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Abstract 

Climate change brings with it a set of challenges if our buildings are to remain thermally comfortable 

whilst energy consumption is kept to a minimum and greenhouse gas emissions are reduced. As a 

means of addressing these issues, three models have been constructed using future climate data as 

forecast by the UK Climate Projections (UKCP09), and they have been used to inform the 

Department of Energy and Climate Change (DECC) 2050 Calculator. Observing there to be a 

correlation between regionalised National Grid non-daily metered gas demand and daily air 

temperature, the first model uses these data and UKCP09 data to estimate future energy savings 

deriving from a reduced requirement for space heating across the built environment. Using UKCP09 

data, the second model estimates the increase in the uptake of residential air-conditioning if the UK 

were to follow the same experience as Canada, regression data showing a correlation between 

penetration levels of air-conditioning in the residential sector and air temperature in North America. 

Resultant levels of space cooling energy consumption are calculated using two different bottom-up 

approaches, the first of which uses the dwelling as the base unit, and the second of which uses the 

air-conditioner. Deriving from conventional degree-day theory and substantiated through a series of 

building simulations, the third model uses a novel metric, the Adaptive Comfort Degree-Day, to 

estimate the energy savings potential of employing adaptive comfort standards for future climates 

using UKCP09 data. Finally, it is found that pathways prescribed as achieving an 80% reduction in 

emissions levels by 2050 remain successful when the DECC 2050 Calculator is updated with 

correctly-weighted air temperatures. However, the demand for space heating is under-estimated by 

up to 99 TWh when the Calculator is amended so as to take account of data from the preceding 

space heating model. 
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Glossary 

With regard to energy use, a number of terms are understood differently by different people. This 

Glossary sets out what is meant by those terms which are used in this thesis which are most 

commonly confused. 

1. Energy Demand and Energy Consumption 

Energy Demand 

Quantity of energy required. 

Energy Consumption 

Quantity of energy used by a consumer. 

There can be some confusion regarding the interpretation of the term “energy demand”, since 

”quantity of energy required” may be interpreted in different ways by the consumers, 

suppliers/generators and modellers. Consider the following example. The owner of a building is 

unsure whether to install a heating system which uses fuel source A which is 80% efficient, or a 

heating system which uses the more expensive fuel source B, but which is 90% efficient. A modeller 

is employed to run a heat balance model for the building owner in order to help him/her make the 

correct decision. In order to maintain thermal comfort, it is found that 100 units of space heating 

energy are required annually. Thus the heating requirements of the building can be met through the 

use of 111 (i.e. 100/0.9) units of fuel A or 120 (i.e. 100/0.8) units of fuel B. 

i. The energy demand is 111 units from the perspective of fuel supplier A. 

ii. The energy demand is 121 units from the perspective of fuel supplier B. 

iii. The energy demand is 100 units from the perspective of the modeller. 

iv. The energy consumption is 111 units from all perspectives if fuel A is used. 

v. The energy consumption is 121 units from all perspectives if fuel B is used. 

The context in which the terms are used always makes clear which particular interpretation is being 

used in this thesis. 

2. Energy Efficiency Ratio, Energy Efficiency Ratio and Coefficient of Performance 

There is a degree of confusion in some of the literature with regard to the use of certain air-

conditioning terms, e.g. see footnote. The correct general definitions of energy efficiency ratio, 

seasonal energy efficiency ratio and coefficient of performance as used in Europe are given below. 

Energy efficiency ratio (EER) is the ratio of the declared capacity for cooling and the rated power of 

the unit when providing cooling at standard rating conditions. The EER has no units. 

Seasonal energy efficiency ratio (SEER) is the overall cooling energy efficiency ratio of a unit over the 

whole cooling season. The SEER has no units. 
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Coefficient of Performance (CoP) is the ratio of the declared capacity for heating and the rated power 

of the unit when providing heating at standard rating conditions. The CoP has no units. 

Source: (European Commission, 2011) 

The literature commonly reports the EER as being approximately 0.85 the value of the SEER although 

the relationship is not fixed, being dependent upon cycling losses. 

3. Short- and long-term response 

Short-term response 

Increase in electricity consumption from a fixed number of air-conditioners resulting from (i) more 

intensive use (i.e. switching to a higher power setting), plus (ii) increased number of hours of 

operation, in response to hotter temperatures. 

Short-term response factor (kst) 

Factor by which space cooling energy consumption increases as a result of the short-term response. 

Long-term response 

Increase in electricity consumption resulting from increase in the number of air-conditioners (i.e. 

increased penetration), in response to hotter temperatures. 

Long-term response factor (klt) 

Factor by which space cooling energy consumption increases as a result of long-term response. 

Present climate Future hot climate 

Number of air-conditioning units a a + b 

Energy Consumption A A’ + B 

Number of CDDs x y 

Short-term response: A’ – A 

Short-term response factor: A’ ÷ A (= y ÷ x) 

Long-term response: (A’ + B) - A 

Long-term response factor: (a + b) ÷ a 

where A’ = k.a 

B = k.b 

The long-term response also calculates as (A. kst.klt) – A. 
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Preface 

This thesis presents research carried in threemain areas, each presented in a chapter of its own 

(Chapter 2 to Chapter 4). Although each chapter represents a discrete area of research in its own 

right, they also build towards Chapter 5, the main focus of this study, where pathways which lead to 

a reduction in emissions of 80% are re-examined in the light of the information gathered in the 

previous chapters. A précis of each of these four chapters is given below, highlighting the key 

contributions that each make to their relevant fields of study and thereby extend our knowledge. 

Chapter 2: Space Heating Model 

Space heating accounts for 30% of energy consumption in the built environment of the UK, and 

stands second only to transport. In view of the fact that space heating is so much affected by 

climate and that our climate is forecast to change significantly over the coming years of the 21st 

century, it is important to understand how the demand for space heating is likely to change. In a 

future where electricity is likely to be the primary form of energy and which will require a vast 

reorganisation of the generational and supply networks, this knowledge is of vital importance to 

policymakers who must ensure that there is enough supply to meet demand, and also to 

researchers, manufacturers and distributors who must ensure that the technology and systems are 

in place to cope with the demand. 

The residential sector accounts for the majority of our heating, and a number of models exist which 

can quantify levels of space heating in this sector. However, almost a third of space heating is used 

in the non-domestic sector. Although a limited number of non-domestic models have been built, 

none of them can be used as forecasting tools to examine how levels of demand/consumption will 

change as the climate changes. This arises as a consequence of the fact that the non-domestic stock 

is more complex and diverse than the domestic stock. 

A different approach to the problem is followed in this thesis. Rather than model each sector in 

isolation, the residential and non-domestic sectors are modelled en masse. Such an approach is 

made possible because of the existence of regional daily gas demand data supplied by National Grid, 

it being possible to correlate these data with regional daily temperature data supplied by the British 

Atmospheric Data Centre. With gas being used for over 70% of space heating across the residential 

and non-domestic stock, a clear correlation is seen between non-daily metered gas consumption and 

air temperature. This forms the basis of a regressional model to forecast future levels of space 

heating energy consumption, the future daily temperature data deriving from regional weather data 

deriving from the UKCP09 Weather Generator. Given the acronym SHECMOBS (Space Heating 

Energy Consumption Model for the Building Stock), it forecasts significant reductions in space 

heating energy consumption, an 11-12% reduction being forecast for the average climate in the 

2030s, and one of 16-22% by the 2050s, depending upon whether global greenhouse gas emission 

fall in the low, medium or high category. The value of SHECMOBS is twofold. For the layman who 

only has little information about climate change and has difficulty in appreciating what a rise in 

temperature of x 0C means, it immediately makes apparent, in terms which are understandable to 

him, how large and close a phenomenon it is. Secondly, and most importantly from an academic 
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point of view, the information that it imparts can be used to inform policymakers as mentioned 

above since the percentage change in consumption as reported by SHECMOBS is also indicative of 

the percentage change in demand, such information being used to re-calibrate the DECC 2050 

Calculator described in Chapter 5. 

This work has been published in Deriving and using future weather data for building design from UK 

climate change projections – an overview of the COPSE Project ( (Levermore, et al., 2012), and 

preparations are in process for further publication of the work in an academic journal, where data is 

drawn for the DECC 2050 Calculator. 

Chapter 3: Space Cooling Model 

Just as the demand for space heating is likely to fall, the demand for space cooling is set to increase 

as air temperatures increase, and in similar fashion to the space heating scenario outlined 

previously, policymakers, researchers, manufacturers and distributors must ensure that systems are 

in place so that supply can meet demand. 

One of the ways in which cooling demand is met is through mechanical systems, primarily air-

conditioners. The penetration rate of air-conditioning in the commercial market is already 

estimated at 42%. The potential within the market is therefore limited: f the non-domestic stock of 

1.7M were to increase at the same rate as that of the residential stock (54%) and saturation reached 

100% by 2050, the market would increase by only a factor of 3.6. In view of the very low levels of 

penetration in the residential sector however, the market could explode over the course of the next 

40 years as has happened in the United States and more recently in China where the number of air-

conditioning units rose from a value of 0.3 units per 100 households in 1990 to 112 by 2010. 

Data from North America has shown a link between air temperature and penetration levels of air-

conditioning. Significantly, the current summer climate observed in Canada is similar to that 

forecast for the UK in the 2050s. What is more, levels of air-conditioning in Canada are considerably 

higher than they are in the UK. As such, these data can give us an indication of what penetration 

levels could reach in this country in forty years if we were to follow the Canadian experience of air-

conditioning. 

However, very little research has been carried out on air-conditioning in the UK, and none have 

brought together the key elements of penetration of climate. Since these two elements can have 

such a large effect on levels of space cooling energy consumption, the importance of incorporating 

both of these elements in a single unified model is clear. For the first time, these elements have 

been brought together in a space cooling model to forecast energy consumption in dwellings in the 

future. Given the acronym SCECMORS (Space Cooling Energy Consumption Model for the 

Residential Sector), the front end consists of a regression model which translates cooling degree-

days into levels of penetration, whilst the back end converts penetration levels into energy 

consumption values. Moreover, the back end uses two different approaches, one which uses the 

dwelling as the base unit and the other which uses the air-conditioner as the base unit, allowing 

their output to be cross-checked and therefore adding a degree of robustness to the modelling 

process. 
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Under a medium emissions scenario, penetration levels could reach approximately 50% by the 

2050s, with the first approach forecasting levels of energy consumption which are 26% higher than 

the second approach. But the data reveal that even at such high levels of penetration the resultant 

effect upon stock energy consumption is very small, equivalent to approximately only 1% of the total 

currently consumed by space heating. 

In addition to giving an indication of penetration levels and energy consumption in a 2050s climate 

under a medium emissions scenario, like SHECMOBS, its greatest value lies in its application to 

additional future climates and different pathways as modelled in the DECC 2050 Calculator in 

Chapter 5. 

Further informed by data from the DECC Calculator, preparations are being made for publication of 

the work in an academic journal. 

Chapter 4: Adaptive Comfort Degree-Day Model 

Whilst the Canadian experience of uptake of air-conditioning projects one vision of the future, 

embracement of the lately fashionable adaptive approach to thermal comfort (AATC) offers an 

alternative vision. In this approach, space conditioning (most often cooling, but applicable heating 

as well) is achieved by natural means through the provision of adaptive opportunity. It is specifically 

expressed as (i) the provision of easily accessed openable windows, (ii) absence of dress code which 

forbids dressing for the weather, and(iii)elimination of air-conditioning so that the human body’s 

thermoregulatory system is tuned to the natural environment rather than the narrow temperature 

limits of the artificial environment provided by air-conditioning. Such is its potential for saving 

energy, allowing one to remain comfortable at indoor temperatures which those habituated to air-

conditioning would find uncomfortably hot, adaptive standards have been set by national standards 

offices, these adaptive standards setting out the temperature limits for maintaining a comfortable 

environment. In the UK we have choice of two adaptive standards, the (i) American Society of 

Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) adaptive standard and the (ii) 

Comité Européen de Normalisation (CEN)/ British Standards Institution (BSI) adaptive standard. The 

problem for the designer or energy manager who wishes to avail of the AATC is that the two 

adaptive standards, even though both predicating to provide an environment which is thermally 

comfortable, set different temperature limits. The problem relates to the issue of compliance, 

where the approximately 10C higher temperature limit of the European adaptive standard makes 

compliance easier and therefore makes it available to a greater number of buildings which would 

otherwise have to use mechanical cooling systems to maintain comfort. 

In order to compare each adaptive standard’s potential for saving energy (equal in amount to the 

amount of energy which would otherwise be used by a mechanical system maintaining a 

temperature at a lower temperature limit, a novel metric the ACDD has been created. A theoretical 

concept deriving from conventional degree-day theory, modelling studies reveal that the ACDD 

accurately reflects not only potential energy savings but actual energy savings too. 

The results show that the energy savings of the additional buildings allowed to avail of the AATC 

through compliance with the European adaptive standard are significant: buildings using the 
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European adaptive standard may achieve levels of energy savings in the 2020s which a merely 

ASHRAE-compliant building could not achieve until the 2080s or later, irrespective of the emissions 

scenario chosen. 

The research has two important aspects to it. Firstly the modelling studies reveal that ACCD metric, 

developed as a means of quantifying the potential energy savings (in relative terms) of an adaptive 

standard, is successful in doing this, thus allowing one to be compared against the other for future 

climates. In addition, however, the modelling studies reveal that the ACDD can be used to quantify 

actual energy savings (in relative terms) resulting from implementation of the AATC, and does so 

without recourse to any specific knowledge of a building’s dimensions or thermal characteristics. It 

thus provides a shorthand way of quickly and simply calculating energy savings (in relative terms) 

without having to use complex dynamic simulation modelling software. 

In that the AATC represents a realistic zero energy method of providing a thermally comfortable 

environment, it therefore also corroborates two of the modelled pathways described in chapter 5, 

which do not use mechanical systems for space cooling in the residential sector. 

This work has been published in the following peer-reviewed publications: Energy and Buildings 

( (McGilligan, et al., 2011a), the Proceedings of the 5th International Conference on Solar Radiation 

and Daylighting 2011 (McGilligan, et al., 2011b) and (McGilligan, et al., 2011c). 

Chapter 5: The Building Stock in 2050: Pathways to Securing a Reduction in Emissions of 80% 

In recognition of the fact that greenhouse gas emissions must be reduced if we are to avoid serious 

negative and costly effects of climate change in the latter part of the century, the Climate Change 

Act 2008 sets down in law that emissions of these gases must be reduced by 80% with reference to a 

baseline level set in 1990. Such a target can only be met following concerted cross-sector effort, 

since neither the sectors of the built environment nor any individual sector can achieve this alone. 

As a means of exploring the alternative pathways which can be followed in the attainment of this 

target, the government Department of Energy and Climate Change (DECC) has produced an 

internally consistent, multi-layered tool, the DECC 2050 Calculator, in which changes in one sector 

result in changes in measured changes in other sectors if there be a link between them. Contained 

within the Calculator itself a number of pathways which lead towards the 80% reduction target are 

prescribed. When space heating energy consumption in the residential sector is cross-checked 

against (i) government data for its base year of 2007 and (ii) SHECMOBS data for the reduction in 

space heating energy consumption for the period 2007-2050 using correctly-weighted air 

temperature data, the DECC 2050 Calculator is seen to under-estimate the former and over-estimate 

the latter by a considerable margin. Since space heating (i) is currently responsible for over 15% of 

emissions (ii), comprises such a large part of the energy budget of the UK, and (iii) will still be 

responsible for a large part of the nation’s consumption in 2050, this could result in levels of energy 

consumption and levels of emissions in 2050 which are higher than those currently forecast. 

The DECC 2050 Calculator is re-run for four key pathways, which cover a broad spectrum of possible 

pathways, using correctly-weighted temperature data, and featuring amendments which bring its 

output into alignment with government statistics and SHECMOBS forecasts. Alternative future 
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climates for 2050 are also investigated, since none of the default pathways consider a future climate 

other than one based on temperature projections at the 50% probability level under a medium 

emissions scenario using UKCP09 data. 

Levels of space cooling in the residential sector are seen to be very small in comparison to levels of 

heating. If uptake followed a pattern similar to that seen in Canada, penetration could reach 50-

70%, but levels of consumption in this sector would still be dwarfed by levels of co nsumption in the 

commercial sector. 

When the residential sector aspect of the Calculator is re-calibrated so as to align with government 

space heating statistics and SHECMOBS data, forecast levels of space heating which are 

approximately twice as high as those estimated by a basic version of the Calculator across all future 

climates. The difference in energy consumption levels between the two models reaches as high as 

99TWh. Extremities of climate for 2050 are not seen to have a very large effect upon space heating 

energy consumption however, there being only an average difference of 3% between the 30th 

percentile medium emissions scenario and the 90th percentile high emissions scenario. 

Despite the amendments made to the DECC 2050 Calculator, the cross-sector minimum reduction in 

emissions in the least effective pathway still amounts to 79.7%, the continued success of the 

pathways mostly deriving from the high level of electrified heating in alliance with its low emissions 

intensity. 

The information revealed by this research is significant because it suggests that whilst the proposed 

measures defined by the pathway may be sufficient to secure the emissions target reduction of 80%, 

the generational capacity is insufficient to meet the full demand for space heating during the heating 

season, requiring that additional generational capacity sufficient to provide up to 99TWh of 

electricity be provided. 

Findings from this chapter will inform the forthcoming publications on space heating and space 

cooling mentioned above. A separate paper will also be written about this work. 
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1 Introduction 

The climate system is warming, as shown by global observations of changes in air temperature, 

ocean temperature, sea levels, and snow and ice melt. Such is the wealth of evidence indicating this 

to be the case that the Intergovernmental Panel on Climate Change (IPCC) is “unequivocal” on this 

matter in its Fourth Assessment Report. Furthermore, the IPCC states that there is at least a 90% 

probability that the increase in global temperature observed in the latter part of the mid-twentieth 

century is due to an increase in anthropogenic greenhouse gas (GHG) emissions, the global increases 

in carbon dioxide being primarily due to fossil fuel use and land use change, and the increases in 

methane and nitrous oxide being primarily due to agriculture. (There has been a significant rise in 

the global atmospheric concentrations of these GHGs since the dawn of the industrial age 250 years 

ago, with present day levels far exceeding levels determined from ice core samples covering a period 

of many thousands of years). Moreover, temperatures continue to rise. Perhaps most alarming of 

all, the last time that the polar regions were significantly warmer than they are today for an 

extended length of time, sea levels rose by 4-6m due to the reduction in ice (IPCC, 2007). 

As clear as it may be that human activity has been a major influence upon climate change, and for all 

the certitude that we are in the midst of a period of warming, the duration of the period of warming 

and extent to which temperatures will rise are less certain, with increases of between 1.2 0C and 6.4 

0C being forecast before the turn of the century. For the most part, this uncertainty does not derive 

from an inadequacy in climate science to locate, describe and measure those factors which affect 

the climate. Indeed, our climate models satisfactorily describe the climate to a large degree, such 

models contributing to the evidence that the observed recent increases in global air temperature are 

principally anthropogenic in nature (Figure 1). 
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models using only natural forcings: 5–95% range for 19 simulations from five climate 

models using only the natural forcings due to solar activity and volcanoes 

models using both natural and anthropogenic forcings: 5–95% range for 58 simulations 

from 14 climate models using both natural and anthropogenic forcings. 

observations: decadal averages for period 1906 to 2005, plotted against the centre of 

the decade and relative to the corresponding average for 1901–1950. Dashed line -

spatial coverage less than 50%. 

Figure 1 Comparison of observed global land change in surface temperature with results simulated by climate models 

using natural and anthropogenic forcings (IPCC, 2007) 

The uncertainty with regard to the future lies rather more in the fact that it remains unclear how 

society, in all its vast, and inter-connected complexity, will develop over the coming decades; a 

product of complex dynamic systems, influenced by such factors as changes in demographics, socio-

economic development and technological advances, the pathway adopted by society at large, 

unknown as yet, is of pivotal importance in determining emissions levels and attendant subsequent 

effect upon global air temperatures. In the absence of a legally-binding agreement forcing emissions 

limits upon nations, the UK, as with every other nation, must depend on projections, scenarios which 

set out plausible storylines which describe how the future might unfold and which further detail the 

emissions pathways associated with each1. 

The UK Climate Projections 2009 (UKCP09) set out just such plausible visions of the future. Deriving 

from the Met Office Hadley Centre climate model HadCM32, and further including the results of 

other IPCC climate models, UKCP09 provides probabilistic projections for 25km grid squares of the 

1 
The United Nations Statistics Division reports emissions data for 173 states. The UK is responsible for only 2% 

of GHG emissions. The United States is responsible for most emissions (21%), with China responsible for 12% 

(United Nations Statistics Division, 2010). The statistics refer to data gathered in individual years anytime 

between 1990 and 2008. With the data from China deriving from 1994 (c.f. 2008 for the UK and the US), it is 

likely that China is now responsible for more than 12% of emissions in view of the rapid development that has 

taken place there over recent years. 
2 

One of the major models used in the IPCC Third and Fourth Assessment Reports (UK Meteorological Office, 

2010). 
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UK (i) for air temperature and a number of atmospheric variables, (ii) for decadal future time periods 

from the 2020s to the 2080s, (iii) under three future emissions scenarios (UKCP09, 2012e; UKCP09, 

2012f). Reflecting scientists' best understanding of how the climate system operates and using a 

peer reviewed methodology at the very vanguard of the subject field which calls upon the best 

available evidence, the UKCP09 represents the culmination of seven years of work by (i) the Met 

Office Hadley Centre, (ii) the UK Climate Impacts Programme (UKCIP) and (iii) a body of over thirty 

contributing organisations including the Climatic Research Unit, widely recognised as one of the 

world's leading institutions concerned with the study of natural and anthropogenic climate change 

(Climatic Research Unit, 2010) (UKCP09, 2012b; UKCP09, 2010). 

With the level of emissions being the critical factor which differentiates the air temperature change 

associated with one particular projection from that of another, the scenarios used for UKCP09 come 

from the set of over 40 developed by the IPCC which are detailed in their Special Report on 

Emissions Scenarios (SRES) (IPCC, 2000), and which were used in its Fourth Assessment Report. 

Whilst the scenarios used by UKCP09 do not comprise the full set of SRES emissions scenarios, the 

disparate scenarios selected - High (SRES A1FI), Medium (SRES A1B) and Low (SRES B1) - allow one to 

examine the effect of climate change over a wide span of the spectrum of possibilities (UKCP09, 

2012c). 

As useful as the actual climate projections themselves are in allowing one to attach a probability to 

the occurrence of any given future climate for a given emissions scenario, assessment of some of the 

more important aspects of climate change require data at a higher geographical and temporal 

resolution, viz. regionalised daily data (knowledge of the weather). UKCP09 has constructed a 

weather generator to provide these data. Observing there to be a statistical relationships between 

the weather-defining parameters of rainfall, vapour pressure, sunshine hours, mean daily 

temperature and diurnal temperature range from past weather records (1961-1995), the UKCP09 

Weather Generator functions by applying these inter-variable relationships (IVRs) to a stochastic 

rainfall model to which the UKCP09 climate forecasts have been fitted so as to produce statistically-

equivalent, plausible time series of weather (UKCP09, 2012d). Whilst it is extremely unlikely that the 

particular outcome deriving from any single run of the UKCP09 Weather Generator will occur (i.e. it 

cannot forecast the actual weather), the monthly/seasonal/annual results obtained through 

averaging of multiple runs of the Weather Generator do concur with actual UKCP09 climate 

projections themselves at the 0.5 probability level3 . Indeed, confirmation of the performance of the 

Weather Generator to accurately reproduce climate data is seen in a series of UKCP09 plots where 

the Weather Generator is used to produce backcasts for Ringway for the baseline period 1961-19904 

(UKCP09, 2009), an example of the high degree of correspondence between observed data and 

simulated data being shown in Figure 25,6 . 

3 
i.e. the central estimate, where temperatures are as likely to be above the forecast value as below the 

forecast value. 
4 

Ringway is a weather station close to Manchester; the Weather Generator was largely calibrated against 

weather data collected over the period 1961-1990. 
5 

Further validation plots for more locations have subsequently been performed and show a similarly high 

degree of correspondence (UKCP09, 2011a). 
6 

Additionally, it should be noted that weather files created by the Weather Generator have been shown to 

produce comparable internal environments to the CIBSE future weather years created from UKCIP02 data 
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blue crosses - observations

red dots - simulated data (mean of 100 Weather Generator runs)

red bars - simulated data marking the ±2 standard deviation limits which mark out the interval between which

95% of the simulated data fall (from 100 Weather Generator runs)


Figure 2 Validation plot for Ringway observed data based on a 1961–1990 period (UKCP09, 2009) 

Of those previously-mentioned aspects of climate change which can only be examined using daily 

data, four in particular relate to changes in energy consumption in the built environment: 

•	 decrease in demand for space heating 

•	 increase in demand for space cooling 

•	 comparison of adaptive comfort standards 

•	 assessment of the performance of the Department of Climate and Energy Change (DECC) 

2050 Calculator 

Demand for Space Heating 

In view of the fact that the demand for space heating is highest during the summer when air 

temperatures, on average, are their highest, and that it is at its lowest in winter when air 

temperatures, on average, are at their lowest (see Figure 3 later), it seems reasonable to investigate 

whether there is a correlation between air temperature and space heating. If such a correlation 

exists, one could then apply it to a future climate, where higher average air temperatures are 

forecast, in order to quantify the demand for space hearting. But since air temperatures are not set 

(which used the morphing procedure), and thus should not be considered inferior in any respect (Eames, et al., 

2011). 
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to rise uniformly over the course of the year, and since they forecast rises vary from location to 

location (UKCP09, 2012G), the task would have to be performed at a regional level before being built 

up to the national scale. This is examined further in Chapter 2, in which is described a model which 

uses daily temperature data disaggregated by location to quantify the reduction in space heating 

energy. 

Demand for Space Cooling 

Similarly, the effect of climate change is likely to increase the demand for space cooling. But with 

the demand likely to be greatest and most frequent in the warmer and more densely populated 

southern parts of the country, where the set-points of mechanical cooling systems are breached by 

greater margins and on a more regular occurrence than in other parts of the country, daily 

regionalised daily temperature data are required in order to fully evaluate the increase in demand 

for mechanical space cooling. The increase in space cooling energy consumption in the residential 

stock is estimated by a model described in Chapter 3. 

Adaptive Comfort Standards 

In recognition of the fact that hotter summers will lead to a greater consumption of energy in the 

cooling season if that demand for space cooling is met through mechanical systems as mentioned 

above, attention has lately returned to the Adaptive Approach to Thermal Comfort (AATC) adaptive 

standards as an alternative means of achieving a thermally comfortable environment in buildings at 

little or no expense in terms of energy. Yet the two adaptive standards from which energy managers 

and designers can choose set different temperature limits to describe the zone of thermal comfort, 

which can lead to very different levels of energy savings. In order to compare the energy savings of 

buildings which are compliant with the more rigorous ASHRAE adaptive standard with those from 

buildings which are compliant with the less demanding European adaptive standard, one must use 

daily temperature since the temperature limits of the European adaptive standard are set with 

reference to a daily running mean temperature. Chapter 4 compares the energy saving potential of 

the two adaptive standards, and further explores the issues which may give rise to the difference 

between them. 

DECC 2050 Calculator 

In response to the growing realisation that GHG emissions must be curbed if society is not to suffer 

the more extreme, deleterious consequences of a warming climate, the Climate Change Act was 

passed in 2008 (Climate Change Act, 2008). The key component of the Act is that overall7 GHG 

emissions must be reduced by at least 80% with reference to 1990 baseline levels, such a large 

reduction in emissions requiring that action is taken since it is extremely unlikely that the target will 

be attained if a policy of business-as-usual scenario is adopted. Introduced by the Government in 

i.e. emissions levels may exceed the stated 80% target if the additional emissions are part of a trading 

scheme; proactive sequestration measures count as negative emissions. 
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2010, the cross-sector DECC 2050 Calculator provides a mechanism for testing the effectiveness of 

actions designed to reduce emissions; with regard to the built environment and climate change, this 

refers to measures designed to reduce space heating and space cooling emissions. Refitting the 

DECC 2050 Calculator with new input deriving from daily regionalised temperature data allows one 

to test how well it performs this task, to examine whether it fulfils the function assigned it of 

ensuring the Government’s short- and medium-term planning is consistent with the attainment of 

the 80% target (DECC, 2012f). Chapter 5 assesses this aspect of the performance of the DECC 2050 

Calculator, and examines whether it is fit for purpose. 
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2 Space Heating Model 

The UK Climate Projections (UKCP09) forecast that the coming decades will see a significant rise in 

temperature over all parts of the country (UKCP09, 2012f). There is also likely to be a concomitant 

decrease in the demand for space heating in the built environment during the heating season. The 

level of associated energy savings is necessarily dependent upon the magnitude of the temperature 

increase and the length by which the heating season is shortened. Given the fact that space heating 

currently accounts for approximately 43% of energy consumption across the domestic, service and 

industry sectors in the UK8 (DECC, 2012h), the savings could be considerable. 

This chapter describes a model tasked with quantifying the impact that climate change will have 

upon space heating consumption in the built environment, across both the domestic stock and the 

non-domestic (i.e. service plus industry) stock of Great Britain. It explores the varying modelling 

techniques which can be used to quantify space heating energy savings, culminating in a description 

of a bespoke space heating model adapted for use with UKCP09 data, and reporting the energy 

savings forecast by the model 

Section 2.1 introduces the possible modelling approaches, Section 2.2 describes the bottom-up 

approach for a non-domestic model and Section 2.3 describes the top-down approach for a non-

domestic model. Section 2.4 moves on to give an overview of the cross-sector top-down National 

Grid Daily Demand Model. Following this review of the different modelling formats, Section 2.5 

describes theSpace Heating Energy Consumption Model for the Building Stock (SHECMOBS), and 

Section 2.6 reports the results. 

2.1 Modelling approaches 

Two types of model present themselves as candidates for a stock model: (i) bottom-up model, and 

(ii) top-down model. 

Since the domestic and non-domestic stocks differ in terms of building size, construction and 

activity, the bottom-up approach necessitates that each are modelled separately. Following 

extensive characterisation of the residential stock, there exist a number of domestic stock models, 

notably the Building Research Establishment Housing Model for Energy Studies (BREHOMES) 

(Shorrock & Dunster, 1997) and the Domestic Energy and Carbon (DECarb) Model (Natarajan & 

Levermore, 2007), the latter of which used data from the UK Climate Impacts Programme 2002 

(UKCIP02), the immediate predecessor of UKCP09, to predict future levels of energy consumption. 

Whether the domestic bottom-up model can be used as part of a larger model which models the 

whole of the built environment, therefore, relies upon whether or not the non-domestic stock can 

be successfully modelled, either using a bottom-up approach or a top-down approach. 

8 
These three sectors account for approximately 59% UK energy consumption, with the transport sector 

accounting for 41%. 
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Non-Domestic Bottom-Up Model 

The bottom-up model reconstitutes the non-domestic stock from the array of its disaggregated 

constituent elements. At its most basic, the modelling process broadly comprises five steps: 

i. non-domestic stock is broken down into units of repeatable type, 

ii. energy consumption of each unit type is calculated, 

iii. energy consumption occurring at unit level is multiplied by the number of units of that type 

which exist within the stock in order to calculate stock energy consumption, 

iv. establishment of correlation between stock energy consumption and climate (air 

temperature), and 

v. application of correlation to future climates in order to forecast future non-domestic stock 

energy consumption levels. 

Non-Domestic Top-Down Model 

The top-down model examines energy consumption data across the non-domestic stock, such data 

being reported at different levels of specificity (e.g. energy consumption reported by sector or by 

region), and attempts to identify the dataset which best correlates with reported climate data (air 

temperature). The correlation deriving from the best-fitting dataset is then applied to future 

climates in order to forecast future non-domestic stock energy consumption levels. 

2.2 Non-Domestic Sector Bottom-up Model 

Before the influence of future climates upon energy consumption within the stock can be examined, 

the bottom-up model demands that the stock must first be characterised. Once characterised, one 

can then attempt to quantify the influence of climate. The equation describing the bottom-up 

model as used in BREHOMES and DECarb can be simplified as, where the unitary energy 

consumption (ei,j) is the parameter affected by outdoor air temperature : 

Equation 1 

� = ����,� ×��,� 		 �
� �
� 

where, 

E = energy consumption of stock 

i = unit type 

j = activity 

ei,j = energy consumption of unit of type i and activity j 
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ni,j = number of units of type i and activity j 

N = number of different unit types 

M = number of different activities 

Evaluation of the equation is a relatively straightforward task in relation to the domestic stock. In 

this case the unit type i is a discrete and identifiable dwelling, where the number of different types 

of dwelling in the stock (N) is simply obtained from surveys such as the regularly updated English 

Housing Survey (DCLG, 2011); such surveys are realisable because of the great uniformity which 

exists in the domestic sector, physical inspection of 6,200 properties and interview with 13,300 

householders being sufficiently large to capture the 15 basic types9 which comprise the nation’s 

dwelling stock. Since a dwelling is only associated with one activity (j) (i.e. habitation), evaluation of 

the parameters M and ni,j is also easily accomplished. The final step in the characterisation process, 

the evaluation of the energy consumption parameter (ei,j), is simply achieved by running building 

simulation programmes for each dwelling type, all of which types have been characterised and of 

which there are a limited number as previously stated. 

The task facing the non-domestic modeller wishing to use the bottom-up approach is, however, of 

an order of magnitude greater. Regarding building type, not only is there much greater variety in 

building type and size, but there is also a greater variety in activity too. Nonetheless, two non-

domestic models, (i) the Carbon Reduction in Buildings (CaRB) Nondomestic Stock Energy Model 

(Bruhns, et al., 2006; Bruhns, 2008) and (ii) the Building Research Establishment (BRE) Nondomestic 

Energy and Emissions Model (NDEEM) (Pout, 2000; Pout, et al., 2002) have attempted to quantify 

energy consumption within the non-domestic sector10 . Both models use data from the Nondomestic 

9 
Detached, semi-detached and terraced dwellings, plus 12 types of flat depending upon number of exposed 

walls and floor level. It should be noted that further sub-division by wall type, roof type, level of insulation etc. 

is required to fully characterise the housing stock: DECarb, for example, recognises 8,064 unique combinations 

(by age) to encapsulate the full breadth of the dwelling stock, whilst BREHOMES, though less comprehensive, 

still recognises more than 1000 different dwelling categories. 
10 

The literature also reports upon another model, described as the UK Non-Domestic Carbon Model 

(UKNDCM) (Layberry & Hinnells, 2007) or the UK Non-Domestic Carbon Scenario Model (UKNDCSM) (Hinnells, 

et al., 2008). The model is described as undergoing development, but a search through the literature has 

revealed no further updates. The model sets out a framework for calculating energy consumption and carbon 

emissions for different future scenarios, but does not explicitly take account of the facts that the demand for 

space heating will diminish and the demand for space cooling will increase in a future warmer climate. It 

resembles the CaRB model and NDEEM, using (in this early stage of the model) the same aged energy 

consumption data and floorspace data (although further floorspace data is also stated as coming from the 

Department for Communities and Local Government (1973-2004). Specific energy consumption (energy 
2

consumption/m ) is calculated for each of eight different end-uses (of which space heating and space cooling 

are two) for a number of different ‘building classes’. Furthermore, the model can take account of incidental 

gains from non-space heating end-uses which contribute to the space heating load, by taking into 

consideration the proportion of time that the non-heating end-use (e.g. lighting) and space heating are in 

coincident operation. (Incidental gains which add to the cooling load are calculated in an analogous manner.) 

The authors state, however, that there is significant potential for error in this aspect of the model since there 

is little information available. When its output is compared with Government data for 2004, it is seen that the 

model under-estimates energy consumption in 2004 in the public administration, commerce and 

miscellaneous sectors by 23%, 6% and 50% respectively. The large disparity between the overall predicted 

consumption and actual consumption is ascribed to different conditions with respect to climate, energy price 
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Building Stock (NDBS) Project11, a research programme funded by the Global Atmosphere Division of 

the former Department of the Environment, the aim of which was to map the entire non-domestic 

building stock of England and Wales (Bruhns, et al., 2000b). 

With a view to establishing whether or not Equation 1 can be solved for the non-domestic stock, the 

NDBS data are examined, each of the equation parameters being visited in turn. Section 2.2.1 

examines building types (i), Section 2.2.2 examines activities (j), Section 2.2.3 examines the stock 

size, i.e. numbering parameters (n and M), Section 2.2.4 examines energy consumption (e), and 

Section 2.2.5 concludes by appraising the CaRB model/NDEEM bottom-up approach. 

2.2.1 Non-Domestic Building Type (i) 

In order to construct a database of building unit types which is sufficient to map the great variety 

which exists within the stock, each unit must first be described. Since each unit is described by a 

number of key elements, these elements, however, must first be identified and described. 

The key elements defining non-domestic building type have been explored in great detail by the 

NDBS Project: 

(i) built form (shape), 

(ii) openings in the fabric of a building (principally glazing (level and type), but additionally 

including doors), 

(iii) wall type, 

(iv) roof type, and 

(v) building services (e.g. air-conditioning type, heating system type). 

The project has yielded an enormous quantity of data, and extensive classification systems have 

been developed to describe sub-types occurring within each type of element; 17 sub-types of 

building form by shape (Steadman, et al., 2000a), 66 sub-types of opening (Gakovic, 2000), four basic 

sub-types of wall construction (Steadman, et al., 2000b), 13 sub-types of roof (Steadman, et al., 

2000b), and 37 sub-types of heating , ventilating and air-conditioning (HVAC) systems (Rickaby & 

Gorgolewski, 2000) have been classified. 

A key difficulty lies in the fact whilst energy consumption needs to be measured at the level of the 

individual building in order to quantify the influence of climate (air temperature), energy 

consumption may be reported at premises level or sub-premises level: the problem arises because 

the building may not exactly correspond with the premises for the non-domestic stock. One only 

has to think of the typical hospital or university, where a single premises may consist of a plethora of 

different buildings of different sizes and types, in which very different activities may be performed. 

Moreover, whereas there are huge swathes of uniformity within the domestic stock, each dwelling 

typically containing only one of each type of element, a single non-domestic building may contain 

and use of equipment, the UKNDCM energy data having been collected over the period 1990-2002 in contrast 

to the DUKES data which were collected in 2004. 

The data of the NDBS Project were gathered from survey of buildings at 3,350 addresses in Manchester, 

Swindon, Tamworth and Bury St. Edmunds. External surveys required some 8 person-years to collect and 

collate the data, and as of 2000, the internal surveys had occupied a team of two to four people for 6 years 

(Bruhns, et al., 2000b). 
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several types of any given element. In addition, whilst the vast majority of dwellings fall within a size 

of limited range, non-domestic buildings range in size from a kiosk in a concourse to the train station 

in which the kiosk stands. The sheer diversity of the non-domestic stock cannot be under-estimated; 

and it is this immense diversity which has prevented both the CaRB model and NDEEM from taking 

full advantage of these painstakingly gathered data, since the various elements have not been 

mapped with reference to individual building types, as is demanded by building simulation 

programmes such as EnergyPlus and Tas; and, although stated as being a goal for the CaRB stock 

energy model (Bruhns, et al., 2006), it would seem, however, that the project concluded in 2010 

without having achieved this ambition. In essence, the surveys have yielded insufficient data to 

solve the term ni simply because there are so many different non-domestic buildings, the 

consequence of which is that a bottom-up model of the type used to quantify energy consumption 

in the domestic stock cannot also be used for the non-domestic stock. 

2.2.2 Activity (j) 

Although a lack of data prevents Equation 1 being solved in the conventional manner where a unit i 

is described as a discrete and identifiable building, there are sufficient data to solve the equation if a 

unit i is re-interpreted as unit area. In this construal, the term ei,j evaluates as the specific energy 

consumption (i.e. energy consumption/m2) of a particular activity, and the term ni,j evaluates as the 

total floorspace occupied by that activity in the stock. Indeed, both CaRB and NDEEM recourse to 

this method in the absence of an alternative. The simplified form of Equation 1 can be written as: 

Equation 2 

� = ��� ×�		 
where, 

nj = floorspace occupied by activity j 

ej = specific energy consumption activity j 

2.2.3 Stock Size 

The need to group the thousands of different activities into groups of a manageable size (M) 

requires judgement, and this has inevitably led to differences between the CaRB model and NDEEM. 

The CaRB model recognises 65 (70) primary activity types12 and NDEEM recognises 75 (80) primary 

types13 but they both report, however, at the more manageable bulk class level of 11, each class 

consisting of a number of similar activity types (Table 1). As seen in the table though, the 11 classes 

of the CaRB model do not cross-correspond with the 11 classes of NDEEM, since different activity 

groupings were used in the assemblage of the classes of each model. 

12 
The number of primary types is reported as 65 in (Bruhns, 2008) and as 70 in (Bruhns, et al., 2006). 

13 
80 primary activity types and ten bulk activity classes are reported in the later description of NDEEM (Pout, 

et al., 2002), the Unclassified class being omitted. 
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Table 1 Sectoral groupings used to characterise non-domestic stock activities 

CaRB Nondomestic Stock Energy Model NDEEM 

Offices 

Retail 

Hotels, catering 

Leisure 

Manufacture 

Storage 

Transport 

Education 

Health 

Community 

Other 

Commercial offices 

Retail 

Hotels and catering 

Sports and entertainment 

Unclassified 

Warehouses 

Communication and transport 

Education 

Health 

Government 

Other 

The databanks which the NDBS Project used to quantify floorspace within the stock (nj) were 

primarily obtained from the Valuation Office Agency (VOA) of the Inland Revenue, which lists the 

floorspace data for about 80% of the 1.7 million non-domestic properties in England and Wales14 . 

The floorspace for the remaining 0.3 million properties were sourced from multifarious sources, 

some of the floorspace data having to be approximated using inference processes where data were 

limited (Bruhns, 2000; Bruhns, et al., 2000a; Bruhns, 2008). 

However, the pairing of an activity with a floorspace value was not always straightforward, since 

premises very often do not present in discrete and tidy forms; for example, there are many instances 

of shops or factories which contain additional office space, whilst many different activities may be 

carried out in a single set of premises such as a university. 

2.2.4 Energy Consumption 

In the absence of a full characterisation of the non-domestic building stock, which precludes the 

generation of energy consumption data using building simulation software, the CaRB model and 

NDEEM use energy consumption data gathered in the field from energy survey of sample buildings. 

Such a method is reliant upon the assumption that, for a given activity, the specific energy 

consumption values obtained in the sampled buildings are representative of the specific energy 

consumption of all the buildings within that activity. A laborious procedure, the exercise involves 

not only physical inspection of buildings, but inspection of the energy-consuming equipment within 

it and interviews with staff to obtain details of occupancy (numbers and times of use). From these 

14 
The VOA possesses data for a total of 1.7 million non-domestic premises in England and Wales on which 

rates are paid (i.e. excludes churches and other places of worship, agricultural buildings and Crown properties 

(defence establishments, prisons, law courts, central government buildings and “Crown hospitals”)) (Bruhns, 

2000). 
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data, consumption estimates can be made and reconciled with actual consumption as recorded from 

meter readings and energy supply company invoices etc. (Mortimer, et al., 2000a). 

Regarding the CaRB model, the energy data comes entirely from energy survey of 740 premises 

(0.04% of the stock) in the decade beginning 1992 by the Resources Research Unit of Sheffield 

Hallam University (SHU) (Mortimer, et al., 2000b)15; stated as being the most comprehensive non-

domestic energy study to date in the UK (Bruhns, et al., 2006), a review of the subsequent literature 

has yielded no new data as comprehensive as these. NDEEM uses the same data but makes use of 

additional energy data supplied by local authorities and chains of retail outlets, hotels and other 

commercial premises (Pout, et al., 2002). In addition, the NDEEM crude results are further 

normalised to national energy consumption levels (Pout, 2000). 

Total energy consumption for a primary activity type in both the CaRB model and NDEEM is 

calculated as the product of the total floorspace and the corresponding specific energy (kWh/m2) 

use for that activity type16 . 

2.2.5 Non-Domestic Sector Bottom-Up Appraisal 

Considering the fact that there are 1.7 million non-domestic premises in England and Wales, the task 

of fully characterising the buildings of the non-domestic stock by type is a daunting one if the 

enormous diversity which resides within the non-domestic stock is to be fully captured. Such is the 

cost in terms of personnel, time and money in carrying out a comprehensive survey of the non-

domestic stock that it is perhaps not surprising that the SHU data and the VOA analysis data have 

not, thus far, apparently been superseded17 . Nevertheless, despite the great wealth of information 

obtained from the NDBS Project data, areas of concern remain. 

2.2.5.1 Representativeness of the Energy Consumption Data 

Most of the activity types show a very large spread in the values of specific energy consumption, 

where the values at the upper end are an order of magnitude higher than those at the lower end. 

Taking the activity of Restaurants and cafés as an example, specific energy consumption is seen to 

extend from 1.25 GJ/m2/year at one extreme to over 5.5 GJ/m2/year at the other extreme 

(Mortimer, et al., 2000b). In such a situation where the ranges of reported specific energy 

15 
The reference actually cited in (Bruhns, et al., 2006) and (Bruhns, 2008) is (Mortimer, et al., 2000a) This is 

believed to be due to an error in the compilation of the papers; the 2000a paper describes the method by 

which energy surveys were carried out, whilst the 2000b paper is the one which actually reports the 

consumption figures. 
16 

The exact level of disaggregation used in the calculation of energy consumption in NDEEM is unclear. It is 

stated that energy consumption in the service sector (other non-domestic sectors are not mentioned) is 

modelled “with the following levels of disaggregation: [i] seventy-five activities (grouped into eleven activity 

classes); [ii] nineteen detailed end-uses (nine main end-use categories); [iii] four fuel types (electricity, gas oil, 

and solid fuels); [iv] and seven size bands.” It is not clear whether energy consumptions of groupings [ii] to [iv] 

are used to construct the energy consumption of an activity class (in the service sector), or whether energy 

consumptions of groupings [ii] to [iv] are derived from the energy consumption of an activity class. 
17 

Following the implementation of the Energy Performance of Buildings Directive in 2008 requiring (i) the 

display of Display Energy Certificates in public buildings (Article 3), and (ii) the production of Energy 

Performance Certificates for other non-domestic buildings when constructed let or sold (Article 7) (European 

Commission, 2002), it is anticipated that new data will start to become available. 
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consumption values are so large, it is clear that the representativeness of the buildings upon which 

energy surveys are performed is of paramount importance. Yet, it is not clear that this is the case, a 

mere 286 retail premises, 186 offices, 50 schools and 20-30 for each of the other sectoral groupings 

listed in Table 1 being used to model the whole of the non-domestic stock. 

2.2.5.2 Aggregation of Activity Groupings 

In view of the relatively small number of buildings surveyed in the SHU energy survey, it is perhaps a 

little surprising that the CaRB model apparently so well replicates official energy consumption 

statistics as reported in DUKES18: when the primary activity types of the model are re-grouped into 

four divisions so as to correspond with the four bulk divisions which constitute the DUKES’ non-

domestic sectors (viz. public, commerce, miscellaneous and industry), the CaRB model estimates of 

the public sector and commerce sector for England and Wales are reported as being only 15% lower 

than actual values for the UK as reported by DUKES for 200419 (see Figure 53, Appendix 1). There is, 

however, a large discrepancy between the DUKES data and the CaRB model data for the industry 

sector. As pointed out though, one would expect to find a considerable difference between the two 

since the DUKES industry sectoral data further include energy consumption related to industrial 

process, which is excluded from the CaRB model (Bruhns, 2008). When this is taken into account, 

the CaRB model suggests that approximately 49% (or 34%, see Appendix 1) of industrial 

consumption is building-related. However, this is in disagreement with NDEEM which reports the 

building-related proportion of the industry sector as amounting to only 18% (Pout, et al., 2002), and 

in further disagreement with Government statistics (9-11%)20 . These discrepancies between the 

models (even though the CaRB model and NDEEM share the same base data, and even though 

NDEEM data have been normalised against Government DUKES data) brings into question the 

exactitude of the aggregation process underlying each model. What is more, the fact that the total 

energy consumption of the four bulk activity divisions in the CaRB model (Figure 53, Appendix 1) is 

significantly different from the total energy consumption of the 11 primary activity classes (Figure 

55, Appendix 1) also asks further questions of the disaggregation process, since there is a difference 

of 28% between the two, whilst there ought to be none. 

2.2.5.3 Age of the Energy Consumption Data 

Perhaps the least favourable aspect of these data, however, relate to the age of the SHU energy 

consumption data, being up to 20 years old in the most extreme case. In view of advances and 

changes in technology, and changes in working practices, specific energy consumption levels in 2012 

are undoubtedly quite different to 1992 - 2000 levels. Whilst Pout has attempted to update the 

energy data by extrapolation based on product sales and changes in energy consumption, by her 

18 
NDEEM data cannot be compared with DUKES data since it has been normalised as previously stated. 

19 
The 15% discrepancy can, at least in part, be explained by the fact that the CaRB model uses data for 

England and Wales alone whilst DUKES uses data for the whole of the UK. (DUKES data comprise data from 

energy supply companies.) 
20 

Building-related energy consumption in the industry sector may change from year to year, but it is likely to 

be of the same order in 2000 (to compare with the CaRB model data) and 2004 (to compare with the NDEEM 

data). Analysis of Government statistics reveals building-related energy consumption in the industry sector to 

be estimated at 10.8% (1990), 10.5% (2000), 10.5% (2006), 10.4% (2007), 9.6% (2008) and 9.4% (2009) (DECC, 

2011d). 
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own admission, she states that it is unknown how well the extrapolation procedure reflects fast 

changing trends in energy demand (Pout, 2007). Are there currently sufficient resources available to 

develop a precise new non-domestic bottom-up model? It is hard to disagree with Pout (2000) who 

states: 

If the housing stock can be effectively represented by 1000 

dwelling types, then to represent the entire nondomestic building 

stock to the same accuracy might require 1 000 000 building 

types … the availability of consistent, coherent data largely 

precludes this approach. 

Summarily, the lack of a full characterisation of the non-domestic stock and the aged energy 

consumption data upon which it must rely preclude the development of a bottom-up non-domestic 

stock model. 

2.3 Non-Domestic Sector Top-down Model 

The starting point of any top-down model attempting to quantify the impact of climate change upon 

space heating energy consumption in the non-domestic stock is to establish if there is a correlation 

between past weather and past consumption; the equation describing the relationship between past 

weather and past consumption can then be applied to future weather data in order to calculate 

future consumption. If a correlation exists, then it is most likely to be found at its strongest in the 

pairing of weather data with gas consumption data from the service sector in view of the facts that: 

i. the service sector accounts for most space heating occurring in the non-domestic stock: 76% 

occurs in the service sector, with only 24% occurring in the industry sector (DECC, 2011d), 

and, 

ii. gas is the predominant fuel type used for space heating in the service sector: 67% of space 

heating uses gas, with electricity, the second most important fuel type, only accounting for 

19% (DECC, 2011d). 

The relationship between gas consumption in the non-domestic stock and the weather is examined 

in the following sections: Section 2.3.1 considers which gas consumption data are available for the 

analysis, Section 2.3.2 discusses the choice of weather data, and Section 2.3.3 presents the results 

and discusses how they may possibly be improved. Section 2.3.4 concludes in an appraisal of the 

non-domestic sector top-down approach. 

2.3.1 Gas Consumption in the Service Sector 

In honing in on the service sector as the prime candidate for unearthing a relationship between 

climate and space heating energy consumption in the non-domestic stock of Great Britain, the 

analysis is limited to the extent to which national gas consumption has been disaggregated. There 

are two datasets from which to choose: (i) end-use energy consumption statistics which are 
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reported annually, and (ii) whole sector consumption statistics which are reported quarterly (and 

annually)21 . Given that the end-use statistics are not recorded data, but rather estimates following 

secondary analysis, one is left to choose the quarterly whole sector statistics. In view of the fact that 

space heating accounts for 75% of gas consumption in the sector, with the largely non-weather 

related end-uses of water heating and cooking accounting for the majority of the rest of the 

consumption (23%) (DECC, 2011d), the inclusion of these latter data in the gas consumption is not, 

however, considered to be unduly deleterious: since their contribution to total gas consumption in 

the sector over the course of a year is likely to remain relatively constant, it is considered that they 

should little disturb the correlation between weather and gas consumption. 

2.3.2 Weather Data 

The choice of weather data best used as the independent variable in a correlation with gas 

consumption data is discussed in this section. 

2.3.2.1 Degree-days 

The relationship between daily mean outdoor air temperature and space heating consumption is a 

long recognised phenomenon, regression analysis revealing an inverse linear correlation of given 

slope between the two for a large spread of temperatures. In this linear portion of the graph, each 
0C reduction in temperature causes an increase in consumption of y1. As outdoor air temperatures 

increase, the linearity of the curve diminishes, however, as heating systems are no longer called 

upon to maintain indoor thermal comfort. If a linear regression analysis is extended to include these 

datum points occurring at high temperatures when heating systems are not in operation, the effect 

is to (i) reduce the coefficient of determination (R2 value), and (ii) reduce the slope of the linear 

regression trend line, each 0C reduction in temperature resulting in a fallacious increase in 

consumption of y2, where y2 is less than y1. 

The heating degree-day (HDD) has been conceived as an alternative metric to simple air 

temperature as a means of circumventing such problems, since it ignores all those days when the 

temperature is above the threshold temperature (base temperature), the temperature above which 

space heating is not used. Moreover, recognising that the amount of space heating over a period of 

time is not only dependent upon the magnitude by which the base temperature is exceeded but also 

on the length of time that the base temperature is exceeded, the HDD also embraces this temporal 

aspect of weather-related energy consumption. Essentially, the HDD can be thought of as a measure 

of the length and severity of cold weather over a fixed period of time, cold weather being judged to 

occur when the outdoor air temperature drops below the base temperature (typically 15.5 0C) which 

requires that heating systems are switched on in order to maintain indoor thermal comfort. 

There are a number of different ways of calculating degree-days. The simplest method, the mean 

daily temperature method used by the American Society of Heating, Refrigeration, and Air-

21 
National gas consumption statistics derive from data supplied by National Grid and energy suppliers (DECC, 

2012d; DECC, 2012e). 
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Conditioning Engineers (ASHRAE), is the method used in this analysis and is shown in (Equation 3) 

(CIBSE, 2006)22 . 

Equation 3 

��� =�(�� − � ) 
where, 

HDD = number of heating degree-days over a given period 

of time (K.day) 

tm = daily mean outdoor temperature (0C) 

tb = base temperature (0C) 

n = number of days on which tm is below tb over the given 

period of time 

where, 

(tm - tb) assumes a value of 0 if tb < tm 

2.3.2.2 Central England Temperature 

As the gas consumption data in Section 2.3.1 are national data, the temperature against which they 

are correlated must be suitably representative of the country as a whole. The Central England 

Temperature (CET), a virtual temperature representative of a roughly triangular area of the United 

Kingdom approximately enclosed by the populous conurbations of Bristol, Lancashire and London 

(and further including that of the West Midlands) (Parker, et al., 1992), is chosen as best 

characterising the air temperature that most closely corresponds to national gas consumption in the 

service sector. A composite temperature taken from different weather stations within the area, a 

large proportion of central England experiences temperatures close to the CET. 

2.3.3 Correlation between Space Heating and Weather 

Initial analysis suggests a very good correlation between quarterly national gas consumption in the 

service sector23 and Central England Temperature24 degree-days (calculated with reference to a base 

temperature of 15.5 0C) (Figure 3 and Figure 4). 

22 
A cooling degree-day (CDD) is the cooling analogue of the HDD, being measured with reference to 

exceedance of a given base temperature. 
23 

The service sector is designated as Other final users in (DECC, 2012g), other final users consisting of the 

public administration, commerce, agriculture and miscellaneous sub-sectors. Analysis of the 2010 data reveals 
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Figure 3 Longitudinal relationship between Central England Temperature HDDs (base temperature 15.5 C) and national 

gas consumption in the service sector over quarterly periods (1998-2011) 

= 

-

Figure 4 Correlation between national gas consumption in the service sector and Central England Temperature HDDs 
0

(base temperature 15.5 C) over quarterly periods (1998-2011) 

However, it should be noted that with most heating occurring during the winter months and with 

virtually none at all taking place during the summer months, inclusion of summertime data could 

serve to introduce spuriously high correlation. Whilst restricting the analysis to an analysis of winter 

gas demand in response to winter CET degree-days should reveal whether or not this be the case, 

that the agriculture sub-sector accounts for2% of consumption and the miscellaneous sector accounts for 19% 

of consumption. The activities carried out in the miscellaneous sub-sector are many and varied (Standard 

Industrial Classification (SIC) 2007 codes: 90-99), but are of the type generally perceived to be a service, e.g. 

activities of sports clubs, library and archive activities, repair of consumer electronics (ONS, 2012). 

Source: (UK Meteorological Office, 2012a). 
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such analysis is hampered by the fact that the quarterly period most commonly used to describe 

winter (December, January and February) does not coincide with any of the calendar quarter periods 

used to report gas consumption. That said, it is not considered that using calendar first quarters 

(January, February and March) for both CET degree-days and gas consumption as an alternative will 

much interfere with the posited correlation, since there is only 0.3 0C difference in mean 

temperature between this quarterly period and the December-February quarter period (UK 

Meteorological Office, 2012b). So whilst the ideal correlation to investigate would be between (i) 

December-February HDDs and December-February gas consumption, the correlation between (ii) 

January-March HDDs and January-March gas consumption is examined as an alternative. 

Indeed, there is seen to be no correlation when calendar first quarter CET degree-days are plotted 

against calendar first quarter national gas (Figure 5 and Figure 6). 

-

-

0
Figure 5 Longitudinal relationship between Central England Temperature HDDs (base temperature 15.5 C) and national 

gas consumption in the service sector for calendar first quarter periods (1998-2011) 
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Figure 6 Correlation between national gas consumption in the service sector and Central England Temperature HDDs 
0

(base temperature 15.5 C) for calendar first quarter periods (1998-2011) 

It is clear that further factors are causing scatter in the data. Possible causes of the noise which is 

obscuring the suspected underlying correlation between consumption and temperature are next 

examined, with a view to eliminating them. 

2.3.3.1 Central England Temperature Representativeness 

As the CET is no more than a virtual concept, an amalgam of temperatures from different weather 

stations, it is possible that it might not be truly representative of a national temperature. The CET, 

just a single number, fails to say anything about regional variation where, for example, an increase in 

temperature in the north of the CET region, which is balanced by a decrease in temperature of equal 

value in the south of the region, would merely be reported as no change in temperature by the CET. 

This is of especial significance because the CET is not population-weighted and so is not biased 

towards areas with the highest population centres, and in which gas consumption is greatest. 

Examination of HDD profiles from a geographically wide spread of regional weather stations 

suggests, however, that changes in the CET HDDs are in kilter with HDD changes throughout the 

country as a whole, the synchronicity of their movement remaining out of step with changes in 

national gas consumption (Figure 7). 
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Figure 7 Longitudinal relationship between national gas consumption in the service sector and HDDs for (i) Central 
0

England Temperature & (ii) ten regional locations (base temperature 15.5 C) for calendar first quarter periods (1998-
25 

2010)

2.3.3.2 Change in Degree-Day Base Temperature 

Degree-days are customarily calculated with reference to a base temperature of 15.5 0C in the 

United Kingdom, the temperature being based on data from dwellings in the United States in the 

1920s, and transposed to a British context in 1934 by Dufton (CIBSE, 2006). In view of the changes 

experienced over the passage of years in (i) building thermal performance, (ii) incidental gains and 

(iii) levels of expectation (in consequence of comfort taking), the choice of 15.5 0C may no longer be 

appropriate. 

As shown in Figure 8 and Figure 9, however, the coefficient of determination is unaffected when the 

base temperature is either lowered to 14. 5 0C or raised to 16.5 0C, there still being an absence of 

correlation. 

The regional HDD data derive from hourly observations taken at Meteorological Office weather stations (ECI, 

2010). This is in contrast to the CET HDD data which are calculated according to the method described by 

Equation 3, and derive from daily mean CET data (UK Meteorological Office, 2012a). Despite their different 

methods of calculation, their movements over the course of time remain highly synchronous. 
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Figure 8 Correlation between national gas consumption in the service sector and Central England Temperature HDDs 
0

(base temperature 14.5 C) for calendar first quarter periods (1998-2011) 

= 

-

Figure 9 Correlation between national gas consumption in the service sector and Central England Temperature HDDs 
0

(base temperature 16.5 C) for calendar first quarter periods (1998-2011) 

Additionally, it is seen that changing the base temperatures to even more extreme values still does 

not increase the level of correlation, remaining unchanged at 0.03 for base temperatures of 13.5 oC, 

17.5 oC, 18.5 oC and 19.5 oC and diminishing even further for base temperatures of 12.5 oC and 11.5 
oC. 
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2.3.3.3 Base Period of Measurement 

The charts above examine data collected over a period of up to 14 years (1998-2011). Changes in 

the total floorspace, building thermal performance, incidental gains and levels of expectation 

occurring over this relatively long length of time could manifest itself in the observed scatter. 

However, repeating the regression analyses for five-year periods of time fails to produce a high 

degree of correlation in any of the plots (Table 2). 

