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Abstract 

Vehicle occupants are typically exposed to unpleasant whole-body vibration (WBV) for 

extended period of time. It is well known that the transmission of unwanted vibration to 

the human body can lead to fatigue and discomfort. Moreover, the unwanted vibration 
normally distributed in the low-frequency range has been found as the main risk factor 

for lower back pain and lumbago, which seriously affect the health and working 

performance of occupants. Thus vibration cancellation on seats has attracted 

considerable interest in recent years. So far, for most vehicle seats, vibration isolation is 
achieved passively by using seat cushions and conventional energy absorbers, which 

have very limited performance in the low-frequency range.  

The work presented in this thesis forms a successful development and experimental 

study of an active seat and control algorithm for occupants’ WBV reduction under low 
frequency excitations. Firstly, a modelling study of the seat human subjects (SHS) and an 

extensive experimental measurement of the vibration transmissibility of a test dummy and 

vehicle seat are carried out. The biodynamic responses of SHS exposed to uncoupled 

vertical and fore-and-aft WBV is modelled. A comparison with the existing models is 
made and the results show that an improved fit with the aggregated experimental data is 

achieved. Secondly, an active seat is developed based upon the observations and 

understanding of the SHS and seat system. The characteristics of the active seat 

dynamics are identified through experimental tests found suitable for the development of 
an active seat to attenuate the vibration experienced by vehicle occupants. 

The vibration cancellation performance of the active seat is initially examined by 

feedforward plus proportional-integral (PI) control tests. Through these tests, the 

effectiveness of the actuators control authority is verified, but the limitations are also 
revealed. Because the active seat system is subject to non-linear and time-varying behaviour, 

a self-tuning fully adaptive algorithm is a prime requirement. The Filtered-x 

Least-Mean-Square (FXLMS) algorithm with the Fast-block LMS (FBLMS) system 

identification technique is found suitable for this application and is investigated through 
experimental tests. Substantial vibration reductions are achieved for a variety of input 

vibration profiles. An excellent capability of the active seat and control system for 

efficiently reducing the vibration level of seated occupants under low-frequency WBV is 

demonstrated.  
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Chapter 1 

Introduction 

This chapter presents a background to the research work. The harmful effects of 
whole-body vibration on seated human body are described. An overview of the vehicle 

seat vibration isolation systems is provided and the overall objectives of the research are 

introduced. The scope of the thesis is also included in the end of this chapter. 

1.1 Whole-body vibration 

Vehicle occupants are typically exposed to unpleasant whole-body vibration for 

extended periods of time. It is well known that the transmission of unwanted vibration 

to the human body can lead to fatigue and discomfort. Moreover, the unwanted 

vibration normally distributed in the low-frequency range (0.5-25 Hz) has been found as 
the main risk factor for lower back pain and lumbago [1-6], which seriously affect the 

mental and physical health of occupants and influence their working performance. 

Numerous studies, primarily focused on vertical vibration, have been conducted to 

evaluate the response characteristics of human body dynamics, and the primary goal is 
to determine the magnitude of the human body resonances and the frequency locations 

associated with the highest body motions. The dominant resonance of the human body 

to vertical vibration appears to be 3-6 Hz [7-9], which explains why low frequency 

vibrations significantly affect the comfort of seated persons. 

The effects of whole-body vibration on the human body can be divided into two main 

categories: biodynamic effects and physiological and psychological effects. Biodynamic 

effects can be evaluated by frequency response transfer functions. One commonly used 

type of frequency response transfer function involves measuring the transmitted force 
of the human body against a supporting structure, typically a seat mounted on load cells. 
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This has the advantage that it is a non-invasive method. The ratio between the 
transmitted force at the seat and the input velocity at the seat is called the driving-point 

impedance, which is described by the magnitude of the ratio and the phase angle 

between the two measurements. Plots of impedance against frequency are then used to 

identify regions of high transmission and resonance in the human body. Peaks in the 
magnitude of the plots and rapid changes in the phase of the plots are indicative of a 

body resonance. Human body resonance can also be evaluated by vibration 

transmissibility. Vibration transmissibility is defined as the ratio of the output vibration 

level transmitted through the subject to the input vibration level in the frequency range 
of interest. This can be obtained in different forms by examining different response 

quantities, such as displacement, velocity and acceleration.  

Apart from the biodynamic response, some physiological and psychological effects such 

as fatigue, discomfort, lower back pain, neck and spine strain injuries, spinal 
abnormalities, blurred vision and perception are observed and reported in many studies. 

For example, vibration transmitted from the floor can introduce relative motion of the 

eye with respect to an observed object or display, which can cause difficulty in reading 

instruments and performing visual tasks for the aircrew in aerospace environments. 
Small amplitude vibration can cause mental fatigue, especially when experienced over 

long periods. Human muscle begins to fatigue after around 30 minute’s exposure to 

severe vibrations. Muscle fatigue will not only lead to discomfort, but can also lead to a 

reduction of the protective ability of the muscles. Human muscular-skeletal systems 
work as a natural protective mechanism, large muscle groups on the human body are 

capable of absorbing vibration energy caused by external sources. However, this 

protective ability may be limited by the minimum reaction time of the nerve muscle 

reflex arc which is about 75 milliseconds for leg muscle and is equivalent to frequencies 
up to 13 Hz [10].  

Many researches have shown that there is a link between lower back pain (LBP) and 

whole-body vibration. LBP is a serious disabling health problem facing industrialized 

societies and the costs of it are immense. A review of studies on seated whole-body 
vibration and LBP has been made by Pope et al. [11]. Some in vivo measurements were 

carried out in the study, and they concluded that the muscles will be fatigued and the 

discs will be compressed after whole-body vibration, and thus become less capable of 
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absorbing and distributing load. This also means that the spine is in a poorer condition 
to sustain large loads. 

1.2 Vehicle seat vibration isolation 

The harmful effects on human performance and health caused by unwanted vibration 

from vehicle seats are of increasing concern. Since it is much more difficult and more 
energy-consuming to successfully reduce the vibration level globally than locally on 

vehicles, vibration cancellation on seats – the part which directly contacts with the 

human, has attracted considerable interest in recent years. 

1.2.1 Passive seat vibration isolation 

So far, for most vehicle seats, vibration isolation is achieved passively by using seat 

cushions and conventional springs and dampers. Some materials commonly used in seat 

cushions can effectively reduce higher frequency vibration peaks, but tend to amplify the 

occupants’ body vibration in the low frequency range. In the experiment conducted by 
Pope et al. [12], several kinds of seat cushions, including Polyethylene foam, 

Polyethylene foam (stiffer), and Viscoelastic material, which represented a wide range of 

cushions available for seating, were tested. The response curves were compared and 

analysed, the results showed that the softest material moved the transmissibility peak to 
below 4 Hz and increased its amplitude; the stiffer material tended to move the 

transmissibility peak to higher frequency and produce rotational response; the 

viscoelastic material had little effect below 8 Hz. Some new seat cushion materials have 

been developed and used in passive suspension systems in order to attenuate seated 
human body vibrations at high frequency, but these materials lose their efficiency at low 

frequency, and always produce relatively large motions. 

Conventional springs and dampers are commonly used for vehicle seat suspensions. 

The springs act as an energy-storing element while the dampers act as an energy 
dissipating element. Since these two elements cannot add energy to the system this kind 

of suspension systems are called passive. The coefficients of the spring and damper are 

usually tuned to one set of values and only for an average occupant ride comfort. 

Although there is an increase in the use of dampers with switchable or continuously 
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adjustable characteristics of damping, these passive systems cannot provide optimal 
vibration isolation performance for individuals. It is known that passive seat suspensions 

are subject to some inherent limitations: They are difficult to optimize, have a poor 

performance in the low frequency range, and often ‘de-tune’ due to deterioration of the 

structural parameters and/or variations in the excitation frequency. 

1.2.2 Shock isolation using energy absorbers 

Currently, most aircraft seats are designed primarily to meet crashworthiness criteria by 

employing energy absorbers (EAs). The high acceleration vertical shock loads that are 

transmitted from the base frame of the aircraft and imparted into the human body 
during harsh or crash landings can be attenuated to within a tolerable range by the 

energy absorption systems.  

Most commonly used energy absorbers are fixed-load energy absorbers (FLEAs). The 

load-stroke profiles of these FLEAs are tuned to a constant factory-established load 
throughout their entire operating range. FLEAs are tuned only for one occupant 

weight/type (typically a 50th percentile male) and one crash level (typically to the highest 

crash design level). FLEAs are typically designed to provide approximate 15 g seat 

deceleration limit for the occupant to whom they are tuned. The factory established 
stroking load tends to be too high for lighter occupants while too low for heavier 

occupants. The inappropriate load can result in an increased injury risk [13].  

Fixed-profile energy absorbers (FPEAs) were developed after the FLEAs. These devices 

aim to more efficiently attenuate shock load by taking advantage of the dynamic 
response of the human body. FPEAs use a ‘notched’ load-stroke profile with an initial 

load spike to achieve a quick compress of the human body “springs”. Then, the load is 

lowered rapidly to minimize the overshoot as the body is loaded up, thereby limiting the 

maximum load on the occupant’s spine. The energy absorber load would then be again 
increased to a sustainable plateau for the rest of the stroke [14]. This type of load-stroke 

profile allows the body to be decelerated at a higher average acceleration than FLEAs by 

minimizing the overshoot. However, these FPEAs are still tuned for one occupant 

weight and one crash level, and therefore, they suffer similar limitations as the FLEAs.  
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Variable load energy absorbers (VLEAs), which allow the occupant to manually adjust 
the constant stroking load by setting a dial for their weight, have been developed for an 

improved performance. These VLEAs exploit the fact that the strength of an occupant’s 

spine is nearly proportional to occupant weight. However, these devices highly rely on 

plastic deformation of material and their weight adjustment range is limited [14].  

The above EAs are all passive in that they cannot adapt their load profile during the 

real-time operations. Moreover, these EAs do not begin to stroke until the load reaches 

the tuned threshold and therefore act as a coupling between the floor and the seat. For 

these reasons, these EAs provide only shock protection and rarely offer vibration 
isolation on the seat. 

1.2.3 Semi-active and active seat suspensions 

Semi-active and active seat suspensions are developed to overcome the limitations of 

passive systems and aim to provide more efficient vibration isolation for occupants. 
Active suspensions are typically composed of a spring element and some type of force 

actuator which is capable of supplying energy to the system. A variety of actuators have 

been developed and used in active vibration control systems, which include hydraulic, 

pneumatic, electrohydraulic, electromagnetic, and stacked piezoelectric actuators. The 
actuator is the heart of active system, the vibration cancellation performance of the 

whole active system is mainly dependent upon the actuator force. 

A compromise between passive and active types is semi-active suspension systems. 

Semi-active systems can only passively modulate damping or spring forces according to 
a parameter tuning policy with only a small amount of control effort. So far, many 

semi-active dampers have been developed for this type of suspensions. The damping 

characteristics are usually controlled by modulation of fluid-flow orifices, of dry friction 

forces or of electric or magnetic field applied to electrorheological or 
magnetorheological fluid dampers. Semi-active suspension system can offer a 

compromise between the simplicity of passive systems, and the cost of higher- 

performance fully active suspension system. 

For both the active and semi-active suspension systems, a control law implemented on a 
real-time computer processor is required to govern the actuator and determine the 
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control force. A more detailed literature review of the active and semi-active seat 
suspensions and the associated control algorithms is presented in Chapter 2.  

1.3 Objectives of the research 

The main objective of the research was to investigate and demonstrate the feasibility and 

benefits of an active seat system for occupants’ whole-body vibration reduction under 
low frequency excitations. The first aim was to gain a better insight into the mechanisms 

and biodynamic responses of the seated human subjects (SHS) under low frequency 

whole-body vibrations and to develop a mathematical model which is able to represent 

the biodynamic behaviour of SHS in a more comprehensive way. The second aim was 
to develop a vibration test dummy which can be used as a seated human body substitute 

and to set up an experimental test program to characterise the dummy response on a 

vehicle seat. The next aim was to develop an active seat which is able to attenuate the 

vibration level on the occupants’ body under low frequency excitation range (1-25 Hz). 
The final aim was to develop an adaptive control algorithm and apply it to the active 

seat to evaluate the vibration cancellation performance through experimental tests.  

For the active seat and vibration control system, the following key requirements need to 

be met: 

1. The system must be able to attenuate the vibration level on the occupants’ body in a 

low frequency range of 1-25 Hz. 

2. The system must have high adaptability and robustness, and be able to address the 

variation in vibratory situation due to the changes in operating conditions (e.g. 
occupant weight variation and ageing of the suspension system); 

3. The control algorithm in the system must be fully self-tuning without a priori 
knowledge about the plant; 
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1.4 Scope of the thesis 

Chapter 1 provides an introduction of the effects of whole-body vibration on seated 

human body. Overviews of the vehicle seat vibration isolation systems and the overall 

objectives of the research are presented. 

Chapter 2 presents a literature review of the modelling of seated human subjects under 
low frequency whole-body vibration and a review of the active and semi-active seat 

suspensions. The advantages and limitations of the two types of suspensions are 

compared. Additionally, a summary of the various types of controller that have been 

applied to active and semi-active vibration control systems is given. The Filter-x 
Least-Mean-Square (FXLMS) algorithm was selected for detailed investigation in 

Chapter 7. 

Chapter 3 presents the development of a lumped-parameter biodynamic model of a seated 

human subject exposed to low frequency whole-body vibration. Model parameters are 
identified using curve fitting methods and the STHT, DPMI and APM biodynamic 

magnitude and phase response functions are simulated. A comparison with the existing 

models is carried out and the results show that an improved fit with the aggregated 

experimental data is achieved. The developed model can be used to help in developing 
anthropodynamic mannequins for vibration assessment. 

Chapter 4 presents the experimental measurement results of the vibration transmissibility 

of a test dummy and vehicle seat. The dynamic response of the test dummy is 

characterised and the principal whole body modes are found to be broadly consistent 
with a seated human response. These findings enable the dummy to be used as a seated 

human body substitute in the active seat vibration cancellation tests in order to ensure 

an improved consistency in behaviour and avoid safety and ethical issues. 

Chapter 5 provides the details of the active seat structure and dynamics. The constituent 
and mechanical structure of the active seat is described and illustrated by 

three-dimensional line drawings and photos. The characteristics of the active seat 

dynamics are identified through experimental tests. The rig is found suitable for the 

development of an active seat to attenuate the vibration experienced by vehicle 
occupants. 
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In chapter 6 the vibration cancellation performance of the active seat using feedforward 
plus PI control method is examined. Through these tests, the effectiveness of the 

actuators’ control authority is verified and an understanding of the real-time 

implementation is gained. Meanwhile, the limitations of the feedforward plus PI 

controller are revealed, which indicates that an advanced adaptive control strategy is 
required to exploit the whole potential vibration cancellation capability of the active seat. 

Chapter 7 provides a necessary theoretical background of the Least-Mean-Square (LMS) 

adaptive algorithm. The secondary path effect in the implementation of the LMS 

algorithm is discussed and the filtered-x LMS (FXLMS) algorithm is introduced for 
solving this problem. Different approaches for secondary path identification are 

compared and evaluated through simulation exercises. The FXLMS algorithm with the 

FBLMS system identification technique is evaluated through a simulated system for 

narrow-band vibration cancellation. The effectiveness of this combination is proved and 
thus it is applied in the experimental studies described in Chapter 8.  

The results of experimental studies of the active seat using adaptive control methods are 

presented in chapter 8. Substantial vibration reductions are achieved for a single 

frequency and multiple harmonic signals. The robustness and stability of the control 
system is validated by cancelling vibration signals with switching frequency. Additionally, 

the performance of the system when subject to low-frequency large amplitude 

disturbances is validated. The experimental results demonstrate the capability of the 

active seat for seated occupant’s vibration reduction. 

Finally, chapter 9 gives the conclusions and discussions of the work conducted. 

Recommendations for future work are also included. 
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Chapter 2 

Literature Review 

This chapter aims to provide a thorough review of the prior works related to the 
research objectives of this thesis. In the first part of this chapter, a review of the 

modelling of seated human subjects under low frequency whole-body vibration is 

presented. Secondly, a review of active and semi-active seat suspension is provided. 

Additionally, a summary of the various types of controller that have been applied to 
active and semi-active vibration control systems is given.  

2.1 Modelling of seated human subjects 

In order to understand the biodynamic response and adverse effects of whole-body 

vibration on the human body, a number of seated human body models have been 
proposed in the literature. The human body is an extremely complex system containing 

both linear and nonlinear elements (e.g. the viscoelastic nature of soft tissue, large 

deformation involved during the loading process), and the human population is 

physically and biologically diverse. This means the mechanical properties will vary 
hugely from person to person, and makes it difficult to develop an ideal model, however, 

“All models are wrong but some are useful”, George E.P. Box [15]. An appropriate 

human body model can be used to estimate the forces and motions being transmitted 

within the body under specific vibration environments, thus it can allow the prediction 
of the body vibration exposure levels as well as the design and simulation of control 

method to attenuate the vibration. 

The seated human body has already been modelled by many researchers in the literature 

and most of the models can be categorized into three groups: finite element (FE) 
models, spine models and lumped mass models. The first group considers the whole 

human body including the details of the skeleton and soft tissues. The second group 
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focus on the modelling of the spine and treats other body parts as influencing factors. 
The third group treats the body as several lumped masses connected by springs and 

dampers and identifies the model parameters based upon the whole body biodynamic 

responses. 

2.1.1 Human body FE models 

A number of human body FE models have been developed during the last two decades, 

and these models are mainly used for crashworthiness studies. The FE technique uses a 

discretized definition of the geometry and the constitutive laws relating stresses and 

strains as inputs. Human body FE models usually include details of the human skeleton 
and soft tissues, and can predict stresses, strains, and the deformed shapes of bodies.  

The Hybrid III 50% [16] model is one of the most commonly used human body FE 

models for the evaluation of automotive crashworthiness and safety. Some other human 

body FE models have also been developed and improved by many researchers [17, 18]. 
The FE model allows a more detailed and accurate representation of the human body, 

but at a significantly higher computational cost. In addition, since most of these FE 

models have been developed to evaluate extreme conditions, such as the loading and 

impacts during automotive crashes, they are not suitable to predict or simulate the 
human body responses under low frequency and low magnitude vibrations. 

2.1.2 Human body spine models 

There are two kinds of human body spine models: the continuum and discrete types. A 

continuum model is one in which the spine is considered as a rod having an infinite 
number of DOF. This seems too different from the real spine structure. Discrete 

models consider the spine as a structure formed by various anatomic elements, such as 

vertebrae, discs, ligaments, muscles, which are individually modelled. These kinds of 

model are more detailed and much closer to the real spine structure [19]. The early 
continuum models were developed by Hess and Lombard [20]; Liu and Murray [21] and 

Terry and Roberts [22]. They considered the spine column as an elastic beam or 

viscoelastic rod. The first discrete model was presented by Latham [23] which was based 

on the human body response to aircraft ejection. Other discrete models have been 
presented by Toth [24], Orne and Liu [25], and Panjabi [26]. 
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One of the latest discrete human spine models presented by Yoshimura and et al. [27] 
was based on the detailed measurement of vibration transmissibilities from the seat 

surface to the spinal column and the head. The model contains 10 DOFs, and the 

vertebrae are represented by rigid bodies which are connected by revolute joints. It is 

suggested that this model can be used to evaluate the vibration effects to the spinal 
column. However, there are two concerns in the modelling process. Firstly, the sensors 

are mounted on the skin surface which will influence the accuracy of measurement.  

Secondly, the inertia effect of the viscera is taken into account by simply distributing the 

inertia quantity to each vertebra. 

Human body spine models are mainly used to investigate the spine dynamic behaviours, 

especially the lumbar spine and lower vertebrae biodynamic under shock loading. Since 

this type of model focuses on the human spine, the global biodynamic response of the 

whole body cannot be studied thoroughly. 

2.1.3 Human body lumped mass models 

In this kind of model, the human body is approximated by a lumped mass parameter 

system, ranging from a linear single degree of freedom system to nonlinear multi degree 

of freedom systems. Suggs et al. [28] developed a two-DOF damped spring-mass model 
based on measurements which closely approximated the major dynamic characteristics 

of a seated man to vertical modes of vibration below 10 Hz. The model was used to 

build a standardised vehicle seat testing procedure. Payne and Band [29] presented a 

four DOFs model. In the model, the head, upper torso, abdominal viscera and the 
pelvis were represented as four rigid masses, which were interconnected by springs and 

dampers. 

Wei and Griffin [30] suggested a two-DOF human and seat model to predict car seat 

vibration transmissibility. It was found that the predicted seat transmissibilities were 
close to those measured in a group of eight subjects over the entire frequency range. 

Boileau and Rakheja [7] proposed a four-DOF human body model, shown in Figure 2.1, 

considered the typical vehicle driving positions, such as erect without backrest support 

posture, feet supported and low frequency excitation below 4 m/s2. The model 
parameters were estimated by attempting to match the magnitude and phase 

characteristics of both the vertical driving-point mechanical impedance and seat-to-head 
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transmissibility. Some more recent models in group two include a multi-DOF lumped 
parameter seated human body model developed by Rosen and Arcan [31]. This model 

included two subsystems: the first subsystem represented the apparent mass 

phenomenon as the global human biodynamic system, and the second represented the 

local dynamics of the human pelvis/seat cushion contact. The challenge of this 
multi-DOF model is the identification and optimization of many parameters.  

