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Abstract 
 

Pluripotent embryonic stem cells (ESCs) have great potential for use in regenerative 

medicine and drug discovery. However, in order to harness this potential, we must 

understand the molecular mechanisms regulating self-renewal and differentiation. 

Previous studies had implicated Glycogen Synthase Kinase-3 (GSK-3) in both 

maintenance of pluripotency and neuronal differentiation. To investigate the role of 

GSK-3 in control of ESC fate further, we used GSK-3double knock-out (DKO) 

cells and specific bis-indolylmaleimides that selectively inhibit GSK-3. Self-renewal 

of DKO GSK-3 ESCs and ESCs treated with GSK-3 inhibitors was enhanced in the 

presence of LIF and serum but not in the absence of LIF. On the other hand, GSK-3 

inhibition during embryoid body differentiation promoted ESC differentiation 

towards mesendodermal lineage. 

 

Several mechanisms of action by which GSK-3 inhibition enhances self-renewal has 

been proposed, most studies to date suggest that -catenin mediates the effect of 

GSK-3 in self-renewal. However, -catenin independent mechanisms including 

stabilisation of c-Myc and regulation of Nanog have also been proposed. In the 

present study, we investigated the effects that GSK-3 inhibition has on the levels, 

stability and synthesis of pluripotency-associated transcription factors, including 

Nanog, Tbx3, c-Myc, Zscan4c and Oct4. Levels of Nanog and Tbx3 were elevated 

following GSK-3 inhibition, c-Myc and Zscan4c levels were also up-regulated but to 

a lesser extent. Alternatively, Oct4 protein was not dramatically affected. Moreover, 

Nanog and Tbx3 levels were maintained when GSK-3 was inhibited upon removal 

of LIF, or in 2i conditions.  These effects were not due to increase protein stability or 

entirely to increase in transcription, but instead arose as a result of enhanced protein 

synthesis, promoted by inhibition of GSK-3. Increased loading of mRNAs encoding 

pluripotency factors onto polysomes occurred following inhibition of GSK-3, 

supporting a role for GSK-3 inhibition in increasing translation of these mRNAs. 

Moreover, general or cap-dependent translation did not seem to be increased 

following GSK-3 inhibition suggesting that GSK-3 regulates translation of specific 

mRNAs. The present study supports a role for GSK-3 in fine-tuning the protein 

levels of transcription factors in pluripotent ESCs, which could play an important 

role in establishing the gene regulatory network in ESCs.  
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mTOR             Mammalian target of rapamycin 

NEAA             Non-essential amino acids 

N2B27            Defined media, 1:1 Neurobasal:DMEM F12 plus N2 and B2 

supplements. 

PBS                 Phosphate Buffered Saline 

PCR                 Polymerase Chain Reaction 

PD                   PD0325901 

PDK1              3-phosphoinositide-dependent protein kinase 1 

p-Erk               Phospho-Erk 

PH                   Pleckstrin Homology 

PI3K                Phosphoinositide 3-kinase 

PI(3)P              Phosphatidylinositol-3-phosphate 

PKB                Protein kinase B  

PMSF              Phenylmethylsulphonylfluoride 

POU                Pit Oct Unc 

pSmad1           Phospho-Smad1 

PTEN              Phosphatase and tensin homologue 

PS                   Primitive Streak 

qPCR              Quantitative PCR 

RT-PCR          Reverse Transcription PCR 

S                      SU5402 

SDS-PAGE     Sodium Dodecyl Sulphate-Poly acrylamide gel electrophoresis 

S.E.M.             Standard Error of the Mean 

Shp2                Src-homology 2 containing phosphatase 1 

shRNA            Short-hairpin Ribonucleic acid 

siRNA             Short interfering Ribonucleic acid 

Smad               Caenorhabditis elegans protein Sma, Drosophila mothers against 

Stat3                Signal Transducer and Activator of Transcription 3 

S6K1               p70 ribosomal S6 kinase (S6K) 

TAE                Tris-acetate EDTA 

TBS                 Tris Buffered Saline 

TBST              TBS plus 0.05% 

TEMED          Tetramethylethylenediamine 

Tet                  Tetracycline 

tTA                 Tetracycline-sensitive transactivator 

2i                     2 inhibitors, GSK-3 and MEK 

3i                     3 inhibitors, GSK-3, MEK and FGFR 

4-OHT            4-hydroximatoxifen 

5‟UTR             5‟ untranslated region 
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1.1 Embryonic stem cells (ESCs) – an overview 

ESCs are undifferentiated cells that have unique and remarkable properties.  One of 

these properties is their self-renewal capacity, which is the capability to give rise to 

at least one daughter equivalent to the mother cell. ESCs can, therefore, proliferate in 

culture generating a large number of undifferentiated stem cells. The other 

remarkable property of ESCs is their pluripotency, which can be defined as the 

ability of ESCs to differentiate into derivatives of the three embryonic germ layers, 

ectoderm, mesoderm and endoderm (Figure 1.1). In addition, demonstration of 

pluripotency is the ability of ESCs to contribute to the formation of chimeras if 

injected back into a blastocyst (Smith, 2001).  

 

 

 

 

Figure 1.1 Properties of ESCs. ESCs have self-renewal (a) and pluripotency (b) properties. 

Self-renewal is the ability to give rise to at least one undifferentiated ESC daughter. (b) 

Pluripotency is the ability to give rise to derivates of the three germ layers, ectoderm, 

mesoderm and endoderm. In b, a post-gastrulated mouse embryo and location of the 

embryonic germ layers is shown (Modified from Tam and Loebel, 2007).  
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Due to their properties, ESCs are an attractive source of cells that can be used in 

different fields such as regenerative medicine, drug development and toxicity 

screening and as an in vitro system to study early development. Regarding 

regenerative medicine they have the potential to be used in cell-based therapies to 

treat diseases for which they are currently no effective treatments, such as 

Parkinson´s disease, diabetes, traumatic spinal cord injury and myocardial infarction, 

which arise by loss of cells. These diseases could be treated by transplanting specific 

cell types obtained in vitro following differentiation of ESCs. ESCs are also a potent 

tool in drug development and toxicity screening. Current methods to test drug safety 

involves toxicity screening in cell lines which may de-differentiate in culture such as 

in the case of hepatocytes and thus they do not precisely predict what will happen in 

the human body (Elaut et al., 2006). For this reason, many drugs currently on the 

market can have secondary toxic effects with hepatotoxicity being a very common 

side effect. Much effort is being put into directing differentiation of human ESCs 

into differentiate cell types, such as hepatocytes for toxicity screening. Recently, the 

laboratory in which I have been carrying out my PhD succeeded in generating 

definitive endoderm with hepatic potential from human embryonic stem cells by 

inhibiting GSK-3 (Bone et al., 2011). This is a breakthrough in stem cell research 

and it is likely to revolutionise the way drugs are currently tested. Finally, ESCs are a 

very good in vitro system to study early development. For instance, they can 

contribute to our understanding of the regulatory pathways that regulate lineage 

specification by studying their in vitro differentiation potential.  

 

Despite the importance of understanding the signalling pathways governing stem cell 

fate to maintain ESCs in culture and control their differentiation towards a desired 

cell type, mechanisms controlling embryonic stem cell fate are not fully understood.  

Unravelling the multiple signals regulating stem cell fate remains one hurdle to be 

overcome before ESCs can fulfil their potential.  
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1.1.1 History of ESCs. 

In 1970, two groups reported the remarkable finding that early mouse embryos could 

generate teratocarcinomas when implanted into adult mice (Solter et al., 1970; 

Stevens, 1970). Teratocarcinomas are malignant tumours that not only contain 

differentiated cell types from all the three germ layers but also undifferentiated cells 

which can be propagated in culture and are known as embryonal carcinoma (EC) 

cells. Previous to Stevens‟ and Solter‟s work, teratocarcinomas were known to occur 

spontaneously in testes and thought to be restricted to male germ cells (reviewed by 

Stevens 1983). Remarkably, EC cells derived from the teratocarcinomas generated 

by embryo injection into an adult mouse, could also be propagated in vitro and had 

the ability to differentiate into endoderm, mesoderm and ectoderm (Kleinsmith and 

Pierce, 1964; Martin and Evans, 1975). The fact that teratocarcinomas could only be 

generated by injecting pre-gastrula embryos or from grafts containing epiblast 

indicated that EC cells originated from the epiblast (Diwan and Stevens, 1976). In 

fact, EC cells are phenotypically similar to epiblast cells and some EC cell lines can 

contribute to the embryo giving rise to chimeras (Brinster, 1974). However, the 

majority of EC cells do not significantly contribute to chimeras, they are tumorigenic 

and frequently aneuploid so they cannot give rise to mature gametes.  The work on 

EC cells led to the isolation of mouse ESCs by Evans and Kaufman in 1981. One of 

the important steps towards the isolation of mouse ESCs was the finding that EC cell 

cultures could be established by co-cultured with mitotically inactivated embryonic 

fibroblasts, which were thought to supply EC cells with nutrients supporting their 

growth and they were named feeder layers. EC cell cultures grown on feeder layers 

also have a high differentiation capacity (Martin et al., 1977). Hence, ESCs were 

derived from mouse by plating embryos after 3.5 days of fertilization (the blastocyst 

stage) or directly plating inner cell masses (ICM) onto a feeder layer of mitotically 

inactivated fibroblasts (Figure 1.2) (Evans & Kaufman 1981, Martin 1981, cited in 

Smith, 2001).  ESCs, unlike EC cells, retain a diploid karyotype, they can integrate 

into the embryo, generating viable chimeras and they are able to produce functional 

gametes.  Years of study of mouse ESCs led to the successful isolation of human 

ESCs for the first time in 1998 (Thomson et al., 1998).    
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Figure 1.2 First protocol developed for ESC derivation. ESCs were derived by plating 

early blastocysts formed at E3.5 or the ICM onto a feeder layer of mitotically inactivated 

fibroblast. Modified from Nichols and Smith, 2011.  

 

1.1.2 Early embryo development.  

Embryonic development in mammals begins with cell divisions of the fertilised egg 

into an 8-cell stage-embryo, which has the same size as the zygote. At this stage all 

the cells of the embryo are equivalent and each blastomere has the potential to give 

rise to all the cell lineages (Johnson and McConnell, 2004). Embryonic development 

proceeds by compaction of the blastomeres, which become polarised and successive 

cell division generates the morula (16-cell stage) that has either outer or inner cells. 

The outer cells will form an epithelium, called the trophectoderm, and will give rise 

to the placenta and the inner cells will form the inner cell mass (ICM), which will 

give rise to the embryo and the yolk sack (Rossant and Tam, 2004). The 

trophectoderm secretes fluid internally leading to the generation of the blastocoel (a 

fluid filled cavity) and the ICM becomes restricted to one side of the hollow 

structure. 3.5 days after fertilization the blastocyst is formed (Figure 1.3).  The 

trophectoderm and the ICM are not only different morphologically but also 

molecularly. The trophectoderm is characterised by the expression of the 

transcription factors Cdx2 and Eomes (Strumpf et al., 2005) and the ICM by the 

expression of Oct4 and Nanog (Chambers et al., 2003; Chazaud et al., 2006; Mitsui, 

2003). Cdx2 and Oct4 are essential for the establishment of the trophectoderm and 

ICM respectively (Nichols, 1998; Strumpf et al., 2005). The ICM segregates into the 

hypoblast, also known as primitive endoderm, which will form the yolk salk, and the 

epiblast, that will give rise to the embryo. The hypoblast and the epiblast are clearly 

distinctive by the time of implantation (E4.5) and they are characterised by the 

expression of transcription factors Nanog in the case of the epiblast and Gata4 and 

Gata 6 in the hypoblast (Plusa et al., 2008).  The epiblast is also characterised by the 
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reactivation of the inactive X paternal chromosome in female mouse embryos (Silva 

et al., 2009). The silent X chromosome is not reactivated in the trophectoderm or the 

primitive endoderm. The fact that reactivation of X chromosomes is a feature of 

successful reprogramming of somatic cells to induced pluripotent stem (iPS) cells 

(Silva et al., 2008) suggests that X chromosome reactivation may be an epigenetic 

event that facilitates chromatin accessibility to establish the pluripotent state in the 

epiblast (Nichols and Smith, 2011). After implantantion, the egg cylinder is formed 

which consist of trophectoderm, epiblast and hypoblast.  
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Figure 1.3 Early development of mouse embryo. Embryonic development begins with cell divisions of the fertilised egg into an 8-cell stage-embryo, where 

all the cells of the embryo are equivalent and are named blastomeres (Johnson and McConnell, 2004). After compaction of the blastomeres and cell division 

the morula is formed at E2.5. Cells in the morula are either outer or inner cells. The outer cells will form the trophectoderm, and the inner cells will form the 

inner cell mass (ICM), (Rossant and Tam, 2004). The trophectoderm secretes fluid internally generating the blastocoel and the ICM becomes restricted to one 

side of the hollow structure forming the early blastocyst at E3.5. The ICM segregates into the hypoblast and the epiblast forming the late blastocyst at E4.5. 

By the time of implantation, the blastocyst is composed of three lineages, epiblast, hypoblast and trophectoderm, which are disctintive and characterised for 

the expression of different transcription factors. Nanog expression is restricted to the epiblast, Gata 4 and Gata 6 to the hypoblast and Cdx2 and Eomes to the 

trophectoderm.  After implantation the egg cylinder is formed (Modified from Nichols and Smith, 2011).  



Chapter 1: Introduction 

 9 

1.1.3 ESC derivation. 

ESCs are derived from the epiblast of the late blastocyst at day 3.5 of embryonic 

development (Evans and Kaufman, 1981; Martin, 1981). ESC derivation can be 

facilitated by making use of a natural event called diapause (Evans and Kaufman, 

1981). This is a phenomenon whereby mice can delay implantation of embryos while 

they have another litter. Diapause can be experimentally induced by injecting 

mothers with tamoxifen when the developing embryos are at the morula stage. ESCs 

were originally derived by the plating of blastocysts, or ICMs isolated from 

blastocysts by immunosurgery, onto feeder layers in the presence of foetal calf serum 

(Figure 1.2). The cytokine leukaemia inhibitory factor (LIF) was later identified as 

the factor produced by feeder layers that contributes to maintenance of ESCs, and 

thus feeder layers were replaced by LIF (Smith et al., 1988; Williams et al., 1988). A 

few years ago, Bone morphogenetic protein 4 (BMP4) was found to be able to 

replace serum in culture allowing the derivation of ESCs in serum-free media 

supplemented with LIF and BMP4 (Ying et al., 2003a). However, until recently, ESC 

derivation was inconsistent and it was evident that ESCs could be more easily 

isolated from some mouse strains, such as 129, than others, such as CBA, C57BL/6 

or NOD. LIF maintains pluripotency by activation of the STAT3 cascade (Niwa et 

al., 1998) but LIF also activates Erk MAP kinases, which directs differentiation. The 

variability in efficiency to derive ESCs from different mouse strains was thought to 

be due to variations in Erk signalling (Batlle-Morera et al., 2008; Wray et al., 2010). 

In accordance with this, inhibition of Erk signalling improved ESCs derivation from 

C57BL/6 and CBA strains (Batlle-Morera et al., 2008). However, the breakthrough 

in ESC derivation came with the development of the 2i media, which is a chemically 

defined media supplemented with two kinase inhibitors, one for the Mitogen-

activated ERK kinase (MEK) and the other for the Glycogen Synthase Kinase (GSK-

3) (Ying et al., 2008).  The development of 2i media has allowed the derivation of 

ESCs from all mouse strains including the most refractory one, Non-obese diabetic 

(NOD) and also the derivation of ESCs from rats for the first time (Buehr et al., 

2008; Li et al., 2008; Nichols et al., 2009).  The fact that 2i media allowed efficient 

derivation of ESCs led to the idea that ESCs may in fact be identical to the epiblast 

cells rather than a tissue culture creation. This hypothesis was confirmed by studying 

the effect of blocking Erk signalling in the pre-implantation embryo (Nichols et al., 
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2009). Blockade of Erk signalling at the 8-cell stage results in inhibition of hypoblast 

development and the whole ICM becomes epiblast and acquires pluripotency, 

confirmed by the expression of Nanog, reactivation of the X paternal chromosome 

and the contribution of epiblast cells to chimaeras with germline transmission. 

Blockade of Erk signalling after 3.75 days of fertilisation, when the hypoblast is 

thought to already be determined (Chazaud et al., 2006) did not prevent formation of 

the hypoblast, suggesting that the effect of the inhibitor is to divert the ICM into 

epiblast rather than discriminatory destruction of the hypoblast. The authors 

concluded that ESCs are indeed like naïve epiblast cells and both are highly 

susceptible to Erk signalling.  

 

1.2 Other pluripotent cells. 

1.2.1 Epiblast Stem cells. 

ESCs were the only pluripotent cell lines to be derived from the early embryo until 

2007 when Epiblast stem cells (EpiSCs) were derived from the mouse post-

implantation epiblast (Brons et al., 2007; Tesar et al., 2007). Although EpiSCs have 

similarities with mouse ESCs (mESCs), such as expression of Nanog and Oct4 and 

the ability to differentiate into somatic cell types and primordial germ cells, they 

were different to mESCs regarding morphology, cell culture requirements and 

methodology required to passage them. mESCs form rounded compact colonies, 

which can be passaged by dissociation to single cells using trypsin and they grow in 

the presence of LIF and Serum, LIF and BMP4 or 2i media. In contrast, EpiSCs 

grow as flattened cell monolayers rather than forming colonies, dissociation to single 

cells by trypsin results in extensive cell death meaning they need to be passage by 

mechanical dissociation, they have to be cultured in the presence of Activin A and 

FGF2, rather than LIF and they are unable to colonise the embryo. Moreover, the 

signals regulating differentiation, the epigenetic state and the gene expression of 

EpiSCs and mESCs are different. In fact, EpiSCs have more similarities with human 

ESCs than with mESCs and this suggests that human ESCs are more likely to 

correspond to the same developmental stage as EpiSCs. EpiSCs are certainly ideal to 

study whether the differences observed between mouse and human ESCs are due to 
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variation between species or to derivation from different stages of development 

(Brons et al., 2007; Tesar et al., 2007). 

 

Recent studies showed that it is possible to convert EpiSCs to ESCs in response to 

LIF-STAT3 signalling or by forced expression of Klf4 and culture in 2i media and 

LIF (Bao et al., 2009; Guo et al., 2009).  In Bao´s study, opposite to Bron´s and 

Tesar´s, the authors dissociated epiblasts to single cells with trypsin, in their view, to 

disrupt cell interaction and thus to facilitate the stimulation of new transcriptional 

networks by LIF-STAT3 in vitro.  STAT3 was phosphorylated in EpiSCs suggesting 

that they can indeed respond to LIF. Moreover, during conversion, epigenetic 

changes including, demethylation of Rex1 and Stella and reactivation of the X 

chromosome took place. This so-called reprogrammed epiblast or ES-cell-like cells 

(rESCs) opposite to EpiSCs could contribute to germ cells and somatic tissues in 

chimaeras (Bao et al., 2009). In the second study, Guo et al., succeeded in converting 

EpiSCs into ESCs by forced expression of Klf4. They initially tested whether EpiSCs 

could be converted to ESCs by simply growing them in 2i and LIF, as this media 

improved iPS generation and ESC derivation. However, EpiSCs rather than 

converting into ESCs, differentiated and died. On the other hand, ESCs can become 

EpiSCs by growing them in EpiSCs culture conditions. The authors next tried to 

convert EpiSCs to ESCs by Klf4 transgene expression but they were only able to 

succeed when Klf4 transfected EpiSCs were transferred to 2i and LIF after 2-3 days 

of transfection and not if they were left in Activin and FGF2. This suggests that the 

conversion depends on the elimination of extrinsic stimuli (Guo et al., 2009). In 

summary, although ESCs can become EpiSCs by culturing in EpiSCs media, EpiSCs 

do not revert to ESC when only grown in media optimised for the growth of ESCs 

(2i plus LIF) but also require the force expression of Klf4 (Guo et al., 2009). 

Moreover the frequency of conversion of EpiSCs to ESC by force expression of Klf4 

is very low with less than 1% of the cells fully converting (Guo et al., 2009).  
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1.2.2  Induced pluripotent Stem Cells (iPSCs).  

Pluripotent stem cells cannot only be derived from the embryo but also by 

reprogramming adult somatic cells. The first report showing that such 

reprogramming was possible was made by the group of Shinya Yamanaka in Japan. 

In the study this team showed that mouse embryonic or adult fibroblasts could be 

reprogrammed to pluripotent cells, named Induced Pluripotent Stem cells (iPSCs) by 

retroviral-mediated introduction of Oct4, Sox2, c-Myc and Klf4 (Figure 1.4), which 

are key transcriptions factors involved in the maintenance of self-renewal of ESCs 

(Section 1.3.1.1). iPSC show similarities with ESCs such as morphology and growth, 

expression of pluripotent markers and the ability to form teratomas and contribute to 

the generation of chimaeras (Takahashi and Yamanaka, 2006). However, iPSCs 

exhibit different gene expression and DNA methylation patterns than ESCs. One 

year later, the same group showed that reprogramming of adult fibroblast to iPSC 

could also be achieved in humans (Takahashi et al., 2007). This finding was a 

remarkable breakthrough in the field of stem cell biology, with impacts for 

biomedical research and drug development. iPSCs could potentially be used to study 

patient-specific disease, for cell therapy replacement without immune rejection and 

as a source to generate differentiated cells for toxicity screening without associated 

ethical issues. However, concerns about the use of iPSCs for human treatments arose 

as c-Myc and Klf4 are oncogenes, in fact about 20% of the chimaeric mice developed 

tumours as a result of c-Myc transgene reactivation (Okita et al., 2007). Consequently 

many studies have sought to develop methods to create safer iPSC, such as transient 

expression of the factors by non-integrating vectors for example with adenovirus 

(Stadtfeld et al., 2010; Stadtfeld et al., 2008), plasmids (Okita et al., 2008), 

piggyback  (PB) transposition (Woltjen et al., 2009) or avoiding c-Myc (Wernig et 

al., 2008). Despite of all this work to improve the safety of iPSC , recent studies 

suggest that iPSCs have mutations and they are genomically instable (Hussein et al., 

2011; Pasi et al., 2011), which will hamper their use in regenerative medicine but 

they may still be valuable for drug development and to study mechanisms underlying 

specific diseases. 

 

 

 

 



Chapter 1: Introduction 

 13 

 

 

 

Figure 1.4 Reprogramming of somatic cells to iPSCs. Fibroblast can be reprogrammed by 

retroviral-mediated introduction of Oct4, Sox2, c-Myc and Klf4 (Modified from Yamanaka 

and Blau, 2010).  

 

 

1.3  Molecular mechanisms controlling self-renewal of mouse ESCs. 

Under standard culture conditions, ESC pluripotency is controlled by the coordinated 

action of extrinsic factors, signalling pathways and transcription factors (Boiani and 

Scholer, 2005).  

 

1.3.1 Intrinsic factors regulating mouse ESC self-renewal 

ESCs retain their pluripotency capacity through the actions of a number of intrinsic 

factors in the form of transcription factors. Three transcription factors have been 

described as „master regulators‟ of ESC pluripotency and include the POU domain-

containing transcription factor Oct4, the homeobox transcription factor Nanog and a 

member of the HMG-domain DNA-binding-protein family Sox2 (Chambers et al., 

2003; Mitsui et al., 2003; Boiani and Schoeler, 2005). In addition to their role in 

maintaining pluripotency in ESCs, Nanog and Oct4 also play an important role in 

formation and maintenance of the inner cell mass during mouse development 

(Avilion, 2003; Mitsui, 2003; Nichols, 1998; Niwa et al., 2000). Other transcription 

factors including c-Myc and Klf proteins also play a role in maintaining pluripotency 

of ESCs (Cartwright, 2005; Jiang et al., 2008). 
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1.3.1.1 Oct4, Sox2, c-Myc and Klf 

The POU domain transcription factor Oct4 seems to be a key regulator of cell fate 

during development and for undifferentiated ESCs. It is expressed in early embryos 

in the morula, in all the cells of the ICM, the epiblast of the pre-implantation embryo, 

germ line cells and ESCs (Pesce et al., 1998). Oct4 is essential for the establishment 

of the pluripotent lineage of the ICM as Oct4 knockout embryos developed 

blastocysts but the cells of the ICM were not pluripotent (Nichols et al., 1998). In 

addition, repression of Oct4 leads to loss of ESC self-renewal and expression of 

markers associated with trophectoderm. However, overexpression of Oct4 results in 

differentiation of ESCs into primitive endoderm and mesoderm. Thus, the levels of 

Oct4 seem to be critical to sustain ESC self-renewal and to prevent differentiation of 

cells into trophectoderm (Niwa et al., 2000).  Oct4 has also been shown to compete 

with Cdx2 which is important in the maintenance of trophectoderm. Overexpression 

of Cdx2 in ESC has the same outcome as Oct4 deletion leading to trophectoderm 

differentiation. Moreover, maintenance of Oct4 expression from a transgene did not 

prevent trophectoderm differentiation when Cdx2 was overexpressed (Niwa et al., 

2005). Both Cdx2 and Oct4 are expressed in all the cells of the morula and then their 

expression become restricted to the trophectoderm in the case of Cdx2 and ICM in 

the case of Oct4. The temporal and spatial expression of Oct4 and Cdx2 together 

with the fact that Cdx2 and Oct4 can negatively regulate each other and as positively 

regulate themselves suggest that the segregation of the first lineage in the embryo 

depends on reciprocal inhibition between these two factors (Niwa et al., 2005).  

 

Sox2 has also been proposed to play a role in maintenance of pluripotency as Sox2 

knockout leads to embryonic lethality shortly after implantation, suggesting that Sox2 

expression is essential for maintaining cells within the epiblast in an undifferentiated 

state. In the absence of Sox2 cells of the epiblast become trophectoderm or 

extraembryonic endoderm (Avilion, 2003). Moreover, Sox2 expression overlaps with 

Oct4 during embryogenesis in the inner cell mass, epiblast and germ cells, and Oct4 

has been shown to be able to heterodimerise with Sox2 to form Oct4/Sox2 

complexes and regulate the expression of target genes (Boyer et al., 2005; Pesce and 

Scholer, 2001).  
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c-Myc, activated by the LIF/Stat3 pathway, also plays a role in maintaining 

pluripotency of mESCs.  When ectopically expressed, c-Myc has been reported to be 

able to relieve the need for LIF/STAT3 signalling, and its inactivation results in loss 

of self-renewal (Cartwright et al., 2005).  

 

The krüpel like factors (Klf) proteins, Klf2, 4 and 5 has also been implicated in 

regulation of pluripotency (Jiang et al., 2008). Individual knockdown of any of the 

three Klf proteins did not affect ESC self-renewal, double knockdown neither. 

However, triple knockdown resulted in loss of ESC morphology and reduction in the 

number of alkaline phosphatase colonies suggesting ESC differentiation. Co-

expression of RNAi-resistant cDNA encoding Klf2, Klf4 or Klf5 reverted the effect 

of the knockdown and alkaline phosphatase positive colonies were generated (Jiang 

et al., 2008). Previous to this study, Klf4 was shown to be a transcription factor 

expressed in ESCs activated by the STAT3 pathway (Li et al., 2005).  

 

In support of a role of Oct4, Sox2, Klf4 and c-Myc in regulating ESC self-renewal is 

the fact that expression of Oct4, Sox2, Klf4 and c-Myc can reprogram mouse 

fibroblasts to iPSC (Section 1.2.2)(Takahashi and Yamanaka, 2006). 

 

 

1.3.1.2 Nanog 

Nanog was identified as an important regulator of pluripotency by two independent 

groups in 2003 using different approaches. Chambers et al., screened an ESCs cDNA 

library in the search for genes that could maintain ESC self-renewal in the absence of 

LIF and observed that this was the case for Nanog (Chambers et al., 2003). On the 

other hand, Mitsui et al., identified Nanog in an in silico differential display analysis 

and showed that is essential for establishment of pluripotency in ICM and ESCs 

(Mitsui et al., 2003). Nanog null embryos exhibited embryonic lethality, with 

embryos at E5.5 comprised of disorganised extra-embryonic tissue without an 

epiblast or extra-embryonic ectoderm. At E3.5 Nanog null blastocysts were 

morphologically similar to wild type blastocysts but nevertheless they failed to 

proliferate as undifferentiated cells in vitro and instead they differentiated into 

parietal-endoderm like cells. Hence, ESC could not be isolated from Nanog null 
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embryos. Nanog null ESCs produced by targeting of the Nanog locus, lost expression 

of pluripotent cell markers and differentiated into extra-embryonic endoderm, 

suggesting that Nanog expression is important in maintaining pluripotency of both 

ICM and ESCs (Matsui et al., 2003). The phenotype of Nanog null embryos is 

different to that of Sox2 and Oct4 null embryos. Sox2 null embryos lack epiblast but 

have extra-embryonic ectoderm (Avilion et al., 2003) and Nanog null blastocysts do 

not differentiate into trophectoderm as Oct4 null embryos do (Nichols et al., 1998). 

Moreover, over-expression of Nanog and Oct4 have different outcomes in ESCs; 

over-expression of Oct4 drives ESC differentiation into primitive mesoderm and 

endoderm whereas over-expression of Nanog can maintain self-renewal in the 

absence of LIF. Hence, it seems that Oct4 and Nanog have two different functions in 

ICM and ESCs, Oct4 prevents differentiation into trophectoderm and Nanog into 

extra-embryonic endoderm, as well as contributing to maintenance of pluripotency 

(Matsui et al., 2003).  

 

After the studes of Matsui et al. (Matsui et al., 2003) and Chambers et al. (Chambers 

et al., 2003), Nanog was considered to have a key role in maintaining pluripotency of 

both ICM and ESCs. However, later studies challenge this view as not all ESCs 

express Nanog and Nanog negative cells can re-express Nanog and form 

undifferentiated colonies (Chambers et al., 2007). The capacity of Nanog negative 

cells to form undifferentiated colonies is reduced compared to Nanog positive cells, 

indicating that although ESCs with low or no levels of Nanog are predisposed to 

differentiate they are not committed yet and can re-express Nanog and maintain an 

undifferentiated state. Furthermore, although conditional deletion of Nanog led to an 

increase in ESC differentiation and a reduction in colony numbers, some Nanog null 

cells could be propagated undifferentiated, keeping their ability for multilineage 

differentiation in teratomas, and were able to contribute to foetal and adult chimeras 

(Chambers et al., 2007). The observation that Nanog null ESCs can be maintained in 

an undifferentiated state contrasts with that of Matsui and colleagues who claimed 

that Nanog null cells differentiated into extra-embryonic endoderm. However, Nanog 

null cells were not able to contribute to the germ lineage after E11.5. Nanog 

expression is down-regulated after implantation and is re-expressed during germ line 

commitment (Yamaguchi et al., 2005) where it seems to be important for maturation 

of primordial germ cells (Chambers et al., 2007). This study suggested that Nanog is 
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not essential for maintaining pluripotency but it is necessary for establishing it 

(Chambers et al., 2007). A further study supports this hypothesis. Silva et al., (Silva 

et al., 2009) investigated the reason why Nanog null embryos failed to develop 

pluripotent epiblast whereas ESCs without Nanog could be maintained 

undifferentiated. He observed that Nanog null cells in the ICM either die or 

differentiate into trophoblast around E3.5 and E4.5 and hypoblast cannot be formed. 

This observation, together with the expression pattern of Nanog, suggests that may 

specify the epiblast. Expression of during development begins at the morula stage, it 

is expressed in the ICM in a salt and pepper fashion and its expression is restricted to 

epiblast (Chazaud et al., 2006). On the other hand, Sox2 and Oct4 are expressed in 

the morula and in all the cells of the ICM and until the hypoblast has been segregated 

(Avilion, 2003; Chazaud et al., 2006; Palmieri et al., 1994). Hence, Nanog restricted 

expression in the epiblast, in comparison with a wider expression of Oct4 and Sox2, 

suggests that Nanog may specify epiblast in cells that already express Oct4 and Sox2 

(Silva et al., 2009). Hence, in summary it appears that Nanog is required during 

embryonic development to specify pluripotent epiblast and later for correct 

development of germ cells. 

 

The importance of Nanog for establishing pluripotency is further supported by 

studies in somatic reprogramming. Despite the fact that Nanog was shown to 

increase nuclear reprogramming after ESC fusion (Silva et al., 2006), Nanog was 

surprisingly not necessary for reprogramming somatic cells to iPSC with 

transcription factors (Takahashi et al., 2007; Takahashi and Yamanaka 2006). 

However, fully reprogrammed iPSC could be isolated more easily if colonies were 

selected by expression of endogenous Nanog, suggesting that expression of Nanog 

was essential for full reprogramming (Okita et al., 2007). The requirement of Nanog 

expression for reprogramming was shown by the inability of Nanog null neural stem 

cells to generate fully reprogrammed cells (Silva et al., 2009). The efficiency of 

reprogramming can be increased by using a two-step protocol, first step is 

transfection of cells with trangene factors which lead to loss of somatic markers and 

expression of some pluripotent markers but not Nanog and are called pre-iPSC (Silva 

et al., 2008). These pre-iPSC can be fully reprogrammed to iPSC by culture in 2i 

with LIF, which is an optimal medium for ESC propagation. The lack of Nanog does 

not seem to affect the first step of reprogramming to pre-iPSC but it affects the 
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progression of pre-iPSC to iPSC as cells die. Introduction of a Nanog transgene into 

Nanog null cells results in the survival of pre-iPSC in 2i+LIF and conversion to 

iPSCs. Furthermore, excision of the Nanog transgene after reprogramming has been 

completed does not affect iPSC pluripotency, shown by ability to colonise the 

embryo (Silva et al., 2009). Hence, these studies support the hypothesis of a role for 

Nanog in establishing the pluripotent state in both embryonic and induced 

pluripotency (Silva et al., 2009). Finally, similar to E3.5, where Nanog specifies the 

epiblast when other factors such as Oct4 and Sox2 are present, Nanog can specify 

induced pluripotency when other transcriptions such as Oct4, Sox2 or Klf4 are 

already expressed (Silva et al., 2009).  

 

Chromatin immunoprecipitation studies have shed light on how Nanog may be 

regulating the change of pre-iPSC to iPSC (Sridharan et al., 2009). It seems that 

genes thought to be Nanog targets are co-occupied by Oct4, Sox2 and Klf4 in fully 

reprogrammed iPSC but not in pre-iPSC, suggesting that Nanog may promote 

binding of the reprogramming factors to these genes. 

 

More recently, Nanog expression has been shown to promote the transition from pre-

iPSC to iPSC in minimal conditions by overcoming several barriers including 

phospho-Erk (p-Erk) signalling and high levels of Oct4 (Theunissen et al., 2011). 

Transition of pre-iPSC to iPSC is facilitated by culture in 2i+LIF that leads to 

considerable activation of endogenous Nanog and down-regulation of Oct4 transgene 

within 2 days. The down-regulation of Oct4 transgene seems to be key for 

facilitating induced pluripotency as over-expression of Oct4 results in decreased 

expression of Nanog and Sox2 and up-regulation of Brachyury and Gata6.  The 

increase in Nanog expression in 2i+LIF seems to be very important for the transition 

to iPSC as constitutive over-expression of Nanog facilitates the reprogramming in 

minimal conditions that do not normally support ESC or iPSC maintenance, such as 

serum-free medium with LIF. iPSC generated by over-expression of Nanog can 

contribute to the epiblast. The fact that p-Erk levels were unaffected in serum-free 

plus LIF with or without Nanog over-expression and that Oct4 levels do not change 

after 24 hours cultured in serum-free with LIF suggest that Nanog can overcome the 

negative effects of p-Erk and high levels of Oct4 and promote somatic 

reprogramming. To further characterise the ability of Nanog to overcome such 
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barriers, the authors over-expressed Nanog transgene in epiblast-stem cells, which 

can be reprogrammed to pluripotent cells by transgene over-expression and culture in 

2i with LIF (Guo et al., 2009) and cultured them in serum-free media with or without 

LIF. Remarkably, iPSCs from Nanog over-expressing EpiSC were generated in both 

serum-free media with LIF and without LIF (Theunissen et al., 2011). 

 

1.3.1.3  Zscan4c 

Zscan4c is part of the Zscan4 family, which includes nine genes that were shown to 

play a role in early embryonic development as knockdown of Zscan4 transcripts 

resulted in a 24 hour delay in the development from the two-cell to the four-cell 

stage, and failure of the blastocyst to implant or proliferate in in vitro outgrowths 

(Falco et al., 2007). A role for Zscan4c in maintenance of ESC pluripotency 

downstream of PI3K signalling was first reported by our laboratory. A microarray 

screen performed to investigate gene changes following PI3K inhibition with 

LY290024 identified Zscan4c as one of the genes rapidly down-regulated following 

PI3K inhibition. This rapid down-regulation, together with the fact that Zscan4 

expression is restricted to the early preimplantation embryo and ESCs (Falco et al., 

2007), suggested that it may play role in ESC maintenance. siRNA knock-down of 

Zscan4c led to a decrease in the number of alkaline phosphatase positive self-

renewing colonies and expression of pluripotency markers Nanog, Rex1 and Oct4 

suggesting decreased self-renewal. On the contrary, over-expression of Zscan4c led 

to an increase in the formation of alkaline phosphatase positive colonies compared to 

control both in the presence and absence of LIF (Storm et al., 2009). The number of 

colonies in the absence of LIF was significantly reduced in comparison with LIF, 

suggesting that Zscan4c contributes to maintenance of self-renewal but it is not 

sufficient to support ESC proliferation. The fact that Zscan4c has a SCAN domain 

that mediates protein-protein interaction and also four zinc finger motifs, together 

with its enriched expression in the nucleus, suggest that Zscan4c may act as a 

transcription factor in ESCs (Storm et al., 2009). In fact, Zscan4c shares a feature 

with other pluripotency transcription factors including Nanog which is a 

heterogeneous expression (Falco et al., 2007). More recently, Zscan4 has been 

reported to play an important role in ESC genomic stability and telomere elongation 

of ESCs (Zalzman et al., 2010). Zscan4 knockdown led to karyotype aberrations, 
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telomeres shortening, decrease in cell proliferation and eventually to apoptosis 

indicating that Zscan4 is important to maintain long-term culture of ESCs.  

 

1.3.1.4 Pluripotency transcription factor network. 

Several studies have shown that the pluripotency transcription factors cooperate with 

each other to activate or repress genes. Oct4 is known to heterodimerize with Sox2 to 

form Oct4/Sox2 complexes and the interaction between Oct4 and Sox2 is believed to 

play a key role in regulating gene expression (Boyer et al., 2005; Pesce and Scholer, 

2001). Studies using chromatin immunoprecipitation coupled with DNA microarrays 

aimed to investigate target genes of Nanog, Oct4 and Sox2 in order to understand 

how these master regulators control pluripotency and self-renewal of human and 

mouse ESCs (Boyer et al., 2005; Loh et al., 2006). These studies showed that Oct4, 

Sox2 and Nanog co-occupy the promoters of many genes, including their own 

promoters, some of the genes are transcriptionally active and some inactive. Among 

the active genes were genes involved in maintenance of pluripotency of ESCs 

including transcription factors, Nanog, Oct4, Sox2 and Stat3, components of the Wnt 

signalling pathway such as Dkk1, and of the TGF-pathwaysuch as Lefty2 and 

chromatin modifying enzymes.  This suggest that Nanog, Oct4 and Sox2 promote 

self-renewal and pluripotency by forming a regulatory circuitry with positive 

feedback loops to self-regulate themselves and positive regulation of genes that 

encode effectors of important signalling pathways. On the other hand, inactive genes 

co-occupied by Nanog, Oct4 and Sox2 included genes that encoded for transcription 

factors involved in developmental processes. Interestingly, these inactive genes were 

also co-occupied by Polycomb Repressive Complexes (PRC) that are known to be 

involved in transcriptional silencing in ESCs (Boyer et al., 2006; Lee et al., 2006). 

Hence, co-occupancy studies suggest that Oct4, Sox2 and Nanog are repressing 

expression of genes involved in development and activating themselves and key 

effectors of signalling pathways that promote self-renewal (Figure 1.5) (Boyer et al., 

2005).  
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Figure 1.5 Pluripotency transcription factor network.  Oct4, Sox2 and Nanog form part 

of a regulatory circuitry where they regulate each other expression, as well as positively 

regulate the expression of genes that promote self-renewal and repress expression of genes 

involved in development (after Boyer et al., 2005).  

 

More recently the T-cell factor 3 (Tcf3), involved in the canonical Wnt pathway, was 

reported to co-occupy the promoters with Oct4, Nanog and Sox2 by using chromatin 

immunoprecipitation sequencing (Chip-seq) (Marson et al., 2008b) and ChIP-on-

Chip experiments (Cole et al., 2008; Tam et al., 2008). Tcf3 seems to act to repress 

gene expression (Cole et al., 2008). In accordance with this, Polycomb Repressive 

Complexes were present in almost half of the genes co-occupied by Tcf3, Oct4 and 

Nanog. Tcf3, similarly to Oct4, Sox2 and Nanog, is bound to active and silenced 

genes suggesting that Wnt signalling may regulate pluripotency and self-renewal by 

regulating these genes. Cole et al., (Cole et al., 2008) proposed a model to explain 

how Tcf3 may control the balance of pluripotency and differentiation in ESCs. They 

suggested that although Tcf3 may repress or activate genes under standard 

conditions, it is mainly repressive and thus induces differentiation. In favour of this, 

they argue that knockdown of Tcf3 led to increased expression of Nanog, Oct4 and 

Sox2. On the hand, activation of the Wnt pathway changes the main nature of the 

Tcf3 complexes from repressive to activating, favouring self-renewal. A previous 

study also using ChIP and promoter reporter assays had already demonstrated that 

Nanog gene expression can be repressed by Tcf3 (Pereira et al., 2006). The authors 

demonstrated that lack of Tcf3 leads to increased in Nanog promoter activity, level 

of mRNA and protein and resulted in ESCs that are more resistant to differentiation. 
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They showed that Tcf3 acts by binding to the Nanog promoter and repressing its 

transcriptional activity.  They proposed that Tcf3 is controlling the balance between 

self-renewal and differentiation by limiting the levels of Nanog and thus creating a 

window for differentiation. Other two recently published papers are in agreement 

with Tcf3 acting as a negative regulator of pluripotency by repressing the 

pluripotency transcription network (Figure 1.6) (Wray et al., 2011; Yi et al., 2011). 