Table 2 Coefficients of determination in the plot of national gas consumption in the service sector against Central 
0

England Temperature HDDs (base temperature 15.5 C) for calendar first quarter periods over five-year periods of time 

(1998-2011) 

Period of time R
2 

value Period of time R
2 

value 

1998-2002 0.10 2003-2007 0.00 

1999-2003 0.32 2004-2008 0.12 

2000-2004 0.02 2005-2009 0.05 

2001-2005 0.00 2006-2010 0.03 

2002-2006 0.12 2007-2011 0.19 

2.3.3.4 Disaggregation of Gas Consumption Data 

Data for the Government gas statistics are collected (i) annually and quarterly from the country’s 20 

main gas suppliers26 (AG1 and QG1 surveys) and (ii) annually from approximately a further 60 

smaller suppliers (AG2 survey) (DECC, 2012d)27 . With a 100% response rate from the main suppliers 

who are responsible for approximately 95% of gas sales (AG1 and QG1 surveys), and a 25% response 

rate from the smaller suppliers who are responsible for approximately 5% of sales (AG2 survey), the 

collected data are not so much a representative sample of gas sales as much as a statement of actual 

sales. Any errors that there might be within the gas data, therefore, would appear to reside in the 

disaggregation process which allots gas consumption sub-totals to different sectors, rather than the 

total gas consumption itself; and indeed the evidence suggests that there may be some error 

attached to this process. When the relationship between (i) gas consumption in the domestic sector 

and HDDs is compared to the relationship between (ii) gas consumption in the non-domestic sector 

and HDDs for quarterly periods, the correlation is seen to be significantly higher in the former case 

(there being no correlation in the non-domestic sector), even though one might expect to find 

similar levels of correlation since the proportion of gas used for space heating is similar in both 

cases 28 (Figure 9, Figure 10 and Figure 11). 

26 
The main suppliers are required to use the Standard Industrial Classification in their annual data 

submissions. 
27 

The data are further supplemented by data collected monthly or quarterly from the Major Power Producers 

(MPPs) survey, the Iron and Steel Statistics Bureau (ISSB) survey and an autogenerators survey. 
28 

Space heating accounts for76% of gas consumption in the domestic sector and 75% of gas consumption in 

the service sector (DECC, 2011d). 
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Figure 10 Comparison of national gas consumption in the domestic and service sectors with Central England 

Temperature HDDs for calendar first quarter periods (1998-2011) 

= 

-

Figure 11 Scatter graph showing correlation between national gas consumption in the domestic sector and Central 

England Temperature HDDs for calendar first quarter periods (1998-2011) 

It is a possibility that part of industry sector gas consumption has incorrectly been apportioned to 

the service sector, gas consumption in the industry sector (in which large volumes are used in 

process operations29) being less intimately related to climate and more likely to be influenced by 

economic conditions. However, one cannot exclude the possibility that the rather poor correlation 

in the service sector arises from a disconnect with the actual weather, resulting perhaps from poor 

heating controls where heating is supplied although unnecessary (or vice versa). Alternatively 

In 2009 (the last year for which data are available) at least 76% of gas consumption in the industry sector 

was for process operations, with only 11% being used for space heating (DECC, 2011d). 
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profligacy/lack of awareness in the mindset of users who may not have to pay the heating the bills 

could be a factor, there being no/little incentive to turn down/switch off heating when opening a 

window achieves the same result. 

2.3.4 Non-Domestic Sector Top-Down Model Appraisal 

The evidences suggests that the poor correlation between national gas consumption in the non-

domestic sector and degree-days does not derive principally from a deficiency in the quality of the 

degree-day data, but rather more from problems in the aggregated gas consumption data. Whilst it 

would seem that problems exist within the sectoral disaggregation process of the non-domestic 

stock, the still relatively low coefficient of determination for the domestic correlation (0.42) suggests 

that problems remain elsewhere. It appears that the DECC gas consumption data, published 

quarterly on a national scale, are simply too coarse, remaining too aggregated at the temporal 

and/or geographical level to reveal the full complexity of its relationship with climate. This 

disqualifies the top-down approach as a means of quantifying space heating energy consumption in 

the non-domestic stock. 

In consideration of the fact that a lack of data prevents the development of bespoke non-

nondomestic sector model (to be used in conjunction with a domestic sector model such as 

BREHOMES or DECarb), the cross-sector top-down approach remains the sole method by which 

space heating energy consumption in the built environment can be quantified. National Grid uses a 

top-down cross-sector model to forecast daily gas demand. Given the fact that 72% of space heating 

within the built environment uses gas as its fuel source (DECC, 2012h), it is likely to well represent 

national patterns of space heating energy in consumption in response to changing weather. This 

model is examined in the following section in order to establish which elements, if any, can be used 

in the development of SHECMOBS, a bespoke model described in this thesis to quantify energy 

consumption across the domestic and non-domestic building stock 

2.4 National Grid Daily Demand Model 

The gas delivery system in the United Kingdom is a complicated network of producers, transporters, 

shippers and suppliers. A key player in the market is National Grid, the company which, amongst 

managing other aspects of the delivery system, owns and operates the National Transmission 

System (NTS). The NTS is the 7600 km high pressure pipeline which transports gas from eight 

terminals to over 175 off-take points. From these off-take points the NTS supplies gas directly to (i) 

Ireland and continental Europe through interconnector pipelines, (ii) a number of large industrial 

consumers and power stations, and (iii) 13 Local Distribution Zones (LDZs) that contain pipes 

operating at lower pressure which eventually supply consumers (National Grid, 2012c). Even though 

the market also contains a number of operators who deliver their gas independently of the NTS, the 

vast majority of gas is transported through it: total UK consumption figures as reported in DUKES use 
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national output data from the NTS, with no other source data being cited (DECC, 2011e). In turn, the 

vast majority of gas used for space heating is conducted through the pipelines of the LDZs. 

In its document, Gas Demand Forecasting Methodology (National Grid, 2012a), National Grid 

provides an overview of the process by which it calculates daily gas demand using a cross-sector top-

down model. In this model (effectively 13 sub-models – one for each LDZ), it is seen that daily gas 

demand is proportional to the Composite Weather Variable (CWV), a unified metric amalgamating 

the five principal determinants of weather which have an influence upon daily gas demand into a 

single entity. There is seen to be a very close relationship between daily gas demand and the CWV, a 

near perfect linear correlation30 being observed, for example, when the seasonal normal LDZ gas 

demand is plotted against the seasonal normal CWV for the 365 days of the 2009-2010 gas year 

(Figure 12) (National Grid, 2011). 

= 

Figure 12 Relationship between the seasonal normal LDZ Daily gas demand and seasonal normal Composite Weather 

Variable (1 October 2009-31 September2010) 

Having established the relationship between the CWV and gas demand, the demand for gas on any 

particular day in the future can be calculated if the value of the forecast CWV for that day is known. 

The five components of the CWV are: 

The plot will necessarily always be imperfect since (i) patterns of demand on weekdays (Monday-Thursday) 

i. effective temperature (0.5 x today’s temperature + 0.5 x yesterday’s effective temperature), 

ii. pseudo seasonal normal effective temperature, 

iii. wind chill, 

iv. cold weather upturn, and 

v. summer cut-off. 

are different to those at the weekend (Friday-Sunday) and on holidays, and (ii) patterns of demand in autumn 

are different to those in spring, i.e. consumption resulting from a CWV of a given value will typically be higher 

for a weekday than for a weekend day/holiday, and higher for an autumn day than a spring day (see Section 

2.4.2). 
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These five elements are examined in turn to establish whether or not the National Grid Daily 

Demand Model can be used as a basis for formulating SHECMOBS in Section 2.4.1 to Section 2.4.5, 

with Section 2.4.6 offering a final appraisal. 

2.4.1 Effective Temperature 

It is found that gas consumption more closely correlates with effective temperature than actual 

temperature. The effective temperature is a composite temperature which takes account of the fact 

that thermal comfort is affected by recent thermal experience. National Grid follows the guidance 

given in British Gas31 document, TD76 Code of Practice32 (British Gas, 1987), which states that the 

daily effective temperature on day n (et ) should be defined as a function of the average 
n

temperature on that particular day (tn) and preceding33 days, the preferred definition being: 

Equation 4 

��� = 0.5�� + 0.5����� 

As such, the methodology takes account of the lag effect of weather on gas demand, akin to the 

perception of comfort in the Adaptive Approach to Thermal Comfort as applied in the European 

Adaptive Comfort standard BS EN 15251:2007 where the perception of comfort is related to a 

running mean temperature (Nicol & Humphreys, 2010) (see Section 4.2.2). 

Since the UKCP09 Weather Generator produces daily weather data, input of daily effective 

temperature series for SHECMOBS can be achieved without undue difficulty. 

2.4.2 Pseudo Seasonal Normal Effective Temperature 

The daily seasonal normal effective temperature (SNET) is the averaged, smoothed daily effective 

temperature over a number of years. When daily gas demand is plotted against daily SNET, the 

correlation is less good than might have been anticipated. Whilst one might expect a given SNET to 

result in a given amount of gas being consumed, it is observed that this is not the case: the amount 

of gas consumed on a day in autumn is likely to be more than that on a day in spring, even though 

the daily SNET is the same. One cause of the discrepancy relates to the fact that human sensitivity 

to air temperature is affected not only by recent thermal experience (see Section 2.4.1 above), but is 

also affected by experience over a longer length of time. In simple terms, having acclimatised to the 

cold of winter, a temperature of X oC in spring is perceived as being warmer than the same 

temperature of X oC in autumn (when still acclimatised to summer warmth), with the result that 

31 
British Gas plc. became the monopoly gas supplier in the United Kingdom in 1986 when the nationalised 

industry was privatised. The company held the monopoly until 1996 when gas supply markets were opened to 

competition. 
32 

All British Gas regions were expected to follow the principles of TD76. The CWV variable is descended from 

this TD76 methodology. The 0.5 effective temperature parameter value has not changed, remaining a part of 

the current parameter fitting process. The value of 0.5 suggests that it has always been an arbitrarily selected 

value rather than the result of in depth analysis (personal communication, Simon Geen (National Grid, contact 

for Gas Demand Forecasting Methodology), 19 March 2009a). 
33 

The document accidentally uses the word proceeding in the text. The context and insertion of the half-life 

equation (given above) into the text suggest that this was a typographical error. 
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heating systems are run for longer/more often in relative terms in autumn. So the same SNET can 

result in different gas demand datum points in a plot of gas demand against SNET. Counteracting 

this, a carry-over effect in buildings is also likely to be another factor, where buildings with a high 

thermal mass, which have absorbed and retained some of the heat from summer, have a lower 

demand for mechanical heating in autumn than in spring, even though the outdoor temperature is 

the same. In addition, differences in solar gains at different times of the year may be another factor: 

it is easy to see, for example, how a temperature of 13 ⁰C on a cloudy day in May when the sun is 

high would result in a different demand for heating compared to a sunny day in October for a south-

facing building with a high level of glazing where the sun is low in the sky, even if the outdoor 

temperature were the same. 

The pseudo SNET is the adjusted SNET, where account is taken of this seasonal variation in gas 

demand. Whilst it is important for the gas industry to take account of this seasonal variation (since it 

has to anticipate demand for every day of the year in order to ensure that supply meets demand), it 

is unnecessary to do so for SHECMOBS since it only examines annual average consumption; as long 

as there is a discernible trend line between daily gas demand and daily effective temperature as 

shown in Figure 12, scatter either side of the line is unimportant34 . 

2.4.3 Wind Chill 

Interest in the effect of wind on gas demand became widespread following the exceptionally high 

demands experienced on a few very windy days in February 1979 (British Gas, 1987). Although the 

TD76 Code of Practice required that tests for the significance of the chill factor associated with wind 

be carried out, the guidance stated that, if not statistically significant over several years’ past data, 

the impact made by wind should be ignored. 

Whilst inclusion of wind data may possibly serve to reduce the scatter in a plot of daily seasonal 

normal demand against daily seasonal normal CWV for a particular LDZ, as for the pseudo SNET 

adjustment mentioned above in Section 2.4.2, it is of little importance as far as SHECMOBS is 

concerned, as long as there is a discernible trend line between daily gas demand and daily effective 

temperature as shown in Figure 1235 . 

34 
Similarly, whilst a daily demand model must take specific account of different patterns of consumption on 

weekdays, weekend days and holidays, it is unnecessary to do so in a consumption examining annual 

consumption. 
35 

Probabilistic projections of changes in wind were not initially included in UKCP09 because there was too 

much uncertainty attached to them. Although probabilistic projections for wind speed have since been 

produced, they are produced in isolation and cannot be used in the Weather Generator projections (UKCP09, 

2012a). In consequence, even if the inclusion of wind data did improve the correlation between weather and 

consumption, they could not be used as an input into the space heating model for future climates, since 

SHECMOBS relies upon the Weather Generator for its function. 
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2.4.4 Cold Weather Upturn 

The observed linear correlation between effective air temperature and gas demand in the daily 

model may fail during extreme periods of cold weather36 . In these instances, the demand of gas 

appears to be disproportionately large in relation to the temperature and may result from a number 

of different causes. Whilst the (i) cancellation of conservation effect or (ii) night-override effect 

(where central heating is left to run overnight) are cited as possible sources for the observed 

anomalous demand (British Gas, 1987), (iii) inaccuracy in the measurement of air temperature, 

where a weather station is sited on a building roof37, is also suggested as a source of higher than 

anticipated demand (National Grid, 2012a). Difficulties arise from the fact that whilst the observed 

increase in uptake in the first two instances is real, it is not in the latter. 

It is important that all parts of the regression graph are accurately described, but most especially 

those parts of the graph when temperatures are lowest and consumption is concomitantly higher. 

Where there is a cold weather upturn, one cannot simply plot a single linear regression trend line as 

representing average present day consumption and use the equation of the regression trend line to 

forecast future consumption, since the incidence of cold weather is likely to diminish in the future 

(see Appendix 2). 

Whether or not a cold weather upturn factor has to be included or not in SHECMOBS is easily 

established by examining the gas demand/effective temperature regression data for each of the 13 

LDZs, a cold weather upturn revealing itself as a deviation in the slope of the trend line. These data 

are examined in Section 2.5. 

2.4.5 Summer Cut-Off 

Similarly, it is observed that on exceedance of a certain threshold, increasing air temperatures are 

seen to no longer effect a change in gas consumption. National Grid implements a warm weather 

cut-off at the point where there is no further weather sensitivity, since inclusion of these warm 

weather regression datum points results in an incorrect forecast of demand (see Appendix 2). As 

such, the application of a warm weather cut-off is tantamount to using degree-days to estimate gas 

demand (as has previously been described in Section 2.3.2.1), the cut-off temperature being the 

same as the degree-day base temperature38 . 

36 
National Grid reports that although a cold weather upturn variable is always included in the daily model, the 

value of the cold weather upturn is, however, returned as zero for several LDZs (personal communication, 

Simon Geen (National Grid, contact for Gas Demand Forecasting Methodology DECC), 20 October 2010). 
37 

When the temperature is very cold, the air temperature recorded at the weather station may not be 

representative of the air temperatures across the LDZ in general because of the existence of a microclimate 

atop the roof of the building due to rising heat. It is seen that at least two LDZs use weather data from a 

building rooftop. 
38 

Note that examination of field data gathered for this analysis reveals that there is not a single threshold 

value above which there is no further weather sensitivity; rather there is a reduced level of weather sensitivity 

at high temperatures (see Section 2.5). This is not surprising in view of the great variety of buildings (and 

consequent great variety of base temperatures) which comprise the building stock. In such a case, an 

additional regression trend line is required to forecast future consumption at higher air temperatures (see 

Appendix 2, Reduced Weather Sensitivity in Warm Weather). 
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Allowance for reduced consumption in summer for SHECMOBS can be achieved without undue 

difficulty. 

2.4.6  National Grid Daily Demand Model Appraisal 

The calculation of the CWV involves the use of parameters which calculates a weighted average of 

the effective temperature and the pseudo seasonal normal effective temperature.  This parameter is 

different for each LDZ and changes every time the parameters are recalculated every five years, the 

parameter optimisation process consisting of a number of iterative steps.  Unfortunately, National 

Grid does release these parameters into the public domain (personal communication, Simon Geen 

(National Grid, contact for Gas Demand Forecasting Methodology), 19 March 2009b).   

Although one cannot calculate CWVs for use in the future cannot be calculated, one can 

nevertheless examine whether there is a clear and useable correlation between daily gas demand 

and weather similar to that in Figure 12, even be it that there expected that there will be a degree of 

scatter.  When daily Non-Daily Metered39 gas demand for the Southern LDZ (National Grid, 2012c) is 

plotted against HDDs for Bournemouth40  (base temperature 15.5 0C) (ECI, 2010), a clearly 

discernible trend (and concomitantly high R2 value) is observed (Figure 13).   
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Figure 13 Relationship between daily NDM gas demand in Southern LDZ and heating degree-days for Bournemouth 
0

(base temperature 15.5 C) (8 November 2008 – 6 January 2011) 

More importantly, however, when the plot is repeated only for winter days (December – January), 

the correlation remains high with a clearly observable trend (Figure 14), which is in stark contrast to 

the DECC data in Figure 6 where the correlation collapsed for calendar first quarter periods. 

 

   
39

 See Section 2.5.1. 
40

 Bournemouth is a city in the Southern LDZ. 
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Figure 14 Relationship between daily NDM gas demand in Southern LDZ and heating degree-days for Bournemouth for 
0

winter days (base temperature 15.5 C) (1 December 2008 – 6 January 2011) 

A further point of interest to note is the high concentration of datum points at the extreme-most left 

of the plot in Figure 13. These data indicate that a choice of 15.5 0C for the base temperature is of 

the correct order, but that there are many days when the real base temperature exceeds 15.5 0C, 

and it is seen that the equation which describes the annual data in Figure 13 is different to that of 

the winter data in Figure 14 (in which these datum points of low HDD value are absent). Table 3 

compares daily gas demand as calculated by the annual equation and the winter equation for 

different HDD values. 

Table 3 Table Comparison of daily gas demand as calculated by annual equation and winter equation for Southern LDZ 

for different HDD values 

HDDs (K.day) 
Daily gas demand (mscm) 

Difference (%) 
Annual Equation Winter Equation 

5 

10 

15 

20 

9.7 

15.8 

21.8 

27.9 

13.6 

17.8 

21.9 

26.1 

-40.9 

-12.9 

-0.5 

6.5 

The table shows that that there can be a significant difference between the calculated demand 

values, and it is clear that a base temperature should not be chosen arbitrarily. 
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Summarily, the National Grid Daily Demand Models is deemed to provide a suitable framework upon 

which to build SHECMOBS, but it is also considered that degree-days should not be used as the best 

metric of weather if the exact base temperature is unknown. 

2.5	 Space Heating Energy Consumption Model for the Building Stock 

Model 

This section describes the construction of the Space Heating Energy Consumption Model for the 

Building Stock (SHECMOBS) used for forecasting space heating consumption in future climates. It 

takes the form of the National Grid Daily Demand Model where disaggregated gas demand data 

from observations are paired with weather data, and the revealed relationship is applied to future 

weather data. It comprises four steps: 

i. selection of data (gas demand and weather), 

ii. establishment of correlation between gas demand and weather data, 

iii. establishment of best fit regression trend lines resulting in the formulation of 13 algorithms 

which are sufficient to characterise national consumption, and 

iv. application of algorithms to future climates projected by the UKCP09 Weather Generator. 

These four steps are described in Section 2.5.1 to 2.5.4. The results are presented in Section 2.5.5 

and discussed in Section 2.5.6. 

2.5.1 Selection of Data 

The gas demand data are sourced from National Grid (National Grid, 2012c), and the weather data 

are sourced from the British Atmospheric Data Centre (BADC) (UK Meteorological Office, 2011). 

2.5.1.1 Gas Data 

National Grid releases two daily demand datasets for each of the 13 LDZs – the Non-Daily Metered 

(NDM) dataset and the Daily Metered (DM) dataset. The NDM data account for most of the weather 

sensitive load and are so called because the gas meters are not read on a daily basis. The DM data 

typically relate to the gas load for higher demand customers such as large industrial premises, and 

being less related to the weather, tend to be less variable than the NDM data; the meters are read 

on a daily basis (National Grid, 2012a). Approximately 80% of the gas transported by National Grid is 

for the NDM market. Daily demand data are published for each of the datasets for each LDZ. 

As the great majority of space heating energy consumption occurs within the NDM dataset and since 

the DM dataset show only a low degree of correlation with weather (see Appendix 3), the NDM 

dataset is accordingly chosen as the base data input for SHECMOBS. Unfortunately, since data are 

not provided for Northern Ireland, SHECMOBS therefore relates to Great Britain rather than the 

United Kingdom41 . 

41 
i.e. UK comprises Northern Ireland and Great Britain. 
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2.5.1.2 Present Day Weather Data 

Temperature data recorded at weather stations, even though close to one another, can be 

significantly different. Weather stations across London, for example, have recorded the Urban Heat 

Island Effect to extend up to 7 0C (Watkins, et al., 2002), whilst weather stations for Montreal report 

annual cooling degree-day totals ranging from 158 to 354 (see footnote 118). Since the 13 LDZs are 

regions which often contain both densely urban and rural areas, with two regions extending to over 

200 miles in length, it is clear that a weather station cannot be chosen at random to supply 

representative weather data for a given LDZ. Therefore, two Met Office weather stations are chosen 

for each LDZ, the dataset from the weather station which correlates best with the annual gas 

consumption of the particular LDZ in question eventually being chosen as the representative 

weather data for input into SHECMOBS. Figure 15 shows the LDZ regions into which the country is 

divided (National Grid, 2007), and the location of the 26 Met Office weather stations (two per LDZ). 

Table 4 shows the names and identifying codes of the LDZs and the names of the weather stations, 

the northern-most station in each pair of stations being labelled as Weather Station 1. 

Figure 15 Thirteen LDZs of Great Britain showing the locations of the 26 Met Office weather stations 

61




Table 4 Thirteen LDZs and corresponding Met Office weather stations 

LDZ LDZ Code 

Met Office Weather 

Station 1 

Met Office Weather 

Station 2 

Scotland 

Northern 

North West 

North East 

West Midlands 

East Midlands 

Wales North 

Wales South 

South West 

South 

Eastern 

North Thames 

South East 

SC 

NO 

NW 

NE 

WM 

EM 

WN 

WS 

SW 

SO 

EA 

NT 

SE 

Glasgow 

Boulmer 

Crosby 

Dishforth 

Coleshill 

Waddington 

Valley 

Sennybridge 

Filton 

Middle Wallop 

Weybourne 

Northolt 

Manston 

Edinburgh 

Albemarle 

Woodford 

Linton-on-Ouse 

Shobdon 

Coningsby 

Lake Vyrnwy 

St. Athan 

Plymouth 

Solent 

Marham 

Heathrow 

Herstmonceux 

2.5.1.3 Age of Correlation Data 

In establishing a correlation between past gas demand and past weather data, one has to decide 

how far in time to go back to collect the data. 

National Grid uses data collected from up to the last three years in determining the relationship 

between gas demand and weather in a LDZ. A regression model is constructed for each of the three 

years, with actual weather sensitivity of gas demand being calculated from either a single year of 

data or a combination of all three years. Three years is considered an appropriate time period: using 

a lesser length of time risks lacing the model with a fallacious weather sensitivity in the case where 

atypical conditions have caused unusual patterns of gas demand, whereas using a greater length of 

time increases the risk of the model becoming outdated. The decision to use three years of data 

(2008-2010) for SHECMOBS is made on the same grounds. In view of the unusually very cold 

weather experience in January 2010 and December 2010, it is deemed best to consider the 36 

months en masse rather than use data for 2010 alone. 

2.5.2 Form of Correlation 

In establishing a correlation between past gas demand and past weather data, one also has to 

decide how best to correlate the data in recognition of the fact a linear correlation using HDDs 

calculated with reference to a base temperature of 15.5 0C may result in an erroneous estimation of 

weather sensitivity (Section 2.4.6). The first step in the process involves elucidating the general 

relationship, establishing the form of the curve in the plot of daily NDM gas demand against daily 
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effective temperature, for each LDZ.  Figure 23 shows a typical regression, where North West LDZ 

gas demand is plotted against Woodford effective temperature. 

Figure 16 Regression plot of North West LDZ NDM daily gas demand against Woodford effective temperature (2008-

2010) 

The plots typically resemble a sigmoidal curve.  Reading the chart from right to left, weather 

sensitivity increases as the temperature drops and remains stable in the mid-temperature range; in 

most plots there is a decrease in sensitivity for low temperatures as in Figure 16 (i.e. cold weather 

downturn); in a minority of cases the weather sensitivity at low temperatures remains at the same 

level as for temperatures in the mid-range (e.g. South LDZ/Middle Wallop regression), but in no 

cases is a cold weather upturn observed.  Although most plots show a downturn at low 

temperatures, and although there is a clear insensitivity to temperature change at high 

temperatures, identifying the threshold temperatures at which sensitivity changes is less clear.  

Logistic transformation suggests itself as the ideal means of surmounting this difficulty since it can 

be used to transform a sigmoidal curve into a linear curve without requiring the input of these 

threshold temperatures.  

2.5.2.1  Logistic Transformation 

The sigmoid curve can be defined by the equation: 

Equation 5 

�(��� )� = 1 + �(��� ) 
The linear curve created by logistic transformation is defined by the equation: 

Equation 6 
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logit(�) = ' + ()	 
where, 

							logit(y) = +� , 
�1 − �- 

y = space heating occurring on day i expressed as a 

fraction of that which occurs on the day of maximum 

space heating 42 

x = effective temperature on day i 

a, b = constants 

Note that the sigmoid-like curve as shown in Figure 16 cannot be transformed in this raw state; the 

data must first be processed into a useable form: (i) the minimum asymptote must assume a value 

of 0, so the curve needs to be shifted downwards, and (ii) the level of maximum demand (the 

maximum asymptote) needs to be ascertained, since y cannot be calculated without knowledge of it. 

Minimum Asymptote 

In the North West LDZ/Woodford example shown in Figure 16 above, subtraction of 38.4 GWh from 

each NDM gas demand value produces the necessary downward shift43 . In effect, the non-weather 

sensitive component of daily gas demand is removed from the data. Downward shifts for the curves 

of the remaining LDZ/weather station regression plots are achieved in exactly the same way, by 

subtracting the consumption level which occurred on the day of lowest demand in the particular LDZ 

in question from all the consumption values for each day within that LDZ. 

Maximum Asymptote 

It can also be seen in Figure 16 that maximal demand was never achieved in the 36-month period 

covered by the analysis (i.e. a maximum asymptote was never achieved). Its value, along with the 

values of the constants a and b, is calculated using Microsoft Excel Solver. 

An initial approximate sigmoid trend line of the form described by Equation 5 is mapped on to the 

regression data, where the values of the maximum demand and the two additional, constants a and 

b, are guessed. Since the values of these three constants are guessed, the trend line is ill-fitting and 

a low R2 value is returned. Microsoft Excel Solver is set so as to optimise the R2 value by varying the 

values of the three constants (maximum demand, a and b), with the constraints that (i) 0 < R2 > 1 

and (ii) maximum demand > highest recorded demand in 36-month observation period. The 

42 
y = 1 when demand is at its maximum (equivalent to the maximum asymptote in a sigmoidal curve); y = 0 

when demand is at its minimum (equivalent to the minimum asymptote in a sigmoidal curve). 
43 

38.4 GWh was the demand on the day on which NDM gas demand was lowest in the North West LDZ (26 

June 2010). 
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weather-sensitive regression data for the North West LDZ/Woodford example are re-plotted with 

the Solver-derived trend line; Figure 17 shows the linear relationship between the logit of gas 

demand and effective temperature, and Figure 18 transposes the Solver-derived trend line over the 

original sigmoid-like data. 
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Figure 17 Relationship between logit of North West LDZ daily weather-sensitive NDM gas demand and Woodford 

effective temperature (2008-2010) 
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Figure 18 Regression plot of North West LDZ daily weather-sensitive NDM gas demand against Woodford effective 

temperature showing sigmoidal regression trend line (2008-2010) 

 

The Solver-optimised sigmoid regression trend line is seen to map the regression data in Figure 18 

closely, and a high value for the coefficient of determination is returned.  But a closer examination of 

the regression analysis reveals that however well the majority of data are mapped by the trend line, 
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the low temperature and mid-range temperature data are poorly mapped. This arises as a 

consequence of the fact that there are so many datum points at high temperatures: the highest 

value for R2 is achieved by ensuring that the residuals are kept to a minimum in this high 

temperature region of the plot, the corollary of which is that the lower temperature regions of the 

plot suffer. If the distribution of temperatures in the future were the same as those of today, the 

discrepancy would not matter since over-estimates in one part of the year would be exactly 

cancelled out by under-estimates in other parts of the year (see Appendix 2). But as future climates 

are likely to be warmer than the present climate, the distribution of temperatures is also likely to be 

different with fewer datum points in the low temperature region: in consequence the under-

estimation of demand for temperatures in the mid-range is not equalled in value by the over-

estimation of demand for low temperatures for future climates. 

As demand is so high for low and mid-range temperature44, it is of crucial importance that a 

regression trend line accurately maps the data in these regions. An alternative statistical solution to 

this problem is to regress the data piecewise as in the statistical technique known as segmented 

regression (personal communication, Steve Raper (Statistics Advisory Service University of Bath), 16 

May 2011).This is described in the following section. 

2.5.2.2 Segmented Regression 

In segmented regression, the data are divided into sections and separate regression trend lines are 

fitted for each segment of the regression. Looking at Figure 16, the data naturally appear to fall into 

three segments (high, mid-range and low temperature data), and can therefore be fitted with three 

linear regression trend lines. The difficulty with this method lies in the establishment of the 

breakpoints which demarcate one segment from another, and indeed, deciding if there is a 

breakpoint at all; in the case of the South West LDZ/Plymouth for example, whilst there appears to 

be a breakpoint somewhere in the range 13-14.5 0C, it is not so clear whether another one also 

exists which demarcates a cold weather downturn from normal weather sensitivity in the mid-range 

(Figure 19). 

44 o
In the North West LDZ, 36% of annual consumption occurs when the temperature is below 5 C, and a 

0
further 50% occurs for temperatures in the range 5-10 C (2008-2010). 
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Figure 19 Regression plot of South West LDZ daily weather-sensitive NDM gas demand against Plymouth effective 

temperature showing sigmoidal regression trend line (2008-2010) 

Simply assigning approximate values to the breakpoints as a solution, the underlying premise being 

that the positive errors in the slope of one or more regression trend lines is cancelled out by the 

negative errors in the slope of another/other regression trend lines, is not unsatisfactory.  When the 

regression trend lines are fitted to the regression in entirety in such a case, one is likely to find that 

the individual regression trend lines do not unite to form a single continuous trend line of varying 

slope, but rather that the line is discontinuous where a step change in demand occurs at each of the 

break points.  Whilst this would not matter if the distribution of future temperatures were the same 

as the present day, it is likely to make a difference because the future distribution of temperatures, 

as previously mentioned, is likely to be different: simply, over-estimation of demand in one of the 

artificially constructed regression trend lines is unlikely to be exactly nullified by under-estimation in 

the other artificially constructed regression trend line(s)45 (see Appendix 4). 

R is a language and software environment for statistical computing and graphics (R Development 

Core Team, 2013).  It supports a number of different packages, one of which is the Segmented 

package.  This package analyses regression data and finds the best fit breakpoints, allowing the 

fitting of segmented linear regression trend lines which are continuous with one another.  The 

Segmented package of R is consequently used to analyse the regression data from all 26 regression 

LDZ gas demand/weather station effective temperature plots. 

   
  Even though this this no more than a restatement of the assertion that one should not fit a linear regression 

trend line to data which are not linearly distributed, or that one should not fit an exponential regression trend 

line to data which are not exponentially distributed, it can be conceptually difficult to understand why the 

segmented regression lines should align with one another at the breakpoints. Appendix 4 gives an example of 

how erroneous break points can lead to incorrect estimation of gas consumption. 
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2.5.3  Best correlation 

In all 26 instances there is seen to be a very high degree of correlation between gas demand and 

effective temperature.  In 22 of the regression plots, three separate regression trend lines are 

obtained; in the remaining four regressions plots46, two regression trend lines are obtained.  An 

example of one of the three-segment plots is shown in Figure 20. 
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Figure 20 Regression plot of East Midlands LDZ daily weather-sensitive NDM gas demand against Waddington effective 

temperature showing three segmented linear regression trend lines (2008-2010) 

Attention is drawn to the fact that the regression trend line for very high temperatures is seen to 

under-estimate demand, and the under-estimation would appear to become incrementally more 

significant the more that the regression trend line is extrapolated beyond the highest observed 

temperature (21.0 0C in the example given).   This is not considered to be unduly problematic, 

however, as there will also be a higher incidence of temperatures in the left portion of right-most 

regression trend line (13.2-17.5 0C in the example given) in which over-estimation tends to occur.  

What is more, given the fact that such a relatively small proportion of consumption occurs at high 

temperatures (less than 12% of consumption occurs for temperatures above 13.2 0C in the case of 

the East Midlands LDZ/Waddington regression above), errors in this part of the regression are of 

relatively lesser significance than elsewhere where consumption is greater. 

Comparison of the multiple R2 values, all very high in value and ranging from 0.933-0.973, allow one 

to determine which of the two regression plots for a single LDZ is best chosen as input for 

SHECMOBS.  Table 5 shows these R2 values, the correlations deriving from the weather stations 

shaded in grey being used as the SHECMOBS input47 . 

   
46

 Three regression trend lines are discerned for the South West LDZ/Plymouth regression plot of Figure 19, 

which serves to give an indication of the power of the Segmented package. 
47

 Note that in the course of writing up this thesis it was noted that the Weybourne correlation instead of the 

Marham correlation was incorrectly used as SHECMOBS input for the Eastern LDZ, and that the Manston 
2

correlation instead of the Herstmonceux correlation was incorrectly used for the South East LDZ.  Since the R  
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Table 5 Coefficients of determination in the plot of NDM gas consumption against effective temperature for a 

segmented linear trend line for 26 LDZ/ weather station combinations 

LDZ Met Office Weather Station 1 Met Office Weather Station 2 

Scotland Glasgow 0.9592 Edinburgh 0.9461 

Northern Boulmer 0.933 Albemarle 0.9448 

North Western Crosby 0.9467 Woodford 0.9455 

North Eastern Dishforth 0.9449 Linton-on-Ouse 0.9439 

West Midlands Coleshill 0.9512 Shobdon 0.9459 

East Midlands Waddington 0.9599 Coningsby 0.9557 

Wales North Valley 0.9234 Lake Vyrnwy 0.9374 

Wales South Sennybridge 0.9401 St Athan 0.9447 

South West Filton 0.9665 Plymouth 0.9344 

South Middle Wallop 0.9561 Solent 0.9493 

Eastern Weybourne 0.9463 Marham 0.9626 

North Thames Northolt 0.9644 Heathrow 0.9725 

South Eastern Manston 0.9545 Herstmonceux 0.9582 

The results of the regression analysis of the Segmented package of R used in the formulation of the 

13 resulting algorithms which characterise Great Britain consumption are presented in Appendix 5.3: 

Regression Algorithms, as are the algorithms themselves. 

2.5.4 Application to Future Climates 

Future estimates of annual consumption are calculated by applying the 13 composite regression 

trend lines to future weather data. The future weather data are obtained from daily weather 

generated from 100 runs of the UKCP09 Weather Generator for each of 117 ternions48 constituted 

from: 

i. 13 locations - one for each of the 13 LDZs, 

ii. 3 time-slices -2030s (2020-2049), 2050s (2040-2069), 2080s (2070-2099)49, and 

iii. 3 emissions scenarios - high, medium, low. 

With a single run of the Weather Generator producing a 99-year sequence of stationary50 years of 

useable daily weather, the average annual energy consumption (Et) for each ternion is calculated as 

values are very high and very similar in both cases, it is considered that the impact of these errors on the final 

results from SHECMOBS is minimal. 
48 

An example of a ternion is ‘location - North Thames, time-slice - 2030s, emissions scenario - high’. 
49 

The Weather Generator makes no distinction between years within a decade, e.g. output for the 2050s is as 

applicable for 2050 as it is for 2059. 
50 

Stationarity – a statistical property which means that little statistical variability is exhibited over the time 

series, i.e. the 99th year is no less nor more likely to be warmer than the 1st year, any one of which years could 

represent any of the years within a given time-slice such as 2020-2049. There is no underlying trend (e.g. 
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shown in Equation 7 and Equation 8, where the average annual energy consumption in each ternion 

derives from 9,900 (100 x 99) sample years. 

Equation 7 

�. = /� �1 100


where 

m = a single 99-year run of the Weather Generator 

e = average annual energy consumption in a ternion 

measured over a 99-year run of the Weather Generator 

Equation 8 

1 ,36159� = /� 3456 2 365.25- 51 

where 

n = a sample year 

CLDZ = annual energy consumption for a sample year in a 

given ternion (see Appendix 5) 

The average national annual space heating energy consumption (En) for a given decade in a given 

emissions scenario is finally calculated by summing the energy consumption totals of the 13 regional 

ternions specific to the particular decade and emissions scenario in question (ter) (Equation 9). 

Equation 9 

�� = � �..=>
� 

warming or cooling) in the weather of the 99-year sequence, but weather on one day is contiguous with the 

weather on the next day, i.e. the weather on a given day is not calculated in isolation, but bears a relation to 

previous days’ weather, as occurs in reality. 

The UKCP09 Weather Generator produces years of 365 days, with a leap year every fourth year except for 

the hundredth year in any sequence, just as in the reality. Thus a sequence of 100 years has 24 leap years 76 

non-leap year. There are 36,159 days in 99 years, and there are 365.25 days in a year on average. 
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2.5.5 SHECMOBS Results 

Although principally an energy consumption model, SHECMOBS can also be used to give an 

indication of the reduction in greenhouse gas emissions resulting from decreased space heating in a 

future warmer climate. The impact upon energy consumption is reported in Section 2.5.5.1 and the 

impact upon greenhouse gas emissions is reported in Section 2.5.5.2. 

2.5.5.1 Energy Consumption for Building Stock for Future Climate 

The levels of NDM gas consumption in future warmer climates as predicted by the UKCP09 data are 

reported in Table 6, with the percentage reduction in consumption with reference to 2008-2010 

being reported in Table 7 

Table 6 NDM gas consumption for future warmer climates for different emissions scenarios relative to 2008-2010 

Consumption (GWh) 

Emissions scenario 

Low Medium High 

Present day* 505540 

2030s 

2050s 

2080s 

442882 

423864 

400420 

442709 

410471 

374278 

437406 

401939 

339137 

*2008-2010 average. 

Table 7 Change in NDM gas consumption for future warmer climates for different emissions scenarios relative to 2008-

2010 

Reduction in Consumption (%) 

Emissions scenario 

Low Medium High 

2030s 

2050s 

2080s 

12 

16 

21 

12 

19 

26 

13 

20 

33 

The reduction in consumption is significant, with savings of 12-13% being achieved even by the 

2030s. The particular emissions pathway followed is not seen to exert a significant effect until the 

2050s, and the effect becomes increasingly pronounced the farther forward that one moves in time: 

by the time the 2080s are reached, NDM consumption levels are forecast to have reduced by fifth, a 

quarter or a third depending upon whether a low, medium or high emissions pathway is followed. 

71




The actual decrease in space heating is proportionally even larger when one remembers that NDM 

consumption includes the non-weather-related elements of water heating and cooking (see 

Appendix 6. If future consumption of these latter two elements remains at the same levels as those 

of the present day, space heating is forecast to reduce by as much as 45% by the 2080s if heating 

systems were not to change (Table 8 and Table 10). 

Table 8 NDM space heating gas consumption for future warmer climates for different emissions scenarios relative to 

2008-2010 

Consumption (GWh) 

Emissions scenario 

Low Medium High 

Present day* 370195 

2030s 

2050s 

2080s 

307537 

288519 

265075 

307365 

275126 

238933 

302062 

266595 

203792 

*2008-2010 average. 

Table 9 Change in NDM space heating gas consumption for future warmer climates for different emissions scenarios 

relative to 2008-2010 

Reduction in Consumption (%) 

Emissions scenario 

Low Medium High 

Present day* 

2030s 

2050s 

2080s 

17 

22 

28 

17 

26 

35 

18 

28 

45 

NDM space heating consumption for 2007 calculates as 358,377 GWh. The reduction in space 

heating by 2050 under a medium emissions scenario calculates as 23%52 . 

2.5.5.2 Reduction in Greenhouse Gas Emissions 

Whilst the knowledge that a given rise in temperature will result in a given reduction in the demand 

for space heating is meaningful and the prognostication can be made with a certain the degree of 

confidence, unfortunately the same is not true with regard to forecasts concerning changes in 

emission levels. An increase in temperature of x resulting in a reduction of space heating energy 

consumption of percentage y for the year z would only result in a corresponding reduction of 

See Section 5.2.1 for the relevance of this information. 
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emissions of y% if the make-up of the energy generation and supply network in the year z had the 

same structure and fuel carbon intensities as that of the present day. But it is extremely unlikely 

that either the same split of fuels will be used in the future as for the present day as electric space 

heating becomes more widespread and gas-fired space heating declines, or that the carbon intensity 

of those fuels will be the same in the future as they are today. Indeed, the carbon intensity of 

electricity currently even varies on a daily basis, the price differential between coal and gas 

determining in large part how much of each fuel power stations use to meet the nation’s electricity 

demand. Whilst, for example, 41% of electricity derived from the combustion of coal in 2006, the 

figure was 31% in 2009, increasing again to 34% in 2011 (DECC, 2012i). Therefore, caution must be 

exercised when evaluating the impact of climate change upon space heating in terms of emissions 

reductions. 

Space heating GHG emissions for 2009, the last year for which there is a complete set of data, 

evaluate as 87 MtCO2
53 (DECC, 2012c); space heating GHG emissions calculate as 15.5% of the 

nation’s cross-sector total of 562 MtCO2e for 2009 (DECC, 2012c). Taking account of the warning 

above, estimates of the reductions in emissions which would occur by the 2050s with reference to 

2009 (if heating systems and fuel intensities were to remain unchanged ) are shown in Table 10. 

Table 10 Space heating emissions GHG emissions and reduction in emissions by the 2050s due to decrease in space 

heating compared to 2009 levels 

2009 
2050s Emissions scenario 

Low Med High 

Space heating emissions (MtCO2e) 

Reduction in emissions (across built environment) (%)* 

Reduction in emissions (across all sectors) (%)* 

92.5 72.1 

5.9 

3.6 

68.8 

6.8 

4.2 

66.6 

7.4 

4.5 

* Percentage reduction in space heating accords with the reduction in space heating inTable 8 (i.e. over the 

period 2008-2010 to 2050s). Space heating in the 2050s is assumed to have the same make-up as that of 2009. 

Although the values in themselves do not carry much significance, they do serve to lend a general 

perspective, giving an indication of the contribution that a reduction in space heating can make in 

achieving the 80% target of the Climate Change Act 2008: approximately 15.5% of the nation’s 

emissions are currently due to space heating, and temperatures similar to those forecast for the 

2050s would result in a reduction of emissions of the order of 4%. 

2.5.6 Discussion of SHECMOBS 

Of course, the understanding implied by these findings is that comfort taking, where people heat 

their homes to a higher level of comfort, do no negate or lessen the forecast reduction in space 

heating. This cannot be dismissed, in view of the finding that absolute levels of energy consumption 

have remained rather steady over the past 40 years or more, despite increasing levels of insulation. 

But whilst levels of central heating were very small in 1970, penetration is over 90% now. This 

Includes electricity emissions. 
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suggests that are homes are much better heated in the present day. Since, as a society, we are 

generally much more thermally comfortable than in the past, it is to be anticipated that levels of 

comfort taking will be less than in the past, thus limiting the size of any comfort taking (rebound 

effect). 

Whilst a decrease in the level of space heating is not unexpected as the century progresses or as 

emissions levels increase, the extent of the diminution is perhaps rather surprising, especially that in 

the near term. The reduction in consumption between now and the 2030s (approximately 25 years) 

is forecast as being even larger than that between the 2050s and 2080s (approximately 30 years). 

One must ask the questions why the reduction in consumption is so large, and, in view of the fact 

that the greatest changes in air temperature associated with climate change are not forecast as 

occurring until the latter decades of the century, why in particular is the reduction by the 2030s so 

large. 

2.5.6.1 Verification of Results 

Deriving from millions of items of UKCP09 weather data in 1300 files, the process by which these 

raw data are converted by the algorithms listed in Appendix 5.3: Regression Algorithms into average 

annual consumption for ternions involves hundreds if not thousands of lines of Visual Basic for 

Applications (VBA) coding. In such a multi-step process there is a clear possibility of introducing 

error which not easily detectable. In consequence the results should be checked against other 

weather data. 

As part of the Coincident Probabilistic climate change weather data for a Sustainable built 

Environment (COPSE) (ARCC, 2012), the University of Manchester have produced a number of future 

TRYs54, developed from 3000 years of future weather data produced by the UKCP09 Weather 

Generator, the data being prepared in a manner following the ISO standard ISO BS EN ISO 15927 

Part 4 (2005) (Watkins, et al., 2011). These future TRYs, comparable to conventional TRYs, provide a 

basis for checking the robustness of the procedure used in this analysis. Whilst the consumption 

forecast for a given ternion from SHECMOBS is the average consumption forecast of 9900 stationary 

years, the consumption forecast from a TRY year is the consumption deriving from a single year 

which can be described as a typical year, the typicality referring to its weather. Thus the 

averageness of the former is defined by its averageness in terms of its energy consumption, whilst 

the typicality of the latter is defined by the typicality of its weather. Therefore, although one would 

expect to find that energy consumption in a typical year would be close to average energy 

consumption, one would not necessarily expect to find that they were exactly equal. In essence, one 

“typical year” of weather could result in a level of energy consumption which is different from 

another year which might also be described as a “typical year” in terms of its weather, since typical 

does not mean average. 

A conventional TRY is a year of typical weather based on observations, calculated so as to incorporate an 

element of the variability seen in real weather, e.g. the daily mean temperature in a TRY, whether a 

conventional TRY or a future TRY, does not increase in an incremental fashion in contrast to an average 

weather year (where the daily temperature on a given day is calculated as the average of many years of data 

for that day). 
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When annual consumption calculated used the averaging process used in this analysis is compared 

against annual consumption using the future COPSE TRYs, the results are seen to closely resemble 

one another, but not equal one another, as one would expect; Table 11 shows the percentage 

difference in annual NDM consumption values calculated using the two different procedures for the 

eight different ternions which are available for cross-comparison. 

Table 11 Percentage by which annual NDM gas consumption calculated using COPSE TRYS differs from annual gas 

consumption calculated using SHECMOBS averaging process 

London (Heathrow) Manchester (Woodford/Ringway) 

Emissions scenario Emissions scenario 

Low High Low High 

2050s 

2080s 

-1.2 

-1.7 

-1.4 

1.3 

-4.0 

-4.3 

-1.0 

-2.3 

Although the data for Manchester does show a little more variation than that for Heathrow, this is 

not unexpected because the weather station used for Manchester in the COPSE TRY (Ringway) is 

different to the Manchester weather station used in the averaging process employed by SHECMOBS 

(Woodford). 

One can conclude, therefore, that the calculation method used to produce average weather years is 

robust. 

2.5.6.2 Normalisation of Results 

The reason, in part, why the decrease is in reduction is so large is because present day consumption 

is based on the period 2008-2010, a period during which the winters have been atypically cold. The 

winter months’ CET for 2008-2010 records as 3.2 0C, which compares with a temperature of 4.1 0C 

for the period 1961-1990 (1970s) (baseline average used by UKCP09), since which time, on average, 

there has been a general increase in temperature, despite the atypicality of the period 2008-2010. 

The winter months’ CET for the period 2000-2007 is almost 2 0C higher than that for the period 

2008-2010, recording at 5.1 0C. If temperatures during the period 2008-2010 had been closer to the 

long-term average, then gas consumption during this period would have been lower, the outcome of 

which would be that the relative decrease in future consumption (especially that in the near term) 

would have been lower. 

The temptation in such a case is to discard the period 2008-2010 as anomalous and attach the label 

“present day” or “normal” to data from the period 2000-2007. However, despite the winters being 

less cold, NDM gas consumption is seen to be no less during this period (Figure 21), the discrepancy 

being thought to derive from the continuing improvement in the thermal performance of the 

building stock. Thus the relative reduction in space heating is not reduced by using consumption 

data from the period 2000-2007 as the reference period against which to measure the change. 
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Figure 21 Comparison of NDM gas consumption and winter CET (December, January, February) (2000-2007) 

An alternative approach is to replace the observed value for present day consumption with a 

normalised value calculated with regard to 2000-2011 average temperatures (Figure 22). Although 

present day consumption is not real, in the sense that it is only an estimate of what the consumption 

level in the present stock would be under the relatively warm climate of 2000-2011, it perhaps 

presents a more authentic picture of the effect of climate change upon space heating consumption 

in the present building stock. 
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The numbers on top of the columns are the percentage reductions in NDM space heating gas consumption with 

reference to the 2000-2010 baseline average. 

Figure 22 Normalised change in NDM space heating gas consumption for future warmer climates for different emissions 
55 

scenarios relative to 2000-2010

Nevertheless, the decrease in consumption by the 2030s, standing at 11-12%, still remains striking. 

This results from the fact that in a warming climate, a unit change in temperature produces a greater 

fall in consumption in the near term than the same unit change in temperature occurring later on, 

even where the relationship between consumption and temperature drop is perfectly linear. As this 

can be conceptually difficult to grasp, a stylised example which illustrates this principle is given in 

Appendix 7. 

Figures atop the bars indicate the percentage reduction in consumption. 
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3 Space Cooling Model 

Having elucidated the relationship between climate and space heating energy consumption, one is 

left to consider whether a similar approach can be used to determine the levels of space cooling 

required to maintain comfort in response to a warming climate. In this instance, one could expect to 

see an increase in the amount of electricity used by mechanical cooling systems in response to 

elevated air temperatures since mechanical systems primarily run on electricity. Although the 

matter is complicated by the fact that mechanical cooling systems are predominated by air 

conditioning systems which not only cool the air but additionally condition it in the form of 

dehumidification and filtration, there nevertheless remains a good correlation between air 

temperature or degree-days and mechanical cooling energy consumption as later detailed in Section 

4.2. 

Government data are examined in Section 3.1 and National Grid data are examined in Section 3.2. 

Section 3.3 examines other models which have attempted to describe space cooling energy 

consumption. Sections 3.4-3.9 describe and present the results of a new space cooling energy 

consumption model for the residential sector, and Section 3.10 concludes with a discussion of the 

model. 

Before embarking upon the analysis, it should be noted at this point that space cooling energy in the 

residential sector is the primary focus of this chapter. This is not to say that space cooling energy 

consumption in the non-domestic stock is unimportant, but rather that it presents a less definitive 

profile of climate change-related space cooling energy consumption. Growth in air-conditioning in 

business has been primarily attributed to the increasing use of Information Technology equipment 

and higher concentrations of staff (Carbon Trust, 2005), with levels of space cooling in the non-

domestic sector being likely to be affected by the requirement to counteract the higher metabolic 

gains and higher equipment gains in a way that they are, for the most part, not in the residential 

sector. However, the large increase in air-conditioned commercial buildings in Europe is also 

ascribed to the perception that a non-air-conditioned office is not seen as being of investment 

quality (Guertler & Pett, 2008). Current levels of sales also suggest that climate is less influential 

with regard to the uptake of air-conditioning in the non-domestic sector, there being relatively high 

levels of sales in this sector (relative to residential use) in moderate climates (DGTREN, 2008). With 

the Building Services and Research Association (BSRIA) estimating the penetration rate of air-

conditioning in the commercial market at 42% (in comparison to its figure of 3% for the residential 

market) (BSRIA, 2011), it is clear that the uptake of air-conditioning in the commercial sector is 

driven by further socio-economic factors which bear little influence in the residential sector. 
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3.1 Government Data 

The Department of Climate and Energy Change (DECC) collects and releases national electricity 

consumption which are disaggregated by (i) time, (ii) region and (iii) end-use. These are examined in 

turn. 

3.1.1 Time Disaggregated Data (Monthly Data) 

In contrast to the Government gas consumption statistics which are reported no more frequently 

than quarterly, sectoral electricity consumption data are reported on a monthly calendar basis 

(DECC, 2012i). Its usefulness in a longitudinal analysis, however, is restricted by the fact that the 

monthly reporting only extends as far as the three sectoral groupings of (i) non-domestic & non-

industry (NDNI) multi-sector56, (ii) domestic and (iii) industry, and does not report upon end-use. 

When national NDNI electricity consumption is plotted against the Central England Temperature, 

rising temperatures show no sign of reciprocation in elevated levels of electricity consumption 

(Figure 23). 
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57 
Figure 23 Relationship between adjusted electricity consumption for NDNI multi-sector and mean monthly Central 

England Temperature (2005-2009)
58, 59 

56 
The NDNI multi-sector comprises the service, transport and agriculture sectors; electricity usage in this 

multi-sector is likely to be dominated by the service sector. 
57 

Adjusted electricity consumption - the monthly consumption for a particular year is adjusted by the ratio of 

the annual consumption for that particular year to the average annual consumption over the entire period of 

the data., e.g. adjusted electricity consumption for June 2007 = electricity consumption for June 2007 x mean 

annual electricity consumption for period 2005-2009 ÷ electricity consumption for 2007. The principle is 

illustrated in Appendix 8. 
58 

Data are also available for the period 1995-2004, but they are not contiguous with the data in Figure 23 

since the former use the “statistical reporting period” which may be either four or five weeks long. 
59 

The same pattern of diminishing electricity consumption as outdoor air temperature increases is seen in the 

domestic sector. 
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Although the electricity consumption has been trend adjusted to lessen the influence of non-climatic 

factors such as changes in the building stock, energy prices, appliance usage and efficiencies57 (Sailor 

& Munoz, 1997; Sailor & Pavlova, 2003), consumption is actually seen to decrease as the air 

temperature increases. This is in contrast to data reported elsewhere where, depending upon 

location, electricity consumption can be seen to peak during the warmer summer months (Sailor & 

Pavlova, 2003; Sailor & Vasireddy, 2006). It is clear that air temperature-dependent increases in the 

amount of electricity consumed by mechanical space cooling systems in the UK are being masked by 

other intra-year factors60 exerting a greater influence which the process of annual trend adjustment 

is incapable of isolating. However, when the relationship between adjusted electricity consumption 

and individual mean monthly CET is explored in individual plots for the months of June, July and 

August as a means of circumventing/minimising this problem, the level of correlation is remains low, 

even if consumption is seen to increase as air temperature increases (Table 12). 

Table 12 Coefficient of Determination for the plot: adjusted electricity consumption versus mean monthly Central 

England Temperature for (i) the NDNI multi-sector and (ii) the domestic sector (2005-2010) 

NDNI multi-sector Domestic sector 

June 0.00 0.04 

July 0.04 0.08 

August 0.7061 0.16 

3.1.2 Regionalised Data 

Although electricity consumption is reported at the local authority level (of which there are 400) 

(DECC, 2012b), it suffers the same disadvantages as the monthly disaggregated data in that neither 

sub-sectoral nor end-use consumption are reported. In addition it is further disadvantaged by the 

fact that data are only reported annually. 

Taking the local authority of Wealden in the south east of England as a typical example, the 

correlation between domestic electricity consumption and mean annual temperature (as 

represented by the local weather station of Herstmonceux (UK Meteorological Office, 2011)) is poor 

(Figure 24). 

60 
e.g. the decrease in electrical heating and lighting as temperatures increase and the daytime becomes longer 

during the summer months. 
61 2 2

In view of the low R values observed elsewhere, the disproportionately large R value associated with 

August for the NDNI sector suggests that its high value is rather more likely to be due to chance than due to a 

causal nexus. 
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Figure 24 Relationship between electricity consumption in the domestic sector (Wealden) and annual mean temperature 

(Herstmonceux) (2005-2009) 
62,63 

3.1.3 End-Use Data 

Whilst a certain amount of electricity consumption is reported by end-use in the Government 

publication, Energy Consumption in the United Kingdom (DECC, 2011d), once again its usefulness is 

limited, being constrained by the facts that:-

i. only annual data are available , 

ii. the data are not disaggregated at a regional level, 

iii. cooling and ventilation are grouped together as a single end-use64 , 

iv. the end-use data derive from a secondary analysis of data from the Digest of United 

Kingdom energy statistics (DUKES), Office for National Statistics and Building Research 

Establishment (BRE) (i.e. the figures are derivations, rather than actual measures of 

consumption), and 

v. cooling and ventilation data are reported only for the service sector, and not for the 

domestic and industry sectors. 

In consequence, with regard to establishing whether or not there is a correlation between space 

cooling and air temperature, the best use that can be made of these Government data is to plot (a) 

cooling & ventilation electricity consumption within the service sector against (b) the CET (UK 

Meteorological Office, 2012a), the CET acting as a surrogate for “national temperature” (Figure 25). 

62 
Data for 2003 and 2004 also exist, but are cited as being “experimental series”. 

63 2
The R value for the combined commerce & industry sector is 0.11. 

64 
The Department of Energy and Climate Change (DECC) states that the Building Research Establishment (BRE) 

is responsible for the provision of these data (personal communication, Will Rose (DECC), 1 December 2011). 

A request was sent to the BRE asking for information on the split between the two components, but it failed to 

generate a response. 
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Figure 25 Relationship between cooling & ventilation electricity consumption for service sector and Central England 
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Temperature (2000-2009)

Although electricity consumption is seen to increase with temperature, the level of correlation is, 

however, rather too low (R2 = 0.5) to further extend this stream of analysis. 

3.2 National Grid 

In addition to owning the previously mentioned gas National Transmission System (NTS), National 

Grid (NG) owns and operates the National Transmission Network (NTN) (more commonly, and 

perhaps somewhat confusingly, referred to as the National Grid), the NTN being the electricity 

analogue of the NTS (National Grid, 2012b). Whilst NG is not responsible for the transmission of all 

the electricity consumed within the UK, the great majority of electricity is transmitted through the 

NTN. 

Although National Grid only reports upon England & Wales consumption (GWh) up to 2004, it does, 

however, continue to report upon demand (MW) at the half-hourly level. These data allow one to 

theoretically calculate energy consumption (MWh), where consumption for a particular day 

calculates thus: 

Equation 10 

?'@+�	AB�CDEF�@B� = � ?�E'�?/2

More than 95% of cooling and ventilation consumption in the service sector derives from electricity.

Inclusion of additional consumption deriving from fossil fuels has negligible impact on the coefficient of


2
determination: the R value increases from 0.51 to 0.52 if fossil fuels are further included. 
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Using this method, the annual consumption for England & Wales for 2004 calculates as 309,557 

GWh. Comparing very closely with the actual annual consumption for England & Wales as reported 

by National Grid (309,588 GWh), the calculation method is therefore considered robust. 

The detailed nature of the data proffers a number of benefits over the Government data in providing 

an alternative means to elucidate the relationship between electricity consumption and air 

temperature by reducing the scatter in the plot: 

i.	 temporal disaggregation by day of the week - consumption can be grouped by weekday or 

weekend, since the data reveal that consumption at the weekend (and on bank holidays) is 

noticeably smaller than that throughout the rest of the week, (Appendix 9), 

ii.	 temporal disaggregation by week - daily consumption can be grouped into blocks so as 

minimise the “contaminant” effect caused by electrical lighting, where the summer period is 

divided into 13 consecutive blocks, each day in a single block having a similar number of 

daylight hours, 

iii.	 exclusion of non-climate-related consumption - the electricity used by autogenerators, such 

as iron and steel works which generate and use their own electricity for non-climate-related 

industrial process (and so does not enter the grid), is omitted from the data, 

iv.	 daily running mean temperature (tdrm) - the finding that comfort is related to thermal 

experience (CEN/BSI, 2007/2008; CIBSE, 2007) and thus is dependent upon the temperature 

on preceding days is easily exploited through the calculation of daily running mean (drm) 

temperature (see footnote 164). 

However, when adjusted daily weekday electricity consumption is plotted against daily mean CET 

during summer, there is seen to be no correlation. Figure 26 shows an example of the relationship 

between adjusted daily Initial Demand Outturn (INDO) electricity consumption66 and daily mean 

weekday CET for the month of July for the period 2005-2011. 

National Grid reports four sets of demand data, varying in the way that they include various electricity loads 

such as interconnector exports and power station load. The Initial Demand Outturn (INDO) dataset is chosen 

as being the most suitable dataset most responsive to a change in temperature in that it includes (i) power 

station generation, (ii) pump storage generation, and (iii) interconnector imports, but excludes (iv) station own 

load, (v) pump storage pumping and (vi) interconnector exports, for Great Britain. (It does, however, also 

include transmission losses.) Prior to 2005, INDO data referred to England and Wales. 
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Figure 26 Relationship between adjusted daily INDO electricity consumption and daily mean Central England 
0

Temperature for weekdays (July, Great Britain, 2005-11) ( C) 

Even though weekend data have been removed from the plot in Figure 26, rather intriguingly, a split 

is seen to occur in the data67 which even the process of trend adjustment (the aim of which is 

smooth out fluctuations arising from a change in price etc.), fails to remedy. Further analysis reveals 

that the high consumption band relates to the period 2005-2008, whilst the low consumption band 

relates to the period 2009-2011, though it remains unclear why the data should demarcate as such, 

with National Grid only stating there to be a difference between pre- and post-2005 data66 . 

When the pre-2009 data are omitted from the analysis and the data are further refined68, the initial 

results show signs of promise with an R2 value as high as 0.72 being returned for the hottest block 

(29 June-5 July) when adjusted daily INDO electricity consumption is plotted against drm CET for a 

single week block69 (Figure 27); and values exceed 0.6 for other warm blocks in mid-period (Table 

13). 

