = 0.5. At γ = 3π
4 , corresponding

to a right angled re-entrant corner, λ ≈ 0.5445.

We have so far not considered the possibility that an eigenvalue with non-zero

imaginary part could have smaller real part than those found above. However Karp

and Karal [84] claimed this is not the case. If there is a non-zero imaginary part, then

(3.42) reduces to the following:

λλ(sin2(2γ)) = sin(2γλ) sin(2γλ) (3.43)

Now using double angle formulae and writing the complex eigenvalue λ = x + iy,
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(3.43) can be rearranged to give the following:

λλ(sin2(2γ)) = sin(2γλ) sin(2γλ)

⇐⇒ (x2 + y2)(sin2(2γ)) = [sin(2γx) cosh(2γy) + i cos(2γx) sinh(2γy)]×

[sin(2γx) cosh(2γy)− i cos(2γx) sinh(2γy)]

= sin2(2γx) cosh2(2γy) + cos2(2γx) sinh2(2γy) (3.44)

= sin2(2γx) cosh2(2γy) + (1− sin2(2γx)) sinh2(2γy)

= sin2(2γx)[cosh2(2γy)− sin2(2γx)] + sinh2(2γy)

= sin2(2γx) + sinh2(2γy) (3.45)

Thus

x2 sin2(2γ)− sin2(2γx) = sinh2(2γy)− y2 sin2(2γ) (3.46)

(a) Small range −0.1 < y < 0.1 (b) Large range −2 < y < 2

Figure 3-11: Plot of sinh2(2γy)− y2 sin2(2γ)

Lemma 3.16. For all y ∈ R\{0} and γ ∈ (0, π)

sinh2(2γy)− y2 sin2(2γ) > 0 (3.47)

Proof. When γ 6= π/2, sin2(2γ) > 0 and so (3.47) is equivalent to

sinh2(2γy)

sin2(2γ)
− y2 > 0

Using Taylor’s theorem to expand the left hand side in powers of γ and y gives

sinh2(2γy)

sin2(2γ)
=

(2γ)2y2

sin2(2γ)
+

(2γ)4y4

3 sin2(2γ)
+

2(2γ)6y6

45 sin2(2γ)
+

(2γ)8y8

315 sin2(2γ)
+ . . . (3.48)
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Now note that

(2γ)2y2

sin2(2γ)
− y2 =

(2γ)2

3
+

(2γ)4

15
+

2(2γ)6

189
+

(2γ)8

675
+

2(2γ)10

10395
+ . . . (3.49)

So combining (3.48) and (3.49) shows that every term in the summation is positive and

thus the result holds for γ 6= π/2. When γ = π/2 then

sinh2(2γy)− y2 sin2(2γ) = sinh2(πy) > 0

and thus the result holds.

Figure 3-12: Plot of x2 sin2(2γ)− sin2(2γx)

Lemma 3.17. For 0 < x < x̄(γ)

x2 sin2(2γ)− sin2(2γx) < 0

where x̄(γ) is the smallest positive value of x for which x2 sin2(2γ)− sin2(2γx) = 0.

Proof.
∂(x2 sin2(2γ)− sin2(2γx))

∂x
= −2 sin(4γx)− x(cos(4γ)) + x
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∂2(x2 sin2(2γ)− sin2(2γx))

∂x2
= 1− cos(4γ)− 8γ2 cos(4γx)

∂(x2 sin2(2γ)− sin2(2γx))

∂x

∣∣∣∣∣
x=0

= 0

∂2(x2 sin2(2γ)− sin2(2γx))

∂x2

∣∣∣∣∣
x=0

= 1− cos(4γ)− 8γ2 < 0

Hence these calculations show that the function is question is less than 0 infinites-

imally after the line x = 0 and so remains less than 0 up until x = x̄(γ).

Theorem 3.18. The eigenvalue with smallest real part which solves (3.42) is purely

real.

Proof. If an eigenvalue has non-zero imaginary part then (3.46) must hold. However,

as y 6= 0 says that Lemma 3.16 must hold, this implies that

x2 sin2(2γ)− sin2(2γx) > 0.

Lemma 3.17 then ensures that x ≥ x̄(γ) and so the real part of the solution has a larger

real part than a purely real solution.

Hence the solution shown in Figure 3-10 is representative of the singularity which

occurs in elasticity.

Remark 3.19. Karp and Karal [84] give a proof that the purely real root of (3.43) has

smaller real part than a complex root. They do so by examining the solutions to the

simultaneous equations

x sin(2γ) = sin(2γx) cosh(2γy) (3.50a)

y sin(2γ) = cos(2γx) sinh(2γy) (3.50b)

and looking at the properties of these solutions. Squaring and adding the equations

(3.50) gives the equation (3.44). However, the solutions to (3.50) are only a particular

solution to (3.44) as we could, for example, examine the equations

y sin(2γ) = sin(2γx) cosh(2γy)

x sin(2γ) = cos(2γx) sinh(2γy)

and obtain different solutions which also solve (3.44). Therefore the proof given in [84]

is incomplete, but their result still holds thanks to Theorem 3.18.
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3.7 Summary

This chapter has shown the derivation of the state equations defining the response of

material to an applied load. Properties of the resulting finite-element system have been

noted and used to inform the choice of linear solver to be used. The buckling load of a

structure has been defined and methods for solving the resulting generalised eigenvalue

problem have been reviewed.

Re-entrant corner singularities have been investigated as they occur relentlessly in

the ESO method for structural optimization. Categorising these singularities is neces-

sary to understand the behaviour of the algorithm. It is noted that these singularities

are inherent in the linear elasticity equations and not simply a numerical error.
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4
Survey of optimization methods

In this chapter mathematical optimization methods are surveyed. The knowledge of

these methods will inform the choice of optimization strategy which will be employed

in the later chapters. Beginning with general definitions in Section 4.1, the simplex

method for linear programming is discussed in Sections 4.2 and 4.3. Integer program-

ming methods are covered in Sections 4.4 to 4.6. Nonlinear continuous programming

methods are explored in Sections 4.7 to 4.11.

4.1 Preliminary definitions

Consider the general optimization problem as follows.

min
x
f(x) (4.1a)

subject to ci(x) = 0 i ∈ E (4.1b)

ci(x) ≥ 0 i ∈ I (4.1c)

Definition 4.1 (Active set). The active set of the optimization problem (4.1) at a

point x is defined as

A(x) = {i ∈ E ∪ I such that ci(x) = 0} (4.2)

Definition 4.2. The Linear Independence Constraint Qualification (LICQ) holds at

x∗ when the set

{∇ci(x∗), i ∈ A(x∗)} (4.3)

is linearly independent.
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Definition 4.3 (MFCQ). Let x∗ be feasible for (4.1), and let AI(x∗) := {i ∈ I :

ci(x) = 0}. The Mangasarian-Fromowitz constraint qualification (MFCQ) holds at x∗

if there exist a vector w ∈ Rn such that

∇ci(x∗)Tw > 0 (i ∈ AI(x∗)),

∇ci(x∗)Tw = 0 (i ∈ E),

{∇ci(x∗) : i ∈ E} linearly independent

Definition 4.4 (Lagrangian function). The Lagrangian function of (4.1) is given by

L(x, λ) := f(x)−
∑
i∈E∪I

λici(x) (4.4)

where the variables λi are known as Lagrange multipliers.

Definition 4.5 (First order necessary KKT conditions). Suppose x∗ is a local solution

of (4.1) and f(x) & c(x) are continuously differentiable. Suppose also that the LICQ

holds at x∗. Then there exists Lagrange multipliers λ∗ with components λ∗i , i ∈ E ∪ I
such that

∇xL(x∗, λ∗) = 0 (4.5a)

ci(x
∗) = 0 ∀i ∈ E (4.5b)

ci(x
∗) ≥ 0 ∀i ∈ I (4.5c)

λ∗i ≥ 0 ∀i ∈ I (4.5d)

λ∗i ci(x
∗) = 0 ∀i ∈ E ∪ I (4.5e)

A point x that satisfies the first order necessary KKT conditions is known as a

KKT point .

4.2 Theory of Simplex Method

The simplex algorithm dates from 1947, and owes its origins to Dantzig [40]. At the

turn of the millennium, it was named as one of the top 10 algorithms of the 20th

century by Simpson [163]. Before discussing the simplex method, some fundamentals

about linear programming need to be established.

Definition 4.6 (Linear Programming Problem and Canonical form). A problem of the

53



Chapter 4. Survey of optimization methods

form

max z = cTx subject to (4.6a)

Ax ≤ b (4.6b)

x ≥ 0 (4.6c)

is known as a linear programming problem (LPP). Here x, c ∈ Rn, b ∈ Rm and

A ∈ Rm×n. An LPP is said to be in canonical form if (4.6b) is an equality constraint.

It is a simple exercise to convert any LPP into canonical form by introducing slack

variables (see for example Soni 2007 [155] Section 3.3.1.).

Definition 4.7 (Convex set). A non-empty set S ∈ Rn is convex if for all x1, x2 ∈ Rn

and λ ∈ (0, 1), λx1 + (1− λ)x2 ∈ S.

Theorem 4.8 (Dantzig and Thapa [41]). Any LPP has a feasible region which is either

empty or a closed convex polyhedron.

Proof. The proof is left as an exercise in Dantzig and Thapa [41] exercises 1.11 to 1.13

and is included here for completeness.

Consider the set Γ := {x ∈ Rn|wTx ≤ d} where w ∈ Rn and d ∈ R are given. Then

for λ ∈ (0, 1) and x1, x2 ∈ Γ:

wT (λx1 + (1− λ)x2) = λwTx1 + (1− λ)wTx2

≤ λd+ (1− λ)d

= d

So λx1 + (1− λ)x2 ∈ Γ. Note that the same holds if the set Γ is defined by an equality

not an inequality.

Now suppose that there are k convex sets Γ1, . . . ,Γk in Rn with ∩ki=1Γi 6= ∅. It

will subsequently be shown that the intersection of these convex sets is also convex.

Consider λ ∈ (0, 1) and x1, x2 ∈ ∩ki=1Γi. Note that for all j, x1&x2 ∈ Γj . Hence

by the convexity of Γj , λx1 + (1 − λ)x2 ∈ Γj . Since this is true ∀j = 1, . . . , k then

λx1 + (1− λ)x2 ∈ ∩ki=1Γi.

Hence the intersection of a finite number of convex sets is itself a convex set. To

see why the feasible region is a polyhedron, note that each row of (4.6b) characterises

all the points lying on one side of a hyperplane. These points then form a half space

which is trivially closed. By definition, the intersection of a finite number of closed half

spaces is called a closed polyhedron.
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Justification of closed in the above is given by the following. If Ci, i = 1, . . . , k are

closed sets and {xj |j ∈ N} is a sequence of points in ∩ki=1Ci with accumulation point

x, then since each Ci is closed, x ∈ Ci. This is true for all i ∈ 1, . . . , k and hence

x ∈ ∩ki=1Ci. Hence the intersection of a finite number of closed sets is closed.

Definition 4.9 (Extreme point). Given any nonempty convex set Γ, say x ∈ Γ is an

extreme point if x is not an interior point of any line segment in Γ. i.e. @ x1 & x2 ∈ Γ

and λ ∈ (0, 1) with x1 6= x2 such that x = λx1 + (1− λ)x2.

It is clear that any closed convex polyhedron, defined by at least the same number

of constraints as dimensions of the problem (and hence any feasible region), has at least

1 extreme point and at most a finite number of extreme points.

Definition 4.10 (Basic solutions). Consider an LPP in canonical form. Say Ax = b

has a basic solution x if

I := {i | xi 6= 0} and |I| ≤ rank(A) (4.7)

Moreover, if x ≥ 0 then x is called a basic feasible solution.

Theorem 4.11. Suppose that x is a basic feasible solution to a linear programming

problem in canonical form. Then x is an extreme point of the feasible region F .

Proof. Can be found in Nocedal and Wright [120] Theorem 13.3.

Theorem 4.12 (Fundamental Theorem of Linear Programming). Consider a linear

programming problem in canonical form. Then if there exists a finite optimal solution

then there exists an optimal basic feasible solution.

Proof. See for example Luenberger and Ye [103].

4.3 Simplex Algorithm

Suppose there is a feasible solution of the form

x =

(
0n−m

xB

)
(4.8)

where xB > 0 represent the basic variables corresponding to the decomposition A =

(A0 |B). Note that xB = B−1b.
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Now suppose one basic variable is removed from the current solution and another

variable is introduced, giving us a feasible solution of the form

y =

(
y0

yB

)
(4.9)

where y0 are the first n −m entries and yB correspond to the old basis variables. As

this is feasible this gives

Ay = A0y0 +ByB = b

which can be rearranged to give

yB = B−1b−B−1A0y0. (4.10)

Now considering the objective function at this new solution gives

z(y) = cT y = (c0)T y0 + cTByB (4.11)

= (c0)T y0 + cTB(B−1b−B−1A0y0) (4.12)

= cTBxB + [(c0)T − cTBB−1A0]y0 (4.13)

= z(x) + [(c0)T − cTBB−1A0]y0. (4.14)

Thus, in order to improve the objective function, choose a component j such that

[(c0)T − cTBB−1A0]j > 0 and then set y0
j to be non-zero and a component of yB to zero.

Algorithm 1 Simplex method for LPP

1: Choose a basic feasible solution (x0 xB)T .

2: Do until [(c0)T − cTBB−1A0]j ≤ 0:

3: Choose i ∈ {` nonbasic | [(c0)T − cTBB−1A0]` > 0}
4: if B−1Ai ≤ 0 then

5: {Note Ai is the ith column of A.}
6: Stop as the problem is unbounded.

7: else

8: Choose j ∈ basic so j = mink{(B−1b)k/(B
−1Ai)k : (B−1Ai)k > 0}

9: end if

10: Make non-basic variable i basic and make basic variable j non-basic.

11: End do

12: Stop as an optimal basic feasible solution has been found.

56



Chapter 4. Survey of optimization methods

4.4 Branch-and-Bound

Branch-and-bound methods were first suggested by Land and Doig [97]. Consider the

problem

min cTx subject to (4.15a)

Ax = b (4.15b)

x ≥ 0 (4.15c)

x ∈ Zn (4.15d)

The first step is to solve (4.15) with the integer constraint on the variables (4.15d)

removed, that is x ∈ Rn. The solution of this problem is then not guaranteed to have

integer components. Then choose a variable j ∈ {1, . . . , n} with noninteger component

and define Ij := bxjc.
Now it is possible to make the first branch into left and right child problems. The

left-child problem is to solve

min cTx subject to (4.16a)

Ax = b (4.16b)

x ≥ 0 (4.16c)

xj ≤ Ij (4.16d)

and the right-child problem is to solve

min cTx subject to (4.17a)

Ax = b (4.17b)

x ≥ 0 (4.17c)

xj ≥ Ij + 1 (4.17d)

This whole process can be recursively applied to create what is known as the binary

enumeration tree. Repeating this process enough times will find an integer solution.

The values of the objective function of these integer solutions are retained and used

to prune the tree. If the solution to the continuous problem at a node has objective

function higher than that of the current best integer solution then the rest of that

branch may be disregarded as any integer solutions belonging to that branch must also

have worse objective function.

The methods for choosing the noninteger component xj on which to branch, and the
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choice of where to next look for a solution if the working branch is pruned are important,

and different strategies for these form the basis for different implementations. For

further details on branch-and-bound methods see for example Moré and Wright [114],

Winston [181] or Mart́ı and Reinelt [106].

4.5 Cutting plane methods

Cutting plane methods were first proposed by Gomory [59]. Consider a problem

min cTx subject to (4.18a)

Ax = b (4.18b)

x ≥ 0 (4.18c)

x ∈ Zn (4.18d)

then, like the branch-and-bound method, solve (4.18) with the integer constraint (4.18d)

removed. As this is a linear problem, it is known that the solution must occur at a

vertex of the n-dimensional simplex. If this solution is an integer solution then the

algorithm stops, as the optimum has been found.

If this solution has non-integer components then a hyperplane is found that lies

between this vertex and all the feasible integer points. This hyperplane is then added

in as a constraint into (4.18) to exclude that vertex, and this is known as making a cut.

The new linear programming problem is then solved and the process repeated with

added constraints until the solution found has integer components.

4.6 Branch-and-cut methods

As the name suggests, branch-and-cut is a hybrid of branch-and-bound and cutting

plane methods.

These methods start by applying a cutting plane method to (4.18) until either a

solution is found or no more cutting planes can be computed. If no more cuts can be

made, then the branch-and-bound method is started. Some non-integer components

of the solution are chosen on which to branch. These new subproblems can then be

tackled using cutting plane methods again [107].

4.7 Quadratic Programming

Definition 4.13. A quadratic program (QP) is a problem of the form
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min
x∈Rn

1
2x

TGx+ xT c (4.19a)

subject to aTi x = bi i ∈ E (4.19b)

aTi x ≥ bi i ∈ I (4.19c)

where c, x ∈ Rn, G ∈ Rn×n and G = GT . If G is positive semidefinite, then (4.19) is

called a convex QP. The set E defines the equality constraints, and the set I defines

the inequality constraints.

It has been shown that a QP can always be solved or shown to be infeasible in a

finite amount of computation [120]. In the convex QP case, the problem is similar in

difficulty to that of a linear program.

Definition 4.14. A equality constrained quadratic program (EQP) is a problem of the

form

min
x∈Rn

q(x) := 1
2x

TGx+ xT c (4.20a)

subject to Ax = b. (4.20b)

where c, x ∈ Rn, G ∈ Rn×n and G = GT . b ∈ Rm and A ∈ Rm×n.

The first order necessary conditions for x∗ to be a solution of (4.20) says ∃λ∗ ∈ Rm

such that [
G −AT

A 0

][
x∗

λ∗

]
=

[
−c
b

]
(4.21)

i.e.

Gx∗ −ATλ∗ = −c

Ax∗ = b

(4.21) can be rewritten as [
G AT

A 0

][
−p
λ∗

]
=

[
g

h

]
(4.22)

where h = Ax− b, g = c+Gx and p = x∗ − x.

The matrix [
G AT

A 0

]
(4.23)
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is known as the KKT matrix.

Theorem 4.15. Let Z denote the n × (n −m) matrix whose columns are a basis for

the kernel of A. That is, Z has full rank and satisfies AZ = 0. Assume A has full

row rank (i.e. all the constraints are linearly independent). Assume ZTGZ is positive

definite (i.e. the reduced Hessian matrix is SPD).

Then the KKT matrix (4.23) is nonsingular and ∃(x∗, λ∗) satisfying (4.21).

Proof. See for example Nocedal and Wright [120] Lemma 16.1.

If fact, the second order conditions are the satisfied too, so x∗ is a strict local

minimiser of the EQP. Note that a stronger result than Theorem 4.15 holds, that is,

if ZTGZ is positive definite then the KKT matrix has precisely n positive, m negative

and 0 zero eigenvalues (Forsgren et al. 2002 [54]).

Theorem 4.16. Let A have full row rank and assume ZTGZ is positive definite. Then

x∗ satisfying (4.21) is a unique global solution of (4.20).

Proof. See Nocedal and Wright [120] Theorem 16.2.

So, if the above assumptions hold, in order to find the global solution to the EQP,

only one equation of the form (4.21) must be solved. There are many ways to do this,

and choosing the most efficient linear algebra technique is important. Note: the KKT

matrix is always indefinite if ZTGZ � 0 and m > 0.

4.7.1 Inequality constrained Quadratic Programming

An Inequality constrained Quadratic Program (IQP) is a problem of the following form.

min
x∈Rn

q(x) = 1
2x

TGx+ xT c (4.24a)

subject to aTi x = bi i ∈ E (4.24b)

aTi x ≥ bi i ∈ I (4.24c)

The Lagrangian for the IQP (4.24) is

L(x, λ) = 1
2x

TGx+ xT c−
∑
i∈E∪I

λi(a
T
i x− bi) (4.25)
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So any solution x∗ of the IQP (4.24) satisfies the first order KKT conditions for

some Lagrange multipliers λ∗i , i ∈ A(x∗) with

Gx∗ + c−
∑

i∈A(x∗)

λ∗i ai = 0 (4.26a)

aTi x
∗ = bi ∀i ∈ A(x∗) (4.26b)

aTi x
∗ ≥ bi ∀i ∈ I\A(x∗) (4.26c)

λ∗i ≥ 0 ∀i ∈ I ∩ A(x∗) (4.26d)

Note here there is no need to have the LICQ as, in QP problems, the constraints are

linear and thus the LICQ are automatically satisfied.