Tcf3 over-expression eliminates ESC capacity to generate alkaline phosphatase 

positive colonies, and this effect can be overcome with Wnt3a (Yi et al., 2011). 

Moreover, both groups observed that Tcf3 null cells can generate AP positive 

colonies when grown only with the MEK inhibitor (PD0325901). Wray et al., (2011) 

and Yi et al., (2011) proposed the following mechanism to explain how Wnt affect 

Tcf3 activity. Wnt signalling activation leads to -catenin stabilisation, which in turn 

interacts with Tcf3 relieving Tcf3 repression in the pluripotency transcription 

network (Wray et al., 2011; Yi et al., 2011). 

 

 

 

Figure 1.6 Tcf3 negatively regulates the pluripotency transcription factor network. 

Tcf3 promotes differentiation and decrease self-renewal by repressing the transcriptional 

activity of the pluripotency network (after Pereira et al., 2006; Wray et al., 2011; Yi et al., 

2011).  

 



Chapter 1: Introduction 

 23 

Although Nanog, Oct4 and Sox2 are considered central regulators of pluripotency, 

further components of the network including Tcl1 (a cofactor of the Akt1 protein 

serine kinase), Tbx3, Esrrb, Dppa4 and Unigene Mm343880 were identified in a 

microarray screen (Ivanova et al., 2006). Consistent with a role in maintaining self-

renewal of ESCs these genes were rapidly down-regulated following induction of 

differentiation with retinoic acid and their knockdown with shRNA led to a change 

of ESC morphology and also a reduction in alkaline phosphatase activity, suggesting 

ESC differentiation (Ivanova et al., 2006). Changes in global gene expression 

following knockdown of Nanog, Oct4, Sox2, Esrrb, Tbx3, Tclf1 or Dppa4 with 

shRNA suggested that there are 2 different pathways regulating self-renewal (Figure 

1.7). One is through Nanog, Oct4 and Sox2 and the other through Esrrb, Tbx3 and 

Tclf1. However, the fact that over-expression of Nanog can overcome the effects of 

knocking down Tbx3, Esrrb or Tcl1 by restoring the levels of other pluripotency 

regulators suggest that Tbx3, Esrrb and Tcl1 are interconnected to Oct4, Nanog and 

Sox2 forming part of the transcriptional network. 

 

In another study, using chromatin immunoprecitipation coupled with microarray, it 

was shown that Klf2, Klf4 and Klf5 proteins co-occupied many target genes 

including Nanog and numerous Nanog target genes which are important for 

maintaining ESC pluripotency including Oct4, Sox2, Sall4, Tcl1, Esrrb, Tbx3 and 

Tcf3 (Jiang et al., 2008). In addition, the three Klf proteins can bind to the Nanog 

distal enhancer region and mutation in the Klf binding motif of Nanog showed that 

Klf proteins regulate Nanog protein enhancer activity. Klf proteins can compensate 

for the lack of each other and only triple knockdown of Klf abolished Nanog 

enhancer activity (Jiang et al., 2008). In summary, this study suggests that Klf 

proteins form also part of the pluripotency transcription network and control the 

expression of genes in the network including Nanog. 
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Figure 1.7 Two different pathways cooperate to maintain self-renewal.  Two 

pathways contribute to maintenance of self-renewal by promoting the expression of 

genes related with self-renewal and repressing genes involved in differentiation. The 

two pathways are interconnected to each other (Modified from Ivanova et al., 2006).  

 

 

One study has identified Nanog protein interacting partners including Oct4, Sall4, 

Dax1, Nac1 and Zfp281 by using affinity purification and mass spectrometry (Kim et 

al., 2008). All of these proteins were confirmed to have a role in maintaining 

pluripotency as their silencing with shRNA led to loss of pluripotency. Sall4 and 

Dax1 had already been reported to play an important role in ESCs (Niakan et al., 

2006; Sakaki-Yumoto et al., 2006). Nac1 and Zfp281, together with Nanog were 

found to be enriched at the Gata6 promoter suggesting that these genes repress 

Gata6. Interacting partners of Oct4, Dax1, Nac1, Zfp281 and also Rex1 were 

identified using the same approach used with Nanog. Interestingly, numerous 

binding proteins were shared between the Oct4, Dax1, Nac1, Zfp281 and Rex1 

complexes isolated and the authors proposed that these complexes interact with each 

and form a network (Kim et al., 2008). The network contained a high number of 
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proteins that are down-regulated during differentiation and are likely to play a role in 

maintaining ESC self-renewal. Furthermore, the network is linked to histone 

deacetylase NuRD, polycomb group and SWI/SNF chromatin remodelling 

complexes, all of them known to be involved in translational repression. e.g. Oct4 

and Rex1 are linked to polycomb components whereas Nanog is linked to 

HDAC/NuRD (Wang et al., 2006).  Further work from the same group showed that 

many genes are co-occupied by a combination of four or more of the following 

transcription factors: Oct4, Sox2, Klf4, Nanog, Dax1, Nac1, Zpf281, and they 

observed a relationship between the number of transcription factors bound to a gene 

and its expression in ESCs or repression during differentiation. Genes bound by four 

or more factors are expressed in ESCs and the ones bound by fewer factors are 

repressed, suggesting that these factors act by activating transcription of genes 

involved in self-renewal and repressing genes related to differentiation (Kim et al., 

2008). 

  

In summary, Oct4, Sox2 and Nanog are the core components of the pluripotency 

network and recently, other genes involved in regulating pluripotency and linked to 

the network have also been identified.  

 

 

1.3.2 Extrinsic factors and signalling pathways regulating mouse ESC self-

renewal.  

Leukemia Inhibitory Factor (LIF) is one important extrinsic factor involved in 

maintaining self-renewal of murine ESCs (Smith et al., 1988). LIF binding to the 

gp130 receptor activates Stat3 (Matsuda et al., 1999), which in turn trans-activates c-

Myc (Cartwright, 2005). LIF also activates a number of other signalling pathways 

including the Src kinases (Anneren et al., 2004), Ribosomal S6 kinases (Boeuf et al., 

2001), Phosphoinositide 3-Kinase (PI3K) signalling (Paling et al., 2004) and Erk1 

and Erk2, which seem to promote differentiation (Burdon et al., 1999b). In the 

presence of serum, LIF alone is able to maintain self-renewal of mouse ESCs. 

However, in serum-free conditions bone morphogenetic proteins 2 or 4 (BMPs) are 

also required. BMPs appear to cooperate with LIF to maintain self-renewal through 

induction of Id (Inhibitor of differentiation) proteins (Ying et al., 2003). Maintenance 
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of self-renewal in serum-free media in the absence of LIF and BMP4 can be 

achieved by simultaneous inhibition of Glycogen Synthase Kinase-3 (GSK-3) and 

MAP kinase/ERK kinase (MEK) (Ying et al., 2008). The canonical Wnt pathway has 

also been reported to play a role in maintenance of self-renewal of mESCs (Sato et 

al., 2004; Ogawa et al., 2006; Hao et al., 2006; Singla et al., 2006).  

 

 

1.3.2.1 LIF/STAT3 signalling       

mESCs were originally cultured on fibroblast feeder layers which provide stimuli to 

maintain them in a self-renewing condition (Evans and Kaufman, 1981; Martin, 

1981). LIF was later identified as the factor produced by the feeder layers that could 

support growth and self-renewal of ESCs (Smith et al., 1988; Williams et al., 1988).  

Binding of LIF to its receptor (LIF receptor) induces heterodimerisation with the 

gp130 receptor and activation of Janus-associated kinase (JAK) (Narazaki et al., 

1994; Stahl et al., 1994) which then phosphorylates tyrosine residues of the gp130 

receptor. The phosphorylated residues serve as docking sites for the recruitment of 

proteins that contain SH2 domains, such as the signal transducer and activator of 

transcription 3 (STAT3), which in turn is phosphorylated by JAK (Burdon et al., 

1999a). Phosphorylated STAT3 forms homodimers and translocates to the nucleus 

where they activate transcription of target genes (Figure 1.8) (Stahl et al., 1995). 

STAT3 has been shown to have a key role in maintaining ESCs in an 

undifferentiated state by using dominant-negative forms of STAT3 and a 

conditionally active form of STAT3 (Matsuda et al., 1999; Niwa et al., 1998). Niwa 

et al., (Niwa et al., 1998) expressed a dominant negative mutant form of STAT3 

name STAT3F, which has tyrosine 705 mutated to alanine. This tyrosine residue is 

known to be important for dimerisation and translocation to the nucleus and several 

studies had previously shown that activation of endogenous STAT3 can be blocked 

by expression of high levels of STAT3F (Fukada et al., 1996; Ihara et al., 1997; 

Kishimoto et al., 1994; Minami et al., 1996).  Constitutive expression of STAT3F in 

ESCs led to growth arrest, cell death and differentiation. Hence, the authors 

developed an inducible STAT3F transgene to be able to investigate STAT3 function 

in ESCs. Expression of STAT3F resulted in loss of self-renewal and cell 

differentiation, highlighting the key role of STAT3 in maintenance of self-renewal. 
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The role of STAT3 in ESCs is opposite to the one in somatic cells where it acts 

mainly by promoting differentiation (Kishimoto et al., 1994). Matsuda et al. 

(Matsuda et al., 1999) used a conditionally active form of STAT3, STAT3ER, which 

is a fusion protein containing the whole coding region of STAT3 and the domain of 

the estrogen receptor where the ligand (4-hydroxytamoxifen) binds inducing STAT3 

expression, to investigate the role of STAT3 in ESC. STAT3 activation was not only 

shown to be essential for self-renewal but also that it is on its own capable of 

sustaining self-renewal of ESCs in the absence of LIF. However, these experiments 

were performed in the presence of LIF and at high cell density so the presence of 

additional signals that maintain ESC proliferation cannot be ruled out.  Although this 

study showed that STAT3 is important for maintaining self-renewal, the downstream 

effectors of LIF/STAT3 remained unknown for some years until 2005 when the 

oncogene c-Myc was identified as a direct transcriptional target of STAT3 by 

chromatin immunoprecipitation (Cartwright et al., 2005). Consistent with c-Myc 

being a target of STAT3, c-Myc mRNA levels were shown to be highly expressed in 

self-renewing ESC and down-regulated following LIF withdrawal.  
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Figure 1.8 LIF activation of Stat3.  Following binding of LIF, the LIFR 

heterodimerised with the gp130 receptor and activates JAK that in turn 

phosphorylates tyrosine residues of the gp130 receptor. Stat3 is then recruited to the 

gp130 receptor, through its SH2 domain, where it is phosphorylated by JAK. 

Phosphorylated Stat3 forms homodimers and translocates to the nucleus where it 

activates transcription of target genes including c-Myc (Modified from Cartwright et 

al., 2005). 
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1.3.2.2 LIF/ERK signalling and Fgf4 

LIF signalling through gp130 can also activate the Ras/Mitogen-activated protein 

kinase (MAPK) pathway. This is mediated through the recruitment of tyrosine 

phosphatase (SHP2), which contains SH2 domains, to the phosphorylated tyrosines 

of gp130 where it is phosphorylated generating docking site for the binding of a 

complex composed of the Grb2 adaptor and the Sos guanine-nucleotide-exchange 

factor. This induces the activation of Ras and the initiation of a cascade of 

phosphorylation events leading to the activation of ERK (Figure 1.9) (Kolch, 2000). 

Several studies have shown that Erk activation promotes differentiation in ESCs 

(Burdon et al., 1999b; Cheng et al., 1998; Qu and Feng, 1998). ESC self-renewal can 

be enhanced by reducing the activation of the Ras/MEK signalling through ablation 

of the docking sites of SHP2 in gp130 (Burdon et al., 1999b). Inhibition of MEK 

activity or forced expression of ERK phosphatases had the same outcome (Burdon et 

al., 1999b). The pro-differentiation activity of ERK is further supported by showing 

that genetic alterations of either Grb2 or Shp2 lead to defects in differentiation 

(Burdon et al., 2002).  ESC fate was proposed to be determined by the balance 

between Stat3 and Erk signals (Burdon et al., 2002) but this is a relatively old model 

as other pathways activated by LIF, such as the Src and Phosphoinositide 3-Kinase 

(PI3K) pathways have been shown to be required for the maintenance of ESC self-

renewal through a Stat3 and ERK independent pathways (Anneren et al., 2004; 

Paling et al., 2004). 

 

Undifferentiated ESCs produce Fgf4 in an autocrine fashion, which leads to 

activation of Erk signalling (Figure 1.9). Disruption of Fgf4 and Erk signalling with 

chemical inhibitors, or genetically, does not alter ESC propagation but these ESCs 

are unable to commit to differentiation. Inhibition of Fgf receptor or Fgf4 knockout 

leads to ESCs more resistant to neural and mesodermal induction, and unable to 

respond to BMP inductive non-neural differentiation (Kunath et al., 2007). The fact 

that disruption of Fgf4 results in ESCs refractory to neural induction is in agreement 

with previous reports suggesting that Fgf4 promotes ESC commitment to neural 

lineages (Lowell et al., 2006) and also in accordance with the fact that Fgf signalling 

is required for neural induction in vertebrate embryos (Stavridis et al., 2007). 

Moreover, the authors suggested that the fact that ESCs with disrupted Fgf4 are not 

able to respond to BMP inductive non-neural differentiation but addition of Fgf 
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protein restored the ability indicates that Fgf plays a key role in the change of BMP 

signalling from maintaining self-renewal to promoting non-neural differentiation 

(Ying et al., 2003b).   

 

The inability of null Fgf4 ESCs or ESCs treated with FGF receptor inhibitors to 

differentiate to mesoderm lineages suggest that Fgf signalling has also a role in 

commitment to mesoderm differentiation. Hence, Fgf signalling may induce 

commitment of ESCs to various lineages. Erk2 knockout ESCs failed to differentiate 

into neural or mesodermal lineages and maintained expression of Nanog and Rex1 in 

differentiating conditions, suggesting that activation of Erk2 by Fgf4 may drive cells 

to a transient state where they are responsive to differentiating signals (Kunath et al., 

2007). 

 

Figure 1.9 Activation of Erk by LIF signalling and Fgf4. Binding of LIF to the LIFR 

leads to heterodimerisation with the gp130 receptor and phosphorylation of tyrosine residues 

of the gp130 receptor. Shp2 is then recruited to the receptor through it SH2 domain, where it 

is phosphorylated generating docking site for the binding of Grb2 and Sos. This leads to 

activation of Ras and the initiation of a cascade of phosphorylation events leading to the 

activation of ERK. Erk signalling is also activated by Fgf4 secreted by undifferentiated ESCs 

(After Burdon et al., 1999b; Kolch.,2000; Ying et al., 2003; Kunath et al., 2007) .  
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1.3.2.3 LIF/PI3K signalling 

PI3Ks are a family of lipid kinases reported to be involved in different cellular 

processes such as proliferation, cell survival, cell differentiation, migration and 

trafficking (Vanhaesebroeck et al., 1999; Vanhaesebroeck et al., 2001). They are 

divided into three classes (I, II, III) (Vanhaesebroeck et al., 1997). The PI(3,4)P2 and 

PI(3,4,5)P3, products of activated class I PI3Ks act as intracellular second 

messengers, recruiting proteins that contain pleckstrin homology (PH) domains to the 

cell membrane where they are activated through phosphorylation events.  

 

Activation of PI3K by LIF in ESCs was first reported by Paling in our laboratory 

(Paling et al., 2004). Previous studies had shown that PI3K activation was coupled to 

gp130 receptors (Boulton et al., 1994) and that PI3K signalling was functioning in 

ESCs (Jirmanova et al., 2002). Hence, Paling et al. investigated a possible activation 

of PI3K by LIF in ESCs firstly by studying changes in phosphorylation of known 

PI3K downstream effectors such as serine 473 of PKB, serine 21, serine 9 of GSK-

3 and  and phosphorylation of S6 protein. The fact that LIF stimulation increased 

the phosphorylation of all of them and that the LIF-stimulated phosphorylation was 

reduced by treatment with a broad spectrum PI3K inhibitor (LY294002) suggested 

that LIF can activate PI3K in ESCs. Moreover, expression of a dominant negative 

form of p85 (termed Δp85), which is a regulatory subunit of class IA PI3Ks, also 

reduced phosphorylation of PKB, GSK3/ and S6 protein at PI3K-sensitive sites in 

LIF-stimulated samples and in basal conditions. Hence, in ESCs the PI3K pathway is 

activated upon binding of LIF to the LIF receptor resulting in activation of protein 

kinase B, also known as Akt, which in turn phosphorylates GSK-3 promoting self-

renewal. Activated PI3K also inhibits the Erk pathway preventing differentiation 

(Figure 1.10) (Paling et al., 2004).  

 

 

 

 

 

 

 



Chapter 1: Introduction 

 32 

 

 

 

 

 

 

 

 

Figure 1.10. LIF activation of PI3K signalling. LIF binding to the receptor leads to 

activation of PI3K, activated PI3K phosphorylates PI(4,5)P2 in the membrane to form 

PI(3,4,5)P3, PDK1 is then recruited and phosphorylates Akt in Thr308 and Ser473, which in 

turn phosphorylates GSK-3 promoting self-renewal. Activated PI3K also inhibits the Erk 

pathway preventing differentiation (After Paling et al., 2004). 
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Previous reports had suggested that the role of PI3K in ESCs was to regulate ESC 

proliferation (Jirmanova et al., 2002). However, our laboratory has also shown that 

the PI3K pathway is involved in regulating self-renewal of ESCs, and that this 

regulation is mediated at least partly by PI3Ks ability to maintain Nanog expression. 

Inhibition of PI3K by LY294002, a PI3K inhibitor, or by a dominant negative form 

of p85, the regulatory subunit of PI3K, lead to loss of ESC self-renewal and to a 

decrease in Nanog RNA levels and protein expression (Paling et al., 2004; Storm et 

al., 2007). Moreover, PI3K inhibition of GSK-3 seems to play an important role in 

regulation of Nanog expression shown by using small molecule inhibitors of GSK3, 

BIO or TD114-2 and GSK-3 mutants. Inhibition of GSK-3 reversed the effects of 

PI3K inhibition on Nanog RNA levels and protein expression and restored self-

renewal (Storm et al., 2007). Moreover, two different GSK-3 mutants, GSK-3 

S9A and R96E GSK-3 confirmed that the effect observed using GSK-3 inhibitors is 

due to selective inhibition of GSK-3. The GSK-3 S9A lacks Serine 9, which is the 

phosphorylation site of PKB/Akt leading to a constitutively active GSK-3 as Akt-

dependent phosphorylation of GSK-3 is inhibitory. The R96E GSK-3is a dominant 

mutant where arginine 96 is exchanged for glutamic acid so GSK-3 is unable to 

recognise phosphorylated substrates. Expression of GSK-3 S9A mimicked PI3K 

inhibition and decreased the levels of Nanog. On the other hand R96E GSK-

3mimicked GSK-3 inhibition and led to increase in Nanog levels (Storm et al., 

2007). The role of PI3K in maintaining self-renewal of ESCs is further supported by 

a report showing that activation of Akt downstream of PI3K is enough to support 

maintenance of ESC self-renewal in the absence of LIF. The authors used a 

myristoylated form of Akt to show this (Watanabe et al., 2006). Another group, using 

a gain of function screen, also identified Akt as a gene that can maintain self-renewal 

of ESCs in the absence of LIF when it is overexpressed (Pritsker et al., 2006). This 

study further supports the role of PI3K in supporting undifferentiated state of ESCs. 
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1.3.2.4 LIF/Src signalling 

LIF can also activate members of the Src family of non-receptor protein tyrosine 

kinases such as Hck, Lck, Yes and Src, which are highly expressed in ESCs 

(Anneren et al., 2004). Hck, Yes and Lck have been reported to contribute to 

maintenance of ESC self-renewal. Expression of a mutant form of Hck, which is 

always active, can reduce the concentration of LIF needed to maintain ESC self-

renewal (Ernst et al., 1996). Several studies suggested that Yes may have a role in 

maintaining ESC self-renewal. Yes was highly expressed in ESCs in comparison 

with differentiated cells (Ivanova et al., 2002), Yes was shown to be very responsive 

to LIF stimulation and serum and rapidly down-regulated upon differentiation 

(Annerén et al., 2004; Trouillas et al., 2009), transfection of Yes siRNA  led to a 

decrease in the expression of pluripotency markers such as Oct4 and Nanog 

(Annerén et al., 2004), and Oct4 binds to Yes promoter positively regulating it 

(Zhang et al., 2007). Moreover,  inhibition of the Src family of tyrosine kinases did 

not have an effect on other pathways activated by LIF, such as STAT3 or MAPK, 

suggesting that the Src pathway is independently activated by LIF (Annerén et al., 

2004).  Although Yes was known to be activated by LIF via association of Yes to 

gp130 through its SH2 domain, the exact pathway downstream of Yes remained 

unknown until a recent study where they showed that Yes bound to gp130 is 

activated through autophosphorylation. Once activated Yes can phosphorylate the 

Yes-associated protein (YAP) in tyrosine residues, phosphorylated YAP binds to 

TEAD2 in the nucleus where it activates Oct4 transcription (Tamm et al., 2011). 

Opposite to the role of Yes, Hck and Lck, Src is highly expressed in differentiating 

ESCs and it seems to induce differentiation into primitive ectoderm (Meyn and 

Smithgall, 2009). 

 

In summary, LIF activation can contribute to maintenance of ESC self-renewal by 

activating STAT3, PI3K, Yes but also activates other pathways, such as MAPK and 

Src, that promote differentiation (Figure 1.11).  
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Figure 1.11 Summary of pathways regulated by LIF signalling. LIF can promote self-

renewal of mouse ESCs by activating the Yes, PI3K and Stat3 signalling but it can also 

promote differentiation by activating MAPK and Src signalling (After Burdon et al., 1999b; 

Kolch, 2000; Ying et al., 2003b; Anneren et al., 2004; Paling et al., 2004; Cartwright et al., 

2005; Kunath et al., 2007; Tamm et al., 2011).  
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1.3.2.5 BMP signalling. 

Until 2003, ESCs were only cultured in the presence of LIF and Serum or in feeder 

layers, and it was obvious that some component of the serum was activating LIF-

independent pathways as self-renewal of ESCs could not be maintained only with 

LIF but also required serum. Neural differentiation is not fully blocked in the 

absence of serum.  Ying et al. reported that bone morphogenetic proteins (BMPs) 

were the component present in serum responsible for blocking neural differentiation 

and sustaining self-renewal in combination with LIF (Ying et al., 2003a). BMPs are 

members of the TGF-beta superfamily that act through binding to serine/threonine 

kinase receptors and downstream effectors, the Smad transcriptional regulators. 

Following activation of the receptor, receptor-activated Smads (R-Smads) 1, 5 and 8 

are recruited to the receptor where they are phosphorylated, once phosphorylated 

they bind Smad4 and translocate to the nucleus where they regulate the expression of 

gene targets (Massagué et al., 2005; Shi and Massagué, 2003). Induction of Inhibitor 

of differentiation (Id) genes was found to be the key contribution of BMP as self-

renewal of ESCs could be maintained in N2B27 serum-free medium with LIF but 

without BMP by forced expression of Id. ESCs with forced expression of Id were 

unable to differentiate into neural lineages when LIF was withdrawn suggesting that 

BMP contributes to maintenance of self-renewal by induction of Id genes, which in 

turn blocks the expression of transcription factors that specify neural lineages. 

Although BMP and LIF seem to cooperate to maintain self-renewal, following LIF 

withdrawal the role of BMP changes to promoting differentiation. Expression of a 

constitutively active BMP receptor or over-expression of Smad 1/4 overcomes the 

effect of LIF and leads to non-neural differentiation (Ying et al., 2003a).   

 

One year layer another group reported that BMP4 could also contribute to self-

renewal by inhibiting Erk and p38 MAPK pathways. Inhibition of these pathways 

with small inhibitors specific for Erk and p38 MAPK had the same effect as BMP4 

(Qi et al., 2004).   

 

Interestingly, the duration of the BMP signalling is regulated by other pathways that 

negatively regulated self-renewal such as MAPK or GSK-3 pathways. 

Phosphorylation of Smad1 by GSK-3 seems to suppress it transcriptional activity by 

increasing Smad1 proteosomal degradation.  However, Smad1 has to be 
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phosphorylated in order for GSK-3 to recognise it, MAPK kinases such as Erk, p38 

or JNK are responsible for this phosphorylation. As described above, following BMP 

receptor activation Smad1 is phosphorylated in the C-terminus, binds Smad4 and 

translocate to the nucleus. In the nucleus, MAPK kinases primes Smad1 for 

subsequent GSK-3 phosphorylation, at an unknown location and triply 

phosphorylated Smad1 is transported to the centrosome where it is proteosome 

degraded (Figure 1.12) (Fuentealba et al., 2007).  The duration of a pulse of BMP7 

was extended when inhibitors of the MAPK and GSK-3 kinases were used. 

Moreover, addition of Wnt3a decreased the phosphorylation of Smad1 at the GSK-3 

sites leading to accumulation of phospho-Smad1 (pSmad1).  
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Figure 1.12. BMP signalling and regulation of its duration. Binding of BMP4 to the 

receptor leads to Smad1 phosphorylation that binds to Smad4 and translocate to the nucleus 

to activate Inhibitor of differentiation (Id) proteins. The duration of BMP signalling is 

regulated by phosphorylation of Smad1 first by MAPK in the nucleus that primes Smad1 for 

subsequent phosphorylation by GSK-3 in an unknown location. Triply phosphorylated 

Smad1 is transported to the centrosome and proteosomal degraded (After Fuentealba et al., 

2007).  
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1.3.2.6 Wnt signalling   

Wnts are a family of glycoproteins that play important roles in regulation of cell fate 

and proliferation (Moon et al., 2002).  In the absence of Wnt, GSK-3 is associated 

with a multi-protein complex, including adenomatous polyposis coli (APC), axin and 

-catenin forming the so-called “destruction complex”. GSK-3 phosphorylates the 

three proteins present in the destruction complex leading to stabilisation of Axin, a 

likely enhancement of APC interaction with -catenin and targeting of -catenin for 

proteosomal degradation (Ding and Dale, 2002). Following Wnt binding to the seven 

transmembrane Frizzled (Fz) receptor and to the LRP (low density lipoprotein 

receptor protein) 5/6 receptors, a signal pathway involving dishevelled (DVL) and 

FRAT (Frequently rearranged in advanced T-cell lymphomas) leads to disruption of 

the destruction complex and GSK-3 is inactivated. Inactivation of GSK-3 leads to a 

decrease in phosphorylation of -catenin resulting in accumulation of -catenin in 

the cytosol and its later translocation to the nucleus. In the nucleus β-catenin 

associates with TCF/LEF transcription factors and becomes a transcriptional 

transactivator, activating transcription of Wnt target genes (Moon et al., 2002) 

(Figure 1.13).  
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Figure 1.13 Wnt signalling pathway. In the absence of Wnt, GSK-3 is associated with 

APC, axin and -catenin forming the “destruction complex”. GSK-3 phosphorylates the 

three proteins present in the destruction complex leading to stabilisation of Axin, a likely 

enhancement of APC interaction with -catenin and targeting of -catenin for proteosomal 

degradation (Ding and Dale, 2002). Following Wnt binding to the Fz receptor and to the 

LRP 5/6 receptors, a signal pathway involving DVL and FRAT leads to disruption of the 

destruction complex and GSK-3 is inactivated. Inactivation of GSK-3 leads to a decrease in 

phosphorylation of -catenin and consequent stabilisation of -catenin that translocated to 

the nucleus. In the nucleus β-catenin associates with TCF/LEF transcription factors and 

becomes a transcriptional transactivator, activating transcription of Wnt target genes 

(reproduced with permission from Cohen and Frame, 2001). 
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Wnt signalling has been shown to play a role in maintenance of the undifferentiated 

stated of mouse ESCs. Several reports claimed that self-renewal of ESCs can be 

maintained by conditioned media (CM) containing Wnt3a (Ogawa et al., 2006; 

Singla et al., 2006). Feeders secreting Wnt5, Wnt6, Wnt3 and Wnt3a are able to 

prevent ESC differentiation in medium with serum in the absence of LIF. The effect 

of Wnt proteins was shown to be through -catenin stabilisation as activation of -

catenin could mimic the effect of Wnt signalling. In addition to this, phosphorylation 

of -catenin decreased in Wnt5a and Wnt3 conditioned media (Hao et al., 2006). 

However, the observation that recombinant Wnt3a alone or expression of 

constitutively active -catenin can not support ESC self-renewal suggested that the 

Wnt signalling alone is not able to support undifferentiated ESCs and other 

components from the conditioned media were contributing (Ogawa et al., 2006). 

Indeed, low LIF activity was found to be present in Wnt3a CM by using a STAT3-

responsive luciferase reporter. Wnt3a CM‟s ability to maintain self-renewal was 

reduced when an anti-LIF antibody was used to counteract LIF activity suggesting 

that ESC self-renewal may be supported by the synergistic action of Wnt3a and LIF 

present in the CM. Additional experiments proved that this was the case, e.g. 

addition of Wnt3a reduced the concentration of LIF required to have Oct4 positive 

expressing colonies from 10U to 6U, but Wnt3a alone could not maintain Oct4 

positive colonies. In addition, expression of constitutively activated -catenin was 

unable to maintain pluripotency alone but showed synergy with LIF (Ogawa et al., 

2006). The report by Hao et al., (Hao et al., 2006) is in agreement with Wnt and LIF 

acting together to support ESC maintenance but the mechanism proposed is different 

to Ogawa‟s. Hao‟s group, similar to Ogawa‟s report, observed an increase in STAT3 

transcription which they interpreted as a direct consequence of activation of Wnt 

signalling. The fact that Wnt proteins were unable to sustain pluripotency in the 

absence of serum and LIF but could in the presence of 10U/ml of LIF led to the 

hypothesis that Wnt‟s act in synergy with LIF to maintain pluripotency through 

conversion on STAT3. They proposed that Wnts increase STAT3 levels while LIF 

increases phosphorylation of STAT3 (Figure 1.14) (Hao et al., 2006). However, 

Ogawa et al., (Ogawa et al., 2006) showed that the effect on STAT3 is due to LIF 

present in the conditioned media which in the case of Hao could be due to LIF 

secreted by the feeders. Ogawa did not observe changes in phosphorylation of 
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STAT3 following Wnt3a activation and concluded that LIF and Wnt do not crosstalk 

but act synergistically to sustain self-renewal (Ogawa et al., 2006). A role of Wnt/-

catenin in ESC self-renewal is further supported by studies showing that its 

expression promotes induction of pluripotency in somatic cells (Lluis et al., 2008; 

Marson et al., 2008a). 

 

 

 

 

Figure 1.14 Proposed model of cooperation between Wnt and LIF to maintain self-

renewal. Wnt binding to the receptor leads to stabilisation of-catenin that translocate to the 

nucleus, bind to TCF/LEF transcription factors and activates Stat3 transcription increasing 

Stat3 levels. Activation of the LIF receptor results in phosphorylation of Stat3, translocation 

to the nucleus where activates transcription of target genes that promote self-renewal 

(Modified from Hao et al., 2006).  
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1.3.3 Glycogen synthase kinase-3 (GSK-3).  

GSK3 was first associated with glycogen metabolism. It was identified as a kinase 

that inactivates glycogen synthase, which is the rate-limiting enzyme of glycogen 

synthesis (Embi et al., 1980). Today, GSK-3 is known to play a role in numerous 

signalling pathways activated by insulin, growth factors and nutrients and it is known 

to be important for different cellular processes such as protein synthesis, cell 

proliferation, cell division, differentiation, microtubule function and apoptosis 

(Cohen and Frame, 2001; Doble and Woodgett, 2003). GSK-3 has also been shown 

to be essential for establishing body pattern during embryonic development and it is 

also involved in ESC self-renewal and differentiation (Bakre et al., 2007; Bone et al., 

2009; Doble and Woodgett, 2003; Sato et al., 2004; Ying et al., 2008). There are two 

GSK-3 isoforms in mammalian cells, GSK-3α and GSK-3β, which have almost 

identical kinase domains with 97% similarity. GSK-3α, with a mass of 51kDa, is 

slightly larger than GSK3- which is 47kDa. The difference in size is due to GSK3-

 having a glycine-rich extension at the N-terminus. Although they have similar 

kinase domains, they differ substantially in their termini (Woodgett, 1990).  

 

GSK-3 is an unusual kinase because it is typically active in resting cells and it is 

inhibited upon activation of signalling pathways. Also opposite to many kinases, 

substrate phosphorylation leads to its inactivation. Regulation of GSK-3 is achieved 

through phosphorylation of Ser 21 on GSK-3α and Ser9 on GSK-3β; this 

phosphorylation is catalysed by protein kinase B (PKB, also known as Akt), which is 

activated by PI3K in response to insulin (Cross et al., 1995). GSK-3 can also be 

phosphorylated at the same serine residues by MAPK-activated protein kinase-1 

(MAPKAP-K1), which is activated in response to growth factors or phorbol esters. 

Both PI3K and MAPK signalling can be activated by growth factors, for instance by 

the epidermal growth factor (EGF) (Shaw and Cohen, 1999). Finally, GSK-3 is also 

phosphorylated at Ser9/21 by p70 ribosomal S6 kinase-1 (S6K1), which is activated 

by mTOR in response to amino acids (Figure 1.15) (Armstrong et al., 2001; Cross et 

al., 1994) 
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Figure 1.15 Regulation of GSK-3 by several signalling pathways. The PI3K, MAPK and 

the mTOR pathways can inhibit GSK-3 in response to insulin, phorbol esters and amino 

acids respectively. EGF can lead to inhibition of GSK-3 through activation of both PI3K and 

MAPK pathways (Modified from Frame and Cohen, 2001, reproduce with permission).  

 

GSK-3 is also peculiar because it preferentially phosphorylates primed substrates 

that have been previously phosphorylated by another kinase at a serine or threonine 

residue located four residues carboxy-terminal of the GSK-3 phosphorylation site. 

The priming phosphate binds to a GSK-3 pocket containing arginine 96 (R96), 

arginine 180 (R180) and lysine 205 (K205), this binding is thought to align the 

substrates for subsequent GSK-3 phosphorylation. Regulation of GSK-3 by insulin 

and growth factors is related to its requirement for a primed substrate. In the absence 

of insulin or growth factor the priming phosphate is bound to the R96, 180 and K205 

pocket, allowing alignment of the substrate and phosphorylation. However, 

following insulin or growth factor activation, GSK3 is phosphorylated at Ser 21 in 

GSK-3and Ser 9 GSK-3. These serine residues are near the amino terminal end 

and change the amino terminus into a pseudosubstrate which binds to its own 

priming phosphate pocket, impeding priming substrates binding and also blocking 

entry to the catalytic site (Figure 1.16) (Cohen and Frame, 2001; Frame et al., 2001).
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Figure 1.16. Mechanism of inhibition of GSK-3 by phosphorylation. In the absence of 

Insulin or growth factors, the priming phosphate is bound to a pocket containing R96, R180 

and K205 which aligns the substrate for phosphorylation in the active site. Insulin or growth 

factors lead to phosphorylation at Ser 21 in GSK-3 and Ser 9 GSK-3 which 

amino terminal end, changing the amino terminus into a pseudosubstrate that binds to its 

own priming phosphate pocket, impeding priming substrates binding and also blocking entry 

to the catalytic site (Reproduced with permission from Cohen and Frame, 2001). 

 

 

In 1992, GSK-3 was identified to be important for cell fate specification in  

Drosophila melanogaster. The GSK-3 homologue in Drosophila, Shaggy, was 

discovered to be a  mediator in a pathway that is activated by Wingless, a secreted 

glycoprotein homologue to vertebrate Wnts, which establishes the pattern of segment 

polarity in the fly consisting of naked band and denticle belts. Loss of function 

studies suggested that Wingless repressed Shaggy, e.g. loss of function of Wingless 

or armadillo, which is the homologue of vertebrate -catenin , resulted in loss of the 

naked bands, whereas loss of function of Shaggy led to loss of the denticle belts 

(Siegfried et al., 1992).  

 

The canonical Wnt pathway is very well conserved between Drosophila and 

vertebrates, including the mechanism of suppression of Shaggy or GSK-3 (reviewed 
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in Cohen and Frame, 2001). Opposite to the pool of GSK-3 downstream of PKB, 

MAPK or S6K1 which is free, the pool of GSK-3 involved in the Wnt signalling 

forms part of a destruction complex, that includes GSK-3, Axin, the adenomatous 

polyposis coli (APC) protein and -catenin (Section 1.3.2.5). How GSK-3 is 

inactivated in response to Wnt signalling has already been discussed in section 

1.3.2.5.  

 

 

1.3.3.1 Involvement of GSK-3 in regulating of mouse ESC fate. 

The first indication that GSK-3 may be important in maintaining ESC self-renewal 

came from a study carried out by Sato et al., using the GSK-3 inhibitor 6-

bromoindirubin-3‟oxime (BIO) (Sato et al., 2004). Sato et al., suggested that mouse 

and human ESCs could be maintained in an undifferentiated state by simply 

inhibiting GSK-3 with BIO, which activates Wnt signalling evidenced by activation 

of a promoter module that contained TCF binding sites. mESCs grown in 

conditioned media containing Wnt3a, similar to GSK3 inhibition, maintained 

transcriptional expression of Rex1 after 5 days in the absence of LIF. In addition to 

this, transfection of ESCs with a dominant negative form of Tcf3, that impedes 

expression of Wnt target genes, reduced the transcriptional expression of Rex1 in 

mESCs.  However, the effect of GSK-3 inhibition was not assessed at a clonal 

density and several reports published after Sato‟s has shown that although GSK-3 

inhibition can maintain short-term self-renewal of mESCs in the absence of LIF, 

addition of LIF is needed in order to support long-term self-renewal (Doble et al., 

2007; Bone et al., 2009). Moreover, opposite to Sato‟s observation, inhibition of 

GSK-3 in human ESC promotes their differentiation to definitive endoderm (Bone et 

al., 2011).  

 

More recent studies are in accordance with a role of GSK-3 in maintaining ESC self-

renewal (Doble et al., 2007; Ying et al., 2008; Bone et al., 2009). Mouse ESCs with 

both isoforms and  deleted, GSK-3double knock-out (DKO), which have 

increase -catenin, are more resistant to differentiation and maintained expression of 

markers of pluripotency, Nanog, Rex1 and Oct4, under differentiation conditions (EB 

formation) (Doble et al., 2007).  More recently, inhibition of GSK-3, together with 
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inhibition of differentiation inducing signals from Fgf4 and Erk, was shown to be 

sufficient to maintain ESC self-renewal in the absence of extrinsic stimuli (Ying et 

al., 2008). The media with the three inhibitors is designated 3i. Fgf4 is known to 

stimulate the Erk1/2 pathway in mESCs, promoting differentiation. PD184352 (PD) 

and SU5402 (S), small molecule inhibitors of the Erk cascade and FGF receptor 

tyrosine kinases respectively, were used to suppress differentiation signalling. 

Residual differentiation was suppressed by inhibition of GSK-3 with the selective 

GSK-3 inhibitor CHIR99021 (CHIR). mESC could also be maintained self-renewal 

by culturing in the presence of only CHIR and PD, this is referred as 2i media. 

Inhibition of GSK-3 alone could maintain short-term self-renewal but addition of an 

inhibitor of the Erk cascade is needed in order to support long-term self-renewal 

(Ying et al., 2008).  

 

Few months after the Ying et al., report, we published that inhibition of GSK-3 with 

a novel selective GSK-3 inhibitor (1m) enhances self-renewal in the presence of LIF 

and serum. Inhibition of GSK-3 did not only increase the number of alkaline 

phosphatase positive colonies but also the percentage of pure self-renewing colonies. 

Moreover, Nanog was also increased after 2-3 days of GSK-3 inhibition. GSK-3 

inhibition with 1m also decreased phosphorylation of -catenin and increased 

activity of a TCF TopFlash luciferase reporter (Bone et al., 2009).    

 

In summary, inhibition of GSK-3, which mimics activation of Wnt signalling, with 

small molecules inhibitors, BIO (Sato et al., 2004), 1m (Bone et al., 2009) or CHIR 

(Ying et al., 2008), can maintain short-term self-renewal of ESCs.  However, 

additional factors are needed in order to support long-term self-renewal in the 

presence of serum is LIF and in chemically defined media (N2B27), such as 

inhibition of MEK.  
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1.3.3.2 Mechanism of action of GSK-3 inhibition in maintenance of mESC 

self-renewal.  