67 
i.e. the split coincides with the trend line, demarcating a relatively high consumption band to the upper side 

of the trend line, and a relatively low consumption band to the lower side of the trend line. 
68 

Scatter should reduce as a consequence of the combined effect resulting from using (i) only post-2009 data, 

(ii) electricity consumption which has been adjusted, (iii) the drm weekday CET instead of the weekday CET, 

and (iv) a 5-day block featuring days with a similar number of daylight hours. 
69 

Block 1 comprises all weekdays from 1-7 June over the period 2009-11 (i.e. 15 days in total), Block 2 

comprises all weekdays from 8-14 June over the period 2009-11 (i.e. 15 days in total) …block 13 comprises all 

weekdays from 24-31 August over the period 2009-11. i.e. weekends and bank holiday Mondays are excluded. 

84




R² = 0.71 

740 

760 

780 

800 

820 

840 

860 

880 

12 14 16 18 20 22 

A
d

ju
st

e
d

 I
N

D
O

 e
le

ct
ri

ci
ty

 c
o

n
su

m
p

ti
o

n

(G
W

h
) 

Daily running mean weekday CET (0C) 

Figure 27 Correlation between adjusted daily INDO electricity consumption and daily running Central England 

Temperature for weekdays for Block 5 (29 June-5 July) (2009-2011, Great Britain) 

2
Table 13 Distribution of R values (showing correlation between adjusted daily INDO electricity consumption and daily 

running mean Central England Temperature for weekdays for 13 blocks of summer (June-August, 2009-2011, Great 

Britain) 

Block number 1 2 3 4 5 6 7 8 9 10 11 12 13 

R
2 

value 0.25 0.26 0.19 0.03 0.71 0.45 0.64 0.63 0.54 0.11 0.40 0.20 0.01 

drm CET (
0
C) 14.0 12.7 14.0 16.5 17.9 15.6 15.9 16.0 16.3 16.4 16.0 15.7 14.3 

Whilst it might be thought that the relatively high R2 values observed occurring towards the middle 

of the 13-week period are simply anomalous, resulting from pure chance, the evidence suggests 

otherwise. When the same analysis is carried out for the pre-split data for the period 2005-2008, 

relatively high R2 values are once again observed for certain weeks in the middle of the 13-week 

period (weeks 5, 6, 7 and 8), when the drm CET is generally at its greatest (Table 14). 

2
Table 14 Distribution of R values (showing correlation between adjusted INDO electricity consumption and daily 

running mean Central England Temperature for weekdays for 13 weeks of summer (June-August, 2005-2008, Great 

Britain) 

Block number 1 2 3 4 5 6 7 8 9 10 11 12 13 

R
2 

value 0.00 0.03 0.19 0.73 0.60 0.48 0.75 0.75 0.12 0.00 0.2 0.30 0.03 

drm CET (
0
C) 13.8 15.2 15.3 14.9 16.4 16.2 17.7 17.5 17.0 16.2 15.7 15.9 15.7 

When one considers that cooling & ventilation accounts for a mere 3% of electricity consumption in 

the UK70 (c.f. electrical heating 12%, lighting & appliances 42%) (DECC, 2011d), the relatively high 

Excludes electricity used in transport sector, but includes that used in industry sector. 
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degree of correlation between electricity consumption and drm CET for certain of the warmer 

months is perhaps rather surprising. Although the increase in electricity consumption is unlikely to 

relate space cooling and ventilation alone, other end-uses unrelated to space cooling contributing 

towards the increase71, unfortunately it is unknown how much of a contribution these other end-

uses make towards the total increase in consumption. 

Even though electricity consumption does seem to be influenced by air temperature with the 

coefficient of determination being quite high on occasion, the correlation remains rather too low for 

most of the weeks of summer to allow INDO data to be used as the basis of a space cooling model. 

3.3 Space Cooling Models 

The paucity of Government and National Grid data preventing the development of a space cooling 

model along the lines of the space heating model described in Chapter 2, an alternative approach is 

required. This is problematic, however, inasmuch as very few other data have been published 

elsewhere in relation to this matter. In meeting with this same impasse, other researchers have 

used a variety of means, with varying degrees of success, to characterise climate-related/future 

space cooling energy consumption. The climate-related aspects of these studies are critically 

assessed in turn, with a view to selecting the best features from each in order to construct a new 

Space Cooling Energy Consumption Model for the Residential Sector, tailored for use with data from 

the UK Climate Projections 2009 (UKCP09) (UKCP09, 2012f); for the sake of brevity, and to avoid 

later confusion with the eight models described in the literature below, this bespoke model is given 

the acronym SCECMORS. 

3.3.1	 Climate change and future energy consumption in UK housing stock 

(Collins, et al., 2010) 

Using data from the UK Climate Impacts Programme 2002 (UKCIP02), the immediate predecessor of 

UKCP09, national energy consumption in the UK housing stock is estimated under a high emissions 

scenario to investigate the “worst case scenario” for future time-slices72 (Collins, et al., 2010). Using 

synthetically generated weather years composed of hourly data for London for the 2050s and 2080s, 

a bottom-up model of the national housing stock is constructed from six representative dwelling 

types which comprise the bulk of the stock, the construction of which buildings are based on the 

stock average for the period 1981-1996. Endeavouring to describe the worst case scenario, the 

authors assume no technological advances in the efficiency of mechanical cooling systems take 

place, and similarly assume that no retro-fitting measures to improve the thermal performance of 

buildings are carried out. 

Under typical patterns of occupancy, lighting and ventilation (including infiltration) which might be 

observed in the UK, the energy consumption of a split system air-conditioning system with a 

71 
e.g. increased levels of refrigeration within the retail sector, and increased use of domestic electric showers. 

72 
UKCIP02 reported a single temperature increase for each emissions level: under the high emissions scenario, 

0	 0
an increase of 2.2 C was forecast for the 2050s and an increase of 3.9 C for the 2080s. 
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“relatively poor” nominal energy efficiency ratio (EER)73 of 2.5 and cooling set-point temperature of 

22.5 0C is estimated for each of the six dwelling types using the Virtual Environment suite of 

programs by Integrated Environmental Solutions. The six energy consumption values are multiplied 

by weighting factors which reflect the distribution of each of the dwelling types in the UK housing 

stock. The resulting data represent the stock consumption for a climate equivalent to that of 

London’s. In order to calculate stock consumption for the UK as a whole, a further set of weighting 

factors are applied to the London-climate stock consumption data, the weighting factors deriving 

from the modelled cooling energy consumption of a semi-detached dwelling located in London, 

Cardiff, Manchester and Edinburgh. National cooling energy consumption is calculated for air-

conditioning uptake rates of 50% and 100%. 

Appraisal 

In the absence of more detailed data, the model makes a good attempt to calculate national space 

cooling energy consumption. In its favour, the domestic dwelling stock is well represented by the six 

generic housing types which account for 98% of all homes, though the choice of basing their thermal 

performance on dwellings solely constructed in the period 1981-1996 is more contentious: over 75% 

of the housing stock was constructed prior to 1975, and 36% dates to the pre-war period (BRE, 2008) 

when the thermal performance of stock was considerably lower. 

It could also be argued that four is a rather low number of regions on which to model a stock of 26 

million dwellings in view of the rather large spread in the number of cooling degree-days forecast for 

different areas of the country as seen in Section 3.5. But the fact that the populous London area, the 

most densely-populated and warmest part of the country in summer, is included, serves to some 

degree to lessen any detriment arising from the smallness of the number, given the fact that a 

“pessimistic business-as-usual” scenario is the scenario being explored. 

Inasmuch as the air-conditioning system used in the model is a split system, one cannot argue that 

this is not pessimistic, since the residential air-conditioning market is dominated, rather, by lower 

power rated moveable units which comprise 81% of sales (and 84% of the stock) (DGTREN, 2008). 

Perhaps a more realistic business-as-usual approach would be to include moveable units in the 

model which are likely to dominate the market for some time to come in view of their cheapness 

and ease of installation74 . 

The choice of 50% and 100% for uptake of air-conditioning seems to have been arbitrarily chosen, 

and, indeed, an uptake rate of 100% would be very pessimistic, if not altogether very unlikely. Since 

the rate of uptake is apparently climate-related and bears such a very large influence upon the levels 

73 
EER is dimensionless in Europe and is the ratio of the cooling output (kW) to the cooling input (kW), 

0
measured under specific conditions (e.g. temperature 35 C, humidity 40%). It is functionally equivalent to the 

American EER which has units of BTU/hour/Watt, in which cooling output is measured in British Thermal 

Units/hour (BTU/hour) and input is measured in Watts. See the Glossary for further information regarding 

EER, Seasonal Efficiency Ratio (SEER) and usage made of them in this thesis. 
74 

Moveable units are forecast to comprise 88% of residential (<12kW) air-conditioning systems by 2030, the 

last year for which a forecast is made (DGTREN, 2008). 
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of space cooling energy consumption (as detailed in Section 3.7 and as reported by Sailor and 

Pavlova (2003)), the authors’ decision to err on the side of caution in describing the worst case 

scenario is, however, justified. 

3.3.2	 Air-conditioning energy use in houses in southern England (He, et al., 

2006) 

In this study, a bottom-up model estimating space cooling energy consumption from the housing 

stock of southern England using London weather data for the period 1 June 2004 - 30 September 

2004 is constructed and modelled using the software package Tas (He, et al., 2006). The stock of 

southern England is modelled by the three most common house types (terraced, semi-detached and 

detached), which are modelled as having a design and size which are typically seen in the stock. 

Flats are excluded from the analysis. The construction of each of the dwellings is varied so as to 

accord with dwellings from three time periods (pre-1919, 1919-1964, post-1964). Thus the stock is 

modelled by nine representative buildings, and appropriate weighting values are applied in accord 

with the current distribution of these dwellings in southern England. 

In line with the current distribution of air-conditioning systems in the UK stock, it is assumed that 

85% of the dwellings with air-conditioning use moveable units, whilst the remaining 15% have split 

systems; the moveable units are assigned a seasonal energy efficiency ratio (SEER) of 0.8, whilst the 

split systems are assigned a SEER of 2.875 . Cooling control is assigned to the sitting room and the 

main bedroom, as previous research by the authors had shown these to be the rooms in which air-

conditioning is most frequently installed, the set-point temperature being set at 22 ±2 0C. Various 

other set-point temperatures are also modelled. Uptake rates are based on a written answer to a 

question asked of the Department for Environment, Food and Rural Affairs (DEFRA) Minister in the 

House of Commons as reported in Hansard (Morley, 2005), where it was estimated that 0.5 million 

units were in existence at that time, and that, “based on continuation of current trends”, numbers 

would increase to 2.3 million by 2050; the authors state that this is equivalent to an increase in 

uptake from 2.4% to 11% by 2050. In order to assess the impact of climate change upon the cooling 

energy consumption required for the bedroom, a final weighting factor is applied, where the 

weighting factor is the ratio of the number of cooling degree-days (CDDs) for the future climate76 to 

the number of CDDs for the present climate77 . 

Appraisal 

The detail underpinning the important aspect of stock representation is very good: the thermal 

performance of aged dwellings is taken into consideration, and it is seen that the three generic 

dwelling types constitute 72% of the national stock (BRE, 2008). 

75 
The EER is actually reported as 2.8. The SEER is assumed to have the same value as the EER, the SEER of a 

typical residential central cooling unit not being very different from the EER (personal communication, Ayub 

Pathan, 3 October 2012). 
76 

The number of CDDs for the future climate are calculated using “morphed” weather years derived from 

UKCIP02 data. 
77	 0

CDDs are calculated to a base temperature of 22 C. 
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The set-point temperature band of 22 ± 2 0C is also recognised as being realistic, a study of dwellings 

in south east England showing an average switch-on temperature of 24.2 0C with temperatures 

being maintained at an average of 22.3 0C (Pathan, et al., 2008). 

The decision to use a high percentage of moveable air-conditioning units in the model is also 

recognised as being realistic, although one might contend that the choice of using an EER of 0.8 is 

unrealistically low, and well below the stock Government Standard Average of 2.91 (Section 3.8.2.2): 

the value of 0.8 is apparently based on tests previously carried out by the authors on an a moveable 

air-conditioning unit bought at random and performed in a laboratory. 

Whilst owning to the fact air-conditioning ownership statistics in the domestic sector are very 

limited in nature, and that this limitedness results in a wide range of uncertainty, one cannot 

comment on the dependability of the information relayed by the DEFRA Minister with any degree of 

authority, since the Minister did not quote its source. The fact that uptake is estimated to increase 

in a linear fashion between 2005 and 205078 leads one to question how much, if at all, climate 

change has been taken into account in making the prognostications. 

Levels of future energy consumption are estimated as simple fractional multiples of the present day 

(2004) energy consumption using a multiplying constant, which is the ratio of the number of CDDs in 

the future to the present day number of CDDs (base year)79 . Whilst this is the conventional method 

of using degree-days to forecast average future energy consumption, the authors have apparently 

erroneously used the London Design Summer Year (DSY) (1989) instead of the Test Reference Year 

(TRY)80 (or the mean number of CDDs) as the base year (but it is not clear whether the future years 

are future DSYs, future TRYs or future average years): irrespective of which type of future year is 

used, the effect of using the 1989 DSY serves to result in a fallacious forecast of average future 

annual energy consumption. 

What is more, it is not clear that a base temperature of 22 0C is appropriate for the calculation 

method used to forecast future consumption levels (Appendix 10), a base temperature in the region 

of 18 0C or 18.3 0C (65 0F) being the more usual choice. 

It is also questionable whether climate data for London should be viewed as representative of the 

whole of southern England. As seen in Section 3.5, CDDs values are rather higher for London than 

they are for other regions in the country, even those other regions in the south of England. 

3.3.3	 Evaluation of the climate risks for meeting the UK’s carbon budgets (AEA, 

2011) 

The top-down model presented in this report for the Committee on Climate Change uses London as 

a surrogate for the whole country in estimating the increase in cooling (and heating) demand in a 

future warmer climate (AEA, 2011). The model combines (i) data produced by the UKCP09 Weather 

Generator for London and (ii) present day monthly CDD totals obtained from 18 weather stations 

78 
2005: 0.5 million units, 2010: 0.7 million units, 2020: 1.1 million units, 2050: 2.3 million units. 

79	 0
The model locks itself into using a base temperature of 22 C. 

80 
The DSY represents the summer weather of an atypically warm year (equating to the third warmest year in a 

series of 20), whilst the TRY is representative of an average year. 
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throughout the country (1970-2010). It is underpinned by the degree-day principle where electricity 

consumption is assumed to increase in linear fashion in response to increasing numbers of CDDs. 

CDDs are calculated to a base temperature of 22 0C, and the relationship between energy 

consumption and degree-days is described arithmetically, where the constant which determines the 

amount by which electricity consumption increases for a rise of 1 CDD is termed the ‘elasticity of 

demand’ (Appendix 10). 

The model comprises a number of steps which can be distilled as follows, the first two steps being 

the establishment of assumptions: 

i. establish the ‘reference’ present day, cross-sector national cooling demand, which is taken 

as the ‘cooling plus ventilation’ figure for the service sector (DECC, 2011d), 

ii. establish the ‘elasticity of demand’ in response to temperature (i.e. the ratio of ‘the 

percentage increase in electricity consumption’ to the ‘percentage increase in temperature’, 

e.g. a 1% increase in temperature (number of CDDs) resulting in a 0.12% increase in 

electricity consumption has an elasticity of 0.12) 

iii. using the data from steps i and ii, calculate the actual increase in electricity consumption 

(GWh) per CDD increase 

iv. calculate the percentage increase in the number of CDDs for London between the present 

time and various time-slices in the future (using DECC/UKCP09 data) 

v. apply the London percentage increase in CDDs (from step iv) to present day data gathered 

from the 18 weather stations, in order to calculate the number of CDDs for each weather 

station for the various time-slices in the future 

vi. calculate the increase in electricity consumption (GWh) for each of the 18 weather stations 

for the various time-slices in the future (using the data calculated in steps iii and v). 

Appraisal 

The model assumes that cooling energy consumption will increase linearly in response to increasing 

numbers of CDDs. The simplicity of the model is commendable, but the authors realise that 

problems exist within it: its forecasts are correctly described as worst case scenarios. 

The relatively big differences in air temperature forecast for different regions within the UK mean 

that the more that the CDD data are regionalised, the less chance of accruing error. As such, the 

current climate of the country is undoubtedly well represented by the data gathered from the 18 

regional weather stations. The danger of using a limited number of weather stations to represent 

extensive areas of the country can be shown in Figure 28: in this example taken from UKCP09 source 

data, the daily mean summer maximum temperature for a medium emissions scenario in the 2080s 

for London at the 20% probability level81 is forecast as 24 – 27 0C, which compares with the 21 – 24 
0C seen in the immediate region, and a similar disparity is seen between Manchester and the North 

West. 

81 
20% probability level = (very) unlikely to be less than the stated temperature 
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Figure 28 Daily mean maximum temperatures forecast for UK under a medium emissions scenario (2080s, summer, 20% 

probability level) 

However, the premise that the space cooling energy consumption will increase at the rate stated 

(elasticity = 0.12) is suspect, as the authors, themselves, point out. It is based on the 0.12 figure 

used in the Department of Energy and Climate Change (DECC) Energy Model used for electricity 

demand in winter (i.e. a 1% increase in the prevalence of cold temperatures over winter results in 

increased electricity consumption of 0.12%) (Oxford Economics, 2008): the premise is that the 

elasticity of electric heating is of approximately equal value to the elasticity of electric cooling, as has 

been observed in the US. There is no significance, however, in the fact that the elasticity of electric 

heating in the United States averages out to equal the elasticity of electric cooling, there being no 

direct relationship between the two as seen in Section 3.3.5, where there is seen to be significant 

differences between the two values in different states. In brief, an increase in the elasticity of 

electric heating by x would not necessarily result in an increase in the elasticity of electric cooling by 

x, and vice versa. 

It is also worth pointing out that the premise also assumes that the climate-dependent increase in 

space cooling electricity consumption will be cross-sectoral, where the increase in cooling demand in 

the service sector is assumed to be the same as the increase in demand in the domestic sector, since 
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service sector consumption is used as a surrogate for national consumption. This is doubtful since 

cooling in the service sector bears much less relationship with climate than does the domestic sector 

with climate, as previously mentioned at the beginning of the chapter. 

It is also a concern that service sector “cooling plus ventilation” figures are used as a proxy for 

national cooling consumption, since ventilation consumption is erroneously included in the 

calculation. 

Finally, the elasticity principle used in this approach makes no specific direct allowance for an 

increase in rates of penetration of air-conditioning as the climate warms. Elasticity is a composite 

measure of the overall increase in electricity consumption to an increase in temperature, that 

response resulting from the combination of both (i) prolonged and more intensive operation of air-

conditioners currently in use, and (ii) increase in numbers of air-conditioners (increase in 

penetration). A refinement to the approach adopted here would be to disentangle the responses 

resulting from (i) and (ii), since it seems as though they increase at different rates in the future: 

whilst it may be correct to assume that (i) will increase linearly with respect to increasing number of 

CDDs, penetration rates do not seem to increase in the same linear fashion (see Section 3.7). 

3.3.4 Cold Comfort for Kyoto? (Wu & Pett, 2006) 

The increase in energy consumption and carbon emissions emanating from increasing residential 

demand for cooling in the south of England in a warming climate are estimated in this model (Wu & 

Pett, 2006). It uses data output from UKCIP02. The model, a variation on the conventional bottom-

up approach, uses the degree-day principle as its fundament. Rather than use an ‘elasticity of 

demand’ factor to estimate actual energy consumption as in the previous model, it uses CDDs in a 

more direct manner, the result of which is that its estimations are presented as falling between a 

range of values which is dependent upon the choice of base temperature. In the case where the 

base temperature is known, one is not required to invoke the use of an ‘elasticity of demand’ 

constant (the uncertainty of which value has been described above) (see Appendix 10). 

Rather than using dynamic simulation modelling (DSM) software to measure the energy 

consumption in a dwelling/set of dwellings which are representative of the stock as described in the 

previous bottom-up models, the approach taken is to calculate the energy consumption of an air-

conditioning unit typically used in dwellings, and build up from there. As dwellings are not, for the 

most part, occupied during the hottest part of the day, it is assumed that an air-conditioner is used 

for 8 hours of each degree-day, the energy consumption being based on that used by the 0.8 kW 

power-rated De’Longhi air-conditioner, stated as having the capacity of cooling a south-facing 25 m2 

living room. The number of CDDs are calculated for a range of base temperatures (20, 22, 26 0C), 

and two different penetration rates (100% uptake, and an uptake of up to 45% chosen as reflecting 

that group of people wealthy enough to afford air-conditioning82). The equation describing the 

model can be summarised as follows: 

Equation 11 

� = (3��J × KL × �M × F × F�)/(�N × 10I)	 
82 

Taken as the percentage of households paying higher rates of council tax (bands D to H). 
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where, 

E = national space cooling energy consumption (GWh) 

CDDp = population-weighted CDD83 total for southern 

England 

ru = power rating of air-conditioning unit (i.e. power input = 

0.8 kW) 

nh = length of time used for a typical period of operation 

(hours) 

p = population 

pa = penetration rate of air-conditioning (%) 

no = number of occupants/dwelling 

Appraisal 

In using the air-conditioning unit itself as the point of reference, the building block upon which all 

else is built, this model presents an interesting variation on the conventional building-as-base-unit 

bottom-up approach. The authors state that its output agrees in magnitude with that of the Market 

Transformation Programme, a DEFRA-managed programme, charged, amongst other 

responsibilities, with ensuring that reliable information on sustainable products (including air-

conditioning) is available and used to inform policy decisions (MTP, 2012) (see Section 3.3.8). Citing 

the remarks made to the House of Lords Select Committee on Science and Technology by 

representatives of the Institute of Refrigeration that end-users commonly buy very cheap equipment 

rather than the best on the market and/or operate the equipment badly, the decision not to take 

the thermal performance of a generic dwelling/set of dwellings into account is perhaps more 

pragmatic and less bold than might be thought at first. The imagined worst case scenario by Wu and 

Pett where “the cheapest units, without adequate thermostatic controls, are left on in a bedroom 

overnight, with a window for ‘cooling’ breezes, and the sleeper wearily pulling a blanket over them 

in the comparatively chilly early hours rather than wake up sufficiently to turn off the cooler” is 

perhaps a better reflection of how air-conditioning is really used rather than the highly-regulated, 

artificial set-up used in DSM, with its set-point temperatures for switch-on and switch-off. 

The principle underlying the energy calculation is that cooling is not called upon until the number of 

CDDs =1. At this point the air-conditioner is switched on, the typical length of operation being eight 

hours: thus eight hours’ worth of energy is consumed. Since energy consumption is proportional to 

the number of CDDs, a doubling in the number of CDDs results in a doubling of energy consumption, 

CDD values must be weighted in proportion to population when considering uptake. This is easily seen in a 

country with extremes such as Canada, which, for the most part, is sparsely populated with a limited number 

of densely populated urban areas in the south: since it is clear that the greatest volume of air-conditioning 

systems will be bought in these areas of high population like the southern cities of Toronto and Montreal, an 

average CDD total for Canada would have to take more account of temperature in these cities than in the 

expansive lowly populated northerly regions where very few air-conditioners are installed. 
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with a value of 2CDDs resulting in 16 hours’ worth of energy consumption, and so on (i.e. there are 

eight hours of consumption per CDD). In this way the annual energy consumption for the base year, 

comprising a total of a CDDs, is calculated. For a future year comprising of b CDDs, the increase in 

annual energy consumption is simply calculated as the ratio b/a, in accord with normal degree-day 

theory. Indeed, the choice of a run period of eight hours is not far removed from the 6.75 hours 

average (standard deviation of 3.1) observed for real usage recorded for nine rooms in dwellings in 

south east England in 200484, despite the wide range of 

i. switch-on temperatures (22.3-27.9 0C), 

ii. system types (six different systems), 

iii. cooling capacities (2.45-6.7kW), 

iv. EERs (2.23 or less-3.38 or more), 

v. dwelling type and location (from top-floor flat in central London to detached timber-framed 

house in East Sussex, 

vi. room type (all rooms in conventional house, including conservatory), and 

vii. dwelling age (1898-2001) (Pathan, et al., 2008). 

However, despite the good reason underlying the choice of an eight-hour operating period, such a 

method results in what appears to be an unreasonably large total number of hours of operation over 

the course of the base year. With the present day national annual number of CDDs amounting to 47 

for a base temperature of 18 0C (see Section 3.5), this amounts to annual usage of 376 hours, which 

is equivalent to almost 30 hours of use per week during the summer months of June, July and 

August. In a country where the vast majority of the population feel no need to use any air-

conditioning at all in the home, these numbers not only appear unduly large, but are in discord with 

estimates with the Market Transformation Programme (MTP) (see Section 3.3.8). The high value for 

the annual number of hours of operation may partially reside in the fact that although an air-

conditioner is switched on for eight hours, it may not be actively chilling the air for eight hours. 

Cycling between “chiller on” and “chiller off” where a thermostat causes a switch between the two 

once the comfort temperature is reached, it would seem that a large part of the eight-hour period 

may be spent in “chiller off” mode where minimal power is drawn. An improvement to the method 

of energy calculation would be to estimate the number of hours of annual consumption in the base 

year as a whole (as does the MTP), rather than attempt to construct it from the daily totals. 

The decision to run the model for a number of different base temperatures shows how very 

important it is to choose the correct base temperature85: there is a three-fold (or more) difference in 

consumption levels for 2050 depending upon whether a base temperature of 20 0C or 26 0C is 

chosen. Although the difference in cooling energy consumption for base temperatures calculated to 

20 0C and 22 0C86 is much smaller, it, nevertheless, remains relatively high at approximately 50%. 

84 
In one room, a kitchen, the average duration of a single operation was 45 minutes. Presumably the air-

conditioning was, in this instance, used while cooking was in progress, and not primarily used as a response to 

warm weather per se. Ignoring this observation, the average operation time for the remaining eight rooms 

calculates as 7.5 hours (standard deviation of 2.2). 
85 

The principle underlying the importance of choosing the correct base temperature is illustrated in Appendix 

10. 
86 

Such temperatures which are likely to be much closer to the real base temperature – see Section 3.3.5 and 

Section 3.3.6. 
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Although the text is unclear on this matter, it appears that CDD totals are not representative of 

average years, since very high present day CDD totals are reported - 310-320 (base temperature 22 
0C) for southern England (c.f. the present day total for Heathrow calculates as 122 for a base 

temperature of 18.00C (see Section 3.5). It appears that the CDD totals used in this study are the 

CDD totals for the Design Summer Year, which represents a hot summer (the third hottest in a run of 

20 years). This would also explain why the annual number of hours of operation is so high. 

The uncertainty to which to attach to penetration rates is also problematic, since it can have such a 

large impact upon energy consumption (Section 3.7). Admitting to the fact that data from the USA 

show that there is little difference in uptake of air-conditioning between social classes, this 

necessarily disqualifies use of the penetration rate associated with wealthy householders. However, 

the alternative uptake rate of 100% is very unlikely: 100% uptake of air-conditioning is not even seen 

in the very hot, very humid climates of the USA (EIA, 2012). 

3.3.5	 Air conditioning market saturation and long-term response of residential 

cooling energy demand to climate change (Sailor & Pavlova, 2003) 

In a seminal and much cited paper, two top-down models are presented in this study which 

investigates the effect of air temperature upon (i) residential electricity consumption, and (ii) market 

penetration87 of air-conditioning systems in the residential sector (Sailor & Pavlova, 2003). Although 

the paper only examines data from the US, its findings nevertheless have a bearing upon the UK 

insofar as the present analysis is concerned since the information which it yields, even if not 

universally applicable, suggests where else more relevant data might be sought. 

In the first of the two models the functional relationships between monthly electricity consumption 

and (i) mean monthly number of CDDs, (ii) mean monthly number of heating degree-days (HDDs) 

and (iii) mean monthly wind speed (w) are examined for four different states in diverse geographical 

locations using regression analysis. The electricity consumption is trend-adjusted to minimise the 

influence of non-climate factors (as described in Appendix 8), whilst the degree-day totals are 

population-weighted to better represent the climatic conditions experienced by energy consumers 

(see footnote 83). The residential per capita elasticity consumption (kWh/CDD) (base temperature 

87 
The authors of this paper use the term “saturation” where others, including the author of this thesis, use the 

term “penetration”, since “saturation” has different meanings for different people. In a country like the US 

which has extremely hot climates, this does not necessarily present a problem since 100% “penetration” may 

approach 100% “saturation”, at least in the hottest and most humid regions. But it can be problematic for 

countries with milder climates where a saturated market, the point beyond which the market cannot grow any 

further, does not necessarily represent 100% penetration of the market. e.g. the climate in a cooler country 

(called X-land) might be such that the maximum number of dwellings which will ever install air-conditioning is 

40%, such that a penetration rate of 40% is the same as 100% saturation. In this thesis, as elsewhere in the 

literature, the term “saturation” is used in this second sense, where a 10% penetration rate in X-land amounts 

to a saturation rate of 25%. 

It should be pointed out the use of the word “saturation” in this paper may have been misinterpreted in yet a 

different way by the authors of the DGTREN (2008) report described in Section 3.3.7, where Sailor and 

Pavlova’s “saturation” rate is correctly understood as a “penetration” rate, but whether deliberately or not, is 

also seemingly taken to represent 100% saturation. The reader is warned of the confusing multiple-usage of 

the term “saturation” in the literature. 
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18.3 0C88) is calculated in each of the four regressions89 . R2 values are found to range between 0.71 

and 0.87. This increase in consumption due to more intensive and prolonged use of air-conditioning 

in response to increased temperatures (or number of CDDs) has been termed the “short-term 

response” to distinguish it from the “long-term response”; the long-term response is the increased 

consumption resulting from more air-conditioners being used as a consequence of increased 

temperatures (or number of CDDs). 

In the second of the two models which examines ownership rates of air-conditioning in each of 39 

cities90, a single regression analysis finds that penetration rates are highly correlated (non-linearly) 

with the number of population-weighted CDDs91 (base temperature 18.3 0C) across the range of 

cities: the curve shows an initial very steep slope (i.e. accelerated levels of uptake) which gradually 

diminishes as CDD values increase. 

In the final part of the paper the two models are combined and the effect of a 20% increase in the 

number of CDDs on air conditioning electricity consumption is examined for a number of cities. For 

hot climates it is seen that the increase in per capita electricity consumption92 is more important 

than the increase in electricity consumption deriving from increased saturation93, but for less hot 

climates, the reverse is the case. 

Appraisal 

The two top-down models, which describe (i) cooling energy consumption and (ii) penetration in 

terms of CDDs, indicate that the choice of base temperature of 18.3 0C is good, in view of the high 

values for the correlations of determination. 

The first model shows that there is a good deal of variation in the per capita electricity consumption, 

there being a considerable difference between the coefficients k1 and k2 for each state, k1 being 

almost three times as large as k2 for Ohio, for example. This highlights the danger in the method 

adopted in Section 3.3.3, a justification for the validity of its method being that the average 

electricity heating and cooling ‘elasticity of demand’ values are equal in magnitude in the US94 . Since 

the per capita electricity consumption is shown to be city-specific (i.e. the per capita electricity 

88 
An optimisation study revealed that no statistically significant improvement was gained by using alternative 

definitions for the base temperature. 
89 

Per capita elasticity consumption for HDD and wind speed are also calculated, the total energy consumption 

(E) being calculated as: E = k1.CDD + k2.HDD + k3.w + constant. 
90 

Data obtained from the US Census American Housing Survey (typically 1994-1996). Honolulu on the mid-

Pacific island of Hawaii is a notable anomaly, the explanation for the relatively low penetration being posited 

as a deriving from a combination of cultural differences, building practices and the presence of relatively 

strong trade winds. 
91 

Data obtained from National Climatic Data Center. 
92 

i.e. air conditioners being used for longer and more often as a consequence of hotter outdoor air 

temperatures (short-term response – see Glossary). 
93 

i.e. more air-conditioning being used (long-term response – see Glossary). 
94 

As there is so much variation in the way electricity is used in the US, with its plethora of climates, there 

really is no significance in the fact that average values for the heating and cooling ‘elasticity of demand’ values 

for the nation as a whole are of equal magnitude. 
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elasticity consumption constant varies considerably between cities) the first model has no 

application as a predictor of energy consumption outside of these cities. 

But it is the second model to which most interest is attached. The finding that penetration rates are 

predictable and capable of being described by CDD values alone is initially viewed as remarkable. 

Despite the great variety of climates with differing levels of humidity, despite the different types of 

air-conditioning in use (both window units and central air-conditioning systems) and despite the 

great variety of construction types within the US housing stock, there appears to be a universality 

apropos the uptake of air-conditioning which can be described by air temperature alone. 

The combined results of the models indicate that increases in consumption in hot climates are more 

strongly affected by an increase in service than an increase in penetration, with the reverse being 

true for less hot climates where an increase penetration contributes the majority of the increase in 

consumption. Taking the city of Buffalo in New York (with a penetration rate of 25%) as an example, 

a 20% increase in the number of CDDs from 282 to 338 would result in an increase in air-

conditioning electricity consumption of over 60%, but the increase would only be 20% if the increase 

deriving from increased penetration were excluded. This compares with the much hotter city of 

Houston (penetration rate 94%) where a 20% increase in the number of CDDs would result in an 

increase in an increase in air-conditioning electricity consumption of 21%, where only 1% of the 

increased consumption derives from increased penetration. 

In view of the facts that (i) the immature air-conditioning market in the UK is still some way behind 

the US market in terms of penetration95, and (ii) the change in penetration is the more important 

aspect of climate-related change with regard to cooling energy consumption for climates similar to 

those predicted for the UK96, it would seem that increased uptake of air-conditioning rather than 

increased service per se will most affect total consumption in the UK. In other words, the long-term 

response is likely to be more important than the short-term response for a warming UK climate. 

3.3.6	 Home air conditioning in Europe – how much energy would we use if we 

became more like American households? (Henderson, 2005) 

This study focuses on the American experience of residential air-conditioning and applies it to 

several locations in Europe (Henderson, 2005). Although the UK is largely omitted from the analysis, 

the method used to estimate space cooling energy consumption is nevertheless applicable to the 

UK. In view of the high degree of maturity of the American market regarding air-conditioning, it may 

serve to indicate the pathway which the less mature Europe market will follow in the coming 

decades. 

Using residential air-conditioning data from the 2001 US Residential Energy Consumption Survey 

(RECS) collected by the US Department of Energy’s Energy Information Administration (EIA), the 

paper examines (i) the relationship between the number of CDDs and penetration (uptake) of air-

conditioning, and also (ii) the relationship between CDDs and specific energy consumption (energy 

consumption/m2). 

95 
Penetration estimates vary between 3% (BSRIA, 2011) and 7.2% (following analysis of DGTREN (2008) data. 

96 
By the 2080s, even under a high emissions scenario, the mean number of CDDs (calculated to a base 

0
temperature of 18.3 C) forecast for Great Britain is only 312. 
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(i) The functional relationship between the uptake of air-conditioning systems and the number of 

population-weighted CDDs (base temperature 18.3 0C) mirrors the earlier work carried out by Sailor 

and Pavlova (2003), even though a different air-conditioning dataset is used. When the function is 

applied to a European context, it is seen that current penetration rates in locations throughout 

Europe are very small in comparison to the penetration rates which would ensue if the American 

pattern of uptake is followed. Whereas, for example, Italy was estimated as having a penetration 

rate of about 10% at the time of the European Commission’s Energy Efficiency of Room Air 

Conditioners report in 1999, penetration could be expected to increase to over 70% using the 

relationship established between penetration and CDDs. 

(ii) When cooling residential energy consumption per m2 is plotted against CDDs calculated for the 

nine census divisions into which the country is divided (base temperature of 18.3 0C), a near linear 

relationship is observed between the two (Figure 29). 
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Figure 29 Relationship between space cooling energy consumption and CDDs (base temperature 18.3 C) for the US using 

RECS 2001 data 

Appraisal 

This paper closely resembles the study by Sailor and Pavlova (2003), with both papers investigating 

the relationship between the number of CDDs and penetration. But whilst the former examines the 

per capita electricity consumption in relation to the number of CDDs, electricity consumption per m2 

in relation to the number of CDDs is examined in this paper. Very importantly, the paper sets out to 

estimate actual air-conditioning penetration rates rather than use judgement/scenarios to set these 

rates, as seen in previous models. The paper suggests that if the UK were to follow the American 

experience with air-conditioning, penetration rates would reach 50% when the annual number of 

CDDs was of the order of 300-350. 

The extremely high degree of correlation between specific energy consumption and the number of 

CDDs is interesting because construction type apparently does very little, if anything, to disturb its 

linearity: even though dwellings in very hot locations which experience a high number of CDDs and 
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which are likely to have different construction types to those in cooler locations which experience 

few CDDs, the specific cooling energy consumption appears to be predictable for CDD values in the 

range 400-1400. This might suggest that the data are cross-transferable, and so equally applicable 

to the climate in the UK, whether now or in the future. Examination of the source data reveals, 

however, that these data are not transferable to the UK, as the relationship observed in Figure 29 

does not derive from actual air-conditioning electricity consumption taken from field measurements. 

Rather, total electricity consumption is collected, and a statistical model is used to apportion the 

total amongst different end-uses, one of which is air-conditioning (EIA, 2012). In essence the 

consumption data have been fitted to a pre-defined distribution profile of air-conditioning systems 

and a pre-defined distribution profile of dwellings, and so it is perhaps not surprising that specific 

space energy consumption exhibits such a large degree of predictability. Whilst it is clear that the 

statistical model very well maps observed consumption patterns over the range of values examined, 

it does not necessarily reflect real air-conditioning consumption, and, moreover, it is not universally 

transferable for extrapolations of CDD values below 40096: although the extrapolated data would 

suggest that air-conditioning is not used at all for annual CDD values below 149 (base temperature 

18.3 0C), data from both California (California Energy Commission, 2010) and Canada (NRCan, 2012; 

NCDIA, 2012) indicate otherwise, as does the fact that there is a limited amount of consumption 

within the residential stock even in the present climate of UK (40 CDDs for a base temperature of 

18.3 0C). 

3.3.7	 Preparatory study on the environmental performance of residential room 

conditioning appliances (airco and ventilation)97 (DGTREN, 2008) 

The European Union's Ecodesign Directive (European Commission, 2005) is designed to improve the 

environmental performance of energy-using products through the harmonisation of the legislature 

in its constituent countries (European Commission, 2005). As part of its economic and market 

analysis, it has undertaken to estimate the sales and stock of room air-conditioning (<12kW) up until 

2030, splitting the market into residential, office and retail sectors (DGTREN, 2008). The bottom-up 

model comprises two steps (Pout & Hitchin, 2009). 

In the first stage of the model, the Bass diffusion model, which is reported as having successfully 

generated the technology uptake rates of a variety of electronic components including air-

conditioning in the US, is used to estimate sales at various points in the future. Stock levels of 

different types of air-conditioning system are calculated on the basis of volume of sales for each type 

of air-conditioner, where the 2005 domestic stock is estimated to comprise of 84% moveable units 

and 16% split units. It involves the use of two coefficients: (i) the coefficient of innovation 

(advertising effect), the same value as that used for the US market being used, and (ii) the coefficient 

of imitation (word-of-mouth effect), the value of which has been adjusted so that actual sales match 

predicted sales. Knowledge of the percentage market saturation (see footnote 87) for a given year is 

also required in addition to the start year of the model. In the second stage, these sales data are 

then used to generate stock data, where account is taken of removals from the stock based on 

typical product lifetimes. Stock forecasts are generated at five-yearly intervals until 2030, where the 

split between residential, retail and office sectors is based on market research data for the most 

97 
Note that although the study states that it is a “draft”, it has apparently been accepted in this form as the 

finished report, requiring no further amendment (European Commission, 2012). 
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recent year available and assumed to remain constant in future years. A final adjustment brings 

model forecasts into alignment with forecast sales for the year 2010, it being noted, for example, 

that sales in the short term were being overestimated in presently small markets in northern and 

central Europe. 

Appraisal 

Although the report does not attempt to forecast energy consumption, its use of the Bass model to 

forecast uptake is recognised as credible. Like the paper by Wu and Pett (2006), it uses the air-

conditioning unit itself rather than a dwelling on which DSM is performed. Its accuracy is dependent 

upon the value of the coefficient of innovation. It is unclear, however, whether this is appropriate, 

since a higher degree of innovation in the US, resulting from different a psyche, may have been a key 

factor in the speed of uptake of air-conditioning in the US compared to that in Europe. 

In the short term, the Bass model may accurately reflect sales and subsequent stock levels, but 

forecasts beyond 2030 are not made. It appears that Sailor and Pavlova’s equation (describing 

penetration in terms of CDDs) has been used to establish maximal saturation, which, as previously 

mentioned, is necessary for the function of the model. If so, this would be incorrect, and perhaps 

derives from Sailor and Pavlova’s use of the word “saturation” (described here as “penetration”) 

where calculated values have been interpreted as points of maximal saturation – see footnote 87. 

As mature as was/is the US air-conditioning market, analysis of the Residential Energy Consumption 

Survey (RECS) data shows that saturation had not been achieved by 2003, as market penetration has 

increased still further since Sailor and Pavlova’s work was first published in 2003. Furthermore, 

there is no evidence available to show that Sailor and Pavlova’s equation is applicable to any sector 

other than the residential sector, yet it is seemingly applied to the office and retail sectors. 

Since the model is sales-based, future projections are prone to error in the case where anomalous 

patterns of sales take place. Indeed, “anomalous” sales may be the reason for the need of the final 

adjustment which brings modelled sales into alignment with 2010 sales. But the adjustment seems 

to be insufficient: when one considers that the model estimates that the residential sector contained 

almost 850,000 moveable units in 2005 and over 1.6 million in 2010, and will contain over 2.7 million 

in 2015 (i.e. a penetration rate of approximately 10%), it would seem likely that these figures are 

erroneously high98 . The case for this argument, that stock estimates may have been based on 

abnormally large sales figures, is strengthened when it is recognised that the early- and mid-2000s 

featured some of the hottest years on record and that moveable units are usually “distress 

purchases” bought during a heat wave or similar (BRE (Butler), personal communication cited Wu 

and Pett (2006)). 

3.3.8 Market Transformation Programme (MTP, 2012) 

The Market Transformation Programme (MTP) is a DEFRA-managed programme which, amongst 

other things, has the responsibility of ensuring that reliable information on products covered by the 

98 
c.f. the Building Services Research and Information Association (BSRIA), market research experts within this 

field, estimate penetration in the residential sector as 3% in 2010 and 3% in 2014 (BSRIA, 2011). 
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Ecodesign Directive (including air-conditioning) is available and used to inform policy decisions (MTP, 

2012). It has produced a suite of Government Standard Briefing Notes (GSBNs), published in 2010, 

key of which, as far as this thesis is concerned, are the Briefing Note Packaged Air Conditioning 

(BNPAC) series, which model the future uptake of various air-conditioning systems in the non-

domestic sector. The bottom-up model comprises three steps, in the first of which expert judgement 

is used to formulate a series of scenarios which envision different futures: 

i. Reference Scenario - business-as-usual, 

ii. Policy Scenario - following introduction of expected new policy and amendment to existing 

policy, and 

iii. Best Available Technology Scenario (hypothetical realisation where the most efficient/lowest 

energy consuming technologies on the market or close to market are used) 

Using (i) actual sales (2002-2007) and (ii) predicted sales (2007-2012) from market survey documents 

obtained from the BSRIA, sales extrapolations are made up to 2030. No detail is supplied but it is 

stated that the extrapolations consider “factors such as change in technology, economic forecasting 

and scientific opinion of warmer temperatures in the UK, as outlined by UKCIP02”. From these sales 

data the stock size is generated where removals from the stock are generated by transposing a 

normal distribution of decay on to product lifetimes. 

Energy consumption levels for each type of air-conditioning system for each size category (power 

rating) are estimated in the final stage of the model, where: 

Equation 12 

3BB+@�O	���KO�	AB�CDEF�@B� = (�P ×	KL ×	�M)/	3BQ 

where, 

ns = number of units in the stock 

ru = average power rating (i.e. power input in kW), there 

being four size categories for household air-conditioners 

(which are defined as those with a power rating of less than 

12 kW) 

nh = hours of effective usage per year99 

CoP = Coefficient of Performance100 

99 
For Equation 12 to be valid, nh must refer to hours of effective usage, e.g. for an air-conditioner with a 

thermostat, if cycling between “chiller on” for 85% of the time and “chiller off” for 15% of the time, the 

number of effective hours refers is the length of time covered by the 85% figure. 

100 
The MTP appears to use the term CoP where others use EER or SEER, all three terms being dimensionless 

measures of efficiency. (In the US, EER has unit of British thermal units/Watt.hour.) In Europe, for apparatus 

using the vapour-compression cycle (e.g. heat pumps and air-conditioners) CoP is mostly used to describe 

heating efficiency, whereas EER or SEER are mostly used to describe cooling efficiency. It is assumed that the 
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Appraisal 

Scant detail is given with regard to the formulation of the stock churn aspect of the model: this 

prevents one from offering a critique, unless one considers this sentence itself as an indictment, 

since GSBNs are described as “public consultation documents that allow stakeholders to examine 

the data and assumptions behind the proposed Government Standards and related projections” 

(MTP, 2012). Since the model is sales-based, it would seem likely that the Bass model or similar is 

used to generate future sales data in a similar manner to the DGTREN (2008) analysis; the decision 

to model removals from the stock as a normally-distributed decay would seem to be more realistic 

however, and therefore offers an improvement. Like the DGTREN (2008) model, however, its 

reliance upon sales data to generate stock data serves to limit its usefulness beyond the short term 

(2030), and, moreover, may introduce error into estimates of future stock, where anomalous years 

of sales (the hot years of the early and mid-2000s?) are not recognised as being anomalous, and are 

therefore not recognised as being unsuitable as the basis of a stock model. 

A key component of the energy consumption aspect of the model is the value attached to nh, the 

constant which describes the number of hours that air-conditioning is used in a year. As such, 

energy consumption is calculated in a similar manner to that described by Wu and Pett (2006). 

Remembering that non-domestic air-conditioning is the focus of the documents, it is stated that 

whilst “the usage of many (domestic) units may only be a few tens of hours per year… in other 

domestic situations and offices this may extend to four, five or ten hours per day for up to 60 days in 

year may”, with 250 hours being deemed a reasonable annual usage by the authors. However, 

whilst this assumption of 250 hours may be reasonable for packaged air conditioning systems in the 

non-domestic stock in the present climate, this model, unlike the Wu and Pett (2006) model, seems 

to take no direct account of the fact that as the climate warms (as the number of CDDs increase), 

usage will increase (i.e. increased short-term response)101 . 

Although CoP is modelled so as to increase in increments in accord with the policy scenario under 

investigation, and in so doing incorporates another variable of unknown real magnitude which 

increases the margin of uncertainty associated with the final energy consumption output, it does 

serve, however, to offer alternative pictures of future consumption which stand in contrast to the 

worst case scenario formulated by other models. 

The MTP states that whilst its data represent the best currently available information based on a 

bottom-up approach, DECC projections of the overall energy demand in the non-domestic sector are 

lower102 . Thus, although energy consumption forecasts in DEFRA’s Saving Energy Through Better 

Products and Appliances (DEFRA, 2009) use the MTP’s air-conditioning energy consumption 

projections, they have been scaled down to match DECC's projections for overall energy demand in 

the non-domestic sector. Analysis reveals the value of this scaling factor to be 0.65. Since it is 

implicit that the DECC projections are correct, but that the MTP projections are not (even though its 

authors actually mean EER instead of CoP. See Glossary for further information on use of the terms EER and 

SEER. 
101 

It should be pointed out, however, that since the focus of this model is the non-domestic stock, penetration 

in which bears less relation with climate as previously mentioned, the modellers’ decision not to take direct 

account of climate in estimating penetration is reasonable. 
102 

It is stated that it is assumed that the differences arise from incomplete data with regard to stock, CoP and 

usage in the MTP model. 
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methodology is sound), it would seem that the DECC’s projections may have been aligned with 

current overall measured consumption, perhaps reflecting actual use rather than ownership of air-

conditioning. The fact that the MTP model over-estimates consumption is in keeping with the 

suggestion made above that its reliance on recent sales data could adversely affect future stock 

estimates. 

3.3.9 Summary of Space Cooling Models 

Of the eight models in the literature, five follow the bottom-up approach. Of these, two use the 

dwelling as the base unit from which to build, whilst the remaining three use the air-conditioning 

system as the base unit. The strengths and weaknesses of the models using the bottom-up 

approach are summarised in Table 15 and Table 16. 

Table 15 Bottom-up models – dwelling is the base unit 

Stock Penetration 
Geographical 

Distribution 
Energy calculation 

Aspects 

suitable for use 

in SCECMORS 

Collins et 

al (2010) 

Fair 

dwellings well 

represented by 

type, but not in 

age 

Poor 

50% and 

100% rates, 

no evidence 

to support 

such rates and 

bears no 

relation to 

climate 

Fair 

division of 

country into 

four regions 

Good-Poor 

good - DSM 

poor - based on energy 

consumption of relatively 

high energy-consuming ‘split 

unit’ which is not 

representative of the stock 

based on base temperatures 

of 22.5 0C and 26 0C 

He et al 

(2006) 

Good 

dwellings well 

represented by 

type, and well 

represented by 

age 

Poor 

2.4-11% rate, 

based on 

remark made 

by DEFRA 

Minister, no 

evidence to 

support such 

rates 

Poor-Fair 

southern 

England 

modelled 

from London 

data (no sub-

divisions) 

Good-Fair 

good - DSM 

good - based on sales’ 

proportion of moveable and 

split units 

poor - EER value of 0.8 is 

too low 

based on base temperature 

of 22 0C 

energy 

calculation 

dwelling stock 
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Table 16 Bottom-up models – air-conditioner is the base unit 

Aspects 

Stock Penetration 
Geographical 

Distribution 
Energy calculation 

suitable for 

use in 

SCECMORS 

Wu and Fair Poor Fair Good 

Pett (2006) 

air-conditioning 100% rate and 45% only southern sound methodology energy 

systems rate representative of England is based on energy calculation 

represented by wealthy modelled as a consumption of a 

a single, typical householders, no single region typical moveable 

moveable unit evidence to support (no sub- unit 

(moveable air- such rates and bears divisions) 

conditioning no relation to climate based on base 

units dominate 

the stock) 

temperatures of 20 
0C, 22 0C and 26 0C 

DGTREN 

(2008) 

Good Poor Good Not applicable 

different air-

conditioning 

systems are 

represented in 

proportion to 

sales’ volumes 

over-estimation of 

uptake resulting 

perhaps from 

anomalous years’ 

sales and/or incorrect 

coefficient of 

sales figures 

are national 

sales 

air-

conditioning 

stock 

innovation 

insufficient account 

taken of climate 

dependence 

apparent incorrect 

estimation of maximal 

saturation 

MTP (2012) Poor Poor Good Poor-Fair 

different air-

conditioning 

systems are 

well 

represented in 

proportion to 

sales’ volumes, 

but relate to 

the non-

domestic sector 

over-estimation of 

uptake resulting 

perhaps from 

anomalous years’ 

sales and/or incorrect 

coefficient of 

innovation 

sales figures 

are assumed 

to be national 

sales 

apparent over-

estimation of energy 

consumption (when 

compared to DECC 

data) 

methodology is 

reasonable, but fails 

to take into account 

that a warming 

climate will result in 

a greater number of 

hours of operation 
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The strengths and weaknesses of the three models using the top-down approach are summarised in 

Table 17. 

Table 17 Top-down models 

Robustness of 

source data 

Robustness of methodology Aspects suitable 

for use in 

SCECMORS 

AEA (2011) Poor-Good 

service sector 

‘cooling + 

ventilation’ 

consumption is 

unsuitable, even 

though CDD data 

from DECC/UKCP09 

is reliable 

Poor 

elasticity of demand methodology is 

unreliable, and increase in use due to (i) 

prolongation + intensity is not demarcated 

from that due to (ii) penetration 

based on base temperature of 22 0C 

although data are regionalised to high 

degree, this is insufficient in itself 

regionalisation 

Sailor and 

Pavlova (2003) 

Good 

penetration data 

from US Census 

American Housing 

Survey and climate 

data from the 

National Climatic 

Data Center (NCDA) 

energy consumption 

data believed to 

come from RECS. 

Good 

good correlation between per capita 

electricity consumption and CDDs for base 

temperature of 18.3 0C 

specific account taken of climate-

dependent penetration 

penetration/CDD 

model 

Henderson 

(2005) 

Good 

penetration data 

from US Census 

American Housing 

Survey 

energy consumption 

data from RECS. 

Good 

good correlation between per specific 

electricity consumption (i.e. 

consumption/m2) and CDDs for base 

temperature of 18.3 0C, but cannot be 

applied to a UK context 

specific account taken of climate-

dependent penetration 

penetration/CDD 

model 

Regarding the formulation of SCECMORS, the review makes clear that whilst certain procedures are 

best avoided (e.g. calculation of consumption based on ‘elasticity of demand’), and others are 
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impracticable to use (e.g. calculation of consumption using per capita electricity consumption), 

others still can be gainfully employed. The most prudent course of action would be to develop both 

a bottom-up SCECMORS (of which there are two kinds), and a top-down SCECMORS, so that a 

comparison can be made. Unfortunately the lack of reliably disaggregated UK data at the stock level 

(Section 3.1 and Section 3.2) and the unsuitability of US data for application in the UK (the energy 

consumption aspects of the models in Section 3.3.5 and Section 3.3.6) means that the top-down 

approach cannot be pursued103: SCECMORS therefore uses the bottom-up approach alone. 

3.4 SCECMORS 

The two optimum bottom-up modelling formats for SCECMORS are set out in Table 18104 . The first 

bottom-up approach uses the dwelling as the base unit (SCECdwell), and the second bottom-up 

approach uses the air-conditioner as the base unit (SCECair). 

Table 18 Bottom-up approach modelling optimum formats – reference models 

Stock Penetration Distribution Energy calculation 

SCECdwell 

SCECair 

He et al (2006) 

DGTREN (2008) 

Sailor and Pavlova (2003) 

Sailor and Pavlova (2003) 

AEA (2011) 

AEA (2011) 

He et al (2006) 

Wu and Pett (2006), 

MTP (2012) 

In forecasting future levels of space cooling energy consumption, both SCECdwell and SCECair must 

take account of both (i) the short-term response factor (the ratio of the CDD numbers in the future 

to the present), and (ii) the long-term response factor (the ratio of penetration levels in the future to 

penetration levels in the present)105 . Consequently, knowledge of the following is pre-requisite for 

their function: 

i. present day national annual CDD totals, 

ii. future national annual CDD total, 

iii. present day penetration rate 

iv. future penetration rates, and 

The procedures describing the calculation of CDD totals are outlined in Sections 3.5-3.6, and Section 

3.7 describes the method used to calculate future penetration rates106; SCECdwell is subsequently 

described in Section 3.8 and SCECair is described in and Section 3.9. 

103 
Air-conditioning energy consumption data from Canada is also revealed to be an artificial construct, and 

therefore unsuitable for use in SCECMORS. 
104 

Note that these represent the basic formats and not the actual formats, i.e. modifications are made to the 

methods described by the reference models, e.g. SCECdwell uses the same basic method as the He et al 

(2006) model for calculating energy consumption, but does not use the DSY since the DSY is not representative 

of the mean climate. 
105 

The long-term response is the combined effect of the short-term response factor and the long-term 

response factor (see Glossary). 
106 

Also see Section 3.7.4 for present day penetration rates. 
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3.5 Present Day National Annual CDD Total 

Key amongst the extraneous factors107 affecting space cooling energy consumption are the climate 

(CDDs) and the number of consumers. However, despite the relatively small size of the UK, the 

diversity of its climate is such that it cannot be represented by a point spot. A nationally 

representative CDD total can, therefore, only be formulated from the aggregation of regional data, 

where regional CCD totals are summed in proportion to the population (or, more correctly, the 

number of dwellings) contained within each region. 

Since the bulk of energy consumption occurs within England, the “English region” (the highest tier of 

sub-national division used by central government) is used as the base regional unit (Figure 30). It 

broadly reflects the LDZ pattern of division used by National Grid which is used in the space heating 

model (Chapter 2), with the exception that the two separate LDZ regions of Southern and South East 

are represented by a single government region called South East. 

Figure 30 The nine English regions (UK National Statistics, 2012) 

For reasons of consistency so as to accord with the LDZs, Scotland is treated as a single region and 

Wales is divided into a North region and a South region. The number of dwellings in each of the 

regions for the year 2010 is compiled from Government statistics (DCLG, 2012b; Scottish 

Government, 2012; Welsh Assembly Government, 2011). 

As noted previously, CDD-based future energy consumption is calculated with reference to a base 

temperature. As SCECMORS is reliant upon North American data in order to calculate future rates of 

i.e. factors unrelated to the mechanical cooling apparatus (type, efficiency). 
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penetration (see Section 3.7), SCECMORS is bound into using the same base temperatures used in 

the North American data; whilst the US and Californian CDD data are reported to a base 

temperature of 65 0F (18.3 0C), the Canadian CDD data are reported to a base temperature of 18 
0C108 . This constraint, however, is not regarded as undesirable in view of the results of the 

optimisation study reported in Sailor and Pavlova (2003) (see footnote 88). Thus the annual number 

of CDDs are calculated with reference to both North American base temperatures, 18.0 0C and 18.3 
0C. 

The mean annual number of CDDs are calculated for the period 2000-10 for a single representative 

weather station located within each region using data from the British Atmospheric Data Centre 

(BADC) (UK Meteorological Office, 2011), the locations being the same as those previously 

successfully used in Section 2.5.3 to characterise regional space heating energy consumption 

(Equation 13 and Equation 14). 

Equation 13 

3��> = / � 3���1 ÷ 11
�
R000


where, 

CDDr = present day (2000-10) annual mean number of 

cooling degree-days in a region (K.day) 

i = year 

CDDi = annual number of CDDs in a single year i (K.day) 

Equation 14 

3��� = �(�� − ��)

where, 

j = day in year (extends up to 366 in a leap year, although 

equation only shows 365) 

tm = daily mean outdoor temperature, calculated as the 

mean of the daily maximum and daily minimum 

temperatures (0C) 

tb = base temperature (0C) 

n = number of days in a year on which tm is above tb 

108 0 0 0 0 0
Canadian CDDs are also reported to base temperatures of 0 C, 5 C, 10 C, 15 C and 24 C, but these are 

considered to be inappropriate since an incorrect base temperature can result in large over-estimation or 

under-estimation of energy consumption. 
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where,


tm – tb assumes a value of 0 if tb > tm


The number of dwellings and annual CDD data for the present day for each of the 13 regions are 

reported in Table 19. 

Table 19 Present day number of dwellings and annual CDD totals by region 

Region 
Number of 

dwellings 
Weather station* 

CDDs 

(base 

temperature 

18.0 0C) 

CDDs 

(base 

temperature 

18.3 0C) 

North East 

West Midlands 

Yorkshire and the 

Humber 

South West 

Scotland 

London 

North Wales 

North West 

South East 1** 

South East 2** 

South Wales 

East Midlands 

East of England 

1 160 000 

2 348 000 

2 283 000 

2 385 000 

2 482 000 

3 300 000 

357 000 

3 103 000 

3 661 000 

3 661 000 

988 000 

1 950 000 

2 503 000 

Albemarle/Boulmer 

Coleshill 

Dishforth 

Filton/Yeovilton 

Glasgow 

Heathrow 

Lake Vyrnwy 

Woodford/Ringway 

Manston 

Middle Wallop 

St Athan 

Waddington 

Weybourne 

8 

45 

25 

48 

8 

122 

9 

33 

63 

44 

26 

46 

47 

6 

38 

21 

40 

6 

107 

7 

28 

53 

37 

21 

38 

40 

Great Britain 26 519 000 47 40 

* For three of the weather stations, the data do not extend back as far as 2000 (Albemarle: February 2003, 

Filton: March 2001, Woodford: November 2003). The data from nearby weather stations (Boulmer, Ringway 

and Yeovilton respectively) are used in these instances where data are missing. 

** Since two separate weather stations used in the previously described space heating model in Chapter 2 fall 

within the boundaries of the South East English government region, the data from each are used in the 

analysis: CDD data for the South East region are calculated as the mean of the data from Manston and Middle 

Wallop. 

The present day annual cooling degree-day totals for Great Britain, weighted by dwelling population, 

(CDDGB-2010), are shown in the final row of Table 19 above, having been calculated thus: 
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Equation 15 

3��VW�R0�0 = �3��> × (�> ÷ �VW ) 
where 

r = region 

CDDr = annual number of CDDs in region r 

nr = number of dwellings in region r 

nGB = number of dwellings in Great Britain 

It should be noted that the weather stations in Table 19 are located in rural locations. As such, the 

number of population-weighted CDDs reported for each region can be deemed to be the equivalent 

of the MIN population-weighted CDD values used for the Canadian data later reported in Section 

3.7.3. 

3.6 Future National Annual CDD Total 

The procedure for calculating national annual CDD totals for different future time periods under 

different emissions scenarios uses the same regions, weather stations and weighting factors to those 

described in Section 3.5 above. The regional annual CDD totals are derived from daily weather 

generated by the UKCP09 Weather Generator for each of the 13 locations for the (i) 2030s, (ii) 2050s 

and (iii) 2080s under (i) low, (ii) medium and (iii) high emissions scenarios as previously described in 

Section 2.5.4. The Weather Generator is run 100 times for each of the 13 locations, with each run 

producing a 100-year sequence of useable data. The future annual number of CDDs for a ternion 

(CDDt) is calculated from 10,000 years of data as: 

Equation 16 

3��. = /� 3�� 12(100 × 100) 
where 

n = Weather Generator run 

CDDi = annual number of CDDs in a single year i (see 

Equation 14) 

The national number of CDDs in a future climate for a given decade in a given emissions scenario 

(CDDGB-fut) is finally calculated by summing the annual CDD totals of the 13 regional ternions specific 

to the particular decade and emissions scenario in question (Equation 17). 
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Equation 17 

3��VW�XL. = � 3��. 
where 

t = ternion 

The annual number of CDDs for different future time-slices and different emissions scenarios are 

reported in Table 20 (base temperature 18.0 0C) and Table 21 (base temperature 18.3 0C). 