Theorem 4.17. If x∗ satisfies (4.26) for some λ∗i , i ∈ A(x∗) and the matrix G is

positive semidefinite then x∗ is a global solution of the IQP (4.24).

Proof. See for example Nocedal and Wright [120], Theorem 16.4.

If the contents of the optimal active set were known in advance, the solution x∗

could be found by applying the techniques of EQP to

min
x

q(x) = 1
2x

TGx+ xT c

subject to aTi x = bi ∀i ∈ A(x∗)

Normally A(x∗) is not known so determining this set is the main challenge of active

set methods for IQPs. The simplex method is an active set method of linear program-

ming. Active set methods for QPs differ in that the iterates (and the solution) are not

necessarily vertices of the feasible region.

Interior point methods

Interior point methods may be extended from linear programming to convex QPs and

an alternative to active set methods. Consider the problem

min
x

q(x) = 1
2x

TGx+ xT c

subject to Ax ≥ b
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The KKT conditions are then

Gx−ATλ+ c = 0

Ax− b ≥ 0

(Ax− b)iλi = 0 i = 1, . . . ,m

λ ≥ 0

Now introduce a slack vector y ≥ 0 so that

Gx−ATλ+ c = 0

Ax− y − b = 0

yiλi = 0 i = 1, . . . ,m

(y, λ) ≥ 0

As G � 0, these KKT conditions are necessary and sufficient for optimality, however

it may be impossible to satisfy these conditions if there are no feasible points. Given

a current feasible iterate (x, y, λ) with (y, λ) ≥ 0, it is possible to define a complemen-

tarity measure µ by µ = yTλ/m. Now consider the perturbed KKT conditions given

by,

F (x, y, λ;σµ) =



Gx−ATλ+ c

Ax− y − b
y1λ1 − σµ

...

ymλm − σµ


= 0, σ ∈ [0, 1] (4.27)

The solutions (y, λ) of (4.27) define the central path, which is a trajectory that leads

to the solution of the QP as σµ tends to 0. If fixing µ and applying Newton’s method

to (4.27) leads to the linear system

G 0 −AT

A −I 0

0 diag(λ) diag(y)


∆x

∆y

∆λ

 =



−rd
−rp

−y1λ1 + σµ
...

−ymλm + σµ


(4.28)
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where

rd = Gx−ATλ+ c

rp = Ax− y − b

Then

(x̃, ỹ, λ̃) = (x, y, λ) + α(∆x,∆y,∆λ)

where α is chosen to retain the inequality (ỹ, λ̃) ≥ 0. For a comprehensive discussion

of interior point methods, see for example Nocedal and Wright [120].

4.8 Line search methods for unconstrained problems

In a line search method, given a point xk the goal is to iterate to the minimiser x∗.

The next point is given by moving a distance αk along a search direction pk. The next

iteration point is then

xk+1 = xk + αkpk (4.29)

αk is known as the step length.

If the search direction pk has the property that pTk∇fk < 0 then pk is known as a

descent direction. This ensures that f must take a lower value at some point along the

search direction. In the steepest descent method, the search direction is taken to be

pk = −∇fk (4.30)

In Newton’s method, the search direction is taken to be

pk = −∇2f(xk)∇fk (4.31)

Quasi-Newton methods use a (normally positive definite) approximation to the Hessian

instead of the exact Hessian to compute the search direction.

The computation of the step length αk has to ensure that there is sufficient decrease

in the objective function, however this choice must be made efficiently. The best choice

of the step length is

αk = arg min
α

f(xk − αpk), α > 0 (4.32)

In general, finding even a local minimum of this one dimensional minimisation problem

is expensive and unjustified and so practical methods choose αk so that it achieves

sufficient improvement in the objective function according to some measure.
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4.9 Trust region methods

Key to the idea of a trust region, is a model mk that approximates the objective

function f . The trust region is then the area around the current iterate within which

the model is trusted to be a fair representation of the objective function. They then

choose the next iterate to be the minimizer of the model within this trust region.

The choice of the size of the trust region is crucial to the performance of the method.

The region must be large enough for each step to allow good improvement of the

objective function, but it must not be so big that the model function mk no longer

approximates the objective function f effectively.

If the region is too large, and the minimiser of the model function within the trust

region actually gives an increase in the objective function f , then the step is rejected

and the trust region may be reduced. If over the history of the iterations the model

function sufficiently tracks the objective function then it is assumed that the trust

region is conservative. In this case the size of the trust region is increased in order to

speed up convergence.

4.10 Sequential Quadratic Programming

4.10.1 Newton Formulation

Consider a equality constrained problem:

min
x∈Rn

f(x) (4.33a)

subject to c(x) = 0 (4.33b)

The Lagrangian function for this problem is then given by

L(x, λ) = f(x)− λT c(x) (4.34)

Let A(x) denote the Jacobian of the constraints, i.e. with ci(x) denoting the ith com-

ponent of vector c(x) then A(x)T = [∇c1(x),∇c2(x), . . . ,∇cm(c)].

The first order KKT conditions of (4.33) are

F (x, λ) =

[
∇f(x)−A(x)Tλ

c(x)

]
= 0 (4.35)

Any solution (x∗, λ∗) of (4.33) for which A(x∗) has full rank satisfies (4.35). Newton’s
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method to find the solution of (4.35) is to solve[
∇2
xxL(x, λ) −A(x)T

A(x) 0

][
pk

pλ

]
=

[
∇fk(x) +Ak(x)Tλk

−ck(x)

]
(4.36a)

then [
xk+1

λk+1

]
=

[
xk

λk

]
+

[
pk

pλ

]
(4.36b)

The matrix in (4.36a) is nonsingular if both

A(x) has full row rank, and (4.37a)

dT∇2
xxL(x, λ)d > 0 ∀d 6= 0 s.t. A(x)d = 0. (4.37b)

Equations (4.37) are equivalent to the LICQ holding and that the reduced Hessian

matrix is positive definite. Compare these with the assumptions of Theorem 4.15. In

this case solving the system in (4.36b) gets closer to the solution locally, but a merit

function is required to ensure global convergence.

4.10.2 Taylor’s series expansion

Consider the Taylor’s series expansion of f(x) in one variable.

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n

= f(x0) +
∂f

∂x
(x0)(x− x0) + 1

2

∂2f

∂x2
(x0)(x− x0)2 + 1

6

∂3f

∂x3
(x0)(x− x0)3 + h.o.t.

(4.38)

which can be generalised to the multidimensional case as follows.

f(x) = f(x0) + (x− x0)T∇f(x0) + 1
2(x− x0)T∇2f(x0)(x− x0) + h.o.t. (4.39)

This expansion can be used to locally model a general nonlinear function f as a

quadratic function, and is used extensively in SQP.

4.10.3 SQP Formulation

In this section, the notation is shortened to drop the dependency on x and λ, i.e. Ak(x)

becomes Ak and Lk(x, λk) becomes Lk etc.

Alternatively to (4.36), (4.33) can be viewed as a quadratic program: At iterate
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(xk, λk),

min
p

fk +∇fTk p+ 1
2p
T∇2

xxLkp (4.40a)

subject to Akp+ ck = 0 (4.40b)

Hence, if the assumptions (4.37) hold, then (4.40) has a unique solution (pk, `k) satis-

fying

∇2
xxLkp+∇fk −ATk `k = 0 (4.41a)

Akpk + ck = 0 (4.41b)

This pair (pk, `k) can be identified with the solution of the Newton system. To see

this, consider (4.36a):

∇2
xxLkpk −ATk pλ = −∇fk +ATk λk

Akpk = −ck

This first equation can be rearranged to give

∇2
xxLkpk −ATk (pk + λk) = ∇2

xxLkpk −ATk λk+1 = −∇fk

Hence λk+1 = `k & pk solve both the Newton step (4.36) and the SQP subproblem

(4.40).

4.10.4 Line search SQP method

The basic line search method for SQP is to iterate over k the update formula[
xk+1

λk+1

]
=

[
xk

λk

]
+

[
αxkpk

αλkpλ

]
(4.42)

where the αxk and αλk are nonnegative stepsizes that are to be found.

To find the stepsizes, it is necessary to have the concept of a merit function φ(x).

This merit function is a measure of distance to a critical point. Thus the stepsize is αxk
is found by requiring that φ(xk + αxkpk) be sufficiently smaller than φ(xk).

For the choice of different merit functions, see Conn et Al, [38]. There they dis-

cuss Augmented Lagrangian penalty functions and smooth/nonsmooth exact penalty

functions.
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4.10.5 Trust region SQP method

A typical trust region SQP method is, at an iteration point xk, solve a subproblem of

the form

min
p

fk +∇fTk p+ 1
2p
T∇2

xxLkp (4.43a)

subject to Akp+ ck = 0 (4.43b)

and ||p|| ≤ ∆k (4.43c)

for some suitable trust region radius ∆k with corresponding choice of norm. The

solution of this subproblem will only be accepted as the next iterate (xk+1) = (xk+pk)

if the merit function at that point φ(xk+pk) is significantly less than the merit function

at the current point φ(x).

If this relationship between the values of the merit function does not hold, then the

trust region radius ∆k is rejected and reduced to a smaller value. It may be the case

that there is no feasible solution to the trust region subproblem. In this circumstance,

the linearised constraints (4.43b) are not satisfied at every step and are simply improved

with the hope they are satisfied when the trust region constraint allows. This can be

achieved via a filter, penalty or relaxation method (see Nocedal and Wright [120]).

4.11 The Method of Moving Asymptotes

MMA was developed by Svanberg in 1987 [167]. It is a method developed specifically

for structural optimization and started off as a somewhat heuristic method. Since then

globally convergent methods [169] have been implemented but these can be very slow.

The idea behind MMA is to approximate the objective and constraints by functions

for which the minimum can be found efficiently. These functions are chosen to be

separable and convex. They arise from a Taylor’s series expansion in a shifted and

inverted variable.

Given the objective function or a constraint F (x). the approximating functions are

given by

F (x) ≈ F (x0) +
n∑
i=1

(
ri

Ui − xi
+

si
xi − Li

) (4.44)

where ri and si are defined as

if ∂F
∂xi

> 0 then ri = (Ui − x0
i )

2 ∂F
∂xi

(x0) and si = 0

if ∂F
∂xi

< 0 then si = −(x0
i − Li)2 ∂F

∂xi
(x0) and ri = 0
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The variables Ui and Li are asymptotes for the convex approximating functions,

which move dependent on previous iterations (hence the name MMA). The asymptotes

are given by the relations

L(k) − x(k) = γ(k)(L(k−1) − x(k−1))

U (k) − x(k) = γ(k)(U (k−1) − x(k−1))

where γ(k) is a scalar defined by

γ(k) = 1.2 if (x(k) − x(k−1))(x(k−1) − x(k−2)) > 0

γ(k) = 0.7 if (x(k) − x(k−1))(x(k−1) − x(k−2)) < 0

γ(k) = 1.0 if (x(k) − x(k−1))(x(k−1) − x(k−2)) = 0.

Thus the asymptotes are moved away from the current iteration point if the two

previous iterations moved in the same direction. Similarly the asymptotes are moved

towards the current iteration point if the two previous iterations moved in opposite

directions and they remain in place if in the last two iterations the point x has not

moved.

x

f(x)

xk

(a) MMA approximations

x

f(x)

xk

(b) MMA approximations with narrower
asymptotes

Figure 4-1: MMA approximating functions

The convex approximations to the objective function and constraints are brought

together to form the approximating subproblem. These subproblems are separable
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and convex, and can be solved using an interior point method. The solution of this

subproblem is used as the starting point for the subsequent problem.

If, however, the solution of the subproblem becomes infeasible for the underlying

optimization problem, or indeed the value of the objective function is increased, then the

corresponding asymptotes are approximating the appropriate function are constricted.

This has the affect of making the approximating function more convex, and hence

limiting the distance any variables can move along that direction.

Iterating this process of forming and solving subproblems occurs until a KKT point

is reached. MMA has become the de facto standard optimization method to use when

solving topology optimization problems [19].

4.12 Summary

Optimization methods considered here can be spilt into 2 categories: discrete and

continuous. Both of these perspectives have their advantages and will be returned to

in subsequent chapters. Discrete optimization techniques can guarantee to find global

optima but suffer from the curse of dimensionality. Continuous optimization techniques

can avoid the curse of dimensionality but generally converge to local minima with no

proof of global optimality.

Detailed knowledge of the theory behind the different optimization methods is

needed in order to assess how they apply to structural optimization problems. Continu-

ous optimization techniques such as SQP and MMA will be investigated when the SIMP

approach is used in Chapter 5, whereas knowledge of the simplex method and discrete

optimization techniques will be used when discussing the ESO method in Chapter 7.
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5
Minimisation of compliance subject to maximum volume

This chapter is concerned with the formulation of structural optimization as an math-

ematical programming problem that can be solved efficiently. To avoid the curse of

dimensionality we immediately relax the binary constraint on the density variables and

consider those which vary continuously. Sections 5.1 and 5.2 formulate the problem

in the SIMP approach. Section 5.3 discusses appropriate optimization methods to

solve the mathematical programming problem. Section 5.4 investigates the possibility

of including the state equations directly in the optimization formulation. Section 5.5

introduces filters in order to regularise the problem and make it well posed. Finally

Section 5.6 shows the latest results in solving this particular structural optimization

problem.

5.1 Convex problem

Suppose we wish to solve the following problem

min
x
fTu(x) (5.1a)

subject to K(x)u(x) = f (5.1b)

eTx ≤ Vmax (5.1c)

0 ≤ x ≤ 1 (5.1d)

given that

K(x) =
∑
i

xiKi (5.2)
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Figure 5-1: Design domain of a short cantilevered beam. The domain is a square that
is fixed completely on the left hand side with a unit load applied vertically downwards
in the middle of the right hand side of the domain.

where Ki is the element stiffness matrix associated with the variable i, u(x) a vector

of displacements, f a vector of applied loads and Vmax a scalar defining a volume

constraint.

Svanberg [166] showed that the problem (5.1) is convex by considering the Hessian

of its Lagrangian and showing that it is positive definite. This means that this problem

would be easily solved by most continuous optimization algorithms. For instance, if we

consider a short cantilevered beam as shown in Figure 5-1 then we can find the solution

to (5.1) which we show in Figure 5-2.

This solution is not desirable as in many cases the values of xi that are not 0 or 1 do

not have any physical meaning. In the Variable Thickness Sheet (VTS) approach where

the variables x correspond to the thickness of a planar element then this approach is

adequate. When the solution of this problem is to be used to design a structure where

at any point we can state whether there is material there or not, we need to introduce

a scheme to force the solution to be x ∈ {0, 1}.

5.2 Penalised problem

In order to force the solution of (5.1) to be either xi = 0 or xi = 1 for all i = 1, . . . , n

we have to introduce what is known as a penalty function. Recall the construction of

the stiffness matrix

K =
∑
i

xiKi (5.3)
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Figure 5-2: Solution of convex problem on a short cantilevered beam domain. The
density of material is plotted with black colour denoting the presence of material with
density xi = 1 and white colours the representing the absence of material, i.e. density
xi = 0. The colour scale is linear with the density of the material. This was solved
using MMA on a mesh of 1600× 1600 elements.

where Ki is the element stiffness matrix corresponding to the variable i. When we

introduce the penalty function, this equation becomes

K =
∑
i

Ψ(xi)Ki (5.4)

where Ψ is the penalty function. Note that if this penalty function is nonlinear then

the problem (5.1) becomes nonconvex.

The penalty function Ψ is chosen so that it has a number of properties, namely

• Ψ is smooth

• Ψ is monotone

• Ψ(0) = 0 and Ψ(1) = 1

• Ψ(x) ≤ x for all x ∈ [0, 1].

The penalty function is chosen to be smooth so as to retain the smoothness of

the underlying problem. This allows us to use continuous optimization techniques to

solve the problem. We want the penalty function Ψ to be monotone so as to avoid

introducing extra local minima into the problem. Ψ(0) = 0 and Ψ(1) = 1 mean that
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x

Ψ(x) = xp

1

1
p = 1
p = 3

2
p = 2
p = 3
p = 4

Figure 5-3: Power law penalty functions Ψ(x) = xp for various values of p in the SIMP
method

the stiffness of elements at the points we desire correspond to the physical values that

they should have.

The last point is where the penalisation occurs. This property states that the

stiffness which we give to an element with an intermediate density is no greater than

the physical value that it should have. Put another way, this states that intermediate

density elements will provide lower stiffness to the structure than in the non-penalised

case. Note that the convex problem is equivalent to choosing the identity as the penalty

function.

This discourages elements of intermediate density from appearing in the solution

of the optimization problem. To see this, consider the contribution of an element i

with density xi = 0.5 in the case Ψ(x) = x3. Then Ψ(xi) = (1
2)3 = 1

8 = xi
4 . Hence

the element xi is contributing only one quarter of the stiffness it would have in the

non-penalised case, making it use up proportionally more volume for its stiffness.

Solid Isotropic Material with Penalisation (SIMP) is the name given to using a

power law as the penalty function, i.e.

Ψ(x) = xp, p ≥ 1. (5.5)

This will satisfy all the required conditions for the penalty function (see Figure 5-3).

So the SIMP problem of finding a structure with minimum compliance for a given

maximum volume looks as follows.
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min
x
fTu(x) (5.6a)

subject to K(x)u(x) = f (5.6b)

eTx ≤ Vmax (5.6c)

0 ≤ x ≤ 1 (5.6d)

K(x) =
∑
i

xpiKi (5.6e)

where p is the given penalty parameter.

5.3 Choice of optimization algorithm

We must select an appropriate constrained optimization method in order to solve the

SIMP problem (5.6). Let us note some properties of (5.6).

1. This is a nonlinear optimization problem as the objective function, compliance,

is nonlinear in the variables x.

2. The equilibrium equations are nonlinear in x, so we have nonlinear constraints.

3. The box constraints and the volume constraints are both linear in x.

4. If p > 1 then (5.6) is nonconvex.

5. If x ∈ Rn then we would like to be able to cope with n large, say n = O(106).

5.3.1 Derivative Free Methods

A commonly used derivative free method in optimization is the Simplex method for

linear programming. This is not suitable for solving (5.6) as, by definition, it is designed

for linear problems. Nonlinear programming simplex methods such as the Nelder-Mead

Simplex Method are also inappropriate as they may converge to a non-stationary point

[111]. More detrimental, however, is the curse of dimensionality which will affect these

methods, in that they need n+ 1 function evaluations just to define the initial simplex.

Stochastic Optimization Methods

Stochastic, or evolutionary, methods for optimization have become increasingly popular

with engineers over recent years. Along with the more common genetic algorithms

and simulated annealing, biologically and physically inspired algorithms have been
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proposed for solving constrained optimization problems. These include ant colony

optimization, artificial immune systems, charged system search, cuckoo search, firefly

algorithm, intelligent water drops and particle swarm optimization, to name but a few.

These methods have a pool of candidate solutions and some measure of the solution’s

fitness or objective function value. They then follow a set of rules to remove the

worst performing candidate solutions from the pool and to create new ones either

stochastically or by a defined combination of the best solutions. This evolutionary

behaviour is repeated until the pool of candidate solutions cluster around the optimal

solution, although this convergence is not guaranteed.

These methods are not going to be viable for solving the problem (5.6) because of

the number of variables which we wish to consider. The box constraints (5.6d) mean

that our feasible region is contained in the hypercube [0, 1]n where n is the number of

variables in the problem. Hence, to have enough candidate solutions in an initial pool

to be in each corner of this hypercube we need 2n initial solutions. Say, for example,

we had n = 100, a very modest number of variables. Then we would need 2100 > 1030

candidate solutions just to have one on each vertex. Each one of these candidate

solutions would require function and constraint evaluations and so we can quickly see

that these methods are not viable for high-dimensional problems such as (5.6).

A comprehensive comparison of stochastic methods for topology optimization with

gradient based optimization was carried out by Sigmund, 2011 [153]. They found that

when applied to these classes of problems, stochastic optimization methods require

many orders of magnitude more function evaluations than derivative based methods

and have not been shown to find solutions with improved objective functions.