Although GSK-3 has been shown to play a role in self-renewal and differentiation of 

ESCs (Doble et al., 2007; Ying et al., 2008; Sato el al., 2004; Bakre et al., 2007; 

Ding et al., 2003; Bone et al., 2009), its mechanism of action remains unclear 

because GSK-3 is involved in numerous pathways and regulates many biological 

processes including cell cycle, apoptosis, metabolism, translational and transcription  

(Jope et al., 2004).  Despite of the fact that GSK-3 has many downstream effectors, 

most studies up to date suggest that the effect observed in GSK-3 inhibition is at least 

partly through Wnt/-catenin. However, the role of Wnt/-catenin remained 

controversial for several reasons, recombinant Wnt3a alone, or the expression of an 

activated -catenin mutant, were not able to maintain self-renewal of ESCs (Ogawa 

et al., 2006; Singla et al., 2006), over-expression of -catenin was not sufficient to 

maintain ESC self-renewal (Otero et al., 2004) and recombinant Wnt3a was not as 

efficient as CHIR in generating undifferentiated colonies when added to media 

containing the MEK inhibitor (PD184352) and the FGF inhibitor (SU5402). In 

addition to this, -catenin transcriptional activity was not essential for generation of 

undifferentiated colonies in 3i (Ying et al., 2008). This was shown by introducing a 

dominant negative ΔNhLef1 construct into mESCs, which abolishes transcriptional 

activation as it is unable to bind -catenin. The authors did not rule out the 

possibility of a contribution of -catenin by TCF-independent mechanisms. On the 

other hand,  over-expression of -catenin can promote commitment to neuronal 

lineages (Otero et al., 2004) and inhibition of GSK-3 with TWS119, a 4,6- 

disubstituted pyrrolopyrimidine, which increased -catenin levels as well as 

activating a luciferase TCF/LEF reporter, leads to neural differentiation of ESCs and 

embryonal carcinoma cells (Ding et al., 2003). Furthermore, GSK-3 inhibition also 

facilitates ESC differentiation toward mesendoderm lineages (Bakre et al., 2007).  

 

To investigate the importance of Wnt/-catenin in ESC self-renewal, -catenin null 

cells were generated by two groups (Anton et al., 2007; Wray et al., 2011). The first 

report (Anton et al., 2007) suggested that -catenin contributes to maintenance of 

ESC self-renewal as -catenin null cells exhibited strong down-regulation of the 

pluripotency marker Rex1 and Nanog, Lefty1, Sox2 and Klf2 were also down-
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regulated, to a lesser extent though. Although the authors proposed that -catenin is 

possibly not essential for maintenance of self-renewal because Oct4, Sox2 and Nanog 

are still expressed, the fact that Sox2 and Nanog are considerably reduced, Rex1 

disappeared, and Fgf5 was up-regulated, suggests that -catenin ESCs are likely to 

become epiblast stem cell- like suggesting that -catenin is important for ESC self-

renewal under regular culture conditions (serum plus LIF) (Anton et al., 2007). 

 

Another report from Wray et al., (Wray et al., 2011) showed that -catenin is not 

essential for maintenance of undifferentiated ESCs as -catenin null cells can be 

grown in 2i+LIF and PD+LIF while retaining expression of pluripotency markers 

Nanog and Oct4, as well as their ability to give rise to alkaline phosphatase positive 

colonies when plated at clonal density. However, -catenin null cells lose 

responsiveness to CHIR, evidenced by the lost of Rex1 expression if they are 

cultured in CHIR+LIF, 2i or CHIR but not in 2i+LIF or PD+LIF. Moreover, they are 

unable to form colonies from single cells when grown in 2i or CHIR+LIF and stable 

expression of -catenin can restore this ability. These experiments suggested that the 

effect of GSK-3 inhibition with CHIR in self-renewal is mainly mediated by -

catenin. However, the fact that colony formation was better in 2i+LIF than in 

PD+LIF suggested that -catenin independent mechanisms downstream of GSK-3 

can also contribute to the effect of CHIR in ESC self-renewal.  

 

According to Anton et al., and Wray et al., reports, it seems that the importance of 

Wnt/-catenin in regulating self-renewal may depend on the culture conditions. 

Several mechanisms of action of how Wnt/-catenin is mediating GSK-3 inhibition 

have been proposed.  

 

Anton et al., (Anton et al., 2007) suggested that the effect of -catenin could be 

mediated partly through TCF/LEF independent mechanism as they observed minimal 

activation of TopFlash activity in ESCs. They argued that -catenin actually was 

reported to interact with Klf4 (Zhang et al., 2006b), Sox2 (Mansukhani et al., 2005) 

and Oct4 (Takao et al., 2007) which cannot be monitored with Tcf/Lef TopFlash. A 

recent report supports the idea of -catenin acting through a Tcf independent 

mechanism, Kelly and colleagues propose that stabilised -catenin interacts with 



Chapter 1: Introduction 

 50 

Oct4 and enhances its activity (Kelly et al., 2011). On the other hand, several reports 

support the idea of -catenin acting through a Tcf-dependent mechanism (Cole et al., 

2008; Wray et al., 2011; Yi et al., 2011). Cole et al., proposed a model to explain 

how Tcf3 may control the balance of pluripotency and differentiation in ESCs. They 

suggested that although Tcf3 may repress or activate genes under standard 

conditions, it is mainly repressive and thus induces differentiation. In favour of this, 

they argue that knockdown of Tcf3 led to increased expression of Nanog, Oct4 and 

Sox2. Activation of the Wnt pathway changes the main nature of the Tcf3 complexes 

from repressive to activating, favouring self-renewal (Cole et al., 2008). Two more 

recent reports support the idea that the GSK-3 inhibition effect is mediated through 

stabilisation of -catenin, which interacts with Tcf3 abrogating its repressive activity 

in the pluripotency transcriptional network (Wray et al., 2011; Yi et al., 2011). Wray 

and colleagues demonstrated that the effect of GSK-3 inhibition is not mediated 

through -catenin transcriptional activation as expression of -catenin that lacks the 

transactivation domain in -catenin null cells restored responsiveness to GSK-3 

inhibition similar to cells expressing a WT -catenin (Wray et al., 2011). The fact 

that -catenin without the transactivation domain can still interact with Tcf/Lef 

factors together with the fact that Tcf3 act as a repressor (Pereira et al., 2006) and  

that Tcf3 knockout delay differentiation (Guo et al., 2011; Pereira et al., 2006) led to 

the hypothesis that -catenin may act by relieving Tcf3 repression. In accordance 

with this, expression of pluripotency markers such as Klf4 and Nanog were shown to 

be maintained in conditions that will be lost such as when you grow cells in N2B27 

alone simply by knocking down Tcf3. Moreover, Tcf3 null cells can stay 

undifferentiated when grown only in the presence of MEK inhibitors (e.g. PD) for 5 

passages. However, Tcf3 null cells expressing either WT-Tcf3 or Tcf3 that lacks the 

-catenin interacting domain (Tcf3-ΔN) failed to form undifferentiated colonies in 

PD only. Tcf3-WT cells were able to form undifferentiated colonies in 2i whereas 

Tcf3-ΔN formed very few colonies suggesting that -catenin interaction with Tcf3 is 

essential to mediate the effect of GSK-3 inhibition. They concluded that GSK-3 

inhibition may enhance self-renewal by alleviating Tcf3 repression in the 

pluripotency network (Yi et al., 2011).  
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As previously mentioned Yi et al., (Yi et al., 2011) report is also in accordance with 

a role of -catenin interaction with Tcf3 relieving the Tcf3 repression activity. 

However, they also suggest a role for endogenous Tcf1 as a mediator of Wnt/-

catenin activation.  They performed a series of experiments to test this idea. The 

repressive activity of Tcf3 in self-renewal was demonstrated by the fact that Tcf3 

over-expression eliminated self-renewal capacity, shown by the lack of alkaline 

phosphatase positive colonies and a shift  from a cell cycle typical of ESCs, with a 

high percentage of cells in the S phase, to one typical of somatic cells, with higher 

percentage in G1. Moreover, Wnt3a could overcome the effect of Tcf3 over-

expression restoring alkaline phosphatase positive colonies and cell cycle profiles, 

thereby supporting the idea of Tcf3 as a negative regulator and Wnt3a as a positive 

regulator of self-renewal. They also confirmed the results from Wray and colleagues 

regarding the fact that Tcf3 null cells gave rise to alkaline phosphatase positive 

colonies when cultured in serum free media supplemented with the MEK inhibitor 

(PD0325901) only and they also observed that ESC with intact Tcf3 can generate 

alkaline phosphatase positive colonies in 2i but not in PD only suggesting that Tcf3 

ablation indeed mimicked GSK-3 inhibition. They also showed that interaction of -

catenin with Tcf3 was important  for mediating the Wnt3a effect as the number of 

alkaline phosphatase positive colonies was reduced in cells with a dominant negative 

mutant Tcf3 (Tcf3
ΔN/ΔN

)
 

 which can not bind to -catenin following Wnt3a 

stimulation. However, the fact that the number of alkaline phosphatase positive 

colonies was reduced by not eliminated by Wnt3a in Tcf3
ΔN/ΔN 

and that the number 

of alkaline phosphatase positive colonies could also be increased in Tcf3 null cells 

stimulated with Wnt3a suggested that Tcf3--catenin independent mechanisms also 

contribute to Wnt3a effect. Tcf1 was shown to activate Nanog and superTOPFlash 

promoters and was thought to mediate Wnt effect. The role of Tcf1 as a mediator 

activator was shown through a genetic approach. Elimination of the Tcf3--catenin 

interaction and Tcf1 endogenous activity by using Tcf3
ΔN/ΔN

 and short hairpin RNA 

(shRNA) targeting Tcf1, reduced the self-renewal response to Wnt3a. The authors 

proposed that Wnt3a can stimulate self-renewal by suppression of Tcf3 repressor 

transcriptional activation through Tcf3--catenin interaction but also by Tcf1-

dependent mechanisms. They did not rule out the possibility of some contribution by 

other Tcf-independent mechanisms to Wnt effect in self-renewal as a small number 
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of alkaline phosphatase positive colonies were produced from ESCs expressing 

Tcf3
ΔN/ΔN

 and with Tcf1 shRNA. In fact, Anton et al., and Kelly et al., (Anton et al., 

2007; Kelly et al., 2011) support the idea of the existence of -catenin-Tcf-

independent mechanism, and Kelly and colleagues proposed that the effect of Wnt 

signalling is mediated by stabilisation of -catenin which binds to Oct4 enhancing its 

activity (Kelly et al., 2011). However, Yi et al., did not agree with this paper as 

whereas they observed Tcf3 and Tcf1-dependent -catenin recruitment to chromatin 

using ChiP-qPCR, they did not observed that Oct4 dependent -catenin recruitment.  

They concluded that Tcf-independent mechanisms can have small contribution to the 

enhancement of self-renewal following Wnt activation but they do not think this is 

through -catenin recruitment to the chromatin by Oct4. 

 

In summary, most studies to date suggest a role for -catenin as a mediator of the 

effects occurring following GSK-3 inhibition and most recently light has been shed 

regarding how -catenin is mediating this effect. Although -catenin TCF-dependent 

and TCF-independent mechanisms have been proposed, the controversy continues. 

Interestingly, Wray et al., and Yi et al., agree with the possibility of other TCF-

independent mechanisms contributing to regulation of self-renewal, and Ying et al., 

and Wray et al., suggest that -catenin-independent mechanisms may also contribute 

to the effect of GSK-3 inhibition in self-renewal. 

 

Mechanisms of action of GSK-3 independent of -catenin including regulation of c-

Myc and Nanog have also been proposed (Bechard and Dalton, 2009). Both reports 

proposed a mechanism involving GSK-3 downstream of PI3K. PI3K has been shown 

to be important for maintaining ESC self-renewal (Paling et al., 2004) and this is 

partially by PI3K‟s ability to maintain Nanog expression, which is mediated by 

GSK-3 (Storm et al., 2007).  Inhibition of GSK-3 can reverse the decrease in Nanog 

RNA levels and protein expression following inhibition of PI3K suggesting that 

PI3K regulates Nanog expression through inhibition of GSK-3 (Storm et al., 2007).  

In addition to this, inhibition of PI3K decreases phosphorylation of S21/9 of GSK-3 

but there is no significant effect on phosphorylation of -catenin or -catenin levels 

suggesting that PI3K does not regulate the pool of GSK-3 involved in the Wnt 

signalling, and thus the effect observed in ESC self-renewal following GSK-3 
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inhibition may be mediated by GSK-3 downstream of PI3K as well as downstream of 

Wnt/-catenin signalling.  

 

 

1.3.3.3 GSK-3 downstream effectors.  

The mechanism of action of GSK-3 inhibition that result in enhancement of mESC 

self-renewal have partly remained unclear  because GSK-3 is involved in a number 

of signalling pathways and numerous downstream effectors have been identified in 

non-ESC types, including transcriptional regulators, components of the cell-division 

cycle and protein synthesis initiation factors,. Among transcriptional regulators 

known to be GSK-3 substrates are c-Jun, c-Myc, -catenin, CCAAT/ enhancer 

binding protein α (C/EBPα) and Nuclear factor of activated T-cells (NFATc). Cyclin 

D1, a cell cycle regulator, is known to be a GSK-3 substrate (reviewed in Kim et al., 

2006; (Doble and Woodgett, 2003; Frame and Cohen, 2001). Finally, regarding 

protein synthesis, GSK-3 can inhibit protein synthesis in eukaryotes through 

phosphorylation of the eukaryotic protein synthesis initiation factor 2B (eIF2B). This 

factor is critical for initiation of translation.  Therefore, GSK-3 could potentially play 

a role in determining ESC fate at the translational level as well as the transcriptional 

level.  A recent report suggested that regulation of translation may play a role in 

controlling self-renewal and fate choice in ESCs (Sampath et al., 2008). Moreover, 

Nanog protein is downregulated before Nanog mRNA following PI3K inhibition 

with LY294002 suggesting that Nanog may be regulated at translational level (Storm 

et al., 2007). Of relevance is the fact that translation initiation can be regulated by 

phosphorylation of Ser539 eIF2Bby GSK-3 downstream of PI3K (Welsh et al., 

1998; Welsh et al., 1997). In the present study, we investigated a possible role for 

GSK-3 inhibition in regulation of translation. Molecular mechanisms that regulate 

general or cap-dependent translation are described in the following Section.  
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1.4 Regulation of global protein synthesis 

A tight regulation of general translation/protein synthesis is essential for maintaining 

cell and tissue homeostasis because it is a very demanding process from the energetic 

point of view. In response to changing conditions, overall protein synthesis can be 

rapidly, within minutes, modulated by changes in phosphorylation of translation 

factors and RNA-binding proteins that control translation. It is well known that two 

mRNAs present at the same level can generate different amounts of protein and this 

is partly due to the fact that ribosomes do not associate directly with mRNA but are 

recruited to it by eukaryotic translation initiation factors (eIFs) (Gingras et al., 2001). 

Protein synthesis is a complex process that is divided into three steps: initiation, 

elongation and termination. Although all the steps are characterised by the presence 

of translation factors that associate with the ribosomes, the initiation step is the one 

subjected to more regulation with at least nine initiation translation factors (eIFs) 

identified in eukaryotes (Jackson et al., 2010; Proud, 2007).    

 

Initiation of translation is a complex process that requires several steps including the 

recruitment of the 40S ribosomal subunit to the mRNA, the identification of the 

initiation codon and the binding of the 60S ribosomal subunit with the 40S 

complexes to form the 80S ribosomes leading to the start of elongation.  Translation 

of most mRNAs is carried out by a “cap-dependent” or “scanning” mechanism 

whereby the 40S subunit is recruited to the cap of the mRNA, which is a structure 

present at the 5‟ end of all mRNAs, in a process that requires the unwinding of the 

secondary structures present in the 5‟ end of the mRNAs, which is accomplished by 

the eIF4F complex. The structure of the cap is m7GpppN where guanine nucleotide 

methylated on the 7 position (m
7
G) is attached to the mRNA by a 5‟ to 5‟ 

triphosphate linkage. Once attached to the cap, the 40S ribosomal subunit then starts 

“scanning” the 5‟ untranslated region (5‟UTR) of the mRNA until it finds a start 

codon, once codon/anticodon interactions are created, the translation initiation 

factors dissociate from the 40S ribosomal subunit and the 60S subunit attaches to the 

40S subunit, forming the 80S ribosome and elongation starts.  

 

The 40S ribosomal subunit seems to need a single-stranded mRNA for optimal 

binding (Gingras et al., 1999; Sonenberg, 1993) and the unwinding of the secondary 

structures is carried out by eIF4F, which is a complex that binds the cap of the 
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mRNA, (Gingras et al., 1999), and is composed of three units, eIF4A, eIF4E, and 

eIF4G. eIF4E binds to the cap  and together with eIF4G, which is a scaffolding 

protein, recruits the translational machinery. eIF4A is an ATP-dependent RNA 

helicase that binds and unwinds complex secondary structures in the 5´UTR (Methot 

et al., 1996). The activity of the helicase is stimulated by the RNA binding protein 

eIF4B.  The 40S ribosome, which is bound to eukaryotic initiation factor 3 (eIF3), 

and the ternary complex (eukaryotic initiation factor 2 (eIF2)–GTP–Methione 

transfer RNA (Met-tRNAi)) is brought to the cap of the mRNA through the 

scaffolding protein eIF4G resulting in the formation of the pre-initiation complex 

(Figure 1.17). The binding of the Met-tRNAi to the 40S ribosome is regulated by the 

eukaryotic initiation factor 2 (eIF2). eIF2 binds GTP which is hydrolysed during 

translation initiation. Every round of translation initiation needs eIF2-GTP and the 

guanine nucleotide exchange factor eIF2B is involved in exchanging GDP for GTP. 

GSK-3 is known to phosphorylate and inactivate eIF2B, which slows general 

translation initiation (Welsh et al., 1998).  

 

The level or activity of eukaryotic initiation factor 4 (eIF4F) is frequently associated 

with changes in translation rate. The formation of the eIF4F complex is regulated by 

the eukaryotic initiation factor 4E-binding protein (4EBP1) that competes with 

eIF4G for binding to eIF4E. Binding of 4EBP1 to eIF4E is regulated by 

phosphorylation. In resting cells, 4EBP1 binds and sequesters eIF4E inhibiting 

translation initiation (Gebauer and Hentze, 2004; Richter and Sonenberg, 2005). 

mTOR activation in response to growth factors leads to phosphorylation of 4EBP1 

and release of eIF4E, which can then bind to eIF4G to form the eIF4F complex 

(Parsa and Holland, 2004).  
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Figure 1.17. Regulation of protein synthesis initiation. In resting cells, 4EBP1 binds and 

sequesters eIF4E inhibiting translation initiation. Phosphorylation of 4EBP1 in response to 

growth factors release of eIF4E (1), which can then bind to eIF4G and eIF4A to form the 

eIF4F complex (2) that binds the cap (3). eIF4A together with eIF4B unwinds the secondary 

structure of the cap (4) and the 40s ribosomal subunit together with the ternary complex is 

subsequently recruited to the mRNA (Reproduced with permission from Gingras et al., 

2001). 
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1.5 Background and aims of the study. 

mESC self-renewal is regulated by the coordinated action of several pathways that 

are activated by extrinsic stimuli and control expression of transcription factors 

(Boiani and Scholer, 2005). Several studies, including ours, are in agreement with a 

role of GSK-3 in maintaining self-renewal of ESCs (Sato et al., 2004; Doble et al., 

2007; Ying et al., 2008; Bone et al., 2009). We demonstrated that inhibition of GSK-

3 with novel selective inhibitors bis-indolylmaleimides 1m and 1i enhances ESC 

self-renewal in the presence of Serum and LIF (Bone et al., 2009). Despite of the fact 

that GSK-3 has many downstream effectors, most studies to date suggest that the 

effect observed upon inhibition of GSK-3 is at least partly mediated through Wnt/-

catenin. Recently several proposals have been put forward regarding the underlying 

mechanism including Gsk3 inhibition acting via -catenin-Tcf3 complexes to relieve 

the repressive effect of Tcf3 on pluripotency gene expression (Wray et al., 2011; Yi 

et al., 2011) and -catenin-Tcf independent stabilisation of Oct4 enhancing its 

activity (Kelly et al., 2011). However, -catenin-independent effects have been 

observed, raising the possibility that Gsk3 also acts via alternate mechanisms.  

 

Mechanisms of action of GSK-3 independent of -catenin including stabilisation of 

c-Myc and regulation of Nanog have also been proposed (Bechard and Dalton, 

2009). Both reports proposed a mechanism involving GSK-3 downstream of PI3K. 

Interestingly, translation initiation can be regulated by phosphorylation at Ser
539

 of 

eIF2Bby GSK-3 downstream of PI3K (Welsh et al., 1998; Welsh et al., 1997) and 

Nanog protein was observed to be down-regulated before its mRNA following PI3K 

inhibition suggesting that GSK-3 may regulate Nanog at the translational level 

(Storm et al., 2007). In contrast, other studies have reported that inhibition of GSK-3 

leads to neuronal or mesendodermal differentiation of ESCs (Ding et al., 2003; Bakre 

et al., 2007). The present study intended to examine the importance and mechanism 

of action of GSK-3 in ESCs, which was performed by addressing the following aims:  
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 Investigation of the maintenance of ESC pluripotency following treatment 

with novel GSK-3 inhibitors. 

ESCs cultured in the presence of GSK-3 inhibitors, BIO or CHIR, have been 

shown to maintain their pluripotency by contributing to chimeras and generating 

teratomas containing derivates of the three germ layers following withdrawal of 

the inhibitors (Sato et al., 2004; Ying et al., 2008). However, DKO GSK-3 cells 

exhibited abnormal differentiation potential in EBs or teratocarcinomas (Doble et 

al., 2007). It was therefore essential to ensure that these novel GSK-3 inhibitors 

are not increasing ESCs self-renewal because they are irreversibly blocking the 

ability of ESCs to differentiate and this was investigated in Chapter 3.  

 

 Investigation of the effects of GSK-3 inhibitors on the multilineage 

differentiation of ESCs.  

Several studies reported that GSK-3 inhibition had an effect on the multi-lineage 

differentiation of ESCs. Some reports suggest that GSK-3 inhibition promotes 

differentiation of ESCs into neuronal lineages (Ding et al., 2003) while others 

proposed that it induces differentiation of ESCs along mesendodermal lineages, 

probably at the expense of ectoderm/neuroectoderm. In order to resolve the 

importance of GSK-3 in ESC differentiation, effects of GSK-3 inhibition with 1i, 

1m and BIO on the multi-lineage differentiation potential of ESCs was 

investigated on chapter 3. 

 

  To unravel the mechanism of action of GSK-3 in mouse ESCs.  

GSK-3 has been shown to regulate expression of pluripotency-associated 

transcription factors including c-Myc and Nanog (Bechard and Dalton et al., 

2009; Storm et al., 2007) raising the possibility that GSK-3 inhibition is 

regulating the expression of others transcription factors also. We investigated the 

effects that GSK-3 inhibition has on the levels, stability and synthesis of 

pluripotency-associated transcription factor proteins, including Nanog, Tbx3, c-

Myc, Zscan4 and Oct4 and examined the influence of GSK-3 inhibition on 

pathways known to influence protein translation (Chapter 4 and 5). 
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2.1 Tissue culture consumables. 

 

Table 2.1 Growth medium and supplements 
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Table 2.2 Cytokines and growh factors 

 

 
 

 

Table 2.3 Inhibitors 

 

 

 

Table 2.4 Other consumables  



 

 

2.2 Cell Culture 

2.2.1 Cell lines 

 

E14tg2a  

E14tg2a mouse embryonic stem cell line (clone R63), modified to maintain stable 

integration of a tetracycline-regulated transactivator construct pCAG20-1 (Era and 

Witte, 2000).  

 

Brachyury-GFP  

CGR8 ESCs stably expressing GFP under the control of the endogenous Brachyury 

promoter, given as a gift by Agapios Sachinidis (University of Cologne, Germany). 

 

Sox1-GFP 

E14 ESCs stably expressing GFP under the control of the endogenous Sox1 

promoter. The coding sequence for GFP was knocked in the open reading frame of 

the Sox1 gene (Ying et al., 2003b).  

 

GSK3 double knockout (DKO) 

ESCs where both alleles of Gsk3α and β have been deleted by homologous 

recombination (Doble et al., 2007).  

 

 

2.2.2 Culture of Embryonic Stem cells (ESC). 

The murine embryonic stem cell lines, E14tg2a (clone R63), Brachyury-GFP and 

Sox1-GFP were routinely cultured on 92 x 17 mm NUNC culture plates coated with 

0.1% (w/v) porcine gelatin in Knock-Out  (KO) Dulbecco‟s modified Eagle medium 

in the presence of 15% (v/v) Knock-Out serum replacement, supplemented with 

0.1mM 2-mercaptoethanol, 2mM glutamine and 0.1mM non-essential amino acids. 

We refer to the KO with all the supplements as complete KO media. Cultures were 

supplemented with 4µl/ml recombinant human LIF conditioned media from the 

HEK293LIFV5 cell line, which was generated by stable expression of a V5 epitope-

tagged version of human LIF cDNA in HEK293 cells. In order to passage, cells were 



Chapter 2: Materials and Methods 

 63 

washed twice with phosphate buffered saline (PBS) then dissociated with 

Trypsin/EDTA for 5 minutes at 37°C. Cells were resuspended in complete KO 

media, centrifuged at 1000 rpm for 5 minutes and the supernatant was removed. 

After resuspension, cell counts were performed using a Neubauer haemocytometer. 

ESCs were plated at densities of 5 x 10
5
 cells/92 x 17 mm Nunc-tissue culture dish 

for passage every two days or 2 x 10
5
 cells/dish for passage over the weekend. 

Cultures were maintained in humidified incubators at 37°C and 5% (v/v) CO2.  

 

E14tg2a ESC were also cultured in N2B27-defined media, which consists of 1 

volume DMEM F-12 media: 1 volume Neurobasal media supplemented with N2 and 

B27 supplements (see below for composition), 0.0125% (v/v) Monothioglycerol, 50 

μM  bovine serum albumin (BSA) and 2mM Glutamine. 10ng/ml BMP4 (Stem Gen 

or R&D Systems) and 1000U/ml LIF (Chemicon) were added to the media as 

previously described (Ying et al., 2003a). ESCs were plated at 6 x 10
5
 cells/92 x 17 

mm dish. 

 

E14tg2a ESC were also cultured in 2i media, consisting of N2B27 media 

supplemented with 1μM PD0325901 and 3M CHIRON and plated at a minimum 

density of 6 x 10
5
 cells/92 x 17 mm dish. 

 

N2 supplement: 25μg/ml Insulin,100μ/ml Apo-transferrin, 30ng/ml Sodium 

Selenite,16μg/ml Putrescine and 6ng/ml Progesterone. 

 

B27 supplement: Biotin, L-camitine, Corticosterone, Ethanolamine, D(+)-galactose, 

Glutathione, Linolenic acid, Linoleic acid, Progesterone, Putrescine, Retinyl acetate, 

Selenium, T3 (triodo-1-thyronine), DL-_-tocopherol (Vitamin E), DL-_-tocopherol 

acetate, Albumin (bovine), Catalase, Insulin, Superoxide dismutase, Transferrin. 

 

2.2.3 Freezing and Thawing of ESCs.  

ESCs were washed twice in PBS, trypsinised, resuspended in 10ml complete KO 

media and centrifuged at 1000rpm for 5 minutes. The supernatant was removed and 

cells resuspended in ice-cold Glasgow‟s Minimal Essential Medium supplemented 
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with 2mM glutamine, 50µM ß-mercaptoethanol, 0.1mM non-essential amino acids, 

1mM sodium pyruvate and 10% Biosera serum. We refer to the ice-cold Glasgow‟s 

Minimal Essential Medium with all supplements as complete GMEM. 1ml of 

complete GMEM and 10% (v/v) Fetal Bovine Serum (Media A) was added per 2x10
6
 

cells. After resuspending in media A, 1ml/2x10
6
 cells of media B, consisting of 

media A with 20% (v/v) DMSO, was added drop-wise.  1ml of cells was aliquoted 

into NUNC (377224) Cryovials and placed at -80°C overnight before being 

transferred for long-term storage in liquid nitrogen. 

 

To thaw cells, cryovials were placed in the water bath at 37°C until defrosted, and 

then cells transferred to 9ml of complete KO media and pelleted at 1000rpm for 5 

minutes. Cell pellets were resuspended in complete KO media plus 4l/ml 

recombinant human LIF conditioned media from the HEK293LIFV5 cell line and 

plated onto gelatin-coated 92 x 17mm NUNC dishes and placed in humidified 

incubators at 37°C with 5% CO2 (v/v). After 24 hours incubation, media was changed 

and ESCs were cultured as described in 2.2.1. 

 

2.2.4 Generation of Embryoid Bodies (EBs) 

Embryoid bodies were formed from either ESCs grown in complete GMEM with 

10% (v/v) Hyclone serum or ESCs grown in complete KO. ESCs were trypsinised to 

dissociate the cells and resuspended in complete KO media, centrifuged at 1000 rpm 

for 5 minutes and the cell pellet was resuspended in Iscove´s Modified Dulbecco´s 

Medium (IMDM). 1x10
5
 cells were added to 10ml of EB media. EB media consists 

of 5ml 2.5% (w/v) Methylcellulose (2.5g methylcellulose/100ml Baxter water, 

Sigma), 1.5ml Fetal Bovine Serum (Invitrogen, VX16000-044), 20l transferin 

(100mg/ml), 30l MTG, 10l ascorbic acid (50mg/ml), 10l insulin (10mg/ml) and 

2.5ml IMDM. After addition of cells the mixture was vortexed, left for 10 minutes to 

allow bubbles to disappear and was then plated into non-gelatin coated dishes before 

incubating them at 37˚C for 2, 4 and 6 days.  
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2.3  Methods for protein analysis. 

 

2.3.1 Generation of protein extract. 

Two different protocols were followed to extract protein lysates. The NE-PER 

Nuclear and Cytoplasmic Extraction Reagents (Pierce) were used for enrichment of 

nuclear extracts following the Manufacturer´s instructions. Briefly, dishes were 

washed twice with PBS, trypsinised, cells resuspendend in media containing serum 

to neutralise the supernatant, cell pellets were washed twice before resuspending in 

chilled cytoplasmic extraction reagent I (CERI) at 100l CERI /2x10
6 

cells and 

transfer to 1.5ml eppendorf tubes. Tubes were vortexed for 15 seconds on the highest 

setting to resuspend the cell pellet, incubated on ice for 10 minutes before adding 

5.5l cytoplasmic extraction reagent II (CERII) and vortexed again for 5 seconds on 

the highest setting. After vortexing, samples were incubated on ice for 1 minute and 

vortexed again for 5 seconds before centrifugation at 16,000x g. The supernatant, 

containing the cytoplasmic extract, was then transferred to a chilled tube and store at 

-20ºC until use. The pellet, containing the nuclei, was then resuspendend in 40l of 

ice-cold nuclear extraction reagent (NER), vortexed for 15 seconds on the highest 

setting and incubated on ice for 10 minutes. Samples were vortexed for 15 seconds 

every 10 minutes for a minimum of 40 minutes and then centrifuged at 16,000 x g for 

10 minutes. The supernatant, containing the nuclear extracts, was transferred to a 

chilled tube and stored at -20ºC until use.  

 

When nuclear extracts were not required, another protocol was used to extract 

protein from cells, dishes were placed on ice and washed with PBS three times prior 

adding 80l of solubilisation buffer/6x10
5
 cells containing 50mM Tris- Hcl pH7.5, 

150mM NaCl, 1%(v/v) Nonidet P40, 10% (v/v) glycerol, 5mM EDTA, 1mM Sodium 

Vanadate, 10mM sodium fluoride, 1mM Sodium Molybate, 40g/ml PMSF, 

0.7g/ml pepstatin A, 10g/ml Aprotinin, 10g/ml Leupeptin, 10g/ml Soyabean 

trypsin inhibitor and water. Sterile cell scrapers were used to harvest protein lysates. 

Insoluble material was removed by centrifugation at 13000rpm, 4ºC for 3 minutes. 

Supernatant was then removed and transferred to a chilled 1.5ml eppendorf tube. 

Protein concentrations of the clarified supernatants were determined by Bradford 

protein assay. Reagents for sample extraction are listed on Table 2.8. 
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2.3.2 Bradford protein assay. 

Protein concentrations in samples were measured using the Bradford protein assay 

(Bradford, M. M., 1976). 1ml of Bio-Rad protein assay reagent, diluted 1 in 10, was 

added to 1.5ml tubes and 0, 2, 4, 6, 8 and 10 μl of 1mg/ml BSA was added to each 

tube to generate a standard curve. 5 μl of each sample, the concentration of which 

had to be determined, was added to 1ml of the diluted Bio-Rad reagent. After 

thorough mixing, 200 μl of each test solution and the standards were pipetted in 

triplicate into individual wells of a 96 well tray and the plate read at 595nm using a 

microplate reader (Versamax tunable, Molecular Devices). The concentration of 

protein in test samples were determined from the standard curve obtained with the 

BSA standards.   

 

2.3.3 Sample preparation 

20g of cytosolic protein or 10g of nuclear extract were boiled at 95˚C for 5 

minutes, to denature protein, in an SDS buffer composed of 10% SDS (w/v), 50% 

Glycerol (v/v), 200mM Tris HCl pH6.8, Bromophenol blue and 5%(w/v) 2-

mercaptoethanol. Protein samples were separated according to their molecular size 

using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE).  

 

2.3.4 SDS-PAGE 

7.5%, 10%, 12% or 15% (w/v) acrylamide separating gels were used for 

immunoblotting depending on the molecular weight of the protein to be resolved. For 

proteins of molecular weight between 40-200 kDa, 7.5% was used, between 30-150 

kDa, 10% was used, between 20-120 kDa, 12% was used and finally between 10-100 

kDa 15%. 

 

SDS gels were prepared using mini protean III gel electrophoresis apparatus (Bio-

Rad). The compositions of the 7.5%-15% resolving gels are shown in Table 2.5. The 

resolving gel was poured into the gel casting apparatus, milli-q H2O was placed on 

top and the gel allowed to polymerise for 30 minutes. After polymerisation water 

was aspirated and 5% (w/v) stacking gel (1.67ml acrylamide, 6ml milli-Q H2O, 

1.25ml 1M Tris-HCl pH6.8, 0.15ml 10%(w/v) SDS, 50µl 10% (w/v) ammonium 



Chapter 2: Materials and Methods 

 67 

persulphate (APS) and 20µl Tetramethylethylenediamine (TEMED) was poured on 

top. A fifteen well comb was used to create the wells. The wells were washed with 

milli-qH2O before loading boiled samples and protein standards and then placed into 

a gel tank with 1x SDS-PAGE running buffer (25mM Tris, 0.1% (w/v) SDS, 192mM 

glycine). 

 

A constant voltage of 80mV was applied to stack the proteins in the stacking gel and 

180mV to resolve proteins in resolving gel.  

 

Table 2.5 Composition of resolving gel according to its acrylamide percentage.  

 

 

*All volumes are ml. 

 

2.3.5 Immunoblotting by Semi-Dry Transfer 

After separation by SDS-PAGE, proteins were transferred from the gel to a 

nitrocellulose membrane by immunoblotting in semi-transfer buffer (39mM glycine, 

48mM Tris base, 0.0375% (w/v) SDS, 20% (v/v) methanol). Gels were placed onto a 

piece of nitrocellulose, sandwiched between four buffer-soaked sheets of 3MM 

Whatman paper. The sandwich was placed between the lower (positive) and the 

upper (negative) graphite electrodes of the transfer apparatus, which was connected 

to a electrophoresis power supply (Amersham Biosciences). Immunoblotting was 

performed with a current of 0.8mA per cm
2
 for 60 minutes.  

 

After rinsing in distilled water, protein transfer to the nitrocellulose membrane was 

assessed by staining the nitrocellulose with the water-soluble stain Ponceau S (0.1% 
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Ponceau S (w/v) in 5% acetic acid). This procedure also revealed the molecular 

weight standards, the positions of which were subsequently marked. Blots were then 

washed in TBS (20mM Tris-HCl pH7.5, 150mM NaCl) and blocked for 1 hour either 

in ECL Advanced blocking solution (0.2g blocking agent in 10 ml TBS) or 5% BSA 

block (5% (w/v) BSA, 1% (w/v) ovalbumin, 0.05% (w/v) sodium azide in TBS) at 

room temperature. Nitrocellulose blots were incubated overnight with primary 

antibody (Table 2.6) at 4ºC. Following primary incubation, membranes were washed 

once in TBS, three times with TBS Tween (TBST) (0.05% (v/v) Tween in TBS) and 

a final TBS wash. All the washes were applied for 10 minutes. A polyclonal 

peroxidase-conjugated secondary antibody (Table 2.7) was then applied and blots 

were incubated for 1 hour. Blots were washed as before with an additional final TBS 

wash. ECL Advanced Western blotting detection reagent (GE Healthcare) or 

Chemiglow (Alpha Innotech) was applied for 1 minute. There are two reagents in 

these kits that had to be mixed 1:1 before adding them to the immunoblots. Blots 

were wrapped in Clingfilm and placed in an autoradiography cassette. Blots were 

developed with Fuji X-Ray film developer or in the ImageQuant RT-ECL system. 

Reagents used for resolution and immunoblotting are listed on Table 2.8.  

 

For reprobing, blots were stripped in stripping buffer (6.25% (v/v) 1M Tris-HCl pH 

7.5, 2% (w/v) SDS, 770μl of ß-mercaptoethanol) at 55°C for 45 minutes. After 

stripping blots were washed thoroughly in TBST and blocked again in 5% BSA+ 

0.05% sodium azide for 1 hour. Immunoblotting with the appropriate antibodies was 

carried out as described above.  
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Table 2.6 Primary antibodies 

 

 

 

Table 2.7 Secondary antibodies 
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2.3.6 Immunochemistry 

ESCs were cultured on Lumox (Sarstedt) trays for 5 days before fixing them with 4% 

(w/v) paraformaldehyde (PFA) for 45 minutes at room temperature. Cells were then 

permeabilised with PBS containing 0.2% (v/v) Triton X-100 and blocked with PBS 

containing 2% (v/v) FCS for 20 minutes. The primary antibody Oct4, diluted 1:200, 

in the blocking buffer was incubated overnight at 4°C. Samples were washed with 

PBS 3 x 10 minutes before incubating with the secondary antibody (1:200) for 1 hour 

at room temperature. After secondary antibody incubation, cells were washed again 

with PBS 3 x 10 minutes, counterstained for 10 minutes with 0.5g/ml DAPI 

(Sigma) and mounted in MOWIOL. Images were acquired using a Zeiss 510 Meta 

confocal microscope in the University of Bath‟s Bioimaging Suite. 

  

2.3.7 Fluorescence activated cell sorting (FACS). 

Cells were grown in 6-well Nunc gelatin-coated dishes and  plated at different 

densities varying from 2x10
5
 to 5x10

4 
cells/ well and were incubated at 37˚C for 1, 2, 

3, 4, 5 or 6 days depending on the experiment. After incubation, cells were washed 3 

times with PBS before adding trypsin and placing them for 5 minutes at 37˚C. Next, 

cells were resuspended in 0.5ml of FACS buffer composed of 5%(v/v) Fetal Bovine 

Serum, 0.1%(w/v) sodium azide and transferred into a 1.5ml tube before centrifuging 

at 5000rpm and 4˚C for 30 seconds. Supernatant was then removed and 1ml of FACS 

buffer added before centrifuging again using the conditions previously mentioned. 

This step was repeated once more. After removing the supernatant, cells were 

resuspended in 0.5ml FACS buffer and transferred into a FACS tube. 1μl of 7AAD 

(0.5mg/ml) was added to each sample, 10000 events were monitored in the 

FACSCanto™ flow cytometer and analysed using FACS Diva software.   

 

2.3.7.1    Gating for GFP-positive cells.  

Gate for GFP-positive cells was set by using wild-type cells. 7-AAD was used to 

analyse only alive cells.    
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Table 2.8 Western blot reagents 

 



Chapter 2: Materials and Methods 

 72 

2.4 Molecular techniques 

2.4.1 RNA Isolation 

2.4.1.1 TRizol method  

Cells were washed twice with PBS and 1ml Trizol (Invitrogen Life Technologies, 

Paisley, UK) reagent was added to each cell culture dish. Sterile cell scrapers were 

used to harvest RNA and the lysate was transferred to sterile RNase free 1.5ml tubes. 

For extraction of RNA from Embryoid Bodies (EBs), 3ml of PBS were added to 5ml 

dishes and the PBS with EB media transferred to a 50ml tube. 5ml more of PBS was 

added into the dish, mixed again with a Pasteur pipette and transferred to the same 

50ml tube. PBS was added to the tube to a final volume of 50mls. Cells were pelleted 

by centrifugation at 1500rpm for 5 minutes. The supernatant was removed and 50ml 

of PBS added before centrifuging again at 1500rpm for 5 minutes to wash the EBs. 

After repeating this step again, the pellet was resuspended into 1ml of Trizol and 

lysates were transferred to sterile RNase free 1.5ml tubes. Lysates were then either 

stored at -80°C or the following protocol carried out. 200µl of Chloroform were 

added per 1.5ml tube and mixed vigorously. Tubes were centrifuged at 14000rpm at 

4°C for 15 minutes. The upper aqueous phase, of approximately 500μl, was 

transferred to a new RNase-free 1.5ml tube. For RNA precipitation 500μl of 2-

Propanol was added and  incubated at room temperature for 10 minutes before 

centrifuging at 14000rpm at 4°C for 10 minutes. The supernatant was then removed 

and 1ml of 75% (v/v) ice cold Ethanol added to wash the RNA pellet. Tubes were 

centrifuged at 13000rpm, 4°C for 5 minutes and the ethanol was removed. The RNA 

pellet was allowed to air dry and resuspended in 15-40µl RNase free H2O. 