 

Figure 2.1: Vehicle driver linear biodynamic model by Boileau and Rakheja [7]. 

Human body lumped mass models have advantages like less complexity, less demand on 
computational power, and relatively simpler validation requirements. Such models are 

capable of producing biofidelic responses and can be used to simulate both kinematics 

and kinetics of the whole body under specific vibration environments, thus they can 
allow the prediction of the body vibration exposure levels as well as the design and 

simulation of control methods for vibration attenuation. Therefore, this type of human 

body model was selected to model a seated human subject exposed to low frequency 

whole-body vibration in chapter 3. 

2.2 Semi-active and active seat suspensions 

As mentioned in Chapter 1, passive seat suspensions are subject to many limitations. As 

a result semi-active and active seat suspensions have been developed aiming to provide 
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more effective vibration isolation for vehicle occupants. The typical configurations of 
semi-active and active vibration suspension systems are shown in Figure 2.2. 

 

Figure 2.2: Typical configuration of semi-active and active vibration suspension systems. 

2.2.1 Semi-active seat suspensions 

The fundamental concepts of semi-active (SA) suspensions and vibration control 
systems were first introduced by Karnopp [32] in 1974. SA suspension systems can only 

passively modulate damping or spring forces according to a parameter tuning policy 

with only a small amount of control effort. SA systems, as their name implies, fill the 

gap between purely passive and fully active vibration control systems. They offer 
reliability comparable to that of passive systems, yet maintain the versatility and 

adaptability of fully active systems. During recent years there has been considerable 

interest towards practical implementation of these systems for their low energy 

requirement and cost, also, recent advances in smart materials and adjustable dampers, 
such as electrorheological (ER) and magnetorheological (MR) dampers have 

significantly contributed to the applicability of these systems.  

In recent years, various SA seat suspension systems have been proposed. Wu and 

Griffin [33] developed a SA seat suspension using an ER fluid damper to reduce the seat 
impacts caused by shocks or high magnitude vibration. Choi et al. [34] proposed a SA 
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seat suspension using a MR fluid damper for commercial vehicles. McManus et al. [35] 
evaluated the vibration and shock attenuation performance of a SA MR fluid damper in 

reducing the incidence and severity of end-stop impacts of a low natural frequency 

suspension seat. Hiemenz et al. [36] explored the use of a MR damper in a SA seat 

suspension system for helicopter crew seats to enhance occupant comfort. 

Although SA suspension systems provide some desirable benefits, the force range of SA 

systems are limited, and they are known to be ‘soft’ to high frequency excitations while 

being ‘stiff’ to low frequency excitations [37]. Thus, the vibration isolation performance 

in the low frequency range can be compromised. 

2.2.3 Active seat suspensions 

An active system is one in which the passive components are replaced or augmented by 

actuators that supply additional forces. Active seat suspensions which can provide much 

wider force range and achieve better isolation performance in the low frequency region 
have attracted more and more attention in recent years. For instance, Kawana and 

Shimogo [38] proposed an active seat suspension for a heavy duty truck using an electric 

servo-motor and ball-screw mechanism which showed that some resistance will remain 

even if the control is off. Stein [39] developed an electro-pneumatic active seat 
suspension for a driver’s seat for heavy earth moving equipment or off-road vehicles. 

Maciejewski et al. [40] presented an active seat suspension system containing a 

controlled pneumatic spring and a hydraulic shock-absorber. The active control of 

air-flow to the pneumatic spring was applied by means of a directional servo-valve. 
Some drawbacks of pneumatic systems were found: They require a large amount of 

energy to maintain the necessary air pressure in the source, and the complexity of the 

systems make them less reliable and difficult to control. In a recent study by Chen et al. 

[37], an adaptive helicopter seat mount using stacked piezoelectric actuators was 
developed. The seat mount has been retrofitted on a full-scale Bell-412 helicopter 

co-pilot seat and the performance was evaluated through closed-loop tests. The results 

showed that significant vibration suppression was achieved. However, the study also 

found that the stacked piezoelectric actuators can not provide enough stroke to 
effectively suppress the low frequency vibration. 
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The actuator is the heart of an active system. Low noise, low power consumption, low 
cost, physically compact and reliable and enough authority are desirable characteristics 

for actuators in active systems [41]. Due to the costs, energy demand and complexity, 

the use of active seat systems is very limited in the current market. One successful use of 

active seat suspensions is the Bose Ride System for heavy duty trucks [42] as shown in 
Figure 2.3. Linear electromagnetic actuators are used in this system. According to Bose, 

the seat suspension is able to counteract broadband vibration from the road and it is 

proven to reduce driver fatigue and pain. 

 

Figure 2.3: Bose Ride System [42]. 

2.2.4 Performance Comparison 

Based upon the above review, a performance comparison between semi-active and 

active systems can be made, as seen in Table 2.1.  

Table 2.1: Performance comparison between semi-active and active systems. 

Features Cost Power 
supply 

Control 
complexity 

Adaptability Isolation 
performance 

Semi-active ++ + + + ++ 

Active +++ ++ ++ ++ +++ 

Note: + - low level, +++ - high level. 
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Semi-active systems have a lower control effort compared with that of active systems. 
They offer the reliability, yet maintaining some versatility and adaptability. However, 

semi-active systems can only passively modulate damping or spring forces according to a 

parameter tuning policy, and they are found to be ‘soft’ to high frequency excitations 

while ‘stiff’ to low frequency excitations, therefore, the vibration isolation performance 
in low frequency range is still compromised.  

Active vibration control systems are the most complex due to the requirement for 

special actuators, sensors and computing systems, and require an external power supply. 

But active systems have many desirable advantages, which include providing significantly 
improved isolation performance in the low frequency range, high adaptability on a large 

bandwidth, and can be modified as desired by control algorithms to cancel vibration at 

certain frequencies. 

2.3 Semi-active and active vibration control techniques 

2.3.1 Semi-active vibration control techniques 

There are many control techniques which have been developed and demonstrated to be 

viable for semi-active (SA) suspension systems. The following sections outline some 

classical and widely used control techniques for SA systems. 

Skyhook control 

Skyhook control, originally devised by Karnopp et al. [32], is one of the most effective 

control strategies for SA vibration control systems. In this kind of control system, a 

fictitious damper is used to connect the sprung mass to a fixed point in the sky (an 
inertial reference), as shown in Figure 2.4. The damper exerts a force tending to reduce 

the absolute velocity of the sprung mass, rather than reduce the relative velocity for 

conventional dampers. The damper is turned on when the absolute velocity of the 

sprung mass is the same sign as the relative velocity and switched off when they are 
opposite, ensuring that the damper force is always dissipative. The conventional 

skyhook control law requires the damper coefficient to be continuously variable. To 

simplify the operation an “on-off” skyhook control scheme has been proposed [43].  
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Figure 2.4: Skyhook SA vibration control systems [32]. 

Balance control 

Balance control was first introduced by Rakheja and Sankar in 1985 [44]. It is so-called 
because it attempts to cancel the spring force in part by the damping force and keep the 

mass in balance. Balance control also includes “on-off” and continuous versions. In this 

control method, the damping force tends to increase the acceleration of the mass during 

the first and third quarters of a cycle when the spring and the damper forces have the 
same sign, or equivalently when the relative velocity and relative displacement have the 

same sign. It also tends to decelerate the mass in the second and fourth quarters when 

the spring and the damper forces have opposite signs. A continuous balance control 

algorithm has been proposed in [45], which can be considered as a further development 
of the “on-off” control algorithm. For “on-off” balance control the spring force can be 

partly cancelled or over-cancelled, while the spring force can be partly or totally 

cancelled in continuous balance control. 

Other SA control methods 

As a result of the substantial on-going theoretical advances in this area, many other 

control methods for SA systems have been proposed, which include: adaptive and 

nonlinear controls [46], fuzzy reasoning control, sliding mode control [47], ground-hook 

control [48], anti-jerk continuous skyhook control [49], acceleration-driven-damper 
control [50]. 
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2.3.2 Active vibration control techniques 

The force generated by the actuator is governed by a control law, and some sensors are 

used to measure error and reference signals which are required by the control law. So far, 

a variety of control approaches have been developed for active vibration control systems. 

The following is a short-list of several different types of active control strategies. 

Least-Mean-Square (LMS) algorithm 

Due largely to its simplicity and robustness, the Least-Mean-Square (LMS) algorithm is 

the most popular control strategy for active vibration control systems. The LMS 

algorithm which was originally developed by Widrow and Hoff [51] is an adaptive 
gradient search approach based on the steepest descent method and does not require 

squaring, averaging or differentiating. It is a stochastic gradient descent method in that 

the filter is only adapted based on the error at the current time. The Filter-x LMS 

(FXLMS) algorithm is one of the most widely used variations of the LMS algorithm. 
The adaptive nature of FXLMS makes it inherently applicable to non-linear and 

time-varying systems. It has been found to offer stable and robust performance for a 

wide class of active noise and vibration cancellation applications. 

Examples of applications of FXLMS algorithm include the following. In [52], the 
FXLMS algorithm was applied to a six-strut Stewart vibration isolation platform which 

serves as a prototype for a space flight system. The test results show an excellent 

dynamic performance of the FXLMS controller and over 40 dB vibration reduction is 

achieved for narrow-band disturbance. The FXLMS algorithm is applied to a flexible 
cantilever beam for active vibration control in [53]. The control results indicated that a 

considerable vibration reduction could be achieved in a few seconds. The performance 

of the FXLMS algorithm for cancelling airfoil vibration and flutter was investigated in 

[54]. The control method showed good performance in suppressing wing vibration and 
flutter. In [55], the application of the FXLMS algorithm to active engine mounts is 

studied in detail. A feed-forward FXLMS algorithm with on-line secondary path 

identification was applied to an experimental rig to cancel narrow-band engine 

vibrations. The results show that a significant level of vibration reduction is achieved. 
The performance was also validated by real-time tests on a saloon car equipped with a 

turbo-diesel engine. The application of the Filter-x LMS (FXLMS) algorithm to an 
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adaptive helicopter seat mount is described in [37]. Here the FXLMS algorithm was 
used to minimize the seat vibration incurred by the N/rev harmonic loads of the main 

rotor speed. The seat vibration which was directly correlated to the N/rev harmonic 

loads was selected as the reference signal in this investigation. The test results show a 

significant global reduction of the body vibration levels is achieved. Although no details 
of the estimation of the so-called secondary path dynamics (the path from the actuator 

signal to the measured error signal) are provided.  

Because it is assumed that a priori knowledge about the plant and disturbance is not 

available in this investigation, a self-tuning algorithm is a prime requirement. A 
self-tuning fully adaptive algorithm, such as FXLMS, could control a non-linear 

time-varying system with unknown initial parameters and would meet the requirements 

stipulated in the research objectives. Hence, the FXLMS filter with on-line system 

identification was selected for detailed investigation in Chapter 7. 

In addition to the FXLMS control algorithm, there are several control strategies, listed in 

the following, that could be applied but which have not been considered for detailed 

investigation either because they offer no computational advantage over the FXLMS 

algorithm, or due to the requirement for a design procedure based upon knowledge of 
the system parameters. 

Self-tuning regulator 

The self-tuning regulator (STR), proposed by Astrom and Wittenmark [56], is a typical 

adaptive control method and has been used for many applications [57, 58] since the 
mid-1970s. STRs are inherently nonlinear due to the estimation part and the changing 

parameters in the controller, which makes the analysis of STRs very complicated and the 

convergence and stability is difficult to guarantee.  

Model reference adaptive control 

Model Reference Adaptive Control (MRAC) is a closed loop controller with parameters 

that can be updated to change the response of the system. The output of the system is 

compared to a desired response from a reference model. The goal is for the parameters 

to converge to ideal values that cause the plant response to match the response of the 
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reference model. Some applications of MRAC to active systems include [59-61]. A priori 
knowledge of the pole-excess and order of the plant are needed to apply the MRAC 

procedure and empirical evidence indicates that the MRAC algorithm is only stable for 

small adaption gains, high gains will lead to instability. 

Model reaching adaptive control 

Model Reaching Adaptive Control’s main idea is to design a dynamic manifold for the 

target, rather than control the plant to follow the model reference [62]. Its derivation is 

based upon Lyapunov analysis and Barbalat’s lemma. This algorithm eliminates the 

necessity of base or ground vibration measurement, however, it requires to measure the 
absolute velocity of the isolated mass, and the relative displacement between the isolated 

mass and base, which make the application of this method very limited in practice.  

Linear Quadratic Gaussian (LQG)/H2/H∞ methods 

LQG/ H2/ H∞ are optimal control methods. A cost function needs to be formulated 
before optimization. In [63] a LQG controller was described and applied to active 

vibration absorbers to reduce disk drive vibration at multiple rotating speeds. An 

adaptive form of LQG named adaptive-Q controller is applied to vibration isolation in 

[64]. An H2 control algorithm was applied to control the lateral vibration of a 
jacket-type offshore platform subjected to wave loading in [65]. In [66] a H∞ based 

controller was designed and applied to multi-mode structural vibration control in the 

composite fin-tip of an aircraft. All the above optimal control methods either need a 
priori information about the plant and disturbance or require intensive computation. 

2.4 Conclusions 

This chapter provides a review of the modelling of seated human subjects under low 

frequency whole-body vibration and a review of active and semi-active seat suspensions. 

The advantages and limitations of the two types of suspension are compared. In 
addition, a summary of the various types of controller that have been applied to active 

and semi-active vibration control systems is given. The Filter-x Least-Mean-Square 
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algorithm was selected for detailed investigation in Chapter 7 as it is a self-tuning fully 
adaptive algorithm which requires no a priori knowledge of the system parameters. 
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Chapter 3 

Seated Human Body Modelling and Simulation 

In this chapter, the biodynamic responses of seated human subjects (SHS) exposed to 
uncoupled vertical and fore-and-aft whole-body vibration (WBV) are modelled. The 

mathematical model can be used to obtain a better insight into the mechanisms and 

biodynamic behaviour of the SHS system. The main limitation of some previous SHS 

models is that they were derived to satisfy a single biodynamic response function. Such 
an approach may provide a reasonable fit with the function data being considered but 

uncertain matches with the others. The model presented in this study is based on all 

three types of biodynamic response functions: seat-to-head transmissibility (STHT), 

driving-point mechanical impedance (DPMI) and apparent mass (APM). The objective 
of this model is to match all three functions and to represent the biodynamic behaviour 

of SHS in a more comprehensive way. 

3.1 Measurement data of seated human subjects 

In order to gain a better understanding of seated human subject biodynamic response 
and adverse effects under low frequency whole-body vibration, a variety of statistical 

and analytical studies have been carried out by various researchers. Statistical studies 

usually involve measuring the kinetic and biodynamic responses of human subjects. 

There are three types of generalized biodynamic responses functions - seat-to-head 
transmissibility (STHT), driving-point mechanical impedance (DPMI) and apparent 

mass (APM), which are widely used to characterize biodynamic response of the seated 

human subject under most commonly encountered vibration environments. The STHT 

function is defined as the complex ratio of the output vibration level on the head to the 
input vibration level on the seat in the frequency range of interest [9]. This can be 

obtained in different forms by examining different response quantities, such as 

displacement, velocity and acceleration. The DPMI function is defined as the complex 
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ratio between the transmitted dynamic force to which the subject is exposed and the 
input driving-point velocity [7]. The APM function is defined similarly to the DPMI 

function. It specifies the complex ratio of driving force to the driving-point acceleration. 

Whilst the DPMI and APM are in principle directly related, they are treated in this thesis 

as separate quantities since it is unknown exactly how the data had been processed in 
the original sources. While the STHT function can provide indications on the dynamic 

behaviour of human body parts which are distant from the driving-point, the DPMI and 

APM functions can show the biodynamic characteristics of the human body load at the 

input point. All three functions can be evaluated by calculating the magnitude and phase 
responses in the frequency range of interest. 

It is noted that the biodynamic response data of seated human subjects was obtained 

from a variety of field and experimental measurements which were carried out under 

widely varying test conditions [7, 9]. The variation of test conditions for individual 
measurements may involve both intrinsic and extrinsic variables, such as subject mass 

and population, seat posture, feet and hand position, vibration excitation type and level, 

seat backrest angle and measurement location on the subject. In order to avoid 

significant discrepancies among the measurements data associated with the above 
variable conditions, the following requirements were specified for the synthesis of the 

biodynamic characteristics of seated human subjects [7, 67]: 

(1) Studies presenting measurement results based on at least six subjects;  

(2) The measured subjects are considered to be sitting erect or with upright posture 
without backrest support for vertical vibration and with backrest support for 

fore-and-aft vibration, irrespective of the hands’ position;  

(3) Feet are supported and vibrated on the same excitation base;  

(4) Subject mass is limited to the range of 45-100 kg;  

(5) Excitation levels are below 5m/s2, and magnitude and phase data are reported in the 

0-20 Hz frequency range;  

(6) Either sinusoidal or random vibration excitation is used in the measurements. 
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Based upon the above requirements, the following published measurement data were 
selected for the synthesis of seated human body biodynamic properties: Paddan and 

Griffin [9], Boileau and Rakheja [7] and Hinz et al. [68] for the seat-to-head 

transmissibility (STHT) data; Boileau and Rakheja [7], Fairley and Griffin [69], Hinz and 

Seidel [70] and Holmlund and Lundström [71] for the driving-point mechanical 
impedance (DPMI) data; Mansfield and Griffin [72], Toward and Griffin [73], Fairley 

and Griffin [74] and Qiu and Griffin [75] for the apparent mass (APM) data. The 

aggregated data, shown in Table 3.1 and 3.2, is derived by averaging the above data sets 

(magnitude and phase data sets are averaged separately) within the frequency range of 
interest. Picking off values from curves are used for some frequencies at which the 

measured values are not provided in the original sources. 

Table 3.1: Aggregated data of STHT, DPMI and APM mean values in the vertical 
direction. 

Frequency  
(Hz) 

STHT (abs)  DPMI (N*s/m)  APM (kg) 

Magnitude Phase 
(deg) 

 Magnitude Phase 
(deg) 

 Magnitude Phase 
(deg) 

0.5  1.01 -0.2  95 89.5  59 -2.2 
0.75  1.00 -0.7  175 89.0  60 -2.3 
1.0  1.01 -0.8  310 88.5  60 -3.5 
2.0  1.10 -6.0  754 87.5  61 -4.5 
3.0  1.16 -10.0  1255 82  71 -10 
4.0  1.28 -17.5  2252 66  81 -15 
4.5  1.37 -29  2704 45  80 -23 
5.0  1.45 -40  2605 31  76 -31 
5.5  1.43 -50  2254 23  67 -43 
6.0  1.30 -61  2105 23  53 -55 
6.5  1.18 -62  1865 20  48 -60 
7.0  1.09 -60  1892 22  44 -64 
8.0  0.99 -62  1998 21  39 -68 
9.0  0.94 -70  2002 20  36 -70 
10.0  0.95 -76  2015 16  32 -72 
12.0  0.86 -85  1905 17  31 -80 
14.0  0.76 -97  1770 18  25 -83 
16.0  0.67 -105  1625 19  18 -82 
18.0  0.60 -113  1585 20  14 -81 
20.0  0.56 -121  1605 20  11 -81 
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Table 3.2: Aggregated data of STHT, DPMI and APM mean values in the fore-and-aft 
direction. 

Frequency 
(Hz) 

STHT (abs)  DPMI (N*s/m)  APM (kg) 

Magnitude Phase 
 (deg) 

 Magnitude Phase 
 (deg) 

 Magnitude Phase 
(deg) 

0.5  1.26 -1  55 83.0  53.0 -8.0 

0.75  1.44 -16  148 80.8  57.0 -10.6 

1.0  1.62 -40  257 76.6  59.5 -12.8 
1.25  1.59 -64  392 71.55  63.1 -16.0 

1.5  1.41 -85  515 65.4  67.2 -20.2 

1.75  1.23 -103  655 59.5  69.6 -24.0 

2.0  1.10 -119  850 48.4  70.2 -28.5 
2.5  0.86 -135  1010 33.6  62.5 -39.4 

2.75  0.71 -144  1068 25.0  58.6 -46.0 

3.0  0.56 -159  1095 17.1  54.0 -53.5 

3.5  0.41 -168  1083 1.8  45.1 -62.5 
4.0  0.29 -175  1061 -7.5  37.7 -75.0 

4.5  0.26 -189  1028 -15.5  35.3 -80.5 

5.0  0.23 -198  974 -21.5  30.6 -81.0 

6.0  0.18 -211  912 -25.8  20.5 -86.2 
7.0  0.13 -231  853 -29.0  17.4 -91.0 

8.0  0.10 -247  746 -29.8  12.9 -90.2 

9.0  0.08 -253  647 -29.3  10.3 -87.0 

10.0  0.08 -255  555 -28.0  7.8 -85.0 
11.0  0.08 -254  521 -27.2  7.2 -84.0 

12.0  0.08 -252  487 -25.7  6.0 -84.0 

The lower and upper limits of each data are not included in the above tables. However, 

they are shown in the simulation results. It is noted that sufficient measurement data of 

STHT, DPMI and APM responses in the fore-and-aft direction is only available up to 

12 Hz. 
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3.2 Model description 

The developed model is a lumped-parameter linear spring and damper system. The 

model includes segments representing appropriate anatomical parts of the body and is 

capable of accommodating translational and rotational (head and neck joint) movements 

of these segments, which enable it to represent the measured STHT, DPMI and APM 
function data under low frequency whole-body vibration.  