5.3.2 Derivative based methods

Penalty and Augmented Lagrangian methods

In a penalty function method the idea is to move the constraints of the problem into

the objective function and to penalise these terms so that the solution of this new

unconstrained problem corresponds to the solution of the constrained problem. For

instance, if we recall the general optimization problem

min
x
f(x) (5.7a)

subject to ci(x) = 0 i ∈ E (5.7b)

ci(x) ≥ 0 i ∈ I (5.7c)
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we can define a quadratic penalty function as follows

Q(x, µ) := f(x) + µ
2

∑
i∈E

c2
i (x) + µ

2

∑
i∈I

(min{ci(x), 0})2. (5.8)

The parameter µ > 0 is known as the penalty parameter. We can see that if µ is

suitably large, then the minimizer of Q(x, µ) will require the final two terms in (5.8) to

be 0, and hence the constraints of (5.7) to be satisfied. Typically, the unconstrained

problem (5.8) will be solved repeatedly for a increasing sequence of µk until the solution

satisfies the constraints.

One can see from the final term in (5.8) that due to the inequality constraints, the

quadratic penalty function Q(x, µ) may be nonsmooth. Due to the box constraints

(5.6d) and the volume constraint we would be introducing 2n + 1 nonsmooth terms

into the objective function which may hamper the performance of the solver for the

unconstrained problem.

The case of an equality constrained optimization problem, where I = ∅, the aug-

mented Lagrangian function is defined as follows

L(x, λ, µ) := f(x)−
∑
i∈E

λici(x) + µ
2

∑
i∈E

c2
i (x). (5.9)

Here the λ are an estimate of the Lagrange multipliers for the equality constrained

problem. We can see that the augmented Lagrangian is simply the Lagrangian function

(4.4) plus a quadratic term in the constraints. It is also an extension of the equality

constrained penalty method in (5.8) by adding in the terms with Lagrange multipliers.

In order to use the augmented Lagrangian approach for a problem with inequality

constraints we must add slack variables si so as to turn these into equality constraints

in the following manner,

ci(x)− si = 0, si ≥ 0, ∀ i ∈ I. (5.10)

If we include the slack variables within our notation x, we can then solve a bound-

constrained problem of the form

min
x

L(x, λ, µ) (5.11a)

subject to xmin ≤ x ≤ xmax. (5.11b)

This can be solved by a gradient projection method. Practical Augmented Lagrangian

methods generally converge only linearly [22] and efficient implementations require
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partial separability of the problem, something that problem (5.6) does not possess.

Sequential Quadratic Programming

“[SQP is] probably the most powerful, highly regarded method for solving smooth

nonconvex, nonlinear optimization problems involving nonlinear constraints”, Conn et

Al. 2000 [38].

Sequential Quadratic Programming methods appear to be a good method to try to

solve the optimization problem (5.6). SQP methods have been outlined in Section 4.10

but we shall give a brief recap here.

Given a nonlinear programming problem such as (5.7), at an iterate denoted by

the subscript k, the constraints are linearised and a quadratic approximation to the

objective function is formed. This gives a quadratic subproblem like (4.40) where

min
p

fk +∇fTk p+ 1
2p
T∇2

xxLkp (5.12a)

subject to aTkip+ cki = 0 ∀ i ∈ E (5.12b)

aTkip+ cki ≥ 0 ∀ i ∈ I (5.12c)

This problem will either be solved to get a search direction with which to perform a line

search for a given merit function, or solved with an additional trust region constraint

to limit the step size and ensure a decrease in the merit function.

The solution to this problem is then used as the starting point for another lin-

earisation and QP solve until either a KKT point is reached or the method breaks

down.

In the topology optimization literature there is relatively little written about the

use of SQP as the optimization method. One author has noted that “the application of

sequential quadratic programming methods (SQP) . . . is known as being not successful

due to the lack of convexity of the resulting optimization problem with respect to the

variable [ρ]”, Maar, Schultz 2000 [104]. However, we wish to test this with modern

implementations of SQP.

5.4 Simultaneous Analysis and Design (SAND)

In this section we consider solving the state equations by simply including them as con-

straints in the optimization formulation. This is known as Simultaneous Analysis and

Design (SAND). In order to make the notation clearer, new notation will be introduced

so that
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x =

[
ρ

u

]
(5.13)

where ρ ∈ Rnρ represents the density of material in an element and u ∈ Rnu represents

the displacements of the nodes of the finite-element system. Note that nu = O(nρ).

In this notation, the typical Nested Analysis and Design (NAND) formulation of

the problem is written as follows:

min
ρ
fTK−1(ρ)f (5.14a)

subject to eTρ ≤ Vfrac (5.14b)

0 ≤ ρ ≤ 1 (5.14c)

As ρ ∈ Rnρ then we have nρ variables, 1 linear inequality constraint and nρ box

constraints. The objective function is nonlinear.

The typical SAND formulation of the problem is similarly written as follows:

min
ρ,u

fTu (5.15a)

subject to K(ρ)u = f (5.15b)

eTρ ≤ Vfrac (5.15c)

0 ≤ ρ ≤ 1 (5.15d)

If the problem considered is in N -dimensional space and ρ ∈ Rnρ then there are nρ +

O(Nnρ) variables, O(Nnρ) equality constraints (nonlinear in ρ but linear in u), 1 linear

inequality constraint and nρ box constraints.

Compare these with the NAND formulation and it can be seen that in the SAND

formulation there are an extra O(Nnρ) variables and an extra O(Nnρ) nonlinear equal-

ity constraints. However the objective reduces from nonlinear in the NAND formulation

to linear in the SAND formulation.

This added complexity could be offset by the fact that the solution path is not

restricted to the smaller manifold to which the NAND solution path is restricted. The

thought is that the SAND method could then reach the solution faster than the NAND

method as it is less restricted, or indeed it could find a better local optimum. This is

tested subsequently in Section 5.4.1.
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(a) Design domain of cantilevered beam and
discretisation

(b) SAND solution of a cantilevered beam us-
ing S2QP

Figure 5-4: Design domain and solution using S2QP of a SAND approach to can-
tilevered beam problem

5.4.1 SQP tests

The SAND approach has been implemented using SQP solvers in order to test its

effectiveness. The solvers used were S2QP [60] and SNOPT [56]. Limited results are

shown in Figures 5-4 and 5-5. The problem considered in Figure 5-4 has Vfrac = 0.5

and p = 3 and was found using S2QP. Note immediately the atrocious coarseness of

the mesh. 4 × 4 elements is so small that this problem could potentially be solved by

hand.

The problem considered in Figure 5-5 also has Vfrac = 0.5 and p = 3 but was solved

using SNOPT. Note that this was able to be solved on a mesh of size 10 × 10 which

is still very coarse. An interesting point about this solution is the lack of symmetry.

The solution is a verified local minima of the problem and also a verified local minima

for the NAND formulation. The symmetry of the problem is not enforced at any stage

as the equilibrium constraints only need to be satisfied at the solution. This freedom

has allowed the SAND approach to find an asymmetric solution, something which the

NAND approach would not produce.

The two figures 5-4 and 5-5 are actually very atypical of the results seen from the

SAND approach. Typically the methods will fail to converge and these results shown

were the product of hard-fought parameter testing and luck. Usually the optimiza-

tion method claimed that the objective was unbounded below, when the equilibrium

constraints were not satisfied. In the next section the reason for the SQP methods
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(a) Design domain of centrally loaded column
and discretisation

(b) SAND solution of a centrally loaded col-
umn using SNOPT

Figure 5-5: Design domain and solution using SNOPT of a SAND approach to centrally
loaded column problem. Note the lack of symmetry in the computed local minima
suggesting that it is not globally optimal.

returning an unbounded infeasible solution will be investigated.

5.4.2 Constraint qualifications

If the constraints of the SAND formulation (5.15) are ordered so that

K(ρ)u− f = 0 ∴ E = {1, . . . , nu}

Vfrac − eTρ ≥= 0 ∴ I = {nu + 1}

then for i ∈ {1, . . . , nu} the constraints are given by

ci(x) = (K(ρ))iu− fi (5.16)

where (K(ρ))i is the i-th row of the matrix K(ρ).

The gradient of one of these constraints can be computed as follows.

∇ci(x) =


∂(K(ρ))i
∂ρ1

u
...

∂(K(ρ))i
∂ρnρ

u

(K(ρ))Ti

 i = {1, . . . , nu} (5.17)
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Now assume there exists a node in the finite element mesh such that all the sur-

rounding ρi = 0. Let i′ and i′′ be the indices corresponding to said node (in 3D there

is also a third, i′′′, say). Then

∂(K(ρ))i′

∂ρj
=

0 if element j not connected to node i′

pρp−1
j [Kj ]i′ if element j is connected to node i′

If ρj is connected to node i′ then ρj = 0. As p > 1 then this implies that

∂(K(ρ))i′

∂ρj
=
∂(K(ρ))i′′

∂ρj
= 0 for all j = 1, . . . , nρ.

Note also that

(K(ρ))Ti′ = (K(ρ))Ti′′ = 0.

Hence

∇ci′(x) = ∇ci′′(x) = 0 [= ∇ci′′′(x)]

and therefore the MFCQ (see definition 4.3) does not hold.

As the MFCQ does not hold, this implies that the LICQ also does not hold. Con-

vergence results for SQP methods rely heavily on these constraint qualifications and

so the problem as written in SAND form is not one which can be solved reliably by

SQP methods. The situation when the MFCQ does not hold will appear frequently in

topology optimization. If the problem is thought of as finding where holes should be

located, then the circumstance when MFCQ does not hold is precisely the situation

which is hoped for in the solution.

If the situation occurs where the density of the elements around an applied load

is 0 then the displacement of that node can be made arbitrarily negative, without at

all effecting the constraint violation. Hence the solution appears unbounded whilst the

constraints are not satisfied.

Due to the increased complexity that would be required in order to adapt the

solution method to cope with the SAND approach, this thesis has found that SAND

is not an effective formulation of the structural optimization problem. Indeed, any

adaptation to SAND would be to use a primal feasible method, thus effectively turning

SAND into NAND. This is due to the difficulty that the equations of linear elasticity

pose as constraints in an optimization problem. It is therefore clear that the equilibrium

equations should be removed from the formulation, solved by a dedicated linear algebra

routine, and the problem tackled in a NAND approach.
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Figure 5-6: Chequerboard pattern of alternating solid and void regions

5.5 Regularisation of the problem by filtering

A problem of minimization of compliance subject to volume is known to be ill-posed

(see for example Ambrosio and Buttazzo [9] and Kohn and Strang [93, 94, 95]). That

is, improved structures can be found by taking increasingly smaller microstructure.

Therefore the problem as stated in general has no solution. In a numerical calculation

the solutions of the problem would therefore be dependent on the size of the mesh that

is employed. In order to make the problem well-posed we must impose some form of

minimum length scale on the problem.

5.5.1 Chequerboards

In an element-based topology optimization approach there may exist solutions that

are not desired by engineers. These solutions typically exhibit chequerboard patterns as

shown in Figure 5-6. In a actual example of minimising the compliance of a cantilevered

beam this may manifest itself as in Figure 5-7.

These solutions are numerically driven and result in solutions with material ele-

ments connected to the rest of the structure only through corner contacts with other

non-void elements. If the underlying mesh has no corner contacts (such as a hexag-

onal mesh) then these issues do not arise. This has been observed by Talischi et al.

[171, 170]. However, automatic mesh generation techniques in general do not exclude

corner contacts between elements so it is necessary to have a technique to eradicate

chequerboard patterns from any mesh.

If an automatic mesh generation technique was developed to use hexagonal elements

in 2D (or possibly rhombic dodecahedra in 3D) then chequerboard patterns would not

occur but the solutions would not be mesh independent. Hence strategies to impose a
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Figure 5-7: Chequerboard pattern appearing in the solution of a cantilevered beam
problem.

minimum length scale on the problem would still be necessary.

One possible way of eradicating the chequerboard pattern is to constrain the total

perimeter of the structure. This has been considered by, amongst others, Haber 1996

[65], Haber and Jog 1996 [79], Fernandes 1999 [52] and Petersson [127]. However,

knowing a priori an appropriate value for the length of the parameter is not always

possible. This makes it undesirable for us to consider it in this thesis.

5.5.2 Filters

Filtering is the established technique by which chequerboard patterns are eradicated

and a minimum length scale applied to the problem. They can be thought of as a

local smoothing operator which can be applied to different quantities relating to the

optimization.

Bendsøe and Sigmund Filter

The mesh-independency filter [152] works by modifying the element sensitivities as

follows:

∂̂c

∂xe
=

1

xe
∑n

f=1 Ĥf

n∑
f=1

xf Ĥf
∂c

∂xf
(5.18)

The convolution operator (weight factor) Ĥf is written as

Ĥf = max{rmin − dist(e, f), 0} (5.19)
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where the operator dist(e, f) is defined as the distance between centre of element e and

centre of element f . The convolution operator Ĥf is zero outside the filter area. The

convolution operator decays linearly with the distance from element f .

Huang and Xie Filter

The filter [75] is given as follows. Firstly define nodal sensitivity values

sνj =
κ∑
i=1

ωijs
e
i (5.20)

where sei is the sensitivity value of element i, κ is the total number of elements connected

to node j and ωij is a weighting given by

ωij =
1

κ− 1

(
1− rij∑κ

i=1 rij

)
(5.21)

where rij is the distance from node j to the centroid of element i. The updated

sensitivity value si is given by the formula

si =

∑n
j=1w(rij)s

ν
j∑n

j=1w(rij)
(5.22)

where n is the total number of elements and w(rij) is the weight factor

w(rij) = max{0, rmin − rij} (5.23)

which is dependent on the variable rmin which defines the filter radius.

Choice of filter

Both the Bendsøe and Sigmund filter and the Huang and Xie filter are applicable to

regularise the SIMP problem and are heuristic methods to impose a minimum length

scale on the problem. The Sigmund filter [152] is a density based filter that is applicable

everywhere the density of an element is greater than 0. Essentially it is a low-pass filter

from image processing which is used to remove high variations in the gradients within

a radius of rmin. This is the standard filter which is used in the literature as it performs

well with the SIMP approach.

The Huang and Xie filter [75] also removes high variations in the sensitivities of

elements within a filter radius of rmin but differs in its implementation. It is designed

for use with the BESO method as it can extrapolate sensitivities into regions where

the element density is 0. For these reasons, when filtering the SIMP method we will
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use the Bendsøe and Sigmund filter, and when we need to extrapolate sensitivities to

areas of zero density, such as in Chapter 6, we shall employ the Huang and Xie filter.

5.6 Nested Analysis and Design (NAND)

In the Nested Analysis and Design (NAND) approach to topology optimization, the

state equations are removed from the optimization formulation and solved separately

by dedicated linear algebra routines. Hence the displacement vector is given as the

solution to the equation

K(x)u(x) = f (5.24)

In the NAND approach we must impose a lower bound on the variables x greater

than 0. This is necessary so that the matrix K(x) is positive definite and hence this

gives a unique displacement vector u(x). To see this, if we assume that xj = 0 for

some element j, then this is equivalent to setting the Young’s modulus E = 0 for that

element. From Definition 3.7 and equation (3.3) we can see that this is equivalent to

the Lamé parameter µ = 0. This violates the assumptions of Theorem 3.11 and thus

the bilinear form is not coercive. It follows from Theorem 3.12 that the matrix K(x)

could be singular and thus we would not have a unique solution to the equilibrium

equations (5.24).

Thus to ensure that we have a unique solution of the equilibrium equations, the

box constraints on x given in (5.1d) are written as follows.

0 < xmin ≤ x ≤ 1 (5.25)

where xmin is chosen so that a linear solver would recognise that the matrix K is

positive definite. Typically we choose xpmin = 10−9, an empiricly found value. Thus

the full formulation of the NAND approach to minimisation of compliance subject to

a volume constraint is as follows.

min
x
fTK−1(x)f (5.26a)

subject to eTx ≤ Vfrac (5.26b)

0 ≤ x ≤ 1. (5.26c)

The remainder of this chapter is dedicated to showing the latest results in solving this

mathematical programming problem. To solve this problem we use MMA which is

freely available as part of NLopt [81] or directly from the original author Svanberg
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1

6

Figure 5-8: Design domain of MBB beam

1

3

Figure 5-9: Computational domain of MBB beam

[167] supplied free for academic use. Specifically we use the Fortran 77 implementation

supplied by Prof. Svanberg.

5.6.1 MBB beam

The MBB beam is named for the German aerospace company Messerschmitt-Bölkow-

Blohm which first considered such a structure. The design domain of the MBB beam

is given in Figure 5-8. Throughout this example the volume constraint is set to 0.3 of

the total volume of the design domain. As usual the material properties are E = 1 and

ν = 0.3.

MBB Beam without filtering

Figures 5-10 and 5-11 show the resulting structure on the computational and full de-

sign domains respectively with no filtering applied. Note immediately the presence of

chequerboard patterning in the structure. The very high fidelity of the finite-element

discretisation is such that in print these structures may appear grey, whereas in fact the
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Figure 5-10: NAND SIMP solution to MBB beam on computational domain without
filtering

Figure 5-11: NAND SIMP solution to MBB beam on full domain without filtering

Mesh size 1200× 400
N 480000

DOFs 962800
rmin 0.0

Compliance 387.12
MMA Iterations 91

Table 5.1: Results for NAND SIMP approach to MBB beam without filtering
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Figure 5-12: Compliance – iterations for NAND SIMP approach to the MBB beam
without filtering

variables are very close to the box constraints thanks to the penalisation parameter.

Table 5.1 lists some of the interesting quantities about the optimization process.

The values of compliance and the number of MMA iterations will be of interest when

comparing to Table 5.2 and Table 5.3. Figure 5-12 shows a plot of compliance against

the MMA iteration. Note that after 27 iterations the solution was within 1% of the

objective function of the final solution.

The presence of the chequerboard pattern in the computed solution shows the need

to apply filtering to the problem.

MBB Beam with filtering

Figures 5-13 and 5-14 show the resulting structure on the computational and full design

domains respectively with the low-pass filter applied. Compare these with Figures 5-10

and 5-11 and note immediately the lack of chequerboard patterning in the structures.

Details of the optimization process are given in Table 5.2 and a plot of the objective

function against MMA iterations is given in Figure 5-15.

From Table 5.2 and Figure 5-15 it should be observed that after 500 iterations the

optimization method has not converged. However after 126 iterations the solution was

within 1% of the objective function of the solution after 500 iterations. The reason

why MMA is failing to converge in this case is the filter passing incorrect derivative

values to the optimization routine. It is precisely this feature of the filter which is

regularising the problem and stopping the chequerboard patterns emerging early in the
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Figure 5-13: NAND SIMP solution to MBB beam on computational with filtering

Figure 5-14: NAND SIMP solution to MBB beam on full domain with filtering

Mesh size 1200× 400
N 480000

DOFs 962800
rmin 7.5

Compliance 287.56
Iterations 500+

Table 5.2: Results for NAND SIMP approach to MBB beam with filtering
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Figure 5-15: Compliance – iterations for NAND SIMP approach to the MBB beam
with filtering

optimization process, so this is not an unwanted feature.

In order to aid the optimization method to converge, it is necessary to provide it

with the correct gradients, and so we choose a scheme to stop applying the filter after

a certain period in the optimization process when the solution is close to the optimum.

MBB Beam with cessant filter

As Figures 5-12 and 5-15 have shown, typical objective functions found in the SIMP

approach to structural optimization resemble long flat valleys. Hence when the solution

is near the base of these valleys it would be advantageous to move in a very accurate

search direction. As applying a low-pass filter to the gradient information gives inexact

gradients to the optimization method, a scheme to turn off the filter when it can be

detected that the solution is near the floor of the valley.

Hence for some tolerance tol, we choose to turn off the filter when the objective

function at iteration k, denoted φ(k) satisfies

φ(k)− φ(k − 1)

φ(k)
< tol. (5.27)

This technique has been applied to the MBB beam with tol = 10−5 and the results are

shown in Figures 5-16 to 5-18 and Table 5.3.