 

In order to remove any contaminating genomic DNA, RNA samples were treated 

with RQ1 DNase. Up to 1µg of RNA was incubated with 1U DNase (Promega) in 

DNase buffer (400mM Tris-HCl pH8.0, 100mM MgSO4, 10mM CaCl2 ) (Promega) 

at 37°C for 30 minutes. DNase was heat inactivated at 65°C for 10 minutes with 1µl 

DNase stop solution (20mM EDTA pH8.0). RNA was quantified using a GeneQuant 

II spectrophotometer. 
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2.4.1.2 Polysomal fractioning and RNA isolation from fractions 

40-50 x 10
6
 ESC were grown in GMEM supplemented with LIF and Serum. Cells 

were treated with 100M/ml Cycloheximide for 15 minutes to stop ribosome 

movement before lysing (Sampath et al., 2008). Cells were lysed using lysis buffer 

described previously (Welham et al., 1994) supplemented with 2mM DTT, 150ug/ml 

cycloheximide and 80U/ml RNAsin. Cell lysates were centrifuged for 3 minutes at 

4ºC at 6000rpm for the removal of nuclei and supernatant transferred to a new tube 

and spun again at 13000rpm at 4ºC for 5-10 minutes for removal of mitochondria and 

membrane particles. The supernatant was loaded into a sucrose gradient column 

made in DEPC-treated water with 10mM Tris-Hcl pH 7.5, 140mN NaCl, 1.5mM 

MgCl2 and 10%, 15%, 20%, 35%, 40% and 50% sucrose, 1mM DTT and 100M 

Cyclohexidime and centrifuged at 130,000 g for 1.5hr at 4ºC in an SW40-Ti 

swinging bucket rotor (Beckman). After centrifugation, fractions from the column 

were collected and transferred to 1.5ml tubes containing 0.5 % (v/v) SDS, 12l 

EDTA (stock 0.5M) and 10l proteinase K (stock mg/ml), mixed immediately and 

incubated at 37ºC for 30 minutes. After incubation 200ng yeast tRNA was added to 

assist with precipitation. 600ul phenol:chloroform 1:1 was added to each tube, tubes 

vortexed and spun for 5 minutes at 13000rpm at 4ºC. The upper phase, containing the 

RNA, was transferred to a tube containing 0.3M NaCl and 800l 100% ethanol 

added and left overnight at -20ºC. Tubes were then centrifuged at 13000rpm for 30 

minutes at 4ºC, the pellet washed with 1ml 75% (v/v) ethanol and spun at 13000rpm 

for 5 minutes. The dry RNA pellet was resuspendend in 20l DEPC-treated water. 

OD at 260nm was measured to determine polysomal distribution and corresponding 

fractions pooled. LiCl precipitation was performed in the pooled fractions.  

 

2.4.1.3 LiCl precipitation 

The pooled fractions were subjected to LiCl precipitation. 0.67 X Volume of 10M 

LiCl was added to RNA, mixed and incubated at -20ºC for 20 minutes. RNA was 

then centrifuged at 13,000rpm for 20 minutes, supernatant discarded and RNA pellet 

resuspended in 100ml DEPC-treated milli q H2O. 12.5l 5M Potassium Acetate and 

400l of cold 100% ethanol was added to the tubes and tubes were centrifuged at 

13000rpm for 10 minutes. After centrifugation the supernatant was discarded, the 
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pellet washed in 1m of cold 80% ethanol, centrifuged at 13000rpm for 5 minutes, the 

supernatant discarded and pellet air dried before resuspending in 15-30 l DEPC- 

treated milli q H2O.  

 

2.4.1.4 RNA quantification  

RNA was quantified by measuring absorbance at 260nm using a GeneQuant II 

spectrophotometer.  

 

2.4.2 Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) 

RNA samples treated with RQ1 DNase were incubated at 65°C for 5 minutes with 

0.5µl of 500µg/ml Oligo dT (Promega) and then kept on ice for at least 1 minute. 

RT-PCR was performed using first strand buffer (Invitrogen), 5mM DTT 

(Invitrogen), 2U/µl Rnasin plus (Promega), 0.5mM dATP, 0.5mM dTTP, 0.5mM 

dGTP, 0.5mM dCTP (Invitrogen) and 10U/µl SuperscriptIII (Invitrogen). Samples 

were incubated at 42°C for 50 minutes for elongation, then at 70°C for 15 minutes to 

denature. The resulting cDNA was used as the template for PCR or stored at -20° for 

later use.  

 

2.4.2.1 Standard PCR 

PCR was carried out to investigate expression of markers of interest. 2l cDNA were 

added to a master mix composed of 14.6l water, 5l of 5x colorless gotaq flexi 

buffer, 0.5l of dNTPs, 2l of Mg2Cl (25mM), 0.4l of 5‟ and 3´ primers 

(25pmol/l) and 0.1l Go Taq. PCR reactions were run according to the following 

parameters: the number of cycles was dependent on the primer combinations used 

(Table 2.9), 5 minutes at 94°C, 30 seconds at 94°C for denaturing, 30 seconds at the 

appropriate annealing temperature that depends on the primer used (Table 2.9), 45 

seconds at 72°C for elongation, final extension 5 minutes at 72°C. -actin was used 

to check the quantity of cDNA in the samples as it is ubiquitously expressed in cells. 
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Table 2.9: Primers sequences. The table shows primer sequences used in this study 

as well as the annealing temperature and the number of cycles.  

 

 

2.4.2.1.1 Gel  electrophoresis 

Separation of DNA was performed using agarose gel electrophoresis. Agarose gels 

(normally 2% (w/v)) were made by melting agarose in Tris-acetate EDTA (TAE) 

buffer (50x TAE buffer: 2M Tris, 50mM Na2 EDTA (pH8.0) adding glacial acetic 

acid (to pH 7.6)). After cooling down the agarose was poured into gel casting trays 

and allowed to set before placing it into an electrophoresis tank with TAE. DNA 

loading buffer (6x loading buffer: 30% (v/v) glycerol, 0.05% (w/v) bromophenol) 

was added to the PCR products, samples were loaded into the wells and gels were 

run at 80V-110V. Agarose gels were placed into a tray containing a solution of 

0.5μg/ml ethidium bromide in TAE and left for 30 minutes before visualising the 

DNA under the UV light.  Images of the gels were taken in a Syngene UV 

transluminator using Genesnap software. 

 

2.4.2.2 Quantitative real-time PCR (qRT-PCR) 

Quantitative RT-PCR was carried out using the Roche Molecular Biochemical 

LightCycler. A master mix containing 0.5µM sense and antisense primers of interest 

(Table 2.10), 2.5mM MgCl2, 1µl SYBR Green and sterile water to a final volume of 
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8µl was pipetted to pre-chilled LightCycler capillaries before adding 2µl of 1:10 

dilute cDNA sample. Capillaries were next centrifuged at 4000rpm for 20 seconds at 

4°C before loading into the Roche Molecular Biochemical LightCycler. A negative 

control that does not contain cDNA template was also loaded and the program shown 

in Table 2.10 run. After the run, melting curves were studied to ensure that only one 

product was amplified.  Primer specific annealing temperatures are shown in  

Table 2.11. 

 

SYBR Green dye binds to double stranded DNA leading to fluorescence, which can 

be monitored using the Lightcycler. The intensity of the fluorescence reflects the 

quantity of double stranded DNA.  Increase of DNA amount was monitored for 40 

cycles by measuring the fluorescence at 530nm and crossing point values were 

calculated by the LightCycler version 4.0 software (Roche, Idaho Technology Inc.). 

The crossing point is the cycle at which the fluorescence from the sample of interest 

is higher than the background fluorescence. Relative quantification was calculated by 

normalising the crossing point of the target gene to the housekeeping gene-actin. 
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Table 2.10 qPCR program 

 

 

 

Table 2.11. Primers used in the qPCR and annealing temperatures.  
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Standard curves for the target and reference genes were generated in order to 

calculate relative quantification from unknown samples. Serial dilutions of a cDNA 

template were run in triplicate and the standard curve for each gene generated by 

plotting the cell cycle number at the crossing point versus the log concentration of 

the starting cDNA (Figure 2.1). PCR efficiencies can be calculated using the formula 

E=10
-1/slope

. The maximum PCR efficiency is 2. PCR efficiency values are used to 

correct data from unknown samples.   

 

 

 

Figure 2.1: Example of a standard curve. Standard curves were generated for 

each target and reference gene in this study. The LightCycler Version 4.0 

software was used to create a Standard curve by plotting the crossing point versus the 

log concentration of serially diluted cDNA template. PCR efficiency values are 

generated from the slope of the curve, which are then used to correct data obtained 

from the samples of interest. The error that shows variations between sample 

replicates is also calculated from the standard curve. Typically, an error <0.1 is 

adequate. 

 

Calibrator cDNA samples were also run in all the qPCRs in this study. The calibrator 

cDNA was made from RNA obtained from undifferentiated ESCs. The calibrator 

cDNA was made at the same time as cDNA from the unknown samples. The use of a 

calibrator permits comparison between different experiments because the data from 

each experiment can be compensated to account for differences in RT-PCR 

efficiencies.  
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2.4.2.3 qPCR relative quantification  

qPCR data presented in this study was examined by relative quantification and was 

generated by dividing the ratio of target to reference gene (-actin) relative 

concentrations by the ratio of target calibrator to reference calibrator relative 

concentration to allow comparison between experiments.  

 

Table 2.12 Molecular reagents 
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3.1 Introduction and aims 

Several groups, including ours, have reported that inhibition or deletion of GSK-3 

contributes to maintenance of self-renewal in both serum and serum-free conditions 

(Bone et al., 2009; Doble et al., 2007; Sato et al., 2004; Ying et al., 2008).  The first 

evidence implicating GSK-3 in control of ESC self-renewal came from a study 

where a small molecule inhibitor of GSK-3, referred to as BIO, was used (Sato et al., 

2004). The importance of GSK-3 in self-renewal has been further demonstrated by 

showing that self-renewal of ESCs is enhanced in GSK-3 double knockout cells 

(Doble et al., 2007). Inhibition of both the Erk1/2 MAPK pathway and GSK-3 in 

serum-free conditions, and in the absence of any extrinsic stimuli, has been reported 

to be sufficient to maintain self-renewal of ESCs. GSK-3, under these conditions, is 

thought to be essential for maintaining cell viability (Ying et al., 2008).  

 

Work previously carried out in the laboratory where I have been studying for my 

PhD showed that inhibition of GSK-3 can overcome the decrease in Nanog RNA 

levels and protein expression that is observed following inhibition of PI3K, 

suggesting that PI3K regulates Nanog expression through inhibition of GSK-3 

(Storm et al., 2007). More recently, Several groups, including ours, have reported 

that inhibition or deletion of GSK-3 contributes to maintenance of self-renewal in 

both serum and serum-free conditions (Bone et al., 2009; Doble et al., 2007; Sato et 

al., 2004; Ying et al., 2008). In contrast, other studies reported that inhibition of 

GSK-3 leads to neuronal or mesendodermal differentiation of ESCs (Bakre et al., 

2007; Ding et al., 2003; Thomson et al., 2011).  

 

The aims of this part of the study were:  

 To investigate maintenance of ESC pluripotency following treatment with 

GSK-3 inhibitors. 

 To investigate the effects of GSK-3 inhibitors on the multi-lineage 

differentiation of ESCs 

 

A number of GSK-3 inhibitors, including our novel selective inhibitors 1m and 1i, 

were used in this part of the study to address the aims stated above.   
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3.1.1 GSK-3 selective inhibitors.  

Several structurally different small molecule inhibitors of GSK-3 were used in our 

study, 6-bromoindirubin-3‟oxime (BIO), the novel bis-indolylmaleimides 1m and 1i 

and an aminopyrimidine derivative CHIR99021 (CHIR). 

 

BIO selectivity for GSK-3 was tested in vitro against a panel of 20 kinases (Meijer et 

al., 2003) and it was used to study the role of GSK-3 in self-renewal of ESC (Sato et 

al., 2004). mESC grown in the presence of BIO could activate the Wnt signalling 

shown by an increase in TopFlash reporter activity (Sato et al., 2004). Although we 

used BIO in our initial studies, we discontinued its use because we discovered that 

BIO has off-target kinases evidenced by decrease of phosphorylation of Stat3 and 

Erk1 and 2 (Bone et al., 2009). 

 

CHIR was shown to selectively inhibit GSK-3 against a panel of kinases (Cline et al., 

2002) and it has also been shown to inhibit GSK-3 in mESC (Ying et al., 2008). 

Opposite to BIO we have not observed decrease in phosphorylation of Stat3 and 

Erk1 and 2 (results not shown) suggesting that CHIR does not have off-targets.    

 

The bisindolylmaleimide 1i was identified as a selective small molecule inhibitor of 

GSK-3 which is ATP-competitive (Bartlett et al., 2005). 1i was tested for activity 

against a panel of 29 protein kinases in an in vitro screen and were shown to be 

GSK-3 selective inhibitors (Bartlett et al., 2005). Moreover, a kinase assay showed 

that 1i also inhibits GSK-3 kinase activity with an IC50 of 250 nM in ESC lysates and 

IC50 of 20nM using a recombinant GSK-3 protein. An interaction between 1i and 

ATP was shown by affinity purification. Using 1i as a lead molecule a panel of 

bisindolylmaleimides was synthesised, the bisindolylmaleimide 1m with an IC50 of 

3nM was more potent than 1i (Bartlett et al., 2005). GSK-3 inhibition with 1m in 

intact ESCs was shown by a decrease of -catenin phosphorylation levels and an 

increased in -catenin-mediated TCF/LEF transcriptional activity using a TOPFlash 

luciferase reporter assay. 1m and 1i specifically inhibit GSK-3 in mESC and does not 

perturb the Stat3 or Erk pathways (Bone et al., 2009).    
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3.2 Investigation of maintenance of ESC pluripotency following treatment 

with novel GSK-3 inhibitors. 

As discussed in Section 1.1, one of the unique properties of ESCs is their 

pluripotency, which is defined as the ability to differentiate into derivates of all the 

three germ layers, ectoderm, mesoderm and endoderm. Pluripotency of ESCs can be 

demonstrated by their ability to contribute to viable chimeras when injected into the 

blastocyst of the pre-implantation mouse embryo (Bradley et al., 1984), but it can 

also be shown by their capacity to form teratocarcinomas, which are tumours that 

contain derivatives of the three germ layers and are generated by injecting ESCs into 

an adult mouse. Finally, pluripotency of ESCs can also be studies in vitro by 

Embryoid Bodies (EB) formation (Martin and Evans, 1975), which are generated by 

cell aggregation when ESCs are cultured in suspension.  

 

ESCs cultured in the presence of GSK-3 inhibitors, BIO or CHIR, have been shown 

to maintain their pluripotency by contributing to chimeras and generating teratomas 

containing derivates of the three germ layers following withdrawal of the inhibitors 

(Sato et al., 2004; Ying et al., 2008). However, DKO GSK-3 cells exhibited 

abnormal differentiation potential in EBs or teratocarcinomas. EBs generated from 

DKO ESCs retained high levels of pluripotency markers even after 7 days of EB 

formation and the teratocarcinomas generated were mainly undifferentiated, with 

only bone differentiation observed. One of the aims of this study was to show that 

ESCs treated with novel GSK-3 inhibitors (Bone et al., 2009) kept their pluripotency 

following withdrawal of the inhibitors as it was essential to ensure that these novel 

GSK-3 inhibitors are not increasing ESCs self-renewal because they are irreversibly 

blocking the ability of ESCs to differentiate. 

 

In order to study the ability of ESCs to undergo multi-lineage differentiation 

following treatment with GSK-3 inhibitors, embryoid-body-based differentiation was 

used.  

 

 

 

 



Chapter 3: Results 

 84 

3.2.1 Embryoid-body-based differentiation system.  

As previously mentioned, ESCs can be maintained in an undifferentiated state in 

culture by the addition of LIF. Removal of LIF results in spontaneous differentiation 

towards derivatives of the three germ layers. ESCs can be triggered to differentiate in 

vitro by cell aggregation, whereby the ESCs form a multi-differentiated cell mass 

called an embryoid body (EB) (Martin and Evans 1975). The progression of cellular 

differentiation in these EBs resembles differentiation in the embryo, but without 

axial organisation (Doetschman et al., 1985). In order to favour formation of EBs, 

ESCs were placed in a media called methylcellulose, which does not contain LIF. 

This media is gelatinous, maintaining cells in suspension and allowing cells to 

aggregate, grow and thus form EBs (Figure 3.1). 

 

 

  

 

 

 

Figure 3.1. Embryoid body differentiation system. ESC cultured with LIF remain 

undifferentiated. Removal of LIF and placement of ESCs in methylcellulose results in 

formation of Embryoid bodies (EB). In these EB, cells differentiate into ectoderm, 

mesoderm and endoderm in a manner that resembles early embryonic differentiation but 

without axial organisation. The tissues listed are examples of ectoderm, mesoderm or 

endoderm derivates.  
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3.2.2 ESCs maintain pluripotency following short-term GSK-3 inhibition. 

To ascertain if ESCs maintain pluripotency following treatment with GSK-3 

inhibitors, ESCs were cultured in the presence of the GSK-3 inhibitors BIO or 1i for 

48 hours before plating them into methylcellulose for formation of EBs. EBs were 

generated and allowed to form for 4 to 6 days. The experimental procedure described 

in Fig 3.2 was followed to investigate maintenance of ESC pluripotency. 

Pluripotency and lineage markers were analysed by RT-PCR, Oct4 expression was 

investigated by immunostaining and the number of EBs formed from ESCs treated 

with GSK-3 inhibitors was also studied.   

   

 

 

 

Figure 3.2 Experimental procedure to investigate maintenance of ESC pluripotency 

following treatment with the GSK-3 inhibitors, BIO and 1i. Cells were cultured in the 

presence of 0.5M BIO, 5M 1i or DMSO (Control) for 48 hours. Cells were then plated 

into EBs in methylcellulose and grown for 4 and 6 days without the GSK-3 inhibitors. RNA 

was extracted from these EBs, and from ESC treated for 48 hours with the inhibitors and 

cDNA made by RT-PCR. Expression of pluripotent markers was studied by RT-PCR, Oct4 

expression analysed by immunostaining and number of 6 day-old EB recorded. Pluripotency 

was further investigated by analysing expression of ectoderm, mesoderm and endoderm 

markers.  
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3.2.2.1 ESCs treated with GSK-3 inhibitors express pluripotency markers.  

Undifferentiated ESCs are characterised by the expression of transcription factors 

which have a role in maintaining their self-renewal capacity. These transcription 

factors have already been extensively discussed in Section 1.3.1. Consistent with 

their roles, they are expressed in ESCs and their expression is downregulated upon 

differentiation. Rex1 (Rogers et al., 1991), Oct4 (Rosner et al., 1990) and Nanog 

(Chambers et al., 2003) are well known pluripotency transcription factors in ESCs. 

 

Oct4 is expressed in the morula, in all the cells of the ICM, the epiblast of the pre-

implantation embryo, germ line cells and ESCs (Pesce et al., 1998). Oct4 is essential 

for the establishment of the pluripotent lineage of the ICM (Nichols et al., 1998) and 

in addition, repression of Oct4 leads to differentiation of ESCs into trophectoderm 

(Niwa et al., 2000). 

 

Nanog is expressed at the morula stage, in the ICM in a salt and pepper fashion and 

its expression is restricted then to epiblast (Chazaud et al., 2006). Nanog is essential 

for establishment of the pluripotency in the ICM (Chambers et al., 2007; Silva et al., 

2009).  

 

The zinc finger protein Reduced Expression-1 (Rex1) is expressed in ESCs and in 

the ICM but it is down-regulated in the epiblast and primitive ectoderm in the 

embryo and at the beginning of ESC differentiation (Rogers et al., 1991; Toyooka et 

al., 2008). Although Rex1 can be used as a marker of pluripotency it is not essential 

for the maintenance of pluripotency of ESC or ICM (Masui et al., 2008).  

 

Expression of Nanog, Oct4 and Rex1 in ESCs treated with the GSK-3 inhibitors and 

in day 4 and day 6 EBs grown in absence of the inhibitors were analysed by RT-PCR 

(Figure 3.3 A).  

 

The data presented in Figure 3.3A show that ESCs maintain expression of  

pluripotency markers following short-term treatment with BIO and 1i. Expression of 

Rex1 and Nanog is down-regulated in EBs, and it is almost non-existent in 4 and 6 

day-old EBs. On the other hand, Oct4 expression is maintained for longer than Rex1 

and Nanog, being down-regulated in 6 day-old EBs. The patterns of marker 
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expression observed were in accordance to what would be expected as ESCs within 

the EBs start to differentiate. These data suggest that ESCs in fact maintain 

pluripotency upon treatment with the compounds and following removal of inhibitors 

and induction of differentiation, expression of pluripotency markers declines, 

indicative of differentiation.  

 

Immunostaining for Oct4 was carried out in order to confirm maintenance of 

pluripotency. ESCs were grown in the presence of the GSK-3 inhibitors, BIO, 1i and 

another bisindolylmaldeimide 1m, which is more potent than 1i, for 5 days and Oct4 

expression analysed. Expression of Oct4 was observed in all the cells in the colony in 

control as well as in cells grown in the presence of BIO, 1m and 1i suggesting that all 

or at least the majority of ESCs within the colony are pluripotent (Fig. 3.3. B).  

 

 

 

 



Chapter 3: Results 

 88 

 

Figure 3.3: Expression of pluripotency markers is maintained in ESCs following 

treatment with the GSK-3 inhibitors, BIO and 1i.  The experimental procedure described 

in Figure 3.2 was followed to analyse expression of markers of the pluripotent ESC state, 

Rex1, Nanog and Oct4. A. RT-PCR analysis of Pluripotent marker expression in ESC treated 

with GSK-3 inhibitors for 48 hours and in EB after 4 and 6 days of EB formation. Time-

course experiment was performed twice. B Immunohistochemical staining with Oct4 

antibody shown in green and nuclear staining with DAPI in blue after 5 days in cultured with 

the indicated GSK-3 inhibitors.  This experiment was carried out twice and data shown are 

representative.  
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3.2.2.2 EB formation capacity does not change following GSK-3 inhibition.  

EBs are formed from pluripotent cells, so one way to assess maintenance of 

pluripotency following GSK-3 inhibition would be to count the number of EBs 

formed. Hence, if pluripotency is maintained the number of EBs formed from ESCs 

grown in the presence of GSK-3 inhibitors should be comparable to the number of 

EBs formed from control untreated ESCs. The number of 6 day old EBs formed from 

2x10
5 

ESCs that had been cultured in the presence of BIO or 1i for 48 hours were 

counted (Figure 3.4).  

 

 

 

Figure 3.4 ESCs maintain capacity to form EBs. ESC were grown in the presence or 

absence of BIO or 1i for 48 hours prior EB formation. Number of EBs were counted after 6 

days of EB formation. The average and S.E.M from 4 independent experiments (n=4) are 

shown.  

 

 

The numbers of EBs formed from ESCs treated with 0.5M BIO or 5M 1i were 

comparable to those formed from the controls. Results from the studies presented in 

Section 3.2.2.1 and this Section suggest that pluripotency is maintained following 

removal of GSK-3 inhibitors. However, pluripotency has to be confirmed by 

showing that cells can differentiate into the three germ layers 
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3.2.2.3 ESCs treated with GSK-3 inhibitors can differentiate into the three 

germ layers. 

In order to study the ability of ESCs to differentiate into the three germ layers, after 

having been cultured with BIO or 1i for 48 hours, expression of endodermal, 

mesodermal and ectodermal lineage markers were investigated. Primers detecting 

lineage markers including Hnf4Afp, Nodal, Fgf5, Brachyury, Flk1, Nestin and N-

cam were used.  

 

Hnf4is a transcription factor expressed in primary endoderm at E4.5 and in visceral 

endoderm from E5.5 to E8.5 and thus it is considered a specific primitive endoderm 

marker in the implanting blastocyst (Duncan et al., 1994). However Hnf4 is also 

expressed in the definitive endoderm and it is essential for hepatocyte differentiation 

(Li et al., 2000). Afp is expressed in extraembryonic and embryonic endoderm 

during embryogenesis, and it is first detected in visceral endoderm at E7.0. It is 

considered a marker of definitive endoderm marking specification to hepatic lineage 

and it is expressed later than Hnf4 during mouse development in vivo (Abe et al., 

1996). 

 

Nodal is a transforming factor --related gene with a role in formation of the 

primitive streak (PS) evidenced by the inability of nodal null embryos to form 

primitive streak. In agreement with this role, Nodal is expressed in the ectoderm of 

pre-streak embryos and during initiation of primitive streak formation (Conlon et al., 

1994). Primitive streak formation is essential for later development of mesoderm and 

definitive endoderm as they originate from a mesendodermal population located in 

the anterior region of the PS (Tada et al., 2005). Nodal signalling intensity specifies 

the anterior PS to either mesoderm at lower levels or endoderm at higher levels 

(Lowe et al., 2001; Vincent et al., 2003). Nodal can be used as marker of primitive 

ectoderm and primitive streak formation. 

 

Fibroblast growth factor 5 (Fgf5) is expressed in several locations between E5.5 and 

E15.5 of mouse embryogenesis. Fgf5 is first expressed in the post-implantation 

embryo in the embryonic ectoderm and visceral endoderm at E5.5 and its expression 

continues at E7.0. Fgf5 is normally used as a primitive ectoderm maker. Fgf5 is later 
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expressed at E9.5 in derivates of lateral mesoderm and paraxial mesoderm (Haub and 

Goldfarb, 1991; Loebel et al., 2003).  

 

Brachyury is an early mesoderm maker which is expressed in the primitive streak, 

mesendoderm and in the early mesoderm (Kubo et al., 2004; Wilkinson et al., 1990). 

Flk1 is a Vascular endothelial growth factor (VEGF) receptor expressed in a 

mesodermal progenitor that gives rise to myocardial, endothelial, and smooth muscle 

lineages (Kattman et al., 2006).  

 

Nestin is expressed in central nervous system (CNS) progenitors. At E7.75 its 

expression can be detected in the columnar neuroepithelial cells of the neural plate 

and at E8.5 in the developing CNS (Dahlstrand et al., 1995). The neuronal cell-

adhesion molecule (N-cam) is a marker of primitive neuroectoderm formation 

(Jacobson and Rutishauser, 1986). 

 

The expression of the markers describe above in EBs formed from ESC cultured with 

BIO and 1i for 48 hours prior EB formation are shown in Figure 3.5. Following 

treatment with BIO or 1i, the expression of the ectodermal markers N-cam and 

Nestin can be seen at all stages of EB formation, suggesting the ESCs treated in this 

way have the ability to differentiate into ectoderm (Fig. 3.5). Fgf5 expression can be 

observed at all stages of EB formation and its expression is higher in EB formed 

from ESC treated with GSK-3 inhibitors in comparison with control. Nodal 

expression can also be seen in 4 day old EBs from ESC pretreated with 1i and BIO 

with the latter showing very low levels of expression at day 4 but higher at day 6. 

Nodal expression can not be observed in untreated EBs in 4 or 6 day old EBs 

suggesting that both 1i and BIO increase expression of Nodal. Fgf5 and Nodal 

expression suggests differentiation of ESCs into primitive ectoderm and probably 

induction of PS (Fig. 3.5).  
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Figure 3.5. ESCs can still undergo differentiation into the three germ layers. The 

experimental procedure described in Figure 3.2 was followed to investigate ESC 

differentiation into three germ layers. RT-PCR was performed to analyse expression of the 

indicated markers. CTL: control, BIO: bio and 1i:1i.  N-cam and Nestin were used as 

ectodermal markers, Nodal and Fgf5 as a marker of primitive ectoderm, Nodal also marks 

mesoderm induction and Fgf5 marks lateral and paraxial mesoderm, Brachyury and Flk1 are 

mesodermal markers and Afp and Hnf4 endodermal markers. This experiment was 

perfomed twice and results shown are representative.  

 

 

 

Expression of the mesodermal markers Flk1 and Brachyury can be observed in 4 and 

6 day old EBs. Expression of the endodermal markers Afp and Hnf4 can be 

observed in EBs after 4 and 6 days of formation suggesting that ESCs can in fact 

differentiate into endoderm (Fig. 3.5). 

 

These results suggest that ESCs can differentiate into the three germ layers following 

GSK-3 inhibition. However, some markers, including Fgf5, Nodal, Brachyury, 

Hnf4 Flk1 and N-cam are expressed at low levels in undifferentiated ESCs. 

Expression of low levels of Brachyury following treatment with BIO or 1i is in 

agreement with previous studies suggesting Brachyury is a target of Wnt signalling  

(Arnold et al., 2000). Expression of the other markers in undifferentiated ESCs could 

be due to spontaneous differentiation of ESCs in culture or the presence of lineage-
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biased populations within the ESC culture. This will be further discussed in Section 

3.4.1.  

 

Nestin and Afp seems to be better lineage markers as they are not expressed in 

undifferentiated ESCs. This is probably because they are expressed later during 

embryogenesis.  

 

To summarise, following short-term treatment with BIO or 1i, ESCs maintain 

expression of pluripotency markers, suggesting that cells can differentiate into the 

three germ layers. In addition, based on expression of lineage markers, pluripotency 

was further supported by data demonstrating the ability of ESCs to differentiate into 

cells comprising all three germ layers.  

 

 

3.2.3 ESC maintain pluripotency after long-term culture in GSK-3 

inhibitors.  

The previous Section showed that ESCs can maintain pluripotency following short-

term (48 hours) treatment with GSK-3 inhibitors. In this Section the aim was to 

investigate whether pluripotency can be maintained following long-term culture in 

the presence of GSK-3 inhibitors. ESCs were grown in the presence of serum 

supplemented with LIF and GSK-3 inhibitors BIO or 1m for 19 days (8 passages) 

prior to EB formation. Analysis of pluripotency and lineage markers was performed 

by RT-PCR in ESCs and EBs after 2, 4 and 6 days of EB formation.     

 

ESCs grown for 19 days in the presence of BIO or 1m express the pluripotency 

markers Rex1, Oct4 and Nanog prior EB formation and these markers are down-

regulated as cells differentiate. Nanog and Rex1 expression are almost extinct by day 

6, although low level expression of Oct4 and Nanog remain (Fig. 3.6A). The 

maintenance of Oct4 expression for longer could be due to the fact that the kinetics 

of Oct4 down-regulation is slower than Nanog and Rex1. Others possible explanation 

will be discussed in Section 3.4.1. 
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Figure 3.6 ESCs maintain pluripotency and undergo multilineage differentiation after 

long-term culture with GSK-3 inhibitors.  ESCs were grown in the presence of GSK-3 

inhibitors, BIO or 1m for 19 days prior EB formation. Expression of the pluripotency (A) 

and the lineage markers (B) indicated was analysed by RT-PCR. N-cam and Nestin were 

used as ectodermal markers, Nodal and Fgf5 as a marker of primitive ectoderm, nodal also 

marks mesoderm induction and Fgf5 marks lateral and paraxial mesoderm, Brachyury and 

Flk1 are mesodermal markers and Afp and Hnf4 endodermal markers. This experiment was 

perfomed twice and results shown are representative.  

 

 

ESCs cultured long-term in BIO or 1m can also undergo differentiation into 

ectoderm, endoderm and mesoderm, shown by the expression of lineage markers as 

cells differentiate in the EBs (Fig. 3.6B).  N-cam and Nestin expression indicates 

differentiation into ectodermal lineages. Differentiation of ESCs into primitive 

ectoderm is evidenced by the expression of Fgf5 and Nodal in 2 and 4 day-old EBs. 

Nodal expression is involved in induction of PS (Conlon et al., 1994) and promotion 
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of differentiation of the anterior region of the PS to mesoderm and endoderm (Tada 

et al., 2005). Expression of Brachyury, Hnf4 and Afp suggest differentiation into 

mesoderm and endoderm. 

 

In summary, pluripotency of ESCs is also maintained in cells grown with GSK-3 

inhibitors for longer periods of time.  

 

 

3.3 Effects of GSK-3 inhibitors on the multi-lineage differentiation potential 

of ESCs.   

Prior to this work, several studies reported that GSK-3 inhibition had an effect on the 

multi-lineage differentiation of ESCs. Ding et al., (2003) showed induction of 

differentiation of ESCs into neurons by TWS119, which inhibits GSK-3. However, 

other studies are in disagreement with the Ding report. Doble et al., (2007) 

demonstrated that EBs formed from GSK-3/ double-knockout (DKO) ESCs 

totally fail to differentiate into neuronal tissue and differentiated mainly into bone. 

This work is supported by other studies that demonstrated that sustained Wnt 

signalling activation, through GSK-3 inhibition by lithium chloride or a small 

molecule inhibitor of GSK-3 had a negative effect on neuro-differentiation (Aubert 

et al., 2002). Moreover, Bakre et al., (Bakre et al., 2007) showed that sustained 

activation of Wnt signalling, using a small molecule inhibitor of GSK-3or 

Wnt3a,induced differentiation of ESCs along mesendodermal lineages, probably at 

expense of ectoderm/neuroectoderm.  

 

In order to resolve the importance of GSK-3 in ESC differentiation, effects of GSK-3 

inhibition with 1i and BIO on the multi-lineage differentiation potential of ESCs was 

investigated. EBs were formed from ESCs that had been cultured without inhibitors 

and GSK-3 inhibitors (BIO and 1i) were added to the EB media at the time of plating 

and EBs were allowed to develop in the presence of BIO or 1i for 4 days. Expression 

of pluripotency and lineage markers were analysed by RT-PCR, and the numbers of 

EBs formed counted. Figure 3.7 depicts a schematic summarising the approach used. 
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Figure 3.7 Experimental procedure to investigate the effects of GSK-3 inhibitors in the 

multi-lineage differentiation of ESCs.  ESC that had been cultured without GSK-3 

inhibitors were plated into EB media, which contained 0.5M BIO, 5M 1i or DMSO 

(Control), and EBs grown for 4 and 6 days. RNA was extracted from these EBs, and from 

the starting population of non-treated ESC, and cDNA made by RT-PCR. Expression of 

pluripotent markers, as well as markers of the three germ layers, ectoderm, mesoderm and 

endoderm, was studied by RT-PCR.  

 

 

3.3.1 ESCs grown in the presence of GSK-3 inhibitors maintain pluripotency 

for longer.  

In order to assess pluripotency we investigated the expression of Rex1, Nanog and 

Oct4 in ESCs that had been grown in the absence of GSK-3 inhibitors, and in EBs 

that had been generated in the presence of BIO and 1i for 4 and 6 days.  
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3.3.1.1 ESCs grown in the presence of GSK-3 inhibitors are more resistant 

to differentiation. 

Expression of Rex1, Oct4 and Nanog can be seen in the starting population of ESCs. 

The levels of Nanog and Rex1 are higher in 4 day-old EBs grown in the presence of 

BIO and 1i and in 6 day-old EBs grown in 1i than in control untreated EBs,  

suggesting than ESCs are more resistant to differentiation when cultured with GSK-3 

inhibitors (Figure 3.8). This is in agreement with the observation that GSK-3 DKO 

cells retain expression of pluripotency makers such as Oct4 and Nanog after 12 days 

of EB formation (Doble et al., 2007).   

 

 

 

Figure 3.8 ESCs retained pluripotency marker expression when GSK-3 is inhibited. 

Expression of pluripotency markers indicated were analysed by RT-PCR in EB grown with 

0.5M BIO, 5M 1i or DMSO for 4 days and in untreated ESCs. CTL: Control, BIO: Bio 

and 1i:1i. This experiment was performed twice and results shown are representative.  

 

 

Although expression of pluripotency markers is decreased in EBs, their levels are 

still higher that would be expected after 6 days of EB formation suggesting that the 

cells in this experiment differentiated slower than normal. 
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3.3.1.2 BIO increases the numbers of EBs at day 6 of EB formation. 

In order to ascertain whether the GSK-3 inhibitors have an effect on EB formation, 

and thus on differentiation of ESCs, the number of EBs formed in the presence of 

BIO, 1i or DMSO were counted at day 6 (Figure 3.9).  

 

 

Figure 3.9. Numbers of EBs after 6 days of EB formation. EB were formed from ESCs 

that had been grown without inhibitors with 0.5MBIO, 5M 1i or DMSO added to the EB 

media at the time of plating. Number of EBs were counted following 6 days of EB 

formation. The average and S.E.M of four independent experiments (n=4) are shown. 

**indicates P<0.01 in a student test. 

 

The number of EBs formed from ESCs treated with BIO and 1i during EB formation 

was significantly higher than those formed from the control (Figure 3.9), indicating 

that GSK-3 inhibitors are not stopping but rather improving ESC efficiency to form 

EBs. An increase in the number of EBs suggests an increase in pluripotency. 

Although ESCs differentiate upon removal of LIF, this increase in numbers of EBs 

suggests that GSK-3 inhibition results in ESCs maintaining self-renewal for a period 

of time before they start to differentiate.  This is agreement with maintenance of 

pluripotency markers Nanog and Rex1 observed in EB treated for 4 days with GSK-3 

inhibitors (Figure 3.8). An alternative explanation would be that cell survival is 

increased in the presence of GSK-3 inhibitors. During EB formation cell death seems 

to be very high since approximately only 0.5% of the control cells plated are able to 

form EBs, thus if GSK-3 inhibition increase survival of undifferentiated ESC the 

number of EBs formed will also be higher.   
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3.3.2 Inhibition of GSK-3 drives differentiation towards mesodermal 

lineages. 

If cells are pluripotent, we expect them to differentiate into three germ layers. 

However, as previously mentioned, some studies (Ding et al., 2003; Bakre et al., 

2007) have shown that inhibition of GSK-3 promotes differentiation into a particular 

lineage. Thus, next it was investigated whether a similar effect can be observed when 

EBs are treated with BIO or 1i. Expression of ectodermal, mesodermal and 

endodermal markers in EBs grown in the presence of GSK-3 inhibitors were 

analysed. For this experiment, the early ectodermal marker Sox1, which has a role in 

inducing ectodermal cells to neural fate, was also analysed (Pevny et al., 1998).  

 

 

 

Figure 3.10 GSK-3 inhibition promotes ESC differentiation towards mesendodermal 

lineage. Expression of lineage markers indicated were analysed by RT-PCR in EB grown 

with 0.5M BIO, 5M 1i or DMSO for 4 and 6 days and in untreated ESCs. CTL: Control, 

BIO: bio and 1i: 1i. This time course experiment was performed once. Analysis of 6 day old 

EBs was performed one more time. 

 

 

Both Sox1 and N-cam have similar pattern of expression, their expression is elevated 

in 6 day-old EBs in comparison with ESC suggesting differentiation into ectoderm. 

Opposite to this, Sox1 and N-cam expression in EB treated with GSK-3 inhibitors is 

lower than in untreated EBs and it is similar to ESC indicating that 1i and BIO is 

preventing or slowing down differentiation into ectodermal lineages. This would be 

in accordance with previous reports (Bakre et al., 2007; Doble et al., 2007; Ying et 

al., 2008).  
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Up-regulation of Fgf5 in EBs grown in the presence of GSK-3 inhibitors can be 

observed at day 4 and 6, in comparison with untreated controls, suggesting 

promotion of primitive ectoderm following GSK-3 inhibition (Fig. 3.10). Nodal, 

which marks primitive ectoderm and PS formation, is transiently increased at day 4 

in inhibitor-treated EBs, suggesting PS formation (Fig 3.10). Consistent with this, 

Brachyury expression, which marks PS, mesendoderm and mesoderm, is up-

regulated when GSK-3 is inhibited at day 4 with either inhibitor and day 6 with 1i. 

Hnf4 expression is also up-regulated in 4 day-old EBs treated with 1i and in 6 day-

old EBs with either inhibitor. Afp expression is the same in control and treated EBs 

(Fig. 3.10). Although up-regulation of Hnf4 would suggest promotion of 

endodermal differentiation after GSK-3 inhibition, a conclusion can not be drawn as 

Afp expression does not change. Previous reports have suggested that high levels of 

Nodal signalling in PS promotes differentiation to endoderm (Lowe et al., 2001; 

Vincent et al., 2003). Moreover, increase of Nodal expression in mouse ESCs has 

been shown to promote definitive endoderm specification and its later down-

regulation induces definitive endoderm maturation (Takenaga et al., 2007). GSK-3 

inhibition considerably increased Nodal signalling, so it may be possible that it 

promotes differentiation into endoderm.  Other endodermal markers such as Sox17 

would help to elucidate whether GSK-3 inhibition promotes ESC differentiation 

towards the endodermal lineage. 

 

Collectively, the data suggest that GSK-3 inhibition promotes ESC differentiation 

towards mesendoderm progenitors, as Brachyury expression is up-regulated. 

However, from the present study is not clear whether GSK-3 inhibition also 

promotes mesoderm or endoderm differentiation. Brachyury up-regulation could 

suggest induction of mesoderm but its expression is not restricted to mesoderm since 

it is also expressed in the mesendoderm and primitive streak. Other mesoderm 

markers, expressed later during embryogenesis, should be used in order to investigate 

promotion of mesodermal differentiation.   

 

Expression of Fgf5, Nodal, Hnf4Sox1and N-cam in ESCs, as mentioned already 

in Section 3.2.2.3, could be due to spontaneous differentiation or the presence of 

lineage-biased populations within the ESC culture.  
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In summary, GSK-3 inhibition seems to bias differentiation of ESCs towards 

mesendodermal lineages, which is in accordance with a previous report (Bakre et al., 

2007) This mesendodermal up-regulation may be at the expense of ectodermal 

lineages.  

 

 

3.3.3 Further investigation of the effects of GSK-3 inhibition on the multi-

lineage differentiation potential of ESCs.    