Table 20 Annual CDD totals for future decades and emissions scenarios for regional weather stations (base temperature 
0

18.0 C) 

Weather Station 

2030s 2050s 2080s 

Emissions Scenario Emissions Scenario Emissions Scenario 

Low Med High Low Med High Low Med High 

Albemarle 

Coleshill 

Dishforth 

Filton 

Glasgow 

Heathrow 

Lake Vyrnwy 

Woodford 

Manston 

Middle Wallop 

St Athan 

Waddington 

Weybourne 

30 

86 

59 

108 

25 

201 

29 

73 

118 

99 

90 

82 

61 

27 

95 

57 

113 

24 

195 

28 

79 

124 

101 

91 

77 

62 

32 

84 

58 

120 

26 

210 

30 

79 

134 

115 

96 

83 

69 

44 

118 

82 

155 

40 

273 

44 

110 

172 

149 

139 

121 

87 

54 

137 

88 

178 

47 

291 

55 

133 

193 

167 

149 

126 

95 

62 

155 

108 

228 

55 

309 

59 

144 

213 

188 

172 

139 

110 

66 

145 

102 

203 

55 

310 

58 

122 

197 

186 

187 

133 

115 

108 

237 

153 

306 

79 

432 

108 

196 

308 

245 

236 

227 

185 

172 

329 

237 

411 

167 

600 

163 

315 

389 

406 

360 

299 

280 
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Table 21 Annual CDD totals for future decades and emissions scenarios for regional weather stations (base temperature 
0

18.3 C) 

Weather Station 

2030s 2050s 2080s 

Emissions Scenario Emissions Scenario Emissions Scenario 

Low Med High Low Med High Low Med High 

Albemarle 

Coleshill 

Dishforth 

Filton 

Glasgow 

Heathrow 

Lake Vyrnwy 

Woodford 

Manston 

Middle Wallop 

St Athan 

Waddington 

Weybourne 

24 

74 

50 

93 

21 

179 

24 

62 

102 

86 

76 

71 

51 

22 

82 

48 

98 

19 

174 

24 

68 

107 

88 

78 

66 

52 

26 

72 

48 

104 

21 

187 

25 

68 

116 

100 

82 

71 

58 

37 

103 

70 

136 

33 

248 

37 

96 

152 

132 

121 

107 

74 

46 

120 

76 

158 

39 

264 

46 

117 

171 

149 

130 

110 

82 

53 

137 

93 

205 

46 

282 

51 

127 

189 

167 

151 

122 

95 

56 

128 

88 

181 

46 

282 

49 

107 

174 

165 

165 

117 

100 

94 

214 

135 

277 

68 

398 

94 

175 

279 

221 

211 

204 

164 

154 

302 

213 

379 

148 

561 

145 

287 

356 

375 

329 

272 

253 

Table 22 reports the population-weighted109 national CDD totals for future time-slices under 

different emissions scenarios. 

Table 22 Annual CDD totals for future decades and emissions scenarios (CDDGB-fut) for Great Britain 

Base 

temperature (
0
C) 

2030s 2050s 2080s 

Emissions Scenario Emissions Scenario Emissions Scenario 

Low Med High Low Med High Low Med High 

18.0 90 91 96 129 144 162 156 233 340 

18.3 78 79 83 114 127 144 138 210 312 

The population distribution in the future is assumed to be the same as the present day. 
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3.6.1 Verification of Results 

In the same way that the COPSE future TRYs are used to test the robustness of SHECMOBS (Section 

2.5.6.1), they can also be used to test the robustness of the CDD calculation process used in 

SCECMORS. Whereas the gas consumption totals calculated from COPSE TRYs are, however, very 

similar to the consumption totals calculated using the averaging process used in SHECMOBS (Table 

11), more variation is seen when CDD totals calculated from COPSE TRYs are compared with CDD 

totals calculated using the averaging process used in SCECMORS shown in Table 22 above: Table 23 

shows the percentage difference in annual CDD totals calculated using the two different procedures. 

Table 23 Percentage by which annual number of CDDs calculated using COPSE TRYS differs from annual number of CDDs 

calculated using SHECMOBS averaging process 

London 

(Heathrow) 

Manchester 

(Woodford/Ringway) 

Emissions scenario Emissions scenario 

Low High Low High 

Base temperature (
0
C) 18 18.3 18 18.3 18 18.3 18 18.3 

2050s 

2080s 

-15.0 

-6.1 

-16.9 

-7.0 

-7.1 

-18.7 

-8.3 

-19.7 

-21.0 

13.3 

-23.4 

14.3 

-15.8 

-4.2 

-17.1 

-4.7 

In view of the relatively large discrepancy and in view of the ease with which error can be introduced 

into the VBA coding, the need to re-check the data is apparent. When the CDD total for the 

Heathrow-2080s-high emissions scenario ternion (base temperature of 18.3 0C) is re-calculated long-

hand110, however, exactly the same result of 561 CDDs is produced, the COPSE TRY continuing to 

return 19.7% fewer CDDs. 

Part of the reason for the difference lies in the fact that there are so relatively few days in the course 

of a year when the mean temperature exceeds 18-18.3 0C (i.e. only hot summer days), that a small 

change in the number of hot days can result in a large percentage change111 . Another reason for the 

difference is because of the aspect of variability which is incorporated within a TRY; whilst 

temperatures for the 2020s are forecast as being very similar whether or not a high emissions or a 

low emissions pathway is followed, both the COPSE Heathrow and Manchester high emissions TRYs 

return approximately 20% fewer CDDs than their low emission counterparts, even though one would 

have anticipated that the high emissions TRYs would return slightly more CDDs. Nevertheless, it 

would also seem that the daily temperatures in the COPSE TRYs do tend to be less hot than average 

weather for summer days (i.e. a lower preponderance of days where the mean temperature is above 

18/18.3 0C), but discussion of this point lies beyond the scope of the present analysis. Whatever the 

causes of the COPSE TRY returning a lower than expected number of CDDs, the long-hand calculation 

that it prompted reveals that the VBA coding appears not to be at fault. 

110 
i.e. calculated directly by inputting the data into Microsoft Excel spreadsheets, and processing the data 

directly in the spreadsheet without writing any VBA code – a laborious process. 
111 0

e.g. the 23% discrepancy for Manchester under a low emissions scenario (base temperature 18.3 C) in the 

2050s derives from a difference of only 23 CDDs (73 as opposed to 96). 
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3.7 Future Penetration Rates 

The penetration profile (relationship between CDDs and penetration) is examined in this section 

using data from the United States, California and Canada. Although mentioned in the text on each 

occurrence, the reader is asked to be mindful of the fact that whilst the base temperature to which 

the US and Californian data refer is 18.3 0C (65 0F), the base temperature for the Canadian data is 

18.0 0C. 

3.7.1 United States 

The air-conditioning market in the United States is long-standing and mature, price not being the 

same impediment to purchase for its inhabitants as it has been for the citizens of less wealthy 

countries. Whether fully mature or not (i.e. whether saturation has been achieved or not), the rapid 

rise in the uptake of air-conditioning over a relatively short period of time112, is suggested as giving 

an indication of the pathway that uptake in the UK may follow in future years, especially since there 

is an observable correlation between penetration and the number of CDDs. Data are collated, and 

the relationship between the two is examined below. 

3.7.1.1 Penetration data 

The EIA periodically carries out a survey, the Residential Energy Consumption Survey (RECS), which, 

amongst other things, reports upon the extent of air-conditioning in the US. Analysis of RECS data 

from 1978 to 2009 shows a continuing upward trend of air-conditioning use (EIA, 2000; EIA, 2004; 

EIA, 2009; EIA, 2012), as shown in Figure 31. 
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Figure 31 Increasing ownership (as percentage penetration) of air-conditioning in US regional divisions (1978-2009) 

The level of air-conditioning in American homes rose from less than 2% in 1955 to almost 59% in the 25-

year period to 1980 (Biddle, 2008). Present ownership levels in the UK, (estimated at 3% (BSRIA, 2011) and 

7.2% following analysis of DGTREN data), compare with those in 1950s America. 
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Although saturation has been achieved or almost achieved in certain of the divisions, the evidence 

suggests that penetration rates, on the average, are still on the rise. 

In contrast to the data reported by Sailor and Pavlova (2003), the RECS dataset also provides details 

on air-conditioning use as well as ownership. This is a useful addition because not only is there a 

difference between the two (of the order of about 5%, but which extends to 10% and beyond for the 

less hot states such as Massachusetts (MA), Table 24), but also because energy consumption is likely 

to be more intimately linked to use rather than ownership. 

Table 24 Penetration of air-conditioning by state/state grouping in the US residential sector* 

State 

Use Air 

Conditioner 

(%) 

Use Air 

Conditioner 

(%)* 

CO 47 58 

CT, ME, NH, RI, VT 67 77 

MA 76 88 

WI 78 83 

MI 82 87 

ID, MT, UT, WY 70 75 

IA, MN, ND, SD 87 92 

NY 74 81 

PA 90 94 

IN, OH 84 90 

NJ 91 -

IL 90 94 

CA 57 63 

DC, DE, MD, WV 94 -

State 

Use Air 

Conditioner 

(%) 

Use Air 

Conditioner 

(%)* 

VA 93 -

MO 100 -

KS, NE 94 -

TN 100 -

NC, SC 94 -

NM, NV 71 71 

GA 97 -

AL, KY, MS 98 -

AR, LA, OK 98 -

TX 96 99 

AZ 91 96 

FL 96 -

AK, HI, OR, WA 45 47 

Number of dwellings in US: 113.6M. Air-conditioning use and ownership is reported to 1 decimal place 

(100,000 homes). The accuracy of the penetration figures is therefore dependent upon the number of dwellings 

in a state or state-grouping; whereas the degree of error for the sparsely populated New Mexico-Nevada 

grouping is up to ±5%, the Californian data are accurate to less than ±1%. 

*Data are omitted where the relative standard error (RSE) is greater than 50% (or fewer than 10 households 

were sampled). The RSE can be very large where there are few data. The survey does not report on the total 

number of dwellings which possess air-conditioning per se, but rather on the total number of dwellings which 

do not possess air-conditioning: i.e. the former is calculated from the latter. This is the reason why the air-

conditioner ownership column contains more blank cells than the air-conditioner use column - the ownership 

column is calculated from “non-ownership” data, which, in a number of instances, contain few data. 
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3.7.1.2 Cooling degree-day data 

The National Climatic Data Center (NCDC) publishes monthly population-weighted CDD data for the 

48 conterminous states of the US to a base temperature of 65 0F for years back to 1992 (NCDC, 

2012a). Table 25 reports average annual CDD totals for the period 1992-2010, reported to a base 

temperature of 18.3 0C (equivalent to a base temperature of 65 0F). 

0
Table 25 Annual state CDD totals for the US (base temperature 18.3 C) 

Mean 

State annual 

CDD total 

Washington 122 

Maine 128 

Oregon 149 

Montana 153 

Vermont 157 

Colorado 178 

Wyoming 181 

New Hampshire 194 

North Dakota 241 

Minnesota 279 

Massachusetts 280 

Wisconsin 280 

Idaho 285 

Rhode Island 314 

Michigan 316 

Connecticut 340 

New York 387 

Pennsylvania 395 

South Dakota 402 

Ohio 431 

Iowa 445 

West Virginia 445 

Utah 452 

New Jersey 482 

Mean 

State annual 

CDD total 

Illinois 491 

Indiana 499 

California 529 

Nebraska 544 

New Mexico 562 

Maryland & DC 618 

Virginia 618 

Delaware 627 

Kentucky 684 

Missouri 695 

Tennessee 779 

Kansas 797 

North Carolina 806 

Georgia 967 

Arkansas 1009 

South Carolina 1041 

Oklahoma 1056 

Alabama 1084 

Nevada 1166 

Mississippi 1201 

Louisiana 1500 

Texas 1522 

Arizona 1741 

Florida 1954 
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The number of CDDs for a state is population-weighted by state division, where the CDD value for 

each division within a state is weighted by its percentage of the total state population as adduced 

from the 1990 census data (NCDC, 2012a). Thus any effects deriving the urban heat island are 

necessarily taken into consideration. 

3.7.1.3	 Correlation between present day (2009) penetration rates and population-

weighted CDDs 

Figure 32 shows the correlation between present day air-conditioning penetration (use) and 

population-weighted CDDs for the 16 states/state groupings listed in Table 24, using the CDD data 

from Table 25113 . The chart also shows (i) the predicted penetration (ownership) trend line using the 

functional relationship described by Sailor and Pavlova, and (ii) the best line of fit through the data 

using Microsoft Excel Solver to optimise Sailor and Pavlova’s equation. 
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Figure 32 Correlation between penetration of air-conditioning use and annual population-weighted CDD total for 26 
0

states/state-groupings in the US (base temperature 18.3 C) 

Even though the same general pattern of uptake is observed, actual penetration levels are higher 

than those predicted by the Sailor and Pavlova equation. For CDD values below approximately 1000, 

the increase in penetration which has occurred between the Sailor and Pavlova period of study 

(1994-1996) and 2009 would seem to be more significant than the fact that one regression examines 

The population-weighted CDD totals for a state-grouping is calculated by further population-weighting the 

population-weighted CDD totals of each state within that grouping using US census data (US Census Bureau, 

2011). 
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ownership and the other regression equation examines use114 . As suggested by Henderson (2005), 

however, the difference may in part arise from the fact that Sailor and Pavlova used the hourly 

method to calculate CDDs, rather than the daily mean temperature method used by the EIA115 . 

Nevertheless, it is clear that little reliance can be placed on the accuracy of the left hand side of the 

curve for CDD values below 260 since its shape in this portion of the plot is largely determined by a 

single datum point of value 178 (i.e. Colorado). This is of particular importance insofar as the 

present analysis is concerned because CDD forecasts for the UK mostly remain below 260; only 

under a high emissions scenario in the 2080s do CDD forecasts exceed 260 (see Table 22, Section 

3.6). 

Two datum points clearly stand out as anomalous in Figure 32. When the use penetration/CDD 

regression data are re-plotted excluding these data, the Solver-derived best line of fit shows a very 

high coefficient of determination (R2 = 0.87) (Figure 33116). 
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Figure 33 Correlation between penetration of air-conditioning (use & ownership) and annual population-weighted CDD 
0

total in the US (base temperature 18.3 C) (anomalies removed) 

This raises the question of the legitimacy of dismissing these datum points as aberrant. The datum 

points refer to the state-grouping of New Mexico/Nevada (CDDs = 905) and California (CDDs = 529). 

114 
Table 24 shows that the difference in penetration between ownership and use is typically of the order of 

5%, whilst Figure 32 reveals the penetration difference to be of the order of 20% for CDD values below 

approximately 500. 
115 

Mean daily temperature method used by EIA – CDD totals are calculated from daily mean temperatures 

where only days in which the daily mean temperature exceeds the base temperature are included (see Section 

3.5). Hourly method used by Sailor and Pavlova (2003) – CDD totals are calculated by aggregating hourly 

temperature differences and dividing by 24. 
116 2

The ownership penetration/CDD regression data and ownership best line of fit (R = 0.77) are also shown 

for comparison. 
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New Mexico and Nevada experience extremely low levels of RH, afternoon levels in the summer 

(June-August) being of the order 25-38% for New Mexico and 14-21% for Nevada (NCDC, 2012b). 

The relatively low installation of air-conditioning in these states undoubtedly arises from the fact 

that “dry heat” is generally perceived as much less uncomfortable than “damp heat” to pale-

skinned people, even be it that the air temperatures are the same in both instances. As such, 

although the New Mexico/Nevada data are not erroneous, they can be ignored since the UK neither 

currently experiences nor is forecast to experience such low RH values over the course of the next 

60-70 years. 

The picture is not so clear for the climatically-diverse California. Although much of the state is hot 

and dry like New Mexico and Nevada, some of the most densely populated coastal areas are not: 

afternoon RH levels reach up to 64% in San Francisco, whilst daily mean temperatures only average 

16.3 0C in summer for the same city (June-August) (NCDC, 2012b). This is significant as far as the UK 

is concerned because the number of CDDs for parts of the UK is forecast to exceed that of the 

Californian average under a high emissions scenario by the 2080s (e.g. Heathrow, 561 CDDs, see 

Section 3.6). One cannot, therefore, safely disregard the California data as being irrelevant, and for 

this reason, California requires closer inspection. 

3.7.2 California 

The 2009 California Energy Commission (CEC) Residential Appliance Saturation Study (RASS) reports 

upon air-conditioning penetration in a similar fashion to the EIA’s national RECS (California Energy 

Commission, 2010). Moreover, the CEC reports upon population-weighted CDDs to a base 

temperature of 65 0F (18.3 0C) for each of the 13 climatic zones which comprise the state, allowing 

one to examine the relation between air-conditioning penetration and CDDs. Figure 34 shows the 

correlation between the uptake of air-conditioning and CDDs, and overlays it with the US national 

best line of fit data obtained from RECS (using the equations presented in Figure 33). 
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Figure 34 Correlation between penetration of air-conditioning (ownership) and annual population-weighted CDD total 
0

(base temperature 18.3 C) 

It is clear that at least as much diversity exists within California as exists in the rest of the country in 

terms of air-conditioning penetration and its relation to climate, with penetration rates as low as 

15% in the San Francisco area, and higher than 90% in many inland areas. Although the R2 value of 

0.81 might suggest that CDDs act as a good predictor of penetration, closer examination of the data 

reveals that the correlation is very poor in the 200-400 CDD range; this is of especial significance 

because CDD values of this order are predicted for large parts of the UK by the 2050s under a 

medium emissions scenario (see Section 3.6). Furthermore, like the US data, the correlation is 

hampered by the fact that there is only single datum point with a CDD value less than 240. 

The reason for the peculiarity of the Californian data would seem to be due, at least in part, to its 

geography. Indeed, Glen Sharp of the CEC states that, climatically, it is the most unique and diverse 

state in the US, citing the example of Sacramento in the Central Valley in which summer 

temperatures regularly reach the mid-90s (0F), but which benefits from marine cooling almost every 

evening due to its proximity to the coast, with the result that it experiences very comfortable low 

temperatures at night (Sharp, 2012). Data from different locations in the San Francisco Bay area are 

startling when viewed from the cool maritime climate of north west Europe: whilst the average 

maximum temperature of the coastal town of Half Moon Bay records as approximately 18° C in July, 

it records as 31° C at Walnut Creek (only 25 miles inland) and 35° C at Tracy (only 50 miles inland). A 

similar diversity is seen in the Los Angeles area: the normal July maximum temperature for Santa 

Monica Pier is approximately 24° C, but the average increases to 35° F at Canoga Park in the San 

Fernando Valley only 15 miles to the north (Desert Research Institute, 2012). This is not to say that 

the Californian data give lie to the notion that there is a general relationship between penetration 
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and the number of CDDs, but rather that California is so exceptional that its data are likely to be 

unreliable for use in SCECMORS. 

3.7.3 Canada 

Given that the US data do not contain enough relatively low value CDD data (<300 CDDs), and that 

the uniqueness of the climate of California make it unsuitable as being representative of a more 

general relationship between CDDs and penetration, one is forced to look elswehere for source data 

which reveal the relationship between CDDs and penetration in a mature air-conditiong market. 

Canadian data are examined as meeting these criteria. 

Usefully, the Canadian Government provides two sources which report upon the uptake of air-

conditioning, each of which derive from separate surveys, and allows for cross-comparison of the 

data. The Comprehensive Energy Use Database (CEUD) , deriving from the annual Survey of 

Household Spending (SHS) (NRCan, 2011a), is published by the Department of Natural Resources 

(NRCan) and reports upon ownership levels for all ten provinces and one territory-grouping; the 

latest available data are for 2009 (NRCan, 2012). The Survey of Household Energy Use (SHEU)117 , 

also published by NRCan, only reports upon ownership levels for six regions, where the less 

populated states and territories are grouped together; the latest available data are for 2007 (NRCan, 

2010). 

Although NRCan also reports upon CDDs for each of the six ‘Canadian regions’, it is considered that 

the CDD data are not sufficiently accurate to reflect the climatic diversity of the country, as data 

from only 23 weather stations are used for this task (NRCan, 2011b)118 . In consequence, population-

weighted CDD data have been generated from comprehensive Canadian Government data (viz. CDD 

data: National Climate Data and Information Archive (NCDIA, 2012), and population data: 2006 

Canadian census (Statistics Canada, 2008)). Provided that the CDD data are highly disaggregated by 

region and population-weighted accordingly, the number of regions or provinces/territories used to 

collect penetration data is of little importance so long as there is not an over-representation of 

anomalous data. 

3.7.3.1 Calculation of Population-Weighted CDDs 

There are a number of methods by which population-weighted CDD data can be calculated, the 

different methods yielding CDD values which may be significantly different from one another. As it is 

not clear which of the methods is most appropriate, all methods are used so that a comparison can 

be made. The population-weighted CDD calculation procedure is shown below. 

117 
Not performed annually. 

118 
A case in point which serves to illustrate the danger of using too few/incorrect weather stations to calculate 

a single CDD value (which is representative of a region) is seen in Montreal. Montreal possesses six weather 

stations, three of which are at airports, which return, in some cases, very different CDD totals, and in ways 

which are not immediately predictable. Montreal-Mirabel International Airport returns 158 CDDs. Montreal-

Pierre Elliott Trudeau International Airport which is less than nine miles from downtown reports 242 CDDs, 

whilst the even more centrally located St-Hubert Airport, 7.5 miles from downtown, reports 218 CDDs. The 

remaining weather stations all report more than 300 CDDs with Montreal LaFontaine reporting 354 CDDs (base 
0

temperature 18 C). 
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i. Census data for all 144 census metropolitan areas (CMAs) and census agglomerations (CAs) 

(i.e. in essence, all towns with a population in excess of 10 000) are collated, to produce 148 

individual population centres (PCs)119 . 

ii.	 Each PC is paired with the CDD total from the geographically closest weather station which 

reports at least 15 years of CDD data (base temperature 18 0C). 101 pairings are made in 

this way. For the remaining 47 PCs (for each of which there exists more than one weather 

station, e.g. Montreal CMA - footnote 118), the CDD total is recorded for each weather 

station. There exists four methods by which these remaining PCs can be paired with 

weather station CDD data: 

a.	 pair the PC with the CDD value from the weather station reporting the 

greatest number of CDDs (MAX), 

b.	 pair the PC with the CDD value from the weather station reporting the 

smallest number of CDDs (MIN), 

c.	 pair the PC with the average CDD value calculated from all the weather 

stations (i.e. all six weather stations in the case of Montreal) (MEAN), or 

d.	 pair the PC with the average CDD value calculated from the two weather 

stations reporting the maximum and minimum number of CDDs (i.e. Pierre 

Trudeau International Airport and LaFontaine in the case of Montreal) 

(MIDDLE). 

iii.	 The population-weighted CDD total is calculated for (a) each of the 11 ‘province/territory-

groupings’ (for use with the CEUD air-conditioning data) or (b) each of the six ‘Canadian 

regions’ (for use with the SHEU air-conditioning data). This is achieved by summing all the 

weighted CDD values of the PCs within its boundaries, where the weighting factor is (a) the 

ratio of the PC population and the population of the ‘province/territory-grouping’, or (b) the 

ratio of the PC population and the ‘Canadian region’ population120 . This is repeated for all 

four methods of calculating population-weighted CDDs where there exists more than one 

weather station for a PC. 

Thus each ‘province/territory-grouping’ or ‘Canadian region’ has four separate population-weighted 

CDD values attached to it – MAX, MIN, MEAN and MIDDLE. 

3.7.3.2 Relationship between Population-Weighted CDDs and Penetration 

The benefit of using four different ways of calculating population-weighted CDDs is seen when 

penetration is plotted against population-weighted CDDs, and best-fit trend lines are mapped on to 

the data in order to establish the degree of correlation. In addition to fitting trend lines of the Sailor 

and Pavlova type based on the exponential function, linear trend lines are also mapped, since the 

regression data appears to be linearly related for relatively low CDD values as revealed by Table 26 

119 
Four communities straddle province borders. 

120 
See Section 3.5 for a description of the equation used in the weighting procedure. (Note that number of 

dwellings is used in the weighting factor in Section 3.5, whereas population is alternatively used in this 

instance in the absence of dwelling data at the level of the population centre; it is considered that the use of 

population data is not injurious to the analysis.) 
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0

and Table 27. (Indeed this accords with the US data, where the correlation also appears to be linear 

for relatively low CDD values.) 

2
Table 26 Coefficients of determination (R values) in the plot of air-conditioning penetration (ownership) against 

population-weighted CDDs calculated by different methods (air-conditioning data: 2009 CEUD) (base temperature 18 C) 

Type of population-weighted 

CDD used in regression 

MAX MIN MEAN MIDDLE 

Best fit trend line: 

exponential function 

Best fit trend line: 

linear function 

0.63 

0.57 

0.72 

0.75 

0.66 

0.63 

0.68 

0.65 

2
Table 27 Coefficients of determination (R values) in the plot of air-conditioning penetration (ownership) against 

0
population-weighted CDDs calculated by different methods (air-conditioning data: 2007 SHEU) (base temperature 18 C) 

Type of population-weighted 

CDD used in regression 

MAX MIN MEAN MIDDLE 

Best fit trend line: 

exponential function 

Best fit trend line: 

linear function 

0.59 

0.58 

0.71 

0.82 

0.59 

0.65 

0.62 

0.69 

It is clear that air-conditioning uptake bears most correspondence with MIN population-weighted 

CDDs. The exponential-type and linear functions forecast very similar levels of penetration up to 

about 170 CDDs, such climates not being forecast until the second part of the century (see Table 22). 

However, whilst the R2 value associated with the linear trend line is a little higher than that 

associated with the trend line using the exponential-type function for the MIN population-weighted 

CDDs, it must borne in mind that the the linear function becomes inaccurate for high CDD values 

since it takes no account of the fact that penetration plateaus as saturation is approached. This is 

seen in Figure 35 and Figure 36, where extrapolated penetration would exceed 100% for CDD values 

in excess of about 300, the significance of such a figure being that under a high emissions scenario 

the climate of the 2080s is forecast to return an even higher number of CDDs (see Table 22). 
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Figure 35 Correlation between penetration of air-conditioning (ownership) and annual MIN population-weighted CDD 
0

total using 2009 CEUD data (base temperature 18 C) 
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Figure 36 Correlation between penetration of air-conditioning (ownership) and annual MIN population-weighted CDD 
0

total using 2007 SHEU data (base temperature 18 C) 

The absence of accurate data for Canadian climates with relatively high CDD values disqualifies the 

straight-line function as a predictive tool of penetration for climates with high CDD values: simply, 

one should not extrapolate the linear function beyond the highest observed CDD value (= 224). The 

equations describing CEUD and SHEU penetration are shown below. 
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Table 28 Equations describing penetration as a function of CDD value using CEUD and SHEU data 

Function 

type 
Data source Equation 

Exponential 
CEUD F����K'�@B�	(%) = 100 − (107.8��0.00U�0×^55) Equation 18 

SHEU F����K'�@B�	(%) = 100 − (110.0��0.00UI7×^55) Equation 19 

Linear 
CEUD F����K'�@B�	(%) = 0.3394	3��C − 1.8323 Equation 20 

SHEU F����K'�@B�	(%) = 0.3369 + 1.177 Equation 21 

The equations describing the relationship between penetration and CDDs from the CEUD and SHEU 

surveys are very similar. The SHEU data, however, is not altogether convincing for low-value CDD 

totals, and it is clear that there is a degree of spread in the data, even though the R2 values are 

reasonably high. It is also a concern that there is such a large discrepancy in actual penetration rates 

for CDD values in excess of approximately 125, such values being typical of the forecasts for the 

southern parts of the UK by the 2050s, irrespective of which emissions scenario is followed. Were 

the UK to adopt the same pattern of uptake as Manitobans for example, one could expect 

penetration rates up to 17-18% larger than those predicted by the trend line, whereas an uptake 

pattern similar to those of Quebecers would result in an uptake of 16-18% less than that predicted 

by the trend line. Given the finding from the US that there can be differences between rates of 

ownership and rates of use (Table 24), it would seem that the discrepancy may arise in part from the 

fact that a plentiful number of Manitobans (and Saskatchewanians) have air-conditioning installed in 

their home but do not necessarily use it, which is perhaps not so much the case for Quebecers; in 

consequence, it is suggested that future penetration rates in the UK (i.e. penetration use) would 

perhaps find most correspondence in the ownership penetration rates of Quebec than Manitoba, 

which latter two provinces share the same number of CDDs. 

3.7.4 Application of North American Penetration Rates to UK Climates 

Although climate may be of primary importance concerning levels of penetration, and although the 

literature reveals that penetration rates can increase at considerable speed in prosperous 

economies, it would be incorrect to assume a step change in penetration rates from the present 

day’s level to those forecast for the 2030s and beyond. Rather, it is likely that penetration will 

increase incrementally from the present level, estimated at 3% by BSRIA (BSRIA, 2011) and at 7.2% 

following analysis of DGTREN data (DGTREN, 2008). Even though the present analysis only 

endeavours to estimate penetration rates for the 2030s, 2050s and 2080s, it is of theoretical 

importance to take this pre-2030s trajectory into account since it has an effect upon the later 

trajectory. Figure 37 illustrates this point, showing three penetration trajectories deriving from the 

CEUD data for a medium emissions scenario using the exponential function. 
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Trajectory 1 is described by the unamended function resulting in an over-estimate of the present day level of 

penetration. Microsoft Solver is used to amend the Trajectory 1 regression trend line by forcing it to align with 

the present day DGTREN estimate of penetration (±1%) resulting in Trajectory 2. Trajectory 3 is the regression 

trend line forced to align with the present day BSRIA estimate of penetration (±1%). 

Figure 37 Forecast penetration levels of air-conditioning using the exponential function resulting from different initial 

estimates of present day penetration (medium emissions scenario, base data: CEUD) 

Predictably, the initially relatively large differences in forecast penetration tend to diminish with 

time, so that by the time the 2030s are reached the difference is typically only of the order of 5%. 

Table 29 and Table 30 compare forecast penetration rates for different time-slices under different 

emissions scenarios for Great Britain, using future CDD data reported in Table 22. The future 

penetration rates in columns 5-11 are calculated using the regression equations which describe the 

penetration data for the United States, California and Canada as a function of number of CDDs, the 

regression equations having additionally been forced to align with present day CDD and penetration 

levels in Great Britain (either the BSRIA estimate of penetration (Table 29), or the DGTREN estimate 

of penetration (Table 30))121 . As a means of assessing their descriptive power, the coefficients of 

determination of these regression equations (bearing this additional forced alignment constraint), 

when re-fitted to the original datasets whence they derive, are also reported in the bottom row of 

each table. 

Columns 2 and 4 report the forecast number of CDDs for information purposes – the penetration forecasts 

which use the US and Californian regression equations use CDDs calculated to a base temperature of 18.3 ⁰C, 

whilst the penetration forecasts which use the Canadian regression equations use CDDs calculated to a base 

temperature of 18.0 ⁰C. 
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Table 29 Forecast penetration levels of air-conditioning resulting from initial estimate of present day penetration fixed 
122 

at 3±1%

Time- Emissions 

Base 

temperature 
Penetration* (%) 

United States 

Canada linear 

function 

Canada 

exponential 

function 

slice scenario 18.3 
0
C 18.0 

0
C 

Own Use 
Calif SHEU 

data 

CEUD 

data 

SHEU 

data 

CEUD 

data 

Present 

day 
40 47 2 1 4 4 4 4 4 

2030s 

Low 

Medium 

High 

78 

79 

83 

90 

91 

96 

27 

28 

30 

20 

20 

22 

15 

15 

16 

23 

23 

25 

22 

22 

24 

29 

30 

32 

25 

26 

28 

2050s 

Low 

Medium 

High 

114 

127 

144 

129 

144 

162 

45 

50 

56 

34 

38 

44 

24 

27 

31 

39 

46 

54 

38 

44 

52 

46 

51 

57 

41 

45 

51 

2080s 

Low 

Medium 

High 

138 

210 

312 

156 

233 

340 

54 

71 

83 

42 

61 

77 

30 

44 

60 

51 

84 

130 

49 

82 

126 

55 

74 

88 

49 

68 

83 

R
2 

0.89 0.95 0.87 0.77 0.70 0.76 0.64 

* With the exception of the ‘United States Use’ column, all penetration rates refer to ownership rather than 

use. 

The equations from which the penetration data are produced use Microsoft Solver, where the constraint is 

set that penetration levels for the present day evaluate to within ±1% of the BSRIA estimate of 3%. (For the 

equation for the US ‘use’ data, present day penetration levels are set at ±1% of 2% rather than ±1% of 3% on 

the grounds that ‘use penetration’ levels are less than ‘ownership penetration’ levels (see Table 24) - 2% is 

0.65 the value of the BSRIA estimate of 3%. The BSRIA estimate is multiplied by 0.65 as a means of converting 

present day ‘ownership penetration’ to ‘use penetration’ so as to concur with DECC estimates of energy 

consumption, which are 0.65 the value of the MTP estimates (see Section 3.3.8). The forecast penetration 

rates are very little affected by this intervention.) 
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Table 30 Forecast penetration levels of air-conditioning resulting from initial estimate of present day penetration fixed 
122123 

at 7.2±1%

Time-

slice 

Emissions 

scenario 

Base 

temperature 
Penetration* (%) 

18.3 
0
C 18.0 

0
C 

United States 

Calif 

Canada linear 

function 

Canada 

exponential 

function 

Own Use SHEU 

data 

CEUD 

data 

SHEU 

data 

CEUD 

data 

Present 

day 
40 47 6 4 8 8 8 8 8 

2030s 

Low 

Medium 

High 

78 

79 

83 

90 

91 

96 

30 

30 

33 

21 

22 

24 

18 

19 

20 

26 

26 

28 

25 

25 

27 

31 

32 

34 

28 

28 

30 

2050s 

Low 

Medium 

High 

114 

127 

144 

129 

144 

162 

46 

51 

57 

35 

40 

45 

27 

30 

33 

41 

47 

54 

40 

45 

52 

47 

52 

57 

42 

47 

52 

2080s 

Low 

Medium 

High 

138 

210 

312 

156 

233 

340 

55 

72 

83 

43 

61 

77 

32 

46 

60 

52 

83 

126 

50 

80 

121 

55 

73 

87 

50 

68 

82 

R
2 

0.88 0.95 0.87 0.81 0.74 0.80 0.70 

* With the exception of the ‘United States Use’ column, all penetration rates refer to ownership rather than 

use. 

Summary 

In order to decide which of the seven regression equations124 are best used to model future 

penetration, it must satisfy three criteria: 

I.	 the data from which the regression equation is drawn must be drawn from a climate 

returning a number of CDDs similar to that forecast for the UK for the coming decades of the 

21st century, 

123 
The equations from which the penetration data are produced use Microsoft Solver, where the constraint is 

set that penetration levels for the present day evaluate to within ±1% of the BSRIA estimate of 7.2%. (For the 

equation for the US ‘use’ data, present day penetration levels are set at ±1% of 4.7% rather than ±1% of 7.2% 

on the grounds that ‘use penetration’ levels are less than ‘ownership penetration’ levels (see Table 24) – 4.7% 

is 0.65 the value of the BSRIA estimate of 7.2%. The BSRIA estimate is multiplied by 0.65 as a means of 

converting present day ‘ownership penetration’ to ‘use penetration’ so as to concur with DECC estimates of 

energy consumption, which are 0.65 the value of the MTP estimates (see Section 3.3.8). The forecast 

penetration rates are very little affected by this intervention.) 
124 

viz. (i) US (own), (ii) US (use), (iii) California, (iv) Canada (linear SHEU), (v) Canada (linear CEUD), (vi) Canada 

(exponential SHEU), or (vii) Canada (exponential CEUD) 
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II. the regression equations must not give unrealistic forecasts of penetration over the range of 

CDD values forecast for the UK for the coming decades of the 21st century, and 

III. the degree of correlation between penetration and number of CDDs underlying the equation 

must be reasonably high. 

Whilst the US data return very high R2 values, and although the US ownership data compare very 

well with the ownership data from Canada in nearly all instances, its use must be disallowed in view 

of the fact that it mostly derives from climates which are considerably hotter than those forecast for 

the UK in this analysis. The penetration data from “anomalous” California, again with high R2 values, 

cannot be used for the same reasons. Although the Canada data which uses the linear function 

returns high R2 values, it is seen to grossly over-estimate penetration for high CDD values (high 

emissions scenario, 2080s), since it fails to account for the fact that the rate of uptake diminishes as 

saturation is approached. The Canada data which use the exponential function (cells shaded grey in 

Table 29 and Table 30) are considered as offering the most accurate representation of penetration 

levels, there being little difference in forecast penetration levels whether the SHEU data are used or 

whether the CEUD data are used. The R2 values, although lower, are still relatively high. The 

equations describing penetration are shown in Table 31: 

Table 31 Equations describing penetration as an exponential function of CDD value using Canadian penetration data 

Present day 

penetration 

(%) 

Data 

source 
Equation 

3 
CEUD F����K'�@B�	(%) = 100 − (126.3��0.00UIH×^55) Equation 22 

SHEU F����K'�@B�	(%) = 100 − (133.6��0.00]0H×^55) Equation 23 

7.2 
CEUD F����K'�@B�	(%) = 100 − (119.3��0.00UUI×^55) Equation 24 

SHEU F����K'�@B�	(%) = 100 − (125.6��0.00TTT×^55) Equation 25 

In broad terms, the Canadian data suggest that penetration rates in the UK are likely to be of the 

order of 30% by the 2030s and 50% by the 2050s, whichever emissions pathway is followed. It is not 

until the 2080s that the full impact of different emissions pathways is revealed, where a low 

emissions scenario results in a level of penetration not very different from the 2050s, a medium 

emissions scenario results in penetration level of approximately 70%, and a high emissions scenario 

results in a penetration level in excess of 80%. 

3.8 SCECdwell (bottom-up, dwelling as base unit) 

In this model the cooling energy required to maintain thermal comfort in the sitting room and the 

main bedroom for a set of dwellings which are typical of the present day stock is estimated. Future 

space cooling energy consumption is calculated taking account of both the short-term and long-term 

responses to climate change. The model takes the following form. 
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i. A set of nine typical dwellings are modelled using climate data for London (1 June-30 

September 2004) (base climate); the sitting room and the main bedroom in each dwelling 

are cooled using air-conditioning, and the space cooling energy demand totals from each are 

summed to calculate the total space cooling demand for the dwelling. These base data 

have been generated by He at al (2006) using the commercially available software package, 

Tas. 

ii. The dwelling space cooling energy demand base data are used to generate the space cooling 

energy consumption of the present national residential stock for the base climate where 

account is taken of: 

a. dwelling stock profile (size of the dwelling stock and distribution of each dwelling by 

type and age) 

b. air-conditioning profile (penetration rates in the stock, distribution of each air-

conditioning system by type and SEER). 

iii. From the energy consumption data for the base climate of London in 2004, the stock energy 

consumption for the present day national climate is generated. 

iv. Future stock consumption is calculated for each of nine different future climates (i.e. three 

different time-slices (2030s, 2050s, 2080s), under three different emissions scenarios (high, 

medium, low)). Account is taken of both (i) the short-term response factor (which is 

calculated as the ratio of the number of CDDs in a future climate to the number of CDDs in 

the present climate), and (ii) the long-term response factor arising from an increase in future 

penetration levels. 

3.8.1 Space Cooling Energy Demand per Dwelling for Base Climate 

The nine dwellings used in the modelling derive from three types (detached, semi-detached, 

terraced) and three time periods (pre-1919, 1919-1964, post-1964). The geometric features, floor 

plans, building construction and internal conditions (gains, infiltration and occupancy) are based on a 

combination of field study findings and review of the literature, being typical representations of 

those seen in the general stock (He, et al., 2006). The useable floor area (90 ± 5 m2), number of 

bedrooms (three) and number of occupants per dwelling (2.5) compare well with the national 

average in England (92 m2, 2.8 and 2.3 respectively) (DCLG, 2012a). The principal features of the 

dwellings, all double-glazed, are shown in Table 32, Table 33125, Table 34, and Figure 38 shows the 

floor plan of the semi-detached house. 

The effect of dwelling age is revealed in the thermal performance of the building elements in Table 33. 
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Table 32 General dwelling model parameters 

Model parameter Description 

Orientation 

Floor area 

Glazing 

Sitting room area 

Main bedroom area 

Occupants 

Infiltration 

Maintained indoor temperature 

Sitting room and main bedroom: south-

90 ± 5 m 2 

20% of total floor area 

detached: 22 m 2, semi-detached: 19 m2 

detached: 15 m 2, semi-detached: 13 m2 

2.5 people/dwelling 

0.5 air changes/hour 

22 ± 2 0C 

facing 

, terraced: 12 m 2 

, terraced: 12 m 2 

Table 33 Construction and thermal performance of principal building elements 

Element Age Description 
U-value 

(W/m
2
K) 

Y-value 

(W/m
2
K) 

Pre-1919 Solid brick with 13 mm plaster finish 1.3 2.8 

Walls 
1919-1964 50mm cavity brick with 13 mm plaster finish 1.2 2.7 

post-1964 
cavity bricks with 55mm glass fibre 

insulation 
0.36 1.7 

Pre-1919 

Suspended timber floor with 500mm cavity 

on ground floor, wood floors on upper 

storey 

0.5 2.1 

Floors* 
1919-1964 

Suspended timber floor with 500mm cavity 

on ground floor, wood floors on upper 

storey 

0.3 1.2 

post-1963 
Concrete floors on ground floor, wood floors 

on upper storey 
0.28 3.1 

Pre-1919 Slated roof with 70mm glass fibre insulation 0.46 1.3 

Roofs 
1919-1964 

Slated roof with 100mm glass fibre 

insulation 
0.32 0.48 

post-1963 
Slated roof with 140mm glass fibre 

insulation 
0.25 1.5 

*Ground floor U-values. 

Table 34 Hours of operation of air-conditioning 

Weekdays Weekends 

Sitting room 
7am – 9am 

5pm – 11pm 

10am – 2pm 

5pm – 12 pm 

Bedroom 9pm – 8am 10pm – 9am 
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Figure 38 Ground and first floor plans of semi-detached house 

The resultant space cooling energy load (demand) consumption values for each room for the base 

climate are shown in Table 35. 

126 
Table 35 Space cooling energy load (demand) for sitting room and main bedroom for the base climate (He at al 2006)

Sitting room (kWh) Bedroom (kWh) 

Terraced 
Semi-

detached 
Detached Terraced 

Semi-

detached 
Detached 

pre-1919 

1919-1964 

post-1964 

29 

54 

54 

72 

121 

142 

85 

150 

183 

141 

160 

229 

124 

144 

234 

159 

185 

280 

The simulated space cooling energy demand for a dwelling of type i and construction period j (Ei,j) is 

simply calculated as the sum of the demand values for the sitting room and bedroom for the 

particular dwelling type and construction period under consideration, where, for example, the 

energy demand for the pre-1919 terraced house evaluates as 170 kWh. 

3.8.2 Space Cooling Energy Consumption for Dwelling Stock for Base Climate 

The stock energy consumption is calculated as the modelled energy consumption of each of the nine 

dwellings extrapolated to the nationwide scale in proportion to observed dwelling and air-

conditioning distribution profiles. The process involves converting energy demands to energy 

The terms “demand” and “consumption” are used by the authors of the (He, et al., 2006) paper in an 

imprecise manner on occasion. The data in the table above are termed (i) “cooling load” and (ii) “TAS 

simulated cooling energy”, in a section contradictorily titled “Energy consumption for summer cooling of 

individual buildings”. Extensive examination of the text and analysis of the data suggest to a very high degree 

that the figures are “demand” data. (Since the overall SEER of the model reported in the original paper 

calculates as 1.1, misinterpretation of the figures would only result in minimal consequence – an error of 10%.) 
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consumptions, and also adjusting the original SEER values used in the original simulations so as to 

more accurately reflect the efficiency of air-conditioning systems in the dwelling stock. 

3.8.2.1 Dwelling stock profile 

Government statistics report the number of dwellings by both type and by age as separate 

categories. Table 36 shows the stock profile by both dwelling type and dwelling age for England 

(DCLG, 2011). 

Table 36 Actual distribution of dwellings by type and age in England (%) 

Dwelling type
127 

% Dwelling age % 

Terraced 29 pre-1919 21 

Semi-detached 26 1919-1964 37 

Detached 17 post-1964 42 

A number of assumptions have to be made.


i. The patterns of distribution in Great Britain are assumed to be the same as those observed 

in England. 

ii. It is assumed that the 72% of the stock represented by terraced, semi-detached and 

detached dwellings is representative of the whole stock127 . The values in column 2 of Table 

36 are thus multiplied by a factor of 1.39 so that these three-dwelling types constitute 100% 

of the stock. 

iii. Since the number of dwellings of each type are not reported by age, it is assumed that the 

age distribution within a given type is the same as that observed across the stock as a whole. 

The resulting pattern of distribution used in the modelling is shown in Table 37. 

The remaining 28% comprise bungalows - 9%; converted flats - 4%; purpose-built flats - 15%. 
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Table 37 Assumed distribution of dwellings by type and age used in the model (Great Britain) (%) 

Dwelling type Dwelling age % Number 

Terraced 

pre-1919 

1919-1964 

post-1964 

9 

15 

17 

2 298 265 

3 927 437 

4 481 053 

Semi-detached 

pre-1919 

1919-1964 

post-1964 

8 

13 

15 

204 0590 

3 487 104 

3 978 650 

Detached 

pre-1919 

1919-1964 

post-1964 

5 

9 

10 

1 353 691 

2 313 283 

2 639 366 

Number of dwellings in Great Britain (ns): 26 519 439 (DCLG, 2012b; Scottish Government, 2012; Welsh 

Assembly Government, 2011). 

3.8.2.2 Air-conditioning stock profile 

As noted previously, 2010 penetration rates of air-conditioning in the domestic stock are estimated 

at 3% by BSRIA (BSRIA, 2011), and at 7.2% following analysis128 of DGTREN data (DGTREN, 2008). 

The distribution of air-conditioning types and SEER values used in SCECdwell differ from those used 

in the He et al (2006) model. In both models the overall SEER value is the weighted sum of the 

constituent SEER values (Table 38). 

Table 38 Distribution of air-conditioning systems and associated SEER values used in He et al (2006) model and 

SCECdwell - base climate 

Moveable Split system Overall 
** 

Distribution (%) SEER Distribution (%) SEER SEER 

He et al (2006) model 

SCECdwell 
* 

85 

84 

0.8 

2.9 

15 

16 

2.8 

2.95 *** 

1.1 

2.91 
* 

Distribution data are sourced from DGTREN (2008), and SEER data are sourced from Government Standard 

CoP (EER) data MTP (2012), where SEER values are assumed to approximate EER values. 
** 

i.e. overall SEER in He et el model (2006) is proportional to [(0.85 x 0.8) + (0.15 x 2.8)]; overall SEER in 

SCECdwell is proportional to [(0.84 x 2.9) + (0.16 x 2.95)]. 
*** 

MTP CoP (EER) estimate for 2010 for minisplits is 2.95, and that for “rooftops and ducted splits” is 3.0. As it 

is considered that minisplits are likely to exist in much greater number than ducted split systems in the 

domestic sector, the 2.95 value is chosen. 

1,898,951 units in dwelling stock of 26,519,439. 
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It is noted that the SEER values used in SCECdwell are EER values as noted in the legend of Table 

38129 . This approximation necessarily introduces error into the calculation and is further discussed in 

Section 3.10. 

The equation describing the space cooling energy consumption for the national dwelling stock for 

the base climate (EL-2004) (GWh) is described by the following equation: 

Equation 26 

�4�R00H = � � � ,� × � ,� × FR0�0 × 10��0 ⁄b��cd5 �
� �
� 

where, 

i = house type 

j = construction period 

m = air-conditioner of unit type 

Ei,,j = simulated cooling energy demand for dwelling of


type i, built in period j for base climate (kWh)


ni,j = the number of dwellings of type i, built in period j


p2010 = air-conditioning penetration in present stock (%)


SEERSD = overall SEER for SCECdwell (= 2.91)


The energy consumption deriving from use of these air-conditioners in the national dwelling stock in 

the base climate (EL-2004) is shown in Table 39. 

See Glossary for description of these terms. 
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Table 39 Modelled air-conditioning energy consumption for dwelling stock for the base climate (London, 2004) 

Dwelling type Dwelling age 
Dwelling stock (GWh) 

penetration 3% penetration 7.2% 

Terraced 

pre-1919 

1919-1964 

post-1964 

4.0 

8.7 

13.1 

9.7 

20.8 

31.4 

Semi-detached 

pre-1919 

1919-1964 

post-1964 

4.1 

9.5 

15.4 

9.9 

22.9 

37.0 

Detached 

pre-1919 

1919-1964 

post-1964 

3.4 

8.0 

12.6 

8.2 

19.2 

30.3 

TOTAL 78.9 189.3 

3.8.3	 Space Cooling Energy Consumption for Dwelling Stock for Present Day 

Climate 

Energy consumption for the national dwelling stock of the present day climate (EGB-2010) (GWh) is 

calculated from the energy consumption for the base climate (EL-2004) which is adjusted by the base 

climate adjustment factor, kL-2004 of value 0.511, the derivation of which is shown in Equation 27. 

Equation 27 

�VW�R0�0 = �4�R00H × f4�R00H 

where, 

kL-2004 = CDDGB-2010 /CDDL-2004 

where 

CDDGB-2010 = number of CDDs in present climate (national 

population-weighted average, 2000-2010)130 

CDDL-2004 = number of CDDs in base climate (London, 

2004)131 (92 for base temperature of 18 0C, 78 for base 

temperature of 18.3 0C) 

Table 40 reports the present day space cooling energy in the dwelling stock. 

130 
As derived in Section 3.5. 

131 
As derived from analysis of the 2004 summer data for London (Heathrow) (UK Meteorological Office, 2011). 

136




Table 40 Present day modelled space cooling energy consumption in the GB dwelling stock (GWh) (SCECdwell) 

Energy consumption (GWh) 

EGB-2010 (penetration 3%) 40.3 

EGB-2010 (penetration 7.2%) 96.8 

3.8.4 Space Cooling Energy Consumption for Dwelling Stock for Future Climate 

Future energy consumption must take account of both (i) the short-term response factor (the factor 

by which consumption would increase due to increased consumption of the present stock of air-

conditioners alone) (kst) and (ii) the long-term response factor (the factor by which consumption 

would increase due to increased penetration alone (klt). 

Energy consumption for a future climate (EGB-fut) (GWh) is calculated as follows: 

Equation 28 

�VW�XL. = �VW�R0�0 × fP. × fg. 
where 

kst = CDDGB-fut / CDDGB-2010 

klt = pfut /p2010 

where 

CDDGB-fut = number of CDDs in future climate (national 

population-weighted average, where the future population 

shows the same geographical distribution as the present 

day)132 

CDDGB-2010 = number of CDDs in 2010 (national population-

weighted average)133 

pfut = air-conditioning penetration in future stock (%)134 

p2010 = air-conditioning penetration in 2010 stock (%)135 

132 
As derived in Section 3.6. 

133 
As derived in Section 3.5. 

134 
As derived in Section 3.7. 

135 
i.e. 3% (BSRIA estimate), 7.2% (DGTREN estimate). 

137




Table 41 and Table 42 report both the short- and long-term response factors. 

Table 41 Short-term response factor (kst) 

Emissions scenario 

Low Medium High 

2030s 

2050s 

2080s 

1.9 

2.7 

3.3 

1.9 

3.1 

5.0 

2.0 

3.4 

7.2 

Table 42 Long-term response factor (klt)* 

Present day penetration – 3% Present day penetration – 7.2% 

Emissions scenario Emissions scenario 

Low Medium High Low Medium High 

2030s 

2050s 

2080s 

8.5-9.7 

13.5-15.4 

16.4-18.4 

8.6-9.9 

15.1-17.1 

22.5-24.7 

9.3-10.7 

17.0-19.1 

27.6-29.3 

3.9-4.3 

5.8-6.5 

6.9-7.7 

3.9-4.4 

6.5-7.2 

9.4-10.2 

4.2-4.7 

7.2-8.0 

11.4-12.1 

* Lower values derive from CEUD data and the higher values derive from SHEU data for each range. 
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Table 43 reports the resulting impact upon space cooling energy consumption as estimated by 

SCECdwell. 

Table 43 SCEC-dwell: Present day and future space cooling energy consumption in the dwelling stock (GWh) 

Present day penetration – 3% Present day penetration – 7.2% 

Emissions scenario Emissions scenario 

Low Medium High Low Medium High 

2010 

2030s 

2050s 

2080s 

40 

654-751 

1495-1700 

2182-2458 

40 

676-776 

1866-2111 

4504*4892 

40 

768-881 

2361-2653 

8036*-8534* 

97 

718-803 

1546-1728 

2220-2466 

97 

739-827 

1910-2128 

4487*-4892 

97 

830-929 

2395-2657 

7983*-8455* 

*Since a given number of CDDS returns a lower penetration rate for the “3% regression equation” than for the “7.2% 

regression equation” for low number of CDDS (e.g. in the present and near future), one might have expected the “3% 

regression equation” to return a lower penetration forecasts for high CDD totals as well. As the two regression equations 

are trained upon the same CDD data however, it is quite normal that “7.2% equation” which, in relative terms, “over-

estimates” for low CDD values should under-estimate in relative terms, for high CDD values, since the nature of regression is 

that over-estimates in one part of a regression line are under-estimated at other parts as seen in the space heating logistic 

transformation analysis earlier. The asterisked higher energy consumptions seen with the “3% regression equation” in the 

table above are in direct correspondence with the higher penetration rates seen in Table 29 for the “3% regression 

equation, when compared to those for the “7% regression line” in Table 30 for high numbers of CDDs. 

It is evident that cooling energy consumption in the domestic stock is forecast to increase sharply. 

Where the present day penetration is estimated at 7.2%, even under a low emissions scenario for 

the 2030s), a seven-fold increase in consumption from 97 GWh to at least 718 GWh is forecast as a 

minimum increase (Table 43). At its extreme, where the present day penetration is estimated at 3%, 

space cooling energy consumption may be more than 200 times as high as it is now by the 2080s 

under a high emissions scenario. 

A DSM model such as this contains a number of assumptions, inaccuracy in which would obviously 

lead to an over- or under-estimation of energy consumption. The need to perform a sensitivity 

analysis in order to estimate the magnitude of the potential error associated with each of these 

assumptions is, therefore, important. Table 44 shows the impact of changing a number of key 

parameters associated with the building and the way in which it is used. 
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Table 44 Change in cooling energy consumption for the main bedroom of a post-1964 detached dwelling resulting from 

different input parameters (He et al (2006)) 

Model parameter 
Change in energy 

consumption (%) 

Set-point temperature: increased to 24 (±) 2 0C -28 

Set-point temperature: reduced to 20 (±) 2 0C +45 

Solar shading installed: window blind and oversized roof overhang* -2 

* Overhang oversized to be unrealistically large (3m or more) (and therefore replicates the effect of shading). 

3.9 SCECair (bottom-up, air-conditioner as base unit) 

In this model the cooling energy consumption of an air-conditioner of a given type, operating under 

typical conditions over the course of a year, is calculated. Account is taken of the different types of 

air-conditioner and the numbers of each type in the present day stock, and future energy 

consumption is calculated taking account of both the short-term and long-term response to climate 

change. The model takes the following form. 

i. The annual energy consumption of an air-conditioning unit is calculated, where account is 

taken of: 

a. power rating of an air-conditioning unit (cooling capacity of an air-conditioning unit 

and EER), and 

b. annual number of hours of operation (effective usage – see footnote 99) 

ii. The air-conditioning unit energy consumption is used to generate the energy consumption 

of the present day residential stock , where account is taken of: 

a. size of the dwelling stock, 

b. air-conditioning penetration rates in the stock, and 

c. proportion of each air-conditioning system used in the stock. 

iii. Future stock consumption is calculated for each of nine different future climates (i.e. three 

different time-slices (2030s, 2050s, 2080s), under three different emissions scenarios (high, 

medium, low)). Account is taken of both (i) the short-term response factor (which is 

calculated as the ratio of the number of CDDs in a future climate to the number of CDDs in 

the present climate), and (ii) the long-term response factor arising from an increase in future 

penetration levels. 

3.9.1 Annual Energy Consumption of an Air-Conditioner 

The energy consumed by an air-conditioner of type m (Em) (kWh) is calculated as the product of the 

electrical power used during operation (power rating, rm) and the effective length of time it is in 

operation (nh) 136 . The model assumes that each dwelling has no more than one air-conditioner, 

whether it be a split system or a moveable unit. 

i.e. hours of effective usage, when air is being chilled – see footnote 99. 
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3.9.1.1 Power used in Consumption (Power Rating) 

The power consumed by an air-conditioner (power rating) is calculated as the ratio of the cooling 

capacity (cooling output) and its EER value. 

Average Cooling Capacity of an Air-Conditioning Unit 

The average cooling capacity of an individual air-conditioning unit is calculated as the ratio of the 

total cooling capacity of the stock and the total number of air-conditioners in the stock. 

The average cooling capacity of each of the two types of air-conditioning unit which dominate the 

residential stock (cm) are shown in Table 45, using data obtained from DGTREN (2006). 

Table 45 Total cooling capacity, total number of air-conditioning units and average power rating of residential air-
137 

conditioning units in the UK stock (2010) 

Moveable Split system 

Total cooling capacity of room air-conditioning units (output) (kW) 4270953 1572493 

Total number of room air-conditioning units 1630135 268816 

Average capacity/unit (cm) (output) (kW) 2.62 5.85 

Average EER of an Air-Conditioning Unit 

Average EER values of air-conditioning units are the same as the Government Standard Average 

figures listed Table 38 of the previous section (MTP, 2012). 

3.9.1.2 Annual Number of Hours of Operation 

With regard to the assignation of a value for nh, in accord with the MTP’s statement that many 

(domestic) moveable units may only be used for a few tens of hours per year, the view is taken that 

annual effective usage in the domestic stock is likely to be of the order of 35 hours for the present 

day climate. As a means of testing whether or not 35 hours is a realistic choice for the annual 

number of hours of usage, a series of DSM experiments have been performed on a three-bedroom 

semi-detached house in which no mechanical cooling has been installed and as may be typically seen 

in the stock, in order to estimate the number of discomfort hours. 

Validation of annual number of discomfort hours 

The premise underlying the experimentation is that the sum total of hours of discomfort in a free-

running building can be said to be equal to the same number of hours that air-conditioning would be 

Note that the figures refer to the UK rather than Great Britain. Since the number of air-conditioning units 

installed in the residential stock of Northern Ireland is likely to be very small, its inclusion in these data is 

deemed to make negligible difference. 
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used to prevent the occurrence of this discomfort if air-conditioning was installed instead (and the 

dwelling were not to free-run). Thus the number of hours during which the indoor temperature in 

the dwelling (running in free-running mode) exceeds the upper limit of the comfort zone is said to 

equal nh
138 . 

Since air-conditioning is so little used within the domestic stock, occupants’ perception of daytime 

comfort is considered to be best described by the Adaptive Comfort equations, the upper limit of the 

European adaptive standard EN 15251 (Category II) (see Section 4.2.2) being the threshold 

temperature above which discomfort is said to ensue. With regard to night time, since the Adaptive 

Comfort equations are not applicable because occupants lack adaptive opportunity, an indoor 

temperature of 24 0C is taken as the threshold temperature: CIBSE Guide A states that thermal 

comfort and the quality of sleep begin to decrease if the bedroom temperature rises much above 24 
0C, at which point just a sheet is used for cover (CIBSE, 2007). The annual number hours for which 

air-conditioning would be used is therefore taken as the combined total of daytime hours and night 

time hours, when the dwelling is occupied, when the indoor temperature exceeds each of these 

temperature limits (discomfort hours). Designed in DesignBuilder running EnergyPlus software, a 

stock-representative three-bedroom semi-detached house is simulated in free-running mode in 16 

different locations. Details of the building’s construction and operation are shown Figure 39, Figure 

40, Table 47 and Table 48. 

Figure 39 Three-bedroom semi-detached house of typical design and construction used to model hours of discomfort 

nh is the number of effective hours of operation (i.e. number of hours air-conditioner is switched on for an 

air-conditioner without thermostat; number of “chiller on” hours for an air-conditioner with a thermostat) -

see footnote 99. 
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Figure 40 Plan layout of three-bedroom semi-detached house use to model hours of discomfort 

Table 46 General model parameters 

Model parameter Description 

Orientation Front of house: north-facing. 

Conservatory: south-facing 

Floor area 88 m 2 

Glazing 30% glazing 

Occupancy 0.02 people/m2 

Infiltration 0.7 air change/hour 
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Table 47 Construction and thermal performance of principal building elements 

Element Description 
U-value (with 

bridging) (W/m
2
K) 

Wall 
Cavity wall with 80mm extruded polystyrene 

cavity, 13mm plaster finish 
0.35 

Floor* 
150mm cast concrete ground floor slab on 

130mm extruded polystyrene 
0.24 

Roof 
Clay tile with 250mm medium weight stone 

wool insulation 
0.16 

* Ground floor. 