From Figures 5-16 and 5-17 it can be seen that the use of the filter has removed the

chequerboard patterns that are present in Figures 5-10 and 5-11. The resulting topology
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Figure 5-16: NAND SIMP solution to computational domain of MBB beam with ces-
sant filter

Figure 5-17: NAND SIMP solution to full MBB beam with cessant filter

Mesh size 1200× 400
N 480000

DOFs 962800
rmin 7.5

Filter tol 1× 10−5

Compliance 290.08
Iterations 192

Iterations with filtering 95

Table 5.3: Results for NAND SIMP approach applied to MBB Beam with cessant filter
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Figure 5-18: Compliance – iterations for NAND SIMP approach to the MBB beam
with cessant filter

is very similar to the topology presented in Figure 5-14, the computed solution when

the filter is applied constantly. Ceasing the filter has caused the number of iterations to

drop markedly and the solution has this time converged to a local minima. This local

minima is not quite a low as the solution computed when the filter is applied constantly

(compare Tables 5.2 and 5.3) as stopping the filter has not continued to smooth out

the fine features present in the solution.

The use of a cessant filter thus retains the chequerboard removing properties of

filtering while allowing the optimization method to converge.

5.6.2 Michell Truss

1

2

Figure 5-19: Design domain of Michell truss
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1

1

Figure 5-20: Computational design domain of Michell truss

Figure 5-21: Analytic optimum to Michell truss

Figures 5-19 and 5-20 show the full design domain and the computational design

domain of the Michell truss [112] respectively. The analytic optimum for this problem

is given in Figure 5-21 with the thickness of the bars in the structure dependent on the

volume constraint of the problem (Save and Prager 1985 [147]). The analytic optimum

has an infinite number of infinitely thin bars (due to the ill-posedness of the problem)

which cannot be represented on the finite-element discretisation of the design domain.

However it is expected that the same basic shape with a finite number of bars should

be present in a computed solution to this problem.

Figure 5-22 shows the NAND SIMP solution using MMA when applied to the

Michell truss problem with a cessant filter of radius 7.5h where h is the width of an

element in the finite-element mesh. Figure 5-23 shows the result of the same problem

as Figure 5-22 but with a smaller filter radius of 2.5h. Note the finer bars present

in the case with the smaller filter radius and also how both structures very closely

resemble the analytic optimum shown in Figure 5-21. The numerical values of the two

optimization processes are given in Table 5.4 and the objective function history of both
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Figure 5-22: NAND SIMP solution to Michell truss problem on a 750× 750 mesh with
a cessant filter of radius 7.5h and Vfrac = 0.3

Figure 5-23: NAND SIMP solution to Michell truss problem on a 750× 750 mesh with
a cessant filter of radius 2.5h and Vfrac = 0.3

examples are shown in Figure 5-24.

Firstly compare the number of iterations taken in the examples with different filter

radii. The smaller the filter radii, the longer the optimization method takes to resolve

the finer features of the structure. Note also the different objective function values of

the two examples. The wider filter radius has provided more of a perturbation to the

true gradients and thus has stopped the optimization process from falling into a local

minima as early as the problem with the smaller filter radius.

In the convergence plot of objective function against MMA iterations in Figure 5-

25, the point at which the filter is turned off is visible for the example with filter radius

of 7.5. At this point MMA can step directly towards a local optimum and so the plot

shows a marked decease in the objective function at this point.
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Mesh size 750× 750 750× 750
N 562500 562500

DOFs 1127249 1127249
rmin 7.5 2.5

Filter tol 1× 10−5 1× 10−5

Compliance 34.573 34.696
Iterations 212 269

Iterations with filtering 193 238

Table 5.4: Results for Michell truss with cessant filter
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rmin = 7.5
rmin = 2.5

Figure 5-24: Compliance – iterations for NAND SIMP approach to the Michell truss
with cessant filters of various radii
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Figure 5-25: Compliance – iterations for NAND SIMP approach to the Michell truss
with cessant filters of various radii after 20 iterations
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5.6.3 Short cantilevered beam

1

1.6

Figure 5-26: Design domain of the short cantilevered beam

The short cantilevered beam is a problem that will be considered again in later

chapters so it included here to show the SIMP solution. The design domain is shown

in Figure 5-26 and is a rectangle of aspect ratio 8 : 5 fixed entirely on the left hand

side with a unit load applied vertically in the middle of the right hand side. There is

a symmetry present in this problem which could be removed to allow for a finer mesh,

but leaving it shows that the NAND SIMP approach using MMA retains the inherent

symmetry to the minimisation of compliance subject to a volume constraint problem.

The solution found on a mesh of size 1000× 625 with a cessant filter of radius 7.5h

and Vfrac = 0.3 is shown in Figure 5-27 with the associated numerical values given in

Table 5.5. Note the fanning of the bars around the corners of the structure similar to

those seen in the Michell truss.

Mesh size 1000× 625
N 625000

DOFs 1252000
rmin 7.5

Filter tol 1× 10−5

Compliance 59.881
Iterations 85

Iterations with filtering 63

Table 5.5: Results for short cantilever beam with cessant filter
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Figure 5-27: NAND SIMP solution to short cantilevered beam problem on a 1000×625
mesh with a cessant filter of radius 7.5h and Vfrac = 0.3
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Figure 5-28: Compliance – iterations for NAND SIMP approach to the short can-
tilevered beam on a 1000× 625 mesh with cessant filter of radius 7.5h and Vfrac = 0.3
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5.6.4 Centrally loaded column

Here is presented a somewhat trivial optimization problem which is included for com-

parison with results in later chapters. The design domain is square and a unit load

is applied vertically downwards at the centre of the top of the design domain and the

base is fixed, as shown in Figure 5-29.

Figure 5-29: Design domain of model column problem. This is a square domain with
a unit load acting vertically at the midpoint of the upper boundary of the space.

Mesh size 750× 750
N 562500

DOFs 1127250
rmin 7.5

Filter tol 1× 10−5

Compliance 8.2047
Iterations 104

Iterations with filtering 87

Table 5.6: Results for centrally loaded column with cessant filter

The table of results for the centrally loaded column is given in Table 5.6 with the

computed solution shown in Figure 5-30. The solution is a simple column which takes

the load directly to the base of the design domain, with the thickness of the column

dependent on the magnitude of the volume constraint parameter Vfrac. This solution

should be compared with the problems considered later in Section 6.6.3.
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Figure 5-30: NAND SIMP solution to centrally loaded column problem on a 750× 750
mesh with a cessant filter of radius 7.5h and Vfrac = 0.2
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Figure 5-31: Compliance – iterations for NAND SIMP approach to the centrally loaded
column on a 750× 750 mesh with a cessant filter of radius 7.5h and Vfrac = 0.2
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5.7 Summary

This chapter has considered solving the problem of minimisation of compliance subject

to a volume constraint by relaxing the binary constraint on the optimization variables

and allowing the solution to vary continuously between 0 and 1. The theory of pe-

nalising intermediate densities has been reviewed and the SIMP approach has been

motivated.

The choice of optimization algorithm to solve the problem has been considered and

SQP methods have been used to try and solve the optimization problem in a SAND

formulation. These, usually robust methods, generally failed to find a solution to these

problems and it has been shown that this is due to constraint qualifications being

violated in the SAND approach.

Chequerboard patterns have been observed as the problem as generally stated is

ill-posed. Techniques for eradicating the chequerboard patterns have been discussed

and the reasons for applying filters to the problem explained.

High fidelity examples of minimisation of compliance problems subject to a vol-

ume constraint in a NAND formulation to the SIMP approach using MMA have been

presented. The use of filtering in these problems is shown to remove chequerboards

but also to stop the optimization method from converging. A technique for turning off

the filtering was introduced and shown to be robust and give good solutions without

chequerboarding that also converged to local minima.
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6
Buckling Optimization

In this chapter adding a buckling constraint to the standard structural optimization

problem is considered. This adds a great deal of complexity and introduces a number

of issues that do not arise in the more basic problem considered in Chapter 5. Section

6.1 introduces the buckling constraint and shows how a direct bound on the buckling

constraint becomes non-differentiable when there is a coalescing of eigenvalues. Sec-

tion 6.2 discusses the issues arising with spurious buckling modes. The problem is

reformulated in Sections 6.3 to 6.4 and an analytic formula for the derivative of the

stress stiffness matrix is presented. In Section 6.5 we then introduce a new method in

order to efficiently compute a solution to an optimization problem involving buckling

constraints.

6.1 Introduction and formulation

This chapter is motivated by a long standing realisation of a potential shortcoming of

structural optimization:

“A process of optimization leads almost inevitably to designs which exhibit the

notorious failure characteristics often associated with the buckling of thin elastic shells”,

Hunt 1971 [77].

In the finite-element setting, the buckling load of a structure is the smallest positive

value of λ which solves the eigenvalue problem

(K + λKσ)v = 0 for some v 6= 0 (6.1)

as described previously in Sections 3.4 and 3.5. In order to prevent the buckling of the

structure, the eigenvalue λ must be kept larger than some safety factor. So consider a
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bound of the form

λ > cs (6.2)

where cs is a constant representing the safety factor. Note that this may never be

feasible if cs were chosen too large, and a problem with this specified constraint would

have no solution. Now let us consider ∂λ
∂xi

noting that all the terms in (6.1) depend on

x. Differentiating (6.1) gives

∂K

∂xi
v +K

∂v

∂xi
+
∂λ

∂xi
Kσv + λ

∂Kσ

∂xi
v + λKσ

∂v

∂xi
= 0 (6.3)

by the product rule. Rearranging this gives

− ∂λ

∂xi
Kσv = (

∂K

∂xi
+ λ

∂Kσ

∂xi
)v + (K + λKσ)

∂v

∂xi
. (6.4)

Multiplying on the left by vT and noting again that K and Kσ are symmetric then the

term on the right must vanish by (6.1) and thus

∂λ

∂xi
vTKσv = −vT (

∂K

∂xi
+ λ

∂Kσ

∂xi
)v. (6.5)

At this point many authors make the assumption that the eigenvector v is normalised

so that vTKσv = 1. However as Kσ is not guaranteed to be positive definite this may

lead to v ∈ Cn and thus increasing the computational complexity of the problem. To

avoid this we choose to simply normalise v in a different norm (vTKv = 1 as K is SPD)

and keep track of the product vTKσv so that

∂λ

∂xi
= −

vT (∂K∂xi + λ∂Kσ∂xi
)v

vTKσv
. (6.6)

Note also that vTKσv 6= 0 as this would contradict K being positive definite.

Suppose however that λ is not a simple eigenvalue of (6.1). Then there exists

another eigenvector w 6= ±v, say, such that

(K + λKσ)w = 0. (6.7)

In going from (6.4) to (6.5) it would be equally valid to multiply on the left by wT to

give

∂λ

∂xi
= −

wT (∂K∂xi + λ∂Kσ∂xi
)v

wTKσv
. (6.8)

Indeed any linear combination of eigenvectors would cause the right hand term in (6.4)

to vanish and would give an expression for ∂λ
∂xi

. These are clearly different values and
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shows that the derivative of the eigenvalue is not well defined when the eigenvalue in

question is non-simple.

This is a major issue for continuous optimization using derivative-based methods.

These approaches will naturally cause a coalescing of eigenvalues and hence may fail

to converge to a solution. Semidefinite programming methods have been developed

specifically to deal with such eventualities. A semidefinite matrix constraint on the

matrix A has the form

A � 0 (6.9)

meaning that all the eigenvalues of the matrix A are bounded above 0. We now show

how a bound on compliance and a bound on the buckling load of a system can be

written as semidefinite matrix constraints.

Theorem 6.1. Given a SPD matrix A then the symmetric matrix

[
A B

BT C

]
is pos-

itive semidefinite if and only if the Schur complement S = C − BTA−1B is positive

semidefinite.

Proof. The proof is given in Boyd and Vandenberghe [25] appendix A.5.5 by considering

the following:

min
u

[
u

v

]T [
A B

BT C

][
u

v

]
= min

u
uTAu + 2uTBv + vTCv.

Corollary 6.2. A constraint on the compliance of the system

fTu ≤ c (6.10)

may be written as a semidefinite matrix constraint of the form[
K f

fT c

]
� 0 (6.11)

Proof. In Theorem 6.1, set A = K, B = f and C = c. Then as K is SPD it says[
K f

fT c

]
� 0 ⇐⇒ c− fTK−1f � 0 (6.12)

Using the relation Ku = f and the fact that the matrix on the right hand side is of
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dimension 1 we can rewrite this as[
K f

fT c

]
� 0 ⇐⇒ c− fTu ≥ 0 (6.13)

or [
K f

fT c

]
� 0 ⇐⇒ fTu ≤ c (6.14)

Lemma 6.3 (Kočvara 2002 [90]). Assume that K is positive definite and let cs > 0.

The matrix [K + csKσ] is positive semidefinite if and only if all the eigenvalues λ

satisfying

(K + λKσ)v = 0 for v 6= 0

lie outside of the interval (0, cs).

Proof. As K is SPD we can take its inverse and rewrite the condition of [K + csKσ]

being positive semidefinite as

c−1
s I +K−1Kσ � 0 (6.15)

From the original eigenvalue problem (6.1) we have

−K−1Kσv =
1

λ
Iv (6.16)

so the eigenvalues of the matrix [c−1
s I + K−1Kσ] are (c−1

s − 1
λ). Thus equation (6.15)

holds if and only if 1
cs
− 1

λ ≥ 0, i.e. either

λ ≥ cs or λ < 0 (6.17)

In a semidefinite approach to optimization, all the matrix entries of the constraints

are effectively treated as variables. Hence if there are O(n) variables in the original

formulation representing the densities of elements then an SDP approach to the problem

would be considering O(n2) variables. This significantly increases the computational

cost of SDP methods in comparison to other methods.

Kocvara [91], and in conjunction with Stingl [92], have applied such methods to

topology optimization problems. More recently, along with Bogani [23], they have

applied an adapted version of their semidefinite codes to find noninteger solutions to
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buckling problems. This made use of a reformulation of a semidefinite constraint using

the indefinite Cholesky factorisation of the matrix, and solving a resulting nonlinear

programming problem with an adapted version of MMA. With these techniques they

were able to solve a non-discrete (convex) problem with 5000 variables in about 35

minutes on a standard PC.

6.2 Spurious Localised Buckling Modes

In this section we discuss the issue that occurs in the process of continuous optimization

whereby the buckling load computed by standard means is numerically driven to be

substantially lower than the physical load. Firstly we show this by means of a simple

example.

6.2.1 Considered problem

Here we define a model problem which we consider in the rest of this section. As shown

in Figure 6-1a we have a square design domain. The loading is vertically downwards

at the top of the design domain and the base is fixed completely. The design domain

is discretised into a mesh of 10× 10 elements as shown in Figure 6-1b and the problem

is minimisation of compliance subject to a volume constraint of 0.2 of the whole design

domain. We solve this problem using the SIMP method with MMA in a nested approach

as in Chapter 5.

6.2.2 Definition and eradication strategies

When an element’s density is too low, the buckling mode calculated as the smallest

positive eigenvalue of (6.1) may not correspond to the physically desired modeshape.

The modeshape corresponding to the smallest positive eigenvalue can be seen to be

localised in the regions where the elements have low density. In our formulation, low

density elements represent areas with little or no material and so we wish the computed

buckling mode to be driven by the elements containing material. Tenek and Hagiwara

[173], Pedersen [125] and Neves et al. [116] all noted that spurious buckling (or har-

monic) modes would be computed in which the buckling is confined to regions where

the density of material is less than 10%.

Definition 6.4. We define a low density element to be one where the density is below

a threshold value. Here we consider this threshold to be 0.1, similarly to Pedersen [125]

and Neves et Al. [118].
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(a) Design domain of model problem (b) Discretisation of model problem design
domain

Figure 6-1: Considered problem in this section to show spurious buckling modes.

Definition 6.5. A spurious localised buckling mode is an eigenvector that is a solution

to (6.1) such that the displacements corresponding to nodes connected to non low density

elements are all zero.

Spurious localised buckling modes are elucidated in Figures 6-2 to 6-3 from a mini-

mization of compliance optimization subject to a volume constraint without a buckling

constraint.

Figure 6-3a shows the first occurrence of the spurious buckling modes. The elements

in the top corners are first to get to a low value and we can see that in these areas the

buckling mode is localised. This is the first time that the element density drops below

0.1, which is the critical value as found by Pedersen [125] and Neves et Al. [118].

Figure 6-3b corresponds to the smallest positive eigenvalue of the full system at

the final solution of the optimization problem. The modeshape shown in Figure 6-4a

shows the computed buckling mode when the void elements are completely removed

from the eigenvalue calculations. Figure 6-4b is the 137th smallest positive eigenvalue

of the full system as in Figure 6-3b.

Numerous options to deal with the problem of these spurious eigenvectors have

been considered. These include

• Changing the stiffness/stresses associated with void elements

• Remeshing to remove the low density elements
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(a) Initial distribution of material and corre-
sponding modeshape

(b) Distribution of material and correspond-
ing modeshape after 1 iteration

Figure 6-2: Initial modeshape and modeshape after one iteration. Note no spurious
localised buckling modes are observed.

(a) Distribution of material and correspond-
ing modeshape after 2 iterations. Here we see
the spurious buckling mode as the displace-
ments are non-zero only in the top corners
where the density is below 0.1.

(b) Final distribution of material and corre-
sponding modeshape after 17 iterations. Here
the spurious buckling mode is plain to see as
the solid structure as not displaced at all.

Figure 6-3: Spurious localised buckling modes appearing in areas of low density.
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(a) Actual modeshape computed when void
elements are removed from the formulation

(b) 137th smallest positive eigenvalue of full
system. This shows that the desired eigenvec-
tor is within the spectrum, but no longer is it
the smallest positive eigenvalue.

Figure 6-4: Modeshape of the solution in Figure 6-3b which are driven only by the
elements containing material.

• More complete eigenvalue analysis

Finding the appropriate eigenpair from the unchanged spectrum that corresponds to

the physically appropriate modeshape is a challenging problem. As Figure 6-4b shows

the eigenpair may be found, but the eigenvalue seems not to occur at a significant

point in the spectrum. That is to say, there is no distinct gap in the spectrum around

the eigenvalue of interest and so it would be challenging to automatically detect the

appropriate eigenvalue.

Remeshing would also be fraught with complications. Removing elements from the

formulation would result in a lack of information about that specific area of the design

domain. Doing so would lose all the information about elements with low densities,

not just in terms of the buckling behaviour but also in terms of compliance.

Neves et Al. [118] have suggested reducing the stress in the elements with a density

lower than 0.1 to an insignificant value of 10−15. This very small value is necessary

as they make the assumption that Kσ is SPD. As we are not making the assumption

that Kσ is SPD, we have implemented this scheme for the same problem as in Figures

6-2a-6-3b with the difference that we set the stress to be zero.
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(a) Initial distribution of material and corre-
sponding adjusted modeshape.

(b) Distribution of material and correspond-
ing adjusted modeshape after 1 iteration.

Figure 6-5: Initial material distributions and modeshapes using modified eigenvalue
computation. Note that this is identical (up to sign change) to that in Figure 6-2b.

(a) Distribution of material and correspond-
ing adjusted modeshape after 2 iterations.
Here no spurious buckling mode is observed;
compare with Figure 6-3a.

(b) Final distribution of material and corre-
sponding adjusted modeshape after 17 itera-
tions.

Figure 6-6: Material distribution and modeshapes using modified eigenvalue computa-
tion. Note the lack of spurious localised buckling modes.
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6.2.3 Justification for removal of stresses from low density elements

Theorem 6.6. If all stresses in low density elements are set to zero in the construction

of the stress stiffness matrix Kσ, and if the smallest positive eigenvalue of equation (6.1)

is finite, it does not correspond to a spurious localised buckling mode.

Proof. Let vl be a spurious localised buckling mode. Hence vl is a sparse vector with

non-zero entries only corresponding to nodes that are entirely surrounded by low density

elements.

Let us now consider the rows and columns of Kσ that correspond with nodes sur-

rounded by low density elements. The only contribution to Kσ in these rows and

columns comes from the surrounding elements and so from (3.29), if the stresses σ are

set to 0 then these rows and columns will have zero entries.

Suppose for contradiction that vl is a solution to the eigenvalue problem (3.30).