To further investigate the effects observed on multi-lineage differentiation of ESCs 

using RT-PCR, Brachyury-GFP and Sox1-GFP ESC reporter lines were used. In 

these cell lines expression of GFP is under the control of the Brachyury or Sox1 

promoter. Brachyury-GFP ESCs were obtained from Agapios Sachinidis (University 

of Cologne, Germany), and Sox1-GFP was developed by Ying et al. (2003). The 

coding sequence for GFP was knocked in the open reading frame of the Sox1 gene 

(Ying et al., 2003b).  

 

 

3.3.3.1 Mesendodermal lineage differentiation. 

Results from Section 3.3.2 suggest that inhibition of GSK-3 facilitates ESC 

differentiation towards mesendodermal lineages (Figure 3.10). In order to study in 

more detail whether inhibition of GSK-3 promotes mesendodermal differentiation, 

Brachyury-GFP ESCs were grown in the presence of serum with BIO or 1m and in 

the absence of LIF for 1, 2, 3 and 4 days. LIF maintains ESCs in an undifferentiated 

state, and removal of LIF leads to spontaneous differentiation. The percentage of 

GFP expressing cells was analysed by Fluorescence activated cell sorting (FACS) 

and results are summarised in Table 3.1. A specific example of the types of FACS 

plots obtained is shown in Figure 3.11, with the percentage of Brachyury-GFP 

positive cells after 48 hours treatment with GSK-3 inhibitors indicated. 
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Table 3.1. Percentage of Brachyury-GFP positive cells present over time. ESC were 

grown in GMEM supplemented with serum with or without LIF and in the presence or 

absence of GSK-3 inhibitors BIO or 1m at the concentrations and time indicated. This 

experiment was repeated twice and the results shown are representative.  

   

Treatment/Time 24 hrs 48hrs 72hrs 96hrs 

+LIF 5.6% 6.5% 5.2% 4.9% 

-LIF 4.8% 4.9% 8.0% 9.9% 

-LIF+ 0.5M BIO 6.5% 10.7% 18% 11.3% 

-LIF+ 2M BIO 17.7% 48% 28.6% 20.1% 

-LIF+ 0.5M 1m 11.2% 10.1% 19.2% 13% 

-LIF+ 2M 1m 27.4% 38% 35.8% 18.1% 

   

 

Data shown in Table 3.1 suggests that ESCs start spontaneously differentiating 

approximately 72 hours after LIF removal, which is evidenced by an increase in the 

percentage of GFP-Brachyury expressing cells grown in the absence of LIF in 

comparison with control cells grown with LIF. A considerable up-regulation in 

Brachyury expression, as early as 24 hours after addition of 2M BIO or 1m in the 

absence of LIF, was observed. Brachyury expression appeared to be transient (Table 

3.1), maximum up-regulation was achieved following 48 hours of treatment at higher 

concentration of inhibitors and 72hr at lower concentrations.  

 

This experiment was repeated once more and results were consistent. Hence, these 

results support the idea that inhibition of GSK-3 promotes differentiation of ESCs 

towards mesendodermal lineages. 
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Figure 3.11. GSK-3 inhibition leads to upregulation of Brachyury expression. 

Brachyury-GFP ESC were grown in the presence of 0.5M, 2M BIO or 1m for 48 hours, 

and in the absence of LIF. A control with LIF was also set up. Percentage of GFP positive 

cells was assessed by FACS.  

 

3.3.3.2 Ectodermal lineage differentiation. 

Results from Section 3.3.2 suggest that ectoderm differentiation may be blocked or 

slowed down upon inhibition of GSK-3. The Sox1-GFP ESC reporter line was used 

to further study a possible effect of GSK-3 inhibition on differentiation of ESC 

towards the ectodermal lineage. Sox1-GFP ESCs were grown in the presence of 

serum with BIO or 1m and in the absence of LIF for 3, 4, 5 and 6 days. Sox1 

expression was slightly down-regulated in ESCs treated with the GSK-3 inhibitors at 

all time points investigated. The percentage of GFP expressing cells was analysed by 

FACS and the data is summarised in Table 3.2.  Primary data showing the percentage 

of Sox1-GFP positive cells from EBs grown in the presence of inhibitors for 4 days 

are presented in Figure 3.15. This experiment was repeated twice and the results 

were reproducible.  
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Table 3.2 Percentage of Sox1-GFP positive cells over time-course. ESC were grown in 

GMEM supplemented with serum with or without LIF and in the presence or absence of 

GSK-3 inhibitors BIO or 1m at the concentrations and time indicated. This experiment was 

repeated twice and the results shown are representative. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Sox1 expression is downregulated following treatment of ESC with GSK-3 

inhibitors.  ESC were grown in the presence of 0.5M and 2M BIO or 1m for 4 days, and 

in the absence of LIF. A control with LIF was also set up. Percentage of GFP positive cells 

was investigated by FACS. 

 

 

 

Treatment/Time 3 days 4 days 5 days 

+LIF 5.1% 4.3% 6.2% 

-LIF 4.6% 6% 3.9% 

-LIF+ 0.5M BIO 1.5% 3.3% 1.2% 

-LIF+ 2M BIO 0.5% 0.9% 1.1% 

-LIF+ 0.5M   1m 2% 2.3% 2% 

-LIF+ 2M   1m 0.4% 1.8% 1% 
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The fact that the percentage of Sox1-GFP in plus LIF and minus LIF conditions is 

similar at all times studied suggest that the majority of cells are not differentiating 

into ectoderm. Therefore, down-regulation of Sox1-GFP observed in cell treated with 

GSK-3 inhibitors may be due to possible decrease in spontaneous differentiation.  A 

way to promote differentiation into ectoderm would be to grow the cells in N2B27 

without any extrinsic stimuli, this has been shown to promote ESC differentiation 

towards ectoderm (Ying and Smith, 2003; Ying et al., 2003). Repetition of the 

experiment in these conditions may show higher differences between the percentage 

of Sox1-GFP expressing cells upon GSK-3 inhibition and in untreated control. 

 

 

3.4 DISCUSSION 

3.4.1 ESC maintain pluripotency following GSK-3 inhibition. 

One of the aims of this study was to test whether ESCs treated with novel GSK-3 

inhibitors (Bone et al., 2009) retain their pluripotency following withdrawal of the 

inhibitors. This was considered  essential to ensure that these novel GSK-3 inhibitors 

were not increasing ESC self-renewal because they were irreversibly blocking the 

ability of ESCs to differentiate. Expression of pluripotency markers by ESCs grown 

in the presence of GSK-3 inhibitors, for both short (48h) and long (19 days) periods 

of time, and their down-regulation in differentiating conditions suggested that ESC 

maintained their pluripotency. ESCs treated with GSK-3 inhibitors also retained the 

capacity to form EBs, following removal of the inhibitors. Maintenance of 

pluripotency was further supported by the ability of ESC to differentiate into the 

three germ layers, judged on the basis of lineage marker expression. These findings 

are in agreement with previous reports showing that ESCs maintained their 

pluripotency after GSK-3 inhibition with BIO or CHIR (Sato et al., 2004; Ying et al., 

2008).  

 

Although Rex1, Nanog and Oct4 were down-regulated under differentiating 

conditions, Oct4 expression was retained for longer (Fig. 3.3A, and 3.7A). A 

possible explanation, discussed already in Section 3.2.2.3, is that the kinetics of Oct4 

down-regulation are slower than Rex1 and Nanog. However, alternative explanations 
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exist such as the possibility that the ESCs under these conditions are differentiating 

into primordial germ cells or primitive ectoderm. Oct4 seems to be down-regulated 

during embryogenesis as cells differentiate towards more committed cell types. 

However, primordial germ cells continue to express Oct4 (Rosner et al., 1990) and 

ESCs have been reported to generate germ cells in vitro (Toyooka et al., 2003). 

Moreover, Oct4 is also expressed in the primitive ectoderm until gastrulation (Rosner 

et al., 1990). Recently, Oct4 expression has been linked to promotion of 

differentiation of ESC into mesendodermal lineages (Thomson et al., 2011).  

 

We observed that some of lineage markers examined, including Fgf5, Nodal, Hnf4, 

Brachyury and N-cam, were expressed in populations of undifferentiated ESCs. 

There are two possible explanations that may account for these observations. One 

possibility is that ESCs spontaneously differentiate and express these markers as a 

result since these are early lineage markers.  Fgf5 and Nodal are markers of primitive 

ectoderm (Haub and Goldfarb, 1991; Loebel et al., 2003; Zhou et al., 1993) and N-

cam marks primitive neuroectoderm. Brachyury and Hnf4 are early mesodermal 

and endodermal markers respectively. However, an alternative explanation, 

supported by several recent reports (Canham et al., 2010; Hayashi et al., 2008; 

Toyooka et al., 2008), is that undifferentiated ESC populations are not homogeneous 

but are instead heterogeneous consisting of pluripotent cells in different stages of 

development including the ICM, the epiblast and the primitive ectoderm (Toyooka et 

al., 2008). In conditions that support ESC self-renewal these populations are 

morphologically undifferentiated, express Oct4 and can fluctuate between each other. 

Canham et al., (Canhan et al., 2010) recently reported the existence of a population 

of cells that express low levels of the primitive endodermal gene Hex1 which is in 

equilibrium with Nanog positive cells that resemble the ICM. They proposed that 

ESC cultures have lineage-biased populations but they are not committed toward any 

lineage.   
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3.4.2 Effects of GSK-3 inhibitors on the multilineage differentiation potential 

of ESCs.  

Prior to this study there was controversy about the role of GSK-3 in differentiation. 

Some reports have reported that GSK-3 inhibition promote ESC differentiation to 

neuroectoderm lineages (Ding et al., 2003), while others observed the opposite, i.e., 

induction of mesendodermal differentiation (Bakre et al., 2007). To investigate the 

effects of GSK-3 inhibition on differentiation outcome, the EB differentiation system 

was used as a model.  

 

3.4.2.1 ESCs treated with GSK-3 inhibitors retain pluripotency for a short-

period. 

Retention of the pluripotency markers Nanog and Rex1 in EBs grown in the presence 

of BIO and 1i in comparison with control untreated (Fig.3.8), accompanied by an 

increase in the number of EBs generated when BIO or 1i was present during EB 

formation (Fig. 3.9) suggest that ESC are more resistant to differentiate when GSK-3 

is inhibited. This is in agreement with the observation that GSK-3 DKO cells retain 

expression of pluripotency makers such as Oct4 and Nanog after 12 days of EB 

formation (Doble et al., 2007).   

 

3.4.2.2 Inhibition of GSK-3 drives differentiation towards mesendodermal 

lineages.   

Upregulation of Brachyury expression in the presence of GSK-3 inhibitors, observed 

by both RT-PCR from EBs-derived RNA and using a Brachyury-GFP reporter cell 

line grown in monolayer differentiating conditions, suggest that GSK-3 inhibition 

promotes ESC differentiation towards mesendodermal lineages. GSK-3 inhibition 

mimics activation of Wnt signalling and hence our results are in agreement with 

previous reports showing that Wnt signalling is important for development of the 

primitive streak and mesoderm as mice with components of the Wnt signalling 

disrupted cannot form PS or mesoderm (Huelsken et al., 2000; Kelly et al., 2004; Liu 

et al., 1999; Yoshikawa et al., 1997). 
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Expression of Brachyury-GFP was considerably up-regulated following addition of  

2M 1m or BIO, at times as early as 24 hours after addition. The highest percentage 

of GFP positive cells were observed after 48 hours and then gradually decreased at 

72 and 96h. Maximum expression of Brachyury after 48 hours and not earlier could 

be due to a requirement for down-regulation of Nanog in order for the cells to 

proceed to lineage differentiation. This has been reported recently, the authors 

observing that activation of Brachyury in response to CHIR could only occur in cells 

where Nanog had been down-regulated (Thomson et al., 2011). The reduction in 

numbers of Brachyury-GFP positive cells at 72 and 96 hours compared to 48 hours 

(with 2M GSK-3 inhibitors) may be due to progression of differentiation of 

mesendoderm/early mesodermal cells (positive Brachyury-GFP) into more mature 

mesodermal cells. Transient expression of Brachyury during differentiation of 

embryonal carcinoma cell, mouse and human ESC has been previously observed 

(Davis et al., 2008; Holley et al., 2011; Kennedy et al., 2007; Vidricaire et al., 1994) 

 

Hence, GSK-3 seems to promotes differentiation towards mesendoderm lineages and  

may prevent or slow down differentiation into ectoderm as Sox1 and N-cam 

expression was similar in 6 day-old EB grown with GSK-3 inhibitors than in ESCs, 

but their expression was elevated in 6 day-old untreated EBs indicating ectoderm 

differentiation (Fig 3.10). Our results are in agreement with several reports published 

before our work commenced (Bakre et al., 2007; Aubert et al., 2002) and two reports 

published after this study (Thomson et al., 2011; Ying et al., 2008).  Ying et al., 

showed that inhibition of GSK-3 with CHIR promotes non-neural differentiation, as 

well as blocking neural differentiation (Ying et al., 2008). More recently, inhibition 

of GSK-3 following 48 hours of withdrawal of LIF and BMP4, which lead to 

differentiation, was shown to promote mesendoderm differentiation with about 70% 

of the cells expressing Brachyury after 36 hours of CHIR addition, and inhibit 

neuroectoderm lineage differentiation (Thomson et al., 2011). Surprisingly, 

Brachyury positive cells also express the pluripotency marker Oct4 at higher levels 

than in the initial ESC population and they observed that Oct4 binds to DNA regions 

associated with neuroectoderm differentiation where it acts as a repressor. This is in 

agreement with the fact that Oct4 overexpression can block induction of 

neuroectoderm differentiation. In addition to this, the levels of Oct4 decrease 

following withdrawal of LIF and BMP4 and addition of CHIR leads to re-expression 
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of Oct4 and decrease of Sox2 levels. Sox2 seems to bind to DNA regions associated 

with mesendoderm differentiation where it acts as a repressor. Hence, decrease of 

Sox2 levels following CHIR addition alleviates Sox2 repression of genes associated 

with mesendoderm differentiation.  

 

 

3.4.3 Conclusions 

GSK-3 inhibition has different outcomes depending on the developmental stage of 

the cells. Inhibition of GSK3 in ESCs cultured under self-renewing conditions leads 

to enhanced self-renewal, whereas its inhibition during differentiation promotes ESC 

towards mesendoderm lineages. A recent report (Thomson et al., 2011) proposed that 

the presence of Nanog is key for the different outcomes. Decrease of Nanog (using 

siRNA) in conditions that maintain pluripotency led to a consequent down-regulation 

of other pluripotency markers, such as Oct4 and Sox2, which in the authors‟ opinion 

leave the cells responsive to differentiating stimuli. They proposed that the 

pluripotency circuit represses all lineage differentiation in ESC but some markers, 

such as Oct4 and Sox2 have a lineage specific role, Oct4 represses Neuroectoderm 

differentiation and thus promoting Mesendoderm differentiation and Sox2 has the 

opposite role.  
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4.1 Introduction and aims 

ESCs are very attractive as a source of differentiated cell types for use in 

regenerative medicine due to their properties, which have already been discussed in 

Section 1. We must understand the molecular mechanisms governing stem cell fate 

in order for the potential of ESCs to be realised since ESC pluripotency needs to be 

maintained in culture and differentiation towards a desired cell types tightly 

controlled.  

 

Under standard culture conditions, mESC pluripotency is controlled by the 

coordinated action of extrinsic factors, signalling pathways and transcription factors 

(Boiani and Scholer, 2005), which have been extensively described in Section 1.3.  

ESC can be maintained in cultured in the presence or absence of serum. In the 

presence of serum, LIF alone is able to maintain self-renewal of mESCs. However, 

in serum-free conditions, Bone morphogenetic proteins 2 or 4 (BMPs) are also 

required. BMPs appear to cooperate with LIF to maintain self-renewal through 

induction of Id (Inhibitor of differentiation) proteins (Ying et al., 2003). Maintenance 

of self-renewal in serum-free media in the absence of LIF and BMP4 can be 

achieved by simultaneous inhibition of Glycogen Synthase Kinase-3 (GSK-3) and 

MAP kinase/ERK kinase (MEK) (Ying et al., 2008), often referred to a 2i conditions.  

 

The canonical Wnt pathway has also been reported to play a role in maintenance of 

self-renewal of mESCs (Hao et al., 2006; Ogawa et al., 2006; Sato et al., 2004; 

Singla et al., 2006; Ying et al., 2008). Inhibition of GSK-3, which mimics activation 

of Wnt signalling, with small molecules inhibitors, BIO (Sato et al., 2004), 1m (Bone 

et al., 2009) or CHIRON99021 (CHIR; Ying et al., 2008), can maintain short-term 

self-renewal of ESCs. Furthermore, mESCs with both GSK-3 isoforms,  and  

deleted (GSK-3 DKO) (Doble et al., 2007) have Wnt/-catenin signalling 

hyperactivated and are more resistant to differentiation but cannot self-renew in 

longer-term cultures in the absence of additional factors. However, either addition of 

LIF in the presence of serum (Bone et al, 2009), or inhibition of MEK in chemically 

defined media (N2B27) media completely blocks differentiation and robust long-

term self-renewal is achieved (Ying et al., 2008).  
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The mechanism of action of GSK-3 in regulating mESC self-renewal and 

pluripotency is still not fully understood. As previously discussed in Section 1.3.3.1, 

GSK-3 is known to play a role in different cellular processes such as apoptosis, cell 

survival metabolism and translation (Jope and Johnson, 2004). GSK-3 downstream 

effectors in non-ESC type include protein synthesis initiation factors, transcriptional 

regulators and components of the cell-division cycle (reviewed in Frame and Cohen 

2001; Doble and Woodgett, 2003). Despite the fact that GSK-3 has many 

downstream effectors, most studies to date suggest that the effects observed upon 

GSK-3 inhibition is at least partly via Wnt/-catenin-dependent mechanisms. 

However, mechanisms of action of GSK-3, independent of -catenin, including 

regulation of c-Myc and Nanog, have also been proposed (Bechard and Dalton, 

2009; Storm et al., 2007). Both reports proposed a mechanism involving GSK-3 

downstream of PI3K. 

 

Using clonal assays, we have previously demonstrated that GSK-3 inhibition 

enhances self-renewal of mESC in the presence of LIF and Serum (Bone et al., 2009) 

and that GSK-3 downstream of PI3K can regulate Nanog RNA expression (Storm et 

al., 2007). However, the precise mechanism of action of GSK-3 in these situations is 

unknown. If GSK-3 inhibition contributes to maintenance of self-renewal, it is 

reasonable to hypothesise that GSK3 may regulate other transcription factors as well 

as Nanog. Due to the fact that GSK-3 not only regulates transcription factors in non-

ESC types but also protein synthesis factors, GSK-3 could also potentially play a role 

in determining ESC fate at the translational level, as well as the transcriptional level.   

 

The aim of this study was to investigate whether GSK-3 regulates expression of 

pluripotency markers and, if so, the mechanism of action of GSK-3. We examined 

the possible regulation of Nanog, Tbx3, c-Myc, Zscan4 and Oct4 by GSK-3 at 

transcriptional, protein stability and translational levels. For our study we used a 

chemical genetic approach, including selective small molecules inhibitors of GSK-3 

(3.1.1), and DKO GSK-3 cells (Doble et al., 2007).   
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4.2 Effect of GSK-3 inhibition on cell proliferation in different culture 

conditions.  

Our group, together with others, have demonstrated a role for GSK-3 inhibition in 

contributing to maintaining ESC self-renewal (Sato et al., 2004; Doble et al., 2007; 

Ying et al., 2008; Bone et a., 2009). Ying et al., showed that inhibition of both GSK-

3 and MEK could sustain ESC self-renewal in the absence of BMP4 and LIF. Under 

these defined conditions the authors proposed that the main role of GSK-3 inhibition 

was to restore growth and metabolic capacity. However, in the presence of LIF and 

serum, ESC metabolism is well supported and we previously observed that inhibition 

of GSK-3 in the presence of LIF and serum did not seem to alter cell growth (results 

not shown). Hence, we first sought to investigate whether inhibition of GSK-3 

affected the proliferation of ESCs cultured under different conditions and whether in 

serum-free media GSK-3 inhibition would have a positive effect on cell growth as 

previously reported (Ying et al., 2008).  

 

Cells were grown in N2B27 (defined media 1:1 Neurobasal to DMEM F12 media 

supplemented with N2 and B27 supplements) medium alone, or in the presence of 

GSK-3 inhibitor (CHIR), MEK inhibitor (PD) or both and their growth was 

monitored for 3 days. GSK-3 inhibition with CHIR increased cell growth compare to 

N2B27 alone, as shown in Figure 4.1(i). Addition of PD to N2B27 alone led to a 

slight increase in cell growth, which was smaller than with CHIR. Cells grown in 

both CHIR and PD grew at the same rate as cells inhibited only with CHIR (Figure 

4.1 (i)). No significant differences in cell growth were observed with only PD or 

CHIR in the presence of LIF and Serum, but combinations of both (2i) slightly 

reduced cell growth (Fig. 4.1 (ii)). In the presence of LIF and BMP4, inhibition of 

MEK seems to decrease cell growth and inhibition of GSK-3 restores it (Fig 4.1 

(iii)). It seems, therefore, that the effect of the inhibitors differs depending on the 

culture milieu. In the presence of serum no major effect on cell growth is observed 

when GSK3 or MEK is inhibited. However, in serum-free conditions GSK-3 seems 

to restore cell growth when added to MEK inhibitor, which in accordance with Ying 

et al., report (Ying et al., 2008).  
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Figure 4.1. GSK-3 inhibition increases cell growth in the absence of serum but not in 

the presence. ESCs were grown in N2B27 alone without extrinsic stimuli (i), in GMEM 

supplemented with Serum and LIF (ii) or in N2B27 with BMP4 and LIF (iii) for 3 days in 

the presence or absence of 3M CHIR, 1M PD or both (2i) and their growth monitored. 

CTL: DMSO treated cells. The data are the average and S.E.M of triplicate experiment. *, <p  

0.05; **, p<0.01, ***, P<0.005. Two-way anova, Bonferroni posttests.  
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4.3 GSK-3 inhibition regulates expression of pluripotency-associated 

transcription factors. 

The key aim of this part of the study was to investigate changes in pluripotency-

associated transcription factors following GSK-3 inhibition in different culture 

conditions, including serum plus or minus LIF, N2B27 plus LIF and BMP4 and 

ground state conditions (N2B27 without LIF or BMP4 but plus MEK and GSK-3 

inhibitors).   

 

4.3.1 Regulation of pluripotency-associated transcription factors by GSK-3 

in the presence of serum.  

A possible regulation of pluripotency-associated transcription factors by GSK-3 in 

the presence of serum and LIF or in the absence of LIF was investigated.  

 

4.3.1.1  GSK-3 inhibition or knockout regulates the expression of Nanog, Tbx3 

and c-Myc in the presence of serum and LIF.  

We investigated early changes in the levels of both protein and RNA for the 

transcription factors Nanog, Tbx3, Oct4, c-Myc and Zscan4 following inhibition of 

GSK-3 with 1m (wild-type ESCs) and in GSK-3 DKO ESCs, grown in serum plus 

LIF. ESCs grown in the presence of 1m, as well as the DKO ESCs, exhibited a more 

compact colony morphology, reminiscent of highly self-renewing cells, compared to 

wild-type controls (Fig 4.2 (i)). We consistently observed an increase in Nanog, 

Tbx3 and c-Myc protein levels as early as 6-8 hours following initiation of GSK3 

inhibition and their elevated levels were maintained at 24 hours (Fig. 4.2 (ii)). Nanog 

protein levels more than doubled in both 1m treated ESCs and GSK-3 DKO ESCs, 

and Tbx3 protein also showed approximately a 2-fold increase in samples grown in 

1m after 8hours and almost a 3-fold increase in DKO cells in serum conditions (Fig. 

4.2 (iii)). However, the levels of Oct4 protein did not show any consistent changes at 

the investigated times (Fig. 4.2 (iii)) and Zscan4 protein was consistently higher in 

DKO cells compared to WT (Fig 4.2. (ii)).  
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Figure 4.2. GSK-3 regulates protein expression of transcription factors in mESCs. 

E14tg2a wild-type (WT) and GSK- double knockout (DKO) mESCs were cultured in 

the presence of Serum plus LIF. GSK-3 inhibitor 1m was added to WT cells at 2 M, as 

indicated. (i) Images show colonies formed from untreated WT ESCs (CTL), DKO ESCs, 

and WT ESCs cultured in the presence of 2M 1m for 48h. Protein (ii) was extracted at the 

times indicated. 12g of nuclear protein extracts were immunoblotted with the antibodies 

specified, antibody signals were quantified and normalised to GAPDH (loading control) (iii). 

A value of one was given to WT 8 hours. The experiment was performed three times and the 

data are the average of and SD of duplicate representative experiments. 
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To accompany analysis of protein levels, the levels of mRNA expression for 

pluripotency markers was also investigated. Nanog and Tbx3 mRNA levels were 

slightly elevated after 8 hours in the presence of 1m or in GSK-3 DKO ESCs. Their 

levels were further increased after 24 hours of GSK-3 inhibition with 1m (Figure 

4.3). c-Myc RNA levels were slightly decreased after 8 hours in 1m and DKO cells in 

the presence of serum, contrasting to the modest increase in c-Myc protein levels 

observed (Figures 4.2 and 4.3). Oct4 mRNA level did not change significantly 

following GSK-3 inhibition either at 8 or 24 hours (Figure 4.3).  

 

 

 

Figure 4.3. GSK-3 inhibition increases transcription of Nanog and Tbx3 in ESCs. 

E14tg2a wild-type (WT) and GSK-3/ double knockout (DKO) mESCs were cultured in 

the presence of Serum plus LIF. GSK-3 inhibitor 1m was added to WT cells at 2 M. RNA 

was extracted at the times indicated, quantitative RT-PCR was carried out and gene 

expression normalized relative to -actin levels. The data are the average and S.E.M of 

quadruplicate samples. *, <p  0.05; **, p<0.01, ***, P<0.005. * for Nanog, #for Tbx3 and + 

for c-Myc. Two-way anova, Bonferroni posttests. A value of 1 was given to WT 8hours. 

 

 

These data indicate that GSK-3 inhibition or knockout regulates the expression of 

Nanog, Tbx3 and c-Myc in the presence of LIF and Serum. We also observed 

consistent increases in Zscan4 protein in DKO ESCs, but not after 8 or 24 hours of 

GSK-3 inhibition, suggesting that Zscan4 may not be a direct downstream effector of 
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GSK-3. Interestingly, changes in Nanog and Tbx3 mRNA levels after 8 hours of 

initiation of GSK-3 inhibition are modest compared to changes in protein levels, 

suggesting that although transcription may account for some of the increase observed 

in their protein levels, other mechanisms are also likely to contribute.  

 

 

4.3.1.2 GSK-3 inhibition can maintain Nanog and Tbx3 expression after 

LIF withdrawal for short-term in serum conditions.  

In Section 4.2.1.1 GSK-3 inhibition or DKO has been shown to be able to regulate 

Nanog and Tbx3 expression in the presence of LIF and Serum. The next aim was to 

investigate whether GSK-3 could also regulate Nanog and Tbx3 expression in the 

absence of LIF. WT and DKO GSK-3 were grown overnight in the presence of LIF. 

LIF was then withdrawn and cells were grown without LIF for 1, 2 or 3 days. One 

control plus LIF was also grown for 3 days. Nanog and Tbx3 protein levels were 

elevated in cells grown in the absence of LIF and presence of 1m compared to grown 

only in the absence of LIF for 1, 2 and 3 days (Fig. 4.4 (i) (ii)). The fact that Nanog 

levels in ESC cultured without LIF but in the presence of 1m are similar to Nanog 

levels in WT cells grown for 3 days plus LIF suggests that GSK-3 can maintain the 

expression of Nanog in the absence of LIF. On the other hand, Tbx3 levels in the 

presence of LIF in WT ESCs were not evident, so the same conclusion cannot be 

drawn (Fig. 4.4 (i) (ii)). Interestingly, the levels of Nanog mRNA do not always 

correlate with Nanog protein, i.e. the levels of Nanog mRNA are similar in DKO 

cells grown with or without LIF for 1 and 2 days despite that Nanog protein is higher 

in DKO with LIF. This uncoupling of RNA and protein levels is even more evident 

for Tbx3, where the RNA levels are similar in WT ESCs grown in minus LIF and 1m 

and in DKO cells with or without LIF at day 2 despite of differences in protein levels 

(Fig. 4.4 (iii)).  
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Figure 4.4  GSK-3 inhibition or DKO regulates Nanog and Tbx3 expression.  WT and 

DKO ESCs were grown in absence of LIF for the times indicated, and in the presence of LIF 

for 3 days. WT incubated with 2M 1m (1m) was also cultured in the absence of LIF. 

Protein and RNA were extracted at the times indicated. Immunoblotting was performed with 

the indicated antibodies (i) and antibody signals quantified and normalised to GAPDH 

(loading control)(ii). Quantitative RT-PCR was carried out and gene expression normalized 

relative to -actin levels. The data are the average and S.D of one experiment run in 

duplicate (iii).  
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The experiment was repeated again to further investigate whether GSK-3 can 

regulate Nanog and Tbx3 in the absence of LIF, in this experiment a plus LIF control 

was included for 1, 2 and 3 days and Zscan4 was also investigated (Fig 4.5). 

 

Nanog and Tbx3 protein levels seem to be tightly controlled and they are rapidly 

downregulated after 1 day of LIF withdrawal in WT cells. GSK-3 inhibition with 1m 

seems to maintain expression of Nanog and Tbx3 protein in WT ESCs in the absence 

of LIF compared to cells cultured without LIF or GSK-3 inhibiton (Fig. 4.5 (i) (ii)). 

The fact that Nanog mRNA does not seem to change dramatically in DKO cells after 

1 day of LIF withdrawal (Fig. 4.5 (iii)) but protein is downregulated suggests that in 

the presence of LIF Nanog may be translated at higher rate. Interestingly, in the 

absence of LIF and presence of 1m, the levels of Nanog and Tbx3 protein and 

mRNA are maintained similar to those observed in WT  ESCs grown in the presence 

of LIF, even after 2 days of LIF withdrawal, suggesting that GSK-3 inhibition can 

maintain Nanog and Tbx3 expression in the absence of LIF, at least for a short period 

of time.  Finally, Zscan4 protein does not seem to be as tightly regulated as Nanog 

and Tbx3 because it is still expressed in cells cultured without LIF for 1 and 2 days 

and protein levels are similar in cells cultured with or without 1m. However, Zscan4 

levels are higher in GSK-3 DKO cells than in WT cells even in the absence of LIF. 
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Figure 4.5. GSK3 inhibition or DKO maintain the expression of pluripotent markers 

upon LIF withdrawal.  WT and DKO ESCs cells were grown in the presence or absence of 

LIF for the times indicated. WT ESCs incubated with 2M 1m were also cultured in the 

absence of LIF. Protein and RNA were extracted at the times indicated. (i) Immunoblotting 

of 15g protein was performed with the indicated antibodies and values normalised to 

GAPDH (loading control) (ii). Data are the average and S.D of duplicate experiments. (iii) 

Quantitative RT-PCR was carried out and gene expression normalized relative to -actin 

levels. The data are the average and S.E.M of quadruplicate samples. ***, P<0.005. * for 

Nanog and # for Tbx3. 
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4.3.2 Regulation of pluripotency-associated transcription factors by GSK-3 

in serum-free conditions. 

Results from the previous Section suggested that inhibition of GSK-3 or its knockout 

in the presence of LIF and Serum can regulate the expression of Nanog, Tbx3 and c-

Myc. Zscan4 was also increased in DKO cells but not after inhibition of GSK-3 for 8 

or 24 hours. This Section aimed to investigate whether GSK-3 inhibition also 

moderate the expression of pluripotency-associated transcription factors in the 

absence of serum. 

  

We investigated early changes in the levels of both protein and RNA for the same 

pluripotency transcription factors as in the previous Section in serum-free media 

(N2B27) plus LIF and BMP4, following inhibition of GSK-3 with 1m, CHIR (wild-

type ESCs) and in GSK-3 DKO ESCs. After 48 hours culture in the presence of 1m, 

CHIR or in DKO, ESC morphology changed compared to control and colonies 

became more round and compact (Fig. 4.6 (i)), similar to what it was observed in the 

presence of serum.   

 

An increase in Nanog and Tbx3 proteins, 8 hours after addition of 1m or CHIR, was 

consistently observed (Fig 4.6 (ii)). Nanog protein increased between 3 and 5-fold in 

1m, CHIR treated or GSK-3 DKO cells after 8 and 24 hours, whereas Tbx3 increased 

between 3 and 6-fold (Fig. 4.6 (iii)). On the other hand, the levels of Oct4 and c-Myc 

did not consistently change and Zscan4 was sometimes, but not always, elevated in 

DKO cells in comparison to control (Fig 4.6 (ii)). 

 

Nanog and Tbx3 mRNA levels were slightly elevated after 8 hours in the presence of 

1m or in GSK-3 DKO ESCs, but not in CHIR, and their levels were maintained after 

24 hours.  After 24 hours of inhibition with CHIR Nanog and Tbx3 levels are as high 

as 1m or DKO (Fig 4.7). An increase in RNA levels of less than 2-fold (and in most 

cases of less than 50%) for Nanog and Tbx3 is relatively low in comparison with 

protein changes of 3-5 fold for Nanog and 3-6 fold for Tbx3 (Figure 4.3 (iii)). c-Myc 

and Oct4 mRNA levels were not significantly altered following GSK-3 inhibition 

(Fig. 4.7).  
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Figure 4.6. GSK-3 also regulates protein expression of transcription factors in serum-

free media. E14tg2a wild-type (WT) and GSK-3 double knockout (DKO) mESCs were 

cultured in chemically defined medium (N2B27) plus LIF and BMP4. GSK-3 inhibitors 1m 

or CHIR99201 were added to WT  cells at 2 M and 3M respectively. (i) Images show 

colonies formed from untreated WT ESCs (CTL), DKO ESCs, and WT ESCs cultured in the 

presence of 1m or CHIR99201 for 48h. Protein (ii) was extracted at the times indicated and 

12g of nuclear protein extracts were immunoblotted with the antibodies specified, antibody 

signals were quantify and normalised to GAPDH (loading control) (iii). A value of one was 

given to WT 8 hours. The experiment was performed three times and the data are the average 

and SD of duplicate experiments. 
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Figure 4.7. GSK-3 inhibition increases transcription of Nanog and Tbx3 in serum-free 

conditions. E14tg2a wild-type (WT) and GSK-3 double knockout (DKO) mESCs were 

cultured in chemically defined medium (N2B27) plus LIF and BMP4. GSK-3 inhibitors 1m 

and CHIR were added to WT cells at 2 M and 3M respectively. RNA was extracted at the 

times indicated, quantitative RT-PCR was carried out and gene expression normalized 

relative to -actin levels. The data are the average and S.E.M of quadruplicate samples. *, <p  

0.05; **, p<0.01, ***, P<0.005. * for Nanog, and #for Tbx3. Two-way anova, Bonferroni 

posttests. A value of 1 was given to WT 8 hours. 

 

 

These data suggest that GSK-3 inhibition has similar outcomes in serum and serum-

free media including change of colony morphology and regulation of Nanog and 

Tbx3, but there are also some differences, for example in regulation of c-Myc and 

Zscan4. Moreover, changes in Nanog and Tbx3 mRNA levels after GSK-3 inhibition 

are modest compared to changes in protein levels in both serum and serum-free 

conditions, suggesting that although transcription may partially account for the 

increases observed in their protein levels, it is plausible that other mechanisms also 

contribute.  
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4.3.3 GSK-3 inhibition can regulate Nanog and Tbx3 expression in the 

absence of extrinsic stimuli.  

We were interested to investigate whether inhibition of GSK-3 in serum-free media, 

without extrinsic stimuli, could also regulate expression of Nanog and Tbx3.  ESCs 

were grown for 16 hours in N2B7 alone before adding GSK-3 (CHIR or 1m) or 

MEK (PD0325901 (PD)) inhibitors or both. Tbx3 and Nanog protein levels were 

more elevated after GSK-3 inhibition compared to cells grown in N2B27 or in the 

presence of only MEK inhibitor after 24 hours. In the case of Nanog, protein was 

even higher when both GSK-3 and MEK were inhibited. However, Tbx3 protein was 

not further increased in samples extracted from cells incubated with two inhibitors 

(Fig. 4.8 (i)).  ESCs also showed more compact colony morphology after 24 and 48 

hours growth in the presence of GSK-3 inhibitor or both inhibitors, in comparison 

with cells grown only with MEK inhibitor or with no inhibitor (Fig. 4.8 (ii)). This 

suggests that GSK-3 inhibition may not only contribute to maintenance of the ground 

state of pluripotency, by restoring metabolic capacity as previously reported (Ying et 

al., 2008), but also by regulating expression of pluripotency regulators such as Nanog 

and Tbx3. 

 

When cells were grown long-term in only MEK or GSK-3 inhibitors they eventually 

differentiated, however, GSK3 inhibition seemed to keep a higher proportion of 

ESCs self-renewing for longer. Robust long-term self-renewal was observed when 

both MEK and GSK-3 inhibitors were present and this is in accordance with Ying et  

al., report (Ying et al., 2008).
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Figure 4.8. GSK-3 inhibition can regulate Nanog and Tbx3 expression in the absence of extrinsic stimuli. E14tg2a mESCs were cultured in N2B27 

without LIF or BMP4 and in the presence of 1M PD, 3M CHIR, 2M 1m, 3M CHIR+1mM PD and 2M 1m+ 1M PD. Immunoblotting was performed 

after 24 hours with the antibodies specified (i) and images taken after 24 or 48 hours (ii). The experiment was repeated three times and data shown is 

representative
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This part of the study next aim was to investigate whether inhibition of GSK-3 in 

cells pre-treated overnight with a MEK inhibitor would lead to early increases in 

Nanog and Tbx3 protein expression. Possible changes in Oct4 and Zscan4 were also 

investigated. 

 

Results from a preliminary experiment (Fig 4.9 (i)) suggested that Nanog protein 

levels modestly increased after 4 hours of GSK-3 inhibition with CHIR and Tbx3 

levels were considerably elevated in comparison to cells without GSK-3 inhibitors. 

The ability of GSK-3 to regulate Nanog was more evident after 24 and 48 hours of 

CHIR addition, where Nanog protein levels were considerably higher in cells with 

CHIR than in cells grown only with MEK inhibitor. The levels of Nanog and Tbx3 

protein seemed to decrease overtime in cells cultured with MEK inhibitor only, 

whereas Nanog levels was maintained and the decrease of Tbx3 was less dramatic in 

cells cultured with CHIR. On the other hand, Oct4 levels was also reduced  overtime 

in cells grown with MEK inhibitor only and addition of CHIR did not appear to have 

a significant effect. Finally, Zscan4 was different, with a modest decrease 24 and 48 

hours after CHIR addition, in comparison with MEK only. Moreover, ESC colony 

morphology changed from differentiating looking cells to round compact self-

renewing colonies after 24 h of GSK-3 inhibition (Fig. 4.9 (ii)). This experiment was 

repeated twice more and all results were reproducible, except the increase in Tbx3 

and Nanog protein after 4hr of GSK-3 addition.  

 

The fact that Nanog and Tbx3 proteins seem to decrease in cells grown in MEK 

inhibitor after 24 and 48 hours, compared to 4 hours, suggests either that GSK-3 

inhibition acts either by preventing the loss of cells expressing Nanog and Tbx3 or 

actively maintains their levels.  

 

To summarise, the data presented in Fig 4.8 and 4.9 suggest that GSK-3 may not 

only play a role in restoring metabolic capacity and growth in 2i conditions, but it 

may also contribute to self-renewal by regulating the expression of Nanog and Tbx3.  
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Fig 4.9 GSK-3 inhibition contributes to maintenance of Nanog and Tbx3 levels 

when added in combination with MEK inhibitor. ESCs were grown overnight in 

N2B27 without LIF and BMP4 and with 1M PD before incubating with 3M CHIR for 4, 

24 and 48 hrs. Samples were immunoblotted with the antibodies specified (i) and images 

taken after 24 hours of CHIR addition (ii).  
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4.4 GSK3 inhibition does not alter Nanog, Tbx3, c-Myc, Oct4 or Zscan4 

protein stability.  

In Section 4.2 we have shown that the expression of certain pluripotency-associated 

transcription factors including Nanog, Tbx3, c-Myc and Zscan4 can be regulated by  

genetical ablation or pharmacological inhibition of GSK-3. GSK-3 is known to 

regulate -catenin protein stability via phosphorylation and proteosomal degradation 

(Moon et al., 2002). Regulation of c-Myc protein stability has also been reported 

(Cartwright et al., 2005). We were interested to examine whether increases in protein 

stability could contribute to the increased levels of Nanog, Tbx3, c-Myc, and Zscan4 

proteins observed following GSK-3 inhibition or in GSK-3 DKO cells. Initially, we 

studied protein degradation by using cycloheximide (CHX) treatment to block new 

protein synthesis and following protein levels over a time-course. GSK3 inhibition 

did not alter the stability of any of the proteins investigated in cells grown in the 

presence of 2M 1m or in GSK-3 DKO compared to WT ESCs in medium 

containing serum (Fig 4.10 (i), 4.11 (i)) or in serum-free media (Fig. 4.12 (i), 4.13 

(i)). Antibodies signals were quantified and normalised to GAPDH in order to 

estimate half-life. Figures 4.12 (ii) and 4.13 (ii) show the average of 2 or 3 

experiments, whereas the Figure 4.10 and 4.11 shows only one experiment because 

of technical problems with reprobing including uneven stripping and photo-bleaching 

of the reprobe.   