This model is composed of two sub-models: the vertical model and the fore-and-aft 

model (uncoupled), as shown in Figure 3.1. The vertical model consists of five segments: 

head and neck (m5), upper torso (m4), arms (m3), viscera (m2), and lower torso (m1). The 
spring (k41) and damper (c41) connecting the upper and lower torsos represent the body 

spine. In the fore-and-aft model, the main body mass (m1+ m2+ m3+ m4) is treated as a 

single lumped mass. The head and neck (m5) and the main body are connected by a 
rotational degree of freedom. These rigid masses are coupled by linear elastic and 
damping elements. The masses of the lower legs and the feet are not incorporated in the 

model representation, assuming their negligible contributions to the whole-body 

biodynamic response. This assumption is in agreement with the evidence that the 

contribution of the supported legs to the whole-body vibration is relatively insignificant 
when both the seat and the footrest are vibrated under the same excitation. 

 

Figure 3.1: Schematic of model for seated human subjects in both vertical and 
fore-and-aft directions. 
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3.3 Equations of motion (EOMs) 

EOMs of the model were derived from the free-body diagram of each part. The vertical 

model has five degrees of freedom in total: the vertical displacement of each segment 

{푧 (푡), 푧 (푡), 푧 (푡), 푧 (푡), 푧 (푡)}. The vertical model EOMs can be expressed by 
the following coupled differential equations: 

푚 푧 ̈ + 푐 (푧 ̇ − 푧 ̇ ) + 푘 (푧 − 푧 ) − 푐 (푧 ̇ − 푧 ̇ ) − 푘 (푧 − 푧 ) 

−푐 (푧 ̇ − 푧 ̇ ) − 푘 (푧 − 푧 ) = 0               (3.1) 

푚 푧 ̈ + 푐 (푧 ̇ − 푧 ̇ ) + 푘 (푧 − 푧 ) − 푐 (푧 ̇ − 푧 ̇ ) − 푘 (푧 − 푧 ) = 0  (3.2) 

푚 푧 ̈ − 푐 (푧 ̇ − 푧 ̇ ) − 푘 (푧 − 푧 ) = 0             (3.3) 

푚 푧 ̈ + 푐 (푧 ̇ − 푧 ̇ ) + 푘 (푧 − 푧 ) + 푐 (푧 ̇ − 푧 ̇ ) + 푘 (푧 − 푧 ) 

+c (z ̇ − z ̇ ) + k (z − z ) − c (z ̇ − z ̇ ) − k (z − z ) = 0    (3.4) 

푚 푧 ̈ + 푐 (푧 ̇ − 푧 ̇ ) + 푘 (푧 − 푧 ) = 0             (3.5) 

The above differential equations can be expressed in matrix form: 

[푴]{풛̈} + [푪]{풛̇} + [푲]{풛} = {풇풏}                    (3.6) 

where [푴], [푪] and [푲] are mass, damping and stiffness matrices with a size of 5×5, 

respectively; {풛̈}, {풛̇} and {풛}  are acceleration, velocity and displacement vectors, 

respectively, with a size of 5×1; {풇풏}	 is an 5×1 excitation force vector. All the above 
matrices and vectors can be expressed as follows: 

[푴] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
푚 0 0 0 0

0 푚 0 0 0

0 0 푚 0 0

0 0 0 푚 0

0 0 0 0 푚 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

; 
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[푪] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
푐 + 푐 + 푐 −푐 0 −푐 0

−푐 푐 + 푐 0 −푐 0

0 0 푐 −푐 0

−푐 −푐 −푐 푐 + 푐 + 푐 + 푐 −푐

0 0 0 −푐 푐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

; 

[푲] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
푘 + 푘 + 푘 −푘 0 −푘 0

−푘 푘 + 푘 0 −푘 0

0 0 푘 −푘 0

−푘 −푘 −푘 푘 + 푘 + 푘 + 푘 −푘

0 0 0 −푘 푘 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

; 

	{풛̈} =

⎩
⎪⎪
⎨

⎪⎪
⎧

	

푧 ̈

푧 ̈

푧 ̈

푧 ̈

푧 ̈

	

⎭
⎪⎪
⎬

⎪⎪
⎫

; 		{풛̇} =

⎩
⎪⎪
⎨

⎪⎪
⎧

	

푧 ̇

푧 ̇

푧 ̇

푧 ̇

푧 ̇

	

⎭
⎪⎪
⎬

⎪⎪
⎫

	 ; 	{풛} =

⎩
⎪⎪
⎨

⎪⎪
⎧

	

푧

푧

푧

푧

푧

	

⎭
⎪⎪
⎬

⎪⎪
⎫

; 	{풇풏} =

⎩
⎪⎪
⎨

⎪⎪
⎧

	

푐 푧 ̇ + 푘 푧 	

0

0

0

0

	

⎭
⎪⎪
⎬

⎪⎪
⎫

. 

The fore-and-aft model has two degrees of freedom in total: the fore-and-aft 

displacement of the main body part 푥 (푡) and the head and neck rotational degree 

휃(푡). The EOMs of the fore-and-aft model can be expressed by the following 
differential equations: 

M푥̈ + 푚 푙 휃̈ cos 휃 −푚 푙 휃̇ sin휃 + 푘 (푥 + 푥 ) + 푐 (푥̇ + 푥 ̇ ) = 0   (3.7) 

푚 푙 휃̈ + 푚 푙 푥̈ cos 휃 − 푚 푙 푔 sin휃 + 푘 휃 + 푐 휃̇ = 0     (3.8) 

where M is the mass of the whole body (M= m1+ m2+ m3+ m4+ m5), 푙  is the average 

distance between the shoulder and the gravity centre of the head, 푔 is the acceleration 

due to gravity. 푘  and 푐  are the rotational spring and damper coefficients of the neck, 

푘  and 푐  are the spring and damper coefficients between the main body and the 
backrest, respectively. 
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3.4 EOMs solution in the frequency domain 

By taking Fourier transforms of the above EOMs the models can be analysed in the 

frequency domain. The Fourier transform of the vertical model EOMs (Equation (3.6)) 

results in: 

{풁(푗휔)} = −휔 [푴] + 푗휔[푪] + [푲] {푭풏(푗휔)}                (3.9) 

where {풁(푗휔)} and {푭풏(푗휔)} are the complex Fourier transform vectors of {풛} and 
{풇풏}, respectively, 푗 is the imaginary unit and 휔 is the angular frequency. The vector 
{풁(푗휔)} contains the complex displacement responses of the 5 mass segments as a 

function of angular frequency, and they can be represented by {풁ퟏ(푗휔), 풁ퟐ(푗휔),
풁ퟑ(푗휔), 풁ퟒ(푗휔), 풁ퟓ(푗휔)}. {푭풏(푗휔)} contains the complex excitation forces as a 

function of angular frequency as well, which is {(푘 + 푗휔푐 )풁ퟎ(푗휔), 0, 0, 0, 0}, where 
풁ퟎ(푗휔) is the complex displacement of excitation. The EOMs of the fore-and-aft 

model contain some nonlinear terms −푚 푙 휃̈ cos 휃, −푚 푙 휃̇ sin휃, 푚 푙 푥̈ cos 휃, 
−푚 푙 푔 sin휃. Small oscillations were assumed (i.e. around 휃 = 0), and the following 

linearization were used: cos 휃 = 1, sin휃 = 휃, 휃̇ sin휃 = 0. The Fourier transform 
of the linearized equations can be expressed as follows: 

−휔 M퐗ퟏ(푗휔) 	− 휔 푚 푙 휽(푗휔) + (푘 + 푗휔푐 )(퐗ퟏ(푗휔)− 퐗ퟎ(푗휔)) = 0  (3.10) 

−휔 푚 푙 휽(푗휔) 	− 휔 푚 푙 퐗ퟏ(푗휔) + 푚 푙 푔휽(푗휔) 

+(푘 + 푗휔푐 )휽(푗휔) = 0                 (3.11) 

Based on the preceding definitions, the STHT, DPMI and APM biodynamic functions 
for the vertical model can be derived as follows:  

STHT_v =
풁ퟓ(푗휔)
풁ퟎ(푗휔)	 

DPMI_v =
(푘 + 푗휔푐 )[풁ퟎ(푗휔)− 풁ퟏ(푗휔)]

푗휔풁ퟎ(푗휔)  

(3.12) 

(3.13) 
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APM_v =
DPMI_v
푗휔 =

(푘 + 푗휔푐 )[풁ퟎ(푗휔)− 풁ퟏ(푗휔)]
−휔 풁ퟎ(푗휔)  

Considering the Equation (3.10) and (3.11) of the fore-and-aft model in a similar 

manner, the STHT, DPMI and APM biodynamic functions for the fore-and-aft model 

can be derived as follows:  

STHT_f =
푙 휽(푗휔) + 퐗ퟏ(푗휔)

퐗ퟎ(푗휔) 		 

DPMI =
(푘 + 푗휔푐 )(퐗ퟏ(푗휔)− 퐗ퟎ(푗휔))

푗휔퐗ퟎ(푗휔)  

APM_f =
DPMI_f
푗휔 =

(푘 + 푗휔푐 )(퐗ퟏ(푗휔)− 퐗ퟎ(푗휔))
−휔 퐗ퟎ(푗휔)  

3.5 Model parameter identification 

Model parameters were identified using curve fitting methods formulated in Matlab 
(version 2011b). The Least Absolute Residual (LAR) method and the 'Trust-Region' 

algorithm are used. The fitting process involves the solution of a multivariable 

optimization function comprising the root mean square errors between the computed 

values using the model and those target values measured experimentally (Tables 3.1 and 
3.2). In the vertical model there are 17 unknown parameters in total, which can be 

represented in a vector as: 푝 =[푐 , 푐 , 푐 , 푐 , 푐 , 푐 , 푘 , 푘 , 푘 , 푘 , 푘 , 푘 , 
푚 , 푚 , 푚 , 푚 , 푚 ]T. Since the mass (푚 , 푚 , 푚 , 푚 , 푚 ) are shared 
parameters, in the fore-and-aft model the unknown parameters vector can be expressed 
as: 푝 =[푐 , 푐 , 푘 ,	푘 , 푙 ]T. The vectors 푝  and 푝  were identified by fitting the 

biodynamic functions in Equations (3.12-3.17) independently. The final values of the 

parameters were obtained by averaging the three sets of identified values.  

In order to make the fitting procedure more effective, a set of initial, upper and lower 
limit values were estimated by referring to previously published studies. 73.6% 

(percentage of body mass supported by the seat for erect seating posture) of the whole 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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body weight (75 kg) is used for the total model mass (i.e. 73.6% of 75kg =55.2kg). The 
damping and stiffness coefficients of the human body segments are not known precisely, 

therefore, the ranges are relatively large. The estimated initial, upper and lower limit 

values are listed in Table 3.3. The identified model parameters are listed in Table 3.4. 

Table 3.3: Estimated initial, upper and lower limits values for model parameter 
identification. 

Model parameters  Initial values  Lower limits  Upper limits 

Head and neck mass 푚 	(kg)  5.5   5  7 

Upper torso mass 푚  (kg)  22  20  25 

Arms mass 푚  (kg)  6  5  8 

Viscera mass 푚  (kg)  10.2  8  12 

Lower torso mass 푚  (kg)  11.7  10  15 

Average distance 푙  (m)  0.16  0.13  0.19 

Damping coefficient 푐  (Ns/m)  2000  500  5000 

Damping coefficient 푐  (Ns/m)  1000  400  5000 

Damping coefficient 푐  (Ns/m)  300  100  2000 

Damping coefficient 푐  (Ns/m)  4000  400  5000 

Damping coefficient 푐  (Ns/m)  4000  500  5000 

Damping coefficient 푐  (Ns/m)  400  300  2000 

Damping coefficient 푐  (Ns/m)  200  10  3000 

Damping coefficient 푐  (Ns/m)  200  10  2000 

Stiffness coefficient 푘 	(N/m)  120000  5000  200000 

Stiffness coefficient 푘 	(N/m)  6000  5000  100000 

Stiffness coefficient 푘  (N/m)  10000  5000  200000 

Stiffness coefficient 푘  (N/m)  7000  5000  100000 

Stiffness coefficient 푘  (N/m)  160000  5000  250000 

Stiffness coefficient 푘  (N/m)  300000  5000  500000 

Stiffness coefficient 푘  (N/m)  10000  500  200000 

Stiffness coefficient 푘  (N/m)  1000  500  200000 

 

 



Chapter 3. Seated Human Body Modelling and Simulation 

Page 32 
 

 

Table 3.4: Identified parameter values for the vertical and fore-and-aft human body 
models. 

Model parameters 
Identified 
values 

Model parameters 
Identified 
values 

Head and neck mass 푚 	(kg) 5.6 Damping coefficient 푐  (Ns/m) 977 

Upper torso mass 푚  (kg) 20.3 Damping coefficient 푐  (Ns/m) 6210 

Arms mass 푚  (kg) 8.0 Damping coefficient 푐  (Ns/m) 19 

Viscera mass 푚  (kg) 9.2 Stiffness coefficient 푘 	(N/m) 120000 

Lower torso mass 푚  (kg) 10.0 Stiffness coefficient 푘 	(N/m) 5300 

Average distance 푙  (m) 0.19 Stiffness coefficient 푘  (N/m) 13200 

Damping coefficient 푐  (Ns/m) 2380 Stiffness coefficient 푘  (N/m) 9150 

Damping coefficient 푐  (Ns/m) 676 Stiffness coefficient 푘  (N/m) 128000 

Damping coefficient 푐  (Ns/m) 146 Stiffness coefficient 푘  (N/m) 292000 

Damping coefficient 푐  (Ns/m) 1800 Stiffness coefficient 푘  (N/m) 9930 

Damping coefficient 푐  (Ns/m) 4020 Stiffness coefficient 푘  (N/m) 772 

3.6 Simulation and comparison results 

After all the model parameters have been identified, the magnitude and phase responses 
of the STHT, DPMI and APM biodynamic functions were simulated in Matlab. The 

simulation results are presented in Figure 3.2 to 3.7. To evaluate the goodness-of-fit 

(GOF) of the presented models, the ratio of the root-mean-square error to the mean 

value was calculated using the following equation [67]:  

퐺푂퐹 = 1 −
∑(풚풎 − 풚풄) /(푁 − 2)

∑풚풎/푁  

where 풚풎 and 풚풄 are the measured target data and calculated value, respectively. N is 
the number of the measured target data points. The GOF statistic can take on any value 
less than or equal to 1, with a value closer to 1 indicating a better fit. The GOF values of 

the seated human subject models in the comparison are summarized in Table 3.5. It is 

noted that in the figures and Table 3.5, any GOF value less than 0 is marked by ~. 

(3.18) 



Chapter 3. Seated Human Body Modelling and Simulation 

Page 33 
 

In the simulation results, four previous seated human subject models were selected for 
comparison: a four-DOF linear vertical model developed by Wan and Schimmels [76], 

which has been found to provide the highest average goodness-of-fit in [67], and a 

four-DOF vehicle driver model proposed by Boileau and Rakheja [7] were chosen for 

the vertical model comparison; a two-DOF fore-and-aft model developed by Stein et al. 
[77] and a four-DOF fore-and-aft apparent mass model presented by Qiu and Griffin 

[78] were selected for the fore-and-aft model comparison. The schematics and 

parameters of the comparison models are listed in Table 3.6. 

  

Figure 3.2: Vertical model STHT magnitude and phase responses. (a) Presented model; 

(b) Wan’s and Boileau’s models.  
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Figure 3.3: Vertical model DPMI magnitude and phase responses. (a) Presented model; 

(b) Wan’s and Boileau’s models.  

  

Figure 3.4: Vertical model APM magnitude and phase responses. (a) Presented model; 
(b) Wan’s and Boileau’s models.  
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Figure 3.5: Fore-and-aft model STHT magnitude and phase responses. (a) Presented 

model; (b) Stein’s and Qiu’s models. 

  

Figure 3.6: Fore-and-aft model DPMI magnitude and phase responses. (a) Presented 
model; (b) Stein’s and Qiu’s models. 
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Figure 3.7: Fore-and-aft model APM magnitude and phase responses. (a) Presented 

model; (b) Stein’s and Qiu’s models.  

 

Table 3.5: Summary of comparison results of the seated human subject models. 

Direction Model Name 
STHT GOF (%) DPMI GOF (%) APM GOF (%) 

Magnitude Phase Magnitude Phase Magnitude Phase 

Vertical 

Presented 90.8 82.7 81.3 78.3 87.8 86.9 

Wan’s model 89.3 77.5 76.1 74.9 84.9 86.1 

Boileau’s 75.3 66.0 79.4 68.8 80.2 73.6 

Fore-and-aft 

Presented 37.1 36.6 80.9 52.7 92.0 81.3 

Stein’s model ~ 29.9 ~ 30.3 ~ 42.5 

Qiu’s model ~ 39.5 79.6 ~ 80.9 61.8 
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Table 3.6: Schematics and parameters of comparison models of seated human subject. 

Model 
Name 

Model parameters Schematic of model 

Mass 

(kg) 

Stiffness 

(N/m) 

Damping 

(Ns/m) 

 

Wan and 

Schimmels 

[76] 

m1 36.0 k1 49340 c1 2475.0 
m2 5.5 k2 20000 c2 330.0 
m3 15.0 k4 192000 c41 909.1 
m4 4.17 k4 10000 c4 200.0 

  k5 134400 c5 250.0 

      

Boileau 

and 

Rakheja 

[7] 

m1 12.78 k1 90000 c1 2064 

m2 8.62 k2 162800 c2 4585 

m3 28.49 k3 183000 c3 4750 

m4 5.31 k4 310000 c4 400 

Stein et al. 

[77] 

m1 54 k1 39322 c1 465.9 

      

m2 10.4 k2 9 c2 8.0 
  k3 1054 c3 113.1 

      

Qiu and 

Griffin 

[78] 

mb 8 k1 39886 c1 359 

      

ms 10 k2 10924 c2 542 
m1 20 kb 24610 cb 0.0 
m2 35 kt 10 ct 112 

  ks 26646 cs 0.0 

Seat -m0

z4(t)

z2(t)

z1(t)
k1 c1

k5

k41 c41

z0(t)

c5

k4 c4

k2 c2

Lower torso -m1

Upper torso -m3

Viscera -m2

Head and neck -m4

z3(t)

Seat -m0

z4(t)

z2(t)

z1(t)
k1 c1

k4

z0(t)

c4

k3 c3

k2 c2

Thighs & pelvis -m1

Chest & upper 
torso -m3

Lower torso -m2
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z3(t)

c1

k2

c2

k1

m2

m1

k3
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3.7 Discussions 

Since there is some variation between the aggregated targets data used in these models, 

the calculated GOF of the comparison models may not be the original presented values. 

The measurement condition of the target data used in Stein’s model varies somewhat 

from those of the aggregated target data in the fore-and-aft direction. However, the 
target data used in Wan, Boileau and Qiu’s models are very close to the aggregated target 

data in this study. 

From the simulation results, the vertical seated human models show a higher average 

goodness-of-fit than the fore-and-aft models in both the magnitude and phase 
responses of the STHT, DPMI and APM functions. The presented vertical model 

provides 90.8% GOF and 82.7% GOF for the STHT magnitude and phase responses, 

81.3% GOF and 78.3% GOF for the DPMI magnitude and phase responses , 87.8% 

GOF and 86.9% GOF for the APM magnitude and phase responses, respectively. This 
indicates that a better overall GOF is achieved for predicting the above biodynamic 

functions for the seated human subject under vertical vibration. The results also show 

that very close peaks occur at about 5 Hz in the magnitude responses of all three 

functions, which indicates the reliability of predicting identical primary resonant 
frequencies are validated by each other. In addition, the presented vertical model 

predicts a second resonant frequency around 8 Hz which is observed in the target data. 

Wan’s model has been found to provide a generally good fit for the STHT and APM 

functions. However, the fit for the DPMI function is relatively poor, with 76.1% GOF 
for magnitude response and 74.9% GOF for phase response. The peak values occur at 

about 4 Hz for the STHT and APM functions while the peak value is around 7.5 Hz for 

the DPMI function.  

The fore-and-aft model simulation results exhibit a relatively large deviation. The 
presented model provides the highest match for the APM function, with 92.0% GOF 

for magnitude response and 81.3% GOF for phase response. The GOF values for the 

DPMI function are relatively lower, with 80.9% for magnitude response and 52.7% for 

phase response. The prediction for the STHT function is the poorest for all the three 
models. The GOF values for both magnitude and phase responses are below 40%. 

Because of the variation between the measurement data, Stein’s model shows poor 

matches for all the three functions. Qiu’s model provides a reasonably good fit for the 
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APM function, but poor fits for the other two functions. One of the reasons is that the 
model was developed based only on the APM measurement data. 

It is noted that the quantity of reported experimental data for the seated human subject 

responses in the fore-and-aft direction is considerably less than the data in the vertical 

direction. More measurement data is needed to guide and validate the human body 
modelling in the fore-and-aft direction. It is also noted that the phase responses of the 

three biodynamic functions are usually measured in experimental studies; however, they 

are rarely evaluated and analysed in human body modelling studies. The phase responses 

of the biodynamic functions are evaluated in this study since the phase responses can be 
equally as important as the magnitude responses, if not more so, when it comes to 

human body vibration cancellation. 