Table 48 Occupancy periods in which discomfort is monitored 

Discomfort period Weekdays Weekends 

Day 
7am – 9am 

6pm-12 midnight 

9am – 12 midnight 

Night 12 midnight – 7am 12 midnight – 9am 

The default natural ventilation regime is set: when indoor temperatures exceed 22 0C and the house 

is occupied, the air change rate is increased to 12 air changes per hour (thus mimicking window 

opening). 

All eight locations in Great Britain for which DesignBuilder provide hourly data have been used in the 

simulations. As each of these locations returns a CDD total which is less than the present day 

national population-weighted total (CDDGB-2010) of 47, eight European locations with climates which 

are slightly warmer than that of Great Britain have also been simulated in order to achieve a 

balance139 . Typical data output for the house at Gatwick are reported in Appendix 16: Model Output 

for Semi-Detached House at Gatwick. 

Great Britain locations: Jersey, Oban, Finningley, Hemsby, Aberdeen, Birmingham, Aughton, Gatwick. 

European locations: Nancy, Brussels, Amsterdam, Munich, Stuttgart, Cologne, Hamburg, Bremen. 
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Figure 41 shows the plot of discomfort hours against CDDs.
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Figure 41 Plot of discomfort hours against CDDs (base temperature 18 C) for 16 locations for a stock representative 

semi-detached dwelling in a free-running mode 

As the coefficient of determination is relatively high (and would evaluate at over 0.9 if the Cologne 

datum point were ignored), the method used here to estimate the number of discomfort hours from 

CDD totals appears to be satisfactory. The hours of discomfort for a CDD total of 47 (CDDGB-2010) 

(base temperature 18 0C) evaluate as 27. In consequence, the value of 35 as a measure of the 

annual number of hours of operation of air-conditioning is deemed to be satisfactory: it is possible 

that there would be a degree of over-run on the limited number of occasions that the air-

conditioner was used, where its use extended beyond the 27 hours since it is very unlikely that 

occupants would immediately switch off the air-conditioner as soon as the indoor temperature once 

again entered the comfort zone. 

3.9.1.3 Modelled Annual Energy Consumption of an Air-Conditioner 

The resulting average annual energy consumption values for each type of air conditioner m for the 

present day climate (Em) (kWh), as described by Equation 29, are shown in Table 49. 

Equation 29 

�� = K� × �M 

where , 

K� = ��c 
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Table 49 Average annual energy consumption values of a residential air-conditioner for the present day climate (kWh) 

Moveable Split system 

Energy consumption (Em) 43.7 69.4 

3.9.2 Annual Energy Consumption for Dwelling Stock for Present Day Climate 

The present day energy consumption in the dwelling stock is calculated as the average annual 

energy consumption of each air-conditioning type extrapolated to the nationwide scale in 

proportion to observed dwelling and air-conditioning distribution profiles. The dwelling and air-

conditioning profiles are described in Section 3.8.2. 

Space cooling energy consumption for the domestic stock for the present day climate (EGB-2010) 

(GWh) is described by the following equation: 

Equation 30 

�VW�R0�0 � �� × �P × FR0�0 × 'A� × 10��0 

where 

m = air-conditioner of unit type 

Em = average annual cooling energy consumption for an air-

conditioner of type m for present day climate (kWh) 

ns = the number of dwellings in the stock 

p2010 = air-conditioning penetration in present stock (%) 

acm = proportion of air-conditioning stock of unit of type m 

(%) 

The energy consumption deriving from use of these air-conditioners in the dwelling stock is shown in 

Table 50. 
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Table 50 Present day space cooling energy consumption in the dwelling stock (GWh) (SCECair) 

Energy consumption (GWh) 

EGB-2010 (penetration 3%) 30.0 

EGB-2010 (penetration 7.2%) 71.9 

3.9.3 Energy Consumption for Dwelling Stock for Future Climate 

Future energy consumption (EGB-fut) is calculated by multiplying the present day energy consumption 

(EGB-2010) by the short- and long-term response factors (kst and klt) in exactly the same way as for 

SCECdwell as described in Section 3.8.4140 . Table 51 reports space cooling energy consumption as 

estimated by SCECair. 

Table 51 SCECair: Present day and future space cooling energy consumption in the dwelling stock (GWh) 

Present day penetration – 3% Present day penetration – 7.2% 

Emissions scenario Emissions scenario 

Low Medium High Low Medium High 

2010 

2030s 

2050s 

2080s 

30 

486-558 

1110-1262 

1621-1826 

30 

502-576 

1386-1568 

3345-3665 

30 

570-654 

1754-1970 

5968-6338 

72 

533-596 

1148-1283 

1649-1832 

72 

549-614 

1419-1581 

3340-3633 

72 

617-690 

1779-1973 

5929-6280 

The SCECdwell consumption forecasts are 26% larger than the SCECair forecasts. The fact that 

SCECdwell features two air-conditioners per dwelling (bedroom and sitting room) in contrast to 

SCECair which only features a single air-conditioner may partially explain why the SCECdwell 

forecasts are larger: there is a period of possible overlap when both air-conditioners are in operation 

in SCECdwell (19 hours out of 139 hours of possible operation, equivalent to a 14% overlap) (see 

Table 34). The smallness of the difference between their forecasts can be seen when it is considered 

that raising the annual number hours of operation in SCECair from 35 to 44 (equivalent to 

approximately 40 minutes per week for the 13 weeks of summer) would be sufficient to remove the 

discrepancy altogether. 

3.10 Discussion of SCECMORS 

When one considers the number of different assumptions underlying both SCECdwell and SCECair, 

and the sensitivity of the final results to changes in the value of some of these assumptions 

(SCECdwell -Table 44; SCECair - consumption increases by 26% for an additional nine hours of 

Note that the short- and long-term response factors (reported in Table 41 and Table 42) for SCECdwell are 

equally applicable to SCECair. 
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operation), it is striking that two such very different models should yield such relatively similar 

results. 

Of particular importance is the error associated with the estimation of the SEER in SCECdwell, the 

EER being used as a surrogate for the SEER. If the value of the SEER is increased to accord with the 

observation that the SEER is often of the order 18% larger than the EER, the difference between 

SCECdwell and SCECair’s estimation of space cooling energy consumption reduces to 13%. If the 

value of the SEER of the mobile unit is decreased to 0.8 to accord with the estimate by He et al 

(2006), the difference increases to 71%. Whilst a 71% difference may appear large, in absolute 

terms the difference remains small: taking a medium emissions scenario in the 2050s as an example, 

the 71% difference amounts to 3,358-3,829 GWh, which is the equivalent of 1.2-1.4% of the energy 

used for space heating in the residential stock in 2011141 . 

Despite the uncertainty attached to the size of the error associated with estimation of current 

penetration rates, SEER values and number of hours that air-conditioning is in operation142, their 

magnitude is put into perspective when compared against the influence borne by climate change, 

whether directly through the short-term response or indirectly through the long-term response. 

Moreover, it is also clear that the long-term response to climate change is of considerably more 

importance than the short-term response. Taking the medium emissions scenario for the 2050s as 

an example, where the present day penetration is estimated at 7.2%, total cooling consumption 

would increase by a factor of up to 3.1143 if account is only taken of the short-term response (i.e. 

penetration remains at 7.2%); this compares with the 22-fold increase which may occur when 

further allowance is made for the fact that penetration is forecast to increase to approximately 50% 

in such a scenario144 . (Even when using the low penetration Californian data which are considered to 

be anomalous, consumption would increase by a factor of more than 13, equivalent to an increase of 

1,220%.) 

Whilst it is clear that the analysis is most sensitive to changes in the value of the long-term response 

factor, this being the factor which most markedly affects consumption as shown in Table 42, it is also 

true that this is the factor to which the most uncertainty is attached (even though the analysis is 

statistically robust): not only is there a degree of spread in the Canadian penetration which, for 

example, could see penetration rates up to ±18% different from those reported for a CDD value of 

180 (i.e. in the second part of the century)145, but it is not certain that air-conditioning uptake will 

follow the same pattern as that observed in Canada. Perhaps penetration rates could remain 

relatively low as in present day Italy. Whilst this remains a possibility, it is important to remember 

that the Gross Domestic Products (GDP) per capita in most of regions of the hot Mediterranean 

basin have been relatively low by American standards until relatively recent times, air-conditioning, 

something of a luxury, being beyond the low purchasing power of the majority of consumers. In the 

relatively affluent present day UK, the cheapness of air-conditioning units, which can be purchased 

141 
Space heating energy consumption in the residential stock (2011): 272,419 GWh (DECC, 2012h). 

142 
Although the DGTREN penetration figure is 140% as large as the BSRIA penetration figure (7.2% as opposed 

to 3%), the initial large difference between estimates of future energy consumption rapidly declines: whilst the 

difference may extend up to 10% under a low emissions scenario during the 2030s, the difference extends to a 

maximum of no more than 1.7% by the time the 2080s are reached (but is typically less than 1%). 
143 

Equivalent to an increase of 210%. 
144 

Equivalent to an increase of 2,100%. 
145 

This depends upon whether householders respond more like Manitobans or Quebecers (Section 3.7.3.2). 
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for about £300, somewhat removes this impediment to uptake. The example presented by China, 

where the number of air-conditioning units per 100 urban households rose from 0.34 in 1990 to 

112.07 in 2010, shows how penetration levels can increase dramatically over a relatively short 

period of time in a buoyant economy (National Bureau of Statistics of China, 2011). 

It is important to remember, however, that although levels of cooling consumption are forecast to 

increase by very large amounts in relative terms over the coming decades, the absolute increase in 

total national energy consumption is actually very low in consequence of the very low levels of 

current domestic consumption146 . Even if the EER is increased form the modelled stock average of 

2.91 to a value of between 6 and 7 as is forecast for 205 (see chapter 5), the approximate doubling in 

consumption still remains very low. 

The current levels of consumption do not register in Government statistics. 

149


146 



4 Adaptive Comfort Degree-Day Model 

Summer temperatures are likely to increase significantly over the course of the century and that 

remedies must be sought if our buildings are to remain thermally comfortable. Whilst the 

installation of air-conditioning has been proposed as offering one solution to the problem, the 

Adaptive Approach to Thermal Comfort AATC) has been proposed as an alternative means of 

creating a thermally comfortable environment at little or no expense in terms of energy expenditure. 

Moreover, it is particularly well suited for application in buildings in the service sector, in which 

sector levels of air-conditioning have historically been considerably higher than in the residential 

sector and continues to be so in Canada147 . A prescriptive low-energy modus operandi, the AATC 

eschews the view of thermal comfort as a fixed entity which is thrust upon the individual through 

the provision of a thermally comfortable environment; rather, it promotes the notion that comfort is 

borne of the individual, something which is personally attained. Provided that the individual is given 

the “adaptive opportunity” to do so, the AACT recognises that the individual will make the necessary 

changes to his/her local/personal environment in order to secure comfort. Whilst the AATC is most 

often applied in a cooling context, its use can be extended to the heating season in climates with 

very mild winters. 

First described in the 1970s in the pioneering work of Humphreys and Nicol (Nicol & Humphreys, 

1973), and greatly developed in a large and ever increasing body of work since this first paper, 

adherence to the AATC makes unnecessary the use of mechanical systems such as air-conditioning 

systems to secure a thermally comfortable environment and, indeed, actually forbids their use. 

Rather, thermal a thermally comfortable environment is primarily obtained by the opening and 

closing of windows, and also by changing the level of dress so as to accord with ambient outdoor 

conditions, the forbiddance of mechanical systems being a necessary constraint so that occupants’ 

capacity to adapt to ambient conditions is not violated148 . Whilst buildings which use mechanical 

heating or mechanical cooling systems customarily use broadly fixed temperature limits which are 

independent of outdoor air temperature to define the upper and lower boundaries of the zone of 

thermal comfort149, the fluid temperature limits of the AATC are set in relation to the variant outside 

air temperature (ASHRAE, 2004; CEN/BSI, 2007/2008). Thus, the rising summer temperatures 

associated with climate change do not, therefore, inevitably lead to increased levels of discomfort in 

a well-designed building in free-running mode using the AATC. 

Whilst the energy savings which are achievable with the AATC are calculated as the amount of 

energy which would otherwise be consumed by the mechanical heating/cooling systems displaced 

by it use, unfortunately future heating/cooling energy savings at the national level cannot simply be 

calculated as the heating/cooling energy consumption forecasts detailed in Chapter 2 and Chapter 3. 

As the AATC is only suitable for use in buildings with access to easily openable windows where the 

147 
Whilst space cooling accounted for 1.6% (93PJ) of secondary energy use in the Canadian residential sector 

over the period 2005-2009, the figure was 3.6 times as high at 5.8% (335PJ) in the commercial/institutional 

sector over the same period. (NRCan, 2012). 
148 

It is found that the use of air-conditioning in buildings reduces occupants’ adaptive capacity by reducing the 

width of the zone of thermal comfort (the range of temperatures which an individual describes as 

comfortable) (de Dear & Brager, 2002). 
149 

The Predicted Mean Vote (PMV) Model, as set out in BS EN ISO 7730:2005 (CEN/BSI, 2005/2006), is the 

standard typically used to define these limits. 
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occupants are engaged in near sedentary activities, quantification of energy savings at the national 

level is made impossible since the numbers of such buildings have not been determined150 . For 

those free-running buildings which are capable of using the AATC, however, a metric which can 

reveal the level of potential savings achievable by the adoption of an adaptive comfort standard, in 

lieu of using an air-conditioning system (which employs the more restrictive Predicted Mean Vote 

(PMV) Model151), is an attractive notion. 

This chapter introduces just such a metric, the Adaptive Comfort Degree-Day (ACDD). Moreover, 

such is the nature of the ACDD, that not only can it be used to provide a qualitative measure of 

potential energy savings deriving from use of the AATC, but it can do so without reference to the 

building’s dimensions or building’s thermal characteristics152; and in the special case where a 

building using a mechanical cooling system with a known cooling load is refurbished so that it can 

free-run during the cooling season after refurbishment, it, furthermore, provides a simple means of 

quantifying energy savings for any particular time in the future without the need to carry out a 

complex dynamic simulation modelling analysis. 

The ACDD is analogous to the previously mentioned degree-day (CDD or HDD), the temperature 

difference/time composite used to quantify the amount of cooling/heating required to maintain 

thermal comfort using a given outdoor temperature as its base temperature; the differences 

between the ACDD and the CDD/HDD are that (i) ACDDs measure indoor temperature differences, 

and (ii) the ACDD base temperature is set so as to correspond with the upper and lower limits of the 

zone of thermal comfort of the PMV Model under typical conditions153 . 

After explaining the concept of the ACCD in Section 4.1, Section 4.2 validates its capacity as an 

instrument for measuring climate/weather related energy savings. Section 4.3 and Section 4.4 

investigate potential energy savings arising from implementation of the two adaptive standard 

options applicable within the United Kingdom, viz. (i) the ANSI (American National Standards 

Institute)/ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) 

adaptive standard 55-2004154 (ASHRAE, 2004), and (ii) the European adaptive standard BS EN 

15251:2007155 (CEN/BSI, 2007/2008) for future climates under different emissions scenarios over the 

150 
For example, it cannot be used in deep-plan office buildings with sealed windows (i.e. primarily buildings 

specifically designed/adapted for use of air-conditioning systems), and it is additionally not suitable for use in 

in many retail premises where occupants spend a lot of time in non-sedentary activities. 
151 

The PMV Model is traditionally used to set the temperature limits of the thermal comfort zone in indoor 

environments which are mechanically heated or cooled. It relates the six physical parameters affecting 

comfort (of which one is air temperature) to a comfort scale ranging from -3 to +3, as scored (voted) by the 

general population, where 0 represents the optimum level of comfort at which the greatest number of people 

are comfortable. For any combination of these six parameters in an indoor environment, the PMV Model 

predicts the average score (i.e. predicted mean vote) that the general population would attach to that 

particular environment. It additionally predicts the percentage of people that would be dissatisfied at any 

particular PMV value, where “predicted percentage dissatisfied” is given the acronym of PPD. Having decided 

upon an appropriate PMV or PPD range for the indoor environment in question, the PMV Model is used to set 

the maximum and minimum temperature limits for the particular values of the other five parameters. 
152 

Heat loss coefficient, thermal capacity, infiltration rate, solar gains, internal gains. 
153 

i.e. typical conditions as detailed in table A.5 of BS EN ISO 7730:2005 (CEN/BSI, 2005/2006). 
154 

Section 5.3 - The Optional Method for Determining Acceptable Thermal Conditions in Naturally Conditioned 

Spaces. 
155 

Annex A.2 - Acceptable indoor temperatures for design of buildings without mechanical cooling systems. 
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coming century. Section 4.5 discusses possible causes for the different results deriving from the two 

adaptive standards, before concluding with the summary in Section 4.6. 

4.1 The Adaptive Comfort Degree-Day 

A full understanding of ACDD theory requires a complete and exact understanding of the principles 

underlying conventional degree-day theory. Section 4.1.1 begins with an overview of conventional 

degree-day theory, before Section 4.1.2 goes on to explain the ACCD concept itself. 

4.1.1 The Degree-Day 

The degree-day concept is predicated on the notion that an energy balance is achieved in a building 

when the sum of the heat inputs equals the overall heat losses. Taking cooling as an example, and 

where there is no latent load, Equation 31 describes the heat balance equation. 

Equation 31 

3BB+@�O:																												hi = hP + h� + hX�j 

where,


Qc = output from cooling system (kWh)


Qs = solar gains (kWh)


Qi = internal gains from people, equipment and lights (kWh)


Qf+v = heat flux from outside to inside (sum of heat gains 


through building fabric + ventilation losses) (kWh) 

where, 

heat flux is proportional to indoor-to-outdoor temperature


difference (i.e. Qf+v = k(to – ti)


to = mean outdoor temperature over the course of 1 day (0C)


ti = mean indoor temperature over the course of 1 day (0C)


The underlying premise of the concept is that the incidental gains Qs and Qi, when averaged over a 

period of time, can be assumed to be constant (c). Equation 31 can thus be re-written as: 

Equation 32 

3BB+@�O:																												hi = f(�N − ��) + A 
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Assigning the constant term, ti + (c/k), as the base temperature (tb), the cooling degree-day 

equation can finally be written as: 

Equation 33 

	 3BB+@�O:																												hi = f(�N − ��) 
where, 

tb is the threshold outdoor temperature which calls 

the cooling system into operation156 

Therefore, over the course of one day, the cooling energy output (Qc) is proportional to the 

difference in temperature between the outdoor temperature on that day and the base temperature. 

Over the course of a longer given period of time (e.g. n days), the cooling load is proportional to the 

sum of the daily temperature differences in that given period of time (e.g. temperature difference 

on day 1 + temperature difference on day 2 + temperature difference on day 3 +….temperature 

difference on day n). The sum of these temperature differences - n.(to – tb) - are collectively referred 

to as the number of degree-days. Thus, the cooling energy demand over a given length of time of n 

days (Q.nc) can be written as: 

Equation 34 

3BB+@�O:																												h. �i = f. ?? 

where, 

dd = number of degree-days over time period of n 

days 

(based on (CIBSE, 2006)). Furthermore, a necessary adjunct of the concept, resulting from steady-

state theory, is that, given enough time, the driving force applied by (to – ti) in Equation 32 would 

ultimately ensure that each degree rise/drop in outdoor temperature would result in a rise/drop in 

indoor temperature of equal magnitude in the situation where no mechanical system was in place to 

counteract the driver, (to – ti). 

Thus the cooling degree-day (CDD) can be defined as the time integral of the mean daily outdoor air 

temperature above a particular base temperature (units: K.day, or more simply, CDD). Figure 42 

illustrates the principle in graphical form where x is the base temperature which calls the cooling 

system into operation to maintain thermal comfort, such temperature corresponding with an indoor 

temperature of y (the upper limit temperature of the thermal comfort zone as set by the PMV 

i.e. when to > tb, Qc assumes a positive value, and thus cooling is required. 
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Model). It can be seen that the amount of cooling energy required to maintain the indoor 

temperature at y is in proportion to both (i) the number of cooling degree-days (Figure 42 (a)) and 

(ii) the number of quasi cooling degree-days (quasi DD) Figure 42 (b)) 157 . 
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Figure 42 Adaptive Comfort Degree-Day concept explained by analogy with the traditional cooling degree-day – (a) 

Cooling degree-day total as a function of outdoor temperature and time, (b) Quasi cooling degree-day total as a function 

of indoor temperature and time, (c) ACDD total as a function of indoor temperature and time 

Heating degree-days are calculated in an exactly analogous manner when the outdoor air 

temperature falls below the base temperature, the base temperature being the outdoor air 

temperature which calls the heating system into operation. 

4.1.2 The Adaptive Comfort Degree-Day 

The Adaptive Comfort Degree-Day functions in analogous fashion to the quasi degree-day, its value 

being in direct proportion to potential energy savings arising from use of the AATC in a building in 

place of the PMV Model. In this instance however, no mechanical system is in place to control the 

temperature. Taking cooling as an example again, whereas a building using the PMV Model must 

call upon an energy-consuming system once the indoor temperature of y is reached in order to 

prevent internal temperatures further rising above this limit Figure 42 b), the AATC may allow 

temperatures to extend beyond this limit whilst still maintaining thermal comfort. In such a case, 

the upper temperature limit of the thermal comfort zone set by the AATC (z) varies in accord with 

the varying mean outdoor air temperature (Figure 42.c). By simple analogy with the quasi degree-

157 
Note that the temperature scale for figure (a) is the outdoor temperature, whilst the temperature scales for 

(b) and (c) is the indoor temperature. 
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day, the potential energy savings which can be achieved by the AATC are in proportion to the area 

bound by z and y, (the amount of cooling energy which would otherwise be consumed by a 

mechanical system in maintaining an indoor temperature of y, and preventing it from reaching an 

indoor temperature of z)(units: cooling ACDD). The basic form of the equation used to calculate the 

annual number of ACDDs for a given location is described by Equation 35 and Equation 36 

Equation 35 

3BB+@�O	Y3��b		(_ℎ��	YYl3Lg > Qno�i)																													Y3��i = �(YYl3Lg − Qno�i) 
Equation 36 

��'�@�O	Y3��b		(_ℎ��	YYl3 < Qno�M)																													Y3��M = �(Qno�M − YYl3 ) 
where, 

AATCul = AATC upper temperature limit 

PMVbc = PMV base temperature for cooling season 

ACDDc = annual number of cooling ACDDs 

AATCll = AATC lower temperature limit 

PMVbh = PMV base temperature for heating season 

ACDDh = annual number of cooling ACDDs 

n = length of time which number of ACDDs is measured 

In similar vein to conventional degree-days, ACDD values calculated as having a negative value 

assume an actual value of 0, since the ACDD metric is only a measure of the extent by which AATCul 

exceeds PMVbc (cooling season) or AATCll drops below PMVbh (heating season). 

It should be remembered that the cooling ACDD is a direct correlate of the non-latent (i.e. chilling) 

component of the energy consumption of a mechanical cooling system. As such, whilst the potential 

energy savings for systems involving no transfer of heat by latent loads (e.g. chilled beams/ceiling 

cooling system) are in direct proportion to the number of ACDDs, the level of the potential energy 

savings for other mechanical systems involving latent loads (e.g. fan coil systems) will be even 

greater than the number of ACDDs. 
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4.2 Validating the Concept of the ACDD 

The concept of the ACDD is founded upon the notion that each degree rise in outdoor temperature 

would result in a rise in indoor temperature of equal magnitude in a free-running building under 

steady-state conditions. There will be many situations over the course of a year, however, where 

there is insufficient time for the steady-state equilibrium to be established. Indeed, it is this very 

premise that thermally slowly-responding heavyweight buildings exploit, where a large increase in 

the outdoor air temperature during the day does not result in a concomitant large increase in the 

indoor temperature during the day, the heat of the day rather being slowly released as 

temperatures drop during the night. Similarly, the temperature inside highly glazed buildings may 

far exceed the outdoor air temperature during the day, this being the principle underpinning the use 

of conservatories as solar collectors. 

It is clear, therefore, that the ACDD concept must be tested under the non-steady-state conditions of 

the real world using real weather data. Whilst it may seem reasonable that there may be a close 

relationship between the number of ACDDs and potential energy savings in a quickly-responding 

building of very lightweight construction with a very low level of glazing with low solar gains, one has 

to examine if the relationship extends to other buildings of other construction types and different 

levels of glazing. 

Taking cooling as an example, the ACDD concept states that potential energy savings (Ep) are 

proportional to the number of ACDDs: 

Equation 37 

�J = f� × Y3��	 
where, 

Ep = potential energy savings on a given day 

k1 is a constant 

ACDD = number of ACDDs (either ACDDc or ACDDh 

depending upon whether cooling or heating is being 

examined) for the given daywhere the number of ACDDs is 

the summation of the ‘temperature differences between 

the AATC upper limit and the PMV upper limit’ over a given 

day as illustrated by Figure 42c. This is expressed in 

equation form as: 
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Equation 38 

�J = f� × (YYl3L − Qno�i) × l 

where, 

T = 1 (day) 

Actual energy savings on a given day (Ea), as illustrated by Figure 42a, can be expressed as: 

Equation 39 

�� = fR(�N − Qno�i) × l 

where, 

k2 is a constant 

to = mean outdoor temperature on the given day 

This can be re-written as: 

Equation 40 

�N = 
�� + Qno�i (fR × l) 

Now, as seen later in Table 53 (Section 4.2.2), the AATCul takes the following form for adaptive 

standards158: 

Equation 41 

YYl3Lg = f<�N + A� 

where, 

k3 and c1 are constants 

ASHRAE adaptive standard 55: AATCul = 0.31 x to + 17.8 + x. 

European 15251 adaptive standard: AATCul =0.33 x to + 18.8 + y. 
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Substituting for AATCul from Equation 41 into Equation 38 results in the following equation: 

Equation 42 

�J = f�q(f<�N + A�) − Qno�ir × l 

Substituting for to from Equation 40 into Equation 42 results in the following equation: 

Equation 43 

�J = f� s,f< ,(fR × l) + Qno�i- + A�- − Qno�it × l 

This simplifies as: 

Equation 44 

�J = fH�� + fUQno�il + f�A�l − f�Qno�il 

where k4 and k5 are constants 

Since PMVbc and T are also constant, it can be seen that Ep is proportional to Ea: 

Equation 45 

�J = fT�� + AR 

where k6 and c2 are constants 

Substituting for Ep from Equation 37 into Equation 45 results in the following equation: 

Equation 46 

f� × Y3��	 = fT�� + AR	 
This simplifies as: 

Equation 47 

	�� = f]Y3�� + A< 

where 

k7 and c3 are constants 

The actual energy saved over the course of a year (Ey) calculates as: 
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Equation 48 

�u 	= ���	 
Substituting for Ea from Equation 47 into Equation 48 results in the following equation: 

�u 	= f�fTY3�� + A<		 
This simplifies as: 

�u 	= f �Y3�� + A	 
where k and c are constants 

Thus actual energy savings over the course of a year are proportional to the number of ACDDs over 

the course of the year. 

In other words, ACDD theory states that ACDDs are not only a measure of potential savings which 

can be achieved by implementing the AATC, but they are also a measure of actual savings. i.e. the 

number of ACDDs is also proportional to the actual energy consumed by a mechanical cooling 

system. 

A series of modelling experiments have been performed to test the theory, where the relationship 

between annual actual space cooling energy consumption and the number of ACDDs is investigated: 

where a clear linear correlation exists between the two, one can assert that the ACCD concept is 

valid, and that ACDDs can therefore be used to estimate AATC potential energy savings159 . 

Section 4.2.1 describes the modelling set-up used to calculate cooling energy consumption (cooling 

energy consumption being the equivalent of AAC T savings as previously mentioned). Section 4.2.2 

describes the procedure for calculating ACDDs; since there are two adaptive standards available for 

use in the UK, the European adaptive standard EN 15251 and the ASHRAE adaptive standard 55, the 

numbers of ACDDs are examined for both. Section 4.2.3 presents the correlation results where 

cooling energy consumption is regressed against ACDDs, and Section 4.2.4 discusses the results. 

The modelling experiments only report upon space cooling energy consumption. The relationship between 

space heating energy consumption and heating ACDDs is discussed in Section 4.4.2. 
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4.2.1 Building Simulation 

A range of simple, single storey office buildings of dimensions 15m x 25m x 3.5m of different thermal 

responsivenesses has been designed using the modelling software package, DesignBuilder. Five 

different construction types - (i) lightweight (LW) ,(ii) medium weight (MW), (iii) highly insulated 

medium/heavyweight (Insulated), (iv) medium weight with pitched roof (Pitched), (v) solid wall 

(Solid) - using five different levels of evenly-spaced glazing (10%, 30%, 50%, 70% and 90% wall 

coverage) are modelled; construction details are shown in Appendix 11. Each office building 

incorporates a fan-coil air-conditioning system with a set-point temperature of 26 0C (operative 

temperature). Thus a total of 25 buildings are examined, an example of one of which, the 30% 

glazed Pitched building, is shown in Figure 43. 

Figure 43 Pitched office building with 30% glazing 

Simulations are carried out at time-steps of 10/hour for a total of 22 locations160 under typical 

patterns of occupancy, equipment gains, metabolic activity, clothing, lighting and air-tightness for a 

generic office area using EnergyPlus software made available by the US Department of Energy using 

International Weather for Energy Calculations (IWEC) weather data161 (Table 52). 

160 
550 simulations in total – 25 building types in 22 locations. 

161 
Derived from up to 18 years (1982-1999) of hourly weather data observations, and supplemented by solar 

radiation data estimated on an hourly basis from earth-sun geometry and hourly weather elements, 

(particularly cloud amount information), the weather data constitutes weather conditions typical for the 

specific location (US Department of Energy, 2008), being the ASHRAE equivalent of the TRYs produced by the 

Chartered Institution of Building Services Engineers (CIBSE). 
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Table 52 Climate data for the 22 locations used in the building simulations and resultant effect upon total annual cooling 

energy consumption and window solar gains for MW building with 30% glazing 

Location 

Mean Dry Bulb Temp 

(
0
C) 

Direct Normal 

(kWh/m
2
) 

Total Annual 

Cooling 

Energy 

Consumption 

(kWh) 

Solar Gains -

Window 

(kWh) Summer 

(Jun-Aug) 
Annual 

Direct 

Normal 

Diffuse 

Horizontal 

Aberdeen 

Oban 

Aughton 

Hemsby 

Finningley 

Brest 

Birmingham 

Jersey 

Gatwick 

Cologne 

Brussels 

Nancy 

Frankfurt 

Nantes 

Paris 

Dijon 

Mannheim 

Bordeaux 

Odessa 

Turin 

Montpellier 

Marseille 

13.3 

13.5 

14.7 

15.3 

15.6 

15.6 

15.9 

16.2 

16.3 

17.1 

17.1 

17.8 

18.2 

18.4 

18.6 

19.1 

19.2 

20.2 

21.1 

21.5 

22.7 

23.3 

8.3 

9.2 

9.5 

9.8 

11.2 

11.2 

9.6 

11.2 

10.1 

9.9 

10.3 

10.1 

10.1 

12.2 

11.2 

10.7 

11.1 

13.3 

9.9 

12.4 

14.9 

15.0 

483 

588 

600 

690 

597 

661 

627 

891 

743 

564 

509 

729 

723 

885 

679 

812 

727 

930 

831 

1035 

1320 

1504 

616 

547 

605 

641 

622 

688 

670 

633 

593 

648 

630 

657 

615 

665 

669 

682 

638 

712 

701 

653 

666 

615 

732 

661 

881 

1709 

2011 

2229 

2264 

2992 

3296 

4428 

4116 

6064 

5698 

7073 

6382 

7590 

7620 

9672 

10184 

14927 

15889 

17815 

21568 

21209 

22376 

24411 

22622 

24570 

24184 

26499 

23803 

22503 

21352 

24637 

23866 

27090 

24282 

26257 

24255 

28631 

26659 

28648 

32531 

33737 

The cooling energy consumption is noted in each of the 550 simulations, the input parameters162 

having been specifically chosen to present a very broad cross-section of the building stock, the 

intention being that the resulting annual cooling consumption totals should be equally broad in 

range. Indeed, this is seen to be the case, Figure 44, Figure 45 and Figure 46 giving an indication of 

the impact borne by construction type, level of glazing and location on consumption. 

The space cooling energy consumption of the Insulated building is 2.7 times as much as that of the 

Pitched building for a 30% glazed building at Gatwick (Figure 44). 

viz. construction types, levels of glazing and location. 
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Figure 44 Variation in annual cooling energy consumption by construction type for a 30% glazed building at Gatwick 

The space cooling energy consumption of the 90% glazed building is 25 times as much as that of the 

10% glazed building for a MW building at Gatwick (Figure 45). 
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Figure 45 Increase in annual cooling energy consumption for a MW building at Gatwick as level of glazing increases 

The space cooling energy consumption of the building in Marseille in the south of France is 27 times 

as much as that of the building in Oban in the west of Scotland for a MW building163 (Figure 46). 

All seven of the IWEC locations on mainland United Kingdom (plus Jersey) are used in the analysis. 
0

Marseille is chosen as the extreme-most climate as its summer temperature (23.2 C) approximates that 
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Figure 46 Annual cooling energy consumption in the MW building with 30% glazing (set-point operative temperature of 
0

26 C) across a range of 22 locations 

4.2.2 Cooling ACDD Calculation 

The European and ASHRAE adaptive standards are described by different equations which set 

different temperature limits for the thermal comfort zone. Since ACDDs are calculated with 

reference to the fixed upper temperature limit of the thermal comfort zone of the PMV Model, the 

ACDD concept provides an opportunity to compare one standard against the other on a like-for-like 

basis in terms of energy saving potential. This is particularly useful for designers and energy 

managers who wish to employ an adaptive standard in their buildings, but to whom little guidance is 

offered to help them make their selection. 

Each adaptive standard sets an optimum temperature (neutral temperature), the temperature at 

which the greatest number of people find thermal satisfaction. Each adaptive standard also sets out 

acceptable deviations either side of the optimum temperature. The limiting temperatures of these 

deviations (x and y) mark the upper and lower limits of the thermal comfort zone (Table 53). 

0
forecast for London under a high emissions scenario for the 2080s (22.7 C at the 0.5 probability level). The 

remaining 13 European locations, primarily from western Europe, are chosen so as to ensure a good range of 

ACDD totals/temperatures. The results of all analyses are shown in Section 4.2.3 – no data are omitted. 
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0
Table 53 Optimum operative temperature and limiting temperatures of thermal comfort zone for adaptive standards 

( C) 

ASHRAE adaptive standard 55* 

upper limit 

lower limit 

0.31 x tmm + 17.8 + x 

0.31 x tmm + 17.8 - x 

European 15251 adaptive standard 

upper limit 

lower limit 

0.33 x tdrm + 18.8 + y 

0.33 x tdrm + 18.8 - y 

* Note that the ASHRAE adaptive standard equations are not contained within the standard itself but can be 

found in other documents produced by the authors such as (de Dear & Brager, 2002) and (de Dear, 2007). 

where, 

tmm = mean monthly outdoor air temperature 

x = 2.5 or 3.5 

tdrm = daily running mean outdoor air temperature164 

y = 2, 3 or 4 

As the adaptive standards each propose a number of different upper (and lower) temperature limits 

which allow for different levels of acceptable deviation (x and y in Table 53) from the neutral 

temperature, as does the PMV Model, the question arises as to which upper limits should be chosen. 

Section 4.2.2.1 sets out the method of selecting the upper temperature limit to be used in the 

comparison, and Section 4.2.2.2 describes the ACDD calculation process. 

4.2.2.1 Selection of upper temperature limits 

PMV Model 

The PMV Model (BS EN ISO 7730:2005 standard) (CEN/BSI, 2005/2006) sets out three different comfort zones, 

Categories A, B and C, where PMV/PPD values can be used to delineate one category from another (see footnote 151) ( 

Table 54). 

Daily running mean temperature - a composite daily mean weighted temperature which takes account of 

the temperature on preceding days, the temperature weighting diminishing on a half-life basis the farther one 

moves back in time, i.e. temperature on day n (tn) = 0.5tn-1 + 0.25tn-2 + 0.125tn-3 + …. 
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Table 54 BS EN ISO 7730:2007 categories of comfort 

PPD values (%) 
Category PMV 

whole body discomfort 

A <6 -0.2 < PMV < +0.2 

B <10 -0.5 < PMV < +0.5 

C <15 -0.7 < PMV < +0.7 

ASHRAE adaptive standard 

The ASHRAE adaptive standard sets out two thermal comfort zones – one for 80% acceptability, and 

another for 90% acceptability. Since the 80% acceptability comfort zone used in ASHRAE adaptive 

standard 55 for buildings which employ mechanical cooling systems (and which uses the PMV 

Model) is based on a PPD value of 10 for general whole body thermal discomfort165 (ASHRAE, 2004; 

Schiller Brager & de Dear, 2000) (Schiller Brager & de Dear, 2000), it is reasonable to attach this 

same value of PPD 10 for whole body thermal discomfort to the 80% acceptability limits of the 

ASHRAE adaptive standard. 

European adaptive standard 

BS EN 15251:2007 sets outs out both (i) the adaptive standard for buildings without mechanical 

cooling systems and the (ii) the standard for buildings which employ a mechanical cooling and/or 

heating system (i.e. PMV standard). The same comfort classification system is used for both the 

adaptive standard and the PMV mechanical appliance standard (Table 55)166 . 

Table 55 BS EN 15251:2007 categories of comfort 

Category Explanation 

I High level of expectation and is recommended for spaces occupied by very 

sensitive and fragile persons with special requirements like handicapped, sick, 

very young children and elderly persons. 

II Normal level of expectation and should be used for new buildings and 

renovations. 

III An acceptable, moderate level of expectation and may be used for existing 

buildings. 

IV Values outside the criteria for the above categories. This category should only 

be accepted for a limited part of the year 

165 
An allowance is made for an average of a further 10% dissatisfaction that might occur because of local 

thermal discomfort, in addition to the general whole body 10% dissatisfaction mentioned above. 
166 

Whilst four different comfort zones are distinguished in Table 55, only the first three zones (Categories I, II 

and III) are used by the adaptive standard. 
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The BS EN 15251:2007 standard for buildings which employ a mechanical cooling and/or heating 

system is the same as PMV standard as BS EN ISO 7730:2005, where Categories I, II and III of BS EN 

15251:2007 cross-correspond with Categories A, B and C of BS EN ISO 7730:2005, and the same 

PMV/ PPD values delineate one category from another. 

Thus, Category B of the PMV Model (BS EN ISO 7730:2005) cross-corresponds with both (i) the 80% 

acceptability ASHRAE adaptive standard167, and (ii) Category II of the European adaptive standard, 

which allows for a direct comparison between the standards168 . In consequence, ACDDs are 

calculated with reference to the upper temperature limits of these three particular forms of each 

standard. 

4.2.2.2 Application of Cooling ACDD Equations 

Henceforth, the ASHRAE adaptive standard 55 (80% acceptability) is termed the AAS and the 

European 15251 adaptive standard (Category II) is termed the EAS for brevity. 

In view of the fact that both the AAS and the EAS only apply to spaces where the occupants are 

engaged in near sedentary physical activities with metabolic rates ranging from 1.0 to 1.3 met, the 

adaptive standard comparison is limited to buildings such as offices, dwellings, schools and 

laboratories where the metabolic rate is of the order 1.2 met. 

The resultant base temperature used in the calculation of ACDDs (which corresponds with Category B in 

Table 54 and a metabolic rate of 1.0-1.3) derives from the PMV Model as detailed in Annex A.4 of BS 

EN ISO 7730:2005169 (CEN/BSI, 2005/2006): the PMV base temperature for the cooling season 

(PMVbc) calculates as 26.0 0C170 . 

Regarding the necessity that comparison be made on a like-for-like basis, it is re-iterated that the 

AAS/EAS comparison is only valid for those buildings in which a mechanical cooling system is not 

present. Even though the EAS can, in general, apply to buildings in which a mechanical cooling 

system has been installed given the proviso that the system is not actually used to provide cooling, 

the comparison only remains valid for that sub-section of buildings completely lacking a mechanical 

cooling system so as not to invalidate the applicability of the AAS. 

The annual number of cooling ACDDs (ACDDc) are calculated for each AATC thus: 

167 
Both share a whole body PPD value of 10. 

168 
Noteworthy of mention are the facts that (i) the ASHRAE adaptive standard 55 (80% acceptability) is 

described as being intended for use in “typical applications" (ASHRAE, 2004) , and (ii) the European adaptive 

standard (Category II) is described as being intended for a “normal level of expectation and should be used for 

new buildings and renovations” (CEN/BSI, 2007/2008). In that they are both the “ordinary” forms of the 

standard therefore, this validates the rationale described above that these are the forms of each adaptive 

standard which should be compared against one another. 
169 

The base temperatures refer to spaces under typical conditions of air velocity, relative humidity, clothing 

insulation and metabolic activity, where the air temperature is equal to the operative temperature. 
170 0

The PMV base temperature for the heating season (PMVbh) calculates as 20.0 C. 
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Equation 49 

YYb																																																								Y3��i = �(YYbL − 26.0) 
when AASul > 26 

where, 

AASul = AAS upper temperature limit 

AASul = (0.31 x tmm) + 17.8 + 3.5 

Equation 50 

�Yb																																																								Y3��i = �(�YbL − 26.0) 
when EASul > 26 

where, 

EASul = EAS upper temperature limit 

EASul = (0.33 x tdrm) + 18.8 + 3 

The annual number of heating ACDDs (ACDDh) are calculated in an analogous manner. 

4.2.3 Validation Results 

In this section the results of the regression analyses are presented for the 25 buildings for the plot 

annual number of cooling ACDDs against annual total cooling energy consumption. 

The correlation between the number of ACDDs and total cooling energy consumption shows a 

remarkable degree of consistency across the whole range of building types across the range of 

climates investigated, despite the fact that the cooling energy includes both the latent load in 

addition to the sensible load. (In humid climates where loads are high, one might find expect to find 

a diminution in correlation due to increased latent loads.) Ranging from a minimum value of 0.89 for 

the Pitched building with 10% glazing using the EAS, the coefficient of determination reaches a 

maximum of 0.99 for the Solid building with 30% glazing using the EAS and the Pitched building with 

50% glazing using the AAS (Table 56 and Figure 47). 
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Table 56 Coefficients of determination for a range of buildings in the plot of annual number of cooling ACDDs against 

total annual cooling energy consumption 

Level of LW MW Insulated Pitched Solid 
Mean 

glazing AAS EAS AAS EAS AAS EAS AAS EAS AAS EAS 

10% 0.95 0.98 0.93 0.96 0.96 0.98 0.89 0.94 0.91 0.95 0.95 

30% 0.98 0.98 0.97 0.98 0.98 0.98 0.96 0.98 0.97 0.99 0.98 

50% 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.99 0.98 0.98 0.98 

70% 0.98 0.97 0.98 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 

90% 0.97 0.97 0.97 0.97 0.97 0.96 0.98 0.98 0.98 0.97 0.97 

Mean 0.97 0.98 0.97 0.97 0.97 0.97 0.96 0.98 0.96 0.97 0.97 
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Figure 47 Correlation between annual number of cooling ACDDs using the AAS and total annual space cooling energy 

consumption for the Pitched building with 50% glazing for 22 different locations 

Although the coefficient of determination is very high in each of the 50 regression analyses, it is 

noted that in two of the EAS analyses ((i) Pitched, 10% glazing, and (ii) Solid, 10% glazing) and one 

AAS analysis (Pitched, 10% glazing), the correlation starts to deteriorate if the demand for cooling is 

very low. Most clearly observed in the EAS Pitched, 10% glazing regression (Figure 48), the decline in 

the correlation can largely be ascribed to the fact that a zero demand for cooling energy does not 

correlate with zero ACDDs. Essentially, the mismatch results from the fact that although the AATC 
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would allow indoor temperatures to exceed 26 0C on occasion, buildings with very low levels of 

glazing in certain of the colder climates would either very rarely or never require the use of air-

conditioning because indoor temperatures would very rarely or never exceed 26 0C. Whilst, for 

example, in neither Aughton nor Aberdeen would the Pitched building require a mechanical cooling 

system to maintain a temperature below 26 0C, the upper limit of the AATC (reflecting the number of 

ACDDs) does, periodically, stretch beyond 26 0C in both towns. 

R² = 0.89 
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Figure 48 Correlation between annual number of cooling ACDDs using the EAS and total annual space cooling energy 

consumption for the Pitched building with 10% glazing for 22 different locations 

Even though application of the AATC requires that there be access to openable windows, which may 

preclude its use in many of the more extreme construction types (e.g. 10% glazing and 90% glazing, 

such latter highly glazed buildings often likely to have been built so as to specifically incorporate an 

air-conditioning system and possessing sealed windows), the coefficient of determination across all 

buildings averages as 0.97 for both the AAS and the EAS. 

4.2.4 Discussion of Validation Results 

Thermal Responsiveness of Buildings 

The fact that the correlation between cooling energy consumption and cooling ACDDs remains high 

for the whole range of construction types, irrespective of building construction (thermal 

responsiveness), indicates that the predictive capacity of the ACDD concept does not require 

attainment of the steady-state. The indoor temperature which would occur in the steady-state acts 

as no more than an alternative, convenient metric to measure the driving force of heat flux across 

the fabric of the building, where the greater the notional steady-state temperature, the greater the 

heat flux, such heat flux being equal and opposite to the applied cooling energy. 

Having stated that the validity of the ACDD concept rests on no greater assumption than that there 

is a linear correlation between the notional steady-state indoor temperature and outdoor 
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temperature, it is worth noting that these results are, however, in close accord with Coley and 

Kershaw’s finding of the close relationship between actual indoor temperature and outdoor 

temperature; modelling a number of different passively cooled building types using (i) weather data 

projected for the UK and (ii) observed weather data from a very wide range of climates including the 

humid Tokyo and Bangkok as well as London, a near linear relationship between actual indoor 

temperature and outdoor temperature is found (Coley & Kershaw, 2010). 

Solar Gains 

The finding that the coefficients of determination are largely uniform across all levels of glazing is 

indicative of the relatively much lesser importance of solar radiation than outdoor air temperature 

(and therefore ACDDs) in affecting indoor temperature. High levels of direct normal solar radiation 

are not translated into high levels of solar gains: despite the large differences in the levels of direct 

normal solar radiation across the range of locations investigated (coefficient of variation – 31%), the 

coefficients of variation for solar gains show a much higher degree of uniformity, the coefficient of 

variation being of the order of 5-7% for the summer months during which the cooling load is at its 

greatest, and 12% over the full course of the year (Table 57). 

Table 57 Coefficients of variation for (i) solar radiation and (ii) solar gains through glazing for a range of buildings for 22 

locations 

Coefficient of variation 

(Jun-Aug) (%) 

Coefficient of variation 

(Jan-Dec) (%) 

Direct Normal Solar Radiation 

Diffuse Horizontal Solar Radiation 

Glazing Solar Gains for a given level of 

fenestration (LW, MW, Insulated, Solid) 

Glazing Solar Gains for a given level of 

fenestration (Pitched) 

20.0 

3.5 

5.2 

4.5 - 5.1* 

31.3 

5.8 

12.9 

12.4 - 12.7* 

*The reason why the coefficient of variation for glazing solar gains is lower for the Pitched building than it is for 

the other building types is because of the shading provided by the eaves. 

Whilst, for example, Marseille receives 3.1 times as much direct normal solar radiation as Aberdeen, 

this translates into additional solar gains of only 56% for the MW building (30% glazing) (Table 52) 

since a large part of the additional Marseillaise sunshine occurs when the sun is high in the sky171 . 

This dominance of air temperature over solar gains in determining indoor temperature/cooling load 

can be seen in any number town-town comparisons in Table 52: whereas, for example, the MW 

(30% glazing) building in Hemsby receives 36% more direct normal radiation than the same building 

in Brussels, its cooling load is 58% less in consequence of the fact that air temperatures are 

considerably lower in Hemsby than in the Belgian capital. 

Although solar gains for the 30%-glazed MW building in Marseille are only 56% higher than the same 

building in Aberdeen, the building in Marseille consumes over 24 times as much cooling energy. 
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Even though solar radiation is of lesser significance than air temperature, a further reason for the 

very good correspondence between the number of ACDDs and cooling energy consumption is that 

solar radiation is largely not antagonistic to this relationship, there being a similarly high correlation 

between the number of ACDDs and solar gains: the coefficient of determination falls in the range 

0.79-0.81 for all building types and levels of glazing for both adaptive standards. 

Latent Load 

Even though latent loads are not negligible (typically constituting 10-20% of the total cooling load for 

the 30% MW building for example), (i) they are nevertheless significantly less than sensible loads and 

(ii) even though the degree of correlation is less, they also correlate with the number of ACDDs to a 

very high degree. These two facts combine so as to make the inclusion of latent load data within the 

total cooling data as being of negligible consequence. 

Synopsis 

Summarily, the regression analyses confirm the proposition that for (i) a given construction type, and 

(ii) a given level of glazing, there is a clear linear correlation between cooling load and the number of 

ACDDs, the accuracy of the prediction being most exact for buildings where the steady-state 

temperature more often exceeds 26 0C. The sequitur of this finding is that the ACCD can be used as 

a metric to forecast energy savings at different times in the future under a changing climate, thereby 

allowing one to compare the maximum potential savings deriving from the AAS and the EAS. 

4.3 Application of the ACDD Concept to Future Climates 

The Weather Generator is run 100 times for stationary 99-year time-slices centred on the 2030s, the 

2050s and the 2080s under low, medium and high emissions scenarios for the city centres of three 

different locations - Edinburgh, Manchester and London - using the UKCP09 Weather Generator. 

In order to investigate as broad a span of future climates as possible, ranging from a low increase in 

temperature in a climate at a northerly latitude to a relatively large increase in temperature in a 

climate at a southerly latitude, the three variables are grouped into ternions as shown in Table 58. 
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Table 58 Distribution of variables entered into the Weather Generator to investigate numbers of ACDDs in different 

future climates 

Climate Outdoor temperature* City Time slice Emissions scenario 

I 

II 

III 

coolest 

intermediate 

hottest 

Edinburgh 

Manchester 

London 

2030s 

2050s 

2080s 

low 

medium 

high 
* 

The descriptors coolest, intermediate and hottest should be viewed as no more than relative terms. 

The Weather Generator is also run for a 1970s control period (1961-1990) for each of the locations. 

Thus 9,900 years of daily weather data are produced for each ternion and for the control period, 

averaging the daily mean temperatures of which gives an indication of future climate at the 0.5 

probability level (Figure 49). 
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Figure 49 Mean air temperatures of future climates investigated 

The annual number of cooling ACDDs (ACDDc) resulting from implementation of the AAS and the EAS 

are calculated for the future climates and for the control period using the procedure outlined in 

Section 4.2.2.2. The number of heating ACDDs (ACDDh) are calculated in a similar manner, heating 

ACDDs representing the extent to which the lower temperature limit of the AATC (AATCll) dips below 

the winter PMV base temperature (PMVbh) of 20.0 0C. Table 59 summarises, in equation form, the 

procedure used to calculate the annual numbers of cooling ACDDs and heating ACDDs. 

Table 59 Summary equations used to calculate ACDD totals from Weather Generator output 
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Cooling ACDDs*
# 

Heating ACDDs* 
~ 

AAS 
Y3��i = /�(YYbLg − 26.0)�R 

�
� 

1 ÷ 9900 

where AASul = 0.31 x tmm + 17.8 + 3.5 

Y3��M = /�(20.0 − YYbgg)�R 

�
� 

1 ÷ 9900 

where AAsll = 0.31 x tmm + 17.8 - 3.5 

EAS 
Y3��i = /�(�YbLg − 26.0)<TU 

�
� 

1 ÷ 9900 

where EASul = 0.33 x tdrm + 18.8 + 3 

Y3��M = /�(20.0 − �Ybgg)<TU 

�
� 

1 ÷ 9900 

where EASll = 0.33 x tdrm + 18.8 - 3 

* Indoor temperatures are operative temperatures. 
# 0
When AASul and EASul > 26 C. 

~ 0
When 20 C > AASll and EASll. 

The relative performances of the AAS and the EAS are also investigated against 18 future COPSE 

TRYs to check the robustness of the procedure used in this analysis (c.f. Section 2.5.6.1 and Section 

3.6.1). 

• Edinburgh Turnhouse (rural), high and low emissions scenarios, 2020s, 2050s, 2080s 

• Manchester Ringway (rural), high and low emissions scenarios, 2020s, 2050s, 2080s 

• London Heathrow (semi-rural), high and low emissions scenarios, 2020s, 2050s, 2080s 

The numbers of ACDDs calculated from the COPSE TRYs should be similar but different to those 

calculated for each of Climates I, II and III using the method described in Table 59: not only is the 

method of calculation different (see Section 2.5.6.1), but the COPSE TRYs are calculated for 

rural/semi-rural locations (airports) rather than city centres. 

4.4 Future ACDD Results 

The results reveal that rising temperatures in future climates have quite different implications with 

regard to application of the AATC in summer and winter. 

4.4.1 Cooling Season – AAS and EAS 

Figure 50 shows the number of ACDDs returned by the adaptive standards as the climate warms. 

Although both the AAS and EAS show an increasing return in the number of ACDDs as one moves 

from Climate I to III as expected, the differences between the actual numbers of ACDDs are marked: 

the EAS figures are considerably higher than their AAS counterparts for both the control data and 

the future climate data in all instances. 
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Figure 50 Annual number of cooling ACDDs for 3 climate types with reference to 1970s control 

The EAS returns more ACDDs in Edinburgh in the 2030s than the AAS returns in Manchester in the 

2050s; and the EAS even returns more ACDDs in Manchester in the 1970s than the AAS returns in 

Manchester in the 2050s. 

The TRY data reveal similarly increasing numbers of ACDDs as the climate warms, but further show 

that the differences between low and high emissions scenarios does not start to become appreciable 

until the latter part of the century: whilst there is very little difference in the number of ACDDs 

returned between high and low emissions scenarios in the 2020s for all three locations, the 

difference is very significant by the time the 2080s is reached (Figure 51). 

0 

100 

200 

300 

400 

500 

1970s 

Control 

2020s 2050s 2080s 

C
o

o
li

n
g

 A
C

D
D

s 
(K

.d
a

y
) 

0 

100 

200 

300 

400 

500 

1970s 

Control 

2020s 2050s 2080s 

C
o

o
li

n
g

 A
C

D
D

s 
(K

.d
a

y
) 

(a) (b) 

Edin EAS Manc EAS Lon EAS 

Edin AAS Manc AAS Lon AAS 

Figure 51 Annual number of cooling ACDDs following implementation of the AAS and the EAS using TRY data for (a) high 

and (b) low emissions scenarios for Edinburgh (Turnhouse), Manchester (Ringway) and London (Heathrow) for the 

2020s, 2050s and 2080s 

The data also reveal that, for any given city, potential savings achieved by the EAS (bold line) in any 

particular decade are not matched by AAS savings (dotted line) until decades later. Moving from left 
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to right in Figure 51a (high emissions scenario) it is seen that savings achieved in the 2020s by the 

EAS for either London or Manchester are only matched by the AAS in the 2080s; and Figure 51b (low 

emissions scenario) shows that EAS savings in the 2020s outmatch AAS savings in the 2080s for all 

three cities. 

4.4.2 Heating Season – AAS and EAS 

Insofar as the AAS only applies when the mean monthly outdoor temperature is greater than 10 0C, 

and the EAS only applies when the running mean outdoor temperature exceeds 15 0C, there appears 

to be limited scope for the implementation of either standard, in their current form, in winter, over 

the course of the next century. Analysis of 9,900 years of data from the Weather Generator shows 

that winter (December-February) mean monthly temperatures failed to reach 10 0C for any of the 

three climates (Table 60). 

0
Table 60 Winter mean monthly temperatures for three climate types (December, January and February) ( C) 

December January February 

Climate I 6.1 4.8 4.7 

Climate II 7.7 6.3 6.2 

Climate III 9.7 8.8 8.7 

Although the mean winter temperature fails to exceed the 10 0C threshold for Climates I and Climate 

II even at the 99th percentile (i.e. the top 1% mildest winters), the winter mean temperature does, 

however, manage to exceed the AAS threshold temperature for Climate III at the 71st percentile. 

Not surprisingly, the EAS threshold running mean temperature is only rarely exceeded: the incidence 

of such occurrence is negligible for Climates I and II, and is recorded, on average, on less than four 

winter days for Climate III. 

4.5 Discussion of Future ACDD Results 

At the outset of this discussion investigating why the AAS and EAS should yield such very different 

results in terms of the their energy saving capacity, it is important to remember that any free-

running building using the AATC is zero-energy, whichever particular label is attached to the 

adaptive standard being used; a building operating in free-running mode will save exactly the same 

amount of energy using the AAS as the EAS. The difference between the two standards, insofar as 

energy savings are concerned, hinges on the matter of compliance. A building which may be EAS-

compliant and can thus save energy through avoiding the use of a mechanical cooling system may 

not be AAS-compliant; where such non-compliance in the latter case disallows the use of the AAS 

with the result that a mechanical cooling system is alternatively used, no energy will be saved. 

The findings that the upper temperature limits of the thermal comfort zones of the adaptive 

standards are higher than those of the PMV Model, and specifically, that those of the EAS are higher 

than the AAS, is expected – such a conclusion could be easily inferred by merely casting an eye over 
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the equations defining the respective comfort zones. The significance of the results lies in the 

reporting of the extent of the energy savings that can be achieved, and most specifically the speed at 

which they can be achieved through compliance. The approximate 0.9 0C higher limit of the EAS 

means that it can be applied to a greater number of buildings, these additional buildings being 

capable of achieving energy savings at a significantly faster rate than buildings which are merely 

AAS-compliant. As seen, the buildings using the EAS may achieve levels of energy savings in the 

2020s which a merely AAS-compliant building could not achieve until the 2080s or later, irrespective 

of the emissions scenario chosen. 

4.5.1 Disagreement between Adaptive Standards - Possible Causes 

Given the universality of the perception of thermal comfort, it is curious that these two standards 

should yield such different zones of thermal comfort, the upper limit of the EAS being approximately 

0.8-1.0 0C higher than the AAS over the range of climates investigated. Considering the fact that the 

upper limit of an adaptive standard is often no more than 0.8-1.0 0C higher than the upper limit of 

the PMV Model, such dissimilitude between the adaptive standards themselves is significant. Any 

claim that the 0.8-1.0 0C difference between the two adaptive standards is insignificant, that there is 

essentially very little difference between them, then logic dictates that the same argument should 

be applied to the AATC theory as a whole, that the 0.8-1.0 0C extension of the upper limit of the PMV 

Model offered by the AATC should also be ignored, so nullifying the very existence of any adaptive 

standard in so doing. 

Therefore, despite the previously stated requirement that the two adaptive standards be compared 

on a like-for-like basis, it is apparent that this requirement is not being fulfilled. Two possible 

causes, one arising from differences in the sample populations172used to draw up the standards, and 

the other arising from differences in formulation of the adaptive comfort equations, suggest 

themselves as being responsible for the discrepancy. 

4.5.1.1 Differences in Sample Populations 

As the standards were drawn up from different population samples (either building types or 

occupants), it is possible that the building types used in constructing the ASHRAE adaptive standard 

were different to the building types used in constructing the European adaptive standard; or 

similarly, the difference could arise from the fact that the occupants of the buildings used in 

constructing the ASHRAE adaptive standard were en masse different to the occupants of the 

buildings used in constructing the European adaptive standard. 

i.e. different sample set of buildings and different sample set of occupants. 
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Differences in Building Types 

Whereas the free-running buildings used to formulate the EAS may have included non-operational 

mechanical cooling systems173, those of its AAS counterpart did not, since the ASHRAE adaptive 

standard outlaws their actual presence. In theory this difference could have expressed itself as 

differences in the degree of adaptiveness shown by occupants, occupants in the former group 

showing a lesser degree of adaptiveness borne as a result of having occupied the building at some 

time in the relatively recent past when it was mechanically cooled174 . However, the fact that the 

method used to formulate the European adaptive standard, involving the use of the Griffiths 

constant175, was designed to reduce the effects of adaptation, suggests that it is unlikely that such a 

difference could be an important factor in explaining the difference between the two adaptive 

standards. 

Differences in Occupants 

Whilst of course there is a great deal of thermal heterogeneousness within the human population at 

large, as evidenced by the fact that the neutral temperature differs from person to person, the mean 

neutral temperature of one large sample group will equal the mean neutral temperature of another 

large sample group if the sample groups have been chosen from the same population at large. If 

chosen from different populations however, then it is possible that each sample group will report 

different mean neutral temperatures. Thus differences between the sample groups used in the 

construction of each adaptive standard could ultimately result in different temperature limits for the 

AAS and the EAS. 