 

Nanog was the transcription factor with the shortest half-life, of approximately 1 

hour, in serum with or without 2M 1m (Fig 4.10 (ii)) and serum-free conditions 

with or without 2M 1m and in WT and DKO cells (Fig 4.12 (ii), Fig 4.13 (ii)).  On 

the other hand, the estimated Nanog half-life in WT and GSK-3 DKO cells in serum 

from one experiment was around 2 hours (Fig 4.11 (ii)). The samples from the WT 

and GSK-3 DKO experiment where the reprobe did not work should be run again. In 

brief, GSK-3 inhibition or DKO does not alter Nanog protein stability in serum or 

serum-free conditions and Nanog protein has a short half-life of between 1 and 2 

hours.  
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Tbx3 and Oct4 proteins had estimated half-lives of about 3 and more than 6 hours 

respectively in serum (Fig. 4.10 (ii), Fig 4.11 (ii)) and in serum-free media (Fig 4.12 

(ii), Fig 4.13 (ii)).  

 

Zscan4 protein had an estimated half-life of around 3-6 hours in serum (Fig 4.10, Fig 

4.11) and 3 hours in serum-free media (Fig 4.12 (ii), Fig 4.13 (ii)). Finally, c-Myc 

protein stability was roughly 4 hours in serum-free conditions (Fig 4.12 (ii) and Fig 

4.13 (ii)), and about 2-3 hours in serum+1m (Fig 4.10 (ii)). c-Myc protein stability in 

DKO cells in serum was not investigated.  

 

In conclusion, GSK-3 inhibition or DKO does not dramatically seem to affect 

stability of any of the protein studied in serum or serum-free media.  
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Figure 4.10. GSK-3 inhibition does not alter protein stability of Nanog, Tbx3, c-Myc, 

Oct4 and Zscan4 in serum conditions. mESCs (CTL) or preincubated with 2M 1m for 24 

hours grown in the presence of LIF and Serum were incubated with Cycloheximide (CHX) 

to halt protein synthesis. Protein samples were extracted after 1, 3 and 6 hours CHX 

treatment and from CHX-Untreated samples, and immunoblotting performed with the 

indicated antibodies (i).  A value of 100 was given to the untreated samples and protein 

levels normalised to GAPDH (loading control) (ii). The experiment was performed twice and 

results shown are representative.   
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Figure 4.11. GSK-3 KO does not alter Nanog, Tbx3, Oct4, c-Myc or Zscan4 protein 

stability in serum-containing conditions. WT and GSK-3 DKO ESCs grown in the 

presence of LIF and Serum were incubated with Cycloheximide (CHX) to stop protein 

synthesis. Protein samples were extracted after 1, 3 and 6 hours CHX treatment and from 

CHX-Untreated samples, and immunoblotting performed with the indicated antibodies 

(loading control) (i).  A value of 100 was given to the untreated samples and protein levels 

normalised to GAPDH (ii). The experiment was performed three times and data shown is 

representative.  
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Figure 4.12. GSK-3 inhibition does not alter protein stability of Nanog, Tbx3, c-Myc, 

Oct4 and Zscan4 in serum-free conditions. mESCs (CTL) or preincubated with 2M 1m 

for 24 hours grown in N2B27 plus LIF and BMP4 were incubated with Cycloheximide 

(CHX) to stop protein synthesis. Protein samples were extracted after 1, 3 and 6 hours CHX 

treatment and from CHX-Untreated samples, and immunoblotting performed with the 

indicated antibodies (i).  A value of 100 was given to the untreated samples and protein 

levels normalised to GAPDH (loading control) (ii). The graphs show the average and S.E.M 

of triplicate experiments. 
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Figure 4.13. GSK-3 DKO does not alter Nanog, Tbx3, Oct4, c-myc or Zscan4 protein 

stability in serum-free conditions. WT and GSK-3 DKO ESCs grown in the presence of 

N2B27 plus LIF and BMP4 were incubated with Cycloheximide (CHX) to stop protein 

synthesis. Protein samples were extracted after 1, 3 and 6 hours CHX treatment and from 

CHX-Untreated samples, and immunoblotting  performed with the indicated antibodies (i).  

A value of 100 was given to the untreated samples and protein levels normalised to GAPDH 

(loading control) (ii). The data are the average and S.E.M of triplicate experiments.  
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4.5 GSK-3 - a possible role in regulating translation of Tbx3 and Nanog.  

Results from Section 4.1 suggested that additional mechanisms, in addition to 

transcriptional regulation, could account for the increased protein levels of  

pluripotency transcription factors, including Nanog and Tbx3, observed upon 

inhibition of GSK-3. In the previous Section, we investigated whether GSK-3 

inhibition had any effect on protein stability, but no effects were observed. GSK-3 is 

known to control factors that regulate protein synthesis (Welsh et al., 1998; Welsh et 

al., 1997) and it could be possible that GSK-3 inhibition contributes to self-renewal 

by controlling protein translation.  

 

Regulation of translation is known to be important in early development and 

differentiation (Mathews et al., 2000), where it can play a part in proteome 

constitution by fine tuning gene expression. Translational control allows for a 

quicker response than transcriptional control since mRNA does not need to be 

synthesised, processed or transported (Weyrich et al., 1998). Regulation of 

translation has been recently reported as a possible mechanism that controls stem cell 

fate (Sampath et al., 2008). Moreover, we have previously observed that Nanog 

protein down-regulation precedes decreases in Nanog RNA when ESCs are treated 

with the broad spectrum PI3K inhibitor LY294002 (Storm et al., 2007). These data 

suggests that Nanog, and possibly other transcription factors, may be regulated at the 

level of translational. To investigate this possibility we performed protein re-

synthesis experiments and investigated mRNA translational state of Nanog, Tbx3, 

Zscan4 and C-myc in order to investigate a possible role for GSK-3 in de novo 

protein synthesis.  

 

 

4.5.1 Protein resynthesis experiments. 

Protein resynthesis experiments were performed in E14tg2a cells and WT and GSK-

3 DKO cells in either serum-containing or serum-free media. The experimental 

design was as follows, protein synthesis was halted by addition of CHX, and protein 

re-synthesis initiated by removing CHX after 4hours, washing ESCs extensively and 

adding back fresh medium, containing inhibitors to E14tg2a cells, or without 

inhibitors to DKO cells. 
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4.5.1.1 GSK-3 inhibition accelerates recovery of Nanog protein. 

We initially investigated protein resynthesis of Nanog and Tbx3 in E14tg2a cells 

using GSK-3 inhibitors. Degradation of Nanog and Tbx3 were observed after 4 hours 

of CHX treatment (Fig 4.14 (i)). Nanog protein recovery was observed after 8 hours 

in control as well as samples grown in 2M BIO or 1m in media containing serum. 

Interestingly, Nanog recovery was quicker in samples incubated with GSK3 

inhibitors. Tbx3 recovery can also be observed after 8 hours of CHX wash-out in 

both control and samples treated with GSK-3 inhibitors with a modestly higher 

recovery in samples treated with 1m or BIO (Fig 4.14 (i)). RNA was also extracted to 

investigate whether the increase in Nanog protein correlated with an increase in 

Nanog mRNA (Fig 4.14 (ii)). Interestingly, despite of a considerable increase in 

Nanog protein recovery in samples treated with 1m or BIO as early as 8 hours after 

CHX washout, Nanog mRNA levels did not significantly increase in comparison 

with control (without inhibitors), suggesting that accelerated Nanog protein 

resynthesis in samples with 1m or BIO may be due to at least partly to a different 

mechanism than transcription, potentially an increase in translation. Consistent with 

increased Nanog and Tbx3 protein, colonies showed a more compact and self-

renewing morphology when grown with GSK-3 inhibitors. Compaction of the 

colonies is evident after 16 hours of GSK-3 inhibition (Fig. 4.14 (iii)). This 

experiment was repeated three times but Tbx3 resynthesis was only investigated in 

one experiment.  
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Figure 4.14 GSK-3 inhibition increases Nanog and Tbx3 protein synthesis in serum. 

E14tg2a mESCs were incubated with CHX for 4 hours to halt protein synthesis, CHX was 

then washed out and fresh media with serum and LIF supplemented with either 2M BIO or 

1m added back. UT: CHX-untreated. Protein (i), RNA (ii) and images (iii) were taken at the 

times indicated after CHX washing. (i) Immunoblotting was performed with the antibodies 

indicated (ii), quantitative RT-PCR was carried out and Nanog expression normalized 

relative to -actin levels. The data are the average and S.E.M of quadruplicate samples. No 

significant differences observed between variations. Two-way anova, Bonferroni posttests.A 

value of 1 was given to untreated samples in (ii). Bright field microscopy images (iii). This 

experiment was performed 3 times and results shown are representative with the exception of 

Tbx3 that was only studied in one experiment.  
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4.5.1.2 Nanog and Zscan4 protein resynthesis is quicker in GSK-3 DKO 

cells.  

The same experimental approach, described in the previous Section (4.4.1.1) using 

CHX to stop protein synthesis, was employed to investigate protein resynthesis of 

Nanog, Tbx3, Zscan4 and c-Myc in WT and GSK-3 DKO cells.    

 

Nanog protein recovery can be observed as early as 1-2 hours after CHX washout in 

DKO cells, whereas Nanog recovery is not observed in the WT cells even after 4 

hours (Fig 4.15 (i), (ii)). Nanog mRNA decreased after CHX treatment and it did not 

start increasing until 4 hours of CHX wash-out (Fig 4.15 (iii)). Thus, remarkably, 

Nanog protein re-synthesis in cells grown with 1m or in DKO cells occurs without 

measurable increases in Nanog mRNA levels suggesting that GSK-3 may  regulate 

the translation of Nanog mRNAs. This experiment was also performed in serum-free 

media and the results were similar (Fig. 4.16). Nanog protein recovery was evident  2 

hours after CHX wash-out, whereas Nanog mRNA did not increase in comparison 

with CHX-treated (Fig 4.16). 

 

Tbx3 protein re-synthesis also occurred after CHX wash-out in media containing 

serum and serum-free media, re-synthesis rate seemed to be similar in WT and DKO 

cells in both media conditions (Fig 4.15 (i), (ii), Fig 4.16 (i), (ii)) suggesting that 

GSK-3 does not regulate Tbx3 protein synthesis. However, this experiment was 

initially optimised for investigating Nanog protein resynthesis, which has a shorter 

half-life than Tbx3 and Nanog protein is considerably reduced after 4 hours CHX 

treatment making it easy to study its recovery after CHX wash-out. On the other 

hand, Tbx3 protein has a longer half-life, so its levels are not reduced to such a 

significant extent after 4 hours of CHX treatment and thus the window to look at 

protein resynthesis is smaller. Moreover, preliminary results, already discussed in 

Section 4.4.1.1 (Fig. 4.14 (i)), suggest that Tbx3 may be resynthesised quicker when 

GSK-3 is inhibited. Further analysis of Tbx3 protein recovery in cells treated with 

the inhibitors should be performed in order to elucidate whether GSK-3 controls 

Tbx3 protein synthesis, using conditions optimised for examination of Tbx3 protein 

such as longer CHX treatment to further decrease protein or using radioisotopes.   
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Zscan4 protein resynthesis also seems to be accelerated in DKO cells compared to 

WT in serum conditions (Fig 4.15 (i) (ii)). It would be interesting to investigate the 

dynamics of Zscan4 mRNA following CHX wash-out because it may be regulated at 

translational level.  

 

c-Myc protein re-synthesis seemed to be slower in GSK-3 DKO cells compared to 

WT (Fig 4.15 (i), (ii)).   

 

In summary, Nanog protein resynthesis seems to be accelerated when GSK-3 is 

inhibited or in GSK-3 DKO cells. Furthermore, the early increase in protein levels 

observed, does not seem to be due to corresponding increases in RNA. Zscan4 

protein resynthesis also seems to be quicker in GSK-3 DKO cells.  
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Figure 4.15 GSK-3 DKO accelerates Nanog and Zscan4 protein synthesis in serum-

containing media. WT and GSK-3 DKO mESCs were incubated with CHX for 4 hours to 

stop protein synthesis, CHX was then washed out and fresh media with serum and LIF added 

back. Protein and RNA samples were taken at the times indicated after CHX washing. (i) 

Immunoblotting was performed with the antibodies indicated. (ii) A value of 1 was given to 

CHX treated and samples normalised to GAPDH (loading control). The data are the average 

and S.D of duplicate experiments. (iii), quantitative RT-PCR was carried out and Nanog 

expression normalized relative to -actin levels. The data are the average and S.E.M of 

quadruplicate samples. A value of 1 was given to CHX treated samples. 
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Figure 4.16 GSK-3 DKO accelerates Nanog protein synthesis in serum-free media. WT 

and GSK-3 DKO mESCs were incubated with CHX for 4 hours to stop protein synthesis, 

CHX was then washed out and fresh media with serum and LIF added back. Protein and 

RNA samples were taken at the time indicated after CHX washing. (i) Immunoblotting was 

performed with the antibodies indicated. (ii) A value of 1 was given to CHX treated and 

samples normalised to GAPDH (loading control). The data are the average and S.D of 

duplicate experiments. (iii), quantitative RT-PCR was carried out and Nanog expression 

normalized relative to actin levels. The data are the average and S.E.M of quadruplicate 

samples. A value of 1 was given to CHX treated samples. 
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4.5.2 GSK-3 inhibition increases translation state of Nanog, Tbx3 and 

Zscan4.  

In the previous Section Nanog protein recovery was shown to be accelerated in GSK-

3 DKO cells (Fig 4.15, Fig 4.16) or in cells grown in GSK-3 inhibitors (Fig 4.14) and 

Zscan4 protein recovery is also quicker in DKO cells in serum conditions (Fig 4.15). 

Moreover, Nanog protein recovery occurs without a previous increase in the mRNA 

levels (Fig 4.15 (iii)) suggesting that other mechanisms, apart from transcription may 

account for the increase in Nanog recovery when GSK-3 is inhibited. Previous data, 

shown in Section 4.2.1 and 4.2.2, also suggest that Nanog expression can be 

regulated by additional mechanisms. Although Nanog protein levels were elevated 

following 6-8 hours of GSK-3 inhibition, increases in Nanog mRNA were modest 

compared with that of the protein. The aim of this part of the study was to investigate 

a possible role of GSK-3 in regulating translation of Nanog, and other pluripotent 

markers, by studying changes in the rate at which these transcripts are translated after 

treatment with GSK-3 inhibitors and in GSK-3 DKO cells. This can be investigated 

by studying the mRNA levels of the gene of interest bound to polysomes. A 

molecule of mRNA that is being actively translated has several ribosomes attached, 

this is referred to as polysomal RNA. Polysomal-enriched fractions of RNA can be 

obtained by loading cell lysates (containing the mRNA) onto a sucrose gradient, 

followed by centrifugation. Briefly, cell lysates are loaded into a 10-50% sucrose 

gradient, ultracentifruge and fractions collected. After centrifugation, RNA is 

distributed in the sucrose gradient according to their weight, therefore, polysomal-

bound RNA is heavier and it will be found in the bottom layers of the sucrose 

column whereas monosomes (single ribosomes) are found at the top layers. The 

absorbance at 260nm of each of the fraction was measured and fractions enriched in 

polysomes or monosomes were pooled (Fig. 4.17).  

 

Initially the proportion of mRNA bound to polysome after 8 and 24 hours of GSK-3 

inhibition with 1m and in DKO cells was investigated. Results suggested that the 

proportion of Nanog mRNA bound to polysomes is higher after 8 and 24 hours of 

GSK-3 inhibition or in DKO cells (Fig. 4.18).  
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Fig. 4.17 Separation of polysome-enriched RNA fractions. E14tg2a wild-type (WT) and 

GSK-3 double knockout (DKO) mESCs were cultured in the presence of serum and LIF. 

The GSK-3 inhibitor 1m was added to WT cells at 2 M and cells lysed after 4 and 8 hours 

of 1m addition. Cell lysates were loaded into a 10-50% sucrose gradient and ultracentrifuge 

at 150.000g for 1 hour and a half. After centrifugation, RNA was distributed in the sucrose 

gradient according to their weight. Polysomal-bound RNA is heavier and it was found in the 

bottom layers of the sucrose column whereas monosomes were found at the top layers. The 

absorbance at 260nm of each of the fraction was measured and fractions enriched in 

polysomes or monosomes were pooled. The graph shows the RNA distribution of polysome 

and monosomes. The experiment was performed three times and the graph shown is 

representative.  
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Figure 4.18. The proportion of Nanog mRNA bound to polysomes is higher following 

GSK3 inhibition and in DKO GSK-3 cells. WT cells grown in the presence of 2M 1m 

and DKO cells were cultured in serum supplemented with LIF before extracting cell lysates 

at the time indicated. Cell lysates were run through a sucrose gradient to separate the 

polysomal-enriched fraction. The levels of mRNA bound to the polysome were investigated 

by quantitative PCR. Gene expression was normalized relative to -actin levels. Values 

show the proportion of mRNA bound to the polysome fraction (Bound/Total mRNA). The 

data are the average and S.D of one experimen run in duplicate.  

 

 

It was next examined whether the proportion of Nanog mRNA bound to polysomes 

was also higher after 4 hours of initiation of GSK-3 inhibition, as well as after 8 and 

24 hours. There were technical problems while isolating the RNA from the 24 hours 

time point so reliable data was not obtained. Results from three independent 

experiments are plotted in Figure 4.19. The proportion of Nanog mRNA bound to 

polysomes was increased in cells grown in the presence of 1m for 4 and 8 hours. 

Changes in the proportion of mRNA bound to polysomes of other genes including 

Tbx3, c-Myc, Oct4 and Cyclin D1 was also investigated after 4 and 8 hours (Fig 4.19) 

and Zscan4 and -catenin only after 8 hours (Fig. 4.20). The proportion of Nanog 

and Tbx3 mRNA bound to polysomes showed a significant increase, of 

approximately 30% and 40-50% respectively, following 4 and 8 hours of initiation of 

treatment with 2M 1m and in GSK-3 DKO cells (Fig. 4.19).  On the other hand, 

although the proportion of c-Myc mRNA bound to polysomes did not change 
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following 4 or 8 hours of GSK-3 inhibition, a significant increase in polysomally 

bound was observed in GSK-3 DKO cells (Fig. 4.19). This suggests that a period of 

GSK-3 inhibition longer than 8 hours is required in order to increase the proportion 

of c-Myc mRNA bound to polysomes and thus the early changes in c-Myc protein 

previously observed (Fig 4.2) may not be due to an increase in c-Myc translation. 

Finally, the polysomal distribution of Oct4 and Cyclin D1 mRNA did not change in 

cells grown in 1m for 4 and 8 hours or in GSK-3 DKO cells (Fig. 4.19). 

 

The proportion of Zscan4 and -catenin mRNA bound to polysome, which was only 

investigated after 8 hours, also showed a significant increase of approximately 45 

and 40% respectively in cells grown in 1m or in GSK-3 DKO cells (Fig.4.20 ).  

 

The data shown in Figure 4.19 suggest that GSK-3 inhibition leads to effects on the 

translation of Nanog and Tbx3 as early as 4 hours following GSK-3 inhibition. This 

early increase in the proportion of Nanog and Tbx3 mRNA bound to polysomes after 

GSK-3 inhibition suggests that an elevation in their rate of translation may account 

for the early increases observed in their protein levels, which are not be entirely 

explained by changes in mRNA levels. The ability of GSK-3 to regulate -catenin 

and Zscan4 translation state after 8 hours of inhibition has also be shown (Fig. 4.20) 

and it would be interesting to investigate a possible increase in the proportion of their 

mRNA bound to polysome after 4 hours of 1m treatment.  
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Figure 4.19. Nanog and Tbx3 mRNA translation are increased following GSK-3 

inhibition and in DKO GSK-3 cells. WT cells grown in the presence of 2M 1m and DKO 

cells were cultured in serum supplemented with LIF for 4 and 8 hours before extracting cell 

lysates. Cell lysates were run through a sucrose gradient to separate the polysomal-enriched 

fractions from the monosomal fractions. The levels of mRNA bound to polysome or 

monosome were investigated by quantitative PCR. Gene expression was normalized relative 

to -actin levels. Values show the proportion of mRNA bound to the polysome fraction 

(Bound/Total mRNA). The data are the average and S.E.M of three independent experiments 

run in duplicate for the 8 hours time point and the average and S.E.M of two independent 

experiments run in duplicated for the 4 hour time point. *, <p  0.05; **, p<0.01, p<0.005. 

Student T-test. 
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Figure 4.20. Zscan4 and -catenin mRNA translation are increased following GSK-3 

inhibition and in DKO GSK-3 cells. WT cells grown in  the presence of 2M 1m and DKO 

cells were cultured in serum supplemented with LIF for 8 hours before extracting cell 

lysates. Cell lysates were run through a sucrose gradient to separate the polysomal-enriched 

fraction. The levels of mRNA bound to polysome and monosome were investigated by 

quantitative PCR. Gene expression was normalized relative to -actin levels. Values show 

the proportion of mRNA bound to the polysome fraction (Bound/Total mRNA). The data are 

the average and S.E.M of three independent experiments run in duplicate. *, <p  0.05; **, 

p<0.01, *** p<0.005. Student T-test. 
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4.6 Discussion 

Several reports agree that GSK-3 inhibition can contribute to maintenance of ESC 

self-renewal. Despite the fact that GSK-3 has many downstream effectors, most 

studies to date suggest that the effect observed upon inhibition of GSK-3 is at least 

partly mediated through Wnt/-catenin-dependent signalling. Indeed, several 

mechanisms of action of -catenin have been recently proposed (Yi et al., 2011; 

Wray et al., 2011; Kelly et al., 2011), two of them agree that the major mechanism of 

GSK-3 inhibition is -catenin stabilisation and interaction with Tcf3 abrogating its 

repressing activity in the pluripotency network. However, they also agreed in that 

Tcf-independent mechanisms can have a small contribution in the effect of GSK-3 

inhibition/Wnt activation (Yi et al., 2011; Wray et al., 2011). For example, addition 

of CHIR to PD plus LIF increased the number of undifferentiated colonies formed 

from Tcf-3 null cells that express Tcf3-WT or Tcf3-ΔN cells, which lack the -

catenin interacting domain (Wray et al., 2011). If the only effect of GSK-3 inhibition 

was to abrogate Tcf3 repression, addition of CHIR to Tcf3-ΔN cells would not 

increase colony formation. Moreover, the number of alkaline phosphatase positive 

colonies generated in response to Wnt3a in Tcf3-ΔN cells is reduced but not 

eliminated and Wnt3a also increase the number of alkaline phosphatase positive 

colonies when added to Tcf3 null cells suggesting Tcf3-independent mechanism. 

Although Tcf1 was shown to mediate Wnt/-catenin activation, -catenin seems to 

bind Tcf1 leading to activation of Wnt target genes, a small number of colonies were 

also produced from Tcf3-ΔN cells with Tcf1 knocked down (Yi et al., 2011). A 

recent report propose that the effect of Wnt signalling is mediated by a Tcf-

independent mechanism by which stabilisation of -catenin binds to Oct4 enhancing 

its activity (Kelly et al., 2011). However, Yi et al., did not observed Oct4-catenin 

dependent recruitment to chromatin (Yi et al., 2011). Thus, it could be possible that 

GSK-3 inhibition acts through an alternative Tcf-independent mechanism, which 

could be -catenin dependent or independent.   

 

The three recent reports described above (Wray et al., 2011; Yi et al., 2011; Kelly et 

al., 2011) agree with -catenin regulating expression of the pluripotency factor 

network at the transcriptional level. However, there is also evidence suggesting that 

-catenin-independent mechanisms downstream of GSK-3 may also play a part in 
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maintaining self-renewal (Ying et al., 2008; Wray et al., 2011; Storm et al., 2007; 

Bechard and Dalton et al., 2009). For example, recombinant Wnt3a does not fully 

replicate the effects of CHIR in 2i media (Ying et al., 2008) suggesting that CHIR 

has broader effects than simply activating Wnt/-catenin signalling.  Moreover, 

colony formation from -catenin null cells is better in 2i+LIF than in PD+LIF 

suggesting that -catenin independent mechanisms downstream of GSK-3 can also 

contribute to the effect of CHIR on ESC self-renewal (Wray et al., 2011).  

 

To summarise, most studies to date suggest a role for -catenin as a mediator of the 

effects occurring following GSK-3 inhibition either mainly through Tcf-dependent 

(Wray et al., 2011; Yi et al., 2011) or independent mechanisms (Kelly et al., 2011) 

but there is evidence indicating that -catenin-independent mechanisms may also 

contribute to the effect of GSK-3 inhibition on ESC self-renewal. 

 

Among the mechanisms of action of GSK-3 that may be independent of -catenin, 

the regulation of c-Myc and Nanog are of particular interest (Bechard and Dalton, 

2009; Storm et al., 2007). Both reports proposed a mechanism involving GSK-3 

downstream of PI3K. Storm et al., showed that inhibition of GSK-3 can reverse the 

decrease in Nanog RNA levels and protein expression following inhibition of PI3K 

suggesting that PI3K regulates Nanog expression through inhibition of GSK-3 

(Storm et al., 2007). Inhibition of PI3K decreases phosphorylation of S21/9 of GSK-

3 but there is no significant effect on phosphorylation of -catenin or -catenin levels 

(Paling et al., 2004) suggesting that PI3K does not regulate the pool of GSK-3 

involved in Wnt signalling, and thus the effect observed on ESC self-renewal 

following GSK-3 inhibition may be mediated by GSK-3 downstream of PI3K as well 

as downstream of Wnt/-catenin signalling. 

 

The mechanism of action of GSK-3 inhibition and Wnt activation that result in 

enhancement of mESC self-renewal have partly remained unclear  because GSK-3 is 

involved in a number of signalling pathways and numerous downstream effectors 

have been identified in non-ESC types, including protein synthesis initiation factors, 

transcriptional regulators and components of the cell-division cycle.  
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This study aimed to investigate a possible role of GSK-3 in regulating pluripotency-

associated transcription factors including Nanog, Tbx3, C-myc, Oct4 and Zscan4.  

 

 

4.6.1 Effect of GSK-3 inhibition in cell proliferation in different culture 

conditions. 

GSK-3 has been reported to contribute to maintenance of self-renewal by blocking 

residual neural differentiation and mainly by sustaining cell viability in chemically 

defined 2i media (Ying et al., 2008). However, changes in cell growth following 

GSK-3 inhibition in serum and LIF were previously investigated and cell growth did 

not seem to be affected (results not shown). Changes in cell growth in different 

culture conditions, including serum plus LIF, serum-free media plus LIF plus BMP4 

and 2i media were investigated and the effect of the inhibitors in the cells varied 

depending whether there is serum in the media. Cell growth was not affected 

following GSK-3 inhibition in the presence of serum. In contrast, GSK-3 inhibition 

was shown to have a positive input, restoring cell growth, when added to cells with 

MEK inhibitor in serum free conditions, which is in accordance with the report of 

Ying et al., (Ying et al., 2008). We have also shown (Section 4.2.3) that GSK-3 

inhibition seems to regulate Nanog and Tbx3 expression, highlighting the 

pleiotrophic effect of inhibiting the kinase, which is not surprising considering that 

GSK-3 is involved in numerous pathways and has multiple downstream effectors 

(Doble and Woodgett, 2003).   

 

 

4.6.2 Regulation of pluripotency-associated transcription factors by GSK-3. 

The possibility that some of pluripotency-associated transcription factors including 

Nanog, Tbx3, c-Myc, Zscan4 and Oct4 are downstream effectors of GSK-3 was 

tested by using small molecule inhibitors (1m, BIO and CHIR) or DKO GSK-3 cells 

(Doble et al., 2007). 

 

Increases in Nanog, Tbx3 and c-Myc protein levels, as early as 6-8 hours following 

GSK-3 inhibition, were observed in serum plus LIF (Fig 4.2). Zscan4 protein was 
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elevated in GSK-3 DKO cells but not in cells grown in 1m for 24 hours (Fig 4.2)  

suggesting that Zscan4 is not a direct downstream effector of GSK-3 but its elevated 

levels in DKO cells are rather due to GSK-3 DKO cells having self-renewal 

enhanced compared to WT cells. Finally, the levels of Oct4 did not consistently 

change (Fig 4.2). GSK-3 inhibition seems to regulate Nanog and Tbx3 expression 

also in the absence of LIF, at least in short-term experiments (Fig 4.4, Fig 4.5). 

Nanog and Tbx3 proteins were also up-regulated after GSK-3 inhibition in N2B27 

plus LIF and BMP4. However, in contrast to the results observed in serum-

containing conditions, c-Myc and Zscan4 protein levels did not consistently change 

(Fig 4.6). Hence, it seems that GSK-3 can control Nanog and Tbx3 expression in 

both serum and serum-free conditions.   

 

The possibility that GSK-3 can regulate Nanog and Tbx3 expression in the ground 

state conditions, described by Ying et al., (Ying et al., 2008), was also explored. 

Nanog protein was elevated when GSK-3 inhibitor (CHIR) was added alone or in 

combination with MEK inhibitor (PD) in comparison with no inhibitor or only MEK 

inhibition. Tbx3 was also increased when GSK-3 inhibitor was present. Moreover, 

the fact that Nanog and Tbx3 levels were maintained at higher levels in cells with 

both inhibitors in comparison with only MEK inhibitor suggests that GSK-3 is able 

to maintain the levels of Nanog and Tbx3 expression in the absence of any extrinsic 

stimuli. However, inhibition of GSK-3 is not sufficient to maintain robust long-term 

self-renewal and MEK inhibitor is also necessary. These data are in agreement with 

the report of Ying et al., (Ying et al., 2008).  

 

The results presented here show that GSK-3 can regulate Nanog and Tbx3 

expression in all culture conditions tested and so it was of considerable interest to 

investigate the mechanism of action by which GSK-3 regulates these changes. First, 

we investigated whether the elevated levels of Nanog, Tbx3 and c-Myc proteins in 

cells grown in the presence of 1m or in GSK-3 DKO cells in serum correlated with 

an increase in their mRNA levels. Although RNA levels were elevated for Tbx3 and 

Nanog, they were relatively small increases compared with changes in levels of 

protein (Fig 4.3). Moreover, the fact that Nanog protein is down-regulated in DKO 

cells after 1 and 2 days in the absence of LIF whereas Nanog mRNA levels are 

maintained (Fig 4.4) suggests that in the presence of LIF either Nanog protein is 
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more stable or Nanog mRNA is more actively translated. On the other hand, c-Myc 

RNA levels were modestly decreased following GSK-3 inhibition (Fig 4.3), 

suggesting that the increase in c-Myc protein is not due to increases in transcription. 

Moreover, similar to what it was observed in serum, Nanog and Tbx3 RNA levels 

were modestly increased in comparison with the increase in protein in serum-free 

conditions (Fig 4.7). Results from serum and serum-free media conditions indicate 

that other mechanisms, apart from transcriptional regulation, are likely to contribute 

to the increases in Nanog and Tbx3 protein levels observed. Therefore, a possible 

role for protein stabilisation following GSK-3 inhibition was examined. 

 

 

4.6.3 GSK-3 inhibition or DKO does not change protein stability of 

pluripotency-associated transcription factors.  

GSK-3 is known to regulate the stability of several proteins including -catenin, c-

Myc and cyclinD1 (Cartwright, 2005; Diehl et al., 1998) by phosphorylating and 

marking them for proteosomal degradation. Inhibition of GSK-3 leads to decrease in 

phosphorylation leading to protein stabilisation. Therefore, an investigation to find 

out whether an increase in protein stability upon GSK-3 inhibition or in GSK-3 DKO 

cells could contribute to the increase in protein levels observed in pluripotency-

associated transcription factors was conducted (Fig. 4.2, Fig 4.6). 

 

Protein stability of Nanog, Tbx3 and other pluripotency markers, including c-Myc, 

Zscan4 or Oct4 did not dramatically change when GSK-3 was inhibited or in GSK-3 

DKO cells in either serum (Fig. 4.10, Fig 4.11) or serum-free media (Fig 4.12, Fig 

4.13) indicating that the increase in protein observed (Fig 4.2, Fig 4.6) may be due to 

an alternative mechanism to protein stabilisation. The half-lives of the transcription 

factors studied varied, Nanog had the shortest half-life, which was between 1-2 hours 

whereas Oct4 with a half-life of more than 6 hours was the transcription factor with 

the longest half-life. Tbx3 and c-Myc had similar half-life about 3 hours and finally 

Zscan4 half-life was between 3-6 hours.   

 

Most studies to date have focused in investigating transcriptional regulation of 

pluripotency-associated transcription factors, and how they interact with each other 
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to form a network. However, there are no studies about protein turnover, which is 

also dynamic and of great relevance because this can also influence the transcription 

factor network.   

 

 

4.6.4 GSK-3-a possible regulator of translation. 

Regulation of translation plays a key role in early development and differentiation 

(Mathews et al., 2000) and it has been recently reported as a possible mechanism that 

can control stem cell fate (Sampath et al., 2008). GSK-3 can inhibit protein synthesis 

in eukaryotes through phosphorylation of the eukaryotic protein synthesis initiation 

factor 2B (eIF2B) (Welsh et al., 1998), which is critical for initiation of translation. 

Therefore, inhibition of GSK-3 would lead to an increase in general translation. 

Furthermore, Storm et al., observed that Nanog protein is downregulated earlier than 

Nanog RNA when cells are treated with the PI3K inhibitor LY294002 and PI3K is 

known to regulate GSK-3 (Storm et al., 2007). Inhibition of PI3K leads to activation 

of GSK-3 and maybe to a subsequent phosphorylation of eIF2B, this would explain 

the decrease in Nanog protein before its RNA. A possible role of GSK-3 in 

controlling translation of Nanog and other transcription factors including Tbx3 and 

Zscan4 was investigated by performing protein recovery experiments and by looking 

at the translation state of their mRNAs.   

 

The results obtained with Tbx3 were not conclusive, as preliminary data suggest that 

Tbx3 protein resynthesis is accelerated when GSK-3 is inhibited and Tbx3 seems to 

be more actively translated. However, results using DKO cells suggested that protein 

resynthesis is not quicker in DKO cells. One consideration is that the protein 

resynthesis experiments were optimised initially to investigate Nanog protein 

recovery and our data then demonstrated that Tbx3 has a longer half-life than Nanog. 

Further analysis of Tbx3 protein recovery in cells treated with the inhibitors should 

be performed in order to elucidate whether GSK-3 controls Tbx3 protein synthesis. 

One way to study Tbx3 protein recovery would be to optimise the protein resynthesis 

experiments for Tbx3, for example by longer CHX treatment in order to reduce its 

protein prior CHX washed-out. Alternatively, Tbx3 protein synthesis following 

GSK-3 inhibition could be investigated using radioisotopes.  
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Zscan4 protein resynthesis was accelerated in DKO cells and its translational state is 

also increased after 8 hours of GSK-3 inhibition. Finally, Nanog protein recovery 

was faster in ESC treated with GSK-3 inhibitors and in DKO cells. Moreover, Nanog 

protein recovery in GSK-3 DKO cells occurred without an increase in Nanog mRNA 

suggesting that GSK-3 may regulate Nanog protein resynthesis by an alternative 

mechanism to transcription, possibly translation. This is further supported by the fact 

that the proportion of Nanog RNA bound to polysome is higher after 4 and 8 hours 

of GSK-3 inhibition and in GSK-3 DKO cells, indicating increase translation.   In 

summary, these data suggest that GSK-3 can regulate Nanog and maybe also Zscan4 

and Tbx3 translation. However, further experiments are needed to test whether GSK-

3 can regulate Zscan4 and Tbx3 translation. In the case of Tbx3, as mentioned above, 

protein resynthesis experiments optimise for Tbx3 should be performed. Moreover, 

the dynamics of Tbx3 mRNA in these experiments should also be investigated in 

order to study whether Tbx3 protein recovery can take place without a previous 

increase in Tbx3 mRNA. Finally, Zscan4 mRNA dynamics should also be 

investigated in protein resynthesis experiments.   

 

 

4.7 Summary and conclusions. 

The ability of GSK-3 to regulate pluripotency-associated transcription factors was 

investigated. GSK-3 was shown to regulate the expression of Nanog and Tbx3 in all 

the culture conditions tested. Although both Nanog and Tbx3 transcription can be 

controlled by GSK-3, the increase in transcription is modest compared with the 

increase in the levels of their proteins and GSK-3 seems to regulate Nanog also at 

translational level. However, further experiments are needed to test whether GSK-3 

can also regulate Tbx3 translation. GSK-3 downstream of PI3K has been reported to 

regulate translation by phosphorylating eIF2Bin non-ESC types; therefore 

inhibition of GSK-3 may contribute to enhancement of self-renewal by regulating 

translation. Hence, GSK-3 inhibition could contribute to enhancement of self-

renewal by a -catenin dependent mechanism, which would involve inhibition of 

Tcf-3 and alleviation of its transcriptional repression of the pluripotency network 

(Wray et al., 2011), and by a -catenin dependent or independent mechanism through 

increase in translation of specific pluripotency-associated transcription factors 
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including Nanog and Tbx3, maybe by increasing eIF2B activity, which in turn 

would feed into the pluripotency network (Figure 4.21). It would be interesting to 

investigate whether GSK-3 inhibition could regulate translation of other pluripotency 

markers including Sox2 or Klf4.  
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Figure 4.21.  GSK-3 inhibition may contribute to enhancement of self-renewal by a -catenin independent mechanism through increase of translation 

of the pluripotency-associated factors. A. GSK-3 inhibition and -catenin stabilisation leads to inhibition of Tcf3 that alleviates its transcriptional repression 

in the pluripotency network (Wray et al., 2011). GSK-3 inhibition may also decrease phosphorylation of Ser539 resulting in increase of general translation and 

hence of Nanog and Tbx3. Nanog and Tbx3 would then feed into the pluripotency network. Sox2 and Klf2/4 translation could also be increased. B. In the 

absence of GSK-3 inhibitor, GSK-3 phosphorylates -catenin leading to its proteosomal degradation. Thus, -catenin can not inhibit Tcf3, which repress 

transcriptional activity of the pluripotency network. GSK-3 also phosphorylates Ser539 eIF2B leading to decrease translation of Nanog and Tbx3. The 

decrease in transcription and translation of pluripotency-associated transcription factors leads to decrease in self-renewal.  
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5.1 Introduction and aims 

In the previous chapter, GSK-3 inhibition has been shown to increase the expression 

of pluripotency-associated transcription factors Nanog and Tbx3 and this effect is not 

due to enhanced protein stability, but instead occurred as a result of enhanced protein 

synthesis, promoted by inhibition of GSK3. Furthermore, increased loading of RNAs 

encoding pluripotency factors onto polysomes occurred following inhibition of 

GSK3, supporting a role for GSK3 inhibition in increasing translation of these 

RNAs.  

 

This next part of the study sought to investigate whether the increase in mRNA 

translation observed in pluripotency-associated transcription factors following GSK-

3 inhibition was due to increases in general (cap-dependent) translation. Changes in 

general translation following ESC differentiation into EBs have previously been 

reported (Sampath et al., 2008).   As previously explained in Section 1.4, cap-

dependent translation is mainly regulated at the initiation stage by changes in 

phosphorylation of eukaryotic translation initiation factors (eIFs). There are several 

eIFs that can regulate initiation of translation including eIF2BeIF2 and eIF4F. 

The main steps in translation initiation are depicted in Figure 5.1. 

 

GSK-3 downstream of PI3K is known to be able to regulate cap-dependent 

translation by regulating the activity of the guanine nucleotide exchange factor 

eIF2B via phosphorylation of Ser539 resulting in eIF2B inactivation (Figure 5.1) 

(Welsh et al., 1998; Welsh et al., 1997). eIF2B is involved in exchanging eIF2-GDP 

for GTP (Fig 5.1). The eukaryotic translation factor 2 (eIF2), as previously described 

in Section 1.4, controls translation initiation by binding of the Met-tRNAi to the 40S 

ribosome (Fig 5.1 (2)). Every round of translation initiation requires eIF2 bound to 

GTP and the GTP is hydrolysed to GDP during translation initiation (Fig 5.1 (4)). 

Phosphorylation of Ser51 of the  subunit of eIF2 increases its affinity for eIF2B 

that can only exchange eIF2-bound GDP for GTP if eIF2 is unphosphorylated. 

Therefore, phosphorylation of eIF2 leads to inhibition of translation initiation of 

most mRNAs (Day and Tuite, 1998; Goss et al., 1984). The exchange of GDP for 

GTP is not possible either if eIF2Bis phosphorylated. Hence, phosphorylation of 

eIF2B by GSK-3 leads to its inactivation and in turn slows general translation 
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initiation (Welsh et al., 1998). On the other hand, although there is no evidence that 

eIF2 can be directly phosphorylated by GSK-3, inhibition of GSK-3 could 

indirectly affect its phosphorylation. Indeed, a decrease in phosphorylation of Ser51 

of eIF2was suggested following 24hour treatment with the GSK-3 inhibitor 1i in a 

Kinexus antibody microarray previously performed (Bone et al., 2009). However, 

this result has not been validated by immunoblotting. 

 

Relevant to this study is the fact that Wnt signalling, through inhibition of GSK-3, 

has been implicated in indirect regulation of mTOR through TSC2 (Goss et al., 1984; 

Inoki et al., 2006). This raises the possibility that the increase in translation of Nanog 

and Tbx3 observed following GSK-3 inhibition is due to an increase in cap-

dependent translation through stimulation of mTOR activity.  