Then we have

Kvl + λKσvl = 0 (6.18)

with λ finite. Multiplying on the left by vTl we obtain

vTl Kvl + λvTl Kσvl = 0 (6.19)

Now the only non-zero components of vl occur in the nodes that are completely sur-

rounded by low density elements. But the corresponding columns of Kσ are all zero,

and hence

Kσvl = 0 (6.20)

Thus substituting into (6.18) we see that vTl Kvl = 0. As the matrix K is SPD this

implies that vl = 0 and hence cannot be a solution of the eigenvalue problem (6.1),

which is a contradiction.

Note that if λ is infinite then any constraint on a lower bound of this is trivially

satisfied. As such this constraint could be removed from the optimization formulation

at that point.

Figures 6-5a–6-6b show the newly calculated modeshapes when the adjusted method

described in Section 6.2.2 is applied. Note that the buckling is not occurring in the

regions of low density and the is driven by the material that is within the domain.

Whilst assigning zero stress stiffness (or mass in the harmonic analysis case) con-

tributions from elements of low density can eradicate these spurious modes, this is not

consistent with the underlying model of the structure given in Section 3.4. Indeed, if

one were to consider a structure where a small fraction (less than 10%) of material
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was equidistributed throughout the design domain, the stress stiffness matrix would be

the zero matrix, and as a result the critical load of the structure would be computed

as infinite. This would happen regardless of the load vector’s magnitude or direction

and so would lead to erroneous results. This may be avoided if the stress stiffness

contributions were based on a “relative” density fraction, though care would have to

be taken to ensure the theory was consistent with the derivation in Section 3.4.

6.3 Structural optimization with discrete variables

Finding a global solution to binary programming problems is notoriously difficult. The

methods for finding such minima can be broadly put into three categories: implicit

enumeration, branch-and-bound and cutting-plane methods. The most popular im-

plementations involve hybrids of branch-and-bound and cutting-plane methods. For

a comprehensive description of these binary programming methods see, for example,

Wolsey [182]. These methods were popular for structural optimization from the late

1960s through to the early 1990s. In 1994, Arora & Huang [15] reviewed the methods

for solving structural optimization problems discretely.

In 1968, Toakley [174] applied a combination of cutting-plane methods and branch-

and-bound to solve truss optimization problems. Using what is now known as the

branch-and-cut method, this method was resurged in 2010 by Stolpe and Bendsøe

[162] to find the global solution to a minimisation of compliance problem, subject to a

constraint on the volume of the structure.

In 1980, Farkas and Szabo [51] applied an implicit enumeration technique to the

design of beams and frames. Branch-and-bound methods have been used by, amongst

others, John et al. [80], Sandgren [143, 144] and Salajegheh & Vanderplaats [142] for

structural optimization problems. In the latest of these papers, the number of variables

in the considered problem was 100 and in some cases took over one week of CPU time

on a modern server to compute the solution. Whilst these methods do find global

minima, they suffer from exponential growth in the computation time as the number

of variables increases.

In this chapter, we introduce an efficient method for binary programming and apply

it to topology optimization problems with a buckling constraint. In doing so, we avoid

the problem of spurious buckling modes and can find solutions to large two-dimensional

problems (O(105) variables).

Due to the dimensionality of the problems, and the complexity of derivative-free

methods for binary programs, we will use derivative information to reduce this complex-

ity. The efficiency of topology optimization methods involving a buckling constraint is
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severely hindered by the calculation of the derivatives of the buckling constraint. This

calculation typically takes an order of magnitude more time than the linear elasticity

analysis. With this in mind, the proposed fast binary descent method we introduce

will try to reduce the number of derivative calculations required.

The remainder of this chapter is organised as follows. In Section 6.4, we formu-

late the topology optimization problem to include a buckling constraint. Section 6.5

motivates and states the new method which we use to solve the optimization prob-

lem. Section 6.6 then contains implementation details and results for a number of

two-dimensional test problems. Finally in Section 6.7, we draw conclusions about the

proposed algorithm.

6.4 Formulation of topology optimization to include a

buckling constraint

Given a safety factor parameter cs > 0, a bound of the form λ ≥ cs, where λ is the

critical load solving (6.1), is equivalent to the semidefinite constraint

K + csKσ � 0.

This means that all the eigenvalues of the system (K + csKσ) are non-negative. This

happens only if
∑M

i=1 v
T
i (K + csKσ)vi ≥ 0 where vi are the M buckling modes that

solve (K + λKσ)vi = 0. If we let x ∈ {0, 1}n represent the density of material in each

of the elements of the mesh, with xi = 0 corresponding to an absence of material in

element i and xj = 1 corresponding to element j being filled with material, the problem

to be solved becomes:

min
x

∑
xj (6.21a)

subject to c1(x) := cmax − fTu(x) ≥ 0 (6.21b)

c2(x) :=
M∑
i=1

vi(x)T (K(x) + csKσ(x))vi(x) ≥ 0 (6.21c)

x ∈ {0, 1}n (6.21d)

K(x)u(x) = f (6.21e)

[K(x) + λ(x)Kσ(x)]vi(x) = 0. ∀i = 1, . . . ,M (6.21f)
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6.4.1 Derivative calculations

To use the binary descent method which will be introduced in Section 6.5 (or a SDP

method) we need an efficient way of calculating the derivative of the constraints with

respect to the variables xi. As will be seen in Section 6.6, the computation of derivatives

of the buckling constraint (6.21c) is the bottleneck in our optimization algorithm, so it

is imperative that we have an analytic expression for this. To calculate the derivatives,

the binary constraints on the variables are relaxed and assume that the following holds

K(x) =
∑
`

x`K`,

where K` is the local element stiffness matrix. The derivative of this with respect to

the density of an element xi is given by

∂K

∂xi
(x) = Ki.

Calculating the derivative of the buckling constraint requires the derivation of an

expression for ∂Kσ
∂xi

. This quantity is non-trivial to compute, unlike the derivative of

a mass matrix which would be in place of the stress stiffness matrix in structural

optimization involving harmonic modes. The stress field σ` on an element ` is a 3× 3

tensor with 6 degrees of freedom. This can be written in three dimensions as

σ` =



σ11

σ22

σ33

σ12

σ13

σ23


`

= x`E`B`u,

which in two dimensions reduces to

σ` =

σ11

σ22

σ12


`

= x`E`B`u,

where u are the nodal displacements of the element, E` is a constant matrix of material

properties and B` contains geometric information about the element. The indices 1, 2

and 3 refer to the coordinate directions of the system.

We consider the two-dimensional case, and note that all the following steps have a

direct analogue in three dimensions. We write the stress stiffness matrix given in (3.30)
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as follows.

Kσ =

n∑
`=1

∫
GT`


σ11 σ12 0 0

σ12 σ22 0 0

0 0 σ11 σ12

0 0 σ12 σ22


`

G`dV`, (6.22)

where G` is a matrix containing derivatives of the basis functions that relates the

displacements of an element ` to the nodal degrees of freedom [39] and n is the total

number of elements in the finite-element mesh T . Now define a map Θ : R3 7→ R4×4

by

Θ(

αβ
γ

) :=


α γ 0 0

γ β 0 0

0 0 α γ

0 0 γ β

 .
Note that Θ is a linear operator. Using this, (6.22) becomes

Kσ =

n∑
`=1

∫
GT` Θ(x`E`B`u)G` dV`

=

n∑
`=1

∫
G`(ξ)

TΘ(x`E`B`(ξ)u)G`(ξ) dV`

≈
n∑
`=1

∑
j

ωjG`(ξj)
TΘ(x`E`B`(ξj)u)G`(ξj) (6.23)

where ωj are the weights associated with the appropriate Gauss points ξj that im-

plement a chosen quadrature rule to approximate the integral. Differentiating the

equilibrium equation (6.21e) with respect to the density xi yields

∂K

∂xi
u+K

∂u

∂xi
= 0

and hence
∂u

∂xi
= −K−1∂K

∂xi
u.

Now consider the derivative of the operator Θ with respect to xi. Since Θ is linear

∂Θ(x`E`B`u)

∂xi
= Θ

( ∂

∂xi
x`E`B`u(x)

)
= Θ

(
δi`E`B`(ξj)u+ x`E`B`(ξj)

∂u

∂xi

)
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where δi` is the Kronecker Delta.

Applying the chain rule to (6.23) we obtain

∂Kσ

∂xi
≈

n∑
l=1

∑
j

ωjG`(ξj)
T ∂Θ(x`E`B`(ξj)u)

∂xi
G`(ξj)

∂Kσ

∂xi
≈

n∑
l=1

∑
j

ωjG`(ξj)
TΘ(δi`E`B`(ξj)u− x`E`B`(ξj)K−1∂K

∂xi
u)G`(ξj), (6.24)

where the approximation is due to the error in the quadrature rule used. This matrix

can now be used to find the derivative of the buckling constraint which we require. For

each variable xi = 1, . . . , n, (6.24) must be computed. As (6.24) contains a sum over

` = 1, . . . , n, it can be seen that computing ∂Kσ
∂xi

has computational complexity of O(n)

for each i and hence computing (6.24) for all variables has complexity of O(n2).

6.5 Fast Binary Descent Method

In this section, we motivate and describe a new method that we propose for solving

the binary programming problem. If we solve the state equations (6.21e) and (6.21f)

then problem (6.21) takes the general form

min
x
eTx (6.25a)

subject to c(x) ≥ 0 (6.25b)

x ∈ {0, 1} (6.25c)

with x ∈ Rn, c ∈ Rm and e = [1, 1, . . . , 1]T ∈ Rn.Typically m will be small (less than

10) and m << n. We also assume that x0 = e is an initial feasible point of (6.25). Let

k denote the current iteration, and xk is the value of x on the k-th iteration.

The objective function eTx is a linear function of x that can be optimized by

successively reducing the number of nonzero terms in x and we need not worry about

errors in approximating this. However, the constraints are nonlinear functions of x and

ensuring that (6.25b) holds is difficult. Accordingly, we now describe how a careful

linearisation of the constraint equations can lead to a feasible algorithm. Taylor’s

theorem can be used to approximate c(xk)

c(xk+1) = c(xk) +
n∑
i=1

∂c(xk)

∂xi
(xk+1
i − xki ) + higher order terms

where ∂c(xk)
∂xi

is determined using the explicit derivative results of the previous section.
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The method will take discrete steps so that

xk+1
i − xki ∈ {−1, 0, 1} ∀i = 1, . . . , n,

and so we must assume that the higher order terms will be small, but later a strategy

will be introduced to cope with this when they are not.

Consider now variables xki such that xki = 1 that we wish to change to xk+1
i = 0.

Since xk+1
i − xki = −1, for the difference in the linearised constraint functions

c(xk+1)− c(xk) =
n∑
i=1

∂c(xk)

∂xi
(xk+1
i − xki )

to be minimal, all the terms of ∂c(xk)
∂xi

need to be as small as possible. However, since

there are multiple constraints, the variables for which the gradient of one constraint is

small may have a large gradient for another constraint.

Assuming a feasible point such that c(xk) > 0 and ignoring the higher order terms,

c(xk+1) = c(xk) +
n∑
i=1

∂c(xk)

∂xi
(xk+1
i − xki ). (6.26)

We have to ensure c(xk+1) > 0, so

c(xk) +

n∑
i=1

∂c(xk)

∂xi
(xk+1
i − xki ) > 0

or equivalently

1 +

n∑
i=1

∂cj(x
k)

∂xi
/cj(x

k)(xk+1
i − xki ) > 0 ∀j = 1, . . . ,m.

If xk+1
i 6= xki then each normalised constraint cj(x

k) is changed by ±∂cj(x
k)

∂xi
/cj(x

k).

Define the sensitivity of variable i to be

si(x
k) = max

j=1,...,m

∂cj(x
k)

∂xi
/max{cj(xk), 10ε} (6.27)

where ε is the machine epsilon that guards against round off errors. For each variable,

si(x
k) is the most conservative estimate of how the constraints will vary if the value of

the variable is changed. In one variable, this has the form shown in Figure 6-7. Figure

6-7a shows the absolute values of the linear approximations to the constraints based on

their values and corresponding derivatives. Figure 6-7b shows the calculation that we
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make based on normalising these approximations to compute which of the constraints

would decrease the most if the variable xki were changed. βj is the point at which the

line associated with the constraint cj crosses the y-axis and so βj = 1− ∂cj(x
k)

∂xi
/cj(x

k).

The amount that the normalised constraint cj would change if the variable xki were

changed is then given by 1− βj =
∂cj(x

k)
∂xi

/cj(x
k).

In this case the derivatives indicate that if the variable xki were to be decreased, the

second constraint is affected relatively more than the first constraint (as max{a, b} = b),

and hence the sensitivity associated with this variable xi is given the value si(x
k) =

∂c2(xk)
∂xi

/c2(xk).

xki

c(x)

1

c1(xki )

c2(xki )

0
0

(a) Linear approximations to the constraints
c(xki ) in the case where m = 2. In this situa-
tion xki = 1.

xki1

c1(xki )

c2(xki )

1

a
b

0
0

β2

β1

(b) Sensitivity calculation in one variable.
Here si(x

k) = max{a, b} = b.

Figure 6-7: Sensitivity calculation in one variable for the case when m = 2.

This sensitivity measure also provides an ordering so that if we choose to update

variables in increasing order of their sensitivity, the changes in the constraint values

are minimised. Now for ease of notation, let us assume that the variables are ordered

so that

s1 ≤ s2 ≤ . . . ≤ sp ∀si s.t. xk1, x
k
2, . . . , x

k
p = 1 (6.28)

sp+1 ≥ sp+2 ≥ . . . ≥ sn ∀si s.t. xkn, x
k
n−1, . . . , x

k
p+1 = 0 (6.29)

To be cautious, instead of requiring c(xk+1) ≥ 0, we allow for the effects of the

nonlinear terms and so are content if instead c(xk+1) ≥ (1−α)c(xk) for some α ∈ (0, 1).
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This implies that

c(xk) +
n∑
i=1

∂cT (xk)

∂xi
(xk+1
i − xki ) ≥ (1− α)c(xk),

or equivalently

αc(xk) +
n∑
i=1

∂cT (xk)

∂xi
(xk+1
i − xki ) ≥ 0.

To update the current solution, we consider the variables ordered so that (6.28) and

(6.29) hold and find for some α ≥ 0

L := max
1≤`≤p

` s.t. αcj(x
k)−

∑̀
i=1

∂cj(x
k)

∂xi
> 0 for all j ∈ 1, . . . ,m. (6.30)

Then we decrease from 1 to 0 those variables xk1, . . . , x
k
L so as to reduce the objective

function by a value of L.

However, there is the possibility that increasing variables from 0 to 1 could further

reduce the objective function by reducing yet more variables from 1 to 0. This is tested

by finding (or attempting to find) J > 0 such that

J := max
0≤`≤(p−L)/2

` s.t.
∑̀
i=1

∂cj(x
k)

∂xp+i
−

2∑̀
i=1

∂cj(x
k)

∂xL+i
≥ 0 for all j ∈ 1, . . . ,m. (6.31)

So the variables corresponding to the terms in the first sum are increased from 0 to

1 but for each of these, two variables are decreased from 1 to 0, corresponding to the

terms in the second summation. As there are more terms in the second summation the

objective function improves whilst remaining a feasible solution. Hence the variables

xkL+1, . . . , x
k
L+2J are decreased from 1 to 0 and the variables xkp+1, . . . , x

k
p+J are increased

from 0 to 1. Note that in (6.30) and (6.31) the equations have to hold for each of the

constraints j = 1, . . . ,m.

The coefficient α is a measure of how well the linear gradient information is predict-

ing the change in the constraints. If the problem becomes infeasible, then the method

has taken too large a step, so α is reduced in order to take a smaller step. However,

recall the goal of this method is to compute the gradients as few times as possible, and

so we wish to take steps that are as large as possible. If the step has been accepted

for the previous two iterations without reducing α then α is increased to try and take

larger steps and thus speed up the algorithm.

Note that if α is too large and the solution becomes infeasible then α is reduced

and a smaller step is taken without recomputing the derivatives. Hence increasing α
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by too much is not too detrimental to the performance of the algorithm. Based on

experience, α is reset to 0.7α when the solution becomes infeasible and α is set to 1.5α

when we want to increase it. These values appear stable and give good performance

for most problems.

To ensure that at least one variable is updated, α must be larger than a critical

value αc given by

αc = max
j=1,...,m

{(∂cj(x
k)

∂xk1
)/cj(x

k)}.

This guarantees that L ≥ 1 and at least one variable is updated. The upper bound

α ≤ 1 must also be enforced so that c(xk+1) ≥ 0.

If we cannot make any further progress with this algorithm, we stop. Making further

progress would be far too expensive as we would have to switch to a different integer

programming strategy and the curse of dimensionality for the problems that we wish

to consider prohibits this. However, we believe the computed solution is good because

if we try and improve the objective function by changing the variable for which the

constraints are infinitesimally least sensitive, the solution becomes infeasible.

The fast binary descent algorithm is thus presented in Algorithm 2:
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Algorithm 2 Fast binary descent method

1: Initialise x0 and α.

2: Compute objective function (6.25a) and constraints (6.25b)

3: if x0 not feasible then

4: if x0 = e then

5: Stop

6: else

7: Increase x0 towards e.

8: end if

9: else

10: Compute derivatives ∂c(xk)
∂xi

11: Sort si (6.27)

12: Compute values L from (6.30) and J from (6.31)

13: Update the variables xki that correspond to L and J from (6.30) and (6.31)

14: if no variables updated then

15: {Algorithm has converged}
16: return with computed solution

17: end if

18: Compute objective function and constraints from equations (6.25a) and (6.25b)

19: if not feasible then

20: {Reject update step}
21: Reduce α.

22: GO TO 12

23: else

24: {Accept update step}
25: Increase α if desired

26: k = k + 1

27: GO TO 10

28: end if

29: end if

6.6 Implementation and results

We consider optimising isotropic structures with Young’s modulus 1.0 and Poisson’s

ratio 0.3. The design domains are discretised using square bilinear elements on a

uniform mesh.

The fast binary descent method has been implemented in Fortran90 using the HSL
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Figure 6-8: Design domain of a centrally loaded cantilevered beam. The aspect ratio
of the design domain is 1.6 and a unit load is applied vertically from the centre of the
right hand side of the domain.

mathematical software library [1] and applied to a series of two-dimensional structural

problems. The linear solve for the calculation of displacements (6.21e) used HSL MA87

[70], a DAG based direct solver designed for shared memory systems. For the size of

problems considered, HSL MA87 has been found to be very efficient and stable. The

first 6 buckling modes of the system (3.30) were computed as these were sufficient to

ensure all corresponding eigenvectors of the critical load were found. These eigenpairs

were calculated using HSL EA19 [124], a subspace iteration code, preconditioned by

the Cholesky factorisation already computed by HSL MA87. The sensitivities were

passed through a standard low-pass filter[75] with radius 2.5h where h is the width of

an element and ordered using HSL KB22, a heapsort [180] algorithm.

The codes were executed on a desktop with an Intel R© CoreTM2 Duo CPU E8300

@ 2.83GHz with 2GB RAM running a 32-bit Linux OS and were compiled with the

gfortran compiler in double precision. All reported times are wall-clock times measured

using system clock.

6.6.1 Short cantilevered beam

We consider a clamped beam with a vertical unit external force applied to the free

side as shown in Figure 6-8. Figures 6-9 to 6-11 refer to the solutions found with the

same design domain and material properties but with differing buckling and compliance

constraints.

Figure 6-9 is the computed solution to the problem with parameters cs = 0.9 in

(6.21c) and cmax = 35 in (6.21b). In this case the compliance constraint c1(x0) is large

initially but the buckling constraint c2(x0) is small initially. We see that the method

has produced a typical optimum grillage structure with 4 bars under compression and
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Figure 6-9: Solution found on mesh of 80× 50 elements. The buckling constraint is set
to cs = 0.9 and the compliance constraint cmax = 35. A volume of 0.6255 is attained.
The buckling constraint c2 is active and the compliance constraint c1 is not.

only 3 bars under tension. Note that in the upper bar near the point of loading there

is a distinct corner in the computed solution. This type of formation attracts high

concentrations of strain energy and so if the problem were minimization of compliance

then an optimization method would wish to avoid such situations. However, in this

case optimization of this region is primarily dominated by the buckling constraint and

the compliance is not the critical constraint.