Analysis of the neutral temperatures from occupants in buildings in four different countries used in 

formulating the EAS (Nicol & Humphreys, 2010) shows a degree of variance in the neutral 

temperature, being up to 1 0C or more in magnitude on occasion. In view of the large degree of 

variance amongst the handful of countries used to draw up the European adaptive standard, it is not 

inconceivable that at least as much variance might occur in the RP-884 database with its very broad 

national mix176, and that the variance is averaged out differently in the two different databases, 

resulting in different neutral temperatures for the EAS and AAS. The cause of the disparity between 

the neutral temperatures could be due to randomness (deriving from too few data being used). It 

173 
Indeed, there is a possibility that systems may have been in operation, at least for some of the occupants in 

some of the buildings for some of the time, since up to 10% of respondents could report a system as being in 

use before its status was changed from non-operational to operational. 
174 

This lesser degree of adaptiveness would reveal itself as (i) a reduction in value of the slope of the 

regression trend line in the plot of comfort vote against outdoor (or indoor) temperature. 
175 

When comfort vote is plotted against operative temperature in free-running buildings, it is seen that the 

regression coefficient (which can be taken as a measure of adaptiveness) differs from one analysis to the next, 

and it may derive from a number of different causes. The Griffiths constant is tantamount to the regression 

coefficient with the greatest slope (i.e. the plot where occupants show the least/no adaptation, and where 

account has been taken of the presence of error in the predictor variable), and has been based on analysis of 

both the European and ASHRAE adaptive standard databases of buildings (Nicol & Humphreys, 2010; Nicol, 

2008). 
176 

The worldwide database from which ASHRAE adaptive standard 55 was drawn, comprising sample 

populations from locations within Thailand, Indonesia, Singapore, Greece, the United States, the United 

Kingdom, Australia and Pakistan (de Dear & Brager, 2002) . 
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could also be due to differences in adaptive opportunity where perhaps cultural preferences/local 

protocol limit the extent to which dress code may be altered, noting that dress codes in the west 

may differ to those in different parts of Asia. 

The disparity in neutral temperatures could also arise from differences in ancillary environmental 

conditions of the population samples. If, for example, the relative humidity was, on the average, 

higher in the buildings used to formulate the ASHRAE adaptive standard than in the buildings used to 

formulate the European adaptive standard, it would manifest itself in a lower neutral temperature. 

Considering the global nature of the RP-884 database used in formulating the ASHRAE adaptive 

standard 55, which includes buildings in tropical climates in south-east Asia and Australia (de Dear & 

Brager, 2002), such conjecture cannot be discounted. 

Even though climate chamber experiments have reported age, sex and national-geographic 

(Danish/American) difference as having little effect upon the neutral temperature (Fanger, 1972), 

innate racial (physiological) difference is another possible cause for difference between the 

standards, with field studies having shown a difference between ethnic groups. A significant 

difference in neutral temperature was found between Japanese and non-Japanese (predominantly 

North American and European) office workers in Japan who had, on average, lived in Japan for 4.7 

years and were thus likely to have acclimatised to local conditions: the difference in neutral 

temperature was most extreme (3.1 0C) when Japanese females were compared with non-Japanese 

males (Nakano, et al., 2002). Furthermore, although the magnitude of the effect was not quantified 

in terms of a temperature preference, studies reporting on the permanent sensation of cutaneous 

dryness in black-skinned people living in France as a consequence of reduced levels of sweating 

(Fotoh, et al., 2008) raise interesting possibilities that differences in physiology (i.e. race), even if 

only of secondary importance, may, in part, lead to differences in neutral temperatures: not 

violating the biological imperative to maintain a body core temperature of the order of 37 0C (such 

argument underlying the proposition that race cannot have an effect upon neutral temperature), 

dark-skinned people may find warmer temperatures comfortable because of an innate physiological 

preference to sweat more. 

4.5.1.2 Differences in Formulation of Adaptive Comfort Equations 

Inspection of the equations in Table 53 shows that differences in the number of ACDDs resulting 

from implementation of each standard may arise because of (a) differences in the neutral 

temperature for a given outdoor temperature (whether daily running mean (drm) or mean monthly), 

or (b) differences in the temperature bandwidth defining the comfort zone which extends either side 

of the neutral temperature. 

(a) Neutral Temperature 

Different approaches are employed in the derivation of the neutral temperature for each standard, 

the difference between neutral temperatures being in the range 1.3-1.5 0C. 
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ASHRAE adaptive standard 

Its derivation can be simplified thus. 

i. Comfort vote was plotted against indoor operative temperature for 36 different buildings. 

ii. A trend line, weighted in proportion to the number of respondents, was fitted to the data in 

each of the 36 regression analyses and the mean neutral temperature (where comfort vote 

equals zero) was determined for each of the 36 buildings. 

iii. The mean outdoor temperature for each of the 36 regression analyses was also noted. 

iv. A meta-analysis was performed where the mean neutral temperature was regressed against 

the mean outdoor air temperature. A linear trend line was fitted to these data. The 

equation which describes the trend line is taken as the ASHRAE adaptive standard, allowing 

one to determine the neutral temperature for a given outdoor mean temperature (de Dear 

& Brager, 2002; de Dear & Schiller Brager, 1998). (The outdoor mean temperature actually 

used in the standard is the dry bulb mean monthly temperature.) 

European adaptive standard 

Its derivation can be simplified thus. 

i.	 The European adaptive standard recognises that there is a linear correlation between 

comfort vote and indoor operative temperature when one is plotted against the other. The 

slope of the correlation trend line for which minimal/no adaptation has taken place (G) can 

described by the following equation: 

Equation 51 

v = 
(^�0)q.wx�.yr 

where, 

G = Griffiths constant (regression coefficient) 

C = comfort vote at operative temperature top 

0 = comfort vote at neutral temperature tn 

top = operative temperature 

tn = neutral temperature, the temperature at which most 

people are comfortable, according with a comfort vote of 0 
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Rearranging, the neutral temperature is described by the following equation: 

Equation 52 

( ⁄�� = �NJ − 3 v) 
G represents the maximum rate of change in comfort vote in response to change in operative 

temperature, resulting from the fact that minimal/no adaptation has taken place. Observation 

reveals G to have a value of at least 0.4 K-1 . 

ii. Indoor operative temperature, comfort vote and outdoor drm temperature were recorded 

from 26 offices. 

iii. For each operative temperature and comfort vote, the neutral temperature was calculated 

using Equation 52, where G is assigned a value of 0.4. 

iv. The neutral temperature was plotted against outdoor running mean temperature for 26 

offices in a single plot. A linear regression trend line was fitted to the data and its R2 value 

was noted. 

v. Steps iii and iv were repeated, where G is assigned a new value of 0.5. 

vi. The regression trend line returning the greatest R2 value is chosen as best characterising the 

relationship between neutral temperature and outdoor drm temperature177. The equation 

which describes the trend line is taken as the European adaptive standard, allowing one to 

determine the neutral temperature for a given outdoor mean temperature (Nicol & 

Humphreys, 2010). 

The methods of neutral temperature derivation are considerably different, making it difficult to 

localise a specific factor or factors as being responsible for the discrepancy between the two 

adaptive standards. Nevertheless, five factors which have been identified as bearing an influence 

upon setting the neutral temperature, and these are discussed in turn. 

1 Adaptation 

It is clear that the neutral temperature, as reported by a group of occupants, will be lower on day x 

than it is on day y, even though the outdoor temperature and the group of occupants are the same 

on both occasions, if day x is preceded by a period of cold weather and day y is preceded by a period 

of hot weather. This creates a problem for the adaptive standard designer who simply wants to set 

a single neutral temperature in response to a single outdoor temperature from a regression of 

indoor temperature against outdoor temperature. The problem arises from the fact that adaptation 

has occurred, the occupants having responded to the thermal environment and made the changes 

necessary (e.g. opening windows) to secure a comfortable environment. In statistical terms, the 

data are autocorrelated, the value of a dependent variable being affected by the value of the 

preceding dependent variable. 

Since a key requirement of linear regression analysis is that the data are free from autocorrelation, 

and since both adaptive standards are derived from linear regression analyses, it important to 

The best correlation is seen to occur when G = 0.5. 
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examine whether both standards have been successful in removing it from their formulation 

processes. 

Whilst the effects of day-to-day adaptation (autocorrelation) will be manifest in any single building 

used in drawing up the ASHRAE adaptive standard178, it will have no/little bearing upon the average 

neutral temperature of the building if the level of adaptation at high temperatures matches the level 

of adaptation at low temperatures since the regression line will still pass through the same neutral 

temperature mid-point. As the ASHRAE adaptive standard analysis eliminated those buildings which 

had uniformly hot or cold indoor temperatures (de Dear & Schiller Brager, 1998), it is, therefore, 

considered that the neutral temperature of the ASHRAE adaptive standard is unlikely to have been 

much influenced by the effects of day-to-day adaptation (autocorrelation) (see Appendix 12). 

Since the European adaptive standard uses the Griffiths constant, tantamount to the regression 

coefficient showing the least/no adaptation, it is similarly not likely to have been much affected by 

day-to-day adaptation (autocorrelation). (The use of a daily running mean temperature, which 

additionally reduces the influence of autocorrelation, is further discussed in point 5 below.) 

2 Errors in the Predictor Variable 

Whilst the European adaptive standard endeavours to take specific account of errors arising from 

the measurement of the predictor variable (measurement errors and equation errors179) which may 

be present 180, the ASHRAE adaptive standard does not. Increasing the value of the Griffiths constant 

from 0.4 to 0.5 increases the value of the neutral temperature by about 0.2-0.3 0C over the range of 

temperatures forecast for the future. Although it is not possible to quantify the magnitude of the 

equation errors (Humphreys & Nicol, 2000), it is clear that the allowance made for them increases 

the disparity between the neutral temperatures of the adaptive standards. 

3 Definition of Mean Monthly Temperature 

The interpretation of mean monthly temperature for the ASHRAE adaptive standard is problematic, 

as raised by Nicol and Humphreys (2010). No guidance is given as to the length of time over which 

the mean should be recorded. The difficulty lies in the fact that as the climate warms, the mean 

monthly temperature increases – using a mean averaged over the preceding 10 years would result in 

a higher number of ACDDs than a mean averaged over the preceding 100 years. The assumption 

178 
Adaptation reveals itself as a decrease in the regression slope when neutral temperature is plotted against 

outdoor temperature, i.e. the neutral temperature is increased for high outdoor temperatures and lowered for 

low outdoor temperatures. 
179 

Error deriving from the fact that comfort cannot really be described by operative temperature alone, 

comfort being a psycho-physiological response to an environment shaped by a number of factors, of which 

operative temperature is but one. 
180 

Increasing the value of the Griffiths constant from 0.4 to 0.5 (and which improves the correlation between 

neutral temperature and daily running mean temperature), is suggested as making an allowance for the 

presence of error in the predictor variable and error deriving from day-to-day adaptation. 
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implicit in the standard is that the mean is essentially static, that it represents the typical 

temperature that can be expected at a particular point in time and with which a person is familiar. 

As such, this criterion is fulfilled for the future climate in the present study, the mean monthly 

temperatures being calculated as the mean of that month in the decade under investigation (2030s, 

2050s or 2080s) and deriving from 9,900 years of data; the mean is not calculated from preceding 

weather, but rather from weather that can be assumed to be typical of the time. 

4 Comparison of Mean Monthly Temperature with Daily Running Mean Temperature 

It has been suggested that the difference between the two standards arises as a consequence of the 

fact that the ASHRAE adaptive standard uses mean monthly temperatures whilst the European 

adaptive standard uses drm temperature in the calculation of the neutral temperature. Since the 

drm temperature on any given day incorporates a measure of the temperature recorded on 

preceding days, the mean monthly drm temperature will tend to be lower than the mean monthly 

temperature as the year warms (winter to summer), and higher than the mean monthly 

temperature as the year cools (summer to winter). Indeed, this is seen to be the case, the 

July/August boundary being the point where the mean monthly drm starts to exceed the mean 

monthly temperature (Figure 52). 
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Figure 52 Difference between mean monthly drm temperatures and mean monthly temperatures for 29,700 years of 

future weather data for Climates I, II and III 

In the case where there is a substantial difference between the number of cooling ACDDs returned 

in the warming part of the year and the cooling part of the year, where the additional cooling ACDDs 

in the latter part of the year are not balanced by the relative reduction in cooling ACDDs in the first 

part of the year, the number of ACDDs returned by the drm temperature could be significantly 
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different to the number of ACDDs returned by the mean monthly temperature. However, the 

dailyness nature of the EAS seems to make only a limited additional difference: when EAS cooling 

ACDDs are recalculated using mean monthly temperatures instead of running daily mean 

temperatures for the 18 future TRYs, the average percentage reduction in the number returned is 

small (2.6%), especially when compared with the difference in number of AAS ACDDs (Table 61). 

Table 61 Percentage change in number of cooling ACDDs returned by (i) EAS calculated using mean monthly 

temperature and (ii) AAS calculated using mean monthly temperature, with reference to EAS calculated using the drm 

temperature for 18 future TRYs 

Change in number of cooling ACCDs with reference to EAS 

calculated using the drm temperature (%) 
Average Min Max 

Std. 

dev. 

EAS ACDDs calculated using mean monthly temperature -2.6 0.1 -6.1 2.0 

AAS ACDDs calculated using mean monthly temperature -58.9 -40.0 -77.7 10.6 

(b) Width of Comfort Zone 

The values x and y in Table 53 (i.e. width of the comfort zone) are calculated using different methods 

by the two adaptive standards. Both apply the knowledge of the PMV-PPD relationship where a 

PMV of given value results in a PPD of given value. The AAS defines the comfort zone width as the 

average of all the comfort zone widths arising at the 80% acceptability level of all the naturally-

ventilated buildings used to create the standard (PMV of ±0.85), the resulting width calculating as 

±3.5 0C181; the EAS, however, sets the width at directly ±3 0C of the neutral temperature, this width 

being that set by the PMV Model at a PMV of ±0.5 (PPD 10) under typical conditions182, 183 . But 

rather than increase the difference between the two adaptive standards (and concomitantly 

increase the difference in the number of ACDDs returned between the two adaptive standards), the 

different methods used to calculate the widths of the comfort zone actually serve to reduce the 

difference between them: using a comfort zone of the same width would increase the difference 

between the upper limits from 0.8-1.0 0C to 1.3-1.5 0C184 . 

Another possible reason for the difference may derive from the posited PPD value of 10 for whole 

body discomfort which is associated with 80% acceptability (i.e. overall PPD value of 20) for the AAS, 

such PPD value for whole body discomfort being used for the 80% acceptability category of the PMV 

181 
The indoor temperatures coinciding with a comfort vote of +0.85 and -0.85 (equivalent to 80% 

acceptability) was noted in each building, and the temperature range noted. The average of these ranges 
0 0

calculated as 6.9 C (de Dear & Schiller Brager, 1998) or 7 C (de Dear & Brager, 2002). 
182 

Typical conditions, as detailed in table A.5 of BS EN ISO 7730:2005, for occupants engaged physical activities 
2

with metabolic rates of the order 1.2 met (70W/m ). 
183 

Changes in levels of discomfort in free-running buildings are seen to very closely match changes in levels of 

discomfort in air-conditioned buildings using the PMV Model as temperatures depart from the neutral 
0

temperature (i.e. a shift in temperature of 3 C from the neutral temperature of a free-running building will 
0

result in the same increase in the number of thermally dissatisfied occupants as a shift in temperature of 3 C 

from the neutral temperature of an air-conditioned building, even be it that the buildings have different 

neutral temperatures). 
184 

The difference between the lower limits is increased by the same margin. 
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ASHRAE adaptive standard 55185 . Whilst one cannot actually, disentangle whole body comfort from 

local discomfort, accepting the same PPD value of 10 for whole body discomfort as in the PMV 

Model is, however, considered to be reasonable: what is more, use of the alternative 90% 

acceptability limit in place of the 80% limit for the ASHRAE adaptive standard would produces even 

more disparity between the upper limits, the current disparity of approximately 0.8-1.0 0C rising to 

1.8-2.0 0C. 

As intimated in the preceding paragraphs though, the discrepancy in the width of the comfort zone 

at the upper temperature limit of the comfort zone is of considerably lesser significance when 

compared to the difference in neutral temperatures; over the range of temperatures likely to be 

experienced over the next 70 years or more, neutral temperatures differ by 1.3-1.5 0C, whereas the 

values x and y differ by only +0.5 0C if the 80% acceptability limit is used or -0.5 0C if 90% 

acceptability limit of the ASHRAE adaptive standard is used. 

4.6 Summary 

Whilst it is very unlikely that winter temperatures will surpass the minimum thresholds necessary to 

permit use of either the AAS or the EAS during the heating season, the AACT is seen to bear 

considerable potential in curtailing an increase in space cooling energy consumption as the climate 

warms. In view of the fact that the relatively low upper temperature limit associated with the AAS 

restricts the scope of its application, in that fewer buildings will be able to achieve compliance with 

the standard, the EAS is seen to possess much the greater potential of the two adaptive standards, 

although this is necessarily incurred at the expense of a lower degree of thermal satisfaction on the 

average, even if the EAS deems itself as providing a comfortable thermal environment. In view of 

the urgency attached to not only the level but the speed at which carbon emissions must decrease if 

society is not to suffer the more extreme, deleterious consequence of climate change, the benefits 

conferred by the EAS are clear, the data revealing that, for any given city, potential savings achieved 

by the European adaptive standard in any particular decade are not matched by the ASHRAE 

adaptive standard savings until decades later. 

It a cause of concern for proponents of the AATC, however, that two adaptive standards, which 

should deliver the same levels of comfort and same levels of energy saving, do not do so, since it lays 

itself open to criticism from detractors claiming that the AACT is too imprecise a tool to be 

considered as a robust alternative to the PMV Model. One cannot possibly discount the difference 

between the temperature limits of the two adaptive standards as being inconsequential, since the 

EAS often extends upon the temperature limit of the AAS to an even greater extent than the AAS 

extends upon the temperature limit of the PMV Model; such a line of reasoning, that the difference 

between the upper temperature limits of the thermal comfort zone is so small that it can be ignored, 

185 
ASHRAE adaptive standard 55 sets the temperature limits for both free-running buildings and air-

conditioned buildings. The 80% acceptability category for air-conditioned buildings (PMV standard) is actually 

based on a 10% general dissatisfaction criterion for the body as a whole based (corresponding to tests 

performed in the laboratory), allowing for an additional average of 10% dissatisfaction that might occur 

because of local discomfort (ASHRAE, 2004; Schiller Brager & de Dear, 2000). 
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would lead one to reject the AACT in entirety as an alternative to the PMV Model. Until such time as 

the two standards set temperature limits of equal value however, the EAS is seen as offering the 

greatest potential: not only are energy savings significantly higher with the EAS, but the upper 

temperature of the AAS may be unduly restrictive if further research reveals that the adaptive 

standards do err on the side of caution. 
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5	 The Building Stock in 2050: Pathways to Securing a 

Reduction in Emissions of 80% 

The Climate Change Act 2008 enshrines in law that UK GHG emissions in 2050 should be at least 80% 

lower than the 1990 baseline level (Climate Change Act, 2008)186 . Since the built environment is 

responsible for a significant proportion of current emissions187, it is clear that emissions from this 

sector must reduce significantly if the 80% target is to be achieved; and although specific sectoral 

targets have not been set, it is stated that the built environment will need to have an emissions 

footprint close to zero (DECC, 2011g). However, of the many pathways which may be followed in 

order to achieve this target, it remains uncertain which route represents the optimum choice in 

realising maximum benefit for least cost in terms of fiscal investment and social acceptability. The 

inter-connectedness of the sectors which contribute towards the UK’s carbon budget means that the 

built environment cannot be considered in isolation, since decisions made in one sector can impose 

constraints or alternatively provide opportunities to exploit in another sector. 

With regard to the built environment, such a case may be seen in its relationship with the power 

generation and supply sectors, which are likely to require extensive re-development in the coming 

years as electricity demand increases as end-user fossil fuel burning heating appliances are replaced 

by electrical heating appliances. It remains unclear which, if any of the three sources from which 

electricity can be generated in the future188 will finally prevail, or even if a single technology will 

dominate the electricity generation market by 2050. Indeed, the Government is committed to 

developing all three technology streams at present, allowing the market to ultimately determine the 

eventual make-up of the electricity generation and supply sectors, where technologies with the 

lowest costs win the biggest market share (DECC, 2011g). In the instance where low carbon 

electricity can be generated and supplied at a lesser cost than the cost arising from minimising 

heating energy demand (primarily through the extensive installation of insulation, and the 

development and installation of low energy heating technologies189), energy consumption within the 

built environment could actually increase by 2050. Should the cost of delivering low carbon 

electricity be very low, then there is little advantage to be gained in making investment in reducing 

energy demand, when a more profitable yield from the investment could be returned elsewhere; 

should the cost of delivering low carbon electricity be very high, then efforts are best focussed on 

reducing energy demand; and there exists an extremely large number of possibilities between these 

two extremes, all of which are dependent upon the relative cost of low carbon electricity. 

In consequence, a narrative which describes the state of the stock in 2050 where emissions have 

been reduced by 80% must draw reference from the power generation and supply sectors, key 

186 
Emissions from international aviation and shipping are not currently included within the target. The 

Secretary of State must either include emissions from these sectors within the target before the end of 2012, 

or report to Parliament why the necessary regulation has not been issued. 
187 

Over 26% of GHG emissions derive from the built environment (business, public and residential sectors, 

exclusive of emissions deriving from electricity sourced from fossil fuels) (2011 data) (DECC, 2012c). 
188 

(i) Nuclear fission, (ii) fossil fuel combustion with carbon capture and storage (CCS) or (iii) renewables. 
189 

e.g. micro combined heat and power (CHP) boilers, air-source and ground-source heat pumps (with/without 

underfloor heating), biomass boilers, smart meters, solar thermal. 
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determinants in shaping the future190 . But since it is the Government’s intention to see nuclear, 

carbon capture and storage (CCS) and renewables competing to deliver energy at the lowest possible 

cost until at least the 2020s, not knowing how costs will change over time (DECC, 2011g), the 

construction of a set of storylines in 2012 tailored to describe the building stock in 2050 is rendered 

problematic. Furthermore, since the 80% target relates to all GHG emitting processes en masse, a 

set of authentic storylines describing a particular future scenario, to be coherent, must similarly 

embrace all sectors collectively rather than focus upon individual sectors as independent entities, 

since emission totals in one sector must be traded off against emission totals in other sectors to 

ensure that the sector-wide reduction of 80% is achieved. An example of this is seen with the 

transport sector: if it starts to become apparent that emissions in this sector cannot be reduced as 

easily as emissions in other sectors, the built environment may be called upon to be a net electricity 

producer191 . 

The construction of such a narrative requires the input of information from an immense number of 

diverse sources. Whilst the information revealed in this thesis is therefore insufficient in itself to 

form the basis of a narrative, it can be used however to help inform the Government’s 

comprehensive multi-sector 2050s Pathways Analysis (DECC, 2010a; DECC, 2011a; DECC, 2011b): 

deriving from the modelling output of the DECC 2050 Calculator, the analysis sets out 15 different 

possible scenarios which achieve the 80% reduction in GHG emissions, and provides the storylines 

which describe these scenarios. Pathway 1 takes a balanced approach spreading effort across many 

sectors thus avoiding extreme levels of ambition in any one area, and the remaining 14 pathways 

describe scenarios where efforts are variously concentrated in specific domains. (e.g. Pathway 2 

presents the opportunities and constraints arising from concentrating efforts on reducing energy 

demand in order to achieve the 80% reduction, whilst Pathway 11 examines the scenario arising 

from concentrating efforts on meeting future electricity demand from renewable sources (DECC, 

2011a)). Further pathways, including the (i) Nuclear, (ii) CCS, (iii) Renewables and (iv) MARKAL 

scenarios (see Section 5.3) are detailed within the DECC 2050 Calculator itself. More recently, the 

DECC 2050 Calculator has been used to inform The Carbon Plan: Delivering our low carbon future; 

presented to Parliament in December 2011, the plan sets out how the UK will achieve 

decarbonisation within the framework of its energy policy. 

Section 5.1 gives a brief outline of the DECC 2050 Calculator used in the construction of the 

storylines. Section 5.2 compares estimates of space heating and space cooling energy consumption 

from the DECC 2050 Calculator with those from SHECMOBS and SCECMORS. In Section 5.4 four 

principal pathways forecast as achieving the necessary 80% reduction in emissions are run in the 

DECC 2050 Calculator for different forecasts of the climate in 2050, the results of a “basic” 

implementation of the Calculator being compared with those from an “adjusted” approach which is 

consistent with SHECMOBS and SCECMORS. 

190 
The importance of planning for a future where electricity consumption is set to double by 2050 is explored 

in the Electricity Market Reform White Paper (DECC, 2011c). 
191 

i.e. produce more electricity (through rooftop photovoltaic panels and/or micro-CHP) than it uses, the 

excess being exported to the grid, for consequent use in electric-powered vehicles and elsewhere. 
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5.1 DECC 2050 Calculator 

The DECC 2050 Calculator estimates annual GHG emissions at five-yearly intervals up to 2050. It is a 

Microsoft Excel spreadsheet model comprising 73 worksheets, and functions by amassing the GHG 

emissions arising from each of 31 contributors exerting an influence upon the attainment of the 80% 

target in 2050. Ranging from the very large and immediately recognisable (e.g. biomass power 

stations, growth in industry, geosequestration) to the less obvious (e.g. marine algae, electrification 

of cooking in commercial premises), the cross-sector level of detail with which it has been suffused is 

extreme. Each contributor is constituted from several component parts (e.g. see Section 5.1.1 

below) and plausible combinations of these component parts, which are based on expert analysis, 

are proposed for each of the 31 contributors; the user is free, however, to enter the input for 

different component parts on the relevant worksheet as he/she so desires. The ensuing effect upon 

total GHG emissions in the resulting bespoke scenario is reported in equivalent carbon dioxide 

(CO2e) after each input of data, where account is taken of the emissions factor and global warming 

potential (GWP) for each GHG released into the atmosphere. The DECC 2050 Calculator uses 2007 

as its base year, but since the totalled emissions from this bottom-up model for 2007 using the 

default input amount to only approximately 97% of the actual reported emissions for 2007, 

modelled GHG emissions for future years192 are adjusted by a factor of 1.028. 

With regard to space heating and space cooling, different methods of estimation are employed in 

different sectors, as described below. 

Residential Sector Space Heating 

The demand for space heating is calculated from a clearly defined bottom-up sub-model, elements 

of which can be changed by user. 

Residential Sector Space Cooling 

The demand for space cooling is reported as a bald number for the year under investigation for each 

of four penetration levels, and seems to be partially numerically derived. It is stated that (i) 

projected growth in number of dwellings, (ii) change in average dwelling heat loss, (iii) projected 

changes in outdoor temperature and (iv) the effect of changes to incidental gains have been taken 

into account (as for the residential space heating model) and that an indoor cooling set-point 

temperature of 23.5 °C has been assumed, but unfortunately the structural detail of the model is not 

given. Regarding penetration levels, (which, as seen in Section 3.8.4 (Table 42) and Section 3.10, is 

extremely important in determining actual levels of cooling consumption), default values have been 

set at (i) 100%, (ii) 67%, (iii) 33% and (iv) 0% (DECC, 2010a): the regularity of the figures suggests that 

no analysis has been deployed. The user may accept the default penetration rates or enter new 

values. 

Future temperature estimates are stated as being based on UKCP09 data at the 50% probability level under 

a medium emissions scenario. 
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Service Sector193 Space Heating 

Bald values for the space heating in the commercial sector are merely reported for the present and 

the future in the DECC 2050 Calculator. There are no foundation data (e.g. penetration levels, 

number of buildings, outdoor or indoor temperature) which can be modified. Of eight drivers and 

constraints listed as affecting non-domestic space heating and space cooling in the 2050s Pathways 

Analysis (e.g. increase in the number of buildings, increase in proportion of floorspace which is air-

conditioned), no reference is made to climate (DECC, 2010a), which would tend to suggest that no 

direct account is taken of climate or climate change. 

Service Sector193 Space Cooling 

Bald values for space cooling in the commercial sector are reported as for service sector space 

heating above. 

Industrial Sector Space Heating 

Energy consumption within the industry sector is reported en masse, with no end-uses being 

specified. The lack of detail, where space heating is not even itemised, would suggest that no direct 

account is taken of climate or climate change. 

Industrial Sector Space Cooling 

Space cooling is not itemised. See above. 

The approaches used by the DECC 2050 Calculator in calculating space heating and space cooling in 

the residential sector are examined in more detail in Section 5.1.1 and Section 5.1.2 below; 

unfortunately, a lack of data, as explained above, precludes similar examinations for space heating 

and space cooling in the industry and service sectors. 

5.1.1 DECC 2050 Calculator – Residential Sector Space Heating 

The DECC 2050 Calculator estimates space heating demand. From that estimate the consumption is 

subsequently calculated. 

193 
Insofar as the built environment is concerned, the service sector is usually described as composing of the 

commerce and public administration sub-sectors. The DECC 2050 Calculator mentions the commercial sector 

but not the public administration sector. Since the DECC 2050 Calculator is tasked with examining national 

emissions, its use of commercial is believed to be equivalent to the more widely recognised service. (The split 

of carbon emissions from the commerce and public administration sectors is approximately 50:50 (DECC, 

2010a)). 
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5.1.1.1 Calculation of Space Heating Demand 

The demand for annual space heating194 for the residential stock in year y (Dy) (GWh) is calculated as 

the difference between the sum of annual seasonal heat losses and the sum of annual incidental 

heat gains (Equation 53). 

Equation 53 

�u =	z/�b{u1 − Y|vu} × �u ÷ 3.6 × 10�R 

where, 

i = season (for each of the four seasons, 1 = winter 

(December-February), etc. 

SLy = average heat losses for a household in a season in 

year y (joules)


AIGy = average annual useful incidental heat gains for a


household in year y (solar radiation, metabolic, cooking,


lighting & appliances, and water heating) (joules)


ny = number of households in UK in year y


1/3.6 x 1012 = constant which converts Joules into GWh


where,


Equation 54 

b{u =	�{3u × ∆lu × � 
where, 

HLCy = average household heat loss coefficient in year


y (W/0C)


∆Ty = difference between mean seasonal outdoor


temperature and mean indoor temperature in year y (0C)


t = duration of season (seconds)


and,


The amount of useful heat delivered by heating appliances. 
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Equation 55 

Y|vu = Y|vR00] × /� b{u�� b{R00] 1	 �
� �
� 

where, 

AIG2007 = average annual useful incidental heat gains for a 

household for 2007 (solar radiation, metabolic, cooking, 

lighting & appliances, and water heating) (joules) 

SL2007 = average heat losses for a household in a season in 

2007 (joules) 

The average heat loss coefficient (HLC) for a household, which takes account of losses through both 

the fabric and ventilation, is reported as 247 Watts/0C for 2007. Its calculation is stated as being 

based on the Government’s Standard Assessment Procedure (SAP)195, account having been taken of 

the different age bands and built forms within the stock, but no further detail is given. The average 

annual useful gains for a household for 2007 (AIG2007) is reported as 3.25 x 1010 joules and derives 

from 2006 stock data in the Domestic Energy Fact File 2008 (BRE, 2008). 

Using Equation 53 , the DECC 2050 Calculator calculates residential space heating demand (D) for the 

present stock when input with its own default data for a 2050 climate (medium emissions scenario) 

calculates as 146.1 TWh196, which compares with its estimate of 204.9 TWh for the present stock in 

2007. 

5.1.1.2 Calculation of Space Heating Consumption 

Demand for annual space heating (D) also calculates as the sum of the demands (useful heat 

delivered) for the five separate heat sources (j) used for residential space heating: 

Equation 56 

3u = �3u��


where, 

Cy = total stock consumption in year y 

j = heat source 

195 
The SAP is based on the Building Research Establishment Domestic Energy Model (BREDEM) (BRE, 2011). 

196 0
i.e. this assumes that the present stock of 26.0M is not modified (the HLC remains at 247 Watts/ C, and 

incidental gains remain the same). 
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1 = gas non-condensing boiler 

2 = gas condensing boiler 

3 = electrical resistance heating 

4 = oil-fired boiler 

5 = solid fuel boiler 

Cy-j = stock consumption in year y for heat source j 

The demand for space heating in the stock for a particular heat source j (Dj) is the ratio of stock 

space heating consumption (Cj) and efficiency (ej) of that source: 

Equation 57 

3u�� = �u�� 

where 

Dy-j = stock demand in year y for heat source j 

ey-j = stock efficiency in year y of heat source j 

The DECC 2050 Calculator assumes that a household is heated by a single heating source. Stock 

space heating consumption for a particular heat source (Cj) therefore calculates as the product of 

the stock consumption of all heating sources (C) and the penetration (pj) of that particular space 

heating source in the stock: 

Equation 58 

�u�� = �u × Fu�� 

where, 

Dy = total stock demand in year y 

py-j = penetration in stock in year y of heat source j 

Rearranging Equation 56 and substituting for Cy-j (from Equation 57) and Dy-j (from Equation 58), 

space heating consumption for the present stock in year y (Cy) calculates as: 
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Equation 59 

3u = �u z� 
Fu��} �
� 
�u�� 

Using Equation 59, the DECC 2050 Calculator calculates space heating consumption as: 

i. present day stock in the present day climate (2007): 252.7 TWh197 

ii.	 present day stock in the 2050 climate (medium emissions scenario): 180.3 TWh198 

This corresponds to a drop of 29% between 2007 and 2050. 

5.1.2 DECC 2050 Calculator – Residential Sector Space Cooling 

Residential demand for space cooling (heat removed) within the residential sector is reported as a 

bald figure for the year under investigation, rising from a present day value of 0 (0% penetration) to 

a maximum of 49,700 GWh (if there was 100% penetration) in 2050 when the stock average CoP199 

assumes a value in excess of of6 if only electric air-conditioning is used, and the number of homes 

has risen to 39,954,879200 . When penetration is set at 45-52%201, the DECC 2050 Calculator 

therefore estimates that consumption across the entire stock of 40 million amounts to 3,700-4,300 

GWh in 2050. 

5.2	 Comparison of DECC 2050 Calculator Output with SHECMOBS and 

SCECMORS Output 

Unfortunately, the robustness of the DECC 2050 Calculator with respect to the service and industry 

sectors cannot be tested for the reason that the DECC 2050 Calculator does not seem to take specific 

account of climate change in these sectors. SHECMOBS and SCECMORS output can, however, be 

compared with that from the DECC 2050 Calculator with regard to estimating changes in space 

heating and space cooling energy consumption in the residential sector. The DECC 2050 Calculator 

output is compared with SHECMOBS output in Section 5.2.1. 

197 
c.f. official Government (DECC) statistics, as reported in the DECC 2050 Calculator, estimate residential 

space heating consumption in in 2007at 286,223 GWh. There is some doubt about this figure (see later in this 

chapter.) 
198	 0

i.e. this assumes that the present stock is not modified (the HLC remains at 247 Watts/ C, incidental gains 

remain unchanged, and that both penetration and efficiency rates are the same as those of the present day). 
199 

CoP – assumed to be EER (See Glossary). 
200 

DECC 2050 Calculator estimate - based on Government projections for UK for period 1961-2033, and post-

2031 growth is assumed to be 1.00% per annum, consistent with average trend 2006-2031 (DECC, 2012f). 
201 

SCECMORS estimates penetration at 45-52% in the 2050s - see Section 3.7.4 (Table 29 and Table 30). 
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5.2.1	 Residential Sector Space Heating: DECC 2050 Calculator versus 

SHECMOBS 

The DECC 2050 Calculator estimates that the effect of a warming climate would be to reduce space 

heating consumption in the unmodified present UK stock by 29% by 2050 under a medium 

emissions scenario, and SHECMOBS estimates a reduction of 23% for Great Britain (see Section 

2.5.5). 

5.2.1.1 Estimate of Seasonal Mean Temperature 

DECC 2050 Calculator supporting data states that mean temperatures are forecast to rise in 

winter/spring/summer/autumn by approximately 2/2.25/2.5/2.25 °C by 2050 compared to 1960-

1990 average, and the UKCP09 website reference is given. It is unclear, but it appears that the 

DECC 2050 Calculator may not use temperature data weighted in favour of areas of higher 

population. The danger of using non-weighted data is that the relative change in space heating 

consumption in a future warmer climate (compared to the present day) is under-estimated. This 

under-estimation results from the fact that the change in temperature during winter for less highly 

populated regions in the north, where total consumption is rather low, tends to be less than that in 

more densely-populated regions in the south where total consumption is high (i.e. temperatures 

may increase by up to 0.6 0C more in the south of the country than in the north of the country). 

Inputting Weighted Seasonal Mean Temperatures into DECC 2050 Calculator 

In the evaluation of ∆Ty for each of the four seasons (Equation 54), it is important to establish 

whether or not the DECC 2050 Calculator uses correct values for seasonal mean temperature, 

appropriately weighted so that more account is taken of those regions of the country in which space 

heating consumption is greatest, since it can have a large impact on calculated energy consumption 

levels202 . 

Weighted seasonal mean temperatures for the nation (Great Britain) as a whole are calculated for (i) 

2007 and (ii) the 2050s under a medium emissions scenario, using raw temperature data obtained 

from the BADC and the UKCP09 Weather Generator respectively which are modified by NDM gas 

consumption weighting factors (see Appendix 13 )203 . These data are entered into the DECC 2050 

Calculator, and the resulting space heating energy consumption for the present day stock is 

compared with the default DECC 2050 Calculator output (which uses the default seasonal 

temperatures) (Table 62). 

202 
It is assumed that the reduction in space heating energy consumption for the UK is very similar to the 

SHECMOBS estimate of a 23% reduction in space heating energy consumption for Great Britain, since Northern 

Ireland dwellings comprise only 2.6% of the UK stock (DCLG, 2010). 
203 

A weighting in accord with UK temperatures rather than Great Britain temperatures would be more 

accurate, but since the NDM data are only available for LDZs in Great Britain, a Great Britain weighting is used 

(see Appendix 13). There is likely to be only a very small difference between the two weightings. 
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Table 62 DECC 2050 Calculator comparison of space heating energy consumption of the present day residential stock 

using default seasonal temperatures and weighted seasonal temperatures for 2007 and 2050s (medium emissions 

scenario) 

Mean Outdoor 

Temperature (
0
C) 

Annual Space Heating 

Consumption (TWh) 
Change in Space 

Heating 

2007-2050s (%) 2007 2050s 2007 2050s 

Default 

temperatures 

Winter 

Spring 

Summer 

Autumn 

5.6 

9.1 

14.1 

9.9 

6.0 

9.3 

16.3 

11.3 

252.7 
180.3 

29 

Updated 

weighted 

temperatures) 

Winter 

Spring 

Summer 

Autumn 

6.0 

10.1 

15.3 

10.8 

6.1 

10.4 

18.0 

12.9 

190.6 100.9 47 

Whilst there is only a relatively small difference between the default temperatures and the correctly 

weighted temperatures for winter (0.4 0C: winter, 2007 and 0.1 0C: winter, 2050s), the difference is 

marked for spring and autumn: 1.0 0C (spring, 2007), 1.1 0C (spring, 2050s), 0.9 0C (autumn, 2007) 

and 1.6 0C (autumn, 2050s). In fact the discrepancy associated with the spring temperatures (1.0-1.1 
0C) is considerably more than the actual increase in temperature between spring 2007 and spring 

2050s (0.3 0C). This is important because almost 50% of space heating currently occurs in these 

transition seasons204 . 

Using these weighted temperatures, the reduction in the level of space heating changes from 29% to 

47% (c.f. the SHECMOBS estimate is 23%). If the government figure of 286.2 TWh (quoted in the 

information pages of the DECC 2050 Calculator) is taken as correct, the forecast reduction in space 

heating increases to 65%. Significantly also, the estimation of consumption for 2007 changes so that 

it moves farther from the government figure, being 33% lower. 

Since the insertion of correctly-weighted temperature data has a rather large effect upon its output 

for space heating in the residential sector, it is reasonable to ask whether it may be modified in 

order to bring its results into alignment with those from SHECMOBS (i.e. 23% reduction in space 

heating) and government statistics (i.e. reported value for space heating energy consumption for 

2007). The following section examines where amendments can justifiably be made, and then 

compares its output with the output of the unamended Calculator205 for a range of climates forecast 

for 2050 for a number of pathways prescribed as achieving an 80% reduction in GHG emissions. 

204 
25% of space heating occurred in spring and 22% in autumn over the period 2007-2010. 

205 
i.e. unamended save for the insertion of correctly-weighted temperatures. 
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5.3 Pathways to the 2050 Target Reduction in Emissions 

As mentioned in the introduction to this chapter, the future remains uncertain in that it remains 

unknown which direction policymakers will follow in choosing how best to achieve the UK target of 

an 80% reduction in emissions by 2050. Scenarios, envisioning how different possible futures may 

play out, provide a way of grappling with this uncertainty, allowing us to investigate alternative ways 

of securing the target. Indeed, the DECC 2050 Calculator is used for this very purpose, and, as noted 

earlier, a number of different pathways capable of bringing about the required 80% reduction in 

emissions have been proposed. However, all these scenarios consider but a single climate in 2050s, 

that resulting from the central estimate of the medium emissions scenario as detailed in UKCP09. 

Since the future climate remains uncertain, and since climate (air temperature) can so greatly affect 

levels of energy consumption (and, in consequence, levels of GHG emissions) in the built 

environment, it is important to assess the performance of the proposed pathways over a wider 

range of temperature forecasts. 

This section sets out to perform this task, assessing four different pathways (described in the DECC 

2050 Calculator and also set out in The Carbon Plan: Delivering our low carbon future (DECC, 2011g)) 

in a number of different future climates, which, taken as a whole, cover a large span of possibilities. 

The DECC 2050 Calculator is re-run with updated appropriately weighted climate data and other 

ancillary data, in order to assess the impact of different future climates on energy consumption in 

the built environment in 2050. The resulting impact on GHG emissions is also evaluated in order to 

ascertain whether the measures proposed in the pathways remain sufficient in steering the UK 

towards the cross-sector 80% reduction target the DECC 2050 Calculator fully being loaded with the 

remaining necessary data (such as numbers of buildings, growth in industry, fuel emission intensities 

etc.) so that the carbon economy of the nation in 2050 is fully represented. 

It should be remembered, as stated in Section 5.1 that the DECC 2050 Calculator is constructed in 

such a way that only space heating in the residential sector is affected by these changes. The 

impacts upon space cooling in the residential sector, and both space heating and space cooling in 

the commercial and industrial sectors, are not affected. The commercial and industrial sectors are 

further discussed in Section 5.4. 

Section 5.3.1 describes the pathways explored. Section 5.3.2 describes the procedures used to 

produce climate data and other necessary input data for the function of the DECC 2050 Calculator 

for the four pathways. Section 5.3.3 reports upon the results, comparing the results of two different 

formulations of the DECC 2050 Calculator – the Basic Model and the Adjusted Model. Section 5.4 

concludes with a discussion of the results in insofar as the different sectors of the built environment 

are concerned. 

5.3.1 Pathways 

As previously noted in the chapter, of key importance in the determination of levels of future UK 

emissions is the method by which electricity is generated. Not only are 27% of current emissions 

due to electricity generation at power stations (DECC, 2012c), but in most forecasts of the future, 

electricity consumption is set to increase as use of end-user fossil fuel burning appliances decreases. 
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Four different DECC pathways, each relying upon a different primary source to produce the greater 

bulk of the nation’s electricity supply, are investigated: 

(i) Higher Nuclear, Less Energy Efficiency, 

(ii) Higher Carbon Capture and Storage, More Bioenergy, 

(iii) Higher Renewables, More Energy Efficiency, and 

(iv) MARKAL Model (“core run”), a cost-optimising government model which uses a mix of 

electricity generation regimes (DECC, 2012g). 

Taking into consideration the fact that the emission levels associated with a particular pathway are 

affected by further factors beyond electricity supply, these four pathways, as implied in their titles, 

are not differentiated from one another merely by choice of primary source of fuel for electricity 

generation; rather, they are distinct from one another in other aspects, being further populated with 

a set of additional parameters which are plausible/coherent. For example, whilst levels of insulation 

in homes are set at their highest in the Renewables pathway (average HLC of 118.5 W/⁰C per 

dwelling in 2050), they are set at the lower 143.0 W/⁰C in the Nuclear, CCS and MARKAL pathways. 

Similarly, levels of average indoor temperatures in homes are set to their lowest in the Renewables 

and MARKAL pathways (16 ⁰C), at their highest in the Nuclear pathway (18 ⁰C), with the CCS 

pathway being intermediary at 18 ⁰C. The number of parameters and the values/settings assigned 

them which constitute a given pathway is extensive, covering all sectors which contribute to the 

nation’s carbon balance. Those key elements directly concerned with this thesis which relate to the 

built environment are listed in Appendix 14. 

5.3.2 Amendment of the DECC 2050 Calculator 

The four pathways are modelled using two different approaches – the basic approach (Basic Model) 

and the adjusted approach (Adjusted Model). 

Basic Model 

When fitted with correctly weighted regional temperatures, the DECC 2050 Calculator tends to over-

estimate space heating energy consumption in the domestic sector in the base year of 2007 (Table 

62), and it is not unlikely that it over-/under-estimates consumption in other sectors in view of the 

great complexity involved in condensing the great array of factors which affect consumption into a 

single manageable model. Indeed, the DECC 2050 Calculator acknowledges its own imperfection in 

this respect, total cross-sector modelled emissions resulting from energy consumption in 2050 being 

adjusted by a multiplying constant equal in value to the ratio of actual emissions in 2007 to modelled 

emissions in 2007. There is an argument to be made, therefore, that this is sufficient remedy, that 

the adjusted level of emissions in 2050 give can be taken as giving an indication of what actual total 

cross-sector emissions will be in 2050. In consequence, the four pathways are modelled in this basic 

form in the DECC 2050 Calculator, unfettered save for the facts that (i) the DECC 2050 Calculator’s 

default 2007 and 2050 temperatures are adjusted so as to correspond to more representative 
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weighted temperatures as described in Appendix 13206, and (ii) a minor amendment is made to the 

way in which summer gains are handled (see below). 

Adjusted Model 

Whilst this basic approach may or may not give a fair representation of total-cross sector emissions, 

Section 5.2 makes clear that less confidence can be placed in the specific forecasts of energy 

consumption (and therefore emissions levels) in the residential sector. One approach to the 

problem is to use the method adopted the Building Research Establishment Housing Model for 

Energy Studies (BREHOMES), a multiple dwellings model of domestic energy consumption in Great 

Britain, the data from which has been used in a great many government statistics: rather than adjust 

final modelled results so as to accord with final actual results, parameters within the actual model 

which actually have an effect upon the results are adjusted, so that modelled results accord as near 

as possibly to actual results (DECC, 27/9/2011). Adjusting indoor demand temperature is the 

primary way by which this is done, energy consumption being most sensitive to adjustment of this 

parameter. However, other elements such as internal gains and HLC can also be adjusted so as to 

bring about the necessary reconciliation. Indeed, it would seem that the DECC 2050 Calculator even 

its present form makes use of this adjustment mechanism, the indoor temperature setting of 17.5 ⁰C 

for 2007 cited in the DECC’s Great Britain’s housing energy fact file being based on modelled data 

generated by BREHOMES (DECC, 27/9/2011). 

This adjusted approach not only allows one to reconcile (i) DECC 2050 Calculator modelled space 

heating energy consumption in the residential sector in 2007 with actual energy consumption, but 

also to reconcile (ii) DECC 2050 Calculator modelled Reduction in Space Heating (RISH) over the 

period 2007-2050 with the RISH as modelled by SHECMOBS. As such, one may be able to place more 

confidence in these results emanating from this adjusted form of the DECC 2050 Calculator. 

Section 5.3.2.1 describes amendments made to both the Adjusted Model and the Basic Model in 

relation to input of data for the base year of 2007; the rationale and method of selecting 

temperatures so as to achieve a broad and representative set of possible future climates are 

described, as are the adjustments made to the DECC 2050 Calculator for summer gains. Section 

5.3.2.2 outlines the amendments made to the Adjusted Model alone in relation to input of data for 

the base year of 2007, with a description of the methodology underpinning these adjustments. 

Amendments which are made to the 2050 input data for the Adjusted Model are explained in 

Section 5.3.2.3. 

5.3.2.1	 Amendments made to both the Adjusted Model and the Adjusted Model -

2007 input 

Note that the weighted temperatures in 2007 as calculated in Appendix 13 are very similar to DUKES 

weather statistics for 2007 (DECC, 2013), differing by only 0.04 ⁰C, 0.05 ⁰C, 0.07 ⁰C and 0.03 ⁰C for the four 

seasons winter, spring summer and autumn; this is in contrast to the DECC 2050 Calculator default 

temperatures which differ by 0.39 ⁰C, 0.94 ⁰C, 1.1 ⁰C and 0.90 ⁰C for the four respective seasons. 
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2007 Seasonal Temperatures 

Since the DECC 2050 Calculator works on a seasonal temperature basis, it is necessary to calculate 

the mean temperature for each season of the year. The 2007 weighted mean temperature is 

calculated for each season as previously shown in Section 5.2.1.1, and substituted for the default 

temperatures of the DECC 2050 Calculator. 

2050 Seasonal Temperatures 

UKCP09 allows one to investigate future climates under each of three different global emissions 

scenarios – high, medium and low. Since the world economy is not currently bound on a low 

emissions pathway and since it is unlikely that there is enough time to make the necessary changes 

which will set the world economy on this pathway, one is left to consider the medium and high 

emissions scenarios as offering realistic projections of future climates. 

Whilst the DECC 2050 Calculator, as currently set, only projects one vision of the future, that arising 

from the central estimate of the medium emissions pathway, the UKCP09 Weather Generator makes 

possible the investigation of future climates at percentiles other than the central estimate. Since 

actual temperatures are as likely to be above the central estimate as below the central estimate, it is 

useful to make use of this benefit of the Weather Generator as a means of establishing the range of 

energy consumptions/emissions in which actual values are likely to fall. 

The Weather Generator is run 100 times for each of the 13 locations previously detailed in Section 

2.5, resulting in 100 x 100 (10,000) years of weather data. The temperature data are sorted in order 

of increasing temperature by winter temperature for each of the thirteen locations. Winter 

temperature rather than annual temperature is used to sort the data because energy consumption 

in the built environment is greatest at low temperatures, with over 50% of NDM consumption 

occurring in the three months of winter for the period 2007-2010207 . Thus 13 sets of data ranked by 

winter temperature are created. 

The 30th, 50th, 70th and 90th208 percentiles are selected in order to examine the likely occurrence of a 

given temperature being exceeded. The 30th percentile year for a given location is the 2,970.5th 

207 th 
If ranked by increasing annual average temperature, it is entirely plausible that years at the 90 percentile, 

th 
even though considerably warmer than those at the 30 percentile over the course of 12 months, could have 

th 
annual space heating consumptions higher than those at the 30 percentile: this could arise when a very hot 

summer occurred in the same year as a cold winter. Since the aim of the analysis is to produce a series of data 

where one can say that energy consumption/emissions are likely to be no more than x% at a given percentile, 

it is important that the series of data exhibit as good a downward trend of energy consumption/emissions as 

possible, as temperatures increase. Essentially, winter temperature is more closely correlated with energy 

consumption/emissions than annual temperature, and so is the preferred option. 
208 th 

Ideally the 10 percentile data would also have been investigated. It was noticed after running the 
th 

simulations, however, that the temperatures for the 10 percentile had not been correctly weighted. In 

consequence these data have been omitted from the analysis. In view of the fact that we must prepare for 

future climates which are more likely to have a deleterious consequence, the loss of these data is less 

significant than it might otherwise have been: policymakers instituting safeguards in planning for the future 

are more likely to be interested in higher percentile data, to install safeguards for futures which are less likely 

to happen, but which may still nevertheless occur. 

199




ranked year in the series for that particular location209 . Whilst the winter temperature of the 2,970th 

year will be almost identical to the 2,971st winter temperature in any given series for a particular 

location, it is extremely unlikely that the spring temperatures will be almost identical in these two 

year, or that the summer and autumn temperatures will be almost identical. Thus while winter 

space heating consumption in ranked year 2,970 will be almost identical to winter space heating in 

ranked year 2,971, annual space heating is likely to be different in the two years, since a proportion 

of space heating occurs outside of the winter months. For this reason the 30th percentile is not 

selected as a single year. Rather it is selected as the series of 50 years from rank year 2,946 to rank 

year 2,995. Using a series of years rather than a single year is considered to more accurately reflect 

the 30th percentile, since consumption in the 2,970th or 2.971st year may be atypical of other nearby 

years, whereas consumption averaged over a period of 50 years is likely to more representative of 

the true 30th percentile consumption. The 50th, 70th and 90th percentile ranges are calculated in an 

analogous manner for each of the 13 series for the 13 locations. 

The 50 years comprising the national 30th percentile are constructed from the 13 groups of 50 years 

which constitute the 30th percentile of each location, where the regional seasonal temperatures in 

each year are weighted, as described in Appendix 13, to produce nationally representative seasonal 

temperatures. Thus the first year of the 30th percentile at the national level (rank year 2,946) is 

constructed of rank year 2,496 from the series for location 1, rank year 2,946 from the series for 

location 2....rank year 996 from the series for location 13. The 49 remaining years of the national 

30th percentile are calculated in an analogous manner, as are the years comprising the national 50th , 

70th and 90th percentiles. 

It is very unlikely that the 2,946th coldest winter in a series of 9,900 years in each of the 13 locations 

would all occur in the exact same chronological year in reality (e.g. 1479 A.D.). Such a method of 

calculating a percentile national year is, however, justified on the grounds that a shared weather 

pattern is generally seen throughout the country, such that when it is very cold in relative terms for 

one particular location, it is likely to also be very cold in most/all other locations around the country. 

This can be seen in Figure 7 which shows a very high degree of uniformity in temperature change 

between different locations. Using temperatures over a fifty-year sequence helps to minimise any 

non-correspondence between different locations: the impact of an anomalous year in a given 

percentile in a given location will only be small at the national level since it is only one of 650 years 

(13 x 50) which describe the given percentile for the nation as a whole, and as many anomalously 

high years are as likely to be balanced by anomalously low years. 

Note that only 9,900 years of data are used in this sorting process. Since a truly representative winter must 

consist of contiguous months (i.e. the December in year n and the January and February in year n +1), only 99 

years of winter data are available for each run of the Weather Generator since the first year in each run must 

be omitted since there is no December with which to pair with its January and February. In contrast, the 

weighted 2007 base year data for the DECC 2050 Calculator base year refer to the calendar year 2007: since 

the base year data are not constrained as being representative of a typical winter, this is quite acceptable, and, 

moreover, the preferred option, since the default indoor temperature data for the DECC 2050 Calculator 

(which are used in the same equation as the outdoor temperature data to calculate energy consumption (see 

Equation 54)) apparently derive from calendar year data for 2007 (DECC, 27/9/2011). 
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These national weighted temperature data, calculated for different percentiles, are used in place of 

the default 2050 temperature data resulting from the central estimate of the medium emissions 

scenario. 

Summer Gains 

Analysis of the DECC 2050 Calculator reveals there to be a theoretical demand for space heating in 

the summer months both in 2007 and 2050 using the default temperature data. This results from 

the fact that the mean summer outdoor temperature is always less than the mean indoor 

temperature, meaning that that there would be an overall transfer of heat from indoors to outdoors 

during the summer months if a mechanical space heating system were not in place to counteract the 

heat loss (see Equation 53). If summer gains deriving from the summer outdoor-to-indoor 

temperature difference are removed, using correctly-weighted temperatures for 2007, the demand 

for space heating reduces from 154.5 TWh to 123.6 TWh, which would suggest that 20% of space 

heating in 2007 occurred in summer, the hottest summer on record. (Repeating the same task for 

winter (removing the demand for space heating in winter) results in a malfunction of the DECC 2050 

Calculator, where a negative amount of space heating would be required over the course of the 

year. This results from the fact that gains exceed losses, furthermore suggesting that the overall 

annual gains estimate is too high, as is borne out by the Solver optimisation process carried below.) 

However, when (i) correctly-weighted outdoor temperature data are used instead of the default 

outdoor temperature data210, and most especially when (ii) outdoor temperatures deriving from 

more extreme forecasts (e.g. 90th percentile under a high emissions scenario) are used instead of the 

central estimate of the medium emissions scenario, situations arise where the summer outdoor 

temperature is higher than the indoor temperature: in the unamended form of the DECC 2050 

Calculator, this results in unrealistic situations where the net flux of heat from outdoors to indoors in 

the summer erroneously acts to lessen the demand for overall space heating over the course of the 

year (see Equation 53 and Equation 54). Moreover, experience of the real world, even in the present 

relatively cool climate, teaches us that space heating is very rarely if ever used during the summer 

months of June, July and August. 

Therefore, the DECC 2050 Calculator is amended so that no demand is made for space heating for 

the summer months of June, July and August. 

5.3.2.2 Additional Amendments made solely to the Adjusted Model – 2007 input 

As stated above, indoor temperature, internal gains and HLC can be amended in order to reconcile 

modelled data with actual data. The approach adopted is to amend each of these three parameters 

so that: 

Under a medium emissions scenario, the default DECC 2050 Calculator outdoor summer temperature (16.3 

⁰C) is less than the indoor temperature (17.5 ⁰C); the correctly-weighted mean outdoor temperature for the 

medium emissions scenario, however, stands at 18.0 ⁰C, 
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(i)	 DECC 2050 Calculator modelled energy consumption for the domestic sector for the 

year 2007 matches actual consumption for the year 2007 as reported in Energy 

Consumption in the UK (DECC, 2012i) as near as possibly, and 

(ii)	 DECC 2050 Calculator modelled percentage RISH over the period 2007-2050 matches 

SHECMOBS modelled percentage RISH for the period2007-2050 for the residential stock 

under a medium emissions scenario211 as near as possibly. 

Indoor Temperature 

Although little research has been published with regard to actual mean indoor temperature (with 

the consequence that, the indoor temperature of 17.5 ⁰C for 2007 cited in the DECC’s Great Britain’s 

housing energy fact file is based on modelled data generated by BREHOMES (DECC, 27/9/2011)), 

there is evidence to suggest that the figure of 17.5 ⁰C is perhaps rather low. In a study of 1604 low 

income households over 2-4 weeks over two winters, the daytime living room temperature was 

reported at 19.1 °C and night-time bedroom temperature at 17.1 °C under a standardised outdoor 

temperature of 5 °C (Oreszczyn, et al., 2006). A study of 14 “low energy” homes over an 18-month 

period found a mean temperature of 19.8 °C for living rooms and 19.3 °C for main bedrooms under 

a standardised outdoor temperature of 5 °C (Summerfield, et al., 2007). Furthermore, an 

investigation of 25 homes in Northern Ireland revealed a mean temperature of 19 °C for the majority 

of the homes, varying between 18 °C and 22 °C (Yohanis & Modol, 2010) 

Internal Gains 

The data used for the useful internal gains, by the admission of the authors of the source whence it 

derives (BRE, 2008), acknowledge that there is some uncertainty attached to its actual value. In 

consequence one need not feel overly-compelled to too strictly take its value of 836.3 PJ as 

definitive. 

Heat Loss Coefficient 

The DECC 2050 Calculator uses a value of 246.8 W/⁰C for the HLC for 2007. Examination of the 

Domestic Energy Fact File however reports the value for 2007 as 258.9 W/⁰C (DECC, 27/9/2011), the 

value deriving BREHOMES. Further examination of the data reveals that the HLC lowered steadily, 

year-on-year, from 1970 to 2008, as one would expect to find. In sharp contrast, the figure rose 

from 253.7 in 2008 to 294.7W/⁰C in2009, a value not previously seen since 1988. The reason for the 

abrupt increase is stated as arising from a change in modelling technology, the Cambridge Housing 

Model (CHM) being used to calculate the 2009 figure. But whereas BREHOMES uses a single 

national temperature in its modelling of the nation as whole, the CHM uses regional temperatures 

from regions, the model being weighted so as to take account of numbers of dwellings in each 

region (c.f. SHECMOBS which uses regional temperatures weighted by NDM space heating 

See Section 2.5.5.1. 
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consumption). There is reason to believe, therefore, that that the BREHOMES estimates of HLC and 

the DECC 2050 Calculator estimate of 246.8 errs on the low side. 

Microsoft Solver is used to optimise the three parameters (indoor temperature, internal gains and 

HLC) above so that (i) the difference between DECC 2050 Calculator modelled residential space 

heating energy consumption in 2007 and actual residential space heating energy consumption in 

2007 are minimised, whilst also (ii) maintaining the Calculator’s derived RISH value for the period 

2007-2050 to within acceptable limits of the SHECMOBS value for a medium emissions scenario. The 

starting values which Solver was initially loaded are the default settings of the DECC 2050 Calculator 

(viz. indoor temperature 17.5 ºC, internal gains 3.25 x 1010J, HLC 246.8 W/⁰C) and the SHECMOBS 

RISH value of 23%. Initially wide constraints (acceptable deviations either side of the starting values) 

are set for the three modelling parameters and the RISH value. The constraints are gradually 

increased for each run of Solver until Solver is no longer able to find a solution which satisfies all 

constraints. The final constraint values are set at ±7.5% for the three modelling parameters and ±5% 

for the derived RISH value. (In view of the greater confidence which can be placed in the RISH 

derived value on account of the robustness employed in its evaluation in SHECMOBS, narrower 

constraining limits are applied to it than to the three modelling parameters to which greater 

uncertainty is attached212.) 

Table 63 shows the resulting (i) the Solver-optimised values (for use in the Adjusted Model) for 2007 

(column 1), and the (ii) original default DECC 2050 Calculator values (for use in the Basic Model) 

(column 2); Table 64 indicating the effects of these parameters on space heating energy 

consumption in 2007 and RISH over the period 2007-2050 (column 1) in comparison to the original, 

pre-optimisation parameters (column 2). 