 

mTOR activity can regulate the formation of the eukaryotic initiation factor 4 

(eIF4F) complex, which is frequently associated with changes in translation rate by 

regulating the 4E-binding protein (4E-BP1). As previously explained in Section 1.4, 

eIF4F is important for binding the cap of the mRNA and recruiting the translation 

machinery and it is composed of three proteins, eIF4E that bind to the cap, a 

scaffolding protein eIF4G and the helicase eIF4A, which unwinds complex 

secondary structures in the 5‟UTR (Fig 5.1(1)).  4EBP1 regulates the formation of 

the eIF4F complex by competing with eIF4G for binding to eIF4E. Binding of 

4EBP1 to eIF4E is regulated by phosphorylation. In resting cells, 4EBP1 binds and 

sequesters eIF4E, preventing it from binding eIF4G, thus inhibiting translation 

initiation (Gebauer and Hentze, 2004; Richter and Sonenberg, 2005). FRAP/mTOR 

activation in response to growth factors leads to phosphorylation of Ser65 4EBP1 

and release of eIF4E, which can then bind to eIF4G to form the eIF4F complex (Fig 

5.2) (Parsa and Holland, 2004). mTOR has also been shown to activate the p70 

ribosomal protein S6 Kinase 1 (S6K1) by phosphorylating Th389, which seems to 

regulate ribosomal biogenesis by phosphorylating S6 ribosomal protein in response 

to serum, amino acids or insulin. 
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Figure 5.1 Main steps in initiation of translation. (1) eIF4E binds to the cap and together 

with eIF4G, will recruit the translational machinery. eIF4A is an ATP-dependent RNA 

helicase that binds and unwinds complex secondary structures in the 5´UTR binds to mRNA 

and eIF4G. The activity of the helicase is stimulated by the RNA binding protein eIF4B. (2) 

The 40S ribosome, which is bound to eukaryotic initiation factor 3 (eIF3), and the ternary 

complex (eukaryotic initiation factor 2 (eIF2)–GTP–Met-tRNAi) is brought to the cap of the 

mRNA through the scaffolding protein eIF4G resulting in the formation of the pre-initiation 

complex. (3) The start codon is recognise and (4) eIF2-GTP hydrolyse to eIF2-GDP which is 

release together with other initiation factors. (5) 60 S ribosomal subunit binds and (6) 

elongation starts (Kleijn and Proud, 2000; Proud, 2007). 
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Figure 5.2 FRAP/mTOR regulates phosphorylation of 4E-BP. Unphosphorylated 4E-BP 

binds and sequesters eIF4E so that is unable to bind eIF4G. 4E-BP is inactivated by mTOR 

phosphorylation in response to growth factors releasing eIF4E which can then bind with 

eIF4G and initiate translation. (Modified from Richter and Sonenberg, 2005). 

 

 

 

The aims of this study were to investigate a possible increase in cap-dependent 

translation following GSK-3 inhibition by examining the phosphorylation status of a 

number of the regulators of initiation described above, including pSer539 eIF2B, 

Ser51 eIF2as well as the mTOR downstream targets Ser65 4EBP1 and Th389 

S6K1.   
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5.2 Phosphorylation of Ser539 eIF2Bdoes not change dramatically 

following GSK-3 inhibition. 

As previously mentioned in Section 5.1, GSK-3 is known to phosphorylate Ser539 of 

eIF2B leading to its inactivation and a subsequent decrease in cap-dependent 

translation. This study aimed to investigate possible changes in phosphorylation of 

Ser539 eIF2B in ESCS grown with GSK-3 inhibitor or GSK-3 DKO for 4-24 hours. 

Phosphorylation of Ser539 did not seem to change at any of the time points 

examined (Fig 5.3). 

 

We next investigated possible changes in phosphorylation after 5, 10, 20 and 30 

minutes of LIF stimulation in samples pre-treated with 1m or untreated samples. 

There did not seem to be dramatic changes in LIF-stimulated phosphorylation of 

Ser539 in samples inhibited with 1m in comparison with untreated (Fig 5.4). Indeed 

there were not considerable changes in LIF-stimulated versus unstimulated. This 

experiment was only performed once at these time-points but in another experiment, 

samples were stimulated for 30 minutes, 2h and 24 hours and changes in 

phosphorylation Ser539 were not observed, indicating that inhibition of GSK-3 does 

not affect phosphorylation of Ser539 eIF2B in ESCs.  
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Figure 5.3. GSK-3 inhibition or knock-out does not affect phosphorylation of Ser539 of 

eIF2B E14tg2a wild-type (WT) and GSK-3/double knockout (DKO) ESCs were 

cultured in the presence of Serum plus LIF. GSK-3 inhibitor 1m was added to WT cells at 2 

M and protein samples taken at the time indicated. Cell lysates were blotted with an 

antibody against phosphorylated Ser539 eIF2Band GAPDH. GAPDH was used as a 

loading control. This experiment was repeated twice and the blot shown is representative.  

 

 

 

 

 

 

 

Figure 5.4. LIF-stimulated phosphorylation of Ser539 eIF2B does not considerably 

changed when GSK-3 is inhibited. E14tg2a were grown in N2B27+LIF+BMP4 for 48 

hours before 4 hours starvation and cells stimulated with LIF for the time indicated. 1m was 

added 30 minutes before LIF stimulation. Cell lysates were blotted with an antibody against 

phosphorylated Ser539 eIF2B  GAPDH was used as a loading control 

Experiment performed once. 
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5.3 Short-term GSK-3 inhibition may increase phosphorylation of Ser51 

eIF2 

This part of the study aimed to investigate a possible change in phosphorylation of 

Ser51 of eIF2 following GSK3 inhibition because a Kinexus antibody microarray 

(kinexus.ca) previously performed suggested a decrease of pSer51 eIF2after 24 

hours of GSK-3 inhibition (Bone et al., 2009).  

 

Initially, changes in phosphorylation of Ser51of eIF2 following GSK-3 inhibition 

over time or in GSK-3 DKO cells were investigated. Phosphorylation of Ser51 of 

eIF2 did not seem to change in either WT cells grown with 1m or in DKO cells 

(Fig 5.5). Earlier changes in pSer51 were investigated next by treating ESCs for 30 

minutes with GSK-3 inhibitors, 1m or CHIR. Preliminary results showed that 

phosphorylation of Ser51 is modestly increased following 2M 1m or 5M CHIR 

(Figure 5.6). These data suggest that initiation of general translation maybe 

decreased but further repeats should be carried out to confirm this finding.  

 

 

 

 

 

Figure 5.5. GSK-3 inhibition or knock-out did not dramatically change 

phosphorylation of Ser51 eIF2. E14tg2a wild-type (WT) and GSK-3

knockout (DKO) ESCs were cultured in the presence of Serum plus LIF. GSK-3 inhibitor 

1m was added to WT cells at 2 M and protein samples taken at the time indicated. Cell 

lysates were blotted with an antibody against phosphorylated Ser51 eIF2 and Shp2. Shp2 

was used as a loading control. This experiment was repeated twice and the blot shown is 

representative.  

  

 

 



Chapter 5: Results 

 166 

 

 

 

 

 

 

 
 

Figure 5.6. GSK-3 inhibition modestly increased phosphorylation of Ser51 eIF2. 

E14tg2a mESCs grown in LIF plus Serum were treated for 30minutes with GSK-3 

inhibitors, 1m or CHIR at the concentrations shown, before cell lysates were extracted and 

immunoblotting performed using antibodies against phosphorylated Ser51 eIF2 and Shp2. 

Shp2 was used as a loading control. This experiment was performed once.  

 

 

 

Data from Section 5.2 and 5.3 suggest that cap-dependent translation is not 

dramatically affected by GSK-3 inhibition but may be slightly decreased (Fig 5.6). 

Further analysis of Ser51 eIF2 should be performed to investigate this in more 

detail. Based on these results, possible changes in cap-dependent translation through 

activation of mTOR, indirectly by GSK-3 inhibition, were examined.  

 

 

5.4 Is GSK-3 acting through TSC2/mTOR to stimulate protein synthesis? 

mTOR plays a role in regulation of protein synthesis through phosphorylation of 

factors that control translation. mTOR can associate with proteins forming two 

different complexes, mTORC1 and mTORC2, with the former being involved in 

regulating translational machinery (Kleijn and Proud, 2000).   

 

mTORC1 regulates protein translation by phosphorylating the 4E-binding protein 

(4E-BP1) and p70 ribosomal protein S6 Kinase 1 (S6K1) (Fig 5.7). mTORC1 

activity can be promoted by the small protein Rheb bound to GTP and can be 
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negatively regulated by TSC2 through hydrolysis of Rheb-GTP to GDP (Fig 5.7). 

TSC2 activity can be inhibited though phosphorylation in Ser939 and Th1462 by 

PKB, which is activated by PI3K signalling in response to insulin or growth factors. 

TSC2 inactivation by PKB leads to active Rheb that consequently activates mTOR 

leading to an increase in ribosome biogenesis and protein synthesis (Proud 2007). 

Interestingly for this study, Wnt signalling has also been implicated in regulation of 

TSC2 through GSK-3 inhibition (Inoki et al., 2006)(. GSK-3 can inhibit the mTOR 

pathway by phosphorylating TSC2 in Ser1337 and Ser1341 leading to its activation, 

subsequent inhibition of Rheb activity and mTOR (Inoki et al., 2006). GSK-3-

dependent phosphorylation of TSC2 requires an AMPK-priming phosphorylation at 

Ser1345 (Inoki et al., 2003). AMPK is activated by AMP when the cellular energy 

levels are low (Inoki et al., 2006).   

 

In order to elucidate whether GSK-3 inhibition decreases phosphorylation of TSC2 

in ESCs, a phospho-specific antibody should have been used. However, antibodies 

against phosphorylated Ser1337 or Ser1341 were not commercially available and 

changes in phosphorylation of mTOR downstream effectors 4EBP1 and S6K1 were, 

therefore, studied as a read-out of mTOR activity.  
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Fig 5.7 GSK-3 can regulate mTOR activity through phosphorylation and activation of 

TSC2. mTOR activity can be promoted by Rheb-GTP and TSC2 negatively regulates mTOR 

by hydrolysis of Rheb-GTP to GDP. TSC2 is inhibited by PKB phosphorylation in S939 and 

T1462 and it is activated by GSK-3 phosphorylation of S1337 and S1341 but it requires 

priming phosphorylation in S1345 by AMPK. Once activated mTOR can promote translation 

by phosphorylating S6Ks, 4EBPs and maybe others (Modified from Proud 2007). 

 

 

5.4.1 Changes in phosphorylation of 4EBP1 following GSK-3 inhibition. 

As previously mentioned in 5.1, 4EBP1 can regulate translation initiation by 

competing with eIF4G for binding to eIF4E. Phosphorylated 4EBP1 is unable to bind 

eIF4E and as a result translation increases. mTOR phosphorylates 4E-BP1 on 

different sites including Thr37, Thr46 and Ser65. The first two sites are thought to be 

priming sites and the latter is thought to interfere with binding to eIF4E (Fadden et 

al., 1997, 1998; Heesom et al., 2001). An increase in phosphorylation of Ser65 would 

be expected if mTOR activity is elevated following GSK-3 inhibition.  
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Changes in phosphorylation of Ser65 4EBP1 were investigated following GSK-3 

inhibition and preliminary results suggest that pSer65 is not dramatically affected by 

GSK-3 inhibition (Fig 5.8). Although pSer65 seems to be slightly increased after 4 

hours treatment with 1m or CH (Fig 5.8 (B)), the antibody did not work very well so 

it is not clear whether this result is representative. Indeed due to technical problems 

with the antibody, further results from repetition could not be obtained.  

 

 

 

Figure 5.8. GSK-3 inhibition does not dramatically affect phosphorylation of Ser65 

4EBP1. E14tg2a mESCs were cultured in the presence of Serum plus LIF in the presence 

of 2M 1m or 3M CH for the times indicated. (A) Cell lysates were blotted with an 

 (B) Antibody signals were 

quantified and normalised to GAPDH. This experiment was performed once. 
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5.4.2 Phosphorylation of Thr389 S6K1 seems to decrease following GSK-3 

inhibition.  

The next aim was investigate changes in phosphorylation of other mTOR 

downstream effectors, this time S6K1. S6K1 is known to be regulated through 

phosphorylation of Thr389 by mTOR (Brown et al., 1995; Kim et al., 2002). 

 

S6K1 plays a role in phosphorylating S6 ribosomal protein in response to serum, 

amino acids or insulin. Phosphorylated S6 ribosomal proteins rapidly increase the 

translation of 5´terminal oligopyrimidine tract (TOP) mRNA transcripts, commonly 

found in ribosomal proteins and elongation factors, and phosphorylation of Thr389 

S6K1 is frequently associated with increased translation of ribosomal proteins 

(Jefferies et al., 1997; Jefferies et al., 1994). S6K1 can also phosphorylate and 

regulate the eukaryotic elongation factor 2 kinase (eEF2K) and the eukaryotic 

translation initiation factor 4B (eIF4B). Phosphorylation of eEF2K at Ser366 results 

in inhibition of kinase activity and thus increased translation elongation (Wang et al., 

2001). The phosphorylation of eIF4B at Ser422 (Raught et al., 2004) increases the 

protein levels recruited to eIF4A, this results in increased scanning ability of 

ribosomes. Thus, S6K1 can regulate cap-translation through eIF4B increasing 

scanning of the ribosomes and eEF2K regulating elongation. S6K also regulates 

ribosome biogenesis by controlling ribosomal S6 protein (Fig 5.9). 

 

Phosphorylation of Thr389, which is the mTOR phosphorylation site in S6K1 

(Brown et al., 1995; Kim et al., 2002), was investigated following GSK-3 inhibition 

in order to further study a possible activation of mTOR.  
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Figure 5.9. FRAP/mTOR can phosphorylate both 4E-BP1 and S6K1. mTOR activation 

in response to growth factor, amino acids or insulin leads to activation of S6K1 by 

phosphorylation in Th389, which in turn phosphorylates and activates S6 ribosomal protein 

promoting ribosomal biogenesis. Inactivation of 4E-BP1 by phosphorylation in Ser64 results 

in inactivation of 4E-BP1 and promotion of cap-dependent translation (After Gingras et al., 

2001; Raught et al., 2004; Wang et al., 2001). 

 

 

5.4.2.1 Phosphorylation of Thr389 of S6K1 decreases following GSK-3 

inhibition.  

Initially, changes in levels of Thr389 phosphorylation of S6K1 after 8 and 24 hours 

of GSK-3 inhibition were investigated because levels of Nanog and Tbx3 protein 

were shown to increase at these time points. Phosphorylation of S6K1 at Th389 

seemed to be decreased after 24 hours of GSK-3 inhibition or in DKO cells. Changes 

in phosphorylation after 8 hours of GSK-3 inhibition were not consistently observed 
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(Fig 5.10). These data suggest that GSK-3 inhibition does not increase mTOR 

activity but rather may decrease it.  

 

 

 

 

Figure 5.10. GSK-3 inhibition or Knock-out decreases phosphorylation of Thr389 

S6K1. WT and DKO ESCs were grown in N2B27 plus BMP4 and LIF. WT were treated 

with 2M 1m or 3M CHIR for 8 and 24 hours before lysing. Immunoblotting was 

performed with antibodies against pThr389 S6K1 and GAPDH. This experiment was 

repeated three times and the blot shown is representative.   

 

 

In order to further investigate a possible change in S6K1 activity due to GSK-3 

inhibition, LIF stimulation experiments were performed. ESCs were starved of LIF 

for 4 hours and GSK-3 inhibitors added 30 minutes before LIF stimulation. GSK-3 

inhibition significantly abolished LIF-stimulated phosphorylation of Thr389 of S6K1 

(Fig 5.11).  

 

In summary, GSK-3 inhibition does not only seem to decrease phosphorylation of 

Thr389 S6K1 but also abolished its phosphorylation following LIF stimulation. This 

reduction in phosphorylation of Thr389 suggests a decrease in protein synthesis and 

a possible decrease in mTOR activity. Although this is consistent with preliminary 

results observed for phosphorylation of Ser51 on eIF2Fig 5.6), which indicates a 

decrease in cap-translation, it is somehow opposite to what was expected, as GSK-3 

inhibition increases translation of Nanog and Tbx3 (Chapter 4). However, translation 

of specific mRNAs through different mechanisms can take place under conditions 

where general translation is reduced. This will be discussed further in Section 5.5.3.  
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Figure 5.11. GSK-3 inhibition reduces LIF-stimulated phosphorylation of Thr389 

S6K1. E14tg2a ESCs were cultured in N2B27+LIF+BMP4 for 48 hours and starved for 4 

hours before stimulation with 1000U/ml LIF for 10 minutes. GSK-3 inhibitors, 1m and CH 

were added at 2M and 3M respectively 30 minutes before LIF stimulation and cell lysates 

immunoblotted with antibodies against pThr389 S6K1 and GAPDH. GAPDH was used as 

loading control. The values are the average and S.E.M from three independent experiments. 

**p<0,005. A value of 1 was given to –LIF. 
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5.4.2.2 GSK-3 inhibition also decreases pThr389 S6K1 in 2i media.  

Data presented in Section 4.2.3 suggested that GSK-3 inhibition can regulate Nanog 

and Tbx3 expression in the presence of PD (2i conditions) and so it was also 

investigated whether GSK-3 inhibition would also lead to a reduction in pThr389 

S6K1 in 2i conditions.   

  

Phosphorylation of Thr389 S6K1 was reduced in cells grown in the presence of 

GSK-3 inhibitor alone or in combination with PD in comparison with PD alone (Fig 

5.12). Phosphorylation of Ser366 on eEF2K, a downstream effector of S6K1, was 

also modestly reduced in the same conditions. These conditions were previously 

shown to result in higher levels of Nanog and Tbx3 proteins (Fig 4.8). Moreover, 

consistent with elevated levels of Tbx3 and Nanog protein, ESC colonies showed a 

more compact and self-renewing morphology in the presence of GSK-3 inhibitor 

(Fig 4.8). Therefore, there seems to be a correlation between a decrease in pThr389 

of S6K1 and increase in ESC self-renewal.  

 

In order to further investigate a correlation between a decrease in phosphorylation of 

Thr389 S6K1 and an increase in ESC self-renewal, changes in levels of Thr389 

phosphorylation following GSK-3 inhibition in cells pre-treated with MEK inhibitor 

overnight were investigated. Results suggest that phosphorylation of Thr389 

decreases following inhibition of GSK3 after 4 hours (Fig 5.13), conditions where 

Nanog and Tbx3 were shown to be increased (Fig 4.9). Decreases in Thr389 

phosphorylation can also be observed after 8 and 24 hours. The data presented 

indicate that there is a correlation between the increase in self-renewal and decrease 

in phosphorylation of Thr389 on S6K1. 
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Figure 5.12. Phosphorylation of Thr389 p70S6K correlates with self-renewal. E14tg2a 

ESCs were grown for 48 hours in chemically defined media N2B27 with the inhibitors 

indicated. Cell extracts were immunoblotted with antibodies specific to either pThr389 

S6K1, pSer366 eEF2K or GAPDH. GAPDH was used as a loading control. This experiment 

was performed twice and results shown are representative.  

 

 

 

 

 

Figure 5.13. GSK-3 inhibition reduces Thr389 phosphorylation in the absence of 

extrinsic stimuli. E14tg2a mESCs were grown overnight in the presence of MEK inhibitor 

(PD) before treating them with 3M CHIR or 2M 1m for the timed indicated. mESCs were 

also grown in CHIR and 1m overnight before cell lysates were prepared. Immunoblotting to 

detect phosphorylation of Thr389 on S6K1 and GAPDH was performed. GAPDH was used 

as a loading control. This experiment was repeated three times and results shown are 

representative.   
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5.4.2.3 Decrease in phosphorylation of Thr389 on S6K1 following GSK-3 

inhibition is mTOR-independent. 

Results from previous Sections 5.4.2.1 and 5.4.2.2 suggest that S6K1 Thr389 

phosphorylation decreases following GSK-3 inhibition. However, there is no 

evidence that S6K1 is a direct substrate of GSK-3 and Thr389 of S6K1 is known to 

be phosphorylated by mTOR. As previously mentioned in 5.1 and 5.4 (Fig 5.8), 

mTOR has been reported to be negatively regulated by GSK-3 through TSC2. 

Therefore, it was somewhat surprising that phosphorylation of Thr389 on S6K1, the 

mTOR phosphorylation site, was decreased following GSK-3 inhibition. This was 

investigated further to determine whether GSK-3 inhibition decreases mTOR activity 

by looking at changes in phosphorylation of Ser2448 on mTOR, which is known to 

be phosphorylated by activated Akt/PKB downstream of PI3K in response to insulin. 

Changes in phosphorylation of Ser2481 on mTOR, which is the autoregulatory 

phosphorylation site, were also investigated.  

 

In order to investigate this, cells were grown in Serum plus LIF supplemented with 

LY294002, which is a broad spectrum PI3K kinase inhibitor; in Rapamycin, which is 

known to inhibit mTOR; in PI-103 that inhibits mTOR, PI3K and DNA-PK, and 

finally also in 1m, that inhibits GSK-3. Phosphorylation of Thr389 of S6K1 

decreased after 24 and 40 hours of LY, PI-103, Rapamycin and 1m treatment (Figure 

5.14). However, the decrease in phosphorylation was higher when either LY or PI-

103 were used in comparison with the decreases observed in Rapamycin and 1m-

treated samples. Although phosphorylation of Ser2448 of mTOR does not seem to 

change dramatically after any treatment, there is a modest decrease after LY and PI-

103 treatment (Fig 5.14 (B)). On the other hand, changes in phosphorylation of 

Ser2481 of mTOR seem to be high, with a reduction of approximately 50% in 

samples grown in the presence of LY and PI-103. Opposite to this, rapamycin and 

1m treatment seemed to modestly increase Ser2481 phosphorylation (Fig 5.14 (B)).  

These data suggest that the effects observed on Thr389 phosphorylation following 

1m inhibition are not due to a decrease in mTOR activity. In support of this, is the 

fact that preliminary results looking at changes in phosphorylation of Ser65 on 

4EBP1, which is downstream of mTOR, does not seem to be dramatically affected 

by GSK-3 inhibition. This raised the possibility that the decrease observed in 

phosphorylation of Thr389 on S6K1 was due to 1m and CHIR off-target effects, for 
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example inhibition of AGC family of kinases, that have also been implicated in 

phosphorylation of Thr389 of S6K1 (Foster and Fingar, 2010). However, the 

decrease in Thr389 S6K1 is unlikely to be due to off-target effect because it can be 

observed following treatment with both 1m and CHIR and they are structurally 

unrelated.  
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Figure 5.14. Decrease of phosphorylation of Thr389 on S6K1 following GSK-3 

inhibition is not mTOR-dependent. E14tg2a ESCs were cultured in the presence of Serum 

and LIF supplemented with 5M LY294002, 100nM PI-103, 1nM Rapamycin and 2M 1m 

for 24 and 40 hours before extracting cell lysates. (A) Immunoblotting was performed with 

the antibodies indicated. (B) Antibody signals were quantified and normalised to Shp2.Shp2 

were used as a loading control. The values in B are the average and S.D of duplicate 

experiments.  
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5.4.2.4 Decreased phosphorylation of Thr389 on S6K1 is observed 

following GSK-3 inhibition with 1m is not due to off-target effects. 

To rule out the possibility that the effect observed in pThr389 following GSK-3 

inhibition is due to 1m off-target effects, GSK-3 DKO cells were used. We 

investigated whether addition of 1m to DKO cells would decrease LIF-stimulated 

phosphorylation of Thr389 on S6K1. As a control, cells were pre-treated with LY 

and rapamicin. LIF-stimulated phosphorylation of Thr389 on S6K1 decreased in 

GSK-3 DKO cells incubated with LY and rapamycin but not with 1m (Figure 5.15). 

These data suggest that the decrease in Thr389 phosphorylation observed in WT 

ESCs treated with 1m is due to GSK-3 inhibition and not to off-target effects. 

 

 

 

 

Figure 5.15 Reduction in LIF-stimulated phosphorylation of Thr389 on S6K1 is not due 

to 1m off-target effects. GSK-3  DKO cells were LIF-starved for 4 hours before pre-treating 

them for 30 minutes with 5M LY, 10nM Rapamycin and 2M 1m. Cell lysates were 

obtained 10 minutes after LIF stimulation and immunoblotting performed with the antibodies 

indicated. GAPDH was used as a loading control. The experiment was repeated twice and 

the blot is representative.  
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5.5 DISCUSSION 

The aim of the studies presented in this Chapter was to investigate whether the 

increase in mRNA translation observed for Nanog and Tbx3 following GSK-3 

inhibition (Chapter 4) was due to an increase in general (cap-dependent) translation. 

Changes in cap-dependent translation following ESC differentiation into EBs has 

previously been reported (Sampath et al., 2008). Changes in phosphorylation of 

several factors that regulate translation were investigated. 

 

 

5.5.1 GSK-3 inhibition does not alter phosphorylation of Ser539 of eIF2B or 

Ser51 of eIF2.  

The first factor to be studied was the guanine nucleotide exchange factor eIF2B 

because it is known to be negatively regulated by GSK-3 downstream of PI3K and it 

is important for controlling translation initiation (Welsh et al., 1997; Welsh et al., 

1998). PI3K activation in response to insulin inhibits GSK-3 resulting in 

dephosphorylation of Ser539 eIF2B and in its subsequent activation promoting 

translation initiation. No dramatic changes in phosphorylation of Ser539 on 

eIF2Bwere observed following GSK-3 inhibition suggesting that cap-dependent 

translation may not be altered. However, there are several factors regulating 

translation so an increase or decrease in activity of another factor may have an effect 

on translation.  

 

The next factor to be investigated was eIF2, which recruits the Met-tRNA to the 40S 

ribosomal subunit, and thus is a key regulator of translation initiation. As previously 

mentioned in 5.1, eIF2 only binds Met-tRNA if it is itself bound to GTP. eIF2-GTP 

is hydrolysed to GDP in each round of initiation of translation and GTP is exchanged 

for GDP by eIF2B which can only bind eIF2 in its unphosphorylated state. 

Phosphorylation of Ser51 of eIF2 inhibits eIF2 activity and decreases translation 

initiation. A Kinexus antibody microarray previously performed suggested a 

decrease of phosphorylation of Ser51 on eIF2after 24 hours of GSK-3 inhibition 

(Bone et al., 2009). However, this result was not further investigated by 

immunoblotting until this study. Although phosphorylation of Ser51 was not 
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dramatically affected by GSK-3 inhibition (Fig 5.3), preliminary results suggest that 

Ser51 phosphorylation may be modestly increased after 30 minutes of initiation of 

GSK-3 inhibition (Fig 5.6).  Changes of about 30% in the level of phosphorylation of 

eIF2 at Ser51 are thought to be enough to inhibit all of the eIF2B as it is present 

at lower levels than eIF2. Thus, small increases in phosphorylation of Ser51 could 

inhibit cap-dependent protein synthesis (Block et al., 1998). More samples should be 

examined to determine whether GSK-3 inhibition consistently increases 

phosphorylation of Ser51 of eIF2 and if so to what extent.  

 

 

5.5.2 GSK-3 does not seem to act through TSC2/mTORC1 to control 

translation in ESCs.  

Most studies to date support a role for Wnt signalling in maintaining ESC self-

renewal by -catenin-dependent transcriptional activation of target genes (Wray et 

al., 2011; Yi et al., 2011; Kelly et al., 2011). However, a role for Wnt in promoting 

translation and cell growth in other cell types  has been reported (Inoki et al., 2006). 

GSK-3 inhibition by Wnt stimulation was shown to increase mTOR activity and 

translation by decreasing the phosphorylation and activation of the Tuberous 

sclerosis complex 2 (TSC2), which inhibits Rheb activity required for mTOR 

activation (Inoki et al., 2006). The present study investigated whether GSK-3 in ESC 

would also regulate mTOR activity. Ideally changes in GSK-3 target phosphorylation 

sites of TSC2 (Ser1337 and Ser1341) would have been investigated but suitable 

antibodies were not commercially available. As an alternative approach, changes in 

phosphorylation of Ser65 on 4E-BP1 and Thr389 on S6K1, which are known mTOR 

target phosphorylation sites, were investigated following GSK-3 inhibition to assess 

mTOR activity.  

 

Although preliminary results suggest that GSK-3 inhibition did not seem to 

dramatically change levels of 4E-BP1 Ser65 phosphorylation (Fig 5.9), a conclusion 

can not be drawn without analysing further experimental repeats, which will first 

require optimisation of the antibody. On the other hand, GSK-3 inhibition led to a 

decrease in phosphorylation of S6K1 at Thr389 (Fig 5.10, 5.11, 5.12, 5.13), which 

was at least partly mTOR independent (Fig 5.14). Interestingly, there seems to be a 
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correlation between a decrease in Thr389 phosphorylation and an increase in self-

renewal (Fig 5.12, 5.13). A decrease in Thr389 phosphorylation suggests that 

ribosomal biogenesis may be reduced following GSK-3 inhibition, which in turn will 

affect general translation. This would be in accordance with the work of Sampath et 

al., because they observed an increase in general translation during ESC 

differentiation (Sampath et al., 2008). Therefore, it is reasonable to think that an 

enhancement of self-renewal observed following GSK-3 inhibition could lead to a 

decrease in general translation.  

 

It has been proposed that S6K1 may not be essential for ribosomal biogenesis 

because S6K1 knock-out cells or knock-in of mutant S6K1 (that cannot be 

phosphorylated) exhibit normal translation of ribosomal proteins (Pende et al., 2004; 

Ruvinsky et al., 2005). However, S6K1 is also known to promote translation 

initiation by phosphorylating eIF4B at Ser422, which promotes its recruitment to 

eIF4A where it stimulate eIF4A activity and thus mRNA with complex secondary 

structures would be translated more efficiently. A decrease in S6K1 activity would 

potentially lead to a decrease in phosphorylation of eIF4B at Ser422 and 

consequently a decrease in translation initiation. Changes in phosphorylation of 

Ser422 on eIF4B should be studied in order to test this. S6K1 can also control 

translation elongation by phosphorylating Ser366 on eEF2K and Ser366 

phosphorylation was decreased following GSK-3 inhibition in 2i conditions (Fig 

5.12) suggesting a possible reduction of translation elongation. To summarise, 

mTOR activity does not appear to increase following GSK-3 inhibition because the 

decrease in S6K1 Thr389 phosphorylation suggests a decrease in activity. However, 

preliminary results suggest that phosphorylation of Ser65 of 4E-BP1, another 

downstream effector of mTOR, is not dramatically altered by GSK-3 inhibition. 

Moreover, phosphorylation of mTOR itself at Ser2481, the autoregulatory 

phosphorylation site that reflects mTOR catalytic activity (Soliman et al., 2010), was 

modestly increased following inhibition of GSK-3 indicating that mTOR activity 

maybe slightly increased. Although the decrease in phosphorylation of Thr389 of 

S6K1 suggests a decrease in mTOR activity, Thr389 can be phosphorylated by other 

kinases apart from mTOR (Fig 5.16).  
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Fig 5.16 S6K1 Thr389 can be phosphorylated by several kinases. S6K1 is 

phosphorylated by mTOR on Thr389 but this site can also be phosphorylated by 

PDK1 and Akt/PKB downstream of PI3Ks. Phosphorylation by Akt/PKB requires 

S6K1 activity and S6K1 is thought to autophosphorylate itself.  

 

 

S6K1 is known to be regulated through phosphorylation of Thr389 by mTOR (Kim 

et al., 2002). PDK1 can also phosphorylate Thr389 in vivo and in vitro (Balendran et 

al., 1999). PDK1 null ESCs cannot phosphorylate Thr389 on S6K1 in response to 

insulin-like growth factors (Williams et al., 2000). Akt/PKB downstream of PI3K 

has also been shown to phosphorylate Thr389 on S6K1 (Romanelli et al., 2002). 

Although PDK1 is able by itself to phosphorylate Thr389 on S6K1, Akt/PKB 

phosphorylation depends on S6K1 activity. After the initial phosphorylation by 

mTOR, Thr389 phosphorylation is maintained by autophosphorylation (Romanelli et 
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al., 2002). Therefore, the decrease in phosphorylation of Thr389 on S6K1 observed  

following GSK-3 inhibition could be due to a decrease in activity of, for example, 

PDK1 or Akt/PKB and not mTOR. This is supported by the fact that Ser2481 is not 

decreased but modestly increased after GSK-3 inhibition. Phosphorylation of Akt at 

Ser473 did not change following GSK-3 inhibition (results not shown) indicating that 

Akt/PKB activation is not altered. However, phosphorylation of Akt at Th308 should 

also be examined as it is also needed for full activation. A decrease in PDK1 activity 

should be investigated because it could be possible that there is a feedback regulatory 

loop between PDK-1 and GSK-3. 

 

Another possible explanation for the decrease in S6K1 Thr389 phosphorylation 

could be that GSK-3 is directly phosphorylating Thr389 S6K1. Although GSK-3 is 

not known to regulate S6K1, S6K1 can phosphorylate GSK-3 under certain 

conditions (Zhang et al., 2006a). It could, therefore, be possible, similar to what I 

proposed for PDK1, that there is a feedback regulatory mechanism whereby GSK-3 

phosphorylates S6K1. 

 

While the mechanism whereby levels of S6K1 Thr389 phosphorylation decrease 

following GSK-3 inhibition is unclear, it is evident that it is likely to have an effect 

on cap-dependent translation either directly, by decreasing activity of eIF4B and 

eEF2K, or indirectly by potentially decreasing ribosomal biogenesis. This is the 

opposite what was expected since Nanog and Tbx3 translation seem to be increased 

following GSK-3 inhibition. However, translation of specific mRNA transcripts, 

without an increase in general translation or in conditions where the cap-dependent 

translation is compromised, can occur via a number of different mechanisms. The 

fact that translation of other genes, including Oct4 and Cyclin D1, are not increased 

following GSK-3 inhibition (Chapter 4) suggest that the increase in translation 

observed with Nanog and Tbx3 is specific. The next Section will discuss mechanisms 

whereby Nanog and Tbx3 mRNA translation could be specifically increased.    
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5.5.3 Nanog and Tbx3 may be translated by a specific mechanism. 

Until the 1980s, cap-dependent or scanning translation was thought to be the only 

mechanism whereby an mRNA could be translated. However, studies of viral gene 

expression led to the discovery of another mechanism of translation initiation 

whereby the 40S ribosomal subunit can be recruited to the proximity of the start 

codon without the need of attaching to the cap and scanning the 5‟UTR until it finds 

an initiation codon. The regions of the mRNA where the ribosome attached were 

named Internal Ribosome Entry Sites (IRES) (Komar and Hatzoglou, 2011). A large 

number of mRNAs containing IRES are less dependent on signals that inhibit cap-

dependent translation, such as increased phosphorylation of eIF2 than mRNAs 

that lack IRES (Clemens, 2001; Komar and Hatzoglou, 2005; Tinton et al., 2005). In 

addition, IRES translation can be regulated by proteins that bind the internal 

initiation site and are named IRES trans-acting factors (ITAFS) (Komar and 

Hatzoglou, 2011). The mechanisms that control ITAF concentrations are largely 

unknown. 

 

IRES-translation is thought to play a role in promoting translation of mRNAs that 

have complex structures in the 5‟UTR, which are more difficult to translate by the 

cap mechanisms. Furthermore, IRES-translation can promote translation of mRNAs 

under conditions where the cap-dependent translation is compromised, for example 

during cell differentiation or nutrient limitation. Although IRES are known to be 

highly structured, with stem loops and pseudo knots, a common sequence or 

structure for identification of IRES elements has not yet been discovered and the 

presence of an IRES in an mRNA has to be experimentally tested (reviewed in 

Komar and Hatzoglou, 2005). 

 

One mRNA containing an IRES that is relevant to this work is c-Myc. ITAFs that 

associate with the IRES of c-Myc, including P54nrb, YB-1 (Y-box binding protein) 

and GRSF-1 (guanine-rich RNA sequence binding factor 1) were identified by 

affinity chromatography (Cobbold et al., 2008). Knock-down of YB-1 and p54nrb 

were shown to lead to a decrease in c-Myc protein expression. The same effect, but 

to a lesser extent, was observed following knock-down of GRSF-1. Importantly, 

GRSF-1 was shown to promote the translation of specific mRNAs by associating to 
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the following target sequences in the 5‟UTR: AGGU, AGGGU, and AGGGGU with 

the 3‟ G and U being the most important for the binding (Kash et al., 2002). Of 

relevance to this study is the fact that GRSF-1 has been identified as a Wnt/-catenin 

downstream target (Lickert et al., 2005) raising the possibility that GSK-3 inhibition, 

which mimics Wnt activation, leads to up-regulation of GRSF-1 promoting 

translation of mRNA targets. Interestingly, Tbx3 has a binding site for GRSF-1 in its 

5‟UTR and thus Tbx3 may be a GRSF-1 target.  In addition to this, YB-1 was also 

shown to play a part in recruitment of c-Myc to polysomes, also raising the 

possibility that YB-1 regulates Tbx-3 mRNA recruitment to polysomes. Moreover, 

Tbx3, similar to c-Myc, has complex secondary structures in the 5‟UTR and it could 

be translated through IRES. On the other hand, Nanog mRNAs does not have GRSF1 

binding sites and the 5‟UTR is much simpler than those of c-Myc and Tbx3. Figure 

5.17 shows the number of secondary structures or stem loops present in the 5´UTR of 

Nanog, Tbx3 and c-Myc RNA, as well as the energy required to unwind them. The 

5´UTR of Nanog only has 18 stem loops whereas both c-Myc and Tbx3 has 100. The 

simplicity of Nanog 5´UTR compared to Tbx3 and c-Myc makes it unlikely to be 

translated through IRES. However, its translation could be regulated by other 

mechanisms, which will be further described below.  

 

Translation of specific mRNAs independently for the cap-translation or IRES-

mediate translation is possible due to structural features and regulatory sequences in 

the 5‟ and 3‟ untranslated region of the mRNA (Gray and Wickens, 1998). Upstream 

open reading frames (uORFs), the presence of specific sequences for mRNA 

binding-proteins, the length of the poly(A) tail, number of secondary structures in the 

5‟UTR and the presence of miRNA target sequence can modulate the translation 

efficiency of mRNAs (de Moor et al., 2005; Gingras et al., 2001; Jackson et al., 

2010).  

 

.
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Figure 5.17 Secondary structures in the 5’UTR of Nanog, c-Myc and Tbx3. The number of secondary structures or stem-loops together with the energy 

required to unwind them in the 5‟UTR of Nanog (A), c-Myc (B) and Tbx3 (C) is shown. Analysis kindly performed by Benjamin Kumpfmüller. 
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Translation of specific mRNAs with at least two upstream open reading frames 

(uORFs) of certain length and position can be increased under stress conditions 

where the levels of eIF2-ternary complex are low, for example ATF4 and ATF5 

(Watatani et al., 2007). This is related to the fact that every round of translation 

initiation requires binding of the eIF2-ternary complex to the ribosome. In normal 

conditions the levels of eIF2-ternary complex are high, the majority of ribosomes 

that finish scanning the uORF1 will get a new eIF2-ternary complex in time to start 

translation of uORF2 (Figure 5.18 (b)). Consequently, ribosomes that are translating 

the uORF2 will not be able to translate the ORF of ATF4 or ATF5 because of two 

reasons. First ribosomes would need backwards scanning, but this is not possible and 

the second reason is that the uORF2 is too long to permit rescanning. On the other 

hand, under stress conditions, the eIF2-Ternary complex is low and most ribosomes 

that finish scanning uORF1 do not get a new eIF2-Ternary complex in time to scan 

uORF2, but in time to initiate scanning in the ATG of ATF ORF (Figure 5.18 (c)). In 

this way, ATF4 and ATF5 specific translation is increased under conditions where 

the cap-depedent or general translation is low.  

 

The 5‟UTR of Nanog and Tbx3 was analyzed for the presence of uORFs (Figure 

5.19) as this may be a mechanism contributing to the specific increase in translation 

of their mRNAs. Nanog has only one uORF located 59 nucleotides upstream of the 

Nanog ORF (Figure 5.19 (i)). As mentioned above the presence of at least two 

uORFs can increase the translation of specific mRNAs. The fact that Nanog has only 

one uORF suggest that translation of Nanog is not increased due to presence of 

uORFs. This is supported by the fact that the uORF of Nanog RNA is not conserved 

between species (Figure 5.20).  

 

On the other hand, Tbx3 has four uORFs located 1038, 927, 175 and 83 nucleotides 

upstream of the Tbx3 ORF respectively (Figure 5.19 (ii)). uORF 1 and 2 are not 

likely to have an effect on translation of Tbx3 because they are too far from Tbx3 

ORF. On the other hand, uORF3 and uORF4 are only 175 and 83 nucleotides from 

the Tbx3 ORF respectively and they could potentially influence Tbx3 translation in 

conditions where the levels of eIF2-ternary complex is low. However, it is unlikely 

that uORF3 and uORF4 increase translation of Tbx3 under stress conditions because 

uORF4 does not overlap with the Tbx3 ORF (Figure 5.19 (ii)). Although the position 
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of the uORFs may not increase specific translation of Tbx3 by themselves, the fact 

that they are evolutionary conserved (Figure 5.21) suggest that these regions may be 

important. For example, they may contain sequences for RNA-binding proteins that 

increase specific translation of Tbx3.     