Figure 6-10 is the computed solution to a problem with the same buckling constraint

as in Figure 6-9 (cs = 0.9) but is allowed to be more flexible with cmax = 60 (i.e. the

compliance constraint is not as restrictive). This results in a clear asymmetry in the

computed solution in which the lower bar is much thicker than the upper bar. This

lower bar is under compression with this loading, and hence would be prone to buckling.

Thus optimization reinforced the lower bar to meet the buckling constraint.

Figure 6-11 was obtained as the solution for a problem with cs = 0.1 and cmax = 30.

In this case the initial value of c1(x0) is close to 0. The computed solution has only

the compliance constraint active and hence the computed solution is more symmetrical

than the solutions shown in Figures 6-9 and 6-10.

From Figures 6-9 to 6-11 it is possible to see a clear difference in the topology of

the resulting solution depending on the parameters cs and cmax. Note that whilst one

constraint may be violated if the updating process were to proceed, the other constraints

have been utilized throughout the computation and have affected the path taken and

resulting solution of the algorithm. The history of the algorithm when applied to the

problem solved in Figure 6-9 where cmax = 35 and cs = 0.9 is displayed in Figures 6-12

to 6-14.
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Figure 6-10: Solution found on mesh of 80×50 elements. The buckling constraint is set
to cs = 0.9 and the compliance constraint cmax = 60. A volume of 0.5535 is attained.
Here the buckling constraint c2 is active and the compliance constraint c1 is not.

Figure 6-11: Solution found on mesh of 80 × 50 elements. The buckling constraint is
set to cs = 0.1 and the compliance constraint cmax = 30. A volume of 0.692 is attained.
Here the compliance constraint c1 is active and the buckling constraint c2 is not.
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Figure 6-12: Volume – iterations of the fast binary descent method applied to the short
cantilevered beam with cmax = 35 and cs = 0.9.

The plot of the objective function against iteration number shown in Figure 6-12 is

monotonically decreasing and so shows that the method as described in Section 6.5 is

indeed a descent method. Note that in the initial stages of the computation large steps

are made and this varies as the computation progresses. Until iteration 4 large steps

have been made and thus the objective function is swiftly decreasing. When going to

iteration 5 taking a large step would make the current solution infeasible so the method

automatically decreases the step size and hence the decrease in the objective function

is reduced.

Figure 6-13 shows that the compliance constraint is inactive at the solution of this

problem. Note that at all points the compliance of the structure is below the maximum

compliance cmax and so the solution is feasible at all points with respect to c1. If this

plot is compared with Figure 6-12 then the large changes in compliance can be seen to

occur where there are large reductions in volume and similarly when there is a small

change in the volume the change in compliance is also small.

Figure 6-14 shows the lowest 6 eigenvalues of the system as the binary descent

method progresses. We see that on the 20-th iteration the lowest eigenvalue is below

the constraint cs and so the computed solution is at iteration 19. At iterations 5

and 8 we see that the eigenvalue constraint is close to being violated. The increase

in the lowest eigenvalue at the subsequent steps corresponds to a local thickening of

the structure around the place where the buckling is most concentrated. This shows

that the method has re-introduced material in order to move away from the constraint
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Figure 6-13: Compliance – iterations of the fast binary descent method applied to the
short cantilevered beam with cmax = 35 and cs = 0.9.
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Figure 6-14: Eigenvalues – iterations of the fast binary descent method applied to
the short cantilevered beam with cmax = 35 and cs = 0.9.. Note that on the 20-th
iteration the eigenvalue constraint is violated, thus the computed solution is at the
19-th iteration.
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(a) Design domain with
width to height ratio 3 : 10.

(b) Optimal design on a 30×
100 mesh with cs = 0.225
and cmax = 22.5. Here c2 is
active and c1 is not.

(c) Optimal design on a 30×
100 mesh with cs = 0.001
and cmax = 60. Here c1 is
active and c2 is not.

Figure 6-15: Design domain and results from the fast binary descent method applied
to a column loaded at the side.

boundary. The nonlinearity in c2(x) is clear from the non-monotonic behaviour seen

in Figure 6-14. Generally we do see the eigenvalues converging and that supports the

intuitive optimality criteria of coincidental eigenvalues.

Figure 6-14, when viewed in combination with Figure 6-13 shows that for the history

of the algorithm the solutions are all feasible.

6.6.2 Side loaded column

In this section we consider a tall design domain fixed completely at the bottom carrying

a vertical load applied at the top corner of the design domain. The design domain

is shown in Figure 6-15a and the computed solutions to this problem with differing

constraints are shown in Figures 6-15b and 6-15c. The problem solved in Figure 6-15b

has cs = 0.225 and cmax = 22.5. The problem solved in Figure 6-15c has cs = 0.001

and cmax = 60.
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Figure 6-16: Design domain of model column problem. This is a square domain of side
length 1 with a unit load acting vertically at the midpoint of the upper boundary of
the space.

In Figure 6-15c as the constraints are relaxed compared with the problem in Figure

6-15b, the computed solution has a significantly lower objective function. However, it

follows the same structural configuration where the main compressive column directly

under the load resists the buckling and the slender column on the side provides addi-

tional support in tension to reduce bending. In both of these structures the path of

the optimization is driven by the first buckling mode.

6.6.3 Centrally loaded column

We consider a square design domain (Figure 6-16). A unit load is applied vertically

downwards at the centre of the top of the design domain and the base is fixed.

Figures 6-17 to 6-20 present results for a mesh of 60 × 60 elements for a range of

values of the constraints. Figures 6-17 and 6-18 have cs = 0.5 with cmax = 5 and

cmax = 5.5, respectively. This small change in the compliance constraint results in

two distinct configurations. Figure 6-18 with the higher compliance constraint achieves

a lower volume and has the compliance constraint active as opposed to the buckling

constraint which is active in Figure 6-17.

Distinct “Λ-like” structures have been found in Figures 6-19 and 6-20. These prob-

lems share the parameter cmax = 8 but vary in that they have cs = 0.4 and cs = 0.1,

respectively. The higher buckling constraint of Figure 6-19 leads to the development

of thick regions in the centre of the supporting legs. These regions help to resist the

first order buckling mode of the individual legs and are not seen in Figure 6-20 as the

buckling constraint is lower. Figure 6-21 is the solution to a problem with the same

parameters as the problem considered in Figure 6-20 but is solved on a much finer

200× 200 mesh.

These results can be compared directly with those found by Kočvara and Stingl

128



Chapter 6. Buckling Optimization

Figure 6-17: Solution computed on a
mesh of 60×60 elements. The buckling
constraint is set to cs = 0.5 and the
compliance constraint cmax = 5. Here,
the compliance constraint is active and
the buckling constraint is inactive.

Figure 6-18: Solution computed on a
mesh of 60×60 elements. The buckling
constraint is set to cs = 0.5 and the
compliance constraint cmax = 5.5. In
this case, compared with Figure 6-17,
the higher compliance constraint has
led to a solution where this constraint
is inactive and the buckling constraint
is now active.

Figure 6-19: Solution computed on a
mesh of 60 × 60 elements. The buck-
ling constraint is set to cs = 0.4 and
the compliance constraint cmax = 8. A
volume of 0.276 is attained.

Figure 6-20: Solution computed on a
mesh of 60 × 60 elements. The buck-
ling constraint is set to cs = 0.1 and
the compliance constraint cmax = 8. A
volume of 0.183 is attained.
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Figure 6-21: Solution computed on a mesh of 200 × 200 elements. The buckling con-
straint is set to cs = 0.1 and the compliance constraint cmax = 8. A volume of 0.1886
is attained. Compare with Figure 6-20.

[92]. The design domain and loading are comparable, however they use SDP methods

to solve a non-penalised problem in a VTS setting and hence find intermediate densities.

The “Λ-like” structure is visible in their solutions, although the interior of the structure

is filled with material of intermediate density.

From Figures 6-17 to 6-21 we see that the symmetry of the problem is not present

in the computed solution. As Stolpe [161] and Rozvany [136] have shown, since we

do not have continuous variables we do not necessarily expect the optimal solution to

these binary programming problems to be symmetric. The asymmetry in the computed

solutions arise from (6.30) and (6.31) as only a subset of elements with precisely the

same sensitivity values may be chosen to be updated and so the symmetry may be lost.

Table 6.1 summarises the results obtained when solving the problem considered in

Figures 6-20 and 6-21 but with varying mesh sizes. Note the problem size that the fast

binary method has been able to solve. A computation on a two-dimensional mesh of

3×104 elements took less than 8 hours on a modest desktop and 4×104 elements took

around 12 hours. This speed is attained because the number of derivative calculations

appears to not be dependent on the number of variables. Figure 6-22 shows a log-

log plot of the number of optimization variables against the wall-clock time taken to

compute a solution. As the plot appears to have a gradient close to 2 this indicates
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Problem
size n

Objective Derivative
calcula-
tions

Analyses Time
(mins) to 3
s.f.

Proportion
of time on
∂c2/∂x

30 × 30 =
900

0.266 11 26 4.21E − 01 0.623

40 × 40 =
1600

0.229 12 22 1.10E + 00 0.782

50 × 50 =
2500

0.213 11 21 2.29E + 00 0.857

60 × 60 =
3600

0.183 26 31 6.73E + 00 0.901

70 × 70 =
4900

0.187 24 28 1.16E + 01 0.931

80 × 80 =
6400

0.185 21 24 1.81E + 01 0.948

90 × 90 =
8100

0.184 20 22 2.85E + 01 0.948

100×100 =
10000

0.184 18 23 4.06E + 01 0.966

110×110 =
12100

0.188 19 21 6.12E + 01 0.973

120×120 =
14400

0.187 18 20 8.45E + 01 0.978

130×130 =
16900

0.184 19 23 1.19E + 02 0.980

140×140 =
19600

0.188 17 18 1.54E + 02 0.984

175×175 =
30625

0.173 20 22 3.86E + 02 0.985

180×180 =
32400

0.191 20 23 4.58E + 02 0.989

200×200 =
40000

0.188 21 24 7.34E + 02 0.990

317×317 =
100489

0.181 19 20 4.23E + 03 0.996

Table 6.1: Table of results for the centrally loaded column
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Figure 6-22: Log–log plot of time against the number of optimization variables. The
gradient of this plot appears to be 2, suggesting that the time to compute the solution
to a problem with n variables is O(n2).

that the time to compute a solution is O(n2).

This problem can be compared to that solved by Bogani et al. [23]. They solve the

continuous problem using modern SDP methods in a non-penalised manner i.e. the

convex problem. On a similar machine they solved a problem with the same loading

conditions discretised into 5000 variables in around 35 minutes. Compare this with

the 4900 variable problem detailed in Table 6.1 and it can be seen that the fast binary

descent method finishes in around 12 minutes for a similar sized problem.

A detailed examination of the computational cost indicates that the vast majority of

the computational cost is in the computation of the derivative of the buckling constraint

(see the final column of Table 6.1). A massively parallel implementation of this step

is possible and it is anticipated that it should achieve near optimal speedup as no

information transfer is required for the calculation of the derivative with respect to the

individual variables.

Finally, the solution found when the design domain was discretised into 175× 175

elements had the lowest objective function. It is possible that this is due to the slight

difference in the symmetries of the problem when the domain is split into an odd

number of elements as opposed to splitting into an even number of elements. The

reasons for this are not fully understood and warrant future investigation.
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6.7 Conclusions

Spurious buckling modes have been observed and investigated. The technique for erad-

icating these spurious eigenvectors from the computations has been shown to fully

remove the numerically driven modes. However, it is also been shown that this tech-

nique makes the results inconsistent with the underlying state equations and thus a

large amount of error is involved if this is employed.

The main computational cost associated with topology optimization involving buck-

ling is the calculation of the derivatives of the buckling load. We have presented an

analytic formula for this but it still remains the most expensive part of the algorithm.

To reduce the computational cost we have developed an algorithm that aims to min-

imise the number of these computations that are required. The method is a descent

method that enforces feasibility at each step and thus could be terminated early and

would still result in a feasible structure.

We have numerically shown that the algorithm scales quadratically with the number

of elements in the finite-element mesh of the design domain. This corresponds to the

analytical result that the derivative of the stress-stiffness matrix with respect to each

of the design variables is an O(n2) operation. The numerical experiments demonstrate

the efficiency of the method for binary topology optimization using compliance and

buckling constraints.

133



7
Analysis of Evolutionary Structural Optimization

This chapter is concerned with the convergence of the ESO algorithm. Section 7.1

begins the chapter by introducing the algorithm. This is followed by a typical example

of the convergence behaviour of the algorithm. The choice of strain energy density as

the sensitivity is demonstrated in Section 7.3. Sections 7.4 and 7.5 find analytic exam-

ples of nonlinear and linear behaviour of the linear elasticity equations respectively. A

motivating example in the continuum setting is presented in Section 7.6 that shows the

nonlinear behaviour of the algorithm and inspires the modified ESO algorithm which is

given in Section 7.7. This modified algorithm is then applied to the tie beam problem

in Section 7.8 in order to show its effectiveness.

7.1 The ESO algorithm

Evolutionary Structural Optimization (ESO) is a technique for topology optimization

developed by Xie and Steven in 1993 [184] and has been improved upon continuously

since then.

In its simplest form, ESO starts with a discretised mesh of the design domain and

fully populates each of the elements with material. Some form of sensitivity is then

calculated, and those elements which the sensitivity value deem to be of least worth

to the structure are removed. New sensitivities are then computed on the updated

structure and this process is repeated. This is summarised in Algorithm 3.

ESO has been employed to try and optimize the compliance-volume product (CV)

of a structure. In order to do so, a number of different sensitivity measures have been

proposed, namely the Van der Waals stress of an element, or the element strain energy

density. It is the latter on which we concentrate our thoughts.

There have been attempts to analyse the convergence of ESO. For example, Tan-
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Algorithm 3 Evolutionary Structural Optimization (ESO)

1: Mesh design domain
2: Define a rejection ratio RR
3: loop
4: Perform structural analysis of structure
5: Calculate elemental sensitivities si for all elements i
6: {Filter sensitivities (optional)}
7: Remove elements i with si ≤ RRminj{sj}
8: end loop

skanen has shown that ESO updates follow the same path as a form of the simplex

method would take [172]. This type of analysis gives a theoretical basis for ESO as

an optimization algorithm, but does not address the fact that it is using a linear pro-

gramming method to optimize a nonlinear function. This chapter of this thesis will

investigate this aspect.

7.2 Typical convergence behaviour of ESO

The motivation for this chapter stemmed from graphs such as Figure 7-1 which is a

replica of the results of Edwards [47]. This type of convergence graph is typical of those

generated by ESO.
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Figure 7-1: Compliance volume (CV) plot for ESO applied to the short cantilevered
beam.
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We can see in Figure 7-1 that it is clear the graph is not monotonically decreasing.

As ESO is inherently a discrete algorithm the notion of optimality is that of a global

optimum. However, in this example there are 64× 40 = 2560 design variables. Hence

there are 22560 ≈ 4 × 10770 different possible solutions, among which we are trying

to find the optimum. Note that there are an estimated 1080 atoms in the observable

universe!

It is clear that there is nothing inherent in the ESO algorithm which will guaran-

tee that the global optimum will be attained. In this chapter we ask two tractable

questions:

1. Why does the ESO algorithm not reduce the objective function monotonically?

2. Can we adapt the ESO algorithm so it does reduce the objective function mono-

tonically?

7.3 Strain energy density as choice of sensitivity

Let us begin by defining the strain energy density, Ue on an element e.

Ue := 1
2u

T
eKeue (7.1)

where ue is the vector of displacements associated with the element e, and Ke is the

local element stiffness matrix of element e.

From the equilibrium equations, we have

Ku− f = 0

where K is the finite element stiffness matrix, u is the displacement vector and f is an

applied force. Differentiating this with respect to an element xe we obtain

∂K

∂xe
u+K

∂u

∂xe
= 0

∂u

∂xe
= −K−1 ∂K

∂xe
u. (7.2)

If we now consider compliance:

C = fTu (7.3)
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Differentiating with respect to an element xe we get

∂C

∂xe
=
∂uT

∂xe
Ku+ uT

∂K

∂xe
u+ uTK

∂u

∂xe

= uT
∂K

∂xe
u+ 2uTK(−K−1 ∂K

∂xe
u)

= −uT ∂K
∂xe

u. (7.4)

In an ESO context, the stiffness matrix K is given by the following equation.

K =
∑
e

xeKe (7.5)

and so the derivative of this with respect to an element xe is

∂K

∂xe
= Ke. (7.6)

Substituting this in, we have

∂C

∂xe
= −uTeKeue

= −2Ue (7.7)

The volume of the structure V is given by

V :=
∑
e

xe. (7.8)

Hence the derivative of CV is given by

∂CV

∂xe
=
∂C

∂xe
V + C

∂V

∂xe

= −2UeV + fTu. (7.9)

As we wish to minimise CV, we want to change from 1 to 0, those elements that

have maximum ∂CV
∂xe

.

arg max
e

∂CV

∂xe
= arg max

e

(
−2UeV + fTu

)
= arg max

e
−2UeV = arg min

e
Ue (7.10)

hence those elements with least strain energy density are precisely the elements for

which the derivative of the objective function, CV, is maximum. So whilst the algorithm
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only considers the strain energy density of an element, we can equivalently analyse the

method by instead talking about this as the derivative of CV.

7.4 Nonlinear behaviour of the elasticity equations

Definition 7.1. A function f : X → R is convex if for all x, y ∈ X and λ ∈ [0, 1]

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

Theorem 7.2. Suppose g, h : Rn 7→ R are non-negative and convex. Then the product

gh is convex.

Note this is set as Exercise 3.32 in Boyd and Vandenburghe [25] and we include the

proof here for completeness.

Proof. Let λ ∈ [0, 1], and let x, y ∈ Rn.

gh(λx+ (1− λ)y) = g(λx+ (1− λ)y)h(λx+ (1− λ)

≤ [λg(x) + (1− λ)g(y)][λh(x) + (1− λ)h(y)] (7.11)

= λ2g(x)h(x) + λ(1− λ)g(y)h(x)+

λ(1− λ)g(x)h(y) + (1− λ)2g(y)h(y)

≤ λ2g(x)h(x) + (1− λ)2g(y)h(y) (7.12)

≤ λg(x)h(x) + (1− λ)g(y)h(y) (7.13)

Where in (7.11) we have used the fact that g and h are convex. (7.12) uses the non-

negativity of g and h, and (7.13) makes use of the fact that λ, (1−λ) ∈ [0, 1]. Thus gh

is convex.

Corollary 7.3. Compliance-volume product, CV, is convex, over the domain x ∈
[0, 1]n.

Proof. Svanberg [166] showed that compliance is convex. As compliance can be written

as u(x)TK(x)u(x) and the matrix K(x) is known to be SPD, this gives us the necessary

non-negativity of the compliance.

Volume can be written as eTx where e = [1, 1, . . . , 1]T ∈ Rn. As this is linear,

it is trivially convex, and non-negativity is trivial on the domain x ∈ [0, 1]n. Hence

Theorem 7.2 can be used immediately to give the result.
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Definition 7.4. We define ∆ to be the difference between the linear approximation to

the CV of a structure based on the derivative information ∂CV
∂xe

at a point xk and the

actual value of CV attained at the next iterate xk+1. i.e.

∆ = CV (xk+1)− (CV (xk)−
∑
e

∂CV

∂xe
(xk))

where e denotes the elements to be updated from iterate k to iterate k + 1.

Now we show, by way of three lemmata, the following theorem about the conver-

gence of the ESO method.

Theorem 7.5. ∆ ≥ 0 and there exist structural configurations for which ∆ = 0 and

∆ > M for any M ∈ R.

Lemma 7.6. If f : Rn → R is differentiable then f is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x and y in Rn.

Proof. Given in Boyd and Vandenburghe [25] Section 3.1.3.

Note that some sources will uses this expression as a definition of a convex function.

However, our definition allows for non-differentiable functions to be considered convex.