3.8 Conclusions 

A lumped-parameter biodynamic model of a seated human subject exposed to low 
frequency whole-body vibration in both the vertical and fore-and-aft directions has been 

developed. Model parameters were identified using curve fitting methods and the STHT, 

DPMI and APM biodynamic magnitude and phase response functions were simulated in 

Matlab. The goodness-of-fit of the presented model has been evaluated graphically and 
statistically. A comparison with the existing models was carried out and the results show that 

an improved fit with the aggregated experimental data is achieved. Through the model, the 

biodynamic behaviour of seated human subjects can be observed in a more comprehensive 

way. The developed model can also be used to help in developing anthropodynamic 
mannequins for vibration assessment. 
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Chapter 4 

Measurements of  Vehicle Seat and Test 

Dummy Vibration Transmissibility 

In this chapter, experimental measurements of the vibration transmissibility of a test 

dummy and vehicle seat are presented. The test dummy was designed and built to represent 

the dynamic response of a seated human subject and was used in active seat vibration 
cancellation tests. The aim of these measurements was to characterise the dynamic 

response of the test dummy and to further investigate the overall vibration isolation 

efficiency of vehicle seats. 

4.1 Experimental setup 

4.1.1 Vehicle seat 

A standard polyurethane foam (PUF) cushion car seat was used in the experimental 

measurements. The total mass of the seat is 10.2 kg. The seat consisted of a backrest and a 

seat pan, the backrest reclined at 9.8o to the vertical and the seat pan inclined at 15.9o to the 
horizontal. The seat pan frame was attached on a rail mechanism through which the 

horizontal position could be adjusted. The seat was rigidly mounted on the platform of 

the multi-axis vibration simulation table (MAST) using screws, as shown in Figure 4.1 

(a). 

4.1.2 Test dummy 

A vibration test dummy was designed and built based on the developed model in Chapter 

3 to represent the dynamic response of a seated human subject. The dummy has three 

segments: the head, upper torso and lower torso (including pelvis and thighs). Each segment 
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is filled with sand bag cushioned by foam, and the segments are connected by rubber joints 
to provide stiffness and damping. The total mass of the dummy is 55.2 kg. 

Once fully tested and calibrated, the dummy can be used as a seated human body substitute 

in the active seat vibration cancellation test in order to ensure an improved consistency in 

behaviour and avoid safety and ethical issues. The dynamic response of the test dummy was 
characterised by measuring the vibration transmissibility under two experimental setups: car 

seat setup and solid seat setup, as shown in Figure 4.1 (c) and (d). The dummy was secured 

using a standard seat belt in the car seat setup and a four-point harness in the solid seat setup. 

Both the seat belt and harness were bolted to the simulation table. 

               

 (a) Empty seat   (b) Seat with sandbag 

                

(c) Dummy measurement: car seat  (d) Dummy measurement: solid seat  

Figure 4.1: Experimental seat rig. 
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4.1.3 Multi-axis vibration simulation table 

The multi-axis vibration simulation table (MAST) has 6 degrees-of-freedom, and can be 

controlled in Cartesian co-ordinates (X, Y, Z, Roll, Pitch, and Yaw). Control signals such 

as sine waves and random inputs can be specified, and any combination of linear or 

rotary motions can be commanded simultaneously. The actuator stroke is ±75 mm, with 
test frequencies up to 50 Hz, and acceleration up to 60 m/s2. 

4.1.4 Seat interface transducer pad 

A seat interface transducer pad was used to mount the accelerometers on the seat 

conforming to ISO 10326-1:1992 Mechanical vibration - Laboratory method for 
evaluating vehicle seat vibration, as shown in Figure 4.1 (a). The flexible pad was a 

semi-rigid rubber sheet and was designed to conform to the contours of the seat under the 

weight of subjects. The pad had no adverse effect on the contact condition with the seat 

surface, and did not compress or bend under the action of normal vibration during 
measurements. 

4.1.5 Accelerometers and data acquisition system 

A total of six single-axis piezoresistive accelerometers (Entran, EGCS-D1CM-25) were 

used to measure the acceleration of the simulation table, test dummy and vehicle seat. 
The measurement locations and orientations are listed in Table 4.1. Due to the limited 

number of accelerometers, accelerometers No. 3 and 4 were interchanged between 

some measurement locations in order to gain both vertical and fore-and-aft axis signals. 

The accelerometer mounted on the head of the dummy in the vertical direction was 
reclined at 10.3o to the vertical and in the fore-aft direction was inclined at 19.8o to the 

horizontal. The signals from the accelerometers were sampled at 1000 Hz and were 

acquired by an xPC Target system using a NI PCI-6229 data acquisition board. Figure 

4.2 provides an overview of the experimental measurement and data acquisition setup. 

 
 
 
 



Chapter 4. Measurements of Vehicle Seat and Test Dummy Vibration Transmissibility 

Page 43 
 

Table 4.1: Position of the accelerometers used in the measurements. 

Accelerometer 
position 

Orientation 

Vertical  Fore-and-aft 

Head Yes (No.1) Yes (No.2) 

Shoulder Yes (No.3 Interchanged) 

Pelvis Yes (No.4 Interchanged) 

Seat pan Yes (No.4 Interchanged) - 

Seat backrest - Yes (No.3 Interchanged)  

Simulation table Yes (No.5) Yes (No.6) 

 

 

 

 

 

 

Figure 4.2: Experimental setup for vehicle seat and dummy vibration measurements. 
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4.2 Vibration measurement method 

Four types of measurements were undertaken. These were an empty seat transmissibility 

measurement, a seat transmissibility measurement with a sandbag and a dummy 

transmissibility measurement on both a solid seat and a vehicle seat. The setups are 

shown in Figure 4.1. The recorded acceleration data of the corresponding location and 
orientation was used to calculate the vibration transmissibility, power spectral density 

(PSD) and ordinary coherence between the measurement points. 

4.2.1 Excitation signal types 

A number of excitation signal sequences were generated based on both vehicle vibration data, 
and the dynamic behaviour of the test dummy and seat. The amplitudes of the excitation 

signal ranged from 0.5mm to 10mm, and the frequencies up to 20 Hz. The frequency 

intervals were 0.25 Hz in the primary resonance range (typically 4-8 Hz), and 1 Hz outside of 

this range. The excitation signal sequences were grouped into three main types: 

Excitation A – Sinusoidal excitation signal with constant displacement amplitude with a 

frequency range from 1 Hz to 20 Hz. Under this kind of excitation signal, the simulation 

table shakes in three different modes: x-axis shakes only, z-axis shakes only, and x & z-axis 

shake simultaneously. The measurement duration at each frequency was 40 seconds.  

Excitation B – Sinusoidal excitation signal with constant frequency with a variable 

amplitude range from 1 mm to 10 mm (the amplitude at frequencies above 4 Hz was limited 

to 5mm due to the excessive acceleration level). The measurement duration of each different 

amplitude signal was 40 seconds.  

Excitation C – Random excitation signal with frequency range 0-20 Hz for both the x-axis 

and z-axis, with peak amplitudes of 2.2 mm for the x-axis and 5.5 mm for the z-axis. The 

measurement duration for both axes was 120 seconds.  

The excitation signal types and details are listed in Table 4.2. 
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Table 4.2: Excitation signal types and vibration simulator shaking modes. 

Signal type Amplitude(mm) Frequency 
(Hz) Axis Peak 

acceleration (g) Table shake mode 

Excitation A 

5.5 1-15 z 5 

1. x-axis only 
2. z-axis only 
3. x, z axis simultaneously 

3.0 1-20 x, z  

1.0 1-20 x, z 2 

0.5 1-20 z  

Excitation B 

1-10 2 x, z 0.16 

1. x-axis only 
2. z-axis only 

1-10 4 x, z 0.32 
1-5 6 x, z 0.72 
1-5 8 x, z 1.29 
1-5 10 x, z 2.01 
1-5 12 x, z 2.89 
1-5 14 x, z 3.94 

Excitation C 
2.2 (Peak value) 0-20 x 3.54 

1. x, z axis simultaneously 
5.5 (Peak value) 0-20 z 8.85 

 

The following equation can be used to calculate the maximum acceleration of the above 

excitation signals: 

푀푎푥푖푚푢푚	푎푐푐푒푙푒푟푎푡푖표푛 =
퐴푚푝푙푖푡푢푑푒

1000
∗ (2휋 ∗ 퐹푟푒푞푢푒푛푐푦) ∗

1
9.81

		(푔) (4.1) 

where the Amplitude (mm) and Frequency (Hz) are known, 푔 (gravity of earth) uses 

approximate value of 9.81 m/s2. 
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4.2.2 PSD and ordinary coherence analysis 

PSD analysis 

The power spectral density (PSD) describes how the power of a signal is distributed over the 

content frequencies, and it can be used to reveal the resonant frequencies of the test objects 
under random excitation. The PSD of a random signal )(tx  can be expressed as the average 

of the Fourier transform magnitude squared over a large time interval: 









 

 
2

2)(
2
1lim)( dtetx
T

EfPSD ftjT

TTx
  (4.2) 

where E  denotes the expected value, T  is the time interval and f  is the frequency. 

Ordinary coherence analysis 

Coherence functions are used to assess the validity of the frequency response function from 

the measured data and to analyse the linear relationship between the input and output signals. 

For a single-input and single-output (SISO) system, the ordinary coherency between the 

input signal 푥(푡) and the output signal 푦(푡) is defined as [88]:  

훾 (푓) =
퐺 (푓)

퐺 (푓)퐺 (푓) =
푆 (푓)

푆 (푓)푆 (푓) (4.3) 

where 퐺 (푓) and 퐺 (푓) are the one-sided spectral density functions of 푥(푡)  and 
푦(푡), respectively. 퐺 (푓) is the one-sided cross-spectral density function between 푥(푡) 

and 푦(푡). 푆 (푓) and 푆 (푓) are the power spectral density functions of 푥(푡) and 

푦(푡), respectively. 푆 (푓)	is the cross-spectral density function between 푥(푡) and 푦(푡). 

Because 푆 (푓) ≤ 푆 (푓)푆 (푓), it follows that  0 ≤ 훾 (푓)≤1 for 0 ≤ 푓≤∞.  
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If the SISO system is a linear system, then 푆 (푓) = |퐻(푓)| 	푆 (푓) and 푆 (푓) =
퐻(푓)푆 (푓), where 퐻(푓) is the system frequency response function. So the coherence 
function is: 

훾 (푓) =
|퐻	(푓)| 	푆 (푓)

푆 (푓)|퐻	(푓)| 푆 (푓) = 1 (4.4) 

This implies that the input signal 푥(푡) and output signal and 푦(푡) are linearly related at all 
frequencies. If the system is nonlinear, or has multiple-input, or experiences noise in the 

measurements of either or both 푥(푡) and 푦(푡) then the coherence function is less than 
unity. 

4.3 Vehicle seat vibration transmissibility results 

The results of the vehicle seat vibration transmissibility tests are grouped into three types 

based on the measurement setups. These are an empty seat transmissibility, a seat 

transmissibility with a sandbag and a seat transmissibility with a dummy. In each case, 
the overall transmissibility from the MAST to the seat pan (vertical) and backrest 

(fore-and-aft) under excitation A, the vibration magnitude related non-linearity under 

excitation B, and the PSD and ordinary coherence under excitation C were calculated 

using the recorded acceleration data. For the cases of x & z-axis shaking simultaneously, 
the corresponding transmissibilities were calculated using the measured input and 

output signals in the same axis.  

4.3.1 Empty seat transmissibility  

Excitation A: Overall transmissibility  

Figure 4.3 shows the overall transmissibility from the MAST to the seat pan and 

backrest under excitation A. The MAST to the seat pan transmissibility in the vertical 

direction exhibits no obvious peak in the 1-15 Hz frequency range for either shake 

modes, and it tends to rise as the frequency increases. The MAST to backrest 
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transmissibility in the fore-and-aft direction exhibits a distinctive resonant frequency 
near 9 Hz for both shake modes. The peak magnitude is over 7 for the Z-axis shake 

mode.  

(a) MAST to seat pan (vertical). (b) MAST to backrest (fore-and-aft). 

Figure 4.3: Overall transmissibility of the empty seat. 

Excitation B: Vibration magnitude related non-linearity 

Figure 4.4 shows the effect of the vibration magnitude related non-linearity of the empty 

seat. Both the MAST to seat pan and MAST to backrest transmissibilities appear to be 

fairly independent of amplitude at all the measured frequencies. 

(a) MAST to seat pan (vertical). (b) MAST to backrest (fore-and-aft). 

Figure 4.4: Vibration magnitude related non-linearity of the empty seat. 
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Excitation C: PSD and coherence analysis  

Figure 4.5 shows the PSD and coherence plots of the empty seat. The PSD plots of the 

MAST and seat pan acceleration signal in the vertical direction show a similar energy 

distribution without obvious peaks. However, there is a peak near 9 Hz in the backrest 

signal PSD. An over strong coherence of 0.8-1.0 is exhibited between the MAST and 
seat pan signal, and the coherence between the MAST and backrest is fluctuating. Both 

the PSD and coherence analysis support the trends observed in Figure 4.3. 

  
(a) PSD plots. (b) Coherence plots. 

Figure 4.5: PSD and coherence plots of the empty seat. 

4.3.2 Seat transmissibility with a sandbag 

Excitation A: Overall transmissibility 

The overall transmissibility of the seat with a sandbag under excitation A is shown in 

Figure 4.6. A dominant resonant frequency between 4 and 6 Hz can be clearly observed 

in the MAST to the seat pan transmissibility in the vertical direction, and the associated 

peak magnitudes are over 1.5. It can also be observed that the transmissibility 
magnitudes tend to drop below 0.5 beyond frequencies of 6 Hz. The MAST to the 

backrest transmissibility in the fore-and-aft direction exhibits a resonant frequency near 

3 Hz for both shake modes. 
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(a) MAST to seat pan (vertical). (b) MAST to backrest (fore-and-aft). 

Figure 4.6: Overall transmissibility of the seat with a sandbag. 

Excitation B: Vibration magnitude related non-linearity 

Figure 4.7 shows the effect of the vibration magnitude related non-linearity of the seat 

with a sandbag. The MAST to seat pan transmissibility at frequencies 4, 6 and 8 Hz 

(close to the resonant frequency observed in Figure 4.6) changes significantly as 
amplitude increases. This may indicate a vibration magnitude related non-linearity in the 

seat and seated object system. A similar trend can also be found in the MAST to 

backrest transmissibility in the fore-and-aft direction.  

(a) MAST to seat pan (vertical). (b) MAST to backrest (fore-and-aft). 

Figure 4.7: Vibration magnitude related non-linearity of the seat with a sandbag. 
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Figure 4.8 shows the PSD and coherence plots of the seat with a sandbag. Two peaks at 
6 Hz and 3 Hz can be identified in the seat pan signal (vertical) and the backrest signal 

(fore-and-aft), respectively. This is consistent with the observation in Figure 4.6. The 

coherence of the MAST and the seat pan signal in the vertical direction, as shown in 

Figure 4.8 (b), drops significantly above 10 Hz. The coherence between the MAST and 
backrest tends to rise as the frequency increases, indicating that the backrest is more 

linear at higher frequency. 

  

(a) PSD plots. (b) Coherence plots. 

Figure 4.8: PSD and coherence plots of the seat with a sandbag. 

4.3.3 Seat transmissibility with a dummy 

Excitation A: Overall transmissibility 

The overall transmissibility of the seat with a dummy under excitation A is shown in 

Figure 4.9. It is observed that there is a dominant resonance at a frequency of 

approximately 5 Hz in the MAST to the seat pan transmissibility in the vertical direction, 
with peak magnitude over 1.5. Two close peaks near 4 Hz can be identified in the 

MAST to the backrest transmissibility in the fore-and-aft direction. The transmissibilities 

of both shake modes show good consistency, except that a new peak near 3 Hz was 

introduced in the MAST to the seat pan transmissibility under the X, Z-axis shake 
mode.  
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(a) MAST to seat pan (vertical). (b) MAST to backrest (fore-and-aft). 

Figure 4.9: Overall transmissibility of the seat with a dummy. 

Excitation B: Vibration magnitude related non-linearity 

The effect of the vibration magnitude related non-linearity of the seat with a dummy is 

shown in Figure 4.10. The MAST to seat pan transmissibility at frequencies 4 and 6 Hz 

(close to the resonant frequency 5 Hz observed in Figure 4.9 (a)) shows a larger change 
than at other frequencies. Similarly, the MAST to backrest transmissibility at a frequency 

of 4 Hz (the resonant frequency observed in Figure 4.9 (b)) changes significantly while 

the transmissibility at other frequencies remains quite constant.  

(a) MAST to seat pan (vertical). (b) MAST to backrest (fore-and-aft). 

Figure 4.10: Vibration magnitude related non-linearity of the seat with a dummy. 
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Excitation C: PSD and coherence analysis 

The PSD and coherence plots of the seat with a dummy are shown Figure 4.11. In the 

PSD plots, two peaks near 6 Hz and 4 Hz can be observed in the seat pan signal 

(vertical) and the backrest signal (fore-and-aft), respectively. The coherence of the 

MAST and the seat pan signal in the vertical direction tends to decrease at frequencies 
above 7 Hz. The coherence between the MAST and backrest signal remains significantly 

low in the 5-15 Hz frequency range but high at both ends. 

  

(a) PSD plots. (b) Coherence plots. 

Figure 4.11: PSD and coherence plots of the seat with a dummy. 

4.4 Dummy vibration transmissibility results 

The dynamic response of the test dummy was characterised by measuring the vibration 

transmissibility under two conditions; the solid seat and the vehicle seat. 

The solid seat tests investigate the response of the dummy itself without the vehicle seat 

interference, while the vehicle seat tests provide an insight into the coupling effects 
between the dummy and seat. 
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4.4.1 Solid seat tests  

Excitation A: Overall transmissibility 

Vertical 

The overall transmissibility in the vertical direction from the MAST to the dummy head, 

shoulder and pelvis was calculated and is shown in Figure 4.12.  

  

  

Figure 4.12: Overall transmissibility of the dummy in the vertical direction. 
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similar to some previous measurements on seated human subjects [7-9]. It can also be 
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excitation amplitudes (1.0 and 0.5 mm).  
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Due to very low acceleration levels at the 1.0 and 0.5 mm amplitude, the acceleration 
was of similar magnitude to noise. Therefore low frequency measurements below 4Hz 

at low excitation amplitude may be affected by signal noise.  

Fore-and-aft  

Figure 4.13 shows the overall transmissibility of the dummy in the fore-and-aft direction. 
The MAST to head and shoulder transmissibility exhibit a dominant resonance in the 

range of 4-8 Hz at both 3.0 mm and 1.0 mm excitation amplitudes. The MAST to head 

peak transmissibility is over 3 at 3.0 mm and over 5 at 1.0 mm amplitude. A dominant 

fore-and-aft ‘rocking’ motion associated with a rotation about the pelvis was observed in 
the response of the dummy. Both the head and shoulder transmissibilities drop rapidly 

above the resonant frequency range. However, the MAST to pelvis transmissibility 

remains constant around one and shows no obvious peak.  

Figure 4.13: Overall transmissibility of the dummy in the fore-and-aft direction. 

Excitation B: Vibration magnitude related non-linearity 

Vertical  

Figure 4.14 shows the vibration magnitude related non-linearity of the dummy on the 

solid seat in the vertical direction. The MAST to head and shoulder transmissibilities at a 

constant frequency over a range of excitation amplitudes were calculated. It can be 

observed that both the head and shoulder transmissibility change more significantly at 
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identified in Figure 4.12. This may indicate that the non-linearity associated with the 
vibration magnitude has a larger effect at frequencies near the resonance.  

  

Figure 4.14: Vibration magnitude related non-linearity of the dummy on solid seat 

(vertical).  

Fore-and-aft  

Figure 4.15 shows the vibration magnitude related non-linearity of the dummy on the 

solid seat in the fore-and-aft direction. It can be seen that both the head and shoulder 

transmissibility shows a large change at 4 Hz when amplitude increases from 1 mm to 3 

mm and remain stable at amplitudes above 3 mm. The head transmissibility tends to 
decrease with amplitude, increasing at frequencies above 4 Hz. However, the shoulder 

response appears to be more linear than the head response at frequencies above 4 Hz.  

     

Figure 4.15 Vibration magnitude related non-linearity of the dummy on solid seat 
(fore-and-aft). 
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Excitation C: PSD and coherence analysis 

Vertical  

The PSD and coherence plots of the dummy on the solid seat in the vertical direction 

are shown in Figure 4.16 and Figure 4.17, respectively. In the PSD plots, a peak in the 

range of 8-10 Hz can be identified in both the head and shoulder signal. These peaks in 
the PSD are associated with the corresponding resonance modes which are observed in 

the overall transmissibility results under excitation A. The coherence magnitudes of the 

MAST and head, MAST and shoulder, MAST and pelvis, and head and shoulder remain 

constant, near one, at frequencies above 4 Hz. This may indicate an overall linear 
behaviour. However, both the MAST and head, MAST and shoulder coherence drop 

slightly at frequency near 10 Hz.  

 

Figure 4.16: PSD plots of the dummy on solid seat in the vertical direction. 
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Figure 4.17: Coherence plots of the dummy on solid seat in the vertical direction. 