Table 63 Solver-optimised and Original values of indoor temperature, internal gains and HLC for use in the Adjusted 

Model and the Basic Model respectively 

Parameter value (for 2007) Solver-optimised 

value 

Original value 

(default value) 

Difference between 

starting value and 

Solver-optimised value 

Indoor temperature 18.5 ⁰C 17.5 ⁰C 5.6%213 

Internal gains 26.861 GJ 32.476 GJ -17.3% 

HLC 246.8 W/⁰C 265.3 W/⁰C 7.5% 

212 
Since 2007 contains 365 days and since the energy consumptions deriving from the DECC 2050 Calculator 

are reconciled with actual 2007 data deriving from 365 days, the default setting of the DECC 2050 Calculator is 

adjusted to calculate consumption/emissions over 365 days instead of 365.25 days for the Solver optimisation 

exercise. A more accurate optimisation may have been achieved if a setting of 365 days had been used for 

2007 and 365.25 day used for 2050 (since 2050 is representative of the 2050s), but the difference would have 

been marginal. 
213 

Caution should be exercised in evaluating this figure, since it is based on the Celsius scale. (Another scale 

would produce a difference percentage difference.) 
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214
Table 64 Effect upon RISH (2007-2050 ) and space heating energy consumption (2007) for Adjusted Model and the 

Basic Model using the parameters detailed in Table 63 

Solver-optimised 

value 

Original value 

(default value) 

Difference between starting value 

and Solver-optimised value 

RISH (2007-2050) 16.0 % 23.2 % 
-9.5%* 

Consumption 

(2007) 
289.9 TWh 

332.4215 TWh 
-12.8% 

*Like all the figures in this column, this figure is the relative difference, not the absolute difference between the 

default value and the Solver-optimised value. 

5.3.2.3 Amendments made to the Adjusted Model -2050 input 

Whilst certain of the data for 2050 are unaffected by these amendments (e.g. number of buildings), 

others (viz. indoor temperature, HLC and internal gains) are affected. 

Indoor Temperature 

The default indoor temperature for 2007 is 17.5 ⁰C. The default indoor temperature for 2050 is 

determined by the level of effort, in the terminology of the DECC (DECC, 2010a), deployed in 

bringing about a reduction in emissions or save energy (see Appendix 15). The default temperatures 

correspond with the levels of effort assigned as 1, 2, 3 and 4 respectively, where 4 is the greatest 

level of effort. Thus, levels 1 and 2 are higher than the 2007 default temperature whilst levels 3 and 

4 are lower. The default alternative indoor temperatures for 2050 are shown in the Table 65 below. 

214 
i.e. the average forecast climate for the 2050s under a medium emissions scenario, as used in the Solver-

optimisation exercise. 
215 

This figure is the latest available figure for 2007 from the 2012 update of Energy Consumption in the UK 

(DECC, 2012i). Note that the default figure quoted in the DECC 2050 Calculator (“copied and pasted” directly 

into the Calculator in its information pages from an earlier version of Energy Consumption in the UK) for 2007 

is 286.2 TWh. The difference of 46.2 TWh (13.9%) is considerable, bearing in mind that they are sourced from 

the same government publication and relate to the same year of 2007. A part of the reason for the difference 

lies in the fact that whilst Energy Consumption in the UK now includes data from (i) heat sold and (ii) bioenergy 

and waste in its space heating estimates, it did not used to do so; removing (i) and (ii) from the figure of 332.4 

TWh, however, only makes marginal difference, since it only accounts for 5.2TWh. Note that the figure quoted 

for 2007 in the recently published United Kingdom’s Energy Fact File 2012 (December 2012) is 321.7 TWh. 

(DECC, 2012j). The Fact File data for 2007 have been reconciled with DUKES data. It is thought that perhaps 

the older data quoted in the information pages of the DECC 2050 Calculator (286.2 TWh) have not been 

reconciled, and this could be the reason for the discrepancy. Emails were sent to different people in the DECC 

for clarification of this matter, but no reply has been forthcoming. With the figure of 332.4 TWh being more 

recent than the figure of 286.2 TWh, and being in much closer agreement with the United Kingdom’s Energy 

Fact File 2012 figure of 321.7 TWh, it is considered to be the most reliable. 
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Table 65 DECC 2050 Calculator default temperatures for 2050 

Level of 

effort 

Relative change in indoor 

temperature (⁰C) 

Absolute indoor 

temperature (⁰C) 

1 

2 

3 

4 

+2.5 

+0.5 

-0.5 

-1.5 

20 

18 

17 

16 

The Renewables and MARKAL pathway set the highest level of effort (level 4), the CCS pathway sets 

a high level of effort (level 3), with the Nuclear pathway setting the level of effort at 2. Since the 

Adjusted Model sets a temperature of 18.5 ⁰C instead of 17.5 ⁰C for 2007, using the relative increase 

setting (column 2 in the table above) results in different indoor temperatures for 2050 compared to 

the absolute temperatures of column 3; the relative change setting results in indoor temperatures 

which are 1⁰C higher than the absolute values of column 3. 

It is considered that the relative change in temperature offers the most authentic representation of 

the levels of effort, where levels 1 and 2 remain above the 2007 temperature, and levels 3 and 4 

remain below the 2007 temperature. If one were to use the absolute temperatures of Table 65, not 

only would three of the four levels of effort represent a lessening in levels of comfort, but the level 

associated with the Renewables Pathway would be fully 2.5 ⁰C below the 2007 setting of the 

Adjusted Model, both of which scenarios are considered unrealistic. 

Heat Loss Coefficient 

As for the indoor temperature, four alternative values are set for the HLC in 2050, the final figure in 

each instance lying at the end of one of four trajectories of gradually lowering HLC from the default 

2007 value of 247 W/⁰C as seen in Table 66. 

Table 66 Average Heat Loss Coefficient per House – Default DECC 2050 Calculator Values (2007-2050) 

Trajectory 2007 2010 2015 2020 2025 2030 2035 2040 2045 2050 

1 233 223 217 211 206 200 195 190 186 

2 230 214 201 192 185 180 175 170 165 

247 

3 228 203 188 178 169 160 152 147 143 

4 225 194 171 158 147 137 127 123 119 
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As the figure for 2007 in the Adjusted Model has been increased by 7.5% to 265.3W/⁰C, it would 

clearly be unacceptable to accept the absolute values in the table on account of the unrealistically 

large step decrease in HLC between 2007 and 2010. Applying the same 7.5% increase in value to 

HLC in all subsequent years, to correspond with the 7.5% increase in the 2007 figure is considered 

the most prudent course of action. 

Internal Gains 

As described by Equation 55, internal gains in any given year are calculated with reference to heat 

losses in that year, in the same ‘gains to heat losses’ ratio that is reported for 2007. Although not 

ideal, in the absence of an alternative, the same method of calculating gains in 2050 is used for both 

the Adjusted Model and the Basic Model. Gains in the Adjusted Model are, however, different to 

gains in the Basic Model since heat losses in 2050 are different for the two models216 . 

Table 67 shows the values of the three constants, indoor temperature, internal gains and HLC, used 

as input for the DECC 2050 Calculator for the Adjusted Model and the Basic Model, for the four 

different pathways for 2007 and 2050. 

Heat losses are different because heat losses are calculated with reference to indoor temperature (see 

Equation 53and Equation 54). 
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Table 67 Indoor temperature, internal gains and HLC input for the DECC 2050 Calculator for the Adjusted Model and the 

Basic Model for the four different pathways for 2007 and 2050 

Pathway Parameter 

Adjusted Model Basic Model 

2007 2050 2007 2050 

Higher Nuclear, Less 

Energy Efficiency 

Indoor temp (⁰C) 

Internal gains (J) 

HLC (W/⁰C) 

18.5 

26.861 

265.3 

19.0 

13.413 

153.8 

17.5 

32.476 

246.8 

18.0 

20.046 

143.0 

Higher CCS, More 

Bioenergy 

Indoor temp (⁰C) 

Internal gains (J) 

HLC (W/⁰C) 

18.5 

26.861 

265.3 

18.0 

12.132 

153.8 

17.5 

32.476 

246.8 

17.0 

17.833 

143.0 

Higher Renewables, 

More Energy 

Efficiency 

Indoor temp (⁰C) 

Internal gains (J) 

HLC (W/⁰C) 

18.5 

26.861 

265.3 

17.0 

10.970 

127.4 

17.5 

32.476 

246.8 

16.0 

12.941 

118.5 

Indoor temp (⁰C) 18.5 17.0 17.5 16.0 

MARKAL “core run” Internal gains (J) 26.861 9.931 32.476 15.620 

HLC (W/⁰C) 265.3 153.8 246.8 143.0 

As a final note, it should be mentioned that two of the pathways mechanical cooling (in the form of 

air-conditioning) is used in two of the pathways (Nuclear and CCS), whilst natural ventilation is used 

for space cooling in the other two (Renewables and MARKAL). As such, these latter two pathways 

are manifestations of the AATC. 

5.3.3 Results – Adjusted Model and Basic Model 

The tables in Sections5.3.3.1 to 5.3.3.8 report the DECC 2050 Calculator output for 2050 from 3,200 

runs for: 

(i) four pathways (Nuclear, CCS, Renewables and pathway analogous to MARKAL), 

(ii) medium and high emissions scenarios, 

(iii) the 30th, 50th, 70th and 90th percentiles winter temperature, and 

(iv) the Adjusted Model and the Basic Model. 
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As previously noted the results derive from weighted temperature input into the DECC 2050 

Calculator, where the results for a given tetrad (e.g. Nuclear pathway, medium emissions, 30th 

percentile, Adjusted Model) derive from 50 runs of the DECC 2050 Calculator, each run using a 

different set of seasonal temperatures. 

Effective negative emissions in the residential stock arise from electricity generated by solid fuel 

community-scale CHP. The fossil fuel emissions generated from these CHP plants are accounted for 

in the residential space heating emissions total. The electricity generated is, therefore, effectively 

emissions-free. The negative emissions are calculated as the total emissions which would have been 

produced by the same quantity of grid-electricity. 

Total cross-sector emissions (Total UK Modelled Emissions) calculated by the DECC 2050 Calculator 

do not concur exactly with reported emissions for the base year of 2007. The Calculator features an 

adjustment factor, a multiplying constant to bring the modelled emissions into alignment with actual 

emissions for 2007. Future modelled emissions are also adjusted by this same adjustment factor. 

The DECC 2050 Calculator uses the adjusted figure (Total Adjusted UK Emissions) in reporting the 

total cross-sector percentage reduction in emissions (Reduction in Emissions Relative to 1990). 

For Table 68 to Table 83 the results appear in paired tables. The first table in a pair reports on the 

residential sector and the second table in a pair reports upon the total cross-sector emissions. For 

example, the first column in Table 68 below shows that in the Nuclear/30thpercentile/medium 

emissions scenario/Adjusted Model tetrad, space heating emissions from the residential sector 

comprise 0.47 MtCO2e of the total of 154.70 MTCO2e for that tetrad (this latter figure appearing in 

the first column of Table 69). 

In order to establish whether or not 50 runs is a sufficiently large of runs to produce results which 

can be said to be representative of a tetrad, the mean, maximum, minimum and standard deviation 

of set of five typical tetrads are shown in Section 5.3.3.9. 

Space heating is referred to as SH, and space cooling is referred to as SC for brevity. 

Finally, note that the key results for space heating demand and total cross-sector emissions are 

brought together in Table 88 and Table 89. 
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5.3.3.1 Medium Emissions Scenario 30th Percentile 

Table 68 National demand, consumption and emissions from space heating and space cooling in the residential sector 
th 

(30 percentile, medium emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 208.85 164.69 186.77 136.45 109.57 83.73 96.65 69.37 

SH Consumption (TWh) 84.02 66.26 187.19 51.17 44.08 33.69 96.87 26.01 

SC Demand (TWh) 30.64 0 13.51 0 30.64 0 13.51 0 

SC Consumption (TWh) 4.49 0 2.09 0 4.49 0 2.09 0 

SH Emissions (MtCO2e) 0.47 2.64 47.86 1.11 0.25 1.34 24.98 0.96 

SC Emissions (MtCO2e) 0.04 0 0.16 0 0.04 0 0.19 0 

Effective Negative 

Emissions (MtCO2e) 
0 0 3.14 0 0 0 2.70 0 

th 
Table 69 National cross-sector emissions (30 percentile, medium emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.060 0.076 0.022 0.008 0.060 0.092 0.037 

Total Modelled UK 

Emissions (MtCO2e) 
153.19 137.83 159.86 158.81 153.01 137.61 137.88 149.97 

Total Adjusted UK 

Emissions (MtCO2e) 
154.70 139.83 162.22 161.11 162.22 146.60 146.93 159.77 

Reduction in Emissions 

relative to 1990 (%) 
80.65 82.52 79.71 79.85 79.71 82.50 81.62 80.02 
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5.3.3.2 Medium Emissions Scenario 50th Percentile 

Table 70 National demand, consumption and emissions from space heating and space cooling in the residential sector 
th 

(50 percentile, medium emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 203.08 158.92 181.00 131.66 106.19 80.35 93.27 66.57 

SH Consumption (TWh) 81.70 63.94 181.41 49.37 42.72 32.33 93.48 24.96 

SC Demand (TWh) 30.64 0 13.51 0 30.64 0 13.51 0 

SC Consumption (TWh) 4.49 0 2.09 0 4.49 0 2.09 0 

SH Emissions (MtCO2e) 0.45 2.55 46.41 1.14 0.24 1.29 24.12 0.92 

SC Emissions (MtCO2e) 0.04 0 0.16 0 0.04 0 0.20 0 

Effective Negative 

Emissions (MtCO2e) 
0 0 3.11 0 0 0 2.68 0 

th 
Table 71 National cross-sector emissions (50 percentile, medium emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.060 0.077 0.023 0.008 0.060 0.093 0.037 

Total Modelled UK 

Emissions (MtCO2e) 
153.20 137.84 158.44 158.10 153.02 137.63 137.05 149.99 

Total Adjusted UK 

Emissions (MtCO2e) 
154.71 139.84 160.78 160.39 162.23 146.62 146.04 159.79 

Reduction in Emissions 

relative to 1990 (%) 
80.65 82.52 79.89 79.94 79.71 82.50 81.74 80.02 
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5.3.3.3 Medium Emissions Scenario 70th Percentile 

Table 72 National demand, consumption and emissions from space heating and space cooling in the residential sector 

(70th percentile, medium emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 195.78 151.63 173.70 125.62 101.92 76.08 89.00 63.03 

SH Consumption (TWh) 78.77 61.00 174.10 47.11 41.01 30.61 89.20 23.64 

SC Demand (TWh) 30.64 0 13.51 0 30.64 0 13.51 0 

SC Consumption (TWh) 4.49 0 2.09 0 4.49 0 2.09 0 

SH Emissions (MtCO2e) 0.44 2.43 44.57 1.17 0.23 1.22 23.03 0.87 

SC Emissions (MtCO2e) 0.04 0 0.16 0 0.04 0 0.20 0 

Effective Negative 

Emissions (MtCO2e) 
0 0 3.08 0 0 0 2.65 0 

Table 73 National cross-sector emissions (70th percentile, medium emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.060 0.078 0.025 0.008 0.060 0.094 0.037 

Total Modelled UK 

Emissions (MtCO2e) 
153.22 137.85 156.65 157.20 153.05 137.64 136.00 150.02 

Total Adjusted UK 

Emissions (MtCO2e) 
154.73 139.85 158.96 159.48 162.26 146.64 144.92 159.82 

Reduction in Emissions 

relative to 1990 (%) 
80.65 82.52 80.12 80.06 79.71 82.50 81.88 80.01 
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5.3.3.4 Medium Emissions Scenario 90th Percentile 

Table 74 National demand, consumption and emissions from space heating and space cooling in the residential sector 

(90th percentile, medium emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 184.09 139.93 162.01 115.93 95.08 69.24 82.16 57.36 

SH Consumption (TWh) 74.06 56.30 162.37 43.48 38.25 27.86 82.34 21.51 

SC Demand (TWh) 30.64 0 13.51 0 30.64 0 13.51 0 

SC Consumption (TWh) 4.49 0 2.09 0 4.49 0 2.09 0 

SH Emissions (MtCO2e) 0.41 2.25 41.61 1.20 0.21 1.11 21.27 0.79 

SC Emissions (MtCO2e) 0.04 0 0.17 0 0.04 0 0.20 0 

Effective Negative 

Emissions (MtCO2e) 
0 0 3.04 0 0 0 2.61 0 

Table 75 National cross-sector emissions (90th percentile, medium emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.060 0.080 0.028 0.008 0.060 0.096 0.037 

Total Modelled UK 

Emissions (MtCO2e) 
153.25 137.88 153.77 155.76 153.08 137.68 134.32 150.06 

Total Adjusted UK 

Emissions (MtCO2e) 
154.76 139.88 156.04 158.02 162.30 146.67 143.13 159.86 

Reduction in Emissions 

relative to 1990 (%) 
80.65 82.52 80.49 80.24 79.70 82.50 82.10 80.01 
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5.3.3.5 High Emissions Scenario 30th Percentile 

Table 76 National demand, consumption and emissions from space heating and space cooling in the residential sector 

(30th percentile, high emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 205.17 161.01 183.09 133.40 107.42 81.57 94.49 67.58 

SH Consumption (TWh) 82.54 64.78 183.50 50.02 43.22 32.82 94.71 25.34 

SC Demand (TWh) 30.64 0 13.51 0 30.64 0 13.51 0 

SC Consumption (TWh) 4.49 0 2.09 0 4.49 0 2.09 0 

SH Emissions (MtCO2e) 0.46 2.58 46.94 1.13 0.24 1.31 24.43 0.93 

SC Emissions (MtCO2e) 0.04 0 0.16 0 0.04 0 0.20 0 

Effective Negative 

Emissions (MtCO2e) 
0 0 3.12 0 0 0 2.69 0 

th 
Table 77 National cross-sector emissions (30 percentile, high emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.060 0.077 0.023 0.008 0.060 0.093 0.037 

Total Modelled UK 

Emissions (MtCO2e) 
153.20 137.84 158.96 158.36 153.02 137.62 137.35 149.99 

Total Adjusted UK 

Emissions (MtCO2e) 
154.71 139.84 161.30 160.66 162.23 146.62 146.37 159.79 

Reduction in Emissions 

relative to 1990 (%) 
80.65 82.52 79.83 79.91 79.71 82.50 81.70 80.02 
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5.3.3.6 High Emissions scenario 50th Percentile 

Table 78 National demand, consumption and emissions from space heating and space cooling in the residential sector 

(50th percentile, high emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 198.21 154.05 176.13 127.63 103.34 77.50 90.42 64.21 

SH Consumption (TWh) 79.74 61.98 176.53 47.86 41.58 31.18 90.62 24.08 

SC Demand (TWh) 30.64 0 13.51 0 30.64 0 13.51 0 

SC Consumption (TWh) 4.49 0 2.09 0 4.49 0 2.09 0 

SH Emissions (MtCO2e) 0.44 2.47 45.18 1.16 0.23 1.24 23.39 0.89 

SC Emissions (MtCO2e) 0.04 0 0.16 0 0.04 0 0.20 0 

Effective Negative 

Emissions (MtCO2e) 
0 0 3.09 0 0 0 2.66 0 

th 
Table 79 National cross-sector emissions (50 percentile, high emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.060 0.078 0.024 0.008 0.060 0.094 0.037 

Total Modelled UK 

Emissions (MtCO2e) 
153.22 137.85 157.25 157.50 153.04 137.64 136.35 150.01 

Total Adjusted UK 

Emissions (MtCO2e) 
154.73 139.85 159.57 159.79 162.25 146.64 145.30 159.82 

Reduction in Emissions 

relative to 1990 (%) 
80.65 82.52 80.04 80.02 79.71 82.50 81.83 80.01 
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5.3.3.7 High Emissions Scenario 70th Percentile 

Table 80 National demand, consumption and emissions from space heating and space cooling in the residential sector 

(70th percentile, high emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 191.00 146.85 168.93 121.66 99.12 73.28 86.20 60.72 

SH Consumption (TWh) 76.84 59.08 169.31 45.62 39.88 29.48 86.40 22.77 

SC Demand (TWh) 30.64 0 13.51 0 30.64 0 13.51 0 

SC Consumption (TWh) 4.49 0 2.09 0 4.49 0 2.09 0 

SH Emissions (MtCO2e) 0.43 2.36 43.36 1.19 0.22 1.18 22.31 0.84 

SC Emissions (MtCO2e) 0.04 0 0.17 0 0.04 0 0.20 0 

Effective Negative 

Emissions (MtCO2e) 
0 0 3.07 0 0 0 2.64 0 

th 
Table 81 National cross-sector emissions (70 percentile, high emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.060 0.079 0.026 0.008 0.060 0.095 0.037 

Total Modelled UK 

Emissions (MtCO2e) 
153.23 137.86 155.47 156.61 153.06 137.66 135.31 150.04 

Total Adjusted UK 

Emissions (MtCO2e) 
154.74 139.87 157.77 158.89 162.28 146.66 144.19 159.84 

Reduction in Emissions 

relative to 1990 (%) 
80.65 82.52 80.27 80.13 79.71 82.50 81.97 80.01 
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5.3.3.8 High Emissions Scenario 90th Percentile 

Table 82 National demand, consumption and emissions from space heating and space cooling in the residential sector 

(90th percentile, high emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 181.42 137.26 159.34 113.72 93.51 67.67 80.59 56.07 

SH Consumption (TWh) 72.99 55.22 159.70 42.65 37.62 27.23 80.78 21.03 

SC Demand (TWh) 30.64 0 13.51 0 30.64 0 13.51 0 

SC Consumption (TWh) 4.49 0 2.09 0 4.49 0 2.09 0 

SH Emissions (MtCO2e) 0.41 2.20 40.93 1.20 0.21 1.09 20.87 0.77 

SC Emissions (MtCO2e) 0.04 0 0.17 0 0.04 0 0.20 0 

Effective Negative 

Emissions (MtCO2e) 
0 0 3.02 0 0 0 2.60 0 

th 
Table 83 National cross-sector emissions (90 percentile, high emissions scenario) 

Adjusted Model Basic Model 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.060 0.080 0.028 0.008 0.060 0.096 0.037 

Total Modelled UK 

Emissions (MtCO2e) 
153.26 137.88 153.12 155.44 153.10 137.69 133.93 150.07 

Total Adjusted UK 

Emissions (MtCO2e) 
154.77 139.89 155.38 157.69 162.31 146.68 142.72 159.88 

Reduction in Emissions 

relative to 1990 (%) 
80.64 82.52 80.57 80.28 79.70 82.50 82.15 80.01 
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5.3.3.9 Range of Values for a Sample of Typical Tetrads 

The following four tables show the range of values and standard deviation for DECC 2050 Calculator 

output, a typical tetrad being shown for the 30th, 50th, 70th and 90th percentile winter temperature. 

30th Percentile 

th 
Table 84 Mean, maximum, minimum and standard deviations for DECC 2050 Calculator output for a typical 30

percentile – Adjusted Model, Renewables pathway, Medium emissions scenario 

Mean Maximum Minimum 
Standard 

Deviation 

Residential SH Demand (TWh) 136.445 143.357 130.627 2.885 

Residential SH Consumption (TWh) 51.167 53.759 48.985 1.082 

Residential SC Demand (TWh) 0.000 0.000 0.000 0.000 

Residential SC Consumption (TWh) 0.000 0.000 0.000 0.000 

Residential SH Emissions (MtCO2e) 1.114 1.148 1.067 0.018 

Residential SC Emissions (MtCO2e) 0.000 0.000 0.000 0.000 

Residential Effective Negative Emissions 

(MtCO2e) 
0.000 0.000 0.000 0.000 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.022 0.023 0.020 0.001 

Total Modelled UK 

Emissions (MtCO2e) 
158.808 159.833 157.936 0.427 

Total Adjusted UK 

Emissions (MtCO2e) 
161.114 162.155 160.230 0.433 

Reduction in Emissions relative to 1990 (%) 79.850 79.961 79.720 0.054 
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50th Percentile 

th 
Table 85 Mean, maximum, minimum and standard deviations for DECC 2050 Calculator output for a typical 50

percentile – Adjusted Model, MARKAL pathway, Medium emissions scenario 

Residential SH Demand (TWh) 
Mean Maximum Minimum 

Standard 

Deviation 

Residential SH Consumption (TWh) 158.922 168.345 152.619 3.374 

Residential SC Demand (TWh) 63.937 67.729 61.402 1.357 

Residential SC Consumption (TWh) 0.000 0.000 0.000 0.000 

Residential SH Emissions (MtCO2e) 0.000 0.000 0.000 0.000 

Residential SC Emissions (MtCO2e) 2.549 2.700 2.448 0.054 

Residential Effective Negative Emissions 

(MtCO2e) 
0.000 0.000 0.000 0.000 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.000 0.000 0.000 0.000 

Total Modelled UK 

Emissions (MtCO2e) 
0.060 0.060 0.060 0.000 

Total Adjusted UK 

Emissions (MtCO2e) 
137.836 137.863 137.808 0.011 

Reduction in Emissions relative to 1990 (%) 139.838 139.866 139.809 0.012 

Residential SH Demand (TWh) 82.516 82.520 82.514 0.001 
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70th Percentile 

th 
Table 86 Mean, maximum, minimum and standard deviations for DECC 2050 Calculator output for a typical 70

percentile – Basic Model, CCS pathway, High emissions scenario 

Mean Maximum Minimum 
Standard 

Deviation 

Residential SH Demand (TWh) 86.204 93.493 80.781 2.361 

Residential SH Consumption (TWh) 86.398 93.704 80.963 2.367 

Residential SC Demand (TWh) 13.510 13.510 13.510 0.000 

Residential SC Consumption (TWh) 2.094 3.445 3.445 0.000 

Residential SH Emissions (MtCO2e) 22.312 24.178 20.922 0.605 

Residential SC Emissions (MtCO2e) 0.199 0.201 0.195 0.001 

Residential Effective Negative Emissions 

(MtCO2e) 
2.635 2.681 2.599 0.015 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.095 0.096 0.093 0.001 

Total Modelled UK 

Emissions (MtCO2e) 
135.314 137.107 133.980 0.581 

Total Adjusted UK 

Emissions (MtCO2e) 
144.191 146.102 142.769 0.619 

Reduction in Emissions relative to 1990 (%) 81.967 82.145 81.728 0.077 
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90th Percentile 

th 
Table 87 Mean, maximum, minimum and standard deviations for DECC 2050 Calculator output for a typical 90

percentile – Basic Model, Nuclear pathway, High emissions scenario 

Mean Maximum Minimum 
Standard 

Deviation 

Residential SH Demand (TWh) 93.514 98.829 89.152 2.440 

Residential SH Consumption (TWh) 37.623 39.761 35.868 0.982 

Residential SC Demand (TWh) 30.640 30.640 30.640 0.000 

Residential SC Consumption (TWh) 4.494 4.494 4.494 0.000 

Residential SH Emissions (MtCO2e) 0.209 0.221 0.199 0.005 

Residential SC Emissions (MtCO2e) 0.037 0.037 0.037 0.000 

Residential Effective Negative Emissions 

(MtCO2e) 
0.000 0.000 0.000 0.000 

Electricity Emissions 

Intensity (MtCO2e/TWh) 
0.008 0.008 0.008 0.000 

Total Modelled UK 

Emissions (MtCO2e) 
153.095 153.130 153.064 0.016 

Total Adjusted UK 

Emissions (MtCO2e) 
162.310 162.348 162.278 0.017 

Reduction in Emissions relative to 1990 (%) 79.701 79.705 79.696 0.002 

5.3.4	 Discussion of the DECC 2050 Calculator Results for 2050 - the Adjusted 

Model and the Basic Model 

The sample results presented in Section 5.3.3.9, typical of all 80 tetrads, indicate that the method of 

using 50 runs to capture the breadth of winter temperatures across a given percentile is adequately 

robust, with low standard deviations for each output result. Thus the average results presented in 

Section 5.3.3.1 to Section 5.3.3.8 can be considered to be representative of a given tetrad. 

In order to aid the presentation of the discussion the key results of these tables, residential space 

heating demand and cross-sector reduction in emissions, are summarised in Table 88 (medium 

emissions scenario) and Table 89 (high emissions scenario) below. 
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Table 88 Residential sector space heating demand (TWh) in 2050 and cross-sector reduction in emissions (%) 1990-2050 

for the 32 tetrads under a medium emissions scenario 

Adjusted Model Basic Model 

%
le* 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 30th 208.85 164.69 186.77 136.45 109.57 83.73 96.65 69.37 

Reduction in Emissions 

relative to 1990 (%) 
30th 80.65 82.52 79.71 79.85 79.71 82.50 81.62 80.02 

SH Demand (TWh) 50th 203.08 158.92 181.00 131.66 106.19 80.35 93.27 66.57 

Reduction in Emissions 

relative to 1990 (%) 
50th 80.65 82.52 79.89 79.94 79.71 82.50 81.74 80.02 

SH Demand (TWh) 70th 195.78 151.63 173.70 125.62 101.92 76.08 89.00 63.03 

Reduction in Emissions 

relative to 1990 (%)) 
70th 80.65 82.52 80.12 80.06 79.71 82.50 81.88 80.01 

SH Demand (TWh) 90th 184.09 139.93 162.01 115.93 95.08 69.24 82.16 57.36 

Reduction in Emissions 

relative to 1990 (%)) 
90th 80.65 82.52 80.49 80.24 79.70 82.50 82.10 80.01 

le 
*% - percentile 
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Table 89 Residential sector space heating demand (TWh) in 2050 and cross-sector reduction in emissions (%) 1990-2050 

for the 32 tetrads under a high emissions scenario 

Adjusted Model Basic Model 

%
le* 

Nuclear MARKAL CCS Renew Nuclear MARKAL CCS Renew 

SH Demand (TWh) 30th 205.17 161.01 183.09 133.40 107.42 81.57 94.49 67.58 

Reduction in Emissions 

relative to 1990 (%) 
30th 80.65 82.52 79.83 79.91 79.71 82.50 81.70 80.02 

SH Demand (TWh) 50th 198.21 154.05 176.13 127.63 103.34 77.50 90.42 64.21 

Reduction in Emissions 

relative to 1990 (%) 
50th 80.65 82.52 80.04 80.02 79.71 82.50 81.83 80.01 

SH Demand (TWh) 70th 191.00 146.85 168.93 121.66 99.12 73.28 86.20 60.72 

Reduction in Emissions 

relative to 1990 (%)) 
70th 80.65 82.52 80.27 80.13 79.71 82.50 81.97 80.01 

SH Demand (TWh) 90th 181.42 137.26 159.34 113.72 93.51 67.67 80.59 56.07 

Reduction in Emissions 

relative to 1990 (%)) 
90th 80.64 82.52 80.57 80.28 79.70 82.50 82.15 80.01 

le 
*% - percentile 

5.3.4.1 Attainment of 80%Reduction in Emissions Target 

Whilst the demand for residential space heating varies considerably (according to percentile winter 

temperature, pathway, emissions scenario and model type (Adjusted or Basic)), the reduction in 

total cross-sector emissions is little affected. The target 80% reduction in emissions on baseline 

levels in 1990 is achieved in all instances except for those italicised in bold print above; and in these 

instances the target is only narrowly missed. Perhaps significantly, the only pathway which achieves 

the 80% target for all situations, is the MARKAL cost-optimising pathway which takes the balanced 

approach. 

The reason why the level of residential space heating does little to interfere with the attainment of 

the 80% target,(i) despite the fact that cross-sector space heating currently accounts for 15.5% of 

GHG emissions and (ii) despite the fact that the demand for residential space heating remains 

considerable in 2050 (falling within the range 56-225 TWh, dependent upon tetrad217), is because in 

most instances, the demand for residential space heating in 2050 is met by electricity, the carbon 

intensity of which is forecast to be very low by 2050. Whereas the emissions intensity of electricity 

c.f. the Adjusted Model estimates demand in 2007 at 235.0 TWh and the Basic Model estimates it at 123.1 

TWh. 
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is forecast to fall within the range 0.008-0.096 MtCO2e/TWh by 2050, its value for 2007 is reported 

at 0.541 MtCO2e/TWh, and that of gas is reported at 0.184 MtCO2e/TWh218 (DECC, 2011,19Aug). In 

essence, for the most pessimistic outcome of the four pathways (CCS pathway, where 45% of the 

residential space heating demand is met by solid fuel community-scale CHP plants) residential space 

heating emissions intensity are nevertheless twice as low as that of the present day where gas 

predominates. But, what is more, the relatively high emissions of the CCS pathway are offset by the 

effectively negative emissions of electricity produced by the CHP plants as previously explained, such 

emissions being the equivalent of 7-12% of residential space heating emissions for this pathway. 

5.3.4.2 Adjusted Model Results Compared with Basic Model Results 

Although total cross-sector emissions are very similar in value for the Adjusted Model and the Basic 

Model, the demand for residential space heating is approximately twice as high for the Adjusted 

Model in 2050. This ensues from the fact that demand in 2007 is twice approximately twice as high 

in the Adjusted Model as in the Basic Model (as previously noted in footnote 217). But whilst the 

resulting consumption from this demand in 2007 (289.9 TWh) compares favourably with the DECC 

estimate of 332.4 TWh (see Table 64) for the Adjusted Model219, the Basic Model’s estimate of 151.9 

TWh for 2007 is less than twice the actual reported value for 2007 (see Table 62). This may suggest 

that more confidence can be placed in the Adjusted Model’s output. 

The most pessimistic forecast sees a reduction in residential space heating demand of 37% (30th 

percentile temperatures, Nuclear pathway, medium emissions scenario, Adjusted Model); the 

greatest reduction calculates at 83% (90th percentile, Renewables pathway, Basic Model, high 

emissions scenario, Basic Model). 

5.3.4.3 Probability of Higher Temperatures 

The spread of residential space heating demand values over the 30th-90th percentile winter 

temperature range is perhaps not as high as might have been anticipated. For the 90th percentile 

(where there is a 90% probability that winter temperatures will be less than the forecast value), 

demand is only about 15% higher220 than at the 30th percentile (where there is a 30% probability 

that winter temperatures will be lower than the forecast value). The forecast percentage reduction 

in demand with reference to demand in 2007 is very similar for both models. For the 30th percentile, 

the Adjusted Model forecasts a minimum reduction of 4%, and the Basic Model forecasts a minimum 

reduction of 3%221; for the 90th percentile, both models forecast a maximum reduction of 11%222 . 

218 
The emissions intensity of electricity is reported at 0.752 MtCO2e/TWh or 1990. Although the value for gas 

for 1990 is not stated, it is likely to be of the same order as the value for 2007. 
219 

Note that the Adjusted Models’ estimate of 289.9 TWh is only 1.3% higher than the alternative DECC 

estimate of 286.2 TWh for 2007. 
220 

Range 22-35%. 
221 

Nuclear pathway/medium emissions scenario. Adjusted Model: demand falls from 235.0 TWh to 224.9 

TWh; Basic Model: demand falls from 123.1 TWh to 119.0 TWh 
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5.3.4.4	 Medium Emissions Scenario Results Compared with High Emissions 

Scenario Results 

Even though a high emissions scenario would see a greater reduction in the demand for residential 

space heating energy in comparison to the medium emissions scenario, it is modest, falling in the 

range 2-4%. There is negligible difference between the two scenarios with regard to the reduction in 

total cross-sector emissions. This is in agreement with findings that the deleterious consequences 

associated with higher emissions levels do not manifest themselves until the latter part of the 

century. 

5.3.4.5	 Pathways 

The pathways are broadly effective as one another in achieving the 80% reduction in emissions 

target, whichever particular tetrad is used. Although the MARKAL pathway brings about a slightly 

greater reduction than the other pathways, it is not the pathway where the reduction in demand for 

residential space heating is greatest. This is not unexpected as total cross-sector emissions are 

affected by factors other than residential space heating. Indeed, residential space heating emissions 

are dwarfed by emissions from other sectors for all pathways except the CCS pathway; whilst 

residential space heating emissions in the MARKAL pathway typically constitute 1-2% of total cross-

sector emissions by 2050, those from transport constitute 83% with agriculture & waste sector 223 

accounting for the majority of the remainder, followed industrial processes. 

Having said that, residential space heating emissions from the CCS pathway are very much greater: 

they comprise 26-29% of total cross-sector emissions in the Adjusted Model, and 15-17% of 

emissions in the Basic Model on account of the fact that 45% of residential space heating demand is 

met by community-scale solid fuel burning CHP plant. Despite the high emissions associated with 

this pathway, the reason why the 80% reduction target is achieved or almost achieved is because of 

the higher levels of bioenergy used in this pathway224 . Therefore, in terms of net emissions, the CCS 

pathway should not be viewed as being a high emissions pathway, especially when it is considered 

that the electricity generated by CHP plant in this pathway produce effective negative emissions. 

Note should also be taken of the fact that the CHP pathway, in addition to producing the most 

emissions, is also the most energy intensive, resulting from the fact that CHP, which meets 45% of 

the demand for residential space heating, is only 57% efficient, which compares with the 300% and 

222 
Renewables pathway/high emissions scenario. Adjusted Model: demand falls from 235.0 TWh to 

209.9TWh; Basic Model: demand falls from 123.1 TWh to 109.6 TWh 
223 

It is interesting to note that only a very small proportion of the emissions from agriculture & waste are 

carbon dioxide, but are rather methane and nitrous oxide. The impact on emissions levels of processes other 

than the combustion of fossil fuels should not be under-estimated. 
224 

Bioenergy is treated as a sector in its own right by the DECC 2050 Calculator, being a contributor of negative 

emissions. Negative emissions from bioenergy have the effect of negating positive emissions from other 

sectors. It should be noted, however, that bioenergy is taken into consideration in calculating the emissions 

intensity of electricity; therefore, the stated emissions levels associated with the Nuclear, MARKAL and 

Renewables pathways, which use only electricity or zero-energy forms of energy (district heating or 

geothermal heating) for space heating, can be regarded as accurate. 
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400% efficiencies associated with air-source heat pumps and ground-source heat pumps mostly used 

in the other pathways. 

5.3.4.6 Space Cooling Forecast for 2050 

As previously mentioned, DECC 2050 Calculator does not appear to take air temperature into direct 

consideration in forecasting space cooling demand. The Nuclear pathway calculates residential 

space cooling demand at 30.6 TWh and the CCS pathway calculates it at 13.5 TWh, whilst there is no 

demand for space cooling in the other two pathways. 

SCECMORS does, on the other hand, directly consider climate change, and it serves as a useful 

exercise to compare SCECMORS results with the DECC 2050 Calculator’s residential space cooling 

results on a like-for-like basis as near as possibly, viz: 

i. SCECMORS EER value is changed from 2.91 to 6.82 for the Nuclear pathway, and 6.45 for the 

CCS pathway225 

ii. the number of dwellings is raised from the SCECMORS 2010 value of 26.519M to 39.959M 

iii. space cooling emissions are calculated using the average emissions intensities of electricity 

above from the Adjusted Model (e.g. the electricity emissions intensity of the Nuclear 

pathway for a medium emissions scenario is calculated from the average the four emissions 

from the 30th, 50th, 70th and 90th percentiles, which are all very similar). 

As space cooling only occurs in the Nuclear and CCS pathways, emissions intensities from the 

MARKAL and Renewables pathways are not considered. 

The results of these analyses are extensive, producing very similar data. A sample table is shown 

below, but the full set of results can be found in Appendix 17: SCECMORS Estimates of Residential 

Space Cooling Energy Consumption for different percentiles. In the discussion that follows, these 

results from SCECMORS are considered to be a part of the Adjusted Model. 

Electric air-conditioners are assigned a value of 600% efficiency by the DECC 2050 Calculator (i.e. EER of 6). 

A small proportion of space cooling is also provided by absorption coolers using free heat supplied from power 

stations, thus increasing the average EER value above 6. (Absorption air-conditioners supply 12% of the space 

cooling demand for the Nuclear pathway, and 7% for the CCS pathway.) 
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Table 90 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (50 percentile medium emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
51 10.46 11.05 1.533 1.620 0.012 0.126 

SCECdwell 

SHEU 3% 
58 11.74 12.41 1.722 1.820 0.014 0.141 

SCECdwell 

CEUD 7.2% 
52 10.61 11.21 1.555 1.643 0.012 0.128 

SCECdwell 

SHEU 7.2% 
58 11.76 12.43 1.724 1.822 0.014 0.142 

SCECair 

CEUD 3% 
51 7.77 8.20 1.139 1.203 0.009 0.094 

SCECair 

SHEU 3% 
58 8.72 9.22 1.279 1.352 0.010 0.105 

SCECair 

CEUD 7.2% 
52 7.88 8.32 1.155 1.220 0.009 0.095 

SCECair 

SHEU 7.2% 
58 8.74 9.23 1.281 1.353 0.010 0.105 

Average 54.75 9.71 9.70 1.42 1.50 0.01 0.12 

Although the demand is the same for both pathways, less energy is consumed by the Nuclear because of the greater EER 

value associated with this pathway because of its higher use of absorption air-conditioning using waste heat from power 

stations. 

When amended with data from the DECC 2050 Calculator, SCECMORS (the Adjusted Model) tends to 

forecast a generally lower level of space cooling energy consumption than the default setting of the 

DEC 2050 Calculator. There is a degree of overlap, the Adjusted Model’s estimate of cooling at 

higher levels of emissions sometimes exceeding that forecast by the Basic Model . Whilst the DECC 

2050 Calculator estimates a consumption for space cooling of 4.5 TWh and 2.1 TWh for the Nuclear 

and CCS pathways, irrespective of the temperature percentile, SCECMORS estimates a consumption 

range of 1.3-2.3TWh for the Nuclear pathway and 1.4-2.5 TWh for the CCS pathway. 
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5.4 Energy Consumption and Emissions Levels in 2050 

Residential Space Heating 

With reference to present day levels of space heating (332.4 TWh), there is a marked difference 

between the pathways: he Adjusted Model forecasts a reduction in space heating consumption of 

44-87%, and the Basic Model forecasts one of 71-94%. In all cases the reduction in consumption is 

smaller than for the CCS pathway than for the other pathways as a consequence of its heavy reliance 

upon less efficient CHP (in addition to electricity). However, there is seen to be virtually no 

difference between (i) the medium emissions scenario and the high emissions scenario, and 

between (ii) the 30th percentile and the 90th percentile. Whilst, for example, the 

30thpercentile/medium emissions scenario results in a 75% reduction in consumption, the 90th 

percentile/high emissions scenario results in a 78% reduction, for the Nuclear/Adjusted Model. The 

difference is brought about by choice of pathway and choice of model. 

Differences in emissions levels show a much greater spread 16%226 to 103%227 . But in terms of cross 

sector-total emissions, the differences between the Basic Model and the Adjusted Model is 

negligible because emissions from space heating constitute such a small part of total emissions, 

typically less than 2% (if one excludes the CCS pathway with its artificially high levels of emissions 

since negative bioenergy emissions are accounted for elsewhere in the DECC 2050 Calculator, as 

previously mentioned). 

Residential Space Cooling 

Although the relative difference between the estimates of the Basic Model and the Adjusted Model 

can be large for cooler climates, in absolute terms the difference they are very small, amounting to 

no more than approximately 3TWh. Insofar as emissions are concerned, the differences between 

the models are insignificant since, even under a high emissions scenario at a penetration rate of the 

order of 70%, space cooling emissions amount to only 0.2 MtCO2e. 

Commercial and Industrial Sector Space Heating and Space Cooling 

The manipulations made to the DECC 2050 Calculator only directly affect the residential sector. Its 

forecast for space heating energy consumption fall in the range 57.8 to 97.4TWh, and its forecasts 

for space cooling energy consumption fall in the range 13.5 to 47.7 TWh228, depending upon the 

226 th 
30 percentile/Renewables/medium emission: Basic Model-0.96 MtCO2e. Adjusted Model-1.11 MtCO2e. 

227 th 
90 percentile/MARKAL/medium emission: Basic Model-1.11 MtCO2e. Adjusted Model-2.25 MtCO2e. 

228 
A small note in the Calculator states that installed capacity in the commercial sector is assumed to increase 

in the future at a rate of 1GW per degree change in annual temperature with respect to 2007 values. Another 

note in the wiki refers to methodology issues and uncertainties between average annual demand and installed 

capacity. Confirmation that this is the method by which future demand in the different pathway in the 

Calculator is estimated was sought on two occasions, but no response was given. 
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pathway followed; these compare with present day values of 84.8 TWh and 8.8 TWh229 (DECC, 

2012i). 

One can confer that emission levels of space heating and space cooling in the commercial sector 

would be similarly low across the range of percentile temperatures investigated. This is because 

space heating and space cooling in the commercial sector rely upon a similar distribution of low and 

zero carbon (LZC) technologies, dominated by electricity as seen in Table 91 and Table 92 (c.f. 

Appendix 14: Key Characteristics of Four Pathways Designed to Reduce GHG Emissions by 80% by 

2050). 

Table 91 DECC 2050 space heating technology mix for the commercial sector (%) 

Nuclear CCS Renewables MARKAL 

Geothermal (%) 

Electric Resistive heating (%) 

Air-source heat pump (ASHP) (%) 

Ground-source heat pump (GSHP) (%) 

CHP (%) 

District heating (%) 

1 

58 

30 

11 

7 

60 

30 

3 

10 

60 

30 

18 

30 

45 

Table 92 DECC 2050 space cooling technology mix for the commercial sector (%) 

Nuclear CCS Renewables MARKAL 

Electric air-conditioning (%) 

Absorption (%) 

88 

12 

97 

3 

100 93 

7 

Since no information is given on levels of space heating and space cooling in the industrial sector, 

one cannot make any informed comment other than to say that they are likely to be small in relation 

to that of industrial process 

(ii) average annual demand in the commercial sector is calculated from a given known ratio “annual 

demand/installed capacity” (mentioned in your contribution to the wiki). 

This is the figure for cooling and ventilation.
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Summary 

Considering the enormity of the task in successfully capturing the nation’s carbon economy in single 

coherent model, it is remarkable that cross-sector modelled emissions for the base year of 2007 

should so closely resemble actual emissions, an adjusting factor being used to align modelled 

emissions with actual emissions. 

In the absence of an alternative, the application of the same adjusting factor to the year 2050 would 

appear to be justified, the same approach being used by BREHOMES to bring modelled energy 

consumption into alignment with government statistics. Consequently , the results produced by the 

Adjusted Model of the DECC 2050 Calculator, serve as useful comparisons to the results produced by 

the Basic Model, especially since the default set-up of the Calculator, when loaded with correctly-

weighted temperature data under-estimates residential space consumption (190.6 TWh) by 43% for 

the year 2007230 . 

Demand for space heating energy continues to remain significantly larger that the demand for space 

heating. When the demand for space cooling is at greatest (15.78 TWh) and penetration approaches 

70%, the demand for space heating remains 5-10 times as large, depending upon whether the Basic 

Model or the Adjusted Model is used to estimate space heating. 

The Basic Model estimates total space cooling demand across the residential and commercial sectors 

as falling between 13 and 78 TWh, depending upon pathway the followed, and the Adjusted Model 

estimates it as falling between 13 and 64 TWh. On a like-for like basis (i.e. same pathway, percentile 

temperature and same emissions scenario), the difference ranges between 0231 and 22 TWh232 . 

The Basic Model estimates total space heating demand across the residential and domestic sectors 

as falling between 114 and 207 TWh, depending upon pathway the followed, and the Adjusted 

Model estimates it as falling between 172 and 306 TWh. On a like-for like basis (i.e. same pathway, 

percentile temperature and same emissions scenario), the difference ranges between 58 TWh233 and 

99 TWh234 

In terms of cross-sector emissions, all pathways across all tetrads secure or almost secure the 80% 

reduction target, but the Adjusted Model suggests that generational capacity may have to be 

increased to meet a projected shortfall in energy of up to 99 TWh in the heating season. 

230 
The latest government figures for 2007 estimate residential space heating energy consumption at 332.1 

TWh, 
231 

Many different percentile/pathway/emission scenarios. 
232 th 

30 percentile/Nuclear/ medium emissions. 
233 th 

90 percentile/Renewables/high emissions. 
234 th 

30 percentile/Nuclear/medium emissions 
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6 Conclusion 

Although it remains unclear to what extent the climate will change, it seems very likely that it will 

change. This will inevitably affect us all, bringing with it a range of both benefits and problems. 

Whilst we can expect to see a reduction in the demand for space heating in winter (as modelled by 

SHECMOBS in Chapter 2), we can also expect to see an increase in the demand for cooling in 

summer if we are to avoid discomfort and overheating in our buildings (as modelled by SCECMORS 

in Chapter 3, and the AATC in Chapter 4). The way that we deal with these changes will impact upon 

our consumption of energy, as will a plethora of other factors determined by the particular pathway 

that society follows, and these in turn will affect atmospheric levels of greenhouse gases. The 

realisation that greenhouse gas emissions must be reduced if we are to escape the most deleterious 

consequences of climate change later in the century has prompted the government into action, the 

Climate Change Act 2008 specifying an 80% reduction in emissions levels by 2050. It has further set 

out a number of different pathways which bring about the 80% reduction when modelled in the 

DECC 2050 Calculator, based on temperature projections at the 50% probability level under a 

medium emissions scenario. Using weighted temperature data, and data from SHECMOBS and 

SCECMORS, the DECC 2050 Calculator has been used to investigate a range of different future 

climates in addition to the central estimate projection under a medium emissions scenario (Chapter 

5). 

SHECMOBS 

Recognition of the fact that a warmer climate will lessen the demand for space heating is often 

overlooked, with the focus of attention being rather more on the negative aspects of climate 

change. But given the fact that space heating accounts for 43% of energy consumption in the built 

environment, it is imperative that this end-use is examined in as great a detail as possible since even 

a small increase in air temperature can have a large impact upon the national energy budget. As gas 

accounts for 72% of space heating in the built environment, it is considered that SHECMOBS, the 

top-down cross-sector gas consumption model described in Chapter 2 performs just this task. 

Obviating the need to use incomplete or outdated data of uncertain quality deriving from a bottom-

up analysis of a sample set of buildings which may or not be representative of the building stock, 

SHECMOBS relies on only temperature data and national gas consumption data, both of which have 

been regionalised to a very high degree. With the coefficients of determination of the 13 segmented 

regression analyses examining the past correlation between effective temperature and gas 

consumption averaging at 0.95, the method used by SHECMOBS to predict future levels of space 

heating energy consumption, involving application of the resulting 13 algorithms to UKCP09-

generated future climate data as projected by UKCP09, is considered both appropriate and 

statistically robust. 

The forecasts made by SHECMOBS reveal a diminution in the level of space heating as the century 

progresses, with a somewhat larger than anticipated reduction in the near term irrespective of 

which particular emissions pathway is followed. Despite the fact that the greater impact of climate 

change is not forecast as occurring until the latter part of the century, a reduction of between 11 

and 12% is forecast by the 2030s compared to the generally relatively warm period 2000-10. (When 
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compared to the more recent but unusually cold period of 2008-2010, the reduction by the 2030s is 

between 17 and 18%.) A reduction of 16-22% is forecast by the 2050s, depending upon whether a 

low or high emissions pathway is followed (22-28% reduction with reference to 2008-10). By the 

2080s the full impact of climate change begins to reveal itself, with the 23% reduction forecast under 

a low emissions scenario comparing to the 41% reduction forecast under a high emissions scenario 

(28-45% reduction with reference to 2008-10). 

The value of SHECMOBS is twofold. 

i.	 It gives an indication of the effect of climate change on our buildings in way that it 

immediately understandable, since the percentage change in consumption is the same as 

the percentage change in demand. An increase in temperature of x 0C by 2050 is intangible, 

an intrinsically difficult concept to understand, whereas a 16-22% reduction in the demand 

for space heating is immediately more arresting since it is something that we can 

understand. Knowledge that climate change is so large that space heating demand is likely 

to reduce by about a fifth by 2050, whichever particular emissions scenario is followed, is 

more likely to engage a sometimes sceptical public, to draw attention to the fact that 

climate change is real and close at hand. 

ii.	 More importantly from an academic point of view, its output can be used to amend the 

DECC 2050 Calculator, so that changes in actual levels of consumption and emissions can be 

forecast. 

SCECMORS 

Although it is to be anticipated that a future warmer climate is likely to increase the demand for 

mechanical space cooling in the absence of measures designed to promote passive cooling systems, 

there are too few data to construct a cooling model along the lines of SHECMOBS. Whilst the level 

of space cooling in the residential sector has historically been so low as to prevent the discernment 

of a relationship between air temperature and energy consumption, space cooling in the service 

sector is also driven by factors other than climate, making the discernment between demand and air 

temperature difficult: 9% of electricity consumption in the service sector already derives from 

cooling and ventilation, with the penetration rate of air-conditioning in the commercial market being 

estimated at 42%, despite the present relatively cool climate. 

Data from North America, however, suggest a pathway of uptake which residential air-conditioning 

may follow, data from the US showing that the long-term response (arising from increased 

penetration levels) is a more important factor than the short-term response (deriving from increased 

use of the existing stock) for relatively cool climates such as that of the UK. Using data from Canada, 

the current summer temperatures in which are similar to those forecast for the UK over the coming 

decades of the century, and penetration levels in which show a reasonable degree of correlation 

with the number of CDDs, SCECMORS estimates levels of space cooling energy consumption in the 

residential stock in a future warmer climate. (Since the Canadian penetration data derive from two 

independent surveys performed at different times and bear close resemblance, and since the 

number of CDDs are population weighted at a regional or provincial level to a very high degree, the 

Canadian data are regarded as being reliable surrogate data.) Although the SCECMORS forecasts 
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that penetration levels may increase markedly, data from elsewhere has shown that this is quite 

possible, with the level of air-conditioning in the US rising to almost 60% from less than 2% in less 

than 25 years, and with the number of air-conditioning units rising from 0.34 to 112.07 per 100 

urban households in China over the course of 20 years. 

Although SCECMORS is the generic term used to describe the space cooling model which estimates 

energy consumption in the residential sector, the bottom-up model actually comprises two sub-

models, each performing the same task, but using different base units from which to build upwards. 

Whilst SCECdwell uses the dwelling as the base unit, SCECair uses the air-conditioner as the base 

unit, the constitution of each sub-model having been determined following an extensive review of 

the literature, but with each sub-model sharing common penetration levels based on the Canadian 

data. 

Despite the very different methods each sub-model uses to calculate future levels of space cooling 

energy consumption, the sub-models’ estimates are remarkably similar, differing by no more than 

26% when compared on a like-for-like basis. In consideration of the fact that each sub-model 

contains a number of assumptions, the difference is not considered unduly large, especially since the 

actual levels of energy consumption forecast are so small in comparison to that deriving from space 

heating. Under a medium emissions scenario, penetration levels could reach 45-52% by the 2050s, 

resulting in a level of space cooling energy consumption which is the equivalent to 0.3-0.5% the 

quantity of energy used for space heating in the built environment in 2011235; and allowing for an 

approximate doubling in EER from the modelled value of 2.91 to a value of between 6 and 7 as is 

forecast for 2050, the approximate doubling in consumption still remains very low. Alternatively 

worded, if we were to follow the Canadian experience of uptake of air-conditioning, where half of all 

homes installed some sort of air-conditioning, under an average climate for a medium emissions 

scenario space cooling energy consumption in 2050 is likely to be of the order of 1% that currently 

used for space heating,. The data suggest that in spite of the anticipated large increase in ownership 

of air-conditioning, the level of space cooling energy consumption remains modest simply because 

the weather is unlikely to be sufficiently hot to warrant their use more often than occasionally. This 

finding is in keeping with data from Massachusetts, one of the less hot states of the US even though 

its current climate is considerably warmer than the climate forecast for the UK in the 2050s, in which 

latter climate the difference between ownership and use is likely to be very much higher than that in 

Massachusetts236 . Like SHECMOBS, however, its greatest value lies in its application to future 

climates and different pathways as modelled in the DECC 2050 Calculator. 

235 
0.3% estimate derives from minimum SCECair estimate of 1,386 GWh; 0.5% estimate derives from 

maximum SCECdwell estimate of 2,128 GWh. (Space heating energy consumption across built environment in 

2011: 399,540 GWh (DECC, 2012h)). 
236 

The difference between ownership and use levels of air-conditioning in Massachusetts amounts to 12%. 

Whilst the Massachusetts climate returns 280 CDDs, the medium emissions scenario for the 2050s for Great 
0

Britain returns only 127 CDDs (base temperature 18.3 C). 
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Adaptive Comfort Degree-Day Model 

The threat posed by the expansion of air-conditioning, alongside the recognition that it may be 

avoided in many instances, has led to a renewed interest in the AACT as a means of reducing space 

cooling GHG emissions in the service sector in particular, its great benefit being that it remains a 

zero energy means of achieving thermal comfort despite increasing outdoor air temperatures. 

The difficulty faced by facilities managers and designers in the UK who wish to avail of the AACT is 

that the two adaptive standards from which they can choose, the European adaptive standard EN 

15251 and the ASHRAE adaptive standard 55, set different temperature limits, the necessary 

corollary of which is that they set different standards of thermal comfort, even though each is 

deemed to be satisfactory. The novel metric, the ACDD, has been developed as a means of 

comparing the two standards, allowing one to compare the maximum potential energy savings 

deriving from use of comparable versions of each237 . Deriving from the same theory underpinning 

the conventional degree-day used by energy managers to estimate levels of space heating and space 

cooling, a series of modelling experiments performed on a set of office buildings has substantiated 

the validity of the ACCD concept as a metric for energy consumption: the coefficient of 

determination in 50 regression analyses investigating the correlation between the number of ACDDs 

and energy savings averages at 0.97. Of particular note are the findings that the ACDD’s predictive 

capacity to estimate space cooling load is little affected by the fact that ACDD theory takes no direct 

account of the latent component which contributes towards the overall space cooling load, and that 

levels of fenestration and thermal responsiveness similarly little affect its predictive capacity. 

When applied to a range of future climates, the ACDD data indicate that potential space cooling 

energy savings arising from use of the European adaptive standard are considerably more than those 

arising from use of its ASHRAE counterpart. The difference resides in the issue of compliance, where 

the higher upper temperature limits of the European adaptive standard make it available for use in a 

greater number of buildings, these additional buildings being barred from employing the AATC by 

the ASHRAE adaptive standard because of breach of its temperature limits. Such is the difference in 

the stringency applied by the two adaptive standards that potential space cooling energy savings 

achieved by the European adaptive standard in any particular decade are not matched by its ASHRAE 

equivalent until decades later. In view of the urgency attached to the speed at which carbon 

emissions must decrease if society is not to suffer the more extreme, deleterious consequences of 

climate change ,the benefits conferred by the EAS are clear. (The future climate data also reveal, 

however, that winter temperatures are unlikely to be sufficiently high, at least for the greater part of 

the century, to invoke use of an adaptive standard.) 

It remains unclear why the two adaptive standards should set such different upper temperature 

limits (varying by about 0.8-1.0 0C) which result in such different levels of potential savings, with 

differences in both the sample groups and methodologies used to draw up each standard being 

explored. The difference is a cause for concern because, despite the methodological probity applied 

by both groups of authors in the establishment of neutral temperatures underlying each adaptive 

standard, such disparity lays the AATC bare to attack from critics citing a lack of understanding of the 

finer detail of the AATC as the root cause of the discrepancy. 

viz. ASHRAE adaptive standard 55 (80% acceptability) (AAS) and the European 15251 adaptive standard 

(Category II) (EAS). 
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With regard to its application to the DECC 2050 Calculator, its use is implicitly understood as 

constituting the means by which space cooling is achieved in the residential sector of the MARKAL 

and Renewables pathways, these being the two sectors which do not use mechanical cooling 

systems. 

DECC 2050 Calculator 

As useful as the information regarding space heating, space cooling and the AATC are, in isolation 

they are of only limited value in attempting to describe a future which has yet to write itself. Their 

greatest value lies in the contribution that they make to the government’s DECC 2050 Calculator, a 

coherent, cross-sector, open access tool examining alternative pathways which result in an 80% 

reduction of GHG emissions. Its key importance lies in the way it allows alternative visions of the 

future to be projected because so many of the factors which will decide whether or not we are 

successful in achieving the target have yet to be decided. However, when loaded with correctly-

weighted temperatures for its reference year of 2007 and its output for residential space heating 

consumption is compared against (i) official government statistics for 2007, and (ii) SHECMOBS 

forecast for a reduction in levels of space heating (2007-2050s), it is seen to under-estimate the 

former and over-estimate the latter. With outdoor air temperature greatly affect space heating 

energy consumption as shown by SHECMOBS, and with 15.5% of emissions currently derive from 

space heating, the need to use as accurate temperature data is clear, since it could result in 

pathways, presently described as successfully achieving the 80% reduction target, failing. Moreover, 

it is important to test pathways in a number of different future climates, rather than the single 

climate used in the Calculator, one based on temperature projections at the 50% probability level 

under a medium emissions scenario. When the DECC 2050 Calculator is re-run as both a Basic Model 

and as an Adjusted Model (where remedial action is taken so that its output accords with 

government statistics and SHEMOBS), it is seen that four widely divergent pathways result in four 

different levels of space cooling energy consumption. The Adjusted Model forecasts a reduction in 

space heating consumption of 44-87%, and the Basic Model forecasts one of 71-94%. This is not 

unexpected in view the fact neither the average indoor temperature nor heating technologies are 

consistent across all pathways. Of more significance is the finding that differences in future climates 

for 2050 little affect residential space heating energy consumption. Comparing extremes, the 30th 

percentile/medium emissions scenario with the 90th percentile/high emissions scenario, the 

difference averages at 3%, extending to a maximum of 7.5%. 

Space cooling is still seen to be dominated by the he commercial sector in 2050. Whilst the Basic 

Model estimates a maximum increase in space cooling energy consumption from today’s present 

value of near zero up to 4.5 TWh and the Adjusted Model forecasts a rise of up to 2.5 TWh, these 

compare with the forecasts of 14-48 TWh for 2050 for the commercial sector. 