Corollary 7.7. ∆ ≥ 0

Proof. CV is convex by Corollary 7.3. As CV is differentiable then Lemma 7.6 states

CV (y) ≥ CV (x) +∇CV (x)T (y − x) (7.14)

Let x = xk and y = xk+1, so

(y − x)e =

{
0 if xke = xk+1

e

−1 if xke 6= xk+1
e

(7.15)

Using (7.15), (7.14) becomes

CV (xk+1) ≥ CV (xk)−
∑
e

∂CV

∂xe
(xk) (7.16)

and thus ∆ ≥ 0.
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1

L

Figure 7-2: A frame consisting of 4 beams. The horizontal beams are of unit length,
and the vertical beams have arbitrary length L. The frame is fixed in the top left corner
completely and there is a unit load applied horizontally in the top right corner. The
top and bottom beams are of interest to us.

What we have shown up until now is that an improved change in CV cannot exceed

that given by the linear approximation to CV. Using an alternative version of the

definition of convexity (as given in Lemma 7.6) this is clear. Now we show how if we

consider a simple system we can show both that this bound will be tight and that there

will be no upper bound on this quantity.

Lemma 7.8. In a rectangular 4 beam system as (shown in Figure 7-2) with horizontal

length 1 and arbitrary vertical length L that is fixed completely in one corner and

loaded under compression with a horizontal load at the horizontally opposite corner,

then ∆ > M for any M ∈ R.

Proof. Consider the system in Figure 7-2. We model this as a frame with only 4 beam

elements. Cook [39] section 4.2, gives the element stiffness matrix for a beam element.

We assume that the beams have unit Young’s modulus, unit cross-sectional area and

unit moment of inertia of cross-sectional area. This allows us to compute some values

of interest (the calculations are made symbolically with MATLAB’s MuPAD feature).

The volume of the whole structure is 2L+ 2 which reduces to 2L+ 1 when we remove

either the top or bottom beam.

We build a finite element matrix where the nodes are ordered top left, bottom left,

top right and then bottom right. Within this nodal ordering, we arrange the degrees of

freedom with the horizontal displacement first, followed by vertical displacement and

then the anticlockwise moment.
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The element corresponding to the left beam has the following global stiffness matrix:

12
L3 0 6

L2 − 12
L3 0 6

L2 0 0 0 0 0 0

0 1
L 0 0 − 1

L 0 0 0 0 0 0 0
6
L2 0 4

L − 6
L2 0 2

L 0 0 0 0 0 0

− 12
L3 0 − 6

L2
12
L3 0 − 6

L2 0 0 0 0 0 0

0 − 1
L 0 0 1

L 0 0 0 0 0 0 0
6
L2 0 2

L − 6
L2 0 4

L 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


Similarly, the right beam has the following global stiffness matrix:

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 12
L3 0 − 6

L2 − 12
L3 0 − 6

L2

0 0 0 0 0 0 0 1
L 0 0 − 1

L 0

0 0 0 0 0 0 − 6
L2 0 4

L
6
L2 0 2

L

0 0 0 0 0 0 − 12
L3 0 6

L2
12
L3 0 6

L2

0 0 0 0 0 0 0 − 1
L 0 0 1

L 0

0 0 0 0 0 0 − 6
L2 0 2

L
6
L2 0 4

L


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The top beam corresponds to this stiffness matrix in the global coordinates:

1 0 0 0 0 0 0 0 0 −1 0 0

0 12 6 0 0 0 0 0 0 0 −12 6

0 6 4 0 0 0 0 0 0 0 −6 2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 1 0 0

0 −12 −6 0 0 0 0 0 0 0 12 −6

0 6 2 0 0 0 0 0 0 0 −6 4


Finally, the bottom beam has this stiffness matrix in the global coordinate system:

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 −1 0 0 0 0 0

0 0 0 0 12 6 0 −12 6 0 0 0

0 0 0 0 6 4 0 −6 2 0 0 0

0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 0 −12 −6 0 12 −6 0 0 0

0 0 0 0 6 2 0 −6 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


For the global system, we can combine all 4 of these element stiffness matrices

together and invert this matrix to get K−1 (see Appendix A.1). We can then apply
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the specified loading to obtain the displacement vector u which has the following form:

u =



0

0

0

− L3

2(L3+3L2+12)

0

0

− L3+12
2(L3+3L2+12)

3L
2(L3+3L2+12)

3L
L3+3L2+12

6
(L3+3L2+12)

− 1
3L

2(L3+3L2+12)
3L

L3+3L2+12


The compliance of the whole structure is then

C = 1− 6

(L3 + 3L2 + 12)
(7.17)

We can write down the derivative of the compliance volume product w.r.t. the

densities of the top and bottom elements via (7.9).

∂CV

∂xtop
= −L(2L6 + 13L5 + 24L4 + 33L3 + 96L2 + 36L+ 72)

(L3 + 3L2 + 12)2 (7.18)

∂CV

∂xbot
= 1− 12(2L3 + 3L2 + 6L+ 12)

(L3 + 3L2 + 12)2 (7.19)

Hence, the linear approximations to CV when we remove the top and bottom beams

respectively are:

CV − ∂CV

∂xtop
= 4L− 12(3L4 + 10L3 + 6L2 + 30L+ 24)

(L3 + 3L2 + 12)2 + 3 (7.20)

CV − ∂CV

∂xbot
= 2L− 12L(L3 + 2L2 + 6)

(L3 + 3L2 + 12)2 + 1 (7.21)

It is straightforward to compute the displacement of the structure when either the

top or bottom beam is removed. This beam is simply not included in the construction

of the global stiffness matrix, and computer algebra software can again find the inverse

of the stiffness matrix as a function of the beam length L (see Appendices A.2 and
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A.3.)

When we do this, and apply the specified loading, we obtain the displacements as

follows:

utop =



0

0

0
L3

6

0
L2

2
L3

6 − 1
L(L+1)

2
L(L+2)

2

−2L3

3 − L
2 − 1

L(L+1)
2

L(L+ 1)



(7.22)

ubot =



0

0

0

0

0

0

−1

0

0

−1

0

0



(7.23)

Hence,

CVtop = (2L+ 1)(
2L3

3
+ L2 + 1) (7.24)

CVbot = 2L+ 1 (7.25)

Now to understand all the calculations we have made, we look at the difference

between the linear approximation to removing each bar and the actual values attained

when removing each bar.
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1

Figure 7-3: A frame consisting of 2 overlapping beams. Both beams are of unit length.
The frame is fixed in the left hand side completely and there is a unit load applied
horizontally at right free end.

∆top := CVtop − (CV − ∂CV

∂xtop
) =

L(4L9 + 32L8 + 87L7 + 180L6 + 465L5 + 558L4 + 702L3 + 936L2 + 216L+ 216)

3(L3 + 3L2 + 12)2

(7.26)

∆bot := CVbot − (CV − ∂CV

∂xbot
) =

12L(L3 + 2L2 + 6)

(L3 + 3L2 + 12)2 (7.27)

We can see that as L → ∞, ∆top → ∞ and so for any M > 0 we can choose an L

such that ∆top > M .

Note, as L→∞, ∆bot → 0.

We can see that as L gets larger, ∆top can get arbitrarily large, and ∆bot can become

arbitrarily small. This means that if we remove the bottom bar from Figure 7-2, CV

behaves linearly as L→∞. However if the top beam is removed CV behaves incredibly

nonlinearly and as L→∞ the linear approximation becomes arbitrarily bad.

7.5 Linear behaviour of the elasticity equations

We can find that ∆ = 0 in a different system, which does not require us to take the

limit. If we consider the system shown in Figure 7-3 where there are 2 beams modelled

to occupy the same physical space.

Using the same procedure as above, we find that the stiffness matrix for this system

has the form

K =



2 0 0 −2 0 0

0 24 12 0 −24 12

0 12 8 0 −12 4

−2 0 0 2 0 0

0 −24 −12 0 24 −12

0 12 4 0 −12 8


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which reduces to the matrix

K =

 2 0 0

0 24 −12

0 −12 8


when we fix the system completely in the top left corner. Its inverse is given by

K−1 =


1
2 0 0

0 1
6

1
4

0 1
4

1
2

 .

From this we can deduce that the CV of the system is 1, and that the derivative of

the CV product with respect to the density of either element is given by ∂CV
∂xe

= 0.

If we compute the CV for the system when one of the bars is completely removed,

we find firstly that the stiffness matrix and the inverse of the stiffness matrix have the

following formulae:

K =

 1 0 0

0 12 −6

0 −6 4



K−1 =

 1 0 0

0 1
3

1
2

0 1
2 1

 .

From these we compute that the CV product of the system with a single bar is 1.

Putting this into the definition of ∆ when we remove one of these elements gives

∆ = 1− (1− 0) = 0

In this specific example we find that CV is behaving linearly, regardless of the size

of step taken. In this case, the overlapping nature of the elements is similar to the form

used in the SIMP method to represent the structure, where a continuous variable can

be thought of as representing the number of whole elements present in the structure at

that corresponding point.
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7.6 A motivating example of nonlinear behaviour in the

continuum setting

Consider again the typical example of ESO’s convergence behaviour which is shown

again in Figure 7-4 with some added annotations.

0 50 100 150 200 250 300 350

1.2

1.3

1.4

1.5
·106

A

BC

D

Iteration

C
om

p
li

an
ce

V
ol

u
m

e
p

ro
d

u
ct

(C
V

)

Figure 7-4: Compliance volume (CV) plot for ESO applied to the short cantilevered
beam.

If we take a specific look at one of the most notable increases in this graph, when

the method goes from iteration 288, point A, to iteration 299, point B, we will see the

nonlinearity discussed in the previous section present in this calculation. The structures

at these points are shown in Figure 7-5 and Figure 7-6 respectively.

To see what is going on in these different structures, the principal stress vectors

are plotted in Figures 7-7 and 7-8. From these figures it can be seen that the small

change in the structure, notably the disconnection of one of the “bars”, has caused a

large redistribution of stresses in the structure. It has also led to the remainder of these

“bars” becoming effectively redundant, thus causing a more far-reaching change in the

structure, not confined to the local region around the elements that were removed.

This is the cause of nonlinear behaviour in the compliance resulting in an increase of

the objective function.

In order to picture the nonlinearity we linearly interpolate the densities between

the structures A and B. We then plot the corresponding CV product. Note that this

type of calculation is not usually done with the ESO method, as it requires elements
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Figure 7-5: Structure at iteration number 288 corresponding to point A of Figure 7-4.

Figure 7-6: Structure at iteration number 289 corresponding to point B of Figure 7-4.
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Figure 7-7: Force paths at iteration number 288 corresponding to point A of Figure
7-4. The relative colour intensity denotes the magnitude of the principal stress vector.
Red colouring denotes tension and blue colouring denotes compression.

Figure 7-8: Force paths at iteration number 289 corresponding to point B of Figure
7-4. The relative colour intensity denotes the magnitude of the principal stress vector.
Red colouring denotes tension and blue colouring denotes compression.
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having intermediate density, instead of discrete densities. The plot is given in Figure

7-9.
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Figure 7-9: Compliance volume (CV) plot as we interpolate the structures from itera-
tion 288 to 289.

There are a number of things that we see from this graph. Firstly, the direction in

which we move is indeed a descent direction. The optimal step length would be around

0.58 times the actual unit step taken. The other, more notable thing is that this graph

is nonlinear. It is this nonlinearity which causes the objective history of ESO to jump,

i.e. have non-monotonic convergence. In fact, if the step length is more than 0.853

then CV increases.

This increase in the objective function occurs as one of the connections in the

continuum structure is broken, leading to a marked topological change in the structure.

We will now look at the jump which occurs when we go from points C to D in Figure

7-4.

The structures at points C and D in Figure 7-4 are shown in Figures 7-10 and 7-11

respectively. Interpolating the density of material in the same manner as Figure 7-9

leads to the plot shown in Figure 7-12. In this case, there is no connection which is

being broken, as we previously had in Figure 7-9. There is however, the same nonlinear

behaviour.

From this we can see that the step size taken by ESO is too large. This is equivalent

to the step size being too large in a line search optimization method. If ESO had the

ability to choose a smaller step then it may not exhibit this non-monotonic convergence
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Figure 7-10: Structure at iteration number 144 corresponding to point C of Figure 7-4.

Figure 7-11: Structure at iteration number 145 corresponding to point D of Figure 7-4.
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Figure 7-12: Compliance volume (CV) plot as we interpolate the structures from iter-
ation 144 to 145.

behaviour. In the following section we introduce a change to the ESO algorithm to allow

it to automatically take a smaller step size.
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7.7 ESO with h-refinement

We have seen that due to the nonlinearity inherent in the equations of elasticity, ESO

will often take too large a step and this will cause the objective function to increase.

We now modify the ESO algorithm so that if it is allowed to take a smaller step then

we hope to see the objective function decrease monotonically. The simple modification

consists of checking that the objective function has not increased, but if it has, instead

of removing the elements we instead refine them and continue the ESO process.

There are 3 general types of mesh refinement, r-, p- and h-refinement. r-refinement,

or relocation refinement, is the least noted of these in which the location of the mesh

connections are moved to areas of interest. p-refinement works by varying the order

of the polynomial basis functions in the underlying finite-element discretisation of the

problem. The goal in our case with mesh refinement is to have a more detailed rep-

resentation of the domain of the structure. As such, p-refinement is not suitable as

it does not change how the domain is represented. r-refinement would also lead to

difficulties as it would, by definition, relocate parts of the domain and so great care

and complications would be needed to represent one structure on a mesh that has been

moved in space.

h-refinement by contrast simply works by recursively dividing elements into smaller

ones. Hence any structure represented on a coarse mesh can be exactly represented on

a h-refined mesh. This type of adaptivity is therefore ideal to allow the ESO method

to take a smaller optimization step.

Mesh refinement has been previously employed in topology optimization for struc-

tural problems. For instance in the SIMP approach, Maute and Ramm (1995) [110]

employed mesh refinement in order better represent structural boundaries and Stainko

(2006) [156] used adaptive global and local h-refinement in in order to improve compu-

tational efficiency. In the ESO method, global mesh refinement has been used by Akin

and Arjona-Baez (2001) [14] in order to control the finite-element error in the structural

analysis. Huang and Xie (2007) [72] used a posteriori global mesh refinement with the

ESO method in order to avoid local minima, but this is only achieved by enforcing the

maintenance of boundary conditions.

The adapted ESO method is described in Algorithm 4 as uses h-refinement with the

sole aim to remove the non-monotonic convergence behaviour of the ESO algorithm.

In the results shown, ESO with h-refinement was implemented in Ansys, a commercial

finite element package. This has the feature which allows a mesh to be automatically

refined in given elements. This was applied to the short cantilevered beam problem

considered previously in Figure 7-1 and results are shown in Figures 7-13 and 7-14.
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Algorithm 4 Evolutionary Structural Optimization with h-refinement

1: Mesh design domain
2: Define a rejection ratio RR
3: loop
4: Perform structural analysis of structure
5: if Objective has increased then
6: Reinstate removed elements and refine them
7: else
8: Calculate elemental sensitivities si for all elements i
9: {Filter sensitivities (optional)}

10: Remove elements i with si ≤ RRminj{sj}
11: end if
12: end loop
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Figure 7-13: Convergence of ESO with h-refinement applied to the short cantilevered
beam
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Figure 7-14: Magnified view of convergence of ESO with h-refinement applied to the
short cantilevered beam
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As we can see from Figures 7-13 and 7-14, the ESO algorithm with h-refinement is

identical to the original ESO algorithm until the objective function increases. At that

point, the algorithm refines the mesh and the ESO algorithm continues. The meshes

used at points A,B,C,D and E are shown in Figures 7-15, 7-16, 7-17, 7-18 and 7-19

respectively.

Each time we refine, i.e. go from points A to B and points C to D, the CV of

the structure increases. More specifically, the volume remains exactly the same as the

structure has not changed, only the mesh describing it. The compliance increases as

the refined mesh can more accurately resolve the gradients of the stress field. These

increases are thus not due to the optimization, but rather caused by the more accurate

representation of the structure. Appendix B shows a mesh refinement study which

shows and explains this behaviour.

Following from where the mesh is refined, one can then see that ESO automatically

continues to improve the objective function. It does this by choosing to take a smaller

size (i.e. remove a smaller amount of volume of the structure) and the nonlinearity of

the compliance does not adversely affect the convergence.

This method stops when the stiffness matrix K describing the structure becomes

singular (as measured by the linear solver). This is the same criteria used to stop the

original ESO method.

It is possible to introduce an actual stopping criterion for use in the ESO with

h-refinement algorithm. That is if, for some given value tol for which 0 ≤ tol < 1

∑
e

∂CV

∂xe
(xk) ≤ tolCV (7.28)

then stop and we would consider the current point xk to be a local minima of the

problem. We apply this stopping criterion in the following section.

156



Chapter 7. Analysis of Evolutionary Structural Optimization

Figure 7-15: The mesh after 144 iterations of both the ESO algorithm and the ESO
with h-refinement when applied to the short cantilevered beam. This corresponds to
point A in Figure 7-14.
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Figure 7-16: The mesh after being refined from the mesh shown in Figure 7-15. This
corresponds to point B in Figure 7-14.

Figure 7-17: The mesh at point C of Figure 7-14. The elements which have been
removed from since this mesh was generated at point B have been highlighted.
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Figure 7-18: The mesh at point D of Figure 7-14 that results from Figure 7-17 being
refined.
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Figure 7-19: The final mesh coming from the ESO with h-refinement algorithm applied
to the short cantilevered beam.
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7.8 Tie-beam with h-refinement

The “tie-beam” was introduced by Zhou and Rozvany in 2001 [187] and is a notoriously

difficult topology optimization problem. The design domain is shown in Figure 7-20 and

consists of 100 elements, where there is a tie connecting what would be a cantilevered

beam to a roller support on a fixed ceiling. The loading in the horizontal direction is

3 times the magnitude of the loading in the vertical direction.

Figure 7-20: Tie-beam problem as stated by Zhou and Rozvany [187].

The global solution to the problem as stated by Zhou and Rozvany was given in

2010 by Stolpe and Bendsøe [162]. In order to compute the global solution they had

to resort to using branch-and-cut methods and a great deal of patience (over a week of

CPU time to find the minimal compliance for a given volume structure).

The methods used by Stolpe and Bendsøe were generic optimization methods which

are unsuitable for more realistic large-scale topology optimization problems. The com-

putational cost of the branch-and-cut methods is far too high to deal with problems

that have substantially more variables, such as those we have seen in Chapters 5 and

6.

When ESO is applied to the tie-beam, the structure with minimal objective function

is the structure given in the initial configuration. The objective function history is

shown in Figure 7-21. In the initial step in the ESO process the tie connecting the

main structure to the ceiling is cut, and the objective increases dramatically, resulting

in a highly non-optimal structure.

Applying the ESO with h-refinement algorithm to this problem does not behave

in the same way. Instead of cutting the tie, the algorithm instead performs a local

refinement of the mesh in this region. In doing so, ESO with h-refinement is able

to find a structure that has a lower objective function than the initial configuration,

and hence better than the solution found by the basic ESO algorithm. The objective

function history is shown in Figure 7-22.

The meshes automatically generated are shown in Figures 7-23 to 7-27 and the
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Figure 7-21: ESO objective function history for the tie-beam problem.
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Figure 7-22: Compliance volume (CV) plot for ESO with H-refinement applied to the
short cantilevered beam. Note again that the increases in the objective function are
caused only by refining the mesh to get a more accurate resolution of the structure,
rather than changing the structure itself. These increases are marked in blue. One
instance of refinement decreasing the objective function is seen and marked in green.
Red colours represent the progress of ESO without changing the mesh in that step.
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Figure 7-23: Initial mesh from ESO with h-refinement applied to the tie-beam problem.

Figure 7-24: First mesh showing h-refinement from ESO with h-refinement from the
tie-beam problem.

Figure 7-25: Mesh showing 2 levels of refinement from ESO with h-refinement from the
tie-beam problem.

Figure 7-26: Mesh showing refinement in a different position from ESO with h-
refinement from the tie-beam problem.
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Figure 7-27: Final mesh from ESO with h-refinement applied to the tie-beam problem.

Figure 7-28: Final structure given by ESO with h-refinement applied to the tie-beam
problem.

final structure shown in Figure 7-28. Notice that we start with a uniform mesh as

depicted in Figure 7-23. After one iteration, the mesh has been refined and two of the

smaller refined elements have been removed. This is shown in Figure 7-24. Note that

the refinement process used has introduced non-rectangular elements in order to avoid

hanging nodes.