Fore-and-aft  

The PSD and coherence plots of the dummy on the solid seat in the fore-and-aft 

direction are shown in Figure 4.18 and Figure 4.19, respectively. As shown in the PSD 

plots, an obvious peak in the range of 4-6 Hz can be observed in both the head and 

shoulder signal. Similar to the vertical results, these peaks associated with the 
corresponding resonance modes are consistent with the overall transmissibility results in 

Figure 4.13. The coherence of the MAST and pelvis remains constant and high while 

the coherence of the MAST and head, MAST and shoulder, head and shoulder show 

noticeable fluctuation at frequencies above 5 Hz.  
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Figure 4.18: PSD plots of the dummy on solid seat in the fore-and-aft direction. 

 

Figure 4.19: Coherence plots of the dummy on solid seat in the fore-and-aft direction. 
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4.4.2 Vehicle seat tests 

Excitation A: Overall transmissibility 

Vertical  

Figure 4.20 shows the overall transmissibility of the dummy on the vehicle seat in the 

vertical direction. A dominant resonant frequency in the range of 4-8 Hz can be found. 
The peak transmissibility increases from around 2 at the pelvis, to above 3 at the head 

for both the excitation amplitudes. Again, this dominant whole body resonance is 

similar to some previous measurements on seated human subjects [7-9].  

Figure 4.20: Overall transmissibility of the dummy on the vehicle seat (vertical). 

Fore-and-aft  

Figure 4.21 shows the overall transmissibility of the dummy on the vehicle seat in the 
fore-and-aft direction. It can be observed that a dominant resonant frequency occurs in 

the range of 3-6 Hz, with a peak transmissibility above 3 and 5 at the shoulder and head 

respectively. A second resonance in the range of 8-10 Hz can also be found at the head 

which was caused by a ‘rocking’ rotation about the neck.  
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Figure 4.21: Overall transmissibility of the dummy on vehicle seat (fore-and-aft).  

Excitation B: Vibration magnitude related non-linearity 

Vertical 

Figure 4.22 shows the vibration magnitude related non-linearity of the dummy on the 

vehicle seat in the vertical direction. Similar to the observation on the solid seat test, 

both the head and shoulder transmissibility change more significantly at frequencies 
above 6 Hz (close to the resonance frequency identified in Figure 4.20) than at other 

frequencies. Both the head and shoulder transmissibility remains relatively constant at 

higher frequencies (10, 12 and 14 Hz). 

  

Figure 4.22: Vibration magnitude related non-linearity of the dummy on vehicle seat 

(vertical). 
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Fore-and-aft  

Figure 4.23 shows the vibration magnitude related non-linearity of the dummy on 

vehicle seat in the fore-and-aft direction. The transmissibility at both the head and 

shoulder show much bigger change at a frequency of 4 Hz, which is close to the 

dominant resonant frequency identified in Figure 4.21. The head transmissibility also 
shows a relatively larger change at frequencies close to the second resonance. This, again, 

supports the general trend observed in the tests.  

  

Figure 4.23: Vibration magnitude related non-linearity of the dummy on vehicle seat. 

Excitation C: PSD and coherence analysis 

Vertical  

Figure 4.24 and 4.25 show the PSD and coherence plots of the dummy on the vehicle 

seat in the vertical direction, respectively. As shown in the PSD plots, an obvious peak 

in the range of 5-8 Hz can be observed in both the head and shoulder signal. These 
PSD peaks are associated with the corresponding resonance modes and the range is 

consistent with the observation in the overall transmissibility results presented in Figure 

4.20. The overall coherence magnitudes of the MAST and head and the MAST and 

shoulder remain at high level, however, some small drops at frequencies near 8 and 12 
Hz can be found. 
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Figure 4.24: PSD plots of the dummy on vehicle seat in the vertical direction. 

 

Figure 4.25: Coherence plots of the dummy on vehicle seat in the vertical direction. 

Fore-and-aft  

Figure 4.26 and 4.27 show the PSD and coherence plots of the dummy on the vehicle 
seat in the fore-and-aft direction, respectively. In the PSD plots, a peak near 4 Hz can be 

identified in both the head and shoulder signal, and there is a second peak in the head 

signal which occurs near 10 Hz. Again, these observations are generally consistent with 

the overall transmissibility results in Figure 4.21. The coherences between the MAST 
and head and the MAST and shoulder remain above 0.8 at frequencies above 4 Hz.  
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Figure 4.26: PSD plots of the dummy on vehicle seat in the fore-and-aft direction. 

 

Figure 4.27: Coherence plots of the dummy on vehicle seat in the fore-and-aft 

direction. 

4.5 Experimental measurements discussions 
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dummy, a dominant resonant frequency between 4 and 6 Hz can be clearly observed in 
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resonant frequency. It can also be observed that the seat transmissibility magnitude was 
up to several times higher at resonance, however it reduced significantly above 10Hz. 

This highlights the limits of the standard vehicle seat vibration isolation performance.  

  

(a) STHT defined in ISO 5982 [8] (b) STHT of the dummy (3mm excitation). 

Figure 4.28: Comparison of whole body resonances in the vertical direction. 

Based on the analysis of the dummy vibration transmissibility results, a number of 
characteristics of the dummy dynamic response were identified. There is a distinctive 

vertical whole body mode in the 6-10 Hz frequency range on the solid seat, and a 
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dominant rotational ‘rocking’ motion about the pelvis was observed in the response of 

the dummy, and a head resonance in the range of 8-10 Hz caused by a rotational 
‘rocking’ motion about the neck was found. The head ‘rocking’ behaviour has not been 

observed on seated humans and is a characteristic of the dummy only. The vibration 

magnitude related non-linearity is significant at frequencies near the resonance in both 

the vertical and fore-and-aft responses. The coherence magnitudes in the vertical 
direction are generally high on both the solid and vehicle seat. However, some 

fluctuations indicated the frequency dependent non-linear behaviour of the dummy. 
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4.6 Conclusions 

In this chapter, experimental measurements of the transmissibility of a test dummy and a 

vehicle seat were conducted in the laboratory. The overall transmissibility, vibration 

magnitude related non-linearity, the PSD and ordinary coherence were calculated using 

the recorded acceleration data. Several characteristics of the seat dynamic behaviour were 
identified, and the results highlighted the limited vibration isolation performance of the 

standard vehicle seats in the low frequency range. The dynamic response of the test 

dummy was characterised and the principal whole body modes were found to be 

broadly consistent with a seated human response. These findings enable the dummy to 
be used as a seated human body substitute in the active seat vibration cancellation tests 

in order to ensure an improved consistency in behaviour and avoid safety and ethical 

issues. 
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Chapter 5 

Active Seat Structure and Dynamics 

This chapter presents the details of the active seat structure and dynamics. The active seat 
was designed and built on the basis of the excitation frequency range (1-25 Hz) and an input 

displacement range of 0-30 mm. The constituent and mechanical structure of the active 

seat is described and illustrated by three-dimensional line drawings and photos. The 

characteristics of the active seat dynamics were identified via experimental tests. 

5.1 Active seat mechanical structure 

5.1.1 Overall structure 

The mechanical model of the active seat is shown in Figure 5.1. The seat includes a passive 

suspension and an active actuation system. The passive suspension, which is composed of a 
spring and damper, supports the main static load of the seat pan and occupant. The active 

actuation system is composed of two electromagnetic linear actuators which are installed 

parallel at the front and the rear of the seat pan to provide active control authority. The 

moveable seat pan is supported at the middle of both sides by a two-bar lever mechanism 
that ensures parallel vertical motion. At the rear of the seat pan, two linear sliders are used to 

allow the seat pan to move vertically upwards. The linear rails are rigidly mounted on each 

side of the seat base and the linear carriages are connected to the seat pan via ball bearings in 

order to achieve a pitch rotational degree of freedom. The vertical and rotational motions of 
the seat pan are illustrated using dashed lines in Figure 5.1. The three-dimensional line 

drawings of the assembled active seat are shown in Figure 5.2. The unit of all the dimensions 

in the line drawings is millimetres.  
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Figure 5.1: Mechanical model of the active seat. 

 
Figure 5.2: Line drawings of the assembled active seat. 
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5.1.2 Two-bar lever mechanism 

The line drawings of the two-bar lever mechanism are shown in Figure 5.3. The lever was 

designed to obtain an appropriate supporting force from the spring and damper while 

keeping the passive suspension structure simple. Pin joints were used for the connections to 

maintain free rotation. The static ratio of the load force to the supporting force is 
approximately 2.6. As the seat pan moves up and down, the lower bar will rotate about the 

hinge A and the ratio will vary accordingly.  

 

 

Figure 5.3: Line drawings of the two-bar level mechanism. 
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5.1.3 Linear slider mechanism 

The line drawings of the linear slider mechanism are shown in Figure 5.4. As mentioned 

above, the linear sliders were used to allow the seat pan to move up and down vertically 

along the rail guides. The rail guides were rigidly mounted on each side of the seat base and 

the free moveable range for the carriage was ±45 mm approximately. Two ball bearings were 
mounted on the linear carriages using an attached holder plate to allow free rotation.  

 

                         

Figure 5.4: Line drawings of the linear slider mechanism. 

5.1.4 Passive shock absorber 

As shown in Figure 5.1, the two-bar lever is supported by a damper and spring unit, which 

constitutes the passive suspension of the active seat. To suit the design requirement, an 

Elka-stage-5 shock absorber which consists of a steel coil spring and an adjustable damper 
was selected as the passive suspension element. Figure 5.5 shows a photograph of the 

shock absorber.  
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Figure 5.5: Photograph of the shock absorber. 

5.1.5 Active actuation element 

Two XTA-3806 electromagnetic linear actuators manufactured by the Dunkermotoren 
GmbH were chosen as the active struts. The actuators were installed in parallel at the front 

and the rear of the seat pan to provide active control authority in bounce and pitch. Figure 

5.6 shows a photograph of the actuator. The specifications of the actuator are listed in 

Table 5.1. 

 
Figure 5.6: Photograph of the actuator. 
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Table 5.1: Actuator specifications. 

Parameter Value Unit 

Stroke ±30 (Limited range) (mm)  

Peak force 1116 (N) 

Continuous stall force 168.2 (N) 
Force constant 78.9 (N/Arms) 

Peak acceleration 313 (m/s2) 

Maximum speed 3.8 (m/s) 

Thrust rod mass/metre 8.3 (kg/m) 
Forcer mass (excluding thrust and cables) 3.75 (kg) 

5.2 Active seat dynamics 

5.2.1 Shock absorber dynamics 

The passive spring stiffness, at a lever ratio of 2.6, was chosen to achieve around 30 mm of 

compression under a load of an average adult. The stiffness of the spring and the damper 

characteristics were identified through experimental tests. Three separate sets of tests were 
conducted:  spring force tests, damper force tests and resultant force (i.e. combined 

spring and damper force) tests. These tests were carried out on a suspension 

dynamometer, and two sinusoidal input speeds were chosen for each set of tests. 

Figure 5.7 and 5.8 show the plots of the spring force against displacement and velocity, 
respectively. The spring constant was calculated to be 71.97 kN/m and is indicated by 

the black thick line in Figure 5.7. 

The damper force against the displacement and velocity plots are shown in Figure 5.9 

and 5.10, respectively. A hysteretic and non-linear behaviour of the damper is observed 
in the force-velocity curve. The damper force is around 200 N with a speed of 0.15 m/s.  

Figure 5.11 and 5.12 show the plots of the resultant force against the displacement and 

velocity, respectively.  
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Figure 5.7: Spring force against displacement. 

   

Figure 5.8: Spring force against velocity. 
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Figure 5.9: Damper force against displacement. 

 

Figure 5.10: Damper force against velocity. 
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Figure 5.11: Resultant force against displacement. 

 

Figure 5.12: Resultant force against velocity. 

  

-15 -10 -5 0 5 10 15
0

500

1000

1500

2000

2500

3000
Fo

rc
e 

(N
)

Displacement (mm)

 

 

Speed 1
Speed 2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

3000

Fo
rc

e 
(N

)

Velocity (m/s)

 

 

Speed 1
Speed 2



Chapter 5. Active Seat Structure and Dynamics 

Page 76 
 

5.2.2 Vibration transmissibility of the empty seat 

Experimental tests were carried out using the University of Bath MAST (Multiple Axis 

Simulation Table) to identify the dynamic characteristics of the active seat. As shown in 

Figure 5.13, the vibration transmissibility in the vertical axis from the seat base (MAST input) 

to the seat pan without external load and with the actuators powered off was measured. This 
was obtained by measuring the acceleration level at the seat base and the seat pan 

simultaneously under sinusoidal excitation in the frequency range of 1-25 Hz with a 

frequency interval of 0.5 Hz and input acceleration range of 0.05-5 g. The transmissibility 

curve reveals a dominant resonant frequency between 10 and 14 Hz, and the associated peak 
magnitude is over 2. 

 

Figure 5.13: Empty seat vibration transmissibility from the seat base to the seat pan. 
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fundamental frequency of the active seat. It is also found that the frequency range of the 
resonance tends to broaden as the excitation force increases. The phase responses show a 

general good consistency below 10 Hz and a bigger difference between 10 Hz and 25 Hz. 

This is caused by the non-linearity of the seat system. Moreover, the fundamental frequency 

of the active seat increases compared with those revealed by the transmissibility curve, shown 
in Figure 5.13, when the actuators are powered off. This is because the overall dynamic 

stiffness of the system is increased by the added force when the actuators are powered on.  

 

 

Figure 5.14: Magnitude and phase responses of the empty seat under the actuator 

excitation force.  
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5.2.4 Frequency responses of the active seat with a dummy 

Figure 5.15 shows the magnitude and phase responses of the active seat with a dummy 

under the excitation force generated by the two actuators. Similarly, sinusoidal signals 

starting from 0.5 Hz to 25 Hz with a frequency interval of 0.5 Hz were used to drive the 

actuators. Two different force levels: peak values of 83.7 N and 111.6 N for each actuator, 
were chosen for the response test. It can be observed that the first resonance of the active 

seat goes down to below 10 Hz due the added mass of the dummy. Good consistency 

can be observed between the magnitude responses using two different force levels above 6 

Hz. 

 
Figure 5.15: Magnitude and phase responses of the active seat with a dummy under the 

actuator excitation force.  
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5.3 Active seat dynamics discussions 

The experimental tests revealed the characteristics of the shock absorber. The hysteretic and 

non-linear behaviour of the shock absorber contributed to the overall non-linearity of the 

active seat’s passive suspension. 

The vibration transmissibility of the empty seat from the seat base to the seat pan with the 
actuators powered off shows a dominant resonant frequency between 10 and 14 Hz, and the 

associated peak magnitude is over 2. The empty seat dynamics have also been illustrated by 

the frequency response of the seat to active force inputs. Some distinctive peaks are observed 

in the magnitude response curves in the 10-20 Hz frequency range for all the three different 
excitation force levels. These resonant frequencies are different to those of the passive seat 

with the actuators de-energised as it would seem that the stiffness of the system was 

increased by the additional force generated by the actuators. It was also found that the 

frequency range of the resonance tends to broaden as the excitation force increases, which 
indicates a non-linear system. The phase responses show a general good agreement below 10 

Hz and a bigger difference between 10 Hz and 25 Hz.  

The frequency responses of the active seat with a dummy show no obvious resonant peak 

in the frequency range of interest (1-25 Hz). The magnitude responses obtained by using 
two different excitation force levels show a good consistency above 6 Hz. However, a 

relatively big difference can be found between the phase responses. The results also show 

that the active seat dynamics changed significantly when an external load (i.e. the dummy) 

was added.  

From the above dynamic analysis, it can be seen that the active seat system is subject to 

complex non-linear behaviour. Furthermore, the system is also influenced by the 

time-varying effects which would result from the external load disturbance (i.e. occupant’s 

weight variations), temperature changes and ageing of the system. As such it would prove 
difficult to design a linear controller for active vibration isolation using this system and a 

more sophisticated controller is likely to be required.  



Chapter 5. Active Seat Structure and Dynamics 

Page 80 
 

5.4 Conclusions 

The details of the active seat structure and dynamics were described and illustrated in this 

chapter. The active seat was designed and built on the basis of the required vibration 

isolation performance in a low frequency excitation range of (1 - 25 Hz). The characteristics 

of the active seat dynamics were identified through experimental tests. Based on the 
identified system dynamics, the rig is suitable for the development of an active seat to 

attenuate the vibration experienced by a passenger in a vehicle. 
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Chapter 6 

Experimental Studies: Feedforward Plus PI 

Control Tests 

The vibration cancellation performance of the active seat was initially examined by 

feedforward plus proportional-integral (PI) control tests. Firstly, the system was tested 

by cancelling a single frequency excitation. Then, multiple harmonics cancellation tests 
were carried out. Moreover, the system was also tested under low-frequency large 

amplitude disturbances. The purpose of these tests is to investigate the vibration 

cancellation capability of the active seat with simple controllers and gain an 

understanding of the real-time implementation.  

6.1 Feedforward plus PI feedback control 

Combined feedforward plus proportional-integral-derivative (PID) feedback control is 

one of the most commonly used strategies in different control applications due mainly 

to the simplicity of its structure and implementation. For the purpose of an initial 

investigation of the vibration cancellation performance of the active seat, a combined 

feedforward plus PI (the derivative was set to zero in this case) controller was applied to 

the system.  

Figure 6.1 shows the block diagram of the implementation of the feedforward plus PI 

controller on the active seat. The diagram consists of the feedback loop with feedback 

PI controller, active cancellation path S(z), measured seat base vibration signal v(n), 

control signal u(n), and error signal e(n). The seat base vibration is transmitted through 

the passive seat suspension causing a disturbance d(n) which influences the feedback 
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loop. The measured seat base vibration is fed through the feedforward controller Gff to 

compensate the disturbance effects.  

 

 

Figure 6.1: Implementation of the feedforward plus PI controller on the active seat. 

The feedforward controller in this application is of the form of a discrete-time lead-lag 

compensator with gain:  

퐺 (푧) = 퐾
푍 − 푇
푍 − 푇  (6.1) 

where 퐾  is the gain of the feedforward controller. The DC gain (i.e. the 

low-frequency gain) of the lead-lag compensator is equal to (1-푇 )/(1-푇 ), where 푇  is 

the zero and 푇  is the pole of the compensator. The controller implements a lead 
compensator when 0<푇 <푇 <1, and implements a lag compensator when 0<푇 <푇 <1.  

The parameters of the feedforward controller were found based on the identified system 

dynamics in Chapter 5. The PI controller parameters were tuned by using the Ziegler–
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6.2 Experimental setup 

The established experimental apparatus is shown in Figure 6.2. The active seat was 

rigidly mounted on the platform of a multi-axis vibration simulation table (MAST). A 

vibration test dummy, whose dynamic characteristics are presented in Chapter 4, was 

used as a seated human body substitute in the tests in order to ensure an improved 
consistency in behaviour and avoid safety and ethical issues. The dummy was secured 

on the seat using a standard seat belt and a chest strap. A total of four piezoresistive 

accelerometers (Entran, EGCS-D1CM-25) were used to measure the acceleration levels 

and provide feedback signals. The mounting locations of the accelerometers are: the 
simulator platform (i.e. seat base), the middle of the seat pan, the dummy pelvis and the 

dummy shoulder. All the acceleration measurements were in the vertical direction. The 

I/O interface is a NI PCI-6229 board and the control algorithm was implemented on a 

xPC target system with a sampling rate of 1 kHz. The specification of the experimental 
setup is given in Table 6.1. 

Table 6.1: Specification of the experimental setup. 

Number Name Specification 

1 MAST Operational frequency range:0-50 Hz 
Stroke: ±75 mm 

Peak acceleration: 60 ms-2 

2 Test dummy Mass: 55 kg (Seated human body mass 

supported by the seat) 
3 Accelerometer 

(EGCS-D1CM-25) 

Frequency response range: 0-240 Hz 

Sensitivity: 8 mV/g 

Non-linearity: ±1% FSO 

4 I/O board (NI PCI-6229) 16-Bit, 250 kS/s, 32 analog inputs and 4 analog 
ouputs 
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Figure 6.2: The experimental setup. 
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6.3 Experimental results 

In the experimental studies, the residual vibration on the seat pan was selected as the 

error signal. The vibration signal on the simulator platform (i.e. seat base) was used to 

drive the feedforward controller. Initially, the system was configured to cancel a 

sinusoidal vibration at a single frequency. Then, the system was tested by cancelling of a 
periodic vibration comprising 5 harmonic frequencies: 2, 4, 6, 8 and 10 Hz. Additionally, 

the vibration cancellation performance of the system under low-frequency large amplitude 

disturbances was also investigated. The experimental results are presented in the 

following sections. 

6.3.1 Single frequency cancellation 

In this set of tests, 4 separate single frequency excitations: 2, 4, 6, and 8 Hz sine waves 

were chose and applied to the system. The peak input acceleration for each excitation is 

approximately: 0.02 g, 0.05 g, 0.08 g and 0.13 g, respectively. The experimental data was 
filtered through a 0.5-25 Hz band-pass filter and recorded in time series. The duration of 

each test was 30 seconds and the controller was switched on 10 seconds after the test 

was begun. The parameters of the feedforward and PI controllers are listed in Table 6.2. 

Table 6.2: Parameters used for the feedforward and PI controllers.  