 

 

 

 

 

Figure 5.18. Translation of Atf4 and Atf5 is regulated by the presence of uORFs. (a) 

Size, position and spacing of the two uORFs of Atf4 and Atf5 mRNA are shown. (b) In 

normal conditions, eIF2-Ternary complex is abundant and 40S ribosomal subunits that 

finished scanning uORF1 get a new eIF2-Ternary complex in time to start scanning the 

uORF2. As a result, the 40S ribosomal subunits are not able to start scanning the ORF 

because they can not scan backwards. Under stress conditions (c), where the levels of eIF2-

Ternary complex are low, the 40S ribosomal subunits can not acquire a new eIF2-Ternary 

complex in time to start scanning uORF2 but they do in time to start scanning at the 

initiation codon of the ORF (Taken from Jackson et al., 2010).  
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Figure 5.19 Analysis of upstream open reading frames (uORFs) in the 5’UTR of Nanog and Tbx3 RNA. Nanog (i) and Tbx3 (ii) RNA was analysed for 

the presence of uORFs. The main ORF is highlighted in red and the uORFs are highlighted in blue. (i) Nanog has one uORF 59 nucleotides upstream of the 

main ORF. (ii) Tbx3 has four uORFs, uORF1 is located 1038 nucleotides upstream of the main ORF, uORF2, uORF3 and uORF4 are located 927, 175 and 83  

nucleotides upstream of the main ORF respectively. The distance between uORF1 and uORF2 is 111 nucleotides, between uORF2 and uORF3 is 752 

nucleotides, between uORF3 and uORF4 is 92 nucleotides.  
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Figure 5.20. Comparison of the uORF of mouse Nanog RNA with 30 vertebrate species. The uORF of mouse Nanog RNA is underlined in yellow. The 

bars above Nanog mRNA sequence represents consensus between the 30 species compared. Bars above 0 are in blue and represent conservation between 

species, bars below 0 in brown indicate no conservation.Aligment of the sequences was performed using the University of California Santa Cruz (UCSC) 

Genome Browser with the help of James Heward.       
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Figure 5.21 Comparison of the uORFs of Tbx3 mRNA between 30  vertebrate species. The sequence of the uORF1, uORF2, uORF3 and uORF4 of mouse 

Tbx3 mRNA were compared with 30 vertebrates species. Bars above 0 are in blue and represent conservation between species; bars below 0 in brown indicate 

no conservation. uORF1 and uORF2 seem to be more conserved than uORF3 and uORF4. The uORF3 is the uORF that is less conserved between species. 

Aligment of sequences was performed with the University of California Santa Cruz (UCSC) Genome Browser.   
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The poly (A) of an mRNA promotes mRNA translation and this is mediated by the 

association of the poly (A) binding protein (PABP) with the translation initiation 

factor eIF4G, which interacts with eIF4E and PABP, and circularised the mRNA. 

This circularisation of the mRNA seems to promote the stabilisation of the 

translation initiation factors that bind the cap (reviewed in de Moor et al., 2005).  

 

mRNAs with long poly(A) tails (80-500A residues) are often actively translated 

whereas those with short poly(A) tails (20-50A) are repressed. However, mRNAs 

with short tails can be polyadenylated and thus actively translated, this is very 

common during oocyte maturation and early embryo development (Mendez and 

Richter, 2001). mRNAs subjected to polyadenylation have specific sequences in the 

3‟UTR including the cytoplasmic polyadenylation element (CPE), which is a U rich 

element, and the hexanucleotide polyadenylation signal (AAUAAA). CPE binding 

protein (CPEB) is a protein that binds CPE. Importantly for this study, insulin and 

progesterone inactivation of GSK-3 leads to activation of Aurora A/Eg2 and 

phosphorylation of CPEB which in turn recruits polyadenylation specificity factor 

(CPSF) and CPSF is believed to attract the poly(A) polymerase to the mRNA and 

adenylation takes place (Sarkissian et al., 2004). Therefore, inhibition of GSK-3 

could result in Aurora A activation leading to polyadenylation of Nanog and Tbx3. 

Investigating changes in phosphorylation of Aurora A and CPEB would be an 

indicator of whether polyadenylation occurs following GSK-3 inhibition. If this was 

the case, the next step would be to investigate the changes in the length of poly (A) 

following GSK-3 inhibition.  

 

Repression of mRNA translation of specific transcripts can also occur by association 

of micro RNAs (miRNAs), which are small regulatory RNA molecules, to the 

3‟UTR. miRNA has complementary base pair to the target mRNAs (Winter et al., 

2009). Although there is controversy about how miRNA regulates gene expression, 

miRNA association to the 3‟UTR is thought to result in mRNA degradation or 

inhibition of translation. The importance of miRNA expression in regulating gene 

expression is exemplified by the fact that alteration of miRNAs expression is linked 

to cancer (Esquela-Kerscher and Slack, 2006). For example, c-Myc up-regulation 

seems to correlate with down-regulation of miRNAs in mouse lymphomas and a 

number of miRNAs such as Let-7, miR-125b, miR-132 can down-regulate c-Myc 
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(Bueno et al., 2011). On the other hand, c-Myc can repress some miRNAs including 

Let-7, mir-15a-16-1, mir-22 and mir-150 (Bueno et al., 2011). miRNAs has also been 

shown to be important regulators of ESC identity. This is evidence by the fact that 

knockout of genes involved in maturation of miRNAs such as Dicer or Dgcr8 results 

in ESC proliferation and differentiation defects (Kanellopoulou et al., 2005; 

Murchison et al., 2005; Wang et al., 2007). mESCs express the miR-290 and miR-

302 clusters (Marson et al., 2008), and their expression is down-regulated as they 

differentiate. In accordance with a role of these miRNAs in regulating ESC identity, 

miR-290 and miR-302 can rescue the proliferative and cell cycle defects observed in 

Dicer and Dgcr8 knockouts ESCs and they are named as embryonic stem cell-cell 

cycle (ESCC) regulating miRNAs (Sinkkonen et al., 2008; Wang et al., 2008). 

However, they do not rescue the differentiation defects, which can be rescued by 

introduction of the Let-7 family of miRNAs (Melton et al., 2010). Let-7 family of 

miRNAs are expressed at low levels in ESCs and their expression increase as ESCs 

differentiate where they play a role in the repression of pluripotency transcription 

factors (Melton et al., 2010). Others miRNAs including miR-134, miR-296, miR-

203, miR-200c and miR-183 can down-regulate expression of pluripotency 

transcription factors (Tay et al., 2008; Wellner et al., 2009). 

 

Pluripotency transcription factors including Nanog, Sox2, Oct4, Tcf3 and Klf4, has 

been shown to positively regulate the expression of ESCC miRNAs, which in turn, 

seem to control expression of pluripotency transcription factors by repressing their 

epigenetic silencing. In this respect, miR-290 has been shown to inhibit Rbl2, and 

thus decrease expression of DNA methyl-transferases (Viswanathan et al., 2008). 

Moreover, ESCC miRNAs are thought to promote expression of c-Myc and Lin28 

indirectly by repressing an unknown factor that would otherwise inhibit Lin28 and c-

Myc (Melton et al., 2010). Pluripotency transcription factors also negative regulate 

the expression of Let-7 family indirectly by promoting expression of the RNA-

binding protein Lin28, which can inhibit Let-7 expression (Viswanathan et al., 2008). 

c-Myc can also positively regulate ESCC miRNAs and inhibit Let-7 family by 

promoting Lin28 expression (Melton et al., 2010) (Fig 5.22 A). In summary, ESCC 

miRNAs are thought to support self-renewal and block differentiation whereas Let-7 

promotes differentiation.  
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GSK-3 inhibition could increase specific translation of Nanog and Tbx3 by down-

regulating the expression of miRNAs that repress pluripotency transcription factors 

(Fig 5.22 B). Alternatively, GSK-3 inhibition could increase expression of ESCC 

miRNAs leading to increase expression of Lin28, which in turn, down-regulates Let-

7 miRNAs and consequently relieving Let-7 inhibition of pluripotent targets. 

Another option would be that GSK-3 directly increases Lin28 (Figure 5.22 B).  

 

Appart from increasing translation of specific transcripts, increase in ESCC miRNAs 

could lead to increase transcription of pluripotency transcription factors by inhibiting 

the epigenetic silencing (Sinkkonen et al., 2008). 
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Figure 5.22 Circuit regulating ESC identity. A) Pluripotency transcription factors can promote expression of ESCC miRNAs, which repress an unknown 

factor that repress Lin28, c-Myc and other pluripotency genes. ESCC also promotes self-renewal by inhibiting epigenetic silencing of pluripotency 

transcription factors. Let-7 miRNAs repress pluripotency target genes and Lin28 and promote expression of differentiating genes. Other miRNAs including 

miR-134, miR-296, miR-200c, miR-203 and miR-183 can also repressed pluripotency transcription factors. B) GSK-3 inhibition could contribute to self-

renewal in different ways, 1. Down-regulating expression of miRNAs that inhibit pluripotency transcription factrors. 2. Up-regulating expression of ESCC 

leading to increase Lin28 expression and  consequently inhibition of Let-7 miRNAs. 3. Increasing expression of Lin28 and in turn inhibition of Let-7 miRNAs 

(Modified from Martinez and Gregory, 2010). 
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Finally, another factor that affects the rate of mRNA translation is the presence of 

secondary structures in the cap proximal 5‟UTR. This is due to the fact that 40S 

ribosomal subunit binding seems to need a single-stranded RNA and thus unwinding 

of the secondary structures in the 5‟ UTR, which is carried out by the eIF4A helicase, 

is essential for binding of the RNA. Hence, when the levels of the helicase are low, 

mRNAs that have less secondary structures are expected to be translated at higher 

rates that those with complex ones. There are several studies supporting this, for 

example over-expression of eIF4E was shown to increase translation of mRNAs with 

complex secondary structures (Koromilas et al., 1992). Moreover, dominant-negative 

eIF4A or inactivation of eIF4B reduced translation of mRNAs with long and 

structured 5‟UTR (Altmann et al., 1995; Svitkin et al., 2001). The present study has 

shown that phosphorylation of S6K1 at Thr 389 is decreased following GSK-3 

inhibition. eIF4B is a downstream target of S6K1 and phosphorylation of eIF4B at 

Ser422 is likely to be reduced, leading to a decrease in activity. This would affect 

mRNAs with complex 5‟UTR secondary structures and translation of mRNAs with 

simpler 5‟UTR (Figure 5.17), such as Nanog, would increase.  

 

In summary, there are several mechanisms that can contribute to an increase in 

translation of specific mRNAs (Figure 5.19). Tbx3, similar to c-Myc, has a complex 

5‟UTR and its translation could be regulated in a similar fashion. c-Myc translation 

in non-ESC-types has been reported to be achieved by several mechanisms, one of 

them is IRES and ITAF associated. GRSF1 is one ITAF that increases c-Myc 

translation and interestingly Tbx3 has binding sites in the 5‟UTR for GRSF1. c-Myc 

can also be regulated by miRNAs and it can itself repress miRNAs. This could be the 

case also for Tbx3. On the other hand, Nanog has much simpler and shorter 5‟UTR 

than Tbx3 and c-Myc and it is unlikely to be translated through IRES-dependent 

mechanisms. Regulation of Nanog through miRNAs could be possible. Nanog 

translation is very likely to be due to its simple 5‟UTR and its reduced requirement 

for helicase, the activity of which maybe decreased due to a likely decrease in eIF4B. 

Although Nanog does not seem to have binding sites for GRSF1 in its 5‟UTR, its 

translation could be regulated by others RNA-binding proteins. Finally, the 

translation of Tbx3 and Nanog mRNAs could also be controlled by polyadenylation 

or uORFs. These possibilities should be further investigated.     
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Figure 5.23. GSK-3 inhibition may decrease cap-dependent general translation and increase specific translation of Tbx3 and Nanog.  GSK-3 inhibition 

seems to decrease phosphorylation of Thr389 S6K1 leading to decrease in kinase activity. This is evidence by a decrease in phosphorylation of the 

downstream target eEF2K. The phosphorylation and in turn the activity of other S6K1 downstream targets including eIF4B and S6 are likely to be decreased 

and consequently cap-dependent translation and ribosomal biogenesis is decreased. Specific translation of Tbx3 and Nanog could be increased by different 

mechanisms including increase in ITAFs, GRSF1 and YB-1, or other RNA-binding proteins that may promote Tbx3 and Nanog translation, stabilisation of 

Aurora A leading to increase polyadenylation and decrease in miRNAs that repress Tbx3 and Nanog. Nanog translation could also be increased because of its 

simple 5‟UTR structure. 
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6.1 Final discussion and future directions. 

ESCs have two unique and remarkable properties, self-renewal and pluripotency, that 

together make them very attractive for use in different fields including regenerative 

medicine, drug development and toxicity screening, as well as a model system to 

study early development. However, in order for the potential of ESCs to be realised, 

we must understand the molecular mechanisms controlling their self-renewal, 

maintenance of pluripotency and their differentiation. There are several pathways 

regulating mouse ESC self-renewal that are activated by extrinsic stimuli and 

regulate expression of transcription factors (Boiani and Scholer, 2005). One 

molecule with a role in mouse ESCs is GSK-3. GSK-3 inhibition was first reported 

to lead to neuroectoderm differentiation (Ding et al., 2003) and one year later, was 

shown to maintain self-renewal of ESCs (Sato et al., 2004). After these initial 

reports, several publications, including our own, have reported that inhibition or 

deletion of GSK-3 contributes to maintenance of self-renewal (Bone et al., 2009; 

Doble et al., 2007; Sato et al., 2004; Ying et al., 2008). GSK-3 inhibition was also 

shown to promote ESC differentiation to mesendoderm lineages (Bakre et al., 2007). 

 

Although ESCs cultured in the presence of GSK-3 inhibitors, BIO or CHIR, have 

been shown to maintain their pluripotency by contributing to chimeras and 

generating teratomas containing derivatives of the three germ layers following 

withdrawal of the inhibitors (Sato et al., 2004; Ying et al., 2008), DKO GSK-3 cells 

exhibited abnormal differentiation potential in EBs or teratocarcinomas (Doble et al., 

2007). Therefore, one of the aims of this study was to investigate whether ESCs 

treated with novel GSK-3 selective inhibitors, 1m and 1i (Bone et al., 2009), kept 

their pluripotency following withdrawal of the inhibitors. Another aim was to 

investigate the effects of GSK-3 inhibition on differentiation. Finally, the mechanism 

of action by which GSK-3 inhibition contributes to maintenance of self-renewal was 

also investigated.   
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6.2 ESCs maintain pluripotency following GSK-3 inhibition.  

Prior to this work, we showed that inhibition of GSK-3 with 1i and 1m enhances 

self-renewal in the presence of LIF and Serum (Bone et al., 2009). However, it was 

considered essential to ensure that these novel GSK-3 inhibitors were not increasing 

ESC self-renewal because they were irreversibly blocking the ability of ESCs to 

differentiate. Expression of pluripotency markers by ESCs grown in the presence of 

GSK-3 inhibitors and their down-regulation in differentiating conditions suggested 

that inhibitor-treated ESCs maintained their pluripotency. This was further supported 

by the ability of ESC to differentiate into the three germ layers, judged on the basis 

of lineage marker expression. These findings are in agreement with previous reports 

showing that ESCs maintained their pluripotency after GSK-3 inhibition with BIO or 

CHIR (Sato et al., 2004; Ying et al., 2008). Further experiments to confirm 

maintenance of self-renewal following removal of 1m or 1i should include testing the 

ability of ESC to form teratomas or to contribute to chimeras.  

 

 

6.3 Inhibition of GSK-3 drives differentiation towards mesendodermal 

lineages. 

Prior to this work, several studies reported that GSK-3 inhibition had an effect on the 

multi-lineage differentiation of ESCs. Although there was controversy about the 

effect of GSK-3 inhibition on differentiation of ESCs, most studies agreed that GSK-

3 inhibition had a negative effect on neuro-differentation (Aubert et al., 2002). Only 

one study reported that GSK-3 inhibition promoted neural differentiation (Ding et al., 

2003). We observed that GSK-3 inhibition seemed to promote differentiation 

towards mesendodermal lineages. Brachyury (a mesendodermal and early 

mesodermal marker) expression was up-regulated in the presence of GSK-3 

inhibitors, observed by both RT-PCR from EBs-derived RNA and using a 

Brachyury-GFP reporter cell line grown in monolayer differentiating conditions. 

Hence, our results are in agreement with several reports published before our work 

commenced (Bakre et al., 2007; Aubert et al., 2002) and two reports published after 

this study that showed that GSK-3 inhibition promotes non-neural differentiation, as 

well as blocking neural differentiation (Ying et al., 2008) and promotes 

mesendoderm differentiation while inhibiting neuroectoderm lineage differentiation 
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(Thomson et al., 2011). From the present study is not clear whether GSK-3 inhibition 

also promotes mesoderm and/or endoderm differentiation. Brachyury up-regulation 

could suggest induction of mesoderm but its expression is not restricted to mesoderm 

since it is also expressed in the mesendoderm and primitive streak. Other mesoderm 

or endoderm markers, expressed later during embryogenesis, should be used in order 

to investigate promotion of mesodermal or endodermal differentiation.  

 

The fact that ESC differentiation can be driven towards a specific cell type is of great 

relevance not only in regenerative medicine for cell therapy but also for toxicity 

screening of new drugs. Indeed, the small molecule inhibitor, 1m, has been used to 

direct differentiation of human ESCs into definitive endoderm (Bone et al., 2011). 

GSK-3 inhibition in human ESCs grown in conditions that maintain self-renewal, 

promoted differentiation first into primitive streak, then mesendoderm and towards 

both mesoderm and definitive endoderm. Moreover, the definitive endoderm had the 

ability to mature into hepatoblast-like cells (Bone et al., 2011).  

 

The fact that GSK-3 inhibition in human ESCs drives differentiation into definitive 

endoderm contrasts with the effect of GSK-3 inhbition in mESC where it enhances 

self-renewal. The different outcome of GSK-3 inhibition in mESC and hESC could 

be due to the fact that they are thought to be derived from two different stages of 

development. hESC have characteristics more similar to mouse epiblast stem cells 

(EpiSCs), which are derived from the mouse post-implantation epiblast, than to 

mouse ESCs, that are derived from the pre-implantation epiblast. Interestingly, 

mouse pre-implantation epiblast with constitutively active -catenin develops 

normally, but after implantation the epiblast expresses Brachyury in the embryo 

ectoderm layer suggesting that constitutively active -catenin promotes 

differentiation into mesodermal lineages (Kemler et al., 2004). If hESC are more like 

EpiSCs than ESCs, the fact that GSK-3 inhibition promotes differentiation to 

mesoderm and endoderm is in agreement with promotion of the post-implantation 

epiblast to mesoderm fate in mouse when -catenin is constitutively active. 

Furthermore, although GSK-3 inhibition in self-renewal conditions promotes self-

renewal in mouse ESCs, GSK-3 inhibition following LIF withdrawal in mESC also 
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seems to promote mesendodermal differentiation. This is consistent with the fact that 

following LIF withdrawal ESCs differentiate, first becoming epiblast stem cells.  

 

Although the effect of GSK-3 inhibition in mESC and hESC is different, mESC can 

still be used as a model to study differentiation of ESC for later extrapolation in 

humans.   

 

 

6.4 Mechanism of action of GSK-3 in mESCs. 

Although several reports, including ours (Bone et al., 2009), agreed with the role of 

GSK-3 in enhancing self-renewal of mESCs, the mechanism of action of GSK-3 in 

this situation was not fully understood. Some light has been shed recently by several 

reports suggesting that the effect of GSK-3 inhibition on self-renewal is at least 

partly due to Wnt/-catenin regulating expression of the pluripotency network (Wray 

et al., 2011; Yi et al., 2011). The present study suggests an alternative mechanism 

that can contribute to enhancement of self-renewal, but which does not contradict the 

reports mentioned above. We tested the hypothesis that GSK-3 may enhance self-

renewal by regulating expression of pluripotency-associated transcription factors 

including Nanog, Tbx3, c-Myc, Zscan4 and Oct4 in different culture conditions. 

Some differences were observed regarding the regulation of GSK-3 inhibition of c-

Myc and Zscan4 transcription factors in different culture conditions. However, GSK-

3 inhibition could regulate expression of Nanog and Tbx3 proteins in all the media 

conditions tested. In order to investigate the mechanism of action by which GSK-3 

regulates these changes, we tested the hypothesis that Nanog and Tbx3 protein up-

regulation was due to an increase in mRNA transcription. Interestingly, although 

Nanog and Tbx3 mRNAs were elevated following GSK-3 inhibition or in GSK-3 

DKO cells, these increases were modest in comparison with the increases in protein 

levels observed, indicating than another mechanism, apart from transcription, was 

likely to account for the increase in Nanog and Tbx3 proteins. However, changes in 

Nanog and Tbx3 protein stability were not altered following GSK-3 inhibition in any 

of the conditions tested, implying changes in stability did not account for the 

increases observed.  
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A recent paper suggested that translational control may regulate ESC fate choice 

(Sampath et al., 2008) and regulation of translation is known to be key during early 

development and differentiation, where it has a role in fine-tuning gene expression 

(Mathews et al., 2000). In addition, Nanog protein is downregulated earlier than 

Nanog RNA when cells are treated with the PI3K inhibitor LY294002 and PI3K is 

known to regulate GSK-3 (Storm et al., 2007). On the basis of our results and these 

reports, the hypothesis that GSK-3 inhibition increases Nanog and Tbx3 translation 

was tested. GSK-3 seems to increase Nanog translation because Nanog protein re-

synthesis was accelerated when GSK-3 was inhibited or in GSK-3 DKO cells and the 

increase in protein occured without a preceding increase in mRNA. Moreover, the 

proportion of Nanog mRNA bound to polysomes was also higher following GSK-3 

inhibition. On the other hand, results obtained with Tbx3 were not conclusive and 

further experiments should be carried out. In particular, protein re-synthesis 

experiments should be optimised to look at Tbx3 protein recovery because they were 

initially optimised to investigate Nanog protein recovery and our data then 

demonstrated that Tbx3 has a longer half-life than Nanog. Therefore, protein 

resynthesis experiments for Tbx3 could be optimised by treating the cells for longer 

with CHX in order to reduce its protein prior CHX washed-out. Tbx3 protein 

synthesis could also be studied by using radioisotopes. It would also be interesting to 

investigate Tbx3 mRNA in protein re-synthesis experiments.  

 

GSK-3 inhibition could potentially increase the expression and translation of other 

transcription factors that promote self-renewal such as Sox2 or Klf4 or decrease 

translation of transcription factors that repress self-renewal such as Tcf3. Moreover, 

it could also decrease translation of early differentiating markers including Fgf5, 

Sox1 and Brachyury making cells more resistant to differentiation. This should be 

further investigated for example by investigating proportion of mRNA bound to 

polysome versus monosome.  

 

The present study suggests that GSK-3 inhibition may contribute to enhancement of 

self-renewal by increasing translation of Nanog, possibly Tbx3 and potentially other 

pluripotent transcription factors by a mechanism that could be partly independent of 

-catenin-Tcf transcriptional activation. GSK-3 has many downstream effectors 

including protein synthesis initiation factors, transcriptional regulators and 
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components of the cell-division cycle (reviewed in Kim et al., 2006; Frame and 

Cohen 2001; Doble and Woodgett, 2003). Moreover, although two recent reports 

agree that the major mechanism of GSK-3 inhibition is -catenin stabilisation and 

interaction with Tcf3, abrogating its repressive activity on the pluripotency network, 

they also agreed in that Tcf-independent mechanisms can have a small contribution 

in the effect of GSK-3 inhibition/Wnt activation (Yi et al., 2011; Wray et al., 2011). 

Although a recent report proposes that the effect of Wnt signalling is mediated by a 

Tcf-independent mechanism by which stabilisation of -catenin binds to Oct4 

enhancing its activity (Kelly et al., 2011), Yi et al., did not observed Oct4-catenin 

dependent recruitment to chromatin (Yi et al., 2011). Thus, it could be possible that 

GSK-3 inhibition acts through an alternative Tcf-independent mechanism, which 

could be -catenin dependent or independent.   

 

The present study has shown that GSK-3 inhibition promotes Nanog protein 

synthesis and translation. However, we have not investigated whether this effect is 

through a -catenin-dependent or independent mechanism. There is evidence 

suggesting that -catenin-independent mechanisms downstream of GSK-3 may also 

play a part in maintaining self-renewal (Ying et al., 2008; Wray et al., 2011; Storm et 

al., 2007; Bechard and Dalton et al., 2009). Thus, it would be very interesting to 

investigate whether the effect we observed on Nanog translation is -catenin 

dependent or independent. This could be studied by performing Nanog protein re-

synthesis and polysomal experiments in -catenin null cells, which have recently 

been generated by several groups (Lyashenko et al., 2011). However, the effect of 

knocking out -catenin is also controversial since Lyashenko et al. and Wray et al., 

showed that null -catenin still self-renew, while others reports indicate that -

catenin null cells may differentiate to EpiSCs (Anton et al., 2007).   

 

Although the present study has focussed on exploring the possibility that GSK-3 

inhibition regulates pluripotency-associated transcription factors at the 

transcriptional, protein stability and translational levels, it is possible that GSK-3 can 

also regulate the epigenetic state of these genes. In particular, a recent report 

proposed that Nanog epigenetic silencing in iPSC can be decreased by knockout of 

Ezh2, which is responsible for generating the silencing epigenetic marks H3K27me3 
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(Margueron and Reinberg, 2011). Interestingly, the outcome of deleting Ezh2 is very 

similar to GSK-3 inhibition. Ezh2 null cells increase the percentage of the high-

Nanog population and cells are more resistant to differentiation (Villasante et al., 

2011). It could, therefore, be possible that GSK-3 inhibition leads to a decrease of 

Ezh2, leading to a subsequent decrease in Nanog epigenetic silencing and increase in 

self-renewal. It would be interesting to explore this possibility.   

 

To summarise, GSK-3 inhibition has been shown to enhance self-renewal by a -

catenin-dependent mechanisms, which involve inhibition of Tcf-3 and alleviation of 

its transcriptional repression of the pluripotency network (Wray et al., 2011; Yi et al., 

2011) and increase in Tcf1 activity (Yi et al., 2011). We propose that GSK-3 

inhibition can also contribute to enhancement of self-renewal by a -catenin 

dependent or independent mechanism through an increase in translation of specific 

pluripotency-associated transcription factors including Nanog, maybe Tbx3 and 

others, which in turn would feed into the pluripotency network. Finally GSK-3 

inhibition could also decrease epigenetic silencing of Nanog and other pluripotent 

transcription factors (Figure 6.1).  
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Figure 6.1 GSK-3 proposed mechanisms of action. GSK-3 inhibition can stabilise -

catenin and abrogate Tcf3 repressive activity on the pluripotency network but it could also 

activate Tcf1 promoting self-renewal. GSK-3 inhibition also leads to an increase in Nanog 

and possibly Tbx3 translation and maybe others, which in turn would feed into the 

pluripotency network. GSK-3 inhibition could reduce Ezh2 reducing epigenetic silencing of 

pluripotent transcription factors. The increase in translation and decrease in Ezh2 could be -

catenin dependent or independent.   
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6.5 Are general translation rates affected by GSK-3 inhibition? 

The present study has shown that GSK-3 inhibition seems to promote translation of 

Nanog and also possibly Tbx3 and we tested the hypothesis that the increase in 

mRNA translation observed in pluripotency-associated transcription factors 

following GSK-3 inhibition was due to an increase in general (cap-dependent) 

translation. Changes in general translation following ESC differentiation into EBs 

have previously been reported (Sampath et al., 2008).  GSK-3 downstream of PI3K 

has been reported to regulate translation by phosphorylating Ser539 of eIF2Bin 

non-ESC types (Welsh et al., 1997; Welsh et al., 1998); therefore we tested the 

hypothesis that inhibition of GSK-3 leads to a decrease in phosphorylation of 

Ser539eIF2Band an increase in translation. However, changes in phosphorylation 

of Ser539
 
following GSK-3 inhibition or in GSK-3 DKO cells were not observed, 

suggesting that cap-dependent translation was not affected. Nevertheless, there are 

other regulators of translation that could be affected upon GSK-3 inhibition and we 

next investigated possible changes in phoshorylation of Ser51 eIF2 because a 

decrease in phosphorylation of Ser51
 
of eIF2was suggested following 24hour 

treatment with the GSK-3 inhibitor 1i in a Kinexus antibody microarray previously 

performed (Bone et al., 2009). A decrease in phosphorylation of Ser51 eIF2would 

increase translation initiation of most RNAs (Day and Tuite, 1998; Goss et al., 1984). 

Phosphorylation of Ser51 eIF2was not dramatically affected following GSK-3 

inhibition suggesting that cap-dependent translation is not affected. However, Wnt 

signalling, through inhibition of GSK-3, has been implicated in indirect regulation of 

mTOR through TSC2 (Goss et al., 1984; Inoki et al., 2006) and we tested whether 

GSK-3 inhibition increases cap-dependent translation through stimulation of mTOR 

activity. Changes in phosphorylation of the mTOR downstream effectors 4E-BP1 

and S6K1 were investigated following GSK-3 inhibition to assess mTOR activity. 

mTOR activity did not seem to increase following GSK-3 inhibition as 

phosphorylation of Thr389 on S6K1 declined and preliminary results suggest that 

phosphorylation of 4E-BP1 is not dramatically altered. Moreover, phosphorylation of 

mTOR itself at Ser2481, the autoregulatory phosphorylation site that reflects mTOR 

catalytic activity (Soliman et al., 2010), was modestly increased following inhibition 

of GSK-3 indicating that mTOR activity may be slightly increased. Although the 

decrease in phosphorylation of Thr389 of S6K1 would suggest a decrease in mTOR 
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activity, Thr389 can be phosphorylated by other kinases apart from mTOR including 

PDK1 and Akt/PKB and S6K1 can also autophosphorylate itself, raising the 

possibility that GSK-3 inhibition decreases the activity of PDK1 and Akt/PKB, and 

subsequently phosphorylation of S6K1.  Phosphorylation of Akt at Ser473 did not 

change following GSK-3 inhibition (results not shown) indicating that Akt/PKB 

activation is not altered. However, phosphorylation of Akt at Th308 should also be 

examined as it is also needed for full activation. A decrease in PDK1 activity should 

be investigated because it could be possible that there is a feedback regulatory loop 

between PDK-1 and GSK-3. The ability of PDK-1 to phosphorylate and activate 

downstream effectors such as Akt/PKB relies on its recruitment to the plasma 

membrane through a pleckstrin homology (PH) domain that binds the intracellular 

second messengers PI(3,4)P2 and PI(3,4,5)P3, which are products of activated class I 

PI3Ks (Anderson et al., 1998; Klippel et al., 1997; Vanhaesebroeck and Alessi, 

2000) Hence, an experimental approach to study whether activation of PDK-1 

decreases following GSK-3 inhibition would be to check whether its levels are 

decreased at the plasma membrane.  

 

Another possible explanation for the decrease in S6K1 Thr389 phosphorylation 

could be that GSK-3 is directly phosphorylating Thr389 S6K1. Although GSK-3 is 

not known to regulate S6K1, S6K1 can phosphorylate GSK-3 under certain 

conditions (Zhang et al., 2006a). It could, therefore, be possible, similar to what I 

proposed for PDK1, that there is a feedback regulatory mechanism whereby GSK-3 

phosphorylates S6K1. The ability of GSK-3 to directly phosphorylate Thr389 S6K1 

could be tested by performing an in vitro kinase assay.  

 

This study suggest that GSK-3 inhibition may decrease the cap-dependent translation 

and although this is the opposite what was expected, since Nanog and Tbx3 

translation seem to be increased following GSK-3 inhibition, a decrease in general 

translation would be in accordance with the work of Sampath et al., because they 

observed an increase in general translation during ESC differentiation (Sampath et 

al., 2008). Therefore, it is reasonable to think that an enhancement of self-renewal 

observed following GSK-3 inhibition could lead to a decrease in general translation. 

Electron microscopy could be used to further study a possible decrease in general 

translation, for example a decrease in general translation would lead to a decrease in 
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the content of Golgi apparatus and rough endoplasmic reticulum because they are 

involved in protein synthesis. Consequently, the cytoplasmic volume would also 

decrease. Sampath et al., used electron microscopy to investigate these types of 

changes as ESCs differentiate (Sampath et al., 2008).  

 

The fact that translation of other genes, including Oct4 and Cyclin D1, are not 

increased following GSK-3 inhibition, suggests that the increase in translation 

observed with Nanog and Tbx3 is specific. Translation of specific mRNA transcripts, 

without an increase in general translation or in conditions where the cap-dependent 

translation is compromised, can occur via a number of different mechanisms.  

 

Specific translation of Tbx3 could be through increases in IRES translation, which 

can be regulated by proteins that bind the internal initiation site and are named IRES 

trans-acting factors (ITAFS). It could be possible that GSK-3 inhibition increases the 

levels of some ITAFs. Of relevance to this study is the fact that the ITAF, guanine-

rich RNA sequence binding factor 1 (GRSF-1), which promotes translation of target 

genes (Kash et al., 2002; Park et al., 1999), was identified as a Wnt/-catenin 

downstream target (Lickert et al., 2005). This raises the possibility that GSK-3 

inhibition, which mimics Wnt activation, leads to up-regulation of GRSF-1 

promoting translation of mRNA targets. Interestingly, Tbx3 has a binding site for 

GRSF-1 in its 5‟UTR and thus Tbx3 may be a GRSF-1 target. GRSF-1 together with 

YB-1 (Y-box binding protein) and P54nrb were identified as ITAFs that associate 

with the IRES of c-Myc by affinity chromatography (Cobbold et al., 2008). It could, 

therefore, be possible that YB-1 and p54nrb also associate to Tbx3 promoting its 

translation. An indication of whether GRSF1, YB-1 or p54nrb could increase 

translation of Tbx3 would be to check whether their levels are elevated following 

GSK-3 inhibition. However, this would only be an indication, ultimately affinity 

chromatography or co-immunoprecipitation studies should be carried out to check 

whether these proteins or others are associated with Tbx3. On the other hand, Nanog 

mRNA does not have GRSF1 binding sites and the 5‟UTR is much simpler than 

those of c-Myc and Tbx3 so it is unlikely to be translated through IRES because IRES 

are highly structured (Komar and Hatzoglou, 2005). However, its translation could 

be regulated by other mechanisms such as the presence of structural features or 

regulatory sequences in the 5´ or 3‟UTR of its mRNA. (Gray and Wickens, 1998). 
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This hypothesis could be experimentally tested by replacing the 5‟ or 3‟UTR of a 

gene, whose translation does not change following GSK-3 inhibition, for the 5‟ or 

3‟UTR of Nanog. It would be interesting to determine not only if the 5‟ or 3‟UTR of 

Nanog and Tbx3 increase specific translation but also which UTR is responsible for 

the increase because this will help to elucidate the mechanism whereby translation is 

increased. There are mechanisms that regulate translation which are specifically 

associated to the 5‟UTR and some to the 3‟UTR.   

 

The 3‟UTR contains specific sequences for binding of miRNAs and also binding of 

cytoplasmic adenylation element (CPE) and thus they control translation of specific 

transcripts through repression of their mRNA translation or polyadenylation. On the 

other hand, features that increase translation of specific mRNAs in the 5‟UTR 

include the presence of upstream open reading frames, the presence of secondary 

structures, RNA-binding proteins and as mentioned above the presence of IRES. The 

hypothesis that GSK-3 inhibition regulates translation of specific transcripts by 

controlling one or several of these mechanisms could be tested experimentally.  

 

To begin with, whether GSK-3 inhibition leads to mRNA polyadenylation could be 

investigated as follows. Initially, Nanog and Tbx3 should be checked for the presence 

of the cytoplasmic polyadenylation element (CPE), which is a U-rich element and the 

hexanucleotide polyadenylation signal (AAUAAA). CPE binding protein (CPEB) 

binds CPE. Insulin and progesterone inactivation of GSK-3 leads to activation of 

Aurora A/Eg2 and phosphorylation of CPEB which in turn recruits polyadenylation 

specificity factor (CPSF) and CPSF is believed to attract the poly(A) polymerase to 

the mRNA and adenylation takes place (Sarkissian et al., 2004). Therefore, inhibition 

of GSK-3 could result in Aurora A activation leading to polyadenylation of Nanog, 

Tbx3 and maybe others transcripts.  If for example Nanog has a CPE, the next step 

would be to investigate changes in phosphorylation of Aurora A and CPEB 

following GSK-3 inhibition. If GSK-3 inhibition leads to activation of Aurora and 

subsequent activation of CPEB, the next step would be to investigate the changes in 

the length of poly (A) following GSK-3 inhibition. 

 

GSK-3 inhibition could also lead to down-regulation of miRNAs that repress 

translation of Nanog, Tbx3 and maybe others. In particular, it could decrease the 
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expression of Let-7 family of miRNAs that seem to repress pluripotency 

transcription factors (Melton et al., 2010). A decrease in Let-7 family following 

GSK-3 inhibition should be investigated. Alternatively, GSK-3 inhibition could 

increase expression of embryonic stem cell-cell cycle (ESCC) miRNAs, which 

promote the expression of transcription factors by repressing their epigenetic 

silencing. In this respect, miR-290 has been shown to inhibit Rbl2, and thus decrease 

expression of DNA methyl-transferases (Viswanathan et al., 2008). Increase of 

ESCC miRNAs also leads to increase in the RNA-binding protein Lin28, which 

inhibits Let-7 miRNAs. Finally, GSK-3 inhibition could also directly increase the 

levels of Lin28. All these possibilities could be investigated by looking at the levels 

of miRNAs and Lin28.   

 

Translation of specific mRNAs with at least two upstream open reading frames 

(uORFs) of certain length and position can be increased under stress conditions 

where the levels of eIF2-ternary complex are low, for example ATF4 and ATF5 

(Watatani et al., 2007). The 5‟UTR of Nanog and Tbx3 was analyzed for the 

presence of uORFs. The fact that Nanog only has one uORF, which is not conserved 

between species suggest that Nanog translation is not increased due to the presence 

of uORFs. On the other hand, the position of Tbx3 uORFs suggests that Tbx3 uORFs 

may not influence Tbx3 translation. However, Tbx3 uORFs seem to be evolutionary 

conserved raising the possibility that they may contain important regulatory regions 

such as sites for RNA-binding proteins.  

 

Finally, the presence of secondary structures in the 5‟UTR of an mRNA decreases its 

translation as binding to the 40S ribosomal subunit seems to need a single-stranded 

RNA and the eIF4A helicase is involved in unwinding secondary structures. Hence, 

if the levels of the helicase are low, mRNAs that have less secondary structures are 

expected to be translated at higher rates that those with complex ones. There are 

several studies supporting this (Altmann et al., 1995; Koromilas et al., 1992; Svitkin 

et al., 2001). Relevant to this work, inactivation of eIF4B reduced translation of 

mRNAs with long and structured 5‟UTR (Altmann et al., 1995; Svitkin et al., 2001) 

and the present study has shown that phosphorylation of S6K1 at Thr 389 is 

decreased following GSK-3 inhibition. eIF4B is a downstream target of S6K1 and 

phosphorylation of eIF4B at Ser422 is likely to be reduced, leading to a decrease in 
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activity. This would affect mRNAs with complex 5‟UTR secondary structures and 

translation of mRNAs with simpler 5‟UTR (Figure 5.17), such as Nanog, would 

increase. Phosphorylation of eIF4B following GSK-3 inhibition should be 

investigated.   

 

To summarise, there are several mechanisms that could regulate specific translation 

of Nanog, Tbx3 and potentially other pluripotency transcription factors. Tbx3 

translation could be specifically up-regulated upon GSK-3 inhibition through IRES 

and ITAFs, for example, GRSF1, YB1 and p54nrb. Although Nanog mRNA is 

unlikely to be regulated by IRES-dependent means, other RNA-binding proteins 

could associate with Nanog mRNA increasing its translation. Both Nanog and Tbx3 

translation could be regulated by polyadenylation, down-regulation of miRNAs or 

up-regulation of the RNA-binding protein Lin28. Finally Nanog translation could be 

increased due to its simple 5‟UTR structure. All this possibilities could be 

experimentally tested.     

 

6.6 CONCLUSIONS 

The present study supports a role for GSK-3 inhibition in specifically regulating 

translation of Nanog, possibly Tbx3 and potentially other transcription factors. This 

would be in accordance with recent reports that indicate that Tcf-independent 

mechanisms can contribute to the increase in self-renewal following GSK-3 

inhibition (Wray et al., 2011; Yi et al., 2011). It is not known whether the increase in 

translation is -catenin dependent or independent and this could be addressed using 

the -catenin null cells. Another future direction should be to investigate whether 

other pluripotency-associated transcription factors are also regulated at the 

translational level. Near future experiments should focus in elucidating the 

mechanisms whereby Nanog translation is specifically increased. Finally, it would be 

interesting to explore whether GSK-3 inhibition decreases epigenetic silencing of 

Nanog and other pluripotent transcription factors. Figure 6.2 summarise mechanisms 

that could contribute to enhancement of self-renewal upon GSK-3 inhibition.
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Figure 6.2. Mechanism of action of GSK-3 in mESC. GSK-3 inhibition can stabilise -catenin and abrogate Tcf3 repressive activity on the pluripotency 

network but it could also activate Tcf1 promoting self-renewal. GSK-3 inhibition also leads to an increase in Nanog and possibly Tbx3 translation and maybe 

others, which in turn would feed into the pluripotency network. The increase in translation could be due to specific mechanisms including ITAFs, 

polyadenylation, down-regulation of miRNAs, increase in RNA-binding proteins and possible decreases in cap-dependent translation facilitating increase in 

translation of mRNA with simple 5‟UTR such as Nanog. GSK-3 inhibition could reduce Ezh2 reducing epigenetic silencing of pluripotent transcription 

factors.
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