In the sixth iteration the structure has been refined again and is shown in Figure

7-25. The next refinement occurs on the thirteenth iteration occurs in a different part

of the structure compared to the refinement in the sixth iteration. This is shown in

Figure 7-26. The final mesh is shown in Figure 7-27. Notice that all of the refinement

of the mesh has occurred around the tie. This allows the method accurately represent

a structure with a thinner tie that was in the original problem statement.

In this example we used the convergence criterion set out in (7.28) with tol = 10−8.

We plot the values of ∂CV
∂xe

(xk)/CV in Figure 7-29. As this quantity approaches 0,

the structure is converging to a stationary point. Hence ESO with h-refinement is

approaching a local minimum of the unconstrained continuous optimization problem.
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Figure 7-29: Convergence criteria – iterations of eso with h-refinement applied to the
tie-beam

7.9 ESO as a stochastic optimization algorithm

The tie-beam is a particularly difficult optimization problem, with many methods fail-

ing to find a solution better than the initial state. When ESO is applied to this problem

it clearly is amongst those methods that are not good in this instance. To its credit

however, if one refers back to the original objective function history shown in this chap-

ter resulting from the ESO algorithm applied to the short cantilevered beam (Figure

7-1) it can be seen that ESO finds multiple solutions which appear close to distinct

local minima.

As ESO progresses it is able to leave local minima and (in this case) find a better

solution than the first local minima it exposes. Due to this behaviour of ESO, the

solution it finds that has an objective function of around 1.192 × 106 is considerably

better than the local solution found by ESO with h-refinement that has an objective

function of around 1.285×106. In this way, as ESO takes some steps which increase the

objective function, it is similar to stochastic methods of optimization such as simulated

annealing (see for example Kirkpatrick, Gelatt and Vecchi 1983 [88], Černý 1985 [175]

or Aarts and Korst 1989 [2]).

The tie-beam example shows us that the ESO solution is not guaranteed to be

the global solution of the problem. It is possible to combine the ESO and ESO with

h-refinement methods in order to obtain multiple local minima for the same problem.

When ESO chooses a step which increases the objective function, the method can be

branched so that ESO with h-refinement finds the local minima around that point, but
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ESO continues to search along the same path for other solutions closer to the global

optimum.

7.10 Conclusions

1. The nonmonotonic convergence behaviour of ESO can be explained by the fact

that the underlying state equations of linear elasticity are nonlinear with respect

to varying the domain of the problem. This nonlinearity can lead to ESO taking

a step which increases the objective function which is sometimes catastrophic for

the quality of solution which ESO finds.

2. When ESO does increase the objective function of the solution, this is equivalent

to taking too large a step in line search method.

3. ESO can display descent if the elements that is selects for removal subsequently

cause the objective to increase are refined as opposed to removed. ESO then

naturally chooses a smaller step length in the line search and this then leads

to descent to a point which approximates a stationary point in unconstrained

optimization.

4. As ESO with h-refinement can now be shown to approximate a stationary point

of an unconstrained optimization problem, it has a much more sound theoretical

background.
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8
Conclusions and future work

8.1 Achievements of the thesis

The key findings and developments of this thesis are:

• The SAND formulation of minimisation of compliance problem subject to a vol-

ume constraint violates the MFCQ and as a result SQP methods struggle to find

feasible solutions.

This result makes it undesirable to use a SAND formulation for topology optimization

problems as its disadvantages outweigh its potential benefits.

• In a NAND formulation of minimisation of compliance problem subject to a vol-

ume constraint, filtering provides an excellent way to regularise the problem and

remove chequerboard patterns, though impairs the convergence of the problem.

Using a low-pass filter to remove the high-frequency variation in derivative values is a

simple and effective way of imposing a minimum length scale on the topology optimiza-

tion problem. This minimum length scale can be defined a priori and so is preferable to

a perimeter constraint where the maximum allowable perimeter of a structure is gener-

ally uncertain. The filtering also keeps the solution away from many local minima, as

the perturbation to the true gradients does not allow the solution to fall into the local

minima.

• A robust criterion for detecting when to stop filtering the problem has been

developed and shown to work well on very high resolution test problems.

When the objective function stops decreasing by any meaningful amount, and the

chequerboard pattern has been avoided, it is desirable to converge to a KKT point.
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The filtering scheme may avoid many local minima, but cannot be guaranteed to find

the global minima. Hence providing the optimization routine with the correct gradients

allows the solution to fall into a nearby optima and thus using a cessant filter keeps

the regularising properties of the filter and the local convergence properties of the

unperturbed optimization routine.

• Spurious localised buckling modes have been observed and proven to be eradi-

cated by setting the contributions to the stress stiffness matrix from low density

elements to zero, though this is not consistent with the underlying equations.

These unwanted numerical features arise due to the representation of the structure using

continuous variables. Any continuous optimization approach to topology optimization

involving buckling or harmonic modes will exhibit this characteristic and so care must

be taken to ensure the analysis is performed accurately.

• An analytic expression for the derivative of the stress stiffness matrix with respect

to the density of an element has been presented.

Often, when performing optimization involving harmonic modes, the stress stiffness

matrix is considered similar to the mass matrix. At first glance this appears reasonable

as they appear in the same place in a generalised eigenvalue problem and have the same

sparsity structure. However the construction of a mass stiffness matrix is a forward

problem, whereas the construction of the stress stiffness matrix involves the solution of

an inverse problem. As such computing the derivative of the stress stiffness matrix is by

no means trivial. The analytic expression for this allows it to be computed efficiently

but its complexity means it remains an expensive step in an overall computation.

• A new optimization method has been developed specifically for the minimisation

of weight subject to a volume constraint and a buckling constraint in order to

minimise the number of derivative calculations needed and to avoid the problem

of computing spurious localised buckling modes.

This method is designed to provide an efficient technique for a topology optimization

problem with buckling as a constraint. It has been developed due to the difficulties

associated with existing methods and has been shown to scale well up to large problem

sizes of use in practical applications.

• Singularities at a re-entrant corner occur naturally in the equations of linear

elasticity and are not simply a numerical error.
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In an element based formulation of a topology optimization problem, re-entrant corners

are an inevitable feature in an optimal design and are most pronounced in the ESO

approach to topology optimization. Only in the case of a stress constrained problem

may this present an issue and so may require special care.

• The nonmonotonic convergence behaviour of ESO has been explained by observ-

ing the nonlinear behaviour of the underlying state equations of linear elasticity

with respect to varying the domain of the problem.

The observation that the ESO uses infinitesimal information to determine the direction

of a unit step is crucial to understanding the ESO algorithm. The analytic examples of

the values of the objective function deviating from their linear approximation based on

that infinitesimal information show the nonlinear behaviour that is not considered by

the ESO method. This observation shows that whilst the change to the structure may

be relatively very small in terms of volume, it is still a unit step in the infinity-norm

and can have a drastic effect on the behaviour of the structure.

• ESO with h-refinement has been observed to approximate a stationary point of an

unconstrained optimization problem and thus give a much more sound theoretical

background to ESO.

Building on the previous observation, the natural manner to validate ESO as an op-

timization method was to allow it to take a smaller step. The simple addition of h-

refinement to the ESO algorithm achieved this and allowed the modified ESO method

to exhibit monotonic convergence. In combination with the previous observation, many

of the questions regarding the convergence of ESO have been answered.

8.2 Application of the results of the thesis and concluding

remarks

This thesis has been a mathematical exploration of a problem which is very much of

interest to mechanical, civil and aeronautical engineers. While technical details have

been the main focus of this thesis, how the problem is formulated is the most important

feature of solving the problem and underpins the statements which can be made about

the resulting solution.

If the problem is unconstrained then the ESO method may provide a quick way

of searching through the design space which may easily escape local minima. The

choice of sensitivity measure should be based on the gradient of the objective function,
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and not some other physical quantity. However the result given from ESO should

not be considered a local minimum but should give a good starting point for another

optimization algorithm, such as ESO with h-refinement or a SIMP approach.

The most robust technique available for solving a topology optimization problem

is to use a SIMP approach and a mathematical programming technique. These allow

for constraints on the system in the way that a method like ESO do not. Provided the

objective and the constraints remain differentiable, and the underlying equations do

not exhibit unwanted numerical features when low density elements are represented,

then the SIMP approach will give a solution for which local optimality can be claimed.

This thesis has discussed in detail the difficulties associated with including the solu-

tion of the underlying state equations in the formulation of the optimization problem.

The advantages of not including them in the problem should be highlighted. Whilst it

reduces the number of optimization variables, more importantly to an engineer, it pro-

vides meaningful quantities about the solution at all times throughout the optimization

process. That is to say, given any solution, the state equations can be solved and so

can be interpreted physically.

Removing solutions of the state equations from the formulation and adopting a

NAND approach also allows for dedicated PDE solvers to be employed. This transfers

all the difficulty of solving the PDE, and hence finding a feasible solution, to a code

which may have been optimized for such a purpose.

The fast binary descent method can be used for the specific problem it was devel-

oped for, or any other problem where derivative calculations are very expensive. Its

derivation may be used as a model to build a different optimization algorithm if certain

aspects of a SIMP approach do not lend them selves to being solved efficiently.

ESO with h-refinement can be used to further investigate the ESO method and can

validate the solutions given by ESO.

8.3 Future work

There are many different avenues for future work in topology optimization which could

be explored. For instance, the mesh refinement techniques used in the ESO-h could be

investigated to see if the resulting structure could be independent of the mesh refine-

ment technique employed. It should also be incorporated into Bidirectional Evolution-

ary Structural Optimization (BESO) to assess the optimality of structures produced

by the BESO method. As a like for like comparison, the structures found by the

ESO-h algorithm should be computed using the final refined mesh so that the effect of

refinement is removed from the analysis of the method.

170



Chapter 8. Conclusions and future work

Most work done to date on comparing iterative and direct solvers for topology

optimization has focused on having one linear solve for each optimization step. Fully

coupling an iterative solver with the optimization process could be investigated, so that

the equilibrium equations of elasticity are only satisfied to a very tight tolerance when

the optimal structure is found. This type of approach could significantly improve the

efficiency of the method.

If an iterative solver is used, preconditioning for these problems could be further

investigated, making full use of the knowledge of the problem at previous optimization

iterations. This would lead nicely into considering fully non-linear elastic material.

The optimization process and convergence when effects such as contact are included

are not yet fully understood.

Further, to apply topology optimization in other situations, the methods needed

to optimize coupled systems such as electro-mechanical systems or fluid structure in-

teractions should be investigated. Issues such as the variables to be included in the

optimization formulation and possible iterative optimization schemes between the dif-

ferent systems is a rich area of research with promising impact and applications.
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A
Stiffness matrices of few bar structures

A.1 Stiffness matrix and inverse of 4 bar structure.

Here is stated the stiffness matrix and its inverse for the structure considered in Figure

7-2 comprised of 4 beams.

K =



12
L3 + 1 0 − 6

L2 −1 0 0 0 0 0

0 1
L + 12 6 0 −12 6 0 0 0

− 6
L2 6 4

L + 4 0 −6 2 0 0 0

−1 0 0 12
L3 + 1 0 − 6

L2 − 12
L3 0 − 6

L2

0 −12 −6 0 1
L + 12 −6 0 − 1

L 0

0 6 2 − 6
L2 −6 4

L + 4 6
L2 0 2

L

0 0 0 − 12
L3 0 6

L2
12
L3 + 1 0 6

L2

0 0 0 0 − 1
L 0 0 1

L + 12 −6

0 0 0 − 6
L2 0 2

L
6
L2 −6 4

L + 4


As the inverse of this matrix is dense and symmetric, we list only the lower triangular

part of the inverse, giving each column separately in equations (A.1) to (A.9).
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Appendix A. Stiffness matrices of few bar structures

K−1(1 : 9, 1) =



L3(51L5+298L4+355L3+816L2+1392L+96)
24(15L+1)(L+1)(L3+3L2+12)

− 3L3

30L+2
L2(3L2+7L+ 1

2
)

(15L+1)(L+1)
L3(51L5+298L4+355L3+636L2+1200L+84)

24(15L+1)(L+1)(L3+3L2+12)
L2(12L5+79L4+102L3+151L2+336L+24)

8(15L+1)(L+1)(L3+3L2+12)
L2(3L4+13L3+L2+36L+3)

(15L+1)(L3+3L2+12)
L3

2(L3+3L2+12)
L2(31L4+66L3+7L2+192L+24)
8(15L+1)(L+1)(L3+3L2+12)

L2(L3+2L2+6)
2(L+1)(L3+3L2+12)



(A.1)

K−1(2 : 9, 2) =



L(9L+1)
15L+1

− 3L2

15L+1

− 3L3

30L+2
L(12L+1)

30L+2

− 3L2

15L+1

0
1
30 −

1
(450L+30)

0


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K−1(3 : 9, 3) =



L(6L2+14L+1)
(15L+1)(L+1)
L2(3L2+7L+ 1

2
)

(15L+1)(L+1)
L(6L2+14L+1)
2(15L+1)(L+1)
L(12L+1)

30L+2

0
L(8L+1)

2(15L+1)(L+1)
1
2 −

1
2(L+1)


(A.3)

K−1(4 : 9, 4) =



17L8

8
+ 149L7

12
+ 355L6

24
+34L5+103L4+52L3+93L2+96L+6

(15L+1)(L+1)(L3+3L2+12)
L(12L6+79L5+102L4+151L3+516L2+216L+12)

8(15L+1)(L+1)(L3+3L2+12)
L(L+1)(3L4+10L3−9L2+45L+3)

(15L+1)(L3+3L2+12)
L3+12

2(L3+3L2+12)
L(31L5+66L4+7L3+372L2+216L+12)

8(15L+1)(L+1)(L3+3L2+12)
L(L4+2L3+12L+6)

2(L+1)(L3+3L2+12)


(A.4)
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K−1(5 : 9, 5) =



3L
5 −

1
8(L+1) −

1
600(15L+1) −

3L2

8(L3+3L2+12)
+ 22

75
(L+1)(3L4+10L3−9L2+45L+3)

(15L+1)(L3+3L2+12)

− 3L
2(L3+3L2+12)

− 1
8(L+1) −

1
120(15L+1) −

3L2

8(L3+3L2+12)
+ 3

10

− (L3+ 3L2

2
+3)

(L+1)(L3+3L2+12)
+ 1

2


(A.5)

K−1(6 : 9, 6) =


2(L+1)(3L4+10L3−9L2+45L+3)

(15L+1)(L3+3L2+12)

− 3L
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(15L+1)(L3+3L2+12)
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2(L3+3L2+12)

 (A.6)

K−1(7 : 9, 7) =
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− 6

(L3+3L2+12)
+ 1

− 3L
2(L3+3L2+12)

− 3L
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K−1(8 : 9, 8) =
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1
24(15L+1) −
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8(L3+3L2+12)
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(L+1)(L3+3L2+12)
+ 1
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 (A.8)

K−1(9, 9) =
(
− (2L3+3L2+6)

(L+1)(L3+3L2+12)
+ 1

)
(A.9)

A.2 Stiffness matrix and inverse of 4 bar structure with-

out the top bar.

Here is stated the stiffness matrix and its inverse for the structure considered in Figure

7-2 comprised of only 3 beams, where the top bar has been omitted.

K =



12
L3 + 1 0 − 6

L2 −1 0 0 0 0 0

0 1
L + 12 6 0 −12 6 0 0 0

− 6
L2 6 4

L + 4 0 −6 2 0 0 0

−1 0 0 12
L3 + 1 0 − 6

L2 − 12
L3 0 − 6

L2

0 −12 −6 0 1
L + 12 −6 0 − 1

L 0

0 6 2 − 6
L2 −6 4

L + 4 6
L2 0 2

L

0 0 0 − 12
L3 0 6

L2
12
L3 0 6

L2

0 0 0 0 − 1
L 0 0 1

L 0

0 0 0 − 6
L2 0 2

L
6
L2 0 4

L


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Again, the lower triangular part of the symmetric matrix is given in equations

(A.10) to (A.18).

K−1(1 : 9, 1) =



L3

3

0
L2

2
L3

3
L2

2
L2

2

−L3

6
L2

2
L2

2


(A.10)

K−1(2 : 9, 2) =



L

0

0

L

0

0

L

0


(A.11)

K−1(3 : 9, 3) =
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L
L2

2

L

L

−L2

2

L

L


(A.12)

K−1(4 : 9, 4) =



L3

3 + 1
L2

2
L2

2

1− L3

6
L2

2
L2

2


(A.13)
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K−1(5 : 9, 5) =


2L+ 1

3

L+ 1
2

−L (L+1)
2

2L+ 1
3

L+ 1
2

 (A.14)

K−1(6 : 9, 6) =


L+ 1

−L (L+2)
2

L+ 1
2

L+ 1

 (A.15)

K−1(7 : 9, 7) =


2L3

3 + L2 + 1

−L (L+1)
2

−L (L+ 1)

 (A.16)

K−1(8 : 9, 8) =

(
3L+ 1

3

L+ 1
2

)
(A.17)

K−1(9, 9) =
(

2L+ 1
)

(A.18)

A.3 Stiffness matrix and inverse of 4 bar structure with-

out the bottom bar.

Here is stated the stiffness matrix and its inverse for the structure considered in Figure

7-2 comprised of only 3 beams, where the bottom bar has been omitted.

K =



12
L3 0 − 6

L2 0 0 0 0 0 0

0 1
L 0 0 0 0 0 0 0

− 6
L2 0 4

L 0 0 0 0 0 0

0 0 0 12
L3 0 − 6

L2 − 12
L3 0 − 6

L2

0 0 0 0 1
L 0 0 − 1

L 0

0 0 0 − 6
L2 0 4

L
6
L2 0 2

L

0 0 0 − 12
L3 0 6

L2
12
L3 + 1 0 6

L2

0 0 0 0 − 1
L 0 0 1

L + 12 −6

0 0 0 − 6
L2 0 2

L
6
L2 −6 4

L + 4


(A.19)

The simplicity of the representation of the inverse of this stiffness matrix allows us
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to present the entire matrix in equation (A.20).

K−1 =


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2 0 0 0 0 0 0

0 L 0 0 0 0 0 0 0
L2

2 0 L 0 0 0 0 0 0

0 0 0 L3

3 + L2 + 1 L
2

L2

2 + L 1 L
2 L

0 0 0 L
2 L+ 1

3
1
2 0 1

3
1
2

0 0 0 L2

2 + L 1
2 L+ 1 0 1

2 1

0 0 0 1 0 0 1 0 0

0 0 0 L
2

1
3

1
2 0 1

3
1
2

0 0 0 L 1
2 1 0 1

2 1


(A.20)
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B
Mesh refinement studies

In this appendix the effect of mesh refinement on the values of compliance are studied.

B.1 Cantilevered beam with point load

1

1.6

h

Figure B-1: Design domain of a centrally loaded cantilevered beam. The aspect ratio
of the design domain is 1.6 and a unit load is applied vertically from the centre of the
right hand side of the domain.

When a load is applied to a single node in the finite-element mesh this corresponds

to the underlying f in the continuous setting being a Dirac-delta distribution. This

follows because if the underlying function had more than a single point value, its support

would intersect with the support of at least two of the finite-element basis functions.

As such we see that f = δ and it is known that δ is not a function in the classical sense

and is therefore not in L2. Hence the standard finite element theory does not apply,

specifically that uh → u as h→ 0.

178



Appendix B. Mesh refinement studies

0 1 2 3 4 5

·10−2

2,300

2,400

2,500

C = 2080h−0.0272

h

C
o
m

p
li

an
ce

Figure B-2: Compliance plot for different mesh sizes h applied to a short cantilevered
beam. The red crosses are the values of the compliance. The blue line is a best fit line
calculated from the below log–log plot.
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Figure B-3: Log–log plot of compliance against the mesh size for the short cantilevered
beam. This plot appears to have a gradient of −0.0272.
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B.2 Cantilevered beam with distributed load

In the case of a distributed load, the right hand side f is in L2 and as expected we find

that the compliance converges as h→ 0.

1

1.6

h

Figure B-4: Design domain of a cantilevered beam. The aspect ratio of the design
domain is 1.6 and a unit load is applied vertically distributed over the right hand side
of the domain.
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Figure B-5: Compliance plot for different mesh sizes h applied to a short cantilevered
beam with distributed load. The red crosses are the values of the compliance.
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