Excitation 
frequency 

Lead compensator 
Feedforward 

gain 
P I 

2 Hz (Z-0.98)/(Z-0.15) 9000 10 0.1 

4 Hz (Z-0.995)/(Z-0.001) 3400 15 0.1 

6 Hz (Z-0.993)/(Z-0.001) 1600 10 0.1 

8 Hz (Z-0.993)/(Z-0.001) 1700 10 0.1 

Figure 6.3 shows the vibration cancellation results on the seat pan in the time domain. It 

is observed that a good level of vibration cancellation was achieved after the controller 

was turned on for all the tests. The largest reduction was approximately 70% at the 4 Hz 
single frequency test.  
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Figure 6.3: Single frequency cancellation results in the time domain. 
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The experimental data has also been presented in the frequency domain, as shown in 
Figure 6.4 and 6.5, by applying FFT transform. In these plots, the original uncontrolled 

vibration on the seat pan was obtained by taking the power spectrum of the data set 

between 4 seconds and 10 seconds. The controlled vibration was obtained by taking the 

power spectrum of the data set between 15 seconds and 30 seconds. Both of the data 
sets in the test ramp up and the control transient periods were excluded from the 

calculation. 

 

Figure 6.4: Single frequency cancellation results in the frequency domain:  

(a) 2 Hz result, (b) 4 Hz result. 
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Figure 6.5: Single frequency cancellation results in the frequency domain:  

(a) 6 Hz result, (b) 8 Hz result. 
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spectrum of the data set in the stable periods: 4-10 seconds for the original uncontrolled 
result; 15-30 seconds for the controlled result.  

 

Figure 6.6: Cancellation results of the multiple harmonics test:  
(a) Normalised magnitude in abs, (b) normalised magnitude in dB. 
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6.3.3 Performance under low-frequency large amplitude disturbance 

In practice, the target vibration frequencies are usually accompanied by some unfiltered 

low-frequency large amplitude disturbances. It is crucial that the control algorithm can 

effectively reject these disturbances during the operation. In this test, the performance 

of the active seat with feedforward PI controller was examined by cancelling a 6 Hz 
single frequency vibration (0.1 g peak input acceleration approximately) combined with 

a 1 Hz large amplitude disturbance (0.09 g peak input acceleration approximately). The 

lead compensator is (Z-0.993)/(Z-0.001), the feedforward gain is 1600, the P value is 10 

and the I value is 0.1. 

 

Figure 6.7: Cancellation performance under low-frequency large amplitude disturbance. 
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As shown in Figure 6.7, general good cancellation is achieved at the 6 Hz target 
frequency. However, substantial noise was introduced across the whole frequency 

region of interest, especially in the higher frequency range. To highlight this, the upper 

frequency limits of the plots were extended to 35 Hz. The deteriorated performance was 

found mainly caused by the saturated actuation force which resulted from the controller 
responding to the low-frequency large amplitude disturbance.  

6.4 Problems and discussion 

The initial experimental tests show that the active seat as a whole system works very 

promisingly in real-time implementation. A good level of vibration reduction was 
achieved for cancelling single frequency excitations, which indicates that the actuation 

system has an effective control authority. From the test results of the multiple 

harmonics cancellation and the cancellation under low-frequency large amplitude 

disturbances, some limitations of the feedforward plus PI controller were revealed. 
Firstly, the controller was not able to efficiently cancel multiple frequency components 

in the exaction signal. Secondly, the control performance was significantly influenced by 

the unfiltered low-frequency disturbance.  

It is also noted that the parameters of the feedforward controller were chosen based on 
the identified system dynamics, which means that a priori knowledge of the system is 

required to implement the controller. In addition, the PI controller was found to be 

sensitive to the tuned parameters and easy to be unstable. What’s more, as described in 

Chapter 5, the active seat system is subject to non-linear and time-varying behaviour 
which cannot be accommodated by the feedforward plus PI controller.  

Therefore, in order to achieve effective vibration suppression and robust performance 

using the active seat, a control method which can adapt the non-linear and time-varying 

effects by performing on-line system identification could be used.  
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6.5 Conclusions 

This chapter examined the vibration cancellation performance of the active seat using 

feedforward plus PI control method. Through these tests, the effectiveness of the 

actuators control authority was verified and an understanding of the real-time 

implementation was gained. However, these tests also revealed the limitations of the 
feedforward plus PI control method when applied to this non-linear system. This 

indicates that an advanced adaptive control strategy is required to exploit the whole 

potential vibration cancellation capability of the active seat. 
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Chapter 7 

Adaptive Controller Design and Simulation 

In this chapter, the derivation of the Least-Mean-Square (LMS) adaptive algorithm is 
presented. The secondary path effect in the implementation of the LMS algorithm is 

discussed and the Filtered-x LMS (FXLMS) algorithm is introduced for solving this 

problem. Different approaches for secondary path identification are compared and 

evaluated through simulation exercises. The fast-block LMS (FBLMS) algorithm is 
found to offer robust performance in the presence of destabilising signal content. 

Additionally, the effectiveness of the FXLMS algorithm with the FBLMS system 

identification is validated through a simulated system for narrow-band vibration 

cancellation. 

7.1 The LMS adaptive algorithm 

As is known, the active seat is subject to non-linear and time-varying behaviour. The use 

of a fully adaptive control strategy is required to maintain optimum vibration isolation 

performance. The LMS adaptive algorithm which was originally developed by Widrow 
and Hoff [52] has been applied to numerous active noise and vibration cancellation 

problems, and it has been found to offer a stable and robust performance. For the 

purpose of providing a necessary theoretical background, an overview of the derivation 

of the LMS algorithm is given in the following parts of this section. 

The LMS algorithm is a linear adaptive filtering algorithm, which consists of a signal 

filtering process and a filter coefficients adaptive process. Generally, there are two filter 

structures that can be used for adaptive filtering: finite impulse response (FIR), shown in 

Figure 7.1, and infinite impulse response (IIR) structures [92]. The FIR, or transversal, 
filter incorporates only zeros and hence the filter is always stable. Also, the output of the 

FIR filter is dependent solely upon the input signal. The IIR filter is a recursive structure 
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(uses both input and feedback signals to compute the output) and it is not 
unconditionally stable. The LMS algorithm is based on the FIR filter structure.  

 

Figure 7.1: Adaptive FIR (transversal) filter structure. 

As shown in Figure 7.1, the tap inputs x(n), x(n-1), …, x(n-L+1), which form the L –

by-1 input vector x(n), is obtained by operating L-1 unit delay elements z
-1

 upon the 
input signal x(n). The filter coefficients vector w(n)=[w0(n), w1 (n), …, wL-1 (n)] is 

adjustable and updated by the LMS adaptive algorithm to minimise a cost function 

based on the measured error signal e(n) between the desired response d(n) and the filter 

output y(n). The output signal y(n) and the error signal e(n) can be expressed by 
equation 7.1 :  

푦(푛) = 퐰 (푛)퐱(푛) = 퐱 (푛)퐰(푛)                    (7.1) 

푒(푛) = 푑(푛) − 푦(푛) = 푑(푛) −퐰 (푛)퐱(푛)                (7.2) 

Taking the square of equation 7.2 gives: 

푒 (푛) = 푑 (푛) − 2푑(푛)퐰 (푛)퐱(푛) + 퐰 (푛)퐱(푛)퐱 (푛)퐰(푛)         (7.3) 

The cost function is based on the mean-square error (MSE):  
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휉(푛) = 퐸[푒 (푛)]                         (7.4) 

where 퐸[·] denotes expected value which represents the statistical average of 푒 (푛). 

Assuming the adaptive weight vector w(n) is a deterministic sequence, then the MSE 
performance function (i.e. the cost function) can be determined from equation 7.3, 

giving: 

휉(푛) = 퐸[푑 (푛)] − 2퐩 퐰(푛) + 퐰 (푛)퐑퐰(푛)         (7.5) 

where 퐩 is the cross-correlation vector between the desired signal d(n) and the tap 

input vector x(n) 

퐩 = 퐸[푑(푛)퐱(푛)] = 퐸

⎣
⎢
⎢
⎢
⎢
⎡

	

푑(푛)푥(푛)

푑(푛)푥(푛 − 1)

⋮

푑(푛)푥(푛 − 퐿 + 1)

	

⎦
⎥
⎥
⎥
⎥
⎤

             (7.6) 

and 퐑 is the input autocorrelation matrix, which is defined as follows: 

퐑 = 퐸[퐱(푛)퐱 (푛)] 

=퐸

⎣
⎢
⎢
⎢
⎢
⎡

푥(푛)푥(푛) 푥(푛)푥(푛 − 1) … 푥(푛)푥(푛 − 퐿 + 1)

푥(푛 − 1)푥(푛) 푥(푛 − 1)푥(푛 − 1) … 푥(푛 − 1)푥(푛 − 퐿 + 1)

⋮ ⋮ ⋱ ⋮

푥(푛 − 퐿 + 1)푥(푛) 푥(푛 − 퐿 + 1)푥(푛 − 1) … 푥(푛 − 퐿 + 1)푥(푛 − 퐿 + 1)⎦
⎥
⎥
⎥
⎥
⎤

  (7.7) 

It is noted that the MSE performance function 휉(푛) is a quadratic function of the tap 

weight w(n), assuming the tap input vector x(n) and the desired response d(n) are jointly 

stationary. This function forms a (L+1) dimensional MSE performance space (MSE 

surface) with a unique minimum at the point of zero gradient. For L=2, this 
corresponds to an MSE surface in a three-dimensional space [92].  
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Figure 7.2: Three-dimensional MSE performance surface, L=2 case. 

A generic three-dimensional MSE surface for the case L=2 is shown in Figure 7.2 [92], 

where 퐰 = [푤 		푤 ]T is the optimal coefficient vector and 휉  is the minimum 
MSE. It can be seen that adjusting the weights to minimize the MSE involves 

descending along the concave surface until reaching the “bottom of the bowl”. The 

steepest-descent method in which the filter weights are updated at each iteration in the 

direction of the negative gradient of the error surface is ideally suitable for this purpose. 
The gradient of the error surface is defined as the vector of the directional derivatives: 

∇휉(푛) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

		

( )
( )

( )
( )

⋮

( )
( )

		

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= −2퐩 + ퟐ퐑퐰(푛)             (7.8) 

Setting ∇휉(푛) = 0 in equation 7.8 gives the optimal solution for the filter coefficients, 
known as the Wiener-Hopf equation: 

퐰 = 퐑 퐩                                  (7.9) 

It is noted that a considerable amount of computation is needed for this optimal 

solution as it requires continuous estimation of the autocorrelation matrix 퐑 and the 

휉 

휉  

푤  

푤  

퐰  
푤  

푤  
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cross-correlation vector	퐩. Rather than explicitly finding the minimum point on the 
MSE surface, the LMS algorithm employs the steepest-descent method to converge 

upon the optimal solution. An initial guess of the filter weights vector w(n) is arbitrarily 

chosen to calculate the gradient vector ∇휉(푛) on the error surface. The next value of 

w(n) is obtained by adjusting the w(n) in the negative gradient direction, as shown in the 
following equation: 

퐰(푛 + 1) = 퐰(푛) − ∇휉(푛)                     (7.10) 

where 휇 is a positive real constant used to control stability and the rate of descent to 
the optimal point. 

In many practical applications, it is not possible to evaluate the gradient vector ∇휉(푛) 

since that would require prior knowledge of the input signal x(n). The LMS algorithm 

uses the instantaneous squared error, 푒 (푛), to estimate the mean-square error given in 

equation 7.4. The autocorrelation matrices 퐑 and the cross-correlation vector	퐩 are 
now defined by the equations: 

퐑(푛) = 퐱(푛)퐱 (푛)                         (7.11) 

퐩(푛) = 푑(푛)퐱(푛)                          (7.12) 

where ( ˆ ) denotes the instantaneous estimate.  

The instantaneous estimate of the cost function (equation 7.5) becomes:  

휉(푛) = 퐸[푑 (푛)] − 2퐩 (푛)퐰(푛) + 퐰 (푛)퐑(푛)퐰(푛)        (7.13) 

By differentiating this estimate with respect to 퐰(푛), an instantaneous estimate of the 
gradient is obtained: 

∇휉(푛) = −2푑(푛)퐱(푛) + 2퐱(푛)퐱 (푛)퐰(푛)           (7.14) 
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Substituting this instantaneous gradient estimate to equation 7.10 gives:  

퐰(푛 + 1) = 퐰(푛) + 	휇	퐱(푛)[푑(푛) − 퐱 (푛)퐰(푛)] 

=	퐰(푛) + 	휇	퐱(푛)푒(푛)		                        (7.15) 

which is the LMS recursive algorithm. 

The algorithm can be summarized as follows: 

1. Compute the adaptive filter output 

푦(푛) = 푤 (푛) 	푥(푛 − 푚)		 

2. Calculate the error signal 

푒(푛) = 푑(푛) − 푦(푛)		                      (7.17) 

3. Update the weight vector 

퐰(푛 + 1) = 퐰(푛) + 	휇	퐱(푛)푒(푛)		                 (7.18) 

It can be seen that each iteration, the LMS algorithm only requires the most recent 

values of	퐱(푛), 푑(푛) and 퐰(푛). And only 2퐿+1 multiplications and 2퐿-1 additions 
are needed. 

The stability condition of the LMS algorithm is [80]: 

0 < 휇 <
2

휆 		 

where 휆  is the largest eigenvalue of the input autocorrelation matrix 퐑. 

The stability constraint on 휇 is not practical to apply because computation of 휆  is 
very difficult when 퐿 is large. Therefore, it is desirable to estimate 휆  using a 
simple method in practical applications. 

(7.16) 

(7.19) 
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Since that  

휆 ≤ 휆 = 	푀푃  

where 푃  denotes the power of 푥(푛), 퐿 is the length of filter weights. Therefore, the 
stability condition given in equation 7.19 can be satisfied by setting 

0 < 휇 <
2
퐿푃  

From equation 7.21, it can be seen that the upper bound on 휇 is inversely proportional 
to the filter length and the input signal power. Small 휇 is required for large length filter 
and high power signals.  

It also noted that practical implementation of the algorithm using DSP systems leads to 

the accumulation of rounding errors in the filter weight, which can result in poor 

performance and instability. A leakage factor	훽, chosen in the range 0 < 훽 < 1 and 
close to 1, may be applied to the weight update equation 7.15. In this case the LMS 

weight update equation becomes: 

퐰(푛 + 1) = 훽퐰(푛) + 	휇	퐱(푛)푒(푛)		              (7.22) 

7.2 Effect of secondary path dynamics 

The implementation of the LMS algorithm for an active vibration control (AVC) system 

is shown in Figure 7.3. The use of the LMS algorithm assumes that an error signal is 

available that is the difference between the primary disturbance signal d(n) and the 
output of the adaptive filter y(n). In the case of the active seat system, the output 

cancelling signal y(n) will be modified by the transfer function S(z), known as the 
secondary path dynamics, which includes the antialiasing filter, D/A and A/D 

converters, power amplifier, actuator and error accelerometer. 

 

(7.20) 

(7.21) 
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Figure 7.3: Block diagram of the LMS algorithm in AVC system. 

The added secondary dynamics will result in a phase shift in the error signal e(n), which 
means the error signal will not be correctly “aligned” in time with the reference signal 

x(n). The presence of the phase shift will eventually cause instability. In order to 
implement the adaptive algorithm on the active seat system, a modification of the 
conventional LMS algorithm is therefore required to ensure the secondary path effect is 

compensated. In the next section, the Filtered-x LMS (FXLMS) algorithm is introduced 

for this purpose.  

7.3 The FXLMS algorithm 

The FXLMS algorithm is developed from the conventional LMS adaptive filter [52] to 

compensate the secondary path effect as mentioned above. It has been widely applied in 

the field of active noise and vibration control and it has been found to offer robust and 

effective performance for periodic vibration attenuation. The block diagram of the 
FXLMS algorithm in an active vibration control (AVC) system is depicted in Figure 7.4. 
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(7.24) 

 

Figure 7.4: Block diagram of the FXLMS algorithm in AVC system. 

The FXLMS algorithm solves the problem by placing an additional plant 푆(z), the 
estimate of the secondary path S(z), in the reference signal path before the weight 

update of the LMS algorithm. The error signal e(n) is given by the equation: 

퐸(푧) = 퐷(푧) − 푌(푧)푆(푧) = 푋(푧)[푃(푧) −푊(푧)푆(푧)]        (7.23) 

where 퐸(푧),퐷(푧),푋(푧) and 푌(푧) are the z-transforms of the signal e(n), d(n), x(n) 
and y(n), respectively. 

So for 퐸(푧)=0: 

푊(푧) =
푃(푧)
푆(푧) 

With the added secondary path estimate 푆(z), the LMS update algorithm given in 
equation 7.15 now becomes: 

퐰(푛 + 1) = 퐰(푛) + 	휇	퐱 (푛)푒(푛)		                 (7.25) 
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where 퐱 (푛)=[푥 (푛) 푥 (푛 − 1) ··· 푥 (푛 − 퐿 + 1)]T is the filtered reference signal 

vector 퐱(n) by the 푆(z), and is given by: 

퐱 (푛) = 푆 (푛)퐱(푛)		                      (7.26) 

The FXLMS algorithm will converge providing the difference in phase between S(z) and 

푆(z) is not greater than 90o [81]. The estimation of S(z) is usually performed off-line, 
before the operation of active cancellation. However, in the case of the secondary path 

dynamic being time-varying, it is necessary to perform the on-line identification and 

cancellation processes simultaneously to assure the stability and convergence of the 

adaptive algorithm. 

7.4 On-line secondary path identification techniques 

As mentioned in Chapter 5, in the case of the active seat system, the secondary path dynamic 

is time-variant. Thus it is desirable to perform adaptive on-line secondary path 

identification. Therefore, S(z) can be either occasionally or continuously estimated and 

the most recent estimate 푆(z) used in the adaptive control algorithm. Generally, the 
on-line secondary path identification techniques can be divided into two main categories: the 

techniques that use auxiliary random noise as an excitation signal and the one without using 

auxiliary noise (i.e. overall on-line secondary path modelling techniques).  

7.4.1 Overall modelling technique 

The overall on-line secondary path modelling technique has the capability to model the 

secondary path without using an additional excitation signal [82; 83]. The concept of this 

technique is illustrated in Figure 7.5 [92]. As it can be seen that an additional adaptive filter 

푃(z) is introduced to model the primary path 푃(z). Altogether, the complete AVC system 

uses three adaptive filters, 푊 (z), 푆 (z) and 푃 (z), to perform the secondary path 
identification and vibration cancellation tasks.  
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Figure 7.5: The concept of overall on-line secondary path modelling technique. 

The convergence of the overall modelling algorithm depends on the secondary signal and 

thus on the primary noise. The obtained secondary path estimate is dependent on the 

frequency content of the primary disturbance, which may not have sufficient excitation over 

the entire band and furthermore may be changing. This can slow the convergence of the 
cancellation filter and reduce the system stability margin [92]. Detailed evaluations of this 

technique can be found in [84; 85]. 

7.4.2 Auxiliary random noise technique 

The online secondary path modelling approach that uses auxiliary noise was early proposed 
by Eriksson and Allie [87], and later improved by many other researchers [84; 89; 90]. A 

block diagram of the technique using the LMS algorithm is shown in Figure 7.6.  
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Figure 7.6: Block diagram of AVC system with on-line secondary path modelling using 
auxiliary random noise technique. 

A low-level white noise v(n), which is uncorrelated with the primary disturbance, is 

added to the secondary signal y(n) produced by the adaptive filter W(z) to drive the 

secondary source. The noise component is passed to the error signal e(n) and fed back to an 

additional LMS filter 푆(z) which is connected in parallel with the secondary path to 
model S(z). The error signal of the secondary path modelling process is  

푒 (푛) = 푒(푛) − 푣 (푛)		                    (7.27) 

where 푣 (푛)=	푠̂(n)	푣(n) is the output of the modelling filter 푆(z). The residual error 
푒(푛) now becomes: 

푒(푛) = 푑(푛) − 푦 (푛) − 푣 (푛)		                  (7.28) 

where  

푦 (푛) = 푠(푛)푦(푛) 

푣 (푛) = 푠(푛)푣(푛)		                      (7.29) 
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The updating equation of the estimated secondary path vector can be expressed as 

퐬(푛 + 1) = 퐬(푛) + 	휇 	퐯(푛)푒 (푛)		                  (7.30) 

where 퐯(푛)=[푣(푛)  푣(푛 − 1) ··· 푣(푛 − 퐿 + 1) ]T is the buffered random noise 
input. 

It is generally known that the auxiliary random noise technique is superior to the overall 
modelling technique in terms of independence between the primary disturbance 

attenuation and the on-line secondary path modelling processes, speed to response to 

changes in primary disturbance and secondary path, convergence rates of both AVC 

controller and secondary path modelling filter and frequency band range of secondary 
path model [85, 86, 88]. Therefore, only the identification technique using auxiliary 

random noise will be further studied in later sections. 

7.5 FBLMS on-line secondary path identification 

In practice, the measured residual error signal usually contains some components 

uncorrelated with the reference noise v(n), which can cause problems with the on-line 

identification when using a time-domain filter [79]. The corrupted estimation of S(z) can 
increase the convergence time of the cancellation filter and result in system instability. The 

FBLMS algorithm which operates in the frequency domain can solve this problem and 
substantially improve the robustness of the system identification [92]. The block diagram of 

the FBLMS algorithm is shown in Figure 7.7. 
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Figure 7.7: Block diagram of the FBLMS algorithm for on-line secondary path identification. 