Despite the wide range of consumptions forecast for the residential stock for 2050, all the pathways 

initially prescribed as successfully achieving the 80% reduction in emissions, achieve a reduction of 

at least 79.7%. What is more, they continue to remain successful across eight future climates 

ranging from the 30th percentile medium emissions scenario to the 90th percentile high emissions 

scenario, their continued success mostly deriving from their reliance on electricity to provide space 

heating allied with its low emissions intensity. 
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The Adjusted Model suggests that generational capacity may have to be increased in order to meet 

the extra demand for space heating in the built environment, the shortfall between the Adjusted 

Model and the Basic Model ranging between 58 and 99 TWh for the heating season, depending 

upon which particular pathway is followed. 
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Appendix 1: CaRB Results 

The CaRB data for the industry sector report building-related energy consumption for England and 

Wales. DUKES data for the industry sector report the total of (i) process energy and (ii) building-

related energy for the UK. Figure 53 shows the CaRB model data for 2004 and compares these data 

with actual Government DUKES statistics for 2004 (Bruhns, 2008). 

Figure 53 Comparison of energy consumption by as calculated by CaRB model with Government DUKES data (2004) 

(Bruhns, 2008) 

Re-visiting the actual DUKES data for 2004 (DECC, 2011f) reveals a discrepancy, however, between 

the actual (correct) DUKES data and the DUKES data (apparently incorrectly) reported in Figure 53. 

Figure 54 shows the actual (correct) DUKES data for 2004 and reveals that whilst consumption for 

the public administration, commerce and miscellaneous sectors are in broad agreement with the 

figures reported by Bruhns (2008) in Figure 53 , the actual (correct) energy consumption for the 

industry sector is considerably larger238 . 

Note that the discrepancy between the figures for the industry sector does not derive from the erroneous 

inclusion of the power generation sector as an industry in Figure 54, but not in Figure 53: the data in Figure 54 

(as for Figure 53) relate to secondary energy, not primary energy, and so transformation energy (energy lost in 

the in the process of converting primary fossil fuel energy to secondary energy (electricity) is not included. 

(Transformation losses in 2004 (620,000 GWh) dwarfed secondary energy consumption in the industry sector.) 
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Figure 54 Actual energy consumption as reported in DUKES (2004) 

Assuming that 90% of energy consumption in Great Britain occurs in England and Wales (90% of the 

population of Great Britain lives in England and Wales), the CaRB model estimates the building-

related component of energy consumption in the industry sector at either (i) 49%239 or (ii) 34%240 . 

The possibility exists that the industry DUKES data have been updated since their initial publication 

in 2004, but the difference between the actual DUKES figure and the DUKES figure reported by 

Bruhns (2008) is so large that this is not considered likely, especially since the actual industry sector 

data for 2004 are of the same order as those in preceding and subsequent years. The discrepancy 

may be due to a simple arithmetic error; the actual DUKES data are reported in ttoe, but are 

converted to GWh in the Bruhns (2008) paper. 

239 
i.e. 115,000 ÷ 260,000 ÷ 90% (where 260,000 = incorrect estimate of energy consumption in the built 

environment as reported in (Bruhns, 2008) (from Figure 53) 
240 

i.e. 115,000 ÷ 375,000 ÷ 90% (where 375,000 = actual (correct) estimate of energy consumption in the built 

environment (Figure 54). 
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The totalled energy consumption of the four bulk activity divisions in the CaRB model (Figure 53) 

differs from the totalled energy consumption of the 11 primary activity classes (Figure 55) by 28%241 . 

Figure 55 Energy consumption by activity class (and end-use) for England and Wales (Bruhns, 2008) 

The reason for this difference is not clear, but the wording describing the energy model in Bruhns et 

al (2006) suggests that the energy consumption of a division (of which there are four) is calculated as 

the product of the floorspace and the average specific energy consumption of the division, rather 

than calculated as the sum of the 11 energy consumption totals from the 11 primary classes which 

constitute that division. 

Energy consumption of four bulk divisions: 270,000 GWh; energy consumption of 11 primary activity 

classes: 211,000 GWh. 
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Appendix 2: Approaches to Regressing Segmented Data 

The following charts illustrate the importance of using the correct regression trend lines to map 

datum points in consumption/temperature regression plots. 

Cold Weather Upturn 

If a cold weather upturn exists, it is important that account is taken of it if energy consumption in a 

future climate is not to be over-estimated. Figure 56 shows a regression plot of consumption against 

temperature for the present day climate where there is a cold weather upturn. 
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Figure 56 Plot of consumption against temperature for the present day climate showing a cold weather upturn (two 

regression trend lines) 

Two separate regression trend lines correctly describe the regression data.


Figure 57 shows the same present day data, but a single regression trend line describes the data.


251




y = -1.1556x + 29.908 
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Figure 57 Plot of consumption against temperature for the present day climate showing a cold weather upturn (one 

regression trend line) 

In Figure 57 the regression trend line under-estimates consumption for very cold and very hot 

temperatures but exactly balances out the under-estimation by over-estimating consumption for 

less cold temperatures in the mid-range. Regression line 3 has a gradient which is greater than that 

of regression line 2. 

Figure 58 shows a future warmer climate, where there is no very cold weather and no cold weather 

upturn. Regression line 2 accurately maps the regression data, regression line 2 being the “normal” 

weather-sensitive regression trend line for temperatures in the mid-range seen in Figure 56. 
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Figure 58 Plot of consumption against temperature for a future warmer climate accurately mapped by regression line 2 

252




Figure 59 shows the same future data from Figure 58, overlaid with regression line 3 from Figure 57.


y = -1.1556x + 29.908 
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Figure 59 Plot of consumption against temperature for a future warmer climate incorrectly mapped by regression line 3 

It is seen that using regression line 3 to forecast future consumption in the future warmer climate is 

incorrect. Consumption at low temperatures is over-estimated, but is not completely balanced by 

the under-estimation of consumption at higher temperatures (in the absence of the very cold 

weather data which were formerly also under-estimated). 

Cold weather downturn 

Note that exactly the same principle applies in the case where consumption is less than anticipated 

for very cold weather (cold weather downturn), a single regression trend line being insufficient to 

describe total consumption. Consumption at low temperatures is under-estimated by a single 

regression trend line, but is not balanced by the over-estimation of consumption at higher 

temperatures. 

Summer cut-off 

Where gas consumption levels off in warm weather, a single regression trend line constructed from 

present day climate data is inadequate to describe total consumption in a future warmer climate, if 

the regression trend line incorporates non-weather sensitive gas data. 

Regression line 4 satisfactorily forecasts overall annual consumption levels in the present day 

climate where over-estimated data are exactly balanced by under-estimated data (Figure 60). 
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y = -0.9087x + 25.728 

-5 

0 

5 

10 

15 

20 

0 5 10 15 20 25 30 35 40 

C
o

n
su

m
p

it
o

n
 

Temperature 

regression line 4 

Figure 60 Plot of consumption against temperature for present day climate correctly mapped by regression line 4 

In a future warmer climate, however, the distribution will not be the same, there being a higher 

incidence of warm temperatures; using regression line 4 to forecast future consumption levels 

results in an incorrect estimation of consumption levels since under-estimations are no longer 

balanced by over-estimations (Figure 61). 
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Figure 61 Plot of consumption against temperature for future warmer climate incorrectly mapped by regression line 4 

The correct regression trend line (formulated from the present day climate) which can forecast 

future weather sensitive consumption (regression line 2) must omit the warm temperature non-

weather sensitive data from its derivation (Figure 62). 
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Figure 62 Plot of consumption against temperature for future warmer climate where weather sensitive consumption is 

correctly mapped by regression line 2 

Reduced Weather Sensitivity in Warm Weather 

In the case where consumption does not level off but some residual weather sensitivity remains for 

higher air temperatures, an additional regression trend line (regression line 5) must be used to 

describe consumption at these higher air temperatures (Figure 63) (c.f. cold weather upturn or cold 

weather downturn). 
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Figure 63 Plot of consumption against temperature for a future warmer climate correctly mapped by regression line 2 

and regression line 5 
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Appendix 3: Daily Metered Gas Consumption Data 

The decision to base SHECMOBS on NDM gas consumption is made on the grounds that NDM 

consumers are responsible for the bulk of space heating. However, despite the generally low values 

for the coefficient of determination in DM gas demand/effective temperature regression plots 

(Table 93), there is an argument that DM data should be used to further inform SHECMOBS since 

demand decreases in response to increasing effective temperature in 12 of the 13 LDZs. 

Table 93 Coefficients of determination in the plot of DM gas demand against effective temperature (2008-2010) 

LDZ Met Office Weather Station R
2 

Scotland Glasgow 0.05 

Northern Albemarle 0.16 

North Western Woodford 0.20 

North Eastern Dishforth 0.00 

West Midlands Coleshill 0.15 

East Midlands Waddington 0.09 

Wales North Lake Vyrnwy 0.02 

Wales South St Athan 0.03 

South West Filton 0.30 

South Middle Wallop 0.36 

Eastern Weybourne 0.55 

North Thames Heathrow 0.64 

South Eastern Manston 0.03 

In particular, the degree of correlation between DM gas demand and effective temperature for the 

(i) North Thames LDZ and Heathrow regression plot (Figure 64), and (ii) Eastern LDZ and Weybourne 

regression plot is not so low that they can be ignored without comment. 
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Figure 64 Regression plot of North Thames LDZ daily DM gas demand against Heathrow effective temperature (2008-

2010) 

Whilst the regression for North Thames LDZ/Heathrow shows a moderate degree of correlation 

between DM gas demand and effective temperature242, it is not clear, however, to what extent the 

diminution in weather-related consumption is due to the reduction in space heating: if the 

diminution was primarily due to a reduction in the level of space heating, one would have expected 

to see consumption levels begin to taper at about 13-14 0C as is seen with the NDM stock (e.g. Figure 

18, Figure 19 and Figure 20), but no such taper is seen.  This suggests that the diminution is perhaps 

rather more due to weather-related industrial process.  In consequence it would appear that any 

weather sensitivity that exists within the DM stock is dependent upon the nature of the industrial 

processes performed within the LDZ in question.   

It is very likely that this diversity of industrial activity which is seen between LDZs is also responsible 

for the very high degree of scatter seen in the other LDZ DM gas demand/effective temperature 

regression plots, the range of gas demand values at any particular temperature typically being as 

large or larger than the maximum and minimum points on the regression trend line, as seen in the 

example below for the West Midlands LDZ/Coleshill regression plot (Figure 65). 

 

 

 

   
 The Eastern LDZ/Weybourne regression plot has the same shape as that of the North Thames/Heathrow 

regression plot. 
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Figure 65 Regression plot of West Midlands LDZ daily DM gas demand against Coleshill effective temperature (2008-

2010) 

In brief, the inclusion of DM data as a weather-sensitive component does not bring any benefit to a 

space heating model.  In practical terms, the DM gas demand can be said to be constant, its increase 

in magnitude in both absolute and relative terms from summer to winter being minimal in 

comparison to NDM demand: whilst DM increases only by 4% from 27,555 GWh to 28,596 GWh, 

NDM consumption increases by 370% from 43,155 GWh to 202,851 GWh (2008-2010 average). 
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Appendix 4: Importance of Using Correct Break Points in 

Segmented Regression 

It is important that breakpoints of the correct value are chosen in fitting segmented trend lines to 

map the regression data, since temperatures in the future are likely to be warmer than those of the 

present day.  An example is presented below to illustrate this point.  

Figure 66 shows the regression plot of North West LDZ NDM gas demand against Woodford effective 

temperature for the present day climate.  Two linear regression trend lines are fitted to the data, 

one for data above 10 0C (RL1), and another for data below 10 0C (RL2) (i.e. breakpoint of 10 0C).  The 

two lines can be seen to be non-contiguous. 
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Figure 66 Regression plot of North West LDZ daily weather-sensitive gas demand against Woodford effective 
0

temperature showing two linear regression trend lines (break point 10 C) (2008-2010) 

The plot could be used to predict consumption over the course of a year for a climate like that of the 

present day because over-estimates and under-estimates of demand cancel out one another over 

the whole of the regression. 

In a future climate, temperatures are likely to be warmer.  Figure 67 re-presents the same data, but 

where datum points with effective temperatures less than -1 0C are omitted. 
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Figure 67 Regression plot of North West LDZ daily weather-sensitive gas demand against Woodford effective 
0 0

temperature showing the two original linear regression trend lines  (break point 10 C) (temperature > -1 C) 

With the omission of these data (the consumption of which the RL1 trend line previously over-

estimated), the balance between over-estimation and under-estimations is lost, the end result of 

which is that overall consumption is under-estimated. 

Figure 68 re-presents the present day climate data of Figure 66, where the data have been correctly 

segmentally regressed. 
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Figure 68 Regression plot of North West LDZ daily weather-sensitive gas demand against Woodford effective 

temperature showing three linear regression trend lines which are contiguous at the break points (2008-2010) 
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Figure 69 re-presents data of Figure 67 above, where datum points with effective temperatures less 

than -1 0C are omitted. 
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Figure 69 Regression plot of North West LDZ daily weather-sensitive gas demand against Woodford effective 
0

temperature showing the original three linear regression trend lines  (temperature > -1 C) 

In this instance it is seen that the RL1 trend line continues to correctly map the data because 

approximately as many over-estimated as under-estimated datum points have been omitted. 
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Appendix 5: Segmented Package of R – Regression Results 

This appendix presents the correlation data for the 13 LDZ/weather station regression plots used as 

input for SHECMOBS. The raw output of R is first presented. A brief discussion follows, in which the 

West Midlands LDZ/Coleshill correlation is scrutinised, and the latest version of the Segmented 

package (Version 0.2-9.1) is examined. Finally, the 13 algorithms underlying SHECMOBS are 

presented. 

Appendix 5.1: R Output 

Nomenclature 

psi1.xx = first break point 

psi2.xx = second break point (if applicable) 

xx = slope of first regression trend line 

U1.xx = difference between slope of first and second regression trend lines 

U2.xx = difference between slope of second and third regression trend lines (if applicable) 

West Midlands LDZ/Coleshill Regression 

Break points Estimate Std. Error 

psi1.xx 5.144 0.3734 

psi2.xx 13.28 0.1694 

t value for the gap-variable(s) V: 0.9796181 -0.1019985


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 263.1126 1.4233 184.86 <2e-16 

xx -11.7689 0.4479 -26.27 <2e-16 

U1.xx -6.544 0.5647 -11.59 NA 

U2.xx 13.8264 0.6412 21.56 NA 

Residual standard error: 17.71 on 1090 degrees of freedom 

262 



Multiple R-Squared: 0.9512, Adjusted R-squared: 0.951 

Convergence attained in 20 iterations with relative change 0.0008017725 

North East LDZ/Dishforth Regression 

Break points Estimate Std. Error 

psi1.xx 4.269 0.331 

psi2.xx 13.32 0.1878 

t value for the gap-variable(s) V: 0.2747137 -0.1914825


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 171.805 0.9035 190.16 <2e-16 

xx -6.6026 0.3321 -19.88 <2e-16 

U1.xx -5.2003 0.3922 -13.26 NA 

U2.xx 8.9189 0.5242 17.01 NA 

Residual standard error: 12.62 on 1090 degrees of freedom 

Multiple R-Squared: 0.9449, Adjusted R-squared: 0.9446 

Convergence attained in 6 iterations with relative change -4.963212e-05 

South West LDZ/Filton Regression 

Break points Estimate Std. Error 

psi1.xx 6.252 0.4217 

psi2.xx 13.77 0.1355 

t value for the gap-variable(s) V: 0.6375837 -0.3045848


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 180.227 0.9101 198.03 <2e-16 

xx -8.893 0.2454 -36.232 <2e-16 

U1.xx -3.1077 0.3133 -9.919 NA 

U2.xx 9.6064 0.3702 25.952 NA 
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Residual standard error: 9.555 on 1088 degrees of freedom 

Multiple R-Squared: 0.9665, Adjusted R-squared: 0.9663 

Convergence attained in 6 iterations with relative change -3.96351e-05 

Scotland LDZ/Glasgow Regression 

Break points Estimate Std. Error 

psi1.xx 5.729 0.2638 

psi2.xx 11.82 0.2016 

t value for the gap-variable(s) V: 0.01651723 -0.06081112


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 234.3731 1.0648 220.1 <2e-16 

xx -10.3472 0.3043 -34 <2e-16 

U1.xx -7.2556 0.514 -14.12 NA 

U2.xx 10.4725 0.627 16.7 NA 

Residual standard error: 14.21 on 1090 degrees of freedom 

Multiple R-Squared: 0.9592, Adjusted R-squared: 0.9591 

Convergence attained in 13 iterations with relative change 5.368086e-06 

North Thames LDZ/Heathrow Regression 

Break points Estimate Std. Error 

psi1.xx 5.956 0.4449 

psi2.xx 15.13 0.1296 

t value for the gap-variable(s) V: -0.08542935 -0.1465953
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Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 331.7197 1.7265 192.137 <2e-16 

xx -14.4692 0.4745 -30.491 <2e-16 

U1.xx -4.9752 0.5383 -9.242 NA 

U2.xx 15.5551 0.5194 29.947 NA 

Residual standard error: 15.31 on 1090 degrees of freedom 

Multiple R-Squared: 0.9725, Adjusted R-squared: 0.9724 

Convergence attained in 4 iterations with relative change -7.27188e-05 

Wales North LDZ LDZ/Lake Vyrnwy Regression 

Break points Estimate Std. Error 

psi1.xx 12.57 0.1646 

t value for the gap-variable(s) V: 0.01487558


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 30.00066 0.14237 210.72 <2e-16 

xx -1.93093 0.01929 -100.08 <2e-16 

U1.xx 1.59472 0.11158 14.29 NA 

Residual standard error: 2.26 on 1092 degrees of freedom 

Multiple R-Squared: 0.9374, Adjusted R-squared: 0.9372 

Convergence attained in 6 iterations with relative change -4.051843e-06 

North West LDZ/Woodford Regression 

Break points Estimate Std. Error 

psi1.xx 4.251 0.3535 

psi2.xx 13.24 0.1799 
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t value for the gap-variable(s) V: -0.2871866 0.07348583


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 333.0159 1.74 191.39 <2e-16 

xx -13.5695 0.5884 -23.06 <2e-16 

U1.xx -9.1093 0.718 -12.69 NA 

U2.xx 17.2954 0.9057 19.1 NA 

Residual standard error: 24.19 on 1090 degrees of freedom 

Multiple R-Squared: 0.9455, Adjusted R-squared: 0.9452 

Convergence attained in 8 iterations with relative change -2.080271e-05 

South East LDZ/Manston Regression 

Break points Estimate Std. Error 

psi1.xx 14.22 0.1707 

t value for the gap-variable(s) V: -0.1495534


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 341.5036 1.5949 214.13 <2e-16 

xx -19.6786 0.1821 -108.05 <2e-16 

U1.xx 15.1282 0.6828 22.16 NA 

Residual standard error: 20.28 on 1086 degrees of freedom 

Multiple R-Squared: 0.9545, Adjusted R-squared: 0.9543 

Convergence attained in 6 iterations with relative change -9.724161e-05 

South LDZ/Middle Wallop Regression 

Break points Estimate Std. Error 

psi1.xx 14.29 0.1539 

t value for the gap-variable(s) V: -0.1084723 
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Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 222.1909 0.9742 228.09 <2e-16 

xx -12.8336 0.1133 -113.31 <2e-16 

U1.xx 10.3205 0.5248 19.67 NA 

Residual standard error: 13.41 on 1092 degrees of freedom 

Multiple R-Squared: 0.9561, Adjusted R-squared: 0.9559 

Convergence attained in 6 iterations with relative change -2.879268e-05 

Northern LDZ/Albemarle Regression 

Break points Estimate Std. Error 

psi1.xx 3.257 0.3462 

psi2.xx 12.35 0.1962 

t value for the gap-variable(s) V: 0.03781496 0.09737832


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 141.1484 0.742 190.22 <2e-16 

xx -5.7433 0.3355 -17.12 <2e-16 

U1.xx -4.1591 0.3742 -11.11 NA 

U2.xx 7.0119 0.4374 16.03 NA 

Residual standard error: 10.23 on 1090 degrees of freedom 

Multiple R-Squared: 0.9448, Adjusted R-squared: 0.9445 

Convergence attained in 8 iterations with relative change 3.002456e-05 

Wales South LDZ/St Athan Regression 

Break points Estimate Std. Error 

psi1.xx 5.321 0.632 

psi2.xx 14.29 0.1923 
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t value for the gap-variable(s) V: 0.04076965 -0.1933543


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 110.0206 0.7553 145.659 <2e-16 

xx -5.1161 0.2343 -21.836 <2e-16 

U1.xx -1.6534 0.2599 -6.362 NA 

U2.xx 4.9312 0.3581 13.771 NA 

Residual standard error: 7.197 on 1089 degrees of freedom 

Multiple R-Squared: 0.9447, Adjusted R-squared: 0.9444 

Convergence attained in 7 iterations with relative change -1.946922e-05 

East Midlands LDZ/Waddington Regression 

Break points Estimate Std. Error 

psi1.xx 5.801 0.3464 

psi2.xx 13.22 0.164 

t value for the gap-variable(s) V: 0.05429423 -0.1157591


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 294.304 1.5007 196.11 <2e-16 

xx -13.2472 0.4498 -29.45 <2e-16 

U1.xx -7.3134 0.6049 -12.09 NA 

U2.xx 15.2424 0.672 22.68 NA 

Residual standard error: 17.94 on 1090 degrees of freedom 

Multiple R-Squared: 0.9599, Adjusted R-squared: 0.9597 

Convergence attained in 9 iterations with relative change 1.55982e-05 
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Eastern LDZ/Weybourne Regression


Break points Estimate Std. Error 

psi1.xx 0.8325 0.6122 

psi2.xx 13.63 0.1646 

t value for the gap-variable(s) V: -0.001210518 0.02283605


Intercept or slope Estimate Std. Error t value Pr(>|t|) 

Intercept 256.5742 3.4263 74.884 <2e-16 

xx -6.9621 3.931 -1.771 0.0768 

U1.xx -8.8432 3.9348 -2.247 NA 

U2.xx 12.5167 0.5365 23.331 NA 

Residual standard error: 16.7 on 1062 degrees of freedom 

Multiple R-Squared: 0.9463, Adjusted R-squared: 0.9461 

Convergence attained in 6 iterations with relative change 3.321763e-05 

Appendix 5.2: Discussion of West Midlands LDZ/Coleshill 

Correlation 

West Midlands LDZ/Coleshill Regression 

Note that even though the R2 value for the West Midlands LDZ/Coleshill regression is high, 

considerably more iterations have been used to achieve this result. Investigation of these regression 

data reveals them to be slightly inferior to the other 12 regression plots. Although barely visible by 

eye, two of the regression trend lines exhibit a small degree of bias, the sum of positive residuals 

exceeding the sum of negative residuals for the mid-temperature and high temperature lines (Figure 

70). 

269




N
D

M
 g

a
s 

d
e

m
a

n
d

 (
G

W
h

) 
400 

350 

300 

250 

200 

150 

100 

50 

0

-10 -5 0 5 10 15 20 25


Effective temperature (0C) 

 

Figure 70 Regression plot of West Midlands LDZ daily weather-sensitive gas demand against Coleshill effective 

temperature showing slight bias in two of the three segmented linear regression trend lines (2008-2010) 

 

The residual difference amounts to 2,120 GWh, which is the equivalent of a downward shift of the 3 

lines by 2 GWh; overall, the trend lines under-estimate annual consumption by 1.5%.  Since the 

analysis was originally performed a new Segmented package (Version 0.2-9.1) has been published by 

R (May 2012) (Muggeo, 2012), but identical results are produced after 20 iterations.  Since West 

Midlands consumption only represents 9% of national consumption, this error of 1.5% is not 

considered to be significant. 

Segmented package Version 0.2-9.1 

Repeating the segmented analysis with the new package produces the same results as the former 

version for all the 3-line plots.  However, the new package is able to discern a third line in the 2-line 

regression plots.  The improvement in correlation is, however, only marginal and it is not considered 

to be significant (see table below). 

2
Table 94 Improvement in R  value for 2-line regression plots transformed into 3-line regression plots 

 R
2

value R
2

value 

(Segmented package Version 0.2-8) (Segmented package Version 0.2-9.1) 

Lake Vyrnwy 0.9374 0.9449 

Manston 0.9545 0.955 

Middle Wallop 0.9561 0.9582 

Solent 0.9493 0.9725 
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Appendix 5.3: Regression Algorithms 

Nomenclature 

C = Annual consumption (GWh)


i = mean effective temperature on day i (0C)


West Midlands LDZ 

Equation 60 

3 = / � −11.8@ + 263 1 + / � −18.3@ + 297 1 + / � −4.5@ + 113 1 �����U.� U.�����<.< �<.<���� 

North East LDZ 

Equation 61 

3 = / � −6.6@ +1721 + / � −11.8@ + 194 1 + / � −2.9@ + 75 1 �����H.< H.<����<.< �<.<���� 

South West LD 

Equation 62 

= / � −8.9@ +1801 + / � −12.0@ + 200 1 + / � −2.4@ + 67 1 �����T.< T.<����<.I �<.I���� 

Scotland LDZ 

Equation 63 

3 = / � −10.3@ + 234 1 + / � −17.6@ + 276 1 + / � −7.1@ + 152 1 �����U.] U.]�����.I ��.I���� 

North Thames LDZ 

Equation 64 
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3 = / � −14.5@ + 332 1 + / � −19.4@ +3611 + / � −3.9@ + 126 1 �����T.0 T.0����U.� �U.����� 

Wales North LDZ 

Equation 65 

3 = / � −1.9@ + 30.0 1 + / � −0.3 + 10.0 1 ������R.T �R.T���� 

North West LDZ 

Equation 66 

3 = / � −13.6@ +3331 + / � −22.7@ + 372 1 + / � −5.4@ + 143 1 �����H.< H.<����<.R �<.R���� 

South East LDZ 

Equation 67 

3 = / � −19.7@ + 342 1 + / � −4.6@ + 126 1 ������H.R �H.R��� 

South LDZ 

Equation 68 

3 = / � −12.8@ +2221 + / � −2.5@ + 75 1 ������H.< �H.<���� 

Northern LDZ 

Equation 69 

3 = / � −5.7@ + 141 1 + / � −9.9@ + 155 1 + / � −2.9@ + 68 1 �����<.< <.<����R.H �R.H���� 

Wales South LDZ 

Equation 70 
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3 = / � −5.1@ + 110 1 + / � −6.8@ + 119 1 + / � −1.8@ + 48 1 �����U.< U.<����H.< �H.<���� 

East Midlands LDZ 

Equation 71 

3 = / � −13.2@ + 294 1 + / � −20.6@ + 337 1 + / � −5.3@ + 135 1 �����U.I U.I����<.R �<.R���� 

Eastern LDZ 

Equation 72 

3 = / � −7.0@ + 257 1 + / � −15.8@ + 264 1 + / � −3.3@ +931 �����0.I 0.I����<.T �<.T���� 
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Appendix 6: Derivation of Annual NDM Space Heating 

Consumption from Annual NDM Consumption 

Annual NDM consumption (ENDM) is calculated as the total of annual space heating (ESH) and annual 

non-weather-sensitive consumption (ENW). It is assumed that no space heating occurs on the very 

hottest days of the year. The gas demand on these days can be attributed to other non-weather 

sensitive end-uses alone such as cooking and heating water. Indeed, inspection of the demand on 

these hot days does reveal a rather high level of constancy (and there is also a good distribution of 

both weekdays and weekend days amongst these hottest of days, as one might expect). 

The gas demand on the thirty warmest days of the period 2008-2010 for each LDZ is averaged. This 

daily average value is multiplied by 365.25 in order to calculate the annual non-weather sensitive 

consumption for a given LDZ (ELDZ-NW). 

Annual space heating energy consumption for a particular LDZ (ELDZ-SH) is calculated as ELDZ-NDM – ELDZ-

NW, where ELDZ-NDM is the total annual consumption for that particular LDZ. National space heating 

consumption (ENAT-SH) is calculated as the sum of the 13 regional ELDZ-SH values. 
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Appendix 7: Effects of a 1⁰C Increase in Outdoor

Temperature on Space Heating Consumption


In a warming climate, the impact of an increase in outdoor temperature of 1 0C on annual space 

heating energy consumption will be more pronounced in the near term than later on: the cooler the 

climate, the greater the reduction in space heating per degree change in outdoor air temperature. 

This is shown in the example below, where temperatures increase by 1 0C on two separate 

occasions: the first increase occurs between the present day and the 2030s, and the second increase 

occurs between the 2030s and the 2080s. 

Consider the following example, deliberately exaggerated to so to aid clarity, where a very well 

insulated building only requires heating when temperatures drop below 60C. 

In Figure 71 it is seen that in the present day, where the temperature only drops below 60C on five 

days of the year on average, space heating consumption amounts to 15 units (5 + 4 + 3 + 2 + 1), 

where each day is represented by a different symbol (rectangle, triangle etc.). 
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Figure 71 Base case gas consumption - present day 

Following a 1 0C rise in temperature by the 2030s, every day is 1 0C warmer (Figure 72). Thus the day 

on which the temperature was 1 0C (symbol: elongated rectangle in Figure 71), now has a 

temperature of 2 0C (elongated rectangle in Figure 72). Similarly, every other day is 1 0C warmer. In 

this new climate, there are only four days when the temperature drops below 6 0C. Space reduces 

to 10 units (4 + 3 + 2 +1), amounting to a reduction in heating of 5 units (15 – 5). 
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Figure 72 Gas consumption following a 1 C rise in temperature - 2030s 

A further increase in temperature of 1 0C occurs by the time the 2080s are reached. Space heating 

consumption now amounts to 6 units (3 + 2 + 1), amounting to a reduction in heating of only 4 units 

(10 – 6) (Figure 73). 
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Figure 73 Gas consumption following a further 1 C rise in temperature - 2080s 

In this example, the reduction in consumption precipitated by a 1 0C rise in temperuture is 25% 

larger in the near term (5 units) than later on (4 units) when overall consumption is lower. 
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Appendix 8: Trend Adjustment to Lessen the Influence of 

Non-Climatic Factors in Regression Analyses 

Trend adjustment can be used to lessen the influence of non-climatic factors in regression analyses. 

In the following hypothetical example below, electricity consumption (E) is examined over a period 

of three years. Electricity consumption is determined by air temperature (t) and two additional 

factors, a and b. 

The equation describing electricity consumption in month m is described as: 

Equation 73 

�� = 2�� + 2'� + 2(� 

Adjusted monthly electricity in year n (Adj Em.n) consumption is described by the equation: 

Equation 74 

Y?�	��,� = ��,� × Y?�	�� 

where, 

Em,n = electricity consumption in month m of year n 

Adj Fn = adjustment factor in year n 

The adjustment factor for year n is calculated as: 

Equation 75 

Y?�	�� = ,	�u� + �uR + �u< - 

where,


En = electricity consumption in year n


Ey1 = electricity consumption in year 1, etc.


The table below presents the monthly data for the three year period. 
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Table 95 Determinants of monthly electricity consumption and adjusted monthly electricity consumption over a period 

of three years 

Year Month 

Air Temp 

(t) Factor a Factor b 

Electricity 

consumption 

Adjusted electricity 

consumption 

1 Jan 2 12 10 48 40.11707 

1 Feb 3 12 10 50 41.78862 

1 Mar 5 12 10 54 45.13171 

1 Apr 9 12 10 62 51.81789 

1 May 11 12 10 66 55.16098 

1 Jun 16 12 10 76 63.5187 

1 Jul 21 12 10 86 71.87642 

1 Aug 21 12 10 86 71.87642 

1 Sep 20 12 10 84 70.20488 

1 Oct 18 12 10 80 66.86179 

1 Nov 11 12 10 66 55.16098 

1 Dec 9 12 10 62 51.81789 

2 Jan 2 8 10 40 41.40987 

2 Feb 1 8 10 38 39.33938 

2 Mar 4 8 10 44 45.55086 

2 Apr 8 8 10 52 53.83283 

2 May 9 8 10 54 55.90332 

2 Jun 16 8 10 68 70.39678 

2 Jul 17 8 10 70 72.46727 

2 Aug 18 8 10 72 74.53776 

2 Sep 16 8 10 68 70.39678 

2 Oct 11 8 10 58 60.04431 

2 Nov 9 8 10 54 55.90332 

2 Dec 4 8 10 44 45.55086 

3 Jan 0 4 10 28 33.43089 

3 Feb 1 4 10 30 35.81882 

3 Mar 3 4 10 34 40.59466 

3 Apr 6 4 10 40 47.75842 

3 May 8 4 10 44 52.53426 

3 Jun 14 4 10 56 66.86179 

3 Jul 19 4 10 66 78.80139 

3 Aug 22 4 10 72 85.96516 

3 Sep 20 4 10 68 81.18931 

3 Oct 18 4 10 64 76.41347 

3 Nov 7 4 10 42 50.14634 

3 Dec 1 4 10 30 35.81882 

When regression analyses are performed on the data, it is seen that a clearer correlation exists 

between adjusted electricity consumption and temperature than between electricity consumption 

and temperature (Figure 74 and Figure 75). 
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Figure 74 Relationship between monthly electricity consumption and monthly temperature over three year period 

R² = 0.95 
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Figure 75 Relationship between adjusted monthly electricity consumption and monthly temperature over three year 

period 
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Appendix 9: Daily Variation of Electricity Consumption 

The figure below shows the plot of INDO electricity consumption (see footnote 72) over a typical 

month in summer (August 2010, where 1 August is a Sunday). Electricity consumption is clearly 

reduced at the weekend and on the bank holiday Monday (30 August). 
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Figure 76 Plot of INDO electricity consumption for August 2010 
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Appendix 10: Importance of Using Correct Base 

Temperature When Determining Energy Consumption 

The choice of base temperature can have important ramifications with regard to the calculation of 

energy consumption (Figure 77). 
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Figure 77 Relationship between energy consumption and cooling degree-days calculated to different base temperatures 
0

( C) 

Series A 

Cooling degree-days are calculated to a base temperature exactly equal to the trigger temperature 

which calls the air conditioning into operation (i.e. the correct base temperature has been chosen, 

since the graph passes through the origin). Each rise of 1CDD causes an increase in consumption of 

0.5 GWh (elasticity = 0.5 GWh/CDD), where there is an exact correspondence between the number 

of CDDs and the cooling energy consumption (e.g. doubling the CDDs from 20 to 40, causes a 

doubling in energy consumption from 10GWh to 20GWh.) In order to calculate the energy 

consumption for a given number of CDDs, knowledge of the elasticity (slope) is not required. 

Series B 

Cooling degree-days have been calculated to a base temperature above the trigger temperature 

which calls the air conditioning into operation. Each rise of 1CDD causes an increase in consumption 

of 0.5 GWh, but there is not an exact correspondence between the number of CDDs and the cooling 

energy consumption (e.g. doubling the CDDs from 10 to 20, does not cause a doubling in energy 

consumption, but rather a change from 15GWh to 25GWh.) Thus, where the correct base 

temperature is not known, knowledge of the elasticity is required in order to calculate the energy 

consumption for a given number of CDDs. 
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Appendix 11: Construction Details of Buildings Used in 

Cooling Energy Consumption Simulations 

Table 96 Construction details of buildings used in simulations to investigate cooling energy consumption 

LIGHTWEIGHT CONSTRUCTION, FLAT ROOF (LW) 

Walls (i) 6mm lightweight metallic coating, (ii) 88.9mm extruded polystyrene, (iii) 13mm 

gypsum plasterboard 

Roof (i) 10mm asphalt, (ii) 144.5mm glass wool, (iii) 200mm air gap, (iv) 13mm plasterboard 

Windows Double glazed clear glass (3mm) with 13mm air gap, painted wooden frame 

MEDIUM WEIGHT CONSTRUCTION, FLAT ROOF (MW) 

Walls (i) 100mm brickwork outer leaf, (ii) 79.5mm extruded polystyrene, (iii) 100mm 

concrete block (medium), (iv) 13mm gypsum plastering 

Roof (i) 10mm asphalt, (ii) 144.5mm glass wool, (iii) 200mm air gap, (iv) 13mm plasterboard 

Windows double glazed clear glass (3mm) with 13mm air gap, painted wooden frame 

MEDIUM WEIGHT CONSTRUCTION, PITCHED ROOF WITH EAVES (PITCHED) 

Walls (i) 100mm brickwork outer leaf, (ii) 79.5mm extruded polystyrene, (iii) 100mm 

concrete block (medium), (iv) 13mm gypsum plastering 

Roof (i) 25mm clay tiling, (ii) 10/20mm air gap, (iii) 5mm roof felt 

Ceiling (i) 10mm plywood (heavyweight), (ii) 139.1mm glass wool, (iii) 100mm cast concrete 

(lightweight), (iv) 13mm plasterboard 

HIGHLY INSULATED MEDIUM/HEAVYWEIGHT, FLAT ROOF (INSULATED) 

Walls (i) 105mm brickwork outer leaf, (ii) 118.2mm extruded polystyrene, (iii) 100mm 

concrete block (medium), (iv) 13mm gypsum plastering 

Roof (i) 10mm asphalt, (ii) 251.2mm glass wool, (iii) 200mm air gap, (iv) 13mm plasterboard 

Windows double glazed clear glass (3mm) with 13mm air gap, painted wooden frame 

SOLID WALL CONSTRUCTION, SOLID FLAT ROOF (SOLID) 

Walls (i) 20mm external render, (ii) 50mm phenolic foam (foil-faced), (iii) 225mm brick, (iv) 

13mm dense plaster 

Roof (i) 19mm asphalt, (ii) 13mm fibreboard, (iii) 204.7mm extruded polystyrene , (iv) 

100mm cast concrete (lightweight) 

Windows double glazed clear glass (3mm) with 13mm air gap, painted wooden frame 
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Appendix 12: Effect of Adaptation on Neutral Temperature 

In an analysis of the neutral temperature against outdoor temperature for a series of occupied 

buildings where the ultimate aim is to find the average neutral temperature of each building, it 

makes no difference whether or not adaptation has taken place amongst the occupants of a 

building, as long as the level of adaptation at high temperatures is balanced by the level of 

adaptation at low temperatures. Irrespective of the level of adaptation experienced by the building 

occupants, the same neutral temperature will be recorded for the building in question as seen in 

Figure 78. 
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Figure 78 Chart showing that average neutral temperature of a building is unaffected by adaptation 
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Appendix 13: Calculation of Weighted National Seasonal Mean 

Temperatures for 2007 and the 2050s (Medium Emissions 

Scenario) 

For each of the four seasons, a weighted national seasonal mean temperature for 2007 is calculated 

from regional unweighted 2007 seasonal mean temperatures which have been modified by 2007 

seasonal weighting factors. 

Weighted seasonal mean temperatures for the 2050s are calculated in a similar manner. 

All data refer to Great Britain. 

Appendix 13.1: Calculation of 2007 Weighted National Seasonal 

Mean Temperature 

Appendix 13.1.1: Calculation of Unweighted 2007 Seasonal Mean 

Temperature 

Daily mean temperatures are calculated from daily maxima and minima observations for 2007 for 

each of the 13 weather stations previously used in Section 2.5.4 and Section 3.6 (UK Meteorological 

Office, 2011), each station being representative of a different LDZ (i). From these daily data, the 

unweighted seasonal mean temperature is calculated for each of the 13 LDZs (tLDZ-2007) for each of 

the four seasons243 . 

Appendix 13.1.2: Calculation of 2007 Seasonal Space Heating Weighting 

Factor 

The NDM daily gas consumption is obtained for each of the 13 LDZs corresponding to the weather 

stations above for 2007. The daily base level of gas consumption, when no space heating is used, is 

calculated as the average of the 10 lowest daily gas consumption values. This base value is 

subtracted from each NDM daily gas consumption total in order to calculate the NDM daily space 

heating gas consumption. These daily NDM space heating data are used to calculate the NDM 

winter space heating gas consumption for (i) each of the 13 LDZs (CLDZ), and for (ii) the nation as 

whole (C). A winter space heating weighting factor for each LDZ for each season (fLDZ-2007) is 

calculated as shown in Equation 76. 

Equation 76 

�456�R00] = 3456�3 

where, 

Winter comprises January, February and December; spring comprises March, April and May, etc. 
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CLDZ = NDM winter space heating gas consumption 

in LDZ i 

C = total NDM winter space heating gas 

consumption (total across all 13 LDZs) 

Space heating weighting factors are calculated in the same way for spring, summer and autumn. 

Appendix 13.1.3: Weighted National Seasonal Mean Temperature 

The weighted national mean temperature for winter for 2007 (Tw-2007) is calculated as shown in 

Equation 77. 

Equation 77 

l��R00] = �(�456�R00] × �456�R00]) 
where, 

fLDZ-2007 = space heating weighting factor for winter for 

2007 for LDZ i 

tLDZ-2007 = unweighted mean temperature for winter for 2007 

for LDZ i 

The weighted national mean temperatures for 2007 for spring, summer and autumn are calculated 

in the same way. 

Appendix 13.2 Calculation of 2050s Weighted National Seasonal 

Mean Temperature 

Appendix 13.2.1: Calculation of 2050s Unweighted Seasonal Mean 

Temperature 

The Weather Generator is run 100 times for stationary 100-year times-slices for each of the 13 

locations previously used in Section 2.5.4 and Section 3.6 for the 2050s medium emissions scenario, 

with each run producing a 100-year sequence of data. 

From the resultant 10,000 years of daily maxima and minima temperature data, the unweighted 

seasonal mean temperature is calculated for each of the 13 LDZs (tLDZ-2050s), for each of the four 

seasons. 
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Appendix 13.2.2: Calculation of 2050s Weighting Factor 

In order to eliminate the possibility that 2007 was anomalous with regard to gas consumption in 

different parts of the country, the weighting factor applied to regional temperature data for each of 

the four seasons for the 2050s (fLDZ-2050s) is derived from NDM gas consumption data collected over 

the four year period 2007-2010, rather than just 2007. Otherwise, fLDZ-2050s is calculated in an 

analogous manner to fLDZ-2007 
244 . 

Appendix 13.2.3: Weighted National Seasonal Mean Temperature 

The weighted national mean temperature for winter for the 2050s (Tw-2050s) is calculated as shown in 

Equation 78. 

Equation 78 

	 
l��R0U0P = �(�456�R0U0P × �456�R0U0P) 

where, 

fLDZ-2050s = space heating weighting factor for winter for the 

2050s for LDZ i 

tLDZ-2050s = unweighted mean temperature for winter for the 

2050s for LDZ i 

The weighted national mean temperatures for the 2050s for spring, summer and autumn are 

calculated in the same way. 

The daily base level of gas consumption, when no space heating is used, is calculated as the average of the 

40 lowest daily gas consumption values (rather than 10), since it derives from four years of data. 
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2050 

Appendix 14: Key Characteristics of Four Pathways

Designed to Reduce GHG Emissions by 80% by 2050


Table 97 DECC 2050 Calculator default residential space heating and space cooling settings for different pathways for 

CCS MARKAL Nuclear Renewables 

Proportion of SH demand: Resistive heating 

(%) 
10 

Proportion of SH demand: ASHP (%) 18 58 58 60 

Proportion of SH demand: GSHP (%) 30 30 30 30 

Proportion of SH demand: Geothermal (%) 1 1 

Proportion of SH demand: Community-

scale solid fuel CHP (%) 
45 

Proportion of SH demand: District heating 

from power stations (%) 
7 11 11 

Residential cooling demand (TWh) 13.5 0 30.6 0 

Proportion of SC demand: Electric air-

conditioning (%) 
93 88 

Proportion of SC demand: Absorption 

chillers (%) 
7 12 

HLC (W/
0
C) 143 143 143 119 

Indoor temp (
0
C) 17 16 18 16 
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Table 98 DECC 2050 Calculator default residential default space heating and space cooling efficiencies for all pathways 

for 2050 

Efficiency: Electric resistive heating 1 

Efficiency: ASHP 3 

Efficiency: GSHP 24 

Efficiency: Geothermal 0.85 

Efficiency: Community-scale solid 

fuel CHP 
0.57 

Efficiency: District heating from 

power stations 
0.9 

Efficiency: Electric air-conditioning 6 

Efficiency: Absorption chiller 0.7 
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Appendix 15: DECC 2050 Calculator Levels of Effort


The level of energy and emissions in 2050 depends in large part upon the level of effort deployed in 

trying to achieve the 80% reduction. The DECC 2050 Calculator recognises four levels of effort. 

Whilst certain of the parameters which affect energy consumption/emissions in 2050 are not 

affected by levels of effort (e.g. numbers of buildings), others such as changing mean indoor 

temperature and reducing the HLC are affected. 

Level 1 

Assumes little or no attempt to decarbonise or change or only short run efforts, and that unproven 

low carbon technologies are not developed or deployed. 

Level 2 

Describes what might be achieved by applying a level of effort that is likely to be viewed as 

ambitious but reasonable by most or all experts. For some sectors this would be similar to the build 

rate expected with the successful implementation of the programmes or projects currently in 

progress. 

Level 3 

Describes what might be achieved by applying a very ambitious level of effort that is unlikely to 

happen without significant change from the current system; it assumes significant technological 

breakthroughs. 

Level 4 

Describes a level of change that could be achieved with effort at the extreme upper end of what is 

thought to be physically plausible by the most optimistic observer. This level pushes towards the 

physical or technical limits of what can be achieved. 
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Appendix 16: Model Output for Semi-Detached House at 

Gatwick 

Table 99 Modelling output for semi-detached house at Gatwick for May-September 

May June July August September 

Glazing kWh -233.7915 -182.7561 -153.8783 -156.4212 -186.4301 

Walls kWh -165.7996 -127.62 -72.79841 -97.88639 -121.8063 

Ceilings (int) kWh -26.28305 -13.74676 34.72882 17.70824 -9.380915 

Floors (int) kWh -38.77083 -32.68045 -32.3264 -39.85936 -26.01957 

Ground Floors kWh -73.48812 -72.46283 -64.93794 -65.01604 -50.71343 

Partitions (int) kWh 9.425425 12.38849 36.05729 25.20742 15.8221 

Roofs kWh -3.296976 -1.933995 -0.800889 -1.506162 -2.774776 

Floors (ext) kWh -0.717617 -0.592174 -0.107814 -0.18152 -0.4057 

Internal Natural vent. kWh -0.000001 -0.000001 0.000002 0.000002 -0.000001 

Mech Vent + Nat Vent + Infiltration ac/h 1.994726 2.990125 4.657084 3.830013 1.708539 

External Infiltration kWh -337.2018 -259.8683 -207.2375 -216.335 -271.0081 

External Vent. kWh -266.8593 -349.622 -613.6301 -501.6051 -240.1985 

Zone Heating kWh 66.72643 28.85005 4.073697 11.7493 57.00167 

General Lighting kWh 99.55117 100.1945 99.55117 101.2827 98.4629 

Computer + Equip kWh 225.6193 224.5452 225.6193 228.3667 221.7977 

Occupancy kWh 17.06792 16.18118 15.86253 16.259 16.66597 

Solar Gains Exterior Windows kWh 821.6042 741.496 809.4665 753.8649 564.0301 

Zone Sensible Heating kWh 66.72643 28.85005 4.073696 11.74929 57.00167 

Air Temperature °C 20.57786 21.48672 22.35192 21.98933 20.59904 

Radiant Temperature °C 21.31344 22.28704 23.55174 23.01351 21.21696 

Operative Temperature °C 20.94565 21.88688 22.95183 22.50142 20.908 

Room Electricity kWh 225.6193 224.5452 225.6193 228.3667 221.7977 

Lighting kWh 105.6663 105.8566 105.6663 107.3978 104.125 

Auxiliary Energy kWh 25.18134 24.36904 25.18134 25.18134 24.36904 

Heat Generation (Gas) kWh 115.0456 49.74147 7.023613 20.2574 98.27875 

DHW (Gas) kWh 99.12367 97.48912 99.12367 99.81585 96.79694 

Outside Dry-Bulb Temperature °C 12.47285 15.01125 17.31358 16.72406 13.84889 
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Appendix 17: SCECMORS Estimates of Residential Space 

Cooling Energy Consumption for different percentiles 

The tales below present SCECMORS esimates of residential pace cooling energy consumption for 

different percentiles, updated with DECC 2050 Calculator settings of for the EER, numbers of 

buildings and emissions intensity of electricity. Note that the percentile temperatures used derive 

from the same ranking used for space heating (which used winter temperatures to establish the 

ranks). It is important that the temperature ranks are consistent with those used for space heating 

(which accounts for the vast majority of energy consumption within the residential sector), so that 

annual energy consumptions are representative of energy consumption – this would not be the case 

if summer temperatures were ranked independently (e.g. the probability of a 90th percentile 

summer occurring in the same year as the 90th percentile winter is very much higher than 90%). 

Table 100 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (30 percentile medium emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
49 9.36 9.35 1.372 1.450 0.011 0.113 

SCECdwell 

SHEU 3% 
55 10.55 10.55 1.547 1.635 0.012 0.127 

SCECdwell 

CEUD 7.2% 
49 9.53 9.53 1.397 1.477 0.011 0.115 

SCECdwell 

SHEU 7.2% 
55 10.59 10.58 1.553 1.641 0.012 0.128 

SCECair 

CEUD 3% 
49 6.95 6.95 1.019 1.077 0.008 0.084 

SCECair 

SHEU 3% 
55 7.84 7.83 1.149 1.214 0.009 0.094 

SCECair 

CEUD 7.2% 
49 7.08 7.08 1.038 1.097 0.008 0.085 

SCECair 

SHEU 7.2% 
55 7.87 7.86 1.154 1.219 0.009 0.095 

Average 52 8.72 8.72 1.28 1.35 0.01 0.11 

291




Table 101 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (50 percentile medium emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
51 10.46 10.45 1.533 1.620 0.012 0.126 

SCECdwell 

SHEU 3% 
58 11.74 11.74 1.722 1.820 0.014 0.141 

SCECdwell 

CEUD 7.2% 
52 10.61 10.60 1.555 1.643 0.012 0.128 

SCECdwell 

SHEU 7.2% 
58 11.76 11.75 1.724 1.822 0.014 0.142 

SCECair 

CEUD 3% 
51 7.77 7.76 1.139 1.203 0.009 0.094 

SCECair 

SHEU 3% 
58 8.72 8.72 1.279 1.352 0.010 0.105 

SCECair 

CEUD 7.2% 
52 7.88 7.87 1.155 1.220 0.009 0.095 

SCECair 

SHEU 7.2% 
58 8.74 8.73 1.281 1.353 0.010 0.105 

Average 55 9.71 9.70 1.42 1.50 0.01 0.12 
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Table 102 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (70 percentile medium emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
56 12.80 12.80 1.877 1.984 0.015 0.154 

SCECdwell 

SHEU 3% 
63 14.28 14.27 2.094 2.213 0.017 0.172 

SCECdwell 

CEUD 7.2% 
57 12.90 12.90 1.892 2.000 0.015 0.155 

SCECdwell 

SHEU 7.2% 
63 14.24 14.23 2.088 2.206 0.017 0.172 

SCECair 

CEUD 3% 
56 9.51 9.51 1.394 1.474 0.011 0.115 

SCECair 

SHEU 3% 
63 10.61 10.60 1.556 1.644 0.012 0.128 

SCECair 

CEUD 7.2% 
57 9.58 9.58 1.405 1.485 0.011 0.115 

SCECair 

SHEU 7.2% 
63 10.58 10.57 1.551 1.639 0.012 0.127 

Average 60 11.81 11.81 1.73 1.83 0.01 0.14 
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Table 103 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (90 percentile medium emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
62 16.03 16.03 2.351 2.485 0.019 0.193 

SCECdwell 

SHEU 3% 
69 17.73 17.72 2.600 2.748 0.021 0.214 

SCECdwell 

CEUD 7.2% 
62 16.07 16.06 2.357 2.490 0.019 0.194 

SCECdwell 

SHEU 7.2% 
68 17.62 17.60 2.583 2.729 0.021 0.212 

SCECair 

CEUD 3% 
62 11.91 11.90 1.746 1.845 0.014 0.143 

SCECair 

SHEU 3% 
69 13.17 13.16 1.931 2.041 0.015 0.159 

SCECair 

CEUD 7.2% 
62 11.94 11.93 1.750 1.850 0.014 0.144 

SCECair 

SHEU 7.2% 
68 13.08 13.07 1.918 2.027 0.015 0.158 

Average 65 14.69 14.68 2.15 2.28 0.02 0.18 
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Table 104 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (30 percentile high emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
55 11.95 11.94 1.752 1.851 0.014 0.145 

SCECdwell 

SHEU 3% 
61 13.36 13.35 1.959 2.070 0.016 0.162 

SCECdwell 

CEUD 7.2% 
55 12.06 12.06 1.769 1.869 0.014 0.146 

SCECdwell 

SHEU 7.2% 
61 13.33 13.33 1.955 2.067 0.016 0.162 

SCECair 

CEUD 3% 
55 8.87 8.87 1.301 1.375 0.010 0.108 

SCECair 

SHEU 3% 
61 9.92 9.92 1.455 1.538 0.012 0.120 

SCECair 

CEUD 7.2% 
55 8.96 8.96 1.314 1.389 0.011 0.109 

SCECair 

SHEU 7.2% 
61 9.90 9.90 1.452 1.535 0.012 0.120 

Average 58 11.04 11.04 1.62 1.71 0.01 0.13 
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Table 105 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (50 percentile high emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
57 13.34 13.34 1.956 2.068 0.016 0.162 

SCECdwell 

SHEU 3% 
64 14.86 14.85 2.179 2.303 0.017 0.180 

SCECdwell 

CEUD 7.2% 
58 13.43 13.42 1.969 2.081 0.016 0.163 

SCECdwell 

SHEU 7.2% 
64 14.81 14.80 2.171 2.294 0.017 0.180 

SCECair 

CEUD 3% 
57 9.91 9.91 1.453 1.536 0.012 0.120 

SCECair 

SHEU 3% 
64 11.04 11.04 1.619 1.711 0.013 0.134 

SCECair 

CEUD 7.2% 
58 9.98 9.97 1.463 1.546 0.012 0.121 

SCECair 

SHEU 7.2% 
64 10.99 10.99 1.612 1.704 0.013 0.133 

Average 61 12.30 12.29 1.80 1.91 0.01 0.15 
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Table 106 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (70 percentile high emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
62 15.69 15.68 2.300 2.431 0.018 0.190 

SCECdwell 

SHEU 3% 
68 17.36 17.35 2.546 2.690 0.020 0.211 

SCECdwell 

CEUD 7.2% 
62 15.73 15.72 2.306 2.437 0.018 0.191 

SCECdwell 

SHEU 7.2% 
68 17.25 17.24 2.529 2.673 0.020 0.209 

SCECair 

CEUD 3% 
62 11.65 11.64 1.708 1.805 0.014 0.141 

SCECair 

SHEU 3% 
68 12.90 12.89 1.891 1.998 0.015 0.157 

SCECair 

CEUD 7.2% 
62 11.68 11.67 1.713 1.810 0.014 0.142 

SCECair 

SHEU 7.2% 
68 12.81 12.80 1.879 1.985 0.015 0.156 

Average 65 14.38 14.37 2.11 2.23 0.02 0.17 
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Table 107 Residential space heating penetration, energy consumption and emissions for the 2050 stock – SCECMORS 
th 

amended with DECC 2050 Calculator data (90 percentile high emissions scenario) 

Adjusted Model 

Nuclear CCS Nuclear CCS Nuclear CCS 

Forecasting 

Model 

Penetration 

(%) 

Energy Demand 

(TWh) 

Energy 

Consumption 

(TWh) 

Emissions 

(MTCO2e) 

SCECdwell 

CEUD 3% 
64 17.27 17.26 2.532 2.676 0.020 0.210 

SCECdwell 

SHEU 3% 
71 19.03 19.03 2.791 2.950 0.022 0.231 

SCECdwell 

CEUD 7.2% 
64 17.28 17.27 2.534 2.678 0.020 0.210 

SCECdwell 

SHEU 7.2% 
70 18.89 18.89 2.770 2.928 0.022 0.229 

SCECair 

CEUD 3% 
64 12.83 12.82 1.881 1.988 0.015 0.156 

SCECair 

SHEU 3% 
71 14.14 14.13 2.073 2.191 0.017 0.172 

SCECair 

CEUD 7.2% 
64 12.84 12.83 1.882 1.989 0.015 0.156 

SCECair 

SHEU 7.2% 
70 14.04 14.03 2.058 2.175 0.016 0.170 

Average 67 15.79 15.78 2.32 2.45 0.02 0.19 
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Postscript 

DesignBuilder Update 

The 550 simulations performed for the ACDD analysis described in Chapter 4 were performed using 

DesignBuilder version 2.4.1.009. After having completed the time-consuming ACDD analysis, the 

author was informed by the software provider of DesignBuilder that this particular version of the 

software contained a bug. DesignBuilder stated that the “bug in it related to metabolic rates which 

weren't being loaded correctly from the new NCM (National Calculation Methodology) databases. 

The net result was that internal gains from occupants were not included in simulations”. 

The bug has been fixed, and is not present in the updated version 2.4.2.015. A number of 

simulations we re-performed on a sub-set of buildings using the updated version in order to 

investigate how they might affect the results reported in Chapter 4. 22 re-simulations were carried 

out on the MW 30%-glazed building (one for each of the 22 locations), this building type having been 

chosen as being a typical building form, being the form likely to be most representative of the stock 

at large. A further 22 re-simulations were also carried out for the Pitched 10%-glazed building, this 

building type having been chosen as it shows the least degree of correlation between the number of 

ACDDs and space cooling energy consumption for simulations carried out in version 2.4.1.009 (see 

Table 56). 

Although, the inclusion of occupancy gains necessarily affects the absolute level of total cooling 

energy reported in the new simulations, the results do not appear to be otherwise deleteriously 

affected, there continuing to remain a very high degree of correlation between the number of 

ACDDs and space cooling energy consumption. Indeed, the coefficient of determination actually 

improves for the Pitched 10%-glazed building: this results from the increased levels of cooling 

required in buildings originally observed as requiring little/no cooling, following inclusion of the 

metabolic gains. 

Figure 79-Figure 82 compare regression plots deriving from use of the original version 2.4.1.009 with 

those deriving from use of the updated version 2.4.2.015. 
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Figure 79 Correlation between annual number of cooling ACDDs using the EAS and total annual space cooling energy 

consumption for the MW building with 30% glazing for 22 different locations – (a) version 2.4.1.009, (b) version 

2.4.2.015 
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Figure 80 Correlation between annual number of cooling ACDDs using the AAS and total annual space cooling energy 

consumption for the MW building with 30% glazing for 22 different locations – (a) version 2.4.1.009, (b) version 

2.4.2.015 
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Figure 81 Correlation between annual number of cooling ACDDs using the EAS and total annual space cooling energy 

consumption for the Pitched building with 10% glazing for 22 different locations – (a) version 2.4.1.009, (b) version 

2.4.2.015 
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Figure 82 Correlation between annual number of cooling ACDDs using the AAS and total annual space cooling energy 

consumption for the Pitched building with 10% glazing for 22 different locations – (a) version 2.4.1.009, (b) version 

2.4.2.015 
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UKCP09 Weather Generator Update 

The analyses described in Chapters 2, 3 and 4 all made use of data from the UKCP09 Weather 

Generator. During the compilation of this thesis however, the Weather Generator was updated, the 

principal improvements relating to rainfall extremes, temperature extremes, sunshine and vapour 

pressure (UKCP09, 2011b). Whilst the analyses in Chapters 2 and 3 used version 2.0, the analysis in 

Chapter 4 (and reported in (McGilligan, et al., 2011a)) used version 1. With version 1 lacking the 

improvement to heat wave duration incorporated in version 2.0 (this latter version appearing, on 

the whole, to increase the number of days reporting extreme temperatures), it would appear that 

the number of ACDDs estimated for future climates (Figure 50 and Figure 51) may have been under-

estimated, since ACDDs are calculated from outdoor temperatures. Table 108 reports illustrative 

data comparing the number of days on which hot temperatures are recorded for version 1 (v1) and 

version 2.0 (v2.0) (UKCP09, 2011b). 

Hot day (>28 
0
C) Hot day (>25 

0
C) 

1970s 
2080s 

Medium 
1970s 

2080s 

Medium 

Heathrow 

Yeovilton 

Coltishall 

Dale Fort 

Ringway 

Aldergrove 

Eskdalemuir 

Wick 

v 1 v 2.0 v 1 v 2.0 v 1 v 2.0 v 1 v 2.0 

2 

0 

0 

0 

0 

0 

0 

0 

2 

1 

0 

0 

0 

0 

0 

0 

27 

21 

10 

6 

9 

2 

1 

0 

32 

28 

11 

1 

9 

2 

3 

0 

15 

7 

4 

0 

3 

0 

0 

0 

12 

8 

4 

0 

2 

0 

1 

0 

63 

54 

37 

25 

30 

11 

8 

4 

70 

63 

37 

12 

29 

13 

12 

0 

Table 108 Number of days on which hot temperatures are recorded for versions 1 and version 2.0 of the UKCP09 

Weather Generator at the 50% probability level for eight UK locations (1970s backcast and 2080s medium emissions 

scenario forecast) 

The backcast for the relatively cool climate of the 1970s appears to show little difference in the 

number of hot days between the two versions. But it would seem that version 2.0 would be likely to 

return a greater number of ACDDs for both the European adaptive standard and the ASHRAE 

adaptive standard than version 1 for a future hot climate, because of the increased prevalence of 

hot days: in other words, energy savings from both the European adaptive standard and the ASHRAE 

adaptive standard would be likely to be higher in the future hot climate. 

In view of the fact that the difference between the two versions is apparent in the hot 2080s climate 

but not in the cool past climate, it is considered that the results reported in Chapter 4 would have 

been little different if the analysis had been performed with version 2.0 instead of version 1, had it 

been available at the time: energy savings arising from the European adaptive standard in the near 
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term (e.g. the relatively cool 2020s) would be unlikely to be achieved by its ASHRAE counterpart 

until decades later. 
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