In the FBLMS algorithm, the overlap-save method, which applies the discrete Fourier 

transform (DFT), is used for efficient computation of linear convolution. It has been 
found that the use of 50 percent overlap (i.e. the block length equals to the filter weights 

length) is the most efficient [91]. 

The time-domain weight vector w(k) with size of L-by-1 is extended to 2L-by-1 vector 
w (푘) by padding an equal size zero vector, and the frequency domain weight W (푘) 

is defined as: 

W (푘) = 퐹퐹푇[푤 (푘)	] = 퐹퐹푇 w(푘)
ퟎ

	                       (7.31) 

where k denotes the block index. The weight W (k) recursion is obtained as: 
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W (푘 + 1) = W (푘) + 휇퐹퐹푇 휌(푘)
ퟎ

	  

휌(푘) = 푃 , 퐼퐹퐹푇[퐔f (k)퐄f (푘)]	                    (7.32) 

where 푃 ,  is a 2L-by-2L windowing matrix which ensures that the last L terms of the 
updated weight vector W (푘 + 1) remain zero,	퐄f (푘) is the frequency domain error 

signal, 퐔f (k) is obtained by taking FFT of the two successive blocks of noise signal u(n) 

and is expressed as: 

퐔f (k)	= 푑푖푎푔{퐹퐹푇[푢(푘퐿 − 퐿), … ,푢(푘퐿 − 1),푢(푘), … , 푢(푘퐿 + 퐿 − 1)]}	 (7.33) 

where 푑푖푎푔 donates an L-by-L diagonal matrix.  

The convergence rate of the FBLMS algorithm can be improved by using the 

step-normalization technique, which is achieved by assigning individually normalized 

step-size parameters to each element of the weight vector	W (푘). The step-size 

parameter 휇 becomes a function of the power spectral density (PSD) of the reference 
signal. However, it is a function of the PSD of the measured error signal for this 

application. 

휇 (푘) =
휇

푷 (푘) 

where 휇  is a constant,	푖 = 0,1. . . , 2퐿 − 1, 푘 is the block number, 푷 (푘) are the 

power estimates of the samples of the filter input in the frequency domain and they can 

be obtained by using a first order low-pass filter as follows: 

푷 (푘) = 훽푷 (푘 − 1) + (ퟏ − 훽)|	E풊	(푘)| , 푖 = 0,1, … ,2퐿 − 1       (7.35) 

where 퐸풊	(푘) is the measured error applied to the 푖  weight in the FBLMS algorithm, 
훽 is a forgetting factor chosen in the range 0 < 훽 < 1, and close to 1.  

(7.34) 
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(7.36) 

By using the step-normalization, a lower adaption rate is applied to the frequency bins 
containing signal power relating to the uncancelled seat vibration components and the 

corruption of the estimate 푆(z) is reduced. 

7.6 Simulation of on-line secondary path identification 

In order to validate the effectiveness of on-line secondary path identifications using the 
FBLMS method, a simulation study has been conducted. A simplified linear model of 

the secondary path dynamic of the active seat with a dummy described in Chapter 5 is 

used for the simulation. The linear model plant S(z) is represented by a second-order 

continuous transfer function S(s) with 0.001 second sampling time interval: 

 

푆(푠) =
휆휔

푠 + 2휉휔 푠 + 휔  

with gain 휆=1.2, damping ratio 휉=0.2 and natural frequency 휔 =157 rad/s. 

For the on-line identification of the known plant, an additional 10 Hz disturbance is 

applied to the residual error signal to represent un-cancelled vibration on the target 

point. An over-length filter (256 taps) is deliberately used in both the conventional LMS 

(Time-domain) and the FBLMS (Frequency-domain) identification techniques in order to 
show the effect of the 10 Hz disturbance upon on-line identifications.  

The identification results of the known plant obtained by using off-line (i.e. only the 

identification white noise is acting on the plant) methods were presented firstly for 

comparison. Figure 7.8 shows the identification results in the form of the filter impulse 
response. It can be seen that very close estimates are obtained for both the off-line 

Time-domain and Frequency-domain identification methods.  
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Figure 7.8: Off-line identification results using Time-domain and Frequency-domain LMS. 

Figure 7.9 shows the off-line identification results in the form of magnitude and phase 
responses. As can be seen, good agreement is achieved between the true and the 

estimated responses for both the Time-domain and Frequency-domain methods. As 

previously mentioned, the difference in phase between the true and estimated secondary 

path transfer functions must not be greater than 90o in order to guarantee the stability of 
the FXLMS algorithm. As shown in the phase responses, the phase error for both 

methods is sufficiently small in the whole frequency range to ensure the stability of the 

cancellation filter.  
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Figure 7.9: Off-line identification results using Time-domain and Frequency-domain LMS. 

Figure 7.10 shows the on-line identification results in the form of the filter impulse 

response. In this case, it is clear that the Frequency-domain identification method 
generated a more accurate estimate of the known plant. The Time-domain identification 

result is significantly affected by the added 10 Hz disturbance. The effect of the extra 

disturbance can be seen more clearly from the magnitude and phase responses in Figure 7.11.  
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Figure 7.10: On-line identification results using Time-domain and Frequency-domain LMS. 

Figure 7.11 shows the on-line identification results in the form of magnitude and phase 
responses. It is seen that the Frequency-domain result remains generally good across the 

frequency range, and the phase error is well within the stability criterion. By contrast, the 

estimated result achieved using the Time-domain method is greatly corrupted by the 10 

Hz disturbance. Poor accuracy in the magnitude response is seen, and the phase error at 
some frequencies is considerably large.  
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The use of the FBLMS identification technique operating in the frequency-domain should 
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Figure 7.11: On-line identification results using Time-domain and Frequency-domain LMS. 
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reference sensor can be replaced by other non-vibration sensors, such as a tachometer 
or an optical sensor. In this case, the cancellation filter will aim to reduce the primary 

spectral components within a narrow-band centred about the measured reference 

frequency. The filter length must be sufficiently long to model the majority of one 

period of the slowest mode within the reference signal [55]. In this section, narrow-band 
vibration cancellation methods are studied.  

7.7.1 Single-frequency cancellation using the FXLMS algorithm 

For many applications, the primary vibration is produced by rotating or reciprocating 

machines and is normally periodic. The fundamental frequency that requires cancellation 
can be generated by detecting the vibration using a tachometer or optical sensor. The 

block diagram of a single-frequency cancellation system using the FXLMS algorithm is 

illustrated in Figure 7.12. 

 

Figure 7.12: Single-frequency cancellation system using the FXLMS algorithm. 

As it is shown, two synthesised orthogonal components x0(n) and x1(n) are used for the 

reference signals, which contain only the frequencies that require cancellation. The reference 
signals can be defined by the equations:  

푥 (푛) = 퐴 sin(휔 푛∆푡)                         (7.37) 

푥 (푛) = 퐴 cos(휔 푛∆푡)                         (7.38) 
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(7.43) 

where 퐴  and 퐴  are the amplitudes, 휔  is the estimated vibration frequency which 
require cancellation, and ∆푡 is the fixed sampling interval. In this case, the LMS algorithm 
takes the form of an adaptive notch filter.  

Two adaptive weights are required for every frequency present in the reference signals for 

cancellation. The weights are iterated by the equations: 

푤 (푛 + 1) = 푤 (푛) − 휇푥 (푛)푒(푛)                  (7.39) 

푤 (푛 + 1) = 푤 (푛) − 휇푥 (푛)푒(푛)                  (7.40) 

where 푥 (푛)	  and 푥 (푛)	  are the reference signals filtered by the secondary path 

estimate 푆(z), 휇 is the convergence rate (a positive real constant) of the algorithm, and e(n) 

is the error signal. 

Assuming that the primary signal d(n) is given by 

푑(푛) = 퐴 cos(휔 푛∆푡 + ∅ )                   (7.41) 

and the estimated secondary path 푆(z) is equal to the actual path S(z), the error signal at the 

frequency 휔  can be expressed as  

푒(푛) = 퐴 cos(휔 푛∆푡 + ∅ ) − 퐴퐴 퐴 cos(휔 푛∆푡 + ∅ + ∅ )     (7.42) 

where 퐴  and ∅  are the amplitude and phase of the adaptive filter at 휔 , 퐴  and ∅  
are the amplitude and phase of the secondary path S(z), respectively.  

Therefore, the required controller magnitude and phase response can be expressed as 

퐴 =
퐴
퐴퐴  

and 

∅ = ∅ − ∅                                 (7.44) 
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(7.45) 

Thus, the function of the adaptive filter W(z) is to compensate the amplitude and phase 
difference between the primary signal and the cancelling signal.  

It is shown in [79] that the equivalent close-loop transfer function between the primary input 

d(n) and the error output e(n) is 

퐻(푧) =
1

1 + ( ) ( )
( )

 

=
푧 − 2푧 cos(휔 ∆푡) + 1

푧 − 2푧 cos(휔 ∆푡) + 1 + 훽푆(푧)[푧 cos(휔 ∆푡 − ∅ ) − cos∅ ] 

where  

훽 = 	휇	퐴 퐴                                 (7.46) 

and 푌(푧) and 퐸(푧) are the 푧 transform of the cancelling signal y(n) and error signal e(n), 
respectively. 

For the secondary path 푆(푧)=1, thus, 퐴 =1 and ∅ =0. The magnitude and phase 
response of the transfer function H(z) for 휇=0.2 and 휇=0.02 is shown in Figure 7.13. 

 

 

Figure 7.13: Magnitude and phase response of transfer function H(z). 
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It can be seen that the responses are of the form of a notch filter with the notch frequency 

equal to 휔 . The value of 휇 determinates the width of the notch. The notch becomes 

sharper when 휇 decreases.  

For some applications, the adaptive filter may be required to cancel a particular frequency but 

preserve others contained within the same signal. A large value of 휇 is desired to achieve 
good cancellation of the target frequency, and also respond to system changes rapidly. 

However, significant attenuation of other frequency components will occur due to the big 

notch width with large value of	휇. Therefore, the selection of the convergence rate 휇 is a 
trade-off between tracking performance and filter notch width.  

7.7.2 Multiple harmonics cancellation using the FXLMS algorithm 

In practice, the periodic vibration usually contains tones at the fundamental frequency plus 

several harmonics. The single-frequency FXLMS algorithm can be extended to cancel 

multiple frequencies by adding additional controllers to each harmonic. For the case to cancel 

M harmonics in a periodic vibration, M two-weight adaptive filters can be applied in parallel. 
Figure 7.14 shows the configuration of parallel narrow-band AVC systems. 

 

Figure 7.14: Parallel narrow-band AVC system for multiple frequencies cancellation. 
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(7.50) 

The cancelling signal now is the sum of the M adaptive filter outputs as given by: 

푦(푛) = 푦 (푛)	 

푦 (푛) = 푤 , (푛)푥 , (푛) + 푤 , (푛)푥 , (푛), 푚 = 1,2, … ,푀   (7.47) 

where 푥 , (푛) and 푥 , (푛) are the filtered reference signals with 90 degrees phase 
shift.  

The filter weights can be updated by using the FXLMS algorithm 

푤 , (푛 + 1) = 푤 , (푛) + 휇푥 , (푛)푒(푛), 푚 = 1,2, … ,푀       (7.48) 

푤 , (푛 + 1) = 푤 , (푛) + 휇푥 , (푛)푒(푛), 푚 = 1,2, … ,푀       (7.49) 

where 푚 is the channel index number.  

7.8 Simulation of active narrow-band vibration cancellation 

In the simulation study, a simplified linear model of the primary path of the active seat 

with a dummy described in Chapter 5 is used. The linear model plant P(z) is represented 
by a second-order continuous transfer function P(s) with 0.001 second sampling time 
interval: 

 

푃(푠) =
휆휔

푠 + 2휉휔 푠 + 휔  

with gain 휆=1, damping ratio 휉=0.35 and natural frequency 휔 =75 rad/s. The 
secondary path dynamic is represented by a similar model described in Section 7.6. 
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The narrow-band FXLMS algorithm was applied to the simulated system to cancel 
vibration signals containing a single frequency and multiple harmonic frequencies, 

respectively. The cancellation results obtained using the FBLMS on-line identification 

technique are compared with those obtained using the FBLMS off-line identification 

technique. 

7.8.1 Simulation of single-frequency cancellation  

For the single-frequency cancellation, the simulated system was configured to cancel a 6 

Hz sinusoidal signal applied on the primary path. A filter length of 256 was used for 

both the off-line and on-line FBLMS secondary path identification. The on-line 
identification white noise variance was 1×10-4 and the convergence rate was set at 0.1 to 

give a fast response.  

Figure 7.15 shows the single-frequency cancellation results in the time domain. As can 

be seen, good cancellation was achieved for both the off-line and on-line cases after a 
short adaptive period. The convergence rate of the cancellation filter is 2×10-4 for both 

cases, but the adaptive period of the on-line case is longer than the off-line case because 

of the secondary path identification process. This difference can be seen more clearly in 

the comparison of the tap weights of the cancellation filter in Figure 7.16.  

Figure 7.17 shows the comparison of the power spectra of the error signals after 

cancellation using both the off-line and on-line identification techniques. A good level of 

cancellation can be seen in both cases, but inevitably the on-line identification adds a 

low-level noise to the system and reduces the overall cancellation effect. 
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Figure 7.15: Single-frequency cancellation results by using FXLMS algorithm with 

FBLMS off-line and on-line secondary path identification. 
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Figure 7.16: Comparison of the off-line and on-line tap weight trajectories of the 

cancellation filter.  

 

Figure 7.17: Comparison of the power spectra of the error signals after cancellation. 
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second and third harmonics at 8 and 12 Hz) was used to excite the system, and the 
single frequency FXLMS algorithm was extended to cancel each frequency component 

by adding additional sub-controllers. The amplitudes for the three frequency 

components are 0.8, 0.6 and 0.4, respectively. Same as for the single-frequency 

cancellation, a filter length of 256 was used for both the off-line and on-line 
identification filter. The on-line identification white noise variance was 1×10-4 and the 

convergence rates for each adaptive filter are listed in Table 7.1. 

Table 7.1: Convergence rates used for the adaptive filters in the multiple harmonics 

cancellation simulation.  

Off-line cancellation On-line cancellation 

Adaptive filter Convergence rate Adaptive filter Convergence rate 

4 Hz filter 2×10-4 4 Hz filter 1.3×10-4 

8 Hz filter 1×10-4 8 Hz filter 8×10-5 

12 Hz filter 3×10-5 12 Hz filter 5×10-5 

  On-line 
identification filter 1×10-1 

Figure 7.18 shows the comparison of the multiple harmonics cancellation results in the 
time domain. It can be seen again, the primary vibration was reduced to nearly zero level 

for both the off-line and on-line cases after a short adaptive period. As shown in Table 

7.1, different convergence rates were used for the three sub-controllers to guarantee an 

overall stable performance. The adaptive period of the multiple harmonics cancellation 
thus depended on the smallest convergence rate. Again, an additional on-line secondary 

path identification time was added for the on-line case.  

Figure 7.19 shows the tap weight trajectories comparison between the off-line and 

on-line cancellation filter of each frequency. It is observed that all the filter weights 
successfully converged to near constant stable values for both the off-line and on-line 

cases. The differences in the adaptive period between the two cases are clearly seen in 

these plots.  
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Figure 7.18: Multiple harmonics cancellation results by using FXLMS algorithm with 

FBLMS off-line and on-line secondary path identification. 
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Figure 7.19: Comparison of the off-line and on-line tap weight trajectories of the 

cancellation filter for each frequency. 
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Figure 7.20 shows the comparison of the power spectra of the error signals after 
cancellation. In both the off-line and on-line cases, good levels of cancellation for all the 

three frequencies were achieved. Same as the single-frequency cancellation, the multiple 

harmonics cancellation with on-line identification inevitably added a low-level noise to 

the system and reduces the overall cancellation effect. 

 

Figure 7.20: Comparison of the power spectra of the error signals after cancellation. 
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FXLMS algorithm with the FBLMS system identification technique has been evaluated 
through a simulated system for narrow-band vibration cancellation. The effectiveness of 

this combination has been proved and thus this method was applied in the experimental 

studies described in Chapter 8. 
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Chapter 8 

Experimental Studies: Adaptive Control Tests 

In this chapter, the vibration cancellation performance of the active seat using adaptive 
control methods is investigated. The combination of the FXLMS algorithm with the 

FBLMS system identification technique described in chapter 7 was applied to the 

experimental rig. Initially, the system performance was measured by cancelling periodic 

vibrations containing single and multiple frequencies. Then, transient switching 
frequency cancellation tests were carried out to evaluate the speed of response and the 

robustness of the adaptive control system. In addition, the stability of the control system 

was further examined by cancelling vibration signals accompanied by low-frequency, 

large amplitude disturbances.  

8.1 Experimental setup and the secondary path 

The adaptive control tests were conducted on the experimental rig described in Chapter 

6. The active seat was rigidly mounted on the MAST platform. As previously stated, a 

vibration test dummy was used as a seated human body substitute in order to ensure an 
improved consistency in behaviour and avoid safety and ethical issues. In these tests, a 

total of four piezoresistive accelerometers were used to measure the acceleration (all in 

the vertical direction) and provide feedback signals. The mounting locations of the 

accelerometers were: the MAST platform (i.e. seat base), the middle of the seat pan, the 
dummy pelvis and the dummy shoulder, as shown in Figure 8.1.  

Two different secondary paths were selected for the experimental tests: 

1. Secondary path from the MAST to the seat pan; 

2. Secondary path from the MAST to the dummy shoulder. 
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For the secondary path from the MAST to the seat pan, the residual vibration on the 
seat pan was selected as the error signal and the secondary path represents the dynamics 

from the control output to the measured residual acceleration. This includes an 

antialiasing filter, a D/A converter, a A/D converter, a power amplifier, and the 

actuator and error accelerometer dynamics. In this case, the vibration on the seat pan 
was set as the target to be reduced. Also, the vibration on the dummy pelvis and 

shoulder was measured and evaluated. Similarly, for the secondary path from the MAST 

to the dummy shoulder, the residual vibration on the dummy shoulder was selected as 

the error signal. The secondary path now also includes the dummy dynamics. In this 
case, the control aim was to minimise the vibration on the dummy shoulder.  

.  

Figure 8.1: Accelerometer mounting locations and the two different secondary paths. 

8.2 Single frequency cancellation 

The performance of the active system was initially measured by cancelling a single 

frequency vibration. A 6 Hz disturbance with peak input acceleration approximately 0.1 

g was applied to the system by the MAST platform, and the vibration cancellation 

results using the FXLMS algorithm with the FBLMS on-line secondary path 
identification method are compared with those obtained using an off-line identification 

method on three locations: the seat pan (SP), the dummy pelvis (DP) and the dummy 

shoulder (DS).  
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8.2.1 Results for the secondary path 1 

In this test, a filter length of 128 was used for both the off-line and on-line secondary 

path identification. The estimated secondary path dynamic in the form of the filter 

impulse response is shown in Figure 8.2. It can be seen that good agreement was 

achieved between the off-line and on-line results. The oscillations in both the impulse 
responses settle to near zero values after 0.07 seconds, which indicate the filter length is 

long enough to capture the essential characteristic of the secondary path. 

  

Figure 8.2: FBLMS off-line and on-line identification results for the secondary path 1. 

The duration of the single frequency cancellation test was 60 seconds and the controller 
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the cancellation filters following the controller switch-on. It is observed that both the 

off-line and on-line cancellation filters have a stable adaption, and it is clear that the 

adaptive period of the on-line case is longer than the off-line case because of the 

secondary path identification process. 
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Figure 8.3: Tap weight trajectories of the cancellation filter. (a) Off-line weights; (b) 
on-line weights. 

Figure 8.4 shows the comparison of the single frequency cancellation results on the seat 
pan. The cancellation results are the pseudo steady-state performance when the 

controller was fully adapted. It can be seen that around 30 dB reduction is achieved for 

the off-line case and approximately 20 dB reduction is achieved for the on-line case, at 

the frequency of 6 Hz. It is clearly seen that the average cancellation level of the on-line 
case is lower than that of the off-line case because of the white noise introduced by the 

on-line identification process. A dashed line at -20 dB is placed in Figure 8.4, 8.5 and 8.6 

to highlight the cancellation levels. 

Figure 8.5 presents a comparison of the cancellation results on the dummy pelvis. It is 
seen that the vibration level is reduced by more than 15 dB for both cases at the 

frequency of 6 Hz. Also, it can be observed that the random noise content is generally 

lower than that on the seat pan due to attenuation through the seat and dummy 

interface.  
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Figure 8.4: Single frequency cancellation results on the seat pan. 

 

Figure 8.5: Single frequency cancellation results on the dummy pelvis. 

Figure 8.6 presents a comparison of the cancellation results on the dummy shoulder. It 

can be seen that a similar level of vibration reduction to the dummy pelvis is achieved. 

However, some higher harmonics (the second harmonic 12 Hz, the third harmonic 18 
Hz and the forth harmonic 24 Hz) were excited by the active cancellation force. 
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Figure 8.6: Single frequency cancellation results on the dummy shoulder. 

8.2.2 Results for the secondary path 2 
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Figure 8.7 shows the estimated secondary path in the form of the filter impulse response. 

A relatively large deviation is seen between the two estimated results, especially in the 
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It is also found that there is approximately a 10 sample delay for the on-line 
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Figure 8.7: FBLMS off-line and on-line identification results for the secondary path 2. 
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Figure 8.8: Tap weight trajectories of the cancellation filter. (a) Off-line weights; (b) 
on-line weights. 

 

Figure 8.9: Single frequency cancellation results on the seat pan. 
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Figure 8.10 and 8.11 show a comparison of the cancellation results on the dummy pelvis 
and shoulder, respectively. It can be seen that substantially larger vibration reduction 

was achieved on the dummy shoulder by using the secondary path 2 than that achieved 

by using the secondary path 1 shown in Figure 8.6.  

 

Figure 8.10: Single frequency cancellation results on the dummy pelvis. 

 

Figure 8.11: Single frequency cancellation results on the dummy shoulder. 
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8.3 Multiple harmonics cancellation 

A vibration signal containing four frequencies was used to excite the system, and the 

single frequency FXLMS algorithm was extended to cancel each frequency component 

by adding additional sub-controllers. The selected four frequencies are 4 Hz and 6 Hz 

and their second harmonics 8 Hz and 12 Hz. The overall peak input acceleration is 
approximately 0.1 g.  In this test, only the secondary path 1- the MAST to the seat pan 

was selected for the investigation. Again, the cancellation results presented in Figure 

8.14, 8.15 and 8.16 are the pseudo steady-state performances when the controllers were 

fully adapted. 

The cancellation results were achieved by using both the off-line and on-line FBLMS 

secondary path identification method with a filter length of 128. The on-line 

identification white noise variance was 0.4 and the convergence rates for each adaptive 

filter are listed in Table 8.1. It can be seen that different convergence rates were used for 
different sub-controllers to guarantee an overall stable performance. 

Table 8.1: Convergence rates used for the adaptive filters in the multiple harmonics 

cancellation test.  

Off-line cancellation On-line cancellation 

Adaptive filter Convergence rate Adaptive filter Convergence rate 

4 Hz filter 5×10-3 4 Hz filter 1.6×10-3 

6 Hz filter 5×10-3 6 Hz filter 1.4×10-3 

8 Hz filter 1×10-4 8 Hz filter 6×10-4 

12 Hz filter 2×10-4 12 Hz filter 1.8×10-4 

  On-line 
identification filter 8×10-3 

Figure 8.12 shows the filter tap weights of different sub-controllers for the off-line 

cancellation case. It can be observed that all the weights took less than 10 seconds to 

reach near constant values. Figure 8.13 shows the filter tap weights of different 

sub-controllers for the on-line cancellation case. A relatively longer adaptive period is 
seen when compared with the off-line case. 
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Figure 8.12: Tap weight trajectories of different sub-controllers for the off-line 
multiple harmonics cancellation test. 
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Figure 8.13: Tap weight trajectories of different sub-controllers for the on-line 
multiple harmonics cancellation test. 
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Figure 8.14 shows the harmonic cancellation results on the seat pan. It can be seen that 
the level of vibration cancellation achieved is over 20 dB for all the frequency 

components for the off-line case, while the reduction for the on-line case is around 20 

dB at 4 Hz, 6 Hz and 8 Hz, and 5 dB at 12 Hz. Two dashed lines at -10 dB and -20 dB 

are placed in Figure 8.14, 8.15 and 8.16 to highlight the cancellation levels. 

 

Figure 8.14: Harmonic cancellation results on the seat pan. 

Figures 8.15 and 8.16 show the harmonic cancellation results on the dummy pelvis and 

shoulder, respectively. It can be seen that similar reduction levels are achieved for both 
the cases. The vibration level on the dummy pelvis and shoulder was reduced to below 

-10 dB at all the harmonic frequencies and the maximum cancellation occurs at 6 Hz. 

Again, some additional harmonics at 10 Hz, 14 Hz, 18 Hz and 24 Hz can be observed 

on the dummy pelvis and shoulder cancellation plots. These are a result of the dummy 
dynamics being excited by the active cancellation force. 

The vibration reduction level achieved in this set of tests demonstrated the effectiveness 

of the active seat system for cancelling multiple harmonic vibrations. 
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Figure 8.15: Harmonic cancellation results on the dummy pelvis. 

 

Figure 8.16: Harmonic cancellation results on the dummy shoulder. 
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8.4 Transient switching frequency cancellation 

Transient switching frequency cancellation tests were carried out to evaluate the speed 

of response and robustness of the adaptive control system. The excitation vibration 

contains three frequencies, the fundamental frequency and the second and third 

harmonics, which are to be cancelled. Similar to the multiple harmonics excitation, the 
overall peak input acceleration for each period is approximately 0.1 g. All the 

sub-controllers were switched on with zero initial gains and they were all fully adapted 

before the frequencies were changed. In this set of tests, the active cancellation system 

with both the secondary path 1 and 2 were investigated. Given that the cancellation 
performance with off-line FBLMS secondary path identification has already been 

introduced for results comparison in the two previous tests, only the results with the 

on-line FBLMS secondary path identification are presented in the following sections. 

8.2.1 Results for the secondary path 1 

In this test, a filter length of 128 was used. The signal started at frequencies of 3 Hz, 6 

Hz and 9 Hz, and changed to 4 Hz, 8 Hz and 12 Hz, then to 5 Hz, 10 Hz and 15 Hz 

over 120 seconds. Each transient period is 40 seconds, which is long enough to validate 

the response of the FXLMS controller with on-line secondary path identification. The 
on-line identification white noise variance was 0.4 and the convergence rate was 5×10-3. 

Different convergence rates, as shown in Table 8.2, were used for different 

sub-controllers and they changed as the frequencies switched in order to achieve better 

cancellation performance. However, fixed convergence rates can be used for normal 
stable operation. 

Table 8.2: Cancellation filter convergence rates in the switching frequency test. 

Filter Convergence rate Filter Convergence rate Filter Convergence rate 

3 Hz 1.8×10-3 4 Hz 1.4×10-3 5 Hz 1×10-3 

6 Hz 8×10-4 8 Hz 3.5×10-4 10 Hz 1×10-4 

9 Hz 4×10-4 12 Hz 1.2×10-4 15 Hz 4×10-5 



Chapter 8. Experimental Studies: Adaptive Control Tests 

Page 141 
 

 

Figure 8.17: Tap weight trajectories of different sub-controllers for the switching 

frequency cancellation test. 
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Figure 8.17 shows the filter tap weight trajectories of different sub-controllers during 
frequency switching. It can be observed that all the weights have reasonable stable 

adaptions during the test period in spite of some notable oscillations.  

Figure 8.18 presents a comparison between the original vibration and the active 

cancellation results with on-line secondary path identification on the seat pan during the 
transient switching frequency period. It can be seen that all the controllers are able to 

rapidly adapt to the changing conditions and provide significant levels of cancellation at 

the target frequencies. The initial adaption period is around 8 seconds, and stable 

cancellation for each frequency is seen after the controllers were fully adapted. Low level 
random noise which is introduced by the on-line FBLMS identification process is 

shown in the cancellation spectrogram as expected.  

Figure 8.19 and 8.20 show spectrograms of the original vibration and the cancellation 

results on the dummy pelvis and shoulder during the frequency switching period, 
respectively. As it can be observed that the vibration level on the dummy pelvis and 

shoulder is substantially reduced by the active control system at all the target frequencies. 

Also, a robust and rapid adaption during the frequency transient is confirmed.  

As previously stated, in the experimental tests using the secondary path 1 the control 
algorithm only utilized the acceleration signal on the seat pan as the feedback error 

signal. This means the estimated secondary path only contains the dynamics of the 

active seat system. As was indicated in the single frequency test, better cancellation 

performance on the dummy shoulder can be achieved by taking the dummy dynamics 
into account. In the next section, the cancellation results of the switching frequency test 

using the secondary path 2 (MAST to dummy shoulder) is presented for additional 

evaluation.  
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(a) 

 

(b) 

Figure 8.18: Spectrograms of the original vibration and active cancellation results on the seat 

pan during the transient switching frequency period. (a) Original vibration; (b) after 

cancellation. 
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(a) 

 

(b) 

Figure 8.19: Spectrograms of the original vibration and active cancellation results on the 

dummy pelvis during the transient switching frequency period. (a) Original vibration; (b) after 

cancellation. 
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(a) 

 
(b) 

Figure 8.20: Spectrograms of the original vibration and active cancellation results on 

the dummy shoulder during the transient switching frequency period. (a) Original 

vibration; (b) after cancellation. 
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8.2.2 Results for the secondary path 2 

In this test, a double filter length of 256 was used to ensure that the essential dynamic 

characteristics of the secondary path were captured. The signal started at frequencies of 

4 Hz, 8 Hz and 12 Hz, and changed to 5 Hz, 10 Hz and 15 Hz, then to 6 Hz, 12 Hz and 

18 Hz over 120 seconds with each transient period lasting 40 seconds. 

Similar to the case using the secondary path 1, the on-line identification white noise 

variance was 0.4 and the convergence rate was 5×10-3. Again, different convergence 

rates, as shown in Table 8.3, were used for different sub-controllers and frequencies in 

order to achieve better cancellation performance. 

Table 8.3: Cancellation filter convergence rates in the switching frequency test. 

Filter Convergence rate Filter Convergence rate Filter Convergence rate 

4 Hz 4×10-3 5 Hz 1×10-3 6 Hz 1×10-3 

8 Hz 3×10-4 10 Hz 1×10-4 12 Hz 2×10-4 

12 Hz 1×10-4 15 Hz 1.5×10-5 18 Hz 1×10-5 

Figure 8.21 shows the comparison between the original vibration and the active 

cancellation result on the seat pan during the transient switching frequency period. It is 

seen that a good level of vibration reduction was achieved after a short initial adaptive 

period. Rapid adaptation is found during the transient of the frequency switching. As 
shown previously, a low level random noise was inevitably introduced by the on-line 

identification process.  

Figure 8.22 and 8.23 show spectrograms of the original vibration and the cancellation 

results on the dummy pelvis and shoulder during the frequency switching period, 
respectively. It can be observed that better vibration cancellations on the dummy pelvis 

and shoulder were achieved compared with the results using the secondary path 1 as 

shown in Figure 8.19 and 8.20. Again, the control system’s robustness and rapid 

response are confirmed. 
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(a) 

 
(b) 

Figure 8.21: Spectrograms of the original vibration and active cancellation result on the seat 
pan during the transient switching frequency period. (a) Original vibration; (b) after 

cancellation. 
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(a) 

 

(b) 

Figure 8.22: Spectrograms of the original vibration and active cancellation result on the 
dummy pelvis during the transient switching frequency period. (a) Original vibration; (b) after 

cancellation. 
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(a) 

 

(b) 

Figure 8.23: Spectrograms of the original vibration and active cancellation result on 

the dummy shoulder during the transient switching frequency period. (a) Original 

vibration; (b) after cancellation. 
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8.5 Performance when subject to low-frequency large 
amplitude disturbances 

As mentioned in Chapter 6, in some practical applications such as helicopters, a single 

frequency (blade passing frequency) may be accompanied by unfiltered low-frequency 

large amplitude disturbances associated with the maneuvering. It is crucial that the 
control algorithm can effectively reject these disturbances during operation. 

In this test, the performance of the active seat with the FXLMS adaptive control was 

examined by cancelling a 6 Hz single frequency vibration (0.1 g peak input acceleration 

approximately) combined with large amplitude disturbances at frequencies of 0.5 Hz 
and 1 Hz, respectively. The peak input acceleration for the 0.5 Hz disturbance was 0.04 

g and for the 1 Hz disturbance was 0.09 g approximately. The duration of this test was 

50 seconds and the controller was switched on at 10 seconds. Only the secondary path 1 

with on-line identification was selected for this evaluation. 

Figure 8.24 shows the spectrogram of the cancellation results on the seat pan for the 0.5 

Hz disturbance. It can be observed that the target frequency at 6 Hz is successfully 

supressed with the presence of the low-frequency disturbance. The effectiveness of the 

controller for vibration reduction and disturbance rejection can be seen more clearly on 
the dummy pelvis and shoulder results shown in Figure 8.25 and 8.26, respectively. 

The actuation force saturation problem found with a simple feedforward PI controller 

(Chapter 6) is not seen in this test. This was because the narrow-band FXLMS 

controller which works as a notch filter only responded to the vibration component on 
the target frequency and efficiently rejected the low-frequency large amplitude 

disturbance. 
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Figure 8.24: Spectrogram of the cancellation result on the seat pan for the 0.5 Hz 

disturbance. 

 

Figure 8.25: Spectrogram of the cancellation result on the dummy pelvis for the 0.5 Hz 
disturbance. 

0

10

20

30

40

50

0
5

10
15

20
25

-100

-50
0

 

Time(s)

Frequency(Hz)
 

Am
pl

itu
de

(d
B)

-100

-90

-80

-70

-60

-50

-40

-30

-20

0

10

20

30

40

50

0
5

10
15

20
25

-100
-50

0

 

Time(s)

Frequency(Hz)
 

Am
pl

itu
de

(d
B)

-100

-90

-80

-70

-60

-50

-40

-30

-20



Chapter 8. Experimental Studies: Adaptive Control Tests 

Page 152 
 

 

Figure 8.26: Spectrogram of the cancellation result on the dummy shoulder for the 0.5 

Hz disturbance. 

Figure 8.27 shows the spectrogram of the cancellation results on the seat pan for the 1 

Hz disturbance. In a similar manner to the test results achieved using the 0.5 Hz 
disturbance, generally good vibration reduction is seen at the target frequency while the 

vibration at the 1 Hz disturbance remained. Again, a clearer demonstration of 

disturbance rejection and target frequency cancellation can be found in Figure 8.28 and 

8.29. 

From the above test results, it can be seen that the effects of the low-frequency large 

amplitude disturbance on the adaptive control system are insignificant. This indicates 

that stable vibration cancellation can be achieved using the active seat system in the 

presence of some unfiltered low-frequency disturbances.  
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Figure 8.27: Spectrogram of the cancellation result on the seat pan for the 1 Hz 

disturbance. 

 

Figure 8.28: Spectrogram of the cancellation result on the dummy pelvis for the 1 Hz 
disturbance. 
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Figure 8.29: Spectrogram of the cancellation result on the dummy shoulder for the 1 Hz 

disturbance. 

8.6 Discussions 

From the comparison between the results achieved using off-line and on-line secondary 
path identification, it is clearly seen that the adaptive periods of the on-line cases were 

longer than those of the off-line cases. However, as stated previously, to assure the 

stability of the cancellation system, it is necessary to perform the on-line identification 

and cancellation process simultaneously if the secondary path dynamic is time-varying. 
In practical operations, for slow time-varying systems, the on-line identification process 

can be conducted occasionally rather than continuously in order to decrease the adaptive 

duration and reduce the computational burden. 

The random noise which was inevitably introduced by the on-line secondary path 
identification process slightly degraded the vibration suppression effect on the seat pan. 

However, the random vibration transmitted to the dummy body was reduced to a low 

level as shown in the test results. In addition, in practical applications this noise can be 

further isolated passively by employing seat cushions. Since the experiment’s sole focus 
was the active control system, a passive cushion was not used in these tests. 
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The comparison between the test results using the secondary path 1 and 2 revealed that 
larger vibration cancellation level on the dummy pelvis and shoulder can be achieved 

when the dummy dynamic is included in the estimated secondary path model. However, 

a longer filter length is required for the increased complexity of the second path to 

ensure the major dynamic characteristics are captured. 

The transient switching frequency test results showed that the adaptive control system 

was able to rapidly adapt to the changing conditions and provide significant levels of 

vibration cancellation at the target frequencies. In this set of tests, different convergence 

rates were used for different sub-controllers and different frequencies in order to 
achieve a better cancellation performance. However, fixed convergence rates can be 

used for normal stable operations. 

The results of the experimental tests including low-frequency large amplitude 

disturbances verified the effectiveness of the FXLMS adaptive controller for noise 
rejection. This feature makes the adaptive control system suitable for use in practical 

applications where the target frequency usually accompanied with some unfiltered 

low-frequency disturbances. 

8.7 Conclusions 

The combination of the FXLMS algorithm with the FBLMS system identification 

technique has been applied to the active seat. The vibration cancellation performance of 

the active seat system has been evaluated through extensive experimental tests using a 

variety of input vibration profiles. Substantial vibration reductions were achieved for the 
single frequency and multiple harmonic signals. A robust and rapid performance was 

shown by the transient switching frequency cancellation test. Additionally, the stability 

of the control system was further validated by cancelling vibration signals combined 

with low-frequency large amplitude disturbances. The experimental results presented in 
this chapter demonstrated the capability of the active seat using adaptive control for 

seated occupant’s vibration reduction. 
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Chapter 9 

Conclusions and Future Work 

This chapter gives the conclusions and discussions of the work described throughout 
this thesis. The main achievements and contributions of the research work are 

summarised. Recommendations for future work are also included. 

1.1 Conclusions 

The work described in this thesis forms a successful simulation and experimental study 
of an active seat and control algorithm for occupants’ whole-body vibration (WBV) 

reduction under low frequency excitations (1-25 Hz). 

Prior to the design of an active seat system, a modelling study of seated human subjects 

(SHS) and an extensive experimental investigation into the vibration transmissibility of a 
test dummy and vehicle seat were carried out. The biodynamic responses of SHS 

exposed to uncoupled vertical and fore-and-aft WBV was modelled. The main limitation 

of existing SHS models is that they were derived to satisfy a single biodynamic response 

function. Such an approach may provide a reasonable fit with the function data being 
considered but uncertain matches with the others. The model presented in this study is 

based on all three types of biodynamic response functions: seat-to-head transmissibility 

(STHT), driving-point mechanical impedance (DPMI) and apparent mass (APM). The 

goodness-of-fit of the model developed in this work was evaluated graphically and 
statistically. A comparison with existing models was carried out and the results demonstrated 

that an improved fit with the aggregated experimental data was achieved. Through the model, 

the biodynamic behaviour of seated human subjects can be observed in a more 

comprehensive way. The model was also used to develop an experimental vibration test 
dummy which was used as a seated human body substitute in subsequent active seat 
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vibration cancellation tests in order to ensure an improved consistency in behaviour and 
avoid safety and ethical issues.  

An active seat was developed based upon the observations and understanding of the 

SHS and seat system. The active seat was required to provide efficient vibration isolation 

in a low frequency excitation range of 1-25 Hz. The characteristics of the active seat 
dynamics were identified through experimental tests. Based on the measured system 

dynamics, the rig was identified as being suitable for the development of an active seat 

to attenuate the vibration experienced by vehicle occupants. 

The vibration cancellation performance of the active seat using feedforward plus 
proportional-integral (PI) control was initially examined. Through these tests, the 

effectiveness of the actuator’s control authority was verified and an understanding of the 

real-time implementation was gained. However, these tests also revealed the limitations 

of the feedforward plus PI control method when applied to this non-linear system. 
Firstly, the controller was not able to efficiently cancel multiple frequency components 

in the excitation signal. Secondly, the control performance was significantly influenced 

by the unfiltered low-frequency disturbance. Since the parameters of the feedforward 

controller were based on the identified system dynamics, a priori knowledge of the 
system was required to implement the controller. Because the active seat system is subject 

to non-linear and time-varying behaviour, a priori knowledge about the plant and 

disturbance is not available. Thus, a self-tuning fully adaptive algorithm is a prime 

requirement. The FXLMS algorithm with the FBLMS system identification technique 
was found suitable for this application and was selected for detailed investigation 

through experimental tests. Substantial vibration reductions were achieved for a variety 

of input vibration profiles. The robustness and stability of the control system was 

proven by cancelling vibration input signals which switched in frequency. Additionally, 
the results of the experimental tests under low-frequency large amplitude disturbances 

verified the effectiveness of the FXLMS adaptive controller for noise rejection. To 

conclude, the experimental results demonstrated an excellent capability of the active seat 

and control system for efficiently reducing the vibration level of seated occupants under 
low-frequency whole-body vibration.  
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1.2 Recommendations for future work 

The research that has been undertaken for this thesis has indicated a number of topics 

which deserve further research.  

 The random noise which was inevitably introduced by the on-line secondary 
path identification process degraded the vibration suppression effect to some 
extent. A seat cushion could be added to the active seat to passively isolate the 

low level random noise. 

 The mechanical structure of the active seat could be improved and refined to 
reduce friction and backlash between the joints and linear guiders. The 
non-linearity of the active seat could be reduced and thus the system robustness 

could be improved.  

 The active seat could be modified and combined with a crashworthy mechanism 
to meet shock protection requirements while providing enhanced vibration 
isolation for rotorcrafts occupants. 

 The research work presented in this thesis only focused on the reduction of the 
dominate vibration in the vertical direction. The active seat system could be 

extended to consider the pitch vibration.  

 The FXLMS algorithm was applied to the active seat for cancelling narrow-band 
vibrations. Further work could be aimed at extending the narrow-band adaptive 

algorithm to deal with broad-band vibration which may be introduced by road 

roughness on commercial vehicles, such as heavy duty trucks.  

 Should the active seat system progress towards production then it must be fully 
tested under all real conditions. The adaptive algorithm described in this thesis 

must be implemented with on-board processors.  

 No study was conducted here to establish the costs of the active system in terms 
of the resulting power consumption. It would be beneficial to investigate the 

power efficiency of the active system and establish an optimal cost functions for 
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minimisation rather than measured error signals. The cost functions would 
balance cancellation performance against power consumption. 
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